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ABSTRACT 

Femtosecond Laser Direct Writing (FLDW) is a viable technique for producing photonic 

devices in bulk materials. This novel manufacturing technique is versatile due to its full 3D 

fabrication capability. Typically, the only requirement for this process is that the base material 

must be transparent to the laser wavelength. The modification process itself is based on non-linear 

energy absorption of laser light within the focal volume of the incident beam. 

This thesis addresses the feasibility of this technique for introducing photonic structures into 

novel dielectric materials. Additionally, this work provides a deeper understanding of the light-

matter interaction mechanism occurring at high pulse repetition rates. A novel structure on the 

sample surface in the form of nano-fibers was observed when the bulk material was irradiated with 

high repetition rate pulse trains. 

To utilize the advantages of the FLDW technique even further, a transfer of the technology 

from dielectric to semiconductor materials is investigated. However, this demands detailed insight 

of the absorption and modification processes themselves. Experiments and the results suggested 

that non-linear absorption, specifically avalanche ionization, is the limiting factor inhibiting the 

application of FLDW to bulk semiconductors with today’s laser sources. 
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1  INTRODUCTION 

1.1 Motivation 

With the advent of tabletop femtosecond laser sources, the interest in their use for material 

processing applications rose quickly due to the extraordinary interaction mechanism between 

ultrashort-pulsed 1  light and matter. This short pulse duration enables material-independent 

athermal processing, which greatly reduces the heat-affected zone (HAZ) around the incident 

radiation [1]-[6] and allows for the reduction of feature size. The ultra-high intensities inherent to 

such ultrashort-pulsed laser beams have opened a range of new materials to process, such as 

dielectrics, ceramics or composite materials. Furthermore, it enables the possibility of non-linear 

absorption taking place in a well-defined focal volume in the bulk of transparent materials, which 

made true 3D structuring possible. 3D femtosecond laser direct writing (3D FLDW) became an 

interesting technology to fabricate embedded photonic devices and circuits in transparent 

dielectrics [7]-[14]. Even though various applications of the technology have been demonstrated, 

many of the underlying physical processes are still not understood completely.  

In recent years, ultrashort-pulsed laser sources into the near-infrared (NIR) and mid-infrared 

(mid-IR) region of the spectrum have been developed. Thus, a transfer of the 3D FLDW 

technology towards semiconductor materials has become possible, offering micro-electronic 

components to be processed [15], [16]. The electronics industry faces many challenges due to the 

departure from planar circuits towards stacked electronics [17], [18]. This could be enabled using 

                                                 
1 Light pulses with a temporal width of less than 1 ps are considered to be ultrashort pulses in 

this document. 
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the 3D FLDW technology. Moreover, historically the electronics industry has proven to promote 

new technologies more quickly from the laboratory test bed to an industrial production line 

compared to, say, the automobile industry. Since SEMATECH is an industry-owned, industry-

governed industrial research corporation its long lifetime over the past several decades is proof the 

model works [19], [20]. However, to ease the engagement of the industrial partners further an 

extended knowledge of the physical processes that are involved in the particular light-matter 

interaction is necessary for successful technology transfer into this new material group. 

Here we investigate the fundamental interaction processes of ultrashort-pulsed light in 

dielectrics and semiconductor materials, focusing on, absorption and modification phenomena 

resulting from the availability of free absorbers. First, the influence of processing speed, in 

particular laser pulse repetition rate and therefore scalability of the processing, is studied. Second, 

the different material modification threshold behavior of semiconductor materials due to the 

smaller band gap energy compared to dielectric materials is researched. An influence of free 

absorbers could lead to a reduced sensitivity of the processing process with respect to the incident 

photon energy.  

1.2 History of Lasers 

1.2.1 The Beginnings of Optics 

Today lasers are an essential part of our daily life. From the barcode scanner in the grocery store 

to laser pointers in lectures to large-scale laser cutting robots on car production lines, our lives 

would be dramatically different without lasers.  

The basis, which finally led to the development of the laser by Maiman in June 1960 [21], 

were laid much earlier by many researchers and scientists. One could argue that da Vinci’s studies 
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of reflection and refraction by mirrors and lenses around 1500 [22] are the beginnings of modern 

optics. Undoubtedly, Huygens wave theory of light from 1690 [23] marks a cornerstone of modern 

optics, which was verified by Youngs well known slit and double-slit experiments in 1801 [24]. 

Later that century, Maxwell revolutionized the field of optics with the formulation of the four 

Maxell equations [25] in 1865.  

  ∇ ∙ D⃗⃗ = 𝜌 ( 1.1 ) 

  ∇ ∙ H⃗⃗ = 0 ( 1.2 ) 

 
 ∇ × E⃗⃗ = −𝜇0

∂H⃗⃗ 

𝜕𝑡
     

( 1.3 ) 

 
∇ × H⃗⃗ =

∂D⃗⃗ 

𝜕𝑡
+ 𝐽  

( 1.4 ) 

Even though the knowledge necessary to formulate these equations was established before 

Maxwells formulations, the realization of the combinatory character of these four laws allowed for 

a mathematical description of light wave propagation, the so-called wave equation, here for a 

charge-free, linear medium [26], 

  ∇(∇ ∙ E⃗⃗ ) − ∇2𝐸⃗ = 𝜇0 (𝜖0
𝜕2𝐸⃗ 

𝜕𝑡2
+

𝜕2𝑃⃗ 

𝜕𝑡2
) ( 1.5 ) 

Max Planck then postulated in 1901 the theory that energy is being emitted from a blackbody 

radiator in discrete packages, so-called quanta [27], which led to Albert Einstein’s introduction of 

‘energy quanta’ as bundles of wave energy [28] in 1905. The name ‘photon’ was established much 

later in 1926 by the American chemist G.N. Lewis [29]. 

1.2.2 The Development of the Theory of the Laser  

The theory of optical absorption and emission was first published by Einstein in 1916 [30]. 

One year later however, he proposed the principle of stimulated emission [31], a fundamental 
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process necessary for the development of the laser. Nevertheless, it took another 4 decades before 

Alfred Kastler discovered the scheme of optical pumping [32]. Before this could take place, 

Tolman and Ehrenfest needed to suggest the notion that the radiation emitted due to stimulated 

emission had to be coherent [33]. Furthermore, in 1939 V.A. Fabricant, a Russian physicist, 

observed negative absorption [34]. This would be later known as population inversion. Finally, in 

early 1954 Charles Townes and his students Gordon and Zeiger at Columbia University operated 

the first maser device [35]. The ammonia beam maser emitted radiation at 24 GHz. Around the 

same time, the two Russian researchers Basov and Prokhorov developed a very similar device 

[36]. However, the name maser was then already being established by Townes and his team.  

After Kastler realized the optical pump scheme, Nicholas Bloembergen proposed 3-level 

pumping to obtain continuous population inversion and therefore continuous light emission [37]. 

Finally, in 1958, Townes and Schawlow published their famous and often cited paper on the 

principle of an optical frequency maser [38]. 

1.2.3 The Birth of the Laser 

Many scientist and researchers were working in the late 1950s and early 1960s on the 

development of a laser device. Due to advances in crystal growth technology, Maiman was able to 

reach the goal of light amplification by stimulated emission of radiation, dubbed the LASER first 

in 1960 using a flash lamp pumped Ruby crystal. His laser emitted pulsed radiation at a wavelength 

of 694 nm. Later in the same year, Ali Javan at Bell Laboratories developed the Helium-Neon gas 

laser [39], then emitting radiation at 1150 nm, nowadays still very common at 632 nm wavelength. 

The first semiconductor laser was realized by Fenner in 1962, followed by Patel’s CO2 laser in 

early 1964 [40] and the first pulsed Nd:YAG (neodymium-doped yttrium aluminum garnet; 
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Nd:Y3Al5O12) by Geusic [41]. The principle of Q-switching was published two years prior by 

Hellwarth and McClung [42]. The governing rate equations for Q-switching were derived by 

Wagner and Lengyel [43] in 1963. Essential for the later development of ultrafast laser sources 

was the theoretical work on the principle of mode-locking by Hargrove in 1964 [44], DiDomenico 

et al. in 1966 [45] and later by Kuizenga and Siegman in 1970 [46]. The first experimental 

demonstration of Kerr-Lens mode-locking of a laser cavity, however, was done in 1975 by Sala 

and Richardson [47], [48]. Worth mentioning here is that even though ultrashort pulsed laser 

sources with pulse durations in the femtosecond regime were available using colliding pulse mode-

locking in dye lasers before 1988 [49], [50], the technical development of the Titanium:Sapphire 

(Ti:Saph) laser by Peter Moulton [51] made ultrashort pulsed laser sources practical for the use in 

laser processing applications, as will be explain later in Section 1.3.2. 

1.3 History of Laser Material Interaction 

1.3.1 Lasers - A Flexible Machining Tool 

When processing materials with traditional tools such as drills or mills, each of the tools used 

during the fabrication process has a discrete purpose. Often, this singular purpose can be 

accomplished with high precision and quality, but at the cost of needing many tools with exactly 

one purpose. This notion changed dramatically with the introduction of lasers as a tool for material 

processing. The new “laser tool” is an extremely flexible machining tool, which provides the 

foundation for innovation for an entire new industry, laser material processing. The basis of that 

flexibility are laid by three major points: 

o the type of the laser source, given by the active medium, the emitted power, and the mode 

of operation, i.e. cw or pulsed 
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o the mode in which the light interacted with matter, namely thermal or non-thermal 

o the physical mechanism of interaction in either mode, for thermal those were heating, 

melting or vaporization, for non-thermal mostly breaking or creating bonds. 

Currently lasers are commonly used in a wide variety of tasks in daily life such as in healthcare 

(i.e. LASIK), manufacturing for welding, cutting, surface modification, surface structuring, 

additive fabrication, chemical interaction and many more, telecommunication for fiber-optic 

transmission and even in the arts world for non-destructive cleaning of antique artifacts and 

entertainment. 

Triggered by the prospect of such novel technologies and applications using lasers, the need 

to understand the fundamental light-matter interaction processes is greater than ever. Experiments 

on periodic surface structuring by Birnbaum [52], studies of laser-induced surface damage by Bass 

and Barrett [53] and studies of electrical breakdown in solids by Bloembergen [54] are examples 

of the early work in this field. 

One of the early advantages of laser material processing was that the interaction regime could 

be chosen to be either thermal or athermal. Athermal meant that the interaction process did not 

rely on heating effects but on photochemical or photolytic processes. This type of processing 

became of even greater importance after ultrashort-pulsed sources based on the Ti:Saph laser were 

more easily available for laser material processing. This new laser source also renewed the interest 

in research of interaction phenomena between light and matter in the ultrashort pulse regime [55]-

[57]. 
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1.3.2 Five Decades of Laser Material Processing 

To cite the author of the book ‘Laser processing of engineering materials: principles’, John 

Ion, “the reason for continued research and development in lasers for material processing has been 

either a ‘technological push’ – a solution looking for a problem – or an ‘industrial pull’ – a problem 

looking for a solution” [58]. The triumph of the laser in material processing technologies was 

greatly influenced by three factors. First, the vast commercialization of a wide range of laser 

sources allowed for their implementation in the processing chain. Second, continuous advances in 

automation, process control and monitoring as well as system integration eased the implementation 

of lasers. Third, the industry’s attitude to quickly moving novel processes from the development 

lab onto the fabrication floor kept the demand on improvements in the technology high. 

The unique properties of the laser light were the driving force behind applications in material 

processing in the first decade after the invention of the laser. Monochromacity and low divergence 

were especially useful for drilling, cutting and welding application. Raytheon engineers explored 

laser drilling extensively [58]. Steel sheets were welded together using a Ruby laser in 1963. In 

the mid-60’s, German researchers investigated the use of laser radiation for heat treatment 

applications [58]. The first laser cutting process was developed by Sullivan in 1967 when a 1 mm 

thick steel plate was cut using a 300 W CO2-laser assisted by an oxygen gas-jet. Surprisingly, 3 

years earlier the process was already publically demonstrated in the movie James Bond – 

Goldfinger, as shown in Fig. 1.1. 

The 1970’s were led by the discovery of the fused silica optical fiber by Kao and Hockham 

[59], [60]. This development should not be underappreciated since it provided an efficient way of 

laser light delivery for processing applications. Moreover, it is the base of the current laser 
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technology and it future development. At the same time laser cutting was first realized in an 

industrial scale. The process was utilized to cut slots into electronic dieboards. Synchronously, 

other researchers presented laser welds of indistinguishable quality as from welds generated by 

established technologies. 

 

Fig. 1.1 - Public demonstration of laser cutting of steel in the 1964 movie James Bond – 

Goldfinger, 3 years before the actual process was first demonstrated  (James Bond – 

Goldfinger, Eon Productions, 1964) 

After the discovery of optical fibers in the 70’s, the 1980’s saw their vast utilization in 

industrial beam delivery systems. Clunky and sensitive mirror delivery geometries were easily 

replaced by optical fibers.  

At the beginning of the same decade, Rolls-Royce developed the first additive laser process 

[61]. Their engineers used a blown powder process to fabricate hard-faced regions to repair 

expensive turbine blades, a process still used today [62].  

Important in the context of this thesis was the development of the Ti:Saph laser as a solid-

state, ultrashort-pulsed radiation source by Peter Moulton, then working at MIT. The system 
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provided significant greater pulse energy than colliding pulse ultrashort-pulsed laser sources could 

provide. In addition, it was also much easier to maintain and its footprint fitted onto a single optical 

table. Its commercialization by Schwartz Electro-Optics sparked new research and applications to 

investigate and utilize novel phenomena due to the femtosecond pulse duration. 

Another major breakthrough for the use of lasers for material processing was in the 1990’s 

with the development of diode-pump solid-state lasers. The market for high power laser sources 

for cutting and welding applications was previously dominated by CO2 lasers [63]. Now Nd:YAG 

systems offered a serious competition, especially because they provided a much higher power 

efficiency with 20% “wallplug” efficiency [63] and better beam quality (up to diffraction limit) 

[63] than CO2 lasers. The latter one is of great interest for welding applications since it allowed to 

focus the beam better on the target and therefore improved the control of the weld-seam [64].  

With the turn of the century, fiber laser development greatly advanced. Even though the 

Ti:Saph laser source made laboratory deployment suitable, for industrial purposes the technology 

was too complicated and still too unreliable. With ultrashort-pulsed fiber laser systems penetrating 

the market, industrial deployment became suitable. High-precision micromachining was the 

application of choice, based on the greatly reduced HAZ when utilizing ultrashort-pulsed radiation. 

In addition, processes based on non-linear absorption like solar cell dicing or waveguide 

inscription first appeared using ultrashort-pulsed fiber laser sources. Today, fiber laser sources 

hold 18% market share of the $2 billion dollar revenue from laser application sector [65]. It is 

predicted that the fiber laser technology will continue to erode market segments hold by other laser 

technologies in the future. 
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2  THEORY OF LIGHT-MATTER INTERACTION 

2.1 Classic Light-Matter Interaction 

The physics involved in the interaction process between light and matter are majorly 

dependent on two parameters:  

(a) the wavelength 𝝀 (or frequency 𝝂 of the incident light, and  

(b) the type of matter the light is incident on.  

Most of work the presented here will consider light with a wavelength in the near infrared 

(NIR) and infrared (IR) regions between 800 𝑛𝑚  to 1064 𝑛𝑚  and 1.3 𝜇𝑚 to 2.4 𝜇𝑚 , 

respectively. The conversion between wavelength and frequency of light is given by 𝜈 =
𝑐

𝜆
, with c 

the speed of light. The photon energy Ephoton in terms of the wavelength can be calculated using  

 𝐸𝑝ℎ𝑜𝑡𝑜𝑛 =
ℎ𝑐

𝑒𝜆
[𝑒𝑉] ( 2.1 ) 

with ℎ and 𝑒  being Planck’s constant, and the electron charge, respectively. 

Regarding the types of matter, one can divide most of the known solid matter into three general 

groups: 

 Dielectrics – containing no electrons in the conduction band, 

 Metals – possess abundance of free electrons in the conduction band, 

 Semiconductors – containing some electrons in the conduction band depending on their 

temperature and Fermi distribution. 

In the following, the details of the interaction of light with these different groups will be 

discussed.  
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2.1.1 Energy Band Structure 

Considering a single atom comprised of a heavy positive nucleus surrounded by light 

electrons, the electrons orbit the nucleus at discrete radii occupying so-called energy shells. The 

electrons in the outermost shell of such an atom are the weakest bound by nucleus, and thus are 

available to interact most strongly with neighboring atoms given enough energy to overcome the 

bond. Such electrons are called valence electrons. 

When atoms form a solid, the different shells of atoms are split into very close energy levels 

to fulfill the requirements of Pauli’s exclusion principle, which postulates that a particular energy 

state can only be populated once but with two different spins of the electron. The difference in 

energy of such split energy levels is so small that a continuum of permitted energies is formed, the 

so-called energy bands. The energy of these bands corresponds to that of the former energy shells. 

Since such shells had discrete energy values, there now exists a range of energy states between the 

bands, which are not permitted for electrons to occupy. This gives rise to the so-called energy band 

gap between the energy bands, here referred to as Eg. A simplified picture of the formation of 

energy bands and the band gaps is shown in Fig. 2.1. 

  
Energy shells of 

atoms 

Energy bands of solids 

Fig. 2.1 - Scheme of energy shells and energy bands in atoms and solids 
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2.1.2 Interaction between Light and Atoms of Solids 

As mentioned earlier, the propagation of light through a media is governed by the Maxwell 

Equ. ( 1.1 ) through ( 1.4 ) and hence by the wave-equation Equ. ( 1.5 ). A solution to the wave-

equation is found for a wave with the field such that 

  𝐸⃗ (𝑟 , 𝑡) = E0 ∙ 𝑒𝑖(𝑘⃗ ∙𝑟 −𝜔𝑡) ( 2.2 ) 

Such light waves interact with matter through the polarization 𝑷⃗⃗ (𝒓⃗ , 𝒕) of the media the wave 

is propagating through. It describes the ability of the atoms in the matter to function as dipoles and 

follow the field. The most general form of the polarization can be given by [66] 

  𝑃⃗ (𝑟 , 𝑡) = ϵ0[𝜒̃
(1)𝐸⃗ + 𝜒̃(2)𝐸⃗ 𝐸⃗ + 𝜒̃(3)𝐸⃗ 𝐸⃗ 𝐸⃗ + ⋯ ] = 

[𝑃⃗ (1) + 𝑃⃗ (2) + 𝑃⃗ (3)+. . . ]. 

( 2.3 ) 

Here 𝜒̃(𝑁) is the tensor of the susceptibility of the media. If the field strength of the wave is 

small, the higher order terms can be ignored and one finds the linear response of a media to light 

as 

  𝑃⃗ (𝑟 , 𝑡) = ϵ0𝜒̃
(1)𝐸⃗ . ( 2.4 ) 

In an isotropic media the susceptibility is a constant and thus the wave-equation simplifies to 

 
 𝛻2𝐸⃗ =

1+𝜒(1)

𝑐2

𝜕2

𝜕𝑡2 𝐸⃗ , 
( 2.5 ) 

with 
1

𝑐2
= 𝜇0𝜖0 . If we rewrite the E-field of the propagating light wave for the propagation 

direction being the z-axis, we find a solution to Equ. ( 2.5 ) as  

  𝐸⃗ (𝑧, 𝑡) = 𝐸0 ∙ 𝑒𝑖(𝐾𝑧𝑧−𝜔𝑡), ( 2.6 ) 

with 𝐾𝑧 = 𝑘𝑧 + 𝑖𝛼𝐸 , the complex propagation constant in the z-direction. Taking into account that 

the relation between the field 𝐸⃗ (𝑧, 𝑡) and the intensity of the wave 𝐼(𝑧, 𝑡) is given by 𝐼(𝑧, 𝑡) =
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√
𝜖𝑜

𝜇0
|𝐸⃗ 2| , the absorption coefficient can be defined as 𝛼 ≡ 2𝛼𝐸 . Further, the linear complex 

refractive index of a material 𝑛̃(𝜔) is then defined as  

  𝑛̃(𝜔) = √1 + 𝜒(1) = 𝑛(𝜔) + 𝑖𝜅(𝜔), ( 2.7 ) 

with 𝜒(1) = 𝜒(1)′ + 𝑖𝜒(1)′′ , where 𝜒(1)′  is the real part of the susceptibility and 𝜒(1)′′  is the 

complex part, 𝑛(𝜔) is the real refractive index of the media and 𝜅(𝜔) is its absorptivity.  

The frequency dependent reflectivity of a media 𝑅(𝜔) can be calculated as 

 
 𝑅(𝜔) = |

𝑛̃(𝜔)−1

𝑛̃(𝜔)+1 
|
2

= 
(𝑛(𝜔)−1)2+𝜅(𝜔)2

(𝑛(𝜔)+1)2+𝜅(𝜔)2
. 

( 2.8 ) 

2.1.3 Dielectrics 

In a dielectric material, all electrons are bound to lattice atoms to a first approximation. In 

order to absorb incident photons in such a material, some electrons must be elevated to higher 

states than their present energy states. In wide-band-gap dielectrics, however, all energy states 

within the valence band are filled with electrons. Therefore to elevate an electron to a higher state, 

the band gap has to be bridged and the electron needs to be excited into the conduction band. Fig. 

2.2 depicts such process known as linear absorption.  

 

Fig. 2.2 - Linear absorption of incident photon from Valence Band (VB) into Conduction 

Band (CB) 
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The dependence of linear complex refractive index of dielectrics on the light frequency, or 

wavelength, is governed by the Lorentz-model [67]. It describes the resonances of the dipoles with 

respect to the light frequency based upon a harmonic oscillator model and the equation of motion 

of the bound electrons. Thus the linear complex refractive index for dielectrics can be modeled as 

 
 𝑛̃(𝜔) = √1 +

𝑁𝑒2

𝑚𝜖0

1

𝜔2−𝜔0
2−𝑖𝛤𝜔

, 
( 2.9 ) 

with 𝛤 the damping coefficient, also related to the absorption, of the media, by 

  𝑛2(𝜔) + 𝜅2(𝜔) = 1 +
𝑁𝑒2

𝑚𝜖0

𝜔2−𝜔0
2

(𝜔2−𝜔0
2)2 –𝛤2𝜔2 = 1 + 𝜒(1)′, 

( 2.10 ) 

  2𝑛(𝜔)𝜅(𝜔) =
𝑁𝑒2

𝑚𝜖0

𝛤𝜔

(𝜔2−𝜔0
2)2 –𝛤2𝜔2 = 𝜒(1)′′. 

( 2.11 ) 

For most dielectric materials it can be found that there are no resonances or absorption peaks 

in the spectral range investigated here, since their energy gap 𝐸𝑔 > 4 𝑒𝑉. However, if the photon 

energy of the incident light becomes large enough to allow absorption to take place, the absorbed 

intensity 𝐼(𝑧) with propagation distance 𝑧 is given by Beer’s Law as 

  𝐼(𝑧) = 𝐼0𝑒
−𝛼𝑧 [10−4 𝑊

𝑐𝑚2], 
( 2.12 ) 

with 𝐼0  being the initial intensity at the incident surface. Moreover, it can be found that the 

absorption coefficient 𝛼 in Equ. ( 2.12 ) can be calculated as  𝛼 =  2𝜅𝜔 𝑐⁄ . 

It should be noted that this model is an idealized treatment of dielectrics. In practice a more 

complex picture should be applied, which will be discussed later Section 2.2.  

2.1.4 Metals 

Metals can be characterized as the opposite of dielectrics with regard to electron availability 

in the crystal lattice [68]; they possess an abundance of free electrons, often called the free electron 
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gas of metals. Due to this free electron gas, metals can be treated as plasma containing heavy, 

stationary ions (here the atoms of the metal lattice) and light electrons, which are free to move in 

the lattice. 

2.1.4.1 Absorptivity and Reflectivity of Metals 

Since the electrons move freely in the metal, there is no restoring force when an electro-

magnetic (EM) wave interacts with the electron cloud. Therefore, the refractive index model 

introduced by Lorentz must be modified by removing the restoring force term containing 𝝎𝟎.This 

led to the Drude-model proposed by P.Drude in 1900 [69] as 

 
 𝑛̃(𝜔) = √1 −

𝑁𝑒2

𝑚𝜖0

1

𝜔2+𝑖𝛾𝜔
. 

( 2.13 ) 

In general, the reflectivity 𝑅(𝜔) given by Equ. ( 2.8 ) for metals follows the trend shown in 

Fig. 2.3. One can derive an expression for a frequency at which the reflectivity of metals changes 

significantly[67]. This frequency is known as the plasma frequency 𝜔𝑝, indicated in Fig. 2.3 by 

the vertical red line, and can be calculated as 

 𝜔𝑝 = (
𝑁𝑒2

𝜖0𝑚0
)
1

2⁄

[
𝑟𝑎𝑑

𝑠
]. ( 2.14 ) 
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Fig. 2.3 - Graph of frequency-dependent reflectivity for a metal, 

 If the angular frequency of the incident electro-magnetic wave 𝝎𝒊 is less than the plasma 

frequency 𝜔𝑝, the wave is fully reflected. If 𝜔𝑖 > 𝜔𝑝, the reflectivity decreases sharply and the 

EM wave is transmitted through the metal. 

2.1.4.1.1 Particle Picture 

The full reflectivity of a metal can also be explained by a more intuitive interpretation of the 

interaction of the electron gas with an incident wave. In this picture, the electrons of the metal 

oscillate due to an incident EM wave on the metal surface. However, due to the Maxwell Equations 

boundary condition on the material interface, only the orthogonal part of the incident wave with 

respect to the interface is allowed to penetrate the metal surface. That causes the electrons to 

oscillate only parallel to the surface. When a charge is accelerated and decelerated, it emits 

radiation in a donut-like pattern with no emission in the direction of its motion and maximum 

emission in the orthogonal direction to its axis of motion. Since the electron gas consists of 

numerous charges, which all radiate in a donut-like shape but are dislocated slightly from each 
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other, one can show that the reemitted waves from the electrons only interfere constructively in 

one direction orthogonal to the metal surface. Due to a rapid exponential decay of the field strength 

inside the metal, the complete energy must be reflected back from the metal. The superposition of 

that reflected wave and the parallel part of the incident wave with respect to the interface cause the 

known trajectories of reflected light waves on metal surfaces (Fig. 2.4). 

 

Fig. 2.4 - Scheme of reflection on metal surface due to electron oscillation from incident 

wave 

2.1.4.1.2 Electron Scattering Time 

The electron scattering time 𝜏, defined as the average time between collision of electrons with 

impurities or phonons [70], is difficult to measure directly. However, it is the limiting parameter 
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of the electrical conductivity 𝜎 of a material, which is much less difficult to measure. Therefore, 

measuring the electrical conductivity offers a simple method of determining the electron scattering 

time.  

