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ABSTRACT 

With the increasing growth in computer processing power, computer based 

computational fluid dynamics simulations are finding increasing acceptance and use in the field 

of internal combustion engine development. Once fully developed, such simulations provide 

detailed and expedient tools for testing existing theories, as well as new ideas.   

While numerous studies on wave propagation and fluid flow in intakes manifolds exist, 

most restrict the analysis to a single intake runner and port, examining only the dynamics from 

the runner-to-plenum junction downstream to the valve. While such analyses provide 

comprehensive models for wave propagation dynamics in the runner, little is published on the 

fluid dynamics and wave propagation in the plenum, and the interactions between runners when 

an intake manifold’s geometric constraints prevent symmetry in the manifold.  

This paper will examine the modeling of a 2003 specification Dodge Motorsports 

NASCAR Restrictor Plate engine using Ricardo’s WAVE engine simulation computational fluid 

dynamics software. This examination will include an introduction to the software and required 

engine data for constructing a comprehensive model, the process used to validate the 

simulation’s output with acquired engine performance data, and the use of response surface 

methodology to optimize the dimensions of the plenum insert associated junction. Additionally, 

an analysis of the problems with modeling this area of the manifold using one-dimensional CFD 

will be conducted, as well as a discussion of the theories surrounding the insert. Finally, a new 

hypothesis regarding the insert as well as future work to examine this hypothesis will be 

introduced. 
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CHAPTER ONE: INTRODUCTION 

In any form of auto racing, the ability to quickly and efficiently develop engines for 

power and reliability is a key determinant in that team’s success and ability to continue racing. 

The inability to find power and reliability results in races lost. The inability to find power and 

reliability in an efficient manner results in excessive time and cost. Over time, such inefficiencies 

lead to the demise of a racing team.  

In recent years, the dramatic growth in computer processing power has resulted in a 

corresponding growth in computational fluid dynamics software packages. One such software 

package, Ricardo’s WAVE, is a one-dimensional CFD software suite designed specifically for 

modeling internal combustion engines. WAVE uses an iterative solver algorithm to solve the 

boundary conditions and governing equations for the entire engine model, as defined by the 

modeler. Though three-dimensional CFD software suites exist, as of the writing of this paper, 

none were capable of dealing with two-phase fluid flow, a critical component of an internal 

combustion engine.  

The traditional method of engine development, particularly in NASCAR racing, is the 

“cut and fit” method, whereby an idea or theory is tested simply by building a new part and 

physically testing it in a running engine. While the results of such tests are informative and have 

led to substantial improvements in power and reliability, the time and cost of such 

experimentation is quickly becoming prohibitive in today’s fast-paced computerized world 

where computer programs can construct and test new components and new specifications in a 

matter of minutes or hours, as opposed to days and weeks. Additionally, the time and cost 
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savings in part fabrication and physical testing quickly cover the initial setup cost of the 

simulation software and associated data acquisition hardware.  

Extensive use of statistical modeling techniques can further increase efficiency in engine 

development time and cost. By employing statistical Experimental Design, one can collect data 

in a manner that permits construction of comprehensive statistical models of the physical engine. 

By using the Response Surface Analysis Method of model optimization these statistical models 

may be optimized in terms of all included variables simultaneously. Such statistical modeling 

drastically reduces development time by determining mathematical relationships between 

different variables using acquired data, and then mathematically finding the optimum settings for 

that system.  

It is not the purpose of this paper to provide an in-depth study of Ricardo’s WAVE 

software or Response Surface Methodology. Such in-depth studies on RSM and MRSM (RSM 

with multiple responses) and their use in engine development have already been conduced by 

Dvorak and Hoekstra (1, 2). Additionally, the work of Jemail (3) provides a detailed analysis of 

the construction of a WAVE simulation using dynamometer data. The intent of this paper is to 

utilize these two tools to examine the relationships between intake runner upstream diameters 

and plenum insert dimensions in a NASCAR restrictor plate intake manifold.  
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CHAPTER TWO: METHODOLOGY

The initial phase of the project involved construction of the WAVE simulation of the 

baseline engine. Construction of such a model requires substantial data acquired from a running 

engine, in addition to physical dimensional data. Such data as crank-angle resolved combustion 

data at each RPM step for each engine cylinder, oxygen sensor data, exhaust temperature data, 

intake manifold air charge temperature data, wall temperature data for the entire intake and 

exhaust system, and valve motion data.  

