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ABSTRACT

Intraspecific phenotype diversity allows for local adaption and the ability for species to

respond to changing environmental conditions, enhancing survivability. Phenotypic variation could

be stochastic, genetically based, and/or the result of different environmental conditions. Mojave

Rattlesnakes, Crotalus scutulatus, are known to have high intraspecific venom variation, but the

geographic extent of the variation and factors influencing venom evolution are poorly understood.

Three primary venom types have been described in this species based on the presence (Type

A) or absence (Type B) of a neurotoxic phospholipase A2 called Mojave toxin and an inverse

relationship with the presence of snake venom metalloproteinases (SVMPs). Individuals that

contain both Mojave toxin and SVMPs, although rare, are the third, and designated Type A +

B. I sought to describe the proteomic and transcriptomic venom diversity of C. scutulatus across

its range and test whether diversity was correlated with genetic or environmental differences. This

study includes the highest geographic sampling of Mojave Rattlesnakes and includes the most

venom-gland transcriptomes known for one species. Of the four mitochondrial lineages known,

only one was monophyletic for venom type. Environmental variables poorly correlated with the

phenotypes. Variability in toxin and toxin family composition of venom transcriptomes was largely

due to differences in transcript expression. Four of 19 toxin families identified in C. scutulatus

account for the majority of differences in toxin number and expression variation. I was able

to determine that the toxins primarily responsible for venom types are inherited in a Mendelian

fashion and that toxin expression is additive when comparing heterozygotes and homozygotes.

Using the genetics to define venom type is more informative and the Type A + B phenotype is not

unique, but rather heterozygous for the PLA2 and/or SVMP alleles. Intraspecific venom variation

in C. scutulatus highlights the need for fine scale ecological and natural history information to

understand how phenotypic diversity is generated and maintained geographically through time.
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CHAPTER 1: INTRODUCTION

Natural selection can cause divergence between separate lineages when those lineages are

exposed to different environmental selection pressures. Natural selection pressures from abiotic

factors in the environment and biotic factors such as diet and predation lead to phenotypic traits

that should be locally adaptive [1]. If heritable phenotypic variation exists and selective forces are

strong on specific traits within populations, phenotypic divergence may occur [2]. By examining

diverging phenotypes, it is possible to understand the role which natural selection has played in

maintaining phenotypic diversity. This trait evolution framework is particularly useful when the

phenotype being studied is highly variable, composed of many simple components, and easily

tied to the genome [3]. Comparing the different components within a composite phenotype can

lead to identifying adaptive traits and candidate loci that are linked to the genotype yielding a

genotype-phenotype map for understanding the molecular basis of adaptation [4, 5]. Generating

a genotype-phenotype maps is extremely difficult because phenotypes are generally influenced by

multiple genes of unknown origin. One way to bridge the gap between genotype and phenotype is

to compare tissue specific transcriptomes [3].

Transcriptome sequencing provides a snapshot in time of what genes are being transcribed

and the relative abundance of each transcript in a specific tissue [6]. The transcriptome is the

functional backbone of the genome, and through differential expression, can alter the phenotype

without changes in the genetic architecture. By only sequencing the genes expressed in a single

tissue, it is possible to focus in on specific transcripts of interest that are under high selection or

are driving the variability observed in a phenotype [7]. Comparative transcriptomics investigates

differential gene expression in conjunction with transcript sequence comparison. Using this

approach on individuals with different phenotypes allows for transcriptome-wide scans to locate

transcripts with high rates of change in the sequence and/or transcripts that are being over-

or under-expressed [3]. Ideally, when using this technique to examine evolutionary questions

1



in regard to selection, the variation in the phenotype and the transcriptome need to be easily

connected. This has been clearly demonstrated in studying venom and venom gland transcriptomes

in many different organisms [8–10].

Venom has been of tremendous interest to ecology, evolution, and medicine, particularly in

the last 20 years following the advancement of proteomic and sequencing technologies [11]. It is

loosely defined as a secretion produced in a gland that is delivered to another organism through a

wound. More specifically, venom is a composite phenotype composed of many different proteins

that are variable at all biological levels [12, 13]. This complex mixture of toxins (proteins and

peptides), salts, and organic compounds that, after introduction, work to disrupt physiological

systems often causing pain, death, or debilitation [14, 15]. Venom has convergently evolved in at

least seven animal phyla and is found in over 100,000 species.

Whole venom gland transcriptome sequencing has been conducted on many venomous taxa

and has resulted in the discovery of new proteins as well as a more thorough understanding of the

processes that generate the variation documented in venom [15, 16]. However, the majority of

venom gland transcriptomes sequenced have been characterized in snakes. For nearly all studies

looking at venom gland transcriptomes, a single individuals mRNA has been used to represent an

entire species. This ignores the tremendous amount of variation that has been documented within

species [17]. This is especially apparent in venomous snake species where thorough studies of

inter- and intraspecific venom variation have been conducted [15].

Within venomous snakes, venom is used for prey capture and/or defense and is thought to

be under strong selection [18–20]. There are generally less than 200 unique proteins in venom

that fall within 15 - 20 protein families [4]. Most venom studies in snakes have focused on

rattlesnakes in the genus Crotalus. For rattlesnakes, there is a general dichotomy of snake venoms

based on the presence (Type A) or absence (Type B) of Mojave toxin and homologs [21, 22].

Mojave toxin (MTX) is a heterodimeric phospholipase A2 (PLA2) which is a presynaptic acting

neurotoxin composed of an acidic and basic subunit [23]. Mojave toxin is homologous with toxins
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that have been identified in other rattlesnake species including Crotoxin (C. durissus), Canebrake

toxin (C. horridus) and toxins found in several other rattlesnake species [24, 25]. In addition to

the differences in neurotoxic activity between venom types, there are other associated differences

between Type A and Type B venoms.

Type B venoms have high metalloproteinase activity and relatively low toxicity and

Type A venoms have low metalloproteinase activity and high toxicity [26]. Snake venom

metalloproteinases (SVMPs) are responsible for the high hemorrhagic activity. The majority of

rattlesnakes are Type B, a few are Type A, but there are some interesting and unique cases where

the Type A/B dichotomy exists among populations within a species [27]. This has been found

in C. oreganus, C. durissus, C. horridus, and C. scutulatus [27, 28]. It is best documented in

C. scutulatus where there is a relatively well defined range for the populations with Type A and

Type B venom. The evolutionary history of populations and species exhibiting this dichotomy is

unknown but differences in feeding ecology [26] and pedomorphism [28] have been hypothesized.

Study species

Mojave Rattlesnakes, Crotalus scutulatus, are found in deserts of the southwestern U.S. and

Mexico and are well known by the general public and venom researchers due to their reputation for

having toxic and complex venom (Figure 1.1). Crotalus scutulatus are a medium sized rattlesnake

found predominately in desert grasslands including those dominated by creosote and/or mesquite

[29, 30]. This species has very toxic venom, particularly when compared to many other Crotalus

species, and the severity of snakebites in this species resulted in considerable venom research that

began in the 1930s [31].

As research progressed in C. scutulatus, geographic variation in venom was identified.

It was thought that C. scutulatus had Type A venom throughout its range (MTX present/high

toxicity/low metalloproteinase activity) which was considered atypical for rattlesnakes [17, 27].
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Differences in snakebite pathologies led to the discovery of a population of C. scutulatus in Arizona

which possess Type B venom, more typically observed in rattlesnakes in that there is no MTX

present, low toxicity, and high metalloproteinase activity [32–36]. Glenn and Straight [37] and

Wilkinson et al. [38] sampled extensively in Arizona and attempted to identify the geographic

extent of C. scutulatus populations with each venom type. Through this work, they determined

that the type B population was confined to central Arizona between Phoenix and Tucson, Arizona.

They also identified individuals with a mixed venom called Type A + B in areas where the two

populations came into contact. Due to the observed variation in venom protein expression within

C. scutulatus it makes this species an ideal model to test the role that natural selection has had on

venom components.

Figure 1.1: Distribution map of Mojave Rattlesnakes, Crotalus scutulatus.
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Study Aim

To understand the drivers of phenotypic diversity in the venom of Mojave Rattlesnakes,

Crotalus scutulatus, I aim to meet three goals.

1. Document the distribution of venom phenotypes throughout the range of C. scutulatus

and determine if it corresponds to ecological differences including climate and functional

morphology or if it corresponds to phylogeographic structure.

2. Identify the toxin loci involved in the expression of the venom phenotype dichotomy through

comparative transcriptomics of the venom-gland.

3. Determine the inheritance mechanism for the venom dichotomy by testing for additive

expression in the Type A + B phenotype.
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CHAPTER 2: PHYLOGEOGRAPHY AND ENVIRONMENTAL

VARIABLES POORLY EXPLAIN DIVERSE VENOM PHENOTYPES IN

MOJAVE RATTLESNAKES1

Abstract

Local adaptation tends to move phenotypic variation to the optimal fitness strategy,

but polymorphisms can persist even under strong selection pressures. Polymorphism can be

maintained by lack of gene flow between polymorphic populations, differential fitness between

environments, or through balancing selection. Balancing selection has been proposed as the

mechanism maintaining venom polymorphism in Mojave Rattlesnakes (Crotalus scutulatus), but

genetic isolation and environmental differences have not been thoroughly tested. In C. scutulatus,

Type A individuals have venom with low hemorrhagic activity and high toxicity due to the presence

of a presynaptic-acting neurotoxin (Mojave toxin), while Type B individuals tend to have high

hemorrhagic activity and low toxicity. Venom is under strong selection due to its ecological role

in prey acquisition and defense, but the maintenance of the venom dichotomy is unknown. To

determine if the venom phenotypes are genetically isolated or if there are environmental differences

driving local adaptations we performed a range-wide sampling of C. scutulatus and determined

venom type for each sample using a combination of Mojave toxin assay and RP-HPLC. We mapped

venom type onto the phylogenetic tree of C. scutulatus and created ecological niche models

for the two venom types. Overall, venom type was not monophyletic and only one population

was fixed for venom type. The ecological niche models between the two venom types showed

high niche similarity, despite spatially distinct projections. Only one environmental variable,

temperature of the coldest month, explained a significant amount of variation in our model and

1Chapter Two is being prepared as Strickland et al. Phylogeography and environmental variables poorly explain
diverse venom phenotypes in Mojave Rattlesnakes.
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was also significantly different between the two models. Phylogeographic, morphological, and

environmental differences do not fully explain the geographic structure and venom complexity in

C. scutulatus. The maintenance of these phenotypes is likely due to balancing selection through

intense and fine-scale local adaptation between C. scutulatus and prey.

Keywords: Balancing Selection, Ecological Niche Modeling, Functional Morphology,

Hemorrhagic Activity, Local Adaptation, Mojave Toxin, Phenotype Polymorphism

Introduction

Local adaptation may facilitate speciation if gene flow becomes sufficiently limited

between polymorphic populations, but high gene flow can mitigate this, particularly if selection is

weak [1, 2]. Generally, when polymorphisms exist, the most fit phenotype is expected to fix over

time [3]. However, there are examples where polymorphisms are maintained in populations, even

in the face of high gene flow, through balancing selection [1, 4]. The maintenance of phenotypic

polymorphisms through balancing selection is considered relatively rare and transient compared to

directional, stabilizing, and disruptive selection [5–9]. However, there are well documented cases

of balancing selection including the major compatibility complex, self incompatibility in plants,

and butterfly mimicry [7, 10].

Dowell et al. [11] hypothesized that a venom dichotomy in Mojave Rattlesnake, (Crotalus

scutulatus), and numerous other rattlesnake species (Crotalus and Sistrurus), may be under

balancing selection. Individuals possessing a heterodimeric neurotoxic Phospholipase A2 (PLA2),

such as Mojave Toxin (MTX) in C. scutulatus, are Type A. Those without MTX are Type B

and tend to have high expression of snake venom metalloproteinases (SVMPs) in their venom.

Venom is a highly adaptive trait due to its ecological role in feeding and defense so balancing

selection could maintain the two polymorphisms if they confer similar or fluctuating fitness over

space or time [12–14]. The geographic arrangement of polymorphisms in a population can provide
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evidence for the mechanism or mechanisms of balancing selection maintaining the polymorphism

[15]. However, because balancing selection is difficult to identify, we first need to rule out other

possible explanations at a range-wide scale.

Several selection-driven hypotheses have been proposed to explain the existence of the

dichotomy within and between rattlesnake species because venom is thought to be locally adapted

to prey which can occur at a very fine geographic scale [16–18]. Many of the hypotheses

are centered around potential differences in digestive efficiency of the two venom types [19].

Individuals with Type B venoms are thought to have more efficient digestion in situations with

lower temperatures or when temperature fluctuations are more pronounced such as high elevation

[20, 21]. However, tests for an increase in digestive efficiency for Type B venoms have been

conflicting [19, 22, 23]. Alternatively, neurotoxic venoms are thought to be advantageous when

the chance of escape of prey is high [21]. The Type A venom would rapidly incapacitate the prey

item through neuromuscular paralysis and ensure a meal but forgo the possible digestive assistance

of the SVMPs [12]. Functional morphological changes could also accompany the different venom

types, though to date, only basic external features were tested and none were associated with the

venom types [24]. Recently, differences regarding the functional morphology of fangs has been

proposed based on the ideal injection depth of venom with different compositions [25]. If digestion

is important, Type B venom individuals may have longer fangs to inject venom deeper to aid in

digestion whereas Type A venom, because it acts presynaptically, would not require deep fang

penetration.