The AC conductivity of metals is given by [67] 

  𝜎(𝜔) =
𝜎0

1−𝑖𝜔𝜏
[
𝑆

𝑚
]. ( 2.15 ) 

Here 𝜎0 is the DC conductivity given as [67]  

 𝜎0 =
𝑁𝑒2𝜏

𝑚0
[
𝑆

𝑚
], 

( 2.16 ) 

with N  being the free electron density of metals. This number is equal to the number of atoms in 

a unit volume of the particular metal (in the order of 1028 m-3) multiplied by its valency, the number 

of allowed bonds to form for that metal. For most metals, as well as semiconductors, the electron 

scattering time  is in the range of 10-14 to 10-13 seconds. 

2.1.4.1.3 Skin Depth 

The field strength of an EM wave will decay exponentially within a metal in order to satisfy 

the boundary conditions of the Maxwell Equations. This phenomenon is known as the skin effect 

of metals. The skin depth is the characteristic distance in which the field strength of the incident 

EM wave decays to a value of 𝑒−1 of its initial value. If an approximation for low frequency 𝜔𝜏 ≪

1 is valid, the skin depth can be calculated as [67] 

 
 𝛿 = √(

2

𝜎0𝜔𝜇0
) [𝑚], 

( 2.17 ) 

with 𝜇0 = 4𝜋 × 10−7 𝐻
𝑚⁄  being the magnetic permeability of free space. 
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2.1.5 Semiconductors 

Considering some important modifications, the light-matter interaction in semiconductor 

materials can be treated similar to the interaction in metals. The band structure of a semiconductor 

material differs slightly from that of a metal. Even though the conduction band is similar, the 

valence band contains holes. Holes are electronic state vacancies in the lattice structure, of which 

three types have been defined [71], light (lh) and heavy (hh) hole bands, and the split-off (SO) hole 

band. The lh and hh bands connect at 𝑘 = 0 but each possesses a different dispersion. The SO band 

does not connect with the lh and hh bands as a result of spin-orbit interaction and is split-off by an 

energy 0. In contrast to metals, these hole bands modify the structure of the valence band as 

shown in Fig. 2.5. 

Additionally, the electron mass used in the free electron model of metals has to be adjusted to 

account for the presence of holes when applying this model to semiconductors. The effective mass 

has been reported in many references [72].  

 

Fig. 2.5 – Figure of the band structure of a semiconductor containing light and heavy holes  
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In a semiconductor, intervalence band transitions are possible between the lh and the hh band, 

the SO and the hh band as well as the SO and the lh band. These transitions do not require a change 

of momentum of the hole and therefore are a highly probable mechanism for the absorption of 

incident light. A schematic picture of that absorption process is shown in Fig. 2.6(a). On the 

contrary, the intraband excitation of free electrons requires a change in momentum and is therefore 

only possible with the occurrence of a scattering event, depicted in Fig. 2.6(b). Both of these effects 

are known as free carrier absorption and occur in the NIR and IR above 𝝎𝒑, where the material is 

expected to be transparent. 

  
(a) (b) 

Fig. 2.6 – Figure of (a) intervalence transitions due to light absorption and (b) intraband 

transitions of free carriers 

The complex refractive index 𝒏̃ of a semiconductor can then be expressed using a modified 

free electron model given as [67] 

 
 𝑛̃(𝜔) =  √𝜀ℎ𝑜𝑠𝑡(𝜔) −

𝑁𝑒2

𝑚𝑒
∗𝜀0

1

𝜔2+𝑖𝛾𝜔
, 

( 2.18 ) 

with 𝜀ℎ𝑜𝑠𝑡(𝜔) and 𝑚𝑒
∗  being the dielectric constant of the host material in the transparent region 

and the effective electron or hole mass, respectively. In most semiconductor 𝜀ℎ𝑜𝑠𝑡(𝜔) can be 
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assumed to be 𝑛2
𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡 due to 𝜅 = 0 in this spectral region. From that one can deduce the 

free carrier absorption coefficient assuming 𝜔𝜏 ≫ 1 as 

  𝛼𝑓𝑟𝑒𝑒 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 =
𝑁𝑒2

𝑚0
∗𝜀0𝑛𝑐𝜏

1

𝜔2. 
( 2.19 ) 

Equ. ( 2.19 ) depicts the ω−2-dependence of the free carrier absorption, which is also depicted 

graphically in Fig. 2.7(a). In addition, due to the presence of free carriers, the reflectivity can hit 

zero in the mid-IR region, depicted in Fig. 2.7(b). 

  
(a) (b) 

Fig. 2.7 - Graphs of (a) the free carrier absorption coefficient and (b) the reflectivity as a 

function of wavelength for Silicon with a dopant concentration of 1025 𝑚−3 

Aside from interband and free carrier absorption, another absorption mechanism exists in 

semiconductor materials, namely impurity absorption. This absorption denotes the transition of a 

free charge from donor or acceptor levels of induced dopants into the conduction band. The energy 

gap here is a few tens of milli-eV’s, which is on the order of room temperature energy levels.  
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2.2 Ultrafast Light-Matter-Interaction 

The development of the Ti:Saph femtosecond laser based chirped pulse amplification (CPA) 

by Mourou in 1985 [73] generated a renewed research initiative into ultrafast light-matter 

interaction after some limited initial research using colliding pulse lasers earlier. The new laser 

was easier to build and to maintain than previous employed ultrashort-pulsed colliding-pulse dye 

lasers. It also generated more pulse energy at shorter pulse durations and could be deployed as a 

tabletop system. In the following section the light-matter interaction process is explained for such 

ultrashort laser pulses. In this short-pulse-regime the interaction phenomena have to be 

reconsidered. One, the intensity levels are sufficiently high to enable non-linear processes. Two, 

the pulse-durations are on the same time scales as the interaction times of the fundamental 

constituents of the matter. 

2.2.1 Ultrafast Material Response 

The general time scale of ultrashort material processing is on the order of a few picoseconds 

or less. Such pulse durations are in the range of fundamental interaction times of the constituents 

of matter itself [74]-[76], such as electron-electron and electron-phonon interaction, as illustrated 

in Fig. 2.8. 
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Fig. 2.8 - Time scale of typical events due to ultrafast laser irradiation of matter[74], [75], 

[77] 

As illustrated in Fig. 2.8, thermal and structural events in the material are temporally 

decoupled from the deposition of energy, thus enabling a non-thermal material-processing regime. 

2.2.2 Non-linear Absorption Processes 

Looking beyond the temporally dependent material response (compare Fig. 2.8), ultrashort 

pulsed lasers are capable of producing ultra-high peak powers (in the order of GW peak power) 

and consequently, non-linear phenomena, such as non-linear absorption, take place. Such non-

linear absorption of photons in the focal region of a beam has enabled new processing techniques 

as first reported by Davis et al. [7] and Mazur et al. [78] in 1996 for the modification of bulk 

dielectrics. The techniques rely solely on the non-linear absorption in the focal volume, which was 

not possible with longer pulsed radiation, as compared in Fig. 2.9.  

Besides such applied research initiatives in bulk modification of transparent dielectrics, the 

general field of fundamental light-matter interaction science [55], [79], [80] as well as ultrafast 
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laser material ablation [81] has been studied in further detail due to the availability of the Ti:Saph 

CPA laser system. 

  
(a) (b) 

Fig. 2.9 – Simulated laser-induced electron density due to linear (a) vs. non-linear (b) 

absorption in Fused Silica, incident beam propagates from top to bottom and is focused 

with 20X NA 0.4 objective and a pulse energy 𝐸𝑝 of 1 𝜇𝐽 

2.2.2.1 Nonlinear Refractive index 

Following the invention of the laser, the constant scaling of peak intensities (and 

corresponding optical frequency electric field) over the last half century has forced 

(mathematically) a more rigorous approach to the treatment of fundamental optical properties. 

Especially the polarizability of a material to an incident optical field and the experienced refractive 

index have to be reconsidered.  

With the exception of some non-centrosymmetric crystals, most materials possess a 

centrosymmetry [66]. Therefore, when material polarization is expressed as a series expansion, the 
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second order term has to vanish2, which simplifies Equ. ( 2.3 ). At intensities beyond 1012 𝑊

𝑐𝑚2, 

higher than third order terms are generally negligible, hence the polarization can be expressed as  

  𝑃⃗ (𝑧, 𝑡) = 𝜖0 [𝜒̃(1) + 𝜒̃(3)|𝐸⃗ (𝑧, 𝑡)|
2
] 𝐸⃗ (𝑧, 𝑡). 

( 2.20 ) 

The tensor characteristic of the susceptibility can be dropped for most media, thus the higher order 

expression for the complex refractive index is given as [66] 

 
 𝑛̃(𝐸⃗ ) = √1 + 𝜒(1) +

3

4
𝜒(3)|𝐸⃗ |

2
 . 

( 2.21 ) 

This result can be expanded to  

  𝑛(𝐼) = 1 +
1

2
𝜒(1) +

3

8
𝜒(3)𝐼  ( 2.22 ) 

using a power series and considering the linear terms. From the previously introduced relation, 

Equ. ( 2.7 ) , it can be found that the refractive index can now be expressed as 

  𝑛(𝐼) = 𝑛0 + 𝑛2𝐼(𝑧, 𝑡) , ( 2.23 ) 

where 𝑛0 is the linear refractive index of the medium and 𝒏𝟐 is the intensity dependent nonlinear 

refractive index of the medium. 

2.2.2.2 Critical Self-Focusing 

Critical self-focusing is caused by the intensity dependence of the non-linear refractive index 

as introduced in Equ. ( 2.23 ) and the spatial (commonly Gaussian) intensity profile of the laser 

beam. In such cases, it becomes apparent that the center of the beam experiences a higher 

                                                 
2 𝑃(2) → −𝑃(2); 𝐸 → −𝐸; but 𝜒(2) → 𝜒(2) [82] 

 −𝑃(2) = 𝜖0𝜒
(2)(−𝐸) ∙ (−𝐸) = 𝑃(2) → 𝜒(2) ≡ 0 → 𝑃(2) = 0 
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instantaneous refractive index than the peripheral parts of the beam, which is equivalent to passing 

through a positive lens.  

The critical power for self-focusing 𝑃𝑐𝑟 if defined as the power at which a balance between 

self-focusing and diffraction of a propagating pulse is achieved. If the incident power exceeds the 

critical power, 𝑃𝑐𝑟 < 𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡, catastrophic damage occurs in the sample material. The critical 

power can be calculate as [66] 

  𝑃𝑐𝑟 =
𝜋(0.61)2𝜆0

2

8𝑛0𝑛2
 

( 2.24 ) 

Catastrophic self-focusing is especially a challenge in semiconductor materials, since the non-

linear coefficients in these materials are much larger than in dielectrics. 

2.2.2.3 Non-linear Absorption 

The absorption of NIR laser energy by a wide-band-gap dielectric, where the photon energy 

is less than the band gap energy of the material, relies on non-linear processes. In such case, several 

photons must be absorbed simultaneously to promote an electron from the valence band into the 

conduction band. Since the electron can occupy only virtual states in-between the valence and 

conduction band, the photons have to be incident within the Rayleigh scattering time of the 

electron, on the order of approximately 5 fs. In general, the rate for the occurrence of such process 

is very low. However, at intensity levels readily achievable using ultrashort-pulsed irradiation, the 

process becomes sufficiently efficient. The equation governing the process is given as [83] 

 𝑑𝐼(𝑧)

𝑑𝑧
= −∑𝛼𝑘𝐼0

𝑘, ( 2.25 ) 

with 𝛼𝑘 being the non-linear absorption coefficient of the kth order necessary to overcome the band 

gap. A very similar equation can be found for the rate of free electron generation as 
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 𝑑𝑁𝑃𝐼(𝑡)

𝑑𝑡
= 𝜎𝑘𝐼(𝑡)

𝑘, ( 2.26 ) 

with 𝜎𝑘 the kth order absorption cross-section coefficient. 

Depending on the specific laser wavelength and light intensity, one of two non-linear 

absorption mechanisms dominates: multi-photon ionization (MPI), depicted in Fig. 2.10(a), or 

tunneling ionization, Fig. 2.10(b). In the case of MPI, several photons are absorbed simultaneously 

to bridge the energy band gap. For tunneling ionization the incident photons distort the electron’s 

Coulomb well, therefore giving rise to a finite probability that the electron tunnels through the 

barrier according to its wave function. 

  

(a) (b) 

Fig. 2.10 – Scheme of multi-photon ionization (MPI) (a) and tunneling ionization (b) 

The Keldysh parameter [84] predicts which of the two absorption mechanisms, MPI or 

tunneling ionization, is most probable. It is given by  

 
 γ =

𝜔

𝑒
[
𝑚𝑒𝑐𝑛𝜖0𝐸𝑔

𝐼
]
1 2⁄

, 
( 2.27 ) 

with 𝑚𝑒, 𝑛, 𝜖0 and 𝐸𝑔 being the effective mass of the electrons, the refractive index of the 

material, the free space permittivity, and the band gap energy, respectively. In general, MPI occurs 

for a Keldysh parameter value above 1.5 and tunneling ionization for a value less than 1.5. Fig. 

2.11 depicts the Keldysh parameter for different wavelengths in silicon (solid lines) and Fused 

e- 

e- 
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Silica (doted line) for common focal intensities. The horizontal black line denotes the value of 1.5. 

As the graph clearly shows, for longer wavelength, as well as smaller bandgap energies, the 

ionization shifts from MPI (γ > 1.5) towards tunneling ionization (γ < 1.5). In the intermediate 

region around a Keldysh parameter of 1.5 a combination of both is also possible [85]. 

 

Fig. 2.11 - Graph of the Keldysh parameter for common focal intensities in Si (solid lines) 

and SiO2 (doted lines) 

If there are free charge carriers available in the material avalanche ionization can occur. That 

is, an electron sequentially absorbs a sufficient number of photons to acquire enough energy to 

promote another electron from the valence into the conduction band by impact ionization. The 

initial free charge carriers, also called ‘seed’ electrons, originate from either photo-ionized 

electrons from the leading edge of the pulse, impurities in the material or lattice error. The rate of 

electron generation due to avalanche ionization is [85]  

 𝑑𝑁𝑎𝑣𝑎𝑙(𝑡)

𝑑𝑡
= 𝛼𝐼(𝑡)𝑁(𝑡), ( 2.28 ) 
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where 𝛼 is the avalanche ionization coefficient. The process is schematically shown in Fig. 2.12. 

Here the requirements on the absorption conditions are more relaxed, in that the photons can be 

absorbed sequentially and do not need to have the same wave vector. 

 

Fig. 2.12 - Schematic of impact ionization mechanism 

The absorption of ultrafast laser radiation often involves at least two of the previously 

described processes. MPI or tunneling ionization can provide seed electrons in the conduction band 

for avalanche ionization to follow. Therefore, the total rate of free electron generation, W(t), can 

be written as the sum of both ionization types 

  𝑊(𝑡) =
𝑑𝑁(𝑡)

𝑑𝑡
= 𝜎𝑘𝐼(𝑡)

𝑘 + 𝛼𝐼(𝑡)𝑁(𝑡). ( 2.29 ) 

Due to the short temporal duration of the incident radiation the involved processes are non-

equilibrium processes. Therefore special care has to be taken when applying approximations and 

models developed for longer pulse or cw-radiation. 

2.2.2.4 Non-linear Propagation and Absorption Model 

It is of great interest to predict the electron density in the focal volume due to an incident 

focused laser pulse. For that purpose a propagation and absorption model was developed using the 

previously introduced Equ. ( 2.23 ) and ( 2.29 ). A common approach for such model is based on 

e- e- 
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the Split-Step Beam Propagation Method (BPM). A significant number of publications can be 

found using such method or a variation [86]-[88]. However, common to such approach is a paraxial 

approximation for the z-propagation of the pulse, restricting its validity to low numerical aperture 

focusing conditions. 

To allow for high numerical aperture focusing, a method based on the complex beam 

parameter was developed. Essentially, the beam path was calculated first based on the focusing 

geometry, and then an ultrashort pulse propagating in time and space was superimposed. At each 

step in time the non-linear interaction processes were calculated. The technique is limited to 

Gaussian beam. In addition, even though self-focusing was accounted for, diffraction and 

defocusing due to the generated electrons were ignored. The model also accounts for plasma 

reflection of off the electron cloud and electron recombination. 

Fig. 2.13(a) depicts the estimated electron density Ne at the end of the pulse using this method 

in the bulk of Fused Silica. The focusing objective had a numerical aperture of 0.65, the pulse 

energy was 𝐸𝑝 = 1 𝜇𝐽  at a center wavelength of 𝜆𝑐 = 800 𝑛𝑚 , the pulse duration was 𝜏 =

100 𝑓𝑠, and the physical focusing depth was set to be 𝑡𝑓 = 100 𝜇𝑚. 
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(a) (b) 

Fig. 2.13 - Graphs of the simulated electron density in a Fused Silica sample due to 

ultrashort pulse irradiation 

The generation of electrons only occurs in the focal volume, as Fig. 2.13(a) indicated. The 

maximum electron density during the pulse duration reached 𝑁𝑒 = 3.5 ⋅ 1021 𝑐𝑚−3. In addition, 

Fig. 2.13(b) predicts the temporal profile of the electron density, here depicted for the axial position 

𝑟 = 0 position. Clearly apparent in this graph is the onset of plasma reflection at a propagation 

distance of approximately 140 m. Moreover, the simulation also reveals the percentage of 

absorbed energy of the incident pulse, here approximately 2.3% through photoionization and 

approximately 6.5%, for a total of 8.8% of the incident energy. This also illustrates that 

photoionization provided the seed-electron for the following avalanche ionization because no 

impurities were present at the start of the simulation. 
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2.2.3 Laser-Plasma Interaction Mode 

2.2.3.1 Plasma Absorption and Reflectivity 

During the irradiation of wide-band-gap materials, non-linear absorption processes create an 

electron-plasma within the focal volume. The interaction of this plasma with the incident laser 

field can be described using the Drude-model [70]. This model can also describe the light 

interaction in doped semiconductors that inherently contain free electrons in the conduction band. 

The major difference between the Drude-model for the description of metals and the one 

considered for the generation of a free electron plasma is its electron density, and therefore the 

specific plasma frequency of each. As shown in Fig. 2.3, the plasma frequency of most metals is 

in the UV region of the spectrum. Using Equ. ( 2.14 ) one can easily see, that the plasma frequency 

during the generation of the laser-induced plasma shifts, as illustrated in Fig. 2.14. 

 

Fig. 2.14 - Graph of the plasma frequency 𝝎𝒑 as a function of electron density 

In a similar fashion one can calculate the reflectivity of such laser-induced plasma at a given 

laser wavelength, shown in Fig. 2.15. It becomes apparent, that the reflectivity of the plasma 
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increases significantly for higher electron densities. The point at which the reflectivity reaches 

unity is known as the critical plasma density. 

 

Fig. 2.15 - Graph of the plasma reflectivity 𝑅 as a function of electron density 𝑁 at a given 

laser wavelength of 2.4 𝜇𝑚 

When the critical plasma density is reached, the incident radiation is entirely reflected, and 

therefore, within this simple model, the plasma cannot absorb any further energy from the incident 

beam. However, because of inherent plasma density gradients, laser energy will be absorbed within 

the peripheral plasma regions where the density is lower. The propagation length within this below 

critical density region is sometimes called the ‘scale length’ of the plasma. 

2.2.3.2 Two-Temperature-Model 

Within the regime of ultrashort pulse durations investigated here, the initial energy exchange 

between the incident laser radiation and material occurs solely within the electron system, as 

illustrated in Fig. 2.8. Therefore we are interested in the temperature evolution of the electron 

system throughout the laser pulse duration. The excited electron system will relax by interacting 
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with the lattice through electron-phonon relaxation. During the relaxation process the electron 

temperature 𝑇𝑒  decreases while the lattice temperature 𝑇𝐿  increases. For ultrashort laser pulses, 

this process takes place mainly after the laser pulse has passed. The temperature dependence of 

the two systems can be modeled using the Two-Temperature-Model (TTM), first introduced for 

metallic materials by Kaganov, Lifshitz and Tanatarov in 1956 [89]. It was later refined for the use 

with ultrashort laser radiation in dielectrics by Anisimov et al. [90], since there is no initial electron 

bath available in such materials. The TTM is given as set of couple differential equations [91] 

  𝐶𝑒(𝑇𝑒)
𝜕𝑇𝑒

𝜕𝑡
=  𝛻[𝑘𝑒(𝑇𝑒) ⋅ 𝛻𝑇𝑒] + 𝑆(𝑧, 𝑡) − 𝐺(𝑇𝑒 − 𝑇𝐿), ( 2.30 ) 

 𝐶𝐿(𝑇𝐿)
𝜕𝑇𝐿

𝜕𝑡
= 𝐺(𝑇𝑒 − 𝑇𝐿), ( 2.31 ) 

with 𝐶𝑒 and 𝐶𝐿 as the specific heat of the electron and lattice system, respectively.  

Here 𝛻[𝑘𝑒(𝑇𝑒) ⋅ 𝛻𝑇𝑒] describes the Drude-like model of the plasma, 𝑆(𝑧, 𝑡) denotes the source 

term, describing the energy absorption due to the incident laser pulse, and 𝐺(𝑇𝑒 − 𝑇𝐿) is the 

coupling term between the electron and lattice system. Using the TTM, a simple illustration of the 

temperature evolution of electrons and lattice due to ultrashort laser pulses is shown in Fig. 2.16. 
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Fig. 2.16 - Schematic graph of the temperature evolution of electron and lattice system due 

to an ultrashort laser pulse using the Two-Temperature-Model [adapted from [92]] 

2.2.4 Thermal vs. Athermal Material Interaction 

In a steady state situation in which a photon beam is incident on a material, the classical laws 

of thermal conduction apply. In such a case, three principal mechanisms of thermal interaction 

could occur sequentially: heating of the lattice; melting of the heated region, and boiling and 

evaporation of the matter. The phase diagram in Fig. 2.17 shows the various possible transitions, 

the green arrow depicts the case of classical heat conduction. In a macroscopic picture, thermal 

energy transfer, thermal conduction or heat flow will occur from the point of the incident energy 

towards the surrounding material. Thus, after an initial transient state an equilibrium conditions 

will take place between incident energy and energy dissipation from the incident into the 

surrounding region. This type of light-matter interaction is a solely thermal interaction process and 

governed by the laws of classical thermo-dynamics. 
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Fig. 2.17 - General phase diagram of three-phase matter [adapted from [93]] 

The collision time between electrons and atoms of the material lattice is on the order of 10-14 

to 10-12 seconds. If the pulse duration is on the order of or shorter than the collision time, the 

equilibrium state will not take place during the pulse duration and therefore the classical laws of 

thermo-dynamics do not apply. In such case transient phase changes may occur such as solid to 

vapor transition. The process is known as athermal interaction between light and matter. In general, 

athermal interaction is considered for material processing using ultrashort laser pulses. 

2.2.5 Material Surface Interaction Mechanisms 

Material ablation and surface structuring was one of the first applications of lasers in industry 

and is still a major application field of laser material processing. For example in many industrial 

environments, metal cutting and welding relies on cw- and long-pulsed laser systems. 

Ultrafast laser radiation has unique advantages when interacting with matter, which opens 

new horizons, especially in material processing. The extremely high peak intensities enable the 

processing of new materials like ceramics or composite compounds, which are difficult to process 

r0 
thermal -> equilibrium conditions 

athermal -> non-equilibrium conditions 
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otherwise using conventional techniques. Such processes will be discussed in more detail in the 

following section. 

2.2.5.1 Material Surface Modification Thresholds 

A surface threshold behavior can be defined for either modification or ablation with respect 

to an incident optical density, the so-called fluence. A distinction between modification and 

ablation has to be drawn here since modification of the material can be achieved without material 

removal, i.e. by melting a surface layer. Below this modification threshold fluence the material is 

essentially unchanged3. When the threshold fluence is reached however, permanent modification 

can be introduced. Fig. 2.18 shows an example of a modified and ablated area on the surface of an 

intrinsic Silicon surface after ultrashort laser irradiation. The image on the left hand side depicts a 

microscope image of the region recorded at 100X magnification; the right one depicts the measured 

topological profile of the irradiated area. It is apparent that the material is ablated in the center 

region but surrounded by a region that is photo-expanded and therefore only modified.  

 

                                                 
3 It should be pointed out that an accumulative effect of several pulses below threshold fluence 

could still lead to permanent modification of the material. 
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(a) (b) 

Fig. 2.18 - (a) 100X light microscope image of an ablation spot on an intrinsic Silicon 

surface resulting from ultrashort pulsed irradiation; (b) measured surface profile of the 

same spot [adapted from [94]] 

A common technique to determine the modification/ablation threshold of a material is 

described by Liu[95]. We adapted this technique for measurements of the modified area at varying 

incident fluences. The following equation describes the relation between such measured area and 

the laser fluence 

  𝐴(𝐹) =  
𝜋

2
𝜔0

2 ⋅ ln (
𝐹

𝐹𝑡ℎ
), ( 2.32 ) 

with 𝐹𝑡ℎ and 𝜔0 as the threshold fluence and the beam radius at the focus. In a double-logarithmic 

plot, this equation presents a straight line that can be fitted (blue line), returning the values for the 

beam radius and the threshold fluence. An example plot is shown in Fig. 2.19. The surface 

modification/ablation threshold depends strongly on the type of material (solid, dielectric, metal 

or semiconductor) as well as the pulse duration and laser wavelength. 
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Fig. 2.19 - Graph of fitted threshold fluence for modification, here for Fused Silica 

In the case of dielectric materials, ultrashort laser radiation introduced a different 

interpretation of ablation and modification thresholds. With longer laser pulses (𝜏 > 10 𝑝𝑠), the 

threshold values are most commonly determined statistically since the energy absorption process 

is dominated by heating of conduction-band electrons at defect sides followed by avalanche 

ionization and energy transfer to the material lattice [96]. The advent of ultrashort laser radiation 

allowed direct ionization of valence band electrons into the conduction band by multi-photon-

ionization without the need of a defect site, which led to a more empirical threshold value for 

modification/ablation [55], [80]. Ultrashort radiation also changed the understanding of the light-

matter interaction process for semiconductor materials. For cw and long pulse irradiation, the 

interaction phenomena of this type of solid were interpreted separately from dielectrics and metals. 

