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ABSTRACT

The reassignment of crews on a construction project in response to changes occurs on a

frequent basis.  The factors that affect the crew reassignment decision can be myriad and

most are not known with certainty.  This research addresses the need for a decision

support model to assist construction managers with the crew reassignment problem.  The

model design makes use of certainty factors in a decision tree structure.  The research

helped to determine the elements in the decision tree, the appropriate combination rules

to use with the certainty factors, and the method for combining the certainty factors and

costs to develop a measure of cost for each decision option.

The research employed surveys, group meetings, and individual interviews of experienced

construction managers and superintendents to investigate the current methods used by

decision makers to identify and evaluate the key elements of the construction crew

reassignment decision.  The initial research indicated that the use of certainty factors was

preferred over probabilities for representing the uncertainties.  Since certainty factors have

not been used in a traditional decision tree context, a contribution of the research is the

development and testing of techniques for combining certainty factors, durations, and costs

in order to represent the uncertainty and to emulate the decision process of the experts

interviewed.  The developed model provides the decision maker with an estimate of upper

and lower bounds of costs for each crew reassignment option.
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The model was applied contemporaneously to six changes on three ongoing construction

projects to test the model and assess its usefulness.  The model provides a previously

unavailable tool for the prospective identification and estimation of productivity losses and

potential costs that emanate from changes.  The users indicated the model process

resulted in concise and complete compilations of the elements of the crew reassignment

decision and that the model outputs were consistent with the users’ expectations.
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CHAPTER 1:  INTRODUCTION

The purpose of this research was to develop, demonstrate, and evaluate a decision

support model for the crew reassignment problem on construction projects.  Although crew

reassignment decisions occur on a frequent basis on almost all construction projects and

can affect the schedule as well as labor and equipment costs, there has been no

codification of the considerations in making these decisions.  The decision support model

presented assists in the identification of cost-effective crew reassignment options while

addressing decision-maker preferences and the effects of uncertainty.  In addition, the

decision support model developed includes a method for the application of certainty factors

to a decision tree structure.

1.1.  Overview

It is the rare construction project that does not undergo a number of changes during the

course of construction.  These changes can range from a simple modification of the

specifications, allowing the substitution of one manufactured component for another, to a

change so significant that it is viewed as a cardinal change to the scope of work.

When a change occurs, the price for the change work frequently is determined using the

estimated cost of materials plus the estimated labor based on the contractor’s unit rates.
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However, most contractors, indeed, many would say all prudent contractors, will reserve

their rights to identify at a later date any other impacts resulting from the change work.

These impacts usually consist of delays and/or labor inefficiencies that are not captured

in the unit rates used to price the change.  Typically, these impacts are identified at the end

of the project in the form of a claim for both delays and inefficiencies allegedly emanating

from the effects of the changes.  These impacts often are referred to as the cumulative

impact of the changes made over the course of the project.

The inefficiencies experienced as a result of changes are most often the point of

contention in settling a claim.  Frequently, the owner denies the contractor’s claim by taking

the stance that the contractor had the responsibility to mitigate the effects of the changes.

Usually, the owner’s position is supported, at least in part, by the terms of the contract.

The contractor is then faced with the requirement of proving that appropriate mitigating

actions were taken and the resulting inefficiencies were incurred in spite of the best efforts

of the contractor.  Unfortunately for the contractor, the typical documentation maintained

on a construction project rarely provides evidence of a clear link between changes and the

alleged resulting inefficiencies or that mitigating actions were undertaken in direct response

to changes.
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The objective of this study was to develop a framework for a decision support model that

will assist contractors with the prospective identification and evaluation of the factors that

may contribute to a potential loss of construction resource productivity, specifically

manpower and equipment, resulting from change work.  The model is intended to assist

the contractor in determining the most prudent action regarding the reassignment of

resources when a change in the planned course of construction occurs.

A prospectively-applied crew reassignment decision support model allows the identification

of potential causes of productivity loss and the estimation of the potential losses prior to

the final definition of the change and the performance of the work.  In addition to providing

the contractor with assistance in assessing the crew reassignment alternatives, the

information provided by the model aides both the contractor and the owner in the pricing

and settlement of change orders prior to the end of a project, reducing the likelihood of an

inefficiency claim.  Also, through greater awareness of labor assignments and changes to

planned resource usage, the contractor may realize opportunities for increased productivity

on both change order and non-change order work.  Finally, the output from the decision

support model may provide previously unquantified information regarding the actual

productivity rates for certain types of work and realized profit on change work.  This

information may prove valuable to the efforts of planners and estimators for future bid

preparation.
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1.2.  Problem Statement

Change work on a construction project frequently affects the planned usage of resources,

including manpower, materials, and equipment.  The effects can be of minor consequence,

such as several minutes of standby time for a single crew, or of major significance, such

as project-wide productivity losses due to excessive overtime, shiftwork, or demobilization

from the site.  After the fact, the actual productivity loss associated with any particular

change can be difficult to measure without detailed record keeping.  An accurate estimate

of the potential productivity loss prior to the performance of a change is even more difficult

to calculate using presently available tools.

Although changes occur on almost every construction project and contractors are required

to submit change order proposals prior to the performance of the work, there are no widely-

accepted or empirically-based models or methods to assist in the prospective identification

and quantification of the potential loss of construction labor productivity ensuing from

change work.  Appendix A, which provides information on the measurement of construction

labor productivity and the factors that affect labor productivity, lists and discusses the

general methods for the measurement of productivity losses and provides descriptions of

several of the models that have been developed.  As presented in Chapter 3 of Appendix

A, the only commonly-used methods that can be applied prospectively are Industry

Standards, Factor-Based Methods, and Expert Testimony.  However, all of these methods
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are highly subjective.  In addition, many of the existing industry published factors are not

based on empirical data and/or may not be applicable for construction.

Due to the unique circumstances of each construction project and the vast number of

simultaneously-occurring events on a project, attempts to develop a prospective model for

the quantification of productivity losses due to specific changes have not been successful.

As discussed in Chapter 3 of Appendix A, the instructions that accompany the existing

prospective models indicate that the models are intended to serve as guidelines only; the

particular circumstances of the project and the specific experience of the contractor must

be taken into consideration when applying the models.  Thus, efforts to date have not been

successful in developing a general-use prospective model that provides an accurate

estimate of the expected productivity loss resulting from a specific change.

Due to a lack of a simple-to-use prospective model, when pricing a change order a

contractor typically reserves the right to identify at a later time the loss of efficiency

resulting from change work.  Usually these ‘unidentified’ inefficiencies are accumulated at

the end of a project and presented as a proposed change order.  Most often, the

inefficiency costs are computed using the format of a total cost calculation.  That is, the

contractor simply subtracts the planned labor costs from the actual labor costs to establish

the alleged costs of the inefficiencies due to changes.  For obvious reasons, the owner

rarely accepts such a calculation.  As a result, the contractor files a claim, using the total

cost calculation as the basis for the claim.  This scenario persists throughout the
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construction industry in spite of the fact that many courts have imposed strict application

of the qualifications to allow a total cost claim, specifically when it is determined that it may

be possible to calculate the alleged damages by another method.

Although there are no available data of the costs incurred by contractors and owners in

asserting and defending productivity loss claims, based on the author’s personal

experience in the construction claims industry, productivity loss claims usually are the most

time-consuming to develop and analyze.  In addition, perhaps due to the subjective nature

of most productivity-loss analysis methods, these claims are the most difficult to settle

without legal action.

A model that aids the contractor in making crew reassignment decisions when a change

occurs may function as an alternative to the desired general-use prospective model.  The

main purpose of a crew reassignment decision support model would be the identification

of potential causes of productivity loss prior to the final definition of the change and the

performance of the work.  This would allow the contractor to develop complete pricing of

the change work, including costs and time for productivity loss.  In turn, the complete

pricing provides crucial information to the owner regarding the true costs of the change.

Thus, both parties would be able to make more informed decisions regarding change work.

In addition, through the documentation of the crew reassignment decision process, the

contractor is provided a means to show ‘cause and effect’ of productivity losses stemming



7

from change work.  The steps of the process will provide an outline of the crew

reassignment decisions made in response to the change.  In the event of a claim, this type

of documentation can provide supporting evidence of the actions taken in an effort to

mitigate productivity losses stemming from changes.

Perhaps of even greater value is that through a conscious consideration of the available

crew reassignment options and the ramifications of each option, the contractor will have

the necessary information to develop plans to mitigate many of the adverse effects of

changes.  Also, a greater awareness of resource assignments might result in the

identification of opportunities to revise the overall resource plan and achieve higher

productivity project-wide.  Since the direct labor costs of the typical construction project are

in the range of 35% - 40% of the total project cost, any increase in productivity can have

a measurable effect on the final costs of a project [Adrian, 1987].  Further, since the norm

on commercial construction is 55% productive time, there is ample opportunity for

productivity improvement on construction projects [Strandell, 1976].

In addition, a crew reassignment decision support model that supports the quantification

of potential causes of productivity loss may provide previously-unavailable information for

planners and estimators.  This information may provide new insight into the full range of

costs incurred during the performance of change work and an assessment of the actual

profit realized on change work.  Armed with this additional information, the contractor will

be able to develop supportable estimates for proposed change work.
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Currently, there are no established models or methods to assist the contractor with

decisions concerning crew reassignments when a change arises on a construction project.

The literature contains no record of attempts to codify the many considerations required

in the evaluation of the circumstances on a construction project between the time when a

potential change is identified and the issuance of a change order and/or the subsequent

performance of the change work.

However, research has identified a number of factors that can affect construction labor

productivity, ranging from crew size to material delivery and from weather to quality of

management [Arditi and Mochtar, 2000; Borcherding and Alarcon, 1991; Herbsman and

Ellis, 1991; Thomas and Smith, 1990; Tucker, Haas, Borcherding, Allmon, and Goodrum,

1999].  In addition, a number of studies have been performed on the effect of a single-

factor occurrence on labor productivity.  Among the best-known of these studies are

Bureau of Labor Statistics Bulletin No. 917, “Hours of Work and Output” [1947] and The

Business Roundtable Report C-2, “Scheduled Overtime Effect on Construction Projects”

[1989].  Due to the fact that data from a manufacturing plant forms the basis for the Bureau

of Labor Statistics report and the Business Roundtable report is based on data from a

single project site, two of the most-frequently cited studies in construction productivity

claims may not provide a sound basis for the calculation of inefficiencies resulting from

overtime on a construction project.  Chapter 2 of Appendix A contains a discussion of

these and other related studies.
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The dearth of reliable information is even more pronounced in the consideration of the

effect of multiple factors on construction labor productivity.  Although a few studies have

been undertaken on the development of multiple-factor models (See Appendix A, Chapter

3), the literature contains no record of a prospective model that has been validated across

a broad range of applications, as typically is encountered in construction.

Although it may not be possible to develop a general-purpose prospective model that will

provide a calculation of the productivity loss due to a particular change, a crew

reassignment decision support model will assist in the evaluation of the crew reassignment

decision as well as the identification of the potential productivity losses associated with the

decision.  Through the use of a flexible framework for the crew reassignment decision

support model, the decision maker will have control of a tool that will aide in the pursuit of

better decisions and increased labor productivity, while providing a method to document

productivity losses.
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1.3.  Research Objectives

The primary objective of this research was to address the need for a decision support

model to assist the contractor in making crew reassignments when changes arise on a

construction project.  The model will be suitable for prospective application in order to

determine the potential causes of productivity losses due to changes on a construction

project.  Through the identification and understanding of the potential causes and effects

of productivity loss, the decision support model will provide the contractor with a tool to

assist in more-informed decision making regarding construction resource assignments.

As discussed, there currently exist no models that can perform this function.

A second objective of this research was the application of the theories of uncertainty,

specifically the use of certainty factors on a decision tree structure.  As discussed in

Chapter 2, it was determined that the appropriate framework for the crew reassignment

decision consisted of a decision tree structure.  Typically, Bayesian probabilities are the

quantitative method used for decision trees.  However, the crew reassignment problem

required a quantitative method that supported a straightforward method of elicitation of

information and calculation on a flexible framework that is easy to update and use.

Although Bayesian probabilities offer a strong theoretical foundation to modeling

uncertainty, the ‘uniqueness’ of each construction change circumstance precludes the

development of probability frequency distributions.  The use of subjective probabilities

presents the problem that experts have in expressing their knowledge in a numerical form
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that fully represents the nature of probabilities [Lauritzen and Spiegelhalter, 1988].  Finally,

it is generally accepted that many people have difficulty interpreting probabilities, especially

very low probabilities [Starr and Whipple, 1980].  As a result, it was determined that the

model should employ methods of expression that are compatible with the non-probabilistic

orientation of the information and the decision makers.  Although there are numerous

publications addressing recent developments regarding fuzzy decision trees, pruning

decision trees, and combining multiple decision trees, the literature review indicated that

there are no published studies on the subject of the application of certainty factors to

decision trees [Benbrahim and Bensaid, 2000; Crockett, Bandar, and Mclean, 2002; Lee,

Lee, Lee, and Kwang, 1999; Yuan and Shaw, 1995].

Initial informal research showed that even when construction management personnel were

not willing to state the probability that something will or will not occur, given the same

circumstances, they were comfortable with expressing a likelihood or level of belief or

disbelief in the event.  Thus, it appeared that the use of certainty factors provided the most

suitable quantitative method.  Since the literature contained no information regarding the

application of certainty factors to decision trees, an additional research objective was to

establish the methodology for this process.
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1.4.  Outline of the Dissertation

The research activities and results are presented in Chapters 2 through 5:

Chapter 2: Decision Support Models and Uncertainty

Chapter 3: Development of Crew Reassignment Decision Support Model

Chapter 4: Application and Validation of Crew Reassignment Decision Support

Model

Chapter 5: Summary and Conclusions

Each chapter is summarized below.

1.4.1.  Chapter 2:  Decision Support Models and Uncertainty

As discussed in part 1.2, there are no established decision support models or methods to

assist the contractor with the decision of crew reassignments when a change is identified

on a construction project.  The problem analysis, which is presented in Chapter 2,

discusses the various available frameworks for decision problems.  This discussion is

combined with a definition of the issues to be considered by the decision maker and an

examination of the characteristics and desired attributes of the crew reassignment problem.

In addition, the results of a study of the concepts of uncertainty in relation to decision

support in general and the crew reassignment problem in particular are presented.  The
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results of this analysis and study provide the foundation for the development of the

decision support model framework and quantitative method.

1.4.2.  Chapter 3:  Development of Crew Reassignment Decision Support Model

Based on the findings of the research described in Chapter 2, the methodology that

appeared to provide the best fit for the crew reassignment problem was comprised of a set

of decision trees.  Preliminary influence diagrams and decision trees were constructed for

various construction change scenarios.  These preliminary models, which are presented

in Chapter 3, provided a detailed description of the different steps and stages of the crew

reassignment decision.

Using the results of the literature research and the author’s experience, questionnaires

were developed and issued to members of the construction industry.  Samples of the

questionnaires are presented in Figure 5.  The responses to the questionnaires, which

were discussed in group sessions, allowed refinement of the proposed model.

The next step in the design of the decision support model framework involved the

development of the quantitative method to be used in the model.  Based on the results of

research on the representation of uncertainty, as presented in Chapter 2, and the specific

characteristics of the crew reassignment problem, it was determined that certainty factors
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provided the most appropriate quantitative method.  Since there were no published works

regarding the use of certainty factors with decision trees, this phase of the research

developed and tested a process for use of certainty factors with decision trees.  As part of

this phase of the research, the proposed model first was discussed and evaluated in the

group sessions.  Based on information obtained during the group sessions, the model was

revised.  The revised model then was reviewed, analyzed, and evaluated in individual

sessions with construction industry experts.

1.4.3.  Chapter 4:  Application and Validation of the Crew Reassignment Decision
Support Model

The final stage of the research included the testing of the model.  During this stage the

decision support model was applied to six crew reassignment decisions on three on-going

construction projects.  The scenarios to which the model was applied are presented in

Chapter 4, along with the model outcomes.  In addition, the model outcomes are compared

to the actual crew reassignment decisions that were enacted.  The assessments of the

model by the representatives from each project are presented. 
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1.4.4.  Chapter 5:  Summary and Conclusions

Chapter 5 presents a summary of the research and conclusions of the model development

and evaluation.  In addition, the contributions of the research in the area of the application

of certainty factors to a decision tree structure and opportunities for potential future

research are discussed.
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CHAPTER 2:  DECISION SUPPORT MODELS AND UNCERTAINTY

2.1.  Introduction

A decision implies choosing one action from a set of possible actions of either finite or

infinite number.  Most decisions are made without knowledge or consideration of all

existing factors, conditions, and alternatives.  As a result, these decisions are made under

conditions of uncertainty.

The typical crew reassignment decisions made on a construction project are complex

decisions, as they must consider a web of inter-related internal issues and ever-changing

external conditions.  The internal issues include project-specific circumstances, such as

the stage of the project and the availability of alternative work assignments for a crew,

while the external conditions include market-related concerns such as labor and material

availability.

This section presents an examination of the various available frameworks and analytical

tools for decision problems along with an evaluation of the available models relative to the

characteristics and desired attributes of the crew reassignment decision problem.  Also

included is a discussion of the concepts of uncertainty in relation to decision support in
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general and the crew reassignment problem in particular.  This discussion includes

identification of the issues to be considered by the crew-assignment decision maker.

2.2.  Decision Support Models

Decision support is defined by Andriole [1989, p3] as consisting of “any and all data,

information, expertise and activities that contribute to option selection.”  From the starting

point of this broad description, one can project that a well-constructed decision support

model can assist decision makers in the identification of the availability and consequences

of each alternative, while facilitating the search process for robust strategies [Van Asselt,

2000].  Grimes [2001, p1] added that decision support models “encapsulate methods of

deriving meaning from the information. . . . [providing] an analytic framework for optimizing

system and process performance, for evaluation of ‘what if?’ scenarios, and for goal-

seeking studies that concoct a recipe for your desired outcome.”

A decision support model consists of the following elements: (1) alternatives, (2) state

descriptions, (3) relationships, and (4) outcomes and preferences [Gottinger and Weimann,

1991].  The alternatives represent the distinct resource allocations from which the decision

maker can choose.  The state descriptions, which are intertwined with the relationships,

provide the concepts that frame the decision.  The relationships provide a mapping of

beliefs between and among the state descriptions.  Finally, the outcomes and preferences
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include the decision maker’s rankings of the possible outcomes.  Depending on which state

of the world turns out to be the true state, the decision maker’s actions lead to different

outcomes.

Decision support encompasses a wide range of available tools, including analytic methods

such as Bayesian analysis, belief network modeling, fuzzy set theory, and a variety of

different model forms such as regression, forecasting, scheduling, selection, simulation,

and optimization models.  A review of the major analytic methods and model frameworks

is presented in the following sections.  Included is a discussion of the applicability of the

methods and frameworks to the crew reassignment decision model.

The construction industry in general employs a select few decision support models in its

day-to-day operation [Libertore, Pollack-Johnson, and Smith, 2001].  The most commonly

used model is for scheduling of construction activities [Wyatt, 2003; Longworth, 2002].

Almost every medium-to-large construction project uses critical path method scheduling

software to identify the planned sequence of construction and compile progress updates

on a regular interval, usually monthly.  On the occasion that formal resource planning is

undertaken, typically, the resources are added as part of the schedule development.  This

process usually takes the form of adding finish-to-start logic ties among the activities that

are planned to be performed by a single crew, precluding these activities from appearing

as concurrent work.  Less frequently, the effort required by each individual work activity is

quantified.  For example, the schedule activity for the installation of large diameter pipe will
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include the number of linear feet of pipe that is to be installed.  This activity is then

resource loaded with information regarding the manpower and equipment that is planned

for the performance of that particular activity.  This results in a productivity unit rate for the

planned manpower and equipment.

Although resource loading a schedule is a very time consuming undertaking, it does allow

the utilization of additional features found in scheduling software, such as resource leveling

and resource smoothing that can be applied only to resource-loaded schedules.  As

previously noted, the original resource plan rarely is revised, even when significant logic

changes and/or new activities are incorporated into the schedule or when demonstrated

productivity does not meet expectations.

Several other decision support systems proposed for use in construction include a

prototype decision support system for construction management that links company

information in a data warehouse with a decision support system [Chau, Cao, Anson, and

Zhang, 2003]; a system developed to provide advice regarding differing site conditions

claims [Diekmann and Kraiem, 1990]; and a model intended to provide the most cost-

effective ratio of overtime to added personnel [Tse and Love, 2003].  Also, a prototype

construction labor monitoring system, that was intended to aide contractors and owners

in project planning, recently was developed for Puget Sound, Washington [Pace, 2003].

To date, none of these systems have been widely adopted by the construction industry.
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Other decision support models and systems used by the construction industry are the

same models and systems used throughout the general business world. These models

generally are for financial management purposes and include forecasting models for cost

trending and financial planning, estimating models for bid preparation, and inventory

models for material control.

The available literature revealed no information on the development of a crew

reassignment model for use in situations when changes occur on a construction project.

2.3.  Decision Support Model Frameworks

A basic principle of modeling is the ability to build a simplified representation of reality.  A

good model will access and accumulate data from a variety of sources and will transform

that data into information that can be used to assist in making better decisions.  In addition,

a critical part of the philosophy of modeling is that the choice of a particular model and type

of analytic technique is a decision to exclude all other possibilities.  The appropriate model

must include not only an accurate representation of the problem, but also must address

the issue of being user-friendly.  After all, the purpose of the model is to provide assistance

to the decision maker.
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Decision models can be classified in several different ways.  One high-level classification

is to define the models as either static or dynamic, depending on whether or not time is an

element of the model.  Another method of classification is based on the mathematical or

logical focus of the model.  The highest level of this type of classification would include

abstract decision models, which focus on mathematical precision, and conceptual decision

models, which can be defined as analogies to the problem context [Marakas, 1999].  The

classification of abstract decision models would include deterministic, stochastic,

simulation, and domain-specific models.  A third method of classification is to group the

decision models based upon the model architecture.  The groups would include purely

descriptive models, explanatory models, predictive models, and goal-seeking or solvable

models [Grimes, 2001].  A fourth method of classification is based on the type of problem

that each model typically is used to address.  These classifications would include models

for allocation, distribution, activity scheduling, decision and risk analysis, demand and

resource forecasting, and process management and control [Davis, 1988].  Within each

of these model classifications one finds a variety of quantitative techniques, including

mathematical programming, network optimization, network analysis, stochastic methods,

and forecasting procedures.

The features of the decision support model must correlate to the characteristics of the

problem being analyzed and the needs of the particular decision maker.  The key

characteristics of the construction crew reassignment problem include:
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(1) Uncertainty  –  Uncertainty is associated with the factors that influence the potential

outcomes and the alternative courses of action that can be taken.  For example,

when the change is precipitated by a conflict between two elements, there may be

more than one potential resolution to the conflict.  Although the contractor can

assess the likelihood for any particular resolution, it can not be known with certainty

which resolution will be chosen by the designer.

(2) Subjective Input  –  The information available for consideration in making the crew

reassignment decision is subject to the perspective of the particular decision maker.

The decision maker’s experience on other projects or a lack of experience may

affect the way an issue is viewed and evaluated.

(3) Multi-stage Events  –  The complex choices that must be considered are dependent

on a previous chain of events.  As time progresses, the choices and decisions vary,

depending on the stage of the project, the status of the work, and previous choices

and decisions.
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(4) Choices and Decisions  –  The decision-maker is confronted with a series of choices

and decisions.  Each of the possible crew reassignment options represents an

available choice and the necessity for a decision.

 

(5) Flexibility and Dynamic Conditions  –  The underlying conditions of the crew

assignment decision are constantly changing.  These conditions include the labor

market, material availability, task status, and the stage of the project.

(6) High Frequency of Use and Responsiveness  –  The crew reassignment is an

“operational” decision, requiring quick responses and simple access for frequent

updating.

(7) Ease of Use  –  On many projects, crew reassignment decisions due to changes are

contemplated almost daily.  In order to be useful to field personnel, the model must

contain both conceptual and application simplicity.  In addition to the characteristics

of the problem, the nature of the user and the intended application of the decision

support model requires consideration of the mathematical orientation of the decision

makers, who will be comprised of construction management and field personnel,

and the anticipated circumstances of use.  
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(8) Transparency  –  All analytical assumptions should be apparent to the user. This

feature is critical to the use of the model as a record of the decision process,

especially in the justification of productivity losses to the owner and for the

development of a productivity database that can be used for future bid and estimate

preparation.

(9) Evaluability  –  The internal criteria and the outcomes recommended by the model

should be able to be tested with scenarios for which the “right” answers have been

determined.

Of all the quantitative techniques previously listed, only network analysis and stochastic

methods can accommodate the uncertainty that is inherent in the crew reassignment

decision.  Table 1 is a summary matrix of the frameworks available in both network

analysis and stochastic methods and their ability to accommodate the characteristics and

desired attributes of the crew reassignment decision support model.
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Table 1:  Decision Model Framework Evaluation
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As summarized in Table 1, an evaluation of the available models relative to the key

characteristics of the crew reassignment decision problem revealed that the decision tree

and flowgraph frameworks appear to contain the necessary characteristics and desired

attributes.

A decision tree provides both a graphic depiction of the problem as well as a framework

for quantitative evaluation [Jeljeli and Russell, 1995].  The typical decision tree solution
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algorithm is based on roll-forward and roll-back techniques.  During the roll-forward a joint

probability and an output value for each branch in the tree is determined.  During the roll-

back the optimal policy that maximizes the expected value of the decision problem is

determined.  One advantage of the decision tree framework is the explicit representation

of the chronology of events and the state of information at each decision.  This allows a

large, complicated problem to be viewed as a series of smaller, simpler problems.

Additional advantages include the recognition of the uncertainty of any estimates used in

the analysis and the formation of a basis for the continuous evaluation of decisions that

have distant time horizons.  A disadvantage of the decision tree is that every added

variable expands the tree combinatorially.

A flow analysis or flowgraph is a graphic depiction of the problem using geometric shapes

and arrows [Davis, 1988].  The geometric shapes represent the uncertain variables that

comprise the problem.  The directed arrows represent the flow of information and

probabilistic dependencies.  An advantage of a flowgraph is the ability to depict complex

relationships between the activities.  For example, the occurrence of an event may result

in a portion of the process being repeated.

Since the consideration of repeating a part of the process is not a necessary requirement

of the crew reassignment decision problem, there appears to be no reason to chose the

flowgraph format.  Therefore, the decision tree format appears to provide the best choice

of the available models.
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2.4.  Sources of Uncertainty

There are two general sources of uncertainty:  variability and incomplete knowledge

[Hoffman and Hammonds, 1994].  Variability can occur due to the randomness of nature;

human behavior; economic, cultural, and societal dynamics; subjective judgement; and

technological surprise.  Incomplete knowledge can be present due to unreliability and

structural or systemic uncertainty [Morgan and Henrion, 1990; Rowe, 1994].  Unreliability

is comprised of inexactness and the lack of available or practically immeasurable data,

while structural or systemic uncertainty is comprised of indeterminacy, conflicting evidence,

and reducible and irreducible ignorance [Morgan and Henrion,1990; Rowe, 1994].  Since

there are both theoretical and practical limitations to the reduction of uncertainty it is

necessary to develop means to accommodate and address uncertainty in the decision

process.

The potential sources of uncertainty in the crew reassignment decision process are listed

in Table 2.
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Table 2:  Potential Sources of Uncertainty

Variability Lack of Knowledge

Category Example Category Example
Human
Behavior

Performance of
workers under change
circumstances

U
nr

el
ia

bi
lit

y

Inexactness Amount of work that might
be required to implement
the change; Linguistic
imprecision

Natural
Randomness

N/A Lack of
Measurements

No data or measurements
available regarding the
productivity rates

Societal
Randomness
(social,
economic, and
cultural)

Labor and material
markets

Practically
Immeasurable

Complete productivity data
for each contractor not

St
ru

ct
ur

al
Indeterminacy Length of time to receive

responses

Technological
Randomness

N/A Conflicting
Evidence

Inefficiencies attributable to
unidentified causes

Value Diversity
(disagreement)

Priorities of different
parties involved in the
change process

Reducible
Ignorance

Schedule analysis to
accompany each potential
change

Irreducible
Ignorance

Interactions between
processes that can not be
defined

2.5.  Representation of Uncertain Information

One of the core problems in reasoning under conditions of uncertainty is that of combining

pieces of uncertain information and inferring conclusions in a sound and consistent manner

[Torsun, 1995].  Different theories have been developed to deal with different types of

uncertainty.  Smets [1995] identified three broad categories of analytical models for
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representing uncertainty in decision making:  probability-based (Bayesian) models; non-

standard probability models; and non-probabilistic models.

Probability theory, with over a one-hundred-year history, is best at representing uncertainty

that often is described as randomness.  When only partial information about the

uncertainty of a variable is available a Bayesian probability model may not be appropriate,

as exact probability distributions may be difficult or impossible to obtain.  As discussed by

Casman, Morgan, and Dowlatabadi [1999, p34]:

However, as the quality of scientific understanding becomes poorer,

developing meaningful probability judgments to combine alternative models

of the world becomes increasingly more difficult.  In such circumstances,

many Bayesian theorists would advise the analyst to specify the (perhaps

infinite) set of all priors and models which fit the constraints imposed by

whatever limited knowledge one has.  Probability weights (which might all be

equal) should then be applied across this set, and the problem should be

solved for all cases.  While we have no basic theoretical disagreement with

such an approach, we also know from experience that a prescription that

one’s analytical formulation should grow in complexity and computational

intensity as one knows less and less about the problem, will not pass the

laugh test in real-world policy circles.
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Non-standard probability models have been developed to address vagueness or a lack of

clarity [Bouchon-Meunier, Yager, and Zadeh, 2000; Chen, 1999].  Fuzzy sets, possibility

theory, and other non-standard probability models allow the representation of concepts

used in human reasoning and perceptions.  In this group of models, the Dempster-Shafer

theory and certainty factors are particularly well suited for the representation of information

that is both random and granular.  The following are brief descriptions of fuzzy sets,

Dempster-Shafer theory, and certainty factors. 

Unlike probability theory, fuzzy set theory has nothing to do with the frequency or repetition

of an event.  Instead, fuzzy set theory deals with the graduality of concepts and their

boundaries, allowing reasoning with vague or ambiguous terms [Zadeh, 1965 and 1978].

A fuzzy set may be regarded as a class in which an object may have a grade of

membership between unity (full membership) and zero (non-membership).  For this reason,

fuzzy set theory is well-suited for group decision making.

The Dempster-Shafer theory introduces the notion of non-belief or ignorance, which is not

addressed in classical probability theory [Shafer, 1976].  The Dempster-Shafer theory

assumes that the values of prior probabilities are not always known.  Thus, any particular

choice of the probability, P(x), may not be justified.  Belief functions are introduced to

distinguish between uncertainty and ignorance.  Belief functions allow the decision maker

to use his knowledge to bound the probabilities to events without designating exact
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probabilities.  The difficulties in utilization of the Dempster-Shafer theory stem from the

requirement that all subsets must be considered and probabilities assigned.

Certainty factors, which are based on experts’ estimates using qualitative verbal

assessments, are used to indicate a judgmental degree of confirmation in a hypothesis

[Shortliff and Buchanan, 1975; Heckerman and Shortliffe, 1992; Fu and Shortliffe, 2000].

First used in the MYCIN expert system, developed at Stanford University in the mid-1970s,

certainty factors were intended to address the problem of reasoning under uncertainty or

with incomplete information [Buchanan and Shortliffe, 1984].  Although the certainty factor

model has some basis in probability theory, it is considered more of an ad hoc approach

that is meant to simulate inexact human reasoning.  As such, it is computationally simple,

but is generally considered to defy interpretation of the certainty factors as strict

probabilities.  However, Heckerman [1986] has described transformations of certainty-

factor models to probability theory; Adams [1984] showed that certainty factor theory was

an approximation of standard probability theory; and Lucas [2001] has investigated and

mapped the relationship between Bayesian belief networks and fragments of the certainty-

factor model.

As noted, certainty factors usually are obtained using linguistic terms.  Table 3 provides the

correlation between the verbal response and the numerical values of the certainty factors.

Generally, certainty factors range from -1.0 to +1.0; 0 to +1; 0 to 10; or 0 to 100. 
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Based on the scale of 0 to +1, a zero indicates complete disbelief or the lowest possible

belief, while a one indicates complete belief or the greatest possible belief.  A certainty

factor near 0.5 indicates little or no evidence either for or against.

Table 3:  Certainty Factor Value Interpretation

Uncertain Term
Range of Values

-1 to +1 Scale 0 to +1 Scale

Definitely Not
Almost Certainly Not
Probably Not
Maybe Not
Unknown
Maybe
Probably
Almost Certainly
Definitely

  -1.0
  -0.8
  -0.6
  -0.4

  -0.2 to +0.2
  +0.4
  +0.6
  +0.8
  +1.0

0
0.1
0.2
0.3

0.4 to 0.6
0.7
0.8
0.9
1.0

The mathematical method used to compute a new certainty factor from existing certainty

factors is referred to as the certainty factor algebra.  In the original certainty factor model,

the evidence for similarly concluded rules was divided into confirming evidence and

disconfirming evidence.  The confirming evidence was combined together, in an asymptotic

and commutative fashion, into a measure of belief.  Similarly, the disconfirming evidence

was combined into a measure of disbelief.  The net belief was calculated as the difference

between the measure of belief and the measure of disbelief using the formula:
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CF[H,E+ and E-] = MB[H,E+] - MD[H,E-] (1)

Where
 CF = combined certainty factor

H = hypothesis
E+ = Evidence for
E- = Evidence against
MB = Measure of Belief
MD = Measure of Disbelief

Using Equation 1, a single piece of disconfirming evidence could offset many confirming

pieces of evidence.  To desensitize this effect, the combining rules for multiple pieces of

evidence for a single hypothesis were revised as shown in Equation 2.

CFcombine(CF1, CF2)  = CF1 + CF2(1 - CF1) CF1 and CF2 > 0

 = 
CF1 + CF2

(CF1)(CF2) < 0 (2)
1 - min{|CF1|, |CF2|}

 = CF1 + CF2(1 + CF1) CF1 and CF2 < 0

Where
CFcombine = combined certainty factor

 CF1 = confidence in the hypothesis established by rule 1
CF2 = confidence in the hypothesis established by a rule 2

These combination equations exhibit the desired properties of being both commutative and

asymptotic.  The commutative property allows CFcombine to be independent of the order in

which the evidence is considered.  The asymptotic property allows multiple pieces of

confirming evidence to incrementally add to CFcombine.  In addition, the asymptotic property
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allows CFcombine to converge toward 1 without ever reaching this value without absolute

‘proof’ from at least one piece of evidence.

