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ABSTRACT 

Although amyloid β (Aβ) deposition has been a hallmark of Alzheimer’s disease (AD), 

the physiological function of amyloid precursor protein (APP) is not clear. Our results 

suggested that high concentration of APP induces glial differentiation while 

physiological level of APP promotes migration and differentiation of neural stem cell 

(HNSC). HNSCs were mainly differentiated into astrocytes when they are transplanted 

into APP transgenic mouse brain or treated with a high concentration of secreted-type 

APP (sAPP) in culture.  

 

Staurosporine (STS) induced a distinctive astrocytic morphology in NT-2/D1 neural 

progenitor cells with expressions of APP and astrocyte-specific markers, glial fibrillary 

acidic protein (GFAP), aspartate transporter, and glutamate transporter-1. Expression of 

APP is correlated with GFAP expression in both mRNA and protein level in this 

experiment. Inhibition of APP expression by RNA interference (RNAi) or treatment with 

MEK1 inhibitor (PD098059), which reduces APP expression by suppressing ERK 

phosphorylation, abolished GFAP expression. These results indicate that STS induces 

glial differentiation of neuronal progenitor cells by increasing APP levels through 

activation of ERK pathway. 

 

We also found that APP-induced glial differentiation of neural progenitor NT-2/D1 cells 

is mediated by activation of IL-6/gp130 and notch signaling pathway. Treatment of APP 

activated IL-6/gp130 signal pathway via protein-protein interaction between APP and 
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gp130 and it increased the gene expressions of CNTF, gp130 and JAK1, and 

phosphorylation of STAT3 while gene silencing of CNTF, JAK1 or STAT3 by RNAi, or 

treatment the cells with antibodies recognizing gp130 suppressed GFAP expression, 

indicating these molecules are crucial for APP-induced glial differentiation. Thus 

treatment of sAPP may promote glial differentiation of neural progenitor cells by 

activation of IL-6/gp130 signaling cascade. 

 

Treatment of sAPP increased the generation of notch intracellular domain as well as 

gene expression of Hes1 but did not change expression levels of notch or its ligands. 

We also found protein-protein interaction of APP and notch using immunoprecipitation 

suggesting that glial differentiation of NT-2/D1 cells is mediated by the physical 

interaction between APP and notch. N-terminal domain of APP (1-205 a.a.) alone can 

bind to notch and activate these signaling cascade in NT-2/D1 cells. Thus, APP may 

induce glial differentiation through activation of IL-6/gp130 and notch signal cascade by 

binding with its N-terminal domain. Taken together, our results suggest that APP 

regulates neural stem cell (NSC) differentiation through IL-6/gp130 and notch signaling 

pathway. Furthermore, the activation of both glial differentiation mechanisms may be 

necessary to potentiate APP-induced glial differentiation of NSC. 

 

Altered APP metabolism in Down syndrome and Alzheimer’s disease may accelerate 

premature glial differentiation of NSCs, resulting in gliosis found in these diseases. 

Although it is not clear that how adult neurogenesis contributes to maintain normal brain 

function, destruction of neuroreplacement mechanism by NSCs may pose a problem. 
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We may also have to consider effect of APP on the stem cell therapy for these diseases, 

since HNSCs may not properly differentiate into neurons under these pathological 

conditions. 
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GENERAL INTRODUCTION 

General background of Alzheimer’s diseases 

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, 

resulting in a progressive, irreversible brain disorder such as dementia. It attacks and 

slowly destroys the mind of the afflicted person. More than 4.5 million Americans are 

believed to have AD and by 2050, the number could increase to 14 million. 

Approximately 59,000 victims die and 350,000 new cases of AD are diagnosed each 

year 1. In general, pathology of AD is caused by the deposition of amyloid plaque and 

the appearance of the neurofibrillary tangles. The major symptoms of the disease 

include memory loss, confusion, impaired judgment, personality changes, disorientation, 

and loss of language skills 2.  

 

Genetic studies have showed that missense mutations in the APP and presenilins 1/2 , 

encoded on chromosome 21, 14, and 1, respectively, cause early-onset familiar AD 

(FAD) 3-5. Mutations of those genes enhance AD by upregulating the proteolytic process 

of APP, resulting in increase of Aβ peptide generation as well as extracellular senile 

plaque deposition. In the case of the late-onset of AD, variants of apolipoprotein E 

(APOE) gene are a highly suspected factor6. While APOE ε4 allele is closely associated 

with APP processing by modulating cholesterol level in the brain 7, APOE ε3 allele 

modulates tau metabolism by interacting with tau 8.  
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Biology of APP and Aβ 

APP is a type 1 single transmembrane protein, consisting of 695-770 amino acids. The 

APP gene is approximately 240 Kb, located on chromosome 21, and harbors 19 exons 9. 

Depends on alternative splicing of exon 7, 8, and 15, several different type of splice 

variants (APP695, APP751, and APP770) are generated in the cells with tissue 

specifically and each splice variants have distinctive characteristics. For example, 

APP770, containing exon 7, has a function in blood clotting since it contains Kunitz-type 

proteinase inhibitor (KPI) domain 10. However, APP695, lacking KPI domain, is 

specifically expressed in neuron 11, 12.  

 

The APP family consists of APP, APLP1, APLP2 13-15, APL-1 in C.elegans 16, and APPL 

in Drosophila 17. These APP molecules harbor several consensus motifs such as E1 

and E2 and show higher sequence homology as well. Therefore, APP families share 

functional similarity and show functional redundancy in in-vivo Alzheimer’s studies.  

 

Due to the cytotoxicity of Aβ peptides in the brain, mechanism of the proteolytic 

processing of APP has been intensively studied to understand the pathophysiology of 

AD. Generation of Aβ peptides result from various combination of the cleavage by β-, 

and γ-secretases. The major proteolytic cleavage of APP is performed by α-secretase 

(ex, ADAM10) 18, cleaves between residues Lys612 and Leu613 of APP, whereas β-

secretase (ex, BACE1) cleaves APP after Met596 and Tyr606 19-21. Cleavage of α- and 

β-secretase produces soluble APPs (sAPPα and sAPPβ) as well as α- and β- carboxyl 

terminal of APP fragments (CTFs) of APP. Then, γ-secretase cleaves C-terminal of APP 
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to liberate either amyloidogenic Aβ peptides or p3 in combination with BACE1 or 

ADAM10, respectively 22. Furthermore, APP intracellular domain, functioning 

phosphoinositide-medidated calcium signaling 23, apoptosis 24, and transcription 

regulation 25, is generated by γ-secretase activity. Therefore, β- and γ-secretase has a 

critical role in Aβ generation and senile plaque deposition in AD (Figure 1.).  
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Figure 1: Schematic diagram of sequential processing of APP by α-, β-, γ-secretases. 
EC: extracellular, IC: intracellular, TM: transmembrane. Aβ domain is highlighted in 
blue. 
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Structural and functional properties of APP 

Despite the wealth of studies regarding the physiological function(s) of APP, there is 

little consensus between its function in vitro and in vivo. The main reason that 

physiological function(s) of APP is (are) still under debates is caused by the molecular 

complexity of APP. Due to its molecular complexity, various functions have been 

attributed in the same domain of APP in the CNS. Therefore, to investigate the 

physiological function of APP, the structural property of APP should be well understood. 

In general, functional domain of APP can be classified with E1 domain, central APP 

domain (CAPPD), E2 domain, and APP intracellular domain (AICD) 26. 

 

E1 domain harbors growth-factor like domain (GFLD) (23-128 a.a) which has been 

know to have cysteine rich region and heparin binding site27. Since it contains highly 

positively charged surface, GFLD functions like a growth factor through protein-protein 

interaction with other counterpart molecules. Current studies have showed that GFLD is 

associated with cell adhesion, which contributes to neurite outgrowth and 

synaptogenesis28. Then, E1 domain is followed by the well-studied E2 domain. E2 

domain contains RERMS sequence29 and heparin-sulfate proteoglycan binding site30, 

function as a growth promoting factor. AICDs are generated by subsequent cleavage of 

APP by γ-secretase/nicastrin complex. Since this domain has several important 

structural properties, AICD has been extensively studied and found that it is associated 

with multiple signaling pathways23. The structural properties of the cytoplasmic region of 

APP suggest that APP might have a role as a G-protein coupled receptor, via Go 

binding domain in AICD31. Above all, AICDs modulate signaling pathway by interacting 
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with various partners, including Fe65, JIP, X11/Mint, and mDab1, via YENPTY motif32 

(Figure 2.).  

 

 

Plasma membrane 

 
 
 

Figure 2: Schematic diagram of domain organization of APP. E1 domain is composed 
with N-terminal growth factor like domain (GFLD) and copper-binding domain (CuBD). 
E1 is followed by E2/central APP domain (CAPPD) which is, so called, carbohydrate 
domain. Aβ indicates that Aβ domain. In APP751 and APP770, KPI domain is included 
by alternative splicing.  

KPI (Exon7) 

CAPPD 

-------------- E2 ------------------------- E1----------- AICD 

Intracellular Extracullular 

CuBD RERMS GFLD COOHNH2 

- Aβ  - 
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Glial differentiation of neural stem cells 

During vertebrate central nervous system (CNS) development, progenitor cells are, 

specifically subdivided into certain location. After being settled down to specific region, 

those progenitors start to proliferate to increase the number of the cells during post-

gastrulation stage (expansion phase) and then are differentiated into neuron 

(neurogenic phase) and glia (gliogenic phase) during mid-gestation and postnatal stage, 

respectively33. Accumulated evidences suggest that neurons are typically differentiated 

before astrocytes and oligodendrocytes with the exception of a few sites where 

postnatal and adult neurogenesis occur during later development, such as the 

subventricular zone (SVZ) of the fore brain. Recent studies show that these timing of 

the sequential differentiation events are finely modulated by both intrinsic and extrinsic 

cues.  

 

During neurogenic phase (around E12-13), several morphogens induce neuronal 

differentiation with selective or instructive manner. Platelet-derived growth factor 

(PDGF) 34 and vascular endothelial growth factor (VEGF) 35 is involved in the promotion 

of neuronal differentiation by selectively enhancing neuronal population. Inversely, Wnt 

signaling pathway is also implicated with instructive neuronal differentiation by 

upregulating Neurogenin 1, 2 (Ngn1, 2), proneural basic helix-loop-helix transcription 

factors. Additionally, Wnt signaling pathway has a potent suppressive role on FGF2, 

one of the gliogenic factors 36-38. 
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In the later stage of the neural differentiation (around postnatal period), glial 

differentiation is induced by various factors. To date, IL-6 cytokine families, bone 

morphogenic factors (BMPs), basic fibroblast growth factor (bFGF), and Notch signaling 

has been known for an important mechanism which is involved in the glial differentiation 

process 39.  

 

IL-6-induced JAK/STAT signaling pathway is a central part of the glial differentiation 

process 40 (Figure 3). This gliogenic signaling pathway is stimulated by several IL-6 

family cytokines such as leukemia inhibitory factor (LIF) 41, ciliary neurotrophic factor 

(CNTF) 42, IL-6, and oncostatin M (OSM) 43. Once these IL-6 cytokine families interact 

with their cognate receptors (ex, IL-6 receptor α), the resultant complexes are then 

associated with gp130, crucial signal transducing component of IL-6 receptor44. 

Formation of these receptor heterodimers stimulates a downstream transcription factor, 

signal transducer and activator of transcription (STAT) proteins by activation of JAKs, 

especially JAK1 and JAK2. Predominantly, STAT3 molecules get phosphorylation, and 

then the phosphorylated STAT3s form dimerization and undergo translocation into the 

nucleus. Finally, STAT3 dimers bind to the putative STAT3 binding element of GFAP 

promoter, typical astrocytic marker, for glial differentiation45.  

 

Notch signaling has been known to control cell fate through local cell-cell interaction. 

During development process, Notch suppresses neuronal differentiation in many 

organisms in vivo and in vitro (Figure 3). When ligands (ex., Delta and Jagged) bind to 

Notch, it results in proteolytic cleavage of Notch receptors by γ-secretase/nicastrin 
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complex to release the signal-transducing Notch intracellular domain (NICD). Generated 

NICDs translocate into nucleus and interact with the nuclear protein which is referred to 

as CBF1/Su(H)/Lag-1 (CSL) 46. Complex of CSL and NICD activates expression of 

primary target genes of Notch such as Hairy and enhancer of split (Hes) gene families. 

Then, Hes, a basic helix-loop-helix (bHLH) type transcriptional repressor, suppresses 

expression of the proneural transcription factors such as Mash1 and NeuroD47, 48.  

 

Interesting feature of glial differentiation is that signaling mechanisms, associated with 

glial differentiation, are strengthened by cross-talking. Glial differentiation is enhanced 

by cross-talking between IL-6 and Notch signaling pathways by interacting with Hes1 

and JAK2. When Notch target gene, Hes1, expression is upregulated, it physically 

interact with JAK2. Then, these complexes interact with STAT3 and enhance 

accessibility of STAT3 molecule to STAT3 binding element of GFAP promoter 49.  

 

Although BMPs have multiple functions in the neural differentiation, it is also associated 

with glial differentiation during late gestation or postnatal stage50. During differentiation 

process, Smad1, stimulated by BMPs, makes a complex with transcription coactivator, 

CBP/P300, and STAT3 molecules. Then, those complexes have higher accessibility to 

STAT3 binding element of GFAP promoter51. Therefore, overall glial differentiation 

process is promoted by cross-talking between these gliogenic signaling pathways.  

 

Though some of these gliogenic factors are expressed throughout the neural 

differentiation process, they show different effect to the neural progenitor cells along 

9 



with the developmental stage. This stage specificity is modulated by the intrinsic factor 

such as methylation status. Depends on the methylation status of CpG island within the 

STAT3 binding element of STAT3 promoter and histone H3, it determines the stage 

specificity of gliogenic factors. If STAT3 promoter is methylated and histone H3 is 

demethylated, it may not be able to induce glial differentiation of neural stem cells since 

STAT3 complexes are not be able to access to GFAP promoter52, 53.  
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Figure 3: Schematic diagram of two representative glial differentiation mechanisms.  
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Rationale and aims 

Although APP is one of the most intensively studied molecules because of it importance 

in pathology of AD, the physiological function of APP is still controversial and needs to 

be elucidated. However, several structural properties of APP have been revealed as a 

growth factor or a ligand. Crystal structure of the cystein-rich, heparin-binding N-

terminal domain of APP reveals a growth-factor like domain configuration 27. Moreover, 

several lines of reports have introduced the novel function of APP as a ligand which 

interacts with various receptors, such as the class A scavenger receptor (SR-A) 54 and 

LDL receptor related protein (LRP) receptor 55. These studies indicate that secreted 

type of soluble APP may modulate cellular function such as differentiation via certain 

receptors, similar with extrinsic factors in glial differentiation. On the other hand, since 

DS is a trisomy of chromosome 21, contains the APP gene, DS patients have extra 

copies of the APP gene in their genetic makeup. Therefore, DS patients usually show 

high level expression of APP and similar symptoms on their later onset.  Bhan et al. 

reported that most of Down’s syndrome (DS) patient’s neural stem cells were mainly 

differentiated into astrocytes 56. Due to the functional property of N-terminal domain of 

APP, overexpressed APP affects cell fate specification of neural stem cells in DS 

patients. 

 

As mentioned above, although several gliogenic factors have been reported up to now, 

there remains the possibility of other factors that might induce glial differentiation by 

unknown mechanism. Thus, here, we proposed that sAPP may be a novel extrinsic 

factor which is necessary for the glial differentiation of neural progenitor cells. The main 
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purpose of the studies is to elucidate the novel function of APP as a gliogenic factor and 

specific glial differentiation mechanism, associated with sAPP-induced glial 

differentiation of neural stem cells. The proposed study is innovative, since our research 

may elucidate novel function and specific molecular mechanism of APP in stem cell 

biology and may also provide perspective into understanding the mechanism of 

pathophysiology of neurodegenerative diseases such as AD. Thus, our study is 

significant because it will provide a vast knowledge of the novel function and 

mechanisms of APP during HNSC differentiation and this information will be crucial for 

developing innovative strategies for the prevention and treatment of AD, including 

regulation of APP level, interference of APP catabolism by manipulating specific signal 

cascade and/or suppression of IL-6 and/or Notch signaling by blocking the effect of 

APP. 
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THE AMYLOID PRECURSOR PROTEIN INDUCES GLIAL 
DIFFERENTIATION OF HUMAN NEURAL STEM CELL 

Introduction 

The discovery of multipotent neural stem cells (NSCs) in the adult brain, suggesting that 

the regeneration of neurons can occur throughout life, has brought revolutionary 

changes in the theory of neurogenesis 57. Neural stem cells have been isolated from 

embryonic and adult mammalian 58, 59 tissue including the human central nervous 

system (CNS) 60. These cells can be propagated in vitro using a serum-free medium 

containing epidermal growth factors (EGF) and basic fibroblast growth factors (FGF-2) 

61. Many studies have shown that NSCs can be transplanted and incorporated into the 

developing mammalian brain and can differentiate into neuronal and glial cells 62-64. 

Even in the adult brain, at least some environmental cues seem to remain, as was 

shown for the rostral migratory system, where stem cells extensively migrated from the 

subventricular zone (SVZ) to the olfactory bulb 65 and to cognitively relevant brain 

regions 66. In vitro cultivated and transplanted NSCs migrated using routes similar to 

endogenous NSCs and then were differentiated in the adult brain. These cells also 

showed a pattern of broad distribution in the cortex and hippocampus 67. Moreover, 

transplanted animals showed improved cognitive functions and functional synapse 

formation, implying that these cells are functionally capable of being incorporated into 

the existing neural network 67, 68. While essential factors for the migration of neuroblasts 

during embryonic development have been studied extensively in the past, it is still 

unclear if these factors are also responsible for NSC migration in the adult brain. So far, 
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it has been suggested that polysialylated NCAM69, Eph/ephrin signaling 70, and b1 

integrins 71 are the involved in neuronal chain migration. Additionally, our recent study 

indicates that reelin, an extracellular matrix protein required for cortical patterning during 

development, also affects NSC migration in the adult 72. 

 

Many functions have been attributed to the amyloid precursor protein (APP), including a 

role as a kinesin I cargo receptor 73. Nevertheless, APP-knockout mice are viable and 

display only a minor phenotype 74, 75, suggesting that APP function both during 

development and later in the maturing process can be at least partially compensated by 

its family members [e.g., amyloid precursor-like protein 1, 2 (APLP1, APLP2)] 76. 

Several studies have shown that APP has growth factor-like properties and can 

increase proliferation 77, or together with the cytosolic adaptor protein Fe65 can 

enhance cell motility in cell culture models 78. Moreover, crystal structure of the heparin-

binding N-terminal domain of APP shows a growth factor-like domain structure, 

supporting evidence of growth factor as a function of APP 27. 

 

Here we report that APP is necessary for the migration and differentiation of HNSCs 

using well-defined in-vitro culture differentiation model by eliminating exogenous factors 

79. Our data, i.e., HNSCs transplanted into APP-knockout mice showed significantly less 

migration compared to transplanted wild-type controls, suggesting that APP may 

function as a crucial cue in vivo during adult neurogenesis. Moreover, since excessive 

environmental APP induced gliogenesis in HNSCs, these results implicate a deficiency 

of stem cell biology by altered APP metabolism in Alzheimer’s disease (AD) pathology.  
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Materials and methods 

TUNEL assay 

The Fluorescein Apoptosis Detection System (Promega, Madison, WI) was used to 

assay the DNA fragmentation of HNSCs at 3 DIV. The protocol was followed according 

to the manufacturer’s suggestions with only minor modifications. Briefly, HNSCs were 

fixed in methanol at -20°C for 20 min. HNSCs were permeabilized in 0.2% Triton X-100 

solution in PBS for 5 min, and equilibrated for 10 min with equilibration buffer. The TdT 

enzyme reaction with fluorescein-12-dUTP was performed at 37°C in a dark humid 

chamber for 60 min. All the nuclei of HNSCs were counter-stained by propidium iodide 

(red) and the DNA fragmentation-positive cells were stained in green. 