Mojave Rattlesnakes are one of ten rattlesnake species with intraspecific variation in

the presence of Type A and Type B venoms [26–30] and, although rare, individuals with both

MTX and SVMPs present (Type A + B) do occur [31, 32]. Mojave Rattlesnakes are distributed

in the deserts of North America, the Central Mexican Plateau, and the volcanic lowlands of

south-central Mexico (Figure 3.1). Because of their broad distribution, Mojave Rattlesnakes

occupy habitats encompassing a range of elevations and climatic conditions which could impose
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differential selection pressures on venom phenotypes. Both Type A and Type B phenotypes as

well as the mixed Type A + B phenotype are known from several different locations throughout

their distribution with evidence that the phenotypes are geographically structured [24, 30–37].

Overall, Mojave Rattlesnakes have high intraspecific venom variation documented proteomically

[26, 36–38] and transcriptomically [39] but the majority of their distribution has not been sampled.

Two currently described subspecies within C. scutulatus exist with clear phylogenetic

structure among populations [40]. Schield et al. [40] identified three lineages (Sonoran Desert,

Chihuahuan Deserts, and Central Mexican Plateau) based on nuclear data. The Central Mexican

Plateau lineage also contains a fourth mitochondrial lineage comprised of the subspecies C.

scutulatus salvini which was not distinct from the rest of the individuals in the Central Plateau

based on their RADseq dataset thus rendering the other subspecies, C. scutulatus scutulatus,

paraphyletic [40]. All three venom types have been documented in the three lineages [31, 32, 36,

41] and C. scutulatus salvini sensu stricto is thought to be exclusively Type A, but only four venom

samples have been analyzed [24, 37]. In regions where the lineages come into contact, significant

gene flow is occurring [40]. Gene flow is inferred to be highest between the Chihuahuan Desert

and Central Mexican Plateau lineages even though those lineages diverged more anciently than the

Chihuahuan Desert and Sonoran Desert populations [40]. This indicates that the historic barrier

associated with the rise in elevation at the Mexican Plateau uplift does not completely prevent gene

flow.

Mojave Rattlesnakes’ distribution spans an ecologically diverse area, genetic lineages

are well defined despite gene flow, and spatial diversity of venom phenotypes is known.

However, whether spatial patterns of venom diversity can be explained by population structure,

environmental variability, or balancing selection remains unknown. Here, we investigate the

relationship between phenotype, genotype, and environment to determine if any of these variables

can explain the diversity of venom phenotypes observed in Mojave Rattlesnakes. Specifically, we

test whether venom phenotypes are monophyletic, whether they are associated with environmental
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parameters (particularly elevation and temperature), and whether proteomic and morphological

differences exist between populations with the same venom type.

Figure 2.1: Distribution and sampling of Mojave Rattlesnakes collected from throughout their range. Red,
purple, and blue represent Type A, Type A + B, and Type B venom, respectively, in the pie charts and the
sampling points. Mottling in the distribution are areas of gene flow between lineages. Pie charts represent
the proportion of each venom type collected from each lineage. Cladeogram in lower left of the four
mitochondrial lineages from Figure 2.3 with the three nuclear clades from Schield et al. [40] numbered:
1 - Sonoran lineage, 2 - Chihuahuan lineage, 3 - Central Mexican Plateau lineage, ? - not sampled/unknown
lineage
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Materials and methods

Ethics statement

Scientific collecting permits in the United States were issued by the State of Arizona Game

and Fish Department (SP628489, SP673390, SP673626, SP715023), the California Department of

Fish and Wildlife (SC-12985), the New Mexico Department of Game and Fish (3563, 3576) and

Texas Parks and Wildlife (SPR-0390-029). In Mexico, collection permits were issued by Secretaria

de Medio Ambiente y Recursos Naturales of the Estados Unidos Mexicanos (SEMARNAT:

SGPA/DGVS/03562/15, SGPA/DGVS/01090/17 and FAUT-0015). Interactions with animals

were approved by the University of Central Florida’s (UCF) Institutional Animal Care and Use

Committee under protocol 13-17W and followed the American Society of Ichthyologists and

Herpetologists ethical guidelines.

Sample collection and DNA extraction

We collected representatives of both subspecies and all lineages of Mojave Rattlesnakes

from throughout their distribution. For most samples collected in the field, we obtained venom and

tissue. When possible, voucher specimen were created and deposited (Supplemental Table B.1).

Tissues were stored in ethanol and RNAlater (ThermoFisher Scientific, Waltham, Massachusetts,

USA) and venom was collected and vacuum dried, put in liquid nitrogen, and/or stored at -80◦C.

We collected a total of 216 individuals. Of these, 114 had tissue and venom, 34 had only

venom, and 68 had only tissue (Supplemental Table B.1). Whole genomic DNA was extracted

from samples using the Serapure bead extraction protocol of Rohland and Reich [42] following

modifications in Faircloth [43].
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Reverse-phased high performance liquid chromatography to determine venom type

All venom was either vacuum dried or lyophilization prior to use. We then resuspended

venom in Millipore-filtered water and centrifuged to remove insoluble debris. We determined

protein concentration on a Qubit 3.0 Fluorometer (ThermoFisher Scientific) using the Qubit Protein

Assay (ThermoFisher Scientific) following the manufacturer’s protocol. To determine the venom

type (A, B, or A + B) of each individual, we used Reverse-phased High Performance Liquid

Chromatography (RP-HPLC) based on the protocol in Margres et al. [44].

We injected 100 µg of venom onto a Jupiter C18 column (250 x 2 mm; Phenomenex,

Torrence, California, USA) using two solvents: 1 = 0.1% trifluoroacetic acid (TFA) in water and

2 = 0.075% TFA in acetonitrile. We used a Beckman System Gold HPLC (Beckman Coulter,

Fullerton, California, USA) located in the Florida State University (FSU) Department of Biological

Science Analytical Lab. The gradient started with 95% A and 5% B for 5 minutes followed by a

1% per minute linear gradient to 25% B, followed by a 0.25% per minute linear gradient to 55%

B, a 2% per minute linear gradient to 75% B, a 14% per minute linear gradient to 5% B and then 5

minutes at the initial conditions all at a 0.2 mL/min flow rate. Run time was 180 minutes for each

sample and the effluent was monitored at 220 and 280 nm [45].

We determined venom type for 148 individuals based on the presence of both subunits of

MTX (Type A) and the presence of SVMPs (Type B) based on previous RP-HPLC profiles in

C. scutulatus [38, 46] and under these conditions [13]. When venom was available, this was the

primary means of determining venom type.

Mojave toxin assay

To confirm venom type from RP-HPLC and to determine venom type when venom was

unavailable, we used PCR assays for both subunits of Mojave Toxin (MTXA and MTXB). We

amplified two fragments for each subunit using the primers designed by Zancolli et al. [47]. They
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were developed to determine MTX presence in Arizona and New Mexico, USA and have also

been used successfully in Mexico [32]. PCR amplification was conducted on each DNA sample

under the following conditions per 10 µL reactions: 3.5 µL PCR water, 1 µL 10X Sigma Buffer

(Sigma-Aldrich, St. Louis, MO, USA), 1 µL of 25 mM MgCL2 (Sigma-Aldrich), 1.3 µL of 2.5

mM each dNTPs (INFORMATION), 0.5 µL of each primer at 10 µM, 0.2 µL of Taq Polymerase

(Sigma-Aldrich), and 2 µL DNA. PCR was conducted on PTC200 Thermal Cycler (Bio-Rad,

Hercules, CA, USA): 3.5 minutes at 94◦C, 35 cycles of 30 seconds at 94◦C, 1 minute at 57◦C,

and 1 minute at 72◦C, and a final extension at 72◦C for 5 minutes. PCR product amplification was

evaluated on a 2% agarorose gel using GelRed dye (Biotium, Fremont, CA, USA) to determine if

the subunits were present. If one assay was positive, the individual was considered to have MTX

and be Type A because no data exist that suggest an individual can have the gene and not express

it [32, 47]. For samples with tissue only, we cannot differentiate between Type A and Type A + B.

Venom phylogeography of C. scutulatus

To determine if venom type correlated with phylogenetic lineage, we PCR amplified and

sequenced NADH4 (ND4) for any individual in our dataset not already sequenced in Schield et al.

[40]. As outgroups, we included one sample each from C. viridis, C. cerberus, and C. oreganus

which are the sister species complex to C. scutulatus (Supplemental Table B.1). We used the

primers ND4 and Leu to sequence the partial ND4 gene as well as the tRNAs His, Ser, and Leu

[48]. PCR was conducted under the following conditions per 10 µL reaction: 3.8 µL PCR water,

1 µL 10X Sigma Buffer (Sigma-Aldrich), 1 µL of 25 mM MgCL2 (Sigma-Aldrich), 0.8 µL of 2.5

mM each dNTPs (Invitrogen, Waltham, Massachusetts, USA), 0.5 µL of each primer at 10 µM, 0.4

µL of Taq Polymerase (Sigma-Aldrich) and 2 µL DNA. PCR was conducted on a PTC200 Thermal

Cycler (Bio-Rad): 3.5 minutes at 94◦C, 35 cycles of 30 seconds at 94◦C, 1 minute at 53◦C, and 1

minute at 72◦C, and a final extension at 72◦C for 5 minutes.

Amplicons were purified by adding 0.5 µL FastAP (ThermoFisher Scientific #EF0651),
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0.05 µL Exonuclease 1 (ThermoFisher Scientific #EN0581), and 7.45 µL PCR water to each

30 µL reaction and then placed on the thermal cycler for 30 minutes at 37◦C followed by 15

minutes at 85◦C. Sequencing was done in both directions at Eurofins Scientific (St. Charles,

Missouri, USA) on an ABI 3730 genetic analyzer (Applied Biosystems, Waltham, MA, USA).

Sequences were assembled and edited in Geneious v 10.1.2 (Biomatters Ltd., Auckland, New

Zealand). Alignments were created with the MAFFT v 7.22 alignment algorithm [49] implemented

with default parameters in Geneious. We verified alignments by eye and trimmed low quality

nucleotides and also checked to ensure there were no frameshift mutations. Our final alignment

was 884 nucleotides for 189 ingroup and three outgroup taxa.

We used PartitionFinder 2.1.1 [50] to determine the best-fit model of evolution for ND4

split by codon position and between protein-coding and tRNA regions. We used the ”greedy”

search algorithm, Bayesian Information Criterion (BIC), linked branch lengths, and only tested

models available in BEAST. The starting tree was generated using PhyML v 3.0 [51]. These

analyses were run in the UCF Advanced Research Computing Center (ARCC) on the Stokes High

Performance Computer (SHPC). The site models from PartitionFinder2 were HKY+I for the first

codon position and the tRNA together, HKY for the second codon position, and HKY+Γ for the

third codon position. All three models estimated nucleotide frequencies (+X).

To determine the mitochondrial lineage of new samples in comparison to Schield et al.

[40], we used Bayesian inference (BI) in BEAST2 v 2.4.5 [52]. We used BEAUti v 2.4.5 [52] to

generate .xml files. We ran the analysis four independent times for 108 generations each under a

coalescent constant population tree prior and strict molecular clock. We stored 10,000 trees per

run. All runs were checked in Tracer v 1.6 [53] to ensure stationarity was reached and all ESS

values for the individual and combined runs were ≥ 200. We then combined .trees files from each

run in LogCombiner v 2.4.5 [52] and resampled 10,000 trees. Finally, we annotated the final tree

with 10% burn-in in TreeAnnotator v 2.4.5 [52].
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Azocasein metalloproteinase assay

To determine if there are differences within venom types among populations, we performed

an azocasein metalloproteinase assay on 146 samples in triplicate [54]. We incubated 20 µg of

venom with 1 mg of azocasein substrate in buffer composed of 50 mM HEPES and 100 mM NaCl

at a pH of 8.0 for 30 minutes at 37◦C. We stopped the reaction with 250 µL of 0.5 M trichloroacetic

acid, vortexed, and brought it to room temperature. We then centrifuged it at 2000 rpm for 10

minutes. Sample absorbance was read at 342 nm and reported in ∆342nm/min/mg of venom protein

[46]. To determine if there were differences, we used a Kruskal-Wallis tests with venom type and

lineage as factors implemented in R v. 3.4.3 (R Development Core Team 2017).

Kallikrein-like serine protease assay

To determine if there are differences within venom types for other toxin classes, we

performed a kallikrein-like serine protease assay on 60 samples following Mackessy [55]. We

added 0.8 µg of whole venom to 373 µL of the same buffer as above. Samples were incubated

for 3 minutes at 37◦C and then 50 µL of substrate (Bz-ProPheArg-pNA; Bachem, Torrance, CA,

USA), the sample was vortexed and placed back at 37◦C for three minutes. The reaction was

stopped with 50% acetic acid. Sample absorbance was read at 405 nm and the specific activity

was calculated based on a standard curve of p-nitroaniline and reported as nanomoles of product

produced per minute per mg of venom [46]. We used a Kruskal-Wallis test with venom type and

lineage as factors in R to determine if there were significant differences.

SDS-PAGE protein gel electrophoresis

To estimate overall venom diversity, we performed SDS-PAGE protein gel electrophoresis

on 110 samples following Smith and Mackessy [46]. We loaded 20 µg of whole venom into wells

of a NuPAGE Novex bis-tris 12% acrylamide mini gel (Life Technologies, Grand Island, NY,
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USA) and elecrophoresed in MES buffer at 175 volts for 45 minutes. To estimate the molecular

weight, we used 7 µL of Mark 12 standard. We stained gels overnight on a gentle shake with

0.1% Coomassie brilliant blue R-250 in 50% and 20% acetic acid (v/v). Gels were destained for

approximately two hours in 30% methanol and 7% glacial acetic acid (v/v) in water until bands

were clearly visible. Gels were gently shaken overnight at room temperature in 7% acetic acid

(v/v) storage solution and imaged the next day using an HP Scanjet 4570c scanner.

