
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2004 

Interactivity And User-heterogeneity In On Demand Broadcast Interactivity And User-heterogeneity In On Demand Broadcast 

Video Video 

Mounir Tantaoui El Araki 
University of Central Florida 

 Part of the Computer Sciences Commons, and the Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Tantaoui El Araki, Mounir, "Interactivity And User-heterogeneity In On Demand Broadcast Video" (2004). 
Electronic Theses and Dissertations, 2004-2019. 130. 
https://stars.library.ucf.edu/etd/130 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research & Scholarship)

https://core.ac.uk/display/236298603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/130?utm_source=stars.library.ucf.edu%2Fetd%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


INTERACTIVITY AND USER-HETEROGENEITY IN ON DEMAND 
BROADCAST VIDEO 

 

 
 
 
 
 

        
by 
 
 

MOUNIR TANTAOUI EL ARAKI 
B.S. University of Mohammed V, 1996 

M.S. University of Central Florida, 1999 
 
 
 

A dissertation submitted in partial fulfillment of the requirements  
for the degree of Doctor of Philosophy 
from the School of Computer Science  

in the College of Engineering and Computer Science  
at the University of Central Florida 

Orlando, Florida 
 
 
 
 
 
 
 
 
 

Summer Term 
2004 



ABSTRACT 

Video-On-Demand (VOD) has appeared as an important technology for many multimedia 

applications such as news on demand, digital libraries, home entertainment, and distance 

learning.  In its simplest form, delivery of a video stream requires a dedicated channel for each 

video session.  This scheme is very expensive and non-scalable.  To preserve server bandwidth, 

many users can share a channel using multicast.  Two types of multicast have been considered. 

In a non-periodic multicast setting, users make video requests to the server; and it serves them 

according to some scheduling policy.  In a periodic broadcast environment, the server does not 

wait for service requests.   It broadcasts a video cyclically, e.g., a new stream of the same video 

is started every t seconds.  Although, this type of approach does not guarantee true VOD, the 

worst service latency experienced by any client is less than t seconds.  A distinct advantage of 

this approach is that it can serve a very large community of users using minimal server 

bandwidth.  

In VOD System it is desirable to provide the user with the video-cassette-recorder-like (VCR) 

capabilities such as fast-forwarding a video or jumping to a specific frame.  This issue in the 

broadcast framework is addressed, where each video and its interactive version are broadcast 

repeatedly on the network.  Existing techniques rely on data prefetching as the mechanism to 

provide this functionality.  This approach provides limited usability since the prefetching rate 

cannot keep up with typical fast-forward speeds.  In the same environment, end users might have 

access to different bandwidth capabilities at different times.  Current periodic broadcast schemes, 
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do not take advantage of high-bandwidth capabilities, nor do they adapt to the low-bandwidth 

limitation of the receivers.  A heterogeneous technique is presented that can adapt to a range of 

receiving bandwidth capability. Given a server bandwidth and a range of different client 

bandwidths, users employing the proposed technique will choose either to use their full reception 

bandwidth capability and therefore accessing the video at a very short time, or using part or 

enough reception bandwidth at the expense of a longer access latency. 
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CHAPTER ONE: INTRODUCTION 

Next-generation networks will support transmission rates that are orders of magnitude higher 

than current rates and will provide advanced services not currently available. In particular, the 

explosive increase in commercial usage of the Internet has resulted in a rapid growth in demand 

for video delivery techniques.  They are underlying technologies for many new, exciting 

multimedia applications. For examples, on-demand home entertainment gives customers the 

freedom to view movies from remote sites at any time in the comfort of their own home; distance 

learning provides opportunities for students to take courses taught at remote locations according 

to their individual needs and time constraints; digital video library lets remote users research and 

view videos from a large video library; just to name a few. Video-On-Demand (VOD) will 

therefore play an important role in providing these applications. 

A VOD system consists of a video server with a video archive and a number of client machines 

connected via a local area network. Users use client software to request for their desired video. In 

response to a service request, the server delivers the requested video to the user in an 

isochronous data stream. The unit of server capacity required to support the playback of one 

video stream is referred to as a channel. The server network I/O bandwidth limits the number of 

such channels. Figure 1.1 depicts a simple architecture of a Video-On-Demand system. 
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Figure 1. 1 Video-On-Demand Architecture 

 

The simplest delivery technique requires a dedicated server channel to serve each video request.  

Obviously, this scheme is excessively expensive and non-scalable. To conserve server network 

I/O bandwidth and wide-area-network bandwidth and to reduce service delays experienced by 

users, three complementary approaches have been investigated. 

• Server transmission schemes using multicast: These techniques can be categorized into 

reactive transmission approaches, proactive transmission approaches, and hybrid 

approaches. In the reactive transmission approach, the server uses a few server channels 

to serve several requests for the same video arriving closely in time. This strategy allows 

the users to share server and network bandwidth.  In the proactive transmission approach, 

clients do not make requests to the server.  Instead, the server broadcasts a video 

periodically, e.g., a new stream of the same video is started every t seconds.  The worst 
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service latency experienced by any client is at most t seconds.  A unique advantage of 

this approach is that it can serve a very large community of clients using minimal server 

bandwidth while guaranteeing a bounded service delay.  In fact, the bandwidth 

requirement is independent of the number of concurrent clients using the system.  The 

hybrid approach takes advantages of both the reactive and the proactive approaches.   

• Video streaming technologies with Application Layer Multicast:  In theory, IP multicast 

can be employed with the server transmission schemes.  In practice, IP Multicast has 

deployment difficulty beyond a local area network [DLLKB00].  As a result, several 

proposals for Application Layer Multicast (ALM) have recently been introduced along 

with new video streaming techniques using ALM for live broadcast and pre-recorded 

videos. The infrastructure-based approach and the peer-to-peer (P2P) approach are two 

different classes of ALM protocols. In the infrastructure-based approach, a set of 

dedicated machines called overlay nodes act as software routers with multicast 

functionalities [JGJKO00]. In these approaches a multicast tree is constructed where 

packets are replicated at overlay nodes. Video content is therefore transmitted from a 

source to a group of receivers on a multicast tree comprising of only the overlay nodes.  

A new receiver joins an existing multicast group by connecting to its nearest overlay 

node. Range Multicast [HTV00] is an infrastructure-based approach and utilizes an 

overlay structure consisting of overlay nodes placed at strategic locations on a wide-area 

network, and interconnected using unicast paths. As video packets pass through a 

sequence of overlay nodes on the delivery path, each node caches the video data into its 
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fixed-size FIFO buffer.  Such buffers, if they still have the first video frame, can be used 

to relay the entire video stream to subsequent clients requesting the same video. Due to 

the high cost of deployment and maintenance of the infrastructure-based approach, the 

P2P approaches have been introduced and studied in Chaining [SHT97], DirectStream 

[GSKT03a], P2Cast [GSKT03a], and P2VOD [DHT04] for pre-recorded video, and in 

CoopNet [PWC02], [XHB02] and ZigZag [THD02] for live video streaming.  The 

communication paradigm lets users’ end hosts forward video data to other users’ end 

hosts in the downstream.  Figure 1.2.a and 1.2b depict an example of the infrastructure-

based approach and a peer-to-peer approach respectively. 

• Proxy caching technologies: A video proxy (a computer system equipped with large 

storage space) can be used to store popular videos close to the requesting clients (refer to 

Figure 1.1).  The proxy delivers the cached portion of the requested video to the client 

while the remote video server needs transmit only the uncached portion of the video.  

This scheme minimizes the load on the wide-area-network and the video server. A well 

designed proxy caching technique can also reduce service delays and improve playback 

quality.  Proxy caching techniques can be divided into two major categories, namely 

Standalone Proxy Caching [SRT99, ZWDS00, KHRR01, RRG01, EFV99, GST03] and 

Collaborative Proxy Caching [AS00, GGUST03, PBC00].  Standalone Proxy Caching 

assumes a single Video Proxy and the allocation policy determines which portion of 

which video to cache at proxy storage. Collaborative Proxy Caching approaches take 

advantage of aggregate network bandwidth and storage space of several proxies in the 
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same Intranet to store more videos close to requesting clients. The number of 

participating proxies and their resources are known a priori. 

 

U ser 1 U ser 2

R outer 2
Router 4

Peer 1

Peer 3

Peer 2

b. P2P com m unication at application level

R outer 1
R outer 3

a. Infrastructure-based approaches
U ser 3
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Figure 1. 2 Infrastructure-based vs. P2P 

 

The reactive transmission schemes and proactive schemes facilitate large-scale deployment and 

content sharing of video services.  However, clients of such applications can use multiple types 

of receiving devices. Therefore, the dissemination of a homogeneous description of a video does 
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not exploit high-bandwidth capabilities of some clients nor does it adapt to clients with low 

network bandwidth. A technique that can adjust to an array of heterogeneous receivers is 

required in practice.  Furthermore, providing VCR-like capabilities (e.g., fast-forwarding or 

jumping to a specific frame in the video) is not only desirable but also required to quickly locate 

desired video content in some applications.  

This dissertation introduces two new techniques, the Broadcast-Based Interactive Technique 

(BIT) for providing VCR-like functionalities, and BroadCatch a user-bandwidth heterogeneous 

approach to provide video content in a multicast environment and more specifically by 

employing proactive methods and approaches.  

From this point, multicast techniques employing an active approach are referred to as regular 

multicast techniques or multicast techniques, and multicast techniques using a proactive 

approach are referred to as periodic broadcast techniques.  From this terminology, a multicast 

setting is an environment where regular multicast techniques are used and a periodic broadcast 

setting where periodic broadcast techniques are employed.  

Chapter 2 discusses several multicast, periodic broadcast, and hybrid approaches to disseminate 

video data to end-users. In this chapter, and since both proposed techniques, i.e. BIT and 

BroadCatch, employ periodic broadcast as way to deliver video, the main difference between 

multicast and periodic broadcast environments is indicated. Then several periodic broadcast 

techniques are described to point out various challenges.  

Chapter 3 presents an overview of several schemes to provide VCR-like functionalities in 
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numerous related works, describes the Client-Centric Approach (CCA) [HCS98] from which the 

BIT technique is derived [THS02], presents and proves the correctness of the proposed 

Broadcast-based Interactive Technique (BIT), and shows simulation results to compare BIT to a 

recent method.  

Chapter 4 discusses the user bandwidth heterogeneous problem related to proactive approaches. 

First, related works are presented. Second, the proposed BroadCatch [THD04] technique is 

described and analyzed. Third, several convenient characteristics of BroadCatch are explained. 

Finally, a performance evaluation section compares BroadCatch to existing techniques that 

provide user bandwidth heterogeneity and techniques that optimize user bandwidth without 

providing heterogeneous characteristics. 

Chapter 5 is a study of two distinctive approaches [THJ03], one using a static multicast and the 

other a periodic broadcast delivery to disseminate dynamic terrain updates to simulators in a 

distributed interactive environment.  

Chapter 6 concludes this dissertation with some remarks and future directions. 
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CHAPTER TWO: REACTIVE AND PROACTIVE APPROACHES 

Video services can be classified into the following categories based on the scheduling policies 

of data delivery and on the degree of interactivity [LV96, MS02]. 

• No-Video-on-Demand: This service is similar to the broadcast TV service where a user is a 

passive participant in the system and has no control over the video session. In this case, users 

do not request videos. 

• Pay-Per-View: This service is similar to the cable TV Pay-Per-View.  Users sign up and pay 

for specific services scheduled at pre-determined times.   

• True Video-on-Demand (TVOD): True VOD systems allow users to request and view any 

video at any time, with full VCR capabilities. The user has a complete control over the video 

session. The simplest way to achieve TVOD is to dedicate each channel to every user in the 

system. However, this simplest scheme is very expensive. 

• Near Video-on-Demand (NVOD): Users requesting for the same video are served using one 

video stream to minimize the demand on server bandwidth.  The server is, therefore, in 

control of when to serve the video. VCR capabilities can be provided using many channels 

delivering the different requested portions of the same video requested by the different users. 

This chapter describes several techniques that utilize the reactive transmission approaches, the 

proactive transmission approaches, and a hybrid approach. Section 1 presents the difference 

between static multicast and dynamic multicast techniques. Section 2 describes the server-
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oriented periodic broadcast techniques, client-oriented periodic broadcast schemes and compares 

the cost of deployment in both environments. Section 3 explains a hybrid solution of reactive and 

proactive transmissions. Section 4 describes some implementation issues related to periodic 

broadcast products and section 5 summarizes the chapter.  

2.1 Multicast: Reactive Approaches 

To conserve the server network I/O bandwidth requirement, two approaches, static multicast and 

dynamic multicast, have been studied. In the static multicast approach, a video server serves a 

batch of requests for the same video that arrive within a short period of time using one server 

channel. This approach is also known as Batching. All clients of the same batch receive the same 

data from the same multicast tree. The difference among the different schemes in this approach is 

the policy to select which batch to serve first when a server channel becomes available. The 

dynamic multicast approach extends the static multicast approach, allowing late coming requests 

to join a batch currently being served by extending the multicast tree to include the newly 

arriving client.  The subsequent sections describe several Static and Dynamic Multicast 

techniques. 

2.1.1 Static Multicast 

In this environment, users requesting the same video, within a short period of time, are served 

together using the multicast facility.  Since there could be several such batches of pending 
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requests, a scheduler selects one to receive service according to some queuing policy.  Some 

scheduling techniques for the Batching approach are as follows: 

• First-Come-First-Serve (FCFS) [AWY96, DSS96]: As soon as some server bandwidth 

becomes free, the batch containing the oldest request with the longest waiting time is 

served next.  The advantage of this policy is its fairness.  Each client is treated equally 

regardless of the popularity of the requested video.  This technique, however, results in a 

lower system throughput because it may serve a batch with few requests, while another 

batch with many requests is pending. 

• Maximum Queue Length First [AWY96]: This scheme maintains a separate waiting 

queue for each video.  When server bandwidth becomes available, this policy selects the 

video with the most number of pending requests (i.e., longest queue) to serve first.  This 

strategy maximizes server throughput.  However, it is unfair to users of less popular 

videos.  

• Maximum Factored Queued Length First [AWY96]: This scheme also maintains a 

waiting queue for each video.  When server resource becomes available, the video vi 

selected to receive service is the one with the longest queue weighted by a factor if1 , 

where fi denotes the access frequency or the popularity of vi.  This factor prevents the 

system from always favoring more popular videos.  This scheme presents a reasonably 

fair policy without compromising system throughput. 

Figure 2.1 depicts the static multicast schemes. Since users have to wait in a queue to get the 

video data, it is important to note that the aforementioned batching policies can only provide a 
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near-on-demand service.   
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Figure 2. 1 FCFS, MQLF, and MFQLF 

 

2.1.2 Dynamic Multicast 

Unlike the static multicast approach, the dynamic multicast approach can offer true video-on-

demand services while providing high throughput. This is achieved by letting late arriving 

requests for the same video to be serviced by dynamically expanding the already constructed 

multicast tree.  In Adaptive Piggybacking [GM96], the server slows down the delivery rate of the 
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video stream to a previous client, and speeds up the delivery rate of the video stream to a new 

client until they share the same play point in the video.  At this time, the server merges the two 

video streams, and uses only one channel to serve the two clients.  Chaining [SHT97] introduced 

the peer-to-peer streaming paradigm.  By caching portions of the video data, clients can forward 

the video to other downstream clients, lessening the burden on the video server.  In fact, client 

nodes form a delivery chain, and the server delivers the video through that chain using a single 

data stream.  A new client either gets the video from an existing chain or from a new chain if the 

current chain cannot serve the request.  The main advantage of Chaining is that not all requests 

need be serviced from the video server and the video content is made available throughout the 

network at client nodes forming the chain. Patching schemes [HCS98b, CHV99, CL99, EVZ99, 

SRT99b, THT02] let a new client join an ongoing multicast and still receive the entire video data 

stream.  For a new request for the same video, the server delivers only the missing portion of the 

requested video in a separate patching stream. The client downloads the data from the patching 

stream and immediately displays the data. Concurrently, the client downloads and caches the 

later portion of the video from the multicast stream.  When finishing playing back the data in the 

patching stream, the client switches to play back the video data in its local buffer.  Figure 2.2 

illustrates an example of patching.  It shows that users C1 and C2 are served together with a 

single multicast stream. At t time units later, user C3 requests the same video.  C3 joins the 

multicast tree and starts buffering arriving video data, while at the same time C3 downloads the 

missing portion via a patching stream.  It is important to note that in patching, a user would get 

the video only if it is capable of simultaneously downloading from two streams (a regular 
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multicast and a patching), and it has enough buffer space to absorb the time skew t.  If these 

conditions do not hold, a new multicast stream is needed. 

