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ABSTRACT 

It is well known that vanadium oxide can take many different forms. However for this 

study, only the amorphous phase was investigated. Amorphous vanadium oxide (VOx) thin films 

were deposited on thermally grown silicon dioxide by DC magnetron sputtering using a 

vanadium metal target in an argon / oxygen atmosphere.  The driving force of this study was to 

investigate the temperature coefficient of resistance (TCR) and low resistivity in the amorphous 

films. Sheet resistance is very sensitive to small changes in temperature, making amorphous VOx 

very attractive to thermal sensor applications such as infrared detectors.   

To form the vanadium oxide, physical vapor deposition of vanadium metal at 200 Watts 

of DC power was used with varied amounts of oxygen in a primary argon atmosphere.  During 

deposition, the concentration of oxygen was controlled by using a 20:80 mixture of O2 and Ar in 

conjunction with high purity Ar supply. Flow control techniques were derived and calculated to 

predict the percentage of oxygen before and during deposition to understand the reaction 

between the vanadium metal and oxygen. Concentrations of O2 in the deposition chamber were 

varied from 0.025% to 3.000% with the purpose of gaining an understanding of the affects of O2 

concentration in amorphous VOx films.  TCR and resistivity measurements were performed to 

characterize the films. The results showed a resistivity decrement with decreasing oxygen 

concentration. The films with lower concentrations of oxygen were found to have better TCR 

values then those with higher percentages of oxygen.   

To further reduce the resistivity of the VOx and maintain the TCR value, co-sputtering of 

noble metals (gold and platinum) with VOx was studied. The metals were co-sputtered at various 

power settings with the vanadium oxide reactive process at a fixed percentage of oxygen. The 
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TCR and resistivity results showed that the additions of Au and Pt into VOx reduced the 

resistivity.  However, only Au was found to improve TCR value. 

The results of these experiments showed that by reducing the amount of oxygen in the 

film, the ratio between TCR and resistivity further improved.  Mechanical limits of the gas 

delivery system and the relatively low sensitivity to oxygen detection, gas flow control is limited 

when sputtering with only a single target.  Several targets were therefore used during sputtering 

to allow for higher gas flows thereby increasing the effective sensitivity of the oxygen control.  

To increase the amount of available vanadium and still have a sufficient amount of detectible 

oxygen present, four vanadium targets were sputtered simultaneously. The measurements 

appeared to have a trend of increase in TCR values with a decrease in resistivity. For an ideal 

case, thermal sensor material should incorporate high TCR and low resistivity for better 

sensitivity. The amorphous vanadium oxide deposited by 4 vanadium targets seems to satisfy 

that requirement. In conclusion, a novel method has been established to fabricate amorphous 

vanadium oxide thin films with high TCR and low resistivity for infrared detectors. 
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CHAPTER ONE: INTRODUCTION 

Infrared imaging technology has changed greatly due to the development of 

micromachining technology. Traditionally, infrared sensor has to perform in cryogenic 

environment to ensure high performance. However with micromachining technology, infrared 

sensor can operate at room temperature and still maintaining good performance. Figure 1.1 

below illustrated an example of an infrared image [10]. The focal plane array of the infrared 

sensor is an array of microbolometers in which used to absorb infrared radiation as Figure 1.2 

illustrated [10].  

 

 

Figure 1.1 An Example of an Infrared Image. 
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Figure 1.2 The Focal Plane Array of an Infrared Detector. 

  

Each microbolometer has a thermal sensitive layer that changes its sheet resistance with 

temperature. The basic operation of a bolometer can be described as follows. Infrared radiation 

emitted and absorbed through a bolometer that changes the resistance of the bolometer thin film. 

This change in resistance will obtained and converted into image by the CMOS Read out 

Integrated Circuit (ROIC) below. A microbolometer has a micro-bridge structure that uniquely 

designed for infrared detection as Figures 1.3 and 1.4 [10]. The bridge structure prevents heat 

from escaping through the CMOS ROIC and sustains good sensitivity of the bolometer. The 

diaphragm is hovered above the integrated circuit to maintain a good thermal isolation. The 

cavity beneath the diaphragm designed to have a distance of ¼ λ to improve infrared absorption. 

Also, the beam supported the diaphragm designed to have an appropriate distance in order to 

optimize heat transportation. If the arm is too long, the heat obtained will slowly disperse which 

causes poor imaging when the next infrared radiation arrived. If the arm is too short, the heat will 
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quickly escape and device sensitivity will be decreased. An ideal bolometer material would have 

high temperature coefficient of resistance (TCR) and low resistivity to maintain high sensitivity. 

Vanadium oxide has been established and well recognized to be a material that have high 

resistivity change with temperature and is suitable for bolometer fabrication.  

 

 

Figure 1.3 Structure of a Microbolometer. 
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Figure 1.4 A Zoom In Image of a Microbolometer. 

