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ABSTRACT 

As gesture-based interactions with computer interfaces become more technologically feasible for 

educational and training systems, it is important to consider what interactions are best for the 

learner.  Computer interactions should not interfere with learning nor increase the mental effort 

of completing the lesson.  The purpose of the current set of studies was to determine whether 

natural gesture-based interactions, or instruction of those gestures, help the learner in a computer 

lesson by increasing learning and reducing mental effort.  First, two studies were conducted to 

determine what gestures were considered natural by participants.  Then, those gestures were 

implemented in an experiment to compare type of gesture and type of gesture instruction on 

learning conceptual information from a computer lesson.  The goal of these studies was to 

determine the instructional efficiency – that is, the extent of learning taking into account the 

amount of mental effort – of implementing gesture-based interactions in a conceptual computer 

lesson.   

To test whether the type of gesture interaction affects conceptual learning in a computer 

lesson, the gesture-based interactions were either naturally- or arbitrarily-mapped to the learning 

material on the fundamentals of optics.  The optics lesson presented conceptual information 

about reflection and refraction, and participants used the gesture-based interactions during the 

lesson to manipulate on-screen lenses and mirrors in a beam of light.  The beam of light 

refracted/reflected at the angle corresponding with type of lens/mirror.  The natural gesture-

based interactions were those that mimicked the physical movement used to manipulate the 

lenses and mirrors in the optics lesson, while the arbitrary gestures were those that did not match 

the movement of the lens or mirror being manipulated.  The natural gestures implemented in the 
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computer lesson were determined from Study 1, in which participants performed gestures they 

considered natural for a set of actions, and rated in Study 2 as most closely resembling the 

physical interaction they represent.  The arbitrary gestures were rated by participants as most 

arbitrary for each computer action in Study 2.  To test whether the effect of novel gesture-based 

interactions depends on how they are taught, the way the gestures were instructed was varied in 

the main experiment by using either video- or text-based tutorials.   

Results of the experiment support that natural gesture-based interactions were better for 

learning than arbitrary gestures, and instruction of the gestures largely did not affect learning and 

amount of mental effort felt during the task.  To further investigate the factors affecting 

instructional efficiency in using gesture-based interactions for a computer lesson, individual 

differences of the learner were taken into account.  Results indicated that the instructional 

efficiency of the gestures and their instruction depended on an individual’s spatial ability, such 

that arbitrary gesture interactions taught with a text-based tutorial were particularly inefficient 

for those with lower spatial ability.  These findings are explained in the context of Embodied 

Cognition and Cognitive Load Theory, and guidelines are provided for instructional design of 

computer lessons using natural user interfaces.    

The theoretical frameworks of Embodied Cognition and Cognitive Load Theory were 

used to explain why gesture-based interactions and their instructions impacted the instructional 

efficiency of these factors in a computer lesson.  Gesture-based interactions that are natural (i.e., 

mimic the physical interaction by corresponding to the learning material) were more 

instructionally efficient than arbitrary gestures because natural gestures may help schema 

development of conceptual information through physical enactment of the learning material.  
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Furthermore, natural gestures resulted in lower cognitive load than arbitrary gestures, because 

arbitrary gestures that do not match the learning material may increase the working memory 

processing not associated with the learning material during the lesson.  Additionally, the way in 

which the gesture-based interactions were taught was varied by either instructing the gestures 

with video- or text-based tutorials, and it was hypothesized that video-based tutorials would be a 

better way to instruct gesture-based interactions because the videos may help the learner to 

visualize the interactions and create a more easily recalled sensorimotor representation for the 

gestures; however, this hypothesis was not supported and there was not strong evidence that 

video-based tutorials were more instructionally efficient than text-based instructions.  The results 

of the current set of studies can be applied to educational and training systems that incorporate a 

gesture-based interface.  The finding that more natural gestures are better for learning efficiency, 

cognitive load, and a variety of usability factors should encourage instructional designers and 

researchers to keep the user in mind when developing gesture-based interactions. 
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CHAPTER ONE: INTRODUCTION 

As motion tracking technology becomes more accurate and widely available, it is feasible 

to implement gesture-based interactions in systems for education and training.  Before gesture-

based interactions should be included in educational systems, it is important to understand how 

such interfaces affect learning to avoid implementing interactions that may negatively affect the 

learner.  For example, arbitrary gesture-based interactions that do not match the learning material 

may hinder learning because interacting with the lesson is an additional mental burden on the 

learner that is not relevant to the lesson; however, gesture-based interactions in a computer 

lesson that match the learning material, or natural gestures, may be easier to use and foster 

stronger memories for the learning material than arbitrary gesture-based interactions that do not 

match the learning material.  Alternatively, the way in which the gestures are instructed may 

influence the feelings of naturalness for the interactions and impact learning more than how 

much the interaction matches the learning material.  The current set of studies investigates 

whether natural gesture-based computer interactions that match the learning material are a more 

beneficial instructional technique than arbitrary gesturing, or whether the instruction of the 

interaction matters more for learning.  

Gesture-based Interactions 

Controls that are more intuitively mapped may facilitate ease of interacting with a 

computer system (Norman, 2002).  Recent advances in technology may make interacting with a 

computer interface more intuitive, such as gesture-based commands that more closely mimic the 

physical actions they represent (Dodds, Mohler, & Bulthoff, 2011; Singer & Goldin-Meadow, 

2005).  Imagine a surgeon standing by the bedside of a patient under anesthesia, viewing a 

monitor displaying a 3D image of the patient’s internal organs.  She moves her gloved hand in 
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front of the screen in a rotating motion, and the image on the screen turns in response.  The 

surgeon gestures again, this time the image zooms in for a better view of the area in which she 

will be operating.  A motion tracker captures the surgeon’s gestures, and the gestural commands 

manipulate the image displayed on the monitor in response.  The surgeon is able to quickly 

change the image while keeping her hands in a sterile zone, without breaking the mental flow of 

surgery.   Motioning her hand to move an image on the screen more closely maps onto the 

physical process of moving an object than the traditional computer interaction of using a mouse 

and pointer.    

As motion tracking technology becomes more widely available, natural gesture-based 

interactions may be implemented into educational and training computer systems, which could 

have instructional benefits over less intuitive computer interactions.  In the case of a conceptual 

computer lesson, controls that are more intuitively mapped may facilitate ease of interacting 

because natural gestures might reduce the cognitive load, or amount of information being 

processed, of the learner (Goldin-Meadow, Nusbaum, Kelley, & Wagner, 2001; Hamblin, 2005; 

Wagner, Nusbaum, & Goldin-Meadow, 2004), and build stronger mental representations of the 

conceptual material by enacting, or physically performing, the gestures (Engelkamp & Zimmer, 

1997; Schwartz & Plass, 2014).  Research has shown that computer interactions that represent a 

physical action (e.g., dragging the mouse to move an icon) are easier to remember than arbitrary 

interactions that do not correspond with actions in the real world or the learning material (e.g., 

clicking the mouse to move an icon; Schwartz & Plass, 2014).  The finding that enactment helps 

memory is referred to as the enactment effect and is part of a multi-system framework that 

combines conceptual and sensory information during encoding to produce stronger memories 

(Engelkamp & Jahn, 2003).  It follows that using gestures to interact with a computer lesson may 
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be easier and more memorable if the computer interactions more closely match the physical 

actions they represent.  

Instructing Gestural Interactions 

Alternatively, it could be that the ease of gesture-based interaction is dependent on how 

the gestures are instructed.  Traditionally, using a computer involves an interface in which a user 

is taught to move a proximal device (i.e., a mouse) to control a distal object on a screen (i.e., 

pointer) using learned mechanisms (e.g., double clicking the mouse to select, using the scroll 

wheel to zoom, etc.).  Actions such as double clicking to select or scrolling to zoom are only 

arbitrarily mapped to the on-screen actions they represent, but interacting with a mouse may 

seem second nature once the process is instructed.  Instructions may help users overcome 

“conceptual difficulties” of learning novel gesture-based interactions and make a gesture seem 

more intuitive (p. 251, Schurmann, Binder, Janzarik, & Vogt, 2015).  Just as people learned to 

use a mouse to perform computer tasks, perhaps the naturalness of gesture-based computer 

interactions depends on how well those interactions are instructed.   

The question of how gestures and their instruction may support conceptual learning in a 

computer environment can be explained though the theoretical frameworks of Embodied 

Cognition (Barsalou, 2008; Wilson, 2002) and Cognitive Load Theory (CLT; Sweller, van 

Merriënboer, & Paas, 1998; Sweller, 2010).  The term Embodied Cognition encompasses many 

theories that can be summarized by the tenant that one’s physical interactions with the world can 

shape thinking.  For example, when actions are physically performed or observed, they can 

activate the motor system, which serves to create stronger memories and develop schemas for 

those actions (Barsalou, 2008; Engelkamp & Jahn, 2003; Hostetter & Alibali, 2008).  Like 

theories of embodiment, the CLT framework may also explain why these instructional 
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techniques affect learning, by contextualizing different aspects of information processing.  CLT 

is based on the idea that new information is processed by working memory to develop 

representations of that information for storage in long term memory, but the capacity in working 

memory for new information is limited (Sweller, van Merriënboer, & Paas, 1998).  The capacity 

in working memory is filled by different kinds of information processing, or cognitive load.  A 

goal of instructional design, therefore, is to reduce the cognitive load that is not useful for 

developing mental representations (i.e., learning).  CLT may help explain why gesture-based 

interactions, along with how they are instructed, support or hinder learning.   

Deficiencies in Studies 

Research is needed on how gesture-based interactions impact learning conceptual 

information in human-computer systems.  Previous research on computer interface interactions 

have focused on the amount of interaction a user has with the system, finding that more 

interactivity leads to better task performance and recall (see Betrancourt, 2005 for a review of 

interactivity in multimedia systems).  For example, research has determined that memory for 

computer actions is better when physically moving a mouse to control the action than simply 

viewing an action completed on-screen (Schwartz & Plass, 2014).  In addition to the amount of 

interaction, research has compared types of computer interaction, including the level of natural 

mapping between the interaction and the real-world action represented (Norman, 2002).  The 

more natural and less arbitrary an interaction, the more likely the interaction is to be recalled 

later (Schwartz & Plass, 2014).  At the same time, instructional design research emphasizes the 

importance of appropriate instruction for a task (Mayer & Moreno, 2010), such as choosing the 

instruction’s type of media (e.g., text, picture, etc.; Zacks & Tversky, 2003) or modality (e.g., 

physical, verbal, etc.; Nilsson, Cohen & Nyberg, 1989) to match the learning material.   
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What is lacking from these previous studies is that there may be overlap between the type 

of interaction and how those interactions are instructed.  For example, if people find a gesture 

command to be intuitive, is it because they have been well-instructed on how to perform that 

gesture (e.g., double clicking a mouse) and would they find any gesture intuitive with enough 

experience or instruction?  In contrast, perhaps no amount of instruction can overcome a system 

of interaction that is so unintuitive that it does not make sense.  The type of interaction may 

impact learning outcomes more or less depending on their instruction, or combined 

implementation of these factors may interact to produce mitigating or strengthening effects on 

conceptual learning.  Therefore, research should investigate the interplay of interaction and 

instruction to differentiate their effects. 

Purpose Statement 

The current study investigated whether gesture-based interactions, and how the gestures 

were instructed, impacted learning conceptual information from a computer lesson.  The 

computer lesson involved learning conceptual information about optics, such as how light 

interacts with mirrors and lenses.  Participants used gestural interactions to complete the 

computer lesson that were either naturally mapped to the learning material, corresponding to the 

movement of the on-screen mirrors and lenses, or were arbitrary gestures irrelevant to the 

conceptual material.  The gesture-based interactions were instructed using either video- or text-

based tutorials to determine whether instruction of the interaction affected the understanding of 

the gestures and their effect on the computer lesson.   

Significance for Application and Theory  

These important questions about how gesture-based interactions affect conceptual 

learning should be answered as technology moves forward in educational and training systems.  
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Research is needed on how more intuitive interactions, such as gesturing, impact human-

computer systems and whether those interactions are greatly affected by their instruction.  The 

results will inform the extent to which computer interactions affect learning depending on the 

nature of the interaction (e.g., natural or arbitrary gesture; Dodds, Mohler, & Bulthoff, 2011; 

Singer & Goldin-Meadow, 2005) or on how the interaction is instructed (e.g., video versus text 

instruction; Engelkamp & Zimmer, 1997).  By testing these factors in one experiment, the 

combined effects of computer interactions and their instructions can be compared to determine 

their joint instructional efficiency, and practical guidelines for application in future systems can 

follow.  In addition to the usefulness of these results for designing educational computer systems, 

this research has important implications for theories of Embodied Cognition and CLT.  Results 

will inform theories of Embodied Cognition by providing evidence of whether enacting the 

learning material through naturally-mapped computer interactions is better for learning 

conceptual information than arbitrarily-mapped gestures, and whether viewing the gestures in 

video-based instructions is more effective than text-based instructions.  The findings will also 

suggest how well CLT explains the instructional efficiency of these interactions and their 

instructions by indicating the mental effort associated with each technique.    
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CHAPTER TWO: LITERATURE REVIEW 

Theoretical Frameworks 

The goal of the current set of studies is to provide evidence for appropriate gesture-based 

interactions and instruction for educational computer systems that is grounded in cognitive 

science.  The theoretical frameworks from which this research was developed are Embodied 

Cognition and Cognitive Load Theory.  First, an overview of each is described in general terms, 

then specific theories or tenants under these frameworks are presented in context of gesture 

interactions and instruction later in the chapter.   

Embodied Cognition 

Embodied Cognition theories, also referred to as Grounded Cognition or Situated 

Cognition, focus on how thinking is shaped by physical interactions with one’s environment, 

stating that mental representations of information are not merely a series of verbal proposition 

statements (Barsalou, 2008; Garbinia & Adenzato, 2004; Wilson, 2002).  Concepts are built, and 

thus dependent, on the sensory state in which the information was received and are not 

completely abstracted from that modality (Barsalou, 2008).  Bodily-specific interactions on 

objects cannot be separated from cognition about those objects.  For example, if a water bottle 

sits on a table, a person who is tall with a longer arm reach will perceive the water bottle as 

closer than a person who is shorter with a smaller reach (Longo & Lourenco, 2007).  According 

to embodiment theories, this difference in spatial perception is due to the specific physical 

interactions the tall and short people have had with the world that created different 

representations of space.   

One theory within the embodied cognition framework is simulation theory, which argues 

that mental representations exist in a neural sensorimotor system that correlates action and 
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perception in modality-specific states (Barsalou, Barbey, Simmons, & Santos, 2005).  To clarify, 

modal states are activated during cognition by sensory information, such as hearing a sound (i.e., 

auditory modality) or grasping an object (i.e., motor modality), creating a mental simulation of 

the original sensory experience in which one can mentally imagine hearing that sound or 

grasping an object.  During perception and cognition of sensory information in which the body 

senses modality-specific information and contextualizes it, concepts can be encoded into 

memory for later activation, or simulation, in the sensory modality of the original stimulus.  This 

reenactment may be partial or distorted (Barsalou et al., 2005).  There is behavioral evidence for 

the simulation theory in research on the enactment effect.  The enactment effect is the finding 

that physically-performed actions are more accurately recalled and retained longer than when the 

information was acquired in another modality (Engelkamp & Jahn, 2003).  Engelkamp and Jahn 

(2003) explain the enactment effect as a result of a combined conceptual and sensori-motor 

multisystem that is activated during modality-specific encoding and retrieval of action phrases 

causes a “regeneration” of motor information that was encoded physically.  That is, physically 

performing the actions encoded that motor information as part of the concept for that action and 

then recalling that concept involves simulating (i.e., “regenerating”) that motor information.  The 

enactment effect is described in the context of natural gesture-based computer interactions later 

in this chapter.    

Neural evidence also supports this reactivation principle of simulation theory.  In 

multiple areas of the brain, individual neural cells and combined activation patterns indicate that 

stored information retains the form of the original stimulus and are interconnected with other 

modalities (Barsalou, 2008; Garbarini & Adenzato, 2004; Goodale & Humphrey, 1998; Pezzulo 

et al., 2011; Rizzolatti & Craighero, 2004).  For example, Rizzolatti and Craighero (2004) 
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explain that mirror neurons activate for a specific action, such as grasping.  Mirror neurons can 

be activated in primates when observing someone else perform that action, thus the name 

“mirror” neurons.  The embodiment theorists explain that this activation of an action concept 

(e.g., grasping) in that sensory modality when the action was not physically performed is 

evidence for simulation theory, because the action was being represented “as if” it were being 

performed.  Researchers took this experiment a step further, by addressing if the activation was 

merely visual recognition of an action pattern or an actual mental simulation of the action.  To 

remove the possibility of visual recognition, Kohler et al. (2002) explored whether mirror 

neurons were activated with other modalities.  The study found that the same neuron was 

activated in conditions in which a monkey physically cracked a nut, visually observed another 

cracking a nut, or heard a nut being cracked without seeing it.  In each case, the same neuron 

fired for the concept of “nut cracking” as if the action were happening, regardless of modality.  

The ability to mentally simulate is considered an important mental phenomenon, because 

simulation can create a better understanding of goals and actions of others, by acting “as if” the 

observed action is happening to one’s self (Barsalou, 2008).  Empirical evidence supports the 

simulation principle that representations are formed by modality-specific sensations and retain 

those modalities when activated for cognition.  

Cognitive Load Theory  

Sweller, van Merriënboer, and Paas (1998) argued that the goal of instructional designers 

is to create educational materials that facilitate schema development, and those schemas are 

constructed via working memory processing.  Cognitive Load Theory (CLT) is a theoretical 

framework from which instructional materials can be designed that take into consideration a 

learner’s ability to process information in working memory.  Before describing the ways in 



   

10 
 

which instructional materials can facilitate schema development, I first describe the cognitive 

mechanisms underlying schema development, or the process by which incoming information 

from a lesson is encoded into long term mental representations for that information.       

The cognitive mechanism behind the processing of information into stored mental 

representations is described in Dual Coding Theory (DCT; Clark & Paivio, 1991).  Clark and 

Paivio (1991) state that imagery and linguistic information are processed separately in nonverbal 

and verbal structures into long term mental representations.  Within each structure, either verbal 

or nonverbal information is processed such that associative connections are made between stored 

representations in that structure.  Additionally, referential connections can be made between the 

verbal and nonverbal mental representations.  A mental representation is therefore stored with 

connections to other mental representations, so when a mental representation for certain 

information is activated, that activation can spread to other mental representations for 

information that are connected to that first activation.  The strength of these associative 

connections within each structure and the referential connections between the structures 

determines the ease with which those mental representations are recalled because the 

representations become activated from connection to other representations.  These cognitive 

mechanisms described in DCT are related to the previously discussed theories of Embodied 

Cognition in that information encoded in one modality (e.g., visual information) is stored in a 

mental representation for that information that can be later recalled when that modality is 

activated (e.g., seeing an action can activate the neural pattern for that mental representation).   

DCT describes the verbal and nonverbal systems in which information is processed into 

long term mental representations, and other theories of working memory extend this theory by 

suggesting the processing of each system is limited in how much information can be processed at 
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a time.  Like DCT, Baddeley and Hitch’s model of working memory (Baddeley, 2000; Baddeley 

& Hitch, 1974) suggested that verbal and nonverbal information are processed in separate 

systems, the visuospatial sketchpad and the phonological loop.  They explained that processing 

too much information in either system may overload that system, but this limitation can be 

mitigated by offloading information from one system to another.  For example, if a lesson 

involves teaching a concept by having the learner read textual information, that verbal 

information is processed in the phonological loop.  If additional information is presented to the 

learner as narrated speech, this verbal information may also be processed in the phonological 

loop, overwhelming the verbal processing system with too much information at once.  

Alternatively, if the new information were presented as a picture (i.e., visual information) instead 

of as narrated speech (i.e., verbal information), neither the phonological loop nor the visuospatial 

sketchpad are overwhelmed with multiple pieces of information to process at once.  As 

suggested by research described later in this chapter, gestures may facilitate learning by 

offloading information processing that would otherwise overwhelm the verbal system of working 

memory.      

The mechanisms described by DCT and the working memory model by Baddeley and 

Hitch provide cognitive explanations for the instructional design strategies provided by CLT.  As 

explained in DCT, working memory processes verbal and nonverbal information into mental 

representations for that information, while forming connections to other stored information.  

These mental representations can also be described as schemas for learning material presented in 

a lesson.  Sweller and colleagues (1998) explained that there are three types of cognitive load 

that impact working memory and thus affect schema development: intrinsic load, extraneous 

load, and germane load.  Intrinsic load is the mental processing associated with the learning 
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material itself, with more difficult material creating more intrinsic load.  The difficulty of the 

learning material is based on how many elements must be processed concurrently, or the element 

interactivity (Sweller, 2010), with most CLT theorists holding the assumption that intrinsic load 

cannot be altered (Moreno & Park, 2010).  Extraneous cognitive load is the way the learning 

material is presented to the learner that imposes unnecessary mental processing not related to the 

learning material (Sweller et al., 1998), which creates more interacting elements to be processed 

that are not relevant to learning (Sweller, 2010).  For example, if a computer lesson involves 

bells and whistles unrelated to the learning material, the learner’s working memory may be taxed 

with understanding why the sounds are occurring, leaving less working memory capacity for 

processing the relevant information into a schema for the lesson.  Whereas intrinsic load 

associated with the learning material cannot be changed, extraneous load can be reduced through 

appropriate instructional techniques.  The last component of cognitive load is germane load, or 

the mental processing related to schema development.  Sweller (2010) argues that available 

working memory should be used by the germane load associated with processing information 

into schemas, instead of irrelevant extraneous load.   

The three types of cognitive load are additive, and their combined effort can exceed the 

capacity of working memory (Sweller et al. 1998).  When there is too much information to be 

processed in working memory, that information may not be developed into a schema or mental 

representation in long term memory.  If the combined cognitive load is too great to process the 

new information, learning does not occur; therefore, the goal of a lesson should be to manage the 

cognitive load with the most efficient instructional design.  Instructional efficiency can be 

measured by how much is learned from a lesson in relation to how much mental effort was used 

(Paas & van Merriënboer, 1994).  Sweller et al. (1998) explain that because intrinsic load is 
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inherent to the learning material, instructional efficiency is created by reducing extraneous load 

and redirecting attention to the relevant material processed via germane load.  Mayer and 

Moreno (2010) suggested ways in which extraneous load can be reduced in instructional design 

include adherence to the coherence principle, or removing extraneous material from a lesson 

(e.g., irrelevant sounds, seductive details), and the signaling principle, or directing the learner’s 

attention to the learning material (e.g., highlighting, headings), among others.  Gesture-based 

interactions used in a computer lesson may impact either of these principles by either drawing 

attention to the learning material that correspond to the natural gestures or, if the gestural 

interactions do not match the learning material, violating the coherence principle.  The way in 

which gesture-based interactions and how they are instructed can impact instructional efficiency 

is explained using cognitive load theory throughout this thesis.  

Additionally, individual differences of the learner may also affect the level of cognitive 

load felt during instruction depending on the instructional technique, such as the learner’s spatial 

ability or prior knowledge.  The individual differences that may affect learning of the conceptual 

information in the current experiment were included as potential confounds, including the 

learner’s spatial ability and prior knowledge.  The learner’s spatial ability may affect the 

instructional efficiency of the lesson because the optics concepts in the lesson are inherently 

spatial (i.e., how light reflects/refracts at different angles depending on the rotation of various 

lenses/mirrors). Spatial ability has been linked to the ability to understand mental simulation 

tasks that are similar to the current optics task, such that those with higher spatial ability are 

better able to make inferences about motion than lower spatial individuals, reducing the working 

memory associated with processing that information for people with high spatial ability (Hegarty 

& Sims, 1994).  Therefore, there may be differences in the instructional efficiency depending on 
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spatial ability in the current study, because high spatial learners may understand the mental 

animation of the lesson better than people with low spatial ability, corresponding with less 

cognitive load for those with high spatial ability.  On the other hand, natural gestures that 

physically enact the motion of the optics task may assist the lower spatial individuals to 

understand the motion involved in the optics lesson, such that those with low spatial ability 

experience less cognitive load with natural gestures than arbitrary gestures.  Another individual 

difference that could affect cognitive load is the learner’s prior knowledge of optics before the 

computer lesson.  Prior knowledge could help the learner in the current lesson because those with 

higher optics knowledge may have an existing schema for the conceptual information into which 

they can integrate the information from the computer lesson, experiencing less cognitive load 

because they do not have to process as much information in working memory when it is already 

incorporating in a long term memory schema.  Alternatively, learners with more optics 

knowledge could experience higher cognitive load if they experience associated with the 

expertise reversal effect, which can occur when novices benefit from additional instruction but 

those with prior expertise suffer from lessons with too much detail (Kalyuga, Ayres, Chandler, & 

Sweller, 2003).  These individual differences are controlled for in the current study by assessing 

the level of spatial ability and prior optics knowledge of the learners prior to the experiment (for 

more details, see Experiment in Chapter 6).  

Literature 

The theoretical frameworks of Embodied Cognition and CLT can be used to explain the 

cognitive mechanisms for the findings in previous literature that were used to develop the 

research questions investigated in the current set of studies.  To understand the role of gestures in 

educational computer games, several disparate areas of research are synthesized below.  First, 
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Natural User Interfaces are explained to address the past and current state of gesture-based 

interactions in computer systems and how these interactions affect the user.  One determinant of 

how the computer interaction affects the user is the mapping of the human-computer interface, or 

the relationship between an interaction and the object being controlled.  Research on interface 

mapping is then discussed in the context of how closely the gesture-based interaction is to the 

learning material, or gestural congruency.  This leads to the next area of research presented that 

highlights how gestures that are congruent with learning material may help learning conceptual 

information.  By describing these areas of research, we can begin to see how gesture-based 

interactions in a computer lesson may affect the learner depending on how natural, or gesturally 

congruent, the interactions are to the learning material.  Alternatively, the “naturalness” of an 

interaction may be subjective to the individual, and the way in which gesture-based interactions 

are perceived by and affect the learner may depend on how the interaction is instructed; 

therefore, previous research on the instruction of computer interactions is described to elucidate 

how medium of instruction may play a role in learning from gesture-based computer interactions.   

Natural User Interfaces 

As technology develops, human-computer interfaces have changed to meet the needs of 

interacting with more complex systems in user-friendly ways.  Computer interaction today 

commonly consists of graphical user interfaces (GUIs) in which icons on the screen visually 

represent computer actions that can be selected and controlled by mouse input.  GUIs that utilize 

features such as windows, icons, menus, and pointers have been referred to as WIMPs 

(Shiratuddin & Wong, 2011).  In the mid-1980s, WIMPs replaced the command line interfaces 

(CLIs) of early computer systems in which the user typed commands via keyboard input to 

complete computer functions (van Dam, 1997).  WIMP GUIs rapidly replaced CLIs as the 



   

16 
 

mainstream computer interface, because these GUIs were seen as more user-friendly when 

learning how to interact with a computer system.  In 1997, Andries van Dam, a prominent 

computer scientist and pioneer of computer graphics, described the eras of computer interfaces as 

“long periods of stability interrupted by rapid change,” but expressed surprise 20 years ago that 

WIMPs had dominated user interfaces for so many decades (p. 63).  Van Dam argued that a 

“post-WIMP” era of user interface can overcome limitations in the WIMP model by 

incorporating additional sensory modalities, natural language, or more than one user in control.  

He succinctly summarized the main problem with WIMP interfaces, stating: 

“However user-friendly, an interface is still an intermediary between the user’s intent and 

execution of that intent.  As such, it should be considered at best a necessary evil because 

no matter how fluid, it still imposes a layer of cognitive processing between the user and 

the computer’s execution of the user’s intent.  The ideal interface is no interface (p. 64).”  

Now, technological advances and dropping cost of motion tracking systems have opened 

the door to using gesture-based input to interact directly with computers, a form of natural user 

interface (NUI).  The differentiating feature of NUIs compared to both GUIs and CLIs is that 

natural interfaces use the body as an input device to interact directly with the computer system, 

allowing the user to rely on existing skills of physical interaction (Roupé, Bosch-Sijtsema, & 

Johansson, 2014).  NUIs can include gestures, speech, or touch to interact directly with the 

computer system.  The purpose of NUIs is to provide the user with an interface that is easy to 

learn by not requiring much cognitive effort from the user.  The term “intuitive” is used by 

human-computer interaction (HCI) researchers and product designers to describe the ease with 

which a new system is learned, and an intuitive user experience is a main goal of technology 

designers (Ullrich & Diefenbach, 2010).  The extent to which NUIs are easy to learn and the 
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cognitive mechanisms behind learning natural interfaces are a topical concern as these 

technologies become more prevalent.     

In the domain of HCI, interactivity has been defined as, “the extent to which users can 

participate in modifying the form and content of a mediated environment…determined by the 

technological structure of the medium” (p. 84-85, Steuer, 1992).  Unpacking this statement, it 

means that how the user controls the computer system depends on the structure of the HCI.  One 

type of technological structure that allows the user to control computer actions is the computer 

mouse.  Another type of input structure is gesture-based commands that are recognized by 

motion trackers.  Various types of interface structures require different forms of interaction from 

the user.  These interface structures can be described by their relationship, or mapping, between 

the type of input and the action they represent.        