 

This study was performed under IRB protocol #2001-0316, which meets the criteria for 

exemptions defined in the U.S. Department of Health and Human Services Regulations 

for the Protection of Human Subjects (45 CFR 46). Optimized conditions for propagation 

and maintenance of HNSCs have previously been described in detail 61, 67, 79. Briefly, 

HNSCs were cultured in serum-free supplemented growth medium consisting of HAMS-

F12 (Gibco, BRL, Burlington, ON), antibiotic-antimycotic mixture (Gibco), B27 

supplement (Gibco), human recombinant FGF-2, EGF (R&D Systems, Minneapolis, 

MN), and heparin (Sigma, St. Louis, MO) and incubated at 37°C in a 5% CO2 

humidified incubation chamber (Fisher, Pittsburgh, PA). Human NSCs were 

differentiated in serum-free basal medium Eagle (BME, Gibco), which contains Earle’s 
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salt and L-glutamine in the absence of FGF-2 and EGF without the addition of other 

extrinsic differentiation factors. 

sAPP preparation 

APP cDNA comprising nucleotides -2 to 2358 in expression vector pORFex13 was a gift 

from Dennis Selkoe. DNA encoding the sequence from leu18 to lys613 human APP695 

was amplified by PCR using following primers : 5’-CTG GAG CTA CCC ACT GAT-3’and 

5’-CTT CAA GTA GTA GTT TTT ACT-3’. The DNA fragment was gel-purified using a 

GeneClean II (Bio 101) kit, then cloned into the Pml 1 site of the pPICZ expression 

vector (Invitrogen) downstream of the pichia pastoris alcohol oxidase (AOX1) promoter. 

To transform pichia pastoris, DNA was linearized with Pme I, mixed with pichia pastoris 

strain SMD1168 (Invitrogen), and electroporated. Expression was induced by exposure 

to methanol for 29 hr as described in the Invitrogen instruction manual. After induction, 

the culture supernatant was filtered to remove any residual particles, and then loaded 

on a 5 ml heparin-sepharose column (Amersham Pharmacia Biotech). The column was 

washed with 0.01 M sodium phosphate buffer, pH 7 until no protein was detected in the 

outflow. Then a 100 ml, 0-2 M linear NaCl gradient in 0.01 M sodium phosphate pH 7 

buffer was applied to the column. The purified truncated form of sAPP695 was 

sequenced and C-terminal carboxypeptidase analysis revealed it was truncated at 

amino acid 505. 
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Stereotactic injection of HNSCs into mice 

Mature (3-4 month old) male mice (8 in each group) were deeply anesthetized with 

sodium pentobarbital (50mg/kg, i.p.). Using the bregma as a reference point, about 105 

of HNSCs preincubated with BrdU (3µM for 3 days) were slowly injected into the right 

lateral ventricle (AP -1.4; ML 1.8; DV 3.8mm) of the brain using a stereotaxic apparatus 

(David Kopff). Immunosuppressant was not given to the animals. All animal experiments 

were conducted under Animal Protocol #00-184 approved by the Animal Care 

Committee of the University of Illinois at Chicago. Four weeks post-transplantation, 

animals were sacrificed and the brains were removed for analysis with 

immunohistochemistry. 

Immunohistochemistry 

Detailed methods for immunohistochemistry were previously described11,24. Briefly, after 

fixation, samples were washed in phosphate-buffered saline with 0.2 % Triton X 

(PBST), then incubated in PBST containing appropriate normal sera. Next, the samples 

were incubated overnight (up to 12 hr) with primary antibodies, and then incubated with 

secondary antibodies for 1.5 hr in a dark humidified chamber after washing with PBS. 

Next, the samples were washed thoroughly in PBS and coverslipped with 

VECTASHIELD® DAPI Mounting Media (Vector). Primary antibodies: 4G8 monoclonal 

antibody, mouse IgG2b (Senetek), 1:50; 6E10 monoclonal antibody, mouse IgG1 

(Senetek), 1:50; 22C11 anti-Alzheimer Precursor Protein A4, mouse IgG (Chemicon), 

1:100; anti-βIII-tubulin monoclonal, mouse IgG2b, clone SDL.3D10 (Sigma), 1:1000; 

anti-GFAP goat anti-glial filament protein, N-terminal human affinity purified, goat IgG 
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(Research Diagnostics Inc., Flanders, NJ), 1:400. Secondary antibodies coupled to 

FITC or TRITC were purchased from Jackson Immuno Research. 

RT-PCR analysis 

Total RNA was extracted from the cells with Trizol reagent (Invitrogen) according to the 

manufacturer’s protocol. One µg of the total RNA was reverse-transcribed (RT) and 

amplified by the SuperScriptTM ONE-STEPTM RT-PCR system (Invitrogen) with the 

following primers: GFAP (+) 5’-AAGCAGTCTACCCACCTCAG-3’, (-) 5’-

ATCCCTCCCAGCACCTCATC-3’; APP (+) 5’-

CTTGAGTAAACTTTGGGACATGGCGCTGC-3’, (-) 5’-GAACCCTACGAAGAAGCC-3’; 

LIF (+) 5’-CTGTTGGTTCTGCACTGGA-3’, (-) 5’-GGGTTGAGGATCTTCTGGT-3’; Delta 

(+) 5’-TGCTGGGCGTCGACTCCTTCAGT-3’, (-) 5’-

GCCTGGCTCGCGGATACACTCGTCACA-3’; Jagged-1 (+) 5’-

ACACACCTGAAGGGGTGCGGTATA-3’, (-) 5’-AGGGCTGCAGTCATTGGTATTCTGA-

3’; Hairy/Enhancer of split 1 (Hes1) (+) 5’-CGGACATTCTGGAAATGACA-3’, (-) 5’-

CATTGATCTGGGTCATGCAG-3’; β-actin (+) 5’-GACAGGATGCAGAAGGAGAT-3’,  (-) 

5’-TTGCTGATCCACATCTGCTG-3’. RT-PCR condition was a reverse transcription at 

55˚C for 30 min; a pre-denaturation at 94˚C for 2min; 25-32 cycles of 94˚C for 15 sec; 

55-56˚C for 30 sec and 72˚C for 30 sec; and a post-extension at 72˚C for 5 min. Cycle 

number was adjusted in order to keep the PCR amplification in a log-phase for semi-

quantization. Ten µl of the reaction was separated in a 2% E-gel (Invitrogen).  
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Results 

HNSC differentiation is preceded by apoptosis 

We have previously shown that under serum-free unsupplemented media conditions, 

HNSCs grown as neurospheres migrate and differentiate into βIII-tubulin, glial fibrillary 

acidic protein (GFAP), and O4 immunopositive cells, markers for neurons, astrocytes, 

and oligodendrocytes, respectively 79. These results suggest that HNSCs are capable of 

producing endogenous factors necessary for their own differentiation and survival. To 

assess the migration and differentiation process in more detail, we employed a time-

lapse video microscopic study. During the early stages (1-3 days in vitro, DIV) of serum-

free differentiation, differentiating HNSCs appear to reach out to some HNSCs, which 

exhibit a shrunken morphology similar to cells undergoing apoptotic cell death (Figure 

4). To further assess cell death type, we used the TUNEL assay to detect in situ DNA 

fragmentation, an early marker of apoptosis, in HNSCs differentiated with/without 

serum. Under serum-free differentiation conditions, the cells that displayed small 

shrinkage followed by detachment from the neurosphere were TUNEL positive. In 

contrast, fewer than 5% of TUNEL-positive cells that were detected had differentiated in 

media supplemented with 10% fetal calf serum (Figure 5 a,b). The increase in apoptosis 

without serum is probably due to growth factor deprivation, similar to that described for 

neurons 80. Nevertheless, at later stages of serum-free differentiation, HNSCs migrate 

and differentiate without further apoptosis, and are able to survive in unsupplemented 

media for more than 3 weeks 79, indicating the existence of a self-supporting system. 
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Thus, it seems likely that a factor(s) released from apoptotic cells may induce 

differentiation and migration of HNSCs. 
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Figure 4: Time-lapse video microscopy shows differentiating HNSCs migrate toward 
apoptotic cells at 2 DIV. Differentiating HNSCs (arrow) in a serum-free unsupplemented 
medium migrate away from the neurosphere cluster (a). Interestingly, these cells extend 
their processes onto nearby morphologically shrunken cell(s), which are apparently 
apoptotic cells (b), followed by a retraction of the processes (c), which are now attached 
to the apoptotic cells (d), back into the neurosphere cluster (e). This response of 
differentiating HNSCs to the apoptotic cells strengthened the possibility that some 
component(s) of apoptotic cells serve as a “factor(s)” capable of influencing the 
physiological activity of differentiating HNSCs. 
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Figure 5: APP expression is increased in apoptotic cells under the serum-free 
differentiation condition. The TUNEL signal for DNA fragmentation increased at 3 DIV, 
indicating HNSCs underwent much greater degree of apoptotic cell death (yellow) 
during differentiation in a serum-free unsupplemented medium (a) compared with serum 
differentiation conditions (b). All these nuclei of HNSCs were counter-stained by 
propidium iodide (red) and the DNA fragmentation positive cells were visualized with 
fluorescein (green). All these nuclei of HNSCs were counter-stained by DAPI (c, blue) 
The TUNEL signal (d, green) and immunoreactivity for APP recognized by 22C11 
monoclonal antibody (e, red) are co-localized in the shrunken morphology cell in the 
serum-free differentiation condition (f). 
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APP is increased in apoptotic HNSCs  

Since it is known that APP levels are elevated in apoptotic cells 81, we tested whether 

this is also true for HNSCs under serum-deprived conditions. We combined the TUNEL 

assay and immunocytochemistry with a well-characterized monoclonal antibody 

recognizing the N-terminal growth factor-like domain of APP (22C11). Under serum-free 

conditions, TUNEL-positive cells showed strong expression whereas non-apoptotic cells 

exhibited only background levels of APP (Figure 5c-e), indicating that APP levels are 

also elevated in apoptotic HNSCs.  

APP involved in migration or differentiation of HNSCs 

We further hypothesized that under serum-free conditions, APP derived from apoptotic 

HNSCs might serve as a migration and differentiation factor for neighboring HNSCs. To 

investigate if APP is involved in the migration and differentiation process, we tested 

whether the 22C11 antibody inhibits APP function on HNSC migration. We treated 

HNSCs with a variety of concentrations of 22C11 under serum or serum-free 

differentiation conditions for 3 days. The addition of 22C11 (500 ng/ml) completely 

inhibited migration and differentiation of HNSCs under serum-free unsupplemented 

conditions (Figure 6). In contrast, 22C11 treatment did not affect the migration of 

HNSCs when fetal bovine serum was added to the culture (data not shown). This result 

suggest that APP may be involved in the induction of the differentiation and migration of 

HNSCs, whereas fetal calf serum contains (possibly independent of APP) many other 

factors promoting migration and differentiation. 
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To investigate whether the N-terminal secreted form of APP might be sufficient to 

induce migration of HNSCs, we treated HNSCs with an exogenous recombinant human 

secreted APP (sAPP) produced in yeast 82, which contained 95% sAPP695T (ending at 

amino acid 505 of 695) and 5% sAPP695 (ending at the alpha cut). The addition of 

recombinant sAPP to cell culture media dose-dependently (25, 50 and 100 ng/ml) 

increased migration and differentiation of HNSCs (Figure 7 a-d) under serum-free 

conditions. At the highest dose (100ng/ml), neurospheres were completely absent.  
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Figure 6: Treatment with 22C11 antibody recognizing the N-terminal of APP dose-
dependently inhibited differentiation of HNSCs in non-serum unsupplemented media. 
The panels show the typical differentiation pattern of HNSCs under treatment with 
22C11 (a; control, b; 125 µg/ml, c; 250 µg/ml, d; 500 µg/ml) at 3DIV. 
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sAPP increases gliogenesis of HNSCs 

We also characterized the cell population of sAPP-treated HNSCs at 5 DIV under 

serum-free conditions by double-immunofluorescent labeling of GFAP and βIII-tubulin 

(Figure 7 e-h). Treatment with sAPP dose dependently (25, 50, and 100 ng/ml) 

increased the population of GFAP-positive cells from an average of 45% in controls (no 

sAPP) to an average of 83% with the highest concentration of sAPP treatment (100 

ng/ml at 5 DIV).  

 

Interestingly, the lowest dose of sAPP treatment (25 ng/ml) increased both glial and 

neuronal differentiation. However, higher doses of sAPP (50 and 100ng/ml) dose-

dependently decreased βIII-tubulin-positive cells (neurons) in the total population of 

differentiated HNSCs, from an average of 51% in controls to an average of 13% with the 

highest concentration of sAPP treatment (Figure 7i). Expressions of genes related to 

JAK/STAT signaling (LIF, CNTF, JAK1 and STAT3, Figure 8A) and Notch signaling 

(Delta, Jagged1 and Hes1, Figure 8B) were increased in NT-2 cells treated with sAPP 

(100 ng/ml) for overnight. This result indicates activation of astrocytic differentiation 

mechanisms. Although the mechanism for the glial promoting effect of sAPP on HNSCs 

is not yet clear, APP may increase glial differentiation by influencing the cell fate 

decision of HNSCs. Since sAPP treatment did not increase the apoptosis related gene 

expression in HNSCs, selective death of proneural progenitors in the neurospheres can 

be ruled out (Fig. 8C).  
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Figure 7: Secreted amyloid precursor protein (sAPP) alters migration and differentiation 
of HNSCs. Treatment of HNSCs culture with recombinant sAPP for 5 days dose-
dependently (a; control, b; 25 ng/ml, c; 50 ng/ml and d; 100 ng/ml) increased the 
migration and differentiation of HNSCs under the serum-free unsupplemented condition. 
The cell population of sAPP-treated HNSCs at 5 DIV in the serum-free differentiation 
condition was further characterized by double immunofluorescence staining with GFAP 
(red) and βIII-tubulin (green) markers for astrocytes and neurons, respectively. All nuclei 
were counterstained with DAPI (blue). The panels show typical morphology and 
differentiation patterns of HNSCs in e; control culture and cultures treated with f; 25 
ng/ml, g; 50 ng/ml and h; 100 ng/ml of sAPP. At low dose of sAPP (25 ng/ml), increased 
glial (red) and neuronal (green) differentiations were observed compared with the 
control (f). At a higher dose of sAPP treatment, many glially differentiated HNSCs (red) 
were observed (g and h).  
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Figure 8: Gene expression pattern after sAPP treatment in neuronal progenitors. 
Expressions of genes related to JAK/STAT signaling (LIF, CNTF, JAK1 and STAT3) 
and Notch signaling (Delta, Jagged1 and Hes1) were increased in NT-2 cells treated 
with sAPP (100ng/ml) for overnight. This result indicates activation of astrocytic 
differentiation mechanisms. However, genes associated with apoptosis (Bcl-2 and BAX) 
did not change. 
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HNSCs migration and differentiation is reduced in APP-knockout mice  

Based on our in vitro data, we further investigated whether APP might have an impact 

on the migration or differentiation of NSCs in adults in vivo. To address this question, 

we transplanted HNSCs into the brains of APP knockout 74 and control mice at 3 

months of age. To differentiate between host and transplanted cells, HNSCs were 

labeled in vitro by the incorporation of bromodeoxyuridine (BrdU) into the nucleus DNA 

before transplantation. These labeled cells (about 105) were subsequently injected 

unilaterally into the cerebral lateral ventricle of c57/black wild-type (WT) and APP-

knockout mice. Immunohistochemical examination of wild-type brain sections 4 weeks 

after transplantation revealed migration and differentiation patterns similar to our 

previous study with HNSCs transplanted into aged memory-impaired rats 67. Cells 

distributed bilaterally in the singular and parietal cortexes (layer II, IV and V) (Fig. 9a) 

and hippocampus (CA1, CA2 and dentate gyrus) (Fig.9c) were intensely and 

extensively immunopositive for BrdU and human βIII-tubulin. The transplanted HNSCs 

also differentiated into GFAP-immunopositive cells that co-localized with the neuronal 

fibers of layer III in the cortex (Fig.9e). These donor-derived BrdU-immunopositive cells 

were much larger than the host brain cells. We did not detect the above-mentioned 

morphologies and distributions of βIII-tubulin- or GFAP-positive cells in wild-type control 

mice that had not received HNSC transplantation. 

 

Although transplanted HNSCs in APP-knockout mice also differentiated into βIII-tubulin- 

and GFAP- positive cells, the distribution and migration patterns were not symmetric 
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and differentiated cells were far fewer compared to injected wild-type mice. Despite the 

rather uniform βIII-tubulin-positive cell distribution and structure in the hippocampus of 

APP-knockout mice (Fig. 9d), βIII-tubulin-positive HNSCs were only detected near the 

injection site of the cortex and lacked apical dendrites (Fig. 9b). These results indicate 

that APP plays an important role in neurogenesis in the adult brain.  
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Figure 9: HNSCs transplanted into the APP knockout mice brain show fewer migrations 
and differentiations compare with cells transplanted into wild-type control mice. To 
distinguish HNSCs from the host cells HNSCs were prelabeled by BrdU in vitro before 
unilateral ventricle injection. We immunostained the brain with βIII-tubulin, GFAP, and 
BrdU, markers for neurons, astrocytes, and transplanted HNSCs at 4 weeks after 
injection, respectively. All nuclei were counterstained with DAPI (blue). In wild-type 
mice, BrdU (red) and βIII-tubulin (green) immunopositive cells were distributed 
bilaterally in the parietal cortexes (a) and pyramidal layer of the hippocampus (c) 
indicating the neuronal differentiation of transplanted HNSCs. HNSCs also differentiated 
into GFAP-immunopositive cells (red) that associated with the βIII-tubulin (green) 
stained neuronal fibers of layer III in the cortex (e). The differentiation and distribution 
patterns of the transplanted HNSCs are similar to those we found in our previous 
transplantation study with rats11.In APP knockout mice, βIII-tubulin-positive cells (green) 
with BrdU (red) positive nuclei, neurally differentiated HNSC-transplants were only 
detected near the injection site in the cortex and these cells showed abnormal 
morphologies (b). In the hippocampus, although the number of HNSC-derived cells was 
reduced, βIII-tubulin and BrdU-immunopositive cells had quite similar positioning and 
structure to these cells found in wild-type mice (d). 
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Discussion 

Our study clearly showed that APP function is relevant for HNSC migration and 

differentiation in vitro and in vivo. We found that under non-serum differentiation of 

HNSCs, APP levels are elevated in apoptotic cells. This result is consistent with other 

studies showing that damaged neurons and neurons committed to apoptosis are 

strongly immunopositive for APP 83, 84. Time-lapse observation of HNSC cultures under 

non-serum differentiation conditions showed migration of differentiating HNSCs toward 

the apoptotic cells in vitro. We demonstrated that treatment with recombinant sAPP 

promoted the migration and differentiation of HNSCs, and 22C11 antibody-mediated 

neutralization of APP inhibited these effects in a dose-dependent manner. Since 

amyloidogenic fragments produced from APP are reported to be released into the 

extracellular space from neuronal cells under serum-deprived conditions 80, we 

hypothesize that under serum-free differentiation conditions, APP released from 

apoptotic cells serves as a differentiation and/or migration factor for neighboring 

HNSCs. Although the mechanism of 22C11-mediated inhibition of the migration and 

differentiation of HNSCs is not clear, since the epitope of 22C11 lies within the growth 

factor-like domain of APP, 22C11 may prevent receptor or ligand interactions by binding 

to biologically active sites of APP. It is known that sAPP activates MAPK (ERK) in PC12 

cells via the ras pathway 85. Ras in turn, can activate rac 86, a rho-family GTPase 

controlling lamellipodia formation through a focal complex assembly, and thereby also 

activating cell motility. Focal complex assembly is an integrin-mediated process 

requiring extracellular matrix and rho/rac activity87. Sabo and colleagues 78 have shown 

that APP can enhance cell motility in MDCK cells in association with Fe65, which 
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colocalizes with APP at focal contacts. Since Fe65 over expression is known to 

increase secretion of APP 88, one could argue that APP secreted from neighboring cells 

act as a migrational cue through focal adhesion assembly. Since b1-integrins have been 

shown to be necessary for the chain migration of neuroblasts 71, the connection 

between integrin-mediated migration and APP could be a clue for understanding the 

mechanism of the regulation of stem cell motility by APP. In contrast to another study 

showing that sAPP significantly enhanced proliferation of neural stem cells 89, we did 

not observe this effect in our studies, probably because our assay was done under non-

serum conditions without any proliferation factors.  