Initial data was collected at Evernham Motorsports. Flow data for the cylinder heads, 

intake manifold, manifold insert, restrictor plate, carburetor, and exhaust headers was obtained 

on EMS’ SuperFlow 1020 computerized flow bench. Combustion data for the initial setup was 

acquired on EMS’ dynamometer.  Ideal valve motion and intake manifold geometry were also 

obtained through EMS. While not all data required was available through EMS, a rough initial 

model was constructed based on the supplied data.  

After construction of the initial model was completed, another experiment was conducted 

at Arrington Racing Engines on their dynamometer. Combustion data was obtained through an 

MTS combustion data acquisition system.  In-cylinder pressure was measured using piezo-

crystal transducers integrated into the spark plugs. All exhaust system wall temperatures were 

measured using thermocouples attached to the outer walls of the header system, while EGTs 

were measured with thermocouples mounted in adapter plates that were sandwiched between the 

cylinder heads and header primaries. Intake manifold wall temperatures were measured with 

thermocouples bonded to the interior walls of the intake manifold. Oxygen sensor readings were 

taken using a single wide band oxygen sensor mounted downstream of the second merge 
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collector on the driver’s side header. In addition to the above data, oil pressure, temperature, air 

flow, fuel flow, fuel temperature, and fuel pressure were all measured through the 

dynamometer’s built in data acquisition system.  

In addition to the dynamometer acquired data, the cylinder heads were flowed on ARE’s 

Super Flow 1020 flow bench, and a coordinate measuring machine was used to obtain detailed 

area progression profiles for the intake manifold.  Detailed area progression data for the intake 

port of the cylinder heads was obtained from a Catia model of the port.  Intake manifold, plenum 

insert, carburetor, and restrictor plate flow data obtained at EMS was retained for use in the new 

model.  In place of the ideal valve motion supplied by EMS, Dodge Motorsports provided a full 

set of Spintron valve motion traces for use with the model, thus allowing the full effects of the 

valvetrain dynamics to be modeled with one set of parameters.  

Upon initial setup of the new model, given the dimensions and combustion data acquired 

through ARE, validation of the baseline model was conducted. During the dynamometer testing 

at ARE, three different engine configurations were tested, thus providing an A, B, and C test for 

use when validating the simulation against the real world data. All three tests used ARE engine 

block number 179, with the baseline setup built on September 9, 2003.  The A test was the 

Dodge Motorsports restrictor plate engine configuration for the first part of the 2003 season. For 

test B, the size of the restrictor plate was changed to reflect NASCAR’s move from the 7/8” 

diameter restrictor plate to the 29/32” diameter plate. Test C removed four inches of header 

length between the first and second merge collectors while also retaining the larger restrictor 

plate. An additional test D was conducted on the dynamometer, but the change in engine output 

was small compared to the B and C tests, and was therefore not used for validation purposes. 

Once validated, the simulation of Test C was used for the intake manifold optimization tests due 
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to its greater output on both the dynamometer and on the computer.  

Much is known and published about intake manifold runner dynamics, specifically wave 

propagation and the effect of the shape of the open end of the runner.  Brandstetter (4) identified 

significant features of inlet system tuning. However, little has been published in regards to 

runner-to-runner interactions in common-plenum manifolds (as opposed to individual runner 

manifolds, or velocity stacks). Though Tabaczynski (5) touches briefly on such interactions in 

reference to a Jaguar racing engine, no qualitative discussion ensues. Additionally, no 

publications have been found regarding the flow dynamics in the uniquely shaped NASCAR 

restrictor plate manifold plenum inserts.  For a schematic of the current manifold design, refer to 

Figure 1. The insert creates what is referred to as the “secondary plenum”: an additional plenum 

volume bounded by the outer surfaces of the insert and the inner walls of the manifold’s plenum. 

Experimentation on running engines has shown dramatic gains in IMEP and dramatic reductions 

in cyclic IMEP variability with the inclusion of such inserts on these engines.  