 

C3
Player

Buffer

C1 C2

Multicast
delivery

t

Video stream

Patching
stream

 

Figure 2. 2 Patching 

 

2.2 Periodic Broadcast: Proactive Approaches 

Periodic Broadcast is a highly scalable solution for streaming popular videos.  Several periodic 

broadcast schemes have been proposed in recent years [DS94, AWY96b, VI96, HS97, JT97, 

JT97b, GKT98, HCS98, PCL98, PCL98b, PCL98c, JT98, PCL99, HU01, MEVS01, SGT01, 

GKT02, YK03, KS04].  In these approaches, a video is fragmented into a number of segments. 
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Each segment is periodically broadcast on a dedicated channel.  A periodic broadcast system is 

highly scalable since it can serve a very large community of users requesting for the same video 

with minimal server bandwidth. The server bandwidth requirement is independent of the number 

of users the system is designed to support. The client tunes into one or more channels 

concurrently to download the broadcast segments into its buffer, while local playback software 

renders the video data in this buffer onto the screen.  Periodic broadcast techniques guarantee 

that the client downloads a segment before its required playback time.   

In this environment, if the client misses the beginning of the broadcast of the first segment, the 

client must wait until the next broadcast of the same segment.  The worst service latency, 

therefore, is the time period between the consecutive broadcasts of the first video segments.  

Since the size of the first segment can be made very small, this approach can provide near-video-

on-demand services. Many periodic broadcast techniques have been designed to keep the worst 

service delay small by making the first segment as small as possible while guaranteeing a jitter 

free playback at the client. Existing periodic broadcast schemes can be classified into two major 

categories, namely the Server-Oriented Category and the Client-Oriented Category [HTT04, 

HT03]. Techniques in the first category reduce service delays by increasing server bandwidth. 

On the contrary, techniques in the second category reduce the delays by requiring more client 

bandwidth. 
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2.2.1 Server-Oriented Category 

Staggered Broadcasting [DS94] is the earliest and simplest video broadcasting technique.  This 

scheme staggers the starting times for broadcasting a video evenly across available channels.  

The difference in the starting times is referred to as the phase offset.  Because a new stream of 

the same video is started every phase offset, it is the longest time any client needs to wait for this 

video.  The advantage of Staggered Broadcasting scheme is twofold. First, clients download data 

at the playback rate.  Second, the clients do not need extra storage space to buffer the incoming 

data.  This scheme, however, scales only linearly with the increase in the server bandwidth.  

Figure 2.3 shows two videos ‘i’ and ‘j’ periodically broadcast using 4 and 3 channels. 

 

Video i

Video i

Video i

Video i

Phase Offset

Video j

Time

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7
Phase Offset

Video j

Video j

 

Figure 2. 3 Staggered Periodic Broadcast of two different videos 
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 Pyramid Broadcasting [VI96] addresses this drawback by broadcasting the video segments at a 

very high data rate, and allowing the clients to prefetch data into a local buffer. In this scheme, 

video segments are of geometrically increasing sizes, and the server network bandwidth is evenly 

divided to periodically broadcast one segment in a separate channel.  This solution requires 

expensive client machines with enough bandwidth to cope with the high data rate on each 

broadcast channel.  Permutation Based Broadcasting [AWY96b] improves this condition by 

dividing each channel into s sub-channels that broadcast a replica of the video fragment with a 

uniform phase delay.  This strategy reduces the requirement on client bandwidth by some factor s 

although the data rate remains very high, which can still flood the prefetch buffer with half of the 

total data [HS97]. 

In Skyscraper Broadcasting [HS97], the server bandwidth is divided into several logical 

channels of bandwidth equal to the playback rate of the video.  Each video is fragmented into 

several segments, and the sizes of the segments are determined using the following series 

referred to as the broadcast series; [1, 2, 2, 5, 5, 12, 12, 25, 25, …]. In other words, if the size of 

the first data segment is x, the size of the second and third segments are 2·x, the fourth and fifth 

are 5·x, sixth and seventh are 12·x, and so forth.  This scheme limits the size of the biggest 

segments (W-segments) to W units or W·x.  These segments stack up to resemble a skyscraper of 

a width W, thus the name Skyscraper Broadcasting. The server repeatedly broadcasts each 

segment on its dedicated channel at the playback rate of the video.  To download the video, each 

client employs two synchronized threads - an Odd Loader and an Even Loader.  They download 
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the odd groups, each consisting of segments of odd size, and the even groups, each consisting of 

segments of even sizes, respectively.  When a loader reaches the first W-segment, the client uses 

only this loader to download the remaining W-segments sequentially to minimize the 

requirement on the client buffer space.  The main advantage of this technique is the fixed 

requirement on client bandwidth regardless of the desired service latency.  To offer better service 

latency, one needs only add server bandwidth. Figure 2.4 shows the downloading scheme of 

clients ‘X’, ‘Y’, and ‘Z’ arriving at different times. Clients ‘Y’ and ‘Z’ will download the same 

segment at channel 6. Figure 2.4 also shows the play times for different segments relative to 

client ‘X’. 

 

X Y Z

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

1 2 3 4 5 6  

Figure 2. 4 Skyscraper Downloading Scheme 
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Client-Centric-Approach (CCA) [HCS98] is a periodic broadcast technique that reduces the 

service latency by adding only server resources once clients’ resources have been determined. In 

fact, CCA can be considered as a generalization of Skyscraper Broadcasting in that each 

transmission group can have more than two segments, and the number of data loaders is not 

limited to two as in Skyscraper Broadcasting.  In contrast to the Skyscraper scheme, CCA can 

leverage extra client bandwidth, if available, to further reduce access latency. 

2.2.2 Client-Oriented Category 

The techniques in this category increase the requirement of both server and client bandwidth in 

order to reduce the service delay. Harmonic Broadcasting (HB) [JT97] initiates the techniques in 

this category. HB fragments a video into segments of equal sizes, and periodically broadcasts 

each segment on a dedicate channel.  The channels, however, have decreasing bandwidths 

following the Harmonic series.  In other words, the first channel is allocated a bandwidth equal 

to the playback rate of the video; the second channel has the bandwidth of half of the playback 

rate; the third channel has one third, and so forth. The client downloads segments from all 

channels concurrently. The original HB, however, cannot deliver all the segments on time.  A 

simple delay, before consumption of the first segment, equal to the size of one segment solves 

this problem [PCL98]. Caution Harmonic Broadcasting [PCL98], Quasi-Harmonic and Poly-

Harmonic Broadcasting [PCL98b] also address this problem. Although theses schemes use many 
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channels to broadcast a video, the total bandwidth grows slowly following the Harmonic series, 

typically adding up to only five or six times the playback rate of the video. However, these 

schemes present another problem that involves the use of numerous channels (e.g., 240 channels 

are required for a 2-hour video if the latency is kept under 30 seconds). Since the client must 

concurrently obtain video data segments from many channels, a storage subsystem with the 

capability to move their read heads fast enough to multiplex among so many concurrent streams 

would be very expensive. To solve this problem, Pagoda Broadcasting has been proposed 

[PCL98c]. This scheme also divides each video into segments of equal sizes.  However, it 

addresses the problems of too many channels by broadcasting more than one segment on some 

channels.  Pagoda Broadcasting does not require much more bandwidth compared with 

Harmonic Broadcasting and its variants and at the same time does not use as many channels. 

2.2.3 Server-Oriented vs. Client-Oriented 

The techniques in the Client-Oriented category have many drawbacks compared to those in the 

Server-Oriented category. First, the client must have network bandwidth equal to the server 

bandwidth allocated to the longest video.  The requirement on the client bandwidth is therefore 

very high, making the overall system very expensive.  Second, to improve access latency, it will 

require adding bandwidth to both server and client, which makes the system enhancement very 

costly.  The justification for the Server-Oriented approach is that server bandwidth, shared by a 

large community of users, contributes little to the overall cost of the VOD environment. As a 
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result, these techniques are less expensive than the Client-Oriented approaches, which require a 

client to be equipped with substantially more client bandwidth.  Nevertheless, if the bandwidth is 

readily available, these schemes or the CCA technique can be used.  It is worth noting that CCA 

is not classified as a client-oriented approach because CCA allows the system to improve service 

latency by adding only server bandwidth as in Skyscraper Broadcasting. 

2.3 Hybrid Schemes 

Periodic Broadcast techniques are most beneficial for popular videos. However, in general, these 

techniques are not applicable to less popular videos or a varying video access pattern.  It was 

shown that a hybrid solution that combines both on-demand multicast and periodic broadcast 

offer the best performance [HO02].  Adaptive Hybrid Approach periodically measures the 

popularity of each video based on the distribution of recent service requests [HO02].  Popular 

videos are periodically broadcast using Skyscraper Broadcasting, and less requested videos are 

serviced using Batching.  The number of channels used for periodic broadcast depends on the 

combination of popular videos currently in the system.  The remaining channels are allocated to 

batching.  

2.4 Periodic Broadcast: Implementation Issues 

 With the many designs of periodic broadcast schemes exist, a few software prototypes have 

been developed and experimented with. For specific periodic broadcast techniques, Greedy-Disk 
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Broadcasting [BWGST01], Striping-Broadcasting [JB02], and a variant of Pagoda Broadcasting 

[TPL03] have been implemented. A generalized periodic broadcast server (GPBS) software that 

supports many periodic broadcast techniques has also been developed [TPTW04]. Greedy-Disk 

Broadcasting, Striping-Broadcast, and GPBS implementation is based on IP-multicast. The 

common observation made from all the prototypes is that caching portions of broadcast videos in 

server memory improves the number of concurrent videos that can be supported by a 

broadcasting server.  GPBS indicates that to ensure a jitter-free broadcast from the server 

viewpoint, the Client-Oriented broadcast schemes such as Harmonic Broadcasting and its 

variants require much more server memory than those in the Server-Oriented category given the 

same server disk and network bandwidth. Given sufficient network bandwidth, the increase in 

server disk bandwidth has more impact than the increase in server memory in terms of 

supporting more broadcast videos for the broadcast schemes in the Server-Oriented category. 

Although these prototypes present a clear feasibility of the periodic broadcast approaches, they 

are not well suited for an unreliable environment such as the Internet where communication is 

very lossy. In fact, it was shown in the Greedy-Disk-Broadcasting [BWGST01, BWGST01b] 

implementation that delivering a video from east to west of the United States can cause a packet 

loss factor up to 20%.  

One of the practical considerations that arise on the use of IP multicast is the time division 

multiplexing of a finite number of multicast channels among users. The work presented in 

[BWGST01] separates control and data operations by incorporating distinct modules for server 

and client functionalities. Figure 2.5 illustrates this architecture. The Server Control Engine is 
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responsible for handling interactions between the server and the client. It also computes a 

transmission schedule that identifies video segments that should be retrieved from disk and 

transmitted over the network and a reception schedule that specifies how the client should 

receive video data. These interactions are based on the Real Time Streaming Protocol (RTSP) 

and the Session Description Protocol (SDP). The Server Data Engine coordinates with the Server 

Control Engine to retrieve video data from disk and transmit the data to the client using the Real-

time Transport Protocol (RTP) and communicates with The Server Control Engine through a 

TCP connection. The Server Control Engine is implemented as a multithreaded single process 

system, where a single thread places all incoming requests into a specific queue. For each 

request, there exist a scheduler thread that constructs an abstract transmission schedule and a 

reception schedule. Because in [BWGST01] a patching technique and a periodic broadcast 

technique are implemented, the transmission schedule is made general and relies on a linked list 

of work requests for each multicast channel. A work request is a data structure that contains the 

time to begin the transmission of a specific segment, the time to finish the transmission, a pause 

time, and a count number to illustrate the number of times the segment is sent. The latter 

parameter is used for the periodic broadcast technique. In this way, the scheduler thread 

determines whether the client can be satisfied using an already scheduled transmission, or an 

additional schedule of part of the video is needed. Based on the server transmission scheme the 

scheduler thread computes a reception schedule for the specific client and transmit it. Because 

the work requests linked list is scheduled ahead of time, it can be used to search for free intervals 

to allow a channel/IP-address reuse. The Server Data Engine is also a multithreaded single 

22 

  
 

 



process entity. For each video that is being transmitted two separate thread are created, a disk 

thread that retrieves the video data from disk and network thread responsible to transmit data 

from buffers to the network according to the transmission schedule. Both threads are 

synchronized in separate rounds in order to reduce the impact of disk overheads and avoid 

injecting burst of traffic into the network. 
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Figure 2. 5 Streaming Server and Client Architecture 

 

In the Striping Broadcasting [JB02], the server software is composed of three modules, namely a 
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Data Retrieval Handler, a Video Delivery Handler and Director Manager. The Data Retrieval 

Handler and Video Delivery Handler are two separate threads that are created by a Coordinator 

once a new video is requested. The retrieval handler brings in multiple blocks of each segment 

from the disk to streaming buffers in rounds. Each retrieval buffer operates its own buffers, this 

is due to the fact that different videos can have different playback rate. Once the buffer is full, 

the retrieval thread goes into a sleep state until the delivery thread wakes it that is after purging 

some video blocks from the buffer. The delivery thread is responsible to periodically broadcast 

video data stored in the buffers on the server channels using their associated multicast address. 

The video thread broadcast one block1 of each segment in a round-robin fashion for each 

playback duration of a block. The delivery thread arranges blocks into UDP packets. Each packet 

header will therefore contain the location of the block in the video file and will also serve as a 

timestamp or sequence number to reorder video data at the client site. The Directory Manager 

maintains all information regarding the video being broadcast and also relevant broadcast 

parameters such as the multicast address, port number of the first channel and playback rate of 

the video. It is important to notice that once an end client receives the first segment, the client 

software will allocate specific loaders to download later segments in a straightforward manner. 

Therefore, the video delivery thread attach to each first segment a Broadcast Tag that will be 

used by the client to compute its reception schedule. 

Although both implementations discussed above use a constant-bit-rate (CBR) that equals to the 

playback rate of the video to deliver data, all periodic broadcast protocols can support variable-

bit-rates (VBR) encoded video by mapping it to a constant-bit-rate stream using the peak 
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1 Each video segment consists of several blocks, blocks are striped using the striping algorithm in [BJ02] 



bandwidth of the video as the bit rate of the stream or by using better mapping approaches 

[HU01, SDKST97].  

IP-multicast was originally designed for broadcasting situations where recovery is not needed for 

lost data.  NACK-based and Tree-based protocols have been proposed to allow the receivers to 

acknowledge lost packets.  In the Tree-based protocol, ACKs and NACKs are managed by the 

receiver’s parent in a tree structure.  The problem with these solutions is that the multicast 

efficiency decreases with the increasing number of receivers.  This challenge has led many 

researchers to consider applying forward-error correction (FEC) to multicast. The main idea 

behind the use of FEC codes is to transmit the original source video data, in the form of sequence 

of some packets, as well as additional redundant packets, where the redundant information can 

be used to recover lost data packets at the receivers.  Digital Fountain takes this approach in their 

periodic broadcast product [HKLLR01].  It allows a server to periodically multicast streams of 

FEC encoded data packets. Clients tune into one or more multicast groups to receive the packets, 

and are able to reconstruct the original data using the FEC codes in the event of packet loss. 