 

Besides increasing differentiation and migration, a high concentration of sAPP 

increased the glial cell population of differentiated HNSCs in vitro, indicating that the 

over-production of APP fragments may influence the cell fate decision of HNSCs and 

reduce neural differentiation. Another possibility is that higher concentrations of sAPP 

may eliminate HNSC populations differentiating into neurons, since high APP 

expression in neuronal cell lines is reported to cause apoptotic cell death by caspase-3 

activation 90, although the latter possibility can probably be excluded because sAPP 

treatment did not increase expression of apoptosis related genes in HNSCs.  

 

Gene expression data after sAPP treatment of the cells also show increased expression 

of genes related to Notch and JAK/STAT signaling indicating activation of these 

cascades. Since these signaling cascades are known to involve in glial differentiation of 
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stem cells, sAPP might affecting on these cascades to induce glial differentiation of 

HNSCs. However, detailed studies are needed to confirm the mechanism of action. 

 

Recently, Bahn et al., reported that NSCs from Down's syndrome patients differentiated 

into astrocytes rather than neurons 56. They have also reported a morphological 

abnormality of neurally-differentiated NSCs, which we have also seen in HNSCs 

transfected with wtAPP. Since Downs' syndrome patients have inherited three copies of 

APP that resides on chromosome 21, this abnormal differentiation may result from an 

overdose of the APP gene. Furthermore, since Down's patients develop AD by age 40, 

these findings might also have implications in AD pathology. Although it is not clear 

whether adult neurogenesis is essential for normal cognitive function in aging, it is 

tempting to speculate that the altered APP metabolism that impairs proper NSC 

migration and differentiation could be a part of pathological process of AD, since aged 

transgenic APP mice exhibit neocortical neuronal loss 91. Furthermore, although the rate 

of neurodegeneration in the adult brain may be minimal, it may be that in the long run, 

such a deficit might significantly reduce normal brain function. In addition to these 

drawbacks, transplantation therapy of AD with HNSCs may not be effective in an 

environment where APP metabolism is altered and might lead to excessive gliogenesis. 

Thus, we may have to consider the regulation of APP processing to develop effective 

HNSC transplantation therapy in AD patients. 

 

Regulation of stem cell biology by APP raises a question regarding Ab immunization, 

which may also reduce APP fragments. Could Ab immunization be helpful for 
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maintaining stem cell function in AD? Our current study has shown for the first time that 

APP is one of the factors required for HNSC migration in the adult brain. Migration of 

transplanted HNSCs to the cerebral cortex was markedly reduced in APP-knockout 

mice compared to wild-type controls. Since migration from the subventricular zone to 

the neocortex could be found in adult macaques 66, lack of APP expression in APP-

knockout mice might be a major factor in preventing the migration of HNSCs into this 

region, indicating that APP regulates NSC migration in the adult brain. Although it is 

conceivable that APP expression in transplanted HNSCs may partially compensate for 

the APP deficit in the host brain, this effect seems to be minimal, since the absence of 

environmental APP clearly alters the migration pattern of transplanted HNSCs. Thus, 

APP might function as an environmental cue rather than as a cell-cell contact 

mechanism. In mammals, APP is part of a gene family comprising three paralogues: 

APP, APLP1, and APLP2. Evolutionary studies have revealed a remarkable homology 

between these proteins, specifically in the N-terminal and C-terminal domains 14, 92. 

Additionally, mouse double-knockouts of both APP and APLP2 result in 80% mortality 

during the first week postnatally 93, indicating that APLPs may compensate for the lack 

of APP in the APP-knockout mouse. The successful migration of transplanted HNSCs 

into the hippocampus of APP knockout mice, as we have observed in the current study, 

may thus be explained by the redundant function of APP, APLP1, and APLP2. This 

redundancy is also supported by the finding that APLP1 and APLP2 mRNAs are highly 

abundant in the granule cells of the dentate gyrus in humans 94. It would be interesting 

to extend our studies to double-knockout mice to confirm this hypothesis. These results 

indicate that environmental or sAPP factors may be important in regulating the migration 
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and differentiation of HNSCs in the adult brain. Since HNSCs may play important roles 

in neurodegeneration, if APP is indeed involved in the regulation of HNSCs as we 

propose, destruction of the APP system may jeopardize the maintenance of normal 

adult brain function. 
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AMYLOID PRECUROSR PROTEIN IS INVOLVED IN STAUROSPORINE 
INDUCED GLIAL DIFFERENTIATION OF NERUAL STEM CELLS 

Introduction 

Human embryonic teratocarcinoma cells (NT-2/D1) derived from a testicular germ cell 

tumor have been intensively used as an experimental model for investigating neural 

differentiation 95-97. Unlike post-mitotic CNS neurons or neuroblastoma, NT-2/D1 cells 

still possess some multipotency and distinctive developmental characteristics, which 

resemble the nature of neural stem cells 98. By treating with all-trans retinoic acid (RA), 

NT-2/D1 cells are known to progressively differentiate into post mitotic neurons in 3-5 

weeks, expressing full neuronal characteristics and capable of forming functional 

synapses 99, 100. Recently, RA treatment has also been reported to differentiate NT-2/D1 

into astrocytes (NT2/A) 99, which express astrocyte specific markers such as glial 

fibrillary acidic protein (GFAP), astrocyte-specific glutamate transporter-1 (GLT-1)/ 

excitatory amino acid transporters (EEAT)-2 and aspartate transporter (GLAST)/EAAT-1.  

 

Staurosporine (STS), indolo (2, 3-alpha) carbazole, has been extensively used as a 

protein kinase C inhibitor 101 or apoptosis inducer in neuronal precursors 102, neurons 103, 

and other tumor cell lines. However recent studies indicate STS also inhibits cell 

proliferation and induces neuronal and glial differentiation of murine embryonic stem 

cells 104, PC12 pheochromocytoma 105, and C6 glioblastoma 106. Although the target and 

mechanism of the tropic effects of STS remains to be determined, STS may have 

properties not only as an apoptotic inducer but also as a differentiation inducer. In the 
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current study, we try to elucidate mechanisms of STS-induced astrocytic differentiation 

using NT-2/D1 cells. 

 

The amyloid precursor protein (APP) is a 695- to 770-amino acid, membrane spanning 

glycoprotein. To date, the cytotoxicity of Aβ peptides, generated from APP by sequential 

cuts with γ- and β-secretases, has been extensively studied since Aβ deposition is a 

major pathophysiology of Alzheimer’s Disease (AD) 107. While physiological function of 

APP has not been well documented, structure of APP suggests that APP might function 

as a receptor via Go binding domain 108, or as a ligand via soluble N-terminal domain 28, 

109. Secreted type of APP (sAPP) promoted neurite outgrowth of primary neuronal 

cultured cells 28 as well as proliferation of neural stem cells 109. Over expression of APP 

reduced the number of apoptotic neurons deprived of NGF in dorsal root ganglion 110, 

which may occur through p38 MAPK-dependent phosphorylation and activation of 

myocyte enhancer factor-2 111. These results indicate that APP has properties of growth 

and anti-apoptotic factors. Here, we demonstrate that APP is playing an important role 

in STS-induced astrocytic differentiation of NT-2/D1 cells. 

Materials and methods 

Reagents and antibodies 

STS (Sigma), PD098059 (Sigma) and SB239060 (Calbiochem) was dissolved in 

dimethyl sulfoxide and stored at –80˚C until use. Primary antibodies: rabbit anti-GFAP 

antibody (Promega); mouse anti-APP antibody (22C11) (Chemicon); mouse anti-ERK 
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antibody (BD Transduction Laboratory); and mouse anti-phospho-ERK1/2 

(pT202/pY204) antibody (BD Transduction Laboratory. Secondary antibodies: anti-

mouse IgG and anti-rabbit IgG horseradish peroxidase-conjugated antibodies (Jackson 

Immunoresearch Laboratory) were used.  

Cell culture  

The NT2/D1 cells were seeded (5x106 cells per 150 mm petri dish) in Dulbecco’s 

modified Eagle’s medium with F-12 (DMEM/F-12; Invitrogen) supplemented with 10% 

heat inactivated fetal bovine serum (Novacell), 1% antibiotic-antimycotic (Invitrogen), 4 

mM glutamine (Invitrogen) and maintained in a humidified atmosphere of 5% CO2/95% 

air at 37˚C. The cells were passed twice a week by short exposure to trypsin/EDTA 

(Invitrogen). For the experiments, 1x106 NT-2/D1 cells were plated in a 6 well tissue 

culture plate and subsequently treated with 10 or 40 nM STS. Cells were rinsed twice in 

ice-cold phosphate-buffered saline (PBS, pH7.4) then mRNA and protein samples were 

extracted for further analysis. Enhanced green fluorescent protein (EGFP) expression in 

the cells were detected as green fluorescence signals under a microscope (Leica, 

model DMRB) after fixing with 4% Para formaldehyde.  

siRNA preparation 

Human APP695 (Genbank access number: A33292) mRNA target sequences were 

designed using Ambion target finder software. The mRNA target sequences of human 

APP695 was 5’- AATCTTTGGAACAGGAAGCAG-3’ (1094-1114). siRNA PCR products 

were synthesized using a SilencerTM Express kit (Ambion). Then, silencing efficacy was 
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determined using RT-PCR. As a control, we prepared EGFP siRNA PCR products 

(accession number: U55763, target sequence: 106-127) as follows. In the first round 

PCR, hU6 promoter (GenBank accession #M14486, gene sequence 64-355) and 27 nt 

of U6 5’-coding sequence was amplified with a primer set (U6-F: 5’-

TCTTTGGAATTCAAGGTCGGGCAGGAAGAGGGCCTA-3’, U6-R: 5’-

CGCGGATCCTAGTATATGTGCTGCCGAAGC-3’) using plasmid pUC-hU6 112 as a 

template. Simultaneously hairpin-siRNA for EGFP gene consists of 21 nt sense strand 

of siRNA, 9 nt spacer and 21 nt antisense strand of siRNA was generated by PCR using 

another primer set (siEGFP-F: 5'-CGC GGA TCC GGC GAT GCC ACC TAC GGC AAG 

CTC GAG ATC-3', siEGFP-R: 5'-GCT CTA GAG GCG ATG CCA CCT ACG GCA AGG 

ATC TCG AGC T-3'). After 100-times dilution, first round PCR products were mixed and 

used as template for the second round PCR reaction. Since 5’ end of siEGFP-F primer 

contains complementary sequence to 3’ end of hU6 promoter region, the second round 

PCR using U6-F primer and siEGFP-R primer produced hU6-siEGFP. The first and 

second round PCR reaction condition were both pre-incubation at 95˚C for 5 min; 35 

cycles of 95˚C for 40 s, 55˚C for 30 s and 72˚C for 30 s; and post-extension at 72˚C for 

5 min. To produce PCR fragment containing hU6 promoter with a random sequence for 

using as a nonspecific siRNA in the cells, we used a primer set U6-F and U6-R1 (5'-

AAA AAT TCT AGA TGT AAA AAT AGT GTT GTG TGC CTA GGA TAT GTG CTG 

CCG AAG CGA GCA C-3’) using plasmid pUC-hU6 as a template.  
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Transfection 

Transient transfection of pEGFAP-C1 (BD Clontech), pCEP-APP-GFP, pCEP-APP695 

(kindly provided by Dr. Beth Ostaszewski, Harvard Medical School), pGFAP-GFP-S65T 

(kindly provided by Dr. Albee Messing, University of Wisconsin Madison) and siRNA 

PCR fragments (U6-random, siGFP and siAPP) was performed with LipofectamineTM 

2000 (Invitrogen) on sub confluent NT-2/D1 cells in a 6-well culture plate, according to 

the manufacturer's protocol. Transfection efficiency in NT-2/D1 cell was determined by 

transfection of 0.5 µg of pEGFP-C1, and it was generally around 80%.  

RT-PCR analysis 

Total RNA was extracted from the cells with Trizol reagent (Invitrogen) according to the 

manufacturer’s protocol. One µg of the total RNA was reverse-transcribed (RT) and 

amplified by the SuperScriptTM ONE-STEPTM RT-PCR system (Invitrogen) with the 

following primers: GFAP (+) 5’-AAGCAGTCTACCCACCTCAG-3’, (-) 5’-

ATCCCTCCCAGCACCTCATC-3’; APP (+) 5’-

CTTGAGTAAACTTTGGGACATGGCGCTGC-3’, (-) 5’-GAACCCTACGAAGAAGCC-3’; 

GLT-1 (+) 5’-GACAGTCATCTTGGCTCAGA-3’, (-) 5’-AATCCACCATCAGCTTGGCC-3’; 

GLAST (+) 5’-CTGCTCACAGTCACCGCTGT-3’, (-) 5’-AGCACGAATCTGGTGACGCG-

3’; EGFP (+) 5’-CAAGGACGACGGCAACTACAAGAC-3’, (-) 5’-

GCGGACTGGGTGCTCAGGTAGTGGT-3’; β-actin (+) 5’-

GACAGGATGCAGAAGGAGAT-3’,  (-) 5’-TTGCTGATCCACATCTGCTG-3’. RT-PCR 

condition was a reverse transcription at 55˚C for 30 min; a pre-denaturation at 94˚C for 

2min; 25-32 cycles of 94˚C for 15 sec; 55-56˚C for 30 sec and 72˚C for 30 sec; and a 
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post-extension at 72˚C for 5 min. Cycle number was adjusted in order to keep the PCR 

amplification in a log-phase for semi-quantization. Ten µl of the reaction was separated 

in a 2% E-gel (Invitrogen).  

Immunoprecipitation and western blot analysis 

Protein samples were prepared by lysing the cells using an ice-cold lysis buffer consist 

of 1% NP40, 150 mM NaCl, 50 mM Tris pH8.0 and Complete Protease Inhibitor Tablets 

(Boehringer). The protein concentration of each sample was measured by Bio-Rad 

protein assay (Bio-Rad). Lysates were immunoprecipitated with an antibody against 

APP, GFAP, and ERK molecules using protein A-Sepharose (Amersham Bioscience). 

Then, precipitates and, in some cases, cell lysates were heated at 70ºC for 10 min in a 

sample loading buffer and separated on NuPAGETM 4-12 % Bis-Tis Gel (Invitrogen) for 

45 min at 200 V and transferred to a PVDF membrane (30V, 60 min). Membranes were 

blocked with 5% skim milk in PBS for 1h at room temperature and probed at 4˚C 

overnight with primary antibody in 5% skim milk. The membranes were washed 3 times 

for 5min each with PBS containing 0.05% Tween 20 (pH7.4) and then incubated with 

horseradish peroxidase-conjugated secondary antibodies in 5% skim milk for 2h at RT. 

After 3 times washing with PBS containing 0.05% Tween 20, immunoreactive bands 

were visualized by using ECL plus (Amersham Bioscience) chemiluminescence 

reagent.  

Cloning and expression of the recombinant human APP695 
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We amplified human APP695 gene from pCEP-APP695 by PCR using EPPENDORF® 

HotMasterMix (2.5×, Eppendorf). The commercially synthesized primers were R-hAPP 

(+): 5’-CACCCTGGAGGTACCCACTGAT-3’ and R-hAPP (-): 5’-

TCATTTTTGATGATGAACTTG-3’ for protein expressed with a His tag at the N 

terminus. The PCR product was separated by gel electrophoresis on a 1.2% E-gel 

(Invitrogen), and the appropriate band was extracted using a gel extraction kit 

(Quiagen). Then, blunt-end directional cloning was performed by a topoisomerase 

reaction into a pET100 vector (Champion pET Directional TOPO Expression and 

Cloning Kit, Invitrogen). The gene insertion and its directionality as well as the integrity 

of the pET100 vector were verified by the sequencing facility at the University of Central 

Florida.  BL21 Star DE3 (Invitrogen) competent cells were transformed for protein 

expression and grown in Luria-Bertani broth at 37˚C to an absorbance ~0.8 at 600nm. 

Then, protein expression was induced under ampicillin (50µg/ml) and 1 mM isopropyl-β-

thiogalactopyranoside at 37˚C for 4h. Cells were harvested by centrifugation at 

10,000×g for 25 min.   

Purification of human APP695 

Cells were resuspended in lysis buffer [50 mM NaH2PO4, 300 mM NaCl, 10 mM 

imidazole, pH 8.0] and disrupted by sonication. Cell lysates were collected by 

centrifugation (2000g at 4˚C for 20 min). The supernatant was directly applied to Ni-NTA 

column (invitrogen), which is washed with a buffer solution containing 50 mM NaH2PO4, 

300 mM NaCl, and 20 mM imidazole pH 8.0, to remove nonspecifically bound protein. 

The His-tagged protein was eluted with buffer containing 50 mM NaH2PO4, 300 mM 
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NaCl, and 150 mM imidazole pH 8.0. The purified protein was then stored at –20˚C. The 

sample was more than 95% pure, as assessed by SDS-PAGE.  

 

Image analysis 

Gel or Western blot images were captured by KODAK Image Station 2000MM. Optical 

density of the target bands were analyzed using ImageJ (Ver 4.1, NIH) and expressed 

in mean±SD from experiments performed in triplicates.  

Results 

Induction of glial cell like morphological change of NT-2/D1 cells by STS 

As a further test for function of STS as a differentiation inducer, we analyzed 

morphological changes after STS treatment. NT-2/D1 cells grew as a monolayer culture 

of neuroepithelial cells with a high nuclear to cytoplasmic ratio and prominent nucleoli 

resembling embryonic carcinoma cells (Figure 10A-a). Morphological changes started 

right after day 1 of treatment with 40 nM STS (Figure 10A-b). Dramatic change of 

morphology occurred after 7 days treatment of 40 nM STS (Figure 10A-c) and these 

changes continued during 14 days treatment of STS (Figure 10A-d). Based on 

morphological features, protoplasmic and polygonal irregular star-like cells, STS treated 

cells showed distinctive astrocytic cell morphology (Figure 10A-c, d), indicating that STS 

treatment induced astrocytic differentiation of NT-2/D1 cells.  
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GFAP expression in STS-treated NT-2/D1 cells  

Although physiological function of GFAP during astrocytic differentiation is still unclear, 

GFAP has been used as a typical maker for astrocytic differentiation 113, 114. To 

characterize the morphological changes in NT-2/D1 after STS treatment, we analyzed 

GFAP expression in these cells using RT-PCR (Figure 10B). Levels of GFAP mRNA 

were increased by STS-treatment compared to the basal level of GFAP mRNA in 

control cells with time dependent manner up to 24 hours. These cells also expressed 

astrocyte-specific glutamate transporter-1 (GLT-1)/ excitatory amino acid transporters 

(EEAT)-2 and aspartate transporter (GLAST)/EAAT-1 (Figure 10C). 