Two main theories exist regarding the function of such inserts. The first theory views the 

secondary plenum volume as a damping volume, where the pressure waves reflecting off of the 

back side of the intake valve are trapped and dampened. Such a dynamic would dramatically 

reduce the number and magnitude of reflection waves that could cross the plenum and cause 

interference in other runners. It is such wave interference, both constructive and destructive, 

which greatly increases cyclic variability of cylinder charging. This theory, however, is not 

consistent with intake manifold time-pressure data observed at Arrington Engines on the test 

engine. A pressure transducer placed in the secondary plenum volume showed sixteen significant 

wave fronts per engine cycle, rather than the eight significant fronts that would be expected if the 

secondary plenum were acting as a damper. This does not necessarily disprove the theory, 
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however, as no pressure data was observed in the main plenum on the test engine. It is possible 

the secondary plenum does damp the waves relative to the main plenum.  

The second theory views this secondary volume as a reservoir of air from which the 

cylinder can draw an air charge under such heavily restricted breathing conditions. This theory is 

supported by the engine’s response to runner volume. According to Tabaczynski’s (5) work on 

intake system tuning, maximum volumetric efficiency is achieved with a mean inlet mach (MIM) 

number of 0.5. However, given the heavily restricted inlet flow, the most powerful NASCAR 

restrictor plate engines have shown power gains with runner diameters sufficiently large that the 

MIM is closer to 0.3, rather than 0.5, indicating the presence of some other governing dynamic in 

the inlet system.  

The goal of the RSM analysis is to analytically predict the dimensions of the upstream 

runner diameter and insert to provide the maximum brake horsepower. The results of this 

analysis should lead to a further understanding of the dynamics at the insert-to-runner junction, 

as well as the secondary volume’s main role in the fluid flow in the manifold. In order to capture 

as many geometric entities as possible while retaining a manageable matrix, the following 

assumptions were made:  

• Intake runner geometry for cylinders 1 and 8 are symmetric. 

• Intake runner geometry for cylinders 2 and 7 are symmetric. 

• Intake runner geometry for cylinders 3, 4, 5 and 6 are symmetric.  

• Intake runner area progression is linear from upstream end of runner to cylinder head 

mating flange. 

Additionally, the variable used to quantify the geometry of the insert at the runner to plenum 



interface is referred to as the “window”, which is the area between the bottom of the intake 

runner and the insert “finger” which extends from the inner wall of the insert into the runner’s 

upstream end (See Figure 1). The area above the “finger” was calculated by subtracting the area 

of the window from the area of the runner at that point. The cross sectional area of the intake 

runner at the cylinder head flange is held constant, and for cylinders 1, 2, 7 and 8, where the 

runner’s geometry is divided into 2 lengths for each cylinder in the WAVE model, the midpoint 

area is the average of the upstream and downstream areas, providing a linearly decreasing area 

progression from plenum to cylinder head.  

 

 

Figure 1: General shape of NASCAR restrictor plate manifold and insert 

 

Typically, the first step in constructing a statistical model is the screening test, in which a 

2 level factorial design is created and executed in an attempt to determine which potential main 
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effects are statistically significant. By screening the main effects with this smaller design, one 

can save significant time and cost in experimentation by excluding effects which are determined 

to be insignificant. In this case, however, experience indicates that all six factors in the intended 

design are significant to some degree, and the presence of the simulation makes the time and 

monetary cost to perform the extra runs negligible. Additionally, because little is truly 

understood regarding the dynamics of the restrictor plate manifold and insert system, any 

findings in the second order design are of interest.  

Therefore, the design created and executed in the WAVE software was a six- factor 

central composite design, or CCD. The CCD design has many benefits in this particular 

application. In order to help visualize the design space, one can think of a three factor CCD in 

three dimensions. A CCD obtains data at the corners, center, center of the edges, and center of 

the faces of the cube. Additionally, points radial to the center of the cube outside of the cube’s 

dimensions are obtained, such that they and the corner points of the cube define a curved 

volume. These radial points, referred to as axial points, are defined by a scalar α. This scalar is 

the ratio of the axial point’s distance from the design center to distance from the cubic face to the 

design center.. If α = 4√F, where F = number of factorial points, then the volume enclosed by the 

axial points and corner points is spherical. Such a shape results in a design that is said to be 

rotatable.  A rotatable design is preferred due to the constant scaled prediction variance 

throughout the design space. Because the optimum setting’s location in the design space is 

unknown at the commencement of the experiment, a constant scaled prediction variance is 

essential to ensuring that the mathematical optimum settings are an accurate prediction of the 

response (6). In the case of this 6 factor design, this yields an α = 2.828. Using the existing 

manifold dimensions as the center of the design, the +/- 1 boundaries are set to +/- 0.200” 
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equivalent diameter. These values are based on the available material thickness in the existing 

manifold’s casting surrounding the current runners. Therefore, the majority of the design takes 

place within the physical constraints of the existing casting. As with any experiment designed to 

examine existing theory, it is also necessary to examine regions outside of the current constraints 

in a search for theoretical gains. This factor, combined with the α = 2.828 results in runner 

diameters at the axial points outside of the physical casting.  