The combining methods for multiple premise rules fall into two classes:  joint methods and

confirmative methods.  Joint certainty-combining methods (conjunctive rules) are used for

expressions involving ‘and’, while confirmative certainty-combining methods (disjunctive

rules) are used for expressions involving ‘or’.  The following is a description of the most

common joint and confirmative methods, using a scale of 0 to 1 for the certainty factor

values.

Joint Methods  –  The most-widely used joint certainty-combining methods are the

minimum method, the product method, and the joint average method.  The following is a

brief description of each of these three methods.

The minimum method is the lower of the two levels of confidence being considered.  For

example, if we have certainty factors of 0.6 and 0.8, the minimum method would yield a

joint certainty factor = min {0.6, 0.8} =  0.6.  Essentially, the minimum method is analogous

to the ‘weakest link’ argument. 

The product method, which is the mathematical product of the two levels of confidence, will

yield a certainty factor that is less than or equal to the result from the minimum method. 
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Figure 1:  Comparison of Joint Certainty-Combining Methods

Using the same two certainty factor values of 0.6 and 0.8, the product method yields a joint

certainty factor = (0.6 * 0.8) = 0.48.  Therefore, the product method is more conservative

than the minimum method.

The joint average method is a compromise between the minimum and product methods.

Using our example, this method yields a joint certainty factor = (min {0.6, 0.8} + (0.6 *

0.8))/2 = 0.54.

Figure 1 is a graphic comparison of the joint certainty-combining methods.
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Confirmative Methods  –  The most-widely used confirmative certainty-combining methods

are the maximum method, the probability sum method, and the confirmative average

method.  The following is a brief description of each of these three methods.

The maximum method is simply the higher of the two levels of confidence being

considered.  For example, if we have certainty factors of 0.4 and 0.7, the maximum method

would yield a joint certainty factor = max {0.4, 0.7} =  0.7.  This method provides the most

cautious result of the three confirmative methods, as it does not consider any contribution

from the confirming evidence.

The probability sum method calculates the sum of the two certainty factors minus the

product of the two certainty factors, yielding a higher value than the maximum method.

Since the expressions are combined with an ‘or’, the argument is that one reinforces or

confirms the other.  For the example of certainty factors of 0.4 and 0.7, the probability sum

method returns a certainty factor = ((0.4 + 0.7) - (0.4 * 0.7)) = 0.82.

The confirmative average method is a compromise between the maximum and probability

sum methods.  Using our example, this method yields a confirmative certainty factor =

(max {0.4, 0.7} + ((0.4 + 0.7) - (0.4 * 0.7))/2 = 0.76.
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Figure 2:  Comparison of Confirmative Certainty-Combining Methods

Figure 2 is a graphic comparison of the three confirmative certainty-combining methods

discussed.

The combining method(s) employed should emulate the way in which the human expert

combines the uncertainties for the particular situation (Holsapple and Whinston, 1996).

This can be determined by asking the expert to provide joint or confirmative certainty

factors for particular circumstances and then determining which method(s) provides the

certainty factors closest to those provided by the expert.  Alternatively, the joint or

confirmative certainty factors calculated by each method can be evaluated by the expert
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to determine which appears to provide the most reasonable assessment.  A summary of

the joint and confirmative certainty factor algebras is shown in Table 4.

Table 4:  Summary of Joint and Confirmative Certainty Factor Algebras

Summary of Certainty Factor Algebras for Combining Evidence
(CF Scale of 0 to 1)

Joint Certainty
– evidence linked by ‘and’ –

Confirmative Certainty
– evidence linked by ‘or’ –

Minimum Method:
CFNew = min {CF1, CF2}

Product Method:
CFNew = CF1 * CF2

Joint Average Method:
CFNew = (min {CF1, CF2} + (CF1 * CF2))/2

Maximum Method:
CFNew = max {CF1, CF2}

Probability Sum Method:
CFNew = (CF1 + CF2) - (CF1 * CF2)

Confirmative Average Method:
CFNew = (max {CF1, CF2} + (CF1 + CF2) - 

(CF1 * CF2))/2

Since certainty factors are not strict probabilities, there can be inconsistencies.  One of the

concerns is the overcounting of evidence, since the estimation of certainty factors is based

on the assumption of independence among evidence.  This concern can be address

through careful model construction.

The final category of analytic methods, non-probabilistic models, attempts to match human

judgmental reasoning, which is more qualitative than quantitative.  One of the most-

frequently used method in this category is scenario analysis.  Robustness analysis is

another non-probabilistic, non-quantitative model that can be applied to problems with a
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high degree of uncertainty where decisions are staged sequentially [Rosenhead and

Mingers, 2001; Rosenhead, 2002].

Studies have shown that most people prefer to use linguistic phrases when communicating

their opinions to others, while the preference is to receive opinions in numerical format.

[Brun and Tiegen, 1988; Olson and Budescu, 1997].  During initial interviews to gain insight

into the crew reassignment decision process, the decision makers used qualitative phrases

such as “the change most likely would be . . .” or “the designer probably would issue a

response . . .” in the description of the likelihood of an event occurring.  This type of verbal

rather than numerical assessment was consistent with the certainty factor approach to

inexact reasoning.  Although there are differing views on the quantifiability of probability

phrases and the transformation of vague and incomplete preferences into numerical

estimates, this research proceeded on the basis that such quantifiability was possible and

meaningful [Bodescu, Karelitz, and Wallsten, 2003; Mosteller and Youtz, 1990; Moxey and

Sanford, 2000; and Teigen and Brun, 1999; Wong and Lingras, 1994; Ngwenyama and

Bryson, 1998; Yager, 1999].  This position is supported by a number of studies that have

been performed on the transformation of verbal responses to numerical values, showing

that the mapping of an individual’s verbal expressions to numbers is reasonably consistent

and stable over time [Reagan, Mosteller, and Youtz, 1989].
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Due to the planned frequency of application of the model, the need for a quick response,

and the lack of probability distributions from repetitive occurrences, the decision support

model must employ a simple-to-use, non-standard or non-probabilistic quantitative

technique.  Coupling the need for a non-probabilistic analytic method with the user

preference to use verbal assessments results in a recommendation to use certainty factors

as the quantitative method for the crew reassignment decision support model.

In summary, based on the problem definition, the model framework that appears to be

most suitable is the decision tree, while the quantitative method that appears to be most

suitable is certainty factors.
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CHAPTER 3:  DEVELOPMENT OF CREW REASSIGNMENT
DECISION SUPPORT MODEL

3.1.  Introduction

This section contains a discussion of the development and evolution of the crew

reassignment decision model, including the methods of elicitation of information from

potential model users and a presentation of the proposed models.

3.2.  Model Development

In addressing the need for both an accurate representation of the crew reassignment

decision problem and the issue of user-friendliness, the development of the proposed

model was an evolutionary process.  During the early phases of the research, the tasks

that comprise the functional essence of the decision support model were identified and

assessed.  First, influence diagrams, shown as Figures 3 and 4, were created to depict the

crew reassignment decision, which frequently occurs prior to the full definition of a potential

change.
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Figure 3:  Influence Diagram for Crew Reassignment Decision
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Figure 4:  Refined Influence Diagram for Crew Reassignment Decision
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Next, descriptions of the possible circumstances under which changes occur were created.

A table was developed for each of these potential change scenarios, based on the state

of the affected work when the change was identified: (1) prior to the project starting (after

signing of contract); (2) after the start of the project (or mobilization of affected trade), but

before start of affected work activity; (3) after the start of the affected work activity; and (4)

after completion of the affected work activity.  The tables listed the cause of the change,

potential subsequent actions, scope of the subsequent actions, contractor response

options, and potential schedule and productivity effects.  In addition, the links between

each of the states were identified.  A sample of the tables is included as Table 5.

The complete definition and analysis of the tables resulted in a series of ten flow charts

based on the type of change as well as the stage of the project.  The ten types of changes

and project stages included: (1) lack of design information or discrepancy in the drawings

or specifications prior to starting work in an area; (2) lack of design information during on-

going construction in an area; (3) change work after signing the contract, but prior to work

starting; (4) change work prior to work starting in an area; (5) change work after work is

underway in an area; (6) change work after work is complete in an area (i.e., change that

requires rework); (7) differing site conditions prior to starting work in an area; (8) differing

site conditions after work is underway in an area; (9) stop work order prior to work starting

in an area; and (10) stop work order after work is underway in an area.  A sample of the

flow charts is included as Figure 5.
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Table 5:  Crew Reassignment Considerations and Links

Time of Occurrence: Prior to Project starting (after contract is signed)
(1)

Cause of Change Link (2)
Subsequent Action(s) Link (3) Scope of

Subsequent Action Link

Lack of design
information or
permits

11
12
13
15
16

11.  Owner or Regulatory
Agency issues stop work
order

21
23

21.  Entire project 31
35

Differing Site
Conditions

11
12
13

12.  Issue Request for
Information -> Issue
Response to RFI -> Issue
Request for Proposal ->
Issue Proposal -> Issue
Change Order or
Construction Change
Directive

21
22
23

22.  Specific trade 32
33
34
35

Owner-directed
changes

14 13.  Issue Request for
Information -> Issue
Response to RFI -> No
change order required

21
22
23

23.  Specific work
activity(ies)

32
33
34
35

Weather 15 14.  Issue Request for
Proposal -> Issue
Proposal -> Issue
Change Order or
Construction Directive

21
22
23

Force Majeure 15 15.  Issue notice of delay 21
23

Contractor
Coordination 

11
15
16

16.  Issue notice of
breach

21

Cash Flow
Restrictions

11
15
16

Instructions:  Begin with column (1) and follow links to the numbered entries in subsequent
columns.
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Change for which the Contractor is not responsible — 
Time of Occurrence: Prior to Project starting (after contract is signed)

(4) Contractor
Response Options Link (5) Potential

Productivity Effects
(6) Potential Schedule

Effects*
31.  Do not mobilize 41

42
43
44
45
46

41.  None None

32.  Mobilize as planned
and work-around as
necessary

42
44
45
46

42.  Over-manning or
congestion due to
reassignment of
manpower

Day-for-day delay to
project completion 

33.  Mobilize for specific
work activity and assign
planned crew(s) to other
work on project

42
44
45

43.  Under-manning Shift in critical path once
float has elapsed for
affected activity

34.  Mobilize smaller
crews than planned

43
44
45
46

44.  Dilution of
supervision (working in
distant areas)

* Links to Potential
Schedule Effects not
shown

35.  Mobilize as planned
and stand-by

42
44
45
46
47

45.  Out-of sequence or
Re-sequence

46.  Shift work or
Overtime
47.  Stand-by time

Instructions:  Begin with column (1) and follow links to the numbered entries in subsequent
columns. 
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Figure 5:  Flow Diagram for Design Conflict After Mobilization
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3.2.1.  Model Elements

The compilation of the information depicted in the influence diagrams, tables, and flow

charts showed that each crew reassignment decision is comprised of five main elements:

(1) possible responses or resolutions to the identified problem; (2) response time, which

is the time between the identification of the problem and receipt of the response; (3)

implementation preparation time, which is any additional time after receipt of the response

and the time when implementation of the resolution can begin; (4) crew reassignment

options and related costs; and (5) model recommendation.  Each of the elements is

discussed below.

(1)  Possible responses or resolutions to the identified problem  –  The possible

responses that may be received are comprised of the universe of potential

resolutions for the issue at hand.  The potential responses are as varied as the

problems that arise on a construction project.  For example, the potential resolutions

to a conflict between the designed routing of ductwork and an existing structural

beam could include (a) re-size the duct work to fit in the available space; (b) modify

the structural element to accommodate the duct; (c) lower the ceiling to allow the

duct to fit under the beam; or (d) re-route the duct to another area where adequate

clearance exists.  The likelihood of any particular response depends on the

particular circumstances of the change and the general circumstances of the

project, including how each potential resolution might affect the project schedule,
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the aesthetics of each potential resolution, and the costs and ease of implementing

each potential resolution.

(2)  Response time  –  The response time for each potential response represents the

amount of time expected to elapse between the identification of the problem and the

receipt of direction for that particular resolution.  Each potential resolution will have

its own expected response time.  For example, if the potential resolution requires

revised drawings or revised engineering calculations, the expected response time

for this particular resolution will probably be longer than for resolutions that do not

require revised drawings or calculations.  Additional factors that may affect the

response time include the work load of the designer; whether or not coordination

with outside agencies is required; and the criticality or priority of the issue.

(3)  Implementation preparation time  –  The implementation preparation time is the

amount of time between receipt of the required resolution to the point when the

work can begin.  Typically, the implementation preparation time is comprised of the

time required to order and receive any materials, tools, and/or equipment that are

not readily available on the project site.  Thus, resolutions that can be implemented

with materials, tools, and equipment that are readily available will have no

implementation preparation time.  Consideration of each potential resolution will

reveal whether or not special materials, tools, and/or equipment will be required.

Once it is determined that a potential resolution will require special materials, tools,
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or equipment, it is necessary to assess the amount of time expected to obtain the

material, tools and/or equipment.

(4)  Crew reassignment options and related costs  –  The crew reassignment options

and costs represent all the possible options and the costs related to each option.

The available crew reassignment options depend on the circumstances on the

project at the time of the crew reassignment decision.  The costs may include one-

time costs plus average hourly or daily crew costs.  The possible options and costs

are:

A.  Do Not Mobilize  –  Delay the planned mobilization until the affected work is

available.  Then, perform the work in the originally-planned sequence, starting at a

later date than originally planned.  The costs for this option may range from zero

dollars to increased hourly crew costs for wage escalation.

In the event that the decision not to mobilize is not a project-wide decision but

pertains only to certain trades, there are possible productivity losses after

mobilization due to changed work conditions.  The sources of productivity losses

may include more concurrent work than originally planned (congestion), more

confined working conditions, and limited access to work areas.  Additional costs

may be incurred due to escalation of costs for materials and increased costs for

equipment at the time the work is performed.  For example, a contractor may plan
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on using owned equipment to perform the work.  However, when the work is

rescheduled, conflicting demands for the equipment may require the contractor to

use rented equipment instead of owned equipment.  Typically, the costs for rental

equipment exceed those for owned equipment.  These incremental additional costs

would be part of the costs to be considered in the crew reassignment decision.

B.  Standby  –  Mobilize the crew as planned (or retain the existing crew if already

mobilized) and place on standby.  Then, perform the change work as soon as the

work is available, followed by the balance of the contract work in the planned

sequence.  The costs will be the hourly crew costs times the number of hours of

standby.  Note that standby crew costs include both labor and idle equipment.

If other work is planned to follow immediately after the work delayed by the change,

the planned progress of additional trades may be affected if the standby time

exceeds the lag between the activities.  In that event, standby costs may be

incurred for additional trades and/or equipment.
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C.  Reassign the Crew and Re-Sequence the Work  –  Mobilize the crew as planned

(or maintain the existing crew if already mobilized), but assign the crew to work in

an area or on a task other than what was originally planned, resulting in re-

sequencing of the work.  At some time in the future, the crew would perform the

change work.  Reassignment and re-sequencing is possible only if another work

area exists.  This option allows and/or requires the follow-on trades to perform re-

sequenced work as well.

The costs would be comprised of demobilization and re-mobilization costs to move

the crew from one area to another or one task to another (if already mobilized) plus

any inefficiency costs associated with the performance of the out-of-sequence work.

Typically, the inefficiency will be estimated as a range of productivity loss that would

be applied to all or part of the hours planned for the out-of-sequence work.

D.  Mobilize Smaller Crew  –  This is the same as option C. Reassign the Crew and

Re-Sequence the Work except that a smaller-than-planned crew would be mobilized

(or a smaller crew would be retained if already mobilized) and assigned to work in

an area or on a task other than what was originally planned, resulting in re-

sequencing of the work.  Then, when the as-planned work is available, additional

forces could be mobilized to achieve the planned crew size.  Mobilization of a

smaller crew with reassignment and re-sequencing is possible only if another work
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area exists.  This option allows or requires the follow-on trades to perform re-

sequenced work as well.

As with option C, the costs would be comprised of demobilization and re-

mobilization costs to move the crew from one area to another or one task to another

(if already mobilized) plus any inefficiency costs associated with the performance

of the out-of-sequence work, including any inefficiency resulting from the

performance of the work with a smaller-than-planned crew size.  Typically, the

inefficiency will be estimated as a range of productivity loss that would be applied

to all or part of the hours planned for the out-of-sequence work.  Note that since a

smaller-than-planned crew is utilized the work is expected to be performed over a

longer-than-planned duration.  Therefore, possible wage escalation costs may be

incurred.

E.  Demobilize the Crew from the Site  –  The crew would be demobilized from the

site.  At some time in the future, a crew (not necessarily the same crew) would be

re-mobilized to perform the change work and any remaining original work scope.

The costs would be comprised of demobilization and re-mobilization costs for the

crew plus inefficiencies for ‘learning curve and orientation’ effects after re-

mobilization.  In addition, since a different crew may have a lower productivity rate,

there may be inefficiency costs associated with all remaining manhours.
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(5)  Model recommendation  –  The final element is the model recommendation.  The

goal of the next phase of the research was to develop a model that would address

each of the four previous elements in a manner that would provide the decision

maker with information to make the crew reassignment decision from a more

informed position than was achieved previously without the model.

3.2.2.  Proposed Model Framework

The results of the investigation into the available decision support model frameworks

coupled with an analysis of the elements that comprise the crew reassignment decision

problem led to the development of three preliminary proposed decision trees.  These

models represent the three possible change work scenarios and the crew reassignment

decisions that must be made when a change is identified on a construction project.

The three possible change work scenarios are: (1) a change that is identified before the

work starts on the project or in the particular area affected by the change; (2) a change that

is identified during on-going work in the area affected by the change; and (3) a change that

is identified after work is complete in an area, resulting in rework.  The differences in the

three scenarios manifest themselves in the choices available for the crew reassignment.
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Since the decision tree model representing the scenario when a change is identified during

on-going work in an area encompasses all possible crew reassignment options, the

proposed decision tree model for this scenario was used as the basis for further research.

A summary of this decision tree model is included as Figure 6.  As shown, the crew

reassignment decision options under this scenario include “standby,” “reassignment on

site,” and “demobilization off site.”



56

Figure 6:  Initial Crew Reassignment Decision Model
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3.2.3.  Refinement of Proposed Model Framework

This section describes the process used to obtain information from members of the

construction industry who are responsible for crew reassignment decisions in order to

refine the proposed model framework.  The following steps were used in this process:

(1) Solicitation of information from crew reassignment decision makers via

questionnaires regarding the key factors in the crew reassignment decision process.

(2) Gathering of information from the crew reassignment decision makers via group

meetings regarding the process of the crew reassignment decision.

(3) Refinement of the model based on information received.

Potential participants were selected for inclusion in the study by invitation of the author.

The consideration of potential participants was limited to those involved in either

commercial or institutional construction.  All potential participants were considered to

represent respected members of the construction community in the state of Florida.  The

potential participants were informed that the study would entail the completion of a survey

and attendance at a group meeting.  The estimated time to complete the survey was 20

minutes, while the estimated duration of the group meeting was 3 to 4 hours.  All potential

participants that were invited to be included in the study agreed to take part, except one.
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The declining potential participant cited an out-of-state assignment as the reason for not

being available.

Due to scheduling conflicts, that precluded assembling all the volunteer participants at a

single time, two group meetings were scheduled.  The first meeting was scheduled for

Friday, December 19, 2003, in Daytona Beach, Florida, and the second meeting was

scheduled for Friday, January 30, 2004, in Jacksonville Beach, Florida.  There were six

participants in the first meeting and eight participants in the second meeting for a total of

fourteen participants in this phase of the research.

3.2.3.a.  Initial Survey

One week prior to the group meetings, the participants were provided with a brief

background on the crew reassignment decision problem and a survey questionnaire.  The

information and survey, which is shown as Figure 7, included definitions of the crew

reassignment problem, descriptions of the typical crew reassignment options, and

identification and definition of several of the key factors that may affect the crew

reassignment decision.
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Crew Reassignment Decision Support Model

Name:                                                                        

Address:                                                                    

                                                                                  

Phone:                                                                       

Education: Check the highest level of education completed – 

High School          Some College       
College Degree         Graduate Degree       

Number of years in construction or construction-related field:            

Briefly explain your construction experience:

                                                                                                                                       

                                                                                                                                       

                                                                                                                                       

                                                                                                                                       

                                                                                                                                       

                                                                                                                                        

Initial Survey Page 1

Figure 7a:  Initial Survey
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Crew Reassignment Decision Support Model

Changes occur on almost every construction project.  The nature and
circumstances of some changes require the reassignment of personnel. The
purpose of this study is to identify and compile the considerations and options
available to project management and supervision in making crew reassignment
decisions when changes occur.  The findings will be incorporated into a Crew
Reassignment Decision Support Model that will assist in the prospective
identification of the crew reassignment alternative expected to minimize
productivity loss and/or costs.

Definition of Crew Reassignment – Crew reassignment means that the crew does not perform
the work as planned.  The crew reassignment can take several forms, including standby, re-
sequencing, smaller crew size (partial demobilization), and/or demobilization.

Do Not Mobilize – delay the planned mobilization until a later date.

Standby – crew is completely non-productive awaiting resolution of the change.

Re-Sequencing – crew performs work in a sequence other than originally
planned.

Smaller Crew Size – a portion of the crew is demobilized, leaving a smaller-than-
planned crew.

Demobilization – the entire crew is demobilized from the site.  This may include
reassignment to another site.  Once the change work is available to be
performed, a crew is remobilized.

The crew reassignment decision can arise whenever a change occurs.  Failure to address the
issue or a decision to “do nothing” inevitably results in a loss of productivity.  These productivity
losses typically are not captured in the pricing of change orders, as the losses occur not from
the actual performance of the change work but from the circumstances surrounding the
identification of the change work.

Initial Survey Page 2

Figure 7b:  Initial Survey
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Initial research has identified several factors that appear to be key elements in the crew
reassignment decision.  These factors are:

Stage of the Work – this represents the identification of where in the work
process the change occurs.  The stages are the beginning, middle, or end of
the planned work for either a particular crew, trade, or the project as a whole. 
Typically, the stage of the project affects the available crew assignment
options.  For example, at the early stage of a project, there may not be other
available work areas to allow crew re-sequencing.

Labor Market – this represents the availability of manpower.  In a strong labor
market, it is relatively difficult to obtain additional, qualified manpower. 
Whereas, in a weak labor market, additional, qualified workers are readily
available.

Time Horizon for Implementation of the Change – this factor is composed of
several elements: (1) response time from the designer; (2) necessity for
additional material to implement the change; and (3) necessity for additional
equipment to implement the change.  Each of these elements is defined in the
following paragraphs.

(1) Response time from the designer – this is the length of time
from when the problem is identified until direction in received
that will allow resolution of the issue.

(2) Necessity for additional material – this is whether or not
materials that are not readily available will be required to
implement the change.

(3) Necessity for additional equipment – this is whether or not
equipment that is not readily available will be required to
implement the change.

Since there usually is more than one way to resolve an issue, the contractor does not know
which of the potential resolutions the designer will choose.  Therefore, the contractor first
must identify the possible resolutions and evaluate the likelihood that the designer will
choose each particular resolution.  Finally, the contractor must evaluate the elements of each
potential resolution in order to establish the likely time horizon for the implementation of that
resolution.  That is, once a resolution is identified, how long will it be before the work can be
performed.

Initial Survey Page 3

Figure 7c:  Initial Survey
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The following questions are intended to help identify the key considerations by construction
management / supervisory personnel when evaluating a crew reassignment situation. 
Please answer each question as thoroughly as possible.

The following is a list of factors that appear to be key elements in the crew reassignment
decision.  In column 1, please add any additional factors that you consider important.  In
column 2, rank the factors from most important to least important, with 1 representing the
most important factor(s).  Add any comments or explanations in column 3.

1
Factors

2
Rank Order

(1 = most important)

3
Comments

Stage of the Work

Labor Market

Response Time

Additional Material Required

Additional Equipment Required

Other:

Describe any additional considerations in making a crew reassignment decision.  

                                                                                                                                                   

                                                                                                                                                   

                                                                                                                                                   

                                                                                                                                                   

                                                                                                                                                   

                                                                                                                                                   

                                                                                                                                                  

Initial Survey Page 4

Figure 7d:  Initial Survey
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The first part of the survey, shown in Figure 7, collected education and work history of each

of the participants.  The responses were collected from the participants either by telephone

or in person three to four days prior to the scheduled group meeting.  The responses to the

questionnaire are shown in Table 6.

Table 6:  Summary of Participants’ Education and Work History

Participant A B C D E F G H I J K L M N

Method of Contact T P T T P T P P P P P T T T

Education C C H C S S C G H S H C S C

Current Position P P S P AS AS P AP S AP S P AS S

Years in Construction 15 32 35 27 19 10 28 12 42 16 12 36 21 18

Current Project Type I C C I C C C C C C C I I I

Current Project Value
(millions) $40 $25 $18 $39 $26 $32 $24 $24 $16 $10 $20 $32 $28 $37

Group 1 Group 2

Legend:

Method of Contact: T = Telephone
P = In Person

Education: H = High School
S = Some College
C = College
G = Graduate School

Current Position: P = Project Manager
AP = Assistant Project Manager
S = Superintendent
AS = Assistant Superintendent

Current Project Type: C = Commercial
I = Institutional
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As shown in Table 6, the fourteen participants were project managers, assistant project

managers, superintendents, and assistant superintendents.  All participants were male.

These personnel currently had the responsibility for resource planning and the assigning

and reassigning of construction labor and equipment on their respective projects.  The

experience of the participants ranged from 10 to 42 years in the construction industry.  The

maximum education level achieved by the participants ranged from high school through

graduate school.  Although several participants had experience on other types of

construction, at the current time all participants were involved in the areas of commercial

or institutional construction, including mid-and high-rise condominium buildings, apartment

complexes, retail shopping and entertainment complexes, hotels, schools, and health care

facilities.  All the participants currently were employed on medium-sized projects, ranging

in value from $10 to $40 million.  The study specifically excluded those with construction

experience solely outside of the commercial and institutional arena, such as transportation,

manufacturing, or process facility construction.

The participants also completed a questionnaire that requested the identification and

assessment of key factors in the crew reassignment decision.  A summary of the rankings

of the factors included in the questionnaire is shown in Table 7.  Note that none of the

participants identified any “Other” factors as playing a key role in the crew reassignment

decision.
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Table 7:  Summary of Factor Rankings in Initial Survey

Factors Rank Order
(1 = most important)

M
ed

ia
n

R
an

k

M
od

e

Participant A B C D E F G H I J K L M N

Stage of the Work 4 5 3 3 2 2 4 2 4 5 3 5 5 5 4 5

Labor Market 5 5 4 3 4 5 5 5 5 4 5 4 4 2 4.5 5

Response Time 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Additional Material
Required 3 3 2 5 3 3 2 3 2 3 2 3 2 4 3 3

Additional Equipment
Required 3 3 5 5 5 4 3 4 3 3 4 3 3 4 3.5 3

Group 1 Group 2

As shown in Table 7, all participants ranked Response Time as the most important factor

in the crew reassignment decision.   

The participants were asked if there were any additional possible crew reassignment

options not included in the Initial Survey.  All participants agreed that the listing and

descriptions of the possible crew reassignment options included in the Initial Survey, as

shown in Figure 7, encompassed all available choices for crew reassignment.  These

options were:  Do Not Mobilize (delay mobilization); Standby; Re-Sequencing

(reassignment of crew elsewhere on the project); Partial Mobilization or De-Mobilization

(smaller crew size); and Demobilization.  Although demobilization was identified by all

participants as a potential crew reassignment option, the participants expressed an

aversion to demobilization, regardless of the stage of the project, the strength of the labor



66

market, and/or the time horizon of the response and implementation.  The general

assessment was that once a crew is mobilized on the site, it is desirable to maintain that

crew on site until the work is complete.  The participants also indicated that the opposition

to demobilization stemmed from that fact that there was no guarantee that the same crew

would return or that any crew would be immediately available at the time that the work

could resume.

The survey also provided space for the description of “additional considerations in making

the crew reassignment decision.”  The responses from participants B and I and L noted

that the likelihood of receiving prompt payment for the change work was a consideration.

When asked to provide further explanation, all three participants indicated that this

consideration affected whether or not the performance of the change work would be

undertaken prior to the receipt of a executed change order or directive from the designer

and was not related to the decision of what to do with the crew upon initial identification of

a problem.  Therefore, this was not a concern that had to be addressed by the proposed

model.

In addition to the questions on the survey, each participant was asked, “What is the current

method used to determine the crew reassignment when a change is identified on the

project?”  Every participant responded that there was no specific process or standard of

considerations.  The methods currently used were characterized as “trying to find some
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other work to fill in the time until the planned work could resume.”  This was in keeping with

the previously-noted reluctance to demobilize a crew.

3.2.3.b.  Group Meetings

The group meetings, which followed the initial surveys, were for the purpose of identifying

any additional considerations in the crew reassignment decision, to ascertain the methods

used by the decision makers to combine the various factors, and to perform a preliminary

test of the proposed model.

The first group meeting was held on Friday, December 19, 2003, from 1:00 PM to 4:25 PM.

The meeting was held in the conference room of a contractor’s home office in Daytona

Beach, Florida.  The second meeting was held on Friday, January 30, 2004, from 12:15

PM to 4 PM.  The meeting was held in the conference room at a construction site in

Jacksonville Beach, Florida.  There were six participants in the first meeting and eight

participants in the second meeting for a total of fourteen participants in this phase of the

research.  These were the same participants that completed the Initial Survey discussed

in the previous section.
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The start of the group meetings was in the format of directed discussions.  The opening

introduction included a review of the definition of the crew reassignment problem and a

summary of the results of the initial surveys regarding the key elements of the crew

reassignment decision.  In addition, a general overview of management decisions made

under risk and ambiguity was presented as background information [Blondel, 2002; Ho,

Keller, and Keltyka, 2002; Neilson, 2002].  The introduction lasted 15 to 20 minutes.

Following the introduction, the participants were encouraged to discuss any additional

considerations in the crew reassignment decision that were not previously identified.  The

participants indicated that the previously-identified elements fully addressed the decision

problem.

Next, the groups read a devised scenario and, through open-discussions, described the

decision process used for the crew reassignment decision in response to the

circumstances described.  The scenario, which is included as Figure 8, involves a design

discrepancy between the size of the mechanical duct and the ceiling space into which the

duct is to be installed. 
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Scenario 1

While installing the HVAC trunk line in a corridor, the contractor discovers a conflict between the
trunk line and the existing structure.  The duct in question is located in the first area that duct is
scheduled to be installed on the project.  The contractor issues a Request for Information to the
designer.  Since the sheet metal tradesmen have mobilized, the potential choices available to
the contractor are: (1) put the crew(s) on standby until a resolution is received from the designer
and any necessary materials are available; (2) re-sequence the work and reassign the crew(s)
to another area on the project, i.e., develop a “work-around” schedule; (3)  partial de-mobilization
of the crew(s), resulting in smaller-than-planned crew(s); (4) de-mobilize the crew(s) from the
project.  The HVAC trunk lines typically are installed first, followed by the branch lines.  In
addition, since the trunk lines are the largest items installed in the ceiling space, the trunk lines
are installed prior to all other Mechanical, Electrical, and Plumbing commodities.

All other trades (with the exception of architectural finishes) have mobilized.  The structure has
been dried-in and interior metal stud framing in underway.  In addition, electrical rough and fire
pipe installation is starting.

The potential resolutions are: (A) re-design and re-fabricate the duct to fit in the available space
and (B) lower the ceiling to accommodate the as-fabricated duct.

Figure 8:  Crew Reassignment Scenario 1

The ensuing discussions of both groups identified the expected time from the identification

of the problem to the point when implementation of the resolution could begin as the major

factor in consideration of the crew reassignment decision.  This total time period was

comprised of the sum of the “Response Time” plus the “Implementation Preparation Time.”

The participants were asked to describe how the duration of this time period was

estimated.  The process used to estimate the duration was described as being based on

previous experience on other projects on which a similar problem occurred combined with

experience specific to the current project regarding the performance and responsiveness

of the designer.  When asked what action would be taken when presented with a problem
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for which there was no prior experience, the participants indicated they would rely on

“instinct” or ask someone who had experience with a similar situation.

The participants were asked to describe the factors or considerations used to estimate the

duration of the Response Time and the Implementation Preparation Time.  The

participants identified three main factors as the determinants of the expected duration of

the Response Time for any particular resolution:  (1) complexity of the potential response,

i.e., whether or not drawing revisions, engineering calculations, and/or coordination with

outside agencies were required prior to the issuance and implementation of the resolution;

(2) work load of the designer at the time the issue is identified; and (3) criticality or priority

of the issue.  Neither group indicated that any one of these factors was more important

than the others in the effect on the Response Time.

Both groups indicated that, although any single factor had the ability to affect the expected

Response Time, all three factors had to be considered in concert for a proper assessment

of the Response Time.  For example, if a particular resolution was considered to be very

complex and the designer work load was high, then it would be expected that the response

time would be relatively long.  However, if the criticality or priority of the response also was

high, then the Response Time was likely to be shorter than it would be in the absence of

this factor.  The combination of the factors is discussed in detail in section 3.2.4.
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The time between receipt of the resolution and the time the work could begin was identified

as the “Implementation Preparation Time.”  This time period was defined as consisting of

the time required to obtain any materials, tools, and/or equipment required to perform the

change work.  In the event that all required materials, tools, and equipment are readily

available or if no materials, tools, or equipment are required for implementation, then the

Implementation Preparation Time would be equal to zero. 

Note that the results of the initial survey showed that “Additional Material Required” and

“Additional Equipment Required” were ranked second and third in importance in the crew

reassignment decision.  The identification of the Implementation Preparation Time as being

a critical element of equal importance to the Response Time Horizon was recognition that

the combined duration of these two elements represented the total time from identification

of the problem to the earliest possible start of the change work.  Thus, it was this total

duration that had the greatest effect on the crew reassignment decision.

In the first group meeting the previously described discussion took approximately 45

minutes.  During the second meeting this discussion took approximately 1 hour and 5

minutes.  A ten minute break was taken prior to the start of the next portion of the group

meetings.
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Upon reconvening after the break, each participant was provided a copy of the Proposed

Crew Reassignment Model, which was previously shown as Figure 6.  The information

depicted on the Proposed Crew Reassignment Model was presented by “walking through”

several branches of the decision tree and describing each of the events nodes and

decision nodes.