 

We also confirmed GFAP promoter activation by STS treatment using NT-2/D1 

transfected with GFAP promoter driven GFP plasmid vector (pGFAP-GFP-S65T) as a 

reporter system. As shown in Figure 10D and E, 10 nM STS treatment induced both 

mRNA and protein expression (green fluorescence) of GFP. These results indicate that 

STS induces astrocytic differentiation of NT-2/D1 cells. 
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Figure 10: Morphological changes of NT-2/D1 cells and induction of astrocyte specific 
gene expression by STS. (A) NT-2/D1 cells grew as a monolayer culture resembling 
embryonic carcinoma cells (a, x100). Morphological changes started right after day 1 of 
treatment with 40 nM STS (b, x100). Astrocyte like morphology was observed after 7 
days (c, x100) and 14 days (d, x400) treatment with STS. (B) RT-PCR analysis of GFAP 
gene expression in NT-2/D1 cells treated with 10 nM STS for 0, 6, 12 and 24 hrs shows 
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time-dependent increase of GFAP gene expression. Expression of β-actin was 
examined as a loading control. (C) RT-PCR analysis shows treatment with 10 nM STS 
for 24 h induced astrocyte specific glutamate transporter expressions (GLT-1/EAAT-2 
and GLAST/EAAT-1) in NT-2/D1 cells. (D) RT-PCR analysis of mRNA of GFP 
transcribed by GFAP promoter in NT-2/D1 cells transfected with pGFAP-GFP-S65T 
(1µg each) as a reporter system. After 2days, the cells treated with 10 nM STS for 24 h 
expressed GFP gene. (E) Fluorescence image of GFP in NT-2/D1 cells transfected with 
pGFAP-GFP-S65T with STS (a) and without 10 nM STS (b) treatment for 24h. Then 
cells were fixed with 4% para formaldehyde and analyzed under the fluorescent 
microscope.  
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Increased gene expression level of APP during STS-induced astrocytic 
differentiation 

Both mRNA and protein expression of APP in NT-2/D1 time-dependently increased 

after 10 nM STS treatment (Figure 11A and B). In addition, concentration of sAPP also 

time-dependently increased in the media of NT-2/D1 cell culture (Figure 11B).  Then, 

the increased catabolism of APP showed the correlation with the GFAP expression in 

the NT-2/D1 cells (Figure 11B). This result suggests that STS-induced APP expression 

may have an important role in astrocytic differentiation of NT-2/D1 cells. 

 

 

.  
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Figure 11: Increased gene expression of APP during STS-induced gliogenesis. (A) RT-
PCR analysis of APP gene expression in NT-2/D1 cells treated with 10 nM STS. (B) 
Western blot analysis of APP, sAPP and GFAP protein expression in NT-2/D1 cells 
treated with 10 nM STS. Samples for APP and GFAP were isolated from the cell 
lysates; sample for sAPP was isolated from the NT-2/D1 cell culture media. The 
samples were subjected to immunoprecipitation with mouse-anti-APP Ab (22C11) or 
rabbit-anti-GFAP Ab. Then the immunoprecipitants were analyzed by Immunoblot 
analysis using a mouse-anti-APP Ab (22C11) or rabbit-anti-GFAP Ab. Western data 
show time dependent increase of these proteins 
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sAPP induced GFAP expression in NT-2/D1 cells 

To determine whether expression of APP can affect stem cell differentiation, we applied 

various amounts (0, 1, 10, and 100 ng) of recombinant APP695 protein in NT-2/D1 cells, 

neural progenitor cell lines, overnight and examined GFAP expression. A distinctive 

increase of GFAP expression was observed with a dose-dependent manner except 

500ng APP treated cells compared to the control (Figure 12A). Although expression of 

GFAP was somehow decreased in higher dose treated cells, still GFAP expression level 

was higher than the control. We already reported STS enhances gene expression of 

GFP by stimulating GFAP promoter activity (Figure. 10D and E). However, it wasn’t 

clear whether STS has a direct affect on the GFAP promoter or GFAP promoter activity 

is regulated by other factors, such as APP, which is induced by STS treatment. Thus, 

we examined GFAP promoter activity by assessing GFP expression using NT-2/D1 

cells transfected with GFAP promoter driven GFP expression vector (pGFAP-GFP-

S65T) (Figure 12B). When APP695 expression vectors (pCEP-APP695) were 

overexpressed in reporter vector transfected cells, gene expression of GFP was 

detected. Therefore, these results suggest that APP is involved in astrogliogenesis of 

NT-2/D1 cells in STS treated condition. 
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Figure 12: Increased GFAP expression in either treatment of APP and overexpression 
of APP. (A) RT-PCR analysis of GFAP gene expression in NT-2/D1 cells treated with 
various amount (0, 1, 10, and 100 ng) of recombinant APP shows dose-dependent 
increase of GFAP gene expression. Expression of β-actin was examined as a loading 
control. (B) RT-PCR analysis of mRNA of GFP transcribed by GFAP promoter in NT-
2/D1 cells transfected with pGFAP-GFP-S65T (1µg each) as a reporter system. Only 
APP expression vector (pCEP-APP695) was co-transfected, expression of GFP mRNA 
can be examined 
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Gene silencing of APP expression suppresses GFAP expression 

Recently small interference RNA (siRNA) has been extensively used for elucidating 

specific functions of the gene of interest 115. To confirm the involvement of APP in STS-

induced astrocytic differentiation, we investigated whether STS function in NT-2/D1 is 

abolished by knocking-down the gene expression of APP using siRNA. We constructed 

specific siRNA PCR products (siAPP-PCR), which specifically recognize APP. Small 

interference APP-PCR significantly decreased protein expression of APP–GFP fusion 

protein in NT-2/D1 cells transfected with pCMV-APP-GFP (Figure 13 A-d). Control PCR 

products (U6-random sequence PCR) did not inhibit APP-GFP fusion protein 

expressions.  

 

Small interference APP PCR also showed significantly suppressed APP and GFAP 

gene expressions in NT-2/D1 cells treated with STS, while control siRNA PCR products 

(siGFP-PCR), which recognize GFP, didn’t suppress APP and GFAP expression 

(Figure 13 B and C). These findings suggest that APP is a crucial molecule for 

astrocytic differentiation of NT-2/D1 cells induced by STS treatment.  
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Figure 13: Assessment of APP functions by RNAi for APP in NT-2/D1 cells. (A) A mock-
transfected NT-2/D1 cells, as negative controls, show no auto fluorescent signal (a). 
NT-2/D1 cells transfected with 1µg of pEGFP-C1, as positive controls, show significant 
level of green fluorescent signals (b). NT-2/D1 cells in both c and d received 
transfection of 1 µg of pCEP-APP-GFP to express APP-GFP fusion protein. Co-
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transfection of 1 µg of U6-random PCR products expressing random sequence does not 
suppress expression of the APP-GFP fusion protein (c). Co-transfection of 1 µg of 
siRNA PCR products targeting APP significantly suppresses expression of the APP-
GFP fusion protein (d). Experiments were repeated at least three times with similar 
results. (B) Silencing of APP reduced GFAP expression stimulated by 10 nM STS in 
NT-2/D1 cells. Gene expression levels of APP and GFAP were assessed by RT-PCR in 
NT-2/D1 cells treated with 10 nM STS were transfected with each 1 µg of siRNA of PCR 
products targeting GFP (siGFP) or APP (siAPP) for 2 days. Transfection of siAPP but 
not siGFP significantly reduced the expression of APP as well as GFAP mRNA levels in 
the NT-2/D1 cells. (C) The data (means ± SD, n=3) presented are % changes of mRNA 
expression of APP and GFAP compare to the control, NT-2/D1 cells only treated with 10 
nM STS, as 100%. 
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STS stimulate APP expression via ERK pathway 

Although STS is known to be a PKC inhibitor 101, it is also reported to activate mitogen-

activated protein kinase (MAPK) signal transduction 116, which is a major pathway 

responsible for APP catabolism 117. Treatment of NT-2/D1 cells with 10 nM STS time-

dependently increased phosphorylation of ERK1/2 (p44/42 MAP kinases) after 45 min 

of incubation (Figure 14 A). To further test the role of ERK signaling in STS-induced 

APP expression, we pretreated NT-2/D1 cells with PD098059 118, a selective inhibitor of 

MEK1 or SB203580 119, a selective inhibitor of p38 MAPK for 30 min prior to a 10nM 

STS treatment with PD098059 or SB203580 for 24h. PD098059 inhibited STS-induced 

APP (Figure 14 B) and GFAP (Figure 14 C) production at a concentration of 20µM or 

greater, whereas SB203580 didn’t significantly alter APP and GFAP production. 

Similarly, mRNA expression of APP also was inhibited by PD098059 at a concentration 

of 20µM or greater (Figure 14 D and E). In addition, mRNA expression levels of GFAP 

decreased according to the decrease of APP expression (Figure 14 D and E). These 

results indicate that STS-induced APP and GFAP expressions are mediated by ERK1/2 

signaling pathway not by p38 MAPK pathway and that STS-induced astrocytic 

differentiation is mediated via ERK pathway by stimulating APP production. 
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Figure 14: The involvement of ERK1/2 pathway in STS-induced astrocytic differentiation 
of NT-2/D1. (A) NT-2/D1 cells were plated at a density of 1x106 cells and then treated 
with 10 nM STS for indicated time period to induce astrocytic differentiation. Cell lysates 
were subjected to immunoprecipitation with anti-human-pan-ERK Ab. Parallel blots 
were probed with anti-phospho-p44/42 ERK Ab (P-ERK-1/2) and anti-pan-ERK Ab 
(ERK-1/2). Phosphorylation of ERK1/2 increased progressively after 45 min. (B) 
PD098059, a selective MEK1 inhibitor, decreased APP expression activated by 10 nM 
STS in NT-2/D1 cells. While SB203580, a selective p38 MAPK inhibitor, did not affect 
APP expression.  (C) PD98059, decreased GFAP expression activated by 10 nM STS 
in NT-2/D1 cells, while SB203580 did not affect GFAP expression.  (D) PD98059, 
decreased GFAP and APP gene expression activated by 10 nM STS in NT-2/D1 cells, 
while SB203580 did not affect the gene expression. Gene expressions of APP and 
GFAP were examined by RT-PCR in NT-2/D1 cells pretreated with various 
concentrations of PD098059 or SB203580 for 30 min and exposed to 10 nM STS for 24 
h. (E) Semi quantitative image analysis of gene expression data from (D). The data 
(means ± SD, n=3) presented are % increase of mRNA expression of APP and GFAP 
compare to the control as 100%.
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Discussion 

NT-2/D1 cells have been thought to exclusively differentiate into pure neurons as a 

neuronal progenitor. However, recent studies show astrocytic differentiation of NT-2/D1 

cells by RA treatment 97, 99, indicating that it is a good in vitro model system for 

analyzing regulation of neural differentiation. In the current study, we report that STS 

induces astrocytic differentiation of NT-2/D1 by increasing APP expression via 

activation of ERK1/2 signaling cascade.   

 

Typical astrocytic stellate morphology appeared in the culture after 7 days of treatment 

with STS and more than 90 % of cells showed this feature by week 2. These cells 

expressed high levels of not only GFAP, a typical astrocyte marker but also astrocyte-

specific glutamate transporters such as GLAST/EAAT1 and GLT1-EAAT2, which are 

used for removing excessive glutamate to maintain a physiological level of extracellular 

glutamate concentration 120, indicating that STS differentiated NT-2/D1 cells into 

astrocytes. Furthermore, STS treatment increased green fluorescent in NT-2/D1 

transfected with reporter vector (pGFAP-GFP-S65T), indicating activation of GFAP 

promoter by STS. 

 

Apoptosis is closely associated with differentiation during development of the neuronal 

system 121. Recent reports also show STS, a potent apoptosis inducer, causes early 

neural stem cell like differentiation of embryonic stem cells 104. Although the mechanism 

is not clear, STS is also reported to induce astrocytic phenotypes in C6 glial cells 106. 
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Thus apoptotic cascade triggered by STS may be involved in the astrocytic 

differentiation.  

 

We found that APP expression, which is reported to be increased during apoptosis 122, 

increased in NT-2/D1 cell culture after STS treatment. Although to date, most of APP 

studies have been focused on neurotoxicity of Aβ, several lines of evidence suggest 

that APP affects mechanisms of anti-apoptosis and neurite outgrowth 28, 111. Thus, the 

increased expression levels of APP may be a compensation mechanism of the 

apoptotic condition created by STS treatment. Down’s syndrome (DS) is associated with 

a high incidence of AD with massive gliosis 123, 124. Recently Bahn et al. 56 demonstrated 

that neurospheres derived from DS patients almost exclusively differentiated into GFAP 

positive cells. Since DS patients have trisomy of chromosome 21, where the APP gene 

is localized, we associate these incidents to an over expression of APP and speculate 

that STS-induced APP expression might play a crucial role in glial differentiation of NT-

2/D1 cells.  

 

In this study, knocking down APP expression of NT-2/D1 cells using RNA interference 

(RNAi) against APP reduced GFAP expression induced by STS treatment. Although 

STS may induce astrocytic differentiation of NT-2/D1 through various signaling 

mechanisms, this result suggests that at least APP is involved in the induction of GFAP 

expression during STS-induced glial differentiation.  
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MEK1 inhibitor (PD098059), which reduces phosphorylation of ERK1/2, dose-

dependently reduced expression of APP and GFAP. Since APP expression is regulated 

by phosphorylation of ERK1/2 125 and STS increases phosphorylation of ERK1/2 116, 

STS may increase APP expression level by ERK1/2 phosphorylation. On the other hand 

p38 MAP kinase inhibitor (SB203580) did not show any significant effect on APP and 

GFAP expression. These results indicate that STS may induce GFAP expression 

through the up regulation of APP by increasing ERK1/2 phosphorylation.  

 

It is not clear how adult neurogenesis is essential for normal cognitive function in aging. 

Although the rate of endogenous neuroregeneration in the adult brain may be minimal, 

in the long run, pathologically-altered APP metabolism in AD or DS causes a defect in 

neurogenesis and significantly harms normal brain function. This fact could also prevent 

successful neuroreplacement therapy for AD using NSC by shifting the differentiation 

pattern of the transplanted cells into glial cells rather than into neurons.  Thus, in order 

to use stem cell transplantation as a potential strategic intervention therapy for AD or 

DC. Regulation of APP levels and/or modifications of the APP signal pathways within 

the cells may need to be developed along with a better understanding of how the 

mechanisms of APP function in neural stem cell biology. 
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THE NOVEL FUNCTION OF AMYLOID PRECURSOR PROTEIN IN 
GLIAL DIFFERENTIATION IS MEDIATED THROUGH IL-6/GP130 

SIGNALING PATHWAY 

 

Introduction 

During neural development, neurons are typically differentiated before astrocytes and 

oligodendrocytes with the exception of a few sites of postnatal and adult neurogenesis 

such as the subventricular zone (SVZ) of the fore brain 126, 127. Current studies showed 

that different kind of population of brain cells can be sequentially generated from 

individual progenitors by cell intrinsic factors as well as extrinsic cues from surrounding 

environment 128. Generally, glial differentiation is occurred during relatively late 

embryonic stage (mouse E16-17 day) and the postnatal period by various factors 129. To 

date, interleukin (IL-6) cytokine families 130, bone morphogenic factors (BMPs) 131, basic 

fibroblast growth factor (bFGF) 132, and Notch signaling 133 has been known as an 

important gliogenic factors, functioning only in E15 or more order cortical progenitors. 

Although these gliogenic factors also exist in the earlier embryonic stage (around E11-

12), they promote proliferation of neural stem cells instead of glial differentiation by 

various factors such as DNA methylation 53 and bHLH transcription factor (Neurogenin 1 

or Neurogenin 2) 134.  

 

IL-6-induced JAK/STAT signaling pathway is a central part of the glial differentiation 

process 40. There are reported several IL-6 family cytokines such as leukemia inhibitory 
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factor (LIF), CNTF, IL-6, and oncostatin M (OSM) 130. Once these IL-6 cytokine families 

interact with their cognate receptors (ex, IL-6 receptor α), the resultant complexes are 

then associated with gp130 44, crucial signal transducing component of IL-6 receptor. 

Subsequently, formation of receptor heterodimers stimulates a downstream 

transcription factor, signal transducer and activator of transcription (STAT) proteins by 

activation of JAKs, especially JAK1 and JAK2. Predominantly, STAT3 molecules get 

phosphorylation, and then the phosphorylated STAT3s form dimerization and undergo 

translocation into the nucleus. Finally, STAT3 dimers bind to the putative STAT3 binding 

element of GFAP promoter, typical astrocytic marker, for glial differentiation  

 

Despite above-mentioned reports have intensively showed the mechanisms of glial 

differentiation, there still remain other factors that induce differentiation by unknown 

mechanisms. The APP is a membrane spanning glycoprotein consisting of a 695- to 

770-amino acid 9. To date, the cytotoxicity of Aβ peptides, generated by subsequent 

cleavage of β- and γ-secretase, has been focused due to its cytotoxicity in the brain, 

leading to the pathophysiology of AD 135. Although several physiological function of APP 

has been reported, it is still controversial and needs to be clarified 26. However, 

crystallography studies showed that the structure of N-terminal domain of APP (23-128 

a.a residues) is harboring growth factor-like structure which possesses three disulfide 

bridges and cystein rich regions 27. Moreover, this domain include heparin binding site 

which is usually positively charged basic region. Furthermore, several studies provided 

evidence for the view that released sAPP may operate as a factor that is able to evoke 

coordinated cellular response in specific target cells 85, 136, 137. For example, sAPP 
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interacts with the class A scavenger receptor (SR-A), showing the physiological function 

of sAPP as a ligand 54. In this receptor-ligand interaction, negatively charged N-terminal 

domain of APP (191-264 a.a) was identified as an essential domain for physical 

interaction with SR-A. Thus, these reports suggest secreted type of APP may regulate 

cellular function via certain receptors.  

 

On the other hand, several lines of reports showed the potential role of APP in the stem 

cell biology. DS patients have 3 copies of chromosome 21138. Since APP coding gene is 

also located in chromosome 21, DS patients express high level of APP and shows 

similar symptoms of AD on their later stage 138, 139. Interestingly, while normal subjects’ 

neural stem cells were differentiated into neuron and glia with a half ratio, most of DS 

patients’ neural stem cells were differentiated into astrocytes 56. Therefore, this indicates 

that high concentration of soluble APP possibly affects cell fate specification of neural 

stem cells of DS patient. Previously, we reported that treatment of high concentration of 

sAPPα or overexpression of APP enhanced the glial differentiation of HNSCs 140. 

Moreover, we also found that an important role of APP in staurosporine (STS)-induced 

glial differentiation of neural progenitor, NT-2/D1 cells 141. 

 

In the present study, we examined specific glial differentiation mechanism stimulated by 

sAPP in NT-2/D1 cells. Then, we found that IL-6 cytokine signaling pathway is crucial 

for the sAPP–induced glial differentiation. Therefore, these results implicate a deficiency 

of stem cell biology by altered APP metabolism in AD pathology. 
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Materials and methods 

Reagents and antibodies 

Jak2 inhibitor, AG490 (tyrphostin B42; Sigma) were dissolved in dimethyl sulfoxide and 

stored at -80℃ until use. Recombinant sAPPα protein (Sigma) was solubilized with 

dH2O and stored at -80°C until use. The following antibodies (Abs) were used: mouse β-

III tubulin Ab (Sigma); rabbit anti-GFAP Ab (Promega); mouse anti-APP Ab (22C11) 

(Chemicon); rabbit anti-human STAT3 Ab (Chemicon); rabbit anti-phospho-STAT3 

(Tyr705) Ab (Cell Signaling); mouse anti-CD130 (gp130) Ab (Chemicon); anti-phospho-

tyr Ab (4G10) (Upstate) and rabbit anti-β-actin Ab (Cell Signaling). For the secondary 

Abs, anti-mouse and anti-rabbit horseradish peroxidase-conjugated secondary Abs 

(Jackson Immunoresearch Laboratory) were used.  

Cell culture and transfection 

The NT-2/D1 cells were seeded (5x106 cells per 150 mm petri dish) in Dulbecco’s 

modified Eagle’s medium (DMEM/F-12; Invitrogen) supplemented with 10% heat 

inactivated fetal bovine serum (FBS; Novacell), 1% antibiotic-antimycotic (Invitrogen), 4 

mM glutamine (Invitrogen) and maintained in a humidified atmosphere of 5% CO2/95% 

air at 37ºC 97, 142. The cells were passed twice a week by short exposure to 0.25% 

trypsin/0.01% EDTA (Invitrogen). For the experiments, 1×106 NT-2/D1 cells were plated 

in a 6 well tissue culture plate and subsequently, APP-induced differentiation of NT-

2/D1 cells was evaluated for expression of astrocytic and neuronal markers by RT-PCR 
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and Western blot analysis under the treatment of recombinant sAPP. Transient 

transfection of various siRNA PCR fragments (siJAK1, siSTAT3 and siCNTF), which 

suppress the gene expression of JAK1, STAT3 and CNTF, respectively, were 

performed with LipofectamineTM 2000 (Invitrogen) on subconfluent NT-2/D1 cells in a 6-

well culture plate, according to the manufacturer's protocol. Transfection efficiency was 

determined by transfection of 0.5 µg of pEGFP-C1 (Clontech). Cells were rinsed twice in 

ice-cold phosphate-buffered saline (PBS, pH7.4) after 48h of the incubation and mRNA 

samples were extracted for further analysis.  