 

For this study, vanadium oxide thin films have been deposited using DC magnetron 

sputtering method and the electrical properties were characterized such as TCR and resistivity. 

The results of the deposited vanadium oxide displayed a high TCR values with low resistivity. 

However, in order to improve the sensitivity of the bolometer thin film, resistivity of vanadium 

oxide films can be further reduced. For this purpose, noble metals such as platinum and gold are 

used to co-sputter with vanadium to deposited vanadium oxide. Platinum doped vanadium oxide 

yields a great reduction in resistivity, however, its TCR values also reduced as well. Unlike 

platinum, gold doped vanadium oxide presents a smaller reduction in resistivity but maintains 

high TCR values. An alternative method to reduce resistivity of vanadium oxide is by lowering 

the percentage of oxygen concentration while using four vanadium metals. The results presented 

a new relationship between the TCR and resistivity values which makes it a novel method to 

develop an ideal material for bolometer thin film. 
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CHAPTER TWO: LITERATURE REVIEW 

Vanadium oxide is a semiconductor material that is well established for infrared sensors. 

Vanadium oxide is a preferred material over other semiconductors due to its high temperature 

coefficient of resistance (TCR) with respect to its resistivity values. It obtains high TCR with 

small resistivity. Both TCR and resistivity are two important parameters that determine the 

performance of the bolometer thin films used in infrared imaging.  Unfortunately, the TCR of 

semiconductors has a simple physical limit which determines their performance for bolometer 

thin film. In general, a higher TCR values is accompanied by an extremely high resistivity. For 

example, intrinsic silicon can be used to demonstrate the TCR and resistivity relationship with 

respect to band gap energy. The resistivity of intrinsic silicon at room temperature can be written 

as follows:  

kT
Eg

e
τne

mρ ∝= 2      (2.1) 

where m is the effective mass, n is the thermally activated intrinsic carrier concentration of 

silicon, e is the electron charge, τ is the mean free time, Eg is the band gap energy, k is 

Boltzmann constant, and T is the temperature. With this equation, resistivity can be viewed as a 

function of band gap energy. This approach can be also applied to calculate the TCR values of 

intrinsic silicon, 

dT
dR

R
1

=α       (2.2) 
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where α is the TCR value, and R is the resistance of the film.  R can also be expressed as 

follows, 

kT
Eg

OeRR =       (2.3) 

where Ro is the resistance at room temperature. The TCR equation can be further simplified as 

follows, 

Eg
TkT

Eg
∝

−
≈

1α       (2.4) 

Figure 2.1 illustrates TCR and resistivity values of hypothetical intrinsic silicon at room 

temperature having a range of different band gap energies. This shows that semiconductors can 

have very high TCR values; however, their resistivity will be very high as well. Bolometer thin 

film are required to have high TCR in order to maintain high sensitivity with and low resistivity 

for compatibility with low noise readout for infrared imaging devices.  From this figure, it can be 

seen that large band gap semiconductors can be used as a sensor materials with high TCR values, 

but the high resistivity will not be compatible with readout electronics.  Amorphous vanadium 

oxide is a preferred semiconductor material for infrared imaging bolometer thin film applications 

due to it relatively high TCR at modest resistivity, and because it can be processed at the 

relatively low temperatures (< 200°C) required for integration in imaging systems.  
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Figure 2.1 Variable Eg in Hypothetical Silicon. 

 

Vanadium oxides can have multiple stoichiometries and can be categorized based on their 

structures as crystalline or amorphous. Research has been performed to study these properties of 

both types of structures. Crystalline vanadium oxide has shown a dramatic resistivity vs. 

temperature effects due to a semiconductor to metal phase transition. When the temperature rises 

over a transition point, the crystal structure of VO2 will change from a monoclinic phase into 

tetragonal rutile phase. At the same time, high optical transmission of the crystalline vanadium 

oxide will change to low optical transmission [12]. Different compositions of crystalline 

vanadium oxides experience phase transitions at different temperatures. For example, when the 

temperature reaches 68° C, VO2 undergoes a phase transition. V2O3 has a different crystal 
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structure and also undergoes a phase transition, at the much lower temperature of -134° C.  V2O5 

has yet another structure and changes to metallic state at higher temperature, 250° C [19].  

For crystalline VO2, the resistance can drop 5 orders of magnitude at the transition 

temperature, which makes it very attractive to many applications such as photoelectric switch, 

solar control, and defense laser radiation [28]. Unfortunately, this phase transition is hysteretic. 

Figure 2.2 illustrates the hysteretic property of crystalline (annealed) VO2 as compared to the 

amorphous VOx (un-annealed) [32]. For example, VO2 undergoes a phase transition at 68° C. Its 

resistance will decrease. However, when the resistance is at the mid point of the transition, a 

temperature change has no effect on its resistance. The imaging performance of a bolometer thin 

film will suffer greatly due to this property. Unlike crystalline VO2, the amorphous VOx does not 

incorporate this property as figure 2.2 illustrates. Its resistance changes according to the change 

of temperature in a linear fashion. When the temperature is heating up or cooling down, the 

resistance will change its value accordingly.  
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Figure 2.2 Hysteretic and Non-hysteretic Property of Crystalline and Amorphous VOx. 