When using ultrashort radiation, however, semiconductors can be interpreted as metallic materials 

(see Section 2.2.3), because their interaction behavior is similar to such in the ultrashort-pulsed 

regime [97]. 
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Another important aspect of ablation or surface structuring is the penetration depth of the 

radiation from the surface into the material. Two generally different cases have to be considered 

when dealing with ultrashort laser radiation. For dielectrics it can be stated that the absorption 

depth depends strongly on the focusing geometry. Therefore, absorption4 will take place in a 

region where the local field intensity is strong enough to allow non-linear absorption processes to 

take place. On the contrary, in metals the penetration depth is small, given by the wavelength 

dependent skin depth of the material (Equ. ( 2.17 )). In the case of semiconductors, the previously 

applied approximation for skin effect 𝜔𝜏 ≪ 1 breaks down and a modified expression has to be 

found. The understanding of the process, however, is still very limited since almost no research 

has been conducted so far. 

2.2.5.2 Material Ablation 

Material ablation occurs when matter is either directly removed by material disintegration 

following energy deposition and thermodynamic relaxation phenomena or indirectly by means of 

an established plasma at the material surface. In the former case, the ionization process on the 

surface generates free electrons, which can be ejected from the material quickly into the 

surrounding space due to their high velocity, leaving behind positively charged matter. If the 

charge is strong enough, the remaining matter will non-thermally explode, giving rise to a so-

called Coulomb Explosion [97]. This phenomenon has so far only be observed with dielectric 

                                                 
4 It is assumed that the incident photon energy is insufficient to directly bridge the energy 

band gap and therefore interband absorption will not occur.  
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materials, since metals and semiconductors posses a natural bath of free electrons neutralizing the 

repulsive force of the positive charges of the remaining matter. 

Beyond the electronic ejection of matter from the irradiated spot, there is also a thermal process, 

which allows melt expulsion and vaporization of matter. Its characteristic time scale is much larger 

than in the case of Coulomb Explosions because the lattice has to be thermalized first, see Fig. 2.8. 

For ablation, however, the slow thermal processes have lower ablation rates compared to ultrashort 

pulse ablation [75], [98]. The ejection mechanism is also different for ultrashort and longer pulsed 

radiation. It has been shown that for femtosecond pulses, the process is driven by direct solid-

plasma transition [4], [81]. An illustration of the general mechanisms of the energy deposition and 

material removal process is shown in Fig. 2.20(a). Nevertheless the phase change of the ejected 

material is directly from solid to plasma, a very thin molten layer in between the two phases exists. 

The graph in Fig. 2.20(b) depicts the thickness of the expected molten layer in aluminum as a 

function of time for varying laser fluences. 

In the case of nanosecond or longer pulses the material has sufficient time to fully thermalize 

and therefore sequentially passes through all phase states as depicted in Fig. 2.17. The material 

ejection here is mainly driven by boiling and evaporation from a liquid phase [80], [81]. Therefore 

the molten layer is much thicker than for ultrashort pulse laser ablation. 
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(a) (b) 

Fig. 2.20 – (a) Schematic illustration of physical processes during laser material ablation 

with ultrashort laser pulses [adapted from [99]]; (b) expected melt layer thickness of 

aluminum for ultrashort pulse laser ablation and varying laser fluences [adapted from 

[100]] 

The short interaction time of ultrashort radiation with matter decouples the energy deposition 

and the thermal dissipation processes of the deposited energy within the material lattice. Moreover, 

since the phase of the material changes directly from solid to plasma, there is virtually no melt 

ejected at the ablation site that would redeposit on the surface. This results in an appreciable 

reduction of the heat-affected-zone (HAZ) surrounding the ablated region and hence a decrease in 

achievable feature size [81], [98]. Examples of surface ablation on dielectrics with femtosecond 

and nanosecond pulses are shown in Fig. 2.21. In both processes approximately the same fluence 

was used to irradiate the sample. 
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(a) (b) 

Fig. 2.21 – Image of a ablation track on a dielectric material surface using a microscope 

objective with a NA 0.5 and laser radiation with the fluence of approximately 𝐹 =

100 𝐽/𝑐𝑚2, (a) femtosecond laser radiation, (b) nanosecond laser radiation [adapted from 

[101]] 

The large intensity inherent to ultrashort radiation enables one to process at dimensions 

smaller than the diffraction limit of light. This can be achieved by tailoring the parameters of the 

incident radiation in a way such that only the peak of the Gaussian field exceeds the threshold for 

modification/ablation will in return also reduce the achievable feature size [102], as shown in Fig. 

2.22. 
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Fig. 2.22 - Reduced modification diameter due to modification threshold when using 

ultrashort radiation [adapted from [101]] 

Plasma etching is rather uncommon using ultrashort lasers since an effective heating of the 

plasma cannot be achieved using such laser systems. It should however be pointed out that the 

generation of a plasma on the surface can reduce the efficiency of the direct ablation processes 

since the plasma can shield the material from the incident energy [103]. 

2.2.5.3 Surface Texturing 

Besides ablation, surface texturing or patterning is an important field, as it can influence how 

a material interacts with its surroundings. A commonly used example for motivating such laser-

based material texturing is the Lotus effect, a naturally occurring phenomena in which nano-

structures prohibit water and dirt from adhering on the surface of Lotus flower leaves. When 

irradiating a surface with ultrashort radiation, periodic nanostructures can be generated as well, 

often called ripples or LIPSS for Laser Induced Periodical Surface Structures. These ripple 

structures possess periodicities well below the incident wavelength as opposed to their 

counterparts generated using longer pulsed laser radiation [104]-[106]. The origin of these 

structures generated with ultrashort radiation has yet to be fully understood, though several 
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theories are being developed at this time [107]-[109], and their fabrication requirements have been 

well studied. 

2.2.6 Material Bulk Interaction Mechanism 

Non-linear absorption in the focal region allows for local modification in bulk of transparent 

material. This technique, introduced by Davis [7] and Mazur [78], was quickly adopted by 

numerous researchers to fabricate 3D devices. It is based on the local laser-induced modification 

of the refractive index or the lattice structure in amorphous or crystalline dielectrics, respectively. 

Three typical modification regimes have been generally accepted by the research community 

(Table 2-1). 

Table 2-1 - Laser modification regimes in transparent dielectrics 

Type I Type II Type III 

Isotropic refractive index 

change (amorphous 

dielectrics) 

Anisotropic refractive 

index change (amorphous 

dielectrics) 

Void formation (amorphous and 

crystalline dielectrics) 

 n isotropic with 

positive or negative 

sign 

 Fusion and non-

uniform 

solidification 

 Alternations of 

positive and negative 

n at sub-wavelength 

scale (“nano-

gratings”) 

 Birefringent formation 

 Low-density core (n<0) 

embedded in a denser shell 

(n>0) 

 Explosive expansion of the hot 

electrons and ions 

 Nano-cracks or amorphization in 

the focal volume 
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Several causes for these modifications have been suggested, though agreement about their 

contribution to the overall modification does not yet exist within the research community. Among 

such causes are the reordering of bonds [110], the generation of defects, namely self-trapped 

excitons (STE), followed by the generation of non-bridging oxygen-vacancies (NBOHC) [111], 

the generation of color centers (E’ centers) [112], [113], and the redistribution of material 

constituents [114]. The induced change in refractive index depends on the particular material, 

ranging from 10-1 in Chalcogenides to 10-4 in Fused Silica. Since the modification is limited to the 

focal region of the incident beam, a translation of the sample relative to the focal spot allows the 

generation of 3D structures in the material. A general schematic of the 3D ultrafast laser writing 

technique is shown in Fig. 2.23. 

Nowadays a broad variety of applications for such techniques exist, from fabrication of 

waveguides in various transparent dielectrics [115]-[117], integrated photonic circuits such as 

beam splitters [118]-[121], to active optical components like amplifiers or even waveguide lasers 

[10], [122]-[124]. It should be pointed out that there are no reports on non-destructive direct 

refractive index change in crystalline dielectrics. Nevertheless, using nano-cracks, an effective 

negative refractive index change can be induced.  

The above-described modifications can also influence the susceptibility to etchants, either due 

to chemical material changes or due to increased surface area, as in the case of nano-cracks. Thus, 

the fabrication of microfluidic devices has been reported using 3D ultrafast laser writing combined 

with post-process etching[125]. 
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Fig. 2.23 - Schematic of 3D ultrafast laser writing in transparent material 

2.2.7 Heat-Accumulation 

2.2.7.1 The Mechanism of Heat-Accumulation 

An important advantage of ultrashort laser radiation is the reduction of the HAZ due to the 

decoupling of energy deposition and energy dissipation by thermal conduction, as depict in Fig. 

2.24.  

 

Fig. 2.24 – Model of energy deposition and thermal material response; black curve 

represents the incident pulse (bottom scale) and the blue curve represents the thermal 

response time of the material due to the incident pulse [adapted from [101]] 
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If the repetition rate of the laser increases to the point at which the period between pulses is 

shorter than the energy dissipation time of the material, than heat will build up in the focal volume. 

This process is referred to as heat-accumulation (HA). This heat build-up can be very significant, 

allowing the local temperature in the voxel to rise to several thousand Kelvin, as reported by 

several researchers [126]-[128]. The material properties are of significant influence for this 

process. Not only the dissipation time of the induced energy in the material but also the melting 

point of the bulk material influences the effect HA has during the irradiation process. Due to the 

high local temperature originating from HA, the effect is usually easy to recognize during the 

irradiation process in transparent 5  media because it is accompanied by a strong white light 

emission, as compared to the emission from the electron plasma also seen during irradiation. The 

exact origin of this emission is not yet known, but believed to result from the blackbody radiation 

of a hot object in the focal volume in this case. An example of such emission is depicted in Fig. 

2.25. 

  

Fig. 2.25 – White glow of HA during the irradiation of dielectric material with high 

repetition rate ultrashort pulses [adapted from [101]] 

                                                 
5 to visible light 
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2.2.7.2 Heat Accumulation Model 

To predict the thermal response of a material, a model has been developed based on spherical 

1D time-variant heat diffusion equation [127] 

 𝜕

𝜕𝑟
(𝑟2 𝜕𝑇(𝑟,𝑡)

𝜕𝑟
) =

𝑟2

𝐷

𝜕𝑇(𝑟,𝑡)

𝜕𝑡
, 

( 2.33 ) 

with 𝑟, 𝑇(𝑟, 𝑡), and 𝐷 being the radial position from the center of the focal volume, the space- and 

time-dependent temperature and the heat diffusion coefficient of the material. The assumption of 

a spherical expansion is valid because the heat-affected volume is much larger than the focal 

volume of the tightly focused beam. 

The difficulty however, is the estimation of the initial temperature. As mentioned previously, 

the energy deposition into the material from a single incident pulse occurs through the electron 

system on a time scale of few hundred femtoseconds. The time-scale for heat-accumulation effects 

is much longer than the light-matter interaction process. Therefore, a valid prediction of the initial 

temperature cannot be based on the TTM. For this HA model, energy conservation between the 

absorbed energy and the thermal energy available for the initial temperature was assumed. 

Furthermore, the thermal energy input was assumed to be a Dirac impulse in time, modeling the 

ultrashort laser pulse. The spatial distribution of the initial temperature profile was set to be 

spherically Gaussian, resulting from the Gaussian energy profile of the focused beam. Therefore 

the initial temperature change is given by [127] 

 𝛥𝑇(𝑟, 𝑡 = 0) =  
𝐸0

𝐶𝑝𝜌
∮ 𝑒𝑥𝑝 {

𝑟2

𝑤0
2}

𝜏

0
, 

( 2.34 ) 

with 𝐸0 , 𝐶𝑝 , 𝜌 , and 𝜏  as the normalization coefficient between the absorbed energy and the 

spherical volume integral, the specific heat capacity and density of the material, and the pulse 
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duration, respectively. The beam waist 𝒘𝟎  was calculated from the NA of the focusing optic 

assuming diffraction limit using 

 𝑤0 = 1.22
𝜋𝜆

𝑁𝐴
 . ( 2.35 ) 

Fig. 2.26 depicts the temperature evolution in space and time according to the developed 

model for Fused Silica. Fig. 2.26(a) shows the material response to a single laser pulse with a pulse 

energy of 𝐸𝑝 = 500 𝑛𝐽, Fig. 2.26(b) illustrates the thermal accumulation and diffusion of 50 of 

such pulses at the repetition rate of 𝑓𝑟𝑒𝑝 = 500 𝑘𝐻𝑧. The model clearly indicates the rise of the 

peak temperature due to the storage of energy in focal volume. 

 

 

(a) (b) 

Fig. 2.26 - Heat diffusion based on 1D time-variant model; (a) single pulse with an energy 

of 500 𝑛𝐽, and (b) 50 pulses at 500 𝑘𝐻𝑧 repetition rate with an energy each of 500 𝑛𝐽 in 

Fused Silica 

2.2.7.3 Advantages and Disadvantages of Heat-Accumulation 

There are several advantages when utilizing HA in ultrafast material processing. An 

established field of application is the inscription of material modification inside dielectrics for light 
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guiding structures, commonly referred to as waveguide-writing but not limited to just waveguides. 

Traditionally, index modifications were introduced into dielectrics using low rep. rate laser 

systems, since such systems were available at the advent of ultrafast laser material processing 

(UFLMP). The shape of the introduced modification, however, is highly dependent on the energy 

distribution in the focal volume, which leads to elongated modifications. Such are not ideal for 

wave-guiding, as a more radially symmetric shape would be appreciable [129]. Using the high 

rep. rate regime with the HA effect allows for a radially-symmetric shape, since the modification 

is driven by the thermal melting from the center of the irradiated volume [128]. Moreover, it has 

been shown that the absolute value of index change introduced using the HA effect can be 

significantly higher than in the low rep. rate regime [128]. In addition, simply due to the increased 

repetition rate in the HA regime, processing times for the inscription of photonic devices can be 

reduced dramatically [130]. 

Drawbacks of the HA effect include an increased HAZ. In some applications the local melting 

within the central focal region is disadvantageous since it negates other desirable features. For 

example, for selective etching applications, nano-gratings are required to increase the etch-ratio of 

the irradiated area with respect to its surrounding [131]. Here, HA would erase the nano-gratings 

due to the material melting process. 
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3  LASER SOURCES FOR ULTRASHORT MATERIAL PROCESSING 

In this section challenges and limitations are discussed that arise due to the laser sources 

employed in material processing with ultrashort pulses. A closer look will be taken at the 

generation of IR wavelengths between 1 𝜇𝑚 and 2.6 𝜇𝑚 using optical parametric amplification. 

3.1 Generation of Ultrashort Pulsed 

3.1.1 Low Repetition Rate Laser Sources 

The main laser source used in this study was a SpectraPhysics Spitfire system. This laser 

system is a Master-Oscillator-Power-Amplifier (MOPA) layout based on CPA [132], [133]. Nano-

joule pulses were generated at tens of MHz repetition rate from a passively mode-locked master 

oscillator. The output pulses from the oscillator are then stretched in a grating stretcher, pulse 

picked and amplified in a power amplifier laser system, and finally recompressed in a grating 

compressor assembly. A general schematic of the system is shown in Fig. 3.1.  

The output wavelength 𝜆𝑐𝑒𝑛𝑡𝑒𝑟  of this Ti:Saph-based laser system [51] was centered at 

810 𝑛𝑚 . The pulse-generation method in the master oscillator is based on Kerr-Lens mode-

locking, providing ultrashort pulses with a measured pulse duration of 𝜏 = 70 𝑓𝑠 and an energy 

of approximately 𝐸𝑝 = 3.5 𝑛𝐽 per pulse. The output beam was horizontally polarized owing to the 

presence of a Brewster-cut crystal and Brewster-cut prisms in the laser cavity. The repetition rate 

of the oscillator was measured to be approximately 𝑓𝑟𝑒𝑝 = 84 𝑀𝐻𝑧 given by the length of its 

cavity with 𝐿 = 1.78 𝑚 due to the round trip time as 

  𝑓𝑟𝑒𝑝 =
𝑐

2𝐿
[𝐻𝑧] ( 3.1 ) 

The pulse stretcher and compressor were based on a Martinez [134] and a Treacy [135] 

design, respectively. 



 

 53 

 

Fig. 3.1 – Schematic of SpectraPhysics Spitfire laser system 

The repetition rate is reduced to 1 kHz before amplification. There are two reasons for the 

reduction of the repetition rate. One, the amplification process is accomplished by passing the 

stretched pulsed several times through the gain medium in amplifier cavity, which reduces the 

maximal possible repetition rate. Second, and most important, the thermal load on the optics would 

cause thermal lensing and eventually damage if the desired pulse energy would be achieved at the 

full oscillator repetition rate. Pulse-picking was accomplished using a fast switching Pockels cell 

inserted in the amplifier cavity, which in its high-state rotates the polarization of the beam. A 

second fast-switching Pockels cell also inserted in the amplifier cavity outputted the pulse after 

the amplification process. The repetition rate of the amplifier output can be adjusted by changing 

the trigger rate of the Pockels cells. The output repetition rate can be set using the following 

formula 

Millennia 

Master Oscillator 

Evolution 

Amplifier-Assembly 

Compressor- 
Assembly 

Stretcher-Assembly 
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  𝑓𝑟𝑒𝑝 𝑓𝑖𝑛𝑎𝑙 =
1000 𝐻𝑧

𝑀
 ( 3.2 ) 

with 𝑀 being an integer number. The pulse duration after compression has been measured to 

be approximately 100 fs time-bandwidth limited. The Spitfire output spectrum was measured using 

an OceanOptics HR2000 spectrometer and is shown in Fig. 3.2. The achievable pulse energy at 

the compressed output of the CPA laser system was 1 𝑚𝐽. 

 

Fig. 3.2 - Spectral content of 100 𝑓𝑠 output pulse from Spitfire laser system 

The beam profile at the Spitfire output was recorded using a Spiricon SP-980M beam profiler 

camera. The profile is slightly elliptical, as depicted in Fig. 3.3. The elliptical shape results 

minuscule astigmatism at the output of the amplifier cavity, mainly due to the position axial 

position of the pump beam focus inside the gain crystal. The long propagation through the 

compressor made the ellipticity visible in the beam profile. Further optimization of the beam 

profile after the output could be realized using a spatial filter or relay imaging a pinhole, however 

this technique did not enhance the achievable processing results in the past.  
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The compressed output beam is also passed through an external fast shutter with a switching 

time of 3.4 𝑚𝑠. The shutter was synchronized with the laser and thus allowed for single shot 

operation of the laser system. 

 

Fig. 3.3 - Measured beam profile of the Spitfire laser  

3.1.2 Generation of IR Ultrashort Pulses 

The Spitfire laser provides pulses with a center wavelength 𝜆𝑐𝑒𝑛𝑡𝑒𝑟 = 810 𝑛𝑚. Non-linear 

techniques were required to generate pulses with center wavelength in the IR between 1 𝜇𝑚 and 

2.6 𝜇𝑚. Parametric down-conversion of the 800 𝑛𝑚 pulses is required to reach the desired IR 

spectral range beyond 𝜆𝐼𝑅 𝑠𝑡𝑎𝑟𝑡 ≥ 1100 𝑛𝑚. The process used to achieve this down-conversion is 

optical parametric amplification using the Spitfire laser as a pump source. A commercial Optical 

Parametric Amplifier (OPA) by Coherent (OPerA X) is used to generate pulses with a center 

wavelength variable in the range between 1150 𝑛𝑚 and 2630 𝑛𝑚 . Due to the nonlinear 

conversion of the pump pulse one expects the mid-IR output pulse energy to be significantly less 

than the input pulse energy. In the past the employed setup achieved a conversion efficiency of 

approximately 10% in the signal beam and 8% in the idler beam, providing IR pulse energies 
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around one order of magnitude lower than the input pump pulse energy. The theory of DFG is 

detailed in the next section. 

3.1.2.1 Nonlinear Frequency Generation 

As established before, nonlinear effects can be utilized to generate sum and difference 

frequencies of light beam. Here the theory of such conversion is detailed. 

Starting at Equ. ( 2.3 ) and using an optical field such as [66] 

  𝐸̃(𝑡) =  𝐸1𝑒
−𝑖𝜔1𝑡 + 𝐸2𝑒

−𝑖𝜔2𝑡 + 𝑐. 𝑐., ( 3.3 ) 

one can determine the occurring frequency components for second-harmonic, sum-frequency and 

difference-frequency generation by investigating the second order polarization term P̃(2)(𝑡) =

𝜖0𝜒
(2)𝐸̃(𝑡)2 as 

 

𝑃̃(2)(𝑡) = 𝜖0𝜒
(2)[𝐸1

2𝑒−2𝑖𝜔1𝑡 + 𝐸2
2𝑒−2𝑖𝜔2𝑡 + 2𝐸1𝐸2𝑒

−𝑖(𝜔1+𝜔2)𝑡 +

2𝐸1𝑒
−𝑖(𝜔1+𝜔2)𝑡 + 𝑐. 𝑐. ] + 2𝜖0𝜒

(2)[𝐸1𝐸1
∗ + 𝐸2𝐸2

∗]. 
( 3.4 ) 

From this equation it becomes apparent that the terms of for second-harmonic, sum-frequency, 

difference-frequency generation and optical rectification are given by 

 

𝑃(2𝜔1) = 𝜖0𝜒
(2)𝐸1

2 

𝑃(2𝜔2) = 𝜖0𝜒
(2)𝐸2

2 

𝑃(ω1 + 𝜔2) = 2𝜖0𝜒
(2)𝐸1𝐸2 

𝑃(ω1 − 𝜔2) = 2𝜖0𝜒
(2)𝐸1𝐸2

∗ 

𝑃(0) = 2𝜖0𝜒
(2)(𝐸1𝐸1

∗ + 𝐸2
∗𝐸2

∗) 

( 3.5 ) 
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3.1.2.2 Phase-Matching in Collinear Geometry 

The concept of phase-matching can readily be understood when considering the case of a two-

wave interaction, as follows. Nevertheless, the same concepts are valid for a three-beam wave 

interaction such as OPA implemented in the OPerA. 

 

The refractive index of a medium 𝑛(𝜔) is dependent on the EM-wave frequency. Thus it 

becomes clear that the newly generated frequency ω2 will experience a slightly different refractive 

index than the initial frequency ω1. Therefore the accumulated phases of each beam will start to 

walk-off with propagation distance. However, the initial beam will still cause the generation of 

light at ω2, which now will be out of phase with previously generated light at ω2. The worst case 

becomes when the phase of the two frequencies is off by 
λ

2
, since at that point the intensity of light 

at ω2 decreases to 0, due to destructive interference. Hence phase-matching between the initial 

and generated light beam has to be achieved. In general phase-matching can be accomplished by 

angular tuning of an birefringent crystal so that [66] 

  
1

𝑛𝑒(𝜃)2
=

𝑠𝑖𝑛2𝜃

𝑛̃𝑒
2 +

𝑐𝑜𝑠2 𝜃

𝑛𝑜
2  ( 3.6 ) 

Since in the here used OPA the beams were propagating collinear, only this case is considered. 

Thus phase-matching can only be accomplished over short propagation distances 𝑧, or by using a 

technique called quasi-phase-matching. For quasi-phase-matching the nonlinear medium is stack 

in a way that the refractive index positively and negative shifts the phase of the generated light so 

that a step-like increase in generated light intensity can occur due to the absence of destructive 

interference. 
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3.1.2.3 Difference Frequency Generation (DFG) 

In general, DFG is equivalent to optical parametric amplification, with the difference that for 

DFG the pump and the signal or idler beam have similar input energies where as for OPA the 

pump has significant more input energy than the signal or idler, which ever is chosen as the second 

input beam.  

The process of DFG occurs only on materials possessing a non-zero second order 

susceptibility 𝝌(𝟐). A basic scheme of the process is shown in Fig. 3.4. 

 

Fig. 3.4 - Schematic of non-linear DFG 

The energy transfer in the medium can be described by 3 coupled amplitude equations [66], 

two of which are 

  
𝑑𝐴1

𝑑𝑧
=

2𝑖𝑑𝑒𝑓𝑓𝜔1
2

𝑘1𝑐
2

𝐴3𝐴2
∗𝑒𝑖𝛥𝑘𝑧, ( 3.7 ) 

 
𝑑𝐴2

𝑑𝑧
=

2𝑖𝑑𝑒𝑓𝑓𝜔2
2

𝑘2𝑐
2

𝐴3𝐴1
∗𝑒𝑖𝛥𝑘𝑧, ( 3.8 ) 

where 𝐴1, 𝐴2 and 𝐴3 are the amplitudes of the signal, idler and pump beam respectively, 𝑑𝑒𝑓𝑓 is 

the effective nonlinear coefficient of the conversion material, also see [136], and 𝜔1, 𝑘1, 𝜔2 and 

𝑘2 are the angular frequency and wave-vector of signal and idler beam. For simplicity it is only 

the case of perfect phase-matching considered 



 

 59 

  𝛥𝑘 = 𝑘3 − 𝑘1 − 𝑘2 = 0. ( 3.9 ) 

Furthermore, for the third amplitude equation it is assumed that the pump amplitude 𝐴3 is 

strong and thus undepleted during the conversion process 

 
𝑑𝐴3

𝑑𝑧
= 0 → 𝐴3(𝑧) ≅ 𝐴3. ( 3.10 ) 

Further differentiation of Equ. ( 3.8 ) and replacement of 
𝑑𝐴1

∗

𝑑𝑧
 on the right-hand side yields 

  
𝑑2𝐴2

𝑑𝑧2
=

4𝜔1
2𝜔2

2𝑑𝑒𝑓𝑓
2

𝑘1𝑘2𝑐
4

𝐴3𝐴3
∗𝐴2 ≡ 𝜅2𝐴2. ( 3.11 ) 

This equation has the general solution  

  𝐴2(𝑧) =  𝐶 𝑠𝑖𝑛ℎ(𝜅𝑧) + 𝐷𝑐𝑜𝑠ℎ(𝜅𝑧), ( 3.12 ) 

with C and D determined by the boundary conditions of the system. It can be found that 𝐴2(0) =

 0 and 𝐴1(0) is specified. With these boundary condition the system can be solved such that [66] 

  𝐴1(𝑧) = 𝐴1(0)𝑐𝑜𝑠ℎ (𝜅𝑧), ( 3.13 ) 

 𝐴2(𝑧) = 𝑖√
𝑛1𝜔2

𝑛2𝜔1

𝐴3

|𝐴3|
𝐴1

∗(0)𝑠𝑖𝑛ℎ (𝜅𝑧). ( 3.14 ) 

An illustration of the physical meaning of this result is depicted in Fig. 3.5. 



 

 60 

  
(a) (b) 

Fig. 3.5 - Illustration of the conversion from DFG using a BBO crystal, 0.3 𝑚𝐽, 100 𝑓𝑠 

pulses for perfect phase matching 

3.1.2.4 Coherent OPerA  

The schematic diagram of the Coherent OPerA OPA is depicted in Fig. 3.6. 

 

Fig. 3.6 - Scheme of Coherent OPERA OPA 
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As is shown in the figure, the OPA provides the output of the 810 𝑛𝑚 pump, signal and idler 

pulse simultaneously.  