RT-PCR analysis 

Total RNA was extracted from the cells with Trizol reagent (Invitrogen) according to the 

manufacturer’s protocol. One µg of the total RNA was reverse-transcribed and amplified 

by the SuperScriptTM ONE-STEPTM RT-PCR system (Invitrogen) with the following 

primers: IL-6R (+) 5′-CATTGCCATTGTTCTGAGGTTC-3′, (-) 5′-

AGTAGTCTGTATTGCTGATGTC-3′; gp130 (+) 5′-AAGGATGGTCCAGAATTCAC-3′, (-) 

5′-CCTTCACTGAGGCATGTCGC-3′, (-); GFAP (+) 5’-AAGCAGTCTACCCACCTCAG-

3’, (-) 5’-ATCCCTCCCAGCACCTCATC-3’; CNTF (+) 5’-

CAGGGCCTGAACAAGAACAT-3’, (-) 5’-GCCAACAAAACATGGAAGGT-3’; LIF (+) 5’-

CTGTTGGTTCTGCACTGGA-3’, (-) 5’-GGGTTGAGGATCTTCTGGT-3’; JAK1 (+) 5’-

TGCTCCTGAGTGTGTTGAGG-3’, JAK1 (-) 5’-AGGTCAGCCAGCTCCTTACA-3’; 

STAT3 (+) 5’-TTTCACTTGGGTGGAGAAGG-3’, STAT3 (-) 5’-

GCTACCTGGGTCAGCTTCAG-3’; β-actin (+) 5’-GACAGGATGCAGAAGGAGAT-3’,  (-) 
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5’-TTGCTGATCCACATCTGCTG-3’. Ten µl of the reaction were then separated on a 

2% E-gel (Invitrogen). 

Immunoprecipitation and western blot analysis 

Protein samples were prepared by lysing the cells using an ice-cold lysis buffer consist 

of 1% NP40, 150 mM NaCl, 50 mM Tris pH8.0 and Complete Protease Inhibitor Tablets 

(Boehringer). The protein concentration of each sample was measured by Bio-Rad 

protein assay (Bio-Rad). Lysates were immunoprecipitated with an antibody against 

STAT3 and gp130 molecules using protein A-Sepharose (Amersham Bioscience). 

Then, precipitates were heated at 70ºC for 10 min in LDS (Lithium Dodecyl Sulfate) 

sample loading buffer (1×) and separated on NuPAGETM 4-12 % Bis-Tis Gel (Invitrogen) 

for 45 min at 200 V and transferred to PVDF membrane (30V, 60 min). Membranes 

were blocked with 5% skim milk in PBS for 1h at RT and probed at 4ºC overnight with 

primary antibody in 5% skim milk. The membranes were washed 3 times for 5min each 

with PBS containing 0.05% Tween 20 (pH7.4) and then incubated with horseradish 

peroxidase-conjugated secondary antibodies in 5% skim milk for 2h at RT. After 3 times 

washing with PBS containing 0.05% Tween 20, immunoreactive bands were visualized 

by using ECL plus (Amersham Bioscience) chemiluminescence reagent.  

siRNA preparation 

Human STAT3 (Genbank access number: NM_003150), Jak1 (Genbank access 

number:  AB219242) and CNTF (Genbank access number: NM 000614) mRNA target 

sequences were designed using ambion target finder software. The mRNA target 
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sequences of human STAT3, Jak1 and CNTF were 5’-TATCATTGACCTTGTGAAA-3’ 

(1919-1938), 5’-CCACATAGCTGATCTGAAA-3’ (2710-2729) and 5’-

TACAAGATCCCCCGCAATG-3’ (475-494), respectively. siRNA PCR products were 

synthesized using a SilencerTM Express kit (Ambion). Then, cells were transfected with 

siRNAs and incubated for 48 hr. The silencing efficacy was confirmed by RT-PCR. 

Immunocytochemistry 

Detailed methods for immunocytochemistry were previously described 140. Briefly, for 

HNSC staining, after fixation, samples were washed in phosphate-buffered saline with 

0.2 % Triton X (PBST), then incubated in PBST containing appropriate normal sera. 

Next, the samples were incubated overnight (up to 16 hr) with primary antibodies, and 

then incubated with secondary antibodies for 1.5 hr in a dark humidified chamber after 

washing with PBS. Next, the samples were washed thoroughly in PBS and coverslipped 

with VECTASHIELD® DAPI Mounting Media (Vector).  

Image analysis 

Gel and Western blot images were captured by KODAK Image Station 2000MM 

(KODAK). Optical density of the target bands were analyzed by ImageJ software (NIH-

IMAGE Version 4.1) and expressed in Mean±SD form experiments performed in 

triplicates. 
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Results 

sAPP induces glial differentiation via IL-6 cytokine related signaling pathway 

To investigate the physiological role of sAPP as a gliogenic factor, HNSCs were treated 

with recombinant sAPPα (100ng/ml) and were differentiated under serum-free 

unsupplemented conditions. HNSCs treated with sAPPα revealed a significantly higher 

level of GFAP-positive cells compared to control HNSCs at 5DIV (Figure 15A). While 

the HNSC controls were differentiated into neurons and glial with a relatively even ratio, 

treatment of sAPPα induced massive glial differentiation of treated HNSCs. These 

results indicate that an overdose of the wtAPP causes gliogenesis rather than 

neurogenesis in vitro.  

 

To investigate how sAPP induces glial differentiation of neural stem cells, first, we 

examined the potential involvement of IL-6 cytokine related signaling pathway. As we 

mentioned above, Santiago-Garcia et al. reported the novel function of APP as a ligand 

for the SR-A of macrophages 54. Concurrently, the structural property of N-terminal 

domain of sAPP also indicated that secreted soluble APP may have a growth factor like 

function which interacts with cell surface receptor27. Thus, we hypothesized that 

released sAPP may stimulate IL-6 cytokine related signaling pathway, similar to other 

IL-6 ligand such as LIF, CNTF and etc. To verify whether sAPP activates IL-6/gp130 

signaling, we examined the gene expression of various molecules related with IL-6 

cytokine families, such as IL-6R, gp130, CNTF, LIF, JAK1, and STAT3, in the presence 
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of sAPP (Figure 15B). Consistently with immunohistochemistry data, the treatment of 

sAPP promoted expression of GFAP, a typical astrocyte marker 113. While IL-6 R and 

LIF gene expression level was not changed, expression level of gp130 and CNTF was 

substantially increased by treatment of sAPP. Among downstream signaling molecules, 

although expression of STAT3 does not show any significant changes in mRNA level, 

expression level of JAK1 was increased by treatment of sAPP. In general, various IL-6 

cytokine families have induced different cellular response by stimulating certain 

‘preferred’ molecules from IL-6 receptors, JAKs, and STAT molecules 143. In this context, 

our results suggest that sAPP induces glial differentiation of NT-2/D1 cells through IL-6 

signaling cascade by specific upregulation of expressions of gp130, CNTF and JAK1.  
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Figure 15: Differentiation of HNSCs and IL-6/gp130 related gene expressions were 
altered by high concentration of sAPP. (A) APP transfection increases the glial 
population of HNSCs in vitro. Double immunofluorescence staining with GFAP (red) and 
βIII-tubulin (green) markers for astrocytes and neurons, respectively. All nuclei are 
counterstained with DAPI (blue). HNSCs transfected with mammalian expression 
vectors containing genes for wild-type APP (wtAPP) differentiated under serum-free 
unsupplemented conditions displayed a significantly reduced level of neural 
differentiation (a) compared with HNSCs transfected with the vector alone at 5DIV (b). 
The abnormal morphology of the processes is shown in neuronally differentiated 
HNSCs (green) with wtAPP gene transfection (a). (B) sAPP–induced gene expression 
changes, which are related with IL-6 signaling cascade, were assessed by RT-PCR. 
Recombinant protein sAPP (100ng/ml) was applied to NT-2/D1 cells for 2 hr, then, 
mRNAs were extracted for RT-PCR analysis.  
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sAPP affects expression and phosphorylation of gp130 during glial differentiation 

For further investigation, we examined critical changes of the IL-6/gp130 signaling 

cascade related molecules from upstream signaling pathway. Since expression of 

gp130 was significantly promoted by sAPP, we examined the functional importance of 

gp130, which is known as a signaling subunit of IL-6 receptor, in the presence of sAPP 

by measuring expression and phosphorylation of gp130 (Figure 16A) 144.  

 

When lL-6 cytokine families interact with non-signal transducing receptors (ex, IL-6Rα 

and LIF-Rα), those receptor/ligand complexes came to interact with gp130. Then, those 

complexes are phosphorylated by JAKs and subsequent phosphorylation events are 

occurred. Treatment of sAPP induced slight increase of gp130 expression from 15 min. 

sAPP-induced gp130 expression reached its highest level at 60 min after treatment, 

then slightly decreased at 120 min. As mentioned above, interaction of gp130 with IL-6 

cytokines induces conformational changes and recruit various tyrosine kinases, for 

instance, JAKs (JAK1, JAK2, JAK3, and TYK2) and tyrosine phosphatase such as an 

SH2 domain containing protein tyrosine phosphatase (SHP-2) (Figure 16B). We thus 

examined phosphorylation level of gp130 after treatment of sAPP. As shown in Fig. 16B, 

treatment of sAPP induced early on-set of tyrosine phosphorylation of gp130. Treatment 

of sAPP induced phosphorylation of gp130 in early on-set (15 min) and later on it was 

undetectable until 45min. However, phosphorylation of gp130 was come back to basal 

level from 60 min again 145. Subsequently, phosphorylated gp130 may recruit 

downstream signaling molecules such as JAK/STAT to send signals to downstream.  
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Since expression and phosphorylation of gp130 was immediately changed by treatment 

of sAPP, we postulated that sAPP may directly interact with gp130 receptor subunit, 

similar with other ligands. To examine interaction between APP and gp130, we did an 

immunoprecipitation with anti-gp130 antibody and blotted with anti-22C11 antibody. 

Then, our result indicates that sAPP can stimulate IL-6/gp130 signaling cascade by 

direct interaction with gp130 receptor (Figure 16C). 

 

In Figure 16D and E, we applied anti-gp130 (CD130) Ab to block the effect of sAPP on 

IL-6/gp130 signaling pathway since anti-gp130 Ab interferes correct formation of 

ligand/receptor complexes 146. Then, GFAP expression and phosphorylation level of 

STAT3 was assessed. Treatment of anti-gp130 Ab successfully downregulated GFAP 

expression as well as STAT3 phosphorylation in the presence of sAPP (Fig. 16D and E). 

These results suggest that signals, stimulated by sAPP, are transduced via gp130 for 

glial differentiation of neural progenitor NT-2/D1 cells. 
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Figure 16: sAPP induces glial differentiation by upregulating expression and 
phosphorylation of gp130 in neural progenitor, NT-2/D1 cells. sAPP induced gp130 
expression was measured by western blot using anti-gp130 Ab in a various time frame 
(0-15-30-45-60-120 min). (B) sAPP induced phosphorylation of gp130 was assessed by 
co-immunoprecipitation. Protein extracts from sAPP treated NT-2/D1 cells were 
immunoprecipitated with anti-gp130 Ab. Then, membranes were probed with anti-p-Tyr 
(4G10) Ab. NT-2/D1 cells were treated with sAPP for 16 hr in the presence/absence of 
the anti-gp130 blocking Ab and the expression changes of GFAP (C) and 
phosphorylation of STAT3 were examined (D) by western blot analysis.  
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sAPP induced glial differentiation is mediated via intracellular mediators of IL-6 
signaling pathway 

It has been previously documented that phosphorylation of downstream signaling 

molecules of gp130, such as JAKs and STAT3, are observed after stimulation of the IL-

6 family of cytokines 130. Although gene expression level of STAT3 wasn’t changed, the 

importance of STAT3 shouldn’t be underestimated since phosphorylation status is also 

crucial for the function of STAT3 in glial differentiation (Figure 15B) 147. We thus 

examined whether treatment of sAPP induces phosphorylation events in STAT3. When 

100ng/ml of sAPP was applied into NT-2/D1 cells, it promoted phosphorylation of 

STAT3-p-Tyr705 residues from 30 min after sAPP treatment with time-dependent 

manner (Figure 17A) 145.  

 

Recently small interference RNA (siRNA) has been intensively used as a tool for 

studying the function of gene of the interest 148. Here, we constructed siRNA PCR 

products against JAK1 and STAT3 to verify the role of those molecules in sAPP-

induced gliogenesis. These siRNA PCR products showed successful silencing efficacy 

on expression of JAK1 and STAT3 (Figure 17B). When these siRNA PCR products 

were transfected into NT-2/D1 cells, the application of siRNA downregulated GFAP 

expression by knocking down JAK1 and STAT3 expression even under the treatment of 

sAPP (Figure 17C). Therefore, those results suggest that sAPP-induced glial 

differentiation is mediated by JAK/STAT in IL-6/gp130 signaling pathway.  
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On the other hand, we also examined the function of JAKs in sAPP-induced glial 

differentiation mechanism by inhibiting JAKs using selective inhibitor (AG490; 

Tyrphostin B42) as well as siRNA. Since phosphorylation of STAT3 at Tyr-705 residues 

are catalyzed by the JAKs (JAK1, JAK2, JAK3, and TYK2), we hypothesized that the 

application of JAK inhibitor might suppress phosphorylation of STAT3 molecules as well 

as GFAP expression. As demonstrated in Figure 17C, the transfection of siRNA of JAK1 

efficiently knocked-down gene expression of GFAP under the presence of sAPP. 

Furthermore, as shown in Figure 18A and B, treatment of AG490 suppressed GFAP 

expression as well as phosphorylation of STAT3-p-Tyr705 149. Taken together, these 

results indicate that sAPP–induced gliogenesis is mediated by IL-6/gp130 signaling 

pathway through gp130 and downstream signaling molecules, JAKs and STAT3.  
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Figure 17: sAPP-induced glial differentiation is mediated by STAT3 in IL-6/gp130 
signaling pathway. (A) Phosphorylation of STAT3 was analyzed by western blot. For 
immunoprecipitating STAT3 molecules, protein extracts from sAPP treated NT-2/D1 
cells were applied with anti-STAT3 Ab. Then, phosphorylation of STAT3 molecules 
were assessed by probing with anti-STAT3-P705. Phosphorylation of STAT3 was also 
assessed in a various time frame (0-15-30-45-60-120 min). (B) Efficacy of siRNA 
targeting on JAK1 and STAT3 were assessed. NT-2/D1 cells were transfected with 
siRNAs of JAK1 and STAT3 and grown for 2 days. Then, sAPP were treated for 16 hr. 
To measure the efficacy of siRNA, RT-PCR was performed using JAK1 and STAT3 
recognizing primers. (C) NT-2/D1 cells were
to JAK1 and STAT3 for 2days and then incubated the cells for 16 hr with sAPP. Total 
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RNAs were analyzed for expression of GFAP. Expression of ββ-actin was examine
a loading control.  
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igure 18: sAPP-induced glial differentiation is mediated by JAKs in IL-6/gp130 
signaling pathway. JAK2 was als ced astrocytic differentiation via 
IL-6 signaling pathway
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NT-2/D1 cells for 16 hr. To invest 2 -induced glial 
differentiation, western blot analysis was performed to detec  expression and 
STAT3 phosphorylation. Then, Treatment of AG490 suppressed STAT3 
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sAPP-induced CNTF expression is important for glial differentiation 

CNTF is one of the IL-6 cytokine family extrinsic factors which are associated with glial 

differentiation of neural stem cells. Upregulation of CNTF expression was observed in a 

short-term (2 hr, Fig 15B) as well as long-term treatment (1-2-3-4-5 day, Figure 19A) of 

sAPP. This result suggests that sAPP-induced glial differentiation is potentiated by the 

increase of CNTF expression in NT-2/D1 cells. Although it is still not known how sAPP 

enhances CNTF expression, based on recent reports, upregulation of CNTF is triggered 

by the positive autoregulatory mechanism. To investigate function of CNTF in the 

context of s APP-induced glial differentiation, we also constructed and transfected 

siRNA, specifically silencing CNTF expression, into NT-2/D1 cells (Figure 19B). Then, 

versatile siRNA of CNTF suppressed GFAP expression level with dose-dependent 

manner in the presence of sAPP. Although still further studies are needed, this result 

indicates that s APP might stimulate IL-6/gp130 signaling pathway by promoting CNTF 

expression.  
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Figure 19: sAPP induces glial differentiation via upregulation of CNTF expression. (A) 

of sAPP was applied to NT-2/D1 cells for 0-1-2-3-4-5 days, then, mRNAs were 
RT-PCR. Expression of β-actin was examined as a loading control. (B) To 

elucidate the function of CNTF, siRNA of CNTF and non-specific siRNA was generated 
nd transiently transfected into NT-2/D1 cells for 2 days and then cells were incubated 

for 16 hr with sAPP. Total RNAs were analyzed for expression of GFAP. Expression of 
β-actin was examined as a loading control.  
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Discussion 

Glial differentiation is occurred at relatively later stage (E16, 17 or perinatal stage) of the 

development of the mammalian CNS. During this stage, glial differentiation of the neural 

stem cell is tightly modulated by various extrinsic (ex, LIF, CNTF, Notch, and BMPs) 

and intrinsic factors (ex, Ngn1, Ngn2, and DNA methylation)

have revealed that IL-6/gp130 signaling pathway is the central part of the glial 

ifferentiation of neural stem cells. When ligands, such as LIF and CNTF, bind to 

receptor, subsequent phosphorylation of gp130, JAK and STAT3 are occurred. Then, 

phosphorylated STAT3 c e arget 

gene expression by intera em ne such as 

GFAP. Interestingly, IL-6/gp130 signaling pathway is efficiently modulated by 

utoregu to coordinate with other part of the glial differentiation machinery 

uch as Notch, and BMPs.  

r concentration of sAPP induced massive 

glial differentiation of HNSCs under the condition of basal media differentiation. Since 

basal media doesn’t contain serum, we can rule out the effect of any other growth 

factors and trophic factors 79. Thus, this result suggests that the unique function of sAPP 

as a gliogenic factor in the HNSCs. Furthermore, in our previous studies, we 

investigated the function of sAPP in the glial differentiation, induced by STS 104. Despite 

STS has been used as a PKC inhibitor or apoptosis inducing reagent, recently, it also 

. Extensive current studies 

d

omplexes translocate into th nucleus and stimulate t

cting with STAT3 binding el ent of the target ge

a latory loop 

s

 

Although APP has been intensively studied due to the cytotoxicity of the Aβ peptides in 

the brain, we have reported novel function of sAPP as a gliogenic factor in stem cell 

differentiation. In our previous studies, highe
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showed the novel function as a termin on reagent. Under the treatment of 

 

ts that 

 

d that the novel function of sAPP as a gliogenic factor in 

eural progenitor, NT-2/D1, cells. Treatment of sAPP (100ng/ml) induced massive glial 

 

her 

, 

erent 

 pathway, 

al differentiati

STS, neural progenitor NT-2/D1 cells were differentiated into glia, showing GFAP 

expression as well as astrocyte-specific morphological changes. Concurrently, 

expression level of APP was also upregulated by the treatment of STS by stimulating

ERK signaling cascade whereas the application of siRNA of APP efficiently silenced 

expression of GFAP even in the presence of STS. Although our finding sugges

APP has a crucial correlation with GFAP expression during the glial differentiation,

further studies are still needed to clarify the specific mechanisms, implicated in the 

promotion of glial differentiation. To answer that question, we investigated whether 

treatment of sAPP activates major glial differentiation mechanism such as IL-6/gp130 

signaling pathway.  