 

Therefore, amorphous VOx is a better choice for sensor applications for its non-hysteretic 

property. Many applications have used amorphous VOx as a sensor material due to it high TCR 

value and low resistivity. Such applications include light detectors, surveillance, night vision, 

detection of gas leakage, infrared detectors, and thermochromic smart windows [1-11].   

Many other amorphous semiconductors have been studied as alternative films for 

bolometer applications. Such materials include amorphous silicon, yttrium barium copper oxide 

(YBCO), and amorphous germanium [24]. So far, amorphous vanadium oxide seems to be the 

preferred material for bolometer applications.  
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Figure 2.3 illustrates the relationship between TCR and resistivity values of amorphous 

VOx formed by the dual ion beam sputtering technique [24]. This relationship also shows the 

trend of increasing TCR with increasing resistivity expected of semiconductors. 

 

 

Figure 2.3 Dual Ion Beam Sputtered VOx from Zintu, et. al.. [24] 

 

We can use this figure as a reference to determine the goals of our efforts to develop 

vanadium oxide. An improved vanadium oxide will have a higher TCR and/or lower resistivity 

than that shown in figure 2.3 and poorly performing vanadium oxide will have a lower TCR 

and/or higher resistivity. A variety of deposition techniques have been used to develop vanadium 

oxides, however, the majority of outcomes tend to be crystalline vanadium oxide. Such 

techniques include thermal evaporation [23], ion beam deposition [22-24], pulse laser deposition 

[25], [26], atomic layer chemical vapour deposition [27], and reactive magnetron sputtering 
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deposition [12-18]. The most common and simplified technique to develop vanadium oxide is 

reactive magnetron sputtering deposition. With this technique, crystalline and amorphous 

vanadium oxide can be formed.  

Other parameters that are used to control the crystal structure of vanadium oxide are the 

temperature and the oxygen concentration during and after deposition. The most common 

technique found in literature is to anneal the deposited vanadium oxide sample in oxygen / argon 

ambient at high or low temperature to yield a crystalline film. Studies have performed to develop 

vanadium oxide with different range of temperatures and different percentages of oxygen 

concentration to yield variety of vanadium oxide compositions. These compositions can be either 

crystalline or amorphous [28-43].  The compositions of the crystalline materials are VO2, V2O3, 

and V2O5. Elevated temperature, in the range of 200° C to 500°C, can use during deposition or 

during post-deposition annealing to promote crystallization of the vanadium oxide sample.  The 

percentages of oxygen can range from 6% to 50%. Within these ranges of temperature and 

oxygen, the resulting vanadium oxide is typically crystalline. Our study is focused on amorphous 

vanadium oxide thin films, therefore, room temperature deposition in a low percentage of 

oxygen is used and no post-deposition annealing in performed.   
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CHAPTER THREE: METHODOLOGY 

3.1 The Reactive Magnetron Sputtering System 

Amorphous vanadium oxide was chosen as the primary material to study for this project. 

Sputtering processes normally uses argon gas because it does not react with the target material 

allowing thin films to be formed. The addition of a gas that reacts with the target material, such 

as oxygen, will form compounds of the material and the reactant. To determine how vanadium 

oxide is formed using reactive magnetron sputtering a reactive gas test was performed. 

Because the sputtering system uses a DC power supply that allows both voltage and 

current to float while maintaining constant power, the target voltage can be easily measured and 

used to infer changes in the impedance of the sputtering plasma. The gun in which the target is 

mounted is designed to provide a narrow range of impedance to the power supply. With the 

addition of a reactive gas the impedance of the target changes. Using the fixed conditions of 200 

Watts of DC power and a chamber pressure of 4.0 mTorr while introducing increased amounts of 

oxygen the voltages were recorded. Figure 3.1 illustrated the outcome of this experiment.  

 



13 

 

Figure 3.1 Single Vanadium Target Sputtered in Different Percentages of O2. 

 

The plot of gun voltage vs. oxygen percentage has two distinct regions and a very sharp 

transition point. The lower voltage region, less than about 12.5% oxygen, corresponds to primary 

metallic vanadium target surface while for oxygen concentrations above 15% the target surface 

is fully oxidized.  