2.5 Summary 

A key aspect of designing a scalable VOD system is to leverage multicast and broadcast to 

facilitate bandwidth sharing.  For popular videos or if the video database contains only few 

videos, a periodic broadcast technique achieves the best cost/performance.  This approach, 

however, cannot deliver videos without some delay.  Two alternatives have been considered for 
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addressing this limitation: the Server-Oriented Approach (e.g., Skyscraper Broadcast [HS97], 

Client-Centric Approach [HCS98]) reduces service delay by increasing server bandwidth; 

whereas the Client-Oriented Approach (e.g., Cautious Harmonic Broadcast [PCL98], Pagoda 

Broadcast [PCL98c]) requires client to equip with significantly more download bandwidth.  For 

wide-area deployment, the Server-Oriented Approach is preferred because the cost of server 

bandwidth can be shared by a very large community of users, and therefore contributes little to 

the cost of the overall system.  Client-Oriented Approach is limited to local deployment on an 

intranet where client bandwidth is abundant (e.g., receiving the video at five times the playback 

rate).  Applications such as corporate training, campus information systems can benefit from 

these techniques. 

For less popular videos, multicast on demand is a better solution then repeatedly broadcasting the 

videos.  Standard multicast, however, makes users wait for the batching period.  Patching 

techniques resolve this problem by allowing the clients to join an ongoing multicast while 

playing back the missing part of the video arriving in a patching stream.  For a better 

performance, a system should use both periodic broadcast and multicast.  Hybrid techniques, 

such as in [HO02], can be used to monitor the popularity of the videos, and apply the best 

mechanism to deliver them.    
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CHAPTER THREE: INTERACTION WITH BROADCAST VIDEO 

In video-on-demand applications, it is desirable to provide the user with the video-cassette-

recorder-like (VCR) capabilities such as fast-forwarding a video or jumping to a specific frame.  

In a periodic broadcast environment where each video is broadcast repeatedly on the network, 

existing techniques rely on data prefetching as the mechanism to provide this functionality.  This 

approach provides limited usability since the prefetching rate cannot keep up with typical fast-

forward speeds.  Fast-forwarding a video for several seconds would inevitably exhaust the 

prefetch buffer.  In this chapter, this practical problem is addressed by repeatedly broadcasting 

the interactive versions of the videos.  For instance, an interactive version might contain only 

every fifth frame in the original video.  The client software leverages these “interactive” 

broadcasts to provide better VCR service.  Section 1 discusses some related work for providing 

VCR functionalities in a VOD environment. Section 2 briefly explains the Client-Centric 

Approach technique (CCA) [HCS98] a proactive scheme that belongs to the server-oriented 

family, and describes a new Broadcast-based Interactive Technique (BIT) [THS02, THS02b] that 

extends the CCA method to provide VCR functionalities. Section 3 formally proves the 

correctness of the BIT approach, and section 4 compare its performance to a prefetch method, 

called active buffer management.  Finally, a summary is given in Section 5. 

3.1 VCR Interactions And Related Work 

A video is a sequence of continuous frames.  The frame being rendered by the user is the current 
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frame that is referred to as the play point.  A user watching the video has the ability to change the 

position of the play point to another point (frame) that is called the destination point. One can 

distinguish between two different types of interactivity: 

Continuous interactive functions:  These are the interactions where the user continuously 

advances the play point one frame at a time at a high speed.  The user has full control of the 

duration of the interaction.  

Discontinuous interactive functions: These are the interactions where the user instantaneously 

changes the play point to a future frame (i.e., jump-forward) or a frame in the past (i.e., jump-

backward). 

One can further divide all interactions into forward interactions and backward interactions.  If ∆t 

is the time taken by the interaction, ∆l the video length of the interaction in time unit, i.e., the 

difference between the play point and the destination point, and b the playback rate of the video, 

the parameter x, given in Equation 3.1, can determine all types of interactions. Table 3.1 gives 

the possible forward interactions, and table 3.2 gives the backward interactions with the possible 

values of the parameter x. 

   
l

t
bx

∆
∆=  (3.1) 

 

Table 3. 1 Forward Interactions 

Action Play Fast Forward Jump Forward 

x 1 (1,x1) +∞ 
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Table 3. 2 Backward Interactions 

Action Pause Play Backward Fast Reverse Jump Back. 

x 0 -1 [-x1,-1) -∞ 

 

 

A play action is when the length of the action over the time taken by the action is equal to the 

playback rate.  For fast-forward, 
t
l

∆
∆  > b and the value of x1 will primarily depend on ∆l and ∆t.  

In the case of a jump forward, since the action is instantaneous, ∆t = 0 and therefore x is infinite.  

A pause action is when ∆l =0.  Since ∆l is negative in a play-backward the value of x is –1.  Fast 

Reverse and jump-backward are the opposite of fast forward and jump-forward, respectively. 

It is worth noting that the pause action belongs to the backward interactions.  This is due to the 

fact that incoming frames make the destination point moves backward of the current play point.  

To complete the canonical world of interactions, the slow forward, x ∈ (0,1) and the slow 

backward, x ∈ (-1,0) can be added. Both interactions are backward interactions for the same 

reason as the pause interaction. 

An early work on providing interactive service in a multicast environment is presented in 

[AA94] and [AA96].  In this scheme, if the data in the prefetch buffer cannot accommodate a 

jump request, the client requesting the interaction is moved to an existing stream whose play 

point matches the client’s destination point.  If such a stream does not exist, the server issues an 

emergency stream to provide the service.  Emergency streams are expensive since they serve 

29 

  
 

 



only one client.  To reduce this cost, the techniques, introduced in [LL97] and [APS98], try to 

move the client of an emergency stream to an existing multicast whose play point is ahead of the 

client’s play point, but not further than some amount.  In any case, using emergency streams 

defeats the benefits of the multicast paradigm. This approach is too expensive to provide VCR-

like service to a large user community.   

In the broadcast environment, it was observed in [FKMA99a] [FKMA99b] that the play point 

can be maintained at the middle of the video segment currently in the prefetch buffer in order to 

accommodate interactive actions in either forward or reverse direction equally well.  This is 

accomplished in [FKMA99b] by selectively prefetching the segments to be loaded depending on 

the current position of the play point.  This scheme is referred to as the Active Buffer 

Management (ABM) scheme.  In general, ABM can be set to take advantage of the user 

behavior.  If the user shows more forward actions than backward actions, the play point can be 

kept near the beginning of the video segment in the buffer, and vice versa.   This scheme has 

been shown to offer better performance than conventional buffer management techniques.   

3.2 Broadcast-Based Interaction Technique (BIT) 

The proposed technique is an extension of the Client Centric Approach.  It is assumed that two 

versions of the same video exist: a normal version and a version compressed by a factor f that we 

call the compression factor.  An example of compression could be selecting each f frame of the 

original video.  The user watching the compressed version of the video at the playback rate will 
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have the impression of fast playing the normal video. 

Because the proposed technique is based on the Client-Centric Approach (CCA) [HCS98], CCA 

is briefly described in this section. The channel design and data fragmentation related to BIT are 

explained, then section 2.3 shows how BIT receive and play back the video, and explains how 

VCR functionalities can be achieved. Since broadcast is used as the mechanism to provide VCR 

service thus the name Broadcast-Based Interaction Technique (BIT).  The motivation for this 

approach (instead of using emergency channels) is to retain the most desirable property of the 

broadcast approach, namely unlimited scalability - the bandwidth requirement is independent of 

the number of users the system is designed to support. 

3.2.1 Client-Centric Approach (CCA) Broadcasting 

A periodic broadcast design consists of a channel design, a data segmentation technique, a 

broadcast schedule, and a playback strategy.  The CCA is primarily designed to take full 

advantage of the client’s capability, i.e., the client buffer space and its downloading bandwidth. 

CCA divides the communication bandwidth of the server into K logical channels, where every 

channel has the bandwidth of the playback rate.  Each channel i periodically broadcasts one 

segment Si of the video. The segmentation technique uses the following recursive equation to 

fragment a video V into segments Si: 

         1,                  if n =1,  

  f(n) =          2 . f(n –1)          if n mod (c) ≠ 1,                   (3.2) 
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           f(n –1)   if n mod (c) = 1. 

The closed form of this segmentation function can be presented as:  

f(n) = 2 n – n/c,  where 1 ≤ n ≤ K.                    (3.3) 

The parameter c denotes the maximum number of fragments a client can download at one time.  

To conserve buffer space, the sizes of the largest segment are fixed to W�D1, where D1 denotes 

the playback duration of the first segment.  In the remainder of this section those segments are 

referred to as W-segments. CCA organizes the video fragments into g = K/c transmission 

groups, each with c items except the last one.  The size of the last segment of a group is equal to 

the size of the first segment in the next group.  Figure 3.1 illustrates the data fragmentation, 

channel design, and transmission groups for the CCA technique, where each group contains 3 

fragments. 

To play back a video, the client starts using c loaders and a video player.  Each loader downloads 

its predetermined segments sequentially at the playback rate.  When a loader finishes 

downloading a segment Sj from a group i, the loader is allocated to the next group i+1 to 

download segment Sj+c at its next broadcast.   Once the first W-segment is encountered, only one 

loader is used to download all the W-segments sequentially. 

The motivation behind the CCA segmentation technique is to wisely utilize the full capacity of 

the client resources, while guaranteeing the continuous playback of the video.   

 

32 

  
 

 



W

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel K

Group 1

Group 2

Group i

 

Figure 3. 1 CCA with K channels and 3 channels per group 

 

Since two consecutive segments in the same group either start at the same time or finish at the 

same time (Figure 3.1), the continuity in playing back segments from the same group is 

guaranteed.  Since the first loader always downloads the first and smallest segment of a group, 

this loader is available before the consumption of the last segment of the same group.  This 

loader, therefore, can be used to download the first segment of the next group.  Segments across 

a group boundary are always of the same size, so the continuity across group boundaries is 

satisfied. 
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3.2.2 Channel Design and Data Segmentation 

As in the CCA technique, the server bandwidth is divided into K logical channels.  Each channel 

periodically broadcasts a different segment of the video.  If we refer to K as the total number of 

channels,  K can be divided into K = Kr + Ki, where Kr is the number of regular channels used to 

broadcast the regular version of the video, and Ki the number of interactive channels used to 

broadcast the compressed version of the same video. 

For the normal version the same fragmentation technique designed for CCA is utilized (refer to 

Section 2.1 equation (3.2)). The segment broadcast by a regular channel i are denoted as Si , and 

its compressed version as Si’.  The segments of the compressed version are concatenated into 

group of f as follows:  

Group 1,V1: S1' S2' … Sf' 

Group 2,V2: Sf+1' Sf+2' … S2f' 

. 

Group i,Vi: S(i-1)f+1' S(i-1)f+2' … Sif' 

.  

Group Ki,VKi: S(ki-1)f+1' S(ki-1)f+2' … SKr' 

For ease, each of these groups are referred as a compressed segment hereafter.  Each compressed 

segment i, denoted by Vi, is broadcast on an interactive channel ci. Thus, the number of 

interactive channels is determined by the number of compressed segments, or Ki = Kr / f.    Figure 

3.2 shows the channel design for the BIT technique with a compression factor f of 4.  Cr’s 
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represent regular channels and Ci’s interactive channels.   One can note that there is one 

interactive channel for every four regular channels.  As an example, Table 3.3 shows the size in 

minutes of the compressed segments when K=30, c =3, f =4, the maximum segment size is 7 

minutes, and the length of the video is 120 mn. 
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Figure 3. 2 Broadcasting scheme for BIT (Kr +Ki channels, f =4) 

 

In Figure 3.2 a compressed segment is different from a compressed version of a regular segment. 

In this example, a compressed segment is the concatenation of four compressed versions of 

regular segments. 
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Table 3. 3 Size in minutes of the compressed segments 

Segments V1 V2 V3 V4 V5 V6 

Size 0.29 1.87 6.84 7 7 7 

 

3.2.3 Implementing VCR functions with BIT 

The client storage space is divided into two parts: a normal buffer holds the normal video, and an 

interactive buffer caches the compressed version of the same video.  To achieve interactions 

using BIT, client nodes are required to have c+2 loaders where c is the CCA parameter that 

refers to the normal loaders L1,L2, …, Lc.  The two extra loaders Li1 and Li2, called interactive 

loaders, are used to download the compressed segments. 

A Client issuing an interactive function switches from normal mode to interactive mode.  During 

the normal mode, the client renders the content of the normal buffer; and during the interactive 

mode the client renders the content of the interactive buffer.  The size of the normal buffer 

should be large enough to store a W-segment in order to guarantee continuous normal playback 

[HCS98]. The size of the interactive buffer is set twice the size of the normal buffer to ensure 

good interactive service.  To play back and provide VCR functions, one can identify two 

components that work together: (1) the Player responsible for rendering the frames and 

accepting interactions, (2) the Loader responsible for tuning to the appropriate channels and 
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downloading the segments.  These two components are discussed in the next sub-sections. 

3.2.3.1 BIT Player 

The player keeps playing the content of the normal buffer until it accepts a request for a VCR 

operation.  At this time, the behavior of the player is determined by the content of the buffer, the 

closest point being broadcast with respect to the current play point, and the type of the 

interaction.  The player behavior is explained in the following: 

• Play Action: During the playback of the video, the player renders the current play point 

of the normal buffer, and the play point of the interactive buffer moves accordingly. 

• Fast-Forward/Fast-Reverse/Pause actions: When a continuous action is initiated, the 

player switches to the interactive mode to render the frames in the interactive buffer.  

Two scenarios can follows: (1) If the user resumes the normal play before this buffer is 

exhausted, the player switches to the normal mode, and allocates the loaders to 

download the appropriate segments such that the normal playback is resumed at a frame 

closest possible to the destination point.  Such a point is referred to as closest point 

hereafter.  (2) If the user continues the interactive action beyond the frames in the 

interactive buffer, the player forces the user to resume the normal play by setting the 

destination point to the newest frame of the interactive buffer in case of a Fast-Forward 

action, or the oldest frame in case of a Fast-reverse or pause actions. The player then 

allocates the loaders, and resumes the normal play at the closest point as in the previous 

case. One notes that jumping to the closest point will show some discontinuity that is 
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referred to as a displacement. In practice, it can be avoided by allocating sufficient 

buffer space for a given application.  It is also interesting to note that the parameter x 

(refer to section 1) has a value 1 for both Fast-forward and Fast-Reverse actions, which 

is due to the use of the same play back rate in the normal mode as well as in the 

interactive mode. 

• Jump Forward/Jump Backward actions: If the destination point is in the normal buffer, 

the player simply moves the play point to the destination point, and continues the normal 

play.  Otherwise, the player allocates the loaders to start downloading the appropriate 

segments, and continues the normal play from the closest point.  During these types of 

interactions there is no switch of modes. 

The algorithm for the player is described formally in Figure 3.3. 
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Figure 3. 3 BIT Player 

 

3.2.3.2 BIT Loader 

 The Loader is responsible for tuning to the appropriate channels and loading the segments.  

When no interaction is taken place, the behavior of the loader is similar to the CCA technique. 

Playback of a video consists of two phases.  First, the client downloads and plays back the 

unequal-sized fragments during the unequal phase, and then continues with the equal-sized 
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fragments during equal phase. 

A client node uses c+2 loaders if the current segment, i.e. the segment viewed by the user, is in 

the unequal phase.  Only three loaders are needed if the current segment is in the equal phase.  

Either way, if the current segment is in the first half of its interactive group groupj , the two 

interactive loaders are allocated to the previous and to the current interactive groups, i.e. groupj-1 

and groupj.  If, however, the current segment is in the second half of its interactive group, the 

interactive loaders are allocated to the current and future interactive groups, i.e. groupj and 

groupj+1.  By prefetching the compressed segments, one can make sure that the play point of the 

interactive buffer is always in the middle.  Such choice will depend on the behavior of the user.  

For instance, users initiating more forward actions than backward actions can set the loader to 

always prefetch groupj and groupj+1.   

When an interactive operation is completed, if the VCR action was continuous or if the 

destination point exhausted the buffer, then the loader reallocates the normal and interactive 

loaders to the appropriate segments.  If the interactive segments are not being downloaded or are 

not in the interactive buffer, the segments are downloaded immediately; otherwise no action is 

taking place. Once the current segment is being downloaded and viewed, the play point of the 

interactive buffer is logically shifted to match the play point of the normal buffer.  

Figure 3.5 gives the algorithm of the loader.  Figure 3.4 shows the client buffer before and after a 

continuous operation with f=4.  The play points of both the normal buffer and the interactive 

buffer are shown as arrows.  Before the interaction begins, the normal play point is in segment 

Si+1.  Similarly the interactive play point is adjusted to the same frame.  When the fast Reverse 
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interaction is completed, the loader starts downloading the destination point in segment Si-2.  