In addition, the groups were introduced to certainty factors.  Although all the participants

expressed at least some familiarity with the basics of probability theory, only one of the

participants had previous exposure to the application of certainty factors.  That experience

was during a college graduate-level course.  The introduction to certainty factors included

a description of certainty factors as judgmental measures of belief that can be used for

inexact reasoning.  The participants were provided with a copy of Table 8, which lists the

uncertain linguistic terms and corresponding certainty factors, based on a scale of 0 to +1.

Following the presentation of the model and the introduction to certainty factors, which took

approximately 20 minutes, the participants were asked to work individually and apply the

circumstances described in Scenario 1 to the proposed decision tree model.  The

participants were directed to use the Uncertain Terms listed in Table 8 in the application

of the model and evaluation of the crew reassignment options.  Calculators and additional

copies of the proposed model were available for the use of the participants.



73

Table 8:  Linguistic Terms and Certainty Factors

CF Value Interpretation

Uncertain Term
Range of Values

0 to +1 Scale

Definitely Not
Almost Certainly Not
Probably Not
Maybe Not
Unknown
Maybe
Probably
Almost Certainly
Definitely

0
0.1
0.2
0.3

0.4 to 0.6
0.7
0.8
0.9
1.0

Since all participants currently were involved on active construction projects, they were

directed to use the circumstances from their individual projects in evaluating the scenario.

Thus, each application could result in varying costs and inefficiencies for each crew

reassignment option and different certainty factors for each of the elements and factors.

Finally, each application could result in a different recommendation.  The main purpose of

this exercise was to obtain additional information regarding the participants’ decision

process as it related to the identification and evaluation of each of the crew reassignment

options; the identification and evaluation of the key factors affecting the response time; the

identification and evaluation of the key factors affecting the implementation time; the

establishment of certainty factors; and the combining methods applied to the certainty

factors.  Thus, the process was of greater interest than any specific factors used or results

obtained.
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No time limit was set for the participants to perform the application of Scenario 1 to the

proposed model.  The Group 1 members were complete and ready for the ensuing

discussion in 30 minutes.  Group 2 completed the task in 35 minutes.  A five minute break

was held prior to the start of the discussion of the results of the  model application.

Immediately after the break, discussions began on each element of the model, as well as

a general critique of the model, including the validity of the model as an appropriate

representation of the crew reassignment decision process, the perceived utility of the

model, and ease of use.  Note that during the application of the model by both groups it

was apparent that additional research would be needed to ascertain the combining

methods used to determine the model recommendation.  Thus, the following discussion

focused mainly on the individual elements of the model and the general structure of the

model rather than the determination of the model recommendation.

Model Elements  –  As noted, the main focus was an evaluation each element of the

proposed model to discern the general method(s) used to combine the available

information to reach a decision.

The participants agreed that the potential crew reassignment options of “standby,” “re-

sequence,” “partial demobilization,” and “demobilization” provided a list of all available

options for the scenario.
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All participants indicated that the key elements of the  proposed model, including the

potential resolutions, response times, and implementation preparation time identified the

main considerations in the crew reassignment decision.  Both groups indicated that the

“Stage of the Project” could be eliminated from the model since it was reflected in the

possible crew reassignment options.  In addition, the groups stated that the status of the

“Labor Market” could be addressed within the potential costs for each crew reassignment.

Therefore, the consensus was that the proposed model could be simplified into two main

elements: Response Time and Implementation Preparation Time.

The members of both groups indicated that the factors of complexity of the potential

resolution, workload of the designer, and priority of the issue were the determining factors

for the Response Time.  A member of Group 1 suggested the addition of a fourth factor:

“general attitude and responsiveness of the designer.”  The suggestion was opened to

group discussion.  Another member of the group indicated that he believed that the

“general attitude and responsiveness of the designer” was inherent in the expected

response time for all three of the factors already in the proposed model.  The member who

made the initial suggestion agreed, as did the remaining members of Group 1.  Therefore,

the group concluded that the three factors of complexity of the potential resolution,

workload of the designer, and priority of the issue provided complete definition of the

factors that determine the expected response time.  Group 2 did not suggest any changes

to the factors.  The suggestion made by the member of Group 1 to consider the additional

factor of “general attitude and responsiveness of the designer” was presented to Group 2.
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As with Group 1, the members of Group 2 concluded that this factor was included within

each of the other three factors and should not be added as a separate factor.

Although Group 1 did not voice any reservations about the use of fuzzy terms such as

“long,” “medium,” and “short” in the description of the potential time frames for response

and implementation, participant H of Group 2 suggested the use of specific ranges of time.

A discussion with Group 2 resulted in a unanimous support for the use of discrete time

frames rather than fuzzy terms.  For example, instead of identifying the Implementation

Preparation Time as either “short” or “long,” the revised model would replace “short” with

a range of “0 to 3 days” and replace “long” with a duration of “4 to 5 days.”  The durations

would be identified by the decision maker during the application of the model.  The model

was revised to include the recommended specific time durations, and a copy of the revised

model was provided to and discussed with each of the members of Group 1.  All members

of Group 1 agreed that the revised model, which identified specific time durations for

Response Time and Implementation Preparation Time, was superior to the earlier model

using fuzzy terms to describe the time ranges.  Thus, the revised model was used for the

remainder of the research.

In summary, the consensus of the groups was that the model elements, revised as

discussed above and shown in Figure 9, captured the critical elements of the crew

reassignment decision process.  These elements were comprised of the Crew
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Reassignment Options, Potential Resolutions, Response Time, and Implementation

Preparation Time.

Combination of Model Elements – The next segment of the discussion addressed the

methods used to combine the certainty factors for each of the model elements.

The first portion of the model discussed was the Response Time.  The participants were

asked to describe how they combined the expected durations for each of the three factors

of complexity, designer workload, and issue priority to arrive at the likelihood that the

Response Time would fall into any one of the identified durations.  The participants in both

groups described the combination of  individual durations and likelihoods assigned to each

factor as a “worst case scenario.”  That is, the lowest level of belief for any one of the

factors was expected to represent the overall level of belief for the duration.  Table 9

provides an example of the method using the information provided by participant B.
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Figure 9:  Sample of Revised Model
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Table 9:  Example of Certainty Factors for Response Time

Resolution:
Revise Duct Size

Time Increment

“short” “medium” “long”

Complexity Definitely not
CF= 0

Almost certainly
CF = 0.9

Maybe
CF = 0.7

Workload Maybe not
CF = 0.3

Almost certainly
CF = 0.9

Maybe
CF = 0.7

Criticality or Priority Maybe not
CF = 0.3

Almost certainly
CF = 0.9

Probably not
CF = 0.2

Resolution “A”
(single response)

Definitely not
CF = 0

Almost certainly
CF = 0.9

Probably not
CF = 0.2

Note that the remaining participants did not prepare notes that could be translated into

tabular information as shown above.

The combination of the likelihood of any particular response with the likelihood of any

particular duration was discussed next.  The participants indicated that the method used

was represented by a multiplication of the certainty factors for each element.  For example,

if potential Resolution A was “almost certainly” (certainty factor = 0.9) to be selected by the

designer and the Response Time duration of 0 to 3 days was “almost certainly not”

(certainty factor = 0.1) expected to occur, then the likelihood of receiving Response A in

0 to 3 days was described as the product of the two certainty factors or 0.9 * 0.1 = 0.09 or

“almost definitely not.”
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The discussion regarding the element Implementation Preparation Time indicated that for

the potential resolutions of Scenario 1 it could be determined with certainty whether or not

materials, tools, and/or equipment that were not readily available would be necessary.

Thus, the certainty factor would be either 0 or 1.  Note: this was represented on the Initial

Proposed Model as either a “Yes” or “No” option.  Therefore, only those options for which

it was determined that materials, tools, and/or equipment would be necessary had to have

durations identified and likelihoods assigned.  

The combination of the likelihood of a particular time duration for the circumstance where

materials, tools, and/or equipment would be required with the overall likelihood for a

particular Response Time was also described as the product of the two factors.  For

example, using the results of 0.09 or “almost definitely not” for the Response Time noted

above and the likelihood of “probably” (certainty factor = 0.8) for an Implementation

Preparation Time duration of 4 to 5 days would provide the result of 0.09 x 0.8 = 0.072 or

“almost definitely not.  Thus the likelihood of receiving Response A in 0 to 3 days and the

necessary material, tools, and/or equipment to implement Response A in 4 to 5 days would

result in a combined certainty of 0.072 or “almost definitely not.”

Model Utility  –  The groups indicated that the model offered the following advantages over

the current methods of crew reassignment:
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(1) The model forced consideration of the change in a global perspective of how the

change might affect the overall manpower and work plan, rather than the usual

concern of keeping each crew busy.  This would provide information that could

support improved management of the entire project.

(2) The model provided a map and record of how and why the crew reassignment

decision was undertaken.  This would support future planning efforts as well as

provide documentation for inefficiencies and delays that might be incurred.

The disadvantage cited by the group was the time required to address each of the

elements and factors.  For example, assigning costs for the crew options, determining

appropriate time increments, and establishing certainty factors.  However, it was noted that

this disadvantage was diametrically opposed to the advantages noted.

The Group 1 discussion of the application of the proposed model was 80 minutes in

duration, while the Group 2 discussion was 70 minutes.  A summary of the time and topics

during each of the group meetings is included in Table 10.
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Table 10:  Summary of Time for Group Meetings

Topic Group 1
Duration

Group 2
Duration

Introduction 15 minutes 20 minutes

Open discussion of Scenario 1 45 minutes 65 minutes

Break 10 minutes 10 minutes

Presentation of Proposed Model and Introduction to
Certainty Factors 20 minutes 20 minutes

Individual Evaluation of Scenario 1 Using Proposed
Model 30 minutes 35 minutes

Break 5 minutes 5 minutes

Discussion of Application of Proposed Model 80 minutes 70 minutes

Total 205 minutes 225 minutes

As noted, it was determined that individual interviews were necessary to collect additional

information regarding the methods used to assign and combine the certainty factors in the

model.  As discussed in the following section, the results of the group sessions coupled

with the detailed information gathered during the individual interviews formed the basis for

the certainty factor combining methods employed by the model.
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3.2.4.  Model Quantification

During the time period of February, March, and April 2004, a series of in-depth interviews

with six individual experts in the construction industry was undertaken in order to gain a

fuller understanding of the analytical method(s) used in the crew reassignment decision

and to determine the appropriate representation of this process within the model.  The

experts were chosen based on the variety of experience in addressing crew reassignment

decisions as well as an expressed interest in the process of developing the crew

reassignment model.

Four of the experts in this phase had been participants in the group sessions.  These

experts were denoted as B, C, G, and H in Table 6.  Experts O and P had not participated

in the group sessions.  The experts had the same general backgrounds and experience

levels as the group participants with specific years of construction-related experience

ranging from 12 years to 35 years.  As with the group members, all the experts were

employed in the construction industry in the areas of commercial and institutional

construction.  Table 11 is a summary of the six experts’ education and work history.
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Table 11:  Summary of Experts’ Education and Work History

Expert B C G H O P

Education C H C G C S

Current Position P S P AP S AS

Years in Construction 32 35 28 12 17 23

Current Project Type C C C C I C

Current Project Value $25 $18 $24 $24 $33 $14

Group 1 Group 2

Legend:

Education: H = High School
S = Some College
C = College
G = Graduate School

Current Position: AP = Assistant Project Manager
P = Project Manager
AS = Assistant Superintendent
S = Superintendent

Current Project Type: C = Commercial
I = Institutional

Three interviews were scheduled with each expert.  During each interview one of each of

three crew reassignment scenarios was discussed.  The experts were informed that the

expected duration for each interview was one to two hours.  

The first of each of the individual meetings started with a review of the crew reassignment

decision problem and certainty factors in general.  This encompassed a summary of the

previously-issued definitions that were presented in Figures 5 and 6.  This review lasted

between 10 and 15 minutes.  In the cases of the two experts that did not participate in the
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group meetings, approximately one week prior to the individual meetings, each was

provided a copy of the Initial Survey that was shown in Figure 7.  Each expert completed

the survey and the responses were discussed via telephone.  These responses, in addition

to the responses previously presented for the four experts from the group sessions, are

presented in Table 12.

Since the group discussions established support for the theory that the revised model was

a reasonable framework for the decision process of the crew reassignment problem, the

individual meetings focused on the analytical method used by the decision makers in the

assessment of the crew reassignment decision, including the assignment and propagation

of the certainty factors for the various model elements.  In order to determine the certainty

factor algebra that should be employed in the model, each expert ‘walked through’ the

analysis of three different change scenarios, including the scenario used during the group

sessions.  The three scenarios are described in Figure 10.
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Table 12:  Summary of Factor Rankings in Experts’ Survey

Factors Rank Order

M
ed

ia
n

R
an

k

M
od

e

Expert B C G H O P

Stage of the Work 5 3 4 2 4 5 4 4, 5

Labor Market 5 4 5 5 3 5 5 5

Response Time 1 1 1 1 1 1 1 1

Additional Material Required 3 2 2 3 2 2 2 2

Additional Equipment Required 3 5 3 4 3 5 3.5 3

Group 1 Group 2

Scenario 1

While installing the HVAC trunk line in a corridor, the contractor discovers a conflict between the
trunk line and the existing structure.  The duct in question is located in the first area that duct is
scheduled to be installed on the project.  The contractor issues a Request for Information to the
designer.  Since the sheet metal tradesmen have mobilized, the potential choices available to
the contractor are: (1) put the crew(s) on standby until a resolution is received from the designer
and any necessary materials are available; (2) re-sequence the work and reassign the crew(s)
to another area on the project, i.e., develop a “work-around” schedule; (3)  partial de-mobilization
of the crew(s), resulting in smaller-than-planned crew(s); (4) de-mobilize the crew(s) from the
project.  The HVAC trunk lines typically are installed first, followed by the branch lines.  In
addition, since the trunk lines are the largest items installed in the ceiling space, the trunk lines
are installed prior to all other Mechanical, Electrical, and Plumbing commodities.

All other trades (with the exception of architectural finishes) have mobilized.  The structure has
been dried-in and interior metal stud framing in underway.  In addition, electrical rough and fire
pipe installation is starting.

The potential resolutions are: (A) re-design and re-fabricate the duct to fit in the available space
and (B) lower the ceiling to accommodate the as-fabricated duct.

Figure 10a:  Change Scenario 1 Evaluated by Experts
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Scenario 2

During the installation of 6" ceiling moulding in a high-rise condominium building, it is discovered
that the fire sprinkler heads are mounted 4" below the ceiling, resulting in the heads being in
conflict with the decorative wood moulding.  The sprinkler heads are mounted on only the north-
south walls.  Therefore, the conflict occurs on approximately half the walls, with no conflict on
the east-west walls.   The sprinklers are installed as per the approved shop drawings and the
moulding is as per the architectural drawings.  Thus, the conflict is the result of the designers
failure to coordinate the drawings.  The drywall is taped, finished, primed, and the first coat of
final paint is applied.  The ceiling moulding is stained and delivered to each unit.  The trim
carpenters are mobilized and ready to begin installation of the moulding.  The options available
to the contractor are: (1) maintain the existing trim carpenter crews and perform the available
work, returning to each unit at a later time to install the remaining trim; (2) partially demobilize
the trim carpenters and perform the available work at a slower pace; (3) completely demobilize.

Potential resolutions are: (A) relocate the sprinkler heads (cut wallboard, sprinkler pipe, patch
wallboard, paint); (B) notch wood moulding to accommodate sprinkler heads; (C) revise the
specifications for the wood trim to a smaller height (less than 4").

Figure 10b:  Change Scenario 2 Evaluated by Experts

Scenario 3

Shortly after the start of  foundation work for a multi-story hospital complex, a stop-pump order
is issued due to arsenic-contaminated groundwater.  The structural concrete crews are mobilized
and electrical and mechanical crews for underslab utilities are ready to be mobilized.  The
options available to the contractor are (1) maintain existing crews, performing limited available
work (roughly equivalent to standby) until resolution is received; (2) demobilize a portion of the
existing crews, performing the limited available work until resolution with a smaller crew; or (3)
stop all work and completely demobilize until resolution of the stop-pump order.  Note that due
to the high water table at the site, dewatering is necessary to complete the foundations.
Therefore, re-sequencing is not an option.

The potential resolutions are: (A) install monitoring wells then resume dewatering and (B)
construct holding ponds and restrict daily dewatering quantities.

Figure 10c:  Change Scenario 3 Evaluated by Experts
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In order to allow time to evaluate the information received from the experts’ analysis of

each scenario, the scenarios were reviewed in three separate sessions with each expert.

The sessions, which were held at the jobsite office of each expert, were scheduled at the

expert’s convenience.  The dates and durations of each session are shown in Table 13.

Table 13:  Dates and Durations of Expert Interviews

Scenario Expert Date Duration

1

O February 5, 2004 135 minutes, including 30
minute introduction

H February 12, 2004 65 minutes

P February 13, 2004 105 minutes, including 30
minute introduction

B February 18, 2004 90 minutes

C February 18, 2004 65 minutes

G February 19, 2004 85 minutes

2

H February 26, 2004 60 minutes

G February 26, 2004 65 minutes

B March 4, 2004 55 minutes

C March 4, 2004 60 minutes

P March 5, 2004 70 minutes

O March 12, 2004 65 minutes

3

O March 18, 2004 65 minutes

B March 19, 2004 65 minutes

C March 26, 2004 80 minutes

P March 27, 2004 70 minutes

G March 30, 2004 65 minutes

H April 2, 2004 70 minutes
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Note that the durations listed in Table 13 do not include approximately 15 minutes of time

used to compile the expert-provided information into the decision tree format prior to the

discussion of the analytical method.

The method of obtaining information from the experts and the results of the analysis of the

information obtained are discussed in the following sections.

3.2.4.a.  Potential Responses

At the start of each session, the expert was provided a printed copy of the scenario to be

reviewed during that session.  After reading a scenario, the first issue discussed with each

expert was the likelihood of each of the identified potential responses being received from

the designer.  Table 14 contains a listing of the potential responses and the experts’

assessments of the likelihood of each potential response.
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Table 14:  Likelihood of Potential Responses for Test Scenarios

Scenario 1 Potential Responses
Expert

B C G H O P

A  –  resize and refabricate the duct 0.8 0.9 0.9 0.8 0.95 0.9

B  –  lower the ceiling 0.1 0.2 0.1 0.2 0.1 0.1

Scenario 2 Potential Responses
Expert

B C G H O P

A  –  relocate the sprinkler heads 0.8 0.95 0.8 0.75 0.9 0.9

B  –  notch wood molding to accommodate
sprinkler heads 0.0 0.0 0.1 0.1 0.0 0.1

C  –  revise the specifications for the wood
trim to a smaller height 0.2 0.1 0.1 0.3 0.2 0.1

Scenario 3 Potential Responses
Expert

B C G H O P

A  –  monitoring wells, resume dewatering 0.8 0.6 0.7 0.5 0.5 0.5

B  –  holding ponds with restricted
dewatering 0.4 0.5 0.4 0.5 0.6 0.5

As shown in Table 14, for Scenarios 1 and 2, the experts tended to indicate that one of the

potential resolutions was much more likely than any other.  Scenario 3 was specifically

chosen for inclusion in this phase of the research, as it was anticipated that there would

not be as clear a “favorite” resolution.  This would allow analysis of the way the experts

considered the crew reassignment decision under circumstances where all potential

resolutions were considered almost equally likely.
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3.2.4.b.  Response Time

The Response Time is the time from the identification of the problem to the receipt of the

resolution.  The experts identified the time increments for the Response Time for each of

the potential resolutions for each scenario.  For example, for Scenario 1, Expert B

identified three time increments for Resolution A:  (1) less than one day; (2) one day

through five days; and (3) six days through ten days.  The time increments identified by the

experts for each potential resolution of each scenario are shown in Table 15.

Table 15:  Experts’ Time Increments for Potential Resolutions

Scenario and
Resolution Expert

Time Increments

(1) (2) (3)

Sc
en

ar
io

 1

R
es

ol
ut

io
n 

A

B < 1 day 1 day - 5 days 6 days - 10 days

C 1 day - 2 days 3 days - 5 days 6 days - 8 days

G 1 day - 3 days 4 days - 6 days 7 days - 9 days

H 1 day - 2 days 3 days - 7 days 8 days - 10 days

O 1 day - 2 days 3 days - 5 days 6 days - 10 days

P 1 day - 5 days 6 days - 10 days N/A

Sc
en

ar
io

 1

R
es

ol
ut

io
n 

B

B < 1 day 1 day - 5 days 6 days - 10 days

C 1 day - 2 days 3 days - 5 days 6 days - 8 days

G 1 day 2 days - 3 days 4 days - 5 days

H 1 day - 2 days 3 days - 5 days 6 days - 8 days

O 1 day - 2 days 3 days - 5 days 6 days - 10 days

P 1 day - 5 days 6 days - 10 days N/A
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Resolution Expert

Time Increments

(1) (2) (3)
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Sc
en

ar
io

 2

R
es

ol
ut

io
n 

A
B 1 day - 2 days 3 days - 5 days N/A

C 1 day 2 days - 3 days 4 days - 5 days

G 1 day - 3 days 4 days - 5 days 6 days - 8 days

H 1 day 2 days - 5 days 6 days - 10 days

O 1 day 2 days - 4 days 5 days - 7 days

P 1 day - 3 days 4 days - 6 days 7 days - 10 days

Sc
en

ar
io

 2

R
es

ol
ut

io
n 

B

B 1 day - 2 days 3 days - 5 days N/A

C 1 day 2 days - 3 days 4 days - 5 days

G 1 day - 3 days 4 days - 5 days 6 days - 8 days

H 1 day 2 days - 5 days 6 days - 10 days

O 1 day 2 days - 4 days 5 days - 7 days

P 1 day - 3 days 4 days - 6 days 7 days - 10 days

Sc
en

ar
io

 2

R
es

ol
ut

io
n 

C

B 1 day - 2 days 3 days - 5 days N/A

C 1 day - 3 days 4 days - 7 days 8 days - 10 days

G 1 day - 3 days 4 days - 5 days 6 days - 8 days

H 1 day 2 days - 5 days 6 days - 10 days

O 1 day 2 days - 4 days 5 days - 7 days

P 1 day - 3 days 4 days - 6 days 7 days - 10 days

Sc
en

ar
io

 3

R
es

ol
ut

io
n 

A

B 1 day - 5 days 6 days - 10 days 11 days - 15 days

C 1 day - 5 days 6 days - 10 days 11 days - 15 days

G 1 day - 3 days 4 days - 8 days 9 days - 12 days

H 1 day - 5 days 6 days - 10 days 11 days - 15 days

O 1 day - 5 days 6 days - 10 days 11 days - 15 days

P 1 day - 3 days 4 days - 6 days 7 days - 10 days
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Sc
en

ar
io

 3

R
es

ol
ut

io
n 

B
B 1 day - 5 days 6 days - 10 days 11 days - 15 days

C 1 day - 5 days 6 days - 10 days 11 days - 15 days

G 1 day - 3 days 4 days - 8 days 9 days - 12 days

H 1 day - 2 days 3 days - 7 days 8 days - 10 days

O 1 day - 3 days 4 days - 6 days 7 days - 10 days

P 1 day - 3 days 4 days - 6 days 7 days - 10 days

The experts were not limited in the number of time increments that could be identified for

each potential resolution.  However, as shown in Table 15, the experts usually identified

three discrete time increments.  The experts were queried regarding the likelihood of any

one duration within each individual time increment being more likely than any other value.

Although Expert H indicated that the longest time increment for Scenario 2, Resolution C,

had a distribution that was approximately triangular in shape, in all other instances each

of the experts indicated that the values within a single time increment were equally likely.

That is, the values within each range followed a uniform distribution.
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For each time increment a certainty factor was identified for each of the three main factors

that have been identified as the determinants of the expected duration of the response

time for any particular resolution.  The three factors are (1) complexity of the potential

response; (2) work load of the designer at the time the issue is identified; and (3) criticality

or priority of the issue.  The experts were asked a series of three questions for each

combination of potential resolution and time increment. For example, for Scenario 1,

potential Resolution A – re-size and re-fabricate the duct, each expert was asked:

(1) Based on the complexity of Resolution A, how likely is it that the response will be

received in less than one day?  One day through five days?  Six days through ten

days?

(2) Based on the current workload of the designer, how likely is it that Resolution A will

be received in less than one day?  One day through five days?  Six days through

ten days?

(3) Based on the criticality or priority of the affected work, how likely is it that Resolution

A will be received in less than one day?  One day through five days?  Six days

through ten days?”

Using the terminology and format developed for certainty factors, the preceding questions

could be stated as follows:
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(1) Rule 1.  Complexity

IF Coordination with outside agencies (e.g., review by building department, new

permits, etc.) or re-design and/or re-submittals are (are not)  required.

THEN The response time will be (1) less than or equal to1 day; (2) greater than one

day and less than or equal to five days; and (3) greater than five days and

less than 10 days.

CF1 = (a separate CF is given for each of the three time increments)

(2) Rule 2.  Designer Work Load

IF There are (are not) a number of outstanding questions awaiting responses

from the designer.

THEN The response time will be (1) less than or equal to1 day; (2) greater than one

day and less than or equal to five days; and (3) greater than five days and

less than 10 days.

CF2 = (a separate CF is given for each of the three time frames)

(3) Rule 3.  Criticality or priority of the Affected Activity

IF The activity is (is not) on or near the critical path or is (is not) a controlling

item of work for the affected crew.
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THEN The response time will be (1) less than or equal to1 day; (2) greater than one

day and less than or equal to five days; and (3) greater than five days and

less than 10 days.

CF3 = (a separate CF is given for each of the three time frames)

As previously discussed, the combining method(s) employed in a model should emulate

the way in which the human expert combines the uncertainties for the particular situation.

This can be ascertained in one of two ways (1) by asking the expert to provide joint and/or

confirmative certainty factors for particular circumstances and then determining which

method(s) provides the certainty factors closest to those provided by the expert or (2) the

joint and/or confirmative certainty factors calculated by each method can be evaluated by

the expert to determine which appears to provide the most reasonable assessment.

Due to the lack of familiarity of the experts with the mechanics of certainty factors, it was

determined to follow the first procedure.  That is, the experts were requested to provide

responses to general, all-encompassing questions such as, “For Scenario 1, Resolution

A, how likely is it that the response will be received in less than one day?  One day through

five days?  Six days through ten days?”  The responses were translated into certainty

factors, using a scale of 0 to 1.  Table 16 is a sample listing of the resulting certainty

factors for the responses received for Scenario 1, Resolution A.  Tables 17 through 19 are

summaries of all responses received for all three scenarios.



97

Table 16:  Sample of Experts’ Certainty Factors for Response Time

Scenario 1, Resolution A – Response Time

Expert
Resolution A

Factor

Time Increment

< 1 day 1 day - 5 days 6 days - 10 days

B

Complexity 0.0 0.9  0.7

Workload 0.3 0.9  0.7

Criticality or Priority 0.3 0.9 0.2

Resolution “A”
(single response) 0.0 0.9 0.2

Expert Resolution A
Factor 1 day - 2 days 3 days - 5 days 6 days - 8 days

C

Complexity 0.2 0.8  0.8

Workload 0.5 0.8  0.8

Criticality or Priority 0.7 0.9 0.3

Resolution “A”
(single response) 0.2 0.8 0.3

Expert Resolution A
Factor 1 day - 3 days 4 days - 6 days 7 days - 9 days

G

Complexity 0.2 0.8  0.7

Workload 0.4 0.8  0.3

Criticality or Priority 0.5 0.9 0.1

Resolution “A”
(single response) 0.2 0.8 0.2

Expert Resolution A
Factor 1 day - 2 days 3 days - 7 days 8 days - 10 days

H

Complexity 0.1 0.7  0.7

Workload 0.2 0.9  0.7

Criticality or Priority 0.2 0.8 0.7

Resolution “A”
(single response) 0.1 0.7 0.7
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Expert Resolution A
Factor 1 day - 2 days 3 days - 5 days 6 days - 10 days

O

Complexity 0.1 0.7  0.9

Workload 0.3 0.6  0.3

Criticality or Priority 0.3 0.7 0.3

Resolution “A”
(single response) 0.1 0.6 0.3

Expert Resolution A
Factor 1 day - 5 days 6 days -10 days N/A

P

Complexity 0.2 0.9 ---

Workload 0.4 0.9 ---

Criticality or Priority 0.7 0.9 ---

Resolution “A”
(single response) 0.2 0.9 ---

Table 17:  Scenario 1 – Experts’ Response Time Certainty Factors

Expert Factor

Resolution A Resolution B

Time Increment

(1) (2) (3) (1) (2) (3)

B

Complexity 0.0 0.9  0.7 0.6 0.9 0.1

Workload 0.3 0.9  0.7 0.5 0.9 0.1

Criticality or Priority 0.3 0.9 0.2 0.7 0.9 0.1

Resolution “X”
(single response) 0.0 0.9 0.2 0.5 0.9 0.1

C

Complexity 0.2 0.8  0.8 0.8 0.7 0.2

Workload 0.5 0.8  0.8 0.5 0.7 0.1

Criticality or Priority 0.7 0.9 0.3 0.8 0.7 0.1

Resolution “X” 0.2 0.8 0.3 0.5 0.7 0.1
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Resolution A Resolution B

Time Increment

(1) (2) (3) (1) (2) (3)
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G

Complexity 0.2 0.8  0.7 0.7 0.8 0.4

Workload 0.4 0.8  0.3 0.3 0.8 0.4

Criticality or Priority 0.5 0.9 0.1 0.4 0.9 0.2

Resolution “X”
(single response) 0.2 0.8 0.2 0.3 0.8 0.2

H

Complexity 0.1 0.9  0.5 0.2 0.9 0.3

Workload 0.2 0.9  0.7 0.2 0.9 0.5

Criticality or Priority 0.2 0.8 0.3 0.2 0.9 0.2

Resolution “X”
(single response) 0.1 0.85 0.3 0.2 0.9 0.2

O

Complexity 0.1 0.7  0.9 0.8 0.9 0.2

Workload 0.3 0.6  0.3 0.3 0.8 0.3

Criticality or Priority 0.3 0.7 0.3 0.6 0.9 0.1

Resolution “X”
(single response) 0.1 0.6 0.3 0.3 0.8 0.15

P

Complexity 0.2 0.9 --- 0.2 0.9 --

Workload 0.4 0.9 --- 0.4 0.8 --

Criticality or Priority 0.7 0.9 --- 0.5 0.9 --

Resolution “X”
(single response) 0.2 0.9 --- 0.2 0.8 --
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Table 18:  Scenario 2 – Experts’ Response Time Certainty Factors

Expert Factor

Resolution A Resolution B Resolution C

Time Increment

(1) (2) (3) (1) (2) (3) (1) (2) (3)

B

Complexity 0.3 0.8 -- 0.3 0.8 -- 0.3 0.8 --

Workload 0.3 0.9 -- 0.3 0.9 -- 0.3 0.9 --

Criticality or Priority 0.6 0.9 -- 0.6 0.9 -- 0.6 0.9 --

Resolution “X”
(single response) 0.3 0.8 -- 0.3 0.8 -- 0.3 0.8 --

C

Complexity 0.2 0.9 0.2 0.2 0.9 0.2 0.2 0.9 0.2

Workload 0.2 0.9 0.2 0.2 0.9 0.2 0.2 0.9 0.2

Criticality or Priority 0.3 0.9 0.1 0.3 0.9 0.1 0.3 0.9 0.1

Resolution “X”
(single response) 0.2 0.9 0.1 0.2 0.9 0.1 0.2 0.9 0.1

G

Complexity 0.4 0.9 0.2 0.4 0.9 0.2 0.4 0.6 0.8

Workload 0.4 0.9 0.2 0.4 0.9 0.2 0.2 0.9 0.2

Criticality or Priority 0.7 0.9 0.2 0.7 0.9 0.2 0.4 0.6 0.7

Resolution “X”
(single response) 0.4 0.9 0.2 0.4 0.9 0.2 0.4 0.6 0.2

H

Complexity 0.3 0.8 0.3 0.3 0.8 0.3 0.3 0.8 0.3

Workload 0.3 0.8 0.2 0.3 0.8 0.2 0.3 0.8 0.2

Criticality or Priority 0.7 0.9 0.2 0.7 0.9 0.2 0.7 0.9 0.2

Resolution “X”
(single response) 0.3 0.8 0.2 0.3 0.8 0.2 0.3 0.8 0.2

O

Complexity 0.1 0.7 0.7 0.1 0.7 0.7 0.1 0.7 0.7

Workload 0.2 0.7 0.2 0.2 0.7 0.2 0.2 0.7 0.2

Criticality or Priority 0.5 0.9 0.3 0.5 0.9 0.3 0.5 0.9 0.3

Resolution “X”
(single response) 0.1 0.7 0.3 0.1 0.7 0.3 0.1 0.7 0.3
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Resolution A Resolution B Resolution C

Time Increment

(1) (2) (3) (1) (2) (3) (1) (2) (3)
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P

Complexity 0.2 0.9 0.3 0.2 0.9 0.3 0.2 0.9 0.3

Workload 0.2 0.8 0.1 0.2 0.8 0.1 0.2 0.8 0.1

Criticality or Priority 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1

Resolution “X”
(single response) 0.2 0.8 0.1 0.2 0.8 0.1 0.2 0.8 0.1

Table 19:  Scenario 3 – Experts’ Response Time Certainty Factors

Expert Factor

Resolution A Resolution B

Time Increment

(1) (2) (3) (1) (2) (3)

B

Complexity 0.1 0.7 0.4 0.2 0.8 0.3

Workload 0.2 0.8 0.3 0.2 0.8 0.3

Criticality or Priority 0.2 0.9 0.3 0.3 0.9 0.3

Resolution “X”
(single response) 0.1 0.7 0.3 0.2 0.8 0.3

C

Complexity 0.0 0.8 0.3 0.1 0.8 0.3

Workload 0.1 0.8 0.2 0.1 0.8 0.2

Criticality or Priority 0.1 0.9 0.2 0.1 0.9 0.2

Resolution “X”
(single response) 0.0 0.8 0.2 0.1 0.8 0.2

G

Complexity 0.1 0.7 0.3 0.1 0.9 0.1

Workload 0.1 0.8 0.2 0.1 0.9 0.1

Criticality or Priority 0.2 0.8 0.2 0.2 0.9 0.1

Resolution “X” 0.1 0.7 0.2 0.1 0.9 0.1



Expert Factor

Resolution A Resolution B

Time Increment

(1) (2) (3) (1) (2) (3)

102

H

Complexity 0.0 0.5 0.5 0.2 0.8 0.3

Workload 0.1 0.5 0.5 0.2 0.8 0.2

Criticality or Priority 0.1 0.5 0.5 0.2 0.9 0.2

Resolution “X”
(single response) 0.0 0.5 0.5 0.1 0.8 0.2

O

Complexity 0.1 0.8 0.2 0.1 0.8 0.2

Workload 0.2 0.8 0.2 0.2 0.8 0.2

Criticality or Priority 0.2 0.8 0.2 0.2 0.8 0.2

Resolution “X”
(single response) 0.1 0.8 0.2 0.1 0.8 0.2

P

Complexity 0.0 0.7 0.5 0.1 0.8 0.3

Workload 0.1 0.8 0.4 0.1 0.8 0.2

Criticality or Priority 0.1 0.8 0.3 0.1 0.8 0.2

Resolution “X”
(single response) 0.0 0.7 0.3 0.1 0.8 0.2

Using the responses provided for each factor and time increment, the combined certainty

factor was calculated using three combination algebras: minimum method, product

method, and joint average method.  These combination algebras were discussed in

Chapter 2 and are summarized in Table 20.
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Table 20:  Summary of Certainty Factor Algebras

Certainty Factor Algebras for Combining Evidence
(CF Scale of 0 to 1)

Joint Certainty
– evidence linked by ‘and’ –

Confirmative Certainty
– evidence linked by ‘or’ –

Minimum Method:
CFNew = min {CFi, CFj}

Product Method:
CFNew = CFi * CFj

Joint Average Method:
CFNew = (min {CFi, CFj} + (CFi * CFj))/2

Maximum Method:
CFNew = max {CFi, CFj}

Probability Sum Method:
CFNew = (CFi + CFj) - (CFi * CFj)

Confirmative Average Method:
CFNew = (max {CFi, CFj} + (CFi + CFj) - (CFi *

CFj))/2

Where

CFi and CFj represent the certainty factors for individual factors.