The resulting six-factor CCD matrix yields 76 experimental runs in addition to the center 

runs. The center runs are intended to provide two critical features to the design space. The first is 

to provide an estimate of curvature to the second order design.  The second feature is to provide 

an estimate of variance in the design space. Combining a sufficient number of center runs with a 

rotatable design, the experimenter obtains a good understanding of the prediction variance in the 

entire design region. However, a computer simulation such as WAVE affects the number of 

center runs necessary to achieve this prediction variance. The WAVE simulation can be 

configured to begin its iterative calculations at two different locations. The first choice is to use 

the final boundary conditions from the previous experiment as the initial boundary conditions for 

the next. While this theoretically improves processing time, it eliminates the essential 

independence of the runs from one another. The second choice, and the one chosen for this 

experiment, uses a set of global initial conditions for every run in the entire matrix. This allows 

the experimental runs to be conducted truly independently from one another, however, yields an 

identical response for every replicate of an experimental run. In short, the replicate variance in 

the design space = 0. Therefore, the number of center runs for the experiment is 1, to provide for  



curvature in the design. Any additional center runs would provide identical responses, and are 

therefore wasteful.  

Upon completion of the 77 run matrix, the WAVE model was modified for the 

experimental runs. Each experimental run requires seven cases in WAVE, as each experiment 

must be conducted at each of the seven RPM steps measured on the dynamometer. The resulting 

539 cases in WAVE were broken down between three copies of the WAVE model. The 

computers available for running the simulations begin to slow drastically as the number of cases 

exceeds 250, requiring the multiple copies of the simulation. Total simulation time for the 77 run 

matrix is approximately 15 hours.  

The output from the 539 total cases was broken down by experimental run, at which time 

the average brake MEP was calculated. Using the average BMEP for each experimental run, the 

six-factor matrix was analyzed using Minitab v13. Using the data to define a full second order 

relationship, terms were eliminated one by one based on the highest remaining p value in the set. 

This iteration continued until the mean squared error of the system was minimized.   
The relationship resulting from screening the second order design contains numerous 

terms with p values greater than the 0.1 significance level intended. This indicates correlation 

between the various terms that is not captured in this experiment.  Despite this fact, the 

relationship appears to provide a reasonably good predictor of the simulation’s response, due to 

the MSE of 0.1114 and an adjusted R-squared value of 98.3%. Given this, the system was 

analyzed for a point of maximum response using the stationary point method. This method uses 

matrix algebra to find the point where all of the partial derivatives of the defining relation are 

equal to 0. This location can be a maximum, minimum, or saddle point. Additionally, it is 

possible for the point to be a local maximum or minimum, where the system’s global peak values 
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lie outside the design space.  

The stationary point analysis yielded a stationary point of x1 = -117.2”, x2 = - 239.1”, x3 = 

-151.6”, x4 = 5.4”, x5 = 1.2”, and x6 = 7.0”.  Clearly the stationary point for this system lies far 

outside the boundaries of the design space, not to mention physical possibility. Therefore, no 

mathematical maximum, minimum, or saddle point within the design space exists.  
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CHAPTER THREE: RESULTS 

Because there is no optimum point within the design space, the shape of the relationship 

within the design region must be examined in order to determine the direction in which the 

optimum settings reside. Using Minitab 13, there are two methods for examining the shape of the 

relationship in the design region. The first method is by using the built-in response optimizer 

function. While this function rarely produces the optimum point in the relationship, even when a 

stationary point exists, it is fairly good at approximating the shape of the region. Figure 2 shows 

the response optimizer’s interface. From this figure, it is clear that the relationship is near an 

optimum in terms of runner equivalent diameter, but still desires a larger window area. Table 1 

shows the values determined using the response optimizer.  