In the metallic region, both argon and oxygen ions bombarded the target’s surface to 

sputter away metallic vanadium atoms and those that have reacted with oxygen. With small 

amount of oxygen concentration in the chamber both vanadium and vanadium oxide can be 

sputtered from the target surface as figure 3.2a illustrates. As these atoms condense on the 

substrate surface, further oxidation can occur to form an amorphous VOx thin film. As the 

oxygen concentration in the deposition chamber increases, the target surface begins to oxidize 
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and will continue to oxidize until the entire surface is fully oxidized. At this point only vanadium 

oxide is sputtered from the target surface as illustrated in figure 3.2b. This effect is known as 

target poisoning because the deposition rate is severely reduced. For our application we must 

maintain low resistivity and high TCR values, thus the low oxygen concentration, metallic region 

is preferred.      

 

           

                       (a)                        (b) 

Figure 3.2 (a) Metallic Phase (b) Fully Oxidized Phase. 

 

Figure 3.3 illustrates the basic schematic of the sputtering system used to produce the thin 

film samples. The sputter system has two chambers, a load lock chamber and the main process 

chamber. The load lock chamber is used to isolate the process chamber from exposure to the 

atmosphere. A magnetically coupled load arm is used to deliver/remove samples to/from the 

main chamber. The main chamber has six sputter guns that are individually driven by four DC 

and 2 RF power supplies.   The process pressure is maintained by a closed loop control system 
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V target 
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consisting of a variable gate valve and a capacitance monometer pressure sensor.  Process gases 

are controlled by mass flow controllers and are independent of the chamber pressure controller.  

A residual gas analyzer (RGA) is used to measure the partial pressure of all the gases present 

inside the chamber.  The sample is isolated from the deposition sources by a series of shutters.  

The primary shutters are integrated into each of the six individual sputter guns which block the 

stream of material from exiting each gun.  The secondary shutter covers the entire sample area 

and blocks the stream of material even if one or more of the individual gun shutters are opened.  

To produce a more uniform deposition the sample is rotated about a central axis throughout the 

deposition process. 

 

     

Figure 3.3 Reactive Magnetron Sputtering System. 
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3.2 The Deposition Process 

The vacuum condition of the main chamber is critical to the outcome of the thin film 

depositions.  For this reason prior to any deposition, the chamber is pumped down to less than 

5.0x10-8 Torr. In this pressure range most contaminates are eliminated.  

. To accurately control the percentage of oxygen present in the chamber a mixed gas 

consisting of 20% oxygen in argon is supplied through one mass flow controller and is diluted 

with 100% argon gas supplied by a second mass flow controller.  To calculate the flow rate of 

the mixed gas the following formula is used.   

Xi
AiXiD
*8.02.0

*
−

=
     (3.1) 

The equation above was used to calculate the flow of 20% oxygen in argon mixture in single 

vanadium target deposition. In the equation D represents the flow rate of 20% oxygen in argon 

mixture, Xi is the oxygen’s percentage desired and Ai is the fixed 100% argon flow. 

Having determined the desired mixed gas flow one can begin the process.  The process is 

started with allowing the oxygen and argon to flow until the flow and the chamber pressure 

stabilize. Once the gas is stabilized, the gun is turned on. When this occurs the reaction between 

oxygen and the vanadium cause the percentage of oxygen to fall off.  This is illustrated in figure 

3.4. When the power is not yet applied to the target, the percentage of oxygen is proportional to 

the flow rate of oxygen.  However, when power is applied to the target, much of the oxygen is 

consumed to form vanadium oxide.  The decrease in the percentage of free oxygen inside the 

chamber was shown in figure 3.4. For example, a flow of 5 sccm yielded 2.5% of oxygen when 

the gun was off. However, this percentage of oxygen dropped down to 0.4% when the power is 
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turned on to the target. Hence, by controlling the flow rate at a constant rate of vanadium metal 

deposition, we can now control the percentage of oxygen inside the chamber during the 

deposition process.   

For each deposition run, two substrates were coated, silicon with 300 nm of SiO2 and a 

glass slide with 3 liftoff lines.  The substrates are mounted on a holder that is transferred between 

the load lock and the main chamber.  The samples are then deposited with vanadium oxide and 

removed for evaluation. 

 

 

Figure 3.4 Reaction Between Oxygen and Vanadium. 
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3.3 Sample Preparation 

To determine the properties of the amorphous vanadium deposition the electrical 

characterization performed on the thin films included resistivity and TCR measurements, as well 

as mechanical thickness. In order to calculate resistivity, the thickness and sheet resistance of the 

VOx films have to be determined. For the thickness measurement, the sample was prepared as 

figure 3.5 illustrates. Glass slides are used as substrates and were thoroughly cleaned prior to 

deposition. On the surface of the glass slide, 3 ink lines are drawn using a permanent marker. 

The VOx thin films were deposited on top of the marker lines. The glass slides are then immersed 

in acetone for a short duration to lift off the VOx on the region with the ink lines, thus creating a 

step, which was then used for film thickness measurements.  

 

 

Figure 3.5 Sample Preparations for Thickness Measurement. 