CFNew represents the new certainty factor resulting from the combination of individual
certainty factors. 

An analysis of the experts’ responses for the individual factors indicated that the joint-

conjunctive minimum rule provided the certainty factor that was most-closely correlated to

the single response certainty factor.  Using the durations identified for Scenario 1,

Resolution A in Table 16, the questions, “For Resolution A, how likely is it that the

response will be received in less than one day?  One day through five days?  Six days

through ten days?” resulted in responses that correlated to the minimum value of the

certainty factors for each of the three factors.
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Although the responses from all the experts were not all as precise a match as the

example, the minimum method consistently provided the closest match between the three

factors and the single factor provided by the expert.  Thus, although the group discussions

established that none of the three factors was more important than the others in the effect

on the Response Time Horizon, it appeared that any one factor could override or dominate

the effects of the other two factors on the expected response time.

Next, information was gathered to determine the method used by the experts to identify the

likelihood that any one particular combination of Response and Time Increment might

occur.  The experts were asked to describe the process used in arriving at the answer.

The experts indicated that the process involved an adjustment of the certainty factor for

each time increment through consideration of the certainty factor for the particular

resolution.  That is, the certainty factor for the time increment was adjusted downward by

combining it with how likely the expert thought it was that a particular resolution received.

In addition, the experts were asked the question “How likely is it that the response will be

‘Resolution [A]’ and that the response will be received in less than one day?  One day

through five days?  Six days through ten days?”  The verbal responses, which were

translated into certainty factors on a scale of 0 to 1, are shown in Table 21.  Note that in

several cases the experts indicated a confidence or likelihood of being “almost certain that

it definitely won’t happen.”  This was translated to a Certainty Factor of 0.01.
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The responses provided by the experts, as shown in Table 21, were compared to the

combined certainty factors calculated using a variety of joint combination methods.  A

sample of the calculations is shown in Table 22.  The sample calculations represent the

responses received from Expert C for Scenario 1.  The joint product method of calculating

the combined certainty factors provided the certainty factor that most-closely simulated the

responses provided by the experts.  In addition, this combination method was consistent

with the process described by the experts for combining the confidence levels for the

potential responses and the time increments.

Table 21:  Experts’ Combination of Certainty Factors for Potential Resolutions and Time
Increments

Scenario and
Resolution Expert

Time Increments

(1) (2) (3)

1

A
B

0.0 0.7 0.15
B 0.05 0.1 0.01
A

C
0.15 0.7 0.25

B 0.1 0.15 0.01
A

G
0.2 0.7 0.2

B 0.02 0.1 0.01

1

A
H

0.1 0.7 0.2

B 0.01 0.1 0.01

A
O

0.1 0.6 0.3

B 0.01 0.1 0.01

A
P

0.2 0.8 --

B 0.01 0.1 --



Scenario and
Resolution Expert

Time Increments

(1) (2) (3)
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2

A

B

0.25 0.65 --

B 0.0 0.0 --

C 0.05 0.15 --

A

C

0.2 0.85 0.1

B 0.0 0.0 0.0

C 0.05 0.2 0.01

A

G

0.3 0.7 0.15

B 0.05 0.1 0.01

C 0.05 0.05 0.0

A

H

0.2 0.6 0.15

B 0.05 0.1 0.01

C 0.1 0.25 0.05

A

O

0.1 0.65 0.25

B 0.0 0.0 0.0

C 0.01 0.15 0.05

A

P

0.2 0.7 0.1

B 0.01 0.15 0.01

C 0.01 0.1 0.01



Scenario and
Resolution Expert

Time Increments

(1) (2) (3)
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3

A
B

0.1 0.55 0.25
B 0.1 0.3 0.1
A

C
0.0 0.5 0.1

B 0.05 0.4 0.1
A

G
0.05 0.5 0.1

B 0.05 0.4 0.05
A

H
0.0 0.25 0.25

B 0.05 0.4 0.1

A
O

0.05 0.4 0.1

B 0.05 0.5 0.1
A

P
0.0 0.4 0.1

B 0.05 0.4 0.1

Table 22:  Example Calculations of Combination of Certainty Factors for Potential
Resolution and Response Time

Certainty Factor
for Element

Time Increment

1 day - 2 days 3 days - 5 days 6 days - 8 days

Resolution A 0.2 0.8 0.3

CF for Resolution A 0.9

Combined CF provided by
expert 0.15 0.7 0.25

Combined CF calculated
by joint product method 0.18 0.72 0.27

Combined CF calculated
by joint minimum method 0.2 0.8 0.3

Combined CF calculated
by joint average method 0.19 0.76 0.285
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3.2.4.c.  Implementation Preparation Time

The Implementation Preparation Time is time between the receipt of the resolution and the

start of the work.  This time period is comprised of the duration necessary to acquire any

materials, tools, and/or equipment required to construct the change work.  Generally, the

decision maker will be able to predict with certainty whether or not materials, tools, and/or

equipment that are not readily available will be necessary to implement any particular

potential resolution.  For any potential resolution where no special materials, tools, and/or

equipment are necessary, the Implementation Preparation Time will be zero days.  For

those resolutions that will require materials, tools, and/or equipment, the decision maker

will identify appropriate time increments.

For each scenario and potential resolution the experts identified time increments for the

Implementation Preparation Time.  As with the time increments for the resolution time, the

experts were not limited in the number of time increments that could be identified for the

implementation preparation time for each potential resolution.  The time increments

designated by the experts are shown in Table 23.  As noted, the Implementation

Preparation Time was zero days for any potential resolution that was determined to require

only materials, tools, or equipment that were readily available.  For example, Scenario 1,

Resolution B was determined not to require any special materials, tools, or equipment.

Thus, the Implementation Preparation Time increment for Resolution B was zero days.



109

 For each combination of scenario and potential resolution for which the experts indicated

materials, tools, and/or equipment would be necessary, the experts were asked to identify

the likelihood that the particular resolution would be received during each time increment.

The question posed was in the same form used for the Resolution Response Time.  For

example, for Scenario 1, Resolution A, the question to Expert B was:  “For Scenario 1,

Resolution A, how likely is it that the necessary materials, tools, and/or equipment will be

received in one day to three days?  Four days through five days?  Six days through ten

days?”  The responses were translated into certainty factors, using a scale of 0 to 1.

Tables 24 through 26 is a listing of the responses received for all three scenarios.

Table 23:  Experts’ Time Increments for Implementation Preparation Time

Scenario and
Resolution Expert

Time Increments
(1) (2) (3)

1

A

B 1 day - 3 days 4 days - 5 days 6 days - 10 days
C 1 day - 5 days 6 days - 10 days N/A
G 1 day - 5 days 6 days - 10 days 11 days - 15 days
H 1 day - 2 days 3 days - 7 days 8 days - 10 days
O 1 day - 2 days 3 days - 5 days 6 days - 10 days
P 1 day - 5 days 6 days - 10 days N/A

B

B 0 0 0
C 0 0 0
G 0 0 0
H 0 0 0
O 0 0 0
P 0 0 0



Scenario and
Resolution Expert

Time Increments
(1) (2) (3)
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2

A

B 0 0 0
C 0 0 0
G 0 0 0
H 0 0 0
O 0 0 0
P 0 0 0

B

B 0 0 0
C 0 0 0
G 0 0 0
H 0 0 0
O 0 0 0
P 0 0 0

C

B 1 day - 5 days 6 days - 10 days N/A
C 1 day - 4 days 5 days - 7 days 8 days - 10 days
G 1 day - 3 days 4 days - 5 days 6 days - 10 days
H 1 day 2 days - 5 days 6 days - 10 days
O 1 day 2 days - 5 days N/A
P 1 day - 3 days 4 days - 6 days 7 days - 10 days

3

A

B 1 day - 5 days 6 days - 10 days 11 days - 15 days
C 1 day - 5 days 6 days - 10 days 11 days - 15 days
G 1 day - 5 days 6 days - 10 days 11 days - 15 days
H 1 day - 5 days 6 days - 10 days 11 days - 15 days
O 1 day - 5 days 6 days - 10 days 11 days - 15 days
P 1 day - 10 days 11 days - 15 days 16 days - 20 days

B

B 0 0 0
C 0 0 0
G 0 0 0
H 0 0 0
O 0 0 0
P 0 0 0
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Table 24:  Scenario 1 – Experts’ Implementation Preparation Time Certainty Factors

Expert

Resolution A Resolution B

Time Increment

(1) (2) (3) (1) (2) (3)

B 0.2 0.8 0.1 -- -- --

C 0.3 0.8 N/A -- -- --

G 0.1 0.9 0.1 -- -- --

H 0.1 0.8 0.1 -- -- --

O 0.1 0.9 0.1 -- -- --

P 0.3 0.8 N/A -- -- --

Table 25:  Scenario 2 – Experts’ Implementation Preparation Time Certainty Factors

Expert

Resolution A Resolution B

Time Increment

(1) (2) (3) (1) (2) (3) (1) (2) (3)

B -- -- -- -- -- -- 0.3 0.8 N/A

C -- -- -- -- -- -- 0.1 08 0.1

G -- -- -- -- -- -- 0.1 0.75 0.2

H -- -- -- -- -- -- 0.0 0.8 0.2

O -- -- -- -- -- -- 0.1 0.9 N/A

P -- -- -- -- -- -- 0.1 0.9 0.1
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Table 26:  Scenario 3 – Experts’ Implementation Preparation Time Certainty Factors

Expert

Resolution A Resolution B

Time Increment

(1) (2) (3) (1) (2) (3)

B 0.1 0.7 0.3 -- -- --

C 0.1 0.9 0.1 -- -- --

G 0.0 0.9 0.1 -- -- --

H 0.0 0.8 0.2 -- -- --

O 0.1 0.9 0.1 -- -- --

P 0.1 0.8 0.2 -- -- --

All experts indicated that the values within a single time increment had a uniform

distribution.  That is, any single duration within a time increment was equally likely to

represent the expected Implementation Preparation Time.

3.2.4.d.  Crew Reassignment Option Costs

The last element of the model was comprised of the potential costs associated with each

of the crew reassignment options.  Using the conditions on their individual projects, the

experts identified the expected daily crew costs and productivity losses associated with

each of the available crew reassignment options for each scenario.
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Since the crew reassignment option of “standby” represents a 100% productivity loss, the

costs for this option were represented by 100% of the hourly or daily crew costs.

Regardless of the expected duration of the standby time, none of the experts identified any

productivity loss associated with the “standby” option.  However, the model does not

preclude the identification of productivity loss associated with this crew reassignment

option.  For the crew reassignment option of “re-sequence,” the experts identified the

potential productivity losses as being comprised of a certain number of hours to demobilize

from the existing task plus time to mobilize at the next task.  In addition, the experts

designated additional inefficiencies that were expected to be incurred for a period of time

while performing the new task as a result of learning curve, dilution of supervision, and so

forth.  The potential productivity losses assigned for “demobilize from site” included time

for complete demobilization and subsequent re-mobilization.  Additionally, upon re-

mobilization inefficiencies were expected to be incurred for a period of time due to learning

curve, re-orientation, different levels of skills between the crew prior to demobilization and

the crew after re-mobilization.  The crew reassignment options of “partial mobilization” or

“partial de-mobilization” were expected to result in costs for the staged mobilization or de-

mobilization of the crew rather than a single mobilization or demobilization.  Inefficiencies

resulting from sub-optimal crew sizes also were anticipated.

Based on the hourly or daily crew costs and expected productivity losses provided by the

experts, the costs were calculated for each crew reassignment option that was possible for
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each scenario.  The calculated costs for the Scenario 1 Response Time Increments are

shown in Table 27.

Table 27:  Scenario 1 Costs for Crew Reassignment Options

Expert B – Resolution A or Resolution B

Response Time
Increment Description Range of Costs

Reassignment Option:  Standby

< 1 day
Daily crew cost multiplied by the duration of the
standby time.

$1,120 - $1,120

1 - 5 days $1,120 - $5,600

6 - 10 days $6,720 - $11,200

Reassignment Option:  Re-Sequence

< 1 day
4 hours for demobilization from existing task
and remobilization at new task on jobsite plus
20% - 40% loss of efficiency for 5 days.

$1,680 - $1,680

1 - 5 days $1,680 - $2,800

6 - 10 days $1,680 - $2,800

Reassignment Option:  Demobilization

< 1 day 8 hours for demobilization from site and
remobilization to site plus a 10% - 20% loss of
efficiency for the number of days equal to the
duration of the demobilization.

$1,232 - $1,232

1 - 5 days $1,232 - $2,240

6 - 10 days $1,792 - $3,360

Expert C – Resolution A or Resolution B

Response Time
Increment Description Range of Costs

Reassignment Option:  Standby

1 - 2 days
Hourly or daily crew cost multiplied by the
duration of the standby time.

$1,000 - $2,000

3 - 5 days $3,000 - $5,000

6 - 8 days $6,000 - $8,000
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Reassignment Option:  Re-Sequence

1 - 2 days 1 day for demobilization from existing task and
remobilization at new task on jobsite plus 30% -
40% loss of efficiency for total number of days
of reassignment.

$1,300 - $1,800

3 - 5 days $1,900 - $3,000

6 - 8 days $2,800 - $4,200

Reassignment Option:  Demobilization

1 - 2 days
1 day for demobilization from site and
remobilization to site plus a 20%  - 30% loss of
efficiency for 10 days.

$3,000 - $4,000

3 - 5 days $3,000 - $4,000

6 - 8 days $3,000 - $4,000

Expert G – Resolution A

Response Time
Increment Description Range of Costs

Reassignment Option:  Standby

1 - 3 days
Daily crew cost multiplied by the duration of the
standby time.

$1,000 - $3,000

4 - 6 days $4,000 - $6,000

7 - 9 days $7,000 - $9,000

Reassignment Option:  Re-Sequence

1 - 3 days
8 hours demobilization from existing task and
remobilization at new task on jobsite plus 20% -
30% loss of efficiency for each day.

$1,200 - $1,900

4 - 6 days $1,800 - $2,800

7 - 9 days $2,400 - $3,700

Reassignment Option:  Demobilization

1 - 3 days
8 hours for demobilization from site and 8 hours
remobilization to site plus a 10% - 20% loss of
efficiency for each day.

$2,100 - 2,600

4 - 6 days $2,400 - $3,200

7 - 9 days $2,700 - $3,800
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Expert H – Resolution A

Response Time
Increment Description Range of Costs

Reassignment Option:  Standby

1 - 2 days
Daily crew cost multiplied by the duration of the
standby time.

$1,600 - $3,200

3 - 7 days $4,800 - $11,200

8 - 10 days $12,800 - $16,000

Reassignment Option:  Re-Sequence

1 - 2 days
1 day for demobilization from existing task and
remobilization at new task on jobsite plus 30% -
40% loss of efficiency for each day.

$2,080 - $2,880

3 - 7 days $3,040 - $6,080

8 - 10 days $5,440 - $8,000

Reassignment Option:  Demobilization

1 - 2 days
1 day for demobilization from site and 1 day for
remobilization to site plus a 20% - 40% loss of
efficiency for each day.

$3,520 - $4,480

3 - 7 days $4,160 - $7,680

8 - 10 days $5,760 - $9,600

Expert O – Resolution A or Resolution B

Response Time
Increment Description Range of Costs

Reassignment Option:  Standby

1 - 2 days
Daily crew cost multiplied by the duration of the
standby time.

$2,000 - $4,000

3 - 5 days $6,000 - $10,000

6 - 10 days $12,000 - $20,000

Reassignment Option:  Re-Sequence

1 - 2 days
1/2 day for demobilization from existing task and
remobilization at new task on jobsite plus 20% -
40% loss of efficiency for each day.

$1,400 - $2,600

3 - 5 days $2,200 - $5,000

6 - 10 days $3,400 - $9,000
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Reassignment Option:  Demobilization

1 - 2 days
1 day for demobilization from site and
remobilization to site plus a 20% - 40% loss of
efficiency for each day.

$2,400 - $3,600

3 - 5 days $3,200 - $6,000

6 - 10 days $4,400 - 10,000

Expert P – Resolution A or Resolution B

Response Time
Increment Description Range of Costs

Reassignment Option:  Standby

1 - 5 days Daily crew cost multiplied by the duration of the
standby time.

$1,000 - $5,000

6 - 10 days $6,000 - $10,000

Reassignment Option:  Re-Sequence

1 - 5 days 1/2 day for demobilization from existing task and
remobilization at new task on jobsite plus 30% -
40% loss of efficiency for each day.

$800 - $2,500

6 - 10 days $2,300 - $4,500

Reassignment Option:  Demobilization

1 - 5 days 1 day for demobilization from site and
remobilization to site plus a 30% - 40% loss of
efficiency for each day.

$1,300 - $3,000

6 - 10 days $2,800 - $5,000

Note that the crew reassignment costs do not include any productivity losses associated

with the performance of the change work.  These costs are captured in the pricing of the

change order.  The crew reassignment costs address only those costs emanating from the

change that generally are not included in the change order.  This includes any costs

incurred during the time preceding the performance of the change work, which is

comprised of the time between the identification of the problem and the start of

implementation, and costs incurred after the start of implementation that are a result of the
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change but are not captured in the change order, such as inefficiencies due to ramping-up

of manpower after a re-mobilization.

3.2.4.e.  Model Analytical Method

The first task was to determine how the experts combined the certainty factors for each

element with the range of costs for each crew reassignment option.  This was achieved

through discussions of each scenario and the previously established certainty factors for

the potential resolution, response time increments, and implementation preparation time

increments, and the estimated crew costs for each of the reassignment options.

The experts evaluated the time horizons for the Response Time and the Implementation

Preparation Time as separate elements.  The potential costs associated with each time

horizon and reassignment option were calculated by the experts by applying the certainty

factor for a particular time increment to the costs for that time increment.  Table 28 shows

an example of the calculations using the data for Scenario 1 provided by Expert P.
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Table 28:  Sample of Experts’ Combination of Certainty Factors and Costs

Resolution A Implementation Preparation Time

Implementation
Time Increment CF

Estimated Costs

Standby Re-sequence Demobilize

1 - 5 days 0.2 $1000 - $5,000 $800 - $2,500 $1,300 - $3,000

6 - 10 days 0.9 $6,000 - $10,000 $2,300 - $4,500 $2,800 - $5,000

Expert P Assessment The range of costs for each potential crew reassignment option
was calculated by multiplying the Certainty Factor times the
dollar amounts that comprised each range of costs.  The low
amounts were summed and the high amounts were summed to
arrive at a range of costs for each crew reassignment option.

Calculations Low 0.2 * $1,000 + 
0.9 * $6,000
= $5,600

0.2 * $800 + 
0.9 * $2,300
= $2,230

0.2 * $1,300 + 
0.9 * $2,800
= $2,780

High 0.2 * $5,000 + 
0.9 * $10,000
= $10,000

0.2 * $2,500 + 
0.9 * $4,500
= $4,550

0.2 * $3,000 + 
0.9 * $5,000
= $5,100

The calculated costs for each crew reassignment option were evaluated to determine if

there was an option that represented a more attractive range of potential costs than all

other options.  In the example shown in Table 28, the “Re-Sequence” crew reassignment

option has a range of costs that is lower than any other range of costs.  Expert P identified

the “Re-sequence” crew reassignment option as the most attractive option for the

Implementation Preparation Time.
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Thus, the method used to combine the certainty factors and potential costs appeared to

emulate the same process used in a typical decision tree.  That is the certainty factors

were applied to the potential costs as if the factors were probabilities.  The resulting costs

for each element were evaluated to determine which crew reassignment option appeared

to provide the most favorable range of costs based on the individual decision maker’s

preferences.  By starting with an evaluation of the crew reassignment options for the

Implementation Preparation Time, selecting the best alternative, then “rolling back” to an

evaluation of the Response Time, the experts were able to ascertain the crew

reassignment decision that provided the most attractive range of potential costs.

These discussions also revealed that some experts always tended to favor a decision that

had the potential to result in the minimum costs possible, while others  favored decisions

that had the potential to minimize the maximum costs that might be incurred.  Additional

discussions regarding the terms of the contracts for each expert’s current projects did not

provide any insight into the reason for the consistency of preference for each expert.

Instead, based on the limited information gathered, it appeared that the inclination to favor

one decision rule over another was a matter of personnel preference.

Following the evaluation of the scenarios via discussions, the experts were provided a copy

of the decision tree model with the previously established certainty factors and crew costs

shown on each branch.  An example decision tree model is shown in Figure 11.
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Figure 11a:  Example of Model Application
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Figure 11b:  Example of Model Application
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Figure 11c:  Example of Model Application
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Using the decision tree, the experts then walked through the previously-discussed rationale

for determining the ‘best’ crew reassignment option.  This procedure provided consistent

results with the process described by experts.

Note that the experts did not attempt to normalize the certainty factors that did not sum to

a total of 1.0.  However, without normalization of the factors, for any case where the

certainty factors did not sum to 1.0 the estimated costs provided as the outcomes of the

model would either overestimate or underestimate the expected costs.

Potential normalizing procedures include (1) dividing each factor to be normalized by the

sum of all factors to be normalized and (2) dividing each factor to be normalized by the

maximum value the factors to be normalized [Saaty, 2000].  The following examples

illustrate the results obtained without normalization and the results obtained by applying

the two normalization methods.

Each example is comprised of two alternatives, X and Y.   Example (a) has CFX = 0.9 and

CFY = 0.6, resulting in a sum of 1.5 for the certainty factors, which is greater than 1.0.

Example (b) has CFX = 0.6 and CFY = 0.1, resulting in a sum of 0.7 for the certainty factors,

which is less than 1.0.  The expected cost for each alternative is $100.  Figure 12 depicts

Examples (a) and (b) in a decision tree format.
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Figure 12:  Depiction of Examples (a) and (b) for Normalization Procedures

For the given examples, the desired characteristics of a normalizing procedure include

maintaining the relationship between the certainty factors for each alternative while

resulting in an expected outcome of $100.  

Without normalization, the expected outcome for Example (a) is calculated as:

0.9 * $100 + 0.6 * $100 = $150

While the expected outcome for Example (b) is calculated as:

0.6 * $100 + 0.1 * $100 = $70

Thus, the outcomes for Examples (a) and (b) are overestimated and underestimated,

respectively, corresponding to (a) certainty factors whose sum is greater than 1.0 and (b)

certainty factors whose sum is less than 1.0.
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Example (a)  –  Applying normalizing procedure (1), which divides each certainty factor by

the sum of the factors, results in the following:

0.9 / (0.9 + 0.6) * $100 + 0.6 / (0.9 + 0.6) * $100 = 0.6 * $100 + 0.4 * $100 = $100

The non-normalized factors of 0.9 and 0.6 and the normalized factors of 0.6 and 0.4

maintain the same relationship to each other, satisfying the first of the desired

characteristics.  The resulting outcome after normalization is $100, which is the expected

outcome when both alternatives have expected costs of $100.  Thus, the second desired

characteristic also is fulfilled.

The application of normalizing procedure (2), which divides each certainty factor by the

value of the maximum factor, provides the following result:

(0.9 / 0.9) * $100 + (0.6 / 0.9) * $100 = 1.0 * $100 + 0.67 * $100 = $167

Although the normalized factors of 1.0 and 0.67 maintain the same relative proportions, the

outcome of $167 is an overestimate of the expected costs for the given data.  Thus,

dividing by the value of the maximum certainty factor does not exhibit both of the desired

characteristics.

Example (b)  –  Applying normalizing procedure (1), which divides each certainty factor by

the sum of the factors, results in the following:

0.6 / (0.6 + 0.1) * $100 + 0.1 / (0.6 + 0.1) * $100 = 0.857 * $100 + 0.143 * $100 = $100
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The non-normalized factors of 0.6 and 0.1 and the normalized factors of 0.857 and 0.143

maintain the same relationship to each other, satisfying the first of the desired

characteristics.  The resulting outcome after normalization is $100, which corresponds to

the expected outcome when both alternatives have expected costs of $100.

The application of normalizing procedure (2), which divides each certainty factor by the

value of the maximum factor, provides the following result:

(0.6 / 0.6) * $100 + (0.1 / 0.6) * $100 = 1.0 * $100 + 0.167 * $100 = $117

Although the normalized factors of 1.0 and 0.167 maintain the same relative proportions,

the outcome of $117 is an overestimate of the expected costs for the given data.  Thus,

dividing by the value of the maximum certainty factor does not exhibit both of the desired

characteristics.

In summary, normalization procedure (1) dividing each factor to be normalized by the sum

of all factors to be normalized, meets both of the desired characteristics of maintaining the

relationship between the values and providing an accurate measure of the expected costs

whether the non-normalized sum of the factors is greater than or less than 1.0.  Thus, the

application of this normalizing procedure to data of the crew reassignment decision

provides the desired properties of maintaining the relationship between the certainty 
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As with the previous process, the experts combined the certainty factor for each element

with the costs through simple multiplication.  The resulting range of costs were evaluated

to determine the range that best suited the decision maker’s preference for either

maximizing the minimum potential costs or minimizing the maximum potential costs.  The

path that provided the costs in line with the decision maker’s preference was deemed to

represent the ‘best’ crew reassignment option.

3.3.  Summary

The following is a summary outline of the crew reassignment decision model.  Steps 1 and

2 are an evaluation of the problem and the potential resolutions.  Steps 3 and 4 represent

the factors to be considered in order to identify the expected Response Time.  Steps 5 and

6 represent the Implementation Preparation Time considerations.  Steps 7 and 8 are the

identification of potential crew reassignment options and costs.  Step 9 represents the

quantification of the options.  Step 10 is the evaluation of the model results and selection

of the crew reassignment option.
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Once a potential change is identified:

Step 1 – Identify the possible resolutions to the problem, Ri, for i = 1, . . ., n possible

resolutions.

List and describe each of the possible resolutions that might be issued by the

designer in response to the problem.

Step 2 – Define the Certainty Factor associated with each potential resolution, CFRi,

where i = 1, . . ., n possible resolutions.

Establish the certainty factor for each potential resolution that represents the

decision maker’s belief that a particular resolution will be selected by the

designer.

Step 3 – Identify the time increments for each possible response, RTij, where  i = 1,

. . ., n possible resolutions and j = 1, . . ., m time increments.

For a scenario with two possible responses and three time increments for

each possible response, the time increments would be as shown in Table 29.
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Table 29:  Matrix of Response Time Increments

Time Increment
(1)

Time Increment
(2)

Time Increment
(3)

Response 1 RT11 RT12 RT13

Response 2 RT21 RT22 RT23

Step 4 – Identify the Certainty Factor for each Response Time increment associated

with each possible response, CFRTij, where  i = 1, . . ., n possible resolutions

and j = 1, . . ., m time increments.

For each possible resolution, the decision maker would consider the key

factors that might affect the time increments for that particular resolution.

The key factors that have been identified are:

1.  Complexity

Is coordination with outside agencies (e.g., review by building department,

new permits, etc.), re-design, or re-submittals required?

2.  Designer Work Load

Are there a significant number of outstanding questions awaiting responses

from the designer?
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3.  Criticality or Priority of the Affected Activity

Is the affected activity on or near the critical path or a controlling item of work

for the affected crew(s)?

For example, in the terminology of certainty factors, the rules would be stated

as:

Rule 1.  Complexity

IF Coordination with outside agencies (e.g., review by building

department, new permits, etc.), re-design, or re-submittals are (are

not) required.

THEN The response time will be (1) 1 day to 2 days; (2) 3 days to 5 days;

and (3) 6 days to 8 days.

CRTij = Certainty factor for each identified Response Time Increment,

RTij associated with each possible response.

Rule 2.  Designer Work Load

IF There are (are not) a significant number of outstanding questions are

awaiting responses from the designer.

THEN The response time will be (1) 1 day to 2 days; (2) 3 days to 5 days;

and (3) 6 days to 8 days.
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WRTij = Certainty factor for each identified Response Time Increment,

RTij associated with each possible response.

Rule 3.  Criticality or Priority of the Affected Activity

IF The activity is (is not) on or near the critical path or is (is not) a

controlling item of work for the affected crew.

THEN The response time will be (1) 1 day to 2 days; (2) 3 days to 5 days;

and (3) 6 days to 8 days.

PRTij = Certainty factor for each identified Response Time Increment,

RTij associated with each possible response.

Use the joint-conjunctive minimum rule to calculate the certainty factor for

each combination of Response and Time Increment.  Thus, the certainty

factors, CFRTij, are calculated as min {CRTij, WRTij, PRTij} for each i = 1, .

. ., n possible resolutions and j = 1, . . ., m time increments.

For a scenario with two possible responses and three time increments for

each possible response, the certainty factors for each combination of

possible resolution and time increment would be as shown in Table 30.
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Table 30:  Matrix of Certainty Factors for Potential Resolutions and Response Times

Factor

Resolution R1 Resolution R2

Time Increment

(1) (2) (3) (1) (2) (3)

Complexity CRT11 CRT12 CRT13 CRT21 CRT22 CRT23

Workload WRT11 WRT12 WRT13 WRT21 WRT22 WRT23

Priority PRT11 PRT12 PRT13 PRT21 PRT22 PRT23

CFRTij

min
{CRT11,
WRT11,
PRT11}

min
{CRT12,
WRT12,
PRT12}

min
{CRT13,
WRT13,
PRT13}

min
{CRT21,
WRT21,
PRT21}

min
{CRT22,
WRT22,
PRT22}

min
{CRT23,
WRT23,
PRT23}

Step 5 – Identify the time increments for the Implementation Preparation Time, RPik,

where i = 1, . . ., n possible resolutions and k = 1, . . ., p time increments.

The Implementation Preparation Time is the time between the receipt of the

resolution and the start of the work.  This time period is comprised of the

duration necessary to acquire any materials, tools, and/or equipment

required to construct the change work.

For each possible resolution, determine if material, tools, or equipment that

is not readily available will be required to implement the resolution.  In the

event that material, tools, or equipment that is not readily available will be
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required prior to the start of implementation of the resolution, determine the

appropriate time increments for consideration.

Note that for any potential resolution where no special materials, tools,

and/or equipment are necessary, the Implementation Preparation Time will

be zero days.

For example, a scenario with two possible responses where the

implementation of Response 1 requires material, tools, or equipment that is

not readily available and three time increments of 1 - 3 days, 4 - 7 days, and

8 - 10 days were identified for the implementation preparation time, and the

implementation of Response 2 requires no materials, tools, or equipment,

the time increments for the Implementation Preparation would be

summarized as follows:

Table 31:  Matrix of Implementation Preparation Time Increments

Time Increment
(1)

Time Increment
(2)

Time Increment
(3)

Response 1 RP11
= 1 day to 3 days

RP12
= 4 days to 7 days

RP13
= 8 days to 10 days

Response 2 RP21 = 0 RP22 = 0 RP23 = 0
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Step 6 – Identify the CF for the Implementation Preparation Time Increments, CFRPik,

where i = 1, . . ., n possible resolutions and k = 1, . . ., p time increments.

Using the time increments identified in Step 5, the certainty factors would be

determined by responding to the question, “Based on Resolution [X], how

likely is it that the materials, tools, and/or equipment will be available in one

day to three days?   Four days through seven days?  Eight days through ten

days?”  For any resolution for which no materials, tools, and/or equipment

are required, CFRPik = 1.

Step 7 – Identify the Crew Reassignment Options, Ah, for h = 1, . . ., q, for q available

options.

The most common crew reassignment options include:

A.  Do Not Mobilize  –  Delay the planned mobilization until the affected work

is available.  Then, perform the work in the originally-planned sequence,

starting at a later date than originally planned.

B.  Standby  –  Place the existing crew on standby or mobilize the crew as

planned and place on standby.  Then, perform the change work as soon as
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the work is available, followed by the balance of the contract work in the

planned sequence.

C.  Reassign the Crew and Re-Sequence the Work  –  Mobilize the crew as

planned or maintain the already mobilized crew, but assign the crew to work

in an area or on a task other than what was originally planned, resulting in re-

sequencing of the work.  At some time in the future, the crew would perform

the change work.  The reassignment and re-sequencing option is available

only if another work area exists.  This option allows the follow-on trades to

perform re-sequenced work as well.

D.  Mobilize Smaller Crew – This is the same as option C. Reassign the

Crew and Re-Sequence the Work except that a smaller-than-planned crew

would be mobilized or maintained and assigned to work in an area or on a

task other than what was originally planned, resulting in re-sequencing of the

work.  Then, when the as-planned work is available, additional forces would

be mobilized or re-mobilized to achieve the planned crew size.  Mobilization

of a smaller crew with reassignment and re-sequencing is an available option

only if another work area exists.  This option allows the follow-on trades to

perform re-sequenced work as well.  However, since a smaller-than-planned

crew is utilized the work is expected to be performed over a longer-than-

planned duration.
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E.  Demobilize the Crew from the Site – The crew would be demobilized from

the site.  At some time in the future, a crew (not necessary the same crew)

would be re-mobilized to perform the change work and any remaining original

work scope.