Continuum of Interface Mapping  

There is a wide range in structures of computer interactions, existing on a continuum of 

“naturalness.”  The relationship between a control and the object being controlled can be 

described as the degree of “mapping” (Norman; 2002).  Steuer (1992) theorized a spectrum of 

mapping, from arbitrary commands that are not related to the action performed to “completely 

natural” commands that physically mimic the represented action.  He continued by reasoning that 

the mapping of controls may be directly related to a real-world action (e.g., turning the hand 

clockwise to rotate a digital image in the same direction), controls may be metaphorical (e.g., 

scrolling down on a mouse to move downward on the screen), or controls may be merely 

arbitrary (e.g., double-clicking a mouse to select).  Schwartz and Plass (2014) extended the ideas 

outlined by Steuer (1992), combining this proposed spectrum of arbitrary to natural mappings 

with a philosophy on types of mental action representations described by Bruner (1966).  
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Schwartz and Plass (2014) labeled three levels of interactivity to reflect Bruner’s three levels of 

representation:  1. Enactive mapping occurs when the interaction closely resembles the physical 

action it represents, 2. Iconic mapping is when the interaction has features similar to the real-

world action represented, and 3. Symbolic mapping is when the interaction is arbitrary and does 

not relate to a physical action (p. 245).  This continuum of natural mapping is represented in 

Figure 1. 

 

Figure 1.  Schwartz and Plass’ (2014) Levels of Mapping correspond to a continuum of mapping 
from arbitrary to natural, with Enactive Mapping being the most natural, followed by Iconic 
Mapping, with Symbolic Mapping being the most arbitrary.  Examples of interaction for each 
type of mapping are described.    
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Schwartz and Plass (2014) contended that examples of these three levels of interactivity 

(i.e., Enactive, Iconic, and Symbolic mapping) are each common in human-computer systems, 

and they conducted an experiment to determine whether these descriptions are meaningful.  The 

authors reasoned that these levels of mapping are meaningfully different if they differentially 

affect task performance or learning outcomes.  The researchers compared how well participants 

could remember actions presented by either iconic or symbolic mappings of interaction, 

expecting the iconic condition to lead to better memory as it is a more natural level of mapping.  

In the iconic condition, participants completed a computer action by clicking and dragging to 

move an icon, representing the physical action of moving an object.  The symbolic condition 

consisted of participants only clicking the icon to perform the moving task, demonstrating an 

arbitrary interaction.  Participants were able to recall more actions and objects in the iconic 

condition (i.e., drag) than the symbolic conditions (i.e., click) in both immediate free recall 

(ηp
2=0.11) and delayed free recall three weeks later (also ηp

2=0.11); however, when the 

dependent variable was recognition instead of recall, participants did not recognize actions from 

the iconic condition significantly more than those from the symbolic condition at either 

immediate or delayed recognition.  The authors concluded that actions in the iconic condition 

were recalled more than those in the symbolic condition.  They conceded that the recognition 

results were inconsistent with this finding, but they justified this by stating that 1. Recall is 

harder than recognition and is therefore a more important learning objective, and 2. The 

conditions may have performed similarly due to potential issues with presentation of actions to 

be recognized.   

Lending to the theory that more natural mappings are better for memory than less natural 

interactions, Schwartz and Plass’ experiment (2014) showed that the distinction in levels of 
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naturalness is meaningful because iconic computer interactions could lead to better recall than 

symbolic interactions.  A major limitation of this study was that a fully naturally mapped, 

enactive condition in which the interaction closely mimicked the physical action represented 

(e.g., gesture) was not tested because only mouse-based input was utilized.  The authors 

suggested that future research could incorporate motion tracking of body movements to create a 

more natural interface through enactive mapping.  I am extending this work by Schwartz and 

Plass by directly comparing naturally-mapped and arbitrary gestures in a computer interaction 

task to assess how enactment affects learning a conceptual lesson.       

A major issue of designing and evaluating natural user interfaces is defining what is 

“natural” or “intuitive.”  Although theories regarding natural mapping indicate that touchless, 

gesture-based technology can closely mimic real-world actions and lend to a feeling of intuitive 

interaction, until recently, appropriateness of gesture-based interactions was not a topic of much 

research (Grandhi, Joue, & Mittelberg, 2010; Sheu & Chen, 2014).  The emerging research in 

this area is highlighting the issues researchers and designers face in understanding what it means 

for gestures to be “natural” and “intuitive.”  Gesture-based technology has been relatively limited 

in application to video games and research studies, and Grandhi et al. (2011) identified two 

challenges of designing gesture-based interactions that have limited their implementation: “1) 

achieving accurate and meaningful gesture recognition and 2) identifying natural, intuitive and 

meaningful gesture vocabularies appropriate for the tasks in question” (p.821).  The first 

challenge relates to the limitations of technology in recognizing finer, more specific body 

movements that are more congruent to real-world actions.  The second challenge arises from the 

issue of translating real-world actions to meaningful computer interactions, which is particularly 

challenging when what is meaningful may depend on personal experiences or cultural norms 
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(Abadi, Peng, & Zadeh, 2012; Mauney, Howarth, Wirtanen, & Capra, 2010).  For example, 

Mauney et al. (2010) conducted a cross-cultural study of nine countries in which participants 

suggested touchscreen gestures to perform computer actions.  Mauney and colleagues found that 

gestures were fairly similar across cultures when actions were less symbolic (i.e., pantomiming 

real-world actions), but Chinese participants preferred more symbolic gestures than participants 

from other countries.  This is just one case in which considerations should be made for the 

intuitiveness of computer interactions based on user characteristics.   

Due to these challenges in defining and creating natural gestures, most previous 

implementations of gesture-based commands were based on what was easier for motion-capture 

recognition (Nielsen, Störring, Moeslund, & Granum, 2004; Shiratuddin & Wong, 2011) or what 

felt less awkward for participants (Roupé, Bosch-Sijtsema, & Johansson, 2014); however, these 

ad hoc designs of gestures could cause unintended cognitive load, or mental effort, for the user 

and, “defeat the purpose of using gestures as a way to facilitate intuitive and natural interaction” 

(p.821, Grandhi et al., 2011).  To my knowledge, the assertion that inappropriate (i.e., arbitrary) 

gesture-based interactions could increase cognitive load or mental effort during a task has not 

been empirically tested, and my proposed study can add to the literature of how natural gesture 

interactions compare to arbitrary gestures.  The findings will lend evidence to which gesture-

based interactions should be implemented in a conceptual computer lesson such that the gestures 

do not impose unintended mental effort on the learner.          

Recent research has attempted to identify characteristics of gesture-based computer 

interactions that are natural and intuitive.  Ullrich and Diefenbach (2010) explain that the term 

“intuitive” in the context of HCI is usually defined as the unconscious application of existing 

knowledge when using a new system; however, they argue that “intuitive” is a construct better 
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described as four subcomponents that create an intuitive interaction: 1. Effortlessness, 2. Gut 

Feeling, 3. Verbalizability, and 4. Magical Experience.  Unfortunately, these components are 

very loosely defined, to the point of being meaningless.  Although Ullrich and Diefenbach 

introduce the idea of “intuitiveness” as a complex, multidimensional construct based on their 

understanding of the interaction literature, their exploratory study did not examine these 

components in any sort of factor analysis.  More research would be needed to confirm these 

characteristics as unique factors, yet it may still be useful to consider that “intuitiveness” could 

be more than a single construct as presented in previous literature and should be clearly 

operationalized.   

Furthermore, Ullrich and Diefenbach (2010) use the term “intuitive” to describe 

interactions that “make sense” to the user, but this term is more subjective than describing the 

interaction in terms of natural mapping to the real world or gestural congruency to learning 

material.  As described later in this chapter, the subjective feeling of “intuitive” for an interaction 

may depend on how how the interaction is instructed, and not necessarily on the degree of 

mapping; therefore, the terms “intuitive” and “natural” may not be interchangeable.  A gesture-

based interaction may be naturally mapped to the learning material and also feel intuitive, or a 

gesture that is arbitrarily mapped may feel intuitive once it is instructed.  For example, double-

clicking a mouse is an arbitrary computer interaction because it does not match a real-world 

action nor does it necessarily relate to learning material if used in a computer lesson, but double-

clicking a mouse might feel intuitive once it is instructed.  The distinction between “natural” and 

“intuitive” may be further confused because researchers have investigated natural gestures in the 

context of a “natural feeling” that is subjective to the user and is not related directly to gestural 

congruency.  Conceptualizing “natural” as a subjective feeling may be more related to the 
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subjective feeling of “intuitiveness” than when “natural” refers to gestural congruency.  To better 

understand whether participants perceive naturally mapped gestures as subjectively feeling 

“natural,” researchers have investigated what features of gesture-based interactions led to greater 

feelings of “naturalness.”  Understanding whether naturally mapped gestures are perceived as 

natural by the user is also investigated in the current study to confirm that interactions with 

gestural congruency are also interpreted as feeling “natural” by participants.   

Grandhi et al. (2011) conducted an experiment to determine what are characteristics of 

interactions perceived as “natural” by asking participants to enact scenarios that covertly 

represented computer functions.  During the within-subjects experiment, participants were asked 

to gesture while explaining how they would complete a mundane action on an object, such as 

“close book” or “sort coins.”  All actions involved acting upon or manipulating an object and 

some actions would require the use of a tool (e.g., “cut paper” would require scissors in real life).  

These mundane actions were chosen to represent computer functions without activating the 

participants’ previous experience with performing the computer tasks that may influence how 

they would gesture (e.g., “close book” represented the task of closing a computer function, and 

“sort coins” represented the computer task of arranging items).  It was assumed that the more 

frequently participants used a particular gesture to describe these everyday tasks, the more 

subjectively natural that gesture must be.   

Grandhi et al. (2011) were interested in what characteristics of gesturing were most likely 

to be used, and thus were more natural.  The researchers were particularly interested in whether 

pantomiming the action was more natural than using the body to represent an object or tool.  

They reasoned that pantomiming is the more natural gestural interaction because developmental 

research indicates the typical way in which people represent actions in gestures is by acting as if 
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holding an imagined object and not substituting the body for an object (Boyatzis & Watson, 

1993).  For example, when acting out cutting an apple, people are more likely to mimic holding 

the knife instead of using their finger to represent the knife.  This is in line with the descriptions 

of natural mapping that suggest the closer the interaction is to the physical action it represents 

(i.e., pantomiming), the more natural and intuitive the gesture is.  Additionally, the 

experimenters were interested in how frame of reference contributed to the naturalness of 

gesture-based interaction, hypothesizing that acting as if one is completing the action (egocentric 

reference) is easier than showing others how to do that action (allocentric reference).   

To test these hypotheses about whether people find pantomiming more natural than using 

the body as a representation, and whether an egocentric reference is more natural than 

allocentric, Grandhi et al. (2011) varied: 1. Whether the participant was to respond either using 

an egocentric reference (“This is how I…”) or allocentric reference (“You need to…”), and 2. 

Whether or not the participant was required to use his hand to represent a tool during the action.  

The results of the experiment supported the hypotheses, indicating that participants reported that 

it was easier to gesture an action by pantomiming the action from their own perspective, or 

egocentric reference.  Participants were significantly more likely to pantomime an action than 

represent their body as a tool, and found it difficult to use their hand to represent a tool even in 

conditions when explicitly told to do so (participants were unable to do this 77.5% of the time).  

The experimenters concluded that for gesture-based interfaces to be natural and intuitive, they 

should be designed with an embodied approach in which the gestures are situated in physical 

experiences. In an attempt to prevent future ad hoc designs of gesture-based interfaces, Grandhi 

et al. (2011) provided a list of guidelines for developing natural and intuitive interactions to 

which I added examples for each guideline (Table 1).    
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Table 1. Design guidelines for natural gesture-based interactions (adapted from Grandhi et al., 
2011) 

Guideline  Example 

1. Gestures should be dynamic 
representations of physical motion. 

 To rotate an object clockwise, the user 
should make a clockwise waving gesture.  

2. Gestures should pantomime the action on 
an object or tool. 

 To select and move an object, the user 
should make a grasping gesture and then 
motion toward the target placement point.   

3. Gestures should use both hands with the 
non-dominant hand situating the action of the 
dominant hand in space.   

 To perform an action on an object, the 
user should use one hand to hold the 
object and pantomime using a tool with 
the other hand.   

4. Gestures should be conducted from an 
egocentric perspective.   

 To perform any action, the gesture should 
be from the perspective of the user acting 
on the object as if it were in front of him 
or her, and not from a viewer’s 
perspective.  

Although Grandhi et al. (2011) provide a much-needed set of guidelines for designing 

and researching natural gesture-based interactions, there are several limitations of this research. 

First, these guidelines were developed based on observations of gestures used to represent real-

world actions.  The authors did not create and test gestural interactions based on these 

observations, and testing could indicate usability issues, excessive mental effort, ergonomic 

problems, or technical limitations imposed by gestures that follow these guidelines.  

Additionally, the authors note that creating a generic set of guidelines that are appropriate for a 

broad number of tasks is inherently limited.  These guidelines should be taken as a first step in 

creating NUI standards and should not be seen as concrete rules.   

Several conclusions can be drawn from this summary of the natural user interface 

literature.  Natural mapping is the extent to which computer interactions match real-world 
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actions.  The assumption is that the more natural and less arbitrary the mapping, the easier it is 

for users to interact with a computer system; therefore, interactions should be more natural.  

However, it is difficult to define natural in the context of computer interactions.  The literature 

suggests enacting, or physically performing an action, is more natural than interactions that are 

more removed from the real-world or completely arbitrary.  Gesturing is thus a logical way to 

create a natural mapping of the real-world to the computer interaction, although gestures can be 

more natural (e.g., pantomiming the real-world action) or more arbitrary (e.g., gesturing that is 

not related to a physical action).  Because gestures can be either the highest level of natural 

mapping or the lowest, understanding how gestures help or hinder learning can guide how 

gestures should be incorporated appropriately in naturally mapped interactions.   

Research on gesture-based interaction for training and education is relatively new, with 

few studies published before 2010 (for a meta-analysis, see Sheu & Chen, 2014).  It is important 

to specify what is meant by “gesture” in this literature to systematically investigate what 

components of gesture-based interactions are best for various purposes.  For example, Johnson-

Glenberg, Birchfield, Tolentino, and Koziupa (2014) explained how touchscreen interactions 

have been referred to as “gestures,” and although previous research that found more naturally 

mapped touchscreen actions were better for learning a task than arbitrary touchscreen gestures, 

Johnson-Glenberg et al. question the use of the terms “gesture” and “embodied” to refer to 

touchscreen actions.  They define a system as “embodied,” if the gesture-based interactions 

“activate multiple afferent and efferent neuronal pathways in the learner’s motor system” (p. 91). 

They argued that if the touch interaction does not reflect the content to be learned by mimicking 

the action it would have low “gestural congruency” and would therefore not be the best learning 

environment.   
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Johnson-Glenberg et al. (2014) stressed that research on gesture-based interactions 

should be more codified so that the term “embodied” in the context of learning is not “overused 

to the point of meaninglessness” (p. 89).  To clarify what components of embodied learning 

environments (e.g., gesturing) are meaningful to learning outcomes and to provide a framework 

for studying embodiment in learning, Johnson-Glenberg et al. proposed the Taxonomy for 

Embodied Learning.  See Figure 2 for a visual conceptualization of the taxonomy based on my 

interpretation of Johnson-Glenberg et al.  This taxonomy is comprised of three continuous axes 

that represent characteristics of embodied learning environments on a continuum: 1. Motoric 

engagement, 2. Gestural congruency, and 3. Immersion.  Motoric engagement involves how 

much the learner is able to move in a learning environment.  Full-body movements and 

ambulation are at the higher end of the spectrum of motoric engagement because they entail 

more body movement, and clicking a mouse may be at the lower end of motoric engagement as it 

requires less body movement.  Gestural congruency refers to how much a gesture in a learning 

environment corresponds to the content to be learned.  This is related to the spectrum of natural 

mapping discussed earlier in the context of natural user interfaces, such that in an educational or 

training environment, enacted gestures that more closely represent the content to be learned are 

considered better for learning.  Low gestural congruency could be arbitrary actions that do not 

relate to the learning material.  Immersion refers to the perception of “being there” and a greater 

feeling of immersion is considered better for learning environments.  Johnson-Glenberg et al. 

theorize that immersion is dependent on the technology used in the learning environment, and 

they suggest that head mounted displays may provide greater immersion than a small computer 

monitor and that does not occlude one’s environment with a virtual world. 
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Figure 2.  A visual interpretation of the Taxonomy for Embodied Learning based on the theory 
proposed by Johnson-Glenberg et al. (2014).  The taxonomy consists of three continuous axes of 
embodied learning environments (1. Motoric engagement, 2. Gestural congruency, and 3. 
Immersion), in which higher levels of each component aid in embodied learning.  The degrees 
correspond to how high on each axis an embodied learning environment may be, with the 4th 
degree representing the most embodied design and the 1st degree the lowest (see Table 2).   

 

Although the three axes are conceptualized as continuous, the authors discretized these 

factors into four degrees (categories) to make more meaningful recommendations about 

embodied learning environments (Table 2).  It should be noted that the edges of these degrees are 
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not completely distinct as the degrees are meant to be a starting point to compare embodied 

technologies using a common taxonomy.  Based on the descriptions of each degree in the 

taxonomy, the task used in the current experiment can be considered in the 3rd degree of 

embodied technology because it involves motion-capture of gesture-based interactions on a large 

screen monitor (semi-immersive).  

Table 2. Four degrees of embodied technology (adapted from Johnson-Glenberg et al., 2014) 

Degree Technology Motoric 
Engagement 

Gestural 
Congruency 

Immersion 

4th Degree 
(highest) 

Mixed-Reality; Ambulatory 
Motion-capture (e.g., 
SMALLab, Star Trek 
Holodeck) 

Whole-body 
locomotion 

Highly congruent 
gesturing with 
tangible or haptic 
manipulation 

Highly 
immersive to 
semi-
immersive 

3rd Degree Motion-capture and/or 
Large Display (e.g., 
Microsoft Kinect, Oculus 
Rift, HTC Vive, Flight 
Simulators) 

Could be 
whole-body 
movement, but 
usually in one 
place 

Highly congruent 
gesturing, but 
without tangible 
manipulation 

Immersive to 
semi-
immersive 

2nd Degree Interactive Small Screen 
(e.g., Desktop simulations 
and trainers) 

Stationary Congruent 
gesturing with 
interactivity 

Not immersive  

1st Degree 
(lowest) 

Observational Small Screen 
(e.g., Educational videos 
such as Khan Academy, 
Crash Course, etc.) 

Stationary No gestural 
congruency nor 
interactivity  

Not immersive 

 

The current experiment focuses on the gestural congruency axis of the Taxonomy for 

Embodied Learning as it seeks to compare high and low levels of gesture-based mapping.  The 

motoric engagement and immersion axes are not manipulated in the proposed study, but these 

are important factors to consider in future work on gesture-based interactions in various 

educational contexts.  Johnson-Glenberg et al. (2014) emphasize that the boundaries for 



   

30 
 

perceiving immersion are especially undefined in the potential interaction with embodied 

learning, yet these issues are beyond the scope of the current research questions.  

Gesturing Helps Learning  

Research on natural mapping for user interfaces points to gestural congruency with the 

real world as a way of increasing ease of use, but how does gesturing impact learning?  Research 

conducted in the gesture literature can inform how gesture-based interactions will affect learning 

in a computer environment.  By considering the ways in which gestures help enable processing 

of information into schemas, gestures that help learning can be implemented, while gestures that 

merely increase extraneous cognitive load can be avoided.  The majority of the literature on the 

use of gestures in education focuses on how children learn by viewing teachers or parents 

gesturing to explain a concept or procedure (Singer & Goldin-Meadow, 2005; Vallotton, Fusaro, 

Hayden, Decker, & Gutowski, 2015), or by having the children produce either spontaneous or 

scripted gestures during a learning task (Cook, Mitchell, & Goldin-Meadow, 2008; Goldin-

Meadow, Nusbaum, Kelly, & Wagner, 2001).  The term “gesture” in these studies can refer to 

spontaneous gestures when communicating ideas (for a list of most commonly produced gestures 

parents make to scaffold children’s learning, see Vallotton et al., 2015), or planned gestures 

made by teachers to clarify learning content (Singer & Goldin-Meadow, 2005; Vallotton et al., 

2015).  These studies have shown that both producing gestures and viewing gestured 

explanations during instruction results in better retention of knowledge.   

It is important to note that the information taught in previous studies using gestures 

involves a wide-range of domains and types of knowledge, such as conceptual information (e.g., 

math concepts, Singer & Goldin-Meadow, 2005), problem-solving (e.g., Tower of Hanoi, block 

puzzles; Garber & Goldin-Meadow, 2002; Vallotton et al., 2015), and language development 
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(Capone & McGregor, 2004).  The current set of studies investigates the role of gesture-based 

interactions for learning conceptual information (i.e., fundamentals of optics) from a computer 

lesson, so the following review of previous research focuses on learning conceptual information 

with gesturing, and how gestures may be particularly beneficial for conceptual knowledge.  

Specifically, gestures that are related to the learning content may benefit the learner by either 

lightening the cognitive load of the learner or activating the schema for a concept in the 

sensorimotor system.  These theories are explored below with evidence from previous literature.   

For example, Cook, Mitchell, and Goldin-Meadow (2008) investigated the role of gesture 

observation and production on learning conceptual information.  In the experiment, the 

researchers asked children either to gesture or not gesture while explaining a new math concept.   

The children were presented with one of three ways of solving a math problem from the teacher: 

1. Speech only condition in which the teacher did not gesture while explaining the concept, 2. 

Gesture only condition in which the teacher only gestured to explain the concept, or 3. Speech 

and Gesture condition in which the teacher both spoke and gestured to explain the concept.  The 

teacher asked the children to repeat after her the instructions and/or gestures that she modeled 

during the explanation of the math concept.  After this initial explanation, all children were 

presented with the same instruction incorporating both speech and gesture so that each student 

had the same overall information.  The students then took a math test on the conceptual 

information immediately and then four weeks after the instruction.  On the immediate post-test, 

all of the students improved on the math test without any significant differences between the 

three groups; however, performance on the delayed test four weeks later was better when the 

initial instructions included gestures (Gesture Only condition or Gesture with Speech condition) 

than when the initial instructions were only spoken (Speech Only condition).  It should be 
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highlighted that these results were based on task-relevant gestures, so the gestures and the 

content had high gestural congruency because the gestures and task were closely related.  The 

authors concluded that gesturing played a causal role in learning the conceptual math knowledge, 

proposing the mechanism behind this is that gesturing is less mentally demanding when 

expressing information than speech alone, or gestures may facilitate better encoding by using 

enactment.  These explanations are in line with the predictions made by Embodied Cognition and 

CLT theories in that the gestures alleviate cognitive load by off-loading processing from one 

modality (i.e., verbal) to another (i.e., motor), and the gestures were relevant to the learning 

material, which could facilitate germane processing related to creating schemas for that 

information as they direct attention to the key points.  

The finding that gestures help learning leads to a question that is applicable to the natural 

mapping of computer interfaces: how similar must gestures be to the learning content to be 

beneficial?  Although the previously discussed study by Cook et al. (2008) would suggest that 

gestures are useful when they relate to the educational content, some research indicates that 

gesturing during instruction helps most when the problem-solving strategies taught using 

gestures do not match the strategies explained in speech.  Singer and Goldin-Meadow (2005) 

found that when a teacher gave gesture and speech instructions that included two different 

problem-solving strategies (mismatched gestures and speech) students learned more than when 

instructions were presented in either speech alone or speech with gestures.  The authors believe 

this is because mismatched gestures with speech gave additional information to the student than 

a single strategy presented by speech alone or speech with matching gestures.  In this context in 

which the mismatched gestures and speech give the student additional useful information for 

solving a problem, it seems feasible that incongruent gestures with speech aid learning because 
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they were relevant for schema development, or germane load. The mismatched gestures in this 

case should not be confused with arbitrary gestures or gestures that are incongruent with learning 

content, which could have the opposite effect of increasing extraneous load.  In the case of 

Singer and Goldin-Meadow (2005), the gestures did not match the accompanying instructions, 

but the gestures did relate strongly to the learning content.  Because the mismatched gestures 

were highly relevant to the learning content, the mismatched gestures still had high gestural 

congruency in regard to the material to be learned.   

Based on the framework of CLT, there are several possibilities for how gestures could 

affect learning: 1. Gestures could benefit learning if they reduce extraneous load and facilitate 

germane load – that is, gestures may lighten the cognitive load of the learner during a task by 

offloading the mental processing of the lesson from one modality (e.g., visual) to another (e.g., 

motor) – or 2. gestures could be detrimental if they increase extraneous load, such as arbitrary 

gestures that must be held in working memory at the same time the learning material is processed 

in working memory; therefore, determining whether gesturing is instructionally advantageous is 

a central concern.  Previous research has investigated whether spontaneous gesturing increased 

or decreased cognitive load (Golding-Meadow et al., 2001).  Goldin-Meadow et al. (2001)1 

reasoned that if gestures increase cognitive load during a cognitive task, memory would be worse 

than when not gesturing.  Conversely, if gestures decrease cognitive load, memory during the 

cognitive task would be better when gesturing than not gesturing because gestures free up more 

working memory for other mental processing by offloading that mental processing onto another 

modality.  The researchers conducted an experiment to test these hypotheses by giving 

participants (both children and adults) a list of items to be recalled followed by a math equation.  
                                                 

1 Cognitive load is never specifically defined in Goldin-Meadow et al. (2001), so this explanation of cognitive load 
is inferred from the article and interpreted as Cognitive Load Theory (Sweller, van Merriënboer, & Paas, 1998). 
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Participants were instructed to explain how they would solve the math equation in either a 

gesture-allowed condition or a gesture-not-allowed condition.  Afterward, participants were 

asked to recall the list of items presented before the math problem.  Goldin-Meadow and 

colleagues found that more items were remembered from the list when participants gestured 

during the math problem.  This finding was consistent for both children and adults and regardless 

of preexisting math knowledge, with the same proportion of items recalled for those who 

correctly or incorrectly solved the problem if they were allowed to gesture.  The authors 

concluded that allowing for spontaneous gestures during a cognitive task can reduce the 

cognitive load imposed by the task.  They suggest this is because gestures and speech are 

integrated in the limited resource system such that additional cognitive load on one modality 

(verbal or physical) can offset the effort needed to process the other modality.  This explanation 

is in line with CLT and DCT in that mental processing can be offloaded from one modality to 

another, reducing extraneous load.  Alternatively, the authors proposed that producing gestures 

might help organize information while speaking, thereby helping to conceptualize the 

information, which according to CLT would facilitate germane processing.  

Another reason why gestures may help learning is that gestures may serve as activation 

for mental imagery, as predicted by the simulation theory under the Embodied Cognition 

paradigm.  Hostetter and Alibali (2008) described gestures and their relationship to mental 

imagery in the Gestures as Simulated Action (GSA) framework, which explains the effect of 

gesturing based on simulation theory.  Posited in GSA is that, “gestures emerge from the 

perceptual and motor simulations that underlie embodied language and mental imagery” (p. 502).  

The authors explained that spontaneous gestures are usually produced when people are 

describing their mental imagery or to express spatial and motor information.  They argue that 
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gestures are not merely epiphenomenal manifestations of the mental imagery being described, 

but instead gestures help facilitate spatial speech by activating the underlying motor 

representation of the mental image.  Correspondingly, the imagined action simulates the physical 

action and a gesture results from the spreading patterns of neural activation, as suggested in 

simulation theory.  Although the GSA framework describes gestures as they are produced 

spontaneously, it could be that this production of gestures with the activation of motor 

representations during the encoding or retrieval of mental imagery acts as a “cross modal prime.”  

Gesturing may create stronger memories via embodied encoding and facilitate easier retrieval 

because the representation was coded in multiple modalities.  Cross-modal priming could explain 

why spontaneous gestures during cognitive tasks help mental processing (as in Goldin-Meadow 

et al., 2001) or why gestures learned during a cognitive task led to better performance (such as 

Cook et al., 2008).  This explanation is also in line with Hegarty, Mayer, Kriz, and Keehner 

(2005), who reasoned that the mental representations when solving a mental animation problem 

are inherently spatial, and spatial representations are easier to express physically (i.e., gestures) 

than verbally (i.e., speech).  Hegarty et al. found mixed evidence that gesturing aided 

performance in a series of experiments in which participants were asked to determine the 

direction of a mechanical gear by imagining a gear sequence.  The hypothesis that gestures are 

spatial as opposed to verbal was supported by their finding that people gestured to communicate 

information not included in speech.  The hypothesis that spatial representations are more easily 

expressed in gestures also was supported by their results showing that people were more likely to 

gesture when also required to speak.  Yet, although they found that people were more likely to 

gesture during speech and include additional information in gestures, Hegarty et al. found mixed 

evidence that gesturing aided performance on the mental animation problems, with no conclusive 
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results that gesturing more helped problem solving.  The reason for these lack of results seemed 

to be a split in the rate of spontaneous gestures produced by participants while they explained the 

mental animation problems such that some participants gestured on nearly every problem, but 

other participants gestured on almost no problems; however, the overall rate of gesturing was not 

correlated significantly with performance on the mechanical gear problems.  They concluded that 

individual differences (e.g., spatial ability) in gesturing may account for the variability in 

performance and that gesturing may be more useful in mental processing for some people than 

others.             