Head morphology analysis

To determine if there are head morphological differences between individuals with Type

A and Type B venom, we measured functional morphological characters for 57 individuals from

Arizona, USA. We followed Margres et al. [25] and measured SVL (snout to vent length), HL

(head length), HW (head width), IF (interfang distance), and FL (fang length) for both fangs when

not broken and then averaged them. We measured SVL with a tailor’s tape from the tip of the snout

to the posterior end of the cloaca to the nearest 1 mm. We used IP54 digital calipers (iGaging, San

Clemente, CA, USA) to measure HL, HW, IF, and FL to the nearest 0.01mm. Head length was

measured from the tip of the snout to the articular-quadrate joint, HW was the widest point behind

the eye, IF was the distance between the two fang maxillae, and fang length was from the top of

the maxilla to the tip of the fang while folded. Average FL was determined if neither fang was

broken. If one fang was broken, then the unbroken fang was used. If both fangs were broken, that

individual was not used in analyses involving FL.

All transformations and analyses were done in R v. 3.4.3 (R Development Core Team

2017). Each measurement was natural-log-transformed so they met the assumptions of normality

and homoscedasticity. To size correct the data, we used the lnSVL value and subtracted each

other value from it (ex. lnSVL-lnHL) to generate new columns for HL, HW, IF, and FL that were

standardized based on the length of the snake. Using these data, we compared individuals of the

three venom types using Kruskal-Wallis tests and venom type as the factor. When the comparison
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of all three venom types was significant, we then did pairwise tests for each venom type.

Niche modeling of venom type

To examine whether differences in venom type could be explained by differential niche

occupation, we constructed ecological niche models (ENMs) for the occurrence of A and B venom

types across the range of C. scutulatus. We used geographic localities for 123 Type A and 68

Type B C. scutulatus whose venom types were determined by RP-HPLC and/or MTX assays.

ENMs were generated using MAXENT v3.4.1 [56] implemented through the R package dismo

[57]. MAXENT uses occurrence records and a user-provided suite of environmental variables to

predict the suitability of habitat and likelihood of occurrence across a landscape [58].

To limit the effect of sampling bias in the construction of EMS, we subsampled the total

records and retained only those points which were separated by a 0.25 km minimum distance.

This reduced the dataset to 64 and 31 representative A and B C. scutulatus, respectively. For

environmental data we used the 19 climatic variables collecting in the WorldClim dataset v 1.4

[59] as well as elevation, slope, and aspect with a 30 arc second resolution. To avoid biasing

the modeling through inclusion of highly correlated inputs [60], we removed 8 variables with a

pair-wise pearson’s correlation coefficient >0.90 leaving 14 environmental variable characterizing

southwestern North America. MAXENT models were run with 20 replicates and average model

performance was evaluated by determining Area Under the Curve (AUC) for each model.

To test niche equivalency and niche similarity of Type A and Type B, we used the

psuedoreplicate simulation method of Warren et al. [61] as implemented in the R package

phyloclim [62]. Both tests were run with 99 replicates to build a null distribution against which

to test values of Schoener’s D and Warren’s I inferred from the full data models. To test niche

equivalency, the occurrence points of two species (e.g. species A and B) are combined and

randomly partitioned into two datasets with sizes equal to those of species A and B. ENMs are

generated for each dataset and their similarity values (D and I) are calculated. This process is
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repeated to build a null distribution against which to test actual values of D and I inferred from

the full data model. This method tests the null hypothesis that the two models are not significantly

different.

In contrast, the test of niche similarity compares the ENMs of one species to an ENM of

randomly selected subset of background cells (which include both presence and absence locations)

of the other species. This is replicated 99 times and is then reversed such that the models for

species A is tested against a background model for species B and species B is tested against a

background model for species A. Comparison of the true D and I statistics to the pseudoreplicate

distributions tests the hypothesis that one species’ niche model predicts the occurrences of the other

species more than expected by chance. In addition, to more directly test for presence and absence

differences as relating to specific environmental variables, species we used logistic regression on

the 14 variables used for ENMs. This approach was used to distinguish variables that may be

important for C. scutulatus’ ecology, but may not be correlated with differences between venom

types.

Data availability

All novel ND4 sequences generated in this study were deposited in GenBank. Specimen vouchers

were deposited in the appropriate museums based on permit requirements. All specimen data

including morphology and assay data are listed in Supplemental Table B.1.

Results

Venom type in C. scutulatus

For the 116 samples from which both venom and blood were sampled, the RP-HPLC

venom type and the MTX assay were in agreement. None of our sampled individuals that lacked

MTX in the RP-HPLC profile had a positive result in the PCR assays (representative examples
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in Figure 2.2). For all samples that had both subunits of MTX in their venom profile, they were

positive for MTX in at least one PCR assay. All but seven were positive or negative for all four

MTX PCR assays. For the 68 samples that only had DNA available, all but five were unanimous

for venom type. A total of 12 samples were not positive for all four assays: two were positive for

three of four assays, seven were positive for two of four, and three were positive for one assay. In

total, 133 samples were Type A, 72 were Type B and 11 were Type A + B (Supplemental Table

B.1).

Crotalus scutulatus phylogeography

Our ND4 phylogeny mirrored that of Schield et al. [40]. We recovered the three primary

clades that also corresponded to their RADseq clades (Figure 2.3). Because of the addition of

more sampling in the Central Plateau of Mexico, we identified potential substructure in the region.

Based on where each individual was in our phylogeny, we were able to assign each individual

to a population and test if there were difference in venom characteristics that corresponded to

shared ancestry. For our analyses, we used the three primary mitochondrial lineages to compare

populations and venom type. Only the population corresponding to C. scutulatus salvini was

monophyletic for venom type (Figure 2.3).

Azocasein metalloproteinase assay

Metalloproteinase activity was significantly different between venom types but did not

differ within venom types between clades (Figure 2.4). Type A venom metalloproteinase activity

ranged from 0 to 0.668 ∆342nm/min/mg (n = 86, Average = 0.052, Median = 0.020), Type A + B

from 0.483 to 1.275 ∆342nm/min/mg (n = 10, Average = 0.816, Median = 0.919), and Type B from

.208 to 2.043 ∆342nm/min/mg (n = 50, Average = 0.945, Median = 0.919).
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Figure 2.2: Representative reverse-phased high performance liquid chromatography (RP-HPLC) profiles of
Type A (top), Type A + B (middle), and Type B (bottom) venom of Mojave Rattlesnakes. The acidic (α) and
basic subunit (β) peaks for Mojave toxin are marked and the region where snake venom metalloproteinases
elute is marked with a blue bar.

Kallikrein-like serine protease assay

We only had data from the Sonoran and Chihuahuan lineages for Kallikrein-like activity.

There were significant differences between venom types but not with regard to population (Figure

2.5). Type A venom had significantly higher activity than Type B individuals. Type A values

ranged from 132.77 to 733.20 nmol product/min/mg (n = 28, Average = 386.58, Median = 380.10),
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0.94

Figure 2.3: Bayesian inference phylogeny based on ND4 sequence from 189 C. scutulatus. The dashed line
indicates where the Sonoran and Mojave Desert lineage was moved from and no size adjustments occurred.
Venom type as discrete characters and metalloproteinase activity on a continuous scale are mapped onto the
phylogeny. Individuals without activity values are gray boxes. Dots on nodes represent significant posterior
probability values of ≥ 0.95.
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Figure 2.4: Metalloproteinase activity levels for venom types within each lineage. Type A venom had
significantly less metalloproteinase activity regardless of lineage. Type B and Type A + B were not
significantly from each other in any comparison.

Type A + B from 216.87 to 382.77 nmol product/min/mg (n = 5, Average = 301.54, Median =

298.30), and Type B from 70.69 to 469.24 nmol product/min/mg (n = 27, Average = 277.231,

Median = 285.86).

SDS-PAGE

SDS-PAGE confirmed venom type for all samples. The basic subunit of MTX was clear

at 14kD in Type A and Type A + B individuals and absent in Type B individuals (Figure 2.6 and

2.7). Additionally, SVMPs were clearly visible in Type B and Type A + B individuals at 55kD and

∼22kD and absent in Type A individuals. Other toxin classes, particularly myotoxins were highly

variable among individuals regardless of location and lineage. SDS-PAGE illustrates additional

diversity in C-type lectins and non MTX phospholipase A2s as well as the uniformity in snake

venom serine proteases and cysteine rich secretory proteins (Figure 2.6 and 2.7).
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Figure 2.5: Kallikrein-like serine protease activity between the Chihuahuan and Sonoran lineages. Type B
venom had significantly lower activity than Type A venom but there were no differences in the same venom
type between the two populations and Type A + B venom was not significantly different than Type A or
Type B venom.

Morphological analysis

All 57 individuals used in this analysis were from the Sonoran lineage. Thus, they are

all genetically similar and provide the best comparison of potential morphological differences

associated with venom type. We did not find significant differences between head width or head

length between venom types. We did find a significant difference in interfang distance between

venom types (Figure 2.8). Type A individuals had a larger distance between the fangs than Type

B individuals and Type A + B individuals were intermediate. Additionally, there was a trend for

Type A individuals to have longer fangs than Type B and Type A + B individuals (Figure 2.8).

ENMs between venom type

We did not find significant differences between the ecological niche models (ENM) created

for Type A and Type B individuals (Figure 2.9).The ENM for Type A and Type B were not
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Figure 2.6: SDS-PAGE gel images for 59 of 110 samples with toxin families labeled. Venom type of each
individual is added to the end of the sample name. When present, the basic subunit of Mojave toxin is at
approximately 14kD. See Figure 2.7 for remaining sample images.
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Figure 2.7: SDS-PAGE gel images for 51 of 110 samples with toxin families labeled. Venom type of each
individual is added to the end of the sample name. When present, the basic subunit of Mojave toxin is at
approximately 14kD. See Figure 2.6 for remaining sample images.

equivalent to each other (Figure 2.10) but they were more similar than would be expected by

chance (Figure 2.11). Area under the curve (AUC) from comparison of the model and the Type

B (AUC = 0.946) C. scutulatus was comparable to AUCs from Type A test data (AUC = 0.956),

indicating similarity in predictive power. The BioClim variable BIO6 (minimum temperature of

29



 Venom Type
ln

S
V

L-
ln

F
L

A BA+B

X X X4.5

4.4

4.3

4.2

4.1

Venom Type
A BA+B

ln
S
V
L-
ln
IF

X XY Y4.7

4.6

4.5

4.4

4.3

4.2

Figure 2.8: Comparison of interfang distance (IF) on the left and fang length (FL) on the right in the Sonoran
lineage of Mojave Rattlesnakes. Snout-vent length (SVL) was used to control for different sizes among
animals. Smaller values on the y-axis are larger measurements. There was a trend of Type A individuals
having longer fangs but it was not significantly different from Type B or Type A + B individuals. Type A
individuals did have significantly wider distances between their fangs compared to Type B individuals but
not compared to Type A + B individuals.

the coldest month) explained the most variation for each model and was significantly different

between the two models (Figure 2.12 and Table 2.1). The only other variable that was significantly

different was BIO1 (annual mean temperature) but it explained almost no variation in either model

(Figure 2.12 and Table 2.1).

Discussion

The venom phenotype dichotomy was first described in Mojave Rattlesnakes in the 1930’s

based on different symptoms of snakebite [63]. Subsequent studies of the distribution of venom

types led to the conclusion that C. scutulatus has neurotoxic venom through the majority of their

range [11, 24, 31, 33]. Our data indicate that this generalization is not accurate, and that both

Type A and Type B phenotypes occur throughout the distribution with at least three transition
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Figure 2.9: Ecological niche models generated in MAXENT using 64 Type A (left) and 31 Type B (right)
Mojave Rattlesnakes scaled by probability of presence (pp). Lower maps display model distributions where
each venom type is expected to occur based on a threshold point where model sensitivity and specificity are
highest (pp > 0.22 for Type A, pp > 0.07 for Type B).

zones. The integrated venom phenotype, Type A + B, does occur in areas where the two primary

phenotypes come into contact, but not exclusively. Several of the Type A + B individuals were

found in areas with apparently fixed venom types. Each of the major phylogeographic lineages

identified by Schield et al. [40] possess Type A, Type A + B, and Type B individuals (Figure 3.1

and 2.3).

Schield et al. [40] found that the subspecies C. scutulatus salvini at the southern end of the

distribution was mitochondrially unique but indistinguishable based on RADseq data. Crotalus
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Figure 2.10: Null distributions generated to test niche equivalency using 99 permutations. Results for both
Schoener’s D and Warren’s I reject the null hypotheses that the models for Type A and Type B are identical.

Figure 2.11: Null distributions generated using 99 permutations of Type A and Type B individuals to test
niche similarity. The top row compares Type A individuals using the model background (bg) of Type B
and the bottom row compares Type B individuals using the model background of Type A. Results for both
Schoener’s D and Warren’s I reject the null hypothesis that the two models do not predict the occurrence of
each other better or worse than would be expected by chance. Because the D and I values fall in the right
tail of the distribution, the niches are more similar than would be expected by chance.
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Figure 2.12: Model response to variables included in the ecological niche models for Type A and Type B
venoms. Asterisks (*) indicate variables that were significantly different between the two models. BIO1 =
Annual Mean Temperature, BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)), BIO4
= Temperature Seasonality (standard deviation *100), BIO6 = Min Temperature of Coldest Month, BIO8
= Mean Temperature of Wettest Quarter, BIO9 = Mean Temperature of Driest Quarter, BIO12 = Annual
Precipitation, BIO14 = Precipitation of Driest Month, BIO15 = Precipitation Seasonality (Coefficient of
Variation), BIO18 = Precipitation of Warmest Quarter, BIO19 = Precipitation of Coldest Quarter.

Table 2.1: Logistic regression comparison of the 14 variables used in the Type A and Type B models for C.
scutulatus. Bolded variables were significantly different between the two models.