Step 8 – Identify the costs corresponding to each combination of Crew Reassignment

Option and Response Time Increment, ARThij, and the costs corresponding

to each combination of Crew Reassignment Option and Implementation

Time Increment, ARPhik.  For time increments where the costs vary with the

length of time, there will be a range of costs.  The ranges can be bracketed

by the lower costs, ARThijL, and ARPhikL, and upper costs, ARThijU and ARPhikU.

Based on the crews and equipment, the user establishes the related daily

costs for each crew reassignment option.  In the event that the potential

costs include inefficiencies, a range of inefficiencies or a Certainty Factor for

the potential inefficiencies should be identified.
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The potential daily costs associated with each option include the costs for

demobilization and remobilization plus any inefficiency costs.  For example,

for Option B, Standby, there are no demobilization or remobilization costs.

However, the inefficiency is 100% for the duration of the standby time.  Thus,

the daily inefficiency costs are 100% of the crew cost, including both labor

and idle equipment.  For Option E, Demobilize the Crew from the Site, there

are both demobilization and remobilization costs and potential inefficiency

costs, such as ‘learning curve’ inefficiencies, that might be experienced when

a crew is remobilized at some future date.  In the case that a different crew

is mobilized in the future, that new crew may not perform at the same level

of productivity as the current crew.  As a result, there is the possibility that all

remaining hours on the project will incur a loss or gain of efficiency.  Note

that not all crew reassignment options will be available for all change

occurrences.

Step 9 – Apply the model to calculate the range of costs for each combination of

options.

The model combines the certainty factors and ranges of costs for each

branch of the decision tree and calculates the costs associated with the

options represented by that branch.
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A.  In order to calculate meaningful dollar values, the certainty factors for

Potential Resolutions, Response Time Increments, and Implementation

Preparation Time Increments are re-scaled to a sum of 1 when necessary,

as shown in Equations 3, 4, and 5.

CFRiNORM  = CFRi (3)
 n

3 CFRi
i=1

CFRTijNORM  = CFRTij (4)
 m

3 CFRTij 
j=1

CFRPikNORM  = CFRPik (5)
 p

3 CFRPik 
k=1

B.  The range of costs for each Potential Resolution and Crew Reassignment

Option associated with the Implementation Preparation Time is calculated as

shown in Equations 6 and 7.



140

 p

PRANGEhiL  = 3 CFRPikNORM * ARPhikL (6)
k=1

 p

PRANGEhiU  = 3 CFRPikNORM * ARPhikU (7)
k=1

For each Potential Response, Ri, select the PRANGE for Crew

Reassignment Option h that represents the lowest expected costs, {VPL,

VPU}, as shown in Equation 8.

{VPL, VPU}  = minh {PRANGEhiL, PRANGEhiU} (8)

In the event that there is no clear minimum range of costs, then the selection

is based on the decision maker’s criteria.  For example, the decision maker

may choose the option that minimizes the maximum expected costs or

minimizes the minimum expected costs.

C.  Calculate the range of costs for each combination of Crew Reassignment

Option, Potential Response, and Response Time Increment as shown in

Equations 9 and 10.
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TRANGEhijL  = CFRTijNORM * ARThijL (9)

TRANGEhijU  = CFRTijNORM * ARThijU (10)

D.  Combine the selected {VPL, VPU} with each {TRANGEhijL, TRANGEhijU} to

arrive at the expected range of costs for each possible Crew Reassignment

Option, Response,  Response Time Increment, and the minimum or selected

expected costs for Preparation Time, {VTPhijL, VTPhijU}.

E.  For each available Crew Reassignment Option, multiply {VTPhijL, VTPhijU}

by the normalized Certainty Factor for each potential Response, CFRiNORM,

and sum the ranges of costs for each potential Response to obtain the

expected range of costs for each available Crew Reassignment Option,

{VAhL, VAhU}, as shown in Equations 11 and 12.

n     m

VAhL  = 3 3 CFRiNORM * VTPhijL (11)
i=1  j=1

n     m

VAhU  = 3 3 CFRiNORM * VTPhijU (12)
i=1  j=1
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Step 10 – Identify the most-desirable crew reassignment option based on the

calculated expected range of costs for each Crew Reassignment Option

{VAhL, VAhU}.

The decision maker chooses the Crew Reassignment Option that provides

the range of potential costs that are most suitable to the decision maker’s

preferences.  As noted, during the model development research, the experts

expressed preferences for either minimization of the maximum potential

costs or maximizing the minimum potential costs.

In summary, the steps are:

Step 1 – Potential Resolutions –

Identify the possible resolutions to the problem, Ri, for i = 1, . . ., n possible

resolutions.

Step 2 – Certainty Factors for Potential Resolutions –

Define the Certainty Factor associated with each potential resolution, CFRi,

for i = 1, . . ., n possible resolutions.
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Step 3 – Response Time Increments – 

Identify the time increments for each potential response, RTij, for  i = 1, . . .,

n possible resolutions and j = 1, . . ., m time increments.

Step 4 – Certainty Factors for Response Time Increments – 

Identify the Certainty Factor for each Response Time factor CRTij, WRTij,

PRTij, for i = 1, . . ., n possible resolutions and j = 1, . . ., m time increments,

and calculate the Certainty Factor for each time increment, CFRTii, by the

solving for the min {CRTij, WRTij, PRTij}.

Step 5 – Implementation Preparation Time Increments – 

Identify the time increments for the Implementation Preparation Time, RPik,

for i = 1, . . ., n possible resolutions and k = 1, . . ., p time increments.

Step 6 – Certainty Factors for Implementation Preparation Time Increments – 

Identify the certainty factors for the Implementation Preparation Time

increments, CFRPik, for i = 1, . . ., n possible resolutions and k = 1, . . ., p

time increments.

Step 7 – Identify the Crew Reassignment Options, Ah, for h = 1, . . ., q number of

available options.
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Step 8 – Identify the range of costs for each combination of Crew Reassignment

Option and Response Time Increment, ARThijL to ARThijU, and each

combination of Crew Reassignment Option and Implementation Time

Increment, ARPhikL  to ARPhikU.

Step 9 – Apply the model to calculate the range of costs for each Crew Reassignment

Option.

A.  Normalize the certainty factors for Potential Resolutions, Response Time

Increments, and Implementation Preparation Time Increments, if necessary,

as shown in Equations 3, 4, and 5.

CFRiNORM  = CFRi (3)
 n

3 CFRi
i=1

CFRTijNORM  = CFRTij (4)
 m

3 CFRTij 
j=1

CFRPikNORM  = CFRPik (5)
 p

3 CFRPik 
k=1
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B.  Calculate the range of costs for each combination of Crew Reassignment

Option, Potential Response, and Implementation Preparation Time:

 p

PRANGEhiL  = 3 CFRPikNORM * ARPhikL (6)
k=1

 p

PRANGEhiU  = 3 CFRPikNORM * ARPhikU (7)
k=1

Select the PRANGE that represents the costs that fit the decision maker’s

preferences, where {VPL, VPU} is calculated as per Equation 8.

{VPL, VPU}  = minh {PRANGEhiL, PRANGEhiU} (8)

C.  Calculate the range of costs for each combination of Crew Reassignment

Option, Potential Response, and Response Time Increment as shown in

Equations 9 and 10.

TRANGEhijL  = CFRTijNORM * ARThijL (9)

TRANGEhijU  = CFRTijNORM * ARThijU (10)
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D.  Combine the selected {VPL, VPU} with each {TRANGEhijL, TRANGEhijU} to

arrive at the expected range of costs for each possible Crew Reassignment

Option, Potential Response,  Response Time Increment, and the minimum

or selected expected costs for Preparation Time, {VTPhijL, VTPhijU}.

E.  For each available Crew Reassignment Option, multiply {VTPhijL, VTPhijU}

by the normalized Certainty Factor, CFRiNORM, for each potential Response

and sum the lower and upper ranges of costs for each potential Response

to obtain the expected range of costs for each available Crew Reassignment

Option, {VAhL, VAhU}, as shown in Equations 11 and 12.

n     m

VAhL  = 3 3 CFRiNORM * VTPhijL (11)
i=1  j=1

n     m

VAhU  = 3 3 CFRiNORM * VTPhijU (12)
i=1  j=1

Step 10 – Based on the calculated expected range of costs for each Crew

Reassignment Option, {VAhL, VAhU}, choose the option that provides the

range of costs most suitable to the decision maker’s preferences.
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CHAPTER 4:  APPLICATION AND VALIDATION OF THE CREW
REASSIGNMENT DECISION SUPPORT MODEL

4.1.  Introduction

The purpose of a decision support model or system is to provide assistance to the decision

maker in identifying the available options and the potential consequences of selecting an

option.  Thus, the test of a decision support model is whether or not it aides the decision

maker in making more-informed decisions.

The following is a description of the projects and change circumstances to which the Crew

Reassignment Decision Support Model was applied in order to test its ability to provide the

decision makers with the information necessary to improve the crew reassignment

decisions made in response to changes.  The model was applied to contemporaneous

issues to assist project management with the crew reassignment decision.  Each of the

model applications is described and discussed, including the comments by the project

management on each of the projects.
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4.2.  Model Implementation

The model was applied prospectively to six actual change circumstances on three

construction projects.  All three projects were mid- to high-rise condominium complexes,

with two of the projects located in Central Florida and one project in North Florida.  Two of

the projects were constructed under Guaranteed Maximum Price contracts and one project

was a lump sum project.  The projects were constructed by three different general

contractors.  All three projects involved architects that were responsible for the review and

evaluation of change work, while final authorization of change work was the responsibility

of the project owners.  None of the contracts had a “no damages for delay” clause.  The

value of the projects ranged from $12 million to $26 million.

The model was applied to two different changes on each of the three projects.  All three

projects were in the structural erection stage when the first model application was

undertaken on each project.  The model was applied to the same projects during the later

stages of construction, from rough-in of the mechanical systems through the start of interior

finishes.

The following sections describe the circumstances for each change scenario, the data

provided by the decision makers for use in the model, and the results of the model

application.  The actual crew reassignment decisions made by the management on each

project also are discussed.
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4.2.1.  Model Application 1

During the forming and placement of reinforcing for the first elevated slab on Project A, the

threshold inspector issued a stop work order due to questions regarding offset columns

above and below the first elevated slab.  When the stop work order was issued, the

structural concrete was the only work underway on the project.

The potential responses from the designer were comprised of (A) additional analysis

resulted in no changes to the existing design and (B) additional analysis resulted in

additional reinforcing requirements.  The likelihood of receiving Resolution A was identified

as “don’t know, but maybe not,” which was translated to a certainty factor of 0.4.  The

likelihood of receiving Resolution B was “almost certainly,” which resulted in a certainty

factor of 0.8.

Only two time increments were identified for each of the potential resolutions: (1) less than

1 day and (2) 1 day to 5 days.  Table 32 contains the certainty factors for the three main

factors that are considered as the determinants of the expected duration of the response

time for a particular resolution and the combined certainty factors using the joint certainty

minimum method.
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Table 32:  Application 1  –  Certainty Factors for Response Time

Resolution A
Factor

Response Time Increment

< 1 day 1 day through 5 days

Complexity 0.4 0.8

Workload 0.5 0.8

Criticality or Priority 0.7 0.9

Combined CF 0.4 0.8

Resolution B
Factor

Response Time Increment

< 1 day 1 day through 5 days

Complexity 0.1 0.9

Workload 0.2 1.0

Criticality or Priority 0.2 1.0

Combined CF 0.1 0.9

Since Resolution A required no changes to the existing design, no tools, materials, or

equipment would be needed to implement this resolution.  Therefore, the Implementation

Time for Resolution A was zero days with a certainty factor of 1.  However, it was expected

that specially-fabricated stud rails would be added if the existing engineering calculations

were found to be deficient.  Only two time increments were identified for the

Implementation Time for Resolution B: (1) 1 to 3 days and (2) 4 to 5 days.  The certainty

factors for the Resolution B Implementation Preparation Time are shown in Table 33.
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Table 33:  Application 1  –  Certainty Factors for Implementation Preparation Time

Resolution

Implementation Preparation Time Increment

1 - 3  days 4 - 5 days

Resolution B 0.4 0.8

Since the project was in such an early stage, only the structural concrete crew had

mobilized.  This early stage of the project resulted in only two available crew reassignment

options: (1) Standby or (2) Demobilization from site.

The crew costs for the structural crew were comprised of $327 per hour for labor plus $65

per hour for equipment for a total of $392 per hour or $3,136 per eight-hour day.  Note that

the equipment costs were based on the hourly costs for idle equipment.  Therefore, the

costs for the crew reassignment option of Standby would be $392 per hour or $3,136 per

day.

The costs for the crew Demobilization option were identified as four hours for

demobilization plus four hours for re-mobilization when the work resumed.  In addition,

inefficiencies ranging from 10% to 20% for a time period equivalent to the duration of

demobilization were expected.  Table 34 shows the calculated costs for each of the

possible crew reassignment options.
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Table 34:  Application 1  –  Crew Reassignment Costs

Crew
Reassignment

Option

Time Increment

Response Time Implementation Time

< 1 day 1 - 5 days 1 - 3 days 4 - 5 days

Standby $392 - $3,136 $3,136 - $15,680 $3,136 - $9,408 $9,408 - $15,680

Demobilize $3,450 $3,450 - $6,272 $314 - $1,882 $1,254 - $3,136

Standby -
Demobilize $392 - $3,136 $3,136 - $15,680 $3,450 - $5,018 $4,077 - $6,272

Note that in the event of demobilization at the onset of the problem, the costs for remaining

demobilized throughout the Implementation Preparation Time represent only the

incremental additional costs for productivity losses commensurate with the added duration

of demobilization.  These costs are represented by the entries in the row titled Demobilize.

That is, during the Implementation Preparation Time there are no additional costs related

to the initial four hours of crew and equipment costs for demobilization plus four hours for

re-mobilization.  However, in the event that the crew reassignment option throughout the

Response Time was Standby and then changed to Demobilize for the Implementation

Preparation Time, at the initiation of the crew demobilization the costs will include four

hours of crew and equipment costs for demobilization and re-mobilization.

Table 35 provides a matrix of all possible states and the crew reassignment options.  The

Crew Reassignment Options titled Standby and Demobilize represent either placing the

crew on standby or demobilizing for the entire duration of the Response Time plus the
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Implementation Preparation Time, if any.  The Crew Reassignment Option titled Standby -

Demobilize represents placing the crew on standby during the Response Time then

demobilizing the crew during the Implementation Preparation Time, if any.  Similarly, the

Crew Reassignment Option titled Demobilize - Standby represents demobilizing the crew

during the Response Time then re-mobilizing the crew and placing it on standby during the

Implementation Preparation Time.

A review of Table 35 reveals that the range of costs for the Demobilize - Standby option

are the same or greater than the costs for the Demobilize option for every possible state.

Since this option is dominated by the Demobilize option, no further consideration of the

Demobilize - Standby option is merited.  In addition, the range of costs for the Standby

option are the same or greater than the costs for the Standby - Demobilize option for every

possible state.  Therefore, no further consideration of the Standby option is merited.  Table

36 is the updated matrix of crew reassignment costs, with the dominated options

eliminated.
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Table 35:  Application 1  –  Matrix of Crew Reassignment Costs

Crew
Reassignment

Options

States

A 
< 1  day,
Material
0 days

A 
1 - 5 days,

Material
0 days

B
< 1 day,
Material

1 - 3 days

B
< 1 day,
Material

4 - 5 days

B
1 - 5 days,

Material
1 - 3 days

B
1 - 5 days,

Material
4 - 5 days

Standby $392 -
$3,136

$3,136 -
$15,680

$3,528 -
$12,544

$9,800 -
$18,816

$6,272 -
$25,088

$12,544 -
$31,360

Demobilize $3,450 $3,450 -
$6,272

$3,764 -
$5,332

$4,704 -
$6,586

$3,764 -
$8,154

$4,704 -
$9,408

Standby -
Demobilize

$392 -
$3,136

$3,136 -
$15,680

$3,842 -
$8,154

$4,469 -
$9,408

$6,586 -
$20,698

$7,213 -
$21,952

Demobilize -
Standby $3,450 $3,450 -

$6,272
$6,586 -
$12,858

$12,858 -
$19,130

$6,586 -
$15,680

$12,858 -
$21,952

Table 36:  Application 1  –  Non-Dominated Crew Reassignment Costs

Crew
Reassignment

Options

States

A 
< 1 day,
Material
0 days

A 
1 - 5 days,

Material
0 days

B
< 1 day,
Material

1 - 3 days

B
< 1 day,
Material

4 - 5 days

B
1 - 5 days,

Material
1 - 3 days

B
1 - 5 days,

Material
4 - 5 days

Demobilize $3,450 $3,450 -
$6,272

$3,764 -
$5,332

$4,704 -
$6,586

$3,764 -
$8,154

$4,704 -
$9,408

Standby -
Demobilize

$392 -
$3,136

$3,136 -
$15,680

$3,842 -
$8,154

$4,469 -
$9,408

$6,586 -
$20,698

$7,213 -
$21,952

Figure 13 is a summary of the data for the offset column problem on Project A using the

Crew Reassignment Model.  The data in Figure 13 show the non-dominated options that
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were depicted in Table 36.  The dollar ranges shown in italics were calculated by the

application of the certainty factors using the methods discussed in Chapter 3.

As shown in Figure 13, the application of the model to the data provides the result that the

crew reassignment option of Demobilize throughout both the Response Time and

Implementation Preparation Time has an expected range of costs of $4,077 to $7,582,

while the range of costs for the crew reassignment option of Standby - Demobilize is

$5,227 to $17,353.  A graphic depiction of the ranges of costs calculated by the model is

shown as Figure 14.

The crew reassignment decision made on the project was to demobilize the structural

concrete crew.  In this instance, the contractor had another project that was able to utilize

the additional manpower and equipment that was demobilized from Project A.  Thus, the

contractor’s costs for the demobilization were contained within the ranges originally

estimated in the model.  Further, when the change work on Project A was ready to be

performed, the same crew was available for re-mobilization.
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Figure 13:  Crew Reassignment Model Applied to Application 1 Data
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Figure 14:  Ranges of Potential Costs for Application 1

The resolution that ultimately occurred included not only a review of the design by the

original engineer, but also a peer review by an additional engineering firm.  The initial

review by the original engineer was completed within five workdays.  However, the peer

review took an additional two weeks.  Following the completion of the peer review, a design

change was issued that added stud rails at each offset column.  The order and delivery of

the added stud rails took an additional four days.  Thus, the total duration was 19 workdays

or 25 calendar days from the identification of the problem to the point when construction

of the change work could begin.  In consideration of the actual duration experienced, the

decision to demobilize the structural concrete crew by far resulted in the lowest costs.
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The Project A representatives’ assessment of the model is contained at the end of Section

4.2.2. 

4.2.2.  Model Application 2

The eight-story structure was topped-out, the framing on the first three floors was

complete, and the electrical rough-in was underway when it was determined that the

vertical chases had inadequate space for all of the necessary conduit.

The potential responses from the designer were comprised of (A) revise the size of the

existing chase, including enlargement of the penetrations at each slab and (B) add a

second electrical chase at a separate location.  The likelihood of receiving Resolution A

was identified as “almost certainly,” which was translated to a certainty factor of 0.9.  The

likelihood of receiving Resolution B was “probably not,” which resulted in a certainty factor

of 0.2.

Three time increments were identified for each of the potential resolutions: (1) 1 day to 2

days; (2) 3 days to 5 days; and (3) 6 days to 10 days.  Table 37 contains the certainty

factors for the three main factors that are considered as the determinants of the expected

duration of the response time for a particular resolution and the combined certainty factors

using the joint certainty minimum method.
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Table 37:  Application 2  –  Certainty Factors for Response Time

Resolution A
Factor

Response Time Increment

1 day - 2 days 3 days - 5 days 6 days - 10 days

Complexity 0.2 0.9 0.2

Workload 0.3 0.8 0.3

Criticality or Priority 0.5 0.9 0.2

Combined CF 0.2 0.8 0.2

Resolution B
Factor

Response Time Increment

1 day - 2 days 3 days - 5 days 6 days - 10 days

Complexity 0.1 0.7 0.7

Workload 0.1 0.8 0.5

Criticality or Priority 0.5 0.8 0.5

Combined CF 0.1 0.7 0.5

Neither Resolution A nor B required any special tools, materials, or equipment for

implementation.  However, both resolutions required core boring of the existing post-

tensioned slabs.  Therefore, the Implementation Preparation Time for both Resolution A

and Resolution B was identified as two days with a certainty factor of 1.  The certainty

factors for the Resolution B Implementation Preparation Time are shown in Table 38.
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Table 38:  Application 2  –  Certainty Factors for Implementation Time

Resolution

Implementation Preparation Time Increment

2  days

Resolution A 1.0

Resolution B 1.0

Based on the stage of the project, the crew reassignment options were: (1) Standby, (2)

Partial Demobilization , i.e., smaller crew size, and (3) Demobilization.  For option (2), it

was noted that there was an estimated five days of work available if one-half of the crew

was maintained on site.

The electrical crew costs were $211 per hour for supervision, labor, and equipment, which

was a total of $1,688 per eight-hour day.  The equipment was comprised of one pick-up

truck.  There was no difference in the hourly rate for standby or idle time.

The costs for the partial demobilization option included two hours of demobilization plus

two hours for re-mobilization when the design change work was available.  Inefficiencies

for the smaller crew were estimated at 20% to 30% for the duration of the partial

demobilization plus an additional 20% to 30% for the balance of the  crew upon re-

mobilization for a time period equal to the length of the demobilization.
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The costs for complete demobilization were comprised of three hours for demobilization

plus three hours for re-mobilization.  Inefficiencies were estimated at 20% to 25% for a time

period equivalent to the duration of demobilization.  Table 39 shows the calculated costs

for each of the possible crew reassignment options.

Table 39:  Application 2  –  Crew Reassignment Costs

Crew
Reassignment

Option

Time Increment

Response Time Implementation
Time

1 day - 2 days 3 days - 5 days 6 days - 10 days 2 days

Standby $1,688 - $3,376 $3,376 - $8,440 $8,440 - $16,880 $3,376

Partial
Demobilization $1,013 - $1,603 $1,350 - $3,123 $2,363 - $5,655 $675 - $1,013

Standby - Partial
Demobilization $1,688 - $3,376 $3,376 - $8,440 $8,440 - $16,880 $1,350 - $1,604

Complete
Demobilization $1,350 - $1,794 $2,026 - $3,060 $2,701 - $3,060 $675 - $844

Standby - 
Demobilization $1,688 - $3,376 $3,376 - $8,440 $8,440 - $16,880 $1,688 - $1,794

Partial
Demobilization -
Complete
Demobilization

$1,013 - $1,603 $1,350 - $3,123 $2,363 - $5,655 $971 - $1,055

Table 40 provides a matrix of all possible states and the crew reassignment options.  The

Crew Reassignment Options titled Standby, Partial Demobilization, and Complete

Demobilize represent either placing the crew on standby, partially demobilizing, or

completely demobilizing for the entire duration of the Response Time plus the
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Implementation Preparation Time.  The Crew Reassignment Options titled Standby -

Partially Demobilize and Standby - Completely Demobilize represent placing the crew on

standby during the Response Time then partially or completely demobilizing the crew

during the Implementation Preparation Time.  Similarly, the Crew Reassignment Option

titled Partially Demobilize - Completely Demobilize represents partially demobilizing the

crew during the Response Time then completely demobilizing the crew during the

Implementation Preparation Time.  Although other combinations of the Crew

Reassignment Options existed, Project Management did not consider these as reasonable

options.  Thus, they were not included in the model application.

A review of the ranges of costs for each Crew Reassignment Option shown in Table 40

resulted in two non-dominated options.  These non-dominated option are listed in Table

41.
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Table 40:  Application 2  –  Matrix of Crew Reassignment Costs

Crew
Reassignment Options

States

Resolution A or B
1 day - 2 days,
Implementation

Preparation
2 days

Resolution A or B
3 - 5 days,

Implementation
Preparation

2 days

Resolution A or B
6 days - 10 days,
Implementation

Preparation
2 days

Standby $5,064 - $6,752 $6,752 - $11,816 $11,816 - $20,256

Partially Demobilize $1,688 - $2,616 $2,025 - $4,136 $3,038 - $6,668

Completely Demobilize $2,025 - $2,638 $2,701 - $3,904 $3,376 - $3,904

Standby - 
Partially Demobilize $3,038 - $4,980 $4,726 - $10,044 $9,790 - $18,484

Standby - 
Completely Demobilize $3,376 - $5,170 $5,064 - $10,234 $10,128 - $18,674

Partially Demobilize - 
Completely Demobilize $1,984 - $2,658 $2,321 - $4,178 $3,334 - $6,710

Table 41:  Application 2  –  Non-Dominated Crew Reassignment Costs

Crew
Reassignment Options

States

A or B
1 day - 2 days,

Implementation Prep
2 days

A or B
3 - 5 days,

Implementation Prep
2 days

A or B
6 days - 10 days,

Implementation Prep
2 days

Partially Demobilize $1,688 - $2,616 $2,025 - $4,136 $3,038 - $6,668

Completely Demobilize $2,025 - $2,638 $2,701 - $3,904 $3,376 - $3,904

Figure 15 shows the application of the model to the data.  The dominated option of Partially

Demobilize - Completely Demobilize is included for illustrative purposes only.
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Figure 15:  Crew Reassignment Model Applied to Application 2 Data
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Figure 16:  Ranges of Potential Costs for Application 2

The application of the certainty factors shows that the crew reassignment option of Partial

Demobilize throughout both the Response Time and Implementation Preparation Time has

an expected range of costs of $2,183 to $4,430, while the range of costs for the crew

reassignment option of Complete Demobilize is $2,739 to $3,714.  Therefore, the crew

reassignment option of Partial Demobilize has the potential for the lowest minimum costs,

while the option of Complete Demobilize has the potential for the lowest maximum costs.

Figure 16 is a graphic depiction of the potential ranges of the costs predicted by the model.
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The crew reassignment decision made on the project was to partially demobilize the

electrical crew.  The crew that remained on-site was approximately one-half the size of the

original crew.

The resolution provided by the architect was to enlarge the size of the existing chase.  The

revised design was issued five days after the identification of the problem.  The required

core drilling of the concrete slabs was performed on the seventh workday, following x-rays

of the slabs to locate the post-tensioned cables and rebar.  Thus, the total duration was

seven workdays or nine calendar days from the identification of the problem to the point

when the original scope work could resume.  Based on the actual duration of seven

workdays, the range of expected costs for the Partial Demobilize option was $3,038 to

$4,136 and the range of expected costs for the Complete Demobilize option was $3,376

to $3,904.  As the expected costs were approximately equal, it appeared that the decision

for partial demobilization was the appropriate decision as it allowed at least some work to

be performed during the resolution and implementation preparation time and maintained

continuity of at least part of the crew.

During the review of the model and model recommendations for both Application 1 and 2,

the management on Project A indicated that the model was an accurate representation of

the factors in the crew reassignment decision and the method in which the factors affect

the crew reassignment decision.   The project management stated that the step-by-step

process of considering the various potential resolutions, options, and associated costs,
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proved valuable in evaluating and justifying the crew reassignment decision.  For both

Application 1 and Application 2, the information and data gathered for the model

application were used as back-up to the change proposal presented to the owner, which

was approved for both costs and a time extension.  The project management cited the

format of the information presented in the model as being valuable in receiving faster-than-

average approval of the change orders.

4.2.3.  Model Application 3

The placement of the formwork for the slab-on-grade at Project B was underway when it

was discovered that the as-designed elevation of the underground piping was eight inches

higher than the bottom elevation of the slab.  The potential responses from the designer

were (A) lower the elevation of the previously-installed underground piping or (B) raise the

elevation of the slab-on-grade, which would result in reduced headroom in a portion of the

garage.  The likelihood of receiving Resolution A was identified as “probably,” which was

translated to a certainty factor of 0.8.  The likelihood of receiving Resolution B was

“probably not,” which resulted in a certainty factor of 0.2.  Note that since the as-designed

height of the structure was at the maximum allowed by the local building code, it was not

possible to place the slab-on-grade at a higher elevation and construct the building to the

planned dimensions. 
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Two time increments were identified for each of the potential resolutions: (1) 2 days to 5

days and (2) 6 days to 10 days.  Table 42 contains the certainty factors for the three main

elements that are considered as the determinants of the expected duration of the response

time for a particular resolution.  In addition, the combined certainty factor, obtained using

the joint certainty minimum method, is shown.

Table 42:  Application 3  –  Certainty Factors for Response Time

Resolution A
Factor

Response Time Increment

2 days - 5 days 6 days - 10 days

Complexity 0.8 0.4

Workload 0.8 0.3

Criticality or Priority 0.9 0.2

Combined Certainty Factor 0.8 0.2

Resolution B
Factor

Response Time Increment

2 days - 5 days 6 days - 10 days
Complexity 0.2 0.9

Workload 0.2 0.8

Criticality or Priority 0.3 0.8

Combined Certainty Factor 0.2 0.8
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Although Resolution A would require the addition of a pump, the pump could be installed

at any time and would not restrain the removal of the existing pipe and installation of the

pipe at a lower elevation.  The pipe for the revised installation was readily available.

Resolution B would require revised drawings and the re-fabrication of portions of the

reinforcing for the columns and shearwalls.  The Implementation Preparation Time for

Resolution A was identified as zero days with a certainty factor of 1.  The Implementation

Preparation Time for Resolution B was identified as three days with a certainty factor of 1.

The certainty factors for the Implementation Preparation Time are shown in Table 43.

Based on the stage of the project, the crew reassignment options were: (1) Standby and

(2) Demobilization.  There was no alternative work available on the site.

Table 43:  Application 3  –  Certainty Factors for Implementation Preparation Time

Resolution

Implementation Preparation Time Increment

0  days

Resolution A 1.0

Resolution

Implementation Preparation Time Increment

3  days

Resolution B 1.0
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The structural crew costs were $550 per hour for supervision, labor, and equipment, which

was a total of $4,400 per eight-hour day.  The equipment included a small crane used to

off load trucks.  The idle rate for the crane resulted in a standby rate of $520 per hour.

The costs for demobilization were comprised of eight hours for demobilization plus eight

hours for re-mobilization.  Inefficiencies were estimated at 20% to 30% for a time period

of five workdays following re-mobilization.  Table 44 shows the calculated costs for each

time increment for the possible crew reassignment options.

Table 44:  Application 3  –  Crew Reassignment Costs

Crew
Reassignment

Option

Time Increment

Response Time Implementation
Time

2 days - 5 days 6 days - 10 days 3 days
(Resolution B only)

Standby $8,320 - $20,800 $24,960 - $41,600 $12,480

Demobilization $13,200 - $15,400 $13,200 - $15,400 $0

Standby - 
Demobilization $8,320 - $20,800 $24,960 - $41,600 $13,200 - $15,400

As shown in Table 44, the Crew Reassignment Options titled Standby and Demobilize

represent either placing the crew on standby or demobilizing for the entire duration of the

Response Time plus the Implementation Preparation Time.  The Crew Reassignment

Option titled Standby - Demobilize represents placing the crew on standby during the
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Response Time then demobilizing the crew during the Implementation Preparation Time.

Although the combination of Demobilization - Standby is possible, Project Management did

not consider this as a reasonable option.  Thus, this option was not included in the model

application.  Table 45 summarizes the crew costs for each of the crew reassignment

options that were shown in Table 44.

Table 45:  Application 3  –  Matrix of Crew Reassignment Costs

Crew
Reassignment

 Options

States

Resolution A Resolution B

Response Time
2 - 5 days,

Implementation
Preparation

0 days

Response Time
6 - 10 days,

Implementation
Preparation

0 days

Response Time
2 - 5 days,

Implementation
Preparation

3 days

Response Time
6 - 10 days,

Implementation
Preparation

3 days

Standby $8,320 - $20,800 $24,960 - $41,600 $20,800 - $33,280 $37,440 - $54,080

Demobilize $13,200 - $15,400 $13,200 - $15,400 $13,200 - $15,400 $13,200 - $15,400

Standby - 
Demobilize $8,320 - $20,800 $24,960 - $41,600 $21,520 - $36,200 $38,160 - $57,000

Since the crew reassignment option of Standby - Demobilize has costs that are equal to

or greater than the costs for the option of Standby, the dominated option of Standby -

Demobilize was not considered any further.  Figure 17 shows the application of the model

to the data for the non-dominated options.



172

Figure 17:  Crew Reassignment Model Applied to Application 3 Data
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Figure 18:  Ranges of Potential Costs for Application 3

The application of the model resulted in a range of expected costs from $16,141 to

$29,952 for Standby and $13,200 to $15,400 for Demobilize.  Therefore, the model shows

that the entire range of costs for Demobilize is lower than the expected minimum for

Standby.  Figure 18 is a graphic depiction of the calculated ranges of potential costs.

The crew reassignment decision made by Project Management was to demobilize the

crew.  The response from the designer, which was received after six workdays, was to

remove and re-install the pipe at an elevation below the slab.  Due to the new depth of the

pipe a pump was required.  However, it was not necessary to install the pump prior to

resuming the structural work.  Based on the actual duration of six workdays, the costs for

Standby would have been $24,960 as compared to the Demobilization costs of $13,200
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to $15,400.  Note that the Demobilization costs included a range of $4,400 to $6,600 for

anticipated inefficiencies following re-mobilization.  Project management estimated that the

actual inefficiencies were at or below the lower bound of the range.  Therefore, the actual

costs incurred were estimated at $13,200.  Since the Demobilization costs were just over

one-half of the costs expected for Standby for the same six-workday duration, the decision

to demobilize the crew appeared to be the lowest cost option.

The Project B management assessment of the crew reassignment model is contained at

the end of Section 4.2.4.

4.2.4.  Model Application 4

On the day of the start of the interior framing on the fifth floor of Project B, the designer

issued a stop work order for the framing, indicating that one buyer was purchasing both

units on the sixth floor and considering revising the layout of the sixth floor from two units

to a single-unit floor plan.  However, the decision for the revised layout was not final.

Further, the revised floor plan was not ready to be issued for construction.  The potential

resolutions were (A) frame the sixth floor as a single unit, which required revised plans, or

(B) frame the sixth floor as two units, as shown in the existing plans.  The Project B

representatives indicated that Resolution A “almost certainly” would be issued, which was
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translated to a certainty factor of 0.9.  The likelihood of receiving Resolution B was

“probably not,” which resulted in a certainty factor of 0.2.

Two time increments were identified for each of the Response Times.  For Resolution A

the time increments were:  (1) 1 day to 5 days and (2) 6 days to 10 days.  For Resolution

B the time increments were: (1) 1 day to 3 days and (2) 4 days to 5 days.  Table 46

contains the certainty factors for the three main elements that are considered as the

determinants of the expected duration of the response time for a particular resolution.