Although most research on watching gestures and producing gestures during problem 

solving or memory tasks has shown beneficial results, other studies have found that gestures may 

not always lead to the best problem solving strategy.  Alibali, Spencer, Knox, and Kita (2011) 

conducted two experiments to test the effect of gesturing on strategy use in a problem solving 

task.  The problem solving task involved predicting the movement in a series of gears.  In the 

first experiment, participants were assigned to one of two conditions: 1. Gesture-allowed 

condition (with feet restrained) or 2. Gesture-not-allowed condition (with hands restrained).  

Participants were asked to explain how they would solve the gear movement problems, and 

responses were coded based on the strategies they used to explain their problem solving.  

Participants reported solving the problem using either a perceptual-motor strategy (e.g., mentally 

and/or physically simulating the gear movement) or an abstract strategy (e.g., knowing that an 

odd number of gears in a series will result in the last gear turning clockwise).  The first 

experiment concluded that most participants in the gesture-not-allowed condition solved the task 

using an abstract strategy, while the gesture-allowed condition tended to use a perceptual-motor 

strategy (i.e., simulation).  In a second experiment that also split participants into either a 
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gesture-allowed or gesture-not-allowed condition2, researchers found that the gesture-not-

allowed condition was better at solving the problem than the gesture-allowed condition.  For this 

particular task, an abstract strategy was more accurate than the perceptual-motor strategy.  The 

authors concluded that gesturing influences strategy choice for completing tasks (such as 

facilitating a perceptual-motor strategy in the gear task), but the usefulness of that gesture-

facilitated strategy choice depends on the task and may be detrimental or beneficial (i.e., in this 

task, an abstract strategy was more helpful than a gesture-facilitated perceptual-motor strategy).  

Although the majority of gesture literature seems to point overwhelmingly to beneficial results of 

gesturing on mental processing, gesturing was not the best strategy for problem solving in every 

situation.   

Taken together, these experiments on gesture-based learning can explain why natural 

mapping and gestural congruency may be important for gesture-based interactions in HCI, but 

there are limitations on the extent to which we can extrapolate meaning from these studies on 

gesturing for learning.  For example, producing spontaneous gestures is not the same as gesturing 

prescribed actions, such as gesture-based computer interactions, so the findings that spontaneous 

gestures reduce cognitive load and activate the motoric mental representations may not be true 

for non-spontaneous gesturing.  Finally, many of these experiments did not address the 

naturalness or gestural congruency of the gestures with the learning content, but the degree of 

arbitrary or natural mapping of gestures to the learning material may be a key determinant of 

these results.    

 

 

                                                 

2 No body parts were restrained in this condition of the second experiment, to reduce potential confounding effects.   
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Enactment Effect 

Natural mapping of gesture-based interactions in a computer lesson may be more 

beneficial than arbitrary gesturing for learning new information because the learner is enacting 

the learning material when performing the naturally-mapped gesture, and physically performing 

information has been found to help recall for that learning material later (Nilsson, Cohen, & 

Nyberg, 1989).  By the late 1980s, researchers investigating the role of different encoding 

modalities on memory were confident that physically encoding information about actions (such 

as the optics lesson used in the current experiment) is better than encoding in other modalities, 

stating “there is almost total consensus that enactment leads to higher recall levels through 

superior encoding” (p. 188; Nilsson et al.,1989).  The finding that people retain more information 

when they physically perform the learning material is referred to as the enactment effect.  

Engelkamp and Jahn (p. 148; 2003) describe the enactment effect as a result of a multi-system 

(i.e., conceptual and sensory) account such that “conceptual information is enriched by sensory 

and motor information during encoding and retrieval.”  They suggest that the reason modality-

specific encoding and retrieval is better depending on the type of the information is that the 

information medium directs which input (sensory) systems are activated and the information is 

not stored just conceptually.  The authors describe how an action phrase may activate both the 

conceptual system (verbal information) and the motor system (physical information), thereby 

encoding the action phrase in multiple ways.  Engelkamp and Jahn further suggest that the 

sensory and/or motor information that was encoded can be “regenerated” when the information 

is retrieved, which fits with the simulation theory, leading to better recall when the encoded 

material is reactivated because the memory traces are stronger.  The authors claim the multi-

system account is supported by evidence showing that more complex stimuli containing more 
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detailed sensory information is remembered better as well as evidence from brain imaging 

studies showing reactivation of sensory areas during recall of enacted information.   

To support this theory of a multi-system enactment effect, Engelkamp and Jahn (2003) 

conducted two experiments on memory of verbs and objects after enacted (physical) or verbal 

encoding.  In the first experiment, German university students memorized sets of verbs and 

objects either by reading the lists (verbal) or by reading and enacting the verbs (verbal and 

physical).  The lists of words were also manipulated by the strength of association between the 

verbs and objects (either weak or strong associations between the verb and object), and were 

manipulated by the structure in which the words were presented (either lists or phrases 

containing the verbs and objects).  The strength of verb/object association and the presentation 

structure were included as variables because an interaction between either of these factors with 

enacted encoding would indicate that the enactment effect is only as strong as the conceptual 

structure underlying the encoded information.  For example, if enacted encoding was only better 

than verbal encoding when the verb/objects were strongly related to each other, this would 

indicate the conceptual system is needed in conjunction with physical encoding.  Participants 

were asked to recall the verb/object combinations they had memorized, and the results indicated 

that more was recalled after enacted encoding than verbal encoding, supporting the enactment 

effect.  Additionally, more verb/object combinations were recalled for strongly associated 

verb/objects than weakly associated, and verb/object combinations presented as phrases were 

remembered better than those learned as lists, but there were no significant interactions of these 

three factors.  Because there were no significant interactions between the type of encoding and 

other factors (specifically, enacted encoding was better regardless of strength of verb/object 

association or phrase/list presentation), Engelkamp and Jahn concluded that these findings 
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support a multi-system enactment effect, because: 1. Enacting the verbs (i.e., motor system) led 

to better recall and was not dependent solely on the strength of relationship between the 

verb/object (i.e., the conceptual system), and 2. The structure of the information (list or phrase) 

was also independent of encoding modality, indicating the effect of engaging the motor system is 

useful beyond the conceptual structure of the information.  The authors’ second experiment 

replicated the first, but cued recall was used to assess memory instead of free recall to test 

directly list or phrase presentation on enacted recall.  The results mirrored those of the first 

experiment, supporting the enactment effect by showing that enacted encoding was better for 

cued recall.  Strongly associated word pairs were again better recalled than weakly associated 

pairs, and this again was independent of encoding modality.  Recall for the list or phrase 

presentation, however, was not significantly different when the recall was cued.  This result was 

expected because the structure of the word pairs would not be as important for recall when a cue 

was given.  Overall, these experiments taken together support the enactment effect for 

remembering verbs and objects that is independent of how the words are related or structured.   

Furthermore, the enactment effect may produce stronger memory traces over time than 

verbal instruction.  In fact, performing an action once is better for memory than seeing and 

hearing verbal instructions twice, even after a week.  Nilsson, Cohen, and Nyberg (1989) 

conducted three experiments to test how encoding action phrases in different modalities affected 

forgetting over time.  They compared subject-enacted (physical) encoding, in which the 

participants performed action phrases they were asked to remember, to visual and verbal 

encoding where the participants saw the action phrases on cards along with the phrases spoken 

by the researcher (visual and auditory encoding of verbal information).  Participants were asked 

to recall the action phrases they had encoded either physically or verbally both immediately after 
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presentation and at delayed intervals ranging from a few minutes to seven days.  The three 

experiments varied the recall intervals and the number of presentations for each type of encoding 

modality, and found converging results.  All of the experiments found that enacted encoding by 

physically performing the action phrase was better for memory at each recall stage, and this was 

true even when the verbal encoding was presented four times compared with only one 

presentation with enacted encoding.  Additionally, Nilsson et al. found that the slopes of 

forgetting over time were the same for both enacted and verbal encoding such that, while both 

modalities showed declines in recall with each subsequent interval, memory for enacted phrases 

remained better than verbal phrases at the same rate.  Because the rates of forgetting for both 

modalities were consistent, the authors postulated that a similar mechanism is responsible for 

physical and verbal encoding.  This set of experiments has clear implications for the proposed 

study, suggesting that when instructions include physically performing an action to be learned 

(e.g., gesture-based computer interactions), enacting the learning material will lead to better 

memory than verbal encoding, and these learning outcomes should last longer over time.  The 

current study extended this theory by testing whether the enactment effect was due to the 

physical enactment of the learning material (i.e., natural gestures), or whether any engagement of 

the motor system can create and enactment effect, such as arbitrary gestures.  Finally, if natural 

gestures are beneficial, are they beneficial because they are tied to the learning material, or does 

the way in which the gestures are instructed impact how natural the gestures are perceived?   

Instruction of NUIs 

The ease of interacting with a human-computer system could be due to the “naturalness” 

of the mapping between the interaction and the real-world; yet, an alternative hypothesis may be 

true:  The ease of interaction may depend on how well an interaction is instructed or trained.  If 
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gesture-based interactions are instructed such that they activate the motor system, the 

interactions may be easier to learn regardless of how well they match the learning material, 

resulting in feelings of naturalness (Borghi, 2007).  For example, arbitrarily mapped computer 

commands that are common today, such as double-clicking a mouse to select an item on the 

computer screen, at some point had to be instructed.  Once a computer interaction is learned, it 

may be easy to use or feel intuitive regardless of the naturalness of the interaction, so we should 

consider effective ways to instruct computer interactions to overcome limitations of arbitrary 

mapping.  Because there is not yet a standard vocabulary for gesture-based interactions, and 

gesture designs can range on a continuum of mapping (including arbitrary gestures), 

appropriateness of different instructional methods for teaching gesture-based interactions may be 

important when the interactions are not inherently intuitive for all users.  In this section, the most 

effective instructional strategies for learning novel computer interactions is discussed.     

Medium of Instruction 

Looking at the literature on instructing computer interfaces, the sense modality in which 

gesture-based interactions are instructed can differ in the type of media in which instructions are 

presented, such as video or text-based tutorials.  The medium of instruction may influence how 

users perceive the interaction as better or worse for understanding the gestures and interacting 

with the computer lesson.  Better instructions would be those that make interactions seem easier, 

thereby reducing extraneous cognitive load of the interaction.  Worse instructions would be those 

that make the gestures not make sense when interacting with the computer lesson, increasing the 

extraneous processing of information not associated with the learning material as the user must 

process how to gesture instead of the conceptual lesson.  For example, researchers have argued 

that instructing new user interfaces using video-based instructions is better than verbal 
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instructions, because videos can help the user to visualize hard to imagine actions, such as 

human movement, and they encourage multi-modal processing (Alexander, 2013; van Gog, Paas, 

Marcus, Ayres, & Sweller, 2009).  From a theoretical perspective, understanding the gesture-

based interactions may be affected by the modality in which the interactions are instructed.  The 

Embodied Cognition approach would suggest that instructions that engage the motor system may 

facilitate better encoding and retrieval of the gestures than instructions that do not prime the 

motor system.  In the current experiment, this would mean that video-based tutorials that depict 

the gestures being performed could activate the mirror neuron system for those actions.  With the 

sensorimotor system primed for those gesture actions, mental representations for the gestures can 

be stored in the sensorimotor system and can later be recalled in the same sensorimotor state.  

Text-based tutorials on the other hand, may not activate the sensorimotor system, and may 

instead be processed as verbal information without the benefit of priming the sensorimotor 

system.  Learners with text-based instructions may store the gesture instructions as verbal 

information and would therefore not have the advantage of visualizing the gestures, activating 

the neural system for those gestures, and storing the gestures as sensorimotor information.  Then, 

when the gestures are used in the computer lesson, the instructions for the gestures may be 

recalled as verbal information, resulting in a mental simulation of verbal information instead of a 

visualization for the gesture.  It may be harder to form mental representations and recall 

sensorimotor instructions for the gestures (i.e., visualizing the action) when the motor 

information (i.e., gesture action) is presented in an alternative modality (i.e., verbal). 

Alternatively, the modality of instruction might impact the load associated with the 

gesture-based interactions.  From a CLT perspective, Sweller, van Merriënboer, and Paas (1998) 

explained that modality effects derive from the cognitive load associated with integrating sensory 
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information in working memory, such that the incoming sensory information can overwhelm the 

amount of processing with too much information in one modality.  They describe that the 

underlying premise of major working memory models is that sensory information is processed in 

different subsystems (i.e., auditory, visual), and each subsystem can become burdened by too 

much sensory information to process3.  Sweller and colleagues reasoned that this is due to a split 

attention effect, such as when several pieces of verbal information must be processed 

simultaneously (e.g., written text and spoken text), and the verbal processing subsystem must 

integrate different pieces of information in working memory, dividing the attention on each piece 

of information.  The way to alleviate the cognitive load on each subsystem is to present 

information in different modalities so as not to overwhelm a single modal processing system.  In 

the current study, presenting gesture-based interactions in text-based tutorials might have the 

benefit of offloading the processing onto different modalities.  Gesture-based interactions can be 

considered sensorimotor information that may be mentally processed in a nonverbal cognitive 

structure, whereas a text-based tutorial of instructions would be verbal information.  By 

processing the gesture interactions (i.e., nonverbal information) with text-based instructions (i.e., 

verbal information), it may be that neither system is overwhelmed with too much information to 

process at once.  On the other hand, text-based tutorials may not be more beneficial than video-

based tutorials if the video instructions reduce extraneous load.  Video-based tutorials for 

interactions could reduce extraneous processing in learning the gesture-based interactions 

because they help the user visualize what the gesture looks like, highlighting the key features of 

                                                 

3 There is a more narrowly-defined modality principle under the Cognitive Theory of Multimedia Learning (CTML) 
as described in Mayer and Moreno (2010), which specifies that spoken narration, and not written text, should be 
used in conjunction with visual information in instructional systems so neither modality is overwhelmed.  This 
specific form of modality effect is reviewed in Ginns (2005). The term modality effect is used in a broader sense in 
this paper to mean the effect of one modality as opposed to another in mental processing.   
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the gestures (e.g., shape of the movement, starting and stopping locations) that may be less 

salient in text-based instructions.  Previous research on how modality of instruction affects 

learning can give insight into what kind of tutorial would be best to teach the gesture-based 

interactions for the current computer lesson.      

Previous research has investigated methods of instructing interface interactions in 

different modalities (e.g., visual, verbal) and media (e.g., video, text).  Schurmann, Binder, 

Janzarik, and Vogt (2015) tested whether the intuitiveness and usability of a multi-touch 

technology depended on the instructions for the interactions.  In this study, multi-touch 

interactions were touch-based gestures on a touchpad, such as a pinching motion with the thumb 

and pointer finger to “shrink” an object on the screen.  Participants were assigned to one of three 

instruction conditions to learn the touchpad gestures: text-based instructions, video-based 

instructions, or a control condition with no instruction.  Participants then completed a task using 

the touchpad gestures and then rated their perceived usability of the gestures.  Although all 

participants learned touchpad gestures that were intended to be intuitive, the researchers found 

that more touchpad gestures were used when they were instructed versus no instruction, and 

video-based instructions influenced the perception of the quality of the gestures.  Schurmann et 

al. suggested these results are due to video instructions providing information that “bypass[es] 

conceptual difficulties” associated with learning new interaction methods (p. 251), and that the 

touchpad gestures themselves were not intuitive.  The authors concluded by stating product 

developers should provide video-based tutorials for interacting with new systems because, 

“while near to every electronic product arrives with some kind of text instructions…these may 

not differ from providing no user instruction at all” (p. 255).  
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Another study investigated whether instruction of computer tasks influenced 

understanding of and memory for the computer tasks.  In Alexander (2013), a word processing 

computer task was instructed using either video- or text-based instructions.  The author predicted 

that the video instructions would provide better understanding of the computer task because the 

videos could illustrate hard to visualize information like human movement, as well as utilize 

multimodal processing.  The results indicated that video-based instructions of the computer task 

were better in terms of higher accuracy during the task and higher recall of the task afterward 

than the text-based instructions.  Users also rated the video instructions more favorably than text 

instructions on four Likert-scale measures of satisfaction: 1. Level of comfort, 2. Ease of use, 3. 

Ease of remembering, and 4. Overall usability.  Because users made fewer errors on the 

computer task with video instructions, the author concluded that videos facilitated better 

understanding of the computer task.  Alexander also summarized guidelines from the literature 

for developing video-based instructions for user interfaces.  Video instructions, she stated, 

should walk the user through the interface by: 1. Chunking information into small pieces, 2. 

Highlighting important information, 3. Contain information about goals of the computer task, 

and 4. Be understandable to a variety of users.   

Although some research has found that video-based instructions can help learning 

computer tasks, other studies have not found an advantage of videos over other media as an 

instructional technique.  Although not directly testing instructional techniques for computer 

tasks, Mayer and Anderson (1991) tested the more general question of whether animations in a 

computer lesson increase learning more than verbal information.  The researchers tested whether 

animations were better for a learning a complex conceptual task compared to the information 

presented verbally in narrated speech.  In two experiments, they found that neither the 
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animations alone nor the narration alone helped problem solving or recall; however, animations 

presented with narration were better for both problem solving and recall.  This research 

comparing animations and verbal information in a computer lesson can be applied to the more 

specific question in the current set of studies investigating type of instruction for interacting with 

a computer lesson.  Because Mayer and Anderson (1991) did not find animations to be beneficial 

as an instructional technique compared to verbal information in a computer lesson, the current 

study might also not find the predicted benefit of video over text instructions as video 

instructions are structurally similar to animations (i.e., dynamic visual information) and may 

have the same effect on learning and cognitive load in a computer lesson. In a review of similar 

studies, Ayres and Paas (2007) explained why the theorized benefit for animations and videos 

were not found in some studies.  Although CLT theories, as previously discussed, predict videos 

reduce extraneous load and facilitate germane load by directing attention to relevant information, 

Ayres and Paas reasoned that video instructions could be a distraction from subtler features of 

the learning material, and in fact increase extraneous load.  They explored another reason that 

videos might not show the hypothesized advantage over other media in that videos are transitory, 

and new information must be processed while previous information may not yet have been 

processed.  To mitigate the issue of the transitory nature of videos and animations, the authors 

suggested adding user control such that the video can be paused or reviewed to process 

information at the learner’s pace.  Additionally, the ability to segment the video instructions in 

this way may facilitate germane processing, thereby achieving the intended benefit on cognitive 

load.  The notion that self-pacing moderates the relationship between modality of instruction and 

learning has been supported in other research (for a review see Ginns, 2005), so the current 

experiment allowed for self-pacing of both video- and text-based instructions in that videos 
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could be paused or rewatched and all slides of the tutorials could be reviewed.  Based on the 

research that finds the method and modality of instruction may impact learning or perception of 

new computer interactions, the way in which the gesture-based interactions were taught was 

manipulated in the experiment.  
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CHAPTER THREE: THE CURRENT RESEARCH  

To determine whether type of user interactions or the way in which the interactions are 

instructed affects learning conceptual information in a gesture-based computer lesson, the current 

research investigated the effects of naturally mapped or arbitrary gestures in conjunction with 

video- or text-based instructions.  The first two studies established what specific gesture-based 

interactions participants produce and rate as most natural for the task, which determined what 

gestures are appropriate for the experimental testbed.  In the main experiment, to parse out the 

effects of natural mapping, type of instruction, or their additive effects, a two-factor design was 

used to elucidate the relationship between these instructional techniques.  The first factor was 

type of gesture-based interaction (naturally-mapped or arbitrary gestures) and the second factor 

was type of instruction (video or text).  

The extent to which a computer interaction corresponds to the action it represents on the 

screen can range from arbitrary to natural mapping.  Previous experiments that address natural 

mapping either ask participants subjective questions about the intuitiveness of the interaction 

(Schürmann et al., 2015; Silpasuwanchai & Ren, 2015), or they give categorical labels to the 

level of naturalness based on theoretical reasoning (Nielsen, Störring, Moeslund, & Granum, 

2003).  To quantify the subjective nature of feelings of naturalness, the first two studies were 

conducted to address the questions: What gestures do people think are natural when performing 

common object manipulation actions (Study 1), and are the produced gestures then interpreted as 

natural or arbitrary by other people (Study 2)?  After developing the gesture-based interactions 

systematically and then piloting these gestures in the testbed, manipulation check questions 

following the main experiment asked participants how they would rate the gestures’ degree of 

naturalness to ensure the manipulation was salient.  These studies provide confidence that the 
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gestures included in the natural and arbitrary gesture conditions are appropriate for their 

respective conditions.   

This set of studies adds to the literatures on natural mapping and enacted instruction by 

parsing out the effects of these theories on performance and learning in a gesture-based computer 

lesson.  In the main experiment, participants used either the naturally-mapped or arbitrary 

gesture-based interactions after receiving either video- or text-based instructions (2X2 between-

subjects design).  The computer lesson involved learning conceptual information about the 

fundamentals of optics by manipulating lenses and mirrors in a beam of light using gesture-based 

interactions with the computer lesson.  Manipulating the lenses and mirrors in the beam of light 

resulted in refraction or reflection of the light, illustrating to the participant how different lenses 

and mirrors change a beam of light and result in an altered image of the object being 

reflected/refracted.  After the computer lesson, the instructional techniques were assessed by 

comparing how much conceptual information was learned and the amount of mental effort 

expended from the lesson.  In this 2X2 design, effects of interaction and instruction on 

conceptual knowledge can be studied.  Results suggest the extent to which natural mapping 

and/or enacted instruction are effective for producing learning outcomes on a conceptual task.  

Results of this set of studies will inform the research questions of whether more 

naturally-mapped gestural interactions are better for learning from a computer lesson than 

arbitrarily-mapped gestures, and whether type of instruction for the gesture-based interactions 

can influence the computer lesson.  
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Hypotheses 

 Based on the theoretical frameworks of Embodied Cognition and CLT, as well as the 

empirical evidence from previous research, the following hypotheses were predicted to answer 

the research questions.   

Hypothesis 1 

The first research question asked whether the type of gesture-based interaction affects 

learning and cognitive load in a conceptual computer lesson, and is addressed with Hypothesis 1.  

Because previous research has found that gestures that are naturally mapped to the learning 

material help a learner understand and remember that information, I predict that interacting with 

the computer lesson using natural gestures will lead to higher instructional efficiency for that 

instructional technique than using arbitrary gesture interactions.   

H1:  Natural mapping of gesture interactions will lead to better learning and lower 

perceived cognitive load, producing higher instructional efficiency for natural 

gesture interactions than arbitrary mapping of interactions.    

Hypothesis 2 

The second research question asked if the medium with which the gestures are instructed 

affects learning and cognitive load on a computer lesson.  As predicted with Hypothesis 2, video-

based tutorial instructions for the gestural interactions are expected to be a better instructional 

technique than text-based instructions.  This is supported by the previous research that indicated 

video-based instructions may help the learner to visualize the gesture-based interactions by 

activating the sensorimotor system for that motor information.     
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H2:  Video instructions of the gesture interactions will lead to better learning and 

lower perceived cognitive load, producing higher instructional efficiency for video-

based instructions than text-based instructions.    

Hypothesis 3 

The final research question asked whether there would be combinatorial effects of type of 

gesture interaction and medium in which those gestures were instructed. Results from the 

experiment may show that there are only differences in instructional efficiency when type of 

instruction and interaction are combined.  For example, using natural gestures to interact with the 

computer lesson may be more instructionally efficient than arbitrary gestures only when the 

interactions are instructed using a text-based tutorial, because it is harder to visualize gestures 

that do not make sense for the computer lesson from text rather than videos.  Alternatively, 

natural gesture interactions that correspond with the learning material may be more 

instructionally efficient than arbitrary interactions regardless of how those interactions are 

instructed because the natural mapping reduces cognitive load and helps schema development.  

The prediction for this hypothesis is that there will be combined effects for type of gesture-based 

interaction and medium of instruction such that natural gestures with video-based tutorial will be 

more instructionally efficient than the other conditions, and arbitrary gestures with text-based 

tutorial will be less instructionally efficient than the other instructional techniques.        

H3:  Natural mapping with video instruction together will lead to the highest 

learning gain and lowest perceived cognitive load of all the combinations of 

mapping and instruction, resulting in highest instructional efficiency, while 

arbitrary mapping with text instruction will be the worst for learning with and 

highest perceived cognitive load, resulting in lowest instructional efficiency.  
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Potential Confounds 

The main constructs of interest for this experiment are the extent to which using natural 

gestures to interact with a computer interface helps learning conceptual information and whether 

type of instruction affects this relationship.  In the course of testing these two constructs in the 

experiment, potential confounds can be anticipated that would directly or indirectly affect 

performance on the task and subsequent measures.  Several individual differences may play a 

role; in particular, a participant’s preexisting knowledge of optics, his or her spatial ability, and 

whether he/she has experience with video games may contribute to differential effects or interact 

with the constructs of interest.  Next, potential confounds are described, along with ways of 

mitigating or controlling for these effects.       

Knowledge of Optics 

Knowledge of optics and physics concepts, particularly how light waves interact with 

lenses or mirrors, may directly affect scores on the Knowledge of Optics post-test measure that is 

intended to evaluate knowledge gained from the learning material in the experiment.  A 

participant with prior knowledge of optics would likely perform better on a test of said 

knowledge than one without familiarity of that domain.  There may also be an interaction effect 

such that participants without much knowledge of optics may gain more from the learning 

material in the experiment than those who already have more knowledge of those topics.  In 

terms of cognitive load, those with prior knowledge may report less mental effort because they 

have an existing schema for the conceptual material so they may not need to process as much 

new information in working memory.  Alternatively, participants with more prior knowledge 

may feel more cognitive load and learn less from the lesson if they experience an expertise 

reversal effect, which occurs when those with higher expertise are hindered by too much 
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information presented in a lesson while those with less knowledge benefit from more detailed 

information (Kalyuga et al., 2003).  The difference between pre- and post-test scores on the 

measure of optics concepts may be greater for those who started with less knowledge.   

The confound of prior knowledge of optics and physics concepts can be addressed by 

giving a pre-test measure of optics during the online prescreening portion of the study and then 

removing participants from analyses who score more than the typical range of participants (e.g., 

two standard deviations above the mean score).  Additionally, administering the Knowledge of 

Optics measure during the online prescreening prior to the experiment will reduce the likelihood 

of priming optics and physics concepts immediately before the learning material is presented in 

the computer lesson.  

Spatial Ability 

Spatial ability may play a confounding role in this experimental task, which requires 

participants to develop an understanding of optics concepts while coordinating their body 

movements to the movement of objects on a computer screen (for detailed description of the 

computer lesson, see Experimental Testbed subsection below). The concepts presented in the 

computer lesson are highly spatial in that the participants must manipulate lenses and mirrors to 

different orientations to observe how the angle of the light waves change as a function of the 

lens/mirror interaction.  The gesture-based interface is also a spatial task as it necessitates that 

the participants track their physical movements in space as they correspond to the actions 

displayed on screen.  A participant’s ability to visualize differing viewpoints may therefore be of 

interest.   

Spatial ability will be measured because it may contribute to performance on either the 

post-test of physics concepts or performance on the computer task itself (i.e., gesturing).  To 
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clarify, higher spatial ability may help a participant to score better on the optics measure that 

includes questions on the effect a lens/mirror has on the angle of a beam of light (Hegarty & 

Sims, 1994).  Interacting with the computer lesson via gestures is also inherently spatial, 

involving the mental mapping of bodily movement in space to corresponding changes in the 

lens/mirror on the screen; therefore, the spatial task of moving the on-screen objects may be 

performed better by those with higher spatial ability regardless of experimental condition.  

Additionally, there may be an interaction of spatial ability with one or both of the manipulated 

variables (i.e., type of gesture or type of instruction).  A meta-analysis identified that higher 

spatial ability is related to better learning from dynamic visualizations (i.e., animations or 

videos), so participants with high spatial ability in the current study may perform better when 

given video-based tutorials than those with low spatial ability (Höffler 2010).  Or, those with 

lower spatial ability may benefit disproportionally from either natural mapping or video 

instructions because those with higher spatial skills might already perform the task better and 

therefore have a lower gain score on outcome measure (i.e., optics post-test).  The potential 

confound of spatial ability will be controlled by measuring spatial ability in a prescreening 

questionnaire using the Paper Folding Test (described in the Materials section below).  The 

Paper Folding Test was chosen because it measures the spatial component of spatial 

visualization, which involves mental rotation while holding additional pieces of information in 

working memory, similar to the conceptual information of the optics lesson in which the learner 

must visualize how a rotated lens or mirror will reflect light according to the lens or mirror 

properties.  Measuring spatial ability and using it as a covariate will allow for using statistical 

methods during data analysis to partial out the effect of spatial ability on conceptual learning.  
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Video Game Experience 

Experience with video games may affect the learning of a novel computer-based task, 

either positively or negatively.  Differential effects for those with previous experience with video 

games may occur such that skills in video games transfer to new computer environments.  For 

example, people with previous video game experience may do either better or worse on the 

current computer task because their expectations do or do not match the experimental task, so it 

may take more or less mental effort to adjust expectations to meet the current task demands.  To 

address the potential confound of video game experience, participants will be asked about prior 

video game experience in the online prescreening questionnaire prior to the in-lab study.  Video 

game experience can then be accounted for in the variance of outcome measures (i.e., optics test, 

mental effort scale) during statistical analyses by including video game experience as a covariate.   
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CHAPTER FOUR: STUDY ONE 

What are Natural Gestures? 