A small part (approximately 1 %) of the input pump pulse from the Spitfire CPA laser system 

was first focused into a Sapphire plate to generate a white-light continuum. This continuum 

provided the seed for the desired IR wavelength. It was afterwards focused into a BBO crystal, 

which was mounted on a rotary positioning stage for angular tuning. The white-light continuum 

beam was in the BBO crystal spatially and temporally overlapped with the so-called 810 𝑛𝑚 pre-

amplifier beam (approximately 30 % of original input). By rotating the BBO crystal, phase-

matching conditions could be achieved for the desired signal or idler wavelength. If the pulses of 

pre-amp and white-light continuum were time-synchronized using stage 1 (Fig. 3.6), sufficient 

energy transfer occurred from the pre-amp beam to the desired IR wavelength. In a second 

amplification stage, the power amplifier beam, consisting of the rest of the input energy at 810 𝑛𝑚, 

was also time-synchronously (stage 2, Fig. 3.6) superimposed with the generated IR radiation in a 

second pass through the BBO crystal. The phase matching condition in the BBO crystal was 

already set due to the pre-amp process. Finally, dichroic mirrors were used to split the desired 

wavelengths for pump, signal and idler beam to the marked outputs. 

The input pulse into the OPA possessed a time duration of approximately 100 𝑓𝑠 and was 

nearly time-bandwidth limited. That means that the spectral content of the pulses supported exactly 

the time-duration of the pulse. However, changing the center wavelength of the pulse into the IR 

region while maintaining the desired pulse duration requires an increased spectral content. 

Therefore, if one assumes that the pulse maintained the property of being nearly time-bandwidth 
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limited, one can measure the output spectrum of the pulse and back-calculate the temporal width 

using the following equation for a Gaussian pulse 

  𝜏 =
1.44∙𝜆2

𝑐∙𝛥𝜆
. ( 3.15 ) 

The OPA output spectrum was recorded using an OceanOptics NIR spectrometer. A measured 

spectrum and beam profile of the 2 𝜇𝑚 output of the OPA are depicted in Fig. 3.7. Using Equ. ( 

3.15 ), the pulse duration can be calculated to be τ(@2 μm) ≤ 192 fs. 

 

 

(a) (b) 

Fig. 3.7 – Illustration of (a) a measured spectrum and (b) a measured beam profile from 

OPA output at 2.0 𝜇𝑚 center wavelength 

Besides maintaining sufficient bandwidth, the output beam profile is of significant interest. 

The output beam profile was measured using a Spiricon PyroCAM beam profiler and found to be 

somewhat elliptical, as already observed from the output beam of the Spitfire system.  
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3.1.3 High Repetition Rate Laser Sources 

The obvious limitation of the used laser sources so far is the low repetition rate. In the 

following lasers sources used for high repetition rates are detailed. 

The laser sources used to generate such high repetition rate ultrafast radiation were (i) an 

IMRA FCPA Jewel D-400 fiber laser system, FCPA stands for Fiber Chirp Pulse Amplification 

and denotes that the system is fiber based, (ii) an Amplitude Satsuma fiber laser system and (iii) 

an Amplitude t-pulse 500 solid state laser system. A summary of the specifications of the high 

repetition rate laser sources is given in Table 3-1. 

Table 3-1 – Overview of laser parameters of high repetition rate radiation sources 

                    Laser 

Parameter 
IMRA FCPA Jewel Amplitude Satsuma Amplitude t-pulse 500 

𝑓𝑟𝑒𝑝  0.1 to 5 MHz 1 to 5 MHz 9.2 MHz 

𝜆𝑐𝑒𝑛𝑡𝑒𝑟  1043 nm 1030 nm 1030 nm 

𝜏  350 to 450 fs ≤ 400 fs ≈ 500 fs 

𝑃𝑎𝑣𝑔 𝑜𝑢𝑡  0.4 W 5W 5 W 

 

3.1.3.1 IMRA FCPA Jewel D-400 

The IMRA FCPA Jewel D-400 system [www.imra.com/pdf/fcpa.pdf] was an all-fiber-based 

laser system. A general schematic layout of such system is shown in Fig. 3.8. The fiber-based 

oscillator is described in [137]. The free-space compression of the output pulse was achieved in 

an external compressor. The laser system was a turn-key, providing discrete pulse repetition rates 

between 100 𝑘𝐻𝑧 and 5 𝑀𝐻𝑧. The pulse duration was measured to be in the range of 350 to 

http://www.imra.com/pdf/fcpa.pdf
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450 𝑓𝑠, depending on the repetition rate. The center wavelength of the Ytterbium-based laser is 

𝜆𝑐𝑒𝑛𝑡𝑒𝑟 = 1043 𝑛𝑚, thus, semiconductor materials such as GaAs or SiC with a band gap energy 

𝐸𝑔 > 1.18 𝑒𝑉 are transparent for the incident laser radiation. 

 

Fig. 3.8 - General scheme of all-fiber-based ultra-short pulsed laser system as used in 

IMRA FCPA μJewel D-400 laser system[138] 

The advantage of this laser system was the capability of changing the repetition rate freely 

over a large range, giving rise to processing either in the low-repetition-rate or in high-repetition 

rate regime. Additionally, the fiber-based design ensured for one a very circular output beam 

profile and therefore a very good beam quality with 𝑀2 ≅ 1, as depicted in Fig. 3.9. It also made 

the laser system extremely robust against misalignment, increasing the laser up-time and reducing 

the necessity of maintenance.  

The shortfall of this laser system was its rather limited available pulse energy with 

approximately 4 𝜇𝐽 at a repetition rate of 100 𝑘𝐻𝑧. It should be pointed out that the laser supplied 

a constant maximum average power over its repetition rate range of approximately 𝑃𝑎𝑣𝑔.𝑚𝑎𝑥 =

400 𝑚𝑊. The relation between pulse energy, repetition rate and average power is giving by 
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  𝐸𝑃 =
𝑃𝑎𝑣𝑔

𝑓𝑟𝑒𝑝
[𝐽]. ( 3.16 ) 

 

Fig. 3.9 - Measured beam profile of IMRA FCPA Jewel D-400 fiber laser system using a 

Gentec Beamage beam profiler 

From the equation it is apparent that the pulse energy will decrease inversely with repetition 

rate, therefore causing the pulse energy to fall below the material modification threshold at high 

repetition rates. 

3.1.3.2 Amplitude Satsuma Fiber Laser 

To extend the available pulse energy at high repetition rates, an Amplitude Satsuma fiber laser 

system [http://www.amplitude-systemes.com/client/document/satsuma_3.pdf] was used. The laser 

provided a constant output power Pavg out of 5 W over its full range of available discrete available 

repetition rates extending from 1 MHz to 5 MHz. The pulse duration of the individual pulses 𝝉 was 

given by the vendor at installation of the laser with less than 400 𝑓𝑠. The center wavelength 

𝜆𝑐𝑒𝑛𝑡𝑒𝑟 of this Ytterbium-doped fiber-laser system was 1030 𝑛𝑚. The system was equipped with 

an electro-optical (EO) modulator that allowed to control single pulse output to a continuous pulse 

train. The beam profile of the output beam, shown in Fig. 3.10, was comparable to the beam profile 

of the IMRA Jewel laser system close to 𝑀2 ≈ 1. 
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Fig. 3.10 – Measured beam profile of the Amplitude Satsuma laser system Gentec Beamage 

beam profiler 

3.1.3.3 Amplitude t-pulse 500 Solid-State Laser 

The last radiation source used was an Amplitude t-pulse 500 Solid-State laser system 

[http://www.amplitude-systemes.com/client/document/t-pulse_5.pdf]. Similarly the Amplitude 

Satsuma, the laser provided an average output power 𝑃𝑎𝑣𝑔 𝑜𝑢𝑡 of 5 𝑊 at a set repetition rate 𝑓𝑟𝑒𝑝 

of 9.2 𝑀𝐻𝑧. The design of the laser system is solely based on the previously shown Kerr-Lens 

mode-locked oscillator, however to decrease the repetition rate 𝑓𝑟𝑒𝑝 and increase the pulse energy 

𝐸𝑝 the cavity length was greatly extended. The pulse duration 𝜏 was provided by the manufacture 

with approximately 500 𝑓𝑠. The laser was based on diode-pumped Ytterbium-doped crystal and 

therefore had a center wavelength 𝜆𝑐𝑒𝑛𝑡𝑒𝑟 of 1030 𝑛𝑚. The beam profile, shown in Fig. 3.11, was 

not as circular as for the fiber laser system, but still close to 𝑀2 ≈ 1. 

 

Fig. 3.11 - Provide beam profile of Amplitude t-pulse 500 beam profile by manufacture 
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3.2 Propagation of Ultrashort-Pulsed Gaussian Beams 

Special attention had to be paid to the propagation of ultra-short pulsed laser radiation for 

material processing applications. Due to the broad bandwidth of the pulse dispersion can affect the 

temporal profile of the pulse. Therefore, temporal propagation phenomena shall be discussed in 

further detail in the following section. 

3.2.1 Temporal Requirements 

Inherent to ultrashort-pulsed radiation is an extended spectral content necessary to generate 

the short pulse duration. However, due to the frequency-dependence of the refractive index 𝑛(𝜔), 

temporal broadening resulting from pulse dispersion has to be taken into account. These effects 

are most severe for short pulse durations (more spectral pulse width) and often add up noticeable 

over long propagation distances or in high refractive index materials such as semiconductors. 

There are several solutions to cancel temporal broadening resulting from dispersion. In most 

cases, keeping the propagation distances short reduces dispersion in air to a minimum. To 

compensate for longer propagation distances, applying negative chirp to the pulse is an easy 

solution, resulting in the shortest possible pulse on target. Often propagation in vacuum is not or 

only partly suitable, but will not only result in dispersion-free propagation but also reduces the 

probability of damaging beam steering optics due to surface ablation. 

3.2.2 Chromatic Aberration of Ultrashort-Pulse Laser Radiation 

Refraction on material interfaces is common challenge for laser radiation. Usually, chromatic 

aberration can be neglected since laser radiation is monochromatic. That challenge becomes 

significant with ultrashort-pulsed laser radiation due to the broad spectral content. An ultimate 

solution for chromatic aberration does not exist. Keeping the incident angle small reduces the 

effect on the processing results. 
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4  FEMTOSECOND PROCESSING OF TRANSPARENT DIELECTRICS 

The first demonstrations of local material modification by femtosecond laser radiation inside 

a bulk transparent dielectric sample were published in 1996 by two groups, Davis et al. [7] and 

Mazur et al. [78]. Both researchers reported permanent refractive index modification in the focal 

region of a tightly focused femtosecond beam. Davis concluded that the translation of the sample 

relative to the focus beam would introduce 3D structures in the bulk glass such as waveguides. 

Therefore a new technique of 3D bulk structuring was found and thoroughly investigated in the 

following decade. This chapter will discuss the general principles, challenges and opportunities as 

well as advantages and disadvantages of this unique processing technique. 

4.1 Principles of 3D Femtosecond Processing 

4.1.1 Writing Directions 

Based on the non-linear absorption mechanism described in Section 2.2.2, energy is solely 

absorbed in the focal region of a tightly focused ultrashort-pulsed laser beam inside the bulk of a 

transparent material. The energy deposition results in permanent modification of the material in 

focal volume. To create 3D structures, either the sample or the focus has to be moved, which is 

often referred to as the “femtosecond laser direct writing” (FLDW) technique. In the case of a 

moving beam, femtosecond-laser-scanners are commonly used as described in ref. [139]. The 

scanner, in general, contains fast, computer-controlled Galvo-mirrors, which steer the beam over 

the sample. The implementation of high NA objectives in such system however limits the available 

process area, which in return can be increased using combinations of 3D positioning stages and 

the scan-setup. During the experiments conducted in this thesis, such systems were not utilized. 
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Instead, the beam was kept stationary and the sample was moved with respect to the focus. In such 

way large areas could be processed in the material utilizing high NA focusing optics. 

The first developed two-dimensional structures using the FLDW technique were only linear 

waveguides, therefore two general writing schemes were defined, depending on the translation 

direction of the sample. The first, longitudinal writing scheme refers to a translation of the sample 

in the same direction as the propagation direction of the incident laser beam. The second, 

transversal writing scheme describes a translation of the sample in an orthogonal direction with 

respect to the propagation direction of the incident laser beam [140]. Fig. 4.1 (a) and (b) depict 

the longitudinal and transversal laser direct writing scheme, respectively. 

 

 

(a) (b) 

Fig. 4.1 - Schematic of (a) longitudinal and (b) transversal laser direct writing schemes 

Each scheme possesses its own advantages and disadvantages. The longitudinal setup results 

in structures with a very circular modification profile [141], [142], however, the length of the 

introduced structure is limited by the working distance of the focusing optics used. The transversal 
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writing scheme overcomes that limitation; the length of the sample itself only determines the 

length of the structures. However, transversal writing causes the profile of the induced 

modification to be elliptical, similar to the cross-section of the energy absorption [119], [121], 

[143], [144]. The asymmetry of the generated structures can be reduced by either increasing 

focusing power of the used focusing optic or by astigmatic beam shaping of the incident writing 

beam. The later technique modulates the intensity profile of the beam in the focal region using (i) 

a slit close to the input aperture of the focusing optic [129], [145] or (ii) a telescope composed of 

cylindrical lenses before focusing the beam inside the bulk [146]. In both cases the effective 

focusing power in x- and y-direction is modulated due to the incident beam diameter on the input 

aperture of the focusing optic, causing an astigmatic beam in the focal region, hence the name. If 

the sample is translated orthogonally to the direction of the waist resulting from the less focused 

beam, circularly symmetric structures can be induced. 

4.1.2 Focusing Conditions 

Besides the influence on the geometrical symmetry of the generated structure, the focusing 

conditions are of major influence on the achievable results. Three points should be noted here, (i) 

influence of the refractive index of the sample material, (ii) the influence between the interface of 

the sample material and the surrounding material, and (iii) the influence of aberrations. 

4.1.2.1 Refractive Index of Sample Material 

The refractive index 𝑛 of the material to be processed causes a reshaping of the focusing 

geometry. It is well established that the beam waist 𝑤0  and therefore the focus diameter 𝐷𝑓 

remains unchanged but the distance from the interface to the beam waist 𝑠𝑓𝑜𝑐𝑎𝑙 shifts according to 
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the optical path length in the sample material. Furthermore, the Rayleigh length 𝒛𝑹 increases with 

increasing refractive index of the sample according to 

 
  𝑧𝑅 =

𝜋𝑛𝑤0
2

𝜆0
. 

( 4.1 ) 

Thus, the ratio of beam waist and Rayleigh range increases linearly with the refractive index 

of the sample material and hence an increased ellipticity of the focal volume occurs. Therefore, 

the introduced structure becomes increasingly asymmetric between the direction of the beam waist 

and the direction of the Rayleigh length. 

4.1.2.2 Influence of the Interface  

Fresnel reflections on the interface between the sample and the surrounding medium are a 

common challenge when passing beams through transparent materials. Usually the total reflected 

power is not too significant, i.e. only 4% of the total incident power on a single interface of 

common glass and air. The reflected power can be calculated as  

  Prefl = Pinc ⋅ 𝑅⊥/∥, ( 4.2 ) 

with the Fresnel reflection coefficient in orthogonal (⊥) and parallel (||) direction as 

⊥  𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙 = (
𝑛1 cos(𝛼1)−𝑛2cos (𝛼2)

𝑛1 cos(𝛼1)+𝑛2cos (𝛼2)
)
2

, ( 4.3 ) 

||  𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙 = (
𝑛1 cos(𝛼2)−𝑛2cos (𝛼1)

𝑛1 cos(𝛼2)+𝑛2cos (𝛼1)
)
2

. ( 4.4 ) 

However, if the refractive index difference at the interface becomes large, the reflected part 

of the incident power becomes substantial. Moreover, since the TM polarized part of the focused 

beam experiences the Brewster angle phenomena, the function describing the reflected part has a 

dip at certain angles, distorting the focused energy distribution.  
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4.1.2.3 Focusing Aberrations 

The design, and moreover manufacturing process of optical elements generally starts from a 

perspective of geometrical optics in which focusing and defocusing elements are for simplicity 

approximated by spherical shapes. Since this approximation lacks in real-life applications, 

aberrations occur and distort the intensity distribution of ideally focused beams.  

The most concerning aberration of 3D laser fabrication is spherical aberration, however, in 

cases of mid-IR radiation, chromatic aberrations become significant as well. An example of an 

ideally focused and a distorted beam due to spherical aberrations in shown in Fig. 4.2 (a) and (b), 

respectively. The effect scales with the focusing power of the used optic, and hence is significant 

for high-NA microscope objectives as generally employed for 3D FLDW. The poor quality of the 

focal spot will therefore lead to a loss of accuracy in the fabrication process. 

   

(a) (b) (c) 

Fig. 4.2 - Influence of spherical aberration on the focusing capabilities of a beam; (a) 

geometrical approach, (b) focal elongation when focused in air and (c) in transparent 

dielectric 

In commonly available objectives it is custom that spherical aberration is accounted for in the 

optical design, thus correcting it to reassemble the geometrical ideal case. When then used in the 

assumed operation condition, it typically results in a focusing region that is virtually 
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indistinguishable from a geometrically focused case. For commonly used microscope objectives 

such specified operation conditions are  

- optics immersed in standard media (often air) 

- use of standard cover slips 

- transmission of a specified wavelength 

In 3D FLDW these conditions are rarely given. The specified wavelength is normally easily 

corrected for by choosing an aberration-corrected objective specified for the used laser 

wavelength. Since FLDW is used to modify deep inside bulk material, the immersion in a standard 

media or the use of a cover slip is often not applicable. The focus is usually located inside a material 

with a higher refractive index than air. In such case, spherical aberrations will distort the focal 

region as depicted in Fig. 4.2 (c). 

4.1.3 Influence of Processing Parameters 

Obviously, there is a continuous space of processing parameters when structuring inside bulk 

material such as the sample material itself, the pulse energy 𝐸𝑝 , the sample translation speed 

𝑣𝑠𝑎𝑚𝑝𝑙𝑒, the pulse repetition rate 𝑓𝑟𝑒𝑝, the focusing power given by the effective NA of the optic 

used, the spatial overlap of adjacent spots 𝑆𝑠𝑝𝑜𝑡  or tracks 𝑆𝑡𝑟𝑎𝑐𝑘  and the wavelength 𝜆0  of the 

incident radiation. Some of these parameters are dependent on each other. The overlap of spots is 

given by the ratio of repetition rate, translation speed and focus diameter as 

   𝑆𝑠𝑝𝑜𝑡 = 1 −
𝑣𝑠𝑎𝑚𝑝𝑙𝑒

𝑓𝑟𝑒𝑝𝐷𝑓𝑜𝑐𝑢𝑠
, ( 4.5 ) 

where as the overlap between tracks is given by the ratio of line offset 𝛥𝑠𝑡𝑟𝑎𝑐𝑘 and focus diameter 

𝐷𝑓𝑜𝑐𝑢𝑠 as 



 

 74 

   𝑆𝑡𝑟𝑎𝑐𝑘 = 1 −
𝛥𝑠𝑡𝑟𝑎𝑐𝑘

𝐷𝑓𝑜𝑐𝑢𝑠
. ( 4.6 ) 

Often changing one of these parameters influences the processing result significantly. Often 

the accumulated intensity of an area, also called the energy (or intensity) dose, is used for a better 

comparison of experimental results, given as 

 
  𝐼𝑎𝑐𝑐𝑢𝑚 =

𝐸𝑝𝑓𝑟𝑒𝑝

𝜋𝑤0
2 

1

1−𝑆𝑠𝑝𝑜𝑡
=

𝐸𝑝𝑓𝑟𝑒𝑝
2 𝐷𝑓𝑜𝑐𝑢𝑠

𝜋𝑤0
2𝑣𝑠𝑎𝑚𝑝𝑙𝑒

 [10−4 𝑊

𝑐𝑚2
]. 

( 4.7 ) 

However, most often a broad parameter study is necessary to investigate the influence of 

changing process parameter. 

4.2 3D Laser Direct Writing Setup 

The generally used processing setup is depicted in Fig. 4.3 consisting of an illumination 

source, an imaging system, the focusing optic and a 3D translation system for the sample 

movement.  

The motion systems used for FLDW were computer controlled 3D stages ((i) VP-25XA, 

Newport; (ii) ALS-25, Aerotech) with a lateral resolution of < 0.1 m. The software control of the 

motion enabled the translation of the sample along complex 3D paths to fabricate the desired 

structures. The employed focusing optics varied widely with a NA ranging from 0.1 to 0.65. In 

addition to common refractive objectives, also reflective Schwarzschild objectives were used to 

focus the radiation. Industrial CCD cameras were used to implement the imaging systems. A 

collinear path for the imaging and irradiation system was chosen to enable online imaging during 

the sample irradiation. 
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Fig. 4.3 - Scheme of the used 3D processing setup 

A light valve composed of a half-wave plate and a polarizing beam splitter was used to control 

the incident pulse energy on the sample. Since the radiation from the laser output was linearly 

polarized, changing the relative rotary position of the half-wave plate allowed adjustment of the 

throughput of radiation through the beam splitter in a desired direction. 

4.3 Generation of Photonic Devices in Telluride-Glass 

The fabrication of photonic devices is a major application for 3D FLDW [147]. When using 

this technique, the only requirement on the host material so far was that it had to be transparent for 

the wavelength of the writing laser. Therefore, it is rather desirable to tailor the host material 

properties, beside transparency in NIR, to a specific application. For example, a host material that 

is easily doped is of advantage when fabricating a waveguide laser.  
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Telluride glass possesses some properties such as transparency in the mid-IR or dopant 

susceptibility, which makes it especially desirable for photonic device fabrication. However, until 

now, it was not possible to conserve its most promising properties such as mid-IR transparency 

and still enable 3D FLDW inside bulk Telluride glass.  

This section will summarize the unique properties of this material as host and candidate for 

photonic devices and examine the suitability of the FLDW technique to create such devices. 

4.3.1 Properties of Telluride-Glass 

The range of available laser sources extends continuously, especially towards the longer 

wavelength region into the mid-IR. Many applications in medicine, bio-photonics or material 

processing can advance if laser sources in that region would be widely available. Besides the right 

dopant for sufficient pump conversion, a host material transparent in the mid-IR is needed. 

Telluride is one of the outstanding candidates to fulfill many of the desired requirements. 

First and most important, Te-glass is transparent from approximately 5 𝜇𝑚 to the visible 

spectrum around 400 𝑛𝑚 [148]-[150]. That makes the glass family very interesting for photonic 

device applications in the mid-IR.  

Also, Te-glass can accept a high concentration of dopant atoms [151], which makes it a prime 

candidate for photonic device fabrication purposes. Another often-useful property of Te-glass is 

the large non-linear refractive index. In Te-glass n2 is usually one order of magnitude larger than 

in Fused Silica [151], [152], which greatly enhances processes like the Kerr Effect or Self-Phase-

Modulation. The latter can provide a means to generate a broader emission spectrum for “white-

light” generation in the mid-IR. 
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The ordinary refractive index of Telluride glasses is approximately 𝟐, which is higher than for 

standard glasses with a refractive index value of 1.5. However, light propagation in Telluride 

composition does not experience anomalous dispersion in the mid-IR region, which may give rise 

to compensate for pulse broadening in mid-IR fiber laser setups [153], [154]. 

A very commonly used technique of signal amplification in telecommunication applications 

is by Raman shift amplification. The Raman shift in Te-glass supersedes the achievable shifts in 

standard silica-based amplifiers fivefold with a much larger gain coefficient [155], [156]. 

Therefore, Te-based Raman amplifiers may pose a viable alternative to conventionally employed 

amplification systems.  

Overall, the properties of Te-glass could provide a solution for many challenges in photonic 

and optical device fabrication and development. 

4.3.2 Femtosecond Processing 

As indicated, the properties provided by Te-glass compositions are very favorable for 

applications in photonic devices. On the contrary, 3D FLDW is a unique tool to fabricate photonic 

devices very fast and cheap, ideal for prototyping and development purposes. Hence, the 

combination of these fields yields the potential for great success. However, a thorough 

investigation on the influence of varying process parameters is required before such a success story 

can take place.  

In the following, two points of interest were matter of detailed research: 

- The modification threshold of Te-glass compositions and the favorable processing regime 

- The maximal achievable refractive index change in the bulk glass 
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4.3.2.1 Modification Threshold and Processing Regime 

To determine the processing regime, bulk Te-glass was irradiated at different repetition rates 

and pulse energies. It was determined that the bulk material modification threshold is 

approximately 100𝐺𝑊
𝑐𝑚2⁄ , shown in Fig. 4.4(a), which is a surprisingly low value compared to 

other dielectrics like Fused Silica or borosilicate glass with 35𝑇𝑊
𝑐𝑚2⁄  and 25 𝑇𝑊

𝑐𝑚2⁄ , 

respectively [157]. The reason for this large difference in threshold is the increased number of 

pulses, here 4×104, incident for the Te-experiment, whereas the data for Fused Silica and 

borosilicate glass referred to single pulse irradiation. It has been shown that for an increased 

number of incident pulse an accumulative modification threshold exists which is significant lower 

than the single pulse modification threshold [158]-[161].  

Therefore the measured threshold should be referred to as the accumulative modification 

threshold. Fig. 4.4(b) shows the threshold for HA. Below a repetition rate of 𝑓𝑟𝑒𝑝 = 1500 𝑘𝐻𝑧 the 

size of the modification increases with increased number of incident pulses, above this repetition 

rate the size remains constant. In addition, an extended outer ring around the center spot appears 

in the presence of HA, characteristic for the high repetition rate regime. This extended modification 

size is caused by the increased temperature in the focal volume and hence local melting during the 

processing in the high repetition rate regime, as demonstrated before by Schaffer [162], Gattass 

[77] and Eaton [127]. 
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(a) (b) 

Fig. 4.4 – Confocal microscope images of threshold maps of investigated Te-glass 

composition, (a) at a constant avg. power of 100 𝑚𝑊 and (b) at a constant pulse energy of 

200 𝑛𝐽 over the range of the laser repetition rate, at a focusing depth of 150 𝜇𝑚 using a 

NA of 0.4 with approximately 350 𝑓𝑠 pulse duration 

4.3.2.2 Refractive Index Modification 

To investigate the change in refractive index, waveguides were written inside the bulk material 

using a transversal writing scheme, Fig. 4.1(b). Generation of waveguides was performed varying 

the following parameters 

- pulse energy 𝐸𝑝 

- translation speed 𝑣𝑤𝑟𝑖𝑡𝑒 

- repetition rate 𝑓𝑟𝑒𝑝 
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- numerical aperture (𝑁𝐴) 

- focusing depth in the material from the sample surface 𝑡𝑓𝑜𝑐𝑢𝑠 

A simple far-field NA-measurement setup was employed, as described in [163], to investigate 

the achieved index change. An example of a recorded far-field image is shown in the inset of Fig. 