Table 46 also shows the combined certainty factors obtained using the joint certainty

minimum method.

Although Resolution A would require revisions to the layout of the interior framing, the

same framing material would be utilized as originally planned.  Other material required due

to the revisions would not restrain the construction of the revised framing.  As described,

Resolution B was to build the sixth floor as shown in the plans.  Therefore, since no

additional materials, tools, or equipment were necessary to implement either Resolution

A or B, the Implementation Preparation Time for Resolutions A and B was identified as

zero days with a certainty factor of 1.   The certainty factors for the Implementation

Preparation Time are shown in Table 47.
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Table 46:  Application 4  –  Certainty Factors for Response Time

Resolution A
Factor

Response Time Increment

1 day - 5 days 6 days - 10 days

Complexity 0.1 0.9

Workload 0.1 0.9

Criticality or Priority 0.3 0.9

Combined CF 0.1 0.9

Resolution B
Factor

Response Time Increment

1 day - 3 days 4 days - 5 days

Complexity 0.9 0.2

Workload 0.9 0.2

Criticality or Priority 0.9 0.2

Combined CF 0.9 0.2

Table 47:  Application 4  –  Certainty Factors for Implementation Preparation Time

Resolution

Implementation Preparation Time Increment

0  days

Resolution A 1.0

Resolution

Implementation Preparation Time Increment

0  days

Resolution B 1.0

Based on the stage of the project, the crew reassignment options were: (1) Standby, (2)

Re-Sequence, and (3) Demobilization.
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The framing crew costs were $470 per hour for supervision and labor, which was a total

of $3,760 per eight-hour day.  Note that the follow-on crews had approximately two weeks

of work before reaching the sixth floor.  Since the maximum expected duration for

resolution of this issue was two weeks, there was no expected impact to any other trades.

The costs for Standby were $3,760 per day.  The costs for Re-Sequence were two hours

for demobilization and two hours for re-mobilization at the new task.  In addition,

inefficiencies of 25% were expected for five workdays.  The costs for Demobilization were

comprised of four hours for demobilization plus four hours for re-mobilization.

Inefficiencies were estimated at 30% to 40% for a time period of five workdays following

re-mobilization.  Table 48 shows the calculated costs for each time increment for the

possible crew reassignment options.

Since there is no duration for Implementation Preparation Time, there are no combinations

of crew reassignment options to be considered.  The summary of the crew costs for each

of the crew reassignment options is shown in Table 49.

Since the crew reassignment option of Demobilize has costs that are equal to or greater

than the costs for the option of Re-Sequence, the dominated option of Demobilize was not

considered any further.  Figure 19 shows the application of the model to the data for the

non-dominated crew reassignment options of Standby and Re-Sequence.
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Table 48:  Application 4  –  Crew Reassignment Costs

Crew
Reassignment

Option

Resolution A – Time Increment

Response Time Implementation Time

1 day - 5 days 6 days - 10 days 0 days

Standby $3,760 - $18,800 $22,560 - $37,600 $0

Re-Sequence $6,580 $6,580 $0

Demobilization $13,160 - $15,040 $13,160 - $15,040 $0

Crew
Reassignment

Option

Resolution B – Time Increment

Response Time Implementation Time

1 day - 3 days 4 days - 5 days 0 days

Standby $3,760 - $11,280 $15,040 - $18,800 $0

Re-Sequence $6,580 $6,580 $0

Demobilization $13,160 - $15,040 $13,160 - $15,040 $0

Table 49:  Application 4  –  Matrix of Crew Reassignment Costs

Crew
Reassignment

Options

States

Resolution A Resolution B

Response Time
1 - 5 days,

Implementation
Preparation

0 days

Response Time
6 - 10 days,

Implementation
Preparation

0 days

Response Time
1 - 3 days,

Implementation
Preparation

0 days

Response Time
4 - 5 days,

Implementation
Preparation

0 days

Standby $3,760 - $18,800 $22,560 - $37,600 $3,760 - $11,280 $15,040 - $18,800

Re-Sequence $6,580 $6,580 $6,580 $6,580

Demobilize $13,160 - $15,040 $13,160 - $15,040 $13,160 - $15,040 $13,160 - $15,040
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Figure 19:  Crew Reassignment Model Applied to Application 4 Data
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Figure 20:  Ranges of Potential Costs for Application 4

The application of the model resulted in a range of expected costs from $17,977 to

$31,525 for Standby and $6,580 for Re-Sequence.  As shown in Figure 20, the model

shows that the expected costs for Re-Sequence are lower than the expected range of

costs for Standby.  Therefore, the model recommendation is to select the crew

reassignment option of Re-Sequence.

Project B management chose to re-sequence the work for the framing crew.  As noted, due

to the lag between the framing progress and the follow-on trades, it was not necessary to

re-sequence any of the follow-on trades.
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Three days after the stop work order was issued, the designer issued preliminary drawings

showing the revised framing.  The construction drawings were received seven days after

the stop work order was issued.  Allowing for the resumption of the sixth floor framing upon

receipt of the preliminary drawings, the costs for Standby for the three days were estimated

at $11,280 as compared to the costs for Re-Sequence of $6,580.  Therefore, it appeared

that the contractor made the most cost-effective crew reassignment decision.

The Project B representatives stated that the model provided a useful format for organizing

the pertinent data for the crew reassignment decision, allowing an easy comparison of the

alternatives using different durations and/or certainty in the occurrences of the durations

or responses under consideration.  In addition, it was noted that the model provided

information that was useful to the designer or owner in determining the full costs of each

change alternative.  Project management noted that the costs captured by the model

represented the most difficult costs to justify in a change order request.  Further, it was

indicated that the model provided a tool to evaluate and document those costs, allowing

the generation of appropriate back-up for the pricing of change orders.  Without the model,

project management noted, it was possible to overlook a possible option and incorrectly

estimate the costs by performing a less-than-complete evaluation of the loss of

productivity.  The model was cited as providing the necessary guidelines to avoid these

errors.  In addition, the crew reassignment costs frequently were difficult to track and justify

using the available project documentation.  The application of the model would document

the timing of the decision, allowing a the capture of all the costs resulting from the decision.
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4.2.5.  Model Application 5

After the completion of the east wall of the garage foundation on Project C, it was

discovered that the structural drawings had shown a regular wall section where a shearwall

was required.  The potential resolutions that were identified were (A) remove the existing

wall section and replace with the proper shearwall configuration and (B) thicken the existing

wall section by drilling and doweling reinforcing to tie the wall to an additional wall.  The

Project C representatives indicated that Resolution A “maybe would not” be issued, which

was translated to a certainty factor of 0.3.  The likelihood of receiving Resolution B was

“probably,” which resulted in a certainty factor of 0.8.

Three time increments were identified for each of the Response Times of each potential

resolution:  (1) 1 day to 3 days, (2) 4 days to 6 days, and (3) 7 days to 10 days.  Table 50

contains the certainty factors for the three main elements that are considered as the

determinants of the expected duration of the response time for a particular resolution as

well as the combined certainty factors obtained using the joint certainty minimum method.

Both potential resolutions had the same certainty factors for each time increment.
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Table 50:  Application 5  –  Certainty Factors for Response Time

Resolution A and B
Factor

Response Time Increment

1 day - 3 days 4 days - 6 days 7 days - 10 days

Complexity 0.1 0.9 0.1

Workload 0.1 0.8 0.2

Criticality or Priority 0.2 0.9 0.1

Combined Certainty Factor 0.1 0.8 0.1

Both potential resolutions required reinforcing bar that the Project representatives indicated

could be fabricated and delivered in one day.  Therefore, the Implementation Preparation

Time for Resolutions A and B was identified as one day with a certainty factor of 1.   The

certainty factors for the Implementation Preparation Time are shown in Table 51.

Table 51:  Application 5  –  Certainty Factors for Implementation Preparation Time

Resolution

Implementation Preparation Time Increment

1  days

Resolution A 1.0

Resolution

Implementation Preparation Time Increment

1  days

Resolution B 1.0
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Based on the stage of the project, the crew reassignment options were: (1) Standby, (2)

Re-Sequence, and (3) Demobilization.

The structural crew costs were $1,800 per hour for supervision, labor, and equipment,

which was a total of $14,400 per eight-hour day.  No other trades were mobilized.

The costs for Standby were $1,700 per day.  The costs for Re-Sequence were four hours

for demobilization and four hours for re-mobilization at the new task.  In addition,

inefficiencies of 20% to 30% were expected for five workdays.  The costs for

Demobilization were comprised of eight hours for demobilization plus four hours for re-

mobilization.  Inefficiencies were estimated at 20% for a time period of five to ten workdays

following re-mobilization.  Table 52 shows the calculated costs for each time increment for

the possible crew reassignment options.

The possible combinations of crew reassignment options are Standby - Re-Sequence,

Standby - Demobilize, Re-Sequence - Standby, Re-Sequence - Demobilize, Demobilize -

Standby, and Demobilize - Re-Sequence.  However, since the expected duration of

Implementation Preparation Time was only one day, the Project C representatives

indicated that the possible combinations were not reasonable.  That is, the crew

reassignment would not be revised at the end of the Response Time.  The summary of the

crew costs for each of the crew reassignment options is shown in Table 53.
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Table 52:  Application 5  –  Crew Reassignment Costs

Crew
Reassignment

Option

Resolution A and B – Time Increment

Response Time Implementation
Time

1 day - 3 days 4 days - 6 days 7 days - 10 days 1 day

Standby $13,600 - $40,800 $54,400 - $81,600 $95,200 - $136,000 $13,600

Re-Sequence $28,800 - $36,000 $28,800 - $36,000 $28,800 - $36,000 $0

Demobilization $36,000 - $50,400 $36,000 - $50,400 $36,000 - $50,400 $0

Table 53:  Application 5  –  Matrix of Crew Reassignment Costs

Crew
Reassignment

Options

States

Resolution A or B

Response Time
1 - 3 days,

Implementation
Preparation

1 day

Response Time
4 - 6 days,

Implementation
Preparation

1 day

Response Time
7 - 10 days,

Implementation
Preparation

1 day

Standby $27,200 - $54,400 $68,000 - $95,200 $108,800 - $149,600

Re-Sequence $28,800 - $36,000 $28,800 - $36,000 $28,800 - $36,000

Demobilize $36,000 - $50,400 $36,000 - $50,400 $36,000 - $50,400

Since the crew reassignment option of Demobilize has costs that are equal to or greater

than the costs for the option of Re-Sequence, the dominated option of Demobilize was not

considered any further.
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Figure 21 shows the application of the model to the data for the non-dominated crew

reassignment options of Standby and Re-Sequence.

The application of the model resulted in a range of expected costs from $68,000 to

$96,560 for Standby and $28,800 to $36,000 for Re-Sequence.  Thus, the model shows

that the expected range of costs for Re-Sequence is lower than the expected range of

costs for Standby.  Figure 22 is a depiction of the calculated ranges of costs.

Project C management chose to re-sequence planned structural work.  The resolution was

issued by the designer four days after the issue was identified.  The resolution was to

remove two portions of the wall and replace them with column sections.  Thus, the

resolution was a combination of Resolutions A and B.  The contractor ordered the

necessary reinforcing steel and began the work one day after receiving the revised design.

Based on the five-day actual duration of the Response Time plus Implementation

Preparation Time, the estimated costs for Standby were $68,000, while the estimated costs

for Re-Sequence were $28,800 to $36,000.

The review and evaluation of the model by the Project C representatives is included at the

end of Section 4.2.6.
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Figure 21:  Crew Reassignment Model Applied to Application 5 Data
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Figure 22:  Ranges of Potential Costs for Application 5

4.2.6.  Model Application 6

During the installation of the appliances on Project C, it was determined that the position

of the washer and dryer in the laundry room did not allow sufficient clearance to access the

electrical panel in compliance with the Americans with Disabilities Act.  The potential

resolutions that were identified were: (A) relocate the electrical panels and (B) replace the

washers and dryers with a “stacked” model.  Relocating the appliances was not possible

due to space limitations.
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The Project C representatives indicated that Resolution A “almost certainly would not” be

issued, which was translated to a certainty factor of 0.1.  The likelihood of receiving

Resolution B was “almost definitely,” which resulted in a certainty factor of 0.95.

Three time increments were identified for the Resolution A Response Times:  (1) 1 day to

5 days, (2) 6 days to 10 days, and (3) 11 days to 15 days.  Two time increments were

identified for Resolution B Response Times: (1) 1 day to 3 days and (2) 4 days to 5 days.

Table 54 contains the certainty factors for the three main elements that comprise the

determinants of the expected duration of the response time for a particular resolution as

well as the combined certainty factors obtained using the joint certainty minimum method.

Table 54:  Application 6  –  Certainty Factors for Response Time

Resolution A
Factor

Response Time Increment

1 - 5 days 6 - 10 days 11 - 15 days

Complexity 0.1 0.8 0.2

Workload 0.2 0.8 0.2

Criticality or Priority 0.3 0.9 0.1

Combined Certainty Factor 0.1 0.8 0.1

Resolution B
Factor

Response Time Increment

1 - 3 days 4 - 5 days

Complexity 0.9 0.2

Workload 0.8 0.2

Criticality or Priority 0.9 0.2

Combined Certainty Factor 0.8 0.2
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The start of implementation of Resolution A did not require any material that was not

readily available.  Although Resolution B would require the purchase of new appliances,

the receipt of the appliances did not affect any of the trades.  Therefore, the

Implementation Preparation Time for Resolutions A and B was identified as zero days with

a certainty factor of 1.   The durations and certainty factors for the Implementation

Preparation Time are shown in Table 55.

Table 55:  Application 6  –  Certainty Factors for Implementation Preparation Time

Resolution

Implementation Preparation Time Increment

0  days

Resolution A 1.0

Resolution

Implementation Preparation Time Increment

0  days

Resolution B 1.0

All work was complete on the project except for final testing and punchlist.  The various

crews were ready to demobilize within three days when the deficiency was identified.  The

crew reassignment options were: (1) Standby after completion of the punchlist work and

(2) Demobilize after completion of the punchlist.
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The total costs for the crews that potentially were affected by the change were $475 per

hour for supervision and labor, which was a total of $3,800 per eight-hour day.  Therefore,

the costs for Standby were $3,800 per day.  Costs for Demobilize were $3,800 for four

hours of demobilization plus four hours of re-mobilization plus costs for inefficiencies of

50% to 60% for five workdays.  The relatively high rate of inefficiencies was related to the

expectation that tradesmen other than those currently on the project would be sent to the

project upon re-mobilization.  Table 56 shows the calculated costs for each time increment

for the possible crew reassignment options.

Table 56:  Application 6  –  Crew Reassignment Costs

Crew
Reassignment

Option

Resolution A – Time Increment

Response Time Implementation
Time

1 day - 5 days 6 days - 10 days 11 days - 15 days 0 day

Standby $0 - $7,600 $11,400 - $26,600 $30,400 - $45,600 $0

Demobilize $0 - $15,200 $13,300 - $15,200 $13,300 - $15,200 $0

Crew
Reassignment

Option

Resolution B – Time Increment

Response Time Implementation
Time

1 day - 3 days 4 days - 5 days 0 day

Standby $0 $3,800 - $7,600 $0

Demobilize $0 $13,300 - $15,200 $0
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Since the Implementation Preparation Time was zero days there were no crew

reassignment combinations to be considered.

Figure 23 shows the application of the model to the data for the crew reassignment options

of Standby and Demobilize.

The application of the model resulted in a range of expected costs from $1,846 to $3,909

for Standby and $3,547 to $4,198 for Demobilize.  Thus, the model shows that the

expected range of costs for Standby is lower than the expected range of costs for

Demobilize.  Figure 24 is a depiction of the potential ranges of costs.

The response from the designer was not received prior to the completion of the punchlist

work.  The management on Project C chose to demobilize the crews at that time.  The

response was received five workdays after the identification of the issue or two workdays

after the crews were demobilized.  The designer issued a change order to implement

Resolution A, which required the relocation of the electrical panel in each unit.  Based on

the actual duration of the Response Time, the estimated costs for Standby were $7,800,

while the estimated costs for Demobilize were $13,300 to $15,200.  Therefore, the decision

to demobilize the crews did not appear to be the most cost-effective decision.
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Figure 23:  Crew Reassignment Model Applied to Application 6 Data
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Figure 24:  Ranges of Potential Costs for Application 6

The representatives of Project C indicated that the model was useful as a checklist  of the

items to be considered and for organizing the information for the crew reassignment

decision.  The Project C representatives also cited the value of having the information in

a format that was ready for presentation to the designer or owner to assist in finalizing the

change orders, which could result in faster payment for the change work.  The information

provided by the model was used to substantiate the change order pricing for both changes.
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4.3.  Summary

The crew reassignment decision support model was applied to six change circumstances

on three different projects.  The project representatives on all three projects stated that the

model outcomes were consistent with their expectations.  The project representatives also

indicated that the model provided a previously-unavailable method for the evaluation of the

crew reassignment options, potential responses, durations, and costs while considering the

uncertainty in each of the components.

In summary, all the project representatives that participated in the application of the model

noted that the model process forced a thorough consideration of each of the elements that

were critical in determining the estimated costs associated with each crew reassignment

option, resulting in a more-informed decision than was typically made without the

application of the model.
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CHAPTER 5:  SUMMARY AND CONCLUSIONS

5.1.  Introduction

This dissertation described the methodology used to develop and validate a crew

reassignment decision model for changes on a construction project.  The need for the

model stems from the many factors, as well as the uncertainty associated with many of the

factors, that must be incorporated into the crew reassignment decision.  The crew

reassignment decision support model identified the key factors and established a model

architecture that emulated the decision process of the experts that participated in the

research.  The resulting model combined certainty factors on a decision tree structure.

The validity and usefulness model was demonstrated through the prospective application

of the model to six change circumstances on three different projects.

5.2.  Summary of Findings

As presented in Chapter 2, the initial research indicated that the decision makers preferred

to express their beliefs in the likelihood of the various occurrences associated with a crew

reassignment decision in verbal terms that did not correspond to standard probability

theory.  In addition, the  events under consideration lacked the repetitive occurrences that
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allow the development of probability distributions.  Finally, the frequency of crew

reassignment decisions and the need for quick responses required an analytic method that

was easy to use.  These considerations led to the conclusion that the crew reassignment

decision support model should employ certainty factors as the quantitative method.  The

structure of the model required the explicit representation of the chronology of events as

well as the recognition of the uncertainty of any estimates used in the analysis.  This led

to the conclusion that a decision tree was the appropriate model structure.

Since certainty factors have not been used in a decision tree structure, part of the research

included the development and testing of the techniques to combine the certainty factors

with the other elements of the crew reassignment decision.  Chapter 3 described the

surveys, group meetings, and expert interviews conducted in order to determine each of

the elements of the decision and the method in which the elements are combined to

evaluate each of the crew reassignment options that are available for a particular decision.

This research culminated in a crew reassignment decision support model that included

consideration of the options available for the crew reassignment, the potential resolutions

to the issue and the likelihood of receiving each of the potential resolutions, the durations

for the receipt of the resolution and the likelihood of each of the durations, the durations

for preparation to implement any particular resolution, and the range of costs associated

with each crew reassignment option for each duration.  In addition, the model included the

techniques for combining the certainty factors associated with each of the elements.  The
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outcome of the model is an estimate of the upper and lower bounds for each crew

reassignment option.

The model was tested and validated through the contemporaneous application to six

change circumstances.  Chapter 4 discussed the assessments of the model by the users,

who indicated the model provided a complete and concise compilation of the elements of

the crew reassignment decision.  In addition, the model outcomes were determined to be

consistent with the users’ expectations.  Users also cited the value of the model as a

checklist for the information to be considered in the crew reassignment decision, resulting

in better-formulated estimated costs.  Also, the users cited the documentation created by

the model application which could be used to support pricing of change orders.

The crew reassignment decision support model provides a framework that is able to

accommodate any number of crew reassignment options, potential resolutions, response

durations, implementation preparation durations, or range of costs.  The ease of use allows

a timely evaluation of a change issue or the update of a previously applied model. 
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5.3.  Contributions

Crew reassignment decisions occur frequently on a construction project.  The crew

reassignment decision support model provides codification of the considerations in making

these decisions and can assist in the identification of cost-effective crew reassignment

options while addressing decision-maker preferences and the effects of uncertainty.

The model development identified the key elements of the crew reassignment decision.

As noted, these include, the Potential Resolutions, the Response Time, the Implementation

Preparation Time, the available Crew Reassignment Options, and the related Costs.

Further, the research revealed that the Response Time is dependent on three factors: the

complexity of the resolution, the workload of the designer, and the criticality or priority of

the issue.

The research also indicated that applying the joint-minimum combination method to the

certainty factors for the three elements that comprised the Response Time resulted in a

certainty factor that closely matched the single certainty factor provided by the experts.

This finding appeared to indicate that the risk attitudes of the experts, as related to the

factors affecting the expected Response Time, correlated to the previously devised joint-

minimum combining rules for certainty factors.
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Included in the model is a method for the application of certainty factors to a decision tree

structure.  This previously-undocumented application results in an easy-to-use and easy-

to-update model.  As shown in the crew reassignment decision support model, the certainty

factors for the three factors that comprise the Response Time were combined using the

joint certainty minimum method.  The resulting joint certainty factor and the remaining

certainty factors throughout the model were aggregated using the product method for

combining certainty factors.  The product method of combination parallels the manner in

which standard probabilities are combined on a decision tree structure.

5.4.  Future Work

The crew reassignment decision support model was developed using 14 participants in the

survey and group meeting phase.  Four of the participants provided further insight into the

crew reassignment decision as part of the group of six construction experts from the areas

of institutional and commercial construction.  Additional study of the decision process of

a larger number of construction industry experts may provide further data for model

refinement.
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In addition, the model was tested on mid-size, non-union, commercial construction

projects.  Model testing should be broadened to determine if the model is valid across a

range of construction types, sizes of projects, geographical areas, and union projects.

Although the priority or criticality of an issue is included in the determination of the potential

response time, the current model does not specifically address schedule considerations.

Extension of the model may include schedule requirements as additional decision criteria

in determining the crew reassignment.

The model was devised specifically to address the potential productivity loss prior to the

performance of the change work.  Since the crew reassignment decision may affect the

overall resource plan for the balance of the project, the decision may result in downstream

productivity effects.  Examples of these effects include higher or lower productivity rates

on all remaining work as a result of the remobilization of different crews than were present

prior to the crew reassignment decision and higher or lower productivity rates due to re-

sequencing of work.  Both of the cited examples also may result in downstream schedule

effects.  An extension of the model could include the potential resource and schedule

effects on the balance of the project work.

As noted, the research indicated that application of the joint-minimum combination method

to the certainty factors for the three elements that comprised the Response Time resulted

in a certainty factor that closely matched the single certainty factor provided by the experts.
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This finding appeared to indicate that the risk attitudes of the experts regarding the

Response Time correlated to the previously devised joint-minimum combining rule for

certainty factors.  Further study of the risk attitudes of the decision makers may provide

additional insight into the appropriate combining methods of the certainty factors for

different applications of the model.  In addition, understanding of the decision makers’

behavior regarding risk may allow refinement of the model in the area of evaluation and

assessment of the outcomes.
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APPENDIX A:  PRODUCTIVITY LOSS MEASUREMENT MODELS
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CHAPTER A1:  INTRODUCTION

A1.1.  General

Changes on a construction project are an everyday occurrence.  In fact, essentially every

construction contract contains a ‘changes clause’ that defines the process for identifying

and documenting changes.  Typically, the contractor and owner can come to terms for the

‘bricks and mortar’ portion of the costs of a change.  However, the costs of delays and

productivity losses resulting from changes are common areas of disagreement between

the parties.  Frequently, these alleged costs form the basis of a claim.

The construction industry and the courts have recognized critical path method schedule

analysis as the preferred method of identifying and quantifying critical delays, while the

measured mile analysis generally is regarded as the preferred method for the quantification

of productivity losses [Singh, 2002; Crowley and Livengood, 2002].  Although a critical path

method analysis can be performed on a prospective basis, a measured mile analysis can

be performed only retrospectively.  Thus, the preferred method for measuring productivity

losses can not be employed for the pricing of change orders until after the change work is

complete.  In fact, there are no widely-accepted methods for the prospective determination

of productivity losses due to changes.  As a result, when pricing a change order, a

contractor typically reserves his/her rights to claim additional costs at a later time for any
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productivity losses resulting from the performance of the change work.  Generally, the

‘later’ identification of the productivity losses takes the form of a total cost claim, where the

planned manhours are compared to the actual manhours, with the difference being

attributed to the owner-directed changes.  Neither owners nor the courts accept a total cost

claim, except under rare circumstances.

The following is a review of the literature regarding factors that can affect construction

productivity as well as the methods and models that have been developed for the

identification and quantification of productivity losses as a result of changes during a

construction project.  This review will illustrate the multitude of factors involved and the

complex relationship between changes and construction labor productivity.
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CHAPTER A2:  IMPACTS TO CONSTRUCTION LABOR PRODUCTIVITY

A2.1.  Introduction

This chapter provides an overview of the measurement and impacts to construction labor

productivity.  The first section provides a definition and method of measurement of labor

productivity.  The second section is a review of the identified factors that can have an

adverse effect on labor productivity.  The last section is a summary of the studies that have

been performed in an attempt to quantify the effects of certain single factors and multiple

factors on labor productivity.  This review will show that many of the published studies are

based on survey or anecdotal information, are based on very limited empirical data, or are

based on data from non-construction activities.  No forward-looking or prospective model

has been developed that has been generally-accepted or validated for use in the variety

of circumstances typically encountered on construction projects.
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A2.2.  Productivity

Productivity is a measure of the amount of work performed compared to the resources

expended to perform that work.  In construction, the resources typically are measured in

manhours, resulting in:

Productivity  = 
Quantity

(A1)
Manhour

For example, a measure of productivity could be the number of linear feet of pipe installed

per manhour or the cubic yards of concrete placed per crew day.  In construction, the ratio

frequently is expressed in the inverse, that is, resources per quantity or unit of work.  This

measure of productivity is referred to as the unit rate.  When using the unit rate form of

productivity measurement, increases in productivity are represented by lower numbers.

This paper will use the quantity per manhour measurement of productivity.  Thus, in this

paper, an increase in productivity will be represented by a higher number, unless

specifically noted otherwise.

A loss of productivity results when more resources are used with no additional work

accomplished or when less work is performed with no change in resources.  In the

literature, the terms efficiency and productivity and the terms inefficiency and loss of

productivity are used interchangeably.
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Although productivity for an activity usually is estimated as a single value when preparing

a bid estimate, the actual planned productivity will vary throughout the course of a project.

For most work activities, the initial productivity rate shows an increasing trend.  This time

period is referred to as the “ramp-up” period.  The productivity during this period is affected

by the crafts becoming familiar with both the jobsite (mobilization) and the task (learning

curves).

The ramp-up period usually is followed by a period of productivity at a sustained level.  This

represents the time when the work is being performed under expected conditions in a

somewhat repetitious fashion.  This sustained level of productivity normally represents the

highest level of productivity for that activity throughout the course of the project.

The final phase of productivity, or “ramp-down” phase, is characterized by a decreasing

trend.  This phase is comprised of completion of the work activity and demobilization from

the work area.  Figure A1 depicts a comparison of the estimated versus the actual planned

productivity.



209

Pr
o

d
uc

tiv
ity

(u
ni

ts
/m

a
nh

o
ur

s)

Time

Estimated Productivity

Actual Planned Productivity

Figure A1:  Planned Versus Actual Productivity

At least five prerequisites have been identified for the achievement of a high level of

productivity on a construction project:  (1) good supervision; (2) effective planning and

scheduling; (3) timely availability of materials, equipment, and tools; (4) adequately skilled

workers; and (5) the ability to measure site productivity in quantitative terms [The Business

Roundtable, 1982].  Many of these same factors have been identified as key areas for

productivity improvement in an on-going series of surveys of the top 400 construction

companies in the United States [Arditi and Mochtar, 2000].  The results of the surveys,

which were conducted in 1979, 1983, and 1993, show that cost control, value engineering,

labor training, quality control, and scheduling were consistently identified as having the

greatest potential for productivity improvement.
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Although the lack of any of these factors has been considered as a cause of decreased

productivity, the important question is “decreased as compared to what?”  That is, when

preparing a bid estimate, a contractor should be cognizant of all the parameters under

which the estimate is being prepared.  For example, if the contractor is aware of a shortage

of qualified workers in a certain needed trade, this information should be factored into the

estimate.  In the event that better-skilled workers later become available to perform the

work, the contractor may realize increased productivity as compared to that used in

preparing the estimate.  This could result in increased profits for the contractor.

Conversely, if lesser-skilled workers are all that are available, reduced productivity and

reduced profits may be realized.  Again, the important point is the consideration of all

pertinent information in preparing the estimate.

A2.3.  Causes of Construction Labor Inefficiency

Inefficiencies can be brought about by many events, including acceleration, changes in the

work scope, or disruptions and delays to the work.  These events are considered as the

circumstances that can give rise to inefficiencies.  As a result of these circumstances, a

project may experience certain factors that affect productivity.  The most-often-cited factors

include temperature and humidity, physical location, project design and size

(constructability and complexity), landscape, access, materials and equipment, labor

organization, workers’ skills and familiarization with the work (learning curve), craft
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supervision, management, working hours (overtime and shift work), manning level and

crew composition (trade stacking and congestion), absenteeism, and work sequence [Arditi

and Mochtar, 2000; Borcherding and Alarcon, 1991; Bureau of Labor Statistics, 1947; The

Business Roundtable, 1980, reprinted 1989; Herbsman and Ellis, 1991; Quraishi, 2003;

Thomas and Smith, 1990; Tucker, Haas, Borcherding, Allmon, and Goodrum, 1999].

These factors can have either a positive or negative impact on the expected productivity

on a construction project.

Borcherding, Palmeter, and Jansma [1986] identified 65 separate elements or factors that

can lead to productivity losses.  The factors were grouped into five major categories of

unproductive time: (1) waiting or idle, (2) ineffective work, (3) rework, (4) slow work, and

(5) traveling.  The interactions among the factors were represented through the use of an

influence diagram.  The 65 separate elements illustrate the quantity, breadth, and

complexity of the elements or factors identified as potential causes of inefficiency.
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A2.3.1.  Types of Changes

Although many of the factors identified can exist on a construction project in the absence

of any change, this paper will focus on the effects on labor productivity resulting from a

change in the expected conditions.  Typically, these changes take the form of a change

order or change directive that represents work that is different than that shown in the

original contract documents.  Changes can be of a minor nature that do not have any effect

on the field labor, such as a change in a paint color selection prior to the start of the work;

or changes can be of significant scope, such as a change to the foundation system from

slab on grade to auger-cast piles or a change to the work hours from a normal day shift to

only night shift or weekend work.

In addition, a change can result from either a Type I or Type II differing site condition.  A

Type I differing site condition is a condition that differs materially from the representation

in the contract documents.  For example, the geotechnical report indicated an average

water table depth of 20 feet below the ground surface; however, water is encountered at

a depth of four feet during footer excavation, resulting in the need for dewatering provisions

not anticipated.  A Type II differing site condition is a condition of an unusual nature not

typically encountered for that type of work in that geographical area.  For example,

groundwater contamination found during dewatering operations, in an area where no

contamination was documented previously, resulting in the requirement for monitoring

wells, extensive testing, and dewatering restrictions.
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The courts have recognized that the effects of performing change work include both the

effects directly related to the performance of the changed work and the effects arising from

the interaction between changed work and unchanged work [Triple “A” South v Armed

Services, ASBCA No. 46866].  In the case of the groundwater contamination example

noted above, the changed work would be the additional work identified by the need for

monitoring wells and water testing.  These costs should be easy to document.  The effects

arising from the interaction between the changed work and the unchanged work could

include the resequencing of the foundation excavation work or possibly the delays to the

underground utilities to accommodate the new dewatering restrictions.  The courts have

referred to the effects directly related to the performance of the changed work as “local”

or “hardcore,” while the effects on unchanged work have been referred to as “impact” or

“disruption.”  In addition, the term “cumulative disruption” has been used to describe those

situations arising from the aggregated losses of productivity resulting from multiple

changes to the work scope.  Thus, local or hardcore effects can be traced directly to a

particular change, while cumulative disruption is a consequence of conditions that

materially differ from those that were expected at the time of bid, resulting from multiple

changes.  It is the effects of these cumulative disruptions that are the most difficult to

quantify prospectively.
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In order for cumulative disruption to be recognized, the courts have used the threshold

where “the number of changes in the work, and the scope of the changes, . . . went well

beyond normal experience and reasonable expectations with respect to [projects] of like

kind” [Atlantic Dry Dock Corp. v United States, No. 87-974 CIV-J-10].  Conversely, a

reasonable or foreseeable number of changes typically will not be recognized as a cause

of cumulative disruption.  For example, in Triple “A” South v Armed Services, ASBCA No.

46866, the court found that the 600 to 700 changes that occurred were not unusual for an

eight-month shipyard project.

Although the literature contains no record of any comprehensive studies of the number of

changes that can be reasonably expected during a construction project, a 1986 study by

the Building Research Board National Council considered the dollar value of changes

during construction projects.  The study compared contract growth on over $4.7 billion

worth of projects administered by the Naval Facility Command, U.S. Army Corps of

Engineers, and Veterans Administration.  In addition, the study reviewed Census Bureau

data for over 59,000 privately-owned projects.  The results of the study showed that

average cost growth due to changes ranged from approximately 5% to 10%.

It should be noted that a study of the average number of changes on a construction project

could be a very difficult undertaking, since it is a common practice to incorporate a number

of separate changes into a single change order.  Thus, a study that simply counts the

number of change orders may provide very misleading results.
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Also, as previously discussed, the scope of individual changes can vary greatly.  A change

can be very minor in nature, resulting in little or no effect on planned resources, or can be

so significant as to be considered a cardinal change to the contract.  A cardinal change is

defined as when the owner causes an alteration in the work that is so drastic that the

contractor is required to perform duties materially different from those contemplated under

the terms of the contract.  Therefore, any study of changes should consider the scope of

the work identified by the changes rather than only the number of the changes that

occurred.

A2.3.2.  Effects of Changes on Productivity

Finke [1998] identified and defined six factors that can cause losses in productivity due to

differences in working conditions brought about by a change:

(1) Resource diversion or skill dilution, requiring that the changed (or disrupting) and

unchanged (or disrupted) work use the same resources and be performed at the

same time.
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(2) Work area congestion, requiring that the changed and unchanged work be

performed in the same area at the same time.

(3) Stacking of trades, requiring that the changed and unchanged work be performed

in the same area, be performed at the same time, and represent different types of

work.