Independent Variable Df F-value P-value
BIO1 93 10.38 0.001
BIO2 93 3.59 0.058
BIO4 93 2.23 0.136
BIO6 93 9.78 0.002
BIO8 93 3.08 0.079
BIO9 93 0.35 0.556

BIO12 93 0.01 0.925
BIO14 93 1.81 0.179
BIO15 93 0.32 0.571
BIO18 93 2.56 0.11
BIO19 93 0.15 0.698

Elevation 93 0.07 0.797
Aspect 93 0.115 0.915
Slope 93 0.51 0.475
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scutulatus salvini is the only potential population that was monomorphic for venom type. All 13

individuals collected were Type A and had very little metalloproteinase activity. Given that this

population is mitochondrially and venomically distinct, it is possible that a founder event could

have occurred and this population invaded the Neovolcanic Axis Mountain basin south of Mexico

City. The remaining lineages, which are currently classified as C. scutulatus scutulatus, have all

three venom types within them (Figure 2.3). The region where the Chihuahuan lineage and the

southern Mexican linage come into contact and where Schield et al. [40] found the highest gene

flow among lineages has a high concentration of Type A + B individuals. However, in Arizona

where C. scutulatus is genetically panmictic, the Type B population is geographically isolated,

there is also a high concentration of Type A + B individuals. The lack of genetic correlation could

be due to fine scale local adaptation for the phenotypes.

The biochemical properties of the venom did vary between venom types but values were

not significantly different between lineages. As expected, metalloproteinase activity was higher

in Type B individuals, but Type B animals from all three lineages had the same metalloproteinase

activity across venom type (Figure 2.4). Average metalloproteinase activity was lower in Type A

+ B individuals than in Type B individuals for all three populations, but it was not significantly

different (Figure 2.4). Kallikrein-like serine protease activity was highly variable with Type B

individuals having significantly lower activity in the Chihuahuan lineage (Figure 2.5). The trend

also exists in the Sonoran lineage (Figure 2.5). Other than SVMPs and PLA2s, the SDS PAGE

profiles indicate some variability among individuals in other protein classes, particularly myotoxins

(Figure 2.6 and 2.7). Myotoxins were found in 56 of 110 individuals tested and were generally

linked with Type A individuals in the Sonoran lineage and Type B individuals in the Chihuahuan

lineage. This is in line with recent work documenting high myotoxin variability proteomically [38]

and transcriptomically [39]. Myotoxins increase the lethality of venom in Type B individuals but

it is unclear what they add to individuals with Type A venom [38].

Morphological differences may accompany the venom dichotomy and be the second
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example of phenotypic integration of traits involved in envenomation [25]. Within the Sonoran

lineage, there was a significant difference in the interfang distance in Type A and Type B

individuals (Figure 2.8). Type A individuals had a larger distance between the fangs. There was

also a trend for fang length to be longer in Type A individuals (Figure 2.8). These morphological

differences between Type A and Type B venom need to be tested in each lineage to determine if it is

a broader pattern. If this pattern occurs across lineages it would run counter to what was predicted.

Instead of Type B venom having longer fangs for deeper penetration of venom, it may be that

the increased range of Type A fangs increases the likelihood of making contact and even a small

amount of venom could incapacitate the prey item. It is likely that kangaroo rats (Dipodomys) are

the primary diet component as they share similar distributions and field observations document

their interactions frequently [64]. Kangaroo rats are agile and have several defensive behaviors

that seem to be a response to snake predation so it is possible the quick action of the neurotoxic

venom in C. scutulatus is a response to rapidly incapacitating kangaroo rats [65–68]. This could

represent an arms race between Mojave Rattlesnakes and kangaroo rats as seen in other systems

[69, 70].

The ecological niche models were not identical between the two venom types but were

more similar than would be expected by chance. Only two of the fourteen model parameters were

significantly different between the two ENMs and they were the highest and lowest variables in

explaining variation. The most important variable, BIO 6, which is mean temperature of the coldest

month was significantly higher in the Type B model. Several hypotheses for the maintenance of

the two phenotypes involve temperature and suggest that in cooler areas, Type B venom should

be more common [21]. However, it is important to recognize that our current findings suggest the

strongest impact of temperature at the coldest part of the year. Thus, while neither venom type

may have a selective advantage during warmer parts of the year, the Type B venom may allow

for individuals to be active longer at the beginning and ends of the active season. There is some

evidence that Type B venoms speed up digestion at cooler temperatures [19, 71] but these data
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do not support greater digestive efficacy [23, 71]. If our hypothesis of longer active season is

correct, we would expect differing activity patterns for C. scutulatus with the two venom types.

Alternatively, another ecological parameter not tested in this study may differ such as proportion

of different prey items in the diets of individuals with the different venom types.

We found little to no evidence for phylogenetic or environmental variables being

responsible for the complex venom phenotypes in C. scutulatus. Venom phenotypes in

C. scutulatus are geographically structured, occur in ecologically similar environments, and

individuals are genetically similar at neutral loci. All three venom phenotypes are found within the

three lineages identified by Schield et al. [40] as part of panmictic populations (Figure 2.3). The

maintenance of these two phenotypes within the population in spite of these factors represents an

exemplary case of adaptation through balancing selection. Of the six types of balancing selection,

we can eliminate two. Heterozygote advantage is unlikely because the Type A + B phenotype is

rare and was found in less than 10% of individuals sampled. Sexual antagonism is also not possible

because there are no differences between males and females in venom phenotypes. Due to the lack

of ecological data, we were unable to distinguish between frequency-dependent selection, density

dependent selection, and local adaption over time and space on the venom type dichotomy in C.

scutulatus.

Linkage disequilibrium based on the genetic architecture of polymorphisms or similar

selective regimes can allow recombination through most of the genome but not the region(s)

controlling the trait [72]. Loci involved form a ’supergene’ complex that can be maintained in

the face of gene exchange [10, 73, 74]. Maladapted individuals are quickly removed from the

population and intermediate phenotypes would be rare due to low fitness [2]. The venom phenotype

dichotomy in C. scutulatus has characteristics of a supergene complex [72]. The integrated

phenotype (Type A + B) was rare (11 of 216 individuals - 5.1%) and the two subunits of MTX

are close to each other in the genome [75] and they are always found expressed together [32, 47].

The 15-17 SVMP loci are also located close to each other and Type A individuals have a deletion
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in the genome of all but four of them [11]. The SVMP and MTX regions are likely not physically

linked but it is possible for different regions in the genome to be in linkage disequilibrium and have

the same response to balancing selection [6]. When comparing the dichotomy across rattlesnake

species, the lack of phylogenetic signal also supports balancing selection [11] and may represent a

trans-species polymorphism [76, 77].

Conclusion

We found that the geographic pattern of the three venom phenotypes in C. scutulatus

is much more complex than previously hypothesized. We were able to rule out venom type

being fixed in genetic populations because only one population is potentially monomorphic.

Additionally, only one environmental variable, temperature of the coldest month, was both

statistically different between Type A and Type B venom and explained a significant amount

of variability in our environmental niche models. Overall, the models were not equal but

were significantly similar and ruled out elevation as being different between venom types. The

lack of genetic and environmental correlation with venom type coupled with the morphological

difference in interfang distance suggests that there may be intense local selection between Mojave

Rattlesnakes and their prey through venom resistance or behavioral modifications. The presence

of both phenotypes may also be type of historical contingency combined with selection. By using

range-wide sampling of C. scutulatus, we were able to rule out broad genetic patterns and clear

environmental differences as explaining the high level of venom variability found in this species

making it possible that their persistence is being maintained through balancing selection.
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CHAPTER 3: PHENOTYPIC VARIATION IN MOJAVE RATTLESNAKE

(CROTALUS SCUTULATUS) VENOM IS DRIVEN BY FOUR TOXIN

FAMILIES2

Abstract

Phenotypic diversity generated through altered gene expression is a primary mechanism

facilitating evolutionary response in natural systems. By linking the phenotype to genotype through

transcriptomics, it is possible to determine what changes are occurring at the molecular level.

High phenotypic diversity has been documented in rattlesnake venom, which is under strong

selection due to its role in prey acquisition and defense. Rattlesnake venom can be characterized

by the presence (Type A) or absence (Type B) of a type of neurotoxic phospholipase A2 (PLA2),

such as Mojave toxin, that increases venom toxicity. Mojave Rattlesnakes (Crotalus scutulatus),

represent this diversity as both venom types are found within this species and within a single

panmictic population in the Sonoran Desert. We used comparative venom gland transcriptomics of

nine specimens of C. scutulatus from this region to test whether expression differences explain

diversity within and between venom types. Type A individuals expressed significantly fewer

toxins than Type B individuals owing to the diversity of C-type lectins (CTLs) and snake venom

metalloproteinases (SVMPs) found in Type B animals. As expected, both subunits of Mojave toxin

were exclusively found in Type A individuals but we found high diversity in four additional PLA2s

that was not associated with a venom type. Myotoxin a expression and toxin number variation

was not associated with venom type, and myotoxin a had the highest range of expression of any

toxin class. Our study represents the most comprehensive transcriptomic profile of the venom

2Chapter Three was previously published. The reference for this paper is as follows:
Strickland JL, Mason AJ, Rokyta DR, Parkinson CL. 2018. Phenotypic variation in Mojave Rattlesnake (Crotalus
scutulatus) venom is driven by four toxin families. Toxins 10:135. doi:10.3390/toxins10040135
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type dichotomy in rattlesnakes and C. scutulatus. Even intra-specifically, Mojave Rattlesnakes

showcase the diversity of snake venoms and illustrate that variation within venom types blurs the

distinction of the venom dichotomy.

Keywords: C-type lectins; Hemorrhagic; Mojave toxin; Myotoxins a; Neurotoxic; Phospholipase

A2s; RNA-seq; Snake Venom Metalloproteinases

Introduction

Differential gene expression is a primary component with respect to the genotype and

phenotype that facilitates rapid evolutionary response in the face of changing environmental

pressures by generating phenotypic diversity [1]. Comparative transcriptomics has emerged as

the tool to understand these responses by linking the phenotype to the genotype through mRNA

sequencing. However, the molecular mechanisms underlying phenotypic divergence are difficult

to determine because there is usually no one-to-one link between the genotype and phenotype

due to pleiotropic and epistatic effects [2, 3]. Venom is an exception to this because it is a

complex trait that is highly tractable from the gene being expressed to the final protein product [4].

Venom is under strong selection as it aids in prey acquisition and/or serves as a predator deterrent

[5]. Changes within the venom phenotype occur through regulatory shifts in protein expression

[6], through loss of specific genes [7], duplication [8], and point mutations [9]. Transcriptomics

cannot detect all possible mechanisms resulting in phenotypic diversity, particularly with regard

to genes in the genome that are not expressed or have multiple copies [10]. However, for those

genes that are expressed, transcriptomics offer an effective means of linking sequence-based and

regulatory variation to changes in a composite phenotype [11]. With the increase in availability of

high-throughput proteomic, transcriptomic, and genomic resources, rattlesnakes and their venom

have become a model system to understand these mechanisms as they exhibit high phenotypic

diversity [12–15].
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Rattlesnake venoms can be broadly characterized by the presence or absence of

heterodimeric phospholipases A2 (PLA2s). Type A venoms contain this PLA2 which is a

β-neurotoxin responsible for highly toxic venom in individuals that express it. These venoms

also have little hemorrhagic activity due to low expression of snake venom metalloproteinases

(SVMPs). Type B venoms lack the neurotoxic PLA2 and are also characterized by high

hemorrhagic activity due to high expression of SVMPs [12, 13, 15–17]. When present, the PLA2

acts presynaptically to disrupt the nervous system and both the acidic and basic subunits of the

heterodimer must be expressed in the venom for the neurotoxic effect to occur. The origin of this

toxin and its effect is due to a single nucleotide substitution that allowed the interaction of the

two subunits to be energetically favorable [9], and no evidence exists of this PLA2 being in the

genome and not being expressed proteomically [18–20]. Examples include Mojave toxin (MTX)

in Crotalus scutulatus and its close relatives, Sistruxin in Sistrurus catenatus, Crotoxin in the

Crotalus durissus complex, and Canebrake toxin in Crotalus horridus [21–25]. Of the 48 species

of rattlesnakes (Crotalus and Sistrurus) currently recognized [26], 38 are considered as Type B,

one is Type A, and 9 are documented as polymorphic [25].

The lack of a phylogenetic pattern in venom phenotypes exhibited by rattlesnakes has

hampered our understanding of the evolution of this dichotomy. The most recent hypothesis,

based on genomic sequencing and ancestral state reconstruction, is that the ancestral state was

neurotoxic (Type A) and lineages no longer possessing the neurotoxic PLA2 (hereafter Mojave

toxin/MTX) have lost it [7]. Dowell et al. [7] examined three rattlesnake species (Crotalus

adamanteus, C. atrox, and C. scutulatus) and found that these three species have different sets

of PLA2s based on venom type, which is supported by current transcriptomic evidence. Rokyta

et al. [27] compared the venom gland transcriptomes of one individual from a Type B species (C.

adamanteus) to one Type A species (C. horridus) and found different sets of PLA2s. This was

further supported by Rokyta et al. [28] when they compared the venom gland transcriptomes of

one Type B individual and one Type A individual of C. horridus to examine intraspecific variation.
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They found different sets of PLA2s expressed in the transcriptome between Type A and Type

B C. horridus. Additionally, both studies found evidence to support the dichotomy. Type A

individuals had simpler venom in that fewer toxins were expressed and the primary difference

was the trade-off between MTX and SVMPs, but they also found differences in C-type lectins

(CTLs) and myotoxin a (hereafter MYO or myotoxins) [27, 28]. Like C. horridus, C. scutulatus

(Dowell et al. [7]’s neurotoxic/Type A representative), have well documented intraspecific venom

variability corresponding to the Type A and Type B venom phenotypes throughout their distribution

[20, 21, 29–33].

Mojave rattlesnakes (C. scutulatus) are known to be present from the deserts of the

southwestern United States and as far south as the state of Puebla in Mexico (Figure 3.1).