One of the main research questions addressed by this set of studies is whether natural 

gestures are better than arbitrary gestures for learning a conceptual task when using a gesture-

based computer interface.  To test this question, the type of gesture (natural or arbitrary) 

participants used to interact with the computer lesson was manipulated in the main experiment.  

To determine what gestures were considered natural and arbitrary by participants, two studies 

were conducted to develop and confirm the gestures used in each condition.  The first step to this 

was identify what natural gestures would be produced spontaneously by participants for the 

computer interactions.  The goal of the first study was to down-select the potential gestures 

considered natural for nine common manipulations for computer interactions that were used in 

the experimental testbed (Table 3).   

In the final experimental testbed, participants used the gestures determined in the first and 

second studies to manipulate lenses and mirrors in a computer-based physics lesson.  To 

determine what specific gestures are considered natural by users, I first restricted the number of 

natural gestures for each action to the most likely candidates in Study 1.  Participants were asked 

to perform a gesture to indicate a desired action to a new computer system.  A series of common 

computer actions were presented to the participants, and their gestures were recorded using an 

infrared motion tracker.  Results of Study 1 were gestures that are considered natural for 

computer interactions by the participants who produced them, and these gestures were 

subsequently rated by a separate group of participants in Study 2 on their perceived naturalness.    
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Table 3. List of Computer Actions for Experimental Testbed  

1. Moving an object up  
2. Moving an object down 
3. Moving an object left 
4. Moving an object right 
5. Rotating an object clockwise 
6. Rotating an object counterclockwise 
7. Selecting an object 
8. Enlarging an object 
9. Shrinking an object  

Method 

Participants 

Participants (n=17) were students recruited from the university research participation 

pool who received class credit for completing the study.  Ten were female, and seven were male.  

The ages ranged from 18-20 years old (M=18.31, SD=0.60), and all were predominantly right-

handed.  Participants who were not predominately right-handed were excluded from participating 

in the current study because the main experiment was limited to right-handed individuals and 

gestures were therefore developed for those who were right-handed.  The limitation of using 

right-handed participants was due to two factors: 1. Gestures that are natural for right-handed 

individuals may not be perceived as natural for left-handed individuals or performing right-

handed gestures may induce more cognitive load for left-handed individuals, thereby 

confounding the manipulation of gesture mapping, and 2. The computer lesson testbed used in 

the experiment implemented a set of 18 gestures that were naturally and arbitrarily mapped to the 

nine actions, and including a second set of gestures for left-handed individuals would have 

doubled the amount of programming needed to develop the testbed.  Therefore, due to concerns 

related to the experimental design and testbed development, only right-handed participants were 

included in the current study.      
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Procedure  

Participants signed up to participate in the in-lab study through the university research 

participation system.  The research participation system recorded in its prescreening the three 

demographic questions used: age, sex, and dominant handed-ness.  Once in the lab, participants 

were given an informed consent form.  After reading an informed consent and agreeing to 

participate, participants were asked to stand on a mark on the floor facing a Microsoft Kinect V1 

infrared motion tracker.  The Microsoft Kinect was used to record video and to capture depth 

information and joint coordinates as participants performed gestures.  Participants were then 

asked by the experimenter to perform gestures to show how they would interact with a computer 

to complete a series of actions.  The series of actions included common object manipulations to 

be used in the experimental testbed, and the nine actions were given to participants in a random 

order (Table 3).  After performing a gesture for each action, participants were given a post 

participation information sheet to debrief the study.  Participants took approximately fifteen 

minutes to complete the study.  The videos of the gestures recorded by the motion tracker were 

then analyzed for converging features (e.g., starting height of the action, movement shape, and 

direction) to determine the most natural gestures for each action.  

Results  

The gestures for each action were classified based on characteristics of naturalness (Table 

4).  The most often gestured features of each characteristic are shown in bold.   The coding 

scheme was adapted from Grandhi et al. (2011) in which features of gestures were analyzed to 

determine characteristics of “naturalness.”  The features coded in Grandhi et al.’s analysis 

included: 1. Whether gestures were right or left handed, 2. Whether one or both hands were used, 

3. If the gesture was pantomimed or the body was used as a tool or object, 4. Whether the gesture  
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Table 4. Characteristics of Natural Gestures Produced for Each Action  

 Gesture Characteristics 

Action Handedness 
Number of 

Hands 
Pantomime or          

Body-as-Object 
Static or 
Dynamic 

Main 
Action 

1. Up  70.59% Right 
11.76% Left 
17.65% Both 

82.35% One 
17.65% Both 

76.47% Pantomime 
23.53% Body-as-Object  

100% 
Dynamic 

100% 
Main 

2. Down 94.12% Right 
0% Left 
5.88% Both 

94.12% One 
5.88% Both 

70.59% Pantomime 
29.41% Body-as-Object 

100% 
Dynamic 

100% 
Main 

3. Left 70.59% Right 
11.76% Left 
17.65% Both 

82.35% One 
17.65% Both 

64.71% Pantomime 
35.29% Body-as-Object 

100% 
Dynamic 

100% 
Main 

4. Right 88.24% Right 
5.88% Left 
5.88% Both 

94.12% One 
5.88% Both 

64.71% Pantomime 
35.29% Body-as-Object 

100% 
Dynamic 

100% 
Main 

5. Clockwise 82.35% Right 
5.88% Left 
11.76% Both 

88.24% One 
11.76% Both 

64.71% Pantomime 
35.29% Body-as-Object 

100% 
Dynamic 

100% 
Main 

6. Counter-
clockwise 

82.35% Right 
5.88% Left 
11.76% Both 

88.24% One 
11.76% Both 

64.71% Pantomime 
35.29% Body-as-Object 

100% 
Dynamic 

100% 
Main 

7. Select 94.12% Right 
5.88% Left 
0% Both 

100% One 
0% Both 

23.53% Pantomime 
76.47% Body-as-Object 

100% 
Dynamic 

100% 
Main 

8. Enlarge 23.53% Right 
0% Left 
76.47% Both 

23.53% One 
76.47% 
Both 

82.35% Pantomime 
17.65% Body-as-Object 

100% 
Dynamic 

100% 
Main 

9. Shrink 29.41% Right 
0% Left 
70.59% Both 

29.41% One 
70.59% 
Both 

88.24% Pantomime 
11.76% Body-as-Object 

100% 
Dynamic 

100% 
Main 

Note: Coding was based on the characteristics of natural gestures defined by Grandhi et al. (2011).  The most often 
gestured feature of each characteristic are shown in bold.    
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was static or dynamic, and 5. Whether the gesture referred to the main action (hand pantomiming 

cutting) or was used to set up the context of the gesture (hand pantomiming holding the object 

being cut)4. 

 
In the list by Grandhi et al. (2011), some features needed further clarification because 

they were not obvious features, such as which hand was used or the number of hands used.  To 

help code the above characteristics, the following classifications were used:  The gesture was 

coded as “Pantomime” if the participant used an open or closed hand that mimicked grabbing or 

moving the object, but the gesture was coded as “Body-as-Object” if a pointing gesture was 

used.  For example, if the participant closed his fist and moved his hand, this was interpreted as a 

pantomime.  If the participant used a pointed finger and moved his hand, this was coded as 

“Body-as-Object” because the shape of the hand was not pantomiming the physical action of 

moving an object5.  Next, a gesture was coded as “Dynamic” if it involved movement, and all 

gestures involved movement so there were not gestures coded as “Static.”  Then, a “Main 

Action” was considered any gesture representing the intended movement of the action by the 

hands (e.g., using the hand to move the object), as opposed to a hand or hands used as a 

peripheral or supporting action (e.g., using the hand to hold an object).  All of the actions 

depicted the intended movement of the object, so all of the gestures were coded as “Main 

Action.”      

                                                 

4 Grandhi et al. (2011) list one more characteristic that was not used in the current study, “Whether or not tool or 
object was gestured.” This characteristic was not applicable because the object being acted upon was not specified in 
the directions to participants to avoid influencing the participant and allow for actions generalizable to computer 
commands in the current system.   
5 This distinction was made based on the literature indicating that pointing is a communicative referent (i.e., deictic 
gesture) that is developed very young and well before children begin to switch from body-as-object gestures to 
pantomimic gestures (Weidinger, Lindner, Hogrefe, Ziegler, & Goldenberg, 2017). 
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Two coders rated the videos of participants gesturing for each action.  The agreement 

between coders was 100%, so statistical measures of interrater reliability (e.g., kappa) were not 

calculated.  The complete agreement between coders highlights the extent to which the gestures 

were distinct and understandable as representing the intended action.  

A majority of participants used the same hand or hands for each gesture.  Between 71%-

94% used their right hand only for the actions of moving an object up, down, left, right, 

clockwise, counter-clockwise, and select.  Both hands were predominately used for the actions 

enlarge and shrink.  All but one of the actions were pantomimed gestures of the object 

manipulations, and the remaining action was selecting an object, of which 76% of participants 

used a pointing gesture.  Every participant performed the gestures dynamically for each action, 

and all gestures represented the main action of object manipulation.  I extended the work by 

Grandhi et al. (2011) by classifying additional features not included in the above list.  Gesture 

features were also recorded, such as the direction of movement and shape of the hand, to narrow 

down the converging features of a natural gesture for each action to create the most natural 

gesture-based computer commands (Table 5).  Again, the most often gestured features of each 

characteristic are shown in bold.  The first 10% of gestures were coded by both of the same 

raters as above.  The coding again matched completely, so the remainder of the gestures was 

coded by one coder.     

By recording features not coded in the scheme outlined by Grandhi et al. (2011), it was 

apparent that the gesture features for each action had limited variation, with many converging 

features.  For each action, all gestures involved movement in the direction of the intended action.  

For example, every gesture for “move an object up” was performed in an upward motion.  

Likewise, all participants performed the enlarging gesture by moving hands in an outward-from-
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center direction, and the same expected motion followed for the other actions except one; only 

the select gesture had variation on movement direction, with all but one participant pointing or 

pressing the hand forward while the remaining participant closed their hand in a grasping 

motion.  Also, gestures were all performed within the space of the torso area.   

Variation in the gestures occurred mostly in the detailed movements.  For the clockwise 

and counterclockwise rotating actions, gestures varied by the fulcrum point of the rotation, such 

that a slight majority of participants rotated the hand from the wrist and the rest rotated the entire 

arm from the elbow.  The shrinking and enlarging gestures were all performed in the expected 

inward and outward directions, respectively, but they varied in whether they moved left-and-

right, up-and-down, or diagonally.  Although there were variations in the details of movements, 

these variations were limited to three or less distinctions for each action, and all were performed 

in the overall expected direction of movement, so defining converging features for each action 

started from a small set of variations.   
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Table 5.  Converging Features of Gestures Produced for Each Action  

 Gesture Features 

Action Hand Shape Direction Start  Stop  Detailed Movements 
1. Up  70.59% Open 

5.88% Closed 
23.53% Point 

100%    
Up 

100% 
Torso 
Height 

100% 
At/Above 
Head  

N/A 

2. Down 64.71% Open 
5.88% Closed 
29.41% Point 

100% 
Down 

100% 
At/Above 
Head 

100%        
Torso 
Height 

N/A 

3. Left 52.94% Open 
11.76% Closed 
35.29% Point 

100%   
Left 

100% 
Torso 
Height 

100% 
Torso 
Height 

N/A 

4. Right 52.94% Open 
5.88% Closed 
35.29% Point 

100% 
Right 

100% 
Torso 
Height 

100% 
Torso 
Height 

N/A 

5. Clockwise 64.71% Open 
0% Closed 
35.29% Point 

100% 
Clockwise 

100% 
Torso 
Height 

100% 
Torso 
Height 

64.71% Rotate Wrist 
35.29% Rotate Arm 

6. Counter-
clockwise 

64.71% Open 
0% Closed 
35.29% Point 

100% 
Clockwise 

100% 
Torso 
Height 

100% 
Torso 
Height 

64.71% Rotate Wrist 
35.29% Rotate Arm 

7. Select 11.76% Open 
11.76% Closed 
76.47% Point 

94.12% 
Forward 
5.88% 
Closing 

100% 
Torso 
Height 

100% 
Torso 
Height 

88.24% Single Point  
5.88% Double Point 
5.88% Closing Hand In 

8. Enlarge 70.59% Open 
11.76% Closed 
17.65% Point 

100% 
Outward 

100% 
Torso 
Height 

100% 
Torso 
Height 

76.47% Left/Right 
5.88% Up/Down 
17.65% Diagonal 

9. Shrink 52.94% Open 
35.29% Closed 
11.76% Point 

100% 
Inward 

100% 
Torso 
Height 

100% 
Torso 
Height 

70.59% Left/Right 
11.76% Up/Down 
17.65% Diagonal 

Note: The most often gestured features of each characteristic are shown in bold.    
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Discussion 

This first study aimed to narrow down what natural gestures are produced by participants 

for common object manipulations that may be implemented in a natural user interface.  

Participants performed gestures for nine object manipulation actions to narrow down the scope 

of natural gestures to be used as gesture-based computer commands.   The majority of 

participants performed very similar gestures for each action with limited variations, making it 

possible to define the converging features of gestures for each action.  For example, a majority of 

participants usually used their right hand to perform these representational gestures.  This is 

consistent with previous research; right-handed individuals have shown a preference for using 

their dominant hand for gestures that represent objects or spatial relationships, but do not have 

this hand preference for non-representational gestures (Sousa-Poza, Rohrberg, & Mercure, 

1979).  To confirm whether the most commonly performed gestures in Study 1 are perceived as 

natural, a second study was conducted in which a separate sample of participants rated these and 

other gestures along on a scale from natural to arbitrary.  Table 6 describes the top natural 

gestures performed in Study 1 that were included in Study 2 to further narrow down the natural 

gestures for the experimental testbed.  

There are limitations of Study 1 that reduce the generalizability of results beyond the use 

of developing gestures for the current testbed.  One limitation was that the sample of participants 

was young adult students and naturally produced gestures for this group may not be natural for 

others, such as older adults.  The sample was also right-handed, due to technical limitations of 

coding the gesture sets.  The gestures outlined in Study 1 serve the purpose of creating a starting 

point for natural gestures to be used in a specific computer lesson, so future natural user 
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interfaces that may implement these gestures should confirm the gestures are perceived as 

natural for that particular interface.  

Table 6. Description of Most Commonly Produced Natural Gestures for Each Action  

Action Description 
1. Up  Raise open right hand from chest height to above head with palm forward 

2. Down Lower open right hand from above head to chest height with palm forward 

3. Left Move open right hand from right to left at chest height with palm forward 
Move pointing right hand from right to left at chest height 

4. Right Move open right hand from left to right at chest height with palm forward 
Move pointing right hand from left to right at chest height 

5. Clockwise Rotate open right hand clockwise at chest height, circling from elbow  
Rotate open right hand clockwise at chest height, circling from wrist 

6. Counter-
clockwise 

Rotate open right hand counter-clockwise at chest height, circling from elbow  
Rotate open right hand counter-clockwise at chest height, circling from wrist 

7. Select Point forward once with right hand at chest height 
Grasp with right hand at chest height 

8. Enlarge Move open hands outward left and right from center of chest 
Move closed hands outward left and right from center of chest 

9. Shrink Move open hands inward left and right to center of chest 
Move closed hands inward left and right to center of chest 
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CHAPTER FIVE: STUDY TWO 

How Are Gestures Interpreted? 

The goal of the second study was to assess quantitatively how natural or arbitrary the 

potential gesture interactions were with a broader range of participants.  Natural gestures were 

determined from Study 1, and potential arbitrary gestures were chosen from a selection of 

gestures that do not pantomime a real-world physical action from the motion tracker’s software 

development kit (i.e., pre-existing gestures commands recognized by the Kinect) and gesture-

based commands from previous experiments (Schroeder, Bailey, Johnson, & Gonzalez-Holland, 

2017).  In Study 2, participants were asked to rate how natural or arbitrary a gesture seemed for a 

particular interaction.  For each combination of gesture (e.g., moving a hand up with palm facing 

forward) and desired computer action (e.g., moving an object up), participants were shown a 

video of an actor performing a gesture and asked what happened in each video and to rate the 

naturalness of each gesture-action combination.  The videos included the natural gestures from 

Study 1 as well as arbitrary gestures chosen as a comparison.  It was expected that for each 

computer action, the gesture(s) rated as most natural would be the gestures produced for that 

action in the first study.  It was predicted that the arbitrarily chosen gestures would be rated as 

arbitrary for each action, and gestures from Study 1 that did not match a computer action would 

also be rated as arbitrary for that combination of action and gesture (e.g., hand moving up 

gesture from Study 1 for the “select an object” computer action).  The results from Study 2 

showed whether the gestures produced in Study 1 were also perceived as natural when rated by 

others.   
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Method 

Participants 

A new sample of 188 participants from the same university completed Study 2, and they 

were awarded class credit.  Participants were removed from analyses (n=19) if they: 1. Did not 

respond to all questions, 2. Completed the study in under 10 minutes, 3. Did not describe a video 

accurately when asked “What happened in the video” (e.g., “no clue”), and/or 4. Did not 

complete the survey on a computer as required by the instructions (i.e., used a mobile device).  

The following analyses included 169 participants.  Participants were 68% female (n=115) and 

31% male (n=53), and 1 participant chose the answer, “prefer not to respond.” Participants were 

between 18-41 years old with an average age of 20.46 (SD=3.90).  Participants reported their 

ethnicity and were able to select multiple options to describe themselves: 54% were White (Non-

Hispanic), 24% were Hispanic/Latino, 12% were Asian/Pacific Islander, 8% were African-

American, 3% were Arabian/Middle Eastern, 3% selected “Other,” 0% were Native American, 

and 1% chose not to respond (results were rounded to the nearest percent).  A majority of 

participants were right-handed (n=146, 86%), with seventeen left-handed participants (10%) and 

six ambidextrous participants (4%).  Mean ratings did not differ significantly by handedness, so 

responses were collapsed for all analyses.     

Materials 

Gesture Videos 

Twenty-six gesture videos (3-5 seconds each) were presented in which an adult male 

actor performed each gesture.  Eighteen videos corresponded with the natural gestures 

determined from Study 1 and eight arbitrary gestures were included for comparison (Table 7).  
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Table 7.  Description of Gesture Videos  

Natural 
Gestures 
Defined 
from 
Study 1 

1. Raise hand from chest height to head height with open right palm facing up 
2. Raise hand from chest height to head height with open right palm forward  
3. Lower hand from head height to waist with open right palm facing down 
4. Lower hand from head height to waist with open right palm facing forward  
5. From chest height, move right hand from right to left with open right palm 

forward 
6. From chest height, move right hand from right to left with right hand pointing  
7. From chest height, move right hand from left to right with open right palm 

forward 
8. From chest height, move hand from left to right with right hand pointing 
9. From chest height, move right arm with open palm forward making a circle 

clockwise  
10. From chest height, move right hand with open palm forward to make a wrist 

rotation clockwise  
11. From chest height, move right arm with open palm forward to make a full 

circle counterclockwise  
12. From chest height, move right hand with open palm forward to make a wrist 

rotation counterclockwise 
13. Point forward once with right hand at chest height  
14. Grasp with right hand at chest height 
15. Use both open hands to move outward from center of chest 
16. Use both closed fists to move outward (left and right) from center of chest  
17. Use both open hands to move inward to center of chest starting with hands 

about two feet apart  
18. Use both hands with closed fists to move inward to center of chest starting with 

hands about two feet apart 

Arbitrary 
Gestures  

19. Bring right arm up to head height making a 90-degree angle at the elbow  
20. Move right arm straight down past hip 
21. Extend straight right arm out to the right side, parallel to the ground  
22. Raise right closed fist to left shoulder  
23. From chest height, move from right to left with closed right fist  
24. From chest height, move from left to right with closed right fist  
25. Use right closed fist to press forward 
26. Right open hand wave with palm forward 

 

Demographics  

The demographic survey (Appendix A) consisted of 18 items asking for participants’ age, 

sex, ethnicity, etc., as well as educational information.  Additionally, questions were adapted 

from the Video Game Experience Questionnaire (Newcombe & Terlecki, 2005) and included in 
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the demographic survey.  The Video Game Experience questionnaire asked questions such as 

how frequently participants played video games, how many hours participants played a week, 

what genre of video games participants played (e.g., sports, first-person shooter, puzzle, etc.), 

and on what device participants played (e.g., console, PC, phone).  This demographic 

questionnaire was also used in the main experiment.      

Procedure 

Study 2 was conducted entirely online, and participants could respond to questions at 

their own pace.  Participants were recruited from the university’s research participation system 

and were directed to the Qualtrics survey website.  After reading an informed consent and 

agreeing to participate, participants completed the demographic questionnaire.  Participants were 

then told they would be viewing a series of videos depicting gesture-based commands for 

computer actions, and their task was to rate how natural or arbitrary each gesture was for each 

command.  To reduce ambiguity in the interpretation of the terms “natural” and “arbitrary,” 

participants were told that, "Natural means that a gesture is more intuitive or ‘makes sense’ for 

that computer action” and that, "Arbitrary means that a gesture seems random or doesn't ‘make 

sense’ for that computer action.”  Next, participants were directed to view each gesture video 

successively and presented in a random order.  For each gesture video, participants watched the 

video and were asked to describe what happened in each video in a text box.  After describing 

the gesture video, the participant then rated the gesture on a 6-point Likert-type scale with 

endpoints “Completely Arbitrary” and “Completely Natural.”  Afterward, participants received a 

post participation debriefing and were awarded credit for their participation.  The median time to 

complete the survey was 23 minutes.  Participants could take as much time as they desired to 
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submit this online survey, including starting the survey and returning later; therefore, the range in 

response times varied widely, from 8 minutes to 2.5 days.    

Results 

The design was not fully combinatorial – not every action was rated for each of the 26 

videos – because opposite gesture-action combinations were not included.  For example, a 

gesture motioning upward was not included in possible ratings for the action of moving an object 

down.  This was done so as not to confuse participants with opposite gesture-action 

combinations (i.e., “trick questions”), and because opposite movements from actions may 

represent another separate category of gestures (i.e., opposite actions) and should not be rated on 

a continuum of natural to arbitrary.  For each computer action, a repeated-measures ANOVA 

was conducted to determine whether there were differences in naturalness ratings of the gestures.  

Unless otherwise noted, the Greenhouse-Geisser correction is reported for ANOVA tests and 

Bonferroni corrections were performed for post hoc tests.   

Natural Gestures  

The top five most natural gesture videos for each action are shown in Figure 3, 

illustrating that the gestures rated as most natural were those from Study 1, while the remainder 

gestures were usually rated distinctly less natural than those produced by participants in Study 1.    
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Figure 3. For each gesture-based computer action, gesture videos rated most natural are graphed. 
Videos higher on the y-axis are seen as most natural for each action. The percentage of responses 
is presented on the x-axis.  
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Moving an Object Up  

As expected, the naturalness ratings for the action “moving an object up”  differed 

significantly, F(10.10, 1495.32)=155.34, p<.001, ηp2=.512.  Depicted in Figure 3a, the gestures 

rated most natural for the action “moving an object up” were Video 2 (M=5.40, SD=1.17) and 

Video 1 (M=5.24, SD=1.28). These two gestures were rated significantly more natural than all of 

the other gestures (all ps<.001), but did not differ significantly from each other (p=.12).  The 

gestures shown in these two videos were those that were produced for “moving an object up” in 

Study 1.    

Moving an Object Down 

Naturalness ratings differed among gesture videos for “moving an object down,” F(7.88, 

1213.17)=234.27, p<.001, ηp2=.603.  Figure 3b shows that the most natural gestures were Video 

3 (M=5.24, SD=1.32) and Video 4 (M=5.23, SD=1.22), which were significantly more natural 

than the other gestures and did not differ from each other (p=.11).  These videos were the 

gestures produced in Study 1.  Although the arbitrary gesture depicted in Video 19 (M=3.95, 

SD=1.85) in which the arm moves down past the hip was less natural than Videos 3 and 4, it was 

rated significantly more natural than the other gestures for this action (all ps<.001).  This 

arbitrarily chosen gesture was likely rated more natural than the other gesture-action 

combinations because it looks similar to a pantomimed gestures – that is, the gesture in Video 19 

looked like the pantomimed gestures in Videos 3 and 4, which were natural gestures produced in 

Study 1; however, it is important to note that Video 19, while similar to pantomimed gestures, 

was rated less natural than either of the gestures from Study 1.       
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Moving an Object Left 

Gesture ratings were different for the action “moving an object left,” F(7.11, 

1095.51)=234.47, p<.001, ηp2=.604.  The gestures rated more natural for this action (all 

ps<.001) were Video 6 (M=5.40, SD=1.20) and Video 5 (M=5.17, SD=1.34), which were not 

different from each other (p=.10) and were both from Study 1 (Figure 3c).  The naturalness 

rating for the arbitrary gesture in which a closed fist was moved right to left in Video 23 

(M=5.06, SD=1.29) did not differ from the rating for Video 5, but was rated less natural than 

Video 6.  Even though this gesture was arbitrarily chosen, it did resemble the natural gestures in 

Videos 5 and 6 because it made the same motion with a closed fist as opposed to an open or 

pointing hand.   

Moving an Object Right 

The gesture ratings also differed for “moving an object right,” F(8.26, 1304.63)=219.30, 

p<.001, ηp2=.581.  Shown in Figure 3d, gestures rated most natural (all ps<.001) for the action 

“moving an object right” were Video 8 (M=5.26, SD=1.27) and Video 7 (M=5.14, SD=1.33) 

from Study 1, and arbitrary Video 22 (M=4.89, SD=1.56) showing a closed fist moving right.  

Videos 7 and 8 did not differ at all (p=1.00), and ratings for Videos 7 and 22 (p=1.00) and 

Videos 8 and 22 (p=.67) were not statistically different.  Comparable to the finding for “moving 

an object left,” the arbitrary gesture that was rated closely to the natural gestures from Study 1 

for “moving an object right” was very similar to the natural gestures.   

Rotating an Object Clockwise 

For “rotating an object clockwise,” gesture ratings differed, F(9.81, 1510.63)=152.78, 

p<.001, ηp2=.498, with Video 10 (M=5.26, SD=1.27) and Video 9 (M=5.14, SD=1.33) rated 
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significantly more natural than other gestures (all ps<.001, Figure 3e).  Both gestures were from 

Study 1 and did not differ from each other (p=1.00).    

Rotating an Object Counterclockwise 

Ratings of naturalness differed for “rotating an object counterclockwise,” F(7.40, 

1132.68)=143.80, p<.001, ηp2=.485.  The gestures rated most natural for the action were from 

Study 1 (all ps<.001, Figure 3f), Video 11 (M=4.77, SD=1.72) and Video 12 (M=4.71, SD=1.72).  

These did not differ from each other (p=1.00). 

Selecting an Object 

There was a difference in gesture ratings for “selecting an object,” F(15.44, 

2408.51)=71.68, p<.001, ηp2=.315.   Shown in Figure 3g, the naturally rated gestures for the 

action “selecting an object” were Video 13 (M=5.38, SD=1.21) and Video 14 (M=4.38, 

SD=1.70).  These videos from Study 1 were rated more natural than all other gestures (all 

ps<.001), with Video 13 rated more natural than Video 14 (p<.001).     

Enlarging an Object 

Differences between the gesture ratings were also significant for “enlarging an object,” 

F(15.35, 2409.90)=81.20, p<.001, ηp2=.341.  Video 15 (M=5.24, SD=1.17) and Video 24 

(M=4.62, SD=1.52) were rated more natural than the other gestures (all ps<.001), and Video 15 

was significantly more natural than Video 24 (p=.003, Figure 3h).  Video 15 and Video 24 were 

gestures from Study 1. 

Shrinking an Object  

Finally, the gesture ratings for “shrinking an object” were also different, F(13.40, 

2130.80)=104.96, p<.001, ηp2=.401.  The gestures rated most natural for the action “shrinking 

an object” were Video 16 (M=5.31, SD=1.11) and Video 17 (M=4.34, SD=1.49), but Video 16 
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was rated significantly more natural than Video 17 (p<.001; Figure 3i).  Both Video 16 and 

Video 17 were gestures produced in Study 1.    