 

In the present study, we foun

n

differentiation of HNSCs while untreated HNSCs were differentiated into neuron and glia

evenly, showing consistent with our previous reports (Figure 21A). To elucidate whet

IL-6/gp130 signaling pathway is crucial for sAPP-induced glial differentiation, we 

examined gene expression pattern of IL-6 relevant genes such as IL-6R, gp130, CNTF

LIF, JAK1, STAT3, and GFAP under the treatment of sAPP (Figure 15B). Since diff

kind of the IL-6 cytokine subfamilies induce distinct patterns of expression and 

phosphorylation status of signaling molecules involved in IL-6/gp130 signaling

probably, IL-6/gp130 signaling may respond distinctively to treatment of sAPP  143. In 

our experimental condition, treatment of sAPP enhanced expression of gp130, CNTF, 
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JAK1 and GFAP. Therefore, there results suggest that IL-6/gp130 signaling pathway is 

stimulated by treatment of sAPP. 

 

Next, we examined the expression and phosphorylation status of gp130, signaling 

subunit of IL-6 receptor, in the presence of sAPP (Figure 16A and B). The expression

gp130 was gradually increased by sAPP up to 60 min and slightly downregulated at 12

min (Figure 16A). Treatment of sAPP also caused massive phosphorylation of gp13

the relatively early stage (15 min). The phosphorylation of gp130 was disappeared 

quickly and then, came back to basal level at the later stage (60, 120 min) 

 of 

0 

0 in 

 

mplex is rapidly dephosphorylated by the various phosphatases (ex, 

OCSs and SHPs) and internalized into the cytoplasm145.  Therefore, our finding 

 

lation 

. 

 

145. The 

gp130, in general, is phosphorylated by JAKs in the early stage of signal transduction. 

The ligand/gp130 co

S

suggests that upregulation of gp130 expression may be a compensatory mechanism to

maintain homeostasis of gp130 expression level. 

 

Although sAPP could activate IL-6/gp130 signaling via upregulation of gp130, CNTF, 

JAK1, increase of those gene expressions does not explain immediate phosphory

(< 15min) of gp130.  Thus, we hypothesized that sAPP may directly activate IL-6/gp130 

signaling cascade by physical interaction with gp130, similar to other IL-6 ligands. Our 

immunoprecipitation result indicates that sAPP could directly interact with gp130

Inversely, the application anti-gp130 Ab, which recognizes a ligand binding domain of 

gp130 receptor 150, potently suppressed downstream signal transduction, such as 

STAT3 phosphorylation and GFAP expression, by blocking the effect of sAPP on gp130
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receptors. Therefore, gp130 is a critical component in the sAPP-induced glial 

differentiation for the transduction of outside signals, generated by sAPP.  

s 

 

s 

0 recruits non-receptor kinases such 

s JAKs. Subsequently, activated JAKs phosphorylate STAT3 molecules to form STAT3 

on of 

 

JAK/STAT pathway has been extensively studied due to its regulatory role in variou

biological systems such as an immune system and developmental biology. Especially, 

JAK/STAT signaling pathway is a crucial system, implicated in astrocytic marker GFAP 

expression, in glial differentiation process. In the present studies, treatment of sAPP 

enhanced phosphorylation of STAT3-p-Tyr705 with time-dependent manner (Figure

17A). For suppression of the function of STAT3, siRNA of STAT3 PCR products wa

transfected into NT-2/D1 cells (Figure 17B, C). GFAP expression, triggered by sAPP, 

was drastically suppressed by the siRNA of STAT3.  

 

On the other hand, we examined the involvement of JAKs in sAPP-induced glial 

differentiation. The conformational change of gp13

a

homodimer complexes. Then, these STAT3 complexes are translocated into nucleus 

and transactivate GFAP expression. When we transfected siRNA of JAK1 (Figure 17C) 

and treated chemical JAK2 inhibitor, AG490 (Figure 18A, B), it efficiently suppressed 

STAT3 phosphorylation as well as GFAP expression. These results indicate that 

JAK/STAT is a crucial intracellular mediator of the s APP-induced glial differentiati

NT-2/D1 cells.  
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Next, we investigated how sAPP stimulates IL-6/gp130 signaling cascade for i

of glial differentiation. Treatment of sAPP induced expression of CNTF, one

nduction 

 of the 

portant extrinsic gliogenic factor, in an early on-set of gliogenesis (< 120 min) (Figure 

, 

gp130 signaling pathway by direct 

rotein-protein interaction with gp130 and/or increase of CNTF expression. Then, serial 

e 

rucial factor, inducing glial differentiation of neural stem cell in AD 

atient brain. Since the collections of neural progenitor population is still resided and 

compensate the damaged cells in the brain, in a younger age, function of brain might be 

im

15B) as well as in the longer period (up to 5 days) (Figure 19A). To elucidate the 

function of CNTF in sAPP-induced glial differentiation, we generated and transfected 

siRNA of CNTF (Figure 19B). Silencing CNTF expression potently suppressed GFAP 

expression levels in the presence of sAPP. Though still further studies are necessary

we thus postulated that treatment of sAPP may also promote glial differentiation by 

upregulating CNTF expression in NT2-D1 cells. 

 

Taken together, treatment of sAPP may activate IL-6/

p

phosphorylation events are occurred in gp130, JAKs, and STAT3 molecules for th

signal transduction, triggered by sAPP. Moreover, expression of gp130 and JAK1 may 

be promoted by the positive autoregulatory loop of the IL-6/gp130 signaling pathway to 

strength glial differentiation process.  

 

Our present results address us to novel paradigm in understanding of the 

pathophysiological mechanism associated with DS or AD. While Aβ has been a 

hallmark due to its clinical significance in AD, we showed the gliogenic function of sAPP 

may be also a c

p
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maintained normally by replacing defected cells with neurally differentiated endogenous

stem cells even under the high concentration of APP. However, in an aged brain, 

decreased population of neural stem cells is not sufficient for replacing defected cells 

under high-dose sAPP because sAPP-induced gliogenesis of neural stem cells 

overwhelm neural differentiation. In the present studies, we found that massive glial 

differentiation, caused by sAPP, may degrade the function of brain in AD or DS. 

Although further studies are necessary, regulating environmental APP level would 

provide better strategies for AD or DS by improving neurogenesis of endogenous ne

stem cells. 

 

ural 
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THE NOVEL FUNCTION OF AMYLOID PRECURSOR PROTEIN IN 
GLIAL DIFFERENTIATION IS ASSOCIATED WITH NOTCH SIGNALI

PATHWAY 
NG 

Introduction 

 

9

the pathophysiology of Alzheimer’s disease (AD) 9, 135, 151, 152. Despite the 

ealth of studies regarding the physiological function(s) of APP, there is no consensus 

n its physiological function 26. Thus, the physiological function(s) of APP remains to be 

lucidated. A function of APP has been suggested as a ligand for receptors, such as the 

class A scavenger receptor 54. Since crystal structure of the heparin-binding N-terminal 

domain of APP resembles a growth-factor like domain 27, 30, 153, N-terminal soluble APP 

(sAPP) may act as a growth factor. In our previous studies, we found that treatment with 

α cleaved sAPP or over-expression of APP induced glial differentiation in a human 

neural stem cells (HNSCs) culture 140. We also found that APP plays a critical role in 

staurosporine (STS)-induced glial differentiation of NT-2/D1 cells 141. Interestingly, Bhan 

et al. showed that NSCs isolated from Down’s Syndrome (DS) patients, who display AD 

like pathology later in their life, differentiated into mainly astrocytes while NSCs from 

healthy subjects produced both neurons and astrocytes 56. Since DS patients have 

trisomy of chromosome 21, which contains gene coding APP, high levels of APP 

expression in DS patients may responsible for the abnormal differentiation pattern of 

The amyloid precursor protein (APP) is a membrane spanning glycoprotein consisting of

695- to 770-amino acids . To date, the cytotoxicity of Aβ peptides, which are generated 

by subsequent β- and γ-secretases cleavage of APP, has been extensively studied to 

understand 

w

o

e
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NSC gs 

s

 

Glial differentiation of NSCs is induced by various factors during the relatively late 

embryonic stage (mouse E16-17) and postnatal period 39, 157, 158. These factors include  

d 

tein 

r. 

s as well as the AD pathology found in DS 139, 154-156. Taken together, these findin

uggest that APP may involved in glial differentiation of NSCs.  

IL-6 cytokine families 130, 159, bone morphogenic factors (BMPs) 160, basic fibroblast 

growth factor (bFGF) 52, and Notch ligands 161, 162. Notch signaling has been shown to 

control cell fate through local cell to cell interactions. During development, Notch 

suppresses neuronal differentiation in vivo and in vitro 47, 48. When ligands bind to 

Notch, proteolytic cleavage of Notch receptors is occurred by γ-secretase/nicastrin 

complex to release the signal-transducing Notch intracellular domain (NICD) 163. 

Proteolytically cleaved NICDs translocate into the nucleus and interact with the nuclear 

protein, referred to as CBF1/Su(H)/Lag-1 (CSL) 46. The CSL and NICD  complex 

activates the expression of primary target genes of Notch, such as Hairy and enhancer 

of split (Hes) gene families 164. Following activation, Hes suppresses the expression of 

transcription factors which are involved in neuronal differentiation such as Mash1 an

NeuroD. On the other hand, glial differentiation is strengthened by cross-talking 

between IL-6 and Notch signaling pathways. IL-6 signaling pathway has been known as 

a central part of gliogenesis. Subsequent phosphorylation of gp130, Janus kinases 

(JAKs), and signal transducer and activator of transcription 3 (STAT3) induces glial 

differentiation of neural stem cells. Interestingly, current study reported that glial 

differentiation is potentiated by interacting with Hes1 and JAK2 because these pro

complexes facilitate accessibility of STAT3 to DNA binding element of GFAP promote
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In the present study, we demonstrate that sAPP may be a novel extrinsic factor that 

induces glial differentiation of neural progenitor cells through the Notch signaling 

athway.  p

Materials and methods 

Reagents and antibodies 

The γ-secretase inhibitor, L-685,458 (Sigma), was dissolved in dimethyl sulfoxide 

stored at -80°C until use 

and 

in (  

d: 

0, 

spho-

nd 

h 

anti 

165. Recombinant sAPPα prote Sigma) was dissolved in

purified water and stored at -80°C until use. The following antibodies (Abs) were use

rabbit anti-GFAP Ab (Promega); goat anti human-glial filament protein, GFAP (N-

terminal human affinity purified, 1:400, Research Diagnostics Inc., Flander, NJ); mouse 

anti human - amyloid beta antibody, 4G8 (1:50, Senetek); mouse IgG1 6E10, (1:5

Senetek); mouse IgG anti-Alzheimer Precursor Protein A4, 22C11 (1:100, Chemicon); 

mouse IgG2b anti-human βIII-Tubulin, clone SDL3D10 (1:1000, Sigma); Sheep anti 

Bromodeoxyuridine (BrdU) (1:300, Sigma for detection of cells derived from 

transplanted HNSCs); rabbit anti-human STAT3 Ab (Chemicon); mouse anti-pho

STAT3 (Ser727) Ab (Chemicon); rabbit anti-phospho-STAT3 (Tyr705) Ab (Cell 

Signaling); rabbit anti-activated Notch Ab (Abchem); mouse anti-GFP Ab (Zymed); a

rabbit anti-β-actin Ab (Cell Signaling); anti-mouse IgG and anti-rabbit IgG horseradis

peroxidase-conjugated Abs (Jackson Immunoresearch Laboratory); anti-mouse, 

goat, anti-sheep (1:500) conjugated with fluorescein (FITC) or rhodamine (TRITC) 

(Jackson IR Laboratories, Inc.).  
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Cell culture and transfection 

NT2/D1 cells 142 were seeded at a density of 5x106 cells per 150 mm petri dish in 

Dulbecco’s modified Eagle’s medium (DMEM/F-12; Invitrogen) supplemented with 10% 

heat inactivated fetal bovine serum (FBS; Novacell), 1% antibiotic-antimycotic mixture 

(Invitrogen), 4 mM glutamine (Invitrogen) and maintained in a humidified atmosphere of 

5% CO2/95% air at 37ºC97. The cells were passed twice a week by short exposure to 

0.25% trypsin/0.1% EDTA (Inv , 1×106 NT-2/D1 cells were 

-

T-

EP-

s 

as 

ift from Dr. 

th 

ll culture 

 

A 

itrogen). For all experiments

plated in a 6-well cell culture plate and subsequently, APP-induced differentiation of NT

2/D1 cells was evaluated for the expression of astrocytic and neuronal markers by R

PCR and Western blot analysis under the treatment of condition media or various 

concentrations of recombinant APP. 

 

Transient transfections were performed with vector constructs for pCDNA3.1; pC

APP695 (residues 1-695); pCMVIg-APP.1 (residues 1-678), pCMVIg-APP.2 (residue

1-205), [pCMVIg-APP.1 and pCMVIg-APP.2 (generously provided by Dr. Thom

Suhduf (University of Texas Southwestern, USA)166]; pBOS-ZEDN1 (a kind g

Gerry Weinmaster, UCLA, USA)). All transfections were performed wi

LipofectamineTM 2000 (Invitrogen) on sub confluent NT-2/D1 cells in a 6-we

plate according to the manufacturer's protocol. Cells were rinsed twice in ice-cold

phosphate-buffered saline (PBS, pH7.4) and 48h after the transfections, mRN

samples were extracted for further analysis.  
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Construction of pGFAP-GFP-S65T stable transfectant 

NT-2/D1 cells were transfected with pGFAP-GFP-S65T (provided by Dr. Albee Messing,

University of Wisconsin-Madison) using LipofectamineTM 2000 (Invitrogen) 

 

lls with Trizol reagent (Invitrogen) according to the 

anufacturer’s protocol. One µg of the total RNA was reverse-transcribed and amplified 

) 5’-CATTATTGACAGCAGCTGCC-3’; 

EGFP (+) 5’-CAAGGACGACGGCAACTACAAGAC-3’, (-) 5’-

GCGGACTGGGTGCTCAGGTAGTGGT-3’; β-actin (+) 5’-

167. After 

selection with 400µg/ml geneticin, G418 (Invitrogen) for 15-20 days, single colonies 

were picked and tested for reporter assay. The pGFAP-GFP-S65T stably transfected 

cells were cultured in DMEM/F-12 supplemented with 10% heat inactivated FBS, 1% 

antibiotic-antimycotic, 4 mM glutamine and 200µg/ml G418. 

RT-PCR analysis 

Total RNA was extracted from the ce

m

by the SuperScriptTM ONE-STEPTM RT-PCR system (Invitrogen) with the following 

primers: GFAP (+) 5’-AAGCAGTCTACCCACCTCAG-3’, (-) 5’-

ATCCCTCCCAGCACCTCATC-3’; Delta1 (+) 5’-TGCTGGGCGTCGACTCCTTCAGT-3’, 

(-) 5’-GCCTGGCTCGCGGATACACTCGTCACA-3’; Jagged-1 (+) 5’-

ACACACCTGAAGGGGTGCGGTATA-3’, (-) 5’-AGGGCTGCAGTCATTGGTATTCTGA-

3’; Hes1 (+) 5’-CGGACATTCTGGAAATGACA-3’, (-) 5’-CATTGATCTGGGTCATGCAG-

3’; hNotch1 (+) 5’-GATGCCAACATCCAGGACAACATGGG-3’, hNotch1 (-) 5’-

GGCAGGCGGTCCATATGATCCGTGAT-3’; hNotch2 (+) 5’-

ACATCATCACAGACTTGGTC-3’, hNotch2 (-
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GACAGGATGCAGAAGGAGAT-3’,  (-) 5’-TTGCTGATCCACATCTGCTG-3’. Ten µl of 

the reaction mi mages were 

of 

measured by Bio-Rad 

protein assay (Bio-Rad). Lysates were immunoprecipitated with antibodies against 

GFAP, STAT3 and NICD molecule pharose (Amersham 

 45 

in). Membranes were 

min each with 

s 

n blot images were 

xtures were then analyzed on a 2% E-gel (Invitrogen). Gel i

captured using a KODAK Image Station 2000MM (KODAK). 

Immunoprecipitation and western blot analysis 

Protein samples were prepared by lysing the cells with ice-cold lysis buffer consisting 

1% NP40, 150 mM NaCl, 50 mM Tris pH8.0 and Complete Protease Inhibitor Tablets 

(Boehringer). The protein concentration of each sample was 

s using protein A-Se

Bioscience). Following immunoprecipitation, the samples Then immunoprecipitants or 

cell lysates were heated at 70ºC for 10 min in LDS (Lithium Dodecyl Sulfate) sample 

loading buffer (1×) and separated on NuPAGETM 4-12 % Bis-Tis Gel (Invitrogen) for

min at 200 V and transferred to a PVDF membrane (30V, 60 m

blocked with 5% skim milk in PBS for 1h at RT and probed at 4ºC overnight with primary 

antibody in 5% skim milk. The membranes were washed 3 times for 5

PBS containing 0.05% Tween 20 (PBS-T, pH7.4) and incubated with horseradish 

peroxidase-conjugated secondary antibodies in 5% skim milk for 2h at RT. After 3 times 

washing with PBS-T, immunoreactive bands were visualized by using ECL plu

(Amersham Bioscience) chemiluminescence reagent. Wester

captured with KODAK Image Station 2000 MM (KODAK). 
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Stereotactic injection of HNSCs into mice 

8 months old male APP23 transgenic 168, and wild-type mice were deeply anesthetized 

with a 1:1 mixture of Ketamine (100 mg/kg) and Xylazine (20 mg/kg) and mounted onto 

a stereotaxic appa rence point, 

 

le.  

s  

 

d post-

(20 µm coronal free floating 

sections) and kept in PBS at 4° C. For fluorescent immunohistochemical analysis, 

sections were washed three times and blocked with 3% donkey serum in PBS 

ratus (ASI Instrument, USA). Using bregma as a refe

approximately 105 cells HNSCs were suspended in 10 µl PBS, and slowly injected into 

the right lateral ventricle (coordinates: anterior posterior (A/P)–0.6 mm; medial lateral 

(M/L) +1.0 mm; dorsal/ventral (D/V) +2.4 mm) of each mouse using a 25 µl Hamilton

gastight syringe (Hamilton, Reno, NV, USA) attached with a 22-gauge beveled need

Immunohistochemistry 

Detailed methods for immunohistochemistry have previously been described 67, 169. 

Briefly, 6 weeks post-transplantation, animals were sacrificed  by an overdose of a 1:1 

mixture of Ketamine (100 mg/kg) and Xylazine (20 mg/kg), and a  subgroup of animal

(n=6-8) were transcardially perfused with phosphate buffer (PBS). Brains were 

removed, dissected into the hippocampus and cortex, and tissue samples were 

maintained on dry ice and stored at -80° C until Western blotting experiments were

performed. The remaining group of mice with HNSC implants (n=6) were transcardially 

perfused with PBS and 4% paraformaldehyde (pH 7.4). Brains were removed an

fixed for 8-12 h in 4% paraformaldehyde, and cryoprotected in 20% sucrose-PBS 

overnight. The brains were subsequently cut on a cryostat 
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containing 0.25 %Triton X-100 for 1 hr at RT. After serum blocking, sections were 

incubated with a com ontaining 0.25% 

Pα 

re 

 anti 

 

400, 

.5 hr 

S and 

bination of primary antibodies, diluted in PBS c

Triton X-100 and with 3% normal donkey serum overnight at 4°C. After 3 washes in 

PBS-T, sections were incubated with corresponding secondary antibodies for 2 hr at 

RT. After a final wash in PBS-T, sections were mounted and cover slipped with 

Vectashield with DAPI (Vector Laboratories, Inc., Burlingame, CA) and observed using 

a Leica DMRB fluorescent microscope. Microscopic images were taken with an 

Axiocam digital camera (Carl Zeiss) mounted on the DMRB and processed using the 

QIMAGING with Q Capture software (Qimaging Corporation). 