Crotalus scutulatus is comprised of three phylogeographic lineages [34]. The basal lineage

includes the subspecies Crotalus scutulatus salvini, which has Type A venom and is located at

the southern end of the distribution [12, 33]. The remaining two lineages are Crotalus scutulatus

scutulatus distributed in the Chihuahuan Desert and Sonoran/Mojave Deserts (hereafter, Sonoran),

respectively [34]. Both Type A and Type B venoms are found in the latter two lineages, and

although rare, snakes possessing a Type A + B phenotype (highly expressing both MTX and

SVMPs) have also been documented [18, 20, 31, 35, 36].

The venom phenotype complexity in C. scutulatus is best documented within the Sonoran

lineage [37–39]. Proteomic differences in the venom seem to be geographically fixed, but

intergradation occurs where Type A and Type B ranges come into contact [12, 31, 35, 39, 40].

In addition to the dichotomy between PLA2s and SVMPs, variability in other toxins has been

documented [36, 39]. Particularly, Massey et al. [39] described variation in myotoxins in one

small area of the distribution where some individuals had ∼25% of their proteome made up

of myotoxins. This finding prompted them to suggest further dividing venom types within C.

scutulatus into Types A–F to account for variation between PLA2s, SVMPs, and myotoxins,

and hypothesized that myotoxins occur when the Type A and Type B phenotypes come into
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Figure 3.1: Distribution of Type A and Type B venom in Arizona based on data from Wilkinson et
al. (triangles) and the nine transcriptome animals sequenced (stars). The shaded area is the estimated
distribution of Type B venom and the dark black line is the outline of the estimated distribution of Crotalus
scutulatus. CLP: Christopher L. Parkinson field number.

contact [39]. No phylogeographic structure exists and high gene flow occurs between individuals

regardless of venom type within this region based on allozymes [31], mitochondrial (ND4), and

nuclear (RADSeq) data [34], so genetic recombination at the contact zone is possible.

To examine the role of differential expression in the evolution of venom phenotypes,

we used Sonoran Desert Mojave Rattlesnakes because they are a microcosm for the diversity found

in rattlesnakes. Within the Sonoran lineage, high venom diversity exists and six phenotypes are

described [36, 39] with Type A and Type B venom phenotypes being geographically fixed despite

high gene flow [31, 34]. Moreover, the ancestral lineage within Mojave Rattlesnakes, C. scutulatus
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salvini, is neurotoxic [33, 34], as is the hypothesized ancestral rattlesnake [7]. Thus, mechanisms

underlying the presence or absence of Mojave toxin in other rattlesnake species may become more

apparent by focusing on C. scutulatus. Through comparative venom-gland transcriptomics, we

link the patterns found genomically and the diversity identified proteomically to test: (1) whether

myotoxin expression is localized to contact areas between individuals with Type A and Type B

venom; (2) if expression patterns within and between venom phenotypes are consistent among

species and individuals; and (3) whether individuals with Type A and Type B venom will express

distinct sets of PLA2s as hypothesized by Dowell et al. [7]. In this pursuit, we present the most

extensive transcriptomic sampling to date of Crotalus scutulatus and the A/B venom dichotomy.

Materials and methods

Ethics statement

Scientific collecting permits were issued by the New Mexico Department of Game and

Fish (3563, 3576) and the State of Arizona Game and Fish Department (SP628489, SP673390,

SP673626, SP715023). All interactions with animals were approved by the University of Central

Floridas Institutional Animal Care and Use Committee under protocol 13–17 W and followed the

American Society of Ichthyologists and Herpetologists ethical guidelines.

Sample collection

In the summers of 2013–2015, we collected Crotalus scutulatus from the Sonoran Desert

in Arizona and New Mexico. In sampling, we targeted areas described by Wilkinson et al. [31]

to have individuals with either Type A or Type B venoms (Figure 3.1). We collected a total

of 42 individuals and processed them in preparation for venom gland transcriptome sequencing.

First, we collected venom from each animal by tubing the individual in polycarbonate tubes (Get

Hooked L.L.C., Sanford, FL, USA) and allowed them to move through the tube until just their
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head was protruding. Then, they were able to voluntarily bite a sterile collection cup covered in

parafilm. Venom was collected, vacuum dried, and stored at −80 ◦C for future use. Four days

after venom was collected and transcription was maximized [41], we sacrificed the animal using

an intracoelomic injection of sodium pentobarbitol (100 mg/kg). We then removed the venom

glands and stored them separately in either RNAlater (Thermo Fisher Scientific, Waltham, MA,

USA) at 4 ◦C overnight or in liquid nitrogen before moving to −80 ◦C for long-term storage. Each

specimen was fixed in 10% buffered formalin for five days and then transfered to 70% ethanol and

deposited in a natural history museum (Table 3.1).

Table 3.1: Sample information for the nine specimens of C. scutulatus sequenced from the U.S. Sonoran
Desert. ASNHC = Angelo State Natural History Collection, San Angelo, Texas; ASU = Arizona State
University Natural History Museum, Tempe, Arizona; CLP = Christopher L. Parkinson field number.

Specimen Museum Venom Sex SVL Mass State County Sequencing Read Merged BioSample 1

ID ID Type (mm) (g) Platform Pairs Reads Accession

CLP1930 ASNHC14997 A F 724 195 NM Hidalgo MiSeq 15,649,085 13,083,925 SAMN08596271
CLP1936 ASU36035 A F 441 48 AZ Graham MiSeq 20,835,668 18,182,033 SAMN08596272
CLP1959 ASU36061 A M 730 204 AZ Yavapai MiSeq 20,577,779 17,091,930 SAMN08596273
CLP1961 ASU36062 A M 564 90 AZ Yavapai HiSeq 11,929,639 10,061,262 SAMN08596274
CLP1972 ASU36092 A M 635 126 AZ Pima MiSeq 13,168,704 11,521,499 SAMN08596275
CLP1831 ASU36089 B F 795 344 AZ Pima HiSeq 15,448,552 13,526,047 SAMN08596267
CLP1835 ASU36102 B F 685 146 AZ Pinal HiSeq 16,271,477 14,210,557 SAMN08596269
CLP2136 ASU36103 B M 1030 627 AZ Pinal MiSeq 7,771,613 6,864,270 SAMN08596277
CLP2142 ASU36104 B M 775 262 AZ Pinal MiSeq 10,039,268 8,893,097 SAMN08596278

1 National Center for Biotechnology Information under BioProject PRJNA88989.

Venom type determination

We determined the venom type of each individual using reverse-phased high performance

liquid chromatography (RP-HPLC) similar to Margres et al. [42]. We resuspended the dry venom

in water and removed insoluble material via centrifugation. We determined the concentration of the

venom utilizing the Qubit Protein Assay (Thermo Fisher Scientific) following the manufacturer’s

protocol on a Qubit 3.0 Fluorometer (Thermo Fisher Scientific). We then injected 100 µg of venom

onto a Jupiter C18 column (250 × 2 mm; Phenomenex, Torrence, CA, USA) using two solvents:

A = 0.1% trifluoroacetic acid (TFA) in water and B = 0.075% TFA in acetonitrile. RP-HPLC
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was conducted on a Beckman System Gold HPLC (Beckman Coulter, Fullerton, CA, USA). The

gradient began with 95% A and 5% B for 5 min followed by a 1% per minute linear gradient to

25% B. This was followed by a 0.25% per minute linear gradient to 55% B, a 2% per minute

linear gradient to 75% B, a 14% per minute linear gradient to 5% B, and then 5 min at the initial

conditions all at a 0.2 mL/min flow rate. Total run time was 180 min for each sample and the

effluent was monitored at 220 and 280 nm [43].

We were able to distinguish Type A and Type B venoms from each other based on the

presence or absence of MTX and SVMPs based on previous RP-HPLC profiles in C. scutulatus

[39] and under these conditions [28]. We selected a total of nine individuals, five with Type A

venom and four with Type B venom (Figure 3.2), for venom gland transcriptome sequencing. The

Type A individuals were selected to maximize the geographic breadth around the Type B zone in

central Arizona (Figure 3.1).

Venom gland transcriptome sequencing

For each transcriptome animal, total RNA was extracted from the left and right venom

glands independently using a TRIzol-based RNA extraction as previously described [43]. We first

diced approximately 100 mg of venom gland tissue into small pieces and added it to 500 µL of

TRIzol (Invitrogen, Carlsbad, CA, USA). We aspirated the tissue and TRIzol through a 20-gauge

needle at least 10× until the tissue was homogenized. We added 500 µL of fresh TRIzol and

added the entire solution to Phase Lock Gel Heavy tubes (5Prime 2302830, Quantabio, Beverly,

MA, USA). We added 200 µL of 20% chloroform, shook the solution, and centrifuged for 20 min

after three minutes of incubation to separate the RNA. RNA was isolated with isopropyl alcohol

precipitation overnight at −20 ◦C and washed with 75% ethanol. We estimated the concentration

of total RNA using the Qubit RNA BR Assay (Thermo Fisher Scientific) and evaluated the

quality and final concentration using an Agilent Bioanalyzer 2100 with an RNA 6000 Pico Kit

(Agilent Technologies, Santa Clara, CA, USA) following the manufacturer’s instructions. We
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Figure 3.2: RP-HPLC profiles for the nine specimens of C. scutulatus selected for transcriptome
sequencing. Type A individuals are in the left column and Type B individuals are in the right column.
α = acidic subunit of Mojave toxin; β = basic subunit of Mojave toxin; Blue bar = region where SVMPs
elute.
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then combined RNA from both glands in equal concentration for library preparation as there is no

difference in the transcriptome between the two glands [44].

We used 1 µg of total RNA for mRNA isolation and cDNA library preparation [45, 46].

We used the New England Biolabs (NEB, Ipswich, MA, USA) NEBNext Poly(A) mRNA magnetic

isolation kit (E7490S), the NEBNext Ultra RNA Library Prep Kit for Illumina (E7530), and the

NEBNext Multiplex Oligos for Illumina (E7335 -Index primer set 1) following the manufacturer’s

protocols with a target mean insert size of 370 bp, a fragmentation time of 15.5 min, and 14 PCR

cycles in the final enrichment step to yield the appropriate cDNA concentration. To do this, we

isolated RNA with poly-A tails from the total RNA with oligo-dT beads and then immediately

moved to first and second strand cDNA synthesis [47]. We used Agencourt AMPure XP PCR

Purification Beads (Beckman Coulter) to purify DNA throughout the protocol. We estimated the

concentration of our DNA library using the Qubit DNA BR Assay (Thermo Fisher Scientific)

and evaluated the quality and final concentration using the Bioanalyzer with an HS DNA Kit

following the manufacturer’s instructions (Agilent Technologies). KAPA qPCR was conducted at

the Florida State University Molecular Cloning Facility to determine the amplifiable concentration

of each sample. For the samples sequenced on the Illumina MiSeq in the Florida State University

Department of Biological Science DNA Sequencing Facility, we used the MiSeq Version 2 Reagent

Kit and sequenced the individuals separately except for CLP 2136 and CLP 2142 which were

pooled using equal amounts of amplifiable cDNA for each. If the sample was sequenced on the

Illumina HiSeq 2500 in the Florida State University College of Medicine Translational Science

Laboratory, we used the KAPA result to pool the samples to a final concentration of 10 nM so

that each library was equally represented. We assessed the concentration and quality of the pooled

DNA sample on the Bioanalyzer with the HS DNA Kit and performed an additional round of

KAPA PCR before sequencing. Both the MiSeq and HiSeq runs were 150 bp paired-end reads

(Table 3.1) [28].
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Transcriptome assembly

We first used the Illumina quality filter to remove low-quality reads, and because the insert

sizes for cDNA libraries were approximately 370 bp (170 bp without adapters), we were able to

merge the remaining overlapping 150-nt paired-end reads at their 3’ ends with PEAR v 0.9.6 [48].

Merged reads were then used for subsequent assemblies and analyses. We assembled venom gland

transcriptomes as described in Rokyta et al. [44]. To maximize the number of transcripts recovered,

we assembled the merged reads using DNAStar SeqMan NGen version 12.3.1 (DNASTAR Inc.,

Madison, WI, USA) with default settings except that only contigs with ≥200 assembled reads were

kept and Extender [49]. We then compared all assembled transcripts through both methods to a

venom toxin and nontoxin sequence database based on transcripts identified previously [27, 28,

43, 44, 49]. This database included 1047 toxins and 4516 nontoxins. Toxins were annotated if they

matched at ≥90% to the local database based on similarity in Cd-hit-est v.4.6 [50] and had at least

10X coverage across the transcript. The remaining unmatched contigs were compared via blastx

v. 2.2.30+ searches (minimum e-value of 10−4) to the curated Uniprot animal toxins database

(downloaded 16 November 2017) and annotated in Geneious v 10.1.2 (Biomatters Ltd., Auckland,

New Zealand) by checking for open reading frames that matched the blastx search [8, 27, 28, 49].

Signal peptides were checked for and identified with SignalP v 4.1 [51, 52].

The final set of possible toxin and nontoxin transcripts for each of the nine individuals

included anything that matched our local database or the Uniprot database that also had a complete

protein coding sequences. From these, we extracted the coding sequence from each transcript in

Geneious and then removed duplicates using the BBtools package Dedupe (Joint Genome Institute,

Department of Energy, Walnut Creek, CA, USA) implemented in Geneious. We screened for

and removed chimeric sequences in our toxins within each individual in two ways. First, we

mapped the merged reads to the identified transcripts using Bowtie2 v 2.3.0 [53] implemented

in Geneious and identified ones with irregular coverage including zero, multimodal, or uneven
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coverage. Second, we checked for recombination within each of the toxin families through

the ClustalW alignment algorithm [54] implemented in Geneious and identified transcripts that

matched exactly with two or more other sequences. Transcripts identified in both were removed.