Discussion 

For each action, the expected gestures (i.e., gestures produced in the Study 1) were rated 

as most natural.  This indicated that gestures people produce when asked how they would 

naturally perform a gesture-based computer action are interpreted as the intended action by a 

separate sample of participants.  For some actions, arbitrary gestures that were similar to natural 

gestures were also rated as natural (above the midpoint on a continuum of arbitrary to natural), 

confirming that gestures which resemble pantomimed actions are considered more natural.  This 

answered the question of which natural gestures to implement as gesture-based commands in the 

computer lesson by determining how people gesture actions, and how those actions are 

interpreted.   

Selection of Experiment Gestures  

Natural Gestures 

Based on the results showing which gestures were rated as most natural for each action, 

the gesture-based commands for the computer interface were determined.  The natural gestures 

for the computer commands were chosen from the top-rated natural video for each action.  If 

more than one gesture was rated as most natural for an action, the gesture that more closely 

resembled the gestures for other actions was chosen.  For example, the action of “moving an 

object up” had two gestures rated as most natural in which the right hand was moved from the 

torso to above the head – one with the palm facing forward and the other with the palm facing 

upward.  Although these gestures did not significantly differ from each other on ratings of 

naturalness, the gesture in which the palm was facing forward was chosen for the computer 
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command because the palm facing forward is a similar feature with other naturally-rated 

gestures.  Figure 4 depicts an actor performing each of the top-rated natural gestures that were 

included in the computer lesson testbed for each action.  

 

Figure 4. Natural Gestures for Computer Commands 

Arbitrary Gestures 

For each action, the remaining videos were rated on the arbitrary end of the scale between 

“Mostly Arbitrary” and “Completely Arbitrary,” and there was little difference in the extent to 

which the arbitrary gestures were rated.  To choose the arbitrary gestures, I looked at every 

gesture rated between “Mostly Arbitrary” and “Completely Arbitrary” that was not rated 

significantly less arbitrary than any other gesture.  It is important to note again that none of the 

arbitrary gesture-action combinations were opposite actions from the action, such as gesturing 
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leftward for the “moving and object right” action.  To narrow down which arbitrary gesture to 

select for each action from the equivalently arbitrary gestures, I first used gestures with similar 

features as those found in the set of natural gestures.  For example, the “enlarge” gesture for the 

natural gesture condition (i.e., open palms are moved outward from the center of the body) was 

rated as arbitrary for the action of “select,” so this gesture was used in both the natural and 

arbitrary conditions but for different actions.  Next, for complementary gestures (e.g., up and 

down; right and left), I found two arbitrary gestures that were the opposite of each other, such as 

fists moving inward for the “up” action and fists moving outward for the “down” action.  

Because the natural gestures often used complementary gestures for corresponding actions (i.e., 

moving the hand up/down for “up” and “down” actions), I chose to use complementary gestures 

for corresponding actions in the arbitrary gesture condition because this allowed chunking of 

gestures in a similar way to the chunking of natural gestures.  This prevented the set of arbitrary 

gestures from consisting of nine distinct gestures while the natural set of gestures consisted of 

several pairs of gestures.  If complementary gestures did not exist in the remaining set of 

arbitrary gestures, I chose the gestures that could be chunked by similar features.  For example, 

the arbitrary clockwise gesture was a forward grasping motion and the counter-clockwise gesture 

was a grasp with arm moving to the side (Figure 5).  Additionally, each gesture was tested using 

the Microsoft Kinect V1 motion-capture linked to the Unity 3D game engine to confirm that 

these gestures were capable of being recognized by the computer system.  Every gesture from 

both sets was able to be recognized by the motion tracker.   
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Figure 5. Arbitrary Gestures for Computer Commands 
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CHAPTER SIX: EXPERIMENT 

The main experiment manipulated the type of gesture-based interaction and the 

instructions of those gestures to determine whether these instructional techniques differ for 

learning conceptual information in a computer lesson.  The experiment was used to answer the 

research questions of whether natural gestural interactions result in more learning than 

arbitrarily-mapped gestures, and whether video or text-based instructions for the gesture 

interactions can influence the computer lesson.  The computer lesson involved conceptual 

information on optics, and participants learned how lenses and mirrors interact with beams of 

light by manipulating lenses and mirrors using the gesture-based computer interactions.  The 

instructional techniques were assessed by comparing the amount of conceptual information 

learned and the amount of mental effort required to complete the lesson.  Prior to participating in 

the in-lab experiment, participants completed an online prescreening.  

Prescreening 

All prescreening measures and questionnaires were completed online prior to the in-lab 

experiment.  Participants who completed the entire prescreening as indicated by the research 

participation system were sent requests through the research system to participate in the 

experiment.   

Prescreening Participants 

Three hundred people completed the prescreening study online.  Of the participants who 

completed the study, 128 participated in the main experiment (described in the Experiment 

Participants subsection below).  Participants were excluded from signing up for the prescreening 

if they were younger than 18 years old or were not predominately right-handed.  
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Materials 

Knowledge of Optics Pre- and Post-Test 

Participants’ knowledge of optics was measured in a pre-test during the prescreening 

portion of the experiment that occurred online prior to the in-lab experiment.  The purpose of the 

pre-test was two-fold: First, the pre-test was used to screen participants so that those with more 

incoming knowledge of optics were not included in the final analyses comparing pre- and post-

test scores.  Second, the pre-test was used to assess how much information was gained from the 

computer lesson by comparing the change score between the pre- and post-test scores (∆).  

The Knowledge of Optics Test (Appendix B) was developed by adapting questions from 

middle school (ages 11-14) science textbook test banks (Science Voyages, 1999) and online 

physics lesson resources developed by Florida State University, University of Florida, Los 

Alamos National Laboratory, and The Optical Society (Davidson, 2015a, 2015b, 2015c; 

Henderson, 1999a, 1999b).  To determine a participant’s conceptual understanding of optics, the 

test included 29 fill-in-the-blank and multiple choice items asking how light reflects and refracts, 

types of lenses and mirrors, and applying that information to different lens and mirror 

placements.  All of the test questions could be answered by recalling and applying the 

information presented in the computer lesson (see Appendix C for screenshots of the computer 

lesson).     

Paper Folding Test 

Spatial ability was measured using the Paper Folding Test (PFT; Ekstrom, French, 

Harman, & Dermen, 1976).  The PFT is a 10-item timed measure of spatial visualization.  The 

test asks participants to imagine what a piece of paper would look like if it was folded and then a 

hole was punched through the paper.  The task was to select from five possible answer choices 
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what the paper would look like when it was unfolded.  Participants were given three minutes to 

complete the test. The maximum score possible was 10 points.  Participants were awarded one 

point when a question was answered correctly.  Participants lost one-fifth of a point for each 

incorrect answer to discourage random guessing.  If a participant did not respond to a question, 

no points were awarded or lost.   

Brief Assessment of Gesture Survey 

The Brief Assessment of Gesture survey (BAG; Nagels et al., 2015) is a 12-item measure 

of attitudes toward gesturing and gesturing behaviors that was included as an individual 

difference measure that may affect performance on the gesturing task (Appendix D).  The BAG 

is divided into four factors: Perception, Production, Social Production, and Social Perception.  

The first factor, Perception, measures the extent to which participants perceive gesturing in an 

unfavorable way, such as “I find it very annoying when I'm talking to someone who gestures a 

lot during the conversation.”  A higher score on the Perception factor indicates a negative 

perception of gesturing.  The second factor is Production, or the propensity of the participant to 

produce gestures in communication, and the degree to which participants enjoy others gesturing.  

An example item in the Production factor is, “I've been told before that I gesture a lot when I 

talk.”  The next factor is Social Production, measuring the participant’s use of gestures in goal-

oriented communication, including, “When talking in noisy places, I usually gesture a lot to 

make myself understood over the noise.”  The final factor was Social Perception, or the extent to 

which participants were surprised or amazed at others gesturing; “I often feel amazed by people 

who are able to gesture a lot when they talk.”  
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Demographics and Video Game Experience  

The demographic survey used in the main experiment was the same as that used in Study 

2 (Appendix A).  

Attention Check Questions    

Several attention check questions were included for use in removing participants who did 

not carefully read the questions.  Before starting the questionnaires, participants must have 

answered “Yes” to the statement, “I will answer all questions honestly and to the best of my 

ability.”  In the BAG section, participants should have answered the statement, “I did not pay 

attention to the questions in this study” with the response “Not Agree.”  In the Knowledge of 

Optics Pre-test, the question was asked, “Are you reading all the questions and answering 

honestly?”  The response format for this question was fill-in-the-blank, so participants must have 

indicated an affirmative answer to be considered for the main experiment (e.g., “Yes,” “to the 

best of my ability,” “yes im trying here [sic],” etc.).  For details on how these questions were 

used to remove participants and the number of participants removed, see Participant Removal 

subsection later in this chapter. 

Prescreen Procedure 

Participants signed up for the experiment through the university research system website 

and were directed to a Qualtrics link where they read an informed consent page.  The 

questionnaires and measures were completed online.  The order of tasks was randomized for 

each participant.  To confirm that participants completed each questionnaire without skipping 

questions, participants were instructed not to leave any questions blank, and to write “I don’t 

know” if they did not know the answer to a question.  Once the tasks were completed, 

participants were given a post participation form explaining the purpose of the prescreening was 
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to determine participants for the main experiment, and they may be contacted to participate in a 

future study.   

Experiment 

Participants who completed the online prescreening were invited to participate in the in-

lab experiment.  All participants who completed the prescreening were contacted through the 

university’s research participation system to sign up for experiment participation.  

Design 

To parse out the effects of natural mapping and instruction, participants were randomly 

assigned to one of four conditions resulting from fully crossing the two levels of both factors 

(2X2 between-subjects design).  The independent and dependent variables included in the 

experiment are listed in Table 7.  

Table 7. Table of Independent and Dependent Variables  

Variable Manipulation 

IV1 A. Video instructions 

 B. Text instructions 

IV2 A. Natural gestures 

 B. Arbitrary gestures  

Variable Measurement 

DV1 Knowledge of Optics Δ score 

DV2 Cognitive Load Questionnaire score 

DV3 Presence Questionnaire score 

DV4 System Usability Questionnaire score 
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Conditions   

The four between-subjects conditions in this experiment are a result of crossing the two 

levels of both independent variables shown in Table 7.  The table below contains a detailed 

explanation of each condition as it was implemented in the experiment (Table 8).   

Table 8. Description of Conditions in the Experimental Task 

Condition Condition Description 

Condition 1 Naturally-mapped gesturing with video instructions:   

During the tutorial instructions before the experimental task, participants were 

instructed on the gestures they will use in the testbed by watching video 

instructions of an actor performing the gestures.  The gestures used to interact 

with the computer lesson were the most natural gesture-based commands 

determined in Studies 1 and 2.   

Condition 2 Naturally-mapped gesturing with text instructions:   

The tutorial instructions included short, text-based directions on how to perform 

each gesture.  The gestures were the same natural gestures used in Condition 1 

that were determined from Studies 1 and 2.   

Condition 3 Arbitrary gesturing with video instructions:   

The video instructions in the tutorial depicted the same actor from the video 

tutorial in Condition 1 performing the arbitrary gestures.  The arbitrary gestures 

were those rated as most arbitrary for each action in Study 2.     

Condition 4 Arbitrary gesturing with text instructions:   

Text-based instructions for the arbitrary gestures were presented in the tutorial.  

The arbitrary gestures were the same arbitrary gestures presented in Condition 3 

that were determined from Study 2.     
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Materials 

Tutorial 

Tutorials for each condition were presented to participants on Microsoft Powerpoint 

before starting the computer lesson.  The tutorial explained the gestures using either video- or 

text-based instructions.  The tutorials explained that participants would be using gestures learned 

in the tutorial to complete a computer lesson.  Then, each of the nine gestures for the computer 

actions (e.g., move an object up, select an object, etc.) were presented with one gesture per slide.  

There were 15 slides total for each tutorial.  Participants proceeded to the next slide by clicking 

the mouse.  Gestures were presented in the same order for each condition.  Participants could 

complete the tutorial at their own pace and review slides as desired.  Participants completed the 

slides in approximately 10 minutes, although time to complete the tutorial was not measured.    

After the gestures were presented, a slide instructed participants to recall the gestures in 

the same order in which they were learned.  On the final slide, all participants were instructed to 

perform the gestures in a random order (the same random order was given in each condition) so 

every participant had the opportunity to learn the gesture three times before completing the 

tutorial.   When the participants performed the gestures at the tutorial, the experimenter watched 

to confirm the gestures were accurate before proceeding to the computer lesson.  If the gestures 

were incorrect, the experimenter instructed the participant to review the slide for that gesture and 

answered any clarifying questions the participants had.  Experimenters were explicitly instructed 

not to show participants how to do the gestures by physically performing the gestures.   

Experimental Testbed 

The experimental testbed was a computer lesson called “Hubble Needs Glasses,” which 

teaches how light interacts with mirrors and lenses using gesture-based computer commands.  
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The computer lesson was presented on a 30” LCD television screen, and the participant stood on 

a mark nine feet from the screen while performing the gesture-based computer interactions that 

were recognized by the motion tracker (Figure 6). 

The testbed was developed using the 3D Unity game engine, which presented 

information in a slide-like format with two interactive sections.  There were nine slides in the 

lesson, of which seven were instructional content and two were the interactive sections (for 

screenshots of the all the instructional content slides and interactive gesture sections, see 

Appendix C).  In the interactive sections, participants used gestures (either Arbitrary or Natural 

gestures, depending on condition) to manipulate mirrors and lenses in a beam of light to learn 

how light interacts with each type of mirror or lens.  A narrator read the information presented on 

the slides and instructed participants on which object manipulations should be performed.  The 

object manipulations were activated via gesture-based computer commands.   

The gesture-based interaction commands differed for the Natural and Arbitrary 

conditions, and the respective gestures were determined from Studies 1 and 2 (see Figures 4 and 

5).  The gestures were implemented using the Microsoft Kinect V1 motion tracker.  During the 

interactive sections in which participants manipulated mirrors and lenses, the participant was 

instructed to perform a gesture indicating a specific object manipulation.  For example, the 

narration instructed the participant to, “Select the concave mirror.  Move the mirror down into 

the beam of light and enlarge it.”  The participant then performed the three gestures sequentially 

(i.e., “select,” “down,” and “enlarge”).  When each gesture was recognized by the Kinect for the 

corresponding computer action, an animation was triggered of the sequence of actions.  The 

result of each action was seeing how the beam of light interacted with the mirror or lens being 

manipulated.  
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Figure 6. Experiment Room Setup.  Participants stood on the “X” and faced toward the 
television screen that displayed the computer lesson.  The motion tracker was positioned next to 
the television screen.  The gesture reference sheet was placed on the stool next to the participant.  
The experimenter operated the computer lesson from the laptop (next to the television screen).   

The computer lesson began with a description of the Hubble Space Telescope, followed 

by explanations of how mirrors were used to direct light to focus images of the universe.  The 

lesson then explained the concept of refraction and described types of mirrors.  Following this 

section, participants completed the interactive section in which they used gestures to manipulate 

a mirror in a beam of light to see how light reflects (Figure 7).  There were three mirrors in this 

section: planar, concave, and convex.  Each mirror was moved into the beam of light by the 

participant and the narrator instructed which gesture-based actions to perform.  After the 

participant interacted with each mirror, they advanced the slide to the refraction and lenses 
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section.  This section described the concept of refraction as well as converging and diverging 

lenses.  The participant then completed the interactive section with four types of lenses: bi-

concave, planar-concave, bi-convex, and planar-convex.  When the participant finished 

manipulating each of the four lenses in the beam of light, the computer lesson ended.   

 

Figure 7.  Screenshot of the interactive section for lenses.  Participants moved the lens into the 
beam of light by using the “select” gesture to highlight the lens, then the “down” gesture to move 
the lens into the beam of light.  Next, participants used the “enlarge” gesture to increase the size 
of the lens.  When the lens was moved into the beam of light, the light refracted, illustrating the 
conceptual information of refraction.  The same type of interaction was completed for mirrors, 
illustrating the concept of reflection.  

Gesture Reference Sheets 

For each condition, participants were given a gesture reference sheet corresponding to the 

type of gesture (i.e., Natural or Arbitrary) and method of instruction (i.e., Video or Text).  The 

reference sheets were provided based on pilot testing which suggested some participants would 

not be able to recall all nine gestures and would be unable to complete the lesson without 

reminders.  The impact of not recalling the gestures would be not being able to complete the 

Interactive Lens Slide 
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computer lesson, and completion of the lesson was not one of the main outcome variables to 

answer the research questions; therefore, because completion of the lesson was necessary to 

answer the research questions, reference sheets were provided to assure participants would be 

able to finish.  The reference sheet was placed on a stool next to the participant during the 

computer lesson so that it could be easily referenced throughout the experiment.  The reference 

sheets for each condition consisted of a single page with all nine gestures (Appendix E).  The 

reference sheets contained either pictures for the video conditions or blocks of text for the text-

based conditions, and gestures were either Natural or Arbitrary.  For the video instruction 

conditions, a picture of each gesture was taken from screenshots of the videos, and red arrows 

were overlaid on the pictures to indicate the direction of movement.  

Presence Questionnaire  

The Presence Questionnaire (PQ; Witmer, Jerome, & Singer, 1998) contains 19 items in 

which participants report how much they felt “present” in a training environment.  Participants 

responded on a 7-point Likert-type scale (the anchors differed depending on question, see 

Appendix F).  The PQ was used because the questions used to determine the “sense of being 

there” in the training environment are also applicable to how much control the participant felt 

and the naturalness of the interactions; so although the construct of “presence” was not 

investigated per se, the PQ may measure the perceived “naturalness” of interacting with the 

computer lesson.  For example, “How much did your experiences in the virtual environment 

seem consistent with your real world experiences?” and “How much did the control devices 

interfere with the performance of assigned tasks or with other activities?”  To see all of the 

questions on the PQ, refer to Appendix F.  
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Overall sense of presence is measured by averaging the items on the PQ, and the PQ can 

be divided into four subscales: Involvement, Sensory Fidelity, Adaptation/Immersion, and 

Interface Quality.  The Involvement subscale measures the degree to which the participant feels 

the control of the computer interface is natural.  Sensory Fidelity is the feeling that the senses are 

engaged in the system and operate as expected (i.e., sounds can be identified and localized).  

Adaptation/Immersion is the ability of the participant to adapt to the computer environment and 

concentrate on the activities presented in that environment.  The last subscale, Interface Quality, 

is the extent to which the interaction with the computer task distracts from or otherwise hinders 

performance in the virtual environment.  Scores on each of these subscales may be affected by 

the naturalness of the gestures the participant is assigned.   

Cognitive Load Questionnaire 

The Cognitive Load Questionnaire (Paas, van Merriënboer, & Adam, 1994) was chosen 

because it is a frequently used single-item measure of perceived mental effort.  The item asks 

participants to, “Please indicate on the scale your level of mental effort on the task you just 

performed.  Think only about your level of effort on the task you performed immediately 

preceding this questionnaire.”  Paas, Tuovinen, Tabbers, and van Gerven (2003) explain that, 

“The scale’s reliability and sensitivity and moreover its ease of use have made this scale, and 

variants of it, the most widespread measure of working memory load within CLT [Cognitive 

Load Theory] research” (p. 68).  The scale was a 10-point Likert-type scale with anchors “Very, 

very low” to “Very, very high,” with a higher rating indicating higher perceived mental effort for 

the computer task.   

 

 



   

92 
 

System Usability Scale 

The System Usability Scale (SUS; Brooke, 1996) is a 10-item measure that indicates how 

usable the system (i.e., computer lesson) seemed to participants.  Participants respond to 

questions on a 5-point Likert-type scale with the endpoints “Strongly Disagree” and “Strongly 

Agree.”  Example questions include, “I thought the system was easy to use” and “I found the 

various functions in this system were well integrated.”  Higher average SUS scores indicate 

better perceived usability of the system.        

Manipulation and Attention Checks 

Several questions were included in the tasks after the experiment to confirm participants 

viewed the manipulation as intended and participants were paying attention throughout.  The 

manipulation check question presented after the computer lesson portion of the experiment was, 

“Rate how natural or arbitrary you though the gestures were to interact with the computer 

system.”   Participants responded on a 6-point Likert-type scale from “Completely Arbitrary” to 

“Completely Natural.”  Another manipulation check to verify participants were paying attention 

during the gesture tutorial was an open-ended item, “Describe the gesture you used to select an 

object.”  Finally, to determine whether participants were paying attention, an open-ended 

attention check question was asked during the post-test measure, “Are you reading all the 

questions and answering honestly?”   

Experiment Participants 

Power Analysis 

To determine the appropriate sample size for the 2X2 fixed effects ANOVAs, a power 

analysis was conducted using G*Power software (Faul, Erdfelder, Lang, & Buchner, 2007).  A 

medium effect size for a F-test was anticipated (η2 = 0.25) at a 0.05 alpha level with 80% 
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power6.  The numerator has one degree of freedom, and there are four conditions.  The total 

recommended sample size suggested by G*Power was 128 participants, with n=32 participants 

in each of the four conditions.  The total number of participants who completed the study was 

128.   

Participant Removal 

Of these 128 participants, 26 were removed for the reasons described below, and the final 

sample size included in analyses was 102 participants.  Seven participants were removed due to a 

glitch in the university participation system that resulted in missing pre-test scores.  One 

participant was removed for not completing the experiment, and nine people were removed for 

incorrect responses to the attention check questions or not following directions on the spatial 

measure (e.g., selecting more than one answer for a question).  Nine participants were removed 

for scoring above the cutoff of 56.7% correct on the Knowledge of Optics pre-test.   

Participants who scored above this cutoff on the Knowledge of Optics pre-test were 

excluded from analyses because they came into the study with more knowledge of the learning 

material in the computer lesson, and there may be a treatment by aptitude interaction such that 

participants who know more about optics may learn from the computer lesson differently than 

those who know less about optics.  This cutoff score was determined by examining the scores on 

the pre-test and removing participants whose knowledge of optics was beyond that of most 

participants.  Although the range of scores on the pre-test was high, with the lowest score of zero 

answers correct and the highest score of 89.29% correct, the distribution of scores was skewed 

left such that the average participant scored around 21.7% correct (SD=17.5%).  The skew and 

kurtosis values were determined by dividing skewness and kurtosis by their respective standard 
                                                 

6 The anticipated medium effect size and necessary power level were selected based on commonly used parameters 
when previous literature does not suggest expected effect sizes.   
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errors (Skew=5.88, Kurtosis=4.01), and these values exceeded 3.29, indicating skewness (Field, 

2013).  Because the scores on the pre-test were skewed such that most participants scored on the 

low end, participants who scored above two standard deviations from the mean (i.e., 

21.7+[17.5*2]=56.7% correct) were excluded from analyses to avoid a treatment by aptitude 

interaction affect.  After removing participants who scored above the cutoff, the pre-test scores 

were normally distributed7.   

Participant Demographics  

All participants were undergraduate students at an university.  Participants were excluded 

from participating in the experiment if they were not predominately right-handed or were 

younger than 18 years old.  The average age of participants was 18.69 years old (SD=1.54 years), 

and participants were 68.6% female (n=70), 31.4% male (n=32).  Participants indicated that 76 

were Science, Technology, Engineering, and Math (STEM) majors, 22 were Non-STEM majors, 

and four were undeclared majors.  The race/ethnicities of participants were 9.6% Asian/Pacific 

Islander, 14% Black/African-American, 27.2% Hispanic/Latino, 1.8% Other, 1.8% selected 

“Prefer not to respond,” and 45.6% White/Caucasian8.  

Procedure 

After completing the prescreening online, participants were contacted through the 

university research system to sign up for the main experiment, which was conducted individually 

in a lab setting.  Upon arrival to the lab, participants read an informed consent and agreed to 

participate.  Participants were randomly assigned to one of four conditions: 1. Natural gestures 

with video instructions, 2. Natural gestures with text instructions, 3. Arbitrary gestures with 

                                                 

7 More details on the Knowledge of Optics pre-test measure after removing high scoring participants are provided in 
the next Chapter that describes results of the experiment.  These descriptives are not included here because they do 
not pertain to the removal of participants and are more applicable to the next Chapter.  
8 Participants could select multiple responses to better represent their race/ethnicities.   
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video instructions, or 4. Arbitrary gestures with text instructions.  The experimenter then 

explained the purpose of the study was to determine what type of gestures are best for interacting 

with a computer lesson for learning conceptual information.  Next, participants completed the 

tutorial for gesture instructions that corresponded to their condition.  The tutorial could be 

completed at the participant’s own pace, and participants were allowed to ask any questions they 

had during the tutorial.  The experimenter could answer any questions about the tutorial without 

physically performing the gestures.  When the tutorial was completed, the experimenter 

confirmed with the participants that they did not have any more questions about the gesture-

based commands before proceeding to the computer lesson.  After the tutorial, participants were 

shown the gesture reference sheet for their respective conditions and told they could use this 

sheet throughout the computer lesson.   

Participants were then directed to stand on a taped “X” on the floor, facing toward the 

television monitor and motion tracker (see room setup in Figure 6).  The reference sheet was 

placed next to the participant on a stool so that it could be accessed easily throughout the 

computer lesson without requiring the use of hands while gesturing.  The participant was 

instructed to follow the directions of the narrator on each slide to complete the computer lesson.  

For each gesture instruction, the participant must wait for the narration to end before performing 

a gesture.  The motion tracker would not recognize a gesture while the narrator was speaking to 

avoid participants skipping key learning material.  To move on to the next slide, participants 

used the “select” gesture on the arrow that appeared at the end of a slide.  The experimenter 

started the computer lesson from an interface on a laptop connected to the television monitor and 

motion tracker.  The participant completed the lesson described in the Testbed section (above).  
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The computer lesson took approximately 10-15 minutes to complete (see Results section for 

more detailed time descriptions).  

Once the computer lesson portion of the experiment was completed, participants sat back 

at the computer on which they saw the tutorial to complete the remaining measures.  First, 

participants rated their mental effort on the Cognitive Load Questionnaire.  Then, the Knowledge 

of Optics post-test was completed with the same questions from the pre-test in a randomized 

order.  Finally, participants rated their perceptions of the computer lesson environment on the PQ 

and SUS.  Manipulation and attention check questions were randomly included within the other 

scales.  The entire in-lab experiment took approximately 45 minutes to 1 hour to complete.   
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CHAPTER SEVEN: RESULTS 

The results presented in this chapter are organized in subsections that reflect the 

Prescreening and Experimental portions of the study.  In the Prescreening subsection, the subject 

variable measures, which quantify potential covariate predictors of the experimental outcome 

measures (e.g., Knowledge of Optics learning, Cognitive Load), are described and analyzed to 

provide context for the use of these subject variables in the experimental analyses.  Following the 

Prescreening subsection, the Experimental subsection includes analyses of the main hypotheses 

regarding Knowledge of Optics learning and cognitive load, with the potential covariates (as 

determined by the Prescreening analyses) included in the experimental tests.  Then, additional 

analyses pertaining to peripheral questions are presented, such as how the perceived usability of 

the system differed by conditions, etc.  Following these analyses, the empirical results are 

outlined in tables in the Summary of Results subsection.  Finally, qualitative participant reactions 

to the computer lesson are reported to expand on how the system was perceived for the different 

conditions.   

Results were analyzed using IBM SPSS v20.  Significance was reported at the level of 

α=0.05, unless otherwise specified.  Skew and Kurtosis were calculated by dividing each by their 

respective standard errors, and the standardized values were considered unacceptable over the 

absolute value of 3.29 (Field, 2013).  Levene’s Test of Equality of Error Variances is reported 

when variances were significantly different.  

Prescreening Measures 

The following analyses of the prescreening measures include the participants in the final 

sample after participant removal was conducted (see Participant Removal subsection in Chapter 

6 for details).  
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Knowledge of Optics Pre-test 

 The Knowledge of Optics pre-test was completed by participants online prior to the in-

lab experiment.  As described in the Participant Removal section in Chapter 6, participants were 

removed from analyses if they scored above two standard deviations from the mean on the 

Knowledge of Optics pre-test, or above 56.7% correct.  After removing participants (n=9) who 

scored above the cutoff value, the pre-test scores were distributed normally around the mean of 

20.19% correct (SD=12.54%, Skew=2.56, Kurtosis=-1.22), with a low score of zero correct and 

the highest score of 50% correct.  Average scores on the pre-test did not differ significantly 

among conditions, F(3, 98)=0.175, p=.913, ηp2 =.005 (see Table 10 in the Experiment Results 

subsection for pre-test scores compared to post-test scores by condition ).   

Paper Folding Test 

Spatial ability was measured using the PFT during the prescreening because it is likely a 

predictor of performance on the experiment.  Scores on the PFT were between -2 and 10 points, 

out of a highest possible score of 10 points.  Scores were normally distributed around the mean 

of 3.97 points (SD=3.19 points, Skew=0.03, Kurtosis=-1.49).  The average PFT scores in the four 

conditions did not vary overall, F(3, 98)=0.510, p=.676, ηp2 =.015.  PFT scores were correlated 

significantly with scores on the Knowledge of Optics post-test (r[102]=.376, p<.001), so spatial 

ability was used as a covariate on the analyses for the main outcome measure.  PFT scores were 

not correlated with the Cognitive Load item (r[101]=-.139, p=.165), so spatial ability was not 

directly related to how much mental effort participants felt during the computer lesson.   