Since the destination segment is in the second half of its group, interactive loaders are allocated 

to the current group and to the next group, i.e. Vi-1 and VI respectively.  The interactive loader 

does not download the latter segments since they are already stored in the interactive buffer.  

 

 

 

 

Si+3' Si-4'Si-3'Si-2'Si-1'Si'Si+1'Si+2'

Si+1 Si-2 Si+1

Si+3' Si-4'Si-3'Si-2'Si-1'Si'Si+1'Si+2'

Vi Vi-1 Vi Vi-1

Before the interaction After the interaction

 

Figure 3. 4 Buffer Content Before and After a Fast Reverse interaction 
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It is assumed that the current play point is in the normal segment Si 

And Si is in the interactive group j. 

      if (Si is in the unequal phase) 

         Allocate the loaders L1,L2, …, Lc as in CCA; 

         Download the appropriate segments; 

         Call to allocate interactive loaders i.e. Li1 and Li2; 

      if (Si is in the equal phase) 

         Allocate one loader Lk; 

         Download the segment 

         Call to allocate interactive loaders  

 

    // Allocation of interactive loaders 

     if(Si is in the first half of its interactive group j) 

         Allocate Li1 to the interactive group j-1; 

         Allocate Li2 to the interactive group j; 

         Download the compressed segments if not in the buffer; 

    if(Si is in the second half of its interactive group j) 

        Allocate Li1 to the interactive group j; 

        Allocate Li2 to the interactive group j+1; 

    Download the compressed segments if not in the buffer; 

Figure 3. 5 Loader Algorithm 
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3.3 Analysis Of The Closest Broadcast Point 

This section discusses the various cases that guarantee a normal play back after an interactive 

action is completed.  The worst displacement that the BIT technique can encounter is given.  

Then, one can show that this worst case can be avoided by allowing the user in the interactive 

mode an extra small amount of time. 

Figure 3.6 shows different cases of the closest broadcast point after the completion of an 

interactive operation. The parameter c is 3, however similar logic is applied for greater values.  

We refer to D.p as the destination point, the points B.p's are the broadcast points. The closest 

broadcast point relative to a destination point is differently studied in the unequal phase and in 

the equal phase as follows: 

Unequal phase: (Figure 3. 6) during this phase, one can differentiate the following cases: (1) All 

segments are of unequal sizes, (2) The first two segments are of equal size but not the last one, 

and (3) the last two segments are of the same size but not the first one. 

One can further distinguish the subsequent cases when all segments are of unequal size. 

• Case 1.1: The segments are all left aligned.  If segment i was loaded at its broadcast 

point, the user will consume it before the broadcast of the next cycle of segment i+1, 

similarly for segment i+1.  Hence the closest broadcast point in this case is the broadcast 

point of segment i+2.  When the loading of segment i+2 starts, the two other available 
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loaders are reallocated to the next round. 
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Figure 3. 6 Closest Broadcast Point during the Unequal phase 

 

• Case 1.2: Since segments i and i+1 are right aligned.  The closest broadcast point is at 

segment i.  After the consumption of segment i, the beginning of segment i+1 is 

available and the beginning of segment i+2 is available after the consumption of 
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segment i+1. 

• Case 1.3: Segments i and i+1 are not right aligned, but segments i+1 and i+2 are.  Thus 

the closest broadcast point is at segment i+1.  When the user consumes segment i+1, 

segment i+2 is available. 

• Case 1.4: Since all segments are left aligned, the closest broadcast point is at segment i. 

When the first two segments are of equal size and the last segment is of a different size, two 

more cases are differentiated (case 2 Figure 3.6).  In both cases the closest broadcast point is at 

segment i.  The difference between these cases is the time of loading segment i+2 and i+1.  For 

case 2.1, segment i+2 is loaded after the consumption of segment i+1.  While in case 2.2, 

segment i+2 and i+1 are loaded at the same time. Similar logic is applied for the third case 

where case 3.1 is similar to case 1.3 and case 3.2 is similar to case 2.2. 

Equal Phase: During the equal phase, the closest broadcast point is always at the same segment 

as the destination point.  Since we use only one regular loader in the equal phase, once the user 

consumes segment i segment i+1 is always available.   

A minimal displacement occurs when the destination point is the closest broadcast point.  

However, there are situations where the displacement is maximal.  In Figure 3.6, the worst 

displacement is shown in case 1.1.  If the destination point is the first frame of segment i and the 

broadcast points are at the last frame of the same segment, because for this specific case the 

closest broadcast point is at segment i+2, then the worst displacement is twice the size of 

segment i+1. 

If we denote by k, k+1, k+2, the segments of unequal sizes such that the k+2 segment is the first 
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W-segment.  Therefore, using formulae (3.3) (Section 2.1), the worst displacement is given by 

the following: 

Worst_diplacement = 2×2k+1-k+1/c       (3.4) 

Considering the case 1.1 in Figure 3.6, if one can afford the user in the interactive mode an extra 

small amount of time, this specific case can be avoided.  For example, when performing a Fast 

Forward action, by forcing the user to render the content of the interactive buffer, one can move 

from case 1.1 to the case 1.2 that shows a smaller displacement. 

 3.4 Performance Study 

To evaluate the performance of the BIT technique, detailed simulators to compare it with the 

Active Buffer Management (ABM) scheme are implemented.  This section discusses the 

simulation study.  Section 4.1 presents the user behavior model, section 4.2 discusses the 

performance metrics, and finally the simulation results are presented in section 4.3.  

3.4.1 User Behavior Model 

Users can initiate an interaction following the model given in Figure 3.7.  Similar user 

interaction model have been introduced in [AS98] and also used in [FKMA99b].   This model 

gives the probabilities of issuing an interaction and the duration of each interaction.  The 

probabilities define the frequency of interactions; and the mi's define the average amount of 

video story, in time unit, fast forwarded or fast reversed in a continuous interaction.   This 
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amount of continuous interaction is in terms of the original uncompressed version of the video.  

For instance, mfr = 50 seconds indicating that the users, on the average, fast reverse 50 seconds of 

the video story; this is not the same as pressing the fast-reverse button for 50 seconds.  Since 

Jump Forward and Jump Backward are instantaneous, their duration refers to the length of video 

skipped.  A user starts playing the video with duration mp.  After this duration, the user may issue 

an interaction with the probability Pi = 1-Pp or returns to play the video with the probability Pp.  

Once the VCR action is finished, the user always returns to play a portion of the video.  For the 

sake of experimentation, the following assumptions to conduct our simulations are made. 
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Backward

mjb'

1

1

1
1

1

Pplay

Pfr

Pff

Ppause

Pjb Pjf

 

Figure 3. 7 User Interaction Model 
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It is assumed that durations for a play and for interactive actions are exponentially distributed 

with their respective mean shown in Figure3.7.  Furthermore, the duration of all interactive 

operations are set equal with the same mean i.e. mff = mfr = mpause = mjf = mjb, that is referred to 

as mi or the interactive mean.  Finally, the interactive probabilities is set to be equal, i.e., Ppause = 

Pff = Pfb = Pjf = Pjb.  Therefore, Ppause = Pff = Pfb = Pjf = Pjb = Pi/5. The duration ratio dr is 

referred to the average amount of interaction (mi) over the average duration of a normal playback 

interval (mp), hence dr = 
p

i
m
m .   This ratio measures the degree of interaction. 

3.4.2 Performance Metrics 

An interaction can be successful or unsuccessful. An interaction is considered unsuccessful if the 

data currently in the buffers fail to accommodate the interaction.  For instance, a jump to a 

destination point outside the buffer is considered unsuccessful. In the case of continuous actions, 

a long-duration fast-forward pushing the play point off the interactive buffer is considered as an 

unsuccessful interaction.   To measure the percentage of unsuccessful cases, the Percentage of 

Unsuccessful Actions is used as the first performance metric in our study.  For those unsuccessful 

cases, one would like to know the degree of incompleteness.  Therefore, the Average Percentage 

of completion is used as our second performance metric.  As an example, if the user wishes to 

fast forward the play point for 20 seconds, but is forced to resume the normal play after only 15 

seconds, the percentage of completion is 15/20 or 75%.  Finally, when the user resumes a normal 

play after a successful or unsuccessful interactive action, the beginning play point might be 
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slightly different from the desired destination point of the interactive action.  To capture these 

displacements in the performance comparisons, the Average Displacement is used as the third 

metric. A good interaction technique should have a low percentage of unsuccessful interactive 

actions, high percentage of VCR action completion, and low average displacement. 

3.4.3 Simulation results 

Without loss of generality, the CCA parameter c is set to 3 in this study.  That is, all clients use 

three loaders to load the regular segments. Two more loaders to load the compressed segments 

are utilized.  Simulations are conducted on a video of two hours.  The simulation results are 

presented in the following subsections.  A first section shows that BIT technique outperforms the 

Active Buffer Management technique for longer interactions.  Another section examines the 

effect of the client buffer size on performance, and demonstrates that good average displacement 

can be achieved.  Finally, a last section illustrates the effect of changing the compression factor 

on the percentage of unsuccessful actions and the average percentage of completion. 

3.4.3.1 Effect of the duration ratio 

The compression factor is set to 4 during this simulation.  The regular client buffer is 5 minutes; 

and the total buffer space is 15 minutes.  The server uses 40 channels, from which 32 are used 

for the regular video, and 8 for the compressed version of the same video (i.e. Kr=32, Ki=8).  

This configuration shows 10 segments of unequal size and 22 segments of equal size.  The size 

of the smallest segment is 2.84 seconds.  Hence, the average access latency is 1.42 seconds.   
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The parameters for the user behavior are as follows.  An equal probability is set for a normal 

play and for all the interaction types combined (i.e., Pp = 0.5, Pi = 0.5, Ppause = Pff= Pfr = Pjf = 

Pjb = 0.1).  The mean duration of a play operation mp is 100 seconds.  The duration ratio dr is 

varied from 0.5 to 3.5.  The values selected for this ratio are high for two reasons: (1) Jump 

actions incur a big change in the position of the play point causing a larger dr; (2) this study is 

intended to test these techniques during periods of intense interactive activities such as searching 

for a desired video segment.  In other words, the user interaction behavior is modeled, not video 

watching behavior from which the objective is to compare BIT and ABM in supporting 

interactions.   

Figure 3.8 shows the effect of changing the duration ratio on the percentage of unsuccessful 

actions and the average percentage of completion.  For dr =0.5, 20% of the interaction actions 

are denied under ABM, compared to only 11% under BIT.  One can notice that BIT is much less 

sensitive to changing the duration ratio.  When dr = 3.5, BIT outperforms ABM by a factor of 

48% in terms of percentage of unsuccessful actions, and 31% in terms of average percentage of 

completion.  The poorer performance of ABM is partially due to a very fragmented buffer.  The 

primary reason, however, is due to the fact that caching a compressed version is more effective 

in supporting longer-duration interactive actions. 

50 

  
 

 



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.5 1 1.5 2 2.5 3 3

Duration ratio

A
ve

ra
ge

 P
er

ce
nt

ag
e 

of
 C

om
pl

et
io

.5

n
Active Buffer
Management
BIT

 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.5 1 1.5 2 2.5 3 3

Duration ratio

Pe
rc

en
ta

ge
 o

f U
ns

uc
ce

ss
fu

l A
ct

io
ns

.5

Active Buffer
Management
BIT

 

Figure 3. 8 Effect of changing the duration ratio 

 

3.4.3.2 Effect of the buffer size 

In this study, the client buffer size is varied from 3 minutes to 21 minutes.  The same parameters 

are kept for the user behavior as in the last experiment except for the duration ratio that is set to 
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1.0 and 1.5 for two different simulation runs.  Since the size of the regular playback buffer in the 

BIT technique is a third of the total buffer size (the other two thirds is used to hold the 

compressed segments), at least 120 regular channels are used to broadcast the entire video if the 

regular buffer size is 1 minute.  However, if the regular buffer size is 7 minutes only 18 channels 

are needed.  132 regular channels are used, 14 of them broadcast segments of unequal size and 

118 channels broadcast segments of equal size.  Since the compression factor is 4, the total 

number of interactive channels is 33 (with Kr =132 and Ki =33).  Figure 3.9 shows the effect of 

changing the buffer size for a duration ratio of 1.0 and 1.5.  One can see from the figure that BIT 

does not require nearly as much buffer space as ABM to achieve an average percentage of 

completion of more than 80%.  When the buffer size is small (i.e., 1 minute), BIT doubles the 

performance of ABM in terms of number of unsuccessful actions.  As the buffer size increases, 

both techniques show better performance; but BIT continues to perform significantly better.  

Again, the advantage of BIT can be attributed to caching the compressed version in the 

interactive buffer. 
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Figure 3. 9 Effect of changing the buffer size 

 

3.4.3.3 Effect of server bandwidth to the total average displacement 

One can recall that a displacement occurs when the resumption from an interactive action starts 

the normal playback at a play point different from the desired destination point of the interactive 
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action.  In this experiment, the effect of server bandwidth on the average displacement is 

investigated.   The same user behavior parameters as in the previous experiments are used, with 

the duration ratio set at 1.5.  The server bandwidth is varied between 30 channels and 165 

channels. The sizes of the W-segment corresponding to different server bandwidths are given in 

Table 3.4.  The table also shows the number of regular channel (Kr) and the number of 

interactive channels (Ki).  In all of these configurations, the smallest segment is less than 10 

seconds.  The plot for the average displacement under various server bandwidth (in terms of 

number of regular channels) is presented in Figure 3.10. One can observe that the average 

displacements of BIT and ABM are comparable.  Their difference decreases with the increases in 

the server bandwidth.  This is due to the fact that the size of the W-segment is smaller for a larger 

server bandwidth.  When the W-segment is very small, the average displacement becomes small 

regardless of the interaction technique. 

 

Table 3. 4 W-segments and their respective Kr and Ki 

W-segments (mn) 1 2 3 4 5 6 7 

Kr 132 72 48 36 32 28 24 

Ki 33 18 12 9 8 7 6 

 

 

 

54 

  
 

 



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

24 28 32 36 48 72 132

Total number of channels

Av
er

ag
e 

di
sp

la
ce

m
en

t i
n 

m
in

ut
es A.B.M

BIT

 

Figure 3. 10 Effect of W-segment size on the average displacement 

 

3.4.3.4 The Effect of Changing the compression factor f: 

In this experiment, the effect of changing the compression factor f is studied.  The size of the 

regular playback buffer is set at 5 minutes and the total number of regular channels Kr to 48.  The 

mean duration of a play is fixed to half the size of the total buffer space and the duration ratio to 

1.5.  Table 3.5 gives the total number of interactive channels along with their respective 

compression factor.  The simulation results are shown in Figure 3.11.  One can observe that by 

increasing the compression factor the performance of BIT is increased.  However, an excessively 

high compression factor will result in a lower resolution of frames being rendered during a 

continuous interactive action. 
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Table 3. 5 Compression factor for a Total of 48 regular channels 

f 2 4 6 8 12 

Kr,Ki 48,24 48,12 48,8 48,6 48,4 
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Figure 3. 11 Effect of changing the compression factor 
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3.5 Summary 

Although multicast delivery scales well to a very large number of users, the problem of 

providing interactive functions without compromising the multicast paradigm remains.  This 

chapter showed that existing techniques solved only partially the problem of VCR interactivity in 

a broadcast framework.  There have been two approaches to date.  The first approach relies on 

guard channels to deliver the emergency streams to provide VCR functions.  Since each 

emergency stream is dedicated for one client, this approach is limited to small-scale deployment.  

The second approach attempts to maintain the play point at the middle of the video segment 

currently cached in the prefetch buffer.  Although this strategy offers some advantage, it does not 

address the primary requirement of VCR interactivity which demands the data stream to arrive at 

a much greater speed than the normal playback rate. 

In this chapter a new video interaction technique is introduced for the broadcast environment, 

that addresses the limitations of existing solutions.  The Broadcast-based Interaction Technique 

(BIT) offers better interaction quality by repeatedly broadcasting the interactive (compressed) 

version of the video.  By prefetching data from this version and caching them in the local buffer, 

the client is able to support longer-duration interactive actions.  In terms of scalability, since the 

clients can share the interactive broadcasts, the bandwidth requirement of BIT is independent of 

the number of users the system is designed to support.  This strategy is consistent with the 
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broadcast paradigm. 