4.5 and Fig. 4.6. It was found that a positive homogenous refractive index change, as typical for 

Type I modification (see Section 2.2.6), was induced for focusing NAs of 0.25, 0.4 and 0.65 in 

the low repetition rate regime at 𝑓𝑟𝑒𝑝 = 100 kHz, as depicted in Fig. 4.5. However, the largest 

change was achieved using an NA of 0.4. It is also curious to notice, that the fluence necessary to 

induce a homogenous change was approximately equal for an NA of 0.25  and 0.4 , but 

approximately fourfold higher for an NA of 0.65. 

 

Fig. 4.5 – Graph of the homogeneous positive refractive index modification for the used 

focusing objectives derived from the farfield intensity distribution for a constant laser 

repetition rate of 100 𝑘𝐻𝑧 ; inset: image of farfield intensity distribution used for 

waveguide NA measurement 
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Successful waveguiding was also obtained when irradiating the sample at a repetition rate of 

𝑓𝑟𝑒𝑝 = 1 MHz close to the high repetition rate regime, as depicted in Fig. 4.6. The magnitude of 

the refractive index change here was approximately equal to the change when irradiating with 100 

kHz repetition rate. However, from the shown graphs it is apparent that an increased energy leads 

to a higher index change, up to the point at which inhomogeneous modification takes place. A 

waveguiding shell surrounding a non-waveguiding core characterized this type II modification 

(images not shown). 

 

Fig. 4.6 – Graph of the dependence of the achievable refractive index modification as a 

function of sample translation speed for a constant laser repetition rate of 1 𝑀𝐻𝑧; inset: 

image of farfield intensity distribution used for waveguide NA measurement 

The largest refractive index change achieved that provided a wave-guiding structure was 

approximately 𝛥𝑛max𝑔𝑢𝑖𝑑𝑖𝑛𝑔 ≈ 5 ∙ 10−5. This value is two to three orders of magnitude lower 

than demonstrated for ultrashort-pulsed laser radiation induced refractive index changes in Fused 



 

 82 

Silica [111], [164] or borosilicate glass [128], respectively. Nevertheless, the presented results 

showed for the first time wave-guiding structures in a non-phosphate Te-glass composition. 

It should be pointed out here that an increase in induced refractive index change was observed 

when increasing the focusing depth for the irradiation process, shown in Fig. 4.7(a). This result is 

unexpected since the influence of spherical aberrations would distort the focusing volume and 

therefore reduce the energy per volume. Furthermore, due to the larger non-linear refractive index 

of Te-glasses self-focusing could be expected with increased focusing depth. The measurement of 

the depth of the induced modification revealed that self-focusing was not occurring during the 

irradiation process, as depicted in Fig. 4.7(b).  

  

(a) (b) 

Fig. 4.7 – Graph of the dependence of the (a) achievable refractive index modification on 

the focusing depth with respect to the sample top surface and (b) actually measured 

focusing depth after irradiation at a constant laser repetition rate of 100 𝑘𝐻𝑧 

The refractive index profile of the generated waveguides was measured using quantitative 

phase imaging [165]-[167]. It is apparent from Fig. 4.8 that an area of reduced refractive index 

surrounds the positive center of the modification. These findings are consistent with findings by 
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Fernandez et al. [168] and Nandi et al. [114], the latter suggested that a migration of La-stabilizer-

atoms from the center region into the surrounding volume cause the modulation in refractive index 

change in this glass composition. 

 

Fig. 4.8 – Graph of the refractive index profile of modification in Te-glass due to ultrashort-

pulsed laser irradiation 
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5  NANO-FIBER GENERATION ON TRANSPARENT DIELECTRIC 

SURFACES 

5.1 Introduction 

As described in Section 2.2.7, there is a significant increase in local temperature in the focal 

volume when processing materials at pulse high repetition rates. This increased heat can quickly 

lead to local melting of the material [169], [170]. If the focal volume is in close proximity to the 

sample surface, the molten material can break through the surface and form fiber-like structures 

on the surface. The diameter of the generated fibers is in the nanometer scale, and the aspect ratio, 

which is the ratio of the width of the nano-fiber compared to its length, can be greater than 1:1000. 

Furthermore, the width of the fiber is approximately constant over its full length. Such formation 

of nano-fiber structures from the surface has not previously been observed using bulk femtosecond 

laser irradiation. The underlying mechanism that causes the formation of the nano-fibers by 

femtosecond irradiation is still under investigation. 

However, similar nano-fiber formations have been reported using cw-radiation in combination 

with super-sonic gas jets [171]-[174] on soda-lime glasses and polymer materials. In these 

experiments a CO2 laser at an emission wavelength of 10.4 m was used to heat the sample 

material to a liquid state, then the gas jet was applied to draw the fibers from the liquefied volume. 

Even though the processing conditions are not precisely the same, Quintero et al. developed a 

mathematical model to describe the formation process. 

The following chapter will detail the experiments and results of such nano-fiber formation due 

to high repetition rate ultrashort-laser pulse trains. Similarities between the here obtained 

experimental results and the result utilizing a super-sonic gas jet will be discussed. 
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5.2 Experimental Conditions 

A wide range of processing parameters, such as pulse repetition rate, number of pulses, 

focusing depth, and incident average power, needed be covered to investigate the dependence of 

the nano-fiber formation on the irradiation condition.  

5.2.1 Sample Irradiation Setup 

For the subsequent experiments, the samples were irradiated using the previously described 

processing station (Chapter 4.2) providing the focusing objective, online imaging capabilities and 

computer-controlled motion system for sample positioning. 

5.2.1.1 Pulse Repetition Rate Modulation 

Three high repetition rate laser sources were used to conduct the nano-fiber formation 

experiments. At CREOL, an IMRA Jewel FCPA laser system and an Amplitude Satsuma fiber 

laser system were used. Both laser sources provided step-wise variable pulse repetition rates, 

ranging from 0.1 to 5 𝑀𝐻𝑧 and 0.5 to 5 𝑀𝐻𝑧 respectively. An Amplitude t-pulse 500 solid-state 

laser system was used to perform the experiments at the Bordeaux University. This laser source 

had a set repetition rate of 9.2 𝑀𝐻𝑧. The laser sources are described in more detail in Chapter 

3.1.3.  

5.2.1.2 Number of Incident Pulses 

Depending on the laser source, control over the number of pulses was realized by either an 

external mechanical shutter or a laser-integrated pulse-picker. This provides the ability to vary the 

incident number of pulses on the sample between 100 and 107, depending on the particular 

experiment. 
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5.2.1.2.1 External Mechanical Shutter 

Pulse train durations of greater than 4 𝑚𝑠 could be achieved using an external mechanical 

shutter. The shutter was electronically controlled from within the software program that also 

controlled the motion of the 3D-stage. Therefore a synchronized motion to the incident pulse train 

could be accomplished. 

5.2.1.2.2 Laser-Integrated Pulse-Picker 

For pulse trains shorter than 4 𝑚𝑠  a pulse picker was necessary. It allowed single pulse 

control, and was also integrated in the setup such that it could be triggered from within the program 

that controlled the sample motion. Therefore synchronized motion and irradiation could be 

accomplished. The opening duration was externally controlled using a time-delay generator 

(Stanford Research Systems DG535) with a programmable time delay resolution of less than 10 

ps. 

5.2.1.3 Focusing Optics 

Mitutoyo NIR long working distance objectives were used during the experiment to focus the 

laser radiation on and inside the bulk samples. Such objectives provided working distances larger 

than 10 mm at a high numerical aperture of greater than 0.5, and therefore did not prohibit or 

interfere with the formation of several hundreds of micrometers long nano-fibers on the sample 

surface. Unfortunately, due to the involved number of optical surfaces in these objectives the 

transmission was only approximately 50%. 

The physical focus position was varied in 10 𝜇𝑚 steps ranging from 0 to 100 𝜇𝑚 inside the 

bulk sample with respect to the sample surface. 



 

 87 

5.2.1.4 Incident Average Power 

The incident average power 𝑃𝑎𝑣𝑔 was controlled using a light-valve as described in Section 

4.2, or by modulation of the diffraction efficiency of the EO-module of the pulse picker. That 

allowed the incident average power to be varied between 0 and maximal 2.5 𝑊. A graph that 

depicts the incident power on the sample as function of EO-voltage is shown in Fig. 5.1. 

 

Fig. 5.1 - Graph of the incident average power as a function of the EO-module voltage of 

the pulse-picker 

Table 5-1 below lists a summary of the covered processing parameter space during the 

experiment.  
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Table 5-1 - Range of processing parameters for nano-fiber formation experiment 

Processing Parameter Range 

Repetition Rate 𝒇𝒓𝒆𝒑 0.1 –  9.2 𝑀𝐻𝑧 (step-wise) 

Number of Pulses #𝒑𝒖𝒍𝒔𝒆𝒔 1 - ∞ 

Focusing Depth 𝒕𝒇𝒐𝒄𝒖𝒔 0 –  0.1 𝑚𝑚  

Average Power 𝑷𝒂𝒗𝒈 up to 5 𝑊 laser output 

5.2.1.5 External Field Setup 

To investigate whether the ejected nano-fibers possess a charge during their formation or not, 

an irradiation experiment on EAGLE2000® was performed within an externally applied DC E-

Field. A custom sample holder was designed that allowed to application of a DC voltage in the 

range from 0 to 1 𝑘𝑉 using a Bertan Associates, Inc. Model 2025-03R high voltage supply, shown 

in Fig. 5.2. The EAGLE2000® sample was sandwiched between the two metal plates (brown parts 

in Fig. 5.2), while the voltage supply was connected to the metal screws. 

 

Fig. 5.2 - Custom designed sample holder to apply a DC E-Field during irradiation process 
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5.2.2 Material-Dependence of Nano-Fiber Formation 

Moreover, to investigate the dependence of the nano-fiber formation on the material, these 

experiments were performed in five different materials with varying lattice structure and melting 

temperature. Of special interest was the influence of an amorphous or crystalline lattice, due to its 

implications on the heat conductivity of the material. A list of the investigated materials and their 

properties is given in Table 5-2. 

Table 5-2 - Material properties of sample materials used in nano-fiber formation experiments 

Material Lattice 

Structure 

Heat 

Conductivity 

[𝑾 𝒎 ⋅ 𝑲⁄ ] 

Specific Heat 

[
𝑱

𝒌𝒈 ⋅ 𝑲⁄ ] 

Melting 

Temperature 

[𝑲] 

Fused Silica SiO2 amorphous 1.38 0.703 ⋅ 103 2100 

Fused Quartz SiO2 crystalline 10.4  0.733 ⋅ 103 2200 

EAGLE2000® amorphous 0.8 − 1.4  (0.7 − 1.2 ) ⋅ 103 1100 

FOTURAN® amorphous 1.35 0.88 ⋅ 103 1000 

Sapphire Al2O3 crystalline 42 0.756 ⋅ 103 2400  

5.2.2.1 Material Properties of Used Dielectrics 

Fused Silica and Fused Quartz are the simplest dielectrics with respect to their composition, 

being SiO2. The two materials vary only in the lattice structure, amorphous and crystalline, 

respectively. The transmission edge of these materials was shorter than 180 𝑛𝑚 as shown in Fig. 

5.3. That wavelength corresponds to a bandgap energy of 𝐸𝑔 > 7 𝑒𝑉, using Equ. ( 2.1 ). Often a 

bandgap energy of 𝐸𝑔 ≈ 9 𝑒𝑉 is reported in the literature [113], [175]. 
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The commercial commonly used dielectric EAGLE2000® is a aluminumsilicate glass, 

containing beside it’s base material SiO2 (55%) addition compounds such as B2O2 (7%), Al2O3 

(10.4%), CaO (21%), and NaO (1%). The energy bandgap of this glass is lower than that of Fused 

Silica, Quartz (compare Fig. 5.3), making it easier to process with the available laser photon 

energies. In addition, the melting temperature is lower compared to the other three materials, 

allowing heat accumulation effects to occur at much lower pulse energies. The transmission edge 

of this dielectric is at 275 𝑛𝑚 (Fig. 5.3) and thus the bandgap energy is 𝐸𝑔 = 4.5 𝑒𝑉. 

FOTURAN® also consist of many additive glass modifiers [176], however, differs from the 

rest due to its silver dopant content. The energy bandgap of this glass composition is also 𝐸𝑔 =

4.5 𝑒𝑉 as apparent from the transmission edge at 275 𝑛𝑚.  

As is Fused Quartz, Sapphire is also a crystalline dielectric. The band edge and bandgap 

energy are 140 𝑛𝑚 [177] and 𝐸𝑔 = 8.8 𝑒𝑉, respectively. 
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Fig. 5.3 - Measured transmission spectra of the used dielectrics 

5.3 Observation 

During the irradiation process a bright white light emission was apparent from the focal 

volume for some of the materials irradiated. Fig. 5.4 (a) shows images taken during the sample 

irradiation process for a pulse repetition rate of 𝑓𝑟𝑒𝑝 = 9.2 𝑀𝐻𝑧. Lowering the incident average 

power below a certain threshold value caused the bright emission to disappear, shown in Fig. 

5.4(b). The particular threshold energy at which the white light emission occurred was material 

dependent and is listed in the Table 5-3 below. 
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Table 5-3 - Table of threshold pulse energy for white light emission to occur during irradiation process 

Material 𝐸𝑝 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [𝑛𝐽] 

Fused Silica 82 

EAGLE2000® 27 

FOTURAN 27 

 

  
(a) (b) 

Fig. 5.4 – Images of light emission during the sample irradiation process with (a) strong 

white light emission and (b) weak emission at a pulse repetition rate of 9.2 𝑀𝐻𝑧 

To characterize the emission during the irradiation process spectra were recorded for various 

repetition rates, materials and incident average powers. Fig. 5.5 depicts such spectra exemplary 

for Fused Silica. The emission spectra from EAGLE2000® and FOTURAN® look, in general, 

similar to the spectra of Fused Silica. 

Fig. 5.5(a) shows that the emitted intensity increases with increasing incident average power. 

The peak emission wavelength does not shift with average power. Fig. 5.5(b) shows the normalized 
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emission at five different repetition rates. It is noteworthy and unexpected that the peak wavelength 

also did not shift. 

 
 

(a) (b) 

Fig. 5.5 – Recorded emission spectra during the irradiation process of Fused Silica at (a) 

different incident average power at 𝑓𝑟𝑒𝑝  =  6.1 𝑀𝐻𝑧, and (b) different repetition rates at 

maximal average power 

After irradiation all processed areas on the samples were imaged using an Olympus BX-52 

confocal microscope as well as a SEM. In addition, TEM was performed on some of the generated 

nano-fibers. The follow sub-section will detail the observations made for the various exposed 

materials. 

5.3.1 Confocal Microscopy 

An overview Differential Interference Contrast (DIC) image of the irradiation map was 

recorded for each processed focusing depth, shown for 100 𝜇𝑚 in Fig. 5.6. The laser radiation was 

incident from the top. Clearly visible is the change in modified area around the center spot in north-

south direction due to the modulation of number of pulses. Less obvious is the areal change in 

east-west direction in Fig. 5.6 due to the modulation of incident average power. The overview 
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images were used to measure the z-expansion length of the modified region in the propagation 

direction of the incident beam. The value of the z-expansion length was assumed to be equal to the 

maximum focusing depth at which the modification broke through the surface. In a second 

measurement step, the dimensions of each irradiation site were recorded using maximum 

microscope magnification. An example is shown in the inset on the right of Fig. 5.6. 

 

Fig. 5.6 – Confocal microscope image of irradiation map, right: single irradiation site 

It was found, that most irradiation sites in Fused Silica, EAGLE2000®, and FOTURAN® 

developed an inner and outer structure when exposed to several pulses at high repetition rate. The 

inner structure at the center of the modified area is here defined as the core modification, most 

likely consisting of a micro-cavity. The outer ring structure around the core modification is defined 

as the fusion front diameter. It should be pointed out that crystalline Fused Silica, a.k.a. Fused 

Quartz, and Sapphire did not develop the outer structure but did form the inner micro-cavity. 

In the following, the fusion front diameter and z-expansion length for Fused Silica, 

FOTURAN®, and EAGLE2000® will be discussed in detail. 

5.3.1.1 Fused Silica  

Fig. 5.7 and Fig. 5.9 illustrate the evolution of (a) the fusion front diameter and (b) the z-

expansion length for Fused Silica at NA’s of 0.5 and 0.7 respectively. 
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(a) (b) 

Fig. 5.7 – Measured values for (a) the fusion front diameter and (b) the z-expansion length 

for Fused Silica at a objective NA 0.5 

The dimensions on the graph in Fig. 5.7 clearly show that the z-expansion length extended 

much faster than the fusion front diameter. To demonstrate this even further, Fig. 5.8 depicts a 

direct comparison of z-expansion and fusion front diameter for incident average powers of 1.7 𝑊 

at NA’s of 0.5 and 0.7 respectively. However, for a NA of 0.5 the z-expansion plateaued after 

approximately 104 pulses at about 75 𝜇𝑚 length in axial direction from the focusing plane towards 

the incident beam, whereas the fusion front diameter continued to grow exponentially for sufficient 

incident average power. At low incident average power the radial expansion also stopped quickly.  
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(a) (b) 

Fig. 5.8 – Comparison of the measured fusion front diameter and z-expansion for (a) NA 

0.5 at 1.7 𝑊 incident power and (b) NA 0.7 at 1.4 𝑊 incident power in Fused Silica 

As to the dependence on incident average power (Fig. 5.7), in the case of the z-expansion 

length, it appears the modification grew linearly with increased power to a maximum value and 

then plateaued as well. The fusion front diameter also grew linearly but did not reach a maximum 

value at which the growth stopped.  

As the general same trend is observable for a stronger focusing using a NA 0.7 in Fig. 5.9, the 

z-expansion plateaus much earlier at an axial length of approximately 45 𝜇𝑚. As well as before, 

the growth of the fusion front diameter here was also exponential with respect to the incident 

number of pulses, however, at lower incident average power the modification growths plateaus as 

well as for a NA 0.5. 
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(a) (b) 

Fig. 5.9 – Measured values for (a) the fusion front diameter and (b) the z-expansion length 

for Fused Silica at a objective Fused Silica NA 0.7 

The dependence of the modification size in r- and z-directions as a function of the exposure 

time is depicted in Fig. 5.10 for maximal incident average power. Here exposure time is directly 

proportional to the number of incident pulses as 

  𝑁𝑝𝑢𝑙𝑠𝑒𝑠 = 𝑡𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒  ⋅  𝑓𝑟𝑒𝑝 ( 5.1 ) 

The graph of Fig. 5.10(a) shows that the growth of the fusion front diameter was independent of 

the repetition rate for 𝑓𝑟𝑒𝑝 ≥ 1 𝑀𝐻𝑧 . The z-expansion is slightly increased for 1 𝑀𝐻𝑧  and 

9.2 𝑀𝐻𝑧, as illustrated in Fig. 5.10(b).  

In addition, both graphs show that the modification size decreased with repetition rate at low 

number of pulses of 𝑁 > 102. 
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(a) (b) 

Fig. 5.10 – Graphs of (a) the fusion front diameter and (b) the z-expansion length vs. the 

pulse repetition rate for maximum incident average power at a NA 0.65 in Fused Silica 

From the data in Fig. 5.10 can be concluded that the pulse energy is the driving factor for the 

modification size at low incident number of pulses. At an increased exposure time, and therefore 

large number of incident pulses, the heat accumulation effect take over and the modification size 

becomes solely dependent on the accumulated incident power, and therefore independent of 

repetition rate. 

Applying the technique introduced first by Liu [95], it was possible to estimate the 

accumulated modification threshold for each modification site as a function of pulse repetition rate 

and number of incident pulses. Fig. 5.11 (a) shows the fitted graph. Corresponding to each 

threshold, the light-matter interaction diameter can be estimated, shown in Fig. 5.11(b). This value 

was a fitting parameter following the approach by Martin [178]. 
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(a) (b) 

Fig. 5.11 – Fitted graphs of (a) bulk modification threshold fluence vs. the number of 

incident pulses for various repetition rates and (b) the corresponding interaction diameter 

in Fused Silica 

Fig. 5.11(a) clearly shows that the threshold decreases with increased number of incident pulses 

of up to approximately 200 – 500 independently of repetition rate. For a larger number of pulses 

the thresholds still decrease but with individual tracks for each repetition rate. Thereby, higher 

repetition rates lead to lower threshold fluences. The slope of the tracks is similar between the 

repetition rates. At the same time, the interaction diameter grew very quickly within approximately 

the first 500 pulses, after which the increase slows down significantly. 

Jee et al. [179] reported prior that a function of the form  

  𝐹𝑡ℎ (𝑁) = 𝐹𝑡ℎ(1) ⋅ 𝑁𝜉−1, ( 5.2 ) 

describes the dependence of the accumulated threshold fluence on the number of incident pulses. 

This function will not fully describe the results observed here for Fused Silica in the heat 
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accumulation regime. In fact, a super-position of two such functions would describe the system 

more accurate 

  𝐹𝑡ℎ 1 (𝑁) = 𝐹𝑡ℎ 1(1) ⋅ (𝑁)𝜉−1, ( 5.3 ) 

 𝐹𝑡ℎ 2 (𝑁) = 𝐹𝑡ℎ 2(1) ⋅ (𝑁)𝜍−1. ( 5.4 ) 

Miyamoto et al. [180], [181] reported a model at which the absorption scheme changes from 

a non-linear absorption regime for low repetition rates to a quasi-linear absorption regime at high 

repetition rate. The model suggests that the electron plasma will not decay in between pulses. The 

quasi-linear absorption at high repetition rates is then due to electron heating of the hot plasma in 

the absorption volume of the previous pulse. The suggested model also predicted the increased 

growth of the z-expansion towards the incident beam as observed in Fig. 5.8.  

If one assumes the validity of the model suggested by Miyamoto then set of equations 

represents the slopes of the graph in Fig. 5.11(a) with Equ. ( 5.3 ) describing the threshold 

characteristics in the low repetition rate (non-HA) regime and Equ. ( 5.4 ) describing the threshold 

characteristics in the high repetition rate (HA) regime. It becomes then also apparent that 𝐹𝑡ℎ 1(1) 

and 𝐹𝑡ℎ 1(1) are the threshold fluences for the non-HA regime and the HA-regime in [
𝐽

𝑐𝑚2] , 

respectively. A line fit of each regime is shown in Fig. 5.12. The fitting parameters used in Equ. ( 

5.3 ) and ( 5.4 ) were  𝐹𝑡ℎ 1(1) ≈ 1.51 ± 0.44 𝐽𝑐𝑚−2  and, listed as vector for the different 

repetition rates, 𝐹𝑡ℎ 2(1) = [0.071; 0.05; 0.041; 0.034; 0.027; 0.023] 𝐽𝑐𝑚−2 . 𝐹𝑡ℎ 2(1)  clearly 

showed the reduced threshold fluence value for higher repetition rates suggesting the quasi-linear 

absorption scheme. 
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Fig. 5.12 - Graph of fitted threshold fluences functions according to Equ. ( 5.3 ) and ( 5.4 

) on Fused Silica for different pulse repetition rates 

5.3.1.2 Aluminumsilicate glass EAGLE2000® 

The previous established general dependencies of the fusion front diameter and z-expansion 

with respect to number of incident pulses and average power is also apparent in this 

aluminumsilicate glass, shown in Fig. 5.13. Again, the z-expansion (Fig. 5.13(b)) grew at a higher 

rate than the fusion front diameter (Fig. 5.13(a)). Due to the reduced bandgap energy the 

modification occurred at lower average power than in Fused Silica. 
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(a) (b) 

Fig. 5.13 – Measured values for (a) the fusion front diameter and (b) the z-expansion length 

for EAGLE2000® at a objective NA 0.5 

Due to the increased thermal conductivity, the growth of the modified volume was faster than 

seen previously in Fused Silica. Fig. 5.13(a) shows a hyper-exponential growth with the number 

of incident pulses and a non-linear growth with incident average power. The z-expansion overall 

did not saturate with respect to the incident average power and the here-applied processing window 

as seen in Fused Silica. On the contrary, saturation of the modification size takes place quickly 

with respect to the number of pulses at lower average powers and becomes less prominent at higher 

powers. 

The fusion front diameter was, as well as in Fused Silica, independent on the pulse repetition 

rate, depicted in Fig. 5.14(a). The z-expansion length occurs to have no functional dependence 

within the frame of the here-applied parameters, but overall follows a similar shape, shown in Fig. 

5.14(b). 
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(a) (b) 

Fig. 5.14 – Graphs of (a) the fusion front diameter and (b) the z-expansion length vs. the 

pulse repetition rate for maximum incident average power at a NA 0.65 in EAGLE2000® 

Fig. 5.15 illustrates the dependence of (a) the modification threshold fluence and (b) the 

corresponding laser-matter interaction diameter with respect to the number of incident pulses for 

varying pulse repetition rates. The clear shoulder, which was very apparent in the case of Fused 

Silica, is less obvious here. The cause for this is the increased heat conductivity in 

aluminumsilicate glass, and therefore the reduced heat diffusion time out of the focal volume. A 

graph of the fitted slopes according to Equ. ( 5.3 ) and ( 5.4 ) is shown in Fig. 5.1. 
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(a) (b) 

Fig. 5.15 – Fitted graphs of (a) bulk modification threshold fluence vs. the number of 

incident pulses for various repetition rates and (b) the corresponding interaction diameter 

in EAGLE2000® 

The fitting parameters used were 𝐹𝑡ℎ 1(1) ≈ 0.72 ± 0.42 𝐽𝑐𝑚−2 and, listed as vector for the 

different repetition rates, 𝐹𝑡ℎ 2(1) = [0.044; 0. 049; 0.03; 0.027; 0.035; 0.03] 𝐽𝑐𝑚−2. 

It is worth noting that the threshold fluence for the non-HA regime decreased almost one order 

of magnitude but the threshold fluences for the HA regime were almost the same as observed in 

Fused Silica. That further supports the claim that the absorption scheme is material independent at 

high laser pulse repetition rates as it would be the case for electron heating. 
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Fig. 5.16 – Graph of fitted slopes to the threshold fluence functions according to Equ. ( 5.3 

) and ( 5.4 ) on EAGLE2000® for different pulse repetition rates 

5.3.1.3 FOTURAN® 

In FOTURAN® the same general trend as established in the former materials was apparent, 

where the expansion in the propagation direction of the beam is much faster than the growths in 

the orthogonal plane, depicted in Fig. 5.13. Similar to aluminumsilicate glass the z-expansion had 

no clear saturation point within the here applied process parameters. Moreover, the growth of the 

fusion front due to the number of incident pulses is also hyper-exponential.  