(4) Dilution of supervision, requiring that the changed and unchanged work be

performed at the same time and have the same supervisors.

(5) Interruptions of otherwise continuous work, requiring that the changed work forces

in-progress unchanged work to be temporarily stopped.

(6) Delay, requiring that the change forced unchanged work to be performed at a

different time than would otherwise have been the case, and the unchanged and/or

delayed work, now acting as the changed work, causes one of the five working

conditions listed above.

The relationship between the circumstances that give rise to inefficiencies and the factors

that cause inefficiencies is illustrated as follows:  A significant design change occurs to a

critical path activity late in the project.  The contractor is directed to complete all work

without delaying the planned project completion date.  In order to comply, the contractor

hires additional craftsmen for a new crew to perform the change work as well as increasing

the size and work hours of each existing crew to perform the unchanged work, which is

affected by the performance of the change work.  In this scenario, the design change is the

“circumstance” that creates the conditions for the potential loss of productivity, while
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overtime, learning curve, manning level, crew size, and dilution of supervision are some

of the specific factors that may affect the productivity rate on both the changed and

unchanged work.

Schwartzkopf [1995] identified four phases of cost and schedule impacts resulting from a

change.  Phase 1 is the identification of a potential change and determination of the

resolution.  For example, the change may be the result of a discrepancy between the

drawings and the field conditions, which is resolved through the issuance of a change order

that requires additional material.  Phase 2 encompasses the material procurement to

implement the change.  Phase 3 is the performance of the change work.  Phase 4 is the

work performed after the change work is complete.

Note that the crew either can be idle or assigned to another task during the resolution of

the discrepancy and material procurement.  In the event that the crew is idle during Phases

1 and 2, the impact to productivity is easy to calculate.  The loss is the cost of the number

of hours of idle time.  However, if the crew is assigned to another task, there may be a

certain amount of lost time due to mobilization of tools and equipment to another work

area; a loss of productivity while learning the new task; reduced productivity due to stacking

of trades and congestion if assigned to work concurrent with other workers in a confined

area; and dilution of supervision if assigned to a remote work area.
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During the performance of the change work in Phase 3, it is possible that additional

productivity losses may be incurred.  For example, there may be congestion in the area as

a result of additional trades, material, or equipment that would not have been present had

the change not occurred.  Thus, losses of productivity may be experienced by other trades

and crews in addition to the initial crew that was affected by the change.  This illustrates

the court-defined “impact” or “disruption” discussed in the previous section.

Finally, the resumption of the original contract work in Phase 4 may incur productivity

losses for the same reasons as cited for Phase 3.  This productivity loss could occur if the

circumstances under which the unchanged work is being performed are different than

expected prior to the change.  As with the other phases, the potential impacts are not

restricted to the crew initially affected by the change.

In order to predict the loss of productivity that may be experienced in the simple example

above, one must consider the effect of the interaction of all of the identified factors.  The

following section is a review of the studies found in the literature that address both single

factors and multiple factors that can affect construction labor productivity.
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A2.4.  Studies of Factors Affecting Productivity

A list of the studies that have been performed on the loss of productivity attributable to

individual factors, such as crew composition, learning curves, overtime, and weather, is

included in Table A1.  Table A2 contains a list of studies performed on the loss of

productivity due to the effects of circumstances, which can represent multiple,

simultaneously-occurring factors.
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Table A1:  Summary of Studies:  Effects of “Factors” on Productivity

Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

Factor: Absenteeism

Sargent 2003 “Absenteeism and turnover impact on labor
productivity for electrical contractors”
Project specific factors affect productivity
losses associated with absenteeism and
turnover.

Survey and
empirical
(observation);
Statistical

31 projects
(surveys) and 5
project
(observations);
Indeterminate

Electrical;
Miscellaneous;
Nationwide.

Factor:  Crew Composition and Overmanning

US Army Corps
of Engineers

1979 Construction Modification Impact Evaluation
Guide
Crew Size Above Optimum vs. Productivity. 
For example, 50% above optimum predicts a
10% loss of productivity.

Indeterminate Indeterminate Indeterminate

Sanders,
Thomas, and
Smith

1989 “An analysis of factors affecting labor
productivity in masonry construction”
Suggests two patterns for crew size in
masonry work: production-oriented and piece-
meal work.

Empirical
(observation);
Statistical

11 projects;
Indeterminate

Miscellaneous
masonry
construction;
1986-1988;
Pennsylvania



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

221

Factor:  Design (Constructability and/or Complexity)

Low 2001 “Quantifying the relationships between
buildability, structural quality and productivity
in construction”
Correlation coefficient of 0.635 for
relationship between productivity and
buildability. 

Empirical
(database);
Linear
regression

37 projects;
Indeterminate

Indeterminate;
Indeterminate;
Singapore

O’Connor,
Larimore, and
Tucker

1986 “Collecting constructability improvement
ideas”
Major productivity improvement problem cited
was availability of information.

Survey;
Statistical

1 project;
Indeterminate

Refinery
expansion
1980s;
Texas

Sanders and
Thomas

1991 “Factors affecting masonry-labor productivity”
Productivity adversely affected by unusual
design requirements.

Empirical
(observation);
Analysis of
variance

11 projects;
Indeterminate

Miscellaneous
masonry
construction;
1986-1988;
Pennsylvania

Factor:  Learning Curve

Everett and
Farghal;
Farghal and
Everett

1997;
1997

“Data representation for predicting
performance with learning curves”;
“Learning curves: accuracy in predicting
future performance”
Method or formula for predicting total
remaining costs, etc. for activities with
learning effects.  (See Farghal and Everett)

Indeterminate
— historical
data from
previous reports 

54 construction
activities;
Indeterminate

Miscellaneous — 
with the majority
of data from
residential
construction



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

222

Gates and
Scarpa

1972 “Learning and experience curves”
Proposed uses and learning rates for various
activities.

Indeterminate;
previously-
published data

Indeterminate Indeterminate

Thomas,
Mathews, and
Ward

1986 “Learning curve models of construction
productivity”
Comparison of straight-line and non-linear
types of curves.

Not applicable Not applicable Not applicable

United Nations 1965 “Effect of repetition on building operations
and processes on site”
Two phases: Operation-Learning and
Routine-Acquiring.

Empirical
(observation);
Statistical

1 project (45
units);
Indeterminate

Residential;
1960s;
Finland

Ward and
Thomas

1984 “A validation of learning curve models
available to the construction industry”
Study of the setting of concrete planks in
multi-story building.

Empirical
(observation);
Statistical

1 project;
1 contractor

Apartment
building;
1980s;
Pennsylvania



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

223

Factor:  Material Management

Bilal and
Thomas;
Thomas,
Sanders, and
Bilal

1990;
1992

“A comparative analysis of labor productivity
of masons in seven countries”;
“Comparison of labor productivity”
Losses of 84% due to storage and
organization, 57% due to material handling
and distribution, and 87% due to material
availability.

Empirical
(observation);
Statistical

13 projects (465
days or records);
Indeterminate

Commercial
masonry
construction;
1980s;
Seven countries

Sanders,
Thomas, and
Smith

1989 “An analysis of factors affecting labor
productivity in masonry construction”
Calculated 45% loss of productivity due to
material distribution and availability problems.

Empirical
(observation);
Statistical

11 projects;
Indeterminate

Miscellaneous
masonry
construction;
1986-1988;
Pennsylvania

Thomas, Riley,
and Sanvido

1999 “Loss of labor productivity due to delivery
methods and weather”
Losses due to material delivery systems
between 9% and 16%.

Empirical
(observation);
Statistical and
multiple
regression

3 projects;
Indeterminate

Miscellaneous
structural steel
construction;
1980s and 1990s;
Pennsylvania

Thomas and
Sanvido

2000 “Role of the fabricator in labor productivity”
Case studies of the effect of late deliveries,
out-of-sequence deliveries, and fabrication
errors.  Loss of productivity calculated
between 16.6% and 56.8%.

Empirical
(observation);
Statistical

3 projects;
Indeterminate

Miscellaneous;
1990s;
Pennsylvania



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

224

Thomas,
Sanvido, and
Sanders

1989 “Impact of material management on
productivity — A case study”
Compares unimpacted to impacted project;
18% loss of productivity due to poor material
storage and handling practices.

Empirical
(observation);
Statistical

2 projects;
Indeterminate

Commercial
structural steel
erection;
1980s;
Pennsylvania

Factor:  Overtime

Bureau of Labor
Statistics

1947 Bulletin No. 917, Hours of Work and Output
Studies conducted in manufacturing
environment in the 1940s.

Empirical
(observation);
Statistical

Indeterminate Manufacturing;
1940s;
Indeterminate

Construction
Industry
Institute

1988 The Effects of Scheduled Overtime and Shift
Schedule on Construction Craft Productivity
Losses in productivity from working overtime
are not automatic; possible to work 60-hour
weeks (in short intervals) without serious
losses.

Empirical
(indeterminate);
Statistical

7 projects;
Indeterminate

Industrial;
Indeterminate

Mechanical
Contractors
Association of
America

1994 Change Orders / Overtime / Productivity
Section OT-1 has tables showing overtime
“multipliers.”

Anecdotal Not Applicable Indeterminate -
mechanical;
information
gathered in late
1960s or early
1970s

NECA 1989 Overtime and Productivity in Electrical
Construction
Tables and charts of “multipliers.”

Empirical
(database);
Statistical

Indeterminate Miscellaneous
electrical
projects;
1964;
Southeast
Michigan



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

225

The Business
Roundtable

1989 Scheduled Overtime Effect on Construction
Projects
Charts for 50- and 60-hour work weeks;
Significant drop in productivity during the first
week of overtime, followed by a gradual
improvement through the third week, then
continuous decline until leveling out at the
ninth week.

Empirical
(database);
Statistical

1 project;
Indeterminate

Industrial;
1970s - 1980s;
Wisconsin

Thomas 1992 “Effects of scheduled overtime on labor
productivity”
Literature review.  Concludes the available
literature contains many references to other
studies with little original data; “strange and
largely unbelievable results.”

(Literature
review)

Miscellaneous Miscellaneous

Thomas and
Raynar

1997 “Scheduled overtime and labor productivity:
quantitative analysis”
Shows losses of 10-15% for 50- and 60-hour
work weeks.  Since this data concurs with
The Business Roundtable, concludes that the
BRT curves are reasonable estimates of
losses due to overtime.  Second part of study
looked at the reasons for inefficiency losses
during overtime.  Concludes that losses
resulted from inability to provide materials,
tools, equipment, and information at an
accelerated rate.  Thus, considers overtime
losses in productivity a result of other causes.

Empirical
(database);
Statistical

4 projects (121
weeks of data);
Indeterminate

Industrial —
electrical and
piping; 
1989 - 1992;
Indeterminate

Factor:  Remobilization (see Disruptions and/or Delays in “Circumstances” Table)



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

226

Factor:  Sequence

Bennett and
Thomas

1990 “A case study of the validity of daily crew-
based productivity measurements”
27% reduction of productivity due to out-of-
sequence work.

Empirical
(observation);
Statistical

1 project (148
days);
1 contractor

Concrete
formwork;
1980s;
Pennsylvania

Bilal and
Thomas

1990 “A comparative analysis of labor productivity
of masons in seven countries”
Out-of-sequence work on 13 days.  20%
reduction in productivity due to out-of-
sequence work.

Empirical
(observation);
Statistical

13 projects (465
days or records);
Indeterminate

Commercial
masonry
construction;
1980s;
Seven countries

Sanders,
Thomas, and
Smith

1989 “An analysis of factors affecting labor
productivity in masonry construction”
Calculated 75% loss of productivity on days
when work sequence problems were
experienced.

Empirical
(observation);
Statistical

11 projects;
Indeterminate

Miscellaneous
masonry
construction;
1986-1988;
Pennsylvania

Factor:  Shiftwork

Mechanical
Contractors
Association of
America

1994 Change Orders / Overtime / Productivity
Section OT-2 addresses shiftwork.  Cites
percentage loss of efficiency associated with
various “factors.”

Anecdotal;
Indeterminate

Indeterminate Indeterminate -
mechanical;
information
gathered in late
1960s or early
1970s



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

227

Factor:  Supervision and Management

Logcher and
Collins

1978 “Management impacts on labor”
High correlation between productivity and
presence of or interaction with supervision.

Empirical
(observation);
Regression

5 projects (2 to 5
days per project);
1 contractor

Vinyl floor tile
installation;
1976 and 1977;
Boston and New
York City

Sanders,
Thomas, and
Smith

1989 “An analysis of factors affecting labor
productivity in masonry construction”
41% loss of productivity on days when
foreman not present.

Empirical
(observation);
Statistical

11 projects;
Indeterminate

Miscellaneous
masonry
construction;
1986-1988;
Pennsylvania

Smith 1987 “Increasing onsite production”
Problems result from lack of training,
insufficient numbers, and incompetence.

Indeterminate Indeterminate Miscellaneous

Thomas,
Maloney,
Horner, Smith,
Handa, and
Sanders

1990 “Modeling construction labor productivity”
Developed two models: (1) Factor Model —
accounts for project, site, and management
factors; (2) Expectancy Model — why a crew
exerts an effort and how this effort relates to
productivity.

Not applicable Not applicable Not applicable



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

228

Thomas,
Sanvido, and
Sanders

1989 “Impact of material management on
productivity — a case study”
Comparison of two projects: 239% additional
manhours for steel erection attributable to
inexperience of contractor.
Comparison to ten comparable projects:
296% more manhours due to material
distribution, unavailability of scheduled work
areas, lack of scaffolding, poor site layout.

Empirical
(observation);
Statistical

2 projects;
Indeterminate

Commercial
structural steel
erection;
1980s;
Pennsylvania

Thomas and
Zavrski

1999 “Construction baseline productivity: theory
and practice”
Proposes two indices to measure
performance: disruption index and project
management index.

Empirical
(database);
Statistical

23 projects;
Indeterminate

Concrete
formwork and
structural steel;
Indeterminate;
Indiana and
Pennsylvania



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

229

Factor:  Subcontractors

Hsieh 1998 “Impact of subcontracting on site productivity:
lessons learned in Taiwan”
Study of subcontracting in Taiwan (160
questionnaire responses and interviews with
31 general contractors)

Survey;
Statistical

160 responses to
1080 mailed
questionnaires

General
contractors;
1995;
Taiwan

Factor:  Trade Stacking or Overmanning

US Army Corps
of Engineers

1979 Modification Impact Evaluation Guide
Curve for Effect of Crowding on Labor
Productivity: % Crowding vs. % Labor Loss to
Inefficiency. 

Indeterminate Indeterminate Indeterminate

Gunduz 2004 “A quantitative approach for evaluation of
negative impact of overmanning on electrical
and mechanical projects”
Formula to calculate probability of
overmanning.

Survey;
Binary logistic
regression and
statistical

97'overmanned’
projects and 39
‘regular’ projects

Electrical and
mechanical with
200,000
manhours or less;
indeterminate;
Miscellaneous

Logcher and
Collins

1978 “Management impacts on labor”
Productivity unrelated to sf. ft. per person —
in all cases area per person > 300 sq. ft.

Empirical
(observation);
Regression

5 projects (2 to 5
days per project);
1 contractor

Vinyl floor tile
installation;
1976 and 1977;
Boston and New
York City



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

230

Sanders,
Thomas, and
Smith

1989 “An analysis of factors affecting labor
productivity in masonry construction”
65% loss of efficiency for congestion.

Empirical
(observation);
Statistical

11 projects;
Indeterminate

Miscellaneous
masonry
construction;
1986-1988;
Pennsylvania

Smith 1987 “Increasing onsite production”
Reports density vs. productivity; max
productivity at 320 sq. ft. per person;
theoretical lower limit at 100 sq. ft.

Indeterminate Indeterminate Miscellaneous

Factor: Union versus Non-Union

Bilal and
Thomas

1990 “A comparative analysis of labor productivity
of masons in seven countries”
No statistical significance between union and
nonunion workers.

Empirical;
Statistical

13 projects (465
days or records);
Indeterminate

Commercial
masonry
construction;
1980s;
Seven countries



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

231

Multiple Factors

Sonmez and
Rowings

1998 “Construction labor productivity modeling with
neural networks”
Factors considered: quantities completed, job
type, crew size, percent overtime, percent
laborer, temperature, humidity, precipitation,
concrete pump.  Concluded that the effect of
factors on productivity may vary from task to
task, and that models with fewer significant
factors predict better than models with many
factors without regard to significance.

Empirical
(database);
Regression and
neural network
modeling

8 projects;
1 contractor

Miscellaneous
structural
concrete
construction;
1992 - 1994;
Iowa

Factor:  Weather  —  Temperature and Humidity; Rainfall

Bracken and
Thomas

1990 “Development of a baseline curve for
structural steel erection”
Temperature effects on structural steel
erection.  Removed data for over 85%
humidity and known disruptions.

Empirical
(observation);
Statistical

5 projects;
Indeterminate

Miscellaneous
structural steel;
1980s;
Pennsylvania

El-Rayes and
Moselhi

2001 “Impact of rainfall on the productivity of
highway construction”
Decision support system for quantifying
impact of rainfall on productivity and duration
of highway projects.

Not applicable Not applicable Not applicable

Grimm and
Wagner

1974 “Weather effects on mason productivity”
Erection of 283 standard masonry wall
panels.  Results shown on isopleth.

Empirical
(Controlled field
experiment -
observation);
Statistical

51 workers over
9-month period

Miscellaneous
masonry
construction;
1972;
Texas



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

232

Hancher and
Abd-Elkhalek

1998 “The effect of hot weather on construction
labor productivity and costs”
Model developed by assigning weights using
previously-published factors.  Model then
used to generate a set of productivity curves.

Indeterminate -
previously-
published
models and
factors

Indeterminate Indeterminate

Hester and
Kuprenas

1987 A Report to Dow Chemical and the
Construction Industry Institute on the
Productivity of Insulation Installation
Studied the installation of pipe insulation.

Empirical
(indeterminate);
Statistical

1 project (354
days);
1 contractor

Process plant
pipe insulation;
1980s;
California

Koehn and
Brown

1985 “Climatic effects on construction”
Combination of data from a variety of
sources; potential data manipulation may
make results suspect.

Indeterminate -
previously-
published
literature

Indeterminate Indeterminate

NECA 1974 The Effect of Temperature on Productivity
Two electricians in climate-controlled
chamber installed connections for electrical
wall fixtures.

Empirical
(Laboratory
observation);
Statistical

1 crew of two
men (6 days)

Laboratory
conditions

Thomas, Riley,
and Sanvido

1999 “Loss of labor productivity due to delivery
methods and weather”
Losses due to weather (35%) and
temperature (30%).

Empirical
(observation);
Statistical and
multiple
regression

3 projects;
Indeterminate

Miscellaneous
structural steel
construction;
1980s - 1990s;
Pennsylvania



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of Projects;
Dates; Locations

233

Thomas and
Yiakoumis 

1987 “Factor model of construction productivity”
Insensitive to high humidity.  Other factors
confounded in model.

Empirical
(observation);
Multiple
regression

3 projects (78
days);
Indeterminate

Miscellaneous
structural steel
and masonry
construction;
1986;
Pennsylvania
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Table A2:  Summary of Studies:  Effects of “Circumstances” on Productivity

Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of
Projects;
Dates;

Locations

Circumstance:  Acceleration

Thomas and
Oloufa

1996 “Strategies for minimizing the economic
consequences of schedule acceleration and
compression”
Method to measure the loss of productivity
due to differences between planned and
actual labor consumption rates.  Partitioned
data into levels related to maximum planned
manpower.

Empirical;
Non-linear
regression

5 projects;
Indeterminate

Miscellaneous
electrical
construction;
Indeterminate

Thomas 2000 “Schedule acceleration, work flow, and labor
productivity”
Formula to measure loss based on changes
in labor resources.  Partitioned data into
levels related to maximum planned
manpower. 

Empirical
(database);
Nonlinear
regression

3 projects;
Indeterminate

Miscellaneous
electrical
construction;
1990s;
Indeterminate



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of
Projects;
Dates;

Locations

235

Circumstance:  Change Orders

Assem 2001 “Estimating productivity loss due to change
orders”
Neural network models for predicting
productivity loss based on timing and type of
change work.

Expert reports;
claims and
existing data;
Neural network
modeling

33 cases
selected from
117 projects;
indeterminate

Miscellaneous;
mainly Canada

Construction
Industry
Institute

2000 “Change orders and their cumulative impact”
Two step procedure: (1) formula to measure
evidence or probability of impact due to
changes and (2) formula to quantify impact. 
Independent variables: percent change,
management time on project, owner-initiated
changes, productivity tracking,
overmanning, and change order processing
time.

Survey;
Linear
regression

116 projects;
68 contractors

Miscellaneous
mechanical and
electrical
construction;
Indeterminate

Hanna,
Russell, and
Vandenberg

1999 “The impact of change orders on
mechanical construction labour efficiency”
Two equations for the loss of efficiency due
to change orders on mechanical work on
impacted (32 projects) and unimpacted (11
projects) projects.  Independent variables
were timing of the changes and amount of
change hours as a percentage of the total
actual hours.

Survey;
Stepwise
linear
regression

43 projects;
14 contractors

Miscellaneous
mechanical
construction;
Indeterminate



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of
Projects;
Dates;

Locations

236

Hanna,
Russell,
Gotzion, and
Nordheim

1999 “Impact of change orders on labor efficiency
for mechanical construction”
Second phase of model development
described in Hanna, Russell, and
Vandenberg (1999).  Combined data with
previous data.  Independent variables were
timing of the changes, amount of change
hours as a percentage of the total actual
hours, and number of changes.

Survey;
Stepwise
linear
regression

61 projects;
26 contractors

Miscellaneous
mechanical
construction;
Indeterminate;
19 states

Hester and
Kuprenas

1987 A Report to Dow Chemical and the
Construction Industry Institute on the
Productivity of Insulation Installation
Loss of efficiency shown as a function of the
number of change orders per week.

Empirical
(database);
Statistical

1 project;
Indeterminate

Oil refinery —
concrete,
structural steel,
and above-
ground piping;
1980s;
California

Leonard 1988 “The effects of change orders”
Developed statistical model to estimate loss
of productivity due to change order hours as
a percentage of actual contract hours.  All
data was from projects that generated
claims.

Expert reports
and claims;
Linear
regression

57 projects (90
cases);
Indeterminate

Miscellaneous;
1970s and
1980s;
mainly Canada



Author Date Description
Data Source;

Type of
Analysis

No. of Projects;
No. of

Contractors

Type of
Projects;
Dates;

Locations

237

Moselhi,
Leonard, Fazio

1991 “Impacts of change orders on construction
productivity”
Based on same data as Leonard (1988). 
Concluded that “On average, there is a 30%
loss of efficiency when changes are being
performed . . . The key variable affecting
efficiency is believed to be the time of the
change.”

Expert reports
and claims;
Linear
regression

57 projects (90
cases);
Indeterminate

Miscellaneous;
1970s and
1980s;
mainly Canada

Mechanical
Contractors
Association of
America

1994 Change Orders / Overtime / Productivity
Section CO-2 lists “factors” and associated
percentage loss of productivity.

Anecdotal;
Statistical

Indeterminate Indeterminate

Thomas and
Napolitan

1995 “Quantitative effects of construction
changes on labor productivity”
Concluded that “On average, there is a 30%
loss of efficiency when changes are being
performed. . . The key variable affecting
efficiency os believed to be the time of the
change.”  However, the study presented no
information regarding the timing of the
changes for the data analyzed.

Empirical
(database);
ANOVA and
multiple linear
regression

3 projects (522
workdays);
Indeterminate

Industrial
electrical and
piping;
1989-1992;
Indeterminate
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Circumstance:  Disruptions and/or Delays

Finke 1998 “A better way to estimate and mitigate
disruption”
(No model actually developed.)  Proposed
method to build a model to estimate
disruption, including consideration of the
schedule to mitigate the impact.

Not applicable Not applicable Not applicable

Frantazolas 1984 “Learning curves and work interruptions in
construction”
Effects of 6-week delay due to a labor strike
on structural concrete operations: some
activities experienced reduced productivity,
others increased.

Empirical
(database);
Plot of time v
productivity

1 project;
Indeterminate

Hotel - concrete
construction;
1980s;
Maine

Gates and
Scarpa

1972 “Learning and experience curves”
Model to calculate productivity losses as a
function of length and timing of delay. 
(Hypothetical; never corroborated.) 

Not applicable Not applicable Not applicable

O’Connor 1969 “Overcoming the problems of scheduling on
large central station boilers”
Includes Foster Wheeler chart of effects of
delays on remobilization.

Empirical
(database);
Plot of length
of delay to
length of
remobilization

5 projects;
Indeterminate

Power plants;
1960s;
Ohio Valley
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Thomas and
Oloufa

1995 “Labor productivity, disruptions, and the
ripple effect”
Showed decline in performance factor
(actual verdus estimated productivity) as
management disruption index increased. 
Also, showed decline in performance as
number of disruptions increased.

Empirical
(database);
Statistical

19 projects;
Indeterminate

Miscellaneous
construction
(mostly
masonry) ;
1990s;
Seven countries

Thomas,
Sanders, and
Bilal

1992 “Comparison of labor productivity”
Sanders and Thomas model (1990, 1991)
applied to masonry projects in seven
countries.

Empirical
(observation);
Statistical

13 projects (465
days or
records);
Indeterminate

Commercial
masonry
construction;
1980s;
Seven countries
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The 52 entries in Table A1:  Summary of Studies: Effects of “Factors” on Productivity, were

derived from 39 published reports.  Since several of the reports addressed more than one

factor, these reports appear in more than one section of Table A1.  A review of the data

used in the various studies shows that 24 of the reports were based on empirical data; 4

were based on surveys or anecdotal information; and 7 were based on information of an

indeterminate nature.  The remaining four reports were not based on quantitative data.

Further review of the 24 reports that were based on empirical data shows that four of the

reports were based on an indeterminate number of projects.  The remaining 20 reports

were based on between 1 and 37 projects, with a mean of 7.7 projects, a median of 4.5

projects, and a mode of 1 project.  However, the number of projects may be a misleading

measure of the quantity of the data used in a study.  In most cases only limited portions

of the projects were considered.  For example, although the study of the effect of out-of-

sequence work by Bilal and Thomas [1990] was based on data from 13 projects, only 13

days of data were used to calculate the stated 20% reduction of productivity attributed to

out-of-sequence work.  Since the quantity of data used for this analysis was so limited, the

conclusions appear to be of equally limited value.

An additional concern with the empirical data used in the various studies listed in both

Tables A1 and A2 stems from the potential differences in the data due to the data

collection methods.  In the studies that indicated the method of data collection, both direct

observation and existing database records were employed.  When using direct
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observation, the observer must have in-depth knowledge of the activity under study as well

as an understanding of general construction practices, since few construction trades are

restricted to a single activity over the course of a day.  In the case of multiple observers,

it is imperative that the observers use a uniform basis for the measurement of the activity.

Thus, a precise definition of the work being observed and standard forms of measurement

must be established.  With the exception of several of the studies on which Thomas was

an author, few of the studies indicated that consideration was given to this issue.

When existing project data are used, the subjectivity of the recorders of the data may result

in inconsistencies among data from multiple projects.  It may be possible to address any

subjectivity in the recorded data through interviews to establish the parameters used by the

personnel responsible for the records.  The studies that used existing data did not indicate

that any consideration was given to this issue.

As discussed in Thomas and Raynar [1997], the project selection process should ascertain

that projects contained in the study are not affected by unusual external events, such as

labor unrest or unique construction techniques.  Again, with the exception of several of the

studies involving Thomas, the standards used in project selection, if any, were not

indicated.
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In general, the studies listed in Table A1, regarding the effects of individual factors on

construction labor productivity, have been based on limited data collected using a variety

of methods.  As a result, many of the conclusions appear to be of limited value in the

quantification of productivity losses due to actual conditions experienced on a construction

project.

Of the studies listed in Table A2:  Summary of Studies: Effects of “Circumstances” on

Productivity, that were based on empirical data, only the studies by Leonard [1988] and

Thomas and Oloufa [1995] were based on data from a reasonably large number of

projects.  However, the data used by Leonard was obtained from a company that prepares

construction claims.  Thus, all of the data in the Leonard study were from projects on which

claims were generated.  Further, the productivity rates and losses used in the study were

the rates and losses that had been calculated as part of the various claims.  That is,

Leonard did not calculate the loss of productivity using any single method or criteria.

Rather, the productivity rates and productivity losses used in the analysis had been

calculated by others as part of the claims preparation process.  The study does not provide

any information regarding the methods that were used to calculate the productivity rates

or productivity losses.  In regard to the data used in the Thomas and Oloufa study, only

masonry activities were considered.  Thus, the findings of this study may not be applicable

to other construction activities.
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In summary, the literature does not contain any studies of the effects of multiple factors on

construction labor productivity that have been based on an analysis of a significant,

unbiased sample of data from a cross section of activities and projects.



244

CHAPTER A3:  METHODS OF MEASURING OF INEFFICIENCY

A3.1.  Introduction

The various methods that are most-commonly used to measure the losses of productivity

on construction projects are reviewed in the first section of this chapter.  Each method is

described, along with the advantages, disadvantages, and data requirements.  Examples

of the application of selected methods are provided.  Additional attempts at the

development of productivity-loss models are discussed in the second section of this

chapter.  As noted, none of the proposed models have gained acceptance in the courts or

the construction industry.  Finally, a summary comparison of the various, most-commonly

used methods discussed is provided.

A3.2.  Most-Commonly Used Methods of Measuring Inefficiency

The following list of the most-commonly used methods is in order of the most acceptable

to the least acceptable, as viewed by the legal system [Jones, 2001; Patton and Gatlin,

2000; Shea, 1988]:

(1) Measured mile analysis

(2) Measured mile for comparable work
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(3) Measured mile for comparable projects

(4) Statistical models

(5) Expert witness testimony.

(6) Industry standards and factor-based methods

(7) Modified total cost method

(8) Total cost method

It should be noted that the legal system is only involved in the determination of

inefficiencies in an “after-the-fact” capacity.  That is, a claim is presented for a legal

decision after the work has been performed.  Therefore, the legal system places no weight

on a method that can be used prospectively to determine the impacts to productivity.

However, essentially all contracts include a clause that requires that no work is to be

performed without an executed change order.  Thus, a prospective method would be

valuable to owners and contractors in determining all of the costs associated with change

work prior to the performance of the work.  In addition, a prospective method that considers

the impact on the unchanged work also may be useful in determining whether or not a time

extension is due as a result of the effects on the activities identified with the unchanged

work.
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The following is a discussion of each of the eight methods listed above, along with an

application example for selected methods.

A3.2.1.  Measured Mile Analysis

The measured mile analysis, or impacted versus unimpacted work analysis, is the court-

preferred method for the measurement of inefficiencies, as it is based on actual, as-built

data from the project and activities in question.  Using this method, an unimpacted

productivity rate is established by measuring the work accomplished during an unimpacted

period of time or in an unimpacted area of work [Calvey and Zollinger, 2003].  The

productivity rate attained during the unimpacted portion is considered the “measured mile”

and becomes the basis from which any inefficiencies are measured.  This rate is compared

to the productivity achieved during the impacted segment of the work in order to establish

the loss of productivity, if any.

The work being compared must be the same type of work and of a similar nature and

complexity.  Further, all the impacts to the work during the impacted portion of the work

must be attributable to a single cause or party, since it will not be possible to discern the

amount of inefficiency attributable to each of the causes or parties using the measured mile

analysis.  The measured mile can be used to quantify inefficiencies attributable to any

cause.
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In order to employ this method, adequate project documentation must be available to

establish both unimpacted and impacted productivity rates.  Typically, if this information

is available, it is found in the daily work reports, pay applications, payroll records, and

schedule updates, which should provide the analyst with the number of manhours

expended on a particular task and the quantity of work accomplished.  The data must be

available for the unimpacted work as well as the impacted work.

It is important to note that a measured mile analysis does not depend on the contractor’s

planned productivity rate.  Instead, the basis of measurement is the demonstrated

productivity rate.  Thus, any underlying errors in the bid estimate are eliminated from

consideration in a measured mile calculation.

Example of Measured Mile Analysis:

A drainage contractor installed drainage piping and structures for a road widening project

from April 17 through June 8.  During this period, a total of 4,390 linear feet of pipe and 11

structures were installed.  As a result of an unmarked fiber optic cable, that was located

within the planned trenching between stations 212+20 and 218+80, the contractor’s

productivity allegedly was adversely affected.  The area in which the unforeseen

obstruction was encountered contained a total of 650 linear feet of pipe and two structures.

Since the drainage pipe and structures could not be relocated, it was necessary for the

drainage contractor to excavate alongside the cable, using a smaller-than-planned

excavator followed by hand digging when in very close proximity to the cable.
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The project records, as summarized in Table A3, showed that the allegedly impacted work

from station 212+20 to station 218+80 was performed between April 30 and May 11.

Table A3:  Data for Measured Mile Example

Date Linear
Feet Manhours Comments

April 17 0 48 Mobilize; Receive pipe delivery
April 18 40 48 Set up laydown yard; Install pipe
April 19 120 48 Install 36" pipe; Install one structure
April 20 180 48 Install 36" pipe
April 23 160 40 Install 36" pipe
April 24 120 40 Install 36" pipe; Install one structure
April 25 60 40 Install 36" pipe; Rain half-day
April 26 160 40 Install 36" pipe
April 27 140 40 Install 36" pipe; Install one structure
April 30 40 40 Install 36" pipe; Hit fiber optic cable in trench at 8:30

a.m.
May 1 40 40 Install 36" pipe & 1 structure; trench alongside fiber

optic cable
May 2 80 40 Install 30" pipe; trench alongside fiber optic cable
May 3 80 32 Install 30" pipe; trench alongside fiber optic cable
May 4 70 40 Install 30" pipe; trench alongside fiber optic cable
May 7 60 40 Install 30" pipe; trench alongside fiber optic cable
May 8 80 40 Install 30" pipe; trench alongside fiber optic cable
May 9 40 40 Install 30" pipe & 1 structure; trench alongside fiber

optic cable
May 10 80 40 Install 30" pipe; trench alongside fiber optic cable
May 11 80 40 Install 30" pipe; trench alongside fiber optic cable
May 14 120 40 Install 30" pipe & 1 structure
May 15 160 40 Install 30" pipe
May 16 180 40 Install 30" pipe



Date Linear
Feet Manhours Comments

249

May 17 90 40 Install 30" pipe; Rain half day
May 18 140 32 Install 30" pipe & 1 structure
May 21 180 40 Install 30" pipe
May 22 160 40 Install 30" pipe
May 23 120 40 Install 30" pipe & 1 structure
May 24 180 40 Install 30" pipe
May 25 160 40 Install 30" pipe
May 28 --- --- Holiday
May 29 140 40 Install 30" pipe & 1 structure
May 30 160 48 Install 30' pipe
May 31 100 48 Install 30" pipe & 1 structure
June 1 160 40 Install 30" pipe
June 4 160 40 Install 30" pipe
June 5 180 40 Install 30" pipe
June 6 160 40 Install 30" pipe
June 7 120 40 Install 30" pipe; Install one structure
June 8 90 40 Install 30" pipe; Demobilize equipment

Total 4390 1552
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A review of the project records shows that the pipe sizes and ratio of linear feet of pipe to

number of structures were similar during both the impacted time period of April 30 through

May 11, and the unimpacted balance of the work.