To assess the benefits of BIT, two detailed simulators are implemented to compare BIT to a 

recent technique called Active Buffer Management scheme. The simulation results indicate that 

BIT using the same amount of buffer space can offer significantly better performance. 
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CHAPTER FOUR: BANDWIDTH USER-HETEROGENEOUS BROADCAST 

A number of periodic broadcast techniques have been proposed for the cost-effective 

implementation of VOD systems.  Most of these techniques would either try to minimize the 

server bandwidth, user bandwidth, user storage, user access latency to the video, or a 

combination of some of the aforementioned parameters. On the other hand, the implementation 

strategies of these broadcast schemes would necessitate a minimum bandwidth requirement for 

all users. Multi-resolution techniques address the heterogeneity problem by sacrificing user video 

quality.  In this chapter, a different approach that does not possess this disadvantage is 

considered.  Using an incremental channel design at the server side, and a specific broadcast 

schedule, users can choose among a range of bandwidths to use to download the video at the cost 

of their access latency and not to the video quality. Section 1 discusses related work relative to 

the bandwidth heterogeneity problem. In section 2, a novel technique, called BroadCatch 

[THD04] is introduced. Section 3 proves the correctness of the proposed solution and provides 

mathematical analysis to demonstrate its heterogeneous behavior. Section 4 shows the 

convenience of using BroadCatch for live video streaming and for seamless channel transitions. 

In section 5, a performance study illustrates the benefit of using BroadCatch over a recent 

technique that provides bandwidth user heterogeneity and a recent scheme that minimizes user 

bandwidth without offering heterogeneity features. Finally, Section 6 summarizes the chapter. 
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4.1 Bandwidth User-Heterogeneity And Related Work 

Essentially all existing periodic broadcast techniques require the VOD service providers to tailor 

their system design to fit the capability of a specific class of users.  This approach has two 

disadvantages.  First, users with lower bandwidth will not be able to watch the video as 

continuity cannot be guaranteed; and second users having more bandwidth at their disposal will 

not be able to benefit from their surplus.  

To address the above drawbacks, one can consider encoding the video stream into a 

decomposition of layers [LW95, FCG96].  Depending on the bandwidth available at the end 

user, more or less layers are received, resulting in a variation in the display quality.  This strategy 

has been proposed for multicast in heterogeneous environments [MJV96, CFMB98]. One can 

adapt the same idea for periodic broadcast to provide adaptability to different receiving 

bandwidths.  This simple solution, however, would present some drawbacks for a high quality 

VOD system.  Firstly, a user with lesser bandwidth is enforced to sacrifice video quality; 

secondly, it is very demanding on user bandwidth to obtain a satisfying image quality; and 

finally, it is difficult to implement.  Some recent techniques have addressed the latter problem by 

coding "enhancement" layers from the base layer instead of calculating them independently.  The 

NAIVE scheme [BGM99] reconstructs an image from any number of independent samples 

received for this specific image, making this approach particularly robust and adaptive to poor-

performance connections.  Another advantage of NAIVE is not to require a fixed bandwidth at 

the receiving end. Nevertheless, the loss of display quality remains significant between different 

users having distinct reception bandwidths.  
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The work in [SGT01] proposes several algorithms that deal with the unconstrained and 

constrained user bandwidth and buffer requirements in the periodic broadcast environment at 

frame level.  This work offers a heuristic-lazy algorithm that minimizes the access latency given 

that all users are constrained by a minimum bandwidth requirement. In such a setting, a 

broadcast schedule is found; however this work does not address the heterogeneity problem of 

the periodic broadcast paradigm. That is, given only one video broadcast schedule, users with 

diverse communication capabilities need to be able to download the video according to their own 

reception schedule.  This capability is first provided in the HeRo approach [BHO03]. This 

scheme employs only one broadcast schedule; and depending on the communication capability 

of the receiver, it needs to wait until an appropriate time slot to start the video service. The HeRo 

technique is an extension of the Client Centric Approach [HCS98, HCS01]. The CCA technique 

was intended to reduce the user access latency using the maximum allowed user bandwidth. By 

adding channels that periodically broadcast the last segments of the CCA approach but shifted by 

half of their size, the HeRo technique reduces the average required user bandwidth at each time 

slot. Therefore, in [BHO03] two types of channel are proposed; K regular channels similar to the 

CCA channels, with the addition of Nr shifted channels which periodically broadcast only the last 

segments but shifted with an offset equal to half of their sizes. 

 This early solution has a few drawbacks.  First, it is extended from the Client-Centric Approach 

[HCS98, HCS01]. Since CCA was designed to take advantage of client bandwidth in a 

homogenous environment, HeRO can achieve excellent service latency for the most capable 

clients.  The service delay experienced by less capable clients, however, leaves room for 
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improvement.  Second, to decrease the access latency, the HeRo approach would have to re-

fragment all available segments and re-schedule them at different times, which makes this 

technique inefficient for high adaptation.   

4.2 Broadcatch Technique 

A periodic broadcast technique consists of a fragmentation design of the video data, a broadcast 

schedule, a reception schedule, and a receiver playback strategy at the receiver end. In this 

section, first the channel design is described, which involves the broadcast schedule, then the 

reception and playback of the video.  Notations used in this section is given in table 4.1. 

 

Table 4. 1 Notations 

b Playback rate of the video in Mbps 

K Total number of server channels 

d Worst access latency to the video in seconds 

L Length of the video in seconds 

 

4.2.1 Channel Design 

Without loss of generality, the broadcast of a constant bit rate (CBR) encoded video is 
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considered. To deliver another video, the server allocates enough resources and uses the same 

broadcast strategy.  Hence, the server broadcasting design can be seen as a collection of virtual 

servers, each for a specific video.  

In BroadCatch, each channel repeatedly broadcasts a leading portion of the given video at the 

playback rate b.  The size of the portion broadcast on channel i is denoted by Period(i), and is 

computed as follows:  

1
( ) 2

( 1) 2

L if i
Period i L if i

Period i otherw ise

=
= =
 −

 (4.1) 

Thus, the first two channels repeatedly broadcast the video in its entirety, and are referred to as 

the base channels.  The subsequent channels broadcast the video only partially, and are referred 

to as catching channels.  They are used to help users arriving at different times to “catch up” 

with an earlier full broadcast on one of the two base channels.  

Let Offset(i) denote the offset of the first broadcast on channel i relative to the beginning of the 

first broadcast on channel 1.  That is, the broadcast on channel i starts Offset(i) time units after 

the broadcast on the first channel has begun.  The broadcast schedule of the BroadCatch 

technique is defined as follows: 

0 1
( ) 2 2

( 1) 2

i f i
O ffse t i L if i

O ffse t i o th erw ise

=
= =
 −

          (4.2) 

Figure 4.1 shows an example of the BroadCatch channel design technique using 5 channels 
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(K=5).  The first two base channels periodically broadcast the entire video of size L. The 

catching channels periodically broadcast the leading portions of the video with sizes defined by 

Equation 4.1, and offsets by Equation 4.2. 

 

Base Channels

Catching
Channels

L

L

L/2

L/4

L/8

L/4

L/2

L/8

L/16

Channel 1

Channel 3

Channel 4

Channel 5

L

time

Channel 2

 
 

 Figure 4. 1 BroadCatch Channel Design 

 

4.2.2 Reception and Play Back of the Video 

With the BroadCatch technique, users with a bandwidth capability in the range of b to (K-2)·b 

Mbps can download the video from the same periodic broadcast.       

The video file is divided into a large number of data segments; each has the size half of the video 

portion broadcast on the previous channel. Let S1 denote the first segment, and |S1 | its size.  

Figure 4.2 depicts the broadcast schedule in terms of such segments. The numbers inside the 
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rectangles represent indices of segments. The numbers on top of Channel 1 correspond to the 

required bandwidth in terms of the play back rate b of the video for a user arriving just before the 

broadcast of that segment, and the different shades indicate different reception schedules. One 

can notice that the last channel does not broadcast S2 as it is sufficient to guarantee a jitter-free 

playback at the receiver end. 

The total number of segments depends on the number of channels the server is allocating to that 

specific video.  In general, with K channels allocated to the video, it has: 

1( ) 2KTotalSeg K −=  segments                                                           (4.3) 

In this chapter, the reception schedule of the BroadCatch technique is expressed using segments 

that are referred to as S1, S2,…., STotalSeg(K), where the server allocates K channels of rate b to 

broadcast the video. 
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Figure 4. 2 BroadCatch Reception Strategy 

 

S1 is broadcast on every channel.  A client arriving at some time always downloads the earliest S1 

segment, tunes to another channel to catch up and downloads S2, S3, S4, and so forth, until it 

reaches a base channel to download the rest of the video. Because this technique uses periodic 

broadcast to deliver the video, and clients catch up to several channels to download it, thus its 

name BroadCatch.  If a client starts its service at channel i to get the first segment, it downloads 

until the last segment, say segment x, on that channel.  At the same time, it looks for the earliest 

appearance of segment x+1 in one of the upper channel j (j <i) to catch up to it.   Once it catches 

up to channel j, it downloads segment x+1 and the subsequent segments until the last segment on 
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that channel.  In the meantime, it repeats the process to look for the next upper channel to catch 

up until the entire video has been downloaded.  This procedure is illustrated in Figure 4.2.   

In case 1, the client starts the service at channel 6.  It needs to download S1 on channel 6, and S2 

on channel 4 simultaneously (as shown in Figure 4.2 by the rectangles with similar shades).  As 

the client downloads the remaining segments on channel 4, it identifies that the next occurrence 

of segment S9 will happen on channel 1.  Once the download of S4 at channel 4 is complete, the 

client begins to download segment S5 from channel 4 and S9 from channel 1 at the same time. 

The client downloads the rest of the video from channel 1 since the latter is a base channel.  In 

this case, the user needs to have 2·b communication bandwidth in order to receive the service. 

Because starting to download from channel 6, case 3 is similar to case 1. From Figure 4.2 case 3, 

we can see that the client needs 4·b communication bandwidth since it must download segments 

S3, S5, S9, and S17 at the same time.  

Clients starting their download from channel 5 as opposed to channel 6, such as in case 2, 

download different segment indices.  In case 2, a client disregard totally channel 6 as it first 

encountered the beginning of the video (segment S1) at channel 5. Therefore, the number of 

channels used by this client for the entire download is 5 channels. If one recalls Equation 4.3, the 

number of segments that the client in this case observes can be grouped into 16 segments (from 

S1 to S16) as opposed to 32 segments such as in cases 1 and 3.  In fact, segments S1 and S2 

depicted in the figure are relative to using 6 channels. Using only 5 channels segments S1 and S2 

will constitute only one segment, that a client arriving at a time such as in case 2 will refer to as 

S1. If the first segment using K channels is denoted as S1,K, in case 2, S1,6 and S2,6 of Figure 2 
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constitutes S1,5.  S3,6 and S4,6 make up S2,5 and so forth. Therefore, in case 2, the client downloads 

S1,5 from channel 5, at the same time it downloads S2,5 (S3,6 and S4,6 in Figure 4.2) from channel 

3. Because channel 3 does not broadcast S9,5 (which is S17,6 and S18,6 in Figure 4.2), the client 

catches up to channel 1 to download it as well as the rest of the video. At all times, the client 

does not listen to more than two channels making the bandwidth requirement for this case 2·b 

communication bandwidth. 

When a client tunes to receive the video, the server informs it of the parameter K, and the 

beginning time of the broadcast of the entire video at the base channel 1. Using theses values, the 

client can exactly construct an image of all segments broadcast as the example in Figure 4.2.  In 

the rest of this subsection, a formal algorithm is presented that describes the detailed reception of 

the video for a user arriving at time t, having a bandwidth Cb and a total number of loaders CL, 

where Cb = CL·b.  

Figure 4.3 describes the client reception algorithm. The client first tunes to the earliest 

appearance of segment S1,K at some specific channel say i. From that point on, the client 

disregards all channels having indices greater than i, case 2 in Figure 4.2 shows an example 

where the client disregards channel 6. Second, the client constructs schedule ‘S’ specific to its 

arrival and compute the required number of loaders (ReqLoaders) for that specific schedule. If 

the available number of loaders of the client CL is greater than the required number of loaders 

ReqLoaders specific to schedule S, then the client has found a feasible schedule and therefore 

follows it. Otherwise, the schedule S is not feasible. The client then waits for the next appearance 

of segment S1,K and repeats the process to find a schedule that fits its bandwidth capability. 
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Tune to earliest appearance of
S1,K after time t

Tune to channel i,
disregard channels j >i,

use segments S-,i

Construct a Schedule
Schedule S = {DSi,DSi-n,..,DS2 or DS1}

and compute ReqLoaders

ReqLoaders <= CL

say channel i

Yes

Follow Schedule S

Not = t + |S1,K|

server variant: K
     client variant  : t, CL

 

 

Figure 4. 3 Client Reception Algorithm 
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Schedule S is composed of several downloadable segments DSm. A downloadable segment DSm 

is the concatenation of all segments downloaded from channel m. Because the client tunes to the 

first appearance of segment S1,K at channel i, the first downloadable segment of schedule S is 

always DSi. The client downloads segment S1,i from channel i and at the same time look for the 

earliest appearance of segment S2,i in one of the upper channel j (j<i). Then it downloads all 

segments from channel j say S2,i, S3,i, ..until, Sx,i, forming a downloadable segment DSj, at the 

same time looks for the earliest segment Sx+1,i in one of the upper channel k (k<j) until it reaches 

a base channel, channel 1 or channel 2 forming either DS1 or DS2, where it downloads the rest of 

the video. Figure 4.4 shows all downloadable segments for the cases presented in Figure 4.2.  

To compute the number of loaders required by a client (ReqLoaders) for a specific schedule S, 

the client computes the number of intersecting downloadable segments as shown in Figure 4.4. 

For example, case 1 and case 2 requires a user bandwidth of 2·b because DS6 intersects DS4 at 

time 5d and DS4 intersects DS1 at time 8d in case 1. In case 2, DS5 intersects DS3 and at another 

time DS3 intersects DS1. Case 3 presents an intersection with 4 segments at time 16d therefore 

the client bandwidth requirement is 4·b. The number given at the beginning of each time slots in 

Figure 4.2 represents the required number of loaders for that specific slot and hence the 

bandwidth requirement to download the video.  One can observe that all clients arriving during 

the first half portion of the video catch up to the first base channel while clients arriving during 

the second half catch up to the second base channel.  
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c a s e  2 .  S c h e d u le  S  = { D S 5 ,D S 3 ,D S 1 }

c a s e  3 .  S c h e d u le  S  = { D S 6 ,D S 5 ,D S 4 ,D S 3 ,D S 1 }
 

Figure 4. 4 Downloadable Segments for Cases 1,2,and 3 
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4.3 Broadcatch Analysis 

In this section analyzes the BroadCatch technique. As described earlier, for each time slot 

different requirements in terms of client bandwidth and buffer space are needed. First the client 

access latency to the video is investigated. Then a theoretical upper bound to the client 

bandwidth requirement at each time slot is given. Finally, the client buffer space requirement to 

download the video is examined. 

4.3.1 Access Latency 

To download and watch the video, clients try to access the first occurrence of segment S1 relative 

to their arrival (in the rest of the paper and when no confusion occurs, S1 is used instead of S1,K to 

represent the smallest broadcast segment). Due to the nature of the broadcast channel design, the 

worst access time to the first segment that is denoted by d is given by the following equation: 

12K
Ld −=                  (4.4) 

If a client possesses enough bandwidth to download the video at any given time slot, then 

Equation 4.4 represents the worst waiting time to access the video. Otherwise, the client is 

obliged to wait for the next appearance of S1. Next section discusses this situation. If such case 

happens the client will probably hold enough bandwidth to download the video at the next time 

slot. 
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4.3.2 Client Bandwidth Requirement 

In this subsection, a closed form to the worst client bandwidth requirement is presented at each 

time slot. A time slot is defined as the time of the appearance of segment S1, and the worst client 

bandwidth requirement is described as enough bandwidth to download the video at a specific 

time slot.  