 

Before deposition

After deposition

After liftoff 
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Sheet resistance is measured using the silicon wafer sample and requires no pre-

measurement preparation.   A typical silicon substrate with VOx thin film deposition is in figure 

3.6. 

  

 

Figure 3.6 Sample Preparations for Sheet Resistance Measurement. 

 

TCR sample preparation is more challenging as shown figure 3.7. A small portion of the 

silicon substrate is cut off and used for TCR measurements. Wires are mounted to the surface of 

the substrate using a metal epoxy which is electrically conductive. Current is injected by the 

outermost wires and voltage is sensed by the finer inner wires.  The use of different wire sizes 

improved the accuracy of the measurement by providing improved mechanical attachment for 

the current sources and minimizing the area of voltage sensing  
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Figure 3.7 Sample Preparations for TCR Measurement. 
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3.4 Measurements 

To measure the thickness of the deposited films a Dektak III profilometer was used. The 

glass slide with the trenches created in the sample preparation step is used for this measurement. 

The stylus is scanned from the surface of the vanadium oxide thin film to the glass slide surface 

as figure 3.8 illustrated. There are total of 3 measurements taken from each of the trenches on the 

glass substrate. The final result for the thickness measurement is the average of the three. With 

this technique, the surface uniformity of the vanadium oxide can also be estimated.  

 

 

Figure 3.8 Thickness Measurement Technique. 

 

For sheet resistance measurement, a 4 point probe, Jandel Model RM3, is used. This 

instrument can measure very high sheet resistance due to a wide range of current sources. The 

control panel allows the user to manually enter the current setting and display the sheet 
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resistance result according to the current set. The current can be set to few hundreds of nano 

Amperes allowing vanadium oxide with high sheet resistance to be routinely measured.  

Throughout the experiments a wide range of sheet resistance was encountered.  Some 

VOx films’ sheet resistance was as low as 50Ω to a maximum around 3MΩ. Therefore, the 

current setting has to be selected for the particular measurement range.  The relatively large 

surface area of the sample allowed for multiple sheet resistance measurements to be made then 

averaged to yield final sheet resistance number.  

 

 

Figure 3.9 Sheet Resistance Measurement Technique. 

 

Unlike the other two measurements, TCR measurement is much more complicated. 

Figure 3.10 illustrates the basic setting for TCR measurement. The TCR sample was placed on 

the surface of the hot plate with the addition of a thermal conductive compound to provide 
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adhesive and good thermal transfer between the two. The wires were connected to the current 

source / voltage meter which measures the resistance of the film. A thermocouple was placed on 

the surface of the film to measure its temperature. The temperature range for TCR measurement 

is about 2° C, referenced to room temperature. There are total of 350 data points recorded for 2° 

C, thus small fractions of temperature changed can be measured with respect to resistance. This 

method allows us to understand the sensitivity of the film with respect to temperature.  

Both temperature and resistance data were recorded by use of a PC-based data acquisition 

system which was also used to calculate sample’s TCR value. After each TCR measurement is 

completed, the temperature of the hot plate is cooled back down to room temperature prior to the 

next measurement. A fan and alcohol wipes are used to accelerate the cooling process. To 

summarize, a total of 3 TCR measurements are made for each sample and averaged for the final 

TCR value.    
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Figure 3.10 Temperature Coefficient of Resistance Measurement System. 
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3.5 Improvements 

During the development of a vanadium oxide experimental process, the measurement 

values occasionally showed unexpected values. Thickness and TCR measurement techniques 

were suspected as the sources of these errors. For thickness sample preparation, the surface 

smoothness is very crucial. If the glass slide’s surface is contaminated prior to deposition, the 

steps created after liftoff will be poorly generated. This can provide inaccurate results for the 

thickness measurement. In order to prevent this error, the glass slide surface was cleaned 

thoroughly to eliminate as much contamination as possible. In addition, the liftoff technique to 

was improved to provide sharper steps by using a droplet to push a strong stream of acetone at 

the trench area to break the thin film.  

Problems from unexpected TCR measurement results were more difficult to solve. Not 

only is this more complicated equipment setting, but it is also more difficult to controlling the 

measurement process. One of the most crucial parameters for the measurement is the temperature 

rising rate. In order to have accurate and repeatable measurement, the temperature rising rate has 

to be constant throughout each run. However, achieving a constant temperature rising rate is very 

challenging.  

 After the TCR measurement is completed, it is very difficult to get the hot plate’s 

temperature back to room temperature. Even though the fan and alcohol wipes removed most of 

the heat from the hot plate, some partial heat is still trapped inside the hot plate’s surface. 

Initially, room temperature seems to be obtained by using this technique. However, after 10 

minutes, the temperature will start rising slowly due to the heat of previous run. This trapped 
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heat can take very long time for a complete removal. To solve this problem, equilibrium 

temperature needs to be achieved.  