Immunocytochemistry 

For fluorescent immunocytochemistry of the HNSCs, Treatment of recombinant sAP

and transfection of APP expression vector was performed. Cells were fixed in 4% 

paraformaldehyde for 20 min at RT, and then washed in PBS-T, and thereafter 

incubated in PBS-T containing 3 % normal donkey serum. Next, the samples we

incubated overnight at 4(up to 12 hr) with the following primary antibodies mouse

human - amyloid beta antibody, 4G8 (1:50, Senetek); mouse IgG1 6E10, 

(1:50,Senetek); mouse IgG anti-Alzheimer Precursor Protein A4, 22C11 (1:100, 

Chemicon); mouse IgG2b anti-human βIII-Tubulin, clone SDL3D10 (1:1000, Sigma) and

goat anti human-glial filament protein, GFAP (N-terminal human affinity purified, 1:

Research Diagnostics Inc., Flander, NJ). After washing with PBS, samples were 

incubated with corresponding secondary antibodies coupled to FITC or TRITC for 1

in a dark humidified chamber. Next, the samples were washed thoroughly in PB
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cover slipped with Vectashield mounting media with DAPI (Vector) for fluorescent 

microscopic observation.  

Results 

Increased glial differentiation of HNSCs in APP23 transgenic mice 

To examine whether APP has an effect on the differentiation of HNSCs in adult m

vivo, we transplanted HNSCs into the cerebro lateral ventricle of APP23 transgenic an

wild type (WT) mice at 8 and 12 months of age. To identify the

ice in 

d 

 transplanted HNSCs in 

the host brain, anti-human specific GFAP antibody was used for the fluorescent 

immunohistochemistry. Majority s differentiated into GFAP-

 12 

 were 

t 

β 

expression 

 mice 

 of the transplanted HNSC

positive astrocytes in the cortex of APP23 transgenic mice 4weeks after transplantation 

while less GFAP-positive cells were found in the WT mice (Figure 20A-a and b). In

month old APP23 mice with progressed Aβ pathology, more activated astrocytes

found surrounding the area of Aβ deposits (Figure 20A-c). These results indicate tha

high level of APP in the transgenic mouse induces glial differentiation of HNSCs and A

deposits may attract and/or activate astrocytes. We compared the protein 

levels of APP, GFAP and NICD in the cerebral cortex of 8 month WT and APP23

using Western blot analysis (Figure 20B). Both APP and GFAP expressed at higher 

level in APP23 mice compared to WT mice.  APP23 transgenic mice also express 

higher level of NICD, indicating activations of Notch signaling. 
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Figure 20: Differentiation of HNSCs into astroglial cells in vivo. (A) Representative 
fluorescent immunohistochemical images in the hippocampus of WT and APP23 mice 
4-6 weeks after HNSCs transplantation. a: WT (8 months old), b: APP23 (8 months old)
and c: Active gliogenesis was detected around plaque-like formations in the 
hippocampus of 12 months old APP23 transgenic mice after HNSC-transplantation. 
GFAP (green), Abeta stained with 4G8 (red). (B) Western blot analysis of protein 
expression of APP, GFAP, and NICD in 8 months old WT and APP23 transgenic m

 

, 

ice 

APP

β-actin

GFAP

NICD

A 
(a) (b) (c) 

WT      
B 
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sAPP increases glial differentiation of HNSCs 

To investigate effect of APP on HNSC differentiation, we analyzed the cell population of 

differentiating HNSCs treated with sAPP for 5 days under serum-free conditions by 

double-immunofluorescent staining for GFAP and βIII-tubulin, markers for astrocytes 

and neurons respectively (Figure 21A). Treatment with recombinant APP (sAPP) dose 

dependently (25, 50, 100 ng/ml) increased the population of GFAP-positive cells from

45% to 83%. Interestingly, a lower dose of sAPP treatment (25 ng/ml) increased both 

GFAP and βIII-tubulin-positive cells. However, higher doses of sAPP (50 and 100 ng/ml) 

dose-dependently decreased I-tubulin-  cells from 51% to 13% of the total 

population of differentiated HNSCs (Figure 21A). These results suggest that sAPP 

increases both glial and neuronal differentiations at er dose, but in the higher 

dose sAPP suppresses neuronal and promotes glial d s. The sAPP may be 

influencing the cell fate decision of HNSCs because sAPP treatment did not increase 

Terminal transferase dUTP nick end labeling (TUNEL) signals, marker for apoptosis, in 

the HNSCs culture thus selective death of proneural progenitors in the neurospheres 

s  

wild-type APP695 (wtAPP) gene and were differentiated under serum-free 

unsupplemented conditions. After 5 days differentiation, HNSCs transfected with wtAPP 

differentiated into a significantly higher number of GFAP-positive cells (*: p<0.01, n=3) 

 

 βII positive

the low

ifferentiation

may be ruled out (data not shown).  

Overexpression of APP in vitro reduces neurogenesis of HNSC

HNSCs were transfected with mammalian expression vectors (pCEP-APP) containing 

98 



compared to a control, HNSCs transfected with the vector alone (Figure 21B). Neurons 

differentiated from H han 7%+SE of the 

Cs 

 

NSCs transfected with wtAPP comprised of less t

total number of cells (Figure 21B), whereas the controls showed a 54%+SE neuronal 

population (Figure 21A). Furthermore, neurally differentiated cells derived from HNS

transfected with wtAPP showed abnormal morphology, reduced length and grossly 

misshaped neurite, similar to the neurons derived from NSCs isolated from Down 

syndrome patients56. These results indicate that an overdose of the wtAPP gene, which

may produce an increased amount of sAPP fragments, suppress normal neuronal 

differentiation and causes gliogenesis rather than neurogenesis of NSCs in vitro.  
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Figure 21: Migration and differentiation of HNSCs were altered by treatment of sAPP 
and overexpression of APP. (A) Treatment of HNSCs culture with recombinant sAPP for 
5 days dose-dependently increased the migration and differentiation of HNSCs under 
the serum-free unsupplemented condition (1; control, 2; 25 ng/ml, 3; 50 ng/ml and 4; 
100 ng/ml). The cell population of sAPP-treated HNSCs at 5 DIV in the serum-free 
differentiation condition was further characterized by double immunofluorescence 
staining with GFAP and βIII-tubulin, markers for astrocytes and neurons, respectively. 
All nuclei were counterstained with DAPI. At a higher dose of sAPP treatment, many 
HNSCs differentiated into glial cells (red). For quantitative population analysis, the 
number of GFAP or βIII-tubulin immunopositive cells was counted versus total cell 
numbers of DAPI-labeled nuclei. All data values are expressed as mean percentages 
(±S.E.M.). One-factor ANOVA followed by post hoc analysis (Student-Newman-Keuls) 
was used to demonstrate statistically significant differences between experimental 
groups and control groups (*: p<0.01). (B) APP transfection increases the glial 

(a) (b) 
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population of HNSCs in vitro. Double immunofluorescence staining with GFAP (red) and 
βIII-tubulin (green). All nuclei are counterstained with DAPI (blue). HNSCs transfected 
with mammalian expression vectors containing genes for wild-type APP (wtAPP) 
differentiated under serum-free unsupplemented conditions displayed a significantly 
reduced level of neural differentiation (a) compared with HNSCs transfected with the 
vector alone at 5DIV (b). The abnormal morphology of the processes is shown in 
neuronally differentiated HNSCs (green) with wtAPP gene transfection (a). 

  



sAPP induced GFAP expression in NT-2/D1 cells 

To analyze mechanism of the sAPP function to regulate differentiation process of NSC

we examined effects of sAPP on differentiation of NT-2/D1 neural progenito

s, 

r cells. 

Expression of GFAP was increased in NT-2/D1 by treatment with recombinant sAPP 

with a time- (Figure 22A) and dose-dependent manner (Figure 22B). We also examined 

effect of sAPP on GFAP promoter activity using NT-2/D1 cells stably transfected with a 

GFAP promoter driven GFP expression vector (pGFAP-GFP-S65T) as a reporter 

system. Treatment of NT-2/D1 cells transfected with pGFAP-GFP-S65T with sAPP, 

showed a dose-dependent increase of GFP protein expression, indicating that sAPP 

induces glial differentiation by activation of GFAP promoter (Figure 22C). For further 

investigation, we applied 22C11 antibodies, which can recognize and capture the N-

terminal domain of APP, to neutralize the effect of sAPP in glial differentiation of NT-

2/D1 cells. We observed that treatment with 22C11 effectively antagonized the effect of 

sAPP in glial differentiation of NT-2/D1 cells by suppressing GFAP expression levels 

(Figure 22D and E). Therefore, these results indicate that sAPP is involved in glial 

differentiation of NSCs. 
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Figure 22: Induction of GFAP expression in sAPP treated NT-2/D1 cells. (A) Western 
blot analysis for measuring GFAP expression. Cells were grown in 100ng/ml of 
recombinant sAPP containing media for 0, 15, 30, 45, 60 and 120 min. Expression of β-
actin was examined as a loading control. (B) Western blot analysis of GFAP expression 
which is induced by various concentration (0, 1.5, 5, 15, 50, and 150 ng/ml) of 
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recombinant sAPP. Expression of β-actin was examined as a loading control. (C) 
Western blot analysis of GFP expression which is transcribed by GFAP promoter. 
HEK293 Cells were transfected with pGFAP-GFP-S65T vectors as a reporter system. 
To investigate the function of sAPP on GFAP promoter, cells were treated with a variety 
of concentration (0, 1.5, 5, 15, and 50 ng/ml) of sAPP. (D) NT-2/D1 cells were treated 
with sAPP for 18 hr in the presence of the anti-APP neutralizing Ab (22C11) and 
observed the expression changes of GFAP by western blot analysis. Experiments were 
repeated at least three times with similar results. 
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sAPP induces glial differentiation via Notch signaling pathway 

Based on our in vivo findings where higher NICD generation was observed in APP23 

mice brain compared to WT, we hypothesized that over expression of sAPP may 

stimulate Notch proteolysis and nuclear translocation of NICD resulting in glial 

differentiation. To test whether sAPP stimulates the Notch signaling pathway, we 

assessed NICD generation in vitro using NT-2/D1 cells treated with sAPP. sAPP 

promoted NICD generation as well as increased GFAP protein expression in NT-2/D1 

cells (Figure 23A). These results are, consistent with our in vivo results showing that 

high dose of sAPP upregulate GFAP expression as well as stimulate an increased 

NICD generation (Figure 23B). Next, we investigated both the time- and dose-

dependent effects of sAPP on the generation NICD (Figure 23B and C). NICD 

generation was observed 15 min after treatment with sAPP (100ng/ml). Since NICDs 

were generated in an early stage, it suggests that sAPP may stimulate Notch signaling 

cascade in a similar manner as the Notch ligands, Jagged and Delta. Upon examination 

of the dose dependent effects of sAPP, a gradual increase in NICD generation was 

observed in NT-2/D1 cells following treatment with different doses of sAPP (Figure 23B 

and C). In contrast, application of 22C11 potently suppressed the generation of NICDs 

in a dose dependent manner (Figure 23D). These results provide further evidence that 

the notch signaling pathway is stimulated by treatment with sAPP. 
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sAPP s plex 

iated 

s1 and 

ch as, 

n 

gene of 

duced 

ling activation is also 

involved in the phosphorylation status of STAT3 by regulating Hes1 expression. We 

thus aimed to examine whether sAPP maximizes glial differentiation by cross-talk 

between the Notch and gp130/STAT3 signaling pathways. As shown in Fig. 23E and F, 

timulates Notch signaling pathway via γ-secretase/nicastrin com

NICDs are generated by γ-secretase/nicastrin complex under the stimulation of Notch 

ligands such as Delta and Jagged1, thus, if sAPP-induced gliogenesis is truly med

via Notch signaling pathway, we would expect that the expression of GFAP, He

NICD generation would be suppressed by treatment with γ-secretase inhibitors su

L-685,458. To further validate whether sAPP stimulates the Notch signaling cascade, 

we pretreated various doses (1, 3, and 10 µM) of L-685,458 to NT-2/D1 cells to 

suppress γ-secretase activity. Treatment with L-685,458 inhibited both NICD generatio

and GFAP expression even in the presence of sAPP (Figure 23E). In addition, 

application of L-685,458 potently suppressed the expression of Hes1, a target 

Notch (Figure 23F). Taken together, these results strongly suggest that sAPP-in

glial differentiation is mediated through the Notch signaling pathway.  

 

Recently novel regulatory mechanism in glial differentiation was documented that Notch 

and JAK/STAT pathways cross-talk through physical interaction between Hes1 and 

JAK2 49. These protein complexes facilitate phosphorylation of STAT3 and maximize 

the accessibility of STAT3 to STAT3 binding elements of target promoters including 

GFAP. Although sAPP can directly promote phosphorylation of STAT3 through 

gp130/IL-6 signaling pathway, somehow, APP-induced Notch signa
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Hes1 and GFAP expression were upregulated in NT-2/D1 cells treated with sAPP. 

Co  

g 

 

 

igure 

49 ggest 

g 

nversely, treatment of L-685,458 efficiently inhibited Hes1 and GFAP expression by

antagonizing NICD generation. These results suggest that APP-induced Notch signalin

activation also can increase GFAP expression level through gp130/IL-6 related 

signaling pathways through cross talk. Thus, to investigate whether APP also enhances

gliogenesis via cross talk with the gp130/IL-6 signaling pathway, phosphorylation of 

STAT3-Tyr705 was examined after treatment with APP 45. Treatment of L-685,458 also

suppressed phosphorylation of STAT3-Tyr 705 even in the presence of sAPP (F

23G). This is probably caused by downregulation of Hes1 gene expression as reported 

previously . Although further mechanistic studies are needed, these results su

that sAPP potentiates gliogenesis by cross-talk between Notch and gp130/IL-6 signalin

pathways. 
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Figure 23: sAPP stimulates Notch signaling pathway during gliogenesis. (A) Treatment 
of sAPP (100ng/ml) promoted GFAP expression as well as NICD generation. (B) and 
(C) sAPP induced generation of NICD was time- and dose- dependent manner as 
indicated above. Generation of NICD was measured by western blot analysis using anti-
active Notch Ab (B and C). (D) sAPP induced NICD generation was suppressed by 
neutralizing antibody (22C11). (E) and (F) sAPP induced NICD generation was 
mediated by stimulation of γ-secretases. L-685,458 (γ-secretase inhibitor) suppressed 
expression of GFAP and generation of NICD with dose dependently. Expression of 
GFAP and generation of NICD was assessed by western blot analysis using anti-GFAP 
Ab and anti-activated Notch Ab, respectively. Furthermore, Hes1 gene expression level 
was examined after treatment of sAPP. Then, dose-dependent effect of L-685,458 was 
bserved by RT-PCR. (G) sAPP enhances cross-talk between Notch and gp130/STAT3 

signaling pathway. For detection of phosphorylation of STAT3-Tyr-705, 
munoprecipitation was performed with anti-STAT3 Ab. Then, western blot analysis 

was executed using anti-STAT3-Tyr-705 Ab. Expression of β-actin was examined as a 
loading control. Experiments were repeated at least three times with similar results. 
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Interaction between sAPP and Notch is crucial for glial differentiation 

There are two possible mechanisms regarding APP-induced Notch signaling activation. 

One is that sAPP may stimulate the Notch signaling cascade by upregulating 

expression of Notch receptors or Notch ligands. The other mechanism may be a direct 

protein-protein interaction between APP and Notch because several studies reported 

that APP can physically interact with Notch. To investigate how sAPP stimulates the 

Notch signaling pathway, we first assessed the gene expression levels of Notch related 

molecules, such as Delta1, Jagged1, Hes1, hNotch1 and 2, in NT-2/D1 cells after sAPP 

treatment (Figure 24A). We observed that the expression of Hes1was drastically 

increased following treatment with sAPP, whereas no change in the expression of Notch 

ligands (Delta1, Jagged1) and Notch receptors (hNotch1 and 2) were observed. Our 

 

ith recent reports which have showed physical interactions of APP with Notch. Hence 

we confirm here that APP interacts with Notch directly and for the first time we 

findings indicate that APP-induced Notch signaling activation may not occur by 

upregulation of the expression of Notch ligands or Notch receptors. Therefore, to 

examine the possibility of the latter mechanism, the physical interaction of APP and 

Notch was tested by using immunoprecipitation (Figure 24C). First to identify possible 

crucial domain(s) of APP for the physical interaction, we constructed truncated mutants, 

APP1-678 and APP1-205, which encode sAPPα (1-678) and N-terminal domain of APP 

(1-205), and transfected these mutants, along with an APP expression vector (APP 1-

695) into NT-2/D1 cells. Interestingly, we found that the N-terminal domain of APP (1-

205) was sufficient for the physical interaction with Notch. This result is in agreement

w
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demonstrate that a protein-protein interaction is important for sAPP-induced glial 

differentiation, mediated by the Notch signaling cascade. 
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Figure 24: Physical interaction of APP and Notch is crucial for stimulation of gliogenesis. 
(A) sAPP–induced gene expression changes, which are related with Notch signaling 
cascade, were assessed by RT-PCR. 100ng/ml of recombinant sAPP protein was 
applied to NT-2/D1 cells for 2 hr, then, mRNAs were extracted using Trizol for RT-PCR. 
Then, most of Notch related genes were not affected by treatment of sAPP except Hes 
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1. Expression of β-actin was examined as a loading control. (B) Schematic diagram of 
truncated mutant of APP clones. Several truncated N-terminal domain of APP (1-695, 1-
678, and 1-205 a.a.) was used for functional analysis. (C) Protein-protein interaction of 
APP and Notch was tested by using immunoprecipitation. Proteins were extracted from 
NT-2/D1 cells using NP40 lysis buffer. Then, protein complexes were precipitated by 
anti-Notch Abs and western blot analysis were performed by using anti-22C11 Abs, 
Experiments were repeated at least three times with similar results. 
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N-terminal domain of APP is sufficient for induction of glial differentiation 

Since the structure of APP harbors a variety of functional domain, sAPP has shown 

various physiological functions in vivo as well as in vitro. However, several reports 

emonstrate that N-terminal domain of APP has a growth factor like domain because it 

contains cystein rich domain and heparin binding site which are involved in protein-

protein interaction. We thus aimed to identify whether N-terminal domain of APP is 

sufficient for gliogenesis. For that purpose, we transfected NT-2/D1 cells with three 

different APP truncated mutant expression vectors of APP [pCMV-APP695 (1-695), 

pCMVIg-APP.1 (1-678), and pCMVIg-APP.2 (1-205)] in. Next, GFAP, Hes1 expression 

and NICD generation were examined to investigate the potential function of these 

various N-terminal domains of APP in gliogenesis. As shown in Figure 25, N-terminal 

domain of APP showed sufficient capability to induce gliogenesis by enhancing GFAP 

and Hes1 expression and NICD generation. Several earlier studies have reported that 

N-terminal domain of APP promotes proliferation of stem cells because of its growth 

factor like structure. Especially, Callie et al. showed that soluble form of APP enhances 

proliferation of progenitor cells in adult subventricular zone by acting as a cofactor of 

EGF 109. However, we didn’t find any enhanced proliferation in our experimental 

conditions, instead we found that treatment of sAPP slightly reduced cell proliferation of 

NT-2/D1 cells (data not shown) Therefore, our present study suggests that the N-

terminal domain of soluble APP is a potent gliogenic factor to neural precursor cells.  

 

d
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Figure 25: N-terminal of sAPP is sufficient for glial differentiation. (A) N-terminal domain 

collected from sAPP and their mutants transfected HEK293 cells, were added into NT

Notch Ab and anti-GFAP Ab, respectively. (B) N-terminal domain of APP enhanc

were treated into NT-2/D1 cells and total mRNAs were collected using Trizol. Then, RT-

Expression of β-actin was examined as a loading control. Experiments were repea

of APP induced expression of GFAP as well as generation of NICD. Condition media, 
-

2/D1 cells. Then, protein extracts were imunnoprecipitated and probed with anti-active 
ed 

mRNA expression level of both GFAP and HES1, target gene of NICD. Condition media 

PCR was performed to amplify target genes using GFAP and HES1 recognizing primer. 
ted at 

least three times with similar results. 
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Discussion 

APP has been extensively studied in relation to Aβ deposition, which is one of the 

hallmarks of the pathophysiology in AD. In the present study, we report a novel 

physiological function of sAPP and the mechanisms involving sAPP regulation of cell 

fate specification of neural progenitor cells. In general, glial differentiation process is 

judged by the expression of GFAP as well as S100β. Although there still remains 

unclear whether it is sufficient for identification of gliogenesis, here, we used GFAP as a 

marker for the glial differentiation. In our previous studies, we have clarified that sAPP 

has a crucial role in altering expression of astrocytic specific markers such as GFAP, 

astrocyte-specific glutamate transporter-1(GLT-1)/ excitatory amino acid transporter-2 

(EEAT-2), and aspartate transporter-2 (GLAST)/ EEAT-1 expression as well as 

morphological changes of neural precursor NT-2/D1 cells 141. Although it has been 

reported earlier that sAPP promotes proliferation of NSC both in vitro and in vivo 89, 109, 

e observed opposite ndings in which treatment of sAPP did not increase the 

roliferation of NT-2/D1 cells in our experimental condition (data not shown). Instead we 

neural precursor cells. To elucidate the molecular mechanisms involved in sAPP-

induced gliogenesis, we investigated the specific mechanisms of APP-induced glial 

differentiation. In general, bFGF, BMPs, IL-6 cytokine families, and Notch have been the 

w  fi

p

detected that treatment of sAPP slightly suppressed cell proliferation of NT-2/D1 cells. 