Fig. 5.18 depicts (a) the modification threshold fluence dependent on the number of incident 

pulses and (b) the corresponding light-matter interaction diameter at a pulse repetition rate 𝑓𝑟𝑒𝑝 of 

9.2 𝑀𝐻𝑧 . The onset of the bend in the slope of the modification threshold occurred at 

approximately 105 accumulated pulses. 
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(a) (b) 

Fig. 5.17 - Measured values for (a) the fusion front diameter and (b) the z-expansion length 

for FOTURAN® at an objective NA 0.5  

  
(a) (b) 

Fig. 5.18 - Graphs of (a) modification threshold fluence and (b) the corresponding light-

matter interaction diameter at a pulse repetition rate 𝑓𝑟𝑒𝑝 of 9.2 𝑀𝐻𝑧 in FOTURAN® 
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Fig. 5.19 depicts the fitted slopes to determine the threshold fluence for non-HA and HA 

regime. The fitting parameters used were 𝐹𝑡ℎ 1(1) = 0.13 𝐽𝑐𝑚−2 and 𝐹𝑡ℎ 2(1) = 0.0015 𝐽𝑐𝑚−2. 

These fluences are one order lower than observed for Fused Silica or EAGLE2000®. The cause 

was believed due to the low number of data points to determine the slope for the HA regime. 

 

Fig. 5.19 - Graph of fitted slopes to the threshold fluence functions according to Equ. ( 5.3 

) and ( 5.4 ) on FOTURAN® at 𝑓𝑟𝑒𝑝 = 9.2 𝑀𝐻𝑧 

5.3.1.4 Fused Quartz and Sapphire 

In the cases of Fused Quartz and Sapphire no evidence of a fusion front was found, as the DIC 

images shown in Fig. 5.20 illustrate. The materials possess a very high thermal conductivity due 

to the crystalline lattice structure. This is assumed to result in the thermal energy being dissipated 

out of the focal region faster than the pulse-to-pulse time. 
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(a) (b) 

Fig. 5.20 - DIC images of (a) Fused Quartz and (b) Sapphire irradiated with high repetition 

rate fs-pulse trains; insets are magnified views of single irradiation sites, there is no 

evidence for the previously found fusion front 

5.3.1.5 Radial Fusion Front Expansion 

Using the model introduced in Chapter 472.2.7 for the accumulated heat in the focal volume, 

the expansion of the fusion front can be simulated. Fig. 5.21 shows the computational results 

(dashed lines) and the actual measured fusion front radii (circles) for Fused Silica, FOTURAN®, 

and EAGLE2000® at a pulse repetition rate of 9.2 𝑀𝐻𝑧 when the maximum pulse energy suitable 

for the sample material was applied. Within each simulation the fusion front radius at each time 

step was assumed to be the radial point at which the local temperature reached melting temperature 

for the particular material. 

The simulated radii of the fusion front were approximately two- to threefold overestimated 

even though the general trend can be seen. The reason for this overestimation is that the heat 

diffusion 𝐷 was set as a constant; however, at such large changes in temperature this assumption 

will not hold. 
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Fig. 5.21 – Graph of the Fusion Front expansion: Model vs. Measured Results 

5.3.1.6 Nano-Fibers in the Confocal Microscope 

If nano-fibers are formed on the surface of the irradiated sample they are visible under the 

confocal microscope as blurry string-like shadows. An example of such surface images is shown 

in Fig. 5.22. The red arrows in the image point towards the nano-fibers standing up from the sample 

surface.  

 

Fig. 5.22 - DIC microscope image of irradiated area on a Fused Silica sample, red arrows 

point to nano-fiber 
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Because of the dimensions of the nano-fibers, SEM was necessary to resolve their features. 

The result of SEM measurements will be detailed after the summary of the confocal microscopy. 

5.3.1.7 Summary Confocal Microscopy 

In summary it was found that there is an increased growth rate in axial z-direction towards the 

incident beam compared to the growth rate in the orthogonal radial plane. This results were in 

agreement with Miyamoto as well as Richter et al. [182], which both reported increased growth in 

the beam direction when using high repetition rate pulse trains. Moreover, for the first time there 

is clear evidence that supports a model based on a change in the absorption scheme when utilizing 

sufficient pulses at high repetition rates. It was shown that the slope of the threshold fluence 

decreased by two orders of magnitude when a quasi-linear absorption scheme due to electron 

heating becomes effective. 

In addition, a thermal diffusion model based on HA effects within the focal volume was 

developed and produced good agreement with the measured result of the fusion expansion 

diameter.  

5.3.2 Scanning-Electron Microscopy 

Do to the small diameter of the nano-fibers, in the range of approximately 100 𝑛𝑚, SEM 

images were taken of the irradiated sample surfaces. It should also be pointed out, that the interest 

in this study lies on fibers originating from an intact sample surface and not resulting from a 

material surface explosion. 

 Four out of the five investigated materials developed nano-fiber, Fused Silica, Fused Quartz, 

EAGLE2000® and FOTURAN®, as depicted in Fig. 5.23. That also coincided with the simulation 
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result using the heat diffusion model (compare Chapter 2.2.7), in which the four materials that 

developed nano-fibers also reached melting temperature in the focal volume, shown in Fig. 5.24.  

  
(a) (b) 

  
(c) (d) 

Fig. 5.23 - SEM images of nano-fibers formed on the surface of (a) FOTURAN® glass, 

(b) Fused Quartz, (c) Fused Silica glass and (d) EAGLE2000® 

The maximal achievable aspect ratio of the nano-fibers varied greatly with the base material 

from approximately 1: 100 for FOTURAN® to over 1: 1000 for Fused Silica. 

Foturan Glass Fused Silica Crystal 

Fused Silica Glass BK7 Glass 



 

 112 

 

Fig. 5.24 - Graph of the simulated temperature at r = w0 for investigated materials 

Due to the nature of the SEM acquisition, all dielectric samples had to be coated with 

Palladium to allow the surface to become conducting and therefore prevent charge build-up during 

the image acquisition. Due to the coating process, many of the former free-standing nano-fibers 

became attached to the sample surface. However, in a few cases the nano-fiber did not attach to 

the sample surface, which allowed them to move around under the influence of the E-field during 

the image acquisition. This movement is shown in the series of SEM images in Fig. 5.25, and taken 

as proof that the nano-fibers indeed are freestanding.   
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(a) (b) (c) (d) (e) 

Fig. 5.25 - Series of SEM images of the surface of irradiated Fused Silica with moving 

nano-fibers 

As previously stated, the aspect ratio of the nano-fibers greatly depended on the sample 

material. It is noteworthy that the width of the nano-fiber did not vary as much; it was determined 

to be between approximately 50 𝑛𝑚 and 150 𝑛𝑚. Therefore, the major difference between the 

nano-fibers formed on different materials was their length. Table 5-4 lists the general found 

features. 

Table 5-4 - Characteristic features of the nano-fibers for investigated materials 

Material Avg. width Avg. length Aspect Ratio 

FOTURAN® ~ 150 nm ~ 15 mm 1:100 

Quartz Crystal ~ 50 nm ~ 10 mm 1:200 

EAGLE2000®  ~ 125 nm ~ 30 mm 1:250 

Fused Silica ~ 50 nm ~ 60 - 90 mm > 1:1000 

Sapphire No nano-fibers formed 
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5.3.2.1 Extreme Fiber-Aspect-Ratio in Fused Silica 

To illustrate the extraordinary nano-fiber aspect ratio resulting from the irradiation of Fused 

Silica, Fig. 5.26 depicts some of the found fiber formations. The nano-fiber in Fig. 5.26 (a) was 

generated at a pulse repetition rate of  𝑓𝑟𝑒𝑝 = 3 𝑀𝐻𝑧 at a focusing depth of 𝑡𝑓𝑜𝑐𝑢𝑠 = 20 𝜇𝑚. It has 

an approximately length 𝑙𝑓𝑖𝑏𝑒𝑟 ≈ 180 𝜇𝑚; the inset shows a magnified view of the fiber depicting 

its width is approximately 𝑤𝑓𝑖𝑏𝑒𝑟 ≈ 100 𝑛𝑚. Therefore the aspect ratio of this particular nano-

fiber is 1:1800. Fig. 5.26 (b), (c), and (d) show that the width of the nano-fiber stays approximately 

constant over its full length. The fiber was generated at  𝑓𝑟𝑒𝑝 = 1 𝑀𝐻𝑧 at a focusing depth of 

𝑡𝑓𝑜𝑐𝑢𝑠 = 10 𝜇𝑚. At the root, Fig. 5.26 (c) the fiber-width is approximately 𝑤𝑓𝑖𝑏𝑒𝑟 ≈ 100 𝑛𝑚, at 

its mid-section, Fig. 5.26 (d), the fiber became only marginal smaller to a width of approximately 

𝑤𝑓𝑖𝑏𝑒𝑟 ≈ 80 𝑛𝑚.   
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(b) 

 
(c) 

 
(a) (d) 

Fig. 5.26 - SEM images showing the extra-ordinary large nano-fiber aspect-ratio 

300 nm 

(c) 

(d) 
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5.3.2.2 Curled Nano-Fibers in EAGLE2000® 

Most of the observed nano-fibers did not show any signs of torsion, however, several nano-

fibers found in aluminumsilicate glass EAGLE2000® curled during their formation, as shown in 

Fig. 5.27. The nano-fibers shown in Fig. 5.27(a) resulted from irradiation with a repetition rate of 

 𝑓𝑟𝑒𝑝 = 1 𝑀𝐻𝑧 at a focusing depth 𝑡𝑓𝑜𝑐𝑢𝑠 = 20 𝜇𝑚 in an external electric field of 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =

1 𝑘𝑉. Fig. 5.27(b) was generated at the same repetition rate and focusing depth with no external 

electric field applied. Therefore it is concluded that the external field is not the cause for the curling 

effect of the produced nano-fiber. 

  
(a) (b) 

Fig. 5.27 – SEM images of curled nano-fibers in EAGLE2000®, (a) under application of 

1 𝑘𝑉 external DC field, and (b) without any external field 

5.3.2.3 Crystal-formation on FOTURAN® 

FOTURAN® glass contained 0.5% atomic volume silver dopant. After the irradiation of the 

sample, crystal-like structures were found on several of the irradiated surface, depict in Fig. 5.28. 

Both spots featured here were irradiated with a pulse repetition rate of  𝑓𝑟𝑒𝑝 = 9.2 𝑀𝐻𝑧  at a 

100 nm 
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focusing depth 𝑡𝑓𝑜𝑐𝑢𝑠 = 20 𝜇𝑚. The incident average power in Fig. 5.28(a) was 𝑃𝑎𝑣𝑔 = 0.5 𝑊, 

and in Fig. 5.28(b) 𝑃𝑎𝑣𝑔 = 1.15 𝑊. 

  
(a) (b) 

Fig. 5.28 - SEM images of crystal-formation on (a) a bubble surface and (b) a crater bottom 

on FOTURAN® 

From the SEM images obtained it is unclear, if the formed structure indeed is a silver-nano-

crystal or a crystallized glass. 

5.3.2.4 Nano-fiber formation in Fused Quartz 

Even though Fig. 5.23(b) depicted the formation of the desired nano-fibers on irradiation sites 

in Fused Quartz, many of the fiber-like formation in this material appear different, as shown in 

Fig. 5.29. Here the structures seem to originate from a larger erupting bubble and then solidified 

in air. 

500 nm 

2 µm 
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Fig. 5.29 - SEM image of fiber-structures on a Fused Quartz sample 

5.3.2.5 Dependence on Focusing Depth 

Three general different cases for the formation of nano-fibers could be observed, depending 

on the focusing depth with respect to the sample surface. In the first case, the laser focus was 

positioned very shallow below the sample surface. This led to a cap of material being removed of 

the surface like a chip, with the possibility of forming some low aspect-ratio nano-fibers in the 

resulting crater, shown in Fig. 5.30(a). If the focus was set deeper into the bulk material to a 

medium focusing depth, the second case became apparent. In such case, a bubble like feature 

develops on the surface, from which high aspect-ratio nano-fibers formed. In some instances, the 

bubble stood intact, as illustrated in Fig. 5.23(c), in other instances the bubble collapses and caved 

inwards, shown in Fig. 5.30(b). In the last case at large focusing depth, a large bubble developed 
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on the surface with no evidence of nano-fibers, shown in Fig. 5.30(c). The here shown image is of 

an erupted bubble, however, in many instances, the bubble stood intact. 

   
(a) (b) (c) 

Fig. 5.30 - SEM images of the irradiation sites depending on focusing depth, (a) shallow, 

(b) medium and (c) large focusing depth  

5.3.2.6 Evidence of gaseous phase 

To compare the formation of the nano-fibers in the here presented process of femtosecond 

bulk irradiation with the reports shown by Quintero et al. [174], a gaseous phase has to be present 

during the formation process. It should be pointed out, that there was evidence of such gaseous 

phase being present at some stage of the irradiation process. As shown in Fig. 5.31, the bubble 

formed on the surface appears to have erupted from the inside out, especially evident in the 

magnified image in Fig. 5.31 (c). The SEM images clearly depict the flap of material folding 

outwards.  
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(a) (b) (c) 

Fig. 5.31 - SEM images of a erupted bubble after femtosecond irradiation of the bulk 

material, (a) top-view, (b) 30o angled top-view and (c) magnified top-view 

On the contrary, there was no evidence found that the nano-fibers are drawn from a gas-jet 

originating from within the bulk material. At some irradiation sites, the nano-fibers are broken off 

at their root, allowing observation of the cross-section at high magnification, as depicted in Fig. 

5.32. There was no air-channel or gap visible after the fiber was formed. 

 

Fig. 5.32 - Image of the cross-section of a nano-fiber that was broken of close to its root 

 To investigate the structure and possible hollow core of the fiber in more detail, TEM images 

of single fiber were taken. The next section details the TEM observations. 



 

 121 

5.3.3 Transmission Electron Microscopy 

The crystalline structure of the nano-fibers is of special interest to determine the formation 

mechanism. TEM was used to investigate the lattice structure of single nano-fibers.  

Fig. 5.33(a) shows that the fibers are solid. There was no hollow inner core apparent in the 

nano-fiber depicted. A magnified view, Fig. 5.33 (b), revealed the lattice structures of the fiber. It 

appears to be completely amorphous, as the 2D Fourier-transformed image, Fig. 5.33(c) shows. 

   
(a) (b) (c) 

Fig. 5.33 - TEM images of the nano-fibers, (a) 2 separated fibers in overview image, (b) 

magnified images of a single nano-fiber structure, and (c) the 2D Fourier-transformed 

image of (b) 

Extremely high cooling rates had to be present to (i) prevent break up of the fiber [172] and (ii) 

preserve the amorphous lattice structure after the solidification process [174], [183]. Therefore, it 

can also be assumed that a hollow core inside the fiber would have been preserved. 

5.3.4 Nano-Fiber Aspect-Ratio Development 

In the following, the development of the nano-fiber aspect-ratio due to changing irradiation 

parameters will be discussed.  

5 nm 
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The largest aspect-ratio was achieved on Fused Silica surfaces for a focusing depth of 𝑓𝑓𝑜𝑐𝑢𝑠 ≈

30 𝜇𝑚. When the focusing depth was changed to shallower or deeper positions, the generated 

nano-fibers were reduced in length. The nano-fiber width, however, remained constant, which 

overall resulted in a reduced aspect-ratio. Fig. 5.34 depicts this general qualitative trend of the 

changing aspect-ratio as a function of focusing depth. The blue, green and red shaded regions 

indicate the projected aspect-ratio for approximate focusing condition.  

 

Fig. 5.34 - Graph of the general trend of the aspect-ratio of nano-fibers on Fused Silica 

It is interesting to notice that when the incident pulse energy was decreased the aspect-ratio 

trend shifted towards shallower focusing depth, as shown in Fig. 5.35. In addition, the maximum 

achievable aspect-ratio also reduced accordingly. On the contrary, an increase of the incident pulse 

energy did not yield a similar shift of the trend curve towards deeper focusing depth but rather led 

to a bursting bubble on the surface. 
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Fig. 5.35 - Graph of general trend of the nano-fiber aspect-ratio for decrease pulse energies 

When the irradiated base material was changed, i.e. from Fused Silica to aluminumsilicate 

glass, the maximum achievable aspect-ratio decreased. This is shown in Fig. 5.36. It should be 

pointed out that Fused Silica also exhibits the highest melting temperature of the investigated 

materials that developed nano-fibers. Therefore, it can be assumed that the ejection temperature of 

the fiber seed is highest in this material, causing longer fibers than for materials with lower melting 

temperature. 
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Fig. 5.36 - Graph of general trend of nano-fiber aspect-ratio for changing materials 

5.4 Proposed Model for the Generation of Nano-Fibers 

Using the results from the conducted experiments, a basic qualitative model is proposed and 

detailed herein.  

Due to the high repetition rate of the incident pulse train, a thermally excited volume is 

generated around the absorption region. This volume expands quickly based on the HA model 

introduced in Chapter 2.2.7. The temperature within the volume can also quickly rise above the 

melting temperature of the base material, leading essentially to an expanding molten front, here 

defined as the fusion front. A principle scheme of this process is depicted in Fig. 5.37. 
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Fig. 5.37 - Scheme of the absorption volume of the incident pulse train and its surrounding 

molten volume 

If the incident pulse train is long enough, the electron density in the absorption volume reaches 

critical density and the incident energy is mainly only heating the excited electron. This is 

characterized by a change in the absorption scheme from initially non-linear to quasi-linear 

absorption; compare Fig. 5.8 through Fig. 5.11. Moreover, the independence of the emission 

spectrum from the heated focal volume with respect to the pulse repetition rate also supports the 

fact, that the temperature of the electron system in the absorption volume becomes saturated. At 

this point the excited electron plasma grows much faster towards the incident beam, which also 

causes the fusion front to grow faster towards the incident surface. This stage of the thermal 

expansion process is shown in Fig. 5.38(a).  
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Once the expansion volume extended all the way to the incident surface, a thin solid skin layer 

remains between the ambient atmosphere and the molten dielectric material, depicted in Fig. 

5.38(b). 

  
(a) (b) 

Fig. 5.38 - Scheme of the expansion process of the molten volume; (a) change in absorption 

regime and (b) expansion volume hits sample surface 

Depending on the initial focusing depth, three possible cases have to be considered as depicted 

in Fig. 5.30. If the focusing depth is set close to the incident surface a material cap will be removed 

prior to the generation of any nano-fibers. In the second and optimal case, when the focusing depth 

is set around 𝑓𝑓𝑜𝑐𝑢𝑠 ≈ 30 𝜇𝑚, long nano-fibers will form on top of the thin skin layer, shown in 

Fig. 5.39(a). Quintero suggested that nano-spheres are detaching from the molten surface, which 

then form nano-fibers due to the extraordinary cooling rate of these structures in atmosphere. 

However, it is unclear at this point if the nano-fiber-formation can cause by such detaching nano-

spheres or by capillary ejection of molten material. If the focus is set deeper inside the bulk sample, 

the third case develops as a bubble forms on the sample surface without the formation of nano-

fibers, illustrated in Fig. 5.39(b). 
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It should be pointed out that the gaseous phase very likely develops during the material 

ejection or bubble formation stage. Due to the fast material ejection or expansion, the pressure 

relaxed rapidly, which cause the phase change of the heated material; see Chapter 2.2.7. Therefore, 

no gaseous material states existed during the nano-fiber formation process, which makes it difficult 

to apply the super-sonic jet model developed by Quintero [174], [184] to the here investigated 

generation process. 

  
(a) (b) 

Fig. 5.39 - Schemes of the formation of (a) nano-fibers and (b) intact bubble on the sample 

surface 

The speed of the fusion front is believed to play a critical role in the nano-fiber generation 

process. Since the expansion speed of the fusion front reduces the further it extends from the initial 

focal volume, it is thought that an optimal expansion speed is necessary to hit the sample surface 

to generate high aspect ratio nano-fibers. If the focusing depth was set too shallow, the expansion 

speed at the surface will be too high and a material cap will be blown off the surface. If the focus 
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was chosen to deep, the expansion speed at the surface will be too low and therefore an intact 

bubble is formed. More experiments are necessary to verify this hypothesis. 

5.5 Conclusion Nano-Fiber Generation 

In conclusion, it was found that high repetition rate lasers are required for nano-fiber formation 

from the bulk materials tested. Only such systems enable the HA-processing regime, which 

enabled high temperatures in the processing volume. Thus, nano-fibers could be observed when 

the processing parameters caused the irradiated materials to exceed their melting temperature. 

However, the repetition rate independent emission spectra collected from the absorption volume 

suggest that the temperature will saturate eventually. 

The here presented data also indicated that there is a change in the absorption regime from a 

non-linear to quasi-linear absorption process when HA-processing conditions were present. This 

quasi-linear absorption process is believed to be mainly electron heating on the outer top layer of 

the laser-induced electron plasma. This electron heating process also caused an asymmetric growth 

of the molten volume faster towards the incident beam than in orthogonal direction, as also reporter 

by other researchers. 
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6  RIPPLES – LASER-INDUCED PERIODIC SURFACE STRUCTURES  

6.1 Introduction 

The first experiments documenting the generation of laser induced periodical surface 

structures (LIPSS), also known as surface ripples, were conducted shortly after the invention of 

the laser, when Birnbaum [52] reported in 1965 periodic structures formed on semiconductor 

surfaces irradiated with pulsed ruby laser (694.3 nm) radiation at intensities above the ablation 

threshold. Following in the 80’s many deliberate studies of what now is known as low spatial 

frequency LIPSS (LSFL) were performed on semiconductors [185]-[187], metals [188]-[190], and 

dielectrics [191], utilizing mainly Q-switched laser sources with pulses as short as picosecond 

durations. The ripple structures generated showed a periodicity of approximately the laser 

wavelength with a groove direction perpendicular to the incident beam polarization, thus 

suggesting an interference effect taking place and leading to a modulation of the ablation pattern. 

A widely accepted theoretical model introduced by Sipe et al. [192] correlated the ripple 

generation to the interaction between the E-field of the incident beam with microscopic surface 

roughness in the “selvedge region” (between z = 0 and l/<< 1, z is the direction normal to the 

material surface,  is the radiation wavelength) of the material. This interaction leads to 

inhomogeneous energy absorption in the top-most layer of the material. The model computes a 

material response function, a so-called efficacy factor , depending solely on the incident beam 

parameters (polarization direction, incident angle ) and the material properties (dielectric 

function , surface roughness). According to Sipe, the efficacy factor describes the response 

function with which surface roughness leads to inhomogeneous absorption in the selvedge region. 

This function contains sharp spikes at predicted ripple periods and is defined as [193] 
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 𝜂𝑥,𝑦(𝑘, 𝑘𝑖) =  2𝜋(|𝑣(𝑘+) + 𝑣∗(𝑘−)|𝑋̂ + |𝑣(𝑘+) + 𝑣∗(𝑘−)|𝑌̂), ( 6.1 ) 

where the 𝑋̂- and 𝑌̂-terms represent orthogonal directions of the ripple groove direction and 𝑣 is a 

complex function proportional to the material absorption. 𝑘 and 𝑘𝑖  are the wave-vector and its 

component parallel to the surface, respectively. The polarization of the incident beam can then be 

expressed in terms of 𝑘x and 𝑘y. Bonse et al. [193] pointed out, supported by the results of the 

computation of the efficacy factor in x- and y-direction, there should exist not only a ripple pattern 

with groove direction perpendicular to the incident E-field but also parallel to it. An experimental 

proof directly linking Sipe’s theory to a ripple pattern parallel to the incident E-field direction is 

still outstanding. 

With the advent of femtosecond-laser sources suitable for material processing new types of 

ripple structures have been reported. Several researchers reported the observation of LIPSS with a 

period considerably smaller then the structures generated with longer pulses [104]-[106], [159]. 

These high spatial frequency LIPSS (HSFL) did not appear to be well explained by Sipe’s original 

model. Couillard et al. [194] argued that HSFL formation would be covered by Sipe’s theory if 

account was taken of the material changes occurring from the irradiation itself as well as the 

convergence angle of the laser beam on the sample.  Jia et al. [195] introduced an alternative 

model suggesting that the formation of the HSFL results from second harmonic generation (SHG) 

at the interface of the sample. This SHG signal then interferes with the initially incident 

fundamental wave in the material at a much shorter periodicity leading to a ripple spacing of 
𝜆

2𝑛
. 

Reif et al. [196] as well as Andreev et al. [197] developed a model that described the generation 

of HSFL by the generation of metallic colloids due to the incident laser field. These colloids then 
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allow for the excitation of Plasmon waves, which can then couple with those from adjacent colloids 

to form ripples. 

In addition there have been several reports on the generation of nano-gratings within the bulk 

of dielectrics exhibiting seemingly similar properties to the high spatial frequency structures 

observed on the surface of the sample [198]-[200]. If indeed the same physical mechanisms were 

the cause for both these effects without further considerations, it would seem to exclude a process 

relying on a surface wave interference as it is the case in Sipe’s theory. 

More seldom are reports of structures with a groove orientation parallel to the polarization of 

the incident laser beam, denoted as parallel LIPSS (P-LIPSS). Haugen et al. [201] investigated the 

generation of this type of LIPSS on c:Si surfaces using fs-laser pulses at wavelength of 1300 𝑛𝑚 

and 2100 𝑛𝑚. More recently, Tomita et al. [202] reported on ripple effects originating from 

100 𝑘𝐻𝑧 femtosecond irradiation of smooth (𝑅𝑎 ~ 0.2 𝑛𝑚) and roughen (𝑅𝑎 ~ 6 𝑛𝑚) silicon. 

Both research groups observed the previously known LSFL ripples when irradiating either 

material, however they also discovered ripple structures parallel to the incident E-field when 

irradiating with multiple pulses at fluence levels well below the ablation threshold. The period of 

these ripple structures was approximately equal to the incident wavelength. Interestingly, these P-

LIPSSs were in Tomita’s case solely developing on the roughened Si-surface. 

A clear understanding of the fluence-dependence of the development of all these various 

surface ripple structures produced with femtosecond laser pulses is still not apparent even though 

several studies have been made in the last decade. The development of laser sources in the near- 

and mid-IR spectrum has opened and will further open new opportunities to study these light-
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mater interaction schemes at longer wavelengths, particularly for semiconductor materials, which 

also represent the largest group of studied materials ripples appear on. 

 The applications of this microscopic, semi-deterministic material surface texturing are 

widespread, ranging from the fabrication of biomedical substrates for directed cell growth [203], 

the enhancement of sensor sensitivity [204] or the efficiency improvement of photovoltaic devices 

[205]. 