The toxin and nontoxin transcripts remaining were clustered using Cd-hit at ≥98% (-c .98) and a

representative transcript was retained for each cluster. We then combined all toxin and nontoxins

from the nine individuals into two sets based on their venom type. We removed duplicates,

chimeras, and clustered as described above to get a master transcriptome for both Type A and

Type B C. scutulatus. Finally, these were combined, had duplicates and chimeras removed, and

clustered to get a master C. scutulatus transcriptome for final analyses.

Expression analysis

Relative expression of toxin and nontoxin genes was calculated by mapping merged reads

to the final transcript set with Bowtie2 [53, 55] in RSEM v 1.3.0 [56] on the Stokes HPC on the

UCF Advanced Research Computing Center using the default parameters. We used the transcripts

per million reads (TPM) data for each individual as our abundance estimates [11]. We imported

the dataset into RStudio v. 1.1.383 using R v. 3.4.2 (R Development Core Team 2006). We

then created a 10th and 11th “individual” by averaging the TPM values for the five A animals

(Average A) and four B animals (Average B). To eliminate 0 values from the dataset while

preserving the compositional nature of expression data, we used the cmultRepl function of the R

package zCompositions [57] then performed a centered log-ratio (clr) transformation to linearize

the compositional dataset while preserving rank order of the transcripts [11, 58].

To determine if there was differential expression of toxin genes within and among venom

types, we performed pairwise comparisons of each of the nine individuals as well as the Average

A and Average B transcriptomes. We used the nontoxin expression values to generate a null

distribution of expression divergence [44]. This was done by taking the absolute value of the

difference in the transformed data for the two individuals being compared and finding the 99th
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percentile value. Any toxin outside of this value was identified as an outlier to the null distribution.

For each pairwise comparison, we used the Spearman’s rank correlation coefficient (ρ), Pearson’s

correlation coefficient (R), and a coefficient of determination (R2) to look at how similar the

individuals being compared were. Finally, we tested for differential expression between our two

venom types and between males and females using DESeq v 1.26.0 [59] and DESeq2 v. 1.14.1

[60] with a false discovery rate threshold of 0.1. We used the expected counts generated in RSEM

and used the effective length to normalize the data. Toxins were assigned names based on toxin

family and then ranked in order of highest average expression across all individuals for all families

except PLA2s. These were named to match the PLA2s identified by Dowell et al. [7].

In RSEM, it is possible for a transcript that is not in the transcriptome to have a non-zero

value. This is due to unmapped reads mapping to dissimilar sequences or, more commonly, highly

similar regions among toxins within a specific family having reads dispersed among the different

representatives. To determine which toxin transcripts were present in each individual and not an

artifact of poor mapping, we aligned merged reads for each individual to the C. scutulatus master

transcriptome using Bowtie2 implemented in Geneious. Any toxin that had more than 10% of

the sequence with less than 5× coverage were considered absent in the transcriptome for that

individual.

PLA2 diversity

We tested the Dowell et al. [7] hypothesis of PLA2 gene loss in C. scutulatus by assessing

the diversity of PLA2s in the nine individuals. We downloaded the four published genome

fragments from GenBank (KX211993-KX21996) and extracted the mRNA sequence from all

annotated PLA2s. We clustered all sequences using Cd-hit at ≥90% (-c .90) and a representative

transcript was retained for each cluster. We then used Bowtie2 to align merged reads from each

individual to the 10 resulting PLA2s to determine which of the PLA2s described in Dowell et al.

[7] were present in C. scutulatus. We followed the same rule as above where there could not be
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less than 5 coverage over 10% of the transcript.

Data availability

Raw data for the nine venom gland transcriptomes were submitted to the National Center

for Biotechnology Information (NCBI) Sequence Read Archive (SRA) accession SRP011323.

BioSample accession numbers are provided in Table 3.1 and are under BioProject PRJNA88989.

The consensus transcriptome was submitted to the NCBI Transcriptome Shotgun Assembly (TSA)

database. This TSA project has been deposited at DDBJ/EMBL/GenBank under the accession

GGIP00000000. The version described in this paper is the first version, GGIP01000000.

Results

Venom gland transcriptomes of C. scutulatus

We sequenced the venom gland transcriptomes of nine C. scutulatus individuals from

the Sonoran Desert in the U.S.A. (Table 3.1, Figure 3.1). These individuals were chosen

after determining their venom phenotype using RP-HPLC (Figure 3.2) to maximize the venom

variation in C. scutulatus. Using 150 bp paired-end transcriptome sequencing on the Illumina

MiSeq and HiSeq platforms, we generated over 131 million raw read pairs that yielded over

113 million merged reads that passed the quality filter, and where the 3′ ends overlapped

(Table 3.1). The nine individuals had an average of 12.6 ± 3.7 million merged reads. After

assembly, annotation, duplicate and chimera removal, and clustering, our consensus C. scutulatus

transcriptome consisted of 1889 putative nontoxins and 75 putative toxins from 17 toxin families

(Table 3.2). To be considered present in the transcriptome, toxins had to have at least 5X read

coverage over 90% of the total transcript sequence after mapping. Of the 75 toxins identified,

three were exclusively found in animals with Type A venom and 17 were exclusively found in

individuals with Type B venom (Table 3.3). Type A individuals had an average of 48.6 ± 6.1
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toxins and Type B individuals had 65.6 ± 2.4 toxins. This difference was found to be significant

based on a Mann–Whitney–Wilcoxon test (W = 0, df = 7, p = 0.019). Only 33 toxins were in all

individuals and another 22 toxins were found in both Type A and Type B individuals but not in all

nine individuals (Table 3.3).

Toxin diversity in C. scutulatus

We found high intraspecific diversity in the venom gland transcriptome both within and

between Type A and Type B venoms in C. scutulatus (Figure 3.3). Much of the diversity was

due to the presence and expression differences between Type A and Type B individuals in three

toxin families: PLA2s (including MTX), SVMPs, and CTLs. However, we document the first

case of CTLs being highly expressed in the transcriptome of Type A animals. When comparing

the average transcriptomes for Type A and Type B, the dichotomy in toxins is clear (Figure 3.4).

However, there were toxins that demonstrated high variability in presence and expression both

within and among venom types. Myotoxins had the most variation in expression of a toxin family

not associated with venom type (Figure 3.3). In two Type A individuals (Christopher L. Parkinson

field number CLP1972 and CLP1936) and one Type B individual (CLP1831), MYO-1 was the most

highly expressed toxin in the transcriptome and was the second highest in CLP1835 (Figure 3.3).

The most diverse toxin family was the CTL family, with 23 different putative toxins identified,

followed by snake venom serine proteases (SVSPs) with 14, SVMPIIIs with 10, and myotoxins

with 8 (Table 3.2).

Myotoxin a diversity

Myotoxins were the fourth most diverse toxin family with eight different toxins identified

and presence and expression levels were highly variable among individuals (Figure 3.3). The

four most highly expressed myotoxins were not associated with venom type nor were myotoxins

associated with contact zones between the two types. CLP1835 had 10.1% of its toxin expression
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Table 3.2: Transcripts per million reads (TPM) values for 75 toxins identified in the nine C. scutulatus
individuals. TPM values were generated in RSEM [56] with Bowtie2 [53]. CRISP: cysteine-rich secretory
protein; BPP: bradykinin potentiating peptide; CTL: C-type lectin; HYAL: hyaluronidase; KUN: Kunitz
peptide; LAAO: L-amino-acid oxidase; MYO: myotoxin; NGF: nerve growth factor; NUC: 5’ nucleotidase;
PDE: phosphodiesterase; PLB: phospholipase B; SVMP: snake venom metalloproteinase; SVSP: snake
venom serine protease; VEGF: vascular endothelial growth factor.

Type A Type B

Toxin CLP1930 CLP1936 CLP1959 CLP1961 CLP1972 CLP1831 CLP1835 CLP2136 CLP2142
BPP-1 14,0915.97 42,576.13 83,149.6 63,491.95 45,783.43 15,2393.13 12,6252.15 20,6001.59 14,0706.64
CRISP-1 4,835.29 4,825.49 15,386.6 7,108.63 5,075.55 4,047.71 4,625.53 2,879.87 3,386.38
CTL-1 0.00 3.65 14,629.20 25,897.00 0.00 17,494.71 26,507.89 18,545.42 44,489.80
CTL-2 0.00 1.98 12,439.65 20,441.04 0.00 18,825.37 22,039.29 18,679.67 43,789.90
CTL-3 1.12 0.00 0.31 10.11 0.00 12,805.18 13,046.93 13,965.96 21,899.71
CTL-4 0.00 0.45 0.00 3.20 0.00 12,605.98 15,574.61 11,584.92 16,750.81
CTL-5 0.41 2.52 7,965.07 10,951.63 0.00 4,218.11 11,546.02 10,057.03 10,667.89
CTL-6 0.40 1.26 11,399.06 12,437.39 0.00 3,461.60 3,578.61 9,394.12 10,374.16
CTL-7 0.38 1.44 7,423.12 8,508.27 0.00 4,653.94 10,065.04 9,327.24 10,662.63
CTL-8 22.39 8.78 7,498.38 9,084.97 232.76 2,273.74 4,494.79 6,799.15 11,587.90
CTL-9 3,859.43 4,539.36 9,932.82 10,002.06 3,012.54 1,561.25 2.48 1.52 2,634.56
CTL-10 10.63 4.93 7,658.06 9,102.48 84.69 2,499.90 3,293.65 6,962.90 3,823.74
CTL-11 0.00 0.47 2,744.48 3,752.74 0.00 2,814.96 6,914.87 4,523.03 5,131.21
CTL-12 3,604.05 3,074.72 6,797.37 6,941.60 2,123.74 1,975.31 14.78 24.72 40.48
CTL-13 0.00 0.41 2,379.11 2,630.23 0.00 947.76 3,008.94 1,948.93 2,122.28
CTL-14 0.88 171.20 883.68 555.05 147.92 637.66 1,994.47 2,157.31 2,572.39
CTL-15 995.02 292.59 809.42 726.11 910.53 1,168.87 748.84 1,791.77 1,309.00
CTL-16 1,246.38 418.83 2,132.33 2,473.36 472.09 433.29 0.55 234.84 342.16
CTL-17 0.00 0.00 0.41 8.06 0.00 4.34 10.41 51.78 6,202.50
CTL-18 325.45 305.49 4,026.88 247.89 201.87 279.93 274.45 36.75 527.21
CTL-19 28.46 1,045.78 2,968.50 60.46 395.23 49.87 213.36 285.33 172.05
CTL-20 0.00 0.00 0.00 0.87 0.00 0.00 0.00 1.60 1,233.72
CTL-21 0.40 0.00 0.53 11.61 0.00 59.06 27.62 511.53 361.34
CTL-22 0.00 0.00 0.38 29.57 0.00 51.73 54.86 280.15 438.68
CTL-23 3.52 9.49 15.25 7.90 45.56 5.09 13.42 1.34 9.87
HYAL-1 557.54 304.13 1,309.25 379.62 221.07 468.14 408.71 436.41 222.96
KUN-1 178.35 48.25 168.92 123.70 71.34 107.63 147.09 195.49 122.11
KUN-2 14.96 4.32 13.36 14.48 5.19 20.25 20.77 20.98 12.38
LAAO-1 5,188.99 2,817.21 20,588.57 9,120.95 1,626.36 5,792.61 10,578.38 6,868.00 5,503.11
MYO-1 1,220.73 549,957.26 1,072.89 27.84 457,306.12 209,616.39 44.93 44.14 29,489.77
MYO-2 6,119.03 49,381.65 2,467.88 3,325.84 95,421.49 27,536.10 2,903.51 6,987.97 3,925.07
MYO-3 0.00 0.00 0.00 34,019.55 0.00 0.00 87,549.28 30.87 33,694.44
MYO-4 5,843.47 3,702.71 12,274.75 19,693.00 497.74 1,611.10 10,899.95 2,894.17 4,002.29
MYO-5 0.00 82.14 0.00 0.00 0.00 44.63 0.00 43.19 35,485.73
MYO-6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2,706.33
MYO-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1,805.60
MYO-8 3.83 960.47 8.14 0.00 0.00 0.00 0.00 0.00 0.00
NGF-1 2,021.69 761.53 5,039.75 2,527.51 2,023.71 1,592.10 2,240.15 2,459.36 2,108.54
NUC-1 779.38 366.04 1,526.31 945.96 368.05 610.32 960.93 1,068.46 502.67
PDE-1 445.18 229.67 691.74 312.13 236.13 209.66 277.73 208.12 249.61
Pla2gA1 25,306.99 39,764.45 61.41 46.36 2.19 4.48 50,036.23 0.00 0.61
Pla2gB1 3.44 7.16 29,405.58 14.34 1.43 37,548.76 46,634.43 51,949.04 31,992.11
Pla2gK 0.00 0.30 1,793.61 3.04 0.00 1,356.66 2,971.25 1,123.48 807.59
Pla2gA2-MTXA 274,390.23 80,733.96 102,588.14 199,107.20 102,677.33 4.93 65.65 0.00 0.00
Pla2gB2-MTXB 133,822.75 43,410.96 48,028.34 138,470.84 42,571.19 3.73 30.28 0.00 0.00
PLA2-6 21,306.42 22.86 106,639.29 90,911.79 51,893.58 60,760.91 56,428.98 129,974.00 93,064.76
PLB-1 837.02 189.30 1,170.66 1,059.23 597.70 509.37 745.22 346.61 182.83
SVMPII-1 0.00 0.84 0.60 122.86 3.30 23,801.48 32,375.22 24,762.53 24,369.30
SVMPIII-1 0.00 1.20 1.83 262.28 9.58 58,107.40 69,839.79 69,573.48 39,410.80
SVMPIII-2 8.60 3,074.27 61.30 2,524.10 479.43 3,581.65 14,465.14 2,364.36 4,089.81
SVMPIII-3 0.01 0.79 1.32 206.34 6.17 6,920.71 8,968.12 7,129.26 6,456.84
SVMPIII-4 1,497.61 1,018.71 4,893.89 2,711.96 276.26 3,637.08 4,729.55 5,060.59 2,488.36
SVMPIII-5 6.65 4.39 4.51 2.02 0.00 1,293.10 2,689.88 3,646.35 1,942.60
SVMPIII-6 19.52 12.50 6.89 9.20 2.20 274.19 3,250.08 2,739.21 663.84
SVMPIII-7 0.02 0.17 0.57 16.36 0.53 643.82 2,557.44 2,534.21 994.18
SVMPIII-8 0.00 0.00 0.00 0.07 0.00 44.33 50.02 4,977.26 25.70
SVMPIII-9 0.00 0.00 0.00 0.07 0.00 279.91 2,000.74 1,017.78 1,092.48
SVMPIII-10 0.00 0.01 0.00 0.19 0.00 181.26 751.33 220.24 404.67
SVSP-1 25,158.51 15,910.07 30,344.55 17,038.01 10,432.56 21,732.91 32,652.46 20,711.71 26,686.11
SVSP-2 42,979.80 20,190.56 35,325.26 21,389.97 14,037.74 16,208.71 10,861.87 6,624.20 6,521.70
SVSP-3 24,402.09 7,206.88 34,812.15 9,121.20 3,774.14 19,942.19 20,070.68 20,385.25 15,388.82
SVSP-4 29,001.28 5,094.40 18,056.16 9,305.84 1,916.43 8,654.88 9,431.62 7,042.42 8,412.05
SVSP-5 37,090.47 5,414.68 21,446.17 8,874.54 1,346.38 1,863.68 5,619.86 2,373.32 3,563.03
SVSP-6 11,830.88 7,170.10 15,765.87 9,603.42 4,485.31 8,500.16 12,274.97 6,642.73 10,481.74
SVSP-7 7,289.06 2,382.92 5,895.10 3,081.90 1,513.33 4,024.78 2,685.70 1,659.02 1,379.27
SVSP-8 4,813.04 2,087.12 5,900.27 2,021.75 407.33 2,169.99 2,985.67 1,994.54 1,945.35
SVSP-9 4,048.20 724.15 1,391.55 1,288.30 1,231.13 3,097.60 3,252.51 2,154.34 3,169.89
SVSP-10 4,038.45 1,189.72 4,293.59 1,766.03 84.61 1,208.22 2,752.40 2,430.80 2,459.42
SVSP-11 5,777.06 1,464.77 2,503.34 1,599.56 962.33 2,311.84 3,050.76 478.40 1,664.01
SVSP-12 3,674.93 1,456.06 3,014.74 2,310.02 565.32 2,209.80 1,897.49 1,761.75 1,281.51
SVSP-13 3,238.56 798.05 3,159.21 1,118.98 287.65 1,467.22 709.22 982.38 1,198.93
SVSP-14 1,558.37 620.40 1,082.12 667.47 38.63 762.05 289.19 599.21 693.61
VEGF-1 4,255.45 10,557.63 14,271.01 11,732.75 7,493.65 20,763.31 9,620.66 12,596.93 10,796.52
VEGF-2 134.91 18.84 82.27 95.20 3.90 96.12 72.87 313.81 91.89
Vespryn-1 4,976.55 718.69 3,827.06 1,024.92 1,089.92 2,106.99 2,068.47 922.31 582.28
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Table 3.3: Presence and absence data for toxin transcripts that were not found in all individuals.
Toxins highlighted in dark blue were found in all Type B individuals but never in Type A individuals.
Toxins highlighted in dark red were found in all Type A individuals but never in Type B individuals.
Toxins highlighted in light blue or light red were only found in individuals of that venom type but were
not found in all individuals. The last row is the number (out of 75) of toxins present in total, which includes
33 toxins present in all individuals not listed in this table. To be present in the transcriptome, toxins had to
have at least 5× coverage over 90% of the transcript. MTXA: acidic subunit of Mojave toxin; MTXB: basic
subunit of Mojave toxin.