 

 

Figure 2: Minitab 13 Response Optimizer interface 
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Table 1 

Response Optimizer Function Values                                                                        

UMethodU 

Variable                                                            A              B                C 
 
Window Equiv. Diam, Runners 1/8 2.401”       2.401”       1.880” 
 
Window Equiv. Diam, Runners 2/7 2.401”       2.401”       1.880” 
 
Window Equiv. Diam, Center Runners 1.945”       1.945”       1.580” 
 
Upstream Equiv. Diam, Runners 1/8 2.832”       2.795”       2.470” 
 
Upstream Equiv. Diam, Runners 2/7 2.820”       2.650”       2.470” 
 
Upstream Equiv. Diam, Center Runners 2.321”       2.279”       2.160” 
 
Predicted Response, BHP 416.54       416.65      413.87 
 
Simulated Response, WAVE, BHP 415.25       415.36      413.52  
Prediction Method: A = Minitab computed optimum response, B = author-forced optimum response within Minitab, 
C = best predictor from CCD Matrix 

 

 
The Minitab Response Optimizer will predict an optimum location based on user  

specified criteria. These criteria are:  

• Desire for a maximum, minimum or target response  

• Minimum, maximum and target response values  

• Relative importance of each main effect in the solution to the experimenter  

Column A in Table 1 is the Minitab optimized solution based on a minimum acceptable response 

of 411 BHP, attempting to maximize the BHP, with a target value of 420 BHP. These values 

were chosen based on experience with the optimizer function and its interface with the data. 

Additionally, the experimenter may force the settings for the main effects based on the graphs 



shown in Figure 2. Column B of Table 1 shows those forced settings. These two optimum 

settings are then compared to Column C, which illustrates the single highest output settings from 

the 77 run matrix. From this comparison, the advantages of the RSM relationship are clear, 

despite the lack of a mathematically optimized solution within the design space.  

Another accepted method of determining the shape of the relationship in the design 

region is through graphical analysis of contour plots of the response versus two main effect 

variables. While this can be a useful tool, it must be noted that one major drawback to this 

method in Minitab is the inability to force the values of the other main effects to any value other 

than that of the center point of the design. Therefore, it is quite possible for interactions to be lost 

in the graphical analysis. The contour plot shown in Figure 3 compares the variables of interest 

in runners 1 and 8 to the BHP response of the system.  From this contour plot, it is clear that the 

system’s peak output should occur when the insert’s equivalent diameter is approximately 

1.700”, and the upstream equivalent diameter is approximately 2.750”. However, this contrasts 

with the response optimizer’s plots, which indicate that the equivalent window diameter must be 

maximized to obtain peak performance.  
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Figure 3: Contour Plot of bhp 

 

The contour plot in Figure 3 is included to show the conflict between the two analytical 

methods. For the complete set of contour plots, refer to Appendix A.  

While analyzing the data from the RSM model and the simulation, discontinuities 

between dynamometer experience and model results began to appear. The main discontinuity lies 

in equivalent insert opening diameter, that is, the area between the insert’s horizontal flange and 

the roof of the intake port. This area represents the opening of the secondary plenum into the 

intake runner. Dynamometer experience indicates the necessity for a large opening to the insert; 

however, the model predictions show a trend towards a smaller secondary plenum opening and a 

larger window area. This inconsistency leads to questions about the accuracy of the simulation. 
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While the simulation’s global performance is close to that of the tested engine, does that 

necessarily mean that simulation performance in the middle of the model is representative of the 

tested engine?  

The authors believe the model is not representative of the running engine in its prediction 

of flow dynamics at the insert’s interface with the runners. This belief is based on the principles 

of compressible fluid flow in a curved duct. Especially in high speed flow, such as that seen in 

the intake runner of an engine at high engine speed (in this case between 6000 and 7200 RPM), 

the majority of air and fluid flow is present along the outside radius of the curved pipe. This is 

due to the fluid’s inertia, and the lower path of resistance along the outer wall of the runner. The 

clearest demonstration of this principle can be conducted on a flow bench with a pressure probe. 