A modified cooling technique was used to remove majority of the heat; however, cooling 

was continued until the temperature was below room temperature. The residual heat from the 

previous cycle was allowed to equilibrate for about 15 minutes, during which time the 

temperature reading was continuously monitored. When the temperature reading showed a 

constant value for a long duration of time, an equilibrium temperature was achieved. With this 

method, every measurement starting point was similar and the temperature rising rate during 

measurement was constant for every measurement run.  
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CHAPTER FOUR: RESULTS AND DISCUSSION 

4.1 Experiments Summary 

Our work on amorphous vanadium oxide deposited using DC magnetron sputtering 

technique can be categorized into 3 main experiments. The first experiment developed 

amorphous VOx thin films using a single vanadium target sputtered in different concentration of 

oxygen in the deposition chamber. Resistivity and TCR measurements were performed to 

characterize the electrical properties of amorphous VOx thin films. The second experiment used 

noble metals to co-sputter along with single vanadium target. This method allows the resistivity 

of VOx thin films to be reduced and was intended to understand the effects of noble metal 

additions on TCR values. The third experiment used 4 vanadium targets sputtered 

simultaneously to deposit VOx thin films. This method increases the reactive metal deposition 

rate which allows better control of oxygen concentration in the deposition chamber. In addition, 

a liquid nitrogen cryo-trap was also applied with this technique to reduce sensitivity to chamber 

background gas. The experiments were performed in this order such that the results of the 

previous experiment served to guide for the next experiment.  
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4.2 Single Vanadium Target Depositions 

The first set of sample depositions was performed with small concentrations of oxygen, 

in the range of 0.025% to 3.000%. The deposition time was 8 minutes and operating pressure 

was at 4 mTorr. The overall film thickness was about 500 Angstroms and the film sheet 

resistances are increase with the percentages of oxygen applied during deposition. Table 4.1 

included the samples’ data for single vanadium target deposition experiment.  

 

Table 4.1 Single Vanadium Target Deposition Data. 
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The sheet resistance values increase corresponding to the increase of oxygen percentage 

in the chamber. Figure 4.1 illustrate the relationship of resistivity with respect of percentages of 

oxygen in the chamber. In the range of higher percentages of oxygen, from 0.5% to 3.0%, the 

resistivity appears to have a small steady slope. However, when the percentages of oxygen 

decreased below 0.5% the slope increases dramatically. In this region, the resistivity is very 

difficult to control. Due to the limit of the mass flow control of the sputtering system, it is very 

difficult to control the oxygen concentration precisely at this low volume of flow. Thus, the 

stability of amorphous VOx deposition was more stable at 0.5% oxygen or above. 
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Figure 4.1 Resistivity vs. Percentages of O2 in Single Vanadium Target Depositions. 
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The TCR values appear to be very scattered as oxygen concentration increased. Figure 

4.2 displays the unexpected TCR values with respect to different percentages of oxygen in the 

chamber. Some samples appear to have very high TCR values (-5%) which are not consistent 

with values found in the literature. The TCR measurement technique was suspected to cause this 

error. This TCR data did approximate the expected trend with respect to resistivity, as shown in 

figure 4.3. The literature has found increased resistivity with increased TCR values in amorphous 

VOx films as this experiment demonstrated. However, the unknown parameters were present 

during measurement to cause this inconsistency.  
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Figure 4.2 TCR vs. Percentages of O2 in Single Vanadium Target Depositions. 
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Figure 4.3 TCR vs. Resistivity in Single Vanadium Target Depositions. 

 

In general, the first experiment had gives us some insights about the films’ behavior, 

measurement techniques, as well as the development process. The results had demonstrated that 

VOx thin films can be very sensitive at low percentages of oxygen thus affects the resistivity 

outcomes.  In addition, a first wafer effect was observed during thin film depositions. With the 

same setting, the first and the second deposition of vanadium oxide films yielded different 

results, thus introducing another source of variability. From this we concluded that the chamber 

condition and background gas can also have an impact on films’ properties.  

 Resistivity can be further reduced by introducing metallic regions inside the amorphous 

VOx thin films, forming a nanocomposite thin film. Figure 4.4 illustrate the theory of metal 

additions to amorphous VOx thin film. Metal clusters inside the film can act as a short, which 
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reduces the resistivity.  The composite resistivity is still determined by that of the VOx and 

should still maintain the TCR value of the vanadium oxide thin film. An experiment was carried 

out at 0.5% of oxygen in the chamber because it has low resistivity and the most stable TCR 

values according to the previous experiment data.  

 

 

Figure 4.4 Metal Additions to Amorphous VOx Thin Film. 
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4.3 Noble Metals Co-Sputtered With Single Vanadium Target 

A theory of metal additions vanadium oxide had been established to reduce the film’s 

resistivity. However, its effect on TCR values is still unknown. The first chosen noble metal for 

this experiment was platinum. By using DC magnetron sputtering deposition technique, platinum 

can be sputter simultaneously with the vanadium target. By controlling the DC power of 

platinum, we can control the amount of platinum added to the vanadium oxide thin films. The 

resistivity of platinum additions to vanadium oxide films has showed a great reduction as shown 

in figure 4.5. However, the TCR values are also reduced as well. Figure 4.6 has showed that 

TCR values had dropped at least 2 %/°C when small amount of platinum incorporated in the 

film.  