Video Game Experience 

 Video game experience may also be related to performance on the experimental task and 

was measured on the prescreening demographics questionnaire.  The item on the demographics 
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questionnaire used to approximate video game experience was the participant’s self-reported 

rating for number of hours he/she plays video games each week, because previous research has 

found that self-reported hours of video game play a week are correlated significantly with both 

comfort in gaming and measures of video game self-efficacy (Procci, James, & Bowers, 2013).  

The average number of hours a week participants reportedly played was 4.47 hours (SD=7.28 

hours), and hours spent video gaming did not differ by condition, F(3, 95)=0.220, p=.882, 

ηp2=.007.  Video game experience as measured by hours of play was not correlated significantly 

with the main outcome measures, Knowledge of Optics post-test (r[102]=.173, p=.087) and  

Cognitive Load (r[98]=-.064, p=.533). 

Brief Assessment of Gesture Survey 

 Another potential predictor of how well a participant could complete the computer task 

and subsequent learning was the propensity and perception of gesturing, as measured by the 

BAG.   The BAG consists of four subscales related to a participant’s production and perception 

of gestures: Perception, Production, Social Production, and Social Perception.  For each of the 

subscales, the means and standard deviations are presented in Table 9.  The conditions did not 

differ in any of the four subscales (FPerception[3, 98]=0.601, p=.616; FProduction[3, 98]=0.902, 

p=.443; FSocialProduction[3, 98]=1.326, p=.270; FSocialPerception[3, 98]=1.546, p=.208).  Only the 

Production subscale was correlated with the main outcome measure, Knowledge of Optics ∆ 

score (r[102]=0.217, p=.029), which indicated that a participant’s propensity for gesture was 

related to more learning overall.  The other three subscales were not correlated with Knowledge 

of Optics ∆ score (r Perception [102]=0.121, p=.225; r SocialProduction[102]=0.179, p=.072; r 

SocialPerception [102]=0.091, p=.361).  Additionally, none of the BAG subscales were correlated 
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significantly with Cognitive Load (r Perception[102]=-0.096, p=.342; r Production[102]=-0.035, 

p=..729; r SocialProduction[102]=-0.139, p=.165; r SocialPerception[102]=-0.088, p=.381). 

Table 9.  Means and Standard Deviations for the Brief Assessment of Gesture Survey Subscales 

Condition  Perception Production Social Production Social Perception 
 n M SD M SD M SD M SD 

Total 102 2.10 0.75 3.22 0.75 3.78 0.98 2.57 1.00 

Arbitrary 
Text 23 2.11 0.75 3.45 0.69 4.00 0.75 2.21 1.11 

Arbitrary 
Video 24 2.09 0.57 3.18 0.84 3.46 1.14 2.25 0.81 

Natural 
Text 27 2.25 0.90 3.14 0.78 3.81 1.16 2.56 0.88 

Natural 
Video 28 1.97 0.76 3.15 0.67 3.86 0.77 2.84 1.11 

Time Between Prescreening and Experiment  

Amount of time between the prescreening and the experiment was measured because 

there was concern that participants may perform better on the Knowledge of Optics post-test if 

they were primed on the optics concepts by the pre-test.  The average amount of time between 

participants completing the prescreening online and participating in the lab experiment was 

10.16 days (SD=11.23 days), and times were distributed normally (Skew=1.49, Kurtosis=-0.42).  

There was a wide range in the amount of time between completing the prescreening and the 

experiment, from less than a day between prescreening and experiment to 100 days between 

testing; however, amount of time since the prescreening was not correlated with scores on the 

Knowledge of Optics post-test (r[102]=-0.02, p=.840), so individuals who completed the pre-test 

closer in time to the experiment were no more likely to perform better on the post-test.  

Additionally, the amount of time between prescreening and experiment was not significantly 

different among conditions, F(3, 98)=0.773, p=.512, ηp2 =.023.   
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Experiment Results 

Correlation of Measures 

  The zero-order correlations between all of the measures are reported in Table 20, 

Appendix G.  

Knowledge of Optics Post-test 

Descriptives 

 The Knowledge of Optics post-test was given after participants completed the computer 

lesson during the in-lab portion of the experiment.  Scores on the post-test were highly correlated 

with scores on the pre-test (r[102]=.625, p<.001), such that higher scores on the pre-test were 

related to higher scores on the post-test.  The lowest score was 10.71% correct and the highest 

score was 71.43%.  Like the pre-test scores (M=20.19% correct, SD=12.54%), the Knowledge of 

Optics post-test scores were distributed normally (Skew=0.79, Kurtosis=2.11), but the overall 

average score was higher on the posttest by about 18 percentage points (M=38.72%, 

SD=18.87%; paired t[101]=-12.684, p<.001, d=2.64).  As shown in Table 10, participants scored 

higher on the post-test than the pre-test with large effect sizes in every condition.   

Table 10.  Knowledge of Optics Pre-and Post-test, and Time to Complete Computer Lesson 
Means and Standard Deviations for Each Condition 

   Knowledge of Optics (Number Correct) 

  Pre-Test Post-Test Pre/Post Difference 

Condition n MA SDA MB SDB MB - MA Cohen’s da 

Arbitrary Text 23 20.826 12.738 37.273 15.822 16.45 2.58 

Arbitrary Video 24 21.268 11.803 37.815 18.904 16.55 2.41 

Natural Text 27 20.026 11.716 39.392 20.691 19.37 2.67 

Natural Video 28 18.898 14.215 40.026 20.168 21.13 2.75 
Note. a Cohen’s d for repeated measures takes into account the pooled variance of dependent samples 
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Pre- and Post-test ∆ Score  

 To quantify the extent of participants’ conceptual learning between pre-test and post-test 

on the Knowledge of Optics test and to account for individual differences in pre-test optics 

knowledge, a ∆ score was calculated for each participant by subtracting the pre-test score from 

the post-test score.  The ∆ score was then used as the outcome variable for the Knowledge of 

Optics measure on the following analyses.  The average ∆ score was a 18.56 percentage points 

increase between pre- and post-test (SD=14.76, Skew=0.36, Kurtosis=-1.28).  The range of ∆ 

scores was between -10.71, indicating the participant performed 10.71 percentage points worse 

on the post-test, and a high ∆ score of 53.57.   

ANCOVAs 

A 2X2 between-subjects ANCOVA was conducted on the Knowledge of Optics measure 

∆ score with continuous PFT score and Video Game Experience as the covariates and two levels 

of the independent variables: Gesture type (Natural or Arbitrary) and Instruction type (Video or 

Text).  As noted previously, PFT scores and Video Game Experience did not differ by condition.  

Video Game Experience was not a significant covariate and was removed from the model (F[1, 

93]=2.19, p=.143, ηp2=.023).  The covariate, PFT score, was related significantly to the ∆ score, 

F (1, 97)=13.820, p<.001, ηp2 =.125.  After accounting for the variance of spatial ability, there 

were no main effects for either independent variables nor was there an interaction effect (FG [1, 

97]=1.363, p=.246, ηp2 =.014; FI [1, 97]=0.503, p=.480, ηp2 =.005; FG*I[1, 97]=0.018, p=.892, 

ηp2 <.001); therefore, only spatial ability was related to learning optics concepts from the 

computer lesson, and neither type of gesture nor type of instruction affected learning once spatial 

ability was considered.  
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Additionally, only one of the four BAG subscales, Production, was correlated 

significantly with the Knowledge of Optics ∆ score, so this variable was used as a covariate in 

another 2X2 ANCOVA with the same independent variables.  PFT was also included as a 

covariate, which was again a significant predictor of the ∆ score (F[1, 96)=11.771, p=.001, 

ηp2=.109).  BAG Production was marginally significant as a covariate (F[1, 96)=3.915, p=.051, 

ηp2=.039).  No main effects nor interaction effect were significant (FI[1, 96]=0.737, p=.393, 

ηp2=.008; FG[1, 96]=2.006, p=.160, ηp2=.020; FG*I[1, 96]=0.002, p=.969, ηp2<.001).   

 

Figure 8. Distribution of PFT Scores.  The distribution of scores has a dip in frequency of scores 
(i.e., number of participants) at the median score of 4.  

To better visualize how spatial ability was related to learning from the four conditions, a 

4X2 between-subjects ANOVA was conducted with the four conditions (Arbitrary Gesture with 

Video Instruction, Arbitrary Gesture with Text Instruction, Natural Gesture with Video 
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Instruction, and Natural Gesture with Text Instruction) and two levels of Spatial Ability (Low 

and High) on the ∆ score.  The Low and High Spatial Ability groups were determined by 

conducting a median split (Median=4.0) on the participants’ PFT scores.  As shown in Figure 8, 

the distribution of PFT scores had a low frequency (i.e., fewer participants) at the median score 

of 4 (M=3.97), so there was a distinct division between low and high PFT scores, justifying a 

median split for Low and High Spatial Ability.  Participants who scored 4 or lower on the PFT 

were considered to have low spatial ability, and those who scored greater than 4 were grouped 

with higher spatial ability.  

 As expected based on results from the previous analysis, results of the ANOVA indicated 

that PFT scores were related to conceptual learning (F[1, 94]=5.403, p=.022, ηp2 =.054), but 

Condition itself was not (F[3, 94]=0.911, p=.439, ηp2 =.028).  Whereas in the previous analysis 

(see ANCOVA above) PFT scores overall did not interact with Condition, when PFT was split 

into Low and High Spatial Ability, there was a significant interaction between PFT scores and 

Condition (F[3, 94]=2.728, p=.048, ηp2 =.080), such that spatial ability determined the degree to 

which the condition resulted in conceptual learning (Figure 9).  Planned comparisons revealed 

that those with Low Spatial Ability had lower learning gains than those with High Spatial Ability 

in the Arbitrary Gesture with Text Instruction condition and in the Natural Gesture with Video 

Gesture condition (Table 11).  There were no significant differences between those with Low 

and High Spatial Ability in either the Arbitrary Gesture with Video Instruction condition or the 

Natural Gesture with Text Instruction condition.   
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Table 11. Means, Standard Deviations, and Difference Scores by Condition on the Knowledge 
of Optics ∆ Score 

 Knowledge of Optics Delta Score 
Difference  

 Low Spatial  High Spatial 
Condition n M SD  n M SD Cohen’s d 95% CI 

Arbitrary Text 10 10.00 7.30  13 21.43 12.63 1.07 0.19 – 1.95 
Arbitrary Video 17 15.97 16.13  7 17.86 11.48 0.13 -0.76 – 1.01 

Natural Text 13 21.15 19.04  14 17.86 14.15 -0.20 -0.95 – 0.56 
Natural Video 15 13.33 13.05  13 30.22 13.25 1.29 0.47 – 2.10  

 

 

Figure 9.  Graph depicting the extent of learning on the Knowledge of Optics Test as measured 
from pre- to post-test (∆ Score).  Those in the Low Spatial Ability group learned significantly 
less conceptual information than those with in the High Spatial Ability group in the Arbitrary 
Text condition and the Natural Video condition. Error bars represent standard error.  
 

Cognitive Load 

Descriptives 

Subjective cognitive load from the computer lesson was assessed by comparing 

participants’ self-reported level of mental effort using the single-item Cognitive Load 

Questionnaire.  Overall, the average mental effort rating was near the middle of the 10-point 
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scale (M=5.46, SD=2.54), with a range from 0-10 and a normal distribution of responses (Skew=-

0.04, Kurtosis=-2.16).  The average ratings for each condition are presented in Table 12.  

Table 12.  Cognitive Load Rating by Condition  

  Mental Effort 
Ratings 

Condition n M SD 

Arbitrary Text 22a 7.14 1.98 

Arbitrary Video 24 6.54 1.79 

Natural Text 27 4.26 2.81 

Natural Video 28 4.36 2.11 
Note. a One participant did not respond to this item 

ANCOVA 

To test whether cognitive load differed depending on type of gesture interaction or 

instruction, another 2X2 between-subjects ANCOVA was conducted on the mental effort rating 

with spatial ability and video game experience as the covariates.  Spatial ability, as measured by 

the PFT, and video game experience were included in the analysis to mirror the analysis of the 

Knowledge of Optics measure and provide a complete picture of the variables of interest; 

although, as previously discussed, PFT and Video Game Experience were not correlated with the 

cognitive load measure nor did they differ overall by condition.   

Video Game Experience was not a significant covariate (F[1, 92]=0.863, p=.355, 

ηp2=.009) and accounted for very little variance, so it was removed from the analysis.  The 

results of the ANCOVA for the cognitive load measure differed from those of the previous 

analysis for Knowledge of Optics in that spatial ability was not a significant covariate for 

cognitive load (F[1, 96]=2.114, p=.149, ηp2 =.022). As shown in Figure 10, there was a 
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significant main effect for Gesture (F[1, 96]=31.859, p<.001, ηp2 =.249), such that those using 

natural gestures to interact with the computer lesson felt less mental effort (M=4.31, SD=2.46) 

than those using arbitrary gestures (M=6.83, SD=1.89) by about 25%.  There was not a 

significant main effect for Instruction (F[1, 96]=0.531, p=.468, ηp2 =.006) nor was there an 

interaction effect (F[1, 96]=0.748, p=.389, ηp2 =.008).   

 
Figure 10.  Graph depicting perceived cognitive load as measured by the ratings on the mental 
effort rating scale, with a higher rating indicating more mental effort to complete the computer 
lesson.  Participants in the Natural Gesture conditions felt less cognitive load than those in the 
Arbitrary Gesture conditions.  Error bars represent standard error.   

Instructional Efficiency  

 Instructional efficiency is an approach for comparing different instruction types that 

considers the learning gain in conjunction with the amount of mental effort expended during the 

lesson (Sweller et al., 1998).  The formula for instructional efficiency (E) creates a relative 

measure of cognitive load and performance by converting both mental effort rating and 

performance measure into z scores (Paas & van Merriënboer, 1994): 

E = Z Mental Effort – Z Performance 
√2 

when Z Mental Effort – Z Performance < 0, then E is positive 
 when Z Mental Effort – Z Performance > 0, then E is negative 
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To determine whether the conditions differed in instructional efficiency, an instructional 

efficiency value was calculated for participants using the mental effort rating and the Knowledge 

of Optics ∆ score.  The means and standard deviations for the instructional efficiency values are 

reported in Table 13.   

Table 13. Means and Standard Deviations of Instructional Efficiency Scores  

 Instructional Efficiency 
Scores (E) 

Condition n M SD 

Arbitrary Text 23 -0.57 0.83 

Arbitrary Video 24 -0.40 0.96 

Natural Text 27 0.38 1.16 

Natural Video 28 0.43 0.94 

 A 2X2 between-subjects ANCOVA was then conducted on the instructional efficiency 

scores E using the two independent variables (Gesture type and Instruction type).  In testing the 

assumptions of ANCOVA, Levene’s Test of Equality of Error Variance was significant (F[3, 

97]=4.929, p=.003); however, Tabachnick and Fidell (2013) propose using the FMax ratio to 

determine whether unequal sample variances violate the ANCOVA assumption of homogeneity 

of variance to the extent that other analyses or data transformations should be performed (p. 86).  

FMax is a ratio of the largest sample variance to the smallest sample variance.  For relatively 

equal sample sizes (i.e., less than 4 to 1 ratio of cell sample sizes), they suggest that a F value up 

to 10 is acceptable.  Because the ratio between the sample variance of the largest variance and 

that of the smallest variance did not exceed the FMax value of 10 (σ2
NaturalVideo=0.55, 

σ2
NaturalText=1.33; FMax=2.43), no adjustments were made.   
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Figure 11. Graph depicting the instructional efficiency (E) of the conditions.  Conditions plotted 
above the line (E=0) are more efficient, and conditions below the line are less efficient.  AT = 
Arbitrary Gesture with Text Instruction condition; AV = Arbitrary Gesture with Video 
Instruction condition; NT = Natural Gesture with Text Instruction condition; NV = Natural 
Gesture with Video Instruction condition.    

Results of the ANCOVA indicated that PFT was a significant covariate (F[1, 96]=14.742, 

p<.001, ηp2 =.133), so spatial ability was related to instructional efficiency.  There was also a 

main effect for Gesture type (F[1, 96]=23.625, p<.001, ηp2 =.197), such that Natural Gestures 

(M=0.44, SD=0.96) were significantly more efficient than Arbitrary Gestures (M=-0.47, 

SD=0.89).  There was not a main effect for Instruction (F[1, 96]=1.109, p=.295, ηp2 =.011), nor 

was there an interaction effect (F[1, 96]=0.259, p=.612, ηp2 =.003).  The results of this 

ANCOVA suggest that while spatial ability is a significant predictor of instructional efficiency, 

the extent of instructional efficiency is determined mostly by the type of interaction with the 

computer system.  Figure 11 depicts this relationship, with conditions that are instructionally 
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efficient plotted above the diagonal line, and conditions that are less efficient plotted below the 

line.  

ANOVA 

 Because the analyses indicated spatial ability was a predictor of instructional efficiency, a 

follow-up analysis was conducted to understand how instructional efficiency differs in the 

conditions depending on participant’s spatial ability in a 2 Gesture (Natural or Arbitrary) X 2 

Instruction (Video or Text) X 2 Spatial Ability (High or Low) between-subjects ANOVA.  

Levene’s Test was significant (F[7, 93]=3.038, p=.006); however, the FMax ratio again did not 

exceed 10, and no adjustments were made (σ2
ArbitraryText=0.217, σ2

NaturalTextt=1.796; FMax=8.276).  

There was a main effect for PFT (F[1, 93]=9.431, p=.003, ηp2 =.092), in which all of the 

conditions were more instructionally efficient for those with High Spatial Ability (M=.296, 

SD=.856) than Low Spatial Ability (M=-.248, SD=1.100).  Additionally, there was a main effect 

for Gesture type (F[1, 93]=22.075, p=<.001, ηp2 =.192), where Natural Gestures (M=.404, 

SD=.959) were again more instructionally efficient than Arbitrary Gestures (M=-.471, SD=.900).  

There was not a main effect for Instruction (F[1, 93]=1.428, p=.235, ηp2 =.015), nor were there 

any interaction effects (FI*G[1, 93]=0.613, p=.436, ηp2 =.007; FI*PFT[1, 93]=0.000, p=.989, ηp2 

<.001; FG*PFT[1, 93]=1.909, p=.170, ηp2 =.020; FI*G*PFT[1, 93]=1.696, p=.196, ηp2 =.018).  

These results are graphed in Figure 12.  
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Figure 12.  Graph depicting the instructional efficiency (E) of conditions by spatial ability.  
When E is above 0, the instruction was efficient.  There was a main effect for Spatial Ability and 
Gesture type.  There were no other main effects or any interaction effects.  Error bars represent 
standard error. 

Time in Computer Lesson 

Descriptives 

The total time to complete the computer lesson was recorded for each participant in 

minutes.  The minimum time in which a participant completed the lesson was 8.09 minutes, and 

the maximum time to complete the lesson was 15.24 minutes.  Overall, the average time 

participants spent in the experimental testbed was 10.64 minutes (SD=1.69).  The distribution of 

times was skewed right (Skew=4.74, Kurtosis=1.12).  Table 14 shows the average time each 

condition took to complete the computer lesson.  
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Table 14.  Time to Complete Computer Lesson by Condition  

  Time (minutes) 

Condition n M SD 

Arbitrary Text 23 12.25 1.80 

Arbitrary Video 24 10.89 1.43 

Natural Text 27 9.66 0.87 

Natural Video 28 10.10 1.44 
 
ANCOVA 

A 2X2 between-subjects ANCOVA was conducted on amount of time to complete the 

computer lesson with PFT as the covariate and two levels of the independent variables: Gesture 

type (Natural or Arbitrary) and Instruction type (Video or Text). Levene’s Test of Equality of 

Error Variance was significant (F[3, 98]=4.145, p=.008), but the FMax ratio was again below the 

accepted value of 10 (σ2
NaturalText=0.76, σ2

ArbitraryText=3.24; FMax=4.26), and no adjustments were 

made.  The unstandardized residuals for the ANCOVA were skewed right (Shapiro-Wilk=.932, 

p<.001).  To reduce the positive skew, I performed a log transformation of the time variable as 

suggested by Field (2013) and re-conducted the analysis.  The results of the ANCOVA on the 

transformed data were nearly identical to the results of the un-transformed data:  The previously 

non-significant variables remained non-significant and the same was true of significant variables, 

with miniscule increases to the ηp2 values.  Because the transformation resulted in 

inconsequential changes to the ANCOVA model, and the transformed variable is less 

interpretable than raw scores (Field, 2013), I decided to report the original ANCOVA results 

below with raw time scores (i.e., minutes to complete the computer lesson).  
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The ANCOVA results indicated that PFT was not a significant covariate (F[1, 97]=1.733, 

p=.191, ηp2 =.018).  There was an interaction effect for Gesture and Instruction (F[1, 

97]=10.765, p=.001, ηp2 =.100).  Although Field (2013) suggests it may not be appropriate to 

address a main effect when an interaction effect exists, the main effect for Gesture accounted for 

a large amount of the variance in the time taken to complete the computer lesson (F[1, 

97]=35.854, p<.001, ηp2 =.270], with the Natural Gesture group (M=9.89, SD=1.20) finishing 

the computer lesson almost two minutes faster than the Arbitrary Gesture group (M=11.56, 

SD=1.75).  Simple effects contrasts (see Table 14 for descriptives) showed that there was also a 

difference in the Arbitrary Gesture group with those getting Video Instruction finishing the 

computer lesson faster than the Text Instruction group by approximately one minute (d=0.839).  

The difference in time to complete the lesson for those with Natural Gestures was not significant 

between Video and Text Instruction groups (d=0.368).   

System Usability Scale 

Descriptives 

 Participant ratings on the SUS items were averaged to determine the perceived usability 

of the computer lesson in each condition.  The scores on the SUS (α=.86) were distributed 

normally (Skew=-2.08, Kurtosis=-1.31) around the mean of 3.728 (SD=0.761).  The range of 

average SUS scores was between 1.80 and 5.00 on the 7-point Likert-type scale, with higher 

scores indicating more perceived usability.  Means and standard deviations for each condition are 

presented in Table 15.   
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Table 15.  System Usability Scale Table of Means and Standard Deviations for Each Condition 

  SUS Ratings 

Condition n M SD 

Arbitrary Text 23 3.257 0.862 

Arbitrary Video 24 3.354 0.678 

Natural Text 27 4.159 0.491 

Natural Video 28 4.018 0.592 
 
ANCOVA 

To determine whether SUS ratings differed by condition, a 2X2 between-subjects 

ANCOVA was conducted with SUS scores as the DV, PFT as the covariate, and two levels of 

each independent variable: Gesture type (Natural or Arbitrary) and Instruction type (Video or 

Text).  Levene’s Test of Equality of Error Variance was significant (F[3, 98]=3.624, p=.016); 

however, the FMax ratio did not exceed 10, so no adjustments were made (σ2
NaturalText=0.241, 

σ2
ArbitraryText=0.743; FMax=3.08).  PFT was not a significant covariate (F[1, 97]=0.023, p=.881, 

ηp2 <.001).  There was a main effect for type of Gesture (F[1, 97]=35.148, p<.001, ηp2 =.266), 

where those interacting with Natural gestures (M=4.087, SD=0.544) rated the system higher in 

usability than those using Arbitrary gestures (M=3.306, SD=0.767).  There was not a main effect 

for Instruction (F[1, 97]=0.022, p=.881, ηp2 <.001), nor an interaction between Gesture and 

Instruction (F[1, 97]=0.834, p=.363, ηp2 =.009).  

Presence Questionnaire 

Descriptives 

 The PQ consists of four subscales measuring different dimensions of sense of presence 

felt by participants during the computer lesson: Involvement (α=.84), Sensory Fidelity (α=.67), 
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Adaptation/Immersion (α=.70), and Interface Quality (α=.70).  As described in the Materials 

section in Chapter 6, the PQ was used because each of these factors may be related to how much 

a participant learned from the computer lesson.  Provided in Table 16 are the means and standard 

deviations for each subscale on a 7-point scale, with higher scores on the first three subscales 

indicating more presence as related to each dimension (i.e., higher feeling of involvement, 

sensory fidelity, or immersion, respectively).  Interface Quality differs from the other subscales 

in that a higher score indicate less presence because it measures the extent to which the computer 

system distracts from performance in the virtual environment – that is, a higher score indicates 

lower interface quality.   

Table 16.  Means and Standard Deviations for the Presence Questionnaire Subscales 

Condition  Involvement Sensory Fidelity Adaptation/ 
Immersion Interface Qualitya 

 n M SD M SD M SD M SD 
Total 102 4.68 0.99 5.43 1.13 4.96 0.93 3.07 1.18 

Arbitrary 
Text 23 4.55 1.01 5.43 0.91 4.66 0.91 3.39 1.44 

Arbitrary 
Video 24 4.23 0.94 5.17 1.34 4.65 1.06 3.39 0.94 

Natural 
Text 27 5.00 0.87 5.43 1.11 5.37 0.85 2.99 1.27 

Natural 
Video 28 4.87 1.02 5.64 1.14 5.07 0.75 2.62 0.87 

Note. a Higher scores indicate worse interface quality.  The subscale of Interface Quality differs from the other 
subscales in that a higher score reflects less presence.  

ANOVAs 

 First, an ANOVA was conducted for each subscale to determine whether that dimension 

of presence differed as a function of the conditions.   In each 2X2 ANOVA, the PQ subscale was 

the outcome variable, and there were two types of Gesture interaction (Natural or Arbitrary) and 
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two types of Instruction (Video or Text).  All of the PQ subscales had normally distributed 

residuals (Shapiro-Wilk ps>.05).    

For the Involvement subscale, there was a main effect for Gesture type (F[1, 98]=8.124, 

p=.005, ηp2 =.077), indicating that participants in the Natural Gesture conditions rated the 

control of the computer interface as more natural than the Arbitrary Gesture conditions.  

Instruction type (F[1, 98]=1.378, p=.243, ηp2 =.014) and the interaction of Gesture and 

Instruction (F[1, 98]=0.252, p=.617, ηp2 =.003) were not significant predictors of the 

Involvement subscale.   

The Sensory Fidelity subscale, which measures the extent to which the senses are 

engaged with the computer system, was not predicted by either Gesture type (F[1, 98]=1.106, 

p=.295, ηp2 =.011), Instruction type (F[1, 98]=0.016, p=.900, ηp2 <.001), or their interaction 

(F[1, 98]=1.126, p=.291, ηp2 =.011).   

In the Adaptation/Immersion subscale that measures the participants’ perceived ability to 

concentrate on or be immersed in the computer task, there was a main effect for Gesture (F[1, 

98]=10.223, p=.002, ηp2 =.094).  Those in the Natural Gesture conditions rated their sense of 

immersion higher than those in the Arbitrary Gesture conditions, although all conditions were 

above the midpoint (i.e., 3) on the scale, indicating high immersion overall. There was not a 

main effect for Instruction type (F[1, 98]=0.767, p=.383, ηp2 =.008), nor was there an interaction 

effect (F[1, 98]=0.663, p=.417, ηp2 =.007).   

Finally, the Interface Quality subscale was compared by condition.  This was the only 

subscale in which a lower score indicated higher presence in terms of better interface quality.  

Levene’s Test was significant (F[3, 98]=3.80, p=.013), but the FMax ratio was below the 

acceptable value of 10 (σ2
NaturalVideo=0.755, σ2

ArbitraryText=2.074; FMax=2.75), and no adjustments 
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were made.  Results of the ANOVA indicated there was a main effect for Gesture type (F[1, 

98]=6.672, p=.011, ηp2 =.064), such that those in the Natural Gesture conditions felt the interface 

quality was better quality than those in the Arbitrary Gesture conditions.  Neither Instruction 

type (F[1, 98]=0.666, p=.417, ηp2 =.007) nor the interaction between Gesture and Instruction 

(F[1, 98]=0.647, p=.423, ηp2 =.007) were significant predictors of Interface Quality.   

ANCOVA 

The Sensory Fidelity subscale was the only PQ subscale that did not differ by condition,  

so it was included in an additional analysis as a covariate of the Knowledge of Optics outcome 

variable (∆ Score), to determine whether sensory fidelity affected how much participants learned 

in each condition.  A 2X2 ANCOVA was conducted on the two Gesture conditions (Natural or 

Arbitrary) and the two Instruction conditions (Video or Text), with PFT and Sensory Fidelity as 

covariates.  Although PFT was a significant covariate (F[1, 96]=13.843, p<.001, ηp2 =.126), 

Sensory Fidelity was not a significant covariate when spatial ability was included (F[1, 96]=1.66, 

p=.201, ηp2 =.017).  Just as reported in previous analyses on the ∆ Score, no other main effects 

or interaction effects were significant (FI[1, 96]=0.528, p=.469, ηp2=.005; FG[1, 96]=1.061, 

p=.306, ηp2=.011; FI*G[1, 96]<0.001, p=.999, ηp2<.001).   