Type A Type B

Toxin CLP1930 CLP1936 CLP1959 CLP1961 CLP1972 CLP1831 CLP1835 CLP2136 CLP2142
CTL-1 - - + + - + + + +
CTL-2 - - + + - + + + +
CTL-3 - - - - - + + + +
CTL-4 - - - - - + + + +
CTL-5 - - + + - + + + +
CTL-6 - - + + - + + + +
CTL-7 - - + + - + + + +
CTL-8 - - + + + + + + +
CTL-9 + + + + + + - - +
CTL-10 - - + + + + + + +
CTL-11 - - + + - + + + +
CTL-12 + + + + + + + - -
CTL-13 - - + + - + + + +
CTL-14 - + + + + + + + +
CTL-16 + + + + + + - + +
CTL-17 - - - - - - - + +
CTL-19 + + + + + - + - +
CTL-20 - - - - - - - - +
CTL-21 - - - - - + + + +
CTL-22 - - - - - + + + +
CTL-23 + + + + + + + - +
MYO-3 - - - + - - + + +
MYO-5 - + - - - + - + +
MYO-6 - - - - - - - - +
MYO-7 - - - - - - - - +
MYO-8 - + + - - - - - -
Pla2gA1 + + + - - - + - -
Pla2gB1 - - + - - + + + +
Pla2gK - - + - - + + + +
Pla2gA2-MTXA + + + + + - - - -
Pla2gB2-MTXB + + + + + - - - -
PLA2-6 + - + + + + + + +
SVMPII-1 - - - - - + + + +
SVMPIII-1 - - - - - + + + +
SVMPIII-2 - + + + + + + + +
SVMPIII-3 - - - - - + + + +
SVMPIII-5 - - - - - + + + +
SVMPIII-6 - - - - - + + + +
SVMPIII-7 - - - - - + + + +
SVMPIII-8 - - - - - - - + -
SVMPIII-9 - - - - - + + + +
SVMPIII-10 - - - - - + + + +
Toxins Present 42 45 56 53 45 64 66 64 69
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Figure 3.3: Representation of the toxins in the venom gland transcriptome for nine C. scutulatus specimens.
Type A are on the left and Type B are on the right, and are ranked by the increasing amount of myotoxins.
The bar graphs represent each of the 75 toxins identified. Any toxin that does not have a black bar under it
did not meet the criteria for presence in the transcriptome. The pie charts represent the proportion of each
toxin family in the venom gland transcriptome.
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Figure 3.4: Representation of the average Type A and Type B venom gland transcriptome of C. scutulatus
from the Sonoran Desert. These were generated by averaging the TPM values of each individual within a
venom type. For both Type A and Type B, the majority of the highly expressed transcripts are toxins. The
bar graphs with colors represent each of the 75 toxins identified. Any toxin that does not have the black
bar under it did not meet the criteria for being present in the transcriptome of any individual of that venom
type. The pie charts represent the proportion of each toxin family in the venom gland transcriptome. Type
A individuals have very few SVMPs and the Type B individuals are lacking neurotoxic phospholipase A2

(PLA2), Mojave toxin.
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comprised of myotoxins and was closest to the center of the Type B distribution. Additionally,

CLP2136 and CLP2142 were found very close to each other but CLP2136 had little if any

myotoxin expression. The percentage of myotoxins in the toxin transcriptome ranged from 1.0%

to 60.4% and was not associated with size or sex.

Expression differences in Type A and Type B C. scutulatus

Toxin family expression levels were highly variable among families and many differed

between venom types. (Figure 3.5). The PLA2s that comprise MTX were highly expressed in

Type A, with very low expression in Type B as expected. The opposite was true for the SVMPII

and the SVMPIIIs. These correspond to the major differences between Type A and Type B venom

(Figure 3.4 and 3.5). For most of the toxin families, there was variability within venom types

as illustrated by the error bars in Figure 3.5. The non-MTX PLA2s, CTLs, MYOs, and vascular

endothelial growth factors (VEGFs) all had almost completely overlapping standard deviations.

Other toxin families such as bradykinin potentiating peptide (BPP), cysteine-rich secretory protein

(CRISP), L-amino-acid oxidase (LAAO), and nerve growth factor (NGF) did differ between venom

types slightly but had much tighter variation in expression levels within each venom type.

Using the pairwise comparisons of all Type A individuals to all Type B individuals

(20 comparisons), we found many toxins that differed between Type A and Type B individuals

(Table 3.4). Many of these corresponded with the presence/absence variation between PLA2s and

SVMPs but others were in toxins expressed in all individuals. Our DESeq1 and DESeq2 analyses

were more conservative in identifying toxins that differed between Type A and Type B venoms,

primarily identifying toxins that had dramatic presence/absence differences in the transcriptome.

DESeq1 identified 20 toxins and DESeq2 identified 26 toxins that were significantly different

but 13 and 19 were toxins that were exclusively found in one venom type by each program,

respectively. Only Pla2gB1, SVSP-2, and CTL-12 were identified among the remaining toxins

by both analyses. Of the 33 toxins present in all nine individuals, only CRISP-1, phospholipase
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B (PLB-1), and SVSP-5 were identified as differentially expressed in DESeq2. By comparison,

the only toxin identified as having significantly different expression between males and females

in DESeq1 and DEseq2 was PLA2gA1, which is likely an artifact of sampling rather than an

indication of sexual dimorphism.

For the pairwise comparison of the Average A and Average B transcriptomes, the relative

expression of each of the nontoxins was highly correlated (Figure 3.6). However, toxin expression

between venom types was poorly correlated. This was driven by the two subunits of MTX, SVMPs,

CTLs, and myotoxins. The remaining toxins within the toxin families were highly correlated

between the venom types. This includes BPP, CRISP, hyaluronidase (HYAL), Kunitz peptide

(KUN), LAAO, NGF, 5′ nucleotidase (NUC), phosphodiesterase (PDE), PLB, SVSPs, VEGF, and

Vespryn.

Figure 3.5: Average expression of toxin families with respect to Type A and Type B C. scutulatus
after centered log-ratio (clr) transform. Error bars are the standard deviation around the mean of the
clr-transformed data.
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Nontoxins
n=1889
ρ=0.90
R=0.92
R2=0.86

Toxins
n=75
ρ=0.47
R=0..29
R2=0.09

Figure 3.6: Pairwise comparison of the average Type A and Type B venom gland transcriptomes using the
centered log-ratio (clr)-transformed TPM data. SVSPs and toxin families that only have one toxin are not
labeled. SVSPs did not differ between the two transcriptomes. The red line is the line of best fit through the
non toxins and the dashed black lines are the 99% confidence around that line. Any transcript outside the
dashed black lines was identified as an outlier. Anything above the upper line is overexpressed in Type B
and anything below the lower line is overexpressed in Type A.

PLA2 diversity

Dowell et al. [7] annotated nine PLA2s with mRNA coding sequence in the four sequenced

genome fragments. Of these, only five were expressed in the venom gland transcriptome and the

remaining four were exclusively found in the genomes of the species they sequenced (see Figure
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Table 3.4: Differential expression analyses for toxins between the nine Type A and Type B C. scutulatus
as well as the average Type A (AveA) and Type B (AveB) transcriptomes. The UpB and UpA count data
were generated by identifying outlier transcripts in the pairwise comparisons of the Type A and Type B
individuals (maximum of 20 comparisons). The last four columns are the data from DESeq and DESeq2
identifying differential expression between the two venom types. Toxins highlighted in dark red were found
in all Type A individuals but never in Type B individuals. Toxins highlighted in light blue or light red were
exclusively found in individuals of that venom type but were not found in all individuals. Toxins highlighted
in green were found in all nine individuals. Toxins with NA for Padj only had one individual in one of the
treatments with the toxin so it was not possible to calculate in DESeq2.

Toxin UpB UpA ∆B−A B to A AveB to AveA Log2∆ DESeq1 Padj DESeq1 Log2∆ DESeq2 Padj DESeq2
CTL-3 20 0 20 Up Up 12.76 6.55E-42 12.73 1.11E-20
CTL-4 20 0 20 Up Up 14.14 5.91E-96 14.13 1.03E-111
SVMPII-1 20 0 20 Up Up 9.94 1.96E-71 9.97 N/A
SVMPIII-1 20 0 20 Up Up 9.97 1.01E-71 10.00 N/A
SVMPIII-10 20 0 20 Up Up 13.17 6.48E-16 13.28 4.27E-40
SVMPIII-3 20 0 20 Up Up 7.35 2.89E-48 7.38 N/A
SVMPIII-5 20 0 20 Up Up 8.96 8.76E-42 8.96 4.42E-16
SVMPIII-6 20 0 20 Up Up 6.86 5.44E-04 6.86 5.30E-22
SVMPIII-7 20 0 20 Up Up 8.75 6.91E-16 8.79 1.00E-08
SVMPIII-9 20 0 20 Up Up 16.23 1.76E-20 15.89 2.41E-48
CTL-21 19 0 19 Up Up 6.65 2.60E-02 6.58 3.92E-03
Pla2gB1 19 0 19 Up Up 3.06 6.07E-08 3.04 N/A
CTL-22 18 0 18 Up Up - - - -
CTL-14 16 0 16 Up Up 2.22 9.75E-02 - -
Pla2gK 16 0 16 Up Up - - 2.32 N/A
CTL-1 15 0 15 Up Up - - - -
CTL-2 15 0 15 Up Up - - - -
CTL-11 14 0 14 Up Up 2.01 7.05E-02 - -
SVMPIII-2 14 0 14 Up Up - - - -
CTL-7 12 0 12 Up Up - - - -
CTL-17 10 0 10 Up Up - - 10.07 N/A
MYO-5 9 1 8 Up Up - - 8.04 N/A
MYO-3 9 2 7 Up Up - - - -
CTL-20 5 0 5 Up Up - - 11.01 N/A
MYO-6 5 0 5 Up Up - - 23.74 N/A
MYO-7 5 0 5 Up Up - - 23.49 N/A
SVMPIII-8 5 0 5 Up Up - - 15.96 N/A
MYO-2 4 3 1 Up Down - - - -
CRISP-1 0 0 0 No Difference - - - -1.32 3.16E-03
CTL-19 6 8 -2 Down Down - - - -
MYO-1 7 9 -2 Down Down - - - -
PLB-1 0 2 -2 Down - - - -1.07 7.76E-02
SVSP-2 1 4 -3 Down Down -1.77 9.50E-03 -1.77 5.11E-04
MYO-8 0 4 -4 Down Down - - -23.22 N/A
SVSP-5 1 5 -4 Down Down - - -2.32 5.29E-03
CTL-18 0 5 -5 Down Down - - - -
CTL-23 0 7 -7 Down Down - - - -
CTL-16 0 9 -9 Down Down -2.49 5.78E-04 - -
CTL-9 0 11 -11 Down Down -2.73 2.56E-06 - -
CTL-12 0 15 -15 Down Down -3.36 1.14E-09 -3.35 7.88E-02
Pla2gA2-MTXA 0 20 -20 Down Down -13.55 8.76E-42 -13.51 1.18E-35
Pla2gB2-MTXB 0 20 -20 Down Down -13.65 5.75E-38 -13.61 2.10E-34
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1 in [7]). We found evidence for all five of the expressed PLA2s in our transcriptomes as well

as a sixth PLA2 (PLA2-6) not recovered in Dowell et al. [7] (Table 3.5). As expected, the two

ancestral mammal homolog PLA2s, Pla2-e and Pla2-f, were not expressed in the venom gland.