The worst client bandwidth requirement at each time slot is generated incrementally and by 

adding a new broadcast channel at each step. Figure 4.5 describes this process.  First and due to 

the symmetry of the BroadCatch design channel, and without loss of generality, one can focus 

only on the first half of the video. Therefore, only clients that catch up to the first base channel 

are considered. The case where clients catch up to the second base channel is similar.  

If only one channel is used to broadcast the video (i.e. the first base channel), then there is only 

one time slot to catch the video represented at the beginning of the broadcast. If there are two 

channels (the first base channel and a catching channel, or channel 3), then another time slot is 

added, in that case, the video file is decomposed into four segments (refer to Equation 4.3). A 

user arriving just before that time slot downloads the first segment from channel 3 and catches up 

to the first base channel. When the fourth channel is added two more time slots are added, the 

fifth four more, and so forth.  
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Figure 4. 5 Worst user required bandwidth for K =6. 

 

In this construction, the initial step is chosen to be the slots defined in the fourth channel, from 

Figure 5 step 0 represents slots defined by channel 4, step 1 represents slots defined by channel 5 

and so forth. The total number of slots defined at each step i is 2i+1. The worst user bandwidth 

requirement at time slot number k at step n is denoted by wub(k,n) , 0 ≤  k < 2n+1 

Figure 4.5 gives the values of wub(k,0), wub(k,1), and wub(k,2) relative to the time slots of 

channels 4,5, and 6. Given wub(-,n)s for a specific step n, one can construct wub(-,n+1) by 

considering the following. First, even and odd appearances of segments in the nth step (even 
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segments are encircled in Figure 4.5 at channel 5) are taken into account. Figure 4.6 gives all the 

possible cases encountered. If a client arriving just before the broadcast of an even appearance of 

segment S1 at step n can use X loaders to download the video, and arriving just before the next 

appearance of S1 (an odd appearance of S1) can use Y loaders to download the video, then one 

can generate the corresponding four cases of the appearances of S1 broadcast by the next step 

n+1 by:  

 

1 2 3 4 5 6 7 8

1 2 3 4

1 1 1 1

step n-1

step n

step n+1

case 1

X

case 2 case 3

Y

case 4

(2k,n) (2k+1,n)

(4k,n+1)
(4k+1,n+1)

(4k+2,n+1)
(4k+3,n+1)

1 2 3 4

even segment

 

Figure 4. 6 Possible cases for the wub(-,n+1) 

 

• Case 1: because the wub(-,n+1) are generated by construction at each step, a client 

arriving just before the appearance of S1 tunes to channel  j such that j<n-1 to get 

segment S2 as early as possible, such segment always exists. Therefore, the number of 

loaders used in this case is at most X. 

• Case 2: A client arriving just before the appearance of segment S1 in this case tunes to 
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channel n+1 to get S1, and channel n to get S2 at the same time. The client downloads S3 

and S4. However, S5 is not present at channel n-2, therefore the client tune to channel j 

where j< n-2 to get S5. In such case the client utilizes at most X loaders. 

• Case 3: A client in this case downloads S1 from channel n+1 and catches up to channel n-

1 to get S2. However and as we shall see in the next case, only clients that catches up to 

an odd segment at channel n can catch up to channel n-1. The client in that case utilizes at 

most Y loaders. 

• Case 4: A client in this case downloads S1 from channel n+1, catches up to channel n to 

download S2, S3 and S4, and while downloading S3 the client catches up to channel n-1 to 

get S5. This process may include all catching channels until it reaches the base channel. 

Therefore, in this case a client arriving just before the appearance of S1 may need to use 

Y+1 loaders. There are some cases however, where the client uses only Y loaders. Hence 

the client utilizes at most Y+1. 

Using the above mentioned cases we can get wub(i,n+1) for 0≤ i <2n+2 by the following: 

 

(4 , 1) (2 , )
(4 1, 1) (2 , )
(4 2, 1) (2 1, )
(4 3, 1) (2 1, ) 1

(0, 0) (1, 0) 2;

w ub k n wub k n
w ub k n wub k n
w ub k n wub k n
w ub k n wub k n

w here w ub w ub

+ =
 + + =
 + + = +
 + + = + +

= =

                                  (4.5) 

 

This can also be written for any index k at any step n, where 0≤ k< 2n+1 by the following 
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equation: 

4 4
( , ) ( 2 , 1)

3

(0, 0) (1, 0) 2;

k k
wub k n wub k n

and wub wub

 − ⋅   = − +   


= =


                                    (4.6) 

A closed form of wub(k,n) is given in Appendix A. We note that the form given in Appendix A 

comprises the sum of two parts. Because the situation that is analyzed is only when a client 

arrive after the first broadcast of S1 at the base channel 1, the client needs at least two loaders, 

which constitutes the first term. The second term represents the case when the client uses 

intermediate channels to catch up to the base channel. 

The rest of this section proves using the worst bandwidth requirement wub(k,n) that the 

heterogeneous  aspect of the BroadCatch technique is scalable relatively to the server bandwidth 

allocated to the specific video. First, some definitions are given to evaluate the heterogeneity 

characteristics and then the scalability feature is proved. 

Definition 1: Sn refers to the sum of the generated worst bandwidth requirement at step n, that is; 

12 1

0
( , )

n

n k
s w ub k n

+ −

=
= ∑                                   (4.7) 

From Figure 4.5, s0=4, s1=9, and s2=20. Because we are concentrating on the first half of the 

video (similar behavior is observed during the second half where the same values of wub(k,n) are 

repeated),  the average worst user bandwidth  over the first half of the video is defined as 

follows: 

Definition 2: awub(n) is the average worst user bandwidth at step n given by: 
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( ) Sum of worst user bandwidths at all stepsawub n
Total number of time slots

=         (4.8) 

 

awub(n) reflects the average worst bandwidth requirement of a client arriving at any time during 

the first half of the video and it is specified by Equation 4.9.  

0
2

3
( )

2

n
kk

n

s
a w u b n =

+

+
= ∑

                                                          (4.9) 

In Equation 4.9, the denominator expresses the total number of appearances of segment S1, or the 

total number of time slots. The numerator expresses the sum of the worst user bandwidths at all 

steps, the constant 3 characterizes the required user bandwidth when using the first two channels 

(channel 1 and 3, refer to Figure 4.5), and the second term is the sum of the worst user bandwidth 

requirement until step n.  Using definition 1 and 2 we state the scalability proposition as follows. 

Heterogeneous Scalability Proposition: Given K number of server channels periodically 

broadcasting at a rate of b Mbps. To benefit from a newly added server channel, a client would 

have to add to its bandwidth on the average at most b/4 Mbps. More formally it is to say: 

1( 1) ( ) 4step n aw ub n aw ub n∀ + − =                                      (4.10) 

The Heterogeneous Scalability Proposition’s proof is given in Appendix B. 

The Heterogeneous scalability proposition expresses in terms of the video rate b Mbps, and on 

the average over all time slots, the maximum amount of bandwidth that a client has to add to 

benefit from a newly added server channel. Indeed, when an extra server channel is added the 

access latency to the video is reduced by half (refer to Equation 4.4) as the number of time slots 
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is doubled. A client can still utilize the same amount of bandwidth as before increasing the server 

bandwidth, and can still access the video with the same access latency. However, in the average 

case, and to access the video with the new access latency, the user would have to add some extra 

bandwidth. The heterogeneous scalability proposition states that on the newly added time slots, 

the worst required user bandwidth (wub(-,-)) of one of four time slots requires an extra b Mbps 

user bandwidth. 

4.3.3 User Required Buffer Space 

Given the situation where a client arrives before the first half of the video and catches up to the 

first channel (refer to Figure 4.2), the client buffer space requirement is the amount of video data 

it has missed. If we denote by td the time of occurrence of S1 after the client arrival, then td can be 

written as: 

20 2K
dt n d where n −= ⋅ ≤ <                                                 (4.11) 

d is given by Equation 4.4 and n a positive integer. 

Due to the nature of the BroadCatch technique, the user buffer space requirement is the total 

amount of video the client has missed, and is also given by equation 11.  The worst buffer space 

requirement is given at time td = (2k-2-1) d and formulated by Equation 12. 

2(2 1)Kworst buffer space d −= ⋅ −  

2

1(1 )
2 2K

Lworst buffer space −= −                                       (4.12) 
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It is interesting to note that the client buffer space requirement never exceeds half the size of the 

video. Moreover, from Equation 4.11, a client requires more buffer space as it arrives late 

relatively to the broadcast of the video at the first base channel.  

4.4. Live Broadcatch and Seamless Channel Transitions 

Since the BroadCatch technique does not require any segmentation, it is better suited for real-

time video-on-demand such as news on demand. If we suppose that a video is broadcast as soon 

as it is being made, the BroadCatch technique allows initial clients to get the video from the base 

channel, or from catching channels if their requests are made after the broadcast in the first 

channel (refer to Figure 4.2). However, and in the case of the HeRo technique, even if clients 

have enough bandwidth to download from all channels, they have to wait an amount of time 

proportioned to the size of the first segment. Certainly, if a client starts downloading 

immediately in the HeRo case, then it downloads the first segment and stops since the second 

segment is not yet stored on disk. This problem is aggravated if only few server channels are 

used in which case the size of the first segment is quite large. Figure 4.7 shows a broadcast 

schedule for the HeRo Approach. If clients arrive before the first broadcast of the video at time 

T0, then they should downloads from all four channels. However the beginning portions (shaded 

area) of segments 2,3, and 4 are not yet available on disk. The darker segments represent a 

feasible downloading schedule for the HeRO approach for early clients arriving before T0.  
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Figure 4. 7 Live Broadcast under HeRO 

 

Most, if not all periodic broadcast techniques are concerned about the channel transition 

problem. A channel transition problem may arise in the following circumstances:   

• The access delay to a video must be shortened to satisfy a large number of clients. If such 

video is no longer popular, part of the assigned channels may be released for other 

videos. 

• If a network bottleneck occurs, the server must decrease the bandwidth to conform to this 

limitation. 

A periodic broadcast technique offers a seamless channel transition scheme if the following is 

satisfied: 

9 Any proceeding service should not be interrupted during the channel transition. 

9 A maximum service delay should be restricted by an acceptable value during the channel 

transition. 
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A seamless channel transition scheme for Fast-Broadcasting [JT98] was proposed in 

[TYHLS01].  In this work a strategy of ‘data padding’ is used to enlarge the video until a 

suitable size before performing the transition process. This process causes considerable 

overheads, such as bandwidth waste from added data to the video that is also broadcast, longer 

service delay and larger client buffers. 

Channel transitions in the BroadCatch technique are effortlessly seamless. Because no 

fragmentation of the video is performed, adding a new channel or releasing an old one is 

straightforward. Under the BroadCatch scheme, a channel is added without perturbing the 

delivery of other channels. The new channel will periodically broadcast only half the segment 

size of the previous channel (refer to Figure 4.1). If the server needs to release an old channel to 

accommodate either its bandwidth or network traffic, it only needs to drop the last channel. 

Again, this process is achieved without interrupting other channels. 

4.5 Performance Evaluation 

 In this section, the performance of the BroadCatch technique is evaluated. The evaluation 

metrics are described in the first section. Then the average user bandwidth requirement is 

compared against the average worst bandwidth requirement given by Equation 4.8 in section 3.2.  

Next, the BroadCatch technique is compared to the HeRo approach [BHO03]. BroadCatch is also 

compared to the most performing broadcast strategy that does not provide user bandwidth 

heterogeneity namely the Generalized Fibonacci Broadcast (GFB) [YK03]. The evaluation of 
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BroadCatch against GFB is performed for mainly two reasons. First, one would like to know, 

under the same server bandwidth BroadCatch’s performance. Second, one want to show that 

even a generalized technique such as GFB cannot outperform BroadCatch’s best case. Finally the 

cost of the BroadCatch technique in terms of server bandwidth relative to the optimal periodic 

broadcast strategy is analyzed. 

4.5.1 Metrics 

To evaluate the heterogeneity of the BroadCatch technique, the following parameters are used. 

Firstly, the average user bandwidth requirement is denoted as the sum of all bandwidth 

requirement at each time slot to download the video without jitter over the total number of time 

slots. The average worst bandwidth requirement for the BroadCatch technique is analyzed in 

section 3.2. Secondly, given K a total number of server channels, bi the total number of client 

receiving channels, and tsi the time slot representing the arrival time for user i.  The normalized 

distance dist(tsi,bi) is set to be the number of time slots the client must wait to start downloading 

the video. From Figure 4.2, if we suppose client Ci has a bandwidth of 2b Mbps (bi = 2), if Ci 

arrives just before time 13d, then dist(13d,2) = 3. Indeed, at time 13d the client needs 3b to 

download the video similarly for time 14d, and at time 15d it needs 4b. The client can start 

downloading the video only at time 16d, therefore dist(13d,2) = 3. The average worst user 

access latency is defined to be the sum of all distances for each time slot, given a user 

bandwidth, over the total number of time slots. In fact, if a client possesses the same bandwidth 
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as the server than this distance at any time slot equals one. 

4.5.2 User Required Bandwidth for BroadCatch 

Figure 4.8 shows the average user bandwidth requirement for the BroadCatch technique where 

server channels are varied between 4 and 16 channels. One can see that until channel 7, the worst 

case given in section 3.2 is similar to the user bandwidth required by the BroadCatch technique. 

Using 8 channels or more, the BroadCatch technique presents less average user bandwidth 

requirement than the worst-case analysis. 
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Figure 4. 8 BroadCatch average user bandwidth requirement 
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4.5.3 Comparing BroadCatch to the HeRo Technique 

To compare the BroadCatch technique to the HeRo technique, the average user bandwidth 

requirement and the average worst user access latency are used as evaluation metrics. To 

provide similar user access latency as the BroadCatch technique, the HeRo approach is chosen to 

have Nr = 1, that is there is only one channel that periodically broadcast the last segment shifted 

by half of its size and the rest of server channels are similar to the CCA technique. The choice of 

these parameters is fair since it presents under the same server bandwidth the same worst user 

access latency or d as defined in section 3.1. 

Figure 4.9 shows the average user bandwidth requirement for different server bandwidth for both 

the HeRo approach and the BroadCatch technique. The server bandwidth ranges from 4b to 9b 

Mbps.  One can see from Figure 4.9 that in the case of the HeRo approach, using more than 5 

server channels is already worse than the BroadCatch’s worst case analyzed in section 3.2. From 

that point and adding more server channels, the benefit of using the BroadCatch over the HeRo 

approach in terms of the average user required bandwidth is about 10%. Using K=9 server 

channels is enough to obtain a reasonable access latency to the video. For example, given a one-

hour movie the worst access latency is around 14 seconds. 

85 

  
 

 



1.5

1.75

2

2.25

2.5

2.75

3

3.25

4 5 6 7 8 9
Number of server channels in b

A
ve

ra
ge

 re
qu

ire
d 

us
er

 b
an

dw
ith

HeRO

Wo rs tCas e

Bro adCatch

 

Figure 4. 9 Average required user bandwidth. 

 

Figure 4.10 shows the worst average access time for BroadCatch and HeRo techniques when 

clients possess bandwidths that range between 2b and 7b for the cases where the server channel 

is equal to 8b and 9b. One can see that both techniques converge to one point, which is the worst 

access latency when clients have enough bandwidth to download from all channels and is given 

by Equation 4.4. 

However, in the case where clients have less bandwidth, one can see that the BroadCatch 

technique outperforms the HeRo approach. From Figure 4.10, we observe that using the 

BroadCatch, a client having only 2b as a bandwidth has to wait on the average 27% less time 

than using the HeRo technique. This is mainly due to the fact that in the BroadCatch technique 
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and at each time slot the client utilizes a minimum number of channels to catch up to the base 

channel. In fact, a client owning more than 2b Mbps always downloads from the time slots that 

require 2b Mbps bandwidth, and hence the shape of the curves.  In the case of the HeRo 

approach, if the shifted channel is not used then the performance will be worse than shown in 

Figures 4.9 and 4.10.  
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Figure 4. 10 Average worst access latency in % of the video length 
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4.5.4 Comparing BroadCatch to the Generalized Fibonacci Broadcast (GFB) 

Fixed-Delay Pagoda Broadcasting (FDPB) [PA01] protocol and the Generalized Fibonacci 

Broadcasting (GFB) [YK03] minimizes server bandwidth. However, they are not intended for 

the video delivery to clients with heterogeneous bandwidths. In fact, while the FDPB can restrict 

its client to listen to only two channels simultaneously and offer better performance than the 

Skyscraper Broadcast in terms of server bandwidth, it cannot accommodate clients with more 

bandwidth capability.  