Two important semiconductor materials are silicon (Si) and gallium arsenide (GaAs). Most 

studies of LIPSS in these materials so far have used laser radiation with shorter wavelengths at a 

spectral range in which these materials were not transmissive. Both these materials have high 

transmission at wavelength longer than 1.1 𝜇𝑚. The presented investigation was aimed to shed 

some insight on the fluence-dependence of the development of surface ripples and examine the 

early stages of ripple formation in these two semiconductor materials, particularly the formation 

of parallel-LSFL at low intensities. 

6.2 Experimental investigation of ripples 

The experiments described here focus on the generation and characterization of surface ripple 

structures using ultrashort-pulsed laser radiation at a wavelength of 2 𝜇𝑚. In addition, where 

appropriate, comparison to irradiation with ultrashort laser pulse at  𝜆 = 400 𝑛𝑚 and 𝜆 = 800 𝑛𝑚 

is included. 

6.2.1 Laser irradiation setup 

The IR ultrashort pulses were generated using the Coherent Opera OPA, pumped by the 

Spectra-Physics Spitfire MOPA laser system as previously described in Chapter 3.1.2. 
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The output radiation from the OPA was passed through a halfwave-plate (HWP) to adjust the 

polarization orientation. The laser radiation was roughly attenuated by first passing the beam 

through ND-filters, followed by a partially reflective mirror wheel for fine-tuning capabilities. 

Rotation of the mirror wheel allowed varying the incident pulse energy on the sample. After 

passing the attenuation stage the beam was coupled into the standard processing station, as 

described in Chapter 4.2. The focusing optics was a 10X microscope objective with a NA of 0.25. 

The irradiation setup is shown schematically in Fig. 4.3. The mirrors used to deflect the laser beam 

were dielectric mirrors with 99.6% reflectivity for 2 m radiation, but highly transmissive for 

visible radiation. However, the focusing objective was comprised of an oxide glass lens system 

coated with MgF2 for visible light in the spectral range of 400 –  700 𝑛𝑚.  Therefore the 2 m 

radiation losses through the irradiation tower were measured to be 30-40%, mainly originating 

from the focusing objective. A precise measurement of the focus spot shape and size was made 

using a knife-edge scan technique. The 2 𝜇𝑚 beam shape was recorded throughout the focal region 

with a Spiricon PyroCAM IR beam camera. A full description of this characterization is provided 

in an earlier publication [206]. The beam waist in the focus was determined to be approximately 

𝑤0 = 13 𝜇𝑚. 

6.2.2 Irradiation Conditions 

The experimental studies described here were made on two materials, intrinsic crystalline (c:) 

GaAs and intrinsic crystalline (c:) Si. In the latter case the inherent oxide layer that forms naturally 

on silicon surfaces affected the laser-matter interaction process. 

Vital to the understanding of the fluence-dependent evolution of LIPSS is the knowledge of 

the intensity threshold for surface modification of the samples tested. To predict the modification 
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threshold of materials used, a procedure adopted by Liu [95] was followed, as described in Chapter 

2.2.5. 

Many of the irradiation conditions were made in the ‘writing mode’ in which successive pulses 

partially overlapped on the surface of the material to create a line of irradiated area. Therefore 

controlling the translation speed of the sample allowed the variation of the number of pulses 

irradiating the nominal spot diameter and hence the total accumulated fluence or dose of such area. 

In addition the incident polarization and pulse energy were varied individually while keeping the 

other parameters constant. For each of the experiments performed, a serpentine-pattern was 

scanned on a pristine surface of the sample to form an extended irradiated area.  

Following the irradiation process the samples were cleaned using an acetone solution in an 

ultra-sonic bath. They were then characterized with optical microscopy and SEM. The topologic 

profile of the irradiated area on the sample was inspected using a white-light interferometer 

(ZYGO NewView 6000). An AFM was used when increased lateral resolution was needed. 

6.3 Different Ripple Regimes in Semiconductors 

The different types of ripple structures and their definitions are well illustrated by the data 

observed on GaAs, shown in Fig. 6.1. In this figure, the translation speed was continuously 

decreased from 0.5 𝑚𝑚/𝑠 (left) to 0 𝑚𝑚/𝑠 (right). The pulse energy was kept constant at 𝐸𝑝 ≈

100 𝑛𝐽, thus increasing the accumulated surface fluence accordingly. Provided the measured spot 

radius of 𝑤0 = 13 𝜇𝑚, a single spot area on the far left sustained an accumulation of 52 pulses, 

corresponding to an accumulated fluence of 𝐹𝑎𝑐𝑐𝑢𝑚 ≈  1 𝐽/𝑐𝑚2 whereas the same area on the far 

right was irradiated with up to 350 pulses (accumulated fluence  𝐹𝑎𝑐𝑐𝑢𝑚 ≈  6.6 𝐽/𝑐𝑚2). It clearly 
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shows the dominant ripple structure changing from P-LIPSS on the left, LSFL in the center region 

to HSFL on the far right of Fig. 6.1. 

The Sipe theory [192] predicts a ripple periodicity of approximately 𝛬 = 𝜆 with a groove 

orientation perpendicular to the incident laser beam polarization; the image depicts these 

structures marked as LSFL in a region with moderate fluences of  1.35 – 2 J/cm2. On the left edge 

of Fig. 6.1 are regions irradiated with fluences between 1.0 and 1.35 J/cm2 in which a 90°-rotated 

ripple structure is observed. The periodicity of this structure is smaller than that occurring for 

LSFL, however not as small as for HSFL, which occurred at regions to the far right edge of Fig. 

6.1 with fluence levels above 2 𝐽/𝑐𝑚2. One can also recognize the existence of a small transition 

region between the different ripple structures. 

 

Fig. 6.1 - Irradiation track on the surface of intrinsic c:GaAs after processing with ultrashort 

laser radiation; the avg. fluence was increasing toward the right of the track resulting in a 

change of the LIPSS pattern, clearly recognizable are three different types of LIPSS: LSFL, 

HSFL and P-LIPSS 

6.3.1 P-LIPSS ripple regime at low intensities 

At low fluences shallow ripples with their groove direction parallel to the incident E-field 

vector were formed. Examples of the feature are shown for c:GaAs and c:Si in  Fig. 6.2(a) and Fig. 
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6.2(b), respectively. This type of ripple will be referred to as parallel-LIPSS (P-LIPSS). The period 

of the feature was measured to be approximately 𝛬𝑃−𝐿𝐼𝑃𝑆𝑆 = 450 𝑛𝑚  for all types of 

semiconductors investigated.  

In the case of c:GaAs the translation speed of the sample was set to 𝑣𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 0.5 𝑚𝑚𝑠−1, 

producing an average pulse-deposition rate of 52 pulses per spot diameter. The pulse energies on 

target for the samples shown were (a) 𝐸𝑝 = 136 𝑛𝐽 and (b) 𝐸𝑝 = 113 𝑛𝐽. It should be noted that 

these values were well below the corresponding single shot modification threshold fluence 

(𝐹𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡  ≈  23 𝑚𝐽/𝑐𝑚2 ). Moreover, the ripple wave-vector, which is defined as the vector 

normal to the ripple groove direction, rotates with the rotation of the incident polarization, staying 

parallel to the incident E-field vector. 

  
(a) (b) 

Fig. 6.2 - P-LIPSS on intrinsic c:GaAs with a period of approximately  𝛬𝑃−𝐿𝐼𝑃𝑆𝑆 ≈

450 𝑛𝑚 occured for low accumulated fluences on the target at an integration of 52 pulses 

per spot area, the pulse energies were (a) 𝐸𝑝 = 136 𝑛𝐽 and (b) 𝐸𝑝 = 113 𝑛𝐽 

The depth profile of the grooves and bumps was measured on c:GaAs using an AFM and is 

shown in Fig. 6.3. The peak-to-valley value was approximately 𝛥𝑡𝑃−𝐿𝐼𝑃𝑆𝑆 = 10 𝑛𝑚. The ripple 

period was confirmed with approximately 𝛬 ≈ 400 𝑛𝑚. 
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(a) (b) 

Fig. 6.3 – Measured (a) AFM topology and (b) cross-section profile an P-LIPSS structure 

on c:GaAs surface 

For the case of c:Si, the translation speed of the sample was 𝑣𝑙𝑎𝑡𝑒𝑟𝑎𝑙  =  0.25 𝑚𝑚𝑠−1 , 

therefore the number of pulses accumulated per spot area was 104, which is significantly higher 

than for c:GaAs. The increased number of shots necessary is attributed to the protective oxide layer 

on top of c:Si. However, the pulse energies on target for the samples shown in Fig. 6.4 were similar 

to those used for c:GaAs with 𝐸𝑝 = 129 𝑛𝐽. As with GaAs, these values translate to single shot 

fluence values one order of magnitude lower than the measured modification threshold fluence. 
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Fig. 6.4 -P-LIPSS on intrinsic c:Si with a period of approximately 𝛬𝑃−𝐿𝐼𝑃𝑆𝑆 ≈ 450 𝑛𝑚 

occured for low accumulated fluences on the target at an integration of 104 pulses per spot 

area, the pulse energy was 𝐸𝑝 = 129 𝑛𝐽 

Previous studies of ordinary LSFL ripples also noted that the ripples grow continuously over 

neighboring irradiation tracks to fill the entire irradiated area coherently. This property could not 

be reproduced here for P-LIPSS. An explanation for such a result might be drawn from [201] 

where a LIPSS pattern similar to that shown here could only be observed in the central region of 

the laser spot corresponding to the highest intensity region of the Gaussian intensity distribution. 

Observations based on Fig. 6.2(b) revealed the width of the ripple structure being less than  

𝐷𝑃−𝐿𝐼𝑃𝑆𝑆  ≈  1 𝜇𝑚 compared to an incident Gaussian beam diameter of 2𝑤0  =  26 𝜇𝑚. Therefore 

the range of favorable conditions required for the generation of P-LIPSS might be outside the 

overlapping region of neighboring tracks. 

6.3.1.1 Polarization dependence of P-LIPSS 

As shown above, the dependence of the ripple orientation on the polarization was similar to 

that previously reported for both LSFL and HSFL with the difference to be parallel. A rotation of 
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the incident E-field vector causes the ripple structure to rotate as well following the E-field and 

aligning parallel to the polarization, as depicted in Fig. 6.2. This behavior underlines the 

connection between incident E-field and ripple generation mechanism. 

6.3.2 Theory of P-LIPSS 

The theoretical model of LSF ripple development is based on Sipe’s theory [192] and was 

computed using calculation proposed by Bonse [193]. However, the challenge of the presented 

work was to predict properties of ripples parallel to the incident E-field orientation, which were 

not included in Bonse’s work.  

Sipe’s theory describes the generation of dipole-sources, defined as [192] 

 𝑄⃗ (𝜌 ) =  𝑏(𝑘⃗ )𝑙𝛾𝐸⃗ 𝑖𝑒
𝑖𝑘⃗ +∙𝜌⃗⃗ + 𝑏∗(𝑘⃗ )𝑙𝛾𝐸⃗ 𝑖𝑒

𝑖𝑘⃗ −∙𝜌⃗⃗ , ( 6.2 ) 

in the very narrow “selvedge-region” due to the incident field 𝐸⃗ 𝑖  and the susceptibility of the 

material 𝛾. The factor 𝑏(𝑘⃗ ) describes the topologic profile of the surface of this region. As one 

can easily imagine, any surface roughness will cause the deflection of the incident E-field, mainly 

originating from Fresnel transmission coefficients, causing minuscular perturbations resulting in a 

modified representation of the wave-vector 𝑘⃗ ± = 𝑘⃗ 𝑖 + 𝑘⃗ . In addition, the field from the induced 

dipole emits circularly in the x-y-plane giving rise to an E-field component perpendicular to the 

original incident E-field. Thus the present E-field in the underlying bulk region is a superposition 

of the incident refracted field 𝐸⃗ (0) and the perturbed field emitted by the dipole 𝐸⃗ (1), given as 

[193] 

 𝐸⃗ (𝑟 ) =  𝐸⃗ (0)(𝑟 ) + 𝐸⃗ (1)(𝑟 ), ( 6.3 ) 

where 𝑟  indicates the radial nature of the total field function and thus having contributions in both 

the s- and p-polarization directions.  
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The absorption A(𝑟 ) in the underlying bulk region will be proportional to |𝐸⃗ (𝑟 )|2. It can be 

shown that the interfering parts of 𝐸⃗ (0) and 𝐸⃗ (1) lead to a modulated absorption term [192] 

  A(𝑟 ) ≅ 2𝑅𝑒{𝐸⃗ (0)∗(𝑟 ) ∙ 𝐸⃗ (1)(𝑟 )} ( 6.4 ) 

and becomes [192] 

  A(𝜌 ) =
2

𝜆
𝑙𝑅𝑒 { 𝑏(𝑘⃗ )[𝑣(𝑘⃗ +) + 𝑣∗(𝑘⃗ −)] × 𝑒𝑖𝑘⃗ +∙𝜌⃗⃗ },  

with 𝑙 = 𝑧,   
𝑙

𝜆
≪ 1, 

( 6.5 ) 

which is also proportional to [193] 

  A(𝜌 ) ∝ [𝜂𝑥(𝑘𝑥, 𝑘𝑖) + 𝜂𝑦(𝑘𝑦, 𝑘𝑖)]|𝑏(𝑘⃗ )|. ( 6.6 ) 

This enables the computation of the efficacy factor for the bulk region of the material. More 

practical equation for 𝑣(𝑘⃗ +) and 𝑣(𝑘⃗ −) given by Bonse [193] were used to compute an efficacy 

factor model. Here it was assumed that the incident polarization is parallel with the x-direction of 

the x,y-plane on the surface and the beam is incident normal to the surface (𝜃 = 0). In that case 

the function for 𝑣(𝑘⃗ ±) is given as [193] 

 
 𝑣(𝑘⃗ ±, s − pol) = [ℎ𝑠𝑠(k±) (

𝑘𝑦

𝑘±
)
2

𝑌̂ +

ℎ𝑘𝑘(k±) (
𝑘𝑥

𝑘±
)
2

𝑋̂]𝛾𝑡|𝑡𝑠(𝑘⃗ 𝑖)|
2, 

( 6.7 ) 

with k± = √k𝑥
2 + k𝑦

2 . 

The values for the necessary dielectric functions 𝜀 = (𝑛 + 𝑖𝜅)2 for crystalline and amorphous 

GaAs and Si, respectively, were taken from [207]. They are documented in Table 6-1. The incident 

wavelength was varied between 800 𝑛𝑚 and 2 𝜇𝑚, the shape factors s and f were kept at 0.4 and 
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0.1, respectively, as suggested by Bonse for spherically shaped islands. The results of the efficacy 

factor computations for GaAs and Si are shown in Fig. 6.5. 

Table 6-1 - Values for dielectric function  for crystalline (c:) and amorphous (a:) GaAs and Si 

 n  

c:GaAs @ 800 nm 3.68356 0.08905 

c:GaAs @ 2 m 3.34108 0 

a:GaAs @ 2 m 3.86 0 

c:Si @ 800 nm 3.69246 0.0297 

c:Si @ 2 m 3.45268 0 

a:Si @ 2 m 3.44224 0 

 

There is a small offset between the ripple period measured in the experimental results of 

P-LIPSS shown in Fig. 6.2 and Fig. 6.4 and the predicted period due to the calculations due to 

Sipe’s theory. The peak for c:GaAs (Fig. 6.5(b)) and c:Si(Fig. 6.5(d)) relates to a ripple periodicity 

of approximately 𝛬𝑃−𝑀𝑂𝐷𝐸𝐿 = 500 𝑛𝑚 , however the experimentally determined ripple 

periodicity is approximately 𝛬𝑃−𝐿𝐼𝑃𝑆𝑆 = 450 𝑛𝑚. Nevertheless, such an offset can be caused by 

the transient material properties during the fs-irradiation, as the shift of the peak of the efficacy 

factor towards larger values of 𝑘𝑦 resulting from amorphous GaAs already depicts (dashed line).  

                                                 
6 Value taken from ref. [194] 
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(a) (b) 

  
(c) (d) 

Fig. 6.5 - Efficacy factor of GaAs (top) and Si (bottom) for s-polarized light incident 

normal to sample surface with groove direction (a)/(c) perpendicular and (b)/(d) parallel to 

radiation E-field 

Unclear from this first-principles theory is why the parallel ripple structure occurs at a lower 

surface fluence level than the LSFL features. A possible explanation is the existence of a resonant 

feedback mechanism, which supports different directions of the susceptibility tensor at different 

incident accumulated fluences. 
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Even though observation from Fig. 6.1 might suggest the existence of a transition region 

between P-LIPSS and LSFL with a coexistence of both structures, it was not possible to generate 

such experimentally. In experiments targeting this specific fluence-window, only one structure or 

the other developed. 

The computational model for c:GaAs and c:Si, as shown in Fig. 6.5(a) and Fig. 6.5(c), 

respectively, predicted the ripple periodicity of approximately the laser wavelength.  

    
(a) (b) (c) (d) 

Fig. 6.6 – SEM images of LIPSS (LSFL) at moderate accumulated fluence of 2 𝐽/𝑐𝑚2 

(𝐸𝑝 = 104 𝑛𝐽,  𝑣𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 0.25 𝑚𝑚𝑠−1) on c:GaAs for varying incident E-field directions 

It should be noted that the images in Fig. 6.6 depict multiple neighboring laser tracks with an 

overlap of each other of ~ 30%. The ripple structure developed here is spatial coherent not only 

within a single track, as shown before in the case of P-LIPSS, but also between neighboring laser 

tracks. This would allow one to structure large areas with spatially coherent LSFL structures for 

particular applications. 
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Furthermore, the generation of LSFL was also investigated using 400 nm and 800 nm laser 

wavelength [208]. Both materials exhibited the structure formation in a window of significant 

lower accumulated fluences around 0.3 𝐽/𝑐𝑚2. 

6.3.3 High Spatial Frequency LIPSS 

With increasing accumulated fluences above 2 𝐽/𝑐𝑚2 , HSFL started to develop and 

eventually dominated the structure. In this regime the ripples developed a periodicity of 

approximately 𝛬𝐻𝑆𝐹𝐿  =  400 𝑛𝑚 at 2 𝜇𝑚 incident laser wavelength, shown in Fig. 6.7, with an 

orientation perpendicular to the incident E-field. Both structures, LSFL and HSFL, were generated 

at equal pulse energies but varying translation speeds, therefore the determining factor for the 

generation of either ripple structure was the number of pulses per area. That observation is 

consistent with reports by Bonse [193] who noticed a development of HSFL when accumulating 

multiple irradiation events at 800 𝑛𝑚 laser wavelength on InP surfaces.  

 

Fig. 6.7 - LIPSS developed at high accumulated fluences of 2.45 𝐽/𝑐𝑚2  on c:GaAs 

surfaces 
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Experiments using 400 𝑛𝑚 and 800 𝑛𝑚 incident radiation wavelengths did not lead to the 

development of HSFL, however, no special care was taken for favorable irradiation condition for 

such ripple generation since it was not matter of research in this thesis. Nevertheless, other research 

has also shown the generation of HSFL using shorter incident laser wavelength. 

6.4 Conclusion Ripple Formation 

In summary the generation of a parallel LIPSS with respect to the incident E-field orientation 

was shown at 𝟐 𝝁𝒎 radiation wavelength on c:GaAs and c:Si. The periodicity was predictable on 

the basis of the Sipe’s theory [192]. Moreover, the development of ripple structure has been 

categorized in three different regimes, which led to P-LIPSS at low accumulated fluences, LSFL 

at moderate accumulated fluences and HSFL at high accumulated fluences.  

When partially overlap of the modified region is granted P-LIPSS exhibits the same general 

properties of coherence as observed for LSFL.  
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7  FEMTOSECOND LASER PROCESSING OF SEMICONDUCTORS 

Before one discusses the processing of semiconductor materials, some considerations should 

be paid to the differences in processing environment in such materials compared to other materials. 

Firstly, semiconductors possess a much larger refractive index compared to dielectrics. Thus, 

diffraction at the interface between air and the sample itself will be substantial, causing the 

effective NA of the focusing optic to decrease significantly. Furthermore, the effective speed of 

light in the bulk of the medium will decrease by the fraction of the refractive index 
1

𝑛(𝜔)
, causing 

the pulse to become effectively shorter in space compared to dielectrics. 

The lattice structure of a semiconductor is in general crystalline, as opposed to the amorphous 

lattice structure of common dielectric materials such as Fused Silica. Nevertheless, laser-induced 

modification has been observed in crystalline dielectrics as well such as sapphire or Fused Quartz. 

The major difference to be taken into account between crystalline and amorphous materials is the 

thermal conductivity and possible birefringence of such materials. 

In general, semiconductors develop an oxide layer on the surface when exposed to oxygen-

rich ambient air. Therefore, a two-layer system has to be considered or the samples have to be 

buffer-etched before used in an experiment. The natural oxidation rate of c:GaAs and c:Si was 

investigate elsewhere [209]. 

In this study c:Si and crystalline c:GaAs were the semiconductor materials primarily studied. 

For each of the two, various dopant types and concentration were investigated. An overview of the 

investigated specimens and their properties is given in Table 7-1. 
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Table 7-1 – Overview of the investigated semiconductor specimens 

Sample Materials 

Lattice 

Structure 

Fabrication 

Method 

Free Absorber 

Concentration 

Band gap 

Energy 

   [cm-3] [eV] 

intrinsic c:GaAs  zinc blende Cz7 1.00E+18 1.476 

n-doped c:GaAs zinc blende Cz 1.00E+21 1.476 

p-doped c:GaAs zinc blende Cz 1.00E+23 1.476 

intrinsic c:Si diamond cubic floatzone 1.50E+11 1.181 

intrinsic c:Si diamond cubic Cz 2.00E+14 1.181 

n-doped c:Si diamond cubic Cz 1.20E+12 1.181 

n-doped c:Si diamond cubic Cz 1.00E+15 1.181 

n-doped c:Si diamond cubic Cz 5.00E+18 1.181 

p-doped c:Si diamond cubic Cz 1.00E+13 1.181 

p-doped c:Si diamond cubic Cz 1.00E+16 1.181 

p-doped c:Si diamond cubic Cz 1.00E+19 1.181 

 

The general transmission spectra of c:GaAs and c:Si are shown in Fig. 7.1. It is apparent, that 

there is no significant absorption line in the investigated IR-region between 1.1 𝜇𝑚 and 2.5 𝜇𝑚.  

                                                 
7 Cz: Czochralski crystal growth 
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Fig. 7.1 - Graph of general transmission spectrum of c:GaAs and c:Si for NIR/mid-IR 

wavelength 

7.1 Ablation Threshold Measurements 

Although the modification threshold for both transparent dielectrics [2], [77], [80], [158], 

[160], [210]-[212] and semiconductors [159], [194], [213]-[215] due to incident ultrashort-pulsed 

laser radiation has been previously characterized, the influence of the dopant concentration has yet 

to be studied. Moreover, the dependencies of the photon-energy of the incident radiation and the 

band gap energy of the irradiated matter are not yet investigated.  

7.1.1 Experimental Approach 

To investigate these dependencies, various samples were irradiated using the setup described 

in Section 4.2, providing the focusing objective, online imaging and sample illumination 

capabilities, and the computer-controlled 3D motion system. The low repetition rate Spectra 

Physics Spitfire in combination with the OPA, detailed in Section 3.1.2, was used as the radiation 

source for these experiments since single pulse irradiation was required for the threshold 
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measurement [95]. Three different excitation wavelengths were used: 800 𝑛𝑚 , 1.3 𝜇𝑚 , and 

2.4 𝜇𝑚. The frequency spectrum at 800 𝑛𝑚 is shown in Section 3.1.1, the spectra at 1.3 𝜇𝑚 and 

2.4 𝜇𝑚 wavelengths are shown in Fig. 7.2. 

  
(a) (b) 

Fig. 7.2 - Graphs of measured spectral emission from OPA at wavelengths of (a) 1.3 𝜇𝑚 

and (b) 2.4 𝜇𝑚  

Before the samples were irradiated, the oxide layer was removed by buffer-etching each 

sample in 5% hydrofluoric acid solution for 1 min [216]. The samples were then irradiated with 

single pulses at varying pulse energies and laser wavelengths. Examples of microscope images of 

the threshold maps produced with laser wavelengths at 800 𝑛𝑚, 1.3 𝜇𝑚, and 2.4 𝜇𝑚 on intrinsic 

c:Si are depicted in Fig. 7.3. As the images indicate, several irradiation sites were produced at each 

pulse energy for averaging. The actual area of the modified material (inset Fig. 7.3) was measured 

for each irradiation site at the maximum magnification of 100X DIC of the used Olympus BX-52 

optical microscope. 



 

 150 

   
(a) (b) (c) 

Fig. 7.3 – Microscope images of threshold maps on intrinsic c:Si using wavelengths of (a) 

800 𝑛𝑚, (b) 1300 𝑛𝑚, and (c) 2400 𝑛𝑚, insets show measured modified area of a single 

irradiation site 

7.1.2 Threshold Measurement  

Most published modification thresholds for semiconductors are available for ultrashort-pulsed 

laser wavelength at around 800 𝑛𝑚 [159], [213]-[215]. Therefore the modification threshold at 

this wavelength region was investigated first. The squared-diameter function yielding the threshold 

fluence for a wavelength of 800 𝑛𝑚 on c:GaAs is shown in Fig. 7.4(a). Fig. 7.4(b) depicts the 

threshold fluences as a function of dopant concentration on c:Si for this wavelength. 
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(a) (b) 

Fig. 7.4 – Graphs of (a) squared diameter yielding modification threshold on intrinsic 

c:GaAs, and (b) threshold fluences as function of dopant concentration on c:Si at a incident 

wavelength of 800 𝑛𝑚 

For c:GaAs an extrapolated threshold fluence of approximately 𝐹𝑡ℎ(𝑐: 𝐺𝑎𝐴𝑠, 𝜆 = 800 𝑛𝑚) ≈

45
𝑚𝐽

𝑐𝑚2 was found. This value is three-times lower than expected from literature data [214]. The 

modification threshold fluences found for Silicon around 𝐹𝑡ℎ(𝑐: 𝑆𝑖, 𝜆 = 800 𝑛𝑚) ≈ 100
𝑚𝐽

𝑐𝑚2 

correspond to the published values in the literature [159]. Furthermore, no obvious dependence of 

the dopant concentration can be established at 800 𝑛𝑚  incident wavelength. The two-fold 

variation of the threshold fluence around a 100
𝑚𝐽

𝑐𝑚2
 could be caused by slightly varying focusing 

conditions during the experiment. 

Fig. 7.5 depicts the threshold measurements on c:GaAs for in incident wavelength of 2 𝜇𝑚. 