Summary of Results 

 The hypotheses tested in the results sections were mostly not supported, with the 

exception of Natural Gesture conditions having lower perceived cognitive load than the Arbitrary 

Gesture conditions.  A summary of whether each hypothesis was supported or not is presented in 

Table 17.   
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Table 17. Summary of Support for Hypotheses 

Hypotheses Supported 
(Yes/No) 

H1.1 Main effect for Gesture type on Knowledge of Optics ∆ 
Natural Gesture > Arbitrary Gesture 

No 

H1.2 Covariate for Spatial Ability on Knowledge of Optics ∆ Yes 

H1.3 Main effect for Gesture type on Cognitive Load 
Natural Gesture < Arbitrary Gesture 

Yes 

H1.4 Covariate for Spatial Ability on Cognitive Load No 

H1.5 Main effect for Gesture type on Instructional Efficiency 

Natural Gesture > Arbitrary Gesture 

Yes 

H2.1 Main effect for Instruction type on Knowledge of Optics ∆ 
Video Instruction > Text Instruction 

No 

H2.2 Main effect for Instruction type on Cognitive Load 
Video Instruction < Text Instruction 

No 

H2.3 Main effect for Instruction type on Instructional Efficiency 
Video Instruction > Text Instruction 

No 

H3.1 Simple effect for Instruction and Gesture on Knowledge of Optics ∆ 
Natural Gesture with Video Instruction > Other conditions 

No 

H3.2 Simple effect for Instruction and Gesture on Cognitive Load 
Natural Gesture with Video Instruction < Other conditions 

No 

H3.3 Simple effect for Instruction and Gesture on Knowledge of Optics ∆ 
Arbitrary Gesture with Text Instruction < Other conditions 

No 

H3.4 Simple effect for Instruction and Gesture on Cognitive Load 
Arbitrary Gesture with Text Instruction > Other conditions 

No 

H3.5 Main effect for Spatial Ability on Instructional Efficiency 
High Spatial > Low Spatial 

Yes 

 
 Additionally, the results were clarified by further analyses that included the potential 

covariates (e.g., spatial ability), and these analyses are summarized in Table 18.  The summary of 

the additional research questions are divided into those that relate to the prescreening analyses 
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and experimental analyses.  The prescreening analyses are presented first, summarizing whether 

the prescreening variables differed by condition.  These prescreening variables were analyzed to 

determine if they differed by condition because they were likely predictors of the experimental 

outcome variables and inequalities among the conditions could bias results.  The lower section of 

the table summarizes whether the subject variables predicted the experimental outcome measures 

and other analyses that provide insight into how the conditions differed.        

Table 18. Summary of Results from Additional Research Questions 

Research Questions Analysis Results Answer 
(Yes/No) 

Prescreening 

1. Does conceptual knowledge 
about optics (i.e., Knowledge of 
Optics Pre-test) differ by 
condition before the 
experiment? 

ANOVA Main effect for Condition 
not significant  

No 

2. Does spatial ability (i.e., PFT) 
differ by condition? 

ANOVA Main effect for Condition 
not significant  

No 

3. Does video game experience 
(i.e., hours per week playing 
video games) differ by 
condition? 

ANOVA Main effect for Condition 
not significant  

No 
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4. Does propensity to and 
perception of gesturing differ by 
condition (i.e., BAG subscales)? 

ANOVA  
for each 
subscale 

A) BAG Perception 
Main effect for Condition 
not significant 
 
B) BAG Production 
Main effect for Condition 
not significant 
 
C) BAG Social Production 
Main effect for Condition 
not significant 
 
D) BAG Social Perception 
Main effect for Condition 
not significant 

No       
(for all 

subscales) 

5. Does the time between the 
online prescreening and in-lab 
experiment differ by condition? 

ANOVA Main effect for Condition 
not significant 

No 

6. Does the time between the 
online prescreening and the in-
lab experiment relate to 
conceptual learning (i.e., 
Knowledge of Optics ∆ score)? 

Correlation Time between 
Prescreening- Experiment 
not correlated with 
Knowledge of Optics ∆ 
score 

No 

Experiment 

7. Does spatial ability (i.e., PFT) 
predict conceptual learning (i.e., 
Knowledge of Optics ∆ score)? 

ANCOVA PFT significant covariate Yes 

8. Does video game experience 
(i.e., hours per week playing 
video games) predict conceptual 
learning (i.e., Knowledge of 
Optics ∆ score)? 

ANCOVA Video game hours per week 
not a significant covariate 

No 
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9. Does conceptual learning (i.e., 
Knowledge of Optics ∆ score) 
differ as a function of spatial 
ability (High or Low) and 
condition? 

ANOVA PFT X Condition 
interaction effect significant  
(High Spatial Ability had 
higher ∆ score than Low 
Spatial Ability in Arbitrary 
Text & Natural Video 
conditions)    

Yes  
(2 of 4 

conditions) 

10. Does spatial ability (i.e., PFT) 
predict cognitive load (i.e., 
mental effort rating)? 

ANCOVA PFT not a significant 
covariate 

No 

11. Does video game experience 
(i.e., hours per week playing 
video games) predict cognitive 
load (i.e., mental effort rating)? 

ANCOVA Video game hours per week 
not a significant covariate 

No 

12. Does propensity to and 
perception of gesturing (i.e., 
BAG Production) predict 
conceptual learning (i.e., 
Knowledge of Optics ∆ score)? 

ANCOVA  BAG Production marginally 
significant covariate 
(p=.051) 

Yes 

13. Does instructional efficiency 
differ by condition? 

ANCOVA Main effect for Gesture 
significant 
(Natural > Arbitrary) 

Yes 

14. Does time to complete the 
computer lesson (in minutes) 
differ by condition?  

ANOVA Gesture X Instruction 
interaction effect significant 
(Arbitrary Video faster than 
Arbitrary Text condition, & 
both Natural Gesture faster 
than Arbitrary Gesture) 

Yes 

15. Does spatial ability (i.e., PFT) 
predict time to complete the 
computer lesson (in minutes)? 

ANCOVA PFT not a significant 
covariate 

No 

16. Does perceived usability of the 
computer lesson (i.e., SUS) 
differ by condition? 

ANOVA Main effect for Gesture 
significant 
(Natural > Arbitrary) 

Yes 
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17. Does spatial ability (i.e., PFT) 
predict perceived usability of 
the computer lesson (i.e., SUS)?  

ANCOVA PFT not a significant 
covariate 

No 

18. Does sense of presence in the 
computer lesson (i.e., PQ 
subscales) differ by condition? 

ANOVA     
for each 
subscale 

A) PQ Involvement 
Main effect for Gesture 
significant 
(Natural > Arbitrary) 
 
B) PQ Adaptation/ 
Immersion 
Main effect for Gesture 
significant 
(Natural > Arbitrary) 
 
C) PQ Sensory Fidelity 
Main effects for Gesture & 
Instruction not significant 
Interaction effect not 
significant 
 
D) PQ Interface Quality 
Main effect for Gesture 
significant 
(Natural < Arbitrarya) 

Yes  
(3 of 4 

subscales) 

19. Does sense of presence in the 
computer lesson (i.e., PQ 
Sensory Fidelity) predict 
conceptual learning (i.e., 
Knowledge of Optics ∆ score)?  

ANCOVA PQ Sensory Fidelity not a 
significant covariate 

No 

Note. a PQ Interface Quality is scored such that lower scores indicate better interface quality and presence 

Participant Reactions 

 Participants responded to an open-ended question following the SUS asking them to write 

any comments related to the computer lesson.  In general, participants wrote positively about 

their experience using the computer system, even in conditions associated with more mental 

effort, lower usability ratings, and longer time to complete the lesson.  For example, Table 19 
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lists representative responses for each condition, and these responses reflect the finding that 

usability was high overall (i.e., every participant rated the system above the mid-point on the 

usability scale).  

Table 19. Participant Perceptions of the Computer System  

Condition Perception of Computer System 

Arbitrary Gesture with    
Text Instruction 

"I really enjoyed using gesture commands to walk through this 
experiment. Would 100% use again." 

Arbitrary Gesture with   
Video Instruction 

"Enjoyed this study!" 

Natural Gesture with       
Text Instruction 

“Very fun to do, feels very futuristic" 

Natural Gesture with     
Video Instruction 

“You did an amazing job designing the system. Well done!" 

 
 In addition to these general comments, other participant responses reflected the empirical 

results reported above.  Specifically, some participants in the arbitrary conditions reported not 

being able to focus on the learning material (i.e., optics concepts) because they were focused on 

remembering the gestures, supporting the results of the experiment in which those using arbitrary 

gestures felt more cognitive load than those using natural gestures to interact:   

"The system was easy to use once I adjusted to the required gestures. The difficulty was 

remembering them all, particularly the ones that were not simply inverted (eg clockwise 

and counter clockwise). As a result of this learning curve I wasn't always able to focus on 

the information as I was too focused on learning the interface. With that said, once the 

interface is learned it all began to go smoothly [sic]." – from Arbitrary Gestures with 

Video Instruction condition 
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"I felt completly focused on getting the gestures correct that I wasn't really focused on the 

material I was supposed to be learning [sic]." – from Arbitrary Gestures with Video 

Instruction condition 

Other comments reflect the results of the amount of time it took to complete the computer 

lesson, mirroring the empirical results showing those in the arbitrary gesture conditions took 

longer to complete the lesson.  For example, a participant in the Arbitrary Gestures with Text 

Instruction condition commented, "The system is workable, just takes abit of time [sic].”  

Finally, other participants proposed changes to the system in their comments that were related to 

the research questions of the study – that is, are gestures seen as more natural if they relate to the 

instructional material, resulting in higher learning outcomes, and does how the gestures are 

instructed help understanding of the gestures.   

"Make the gestures and the actions more relatable.” – from Arbitrary Gestures with Text 

Instruction condition 

“A picture of the gestures or demonstration would be helpful prior to the task.” – from 

Arbitrary Gestures with Text Instruction condition 

“I think there needs to be more percision in the motion tracker so that smaller gestures are 

still registered [sic]” – from Natural Gestures with Video Instruction condition 
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CHAPTER EIGHT: DISCUSSION 

Overview 

 As gesture-based interactions with computer interfaces become more technologically 

feasible for educational and training systems, it is important to consider what interactions are 

best for the learner.  Computer interactions should not interfere with learning nor increase the 

mental effort of completing the lesson.  The purpose of the current set of studies was to 

determine whether type of gesture-based interaction, or instruction of those gestures, affects the 

learner in a computer lesson.  To test whether the type of interaction affects conceptual learning 

in a computer lesson, the gesture-based computer interactions were either naturally- or 

arbitrarily-mapped to the learning material.  The natural gestures implemented in the computer 

lesson were those that were performed in Study 1 and rated in Study 2 as most closely 

resembling the physical interaction they represent.  The arbitrary gestures were also rated by 

participants as most arbitrary for each computer action in Study 2.  To test whether the effect of 

novel gesture-based interactions depends on how they are taught, the way the gestures were 

instructed was varied in the main experiment by using either video- or text-based tutorials.   

 Based on the theoretical frameworks of Embodied Cognition and CLT, it was 

hypothesized that using natural gestures to interact with the computer lesson would increase how 

much conceptual information was learned while decreasing the amount of mental effort felt 

during the lesson, and arbitrary gestures would have the opposite effects.  This is because natural 

gestures help develop sensorimotor mental representations for the conceptual information as well 

as reduce the extraneous load of interacting with the computer lesson.  In contrast, arbitrary 

gestures that do not match the learning material do not help the development of a schema for the 

conceptual information because the gestures do not have information about the lesson that may 
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help understanding of the concept and would serve to add extraneous information that must be 

processed in working memory unrelated to the lesson.   

Furthermore, it was also predicted that instructing the gestures using video-based tutorials 

would lead to more conceptual learning and less mental effort than text-based tutorials. This 

prediction was based on the Embodied Cognition paradigm that would suggest video tutorials for 

learning interactions may help learners understand the new gestures by providing visualization of 

the gestures, which activates the sensorimotor system such that gestures can later be recalled in 

the same sensorimotor state.  Conversely, text-based tutorials may not activate the sensorimotor 

system if they are processed as verbal information, and the learner would not have the encoding 

and recall benefit of priming the sensorimotor system. Additionally, it was hypothesized that 

there would be a combined effect of gesture and instruction type, such that natural gesturing with 

video instructions would be the best condition for learning and mental effort, while arbitrary 

gestures with text instructions would be the worst condition.  Finally, it was predicted that 

individual differences of the participants, most notably spatial ability, would impact the amount 

learned from the computer lesson.   

 I tested each of these hypotheses using a crossed experimental design in which 

participants were assigned to one of four conditions.  Results of the experiment, which are 

discussed in depth in this chapter, support the overarching theme that natural gesture-based 

interactions were better for learning than arbitrary gestures; however, instruction of the gestures 

did not affect learning or how much mental effort was felt during the task.  Furthermore, there 

was not an interaction of the manipulated conditions.  Results were also largely dependent on an 

individual’s spatial ability, such that the instructional efficiency of the conditions differed by 
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high and low spatial ability.  These findings and their implications for instructional design theory 

and practice are discussed below.    

Conceptual Learning 

 Before considering the instructional efficiency of each factor, which is a relative measure 

of learning that takes into consideration the mental effort involved, I first analyzed the extent of 

conceptual learning that occurred.  Conceptual learning was measured using a Knowledge of 

Optics test that was developed to quantify prior knowledge of optics concepts (pre-test) and how 

much knowledge was gained from the computer lesson (post-test).  The learning gain was 

calculated for each participant by subtracting the pre-test score from the post-test score to create 

a knowledge of optics learning score (∆).  Overall, every condition showed a large learning gain 

between the pre-test and the post-test after the computer lesson, with an average gain of 18 

percentage points.  

 Next, to test whether type of gesture, type of instruction, or their interaction were 

predictive of the learning gain, an ANCOVA was conducted.  Spatial ability was also included as 

a potential predictor in the analysis.  The results indicated that participants’ spatial ability 

accounted for most of the differences in learning gain.  Because spatial ability predicted most of 

the learning gain, neither gesture nor instruction types impacted conceptual learning.   

 To elucidate why spatial ability was the most significant predictor of learning, a follow-

up analysis was conducted to see if amount of spatial ability interacted with the conditions to 

explain conceptual learning gains.  Participants were divided into high and low spatial ability 

groups at the median score of the Paper Folding Test (this distribution was bimodal at the 

median).  When amount of spatial ability was analyzed in conjunction with the conditions, there 

was an interaction between spatial ability and the conditions.  This interaction indicated that in 
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two of the four conditions, Arbitrary Gesture with Text Instruction condition and Natural Gesture 

with Video Gesture condition, participants with low spatial ability had lower learning gains than 

those with high spatial ability.  In two of the conditions, Arbitrary Gesture with Video 

Instruction condition and Natural Gesture with Text Instruction condition, there was not a 

difference between those with low and high spatial ability on conceptual learning.  These 

findings partially support the hypotheses that 1. Natural Gestures with Video Instruction 

condition would learn the most, and 2. Arbitrary Gestures with Text Instructions would learn the 

least, but the first hypothesis was only true for those with high spatial ability and the second 

hypothesis was only true for those with low spatial ability.    

 The difference between those with low and high spatial ability in two of the four 

conditions may be explained in two ways.  First, the Natural Video condition did have the 

highest conceptual learning, but only for those with high spatial ability.  Participants with low 

spatial ability performed on par with those with low spatial ability in the other conditions.  This 

suggests that spatial ability may enhance learning when natural gestures and video instructions 

are combined, lending evidence to the spatial ability-as-enhancer hypothesis (Mayer & Sims, 

1994).  This hypothesis states that when the instruction is good (i.e., the combination of natural 

gestures and video instructions), those with higher spatial ability will benefit while those with 

lower spatial ability must spend more cognitive effort either creating schemas or making 

representational connections.  Extending from the spatial ability-as-enhancer hypothesis, the 

added benefit that participants with high spatial ability receive from good instruction may be 

related to their ability to create mental animations related to schema development of the 

conceptual material.  There are two parts to this argument:  1. Identifying good instruction, and 

2.  Explaining why those with high spatial ability may be better at mental animation.   
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The instruction in this condition might be considered good because the natural gestures 

are directly related to the learning material, and therefore, may not pose the additional burden on 

working memory of remembering information that is not task-relevant.  Natural gestures may 

also serve as a cue for later recall of the conceptual information related to those actions – that is, 

mental animations in the conceptual schema (e.g., how the manipulation of a mirror affects the 

reflection of light) may be more easily recalled if there is a cue to that representation in the form 

of a relevant gesture.  The video instruction may also help memory for the gestures by activating 

the representational motor system and creating recall cues.   

It has been argued that high spatial ability is related to more accurate ability to mentally 

animate, which is a key process in developing conceptual schemas of physics.  Hegarty and Sims 

(1994) explained that both people with low and high spatial ability use the same process to 

develop mental animations.  A mental animation is developed by first breaking down the 

information into causal links.  For example, in the optics lesson, a mental animation could be 

developed for the concept of reflection that involves the causal links of moving a lens into a 

beam of light, rotating the lens, and determining the subsequent angle of light reflection.  Each 

component of this process has a causal link to the next component.  The mental animation 

process then is to animate these causal links by inferring the cause and effect movements that 

would occur.  In a series of experiments, Hegarty and Sims (1994) found that those with low 

spatial ability were less accurate at inferring the links between the causal components of a mental 

animation.  They argue this is due to lower working memory capacity because those with low 

spatial ability did worse on the later components in the causal chain, which would require more 

information to be held in working memory.  People with high spatial ability, on the other hand, 

were better able to hold onto information in working memory so they did not suffer in mental 
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animation accuracy.  It follows that those with high spatial ability do better from the good 

instruction condition (i.e., Natural Video) because their spatial ability frees up working memory 

resources to focus on the mental animation component of the lesson and less on extraneous 

factors (i.e., arbitrary gestures or inability to recall text instructions), while those with low spatial 

ability are overburdened in their ability to process the conceptual information in working 

memory.   

Similarly, the Arbitrary Gestures with Text Instruction condition was particularly bad for 

those with low spatial ability.  This condition may have imposed working memory burdens that 

participants with low spatial ability were not able to overcome, while those with high spatial 

ability performed similar to those with high spatial ability in other conditions, which would 

support the spatial ability-as-compensator hypothesis (Mayer & Sims, 1994).  The spatial ability-

as-compensator hypothesis states that those with lower spatial ability will suffer from poor 

instruction, while those with higher spatial ability will be compensated by their spatial ability 

when instruction is worse.  This condition could be poor instruction because the arbitrary gesture 

interactions did not relate to the learning material, so the interactions could distract from the 

conceptual information of the lesson.  This theory might also have support from the open-ended 

responses of participants in the arbitrary conditions who stated they were too focused on the 

gestures to pay attention to the optics lesson.  The burden of distracting gestures on mental 

processing could have been exacerbated by lower spatial ability, because those with low spatial 

ability are less able to retain mental animation information and the addition of extraneous load 

from arbitrary gestures disproportionately affected participants with low spatial ability.  To 

determine the accuracy of the theoretical explanations that suggest learning is contingent on 

amount of cognitive load experienced during the computer lesson (i.e., spatial ability-as-
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enhancer and spatial ability-as-compensator), the instructional efficiency analysis later in the 

chapter combines cognitive load with learning.     

Additionally, the text-based instructions of the interactions may have been worse than 

video instructions because text or verbal instructions are not as effective for teaching human 

motion tasks as video instructions that depict a human performing the action (Alexander, 2013).  

Observational learning of a human movement task in the form of a video tutorial may be better 

than a text-based tutorial because it activates the motor system of the learner, thereby priming the 

learner to conduct the same action (Van Gog, Paas, Marcus, Ayres, & Sweller, 2009).  Without 

this benefit, and with the added burden of arbitrary gestures, those with lower spatial ability 

learned less than those with higher spatial ability who were compensated by better mental 

animation processing.  

Cognitive Load 

To answer the question of what interactions and instructions are best for gesture-based 

computer lessons, the next set of analyses tested how cognitive load was affected by these 

factors.  Cognitive load was measured using a mental effort rating scale in which participants 

responded with their perceived level of mental effort on the computer lesson.  Ratings of mental 

effort were compared for both types of Gesture interaction (Natural and Arbitrary) and 

Instruction (Video or Text) with spatial ability included as a potential predictor of cognitive load.  

Spatial ability did not account for a significant portion of the differences in mental effort ratings.  

At first glance, the lack of significance for spatial ability may seem to contradict the explanations 

of the spatial ability-as-enhancer and spatial ability-as-compensator hypotheses described in the 

previous subsection; however, spatial ability is a key factor in the analysis that tests cognitive 

load and learning together to determine instructional efficiency.  Although spatial ability overall 
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was not a predictor of cognitive load, it is not accurate to conclude that spatial ability did not 

affect cognitive load in the context of instructional efficiency.  Spatial ability did interact with 

condition when assessed in conjunction with learning, and this analysis is discussed in the 

following subsection on instructional efficiency.   

Cognitive load was explained mostly by the type of gesture-based interaction the 

participants used to complete the computer lesson.  Those using natural gestures felt 25% less 

mental effort on the computer lesson than those using arbitrary gestures.  This supported the 

hypothesis that when gestures are more closely mapped to the conceptual material in the lesson, 

less effort is required to use the gestures than when gestures are arbitrary.  It could be that the 

arbitrary gestures increased the cognitive load felt by the participants by adding extraneous load 

to the learner.  Arbitrary gestures increase extraneous load in that they are additional pieces of 

information that must be held in working memory during the computer lesson that do not directly 

relate to the conceptual material to be learned.  Natural gestures that relate to the learning 

material could be considered germane load in that they aid in the understanding of the conceptual 

material by supporting the mental animation process.  When the participant performs a gesture 

that is naturally-mapped to the conceptual material, they are physically performing the mental 

animation process of inferring motion between causal links.       

Type of instruction did not affect cognitive load, contrary to the predicted hypothesis.  It 

was predicted that video-based instructions of the gestures would lead to less cognitive load 

during the computer lesson than text-based instructions, because videos of a human performing 

the actions could activate the motor system and prime learners for the same action.  Video 

instructions, unlike text-based instructions, have been shown to help learners understand hard to 

imagine tasks (such as the movement of a novel gesture), encourage multimodal processing, and 



   

133 
 

recall concepts (Alexander, 2013).  On the other hand, Ayres and Paas (2007) suggested that 

animated instructions (e.g., video tutorials) could increase extraneous load by creating a 

distraction from the lesson by requiring the learner to search for relevant information.  Text-

based instructions may be less likely to divert WM resources away from processing the lesson 

because they do not distract from subtle information, or text may have cleared up ambiguity that 

was not obvious in the videos.  For example, the text states to start with the hand above the head 

for the action “down.”  If the hand did not start above the head for this gesture, it was not 

recognized by the motion tracker.  That is, if the participant started with their hand slightly below 

their head, the motion tracker did not initiate the “down” command.  Participants in the video 

condition saw a video of an actor performing the “down” gesture by starting with his hand above 

his head; however, participants may not have noticed that the hand was starting from a specific 

location without it being directly stated.  Directly stating the starting point in the text condition 

may have avoided confusion.  

Instructional Efficiency 

The analyses culminated in the test of instructional efficiency, which utilizes standardized 

learning gain scores and mental effort ratings to create an estimate the efficiency of an 

instructional technique.  Sweller, van Merriënboer, and Paas (1998) explained that instructional 

efficiency is used as a relative measure of cognitive load because it is difficult to measure the 

three types of cognitive load directly.  The instructional efficiency measure has the benefit of 

allowing comparison of instructional techniques not only on how much learning occurred, but 

also the mental effort cost of learning in each factor.  The first analysis tested whether 

differences in instructional efficiency existed based on Gesture type (Natural or Arbitrary) or 

Instruction type (Video or Text), as well as spatial ability.  Spatial ability predicted instructional 
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efficiency, which was expected because spatial ability was the main predictor of overall learning 

gain, so it should still be significant when extent of cognitive load was integrated with the 

learning gain measure.  Type of gesture interaction in the computer system explained most of the 

differences in instructional efficiency of conditions.  The conditions that used natural gestures 

had much higher instructional efficiency than either of the conditions using arbitrary gestures.  

This result, like the results in the previous section, lends evidence to the hypothesized theories in 

which naturally-mapped interactions benefit conceptual learning through more efficient 

instruction (i.e., more learning with less mental effort).  Within each gesture type, there was very 

little difference between video and text instruction conditions on instructional efficiency, just as 

the type of instruction did not predict overall learning gains nor cognitive load.  The type of 

gesture and type of instruction did not interact.   

Because spatial ability was a significant factor in instructional efficiency of conditions, 

another follow-up analysis was conducted on the two manipulated variables, Gesture type and 

Instruction type, with the added variable of High and Low Spatial Ability.  Spatial ability and 

type of Gesture were both significantly different between their respective levels, but they did not 

interact.  Participants with high spatial ability had higher instructional efficiency than those with 

low spatial ability in every condition, and natural gestures were also more instructionally 

efficient than arbitrary gestures.  Instruction types did not differ, again, and there were no other 

interactions among the factors.    

It is important to revisit the spatial ability-as-enhancer and ability-as-compensator 

hypotheses that seemed to be supported by overall learning gain.  When the amount of mental 

effort during learning was taken into consideration, there was evidence of a spatial ability-as-

compensator effect for the poor learning condition, Arbitrary Text, such that people with low 
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spatial ability had disproportionately worse instructional efficiency in this condition.  It seems 

that, as explained in the learning gain analysis, those with high spatial ability are able to 

compensate for poor instruction.  Additionally, there is evidence for the spatial ability-as-

enhancer hypothesis in that the natural gesture with video instructions conditions was the most 

efficient for those with high spatial ability, but not for low spatial ability; although, the 

difference between video and text instruction in the natural gesture condition did not differ 

significantly, likely because there is a smaller range of standardized instructional efficiency 

scores.   

In summary, instructional efficiency can be increased using natural gesture-based 

interactions, regardless of how the gestures were instructed and the learner’s spatial ability.  This 

finding supports the hypotheses that natural gesturing produces better conceptual learning by 

reducing cognitive load on the learner.  Instructional efficiency can be enhanced when video 

tutorials are combined with natural gestures to produce an additive effect for those with high 

spatial ability.  On the other hand, learners with low spatial suffer more from poor instructional 

design in the form of combining text-based instructions with arbitrary gestures.      

Usability Analyses 

 In addition to answering the main research questions regarding which instructional 

techniques were best for a gesture-based conceptual computer lesson, additional analyses were 

conducted related to the usability of the system depending on condition.  These analyses 

contribute to the broad investigation of gesture-based computer interactions and appropriate 

ways in which interactions can be instructed for educational and training systems.  The following 

variables were included for both theoretical and applied implications for instructional design.  
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Time in Lesson 

 The amount of time to complete the computer lesson can be considered a secondary 

measure of instructional efficiency.  The average time participants took to complete the computer 

lesson during the experiment was approximately 11 minutes.  An analysis incorporating both 

manipulated variables (i.e., Gesture type and Instruction type) and spatial ability found that there 

was an interaction between the Gesture and Instruction type.  Those using arbitrary gestures to 

interact with the computer system were slowest when instructions were text-based, and the 

arbitrary gesture conditions were slower than both natural gesture conditions by approximately 

two minutes.  Spatial ability did not predict the amount of time participants took to complete the 

computer lesson.     

System Usability 

 Perceived usability of the computer lesson was measured using the System Usability 

Scale.  The analysis on usability scores was conducted with Gesture and Instruction types as well 

as spatial ability.  Spatial ability did not predict perceived usability of any of the conditions in the 

computer lesson.  There was an effect for the type of gesture interactions, such that natural 

gestures were rated almost a full point higher in usability (on a 7-point scale) than arbitrary 

gestures.  This finding that natural gestures were perceived as having higher usability 

corresponds with the instructional efficiency finding that natural gestures led to better learning 

with lower mental effort, because there should be in inverse relationship between higher usability 

and lower cognitive load.  There were no other effects or interactions that explained perceived 

usability.   
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Presence 

 Presence, or the feeling of “being there” in a virtual environment, was measured after the 

computer lesson using a presence questionnaire with four subscales: Involvement, 

Adaptation/Immersion, Sensory Fidelity, and Interface Quality.  Although sense of presence per 

se was not a construct of interest in the current experiment, the subscales did include questions 

that were highly related to the study, such as asking how natural the interactions with the 

environment seemed.  For all of the subscales except Sensory Fidelity, there was an effect for 

type of gesture interaction, such that natural gestures had higher “presence” ratings than arbitrary 

gestures.  Natural gesture interactions were seen as inducing a higher sense of control in the 

computer lesson, more immersion, and a better interface quality.   

Individual Differences 

There were a few additional analyses related to individual differences that were potential 

predictors of the main outcome variables.  Like the spatial ability analyses presented above, these 

subject variables were tested to rule out other explanations for results beyond the manipulated 

variables.  These variables were not directly related to the research questions, but provide context 

for the results in relation to variables of interest in the literature.    