The Generalized Fibonacci Broadcast (GFB) [YK03] is a generalization of the Fibonacci 

periodic broadcast similar to the generalization of the Skyscraper broadcast [HS97] to CCA 

[HCS98, HCS01] in the sense that increasing the number of client channels has the advantage of 

reducing its waiting time.  The Generalized Fibonacci Broadcast introduces a configurable 

parameter g>0 to limit the server channel bandwidth to b/g. GFB divides the video into n 

segments where each segment is periodically broadcast on its specific channel of bandwidth b/g. 

To derive the continuity condition of a smooth play back, GFB uses segments of sizes that look 

like the Fibonacci sequence. The parameter K defines the total number of channels a client can 

tune to simultaneously. Therefore, the Generalized Fibonacci Broadcast is noted as GFB(K/g), 

where the parameter  K/g represents the available client bandwidth,  for example GFB(2/1), 

GFB(4/2), and GFB(6/3) use the same client bandwidth capability with a difference to the 

number of channels clients can tune to simultaneously. By choosing a parameter K and g, GFB 

outperforms recent techniques in terms of minimizing server bandwidth. But, GFB does not 
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provide bandwidth heterogeneity, in the sense that, if the server schedule’s aim is to provide 

service to users with GFB(6/2) for example then all clients should possess a bandwidth capability 

of 3b. 

Figure 4.11 and 4.12 compare GFB(2/1), GFB(3/1), and GFB(4/2) to the best case of the 

BroadCatch technique. The best case of BroadCatch is where all clients have enough bandwidth 

to download the video as soon as they access the system and is computed using Equation 4.4. 

One can see from Figure 4.11 that BroadCatch can compete with the GFB technique for low 

server bandwidth.  However, Figure 4.12 (a zoom-in of figure 4.11) shows that BroadCatch for 

server bandwidths between 15b and 20b illustrates approximately a 100% decrease of client 

waiting time compared to the best case of GFB. This is mainly due to the fact that in BroadCatch 

when adding a server channel the access latency to the video is reduced by half, which is much 

faster than the Fibonacci sequence. Furthermore, it was shown in [YK03] that GFB(8/4), 

GFB(16/8), and GFB(32/16) have not much gain compared to GFB(4/2).  

Indeed, GFB(6/2) or GFB(8/2) outperform the BroadCatch technique in terms of access latency, 

however in those cases all clients in the system should be 3b or 4b bandwidth capable to access 

the video without jitter, in which case it not only limits the download capabilities of the client but 

also increases the cost of the overall system.  
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Figure 4. 11 BroadCatch vs. GFB 
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Figure 4. 12 BroadCatch vs. GFB (A zoom-in) 
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4.5.5 Cost of BroadCatch in Server Bandwidth 

It was shown in [PCL98c, SGT01, YK03] that any periodic broadcast strategy would require the 

server bandwidth to be at least ln( )L db d
+≈ ⋅ . Figure 4.13 shows this optimal value for different 

length of the video with a worst access delay d that ranges from 10 to 200 seconds. In the case of 

the BroadCatch technique the server bandwidth is given by: 

2( log ( ) 1 0.5)Lserver bandwidth b
d

 = ⋅ + −  
  (4.13) 

The server bandwidth is computed from Equation 4.4, where it is equal to b·K. Since K is an 

integer and represents the number of channels used, therefore the upper value of the first part in 

Equation 4.13 is taken. The second part derives from the fact that in the BroadCatch technique, 

the last channel is used only 50% of the time.  

From Figure 4.13 one can notice, when the video length is one hour and a half (5400 seconds) 

with a delay d=90 seconds, that BroadCatch employs an extra 2.5b Mbps to achieve 

heterogeneity, and at maximum an extra 3.5b for other cases. One also observes that this cost is 

negligible since it will allow an infinite number of users to use only few channels to download 

the video, as opposed to the optimal case where similar bandwidth should be matched at the user 

site. Undeniably, this extra cost allows users, in the BroadCatch technique, arriving at specific 

time slots to use only two channels to download the video. Hence, this cost is insignificant when 

a large number of users are utilizing the system. 
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Figure 4. 13 Cost of BroadCatch 

 

One can also remark that since the BroadCatch technique can only reduce its delay by half, using 

6.5 channels (6 channels periodically broadcasting segments at full time, while another channel 

only half of the time) and a video length of L =5400 sec, shows a delay of less than 90 seconds. 

The latter delay is applicable in all cases where BroadCatch uses 6.5 channels, similarly for 5.5 

channels the delay is less than 170 seconds for L=5400 sec.  
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4.6 Summary 

This chapter proposed a new periodic broadcast technique, called BroadCatch, to support user 

heterogeneity.  Given a unique BroadCatch delivery, a user can choose his/her reception 

schedule that fits his/her available bandwidth.  In fact, a user can have an array of time slots 

where he/she can starts downloading the video, for each time slot corresponds a specific 

bandwidth requirement.  

Using BroadCatch channels, a user downloads the first portion of a video and catches up to a 

base channel to continue the download of the rest of the video.  In each time slot, the user 

computes the bandwidth needed for that purpose. If the user does not have enough bandwidth for 

that specific time slot, he/she has to wait for the next time slot, which presents less demanding 

bandwidth.  

Periodic broadcast is mainly used in applications that need to serve a large community of users, 

such as movie on demand, news on demand, video catalog in electronic commerce, video 

announcement, etc.  As such, the cost and usefulness of the overall system is much impacted by 

the requirements on the receiving bandwidth.  To evaluate the performance of the BroadCatch 

technique, it is compared to a recently proposed method known as HeRO.  Our analysis indicates 

that for each supported receiving bandwidth, BroadCatch offers significantly better service 

latency.  In other words, BroadCatch is less demanding on client bandwidth in achieving a 

certain desired service delay.  This scheme is therefore less expensive to provide heterogeneous 

services. 
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CHAPTER FIVE: MULTICAST vs. PERIODIC BROADCAST: A CASE 
STUDY IN DISTRIBUTED INTERACTIVE SIMULATION 

In real-time interactive training and simulation systems, changes to the natural terrain surface 

and other non-moving objects are important to simulators. In fact, entities moving to new regions 

need to know the latest updates to the dynamic terrain. This chapter studies ways to disseminate 

dynamic terrain updates to simulators in a distributed interactive environment and is organized as 

follows. Section 1 discusses the distributed interactive simulation environment. The problem of 

Terrain updates is introduced in section 2. Two techniques that communicate dynamic terrain 

changes to simulators are analyzed in section 3.  Section 4 shows simulation results to compare 

the proposed techniques and section 5 summarizes this chapter. 

5.1 Introduction 

Over the past years, there has been an increasing demand on supplementary realism within a 

simulation training system. To achieve this purpose, dynamic terrain plays an important role in 

enhancing and complementing 3D image generation. In a large-scale virtual environment, 

participants can modify the terrain and at the same time interact with other participants. 

However, dynamic terrain has a potential of producing a high degree of network traffic between 

simulated entities.  Furthermore, and to meet the demands of heterogeneous simulations, a 

platform-independent dynamic terrain core module is essential. The core module would allow a 

multitude of simulation systems to add real-time dynamic terrain functionality by providing 
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interfaces that would remain common across all platforms. 

The High Level Architecture (HLA) presents a framework for modeling and simulation within 

the Department of Defense (DoD). The goal of such architecture is to interoperate multiple 

simulations and facilitate the re-use of simulation components. The RTI, one of the main 

components of the High Level Architecture, is a collection of softwares that offers commonly 

required services to simulation systems, it also provides a degree of portability (across 

computing platforms, operating systems, and communication systems) and simulation 

interoperability [DF98].  

In this framework, two novel schemes to communicate the dynamic terrain updates to simulated 

entities are presented in this chapter. Both schemes rely on a specific terrain partitioning. The 

first scheme uses a static multicast technique to communicate the changes of the dynamic terrain 

to simulators. In this environment, simulators make requests of dynamic terrain updates to the 

server (or set of servers); and it serves requests according to some scheduling policy. Each 

simulator expressing an interest in getting updates to the dynamic terrain, inside its region of 

interest, issue a request to a server or a set of servers. In the second scheme, simulators do not 

make requests to get the updates of the dynamic terrain; rather the server (or set of servers) 

periodically broadcast the updates in separate channels based on the terrain partitioning.  

Simulators then tune to the appropriate channels to get the latest updates to the dynamic terrain. 

Periodic broadcast content communication can provide a better latency in several situations. In 

this chapter focuses on exploring such situations. 
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5.2 Terrain Updates Problem Description 

A dynamic terrain is a set of non-moving objects that can change in time or through an event 

triggering. For example if a tank is driving near a river bank, but not actually in the river, the 

ground underneath the tank may be soft. When the tank moves it should leave marks in the soft 

ground. Therefore, objects in the terrain can be classified into two main categories; moving 

objects, which are objects that can move in the terrain, such as tanks, soldiers, or airplanes, and 

non-moving objects, such as trees, bridges, the ground, etc. In the rest of this chapter we will 

refer to the first type of objects as dynamic entities, and the second type as dead entities. A dead 

entity is an observable structure of the simulation space. Not only that, but dynamic entities need 

to know states of dead entities for accurate representation of their simulated world which can 

influence their future behavior.  

Dynamic entities have an area of interest. The area of interest for each dynamic entity is the 

space of the dynamic terrain that the entity can interact with. In general, an area of interest is 

divided into two categories; a  subscription region and an update region.  Each dynamic entity 

expresses an interest in receiving data and therefore subscribing to a specific region, and in 

sending data or updating a specific region.  If a subscription region intersects an update region a 

communication  between the subscribing entity and the updating entity takes place. Subscription 

and update regions are in fact filters to bind the routing space, hence reducing the amount of data 

received by each entity.  Much previous works has been done on how to efficiently manage and 

distribute data between dynamic entities to reduce their interaction cost. The work in [MBDT99] 

improves the performance of the data distribution management through dynamic assignment of 
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the multicast groups. The Authors of [RSM97] proposes a prototype on how to efficiently use 

selective services to perform the data distribution management. A region or a routing space do 

not necessarily map to a physical geographical region, but to a multidimensional coordinate.  In 

[RSM97] there are three factors to design the routing space, a range of interest, an interaction of 

interest, and a level of granularity which is the smallest portion of the space that can be 

individually subscribed. For example, a tank can subscribe to the ground space with a perimeter 

not more than 15kms of range, an interaction of an air_sea_space if the tank is to detect aircrafts, 

and a relatively fine granularity cells if there are many such ground entities. An aircraft on the 

other hand would express an interest in a larger range of interest with a larger level of granularity 

than the ground entities. 

Data distribution management (DDM) in the High Level Architecture (HLA) organizes the 

distribution and routing of data between several entities.  To prevent the delivery of irrelevant 

data by the Runtime Infrastructure (RTI), and therefore improve the utilization of processing and 

network resources, entities express their interest through the DDM services. To implement 

DDM, there is either a fixed grid method [RSM97] or a distributed region method  [VC98]. Both 

methods use multicast routing as a mechanism for low-level relevance filtering. The main 

difference between the two methods is the association of the multicast groups and region 

matches for communication purposes.  

In the fixed grid method, the RTI initially partitions the routing spaces along each dimension to 

perform grid cells, and then assigns a multicast group to each grid cell. Each entity determines 

the grid cells that a region intersects. The result associates a region with several multicast groups 
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in a fixed and predetermined manner. In the distributed region method, each entity exchanges its 

region information with other remote entities. The entity matches its local region used for 

subscription against remote update regions, and vice versa.  The advantage of the fixed grid 

method is that entities do not require exchanging region information, however intersection 

between regions and grid cells do not reflect the exact intersection between the subscription and 

update regions. The advantage of the distributed region method is that entities communicate only 

relevant data to other entities, however as the number of regions increases region matching 

performs poorly [HWT01]. Figure 5.1 gives an example of the fixed grid method and the 

distributed region method. 
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Fig 5.1.a. Fixed Grid

Fig 5.1.b. Distributed Region  

Figure 5. 1 Fixed Grid vs. Distributed Region 
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In Figure 5.1.a, the publication regions, Pi, represent regions used for sending interactions and 

updating objects. The subscription regions, Si, represent regions used for subscribing to and 

receiving data. An entity ei that subscribes to S2 region joins M6,M7,M10, and M11 multicast 

groups to receive data. Although an entity ej that publishes using P1 do not intersect with S2, ej 

will send data to ei. 

In the case of distributed regions, each update region has a multicast address, and a subscription 

region join the multicast group of overlapping update regions. In Figure 5.1.b, only entities that 

subscribe using S1 and update using P1 can communicate. 

Static or dead objects cannot move on their own. They have an initial state at the beginning, and 

can change to different states through the entire simulation. Moreover, the state of dead objects 

must appear the same to all entities requesting similar interest.  One of the main issues is the 

distribution of the change of states of dead objects. When an entity update a dead object, it can 

either communicate to other entities the action of the update and let the receiving entity calculate 

the update, or send the updated state. The latter case has the advantage of lessening the 

computational load of the receiving entity. Another issue is the distribution method of the 

dynamic terrain [LHM95]. When an entity updates the dynamic terrain, the entity sends updates 

to all other entities listening to its update region. However, other entities that were not subscribed 

to the same region would not get the update, and therefore would have an inconsistent view of 

the dynamic terrain. One way to solve this problem is to let a server or a set of servers collect the 

changes and communicate them to entities that requested them. The one-server approach 
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presents a simplified correlation model between simulators. Moreover, joining entities would go 

to one source to get the later updates of the dynamic terrain. However, it also presents one single 

point of failure. The several-server approach has the advantage of using each server for a 

particular region, and simulators would only interface the server within their own region.  

Another way is to use peer-management distribution. In this case each simulator on the network 

would manage a distribution list, and is responsible for its update and its distribution. 

Without loss of generality, the responsible agents for collecting dynamic terrain updates and 

communicating them to simulators in the network is referred to as a collector. The collector 

could use a single server, several servers, or a peer based approach. We assume that each 

simulator has an initial copy of each dead object of its interest. The advantage of having a 

replicated homogenous world is that networked messages are object changes, which make the 

communication cost relatively small. The disadvantage is that it is relatively inflexible and that 

as the terrain content increases so must every site's database.  Figure 5.2 depicts the global 

architecture. 

 

Database

Workstation Workstation Workstation

Database database

 

Figure 5. 2 Fully replicated databases for all simulators 

100 

  
 

 



 

Next section describes two novel methods that communicate dynamic terrain changes based on a 

specific terrain partitioning. 

5.3 Proposed Techniques 

The following section proposes two approaches to manage the dynamic terrain updates. The first 

approach uses a multicast strategy and the second approach a streaming periodic broadcast 

strategy.   Both approaches rely on the partitioning of the dynamic terrain discussed in the next 

sub-section. 

5.3.1 Dynamic Terrain Partitioning 

Partitioning of the dynamic terrain uses a clustering factor. The clustering factor is a threshold 

from which  several cells are constructed in the dynamic terrain, same as the fixed grid approach 

discussed in section 5.2 but based on the distribution of dead-objects. Therefore, each terrain will 

have its fixed but proper partitioning.  

At the beginning, the entire terrain is considered as one cell. If the number of dead objects in the 

cell is bigger than the clustering factor, then the cell is split into two cells vertically. Each cell 

will then split horizontally if its content has more object than the clustering factor. Recursively, 

the terrain is partitioned into cells, until no cell exceeds the clustering factor. In each split action, 

the original cell generates two cells; a left cell and a right cell if the split action is vertical, or an 
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upper cell and lower cell if the split action is horizontal. A tree of cells can therefore represents 

all the action splits, where leaf nodes represent the resulting and actual cells of the partitioning, 

and internal nodes represent intermediate cells in the process of partitioning.  Figure 5.3 gives an 

example of how the dynamic terrain is partitioned using a clustering factor of 3. Figure 5.4, gives 

the corresponding tree of the same partitioning. A higher clustering factor will generate a bigger 

tree and vice versa. Because the content of each cell will not exceed the clustering factor, a 

balanced tree generation means that dead objects are uniformly distributed throughout the terrain 

and a skewed tree generation means that dead objects are clustered in a smaller region. 