At high airflow velocities through a port, the lowest pressures (which represent the highest air 

velocities, as per Bernoulli’s theorem) are measured along the outside radius of the port. This 

phenomena occurs both on flow towards the cylinder, and returning from the cylinder. Such a  

compressible flow phenomena would force a disproportionate mass of air and fuel to the roof of 

the intake runner. Given the geometry of the plenum insert, this would result in a comparably 

disproportionate mass of air and fuel entering the secondary plenum. However, the WAVE 

simulation software models one-dimensional compressible two- phase fluid flow. Neglecting 

wall friction and boundary layer phenomena, WAVE assumes a pressure gradient across the duct 

cross-section of zero. While this may be an adequate assumption in modeling traditional intake 

runners and manifolds, the authors believe that this simplified view is inadequate for modeling 

the three-dimensional aspects of current NASCAR restrictor plate intake manifold insert 

dynamics.  

An investigation of the intake system tuning by Tabaczynski (5) reveals the importance 
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of runner diameter and length tuning to provide the desired torque curve. The standard method 

for this type of tuning is the Helmholtz resonator method. While Tabaczynski showed the 

importance of resonance tuning intake runners to the engine, Selamet, Dickey, and Radavich (7) 

compared the resonant frequencies of a series of test pipes using experimental, one-dimensional 

theoretical, and three-dimensional analytical methods. Despite the fact that the test pipes were 

straight, uniform cross-section pieces, the three-dimensional analytical method clearly showed its 

superiority to the one-dimensional approach in finding the resonant frequency of the pipe. 

Another area of concern for the authors regarding simulation accuracy lies in fuel 

distribution throughout the engine.  Comparisons between the WAVE simulation and ARE 

dynamometer data were conducted on individual cylinder output.  The relative performance of 

each cylinder with respect to the rest of the engine was not consistent between the WAVE 

simulation and the ARE dynamometer data.  Extensive work on identifying possible errors in 

simulation coding and/or modeling was conducted.  After three months of additional 

development on the model, as well as information obtained from Ricardo on the base program 

coding, it is the authors’ conclusion that primary cause of this discrepancy lies in how WAVE 

handles fuel distribution.  Once introduced into the engine, WAVE assumes perfect mixing of air 

and fuel.  Thus, the air/fuel ratio selected by the user as an engine average actually becomes the 

specific AFR for each individual cylinder; relative cylinder performance is determined solely by 

airflow distribution, and cannot be affected by fuel distribution issues.  Additionally, the 

software assumes the fuel never separates from the airstream, and therefore cannot puddle or 

pool in the intake tract.  Experience with these engines indicates that significant fuel distribution 

and fuel separation problems exist in the physical engine. 
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CHAPTER FOUR: FINDINGS 

In the WAVE simulation, we try to model the wave propagation and flow through a non-

uniform cross-section, curved pipe using one-dimensional compressible flow techniques. In an 

attempt to determine the feasibility of collecting max flux data at the various locations in the 

intake runner and forcing the one-dimensional model to represent the three-dimensional effects, 

an experiment was conducted in WAVE forcing the reverse-flow discharge coefficient of the 

window to values of 1, 0.8, and 0.6. As expected, as the reverse flow DC is reduced, the mass 

flux through the secondary plenum opening increases, with a maximum delta of approximately 

150 g/s during the compression stroke. An inspection of the graphs in Appendix B reveals the 

maximum delta in max flux across the secondary plenum opening during the time following 

IVC, reducing to a delta of nearly zero at the time of IVO. This results in nearly identical mass 

flux from the secondary plenum into the runner at all DCs examined. This also strongly 

correlates to the nearly identical BHP values for all DCs examined. This correlation  

combined with the presence of 4 distinct pressure waves per cycle below 6600 RPM, and 3 

pressure waves per cycle at 6600 RPM and up tends to disprove the theory that the secondary 

plenum acts solely as a surge suppressor, dissipating the reflection and reversion pulses. It is the 

author’s contention that the plenum insert serves three distinct functions.  

First, in the three-dimensional case, the insert serves to prevent the reversion pulses from 

entering the main plenum and entering other runners, thereby reducing wave interference and 

cyclic variability in cylinder filling. Second, by “catching” these reversion pulses and reflecting 

them back down the runner, the insert appears to be partially transforming the intake runner into 
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a closed-ended pipe, where the damping of the wave energy arises mainly from heat and wall 

friction losses. This idea is supported by the pressure transducer data observed on the test engine 

showing sixteen distinct wave fronts in the secondary plenum volume, indicating relatively poor 

damping of the wave fronts. Third, the secondary plenum provides a reservoir of air for the 

cylinder to draw from during the intake stroke. It is also the author’s contention that, given these 

observations and hypotheses, the WAVE simulation does not currently represent the full real-

world dynamic of the plenum insert, but does show an indication of the wave propagation within 

this area of the engine. This contention is based on the conflict between the model’s desire for a 

larger and larger window, reducing the area for the secondary plenum opening, with the 

experimental data showing the need for a larger secondary plenum opening and smaller window. 