The calculated productivity rate for the unimpacted time period is 3460 linear feet / 984

manhours = 3.52 linear feet per manhour (or a unit rate of 0.28 manhours/linear foot).

Note that this calculation does not use the data for April 17 and 18, as these days

represent mobilization and preparation time; or June 8, as this day represents

demobilization work.  In addition, the calculation does not use the data for April 25 or May

17, as the productivity on these days was affected by one-half day of rain, while the

impacted time period recorded no rain events.

The productivity rate during the impacted time period is 650 linear feet / 352 manhours =

1.85 linear feet per manhour (or a unit rate of 0.54 manhours/linear foot).  The comparison

of these rates results in the calculated loss of productivity or inefficiency rate as follows:

3.52 lf/mh - 1.85 lf/mh
 = 0.47 inefficiency rate (A2)

3.52 lf/mh

Applying the inefficiency factor to the manhours expended during the impacted time period

shows that 0.47 x 352 manhours = 165.44 manhours were expended as a result of the

lower productivity rate experienced while excavating alongside the unforeseen fiber optic
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cable.  The damage calculation associated with these manhours should include all crew

costs for the 165.44 manhours, including equipment and supervision.  In addition, if this

activity was on the critical path of the project schedule at any time during the impact event,

a time extension and extended general conditions may be due.

The greatest difficulties in applying the measured mile method are the quality and quantity

of data needed and the amount of effort that must be expended to extract the data from

the project records.  The information succinctly shown in Table A3 frequently is not

available.  Further, even when the information is contained in the project records it can be

difficult and time consuming to obtain the data in the format necessary to perform the

calculations.  As a result, it can be expensive to undertake the determination of

inefficiencies through the measured mile method. 

In addition, since the measured mile method can be used only with actual data, this

method can not be used prospectively.  Also, the measured mile method will provide a

measurement of the inefficiencies experienced during a particular period of time.  As noted

earlier, in the event that there were multiple causes of inefficiency occurring

simultaneously, the measured mile method will provide no measure of the inefficiency

attributable to each of the causes.
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Finke (1998b) suggests the calculation of the variability of the data from the unimpacted

time period as an additional step in the measured mile analysis.  Using the standard

deviation of the data, one can calculate the probability of observing the impacted

productivity rate given a mean equal to the unimpacted productivity rate and assuming a

normal distribution.  This additional information can help either to support or refute the

contention that the alleged impact caused a loss of productivity.

A3.2.2.  Comparison of Similar Work with the Impacted Work

In the event that the manhours and related quantities are not available to perform a

measured mile analysis for the impacted work, an analysis of similar work on the project

can be undertaken.  The selection of “similar” work should consider the nature and

complexity of the work.  For example, one could use the loss of efficiency experienced for

electrical conduit installation as a substitute for small-diameter mechanical piping.

Using the example of basing the analysis on the productivity rates for electrical conduit, the

calculations are the same as described in the measured mile analysis.  The inefficiency

rate obtained is applied to the manhours expended on small-diameter mechanical piping

during the impacted time period.  The same cautions contained in the description of the

measured mile process are applicable.
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Naturally, there may be reasons why the inefficiency rate for the electrical conduit

installation could differ from that experienced for the small-diameter piping.  However, in

the face of a lack of project data for the small-diameter piping, the use of similar work

calculations may be the best method available.  If possible, the inefficiency factors for

multiple types of “similar” work should be calculated and compared for differences and

congruences.  This exercise could help to identify reasons why certain types of work should

be considered as similar, while others should not.

Both the difficulties and limitations noted for the measured mile method are applicable to

the comparison of similar work with the impacted work. 

A3.2.3.  Comparison of Similar Projects with the Impacted Project

Occasionally, there is no unimpacted portion of a project that can be used to established

a “measured mile.”  In that instance, the comparison of similar projects is the best

alternative.  It is critical that the projects selected for comparison are as similar as possible

to the subject project.  This method is less accurate than the measured mile analysis since

it suffers from using data from a project other than the project in question.
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The calculations are the same as described in the measured mile analysis, except that the

unimpacted data is obtained from the records of the comparable project(s).  The same

cautions contained in the description of the measured mile process are applicable.

As noted, the comparable project(s) should be as similar as possible to the impacted

project.  Consideration should be given to all possible differences between the work, such

as the skill of the trade crews, size of the crews, access to work areas, work hours, and

supervision.  If necessary, adjustments should be made for identified differences.  It should

be noted that every adjustment adds subjectivity to the analysis, resulting in calculations

that can be questioned and possibly defeated by an adversary or disallowed by the decider

of fact.

Again, both the difficulties and limitations noted for the measured mile method are

applicable to the comparison of similar projects with the impacted project.

A3.2.4.  Statistical Models

Statistical models, such as regression analysis, can be used to assess the impacts on

productivity.  Statistical models may be useful for determining losses in productivity when

the application of the measured mile method is not possible or will not provide the desired

information.  For example, there may be a number of factors believed to have contributed
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to productivity losses during a particular time period.  Using the measured mile approach

it will not be possible to discern the contribution of each of the factors to the loss of

productivity.  However, statistical methods used in concert with a measured mile analysis

may assist in this determination.

Regression analysis can be used to determine to what extent changes in a dependent

variable can be explained or predicted by changes in independent variables.  For example,

it could be hypothesized that productivity is related to the number of Requests for

Information issued each week.  In this case, productivity is the dependent variable and the

number of Requests for Information is one of the independent variables.  Regression

analysis will provide an indication of the correlation between productivity and the

independent variables, including the number of Requests for Information.  A high degree

of correlation indicates that there may be a trend between the dependent and independent

variables.  A low degree of correlation would suggest that there is no trend.  Thus,

regression analysis can be used to show that there is or is not a relationship between the

variables.

Typically, in a claim that uses regression analysis as the basis for an inefficiency analysis

only simple linear regression is used.  For the example cited above, the model would

consist of productivity as the dependent variable and the number of Requests for

Information as the sole independent variable.  The following is an example of the way in

which regression analysis typically is used in a claim.
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Example of Simple Linear Regression Analysis:

The project data for the number of Requests for Information (RFI) issued each week, along

with the quantity of mechanical duct installed, are shown in Table A4.

Table A4:  Sample Data for Regression Analysis Example

Week No. Number of
RFIs

Mechanical Duct
Installation

1 4 280 lf

8 3 380 lf

9 3 360 lf

2 5 300 lf

3 5 210 lf

4 8 180 lf

5 4 310 lf

6 3 330 lf

7 5 270 lf

10 1 300 lf

Total 41 292 lf/week
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Applying linear regression analysis to the data in Table A4 results in a regression model

of:

y = 393.11 - 24.66 x1 (A3)

Where y is the dependent variable representing productivity and x1 is the dependent

variable representing the number of RFIs.  A review of the regression output shows that

the intercept is 393.11.  This is interpreted to mean that when there are no RFIs the

expected productivity is 393 lf/week.  The slope of the model, -24.66, is negative, which is

the direction of the expected slope.  That is, as the number of RFIs increases, the

productivity decreases.  The coefficient of determination,  r2, is 0.55.  This means that the

model explains 55 percent of the variability in the productivity, y.  That means the number

of Requests for Information explain only 55% of the variability in the weekly quantity of

mechanical duct installation.  This indicates that there are other factors affecting the duct

installation rate that are not included in the model.  The general rule of thumb is that a

model with an r2 value of less than 0.70 to 0.75 may not be acceptable.  However, in many

claims the r2 value of 0.55 that was obtained with from given data would be represented

as meaning that 55% of the inefficiencies or overrun resulted from the Requests for

Information.

As noted, regression analysis used in conjunction with a measured mile analysis can

provide useful information.  However, it is important that all possible causes of
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inefficiencies are considered during the model development and that the data is analyzed

to determine whether a linear or non-linear model would be more appropriate.

A3.2.5.  Expert Witness Testimony

Expert witness testimony typically will be used when data are not available to perform one

of the previously-described methods of analysis.  Most often, an expert witness will be

asked to proffer an opinion on the percent or range of inefficiency that would result from

the conditions encountered “based on the expert’s experience.”  This percent of

inefficiency is then applied to the manhours expended to determine the loss of productivity.

The success of expert witness testimony lies wholly in the court’s acceptance of the

credentials and testimony provided by the expert.  Frequently, expert witness testimony is

used in conjunction with industry-published factors, which are discussed in the next

section.

A3.2.6.  Industry Standards and Factor-Based Methods

Several trade organizations publish manuals regarding the loss of productivity due to

individual factors such as weather, overtime, crew size, congestion, supervision, and other
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factors discussed in Chapter 2.  This section summarizes the methods and quantitative

factors presented in several of the most-frequently cited trade publications.

Only one trade organization, Mechanical Contractors Association of America, currently

publishes a list of factors and associated percentage loss of productivity that can be used

for the calculation of productivity losses due to multiple factors.  The publications by other

organizations are limited to the productivity losses incurred from individual factors.  It

should be noted that National Electrical Contractors Association no longer includes the

checklist of factors related to productivity losses in the NECA Manual of Labor Units.  The

last publication date of the NECA checklist was 1976.

A3.2.6.a.  Mechanical Contractors Association of America

The Mechanical Contractors Association of America (MCAA) publishes a booklet titled

Change Orders, Overtime, Productivity [1994].  The section titled “Factors Affecting Labor

Productivity” contains a tabular list of 16 factors, characterized as being beyond the direct

control of the contractor, that may affect productivity.  Each factor has a percentage loss

which could occur for minor, average, and severe conditions.  Table A5 is a summary of

the factors and the associated percentages of loss.



260

Table A5:  MCAA Factors Affecting Productivity

Factor

Percentage of Loss if Condition:

Minor Average Severe

Stacking of Trades 10% 20% 30%

Morale and Attitude 5% 15% 30%

Reassignment of Manpower 5% 10% 15%

Crew Size Inefficiency 10% 20% 30%

Concurrent Operations 5% 15% 25%

Dilution of Supervision 10% 15% 25%

Learning Curve 5% 15% 30%

Errors and Omissions 1% 3% 6%

Beneficial Occupancy 15% 25% 40%

Joint Occupancy 5% 12% 20%

Site Access 5% 12% 30%

Logistics 10% 25% 50%

Fatigue 8% 10% 12%

Ripple 10% 15% 20%

Overtime 10% 15% 20%

Season and Weather Change 10% 20% 30%

The instructions for the use of the factors state that the values are a percentage to add

onto labor costs for change orders and/or original contract hours.  However, there are no

guidelines as to how to handle multiple or overlapping factors.  That is, the MCAA
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publication does not indicate whether multiple factors should be summed, weighted, or

combined in some other way.

A review of the factors in Table A5 shows that the summing of multiple factors can lead to

very large productivity losses.  For example, using the sum of just four factors: Stacking

of Trades, Crew Size Inefficiency, Dilution of Supervision, and Ripple, gives a calculated

loss of productivity of 40% for minor conditions, 70% for average conditions, and 105% for

severe conditions.

According to the declaration of a representative of the MCAA, the information contained

in the factors is not based on empirical data, but was gathered anecdotally from the

membership of MCAA’s Management Methods Committee in the late 1960s or early

1970s.  The factors have been unchanged since first published in 1971.

It should be noted that the MCAA states that:  the factors are expressly intended to be

used only as a point of reference; the specific values must be applied after careful

consideration and review of the facts surrounding the loss of productivity; and the factors

are intended to be used in conjunction with the experience of the particular contractor.  A

review of several court cases where MCAA factors were used as the basis of the

calculation of productivity losses showed that the courts frequently reduced the amount of

the factors used in the claim calculations when determining the award for productivity

losses [American Sprinkler Corporation of America v Veterans Administration, VABCA No.
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3086; Stroh v General Services Administration, GSBCA No. 11029; Clark Construction

Group, Inc. v VAMC West Palm Beach, VABCA No. 5674].

The main advantage of using industry standards or factor-based methods is the ease of

application.  The method requires only a few calculations, using the published factors and

readily-available project information, such as the total number of manhours expended on

the project.  Another advantage of the use of published factors is that this method can be

used prospectively, allowing the advance pricing of change orders that can include all costs

for the work.

A3.2.6.b.  Overtime

The most-frequently cited reports on the effects of overtime on productivity are Bureau of

Labor Statistics Bulletin No. 917 [1947]; Department of the Army “Construction Modification

Impact Evaluation Guide” [1979]; The Business Roundtable Report C-2 [1989]; and

National Electrical Contractors Association (NECA) “Overtime and Productivity in Electrical

Construction” [1989].  Each of these publications contains tables and charts that identify

the loss of productivity associated with working hours in excess of the standard 40-hour

workweek.
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Although it is one of the most-frequently cited sources for quantifying the effects of

overtime in construction claims, Bureau of Labor Statistics Bulletin No. 917 was based on

studies conducted in the 1940s of productivity in manufacturing processes.  For obvious

reasons, the results of these studies may not be appropriate for use in quantifying the

losses of productivity on a construction project.

The Department of the Army “Construction Modification Impact Evaluation Guide” [1979]

includes a graphic depiction of the losses of productivity over a four-week time period for

work schedules ranging from five nine-hour days per week to seven ten-hour days per

week.  The near-linear curves show losses of productivity at the end of the fourth week that

range from a low of approximately 3% for the five nine-hour days per week schedule to a

high of approximately 37% for the seven ten-hour days per week schedule.  The Guide

notes that the curves are presented merely as information on trends and are not meant to

apply to any particular project.

Report C-2 published by The Business Roundtable [1989] addresses the effects of

scheduled overtime on construction projects.  The reported source of the data used to

develop the charts and tables contained in Report C-2 was a series of jobs performed over

a ten-year period on a single project in Wisconsin.  Thus, the analysis and cost effects

presented in Report C-2 were based on a construction project where overtime schedules

were used for an extended period of time.
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The report contains a chart showing the effects on productivity for both 50-hour and 60-

hour workweeks.  The chart depicts a sharp decline in productivity during the first week of

overtime, followed by a gradual improvement through the third week.  Productivity again

declines from week four through week nine, after which there is a leveling from week nine

through week twelve.  The report does not address the effect of overtime for any time

period beyond twelve weeks or any workweek durations other than 50-hour and 60-hour

workweeks.

The NECA “Overtime and Productivity in Electrical Construction” [1989] booklet includes

tables and charts showing the loss of productivity for week one through sixteen for

schedules ranging from five ten-hour workdays per week to seven twelve-hour workdays

per week.  The respective productivity losses at the end of week sixteen range from

approximately 31% to 62%.

The NECA factors appear to be based on the data from the Bureau of Labor Statistics

studies from the 1940s.  However, original data from a NECA study conducted in 1964 in

southeast Michigan correlate closely to the Bureau of Labor Statistics data.  Thus, NECA

concludes that this gives “substantial confidence in the applicability of the BLS values to

electrical contracting” [NECA, 1989, p9].
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Additional individual factors were addressed in the various reports identified in Table A1

found in Chapter 2.

A3.2.7.  Modified Total Cost Method and Total Cost Method

The final and most imprecise methods to establish a measurement of inefficiencies are the

modified total cost method and the total cost method.  The total cost method is simply a

comparison of the total costs in the contractor’s bid estimate to the total costs actually

expended.  In this regard, the total cost method is really a quantification of damages rather

than a measurement of inefficiency.  In the case where the total cost method is being used

to quantify inefficiencies, the total manhours in the bid estimate are compared to the total

manhours expended.

The total cost method can be used only when the following four requirements are met: (1)

the contractor’s actual losses are impractical to prove, (2) the contractor’s bid estimate was

reasonable, (3) the contractor’s actual costs were reasonable, and (4) the contractor was

not responsible for any of the cost increases [Servidone Construction Corp. v. United

States, 931 F2d 860 (Fed.Cir. 1991); Southwest Marine, Inc. v Armed Services, ASBCA

No. 36854].
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In the event that the four requirements of the total cost method can not be met, it may be

possible to quantify the inefficiencies using the modified total cost method.  This method

allows the contractor’s estimated costs to be corrected for errors in the bid and/or for those

portions of the cost overruns attributed to the contractor to be broken out of the

calculations.  These additional considerations are undertaken in an effort to improve the

accuracy of the measurement of the impact, thereby increasing the likelihood that the

measurement will be accepted.

Since both the total cost method and the modified total cost method can be easily

challenged, they are truly measurements of last resort.  However, the ease of application

of these methods, as well as the fact that these methods tend to maximize a contractor’s

potential recovery, make them popular with contractors.

A3.3.  Proposed Productivity-Loss Models

Several models have been proposed for the measurement of the loss of productivity

resulting from multiple factors or multiple changes.  These models include:

(1) Forward Pricing Model

(2) Leonard Model

(3) Thomas-Yiakoumis and Thomas-Smith Model

(4) Hanna, Russell, Gotzion, and Nordheim Model
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(5) Thomas and Oloufa Model

(6) Disruption Distribution

Although none of these models have been accepted by the courts or the construction

industry as the method of choice for the measurement of inefficiencies, these models do

represent the published attempts at creating alternatives to the previously-described, court-

accepted methods.  The following is a description of each of the six models.

A3.3.1.  Forward Pricing

Kasen and Oblas [1996] developed and used the Forward Pricing Model during a portion

of the construction of a water treatment plant in Seattle, Washington.  The model was

described as an attempt “to identify and integrate all known variables into one procedure

for settlement” [Kasen and Oblas, 1996, p14].  The Forward Pricing formula for determining

the value of the impact of a change is:

Impact = D x (T + C + F) x Mv x Mn (A4)

In Equation A4,

D = the sum of the direct costs that have impacts.
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T = timeliness, representing the time between the notice to proceed and the scheduled

start date of the activity related to the change work.  For the Seattle project, this

factor received full impact value for changes with five weeks or less of time and no

impact value for those changes with 12 weeks or more of time, with decreasing

gradations for weeks 5 to 12.

C = complexity of the disciplines or trades involved in the change work.  Participation for

each trade is determined by the direct cost breakdown for the change work.

F = the future factor or the future impact dealing directly with the timing of the change

and the current schedule float.  For the Seattle Project, changes with float of five

weeks or less received full value, and changes with float of 12 weeks or more

received no impact value, with decreasing gradations for 5 to 12 weeks.

Mv =  the cumulative value multiplier, representing the total dollar value of changes that

actually have impact.  For the Seattle Project, this factor was applied only when the

cumulative dollar value of changes having impact reached the minimum value of 2%

of the base contract value.  The factor reached its maximum value when impact

changes amounted to at least 11% of the contract value.

Mn =  the cumulative number multiplier, representing the number of changes that actually

have impact on the contact.  For the Seattle project this factor was applied when the

changes having impact numbered a minimum of 200 changes, and reached a

maximum value when there were at least 1,100 impact changes.  The parameters

for this factor represented heavy industrial work of two years or more duration.
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The authors explain that the factors, multipliers, and thresholds are intended to be

negotiated by the owner and contractor on a project-by-project basis.

The advantage of the Forward-Pricing Model is that it supports prospective pricing of

change orders, allowing for change orders to be executed as full and total compensation

for the change work.  The main disadvantage of the model is the difficulty in arriving at

mutually agreeable factors, multipliers, and thresholds for both the owner and the

contractor.  Typically, owners are concerned with awarding compensation for productivity

losses that may not be experienced, and contractors are reticent to accept calculated

productivity losses that subsequently may be found to be less than the losses actually

experienced.

A3.3.2.  Leonard Model

The Leonard Model was developed for the purpose of predicting the productivity losses

due to changes orders [Leonard, 1988].   The model is based on data from 90 cases drawn

from 57 projects that were mainly located in Canada and constructed between 1978 and

1988.  In the development of the model, three relationships between change orders and

productivity were considered:  (1) the frequency of change orders, which was measured

as the number of change orders divided by the number of months of the contract; (2) the

average size of change orders, which was measured as the change order hours divided
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by the number of change orders; and (3) the percentage of change order hours, which was

measured as the number of change order hours divided by the actual contract hours,

expressed as a percent.

The results of the simple linear regression analysis of the data showed a low degree of

correlation between the number of change orders and productivity losses (coefficient of

correlation of 0.13) and the average size of change orders and productivity losses

(coefficient of correlation of 0.18).  However, the correlation coefficient was measured as

between 0.82 and 0.90 for the percentage of change order hours and productivity losses

for cases where change orders were the only identified major cause of productivity-related

impact.  The results of the analysis were summarized in figures that depicted a straight-line

function between the percentage of change orders and the percentage loss of productivity.

The instructions on using the model require that two measures must be determined: (1)

total actual manhours for the change order work and (2) total manhours spent by the

contractor on both the changes and original contract work.  Using the total actual manhours

expended on the contract, the total actual contract manhours are calculated by subtracting

the change order manhours and any non-productive manhours that were attributable to the

contractor or non-compensable circumstances, such as deficiency rework or inclement

weather.  Next, the percentage of change orders is calculated by dividing the change order

manhours by the total actual contract manhours and multiplying the result by 100.  Using

this number, one can read directly from the appropriate figure the percentage loss of
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productivity.  The percentage loss of productivity is applied to the actual contract manhours

to determine the total loss of productivity due to change orders.

Using the data given in Table A3 for the Measured Mile example, the following loss of

productivity was calculated with the Leonard Model, the total actual contract manhours are

calculated by subtracting change order manhours and manhours lost due to inclement

weather from the total actual manhours.  This yields:  1552 - 165 - 40 = 1347 manhours;

total change order manhours were 165 manhours.  This gives a ratio of 165 / 1347 =

12.25%.  From the Leonard Model for Civil and Architectural work, where changes are the

only cause of lost productivity, the predicted percent loss of productivity is approximately

14%.  Multiplying 14% times the actual contract manhours of 1347 manhours results in a

calculated loss of 189 manhours on the original contract work as a result of performing the

change work.

This example tells us that, exclusive of the 165 manhours attributed directly to the change

work, an additional 189 manhours of lost productivity would be expected as a result of

performing the change work.  These additional manhours represent the effects of change

work on unchanged work.  Thus, a total of 354 manhours (165 + 189) would be expected

to be expended as a result of the identified change work.
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As acknowledged throughout Leonard’s study, the measured mile method (called the

differential method) is the preferred method for the calculation of productivity losses.  In the

example given, comparing the predicted productivity loss obtained from the Leonard model

to the calculated loss using the measured mile shows that the Leonard model gives a

predicted loss of productivity that is (354 mhs - 165 mhs) / 165 mhs = 114% higher or more

than twice as much as the calculated loss using the measured mile.  This inflated estimate

may be due to the fact that Leonard’s study was based on the effects of multiple changes;

whereas the measured mile example reflects only a single change.  In addition, the great

difference in the two calculations may result from the fact that all of the data used by

Leonard were from the records of a construction claims company.  That is, the data were

extracted from contractors’ claims, claim analyses, expert reports, and files only from

projects for which claims were prepared.  Thus, the data may not be representative of the

construction industry in general.

A3.3.3.  Thomas-Yiakoumis and Thomas-Smith Model

Thomas and Smith [1990] proposed a model for determining the expected productivity unit

rate for anticipated conditions associated with a change.  This model was based on an

earlier, similar model that predicted crew productivity based on ideal productivity rates

modified by various categories of factors that affect labor productivity [Thomas and

Yiakoumis, 1987].  Using data from 11 masonry projects located in central Pennsylvania,
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the authors identified the types of disruption experienced and developed frequency and

impact factors for each of the disruption types.  The occurrence frequency is based on the

number of disruptions divided by the number of disrupted days on the projects.  The impact

factors represent the relative impact as measured against undisturbed productivity.  The

types of disruptions, relative frequency, and impact factors are summarized in Table A6.

Table A6:  Disruption Frequency and Relative Impact Factors

Disruption Occurrence Frequency Impact Factor
None 1.000 1.000
Weather 0.064 3.125
Congestion 0.069 2.857
Sequencing 0.024 4.000
Materials 0.033 1.852
Rework 0.004 2.439
Supervision 0.018 1.695
Staffing 0.002 1.724
Other 0.049 4.762

The equation for determining the expected productivity unit rate is:

 n 
E(Pr) = Pnorm x (1 + Σ fiRi) (A5)

i=1
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Where
E(Pr) = the expected productivity unit rate for the anticipated change conditions.
fi = the relative frequency of the factor i.
Ri = the relative average impact for factor i.
n = the number of factors experienced for the change.

The calculated expected productivity unit rate is to be used for the remaining contract work

as well as the change work.  Note that the unit rate measurement of productivity is labor

hours divided by output units.  Thus, decreases in productivity are represented by higher

unit rates.

Example:  The start of construction of a masonry foundation is delayed due to unforeseen

site conditions.  As a result of the delay, the foundation work will be constructed during the

rainy season, which is less conducive to high productivity for masonry foundation work.

In addition, as a result of the delay, the masonry work will be performed concurrent with

the completion of the underground utilities, necessitating multiple crews working in the

same areas.

The expected productivity is calculated using the factors for weather and congestion:

E(Pr) = Pnorm x (1 ((0.064)(3.125) + (0.069)(2.857))

= Pnorm x (1.397)
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Thus, the expected productivity unit rate is 39.7% higher than the normal productivity unit

rate.  As noted, when using the unit rate measurement for productivity, decreases in

productivity are represented by higher unit rates.

The advantage of this model is the ease of use, once the factors are established.

However, significant research and data analysis would be necessary to develop the factors

for each trade or contractor.  The literature contained no record of this model being used

as the basis for the calculation of productivity losses for the settlement of a claim on any

project.

A3.3.4.  Hanna, Russell, Gotzion, and Nordheim Model

Hanna, Russell, Gotzion, and Nordheim [1999] used stepwise regression analysis to

develop a model to predict the effects of change orders on labor productivity.  The data

used were from surveys completed by 26 mechanical contractors on 61 construction

projects.  The methodology and factors used were first presented by Hanna, Russell, and

Vandenberg [1999].

During the model development, several factors were considered that proved to be

statistically significant, such as the timing of changes, the number of changes, and the

amount of change orders.  Additional factors considered were:  the type of project,
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construction delivery system, owner type, specified work performed, number of years of

experience of the project manager, number of similar projects completed by the project

manager, and number of similar size projects completed by the project manager.  None

of these additional factors were included in the final model as they were not found to be

statistically significant in predicting the loss of productivity.

The final model for projects impacted by change orders was given as:

Delta % Total Labor Hours = -0.169 - 0.001534 * CHGEST-
0.00073 * NUMCHG + 0.07034 *
WTIMING + 0.000032 *
NUMCHG * CHGEST

(A6)

Where
CHGEST = amount of change, which is measured as the estimated change order hours

as a percentage of base estimated hours.
NUMCHG = number of change orders on the project.
WTIMING = timing of the changes; the project is divided into six segments: before

construction (0 factor); 0 - 20% (0.20 factor); 20-40% (0.30 factor); 40 - 60%
(0.35 factor); 60 -80% (0.10 factor); and 80 - 100% (0.05 factor).

The calculated value of Delta % Total Labor Hours is applied to the actual total labor hours

expended on the project to arrive at the total number of labor hours lost due to inefficiency.

It should be noted that the final model had an R2 value of 0.544, which indicates that

almost half of the change in the labor hours is a result of factors not considered by the

model.  Typically, an R2 value of at least 0.70 to 0.75 is desired.
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The advantage of using this type of model is the relative ease of application, since the

required data normally can be extracted from the project records without a great deal of

effort.  However, since the model requires the total number of hours actually expended on

the project, this model only can be used retrospectively.  Although it may be possible to

use the model in a prospective manner, the authors provide no guidance on the procedure

to be followed for this case.  An additional disadvantage of the model is that the low R2

value of the final model may make the use of the model susceptible to challenge.  The

literature contained no record of this model being used as the basis for the calculation of

productivity losses for the settlement of a claim on any project.

A3.3.5.  Thomas and Oloufa Model

Thomas and Oloufa [1996] developed a model for the quantification of labor inefficiencies

resulting from schedule acceleration and compression of electrical work on construction

projects.  The data used in the development of the model represented approximately 400

weeks of construction from five projects.

The general steps in the application of the model are:

(1) Calculate the planned or unimpacted weekly labor consumption percentages.

(2) Calculate the actual weekly labor consumption percentages.
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(3) Calculate the difference between the planned and actual weekly labor consumption

percentages.  This difference is referred to as the ‘weekly labor rate deviation.’

( 4) Identify the phases of the work based on the actual manpower level.  The model

uses four phases:

Phase 1 - begins when there are at least two electricians continuously assigned

to the project until the workforce reaches 0.4Mp, where Mp = the

planned maximum number of electricians.

Phase 2 - the number of electricians consistently exceeds 0.4Mp until the Mp is

exceeded.

Phase 3 - the number of electricians exceeds Mp until the number decreases to

Mp.

Phase 4 - the number of electricians is Mp until the number decreases to less

than 0.4Mp.

(5) Use the curves provided for the appropriate phase and the calculated weekly labor

rate deviation to determine the weekly performance ratio (PR) value.

(6) Calculate the gross weekly inefficient workhours based on the PR value and the

actual workhours:

Gross Inefficient Workhours =  Actual Workhours - Actual Workhours (A7)Performance Ratio
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(7) Calculate the net weekly inefficient manhours by multiplying the Gross Inefficient

Manhours by and adjustment factors based on the type of project: 1.05 for

industrial; 0.92 for commercial; 0.82 for institutional; and 1.00 for other.

(8) Calculate the overall percentage loss of efficiency:

Project Loss of Efficiency (%) = Total Inefficient Hours  x 100 (A8)Actual Hours - Inefficient Hours

(9) Validate by correlating weekly inefficiencies to specific events.

The advantage of this model is the relative ease of application.  With the exception of the

planned manpower curves, the required data normally is found in the project records.  The

planned manpower curve occasionally can be obtained from a resource-loaded schedule,

if available, or directly from the electrical contractor.  However, since the model requires

the actual weekly manhours expended on the project, the model is limited to retrospective

applications.

An additional disadvantage is that the methodology “involves a comparison of actual labor

consumption rates to the planned rate on normal or unimpacted projects”  [Thomas and

Oloufa, 1996].  This assumes that the planned productivity rates are reasonable and

attainable for the subject project, and that the planned consumption rates are the most

efficient.  It makes a much more compelling argument to use demonstrated productivity

rates rather than unproven, planned productivity rates as a basis of comparison.  Also, the

application of the method may result in an overstatement of the productivity losses.
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Depending on the “phase” during which manhours are recorded, the model indicated

significant efficiency losses even in situations when significantly fewer manhours were

expended than were planned.

A3.3.6.  Disruption Distribution

Finke [1998] proposed to quantify disruptions caused by changes through the use of a

disruption distribution method.  The method, was described as analogous to the moment

distribution method in structural analysis [Finke, 1998, p494]:

“. . . each activity in a contractor’s scope of work will represent a separate

joint in a structural frame, with each such joint being connected to every

other joint by a member of some stiffness greater than or equal to 0.  If it is

determined that one activity can have no disruptive effect on another activity

(because, for example, the potentially disrupted activity has already been

completed) the sensitivity of the causal relationship linking the two activities

will be 0 and no disruption will be distributed through it. . . .”

The model defined both qualitative and quantitative sensitivity factors.  The qualitative

sensitivity factors, which would have a value of either zero or one, included consideration

of location, time of performance, resource type, and supervisor.  The quantitative sensitivity

factors, which could be greater than or equal to zero, would reflect the degree to which
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changes in one activity would disrupt other activities based on consideration of the type of

work, crew size, and crew composition.

The disruption was to be quantified by multiplying the qualitative and quantitative sensitivity

factors by the number of manhours added to the working conditions represented by the

factors.  As with the moment distribution method, the process of determining the disruption

is iterative, resulting in the number of manhours of disruption for each of the causes for

which a calculation is performed.

As noted by Finke, the disruption distribution method presented is not “a complete ready-

to-use method” in that no values for the qualitative factors are given.  Further, Finke noted

that the amount of detailed information required and the computations involved may make

the disruption distribution method impractical.  In fact, Finke suggests that the best use of

the disruption distribution method may be to show how difficult such an analysis would be,

thus making the argument for the use of existing, easy-to-use factor-based models.  The

literature contained no record of this type of model being used as the basis for the

calculation of productivity losses for the settlement of a claim on any project.



282

A3.4.  Summary Comparison of Methods

Table A7 contains a summary comparison of the most-commonly used methods of

measuring losses of labor productivity in construction.  Due to the vast differences in and

the lack of industry acceptance of the Proposed Productivity-Loss Models discussed in

Section 3.3., those methods are not included in Table A7.  As shown in Table A7, the only

commonly used methods that can be applied prospectively are Industry Standards or

Factor-Based Methods and Expert Testimony.  However, these methods are highly

subjective and may not be accepted by certain courts.  Further, as previously noted, many

of the existing Industry Published Factors are not based on empirical data and/or may not

be applicable for construction.
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Table A7:  Summary Comparison of Commonly Used Productivity Loss Measurement
Methods

Method Description Source of
Data

Characteristics
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Measured
Mile

Comparison of impacted to
unimpacted productivity rates
for similar work on the same
project.

Project daily
reports, pay
applications,
cost records

Measured
Mile for
Comparable
Work

Comparison of impacted to
unimpacted productivity rates
for different work on the same
project.

Project
records for 
comparable
work

Measured
Mile for
Comparable
Projects

Comparison of impacted
productivity rate on one
project to unimpacted
productivity rate on a different
project(s).  

Records for
comparable
project(s)

Statistical
Models

Statistical methods, such as
regression analysis, to
determine the productivity
loss attributable to various
factors.

Records for
affected
work and
model
factors

Industry
Factors

Published factors by trade and
construction organizations are
applied to a pool of manhours.

Various
industry
publications

Expert
Opinion

Testimony provided by an
expert witness.

Expert
experience

Modified
Total Cost

Difference between the actual
total costs and the amount bid
- adjusted for bid errors and
losses due to contractor
actions.

Project cost
records

Total Cost Difference between the actual
total costs and the amount in
the bid.

Project cost
records

Characteristics  = high; yes    = low; no
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APPENDIX B:  PARTICIPATION OF HUMAN SUBJECTS MEMO
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