Video Game Experience 

 The individual difference of video game experience was included in analyses as a 

potential predictor of learning and cognitive load, because video game experience could 

influence how a participant performs the computer task.  Video game experience was 

approximated by asking participants how many hours a week they play video games, because 

hours a week playing video games has been correlated with both video game self-efficacy and 

comfort with video gaming (Procci, James, & Bowers, 2013).  Number of hours a week playing 
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video games was not directly related to either learning or cognitive load.  Video game experience 

was also not a predictor of these outcome variables when included in statistical models with the 

manipulated variables (i.e., Gesture and Instruction type).   

Gesture Production and Perception 

 Another individual difference that could influence performance in the computer lesson is 

the participant’s production and perception of gesturing.  For example, if a participant is less 

likely to produce gestures, he or she may be less likely to benefit from a gesture-based interface.  

A gesture survey was used to determine different dimensions of a participant’s predisposition to 

gesture, with four subscales: Perception, Production, Social Production, and Social Perception.  

Of these four subscales, only the Production dimension was directly related to learning from the 

computer lesson, such that the more a learner tends to produce gestures in life, the more he/she 

learned from the computer lesson.  None of the subscales was related directly to cognitive load.  

Because the Production subscale was related to learning, it was included in an analysis with the 

manipulated variables (Gesture and Instruction type) and the other significant predictor of 

learning, spatial ability.  Even after an individual’s spatial ability was accounted for, the 

individual difference of gesture production was still a marginally significant predictor of 

learning.  Gesture production may be an important individual difference for gesture-based 

computer interactions and should be included in future studies that utilize gesture-based NUIs.   

Revisiting the Research Questions 

The set of studies presented here were conducted to determine whether type of gesture-

based interaction, or instruction of those gestures, affects the learner on a conceptual lesson in a 

computer environment.  The first research question was whether more naturally-mapped gestural 

interactions were better for learning from a computer lesson than arbitrarily-mapped gestures.  
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The results of the experiment indicated that when learning and cognitive load are combined in an 

instructional efficiency measure, natural gesturing is a much more efficient instructional 

technique than arbitrary gesturing.  Based on these results that showed natural gestures were 

better for learning efficiently and other results that indicated natural gesturing was faster, had 

higher usability, and more presence than arbitrary gesturing, the results confirmed that natural 

gesture-based interactions are better for learners in a computer lesson than arbitrary gestures.  

The second research question was whether types of instruction for the gesture-based 

interactions could influence the computer lesson.  To test whether the effect of novel gesture-

based interactions depends on how they are taught, the way the gestures were instructed was 

varied in the main experiment by using either video- or text-based tutorials.  Results indicated 

that the type of instruction for the gesture-based interactions did not interact with the type of 

gesture overall, such that the detriment of arbitrary gestures was not overcome by instructions; 

however, when a participant’s spatial ability was taken into account, the combination of gesture 

type and instruction type did seem important for learning.  Those with low spatial ability had 

lower instructional efficiency with the combination of arbitrary gestures and text instructions, 

while those with high spatial ability were benefited by natural gestures with video instructions.  

Based on the results, the research question can be answered:  video- or text-based instructions of 

the gesture-based interactions did not influence the computer lesson overall, but there could be a 

combinatorial influence of gesture type and instruction type depending on spatial ability of the 

learner.   

In summary of the research question answers, naturally-mapped gesture interactions were 

better than arbitrary gestures for both conceptual learning and usability outcomes, and may 

especially benefit those with higher spatial ability when combined with video instructions.  
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Conversely, those with low spatial ability may be particularly disadvantaged when arbitrary 

gestures are taught using text-based instructions.   

Summary of Theoretical Implications 

Embodiment Theory 

The results of the current experiment in which gesture-based interactions with the 

computer lesson were either naturally-mapped to the learning material or arbitrary, supported 

theories of Embodied Cognition.  The embodiment theories described in the Introduction chapter 

can be summarized as ways in which physical interactions with one’s environment affect mental 

processing and representations.  Specifically, when actions are physically performed, they serve 

to activate the motor system, creating stronger memories through enactment and helping to 

develop schemas for the action (Barsalou, 2008; Engelkamp & Jahn, 2003; Hostetter & Alibali, 

2008).  When a gesture-based interaction is relevant to the learning material of a lesson, the 

gestures can be considered naturally mapped, or “enactive mapping” (Schwartz & Plass, 2014).  

Because the natural gestures consisted of enacting the learning material, the natural gestures 

contributed to more instructional efficiency in that more conceptual information was learned 

with less mental effort expended.  This finding supports embodiment theories in that physically 

enacting relevant information to the conceptual lesson helped understand of the conceptual 

information.   

It could be that natural gesturing created stronger memories or more accurate mental 

representations for the optics concepts that were not enacted in the arbitrary gesture conditions.  

When the learner used a naturally-mapped gesture to interact with the lens or mirror in the 

lesson, they were performing the movement directly related to the optics concept; for example, 

the learner would move his or her hand left to move the lens/mirror to the left.  Then, the beam 
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of light would reflect/refract depending on the angle and type of lens or mirror, so that the 

learner could visualize optics concepts by manipulating the lens/mirror and observing the result 

on the beam of light.  Using natural gestures that corresponded with the movement of the 

lens/mirror could therefore create a physical encoding for the concept in that the gestures were 

helping the learner to make the link between the movement of the lens/mirror and the resulting 

effect on the beam of light.  In contrast, the arbitrary gestures did not correspond directly with 

the movement, so performing a gesture would not be related to the optics concept.  Because the 

arbitrary gesture did not match the conceptual information in the lesson (i.e., the gesture and the 

result on the lens/mirror were different movements), the arbitrary gestures may not help the 

learner visualize the movement of the lens/mirror as the gesture and optics concept would be 

encoded as two different movements.  This would add the burden of encoding and recalling the 

arbitrary gesture movement in addition to the movement of the lens/mirror (i.e., two pieces of 

interacting information about movement), as opposed to the natural gestures that were the same 

movement as the lens/mirror (i.e., one piece of information about movement).  In addition to the 

burden of additional information to encode and recall, arbitrary gestures may not help recall of 

the concept because the arbitrary gestures were not related to the movement of the lens/mirror 

and an additional link would need to be made between these pieces of information, instead of the 

gesture assisting in the associative link between action and result.  Conversely, the natural 

gestures were creating stronger memories for the optics concepts by encoding the information in 

a way that can be more easily recalled because the encoding of the gesture can act as an 

additional cue for recalling the conceptual information, while the arbitrary gestures do not have 

this benefit.  Recalling the natural gestures may activate the mental simulation for the optics 

concept because these actions are stored together in the sensorimotor system, while the arbitrary 
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gestures may be stored as separate information that is not directly related to the optics concepts.  

The natural gestures may therefore produce more accurate recall of the conceptual information 

because of the strong associative link between the gesture and the resulting movement on the 

beam of light.  The evidence from the current experiment supports the theories of Embodied 

Cognition that enacting the learning material leads to better for instructional efficiency in a 

conceptual learning computer lesson.   

Cognitive Load Theory 

 In addition to implications for Embodied Cognition, there are theoretical implications for 

CLT from the current experiment.  The main tenant of CLT is that a person’s working memory 

has a limited capacity for processing new information, and cognitive load is the amount of 

information being processed by working memory at one time (Sweller, van Merriënboer, & Paas, 

1998).  Cognitive load consists of three types of load (i.e., intrinsic, extraneous, and germane) 

that, when combined, can overload working memory capacity and impede information 

processing (i.e., learning).  The theory states that intrinsic load, which is the load associated with 

the difficulty of the material, cannot be changed, so the goal of instructional design is to reduce 

extraneous load due to factors not related to learning and foster germane load that helps schema 

development from new information.  As described by Sweller et al. (1998), instruction can 

reduce extraneous load and increase germane load by directing attention to relevant information 

during a lesson, thereby helping learning.   

 There is evidence in the current experiment that the type of gesture-based interaction with 

a computer lesson are explained by CLT, although direct measurements of each type of cognitive 

load were not possible (see limitations subsection below).  Natural gestures contributed to more 

instructional efficiency than arbitrary gestures, which is a relative measure of cognitive load.  
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These results can be explained by CLT in that the arbitrary gestures were not related to the 

conceptual information and increased extraneous load by adding information to be processed in 

working memory that was not related to the lesson.  Natural gestures may have decreased 

extraneous load by directing attention to the relevant conceptual information, thus aiding 

processing of the concepts.   

The results also support that the underlying cognitive mechanism leading to the 

difference in instructional efficiency may be due to the modality of encoding, as described by 

Baddeley’s (2000) working memory model. The modality of the instructions was varied by 

presenting either video instructions (i.e., visual modality) or text-based instructions (i.e., verbal 

modality) for the gesture-based interactions.  It was expected that the video instructions would be 

better than text instructions due to a modality effect in which seeing the gestures would prime the 

motor system for the actions and help participants to visualize hard to imagine material (i.e., 

human movement; Alexander, 2013).  Presenting the gesture instructions as textual information 

in the tutorial would be processed as verbal information in the phonological loop.  Because the 

conceptual information in the optics lesson was presented as narrated text, this lesson may also 

be processed as verbal information in the phonological loop.  If both the gesture instructions and 

the conceptual information were processed in the phonological loop as verbal information, it may 

have overloaded mental processing in the verbal system and made for less efficient instruction.  

Conversely, presenting the gesture tutorial as videos would result in the gesture instructions (i.e., 

visual) processed separately from the narrated text of the optics lesson (i.e., verbal), thereby not 

overwhelming the phonological loop with too much simultaneous information to process.  The 

type of instructions only mattered when combined with the type of gesture and when spatial 

ability was taken into consideration.  Video instructions did help instructional efficiency when 
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combined with natural gestures for learners with high spatial ability, while text instructions 

combined with arbitrary gestures was worse for instructional efficiency for low spatial 

individuals; so, there was a modality effect, but only under certain circumstances.  The lack of 

strong support for a modality effect may be due to the strength of the manipulation, which is 

discussed in the limitations section below.     

Summary of Empirical Implications 

 The set of studies developed for the current research also have empirical implications for 

the study of NUIs.  Although previous research on gesture-based interactions has focused on 

what gestures the computer can recognize (Nielsen, et al., 2004; Shiratuddin & Wong, 2011), 

gesture design does not typically begin with a user-centered approach that takes into 

consideration what the user perceives is natural.  The issue with studying natural gesturing is that 

the researcher must first confirm that the gestures are interpreted as natural.  The methodology 

developed for the current research questions can be extended to other research questions 

investigating natural gesturing.  The first study explored what natural gestures are spontaneously 

produced by participants to narrow down what gestures may be considered natural for each 

action.  This methodology took a user-centered approach in that what a user would produce for a 

gesture-based computer command was considered prior to what is easiest for a computer to 

recognize.  Participants were asked to perform a gesture they considered natural for each 

computer action, and gestures were recorded using a motion tracker for video, depth, and joint 

placement information.  The gestures were then analyzed for converging features using the 

coding scheme outlined in Study 1.  The most common gestures for each action were then 

chosen for the second part of the NUI development that asked a different group of participants to 

rate how natural they felt each gesture was for a computer action.  Participants watched a short 
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video of the gestures including those gestures that were performed in Study 1, and then they 

rated the naturalness of each gesture for a particular action on a scale from “Completely Natural” 

to “Completely Arbitrary.”  The ratings for the gesture videos were then analyzed for each action 

using Repeated Measures ANOVAs described in Study 2, and the gestures rated as most natural 

for each action were determined.  The results of the second study confirmed that the gestures 

produced by the participants in the first study were rated as natural.  This has empirical 

implications for the study of NUIs in that the user-centered approach to determining what 

gestures are natural resulted in gestures that were interpreted as natural by other users.  After 

narrowing down the potential natural gestures for each action by the choosing the most common 

gestures that were produced and picking the gesture rated as most natural for each action, the 

natural gestures were tested using the motion tracker to confirm that the gestures were possible 

to implement in the NUI.  To summarize, future studies of NUIs can determine the natural 

gestures to be implemented in the interface by using a two-step process: 1. Ask participants what 

they think is natural and 2. Ask a second group of participants if they interpret those gestures as 

natural.   

Summary of Applied Implications 

 The results of the current set of studies can be applied to educational and training systems 

that incorporate a gesture-based NUI.  The finding that more natural gestures are better for 

learning efficiency, cognitive load, and a variety of usability factors should encourage 

instructional designers and system engineers to keep the user in mind when developing the 

gesture-based interactions.  The instructional efficiency and usability of gesture-based 

interactions were not greatly impacted by how they were instructed, so designers should not rely 

on tutorials to overcome the limitations of arbitrary interactions.  For learners with higher spatial 
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ability, there was an added benefit of natural gestures that were taught using video tutorials.  

Because natural gestures with video instructions led to the best learning for certain participants, 

and natural gestures overall were better regardless of instruction, instructional designers should 

consider using both natural gestures with video instructions.  Natural gestures taught via video 

instructions may particularly benefit learners who may not be able to read text-based instructions 

(e.g., learners who speak a different language than that in which the system was developed) or 

for younger participants before they learn to read (e.g., early elementary education).   

Guidelines for Application 

  Grandhi et al. (2010) proposed guidelines for developing NUI interfaces, and I extend 

these by outlining a more general methodology from which new interfaces can be developed.  

Based on the results of this experiment, below I list guidelines for implementing gesture-based 

interactions into education and training computer systems: 

1. Use gestures that are natural in the sense that they correspond directly with the 

learning material.  Gestures may be considered arbitrary if they do not reflect the real-

world interaction with an object that they represent, or if they do not aid in the mental 

animation process associated with developing a schema for the learning material.   

2. When possible, determine what gestures are considered natural for an interaction 

directly from user input instead of relying on what is easiest for the computer to 

recognize.  The current set of studies used a two-phase process for developing the 

natural gestures by first asking participants to produce a natural gesture for an 

interaction and then having other participants rate the naturalness of the interaction.  

This process produced a vocabulary of natural gesture interactions that was better for 

the learning material and usability.   
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3. Use video-based instead of text-based tutorials to instruct the gestures, but do not 

assume that instructions can overcome the detriment of arbitrary gestures.   Video 

tutorials were best in combination with natural gestures for certain users, but natural 

gestures were best for all conditions regardless of instruction type.    

Limitations 

Measurement of Cognitive Load 

 A limitation of the current study is that the theoretical explanations for results are often 

based on the amount of cognitive load in each of three components (i.e., intrinsic load, 

extraneous load, and germane load), but a direct measurement of each component does not exist 

in the literature (Brünken, Seufert, & Paas, 2010).  Brünken and colleagues (2010) described the 

three ways in which cognitive load is typically measured as subjective, objective, and combined.  

The measure used in the current study is considered a subjective measurement of mental load, 

which is an approximate of overall cognitive load.  This measure of cognitive load was used in 

the current study because, as Paas, Tuovinen, Tabbers, and van Gerven (2003) explained, “The 

scale’s reliability and sensitivity and moreover its ease of use have made this scale, and variants 

of it, the most widespread measure of working memory load within CLT [Cognitive Load 

Theory] research (p. 68);” however, there are several limitations of this measure described by 

Brünken et al. (2010).  First, there is an assumption of subjective measures that the participant 

can accurately determine their mental effort.  The measure assumes that the number the 

participant reports on the scale for mental effort is an accurate reflection of their cognitive load 

and can be comparable to how other participants interpret the scale.  With this assumption, there 

is a risk that the participant is not accurately able to identify a number corresponding to their 

mental effort and that interpretation to be equivalent to other participants.  Also, the report of 
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mental effort could relate to any of the three components of cognitive load.  For example, while 

theory predicts that more natural gesturing would reduce extraneous load, measurement of 

cognitive load cannot distinguish a reduction in extraneous load with a reduction in germane 

load, which would be detrimental to learning.     

 Although there have been recent attempts at creating a measurement that distinguishes 

the three components of cognitive load (Leppink, Paas, van der Vleuten, van Gog, & van 

Merriënboer, 2013), there is not strong support for this measure, and subsequent research has 

proposed various modifications (Leppink & van den Heuval, 2015; Leppink, Paas, van Gog, van 

der Vleuten, & van Merriënboer, 2014).  To address the limitations of using a single subjective 

measure of cognitive load, Brünken et al. (2010) explained that a way to determine how 

cognitive load is related to performance, and thus indirectly measure the different components of 

load, is to use combined measures of cognitive load.  The instructional efficiency measure 

calculated in the current experiment is one such combined measure of cognitive load and 

performance (i.e., learning) that creates a relative measure of how these factors interact; 

however, the issue of no direct measurement of cognitive load still exists with this method.     

Manipulation Strength 

 Another limitation of the current experiment could be the strength of the instruction 

manipulation.  The manipulation of instruction was intended to be video- versus text-based 

tutorials that instructed the gesture-based interactions.  It was anticipated that video instructions 

would be better than text instructions because videos may reduce cognitive load and activate 

motor mental representations (Alexander, 2013).  This is because video-based instructions can 

help the learner visualize the movements of the gestures and store that information as visual 

information, which can be mentally simulated in the sensorimotor system; however, text-based 
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instructions may be stored as verbal information, resulting in a mental simulation of verbal 

information instead of a visualization for the gesture.  This hypothesis was largely not supported, 

except in combination with gesture type and depending on participant spatial ability.  The lack of 

results with instruction may have been due to how the instruction conditions were manipulated.  

The instruction manipulation not have been strong enough because all groups were able to use a 

summary sheet of gestures during the experiment and practiced the gestures during the tutorial.  

These adjustments were made to the conditions based on pilot testing of the experiment in which 

participants were not able to begin the experiment if they had misconceptions about the gestures, 

or they were not able to finish the computer lesson if they forgot a gesture during the experiment. 

All conditions were told to perform the gestures at the end of the tutorial to confirm the gesture 

was correct, resulting in a pre-training effect (Mayer & Moreno, 2003).  If the gesture was not 

correct, it would not be recognized by the motion tracker and the gesture type manipulation 

would be confounded due to participants using inconsistent gestures; however, the instruction 

manipulation may not have been strong enough in that every person could have received the 

benefit of an enactment effect, in that physically enacting the gestures encoded the actions in the 

physical modality in addition to the encoding from the video and text instructions.  Because all 

conditions received additional instructional support in the form of memory aids (i.e., gesture 

reference sheets) and an enactment effect (i.e., performing the gestures), the difference between 

video and text instructions may have been attenuated such that the effect was only found in 

combination with the gesture type.      

Future Directions 

 Future  research could expand on the current study in several ways.  First, the research 

question asking whether naturally-mapped gesture interactions were better than arbitrary gestures 
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was answered with support for natural gestures.  The task in the current study was a conceptual 

optics lesson, and future research could continue this work with other domains (e.g., medical 

education, maintenance training, etc.).  Perhaps natural gestures are appropriate for some kinds 

of knowledge or skill acquisition (e.g., conceptual information or procedural tasks), but not all 

types of knowledge (e.g., semantic).   

Additionally, future research could incorporate features to make gesture-based 

interactions even more natural.  The gestures included in this study were rated as natural by 

participants, but they were not dynamic in the sense that as the participant moved the on-screen 

object was not manipulated in real-time.  If pantomimic gestures were closer to a 1:1 mapping of 

user-movement to computer-movement, the gestures may be perceived as even more natural than 

distinct gestures.  Gestures could also be made more natural by including more fine-grained 

movements.  The gesture-based interactions in the current study were gross movements that 

could be recognized by the low-resolution motion tracker (although development of gestures was 

user-based and not based solely on computer recognition), but better motion trackers may be able 

to recognize even more fine-grained gestures than those used in this experiment.      

To expand on the second research question that assessed how much instructions of 

gesture-based interactions affect the computer lesson, future research could include variations of 

instructions to explore this question further.  Instructions and tutorials could be presented in 

other media, such as spoken text or only physical enactment to address the limitation of the 

current study that necessitated some enactment.  Alternatively, instructions could be presented in 

multiple modalities versus single modalities to address this same limitation and expand on the 

modality effect literature. 
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APPENDIX A 

DEMOGRAPHIC SURVEY  
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DEMOGRAPHICS 

1. Age: __________ 

2. Sex: __________ 

3. Major: __________________________________ 

4. Ethnicity (Please select all that apply):  

American Indian/ Alaskan Native 

Arabian/Middle Eastern 

Asian/Pacific Islander  

Black/African-American 

Hispanic/Latino  

White/Caucasian  

Other 

Prefer not to respond 

5. Are you colorblind?   Yes   No 

6. Dominant Handedness: Right   Left   Ambidextrous  

7. Do you have normal or corrected vision (i.e., glasses, contacts)?  Yes   No  

8. Highest level of education completed: 

Less than High School 

High School 

Some College 

Bachelor’s Degree 

Advanced Degree  

9. Please enter the typical number of hours per week that you use a computer: _________ 

10. Do you own a personal computer?  

Yes  

No  

11. On what platform do you usually play video games? 

Game console 

Computer 

Phone/Mobile Device 

N/A 
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12. How often do you play computer games?   

Daily  

Weekly  

Monthly  

Less than once a month  

Never  

13. How often do you play video games (run on a console, not a computer)?   

Daily  

Weekly  

Monthly   

Less than once a month  

Never  

14. Please enter the typical number of hours per week that you play video games: _______ 

15. How long have you been playing video games? 

N/A 

6 months  

1 year  

2-5 years  

5-10 years 

10 or more years 

16. Please rate your skill at playing video games:  

Bad    

Poor    

Average    

Better than average    

Good  

17. Do you have any experience using motion-capture systems (e.g., Microsoft Kinect)?  If 

so, please explain your experience and name the system.  

________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
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18. What are your Top 3 (in order) video game categories/genres that you enjoy playing? 

(Choose from the list below, or add your own). 

1) ______________________________ 

2) ______________________________ 

3) ______________________________ 

____________________________________________________________________________ 
Video Game Genres (Question 18)  
Action 
Fighting 
First-person shooter 
Role-playing 
Massively Multiplayer Online Games 
Simulators 
Flight 
Racing 
Sports 
Military 
Space 
Strategy 
Strategy wargames 
Real-time and turn-based strategy games 
Real-time tactical and turn-based tactical 
God games 
Economic simulation games 
City-building games 
Adventure 
Arcade 
Educational 
Maze 
Music 
Pinball 
Platform 
Puzzle 
Stealth 
Survival/horror 
Vehicular combat 
Other (please specify)  
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APPENDIX B 

KNOWLEDGE OF OPTICS TEST 
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Knowledge of Optics Pre- and Post-Test 

1.  What type of lens is a magnifying glass? ___________________________  

2.  What is the bending of light rays as the rays pass through a substance 
called?  ___________________________ 

 

3.  What type of mirror makes objects appear smaller, but the area of view 
larger?  ___________________________ 

 

4.  Mirrors ___________________________ light rays to make an image.   

5.  A(n) ___________________________ mirror is like the side mirrors on a car (“Objects 
are closer than they appear”) 

 

6.  A typical mirror you look in at home or in a restroom is a(n) 
___________________________ mirror.  

 

7.  Any smooth surface that reflects light to form an image is a(n) 
___________________________  

 

8.  The place at which light rays converge is the ___________________________  

9.   ___________________________ mirrors diverge light.   

10.   ___________________________ lenses diverge light.   

11.  A ray of light that approaches a mirror is a(n) ___________________________ ray.    

12.  A ray of light that reflects off a mirror is a(n) ___________________________ ray.   

13.  The perpendicular line that can be drawn from a mirror that divides an approaching ray 
from a reflected ray  

 

14.  What object reflects light and curves inward? ___________________________  

15.  What kind of mirror is used in a headlight, flashlight, or spotlight to create a beam of light? 
___________________________ 

 

16.  A convex mirror will always produce an image that is 
A) Real, upside down, smaller 
B) Virtual, upright, same size 
C) Virtual, upright, smaller 
D) Virtual, upright, larger 
E) I don’t know  
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17.  Are you reading all questions and answering honestly? (Attention Check) 
 

 

18.  A concave lens will always produce a(n) __________ image. 
A) Virtual, upright, smaller 
B) Real, inverted, smaller 
C) Real, inverted, larger 
D) Virtual, upright, larger 
E) I don’t know   

 

19.  What is a refracting object that is thicker in the center than it is at the edges? 
___________________________ 

 

20.  What is required for your eye to see an object?  
A) A mirror 
B) Air 
C) Light coming from an object 
D) A telescope  
E) I don’t know 

 

21.  Which properties describe images formed by the lens in the figure?    

 
A) Upright, larger than the object 
B) Upright, smaller than the object 
C) Upside down, larger than the object 
D) Upside down, smaller than the object 
E) I don’t know 
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22.  Which of the following describes images formed by the mirror when the object is in front 
of the focal point? 

 
A) Inverted, larger than object 
B) Inverted, smaller than object 
C) Upright, smaller than object 
D) Upright, larger than object 
E) I don’t know  
 

 

23.  What kind of lens/mirror is this? ___________________________ 
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24.  What kind of lens/mirror is this?   ___________________________ 

  
 

 

25.  What kind of lens/mirror is this? ___________________________ 

 
 

 

26.  What kind of lens/mirror is this?   ___________________________ 
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27.  What kind of lens/mirror is this? ___________________________ 

 
 

 

28.  What kind of lens/mirror is this? ___________________________ 

 
 

 

29.  What kind of lens/mirror is this? ___________________________ 
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APPENDIX C 

EXPERIMENT TESTBED SCREENSHOTS  
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APPENDIX D 

BRIEF ASSESSMENT OF GESTURE  
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APPENDIX E 

GESTURE REFERENCE SHEETS 
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Gesture Reference Sheet with Natural Gestures for Video Instruction
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Gesture Reference Sheet with Arbitrary Gestures for Video Instruction 
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Gesture Reference Sheet with Natural Gestures for Text Instruction 
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Gesture Reference Sheet with Arbitrary Gestures for Text Instruction 
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APPENDIX F 

PRESENCE QUESTIONNAIRE  



   

179 
 

 



   

180 
 

 



   

181 
 

 

 



   

182 
 

APPENDIX G 

CORRELATION OF MEASURES
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Table 20. Zero-order Correlations of Prescreening and Experimental Measures 
  1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 

Prescreen Measures                
1. Pre-test 1                
2. PFT .154 1               
3. Video 
Game .045 .158 1              
4. BAG Perc -.030 .023 .072 1             
5. BAG Prod .095 .154 -.139 -.064 1            
6. BAG 
SocProd .106 .198* -.060 .094 .510** 1           
7. BAG 
SocPerc -.061 -.012 .095 .140 .278** .211* 1          
8. Time    
Pre-test -.003 -.158 -.171 -.080 -.110 -.046 -.079 1         
Experiment Measures                
9. Delta -.052 .352** .182 .121 .217* .179 .091 -.024 1        
10. ME .019 -.139 -.064 -.096 -.035 -.139 -.088 -.072 -.045 1       
11. InstEff .056 -.340** -.171 -.151 -.179 -.225* -.124 -.030 -.725** .720** 1      
12. Time  -.280** -.112 -.075 -.157 .112 -.059 -.049 -.072 .010 .429** .282** 1     
13. SUS .063 .041 -.102 .136 -.092 -.019 .108 -.061 .005 -.339** -.231* -.566** 1    
14. PQ Inv .013 -.071 -.129 .004 -.006 -.031 .163 -.094 .044 -.047 -.066 -.236* .598** 1   
15. PQ 
Sensory .057 .018 -.114 -.026 .169 -.028 .158 .062 .139 .056 -.057 .026 .197* .340** 1  
16. PQ 
AdaptImm .149 .047 -.191 .046 -.176 -.115 .048 -.123 .010 -.104 -.082 -.281** .581** .601** .345** 1 

17. PQ 
Interface -.088 -.249* -.121 .054 .032 -.030 -.028 -.107 -.204* .258** .315** .300** -.414** -.144 -.173 -.184 

Note. *p<.05, **p<.01 (two-tailed); 1. Pretest = Knowledge of Optics Pre-test score; 2. PFT = Paper Folding Test; 3. Video Game = Video game hours 
per week; 4. BAG Perc = Brief Assessment of Gestures Perception; 5. BAG Prod = Brief Assessment of Gestures Production; 6. BAG SocProd = Brief 
Assessment of Gestures Social Production; 7. BAG Prod = Brief Assessment of Gestures Production; 8. Time Pre-test = Days from Pre-test; 9. Delta = 
Knowledge of Optics Delta score; 10. ME = Mental Effort; 11. InstEff = Instructional Efficiency; 12. Time = Time to complete lesson; 13. SUS = 
System Usability Scale; 14. PQ Inv = Presence Questionnaire Involvement; 15. PQ Sensory = Presence Questionnaire Sensory Fidelity; 16. PQ 
AdaptImm = Presence Questionnaire Adaptation/Immersion; 17. PQ Interface = Presence Questionnaire Interface Quality 
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APPENDIX H 

IRB APPROVALS  
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IRB Approval: Study 1 
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IRB Approval: Study 2
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IRB Approval: Experiment
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APPENDIX I 

COPYRIGHT PERMISSIONS
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Brief Assessment of Gesture Permission 
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Presence Questionnaire Permission 
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