The graphs show a modification threshold of approximately 𝐹𝑡ℎ(𝑐: 𝐺𝑎𝐴𝑠, 𝜆 = 2 𝜇𝑚) ≈ 35
𝑚𝐽

𝑐𝑚2 for 

doped and intrinsic c:GaAs. This is a slight decrease in the threshold fluence compared to that at 
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800 𝑛𝑚  wavelength. One might have expected a greater difference due to the change in the 

absorption regime from direct absorption to 3-photon absorption (3PA). 

 

  
(a) (b) 

Fig. 7.5 - Graphs of modification threshold fluence of (a) intrinsic c:GaAs and (b) n-doped 

c:GaAs at an incident wavelength of 2 𝜇𝑚 

The threshold fluences for the various dopant concentration of c:Si are depicted in Fig. 7.6(a) 

and Fig. 7.6(b) at incident wavelength of 1.3 𝜇𝑚 and 2.4 𝜇𝑚, respectively. 

The graphs indicate, as before in the NIR, there is no apparent dependence on the dopant type 

or concentration. The measured modification threshold fluences are approximately 𝐹𝑡ℎ(𝑐: 𝑆𝑖, 𝜆 =

1.3 𝜇𝑚) ≈ 30
𝑚𝐽

𝑐𝑚2
 and 𝐹𝑡ℎ(𝑐: 𝑆𝑖, 𝜆 = 2.4 𝜇𝑚) ≈ 20

𝑚𝐽

𝑐𝑚2
. Just as for c:GaAs, such reduction in the 

threshold fluence was unexpected here due to the change in the absorption regime from linear to 

2PA and 3PA, respectively. However, the fluence itself is inversely dependent on the wavelength 

as the following equation shows 

 F(λ) =
𝑃𝑖𝑛𝑐

𝐴(𝑤0)
=

𝑃𝑖𝑛𝑐

𝜋𝑤0
2 =

𝑃𝑖𝑛𝑐

𝜋⋅(1.22
𝜋𝜆

𝑁𝐴
)
2. 

( 7.1 ) 
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(a) (b) 

Fig. 7.6 - Graphs of the modification threshold fluences for as function of dopant 

concentration in c:Si for (a) 1.3 𝜇𝑚 and (b) 2.4 𝜇𝑚 incident wavelength 

Therefore it becomes obvious that the fluence is inversely proportional to the square of the 

wavelength. However, the pulse energy is independent of the incident wavelength. For an easier 

understanding of the dependence of the modification threshold as a function of incident photon 

energy, Fig. 7.7 depicts the threshold pulse energy vs. photon energy.  
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Fig. 7.7 - Graph of the modification threshold pulse energy vs. incident wavelength for 

various c:Si specimens 

The graph shows clearly that the modification threshold pulse energy of the investigate Silicon 

specimens were within the same order of magnitude for all three wavelength. This reflects a similar 

result as observed in c:GaAs. The theoretical absorption regime, however, changed from linear 

absorption for 800 𝑛𝑚, through 2PA for 1.3 𝜇𝑚, to 3PA for 2.4 𝜇𝑚. Due to this change the 

modification threshold was expected to increase significantly. It can therefore be concluded that 

non-linear absorption was not the dominant absorption mechanisms for the induced surface 

modification on the investigated semiconductors for photon energies smaller than the band gap 

energy.  
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7.2 Ultrafast Bulk Transmission Measurements 

An experiment was then performed which was aimed at the understanding of bulk 

modification in the semiconductor material as it has been shown before in dielectrics [9]. An 

important metric for a technology transfer of FLDW from dielectrics to semiconductors is the 

amount of absorbed energy in the bulk material. In the case of dielectrics, approximately 20% to 

50% of the incident energy is absorbed during the modification process [128]. To verify the 

absorption during semiconductor bulk processing, the transmitted power through an intrinsic 

c:GaAs sample was measured as a function of focusing depth, focusing power and repetition rate 

for an incident wavelength of 𝜆𝐼𝑁 = 1043 𝑛𝑚 . Fig. 7.8 illustrates the used setup, which is 

basically an open-aperture z-scan technique [217]. The focusing objective used had an NA of 0.1. 

 

Fig. 7.8 – Scheme of semiconductor bulk transmission measurement setup  

Fig. 7.9 shows the measured normalized transmitted power through the 𝟓𝟎𝟎 𝝁𝒎 thick sample 

wafer for three focusing conditions at NAs of 0.25, 0.4, and 0.5 at pulse repetition rates of 0.1, 1, 

and 5 𝑀𝐻𝑧. The most-left value in each curve in Fig. 7.9(a), (b) and (c) corresponds to the event 

of surface ablation. The focusing depth is given in terms of sample translation in air. The effective 

focusing depth in the wafer corresponds to the product of focusing depth and the refractive index 

for c:GaAs of 3.4. 
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(a) (b) 

 

 

(c)  

Fig. 7.9 – Graphs of measured transmitted power vs. focusing depth during ultrashort-

pulsed irradiation of intrinsic c:GaAs for repetition rates 0.1, 1, and 5 𝑀𝐻𝑧 for focusing 

NAs of (a) 0.25, (b) 0.4, and (c) 0.5 

Accounting for Fresnel reflection at the incident surface of approximately 30%, it is apparent 

that in any case less than 25% of the effectively incident energy in the bulk material was 

transmitted. Such transmission results are similar to the reported transmission values for bulk 

modification in dielectrics. 
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7.3 Ultrafast Bulk Modification of Semiconductors 

Waveguide-writing in bulk silicon material was previously reported in ref. [15], [218]. In the 

reported experiments, the sample possessed a thick oxide layer with a thickness of 𝑡𝑆𝑖𝑂2
= 25 𝜇𝑚. 

The influence of this oxide layer on the possibility to induce bulk modification so far has not been 

studied in detail. 

To investigate the induced modification in the bulk of semiconductor material with no or only 

very thin oxide layers8, intrinsic c:GaAs and c:Si samples with natural oxide layers were irradiated 

using a meander pattern as depicted in Fig. 7.10. The pulse energy and polarization of the incident 

radiation were varied during the experiment within the parameter space reported by ref. [15], 

[218]. The samples were then cleaved in the middle of the irradiated tracks as shown in Fig. 7.10 

and inspected using a light microscope (images not shown). No evidence for modification of the 

bulk material could be found. 

 

Fig. 7.10 - Scheme of semiconductor bulk irradiation showing the meander pattern adopted 

To verify the findings of missing modification tracks in the bulk of the material, a second 

experiment was performed. The same intrinsic c:GaAs and c:Si base-material were irradiated with 

                                                 
8 The natural oxide layer is only a few tens of nanometers thick. 
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a grating pattern in the bulk of the sample using 100 𝑓𝑠 pulsed 2 𝜇𝑚 radiation, as demonstrated 

before in dielectrics [219]. A cw-IR-probe-beam from a diode-laser source (Lucent D2502G fiber-

coupled diode on Newport Butterfly diode mount, ILX Lightwave driver) was then passed through 

the post-irradiated samples at the locations of the expected grating pattern. The transmitted 

intensity profile of the probe-beam was captured for each sample using an IR-sensitive beam-

camera (Spiricon PyroCam). A scheme of the setup is shown in Fig. 7.11(a). If bulk modification 

due to the irradiation with ultrashort-pulsed laser radiation occurred, a diffraction pattern as 

depicted in Fig. 7.11(b) was expected to be captured by the beam camera. 

 
 

(a) (b) 

Fig. 7.11 - (a) Scheme of grating test setup using cw-IR-probe-beam and IR-sensitive 

beam-camera; (b) expected output-profile captured by the beam-camera 

The actual recorded intensity profiles for c:GaAs and c:Si are shown in Fig. 7.12 (a) and (b), 

respectively. No diffraction pattern matching the irradiated grating pattern was observed for the 

investigated irradiation parameter space. 

SC Screen 

Probe λ = 1.55 µm 

Screen 

0. 1. 2. -1. -2. 
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(a) (b) 

Fig. 7.12 – Intensity profile of probe-beam output as captured by beam-camera from (a) 

c:GaAs and (b) c:Si sample 

7.4 Simulation Results 

7.4.1 Surface Modification 

Using the non-linear propagation and absorption model, the electron density due to ultrashort 

irradiation was calculated for incident wavelength of 800 𝑛𝑚, 1.3 𝜇𝑚, and 2.4 𝜇𝑚 on intrinsic 

Silicon. The material parameter values for Silicon in the model used are listed in Table 7-2. 

First, the focus was set on the surface of the sample to compare the simulation results to the 

modification threshold experiment. Additionally, the topological surface profiles of a single 

irradiation site were recorded for all three incident wavelengths using a white-light interferometer 

measurement (ZYGO NewView 6000). Fig. 7.13 depicts (a) a microscope image of the ablation 

spot, (b) the depth profile of that ablation spot, and (c) the simulated non-degenerative electron 

density, all for 800 𝑛𝑚 (top), 1.3 𝜇𝑚 (middle), and 2.4 𝜇𝑚 (bottom). Here the surface fluence 

was kept constant at 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ≅ 0.25 𝐽/𝑐𝑚2as well as the focusing objective with a NA of 0.25. 
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Table 7-2 - Material parameter used for the propagation model and Silicon 

 Definition Unit Value 

𝑛(800 𝑛𝑚) Refractive index 1 3.69409 

𝑛(1.3 𝜇𝑚) Refractive index 1 3.50849 

𝑛(2.0 𝜇𝑚) Refractive index 1 3.45268 

𝑛(2.4 𝜇𝑚) Refractive index 1 3.44143 

𝛼 Linear absorption coefficient 𝑚−1 1.3 ⋅ 104 

𝛽2 2PA absorption coefficient 𝑚4

𝑊2
 

4.918 ⋅ 10−21 [220] 

𝛽3 3PA absorption coefficient 𝑚6

𝑊3
 

9.433 ⋅ 10−34 [221] 

𝛼𝑎𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 Avalanche coefficient 𝑚2

𝑊
 

1.0 ⋅ 10−2 [222] 

𝑛2 Non-linear refractive index 𝑚2

𝑊
 

5.7 ⋅ 10−18 [220] 

𝜌𝑎𝑡𝑜𝑚 Atomic density 𝑚−3 1.6 ⋅ 1028 

𝐶 Electric conductivity Ω ⋅ 𝑚 4 ⋅ 102 

𝑡𝑟𝑒𝑐𝑜𝑚𝑏 Electron recombination time 𝑓𝑠 100 [222] 
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(a) (b) (c) 

Fig. 7.13 – Series of (a) microscope surface images, (b) topological surface profiles and (c) 

simulated electron density profiles for 800 𝑛𝑚  (top), 1.3 𝜇𝑚  (middle), and 2.4 𝜇𝑚 

(bottom) at 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ≅ 0.25 𝐽/𝑐𝑚2 and 𝑁𝐴 = 0.25 

The depth profiles (column (b)) indicate that the pulse penetrates deeper at shorter 

wavelengths. This trend corresponds to the simulation results, which show that the laser-induced 
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electron density is much shallower at 1.3 𝜇𝑚 and 2.4 𝜇𝑚 wavelengths when compared to 800 𝑛𝑚 

incident wavelength. This reduced penetration depth was unexpected because the absorption 

regime was believed to change from linear at 800 𝑛𝑚 to 2PA and 3PA for 1.3 𝜇𝑚 and 2.4 𝜇𝑚 

wavelengths, respectively. The reduced penetration depth would however correspond to the 

reduction of the critical electron density for longer wavelengths, which is given as 

 
 Nc(λ) = (

2𝜋𝑐

𝑒
)
2 𝜖0𝑚𝑒

𝜆2  . 
( 7.2 ) 

One aspect worth noting is that these results suggested again that the primary absorption 

mechanism seemed neither to be MPI nor free-carrier absorption. The same observation was made 

previously for the modification threshold.  

Regarding the influence of the dopant concentration, several different concentrations were 

simulated at an incident wavelength of 2.4 𝜇𝑚. The wavelength of 2.4 𝜇𝑚 was chosen because 

the corresponding photon energy required 3PA to occur to bridge the band gap. Fig. 7.14 illustrates 

the calculated electron densities at the end of a  100 𝑓𝑠 laser pulses for (a) 1.5 ⋅ 1011 𝑐𝑚−3, (b) 

2 ⋅ 1014 𝑐𝑚−3, and (c) 2 ⋅ 1019 𝑐𝑚−3 doped Silicon samples. The end of the pulse was chosen 

because at that time all energy contained in the pulse was incident and possibly absorbed. The 

pulse energy was set to 100 𝑛𝐽. 
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(a) (b) (c) 

Fig. 7.14 - Graphs of simulated electron density on Silicon surface due to an incident 

ultrashort 100 𝑛𝐽 pulse at a wavelength of 2.4 𝜇𝑚 for dopant concentrations of (a) 1.5 ⋅

1011 𝑐𝑚−3, (b) 2 ⋅ 1014 𝑐𝑚−3, and (c) 2 ⋅ 1019 𝑐𝑚−3 with a pulse energy of 𝐸𝑝 = 100 𝑛𝐽 

It is apparent from the figure that the laser-induced electron density is the same for 1.5 ⋅

1011 𝑐𝑚−3  and 2 ⋅ 1014 𝑐𝑚−3  doped Silicon and the utilized parameter set. However, for 2 ⋅

1019 𝑐𝑚−3  doped silicon, the laser-induced electron density is approximately two orders of 

magnitude higher. Moreover, the experimental results reported by Leyder et al. [223] coincide 

with outcomes from the model implemented here for low incident pulse energies of only 𝐸𝑝 =

 100 𝑛𝐽, at which no influence of the dopant concentration was seen in the simulated electron 

density up to an approximately concentration of 2 ⋅ 1018 𝑐𝑚−3. Fig. 7.15 shows the full plot of the 

simulated electron densities achieved at the end of the 100 𝑓𝑠  laser pulse against dopant 

concentration and incident pulse energy. It is apparent from the graph that the pulse energy is the 

primary factor of induced electron density up to a critical dopant concentration. That concentration 

was coinciding with the critical electron density for the low level pulse energy of 100 𝑛𝐽. 

However, at higher incident pulse energies 𝐸𝑝 > 250 𝑛𝐽 , all specimens, independent of their 
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dopant concentration quickly reach critical electron density, where the tail of the incident pulse is 

reflected due plasma reflection. It should be pointed out that a pulse energy of 300 𝑛𝐽 corresponds 

to a fluence of only 4 𝑚𝐽/𝑐𝑚2, which is approximately one order of magnitude below the surface 

modification threshold. 

 

Fig. 7.15 - Simulated graph of electron density due to incident laser radiation as function 

of dopant concentration and pulse energy 𝐸𝑝 for silicon 

7.4.2 Bulk Modification 

Another set of simulations was conducted for bulk modification at a wavelength of 2.0 𝜇𝑚. 

Therefore, the focus was set at a depth of 𝑡𝑓𝑜𝑐𝑢𝑠 = 30 𝜇𝑚 below the surface of intrinsic Silicon 

with a dopant concentration of 1.5 ⋅ 1011 𝑐𝑚−3. The focusing NA was 0.5 and the pulse energy 

was 𝐸𝑝 = 1 𝜇𝐽. The material parameters necessary for the model are listed in Table 7-2. Fig. 
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7.16(a) illustrates the laser-induced accumulated electron density and Fig. 7.16(b) the on-axis 

electron density evolution. 

  
(a) (b) 

Fig. 7.16 - Graphs of simulated (a) accumulated electron density and (b) electron density 

evolution at 𝑟 = 0 for ultrashort pulse irradiation focused in the bulk of intrinsic c:Si 

Fig. 7.16(b) depicts that the electron density on the input facet of the sample quickly rises to 

critical electron density, with the leading edge of the pulse. At that point, most of the incident 

energy is reflected off of the electron cloud. Only a small portion of this is actually focused in the 

bulk material.  

Obviously, the incident pulse energy can be reduced to a level at which the pulse can indeed 

penetrate the material, approximately 300 𝑛𝐽. However, comparing the corresponding fluence to 

the surface modification threshold, which in general is lower than the bulk modification threshold 

due to impurities and free bonds on the edge, it becomes apparent that pulse modification cannot 

be achieved with these wavelengths. 
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7.5 Ultrafast Back-Side Surface Structuring of Semiconductors 

Because of the non-transparent character of semiconductors in the visible region of the 

spectrum, it is difficult to observe bulk modification by microscopic means as is commonly done 

with dielectrics. Therefore, a simple approach of testing the possibility of bulk modification is to 

modify the back-side surface of the sample material by focusing through the sample. Using 

ultrashort-pulsed laser radiation at the wavelengths 𝜆1 = 1043 𝑛𝑚 and 𝜆2 = 2 𝜇𝑚 and under the 

condition that the front surface was not ablated, no evidence of back-side modification could be 

found. Changing to longer pulses with durations in the ns-range, back-side ablation using 2 𝜇𝑚 

radiation was possible, as depicted in Fig. 7.17. 

 

Fig. 7.17 - Microscope image of ablation tracks using 2m ns-pulsed radiation on the front- 

and back-side of an intrinsic c:GaAs wafer at varying focusing depths 

7.6 Conclusion of Semiconductor Laser Processing 

The conducted experiments in the transparent region have shown that bulk modification of 

c:GaAs or c:Si was not possible. The reasons were two-fold. When sufficient pulse energy for 

modification was incident on the sample, the leading edge of the pulse caused an extremely fast 

rise of the electron density to critical density. At that point, the electron cloud reflected the majority 

of the incident pulse and therefore insufficient energy for modification was focused inside the 
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sample. By extending the pulse duration as shown in the back-side ablation experiment, the peak 

intensity was significantly lowered and the electron density grew slower accordingly, allowing the 

main pulse to penetrate the sample. Moreover, it has been shown that the pulse energy necessary 

for surface modification is larger than the pulse energy sufficient to reach critical electron density. 

This means that simple reduction of pulse energy was insufficient to overcome the bulk 

modification threshold. 

With regard to the dependence of the dopant concentration, the propagation model developed 

here verified that the absorption is independent of the dopant concentration. However, the 

modification threshold was independent of dopant concentration and incident photon energy. The 

experiments have illustrated that the threshold fluence follows a 𝝀−𝟐  curve regardless of the 

absorption regime (linear, 2PA, or 3PA). This means that avalanche ionization is the primary 

absorption mechanism. The seed electrons for the avalanche process are generated by MPI during 

the leading edge of the pulse or readily available due to the dopant concentration. 

7.7 Future experiment 

To test the here developed theory a time-resolved reflection experiment is proposed for future 

studies of the matter. 

7.7.1 Time-resolved Ultrafast Transmittance of Semiconductors 

The classical light-matter-interaction picture is based on a steady-state condition of the 

physical mechanisms involved such as a constantly oscillating EM-field of the radiation and a 

thermo-dynamic equilibrium of the matter present. On the contrary, when dealing with ultrashort-

pulsed laser radiation, such a steady-state condition is not present. The radiation pulse is too short 

to interact with matter in a thermo-dynamic equilibrium condition [74], [224], as pointed out in 
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Section 2.2. Therefore, transient responses will dominate the interaction picture and cause the 

response to be different from the known steady-state response. One particular phenomenon of 

interest is the ultrafast transmittance of semiconductor materials due to an incident ultrashort laser 

pulse with a photon-energy below the band gap energy of the material. Whereas in a steady-state 

condition, the material will be transparent to the radiation; in a transient state a high reflectance 

can occur due to absorption followed by a transient electron plasma. 

Knowledge of how much of the incident energy is transmitted into the bulk material is 

essential to predict if the material can be modified in the focal region using the FLDW technique. 

To measure the amount of transmitted energy a pump-probe reflectance measurement should be 

conducted similar to the experiments in ref. [225], [226], but the excitation wavelength should be 

changed to 1.3 𝜇𝑚 and 2.0 𝜇𝑚 for probe- and pump-beam, respectively. 

7.7.1.1 Experimental Approach 

The outputs of the OPA at 2.0 𝜇𝑚  and 1.33 𝜇𝑚  are used for pump and probe beams, 

respectively. Both wavelengths can be extracted from the OPA simultaneously with a known 

temporal offset of approximately 180 𝑝𝑠. The probe beam is then steered over a micro-positioning 

stage to allow the variation of the temporal offset of either beam with respect to the other, as shown 

in Fig. 7.18. 
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Fig. 7.18 - Schematic of a simple delay line to adjust temporal offset of to pulses to each 

other with M1 and M2 as translation mirrors and M3 and M4 as stationary mirrors 

The temporal offset is here related to the translation of the stage by  

  Δ𝑥 =
1

2
Δ𝑡 ⋅ 𝑐[𝑚]. ( 7.3 ) 

with Δ𝑥 and Δ𝑡 being the translation distance of the stage and the temporal delay of the two pulses 

to each other, respectively. After correction of the initial offset the maximum achievable delay 

between the two pulses is approximately 150 𝑝𝑠  corresponding to a translation distance of 

2.25 𝑐𝑚. 

The pump beam is focused on the semiconductor sample at an incident angle of approximately 

45o. A microscope objective is positioned such that the probe radiation can be used as an 

illumination source to image the sample surface. The reflection from the sample surface is imaged 

on to a CCD camera sensitive to mid-IR radiation (Fig. 7.19). 
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Fig. 7.19 - Schematic of pump-probe ultrafast reflectance measurement setup; BS: beam 

splitter, MO: microscope objective 

The IR-CCD will first be calibrated with reflected probe radiation without a pump beam 

present on the sample. After successful calibration the pump will be passed onto the sample surface 

and the amount of reflected radiation will be recorded at varying time delays. 

7.7.1.2 Expected Results 

Many studies regarding the dynamics of ultrafast light-matter interaction focus on the transient 

phase changes of the matter during and within several picoseconds after the pulse [225], [227]-

[229]. The excitation wavelength is thereby, in general, non-transmissive for the probe material. 

Here, information can be deduced about the ultrafast transmittance through the material 

boundary when the photon energies of the incident radiation are insufficient to bridge the band gap 

directly. Furthermore, the temporal window will concentrate on the effects during the laser pulse 

itself. 
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With the data acquired, an accurate prediction can be drawn of how much energy is 

transmitted from an incident pulse into the bulk of the sample. 

7.7.1.2.1 Technical Challenges 

In an ideal case, the probe pulse should be temporally shorter with respect to the pump pulse 

to enable temporal resolution throughout the incident event. However, both pulses have 

approximately equal temporal duration when exiting the OPA. To stretch the pump pulse in time 

it will be passed through a dispersive element with known properties, such as Fused Silica or BK7. 

Using the increased material dispersion in such media, a 100 𝑓𝑠 pulse, covering 𝛥𝜆 = 100 𝑛𝑚 10 

dB bandwidth at a center wavelength of 2 𝜇𝑚, will be stretched to 300 𝑓𝑠 passing through 10 𝑐𝑚 

of i.e. BK7 glass. 
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8  CONCLUSION 

This thesis aims to advance the development of the Femtosecond Laser Direct Writing 

technique for photonic applications in bulk material. It examines changes occurring in the light-

matter interaction process, specifically in absorption regimes present when using high repetition 

rate femtosecond pulsed radiation. The results suggested, specifically with regard to the extension 

of the FLDW technique from dielectric to semiconductor materials, that a scaling of the laser 

wavelength towards the IR alone is not sufficient to introduce modifications in bulk c:GaAs or 

c:Si. Even though non-linear processes are still dominant using ultrashort pulses, the presence of 

enhanced avalanche ionization prohibits bulk modification. 

In another study it was shown that 3D FLDW can introduce a positive refractive index of up 

to 5 ⋅ 10−5 in bulk Telluride glass. Even though this index change is not as high as previously 

achieved in other dielectrics, it resulted in the first direct inscription of a wave-guiding structure 

in Te-glass-family. The increase of the refractive index in the core of the guide is thought to be 

due to the migration of La-atoms from the core into the surrounding volume. 

The use of high repetition rate femtosecond lasers to irradiate in the bulk of dielectrics such 

as Fused Silica, aluminumsilicate glass, or FOTURAN® glass, led to the formation of novel nano-

fibers on the surface of such dielectrics. To extend the understanding of this novel formation 

process, a broad range of materials and irradiation conditions was investigated. It was 

demonstrated that there exists a correlation between heat-accumulation during the irradiation 

process and the occurrence of nano-fibers. A model was developed to predict the temperature in 

the irradiated bulk material. It was found that this temperature exceeded the melting temperature 

in the focal volume, and that the high rate of energy deposition gave rise to the formation of nano-
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fiber on the sample surface. A qualitative model of the nano-fiber formation process was developed 

(Section 5.4) on the basis of the obtained results. 

Special interest was paid to the heat accumulation process itself. It was shown (Section 5.3.1) 

that the initial non-linear absorption regime is followed by an additional quasi-linear absorption 

regime when the conditions for heat accumulation were met. This quasi-linear regime is thought 

to be driven by simple electron heating of the laser-induced plasma. Post-irradiation measurements 

of the radial and axial expansion of the laser-modified region showed that the modification grew 

faster in the z-direction towards in the incident beam. This result is consistent with an absorption 

mechanism based on electron heating in the heat-accumulation regime. 

On semiconductor surfaces, the reproducible generation of parallel Laser Induced Periodic 

Surface Structures (LIPSS) with respect to the incident E-field orientation was shown at 2 𝜇𝑚 

radiation wavelength is shown in 6. The model suggested by Bonse, on the basis of the Sipe’s 

theory of LIPSS formation, was extended to predict the periodicity of this parallel structure. 

Moreover, the development of LIPSS has been categorized in three different regimes, which led 

to parallel-LIPSS (P-LIPSS) at low, Low Spatial Frequency LIPSS (LSFL) at moderate, and High 

Spatial Frequency LIPSS (HSFL) at high accumulated fluences.  

The feasibility of semiconductor bulk modification using conventional 3D FLDW scheme 

used for dielectrics was investigated. The surface modification threshold due to femtosecond laser 

irradiation was found to be independent of the excitation wavelength and therefore independent of 

the multi-photon absorption scheme. In addition, the dopant concentration of the irradiated 

samples could not conclusively be correlated to the modification threshold in experiments. A 

model of the propagation and absorption process of ultrashort laser pulses was developed and 
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revealed that a dependence of the modification threshold on the dopant concentration is unlikely. 

Independent published research supports theses results, as summarized in section (Section 7.1). 

The results in 7 suggest that the absorption mechanism dominant during femtosecond 

irradiation of semiconductors is avalanche ionization. Due to the rapid rise in electron density on 

the surface of the irradiated sample, it was not possible to achieve sufficient energy input into the 

bulk of the material to overcome the modification threshold. Moreover, the model suggests that 

the greater part of the pulse is reflected from the critical density in the laser-induced electron 

plasma. 

Continued research is necessary to fully understand the ultrafast phenomena occurring during 

femtosecond irradiation of semiconductor material. The results presented in this thesis present a 

good basis for further investigations. 
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