Furthermore, sAPP induced GFAP expression in a time- and dose-dependent manner 

by stimulating GFAP promoter activity in neural precursor cells. In addition, high levels 

of APP induced glial differentiation of HNSCs in vitro as well as in vivo. Therefore, our 

data indicates that sAPP is closely associated with the glial differentiation process of 
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most known representatives for the sig ay associated with gliogenesis of the 

al to 

ol of 

ling 
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udy also 

 

 

 

naling pathw

neural stem cells. Recently, He et al. proposed that the Jak/STAT pathway is centr

the gliogenic machinery and postulated a framework for understanding the contr

gliogenesis during development 40. On the other hand, Notch canonical pathway 

regulates gliogenesis by either suppressing transactivation of neurogenic bHLH 

transcription factors (Mash1 and NeuroD) or cooperating with STAT3 of IL-6 signa

pathway. 

 

In previous reports, several lines of reports addressed that possible association of 

Notch signaling pathway in glial differentiation. In adult DS cortex, the upregulation of 

Notch1 and Hes1 expression was observed 170 as well as massive gliogenesis o

HNSCs 56. As discussed before, since AD and DS shows similar characteristics in te

of the expression level of APP 171, 172 and symptom of the late on-set 123, these results 

maybe caused by high concentration of soluble APP. Interestingly, our in vivo st

suggests that the involvement of Notch signaling pathway in APP-induced glial 

differentiation (Figure 20B). When we examined the protein level of APP, GFAP and 

NICD in the cortex of both wild type control and APP23 mice using Western blotting, 

NICD generation showed higher correlation with GFAP expression level in the cerebral 

cortex of APP23 mice compared to WT mice. In accordance with increased APP protein

expression, increases in GFAP protein expression as well as an increase of NICD 

generation were observed in the APP23 transgenic mice. Therefore, we examined

Notch signaling pathway as a possible candidate signaling pathway in sAPP-induced

glial differentiation.  
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When sAPP was applied to neural precursor cells, it potently generated NICDs with 

time- and dose-dependent manner and eventually turned on gene transcription of Hes1,

neuronal repressor. Since these sequential events were usually executed by recruiting

γ-secretase/nicastrin complex under the stimulation of Notch ligands, we examine

whether sAPP can also stimulate Notch signaling pathway similarly with other No

ligands such as Deltas or Jaggeds. To determine the specific mechanisms, a γ-

secretase 

 

 

d 

tch 

inhibitor, L-685,458, was used to suppress the function of γ-the 

ecretase/nicastrin complexL-685,458, inhibited the generation of NICD and induction of 

 the 

ch ith 

g 

 

. 

ion 

s

Hes1 gene expression efficiently. Furthermore, the expression of GFAP protein and

phosphorylation of STAT3 were also diminished by L-685,458. In agreement with our 

findings, a recent study reported that the Not  signaling pathway can cross-talk w

the JAK/STAT3 signaling pathway through interaction of Hes1 and JAK2 49. These 

complexes enhance the accessibility of STAT3 homodimers to promoter sites and 

potentiate gene expression of target genes. These findings suggested that treatment of 

sAPP may induce gliogenesis by enhancing GFAP expression via Notch signalin

pathway. On the other hand, sAPP may also suppress glial differentiation by inhibiting

the expression of the neurogenic transcription factors such as NeuroD and Mash1 173

However, in our experimental conditions, we could detect gene expression of NeuroD 

as well as Mash1 in both regular and sAPP treated NT-2/D1 cells. (data not shown) 

Thus, this indicates that treatment of sAPP may selectively force cell fate specificat

of neural precursors into glia cells by stimulating the Notch signaling cascade.  
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Structure of APP 695 largely consists of several characteristic elements. The N-term

APP 695 is composed of a signal peptide for the trafficking, a cystein-rich domain 

(CRD), a Zinc-binding motif, and acidic sequences 

inal 

ort 

idence 

 ligand. 

h 

 

t 

 or 

als for 

liogenesis, similar with Notch ligands. If our first hypothesis is correct, treatment of 

sAPP would thus induce an increased expression of ligands associated with the Notch 

26. The Central APP domain 

(CAPPD) consists of a large domain which doesn’t contain cystein residues and a sh

linker sequence that harbors α- and β-secretase cleavage sites 26. The C-terminal of 

APP harbors a transmembrane region and a cytoplasmic tail. Several lines of ev

suggested that APP has a structural property similar to a growth factor and

Thus, we tested here whether the N-terminal domain of APP is enough to induce glial 

differentiation of neural stem cells. To elucidate the functional properties of the N-

terminal domain of sAPP in glial differentiation, we examined the expression of GFAP 

and Hes1, as well as generation of NICDs after treatment with conditioned media whic

contained full length APP695, APP1-678, and APP1-205. Treatment of APP and 

truncated mutants of APP promoted gene expression of GFAP and Hes1 as well as

NICD generation. These findings suggest that sAPP may function as a ligand for Notch 

in neural stem cells treated with APP.  

 

Up to date, it has been in veil how sAPP stimulates these signaling cascades. We thus 

hypothesized that there may be two possible ways to stimulate gliogenesis by treatmen

with sAPP. First, treatment with sAPP may promote the expression of various ligands

receptors, associated with Notch receptors, such as Delta and Jagged. The other 

possibility is that sAPP may directly interact with Notch molecules to induce sign

g
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signaling pathway and sequentially stimulate downstream signaling cascade. However, 

our findings indicate that this is not the case since there were no significant change

Notch related gene expression except for the Hes1 gene, target of NICD (Fig. 24

the latter case, physical interaction of sAPP with Notch may be the most feasible way to 

induce glial differentiation of neural stem cells. To examine our hypothesis, we 

performed immunoprecipitation and found that sAPP interacts with Notch. Then, we 

found that sAPP physically interacts with Notch (Figure 24C) In support of our findin

several recent studies have demonstrated protein-protein interaction between APP and

Notch 

s in 

A). In 

gs, 

 

peutic 

e 

 patient’s brain, these implanted cells would 

ainly differentiate into glia due to the higher concentrations of sAPP in vivo. However, 

170, 174, 175.  

 

In conclusion, our present findings address a novel paradigm in the understanding of 

glial differentiation mechanisms, which may aid in the development of novel thera

strategies for AD. Current limitation for the clinical use of stem cell therapy in AD is th

low efficacy of neuronal differentiation of transplanted stem cells. Even if stem cells 

were transplanted into the brains of AD

m

if glial differentiation related signaling pathways are tightly regulated, we may improve 

the success rate of stem cell therapy for AD. Therefore, knowledge acquired from this 

study may help to understand molecular mechanism of neurodegenerative disease such 

as AD and find advanced treatment or prevention methodology for AD.  
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GENERAL DISCUSSION 

1

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases 

leading to dementia. Since almost 4.5 million patients suffer from AD in America and the 

number of patients will be increased to 14 million by year 2050, effective method for 

treatment or prevention is urgently necessary . Although cytotoxicity of Aβ has been 

intensively studied due to its clinical importance, recent studies have shown the 

limitation of Aβ theory, such as the irrelevance with phenotypic characteristics of the 

amyloid precursor protein (APP) knock-out mice 176. Thus, it tends to lead our concerns 

on physiological function of APP in the brain. Despite various physiological functions of 

APP have been reported such as neurite outgrowth, cell proliferation, and neural 

migration, physiological function of APP is still controversial and remained in veil 

because there are little consensus between in vitro and in vivo 26. In the present studies, 

we investigated the novel function of APP in stem cell biology, especially, regarding the 

differentiation of neural stem cells.  

 

Since serum-free unsupplemented condition does not contain any factors related with 

differentiation and growth, NSCs may not be differentiated and survived properly in this 

harsh condition. However, previously, we have shown that HNSCs can be differentiated 

into neurons, astrocytes, and oligodendrocytes and those cells can be survived up to 3 

weeks under the serum free media condition. Thus, our previous results indicate that 

some unknown factors, produced endogenously, may affect their own differentiation as 

well as survival in the serum-deprived condition. In the present study, we observed the 
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elevation of APP expression hrunken morphology, 

under the condition of serum-free differentiation of HNSCs. The migration and 

differentiation of HNSCs were promoted by the treatment of recombinant sAPP with a 

dose-dependent manner. Inversely, when the function of APP was neutralized by N-

terminal domain recognizing 22C11 antibody, the effect of APP on HNSCs was 

drastically antagonized. Thus, under serum-free differentiation conditions, APP released 

from apoptotic cells may serve as a differentiation and/or migration factor for 

neighboring HNSCs. 

 

However, a high concentration of sAPP increased the glial cell population of 

differentiated HNSCs in vitro. Our results suggest that physiological concentration of 

APP enhances the migration and overall differentiation of HNSCs, whereas, higher 

concentration of APP, mainly differentiated into glia. Although exact mechanism is still 

unclear, several studies showed that elevation of neurogenesis of NSCs was observed 

in an early on-set AD patient brain while a massive gliosis is occurred in a late on-set 

AD patient brain 177, 178. Based on our results, we might postulate that differentiation of 

early on-set AD patient’s NSCs is promoted by the slight elevation of APP expression 

level. Since APP level does not reach to the gliogenic threshold, NSC of early stage AD 

patient may not be differentiated into glia. Inversely, most of the stem cell population of 

AD patient may be differentiated into glia because, as on the disease progressed, the 

amount of APP may be increased and will be beyond the gliogenic threshold in the brain. 

 

in apoptotic cells, which has a s
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Our in vivo study also may support the fact that high dose of APP might cause glial 

differentiation since higher expressions of APP and GFAP, typical astrocyte ma

were observed in APP23 tg mice compared to wild type mice. Although our results do 

not directly represent the effect of APP on differentiation of NSCs, at least, it indicate

APP level correlates with GFAP expression in the brain. Consistently, Bahn et al

demonstrated that neurospheres derived from DS patients almost exclusively 

differentiated into GFAP positive cells. This may result from an overdose of th

gene, since Downs' sy

rker, 

s 

. 56 

e APP 

ndrome patients have inherited three copies of APP that resides 

n chromosome 21. 

. 

. 

. 

ell viability as well as the DNA fragmentation, a hall mark of apoptosis. Typical 

astrocytic morphological changes and typical astrocytic marker such as GFAP, 

o

 

We examined the function of APP in STS-induced glial differentiation of NT-2/D1 cells

STS has been used as a PKC inhibitor 101as well as an apoptosis inducing reagent 102

Additionally, several studies showed novel function of STS as a terminal differentiation 

inducer in murine embryonic stem cells 104, PC12 pheochromocytoma 105, and C6 

glioblastoma 106. Although a molecular mechanism of STS in differentiation remains 

unknown, STS-induced differentiation may be associated with an apoptosis mechanism

Since the elevation of APP is observed in apoptotic cells 80, we postulated increased 

APP may influence glial differentiation of NT-2/D1 cells under the apoptotic condition 

triggered by STS. 

 

We found that treatment of STS induces apoptosis in NT-2/D1 cells by assessing the 

c
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GLAST/EAAT1 and GLT1-EAAT2 were appeared in the presence of STS 120, 

suggesting that STS induces glial differentiation of NT-2/D1 cells.  

 

We found that treatment of STS gradually increased APP expression as well as 

secretion during glial differentiation. Recent studies demonstrated APP has an anti-

apoptotic function via phosphorylation of myocyte enhancer factor 2 28, 111. Thu

increased expression and secretion levels of APP might be a compensatory mechani

against STS-induced apoptotic condition. 

 

s, the 

sm 

or further studies, gene silencing of APP was performed to examine involvement of 

 

 

ring 

. 

es 

ERK1/2 116, we postulated that STS may increase APP expression 

y promoting ERK1/2 phosphorylation during glial differentiation. We found that MEK1 

te that 

F

APP in STS-induced glial differentiation. We found that knocking-down expression of 

APP significantly reduced GFAP expression in the presence of STS. Although STS may

induce glial differentiation of NT-2/D1 through various signaling mechanisms, this result

suggests that at least APP is associated with the induction of GFAP expression du

STS-induced glial differentiation. 

 

To investigate how STS regulate APP level, we examined APP catabolism/metabolism

Since APP expression is regulated by phosphorylation of ERK1/2 125 and STS increas

phosphorylation of 

b

inhibitor (PD098059), which inhibits phosphorylation of ERK1/2, significantly reduced 

expression of APP and GFAP with dose-dependent manner. These results indica
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STS may induce GFAP expression through the upregulation of APP by increas

ERK1/2 phosphorylation.  

ing 

ed the 

 distinctive cellular responses. In our 

xperimental condition, treatment of sAPP activates IL-6/gp130 signaling pathway via a 

 

 

p130 was induced in an early stage, phosphorylation 

f gp130 was quickly reduced back to basal level, presumably, by the internalization of 

 

 

To elucidate mechanism relevant to APP-induced glial differentiation, we examin

potential involvement of IL-6/gp130 and notch signaling pathway 179. Since different 

members of the IL-6 cytokine have shown induction of distinct patterns of expression 

and phosphorylation status of signaling molecules involved in IL-6/gp130 signaling 

pathway 143, treatment of APP may induce

e

physical interaction with gp130. Beside the result of immunoprecipitation, treatment of

anti-gp130 antibodies, blocking a ligand binding site of gp130 150, also showed that the

interaction between APP and gp130 is crucial for activation of IL-6/gp130 signaling 

since the effect of sAPP was suppressed by anti-gp130 antibodies. 

 

While a rapid phosphorylation of g

o

ligand/IL-6R/gp130 complexes. In previous reports, when gp130 interacts with its 

ligands, it is targeted for degradation and gp130 should be synthesized before it 

appears in the membrane for preparing next cellular event 145. Thus, treatment of sAPP

significantly may promote the expression of gp130 from 60 min to maintain a certain 

amount of gp130 expression in the cell surface as a compensatory mechanism 40. 
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Our results have shown that treatment of sAPP promoted the expression of gp130,

CNTF, and JAK1 in early s

 

on-set (< 2hr) for glial differentiation. Thus, sAPP may also 

timulate CNTF expression to activate the IL-6/gp130 signaling cascade. The 

ther 

y 

TAT3 molecules to 

rm STAT3 homodimer complexes. Then, STAT3 complexes are translocated into 

T3 

yr705, 

t 

lial 

ifferentiation of NT-2/D1 cells. 

 

s

expression of CNTF, a potent gliogenic factor 179, was increased in an early on-set of 

gliogenesis (< 120 min) as well as up to 5 days in the presence of sAPP. However, 

since the application of siRNA of CNTF decreased GFAP expression, it reveals that 

CNTF may have the crucial function in APP-induced glial differentiation. Though fur

studies may be needed, treatment of sAPP may also induce glial differentiation b

upregulating CNTF expression in NT2-D1 cells.  

 

JAK/STAT signaling pathway is an important regulatory system, implicated in GFAP 

expression, in glial differentiation 45. Conformational changes of gp130 recruits non-

receptor kinases such as JAKs and activated JAKs phosphorylate S

fo

nucleus to turn on GFAP expression. To examine whether signaling transducing 

molecules such as JAKs and STAT3 in APP-induced glial differentiation, we used 

siRNA and pharmacological inhibitor for suppressing the function of JAK1/2 or STA

molecules. Although treatment of sAPP enhanced phosphorylation of STAT3-p-T

siRNA of STAT3, JAK1 and JAK2 inhibitor (AG490) inhibited signal transduction, 

caused by APP, and diminished GFAP expression. Therefore, present results sugges

that JAK/STAT molecules are crucial intracellular mediators of the sAPP-induced g

d
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The notch signaling pathway also has been known as an important glial differentiatio

mechanism of NSCs 

n 

 cells. 

 

induced notch signaling activation to 

lucidate how sAPP stimulate notch signaling pathway. One possibility is that sAPP 

rs 

ut 

e 

cent 

tch in 

evel 

or binding is blocked by 22C11. Therefore, protein-

162. The treatment of sAPP promoted the generation of NICD and 

Hes1 gene expression, suggesting the activation of notch signaling in NT-2/D1

However, since treatment of γ-secretase inhibitors (L-685,458) suppressed NICD 

generation, Hes1 expression, and GFAP expression in the presence of sAPP, our 

results indicate that sAPP can induce glial differentiation of neural progenitor cells via

notch signaling pathway. 

 

We examined mechanisms associated with APP-

e

may stimulate notch signaling cascade by increasing the expression of notch recepto

and/or ligands such as Delta and Jagged. However, this possibility should be ruled o

because mRNA expression level of Notch1, 2, Jagged, and Delta was not changed by 

treatment of sAPP. Instead, we found that APP can stimulate notch signaling cascad

by physical interaction with notch receptors using immunoprecipitation. Several re

studies also have demonstrated a protein-protein interaction between APP and No

support of our findings 170, 174, 175. Interestingly, N-terminal domain of APP (1-205) was 

enough to interact with Notch and promotes NICD generation as well as Hes1 

expression. Also, APP (1-205) domain was sufficient to induce GFAP expression l

in both protein and mRNA as well. It may be the reason that treatment of N-terminal 

recognizing antibodies (22C11) suppresses NICD generation as well as GFAP 

expression since a ligand/recept
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protein interaction of APP with gp130 and notch receptor may be the crucial for the 

induction of glial differentiation.  

 

Previously, Kamakura et al. demonstrated IL-6 signaling and notch can cross-talk 

have a synergistic effect through interaction of Hes1 and JAK2 

and 

s 

 (ex, GFAP). Our results also indicate that treatment of γ-

ecretase inhibitor suppressed GFAP expression as well as STAT3 phosphorylation via 

 

ion 

 

y 

49. These complexe

enhance the accessibility of STAT3 homodimers to promoter sites and potentiate the 

expression of target genes

s

cross-talking between IL-6/gp130 and notch signaling pathway. However, APP-induced

glial differentiation may be not modulated by a synergistic way but induced by activat

of both IL-6 and notch signaling for the glial differentiation. If APP-induced glial 

differentiation is occurred synergistically, although one signaling cascade (IL-6/gp130 or

notch) is blocked by antibodies, siRNAs, or chemical inhibitors, we could observe 

certain level of GFAP expression, higher than control, because APP can still activate 

the other signaling pathway. However, when one signaling cascade is suppressed, 

overall GFAP expression level was decreased almost back to basal level. Therefore, 

our findings indicate that the activation of both two signaling cascade may be necessar

for APP-induced glial differentiation. 
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Figure 26: Schematic diagram of sAPP-induced glial differentiation mechanism. 
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Although the rate of neurogenesis of endogenous NSCs in the AD patient brain is 

slightly promoted in their early on-set 177, 178, in the long run, pathologically-altered APP 

metabolism in AD or DS may cause a defect in neurogenesis and significantly destroy 

normal brain functions due to massive glial differentiation of endogenous NSCs. A 

gliogenic APP function could also prevent successful stem cell therapy for AD using 

NSC by influencing the differentiation of the transplanted cells into glial cells rather than 

into neurons. Thus, in order to use stem cell transplantation as a potential strategic 

intervention therapy for AD or DC, regulation of environmental APP levels and/or 

modifications of the APP signal pathways within the cells may need to be developed. 

Therefore, regulation of APP level could be a promising strategy to increase 

neurogenesis in AD brain.  
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