Base on this experiment, we found that platinum can improved VOx film’s resistivity; 

however, TCR values have suffered greatly. Platinum additions to vanadium oxide appear not to 

be an improved material for bolometer application as illustrated in figure 4.7.  
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Figure 4.5 Resistivity vs. DC Power of Pt Additions VOx Thin Films. 
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Figure 4.6 TCR vs. DC Power of Pt Additions VOx Thin Films. 
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Figure 4.7 TCR vs. Resistivity of Pt Additions VOx Thin Films. 

 

The next noble metal that used to co-sputter with the vanadium target was gold. The 

deposition settings for gold are identical to platinum settings which were used for comparison 

purposes. The outcome of gold’s resistivity with respect to DC power supply is illustrated in 

figure 4.8.  

The resistivity of gold samples reduces gradually compare to the platinum samples which 

indicated gold has a better control in term of resistivity. While the resistivity of the gold samples 

did not drop as much as that of the platinum samples, TCR values of gold samples showed a 

much more promising result,  as figure 4.9 illustrates.  
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Figure 4.8 Resistivity vs. DC Power of Au Additions VOx Thin Films. 

 

The significantly, the initial TCR value for the smallest gold addition to VOx sample was 

not reduced with respect to the pure vanadium oxide sample. This data showed that gold 

additions to vanadium oxide can improve resistivity and still maintain high TCR value, as figure 

4.10 illustrates.  
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Figure 4.9 TCR vs. DC Power of Au Additions VOx Thin Films. 
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Figure 4.10 TCR vs. Resistivity of Au Additions VOx Thin Films. 
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The theory of noble metals co-sputter with vanadium to deposit vanadium oxide was 

examined with platinum and gold additions. The results indicate both metals have different 

effects on vanadium oxide thin films. Platinum reduced resistivity greatly, but did not maintain 

high TCR values. Thus platinum is not a preferred metal to improve properties of bolometer thin 

films. Gold, on the other hand, reduced resistivity and maintained the high TCR values of the 

vanadium oxide thin films. By comparing the data of TCR with respect to resistivity of Zintu, et. 

al. [24], we can understand the advantages of gold additions to vanadium oxide thin films. Figure 

4.11 shows gold samples have better TCR values and/or lower resistivity with respect to Zintu, 

et. al.. With this data, gold appear to be a preferred metal to improve the properties of amorphous 

VOx thin films. 

 

 

Figure 4.11 TCR vs. Resistivity of Pt and Au Addition VOx with Respect to Zintu, et. al.. 
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In order to confirm the gold data is correct and reproducible, another set of gold addition 

samples was generated. The resistivity of the second gold series showed a gradually decrease, 

similar to the first gold series. However, TCR values of the second gold series showed a different 

trend. Figure 4.12 and 4.13 illustrate the resistivity and TCR values vs. the DC power applied to 

sputter the gold target. The TCR values of the second gold series were not consistent with the 

first series. DC power applied to gold at 5, 10, and 15 Watts show an opposite trend compared to 

the rest of the samples. The TCR measurement technique was suspected to cause this error.  

Both gold series were re-measured in term of TCR; and during this process, the improved 

technique for TCR measurement was developed and established. The inconsistency of TCR 

values was caused by the variation in the residual heat within hot plate at the start of each 

measurement run. By removing all excess heat, equilibrium temperature was achieved. Thus 

provided improved consistency for all the TCR measurements.  
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Figure 4.12 Resistivity vs. DC Power of 2nd Au Additions VOx Thin Films. 
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Figure 4.13 TCR vs. DC Power of 2nd Au Additions VOx Thin Films. 
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Figure 4.14 TCR vs. Resistivity of 1st and 2nd Au Additions VOx Thin Films. 

 

Figure 4.14 confirmed the improved TCR measurement technique provides the ability to 

reproduce the data for both gold sample series. The resistivity for both series match closely and 

the TCR values for both have a significantly reduced variation.  

For both series, 10 Watts of DC power for gold yielded the highest TCR and the lowest 

resistivity comparing to the amorphous vanadium oxide sample. We can compare the results of 

the two gold series with that of Zintu, et. al.. [24] as figure 4.15 illustrates. The repeatability of 

gold additions amorphous vanadium oxide was successfully established with the additional 

improved values in term of TCR and resistivity. The data from these experiments is summarized 

in table 4.2. 
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Figure 4.15 TCR vs. Resistivity of 1st and 2nd Au Additions VOx with Respect to Zintu, et. al.. 
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Table 4.2 Noble Metals Co-Sputter Single Vanadium Target Depositions. 