Experimental tests with the smaller windows support the theory of the wave “catching and 

reflecting” properties of the insert and indicate that the reduction of cyclic variability under 

heavily throttled conditions outweighs the importance of fresh air entering the runner through the 

window. However, wave propagation data obtained during the discharge coefficient sensitivity 

analysis agree with observations made on the test engine. While the boundary conditions within 

the model appear to be flawed, the general trend appears accurate. 

To this point, there has been little discussion regarding the details of the model 

verification process.  The RPM range of interest for this model is 6000–7200 RPM.  However, 

the engine makes peak power in the 6600-6800 RPM range, therefore it is most critical for the 

simulation to be accurate in this region.  WAVE uses the Chenn-Flynn friction correlation 

model, which is: 

FMEP = ACF + BCF*Pmax + CCF * MPS + QCF * MPS^2 

A major limitation to this friction correlation is it’s inability to model higher order polynomials.  
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The MTS-measured friction curve is shown in Figure 4.  It is apparent that the Chenn-Flynn 

friction correlation can not accurately represent the MTS-measured curve through the entire 

6000-7200 RPM range.  However, note the curve’s nearly linear behavior from 6200-6800 RPM.  

In the interest of providing the best overall prediction in the area of interest, the friction 

correlation specified in WAVE was designed to fit this linear region. 

 

 

Figure 4: Friction correlation and MTS dynamometer friction curve 

 

 In addition to friction curve fitting, substantial efforts were made to reduce the pumping 

losses in the model.  The WAVE simulation predicts excessive pumping losses when compared 

to the MTS dynamometer data.  When compared to the dynamometer data, the WAVE 
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simulation accurately predicts BMEP and FMEP to within a 3% error from 6200-7000 RPM.  

However, due to the excessive pumping work, PMEP and IMEP are high, while airflow, fuel 

flow, and BSFC are low.  Figure 5 contains the critical values from both the MTS and WAVE 

outputs.   

 

 

Figure 5: Comparison of WAVE and experimental data  

 

 Due to discrepancies in the MTS supplied and WAVE calculated combustion events, 

extensive work in the area of combustion matching was conducted.  An overlay of the physical 

and predicted combustion curves shows notable differences, as shown in Figure 6.  
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Figure 6: Comparison of WAVE and MTS (ARE) combustion traces 

 

WAVE v5.2’s heat release function is intended to help provide a more accurate heat 

release profile in the event a model’s combustion curve does not closely match a Weibe relation.  

Attempts to utilize WAVE v5.2’s heat release function to improve combustion, however, yielded 

negligible results. 
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CHAPTER FIVE: FUTURE RESEARCH 

To better understand the wave propagation dynamics within the restrictor plate manifold 

and insert, data must be collected on the three-dimensional mass flux through the intake runners 

at different locations along the runner’s length. Such data would provide boundary conditions for 

the modification of the current one-dimensional WAVE simulation to represent the three-

dimensional flow. Such data would also be invaluable in the development of three-dimensional 

CFD models of two-phase fluid flow.  

In addition, it should be noted that the RPM at which the number of waves across the 

secondary plenum entrance changed from four waves to three is also the RPM at which the B 

E1P is maximized. Inspection of the mass flux plots in Appendix B will show that 6600-6800 

RPM appears to be the resonant frequency for the number 1 and 8 intake runners. Should it be 

determined that the insert were actually reflecting the reversion pulses rather than dissipating 

them, an investigation into the feasibility of tuning the distance from the insert’s vertical wall to 

the intake valve could yield a manifold with better resonance tuning. On such a heavily throttled 

intake system, cyclic variability and resonance tuning become increasingly important. 

Finally, given the differences in in-cylinder pressure profiles and pumping work, 

collecting another set of in-cylinder pressure data on an identical motor could provide a set of 

data with which to compare, hopefully identifying and correcting any systematic errors which 

may exist in the current set of data. 
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APPENDIX A: 
MINITAB CONTOUR PLOTS 
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APPENDIX B: 
MASS FLUX PLOTS AT MANIFOLD INSERT 
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