 

 

Figure 5. 3 Dynamic Terrain Partitioning 
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Figure 5. 4 A Tree Construction for the Partitioning 

 

5.3.2 Multicast and Streaming Periodic Broadcast Techniques 

Using the cells provided by the partitioning strategy described earlier, we propose two 

techniques that communicate the update changes of the dynamic terrain to the simulators. An 

entity ei that updates a dead object communicate this change to all entities that have a 

subscription region intersecting ei’s publishing region, and also to the collector that manages 

those updates for future entities. The collector will only keep the latest change to the dead object 

and is responsible to communicating it to other entities.  Each entity ei has an area of interest 

AOIi that represents the subscription region of the entity regarding dead objects. An area of 
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interest AOI of an entity can intersect several cells. The intersecting set of cells (IC) represents 

the current dynamic terrain that the entity is interested in. When an entity ei moves, its 

intersecting cells ICi can change. Figure 5.5 gives an example of the AOI of the entity ei that 

intersects the set {1,2,3}of cells. An entity requests the content of its intersecting cells only if 

this one changes. In other words, when the IC set is the same, the entity is not moving much, and 

therefore ei does not need to know any extra information about the terrain. If at the same time, 

other entities made changes to the terrain, those entities are responsible to communicating the 

updates to ei if their publish region intersect ICi.  In both techniques, we do not focus on the 

inter-communication between entities, but rather in the communication between the collector and 

the entities, which holds for most of the dynamic terrain management.  

 

1

2 3

 

 

Figure 5. 5 Intersecting Cells IC of an entity 
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5.3.2.1 Multicast Technique 

When an entity moves its IC can change from ICt to ICt’. Whenever an entity’s IC changes, the 

entity makes a request to the collector that consist of the set of cells (ICt’ - ICt ), which is the 

difference in cells after and before the change to the entitie’s intersecting cells. The collector 

then gathers requests in a pool of request, batch the requests to the same cells in a multicast 

group, and send it to their appropriate receivers.   

The algorithm for the entity and the collector using multicast is described more formally in 

Figure 5.6.  

 

Entity’s Algorithm 

   While (true){ 

       Calculate IC 

       If (IC ≠IC-old) 

         // Request the appropriate cells  

          Send_request _to_collector(IC – IC-old) 

 } 

Collector’s Algorithm 

// N total number of entities 

For all Entities from i to N{ 

    Receive(id_entity, requesting_cells) 

} 

batch entities requesting same cells into multicast groups 

for each multicast_group 

  send(appropriate_cellInfo) 

Figure 5. 6 Entity and Collector’s Algorithm 
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5.3.2.2 Streaming Periodic Broadcast Technique.  

In this technique, entities express their interest in getting the content of their IC cells in the same 

way as in the multicast technique. However, entities do not make requests to the collector. 

Rather, the collector keeps the latest update states of all dead objects and periodically broadcast 

those updates to every entity. If we denote by C the capacity of the collector, which is the 

maximum number of state of dead objects that can be sent by the collector in each unit of time, 

and Nc the total number of cells generated by the dynamic terrain partitioning, then we can 

allocate to each cell a capacity of C/Nc. The collector allocates to each cell a channel to stream 

all changes made to dead objects inside the cell. Therefore, each channel has a capacity of C/Nc. 

We denote by a cycle the amount of time taken to send all states of dead objects. Figure 5.7 is an 

example of two streams that corresponds to celli  and cellj. The cells have m and n number of 

dead objects respectively. Si,j represents state j of dead object i.  During the first cycle, object O1 

and On in celli have changed to another state, whereas in the same cycle, there was no activity in 

cellj. Entities wishing to download the latest updates to the dynamic terrain tune to the 

appropriate channels based in the difference of their intersecting cells IC.   
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Channel 1

Channel i

Channel j

Channel Nc
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Cycle 1 Cycle 2

Cycle 1
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Cycle 2
S1,1 Sn,1S2,1

S1,2 Sn,2S2,1

 

 

Figure 5. 7 Streaming updates in the periodic broadcast 

 

5.4 Performance Study 

To evaluate and compare the performance of both techniques, detailed simulators are 

implemented. This section discusses the simulation study.  First the entity behavior model is 

presented, then the performance metrics and simulation variables are discussed, and finally 

simulation results are presented in the last section.  

5.4.1 Entity Behavior Model 

Each entity ei has a speed, an initial direction, and an area of interest represented by a square. For 
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the sake of experimentation the speed during the same simulation is not varied. Entities can 

move inside the terrain in 9 different directions, which are, north, south, east, west, northeast, 

northwest, southeast, southwest, and idle. Idle is also considered a direction since an entity can 

stay at the same place for a longer time. Ps is denoted as the probability that an entity stays in its 

current direction. The entity changes from its current direction to another direction with a 

probability (1-Ps)/8, that is all other directions have the same probability once the entity change 

its direction. By setting a higher Ps we can achieve a more realistic movement of entities. When 

an entity encounters the boundary of the terrain, the entity chooses the opposite direction.  

5.4.2 Performance Metrics and Simulation Variations 

To compare the multicast and the streaming periodic broadcast techniques, one can define the 

latency to be the waiting time of an entity to get the content of one specific cell from the time the 

entity showed interest in that cell to the actual time it gets it. It is interesting to recall that for 

both techniques, entities are interested in the content of the cell if that cell is in the set (IC – IC-

old).  One is therefore interested in the average latency for all cells. The lowest is the average 

latency the better is the technique.  The parameters used in the simulation are described next, and 

their variation is given in table 5.1. 

• C: Bandwidth of the collector (or server) in Mbps. 

• E: Number of entities simulated. 

• SimTime: Simulation Time in Hours 
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• SizeTerrain: The size of the terrain in km2. 

• O: Total number of dead objects in the terrain. 

• SizeState: Size of a state change of objects in Bytes 

• Cf : The Clustering Factor. 

• AOI: Size of the side of a square in meters representing the area of interest. 

• Sp: Speed of entity in km/h. 

 

Table 5. 1 Simulation Parameters and Variations 

Simulation Parameter Variations 

Ps 

C 

SimTime 

SizeTerrain 

O 

SizeState 

E 

Cf 

AOI 

Sp 

0.75 

1.5 Mbps 

1 Hour 

Square of 100 km2 

200,000 

10 Bytes 

100 - 5000 

50 – 600 

10 – 100 meter 

36 – 1980 km/h 
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5.4.3 Simulation Results 

In the rest of the simulation, dead objects in the terrain are uniformly distributed. The simulation 

results are presented in the following subsections, it shows that under extensive traffic the 

streaming periodic broadcast outperforms the multicast technique. Then it examines the 

scalability factor for both techniques in terms of the number of entities. Finally it illustrates the 

effect of changing the size of the AOI and the clustering factor on the average latency. In the 

next simulation runs the clustering factor Cf is set to be 200. 

5.4.3.1 Effect of changing the speed of entities 

The traffic of the entities by varying their speed between 36 km/h to 1980 km/h is simulated. The 

number of entities E is set to be 1000, each with an area of interest AOI of 50 meters. Figure 5.8 

shows the performance of both the streaming periodic broadcast and multicast techniques. One 

can see from the figure that the multicast technique outperforms the streaming periodic broadcast 

for small speeds. However, the streaming periodic broadcast has better average latency when the 

speed of entities is approximately 180 km/h and bigger. The streaming periodic broadcast scales 

very well with the extensive traffic. In fact, as entities move faster, as they share more the 

streaming channels. However, the multicast technique performs well for small speeds but reaches 

a maximum very quickly. 
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Figure 5. 8 Effect of changing the speed parameter 

 

5.4.3.2 Effect of changing the number of entities 

In this simulation, the number of entities is varied from 100 to 5000 entities. Figure 5.9 gives the 

performance for both techniques for 3 different speeds, 36, 180, and 360 km/h. The same area of 

interest is kept for all entities as before namely 50 meters. The multicast technique exhibits 

similar behavior as the last simulation, especially for 180 and 360 speeds. However, the 

streaming periodic broadcast scales well relatively to the number of entities. In fact, the 

streaming periodic broadcast does not depend on the number of entities in the dynamic terrain, 

which is desirable for large-scale virtual environments. 
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Figure 5. 9 Effect of changing the number of entities 

 

5.4.3.3 Effects of changing the speed of entities and the number of entities 

In this simulation the same parameters as before are kept but the number of entities from 100 to 

5000 is varied with a step size of 500 entity, and the speed of entities from 36 km/h to 1440 km/h 

with a step size of 180 km/h. Figure 5.10 and 5.11 gives the surface generated for both the 

multicast technique and streaming periodic broadcast respectively. Each surface consists of 99 

points that represents each simulation run.  
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Figure 5. 10 Surface for the multicast technique 
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Figure 5. 11 Surface for the streaming periodic broadcast 
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5.4.3.4 Effect of changing the area of interest 

In this simulation, the number of entities is set to 1000 and the speed of all entities to 180 km/h. 

The area of interest AOI side is varied from 10 meters to 100 meters. The result of the simulation 

is given in figure 5.12.  Again, in the streaming periodic broadcast technique, entities can exploit 

more sharing of the streaming channels as the area of interest of entities increases. 
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Figure 5. 12 Effect of the size of the area of interest 
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5.4.3.5 Effect of changing the clustering factor 

In all previous simulations the clustering factor is set to 200 dead objects, which splits the terrain 

into approximately 1300 cells. In this simulation, the same parameters are kept for entities as 

before, namely E =1000, Sp = 180 km/h, and the clustering factor changed from 50 to 600 dead 

objects with a step size of 50 objects. Table 5.2 gives the number of cells in the terrain for the 

different values of the clustering factor. In fact, the number of cells is inversely proportional to 

the clustering factor because dead objects are uniformly distributed in the terrain. From Table 

5.2, the number of cells for a Cf=250 is the same as for a Cf=300, similarly for clustering factors 

of 500,550,and 600. This is due to the partitioning, of the terrain, in which the small increase in 

the clustering factor would not necessarily decrease the total number of cells generated.  Figure 

5.13 gives the performance of both the multicast and the streaming periodic broadcast 

techniques. One can see from the figure that for those specific parameters in the simulation the 

multicast technique does not depend on the clustering factor. Whereas, in the streaming periodic 

broadcast technique as the clustering factor decreases the total number of cells increases, as the 

streaming periodic broadcast performs well. In fact, the total number of cells is also the number 

of channels, and therefore if clustering number is small, entities will share more channels. The 

fluctuation presented in Figure 5.13 for the streaming periodic broadcast is due the partitioning 

and the relation between the number of cells and the clustering factor discussed earlier. 
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Table 5. 2 clustering factor and number of cells 

Cf N. of Cells Cf N. of Cells 

50 5684 350 1017 

100 2813 400 663 

150 2047 450 514 

200 1369 500 512 

250 1024 550 512 

300 1024 600 512 
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Figure 5. 13 Effect of changing the clustering factor 
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5.5 Summary 

In this chapter, the problem of communicating the dynamic terrain updates to simulators is 

introduced. Entities moving to new regions need to know the latest updates to the dynamic 

terrain. Two novel approaches are then proposed to solve this problem using a specific terrain 

partitioning. The first scheme uses a multicast approach and the second scheme a streaming 

periodic broadcast approach to get the latest updates to the dynamic terrain. 

 Through extensive simulation, this chapter shows that under extensive traffic, the periodic 

broadcast scheme outperforms the multicast approach. Furthermore, as the number of entities 

increases, the streaming periodic broadcast technique scales well, this is particularly due to the 

fact that the periodic broadcast technique is independent of the number of entities the system can 

support.  
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 CHAPTER SIX: CONCLUSION 

Video on demand is certainly a promising technology for many multimedia applications still to 

come.  Unlike traditional data, delivery of a video can take up substantial bandwidth for a long 

period of time.  Recent research has shown that periodic broadcast is an efficient paradigm to 

address the limitation of the network I/O bandwidth of video servers. In a periodic broadcast 

environment popular videos are pushed to end-clients. 

Two alternatives have been considered for addressing this limitation [HTT04]: the Server-

Oriented Approach (e.g., Skyscraper Broadcast, Striping Broadcast, Client-Centric Approach) 

reduces service delay by increasing server bandwidth; whereas the Client-Oriented Approach 

(e.g., Cautious Harmonic Broadcast, Pagoda Broadcast) requires client to equip with 

significantly more download bandwidth. Chapter 2 discusses in details both alternatives and 

described some cost effective and scalable solutions for the deployment of VOD systems. 

VCR-like interaction is a desirable feature for many VOD applications.  It provides a convenient 

environment to browse and search for video content.  For periodic broadcast, the broadcast-

based interaction technique (BIT) [THS02, THS02b] offers a highly scalable solution.  In fact, 

the amount of server bandwidth required to support interactivity is independent of the number of 

users currently using this service. Chapter 3 described the BIT technique in detail and compared 

its performance to the best to date technique that uses data prefetching to achieve VCR 

functionality. 

Another important consideration in designing VOD systems is the capability to handle receiver 

118 

  
 

 



heterogeneity.  Multi-resolution encoding techniques provide a good solution for many 

applications.  For those that demand the same high QoS for clients of various capabilities, 

techniques such as the BroadCatch technique [THD04] can be used in the periodic broadcast 

framework.  BroadCatch is a different approach that handles differences in receiving bandwidths 

using only a single broadcast scheme.  This is achieved by indicating in the broadcast when a 

client with a particular receiving capability can start its download.  Chapter 4 described the 

BroadCatch Technique and compares its performance to the most recent technique that provides 

user-bandwidth heterogeneity, and to a recent technique that minimizes end-client’s bandwidth 

without providing heterogeneous reception. BroadCatch technique is shown to present better 

performances and a simplicity and effectiveness in implementation. 

Chapter 5 presented two techniques that disseminate changes to a terrain database in a distributed 

interactive simulation environment [THJ03]. The first technique uses a static multicast delivery 

approach to deliver the update changes to the terrain, while the second technique uses a periodic 

broadcast streaming approach. Both techniques use the same terrain partitioning. In this chapter, 

it was shown that as the number of simulators increase and/or the speed of entities in the terrain 

increases, the streaming periodic broadcast present better performances. 

Multicast and Broadcast can be employed on both LANs and WANs. Nodes connected to a LAN 

often communicate via a broadcast network, while nodes connected to a WAN communicate via 

switched networks. In a broadcast LAN, transmission from any node is received by all the other 

nodes on the network; therefore it is simple to implement Multicast/Broadcast on a broadcast 

LAN.  On the other hand, and due to scalability issues and to the fact that today’s WANs are 
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designed to mainly support Unicast communications, it is difficult to implement a 

Multicast/Broadcast on switched network. 

Future research will focus on streaming bandwidth-intensive media on demand from a source to 

a large number of receivers in the Internet. A simple solution would be to dedicate an individual 

connection to deliver the content to each receiver. However, this method would consume a 

tremendous amount of server bandwidth. Another option is the use of IP multicast, where for 

each client requesting the same video, the server creates a multicast address and sends a stream 

of the same video to all clients in the multicast tree. This way, server and network bandwidth are 

optimized. However, and to provide late arrivals to the system, the server has to create new 

multicast addresses. This process could therefore generate a large number of separate multicasts 

and would therefore exhaust server and network bandwidths. 

This study will focus on how to efficiently provide clients with Broadcast services at the 

application layer using only the IP Unicast. Protocol. It will mainly focus on how to deploy relay 

nodes or special machines whose only objective is to act as routers at the end-system nodes that 

can forward video data to any newly incoming arrival. 
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APPENDIX A: WORST USER-BANDWIDTH CLOSED FORM 
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APPENDIX B: HETEROGENEOUS SCALABILITY PROPOSITION 
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To prove the heterogeneous scalability proposition, first the following assertion is proved: 
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Now, Equation B.1 is proved, by induction on n. 

For n=0, s0=20·s0, for n+1 we have, 
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