 

 

Using noble metals co-sputtered with single vanadium target was a success in terms of 

finding a new technique to improve the properties of amorphous vanadium oxide. However, the 

single vanadium target deposition experiments still suffered problems such as the limit of mass 

flow control and variable chamber background gas. To overcome these limits, 4 vanadium 

targets were used simultaneously to sputter vanadium at a 4-fold higher rate. This technique 

increased the reactive metal deposition rate of vanadium which gained a better control of oxygen 
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concentration inside the chamber. In addition, sensitivity to chamber background gas was further 

reduced by implementing liquid nitrogen cryo-pumping technique.  
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4.4 Four Vanadium Targets Depositions 

A reactive gas test was performed for the 4 vanadium targets depositions. Figure 4.16 

demonstrates the single vanadium target and the 4 vanadium targets depositions oxygen flow rate 

with respect to percentages of oxygen in the chamber. By using 4 vanadium targets techniques, 

the flow rate is about 4 times higher compared to the single vanadium target deposition. For 

example, a single target at 10 sccm flow yields the same percentage of oxygen as 4 targets at 40 

sccm. This technique allows higher flow rates to gain a better control of oxygen concentration 

inside the chamber. Due to the increased deposition rate of vanadium, the deposition time was 

reduced from 8 minutes to 3 minutes.  
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Figure 4.16 Reaction Rates of Oxygen and Vanadium for Single Target and Four Targets. 

 

In order to reduce chamber background gas, a liquid nitrogen cryo-pumping technique 

was used. Figure 4.17 illustrated the percentages of oxygen with respect to flow rate with liquid 

nitrogen and without liquid nitrogen in the cryo-trap. The percentages of oxygen in the chamber 

showed no effect in either case. However, the resistivity of these two sample sets indicates an 

effect.  In figure 4.18, the liquid nitrogen cryo-pump technique does affect the resistivity of the 

samples. The sample set with liquid nitrogen cryo-pump shows a higher resistivity than the 

sample set without liquid nitrogen cryo-pump. With figure 4.17 and 4.18, we do not understand 

why the liquid nitrogen cryo-pump technique increased the resistivity of the films.  The major 
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effect is has on the chamber background gas is to reduce the amount of residual water vapor 

present in the chamber.    
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Figure 4.17 4 Vanadium Targets Deposition with and without Liquid Nitrogen Cryo-Pump. 
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Figure 4.18 Resistivity vs. Percentages of O2 for 4 Vanadium Targets Depositions. 

 

TCR values for the 4 vanadium targets depositions showed a very interesting trend, as 

shown in figure 4.19. With decreasing percentages of oxygen, TCR values gradually increased. 

This data also confirmed our improved TCR measurement technique has reduced variability and 

yields more accurate results. Figure 4.20 displays the relationship between TCR with respect to 

resistivity for the 4 vanadium targets deposition experiment. In this figure, there is no obvious 

trend of TCR with respect to resistivity within this range of oxygen percentage. This data range 

is too small to claim that increased TCR with decreased resistivity for 4 vanadium targets 

depositions. However, by plotting this data with respect to Zintu, et. al.., a new trend had vaguely 

recognized.  
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Figure 4.19 TCR vs. Percentages of O2 in 4 Vanadium Targets Depositions. 
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Figure 4.20 TCR vs. Resistivity in 4 Vanadium Targets Depositions. 

 

 

Figure 4.21 TCR vs. Resistivity in 4 Vanadium Targets Depositions with Respect to Zintu, et. 

al.. 
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In figure 4.21, 4 vanadium targets depositions seems to create a new relationship in term 

of TCR and resistivity. Instead of increased TCR with increase resistivity, the resistivity of 4 

vanadium targets experiment is decreasing. This data trend is leading to an ideal bolometer thin 

film; however, it is too early to say due to a small range of resistivity. Table 4.3 includes all the 

measurement data from the 4 vanadium targets depositions.  

 

Table 4.3 Four Vanadium Targets Depositions. 
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CHAPTER FIVE: CONCLUSION 

Vanadium oxide thin films have been successfully deposited using reactive magnetron 

sputtering deposition. The oxygen concentration was precisely controlled and measured during 

the depositions. A DC power supply was used to sputter vanadium metal targets in an oxygen / 

argon mixture at room temperature to develop amorphous vanadium oxide thin films.  

The addition of gold to the vanadium oxide thin films was found to yield higher TCR and 

lower resistivity when compared to values reported in the literature, Furthermore, TCR 

measurement techniques have been established providing improved repeatability and accuracy. 

Vanadium oxide deposition using a four-target array appears to yield an increased TCR with a 

decrease in resistivity values, and results in an improved oxygen control technique. In summary, 

a novel nanocomposite bolometer thin film has been developed.  
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