In agreement with Dowell et al. [7] we did not find evidence for Pla2-gC1 identified in all three

genomes nor Pla2-d identified in the C. adamanteus genome being expressed. No PLA2 was found

in all individuals and one individual (CLP1959) had evidence for all six PLA2s being present

although Pla2gA1 had very low expression compared to other individuals and PLA2s (Table 3.5).

In CLP1835, the sequence for the Pla2gA1 was not the same as the other C. scutulatus individuals

that expressed it. When blasted against the non-redundant nucleotide database in GenBank, it

matched the sequence of Crotalus viridis (Accession AF403134) which is in the sister species

complex to C. scutulatus. The sequence had eight nonsynonymous nucleotide changes compared

to the other three C. scutulatus individuals that expressed Pla2gA1 (Table 3.5).

Table 3.5: Presence or absence data for PLA2s identified by Dowell et al. [7] (the first five PLA2s) and the
sixth PLA2 identified in this study. The first four individuals were the specimen used in Dowell et al. [7]
and only presence/absence is indicated. The last nine individuals are C. scutulatus specimens sequenced
in this study with venom type indicated and transcripts per million reads (TPM) values given when that
PLA2 is present. The one TPM value denoted by an * had eight nonsynonymous nucleotide changes in the
sequence compared to the other three C. scutulatus specimens and matched that of Crotalus viridis (Genbank
accession AF403134).

Specimen Pla2gA1 Pla2gB1 Pla2gK Pla2gA2-MTXA Pla2gB2-MTXB PLA2-6
C. atrox + + + - - -
C. atrox + + + - - -

C. adamanteus + + - - - -
C. scutulatus + - - + + -
CLP1930A 55212.77 - - 603261.66 294142.52 47256.79
CLP1936A 242536.57 - - 492462.39 264770.94 -
CLP1959A 214.27 101885.11 6162.67 355273.29 166449.59 369588.5
CLP1961A - - - 464139.64 323205.86 212285.6
CLP1972A - - - 520518.57 216000.5 263309.5
CLP1831B - 370853.15 13305.52 - - 600310.86
CLP1835B 320034.14* 297244.14 18761.21 - - 58732.73
CLP2136B - 283162.92 6014.01 - - 709003.82
CLP2142B - 253634.76 6285.41 - - 738317.63
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Discussion

The major differences in the venom gland transcriptome within and between Type A and

Type B C. scutulatus from the Sonoran Desert were driven by the presence or absence of PLA2s

including Mojave toxin (MTX), snake venom metalloproteinases (SVMPs), C-type lectins (CTLs),

and myotoxins (MYO) (Figure 3.3). Myotoxin expression was not associated with the contact

zones between the two venom types as hypothesized by Massey et al. [39]. We did not find

evidence for distinct sets of PLA2s for Type A and Type B venom types as hypothesized by Dowell

et al. [7] using three species (two Type B/one Type A). Additionally, one individual expressed all

six PLA2s (Table 3.5). We also found evidence for a PLA2 allele in one C. scutulatus individual that

was more similar to a congener, C. viridis, than the other eight C. scutulatus specimens. The allele

could have originated from interspecific hybridization with a member of the C. viridis species

complex. Other works have suggested introgression through hybridization as a mechanism for

propagating toxin genes among species. For example, it is hypothesized that the C. horridus MTX

homolog, canebrake toxin, was introduced by intergeneric hybridization with Sistrurus catenatus

[28]. These data, taken together, support non-allelic homologous recombination (NAHR) as an

important mechanism driving PLA2 diversity in C. scutulatus venom and rattlesnakes more broadly

[7].

Expression differences between Type A and Type B venom were due to the

presence/absence of specific toxins (Table 3.4). Type A venoms were simpler in that they contained

fewer toxins overall, driven by the lack of SVMP and CTL expression. The presence/absence

expression difference between MTX and SVMPs is the characteristic difference between the Type

A (neurotoxic) and Type B (hemorrhagic) venom dichotomy seen within rattlesnakes. As expected,

both subunits of the neurotoxic PLA2 (Mojave toxin) were exclusively found in Type A individuals,

and Type B individuals had a high diversity of SVMPs [61, 62]. All but two SVMPs (SVMPIII-2

and SVMPIII-4) were absent from all Type A individuals which is similar to what was found in
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the Type A C. horridus [28]. SVMPIII-4 was found in all nine individuals and SVMPIII-2 was

missing in CLP1930 (Table 3.3).

C-type lectins (CTLs) had the highest number of unique toxins within a family, with 23

different toxins (Table 3.2). Only two were found in all nine individuals, six were exclusively

found in Type B individuals, and the remaining 15 were found in different combinations regardless

of venom type (Table 3.3). CTLs are diverse in Type B species and affect coagulation factors,

increasing hemorrhaging [27, 63]. Interestingly, two of the Type A individuals, CLP1959 and

CLP1961, had high expression of CTLs at 10.2% and 12.4%, respectively where the other three

individuals had almost no expression (≤1.0%, Figure 3.3). This is the first time that CTLs have

been documented to be highly expressed in a Type A individual. In the Type A C. horridus, CTLs

only accounted for 0.2% of the toxin reads [27].

Massey et al. [39] documented high intraspecific variability of myotoxin in the proteome

of C. scutulatus, independent of venom type. Because of this, they suggested C. scutulatus venoms

be further divided into six venom types: Type A, Type A + M, Type B, Type B + M, Type A +

B, and Type A + B + M. The addition of these myotoxins in the venom decreased the lethal dose

50 (LD50) values and work to disrupt sodium channels in muscle cells causing muscle paralysis

[39, 64]. Our transcriptome data support further differentiating venom types to account for the

diversity in myotoxin expression levels. We found differences in myotoxin expression among

the nine individuals but they were not associated with the contact zone between the two venom

types as predicted. Of the eight myotoxins we identified, one was found exclusively in Type A

individuals and two were exclusively found in type B individuals (Table 3.3). However, these are

likely a function of sampling rather than fixed toxins in those venom types given the variability

in myotoxins overall (Figure 3.3). When present, the four most highly expressed myotoxins

(MYO-1–4) were expressed at similar levels between the venom types (Figure 3.6).

Based on the hypothesis of Dowell et al. [7], we expected to find distinct sets of PLA2s

in Type A and Type B C. scutulatus, as was found in C. horridus [28] and the three species
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with genomic fragments sequenced [7]. However, this was not the case and we found almost all

possible combinations of the six putative PLA2 toxins among the nine individuals we sequenced

(Table 3.5). Other than the acidic and basic subunits of MTX which were exclusively found in Type

A individuals, the remaining four PLA2s were not specific to a venom type (Table 3.5). Further

genomic analysis is needed to determine why the two subunits of MTX appear to be consistently

found together whereas the other four can be inherited in different combinations. Additionally, it

is possible for homologs of MTX, like Crotoxin, to be present in the genome and not be expressed

as Crotalus simus undergoes an ontogenetic shift where Crotoxin is expressed in juveniles, but not

expressed in adults [65].

One individual, CLP1959, expressed all six PLA2s including the acidic subunit of Mojave

toxin (MTXA) and the basic unit of Mojave toxin (MTXB) and the PLA2s associated with Type

B individuals, although one, Pla2gA1, was expressed at a significantly lower level than the other

individuals that expressed it. That same toxin, Pla2gA1, in CLP1835 was 100% identical to a

known allele found in C. viridis. All eight nucleotide changes from the other C. scutulatus that

expressed it were non-synonymous, thus changing the amino acid sequence. The C. viridis species

complex is sister to C. scutulatus so this could be a shared ancestral allele or introduced through

hybridization. Hybridization between C. scutulatus and C. viridis has been documented but they

are not syntopic in this region [19]. However, Crotalus cerberus, a member of the C. viridis species

complex, is co-distributed with C. scutulatus in this region and could be the origin of this allele if

it is shared within the complex.

Using two Type B species (Crotalus atrox and C. adamanteus) and one Type A individual

(C. scutulatus from the Chihuahuan phylogeographic lineage), Dowell et al. [7] predicted that

the region in the genome that contains the PLA2 genes is prone to NAHR and hypothesized that

there would likely be diversity within a species as we document in C. scutulatus. If NAHR is the

mechanism for gene movement, then it might explain how the different PLA2 genes, particularly

MTX, can be reintroduced into populations that lose it through hybridization as hypothesized by
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Rokyta et al. [28] for C. horridus. Crotalus scutulatus is known to hybridize with other species of

rattlesnakes and, when this occurs, MTX can be found in the resulting hybrids [19]. Dowell et al.

[7] agree with Lynch [66] in that PLA2s could go through a selective sieve after an ecological shift

such as changing diet which causes the loss of the less adaptive PLA2s. This mechanism presumes

SVMPs are down regulated or lost when MTX is present, but it could be the opposite. Alternatively,

the two phenotypes may represent two fitness optima that can be maintained spatially or certain

venom components could be selected for or against in specific environments based on different

prey availability. Regardless of the mechanism, the interplay between gene flow and selection in

the Sonoran Desert is allowing individuals with the two venom types to persist spatially without

an obvious ecological difference between venom phenotypes.

The 13 remaining toxin families did not show the same pattern of presence/absence and all

27 toxins were present in each transcriptome at varying levels (Table 3.3 and Figure 3.4). Though

snake venom serine proteinases (SVSPs) were the second most diverse toxin family, there were no

differences in expression of the toxins between venom types. This is similar to what was found

in C. horridus (see Figure 4 in Rokyta et al. [28]). There was one BPP and it was among the

most highly expressed proteins in the venom of all individuals and had low variability among

individuals (Figure 3.5). Other than KUN and VEGF, the remaining families (CRISP, LAAO,

NGF, NUC, PDE, PLB, and Vespryn) also had low variability among individuals (Figure 3.5). We

did not find any expression differences associated with the size or sex of C. scutulatus. Nontoxin

expression was strongly correlated between the two venom types (Figure 3.4).

Mojave Rattlesnakes are representative of the diversity documented in other rattlesnakes

and our work illustrates the utility of sequencing multiple individuals of a species to represent the

phenotypic diversity found. Both CTL and MYO diversity would have been underestimated within

venom types if multiple individuals were not included (Figure 3.3). Overall, the transcriptomic

differences in C. scutulatus matched the patterns documented between C. adamanteus and C.

horridus [27] and that between Type A and Type B C. horridus. This included some individuals
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that had high levels of myotoxins as in C. adamanteus [49]. However, C. scutulatus was different

in that myotoxin expression was much higher and there were no distinct sets of PLA2s between

venom types as exhibited by the polymorphic C. horridus. Crotalus scutulatus will continue to be

an exemplary model system to understand the evolution of venom particularly when the remaining

phylogeographic lineages are included as well as the Type A + B individuals. Additionally, given

the diversity in presence/absence of toxins within the major families, C. scutulatus would be useful

to test NAHR in other toxin families.

Conclusions

Phenotypic diversity in Crotalus scutulatus is representative of venom diversity in

rattlesnakes with both sequence-based and expression evolution occurring. By sampling and

sequencing the transcriptome of multiple individuals of each venom phenotype, we were able

to highlight the diversity throughout the Sonoran lineage, including the characteristic Type A

and Type B venom phenotypes. For toxins that were not exclusively associated with venom

type, different combinations occurred, particularly in PLA2s. High gene flow in this region of

C. scutulatus’ distribution and interspecific hybridization may facilitate different combinations of

these toxins, especially if NAHR occurs broadly among toxin families. Further genomic resources

coupled with transcriptomics and proteomics of the remaining two lineages as well as the Type

A + B phenotype may make it possible to understand the evolution of toxin gains and losses in

PLA2s, CTLs, myotoxins, and SVMPs as well as differential expression and sequence evolutions

of specific toxins.

In C. scutulatus, PLA2s, SVMPs, CTLs, and MYOs are primarily responsible for the

transcriptomic diversity within and between the neurotoxic (Type A) and hemorrhagic (Type B)

venom phenotypes. Many, but not all toxins within these four families are associated with the

difference between the two phenotypes. Variation in myotoxins was found across the sampled
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range of C. scutulatus irrespective of venom type and was not exclusively found at contact zones

between the two types. Their diversity among the nine individuals supports the further division

of venom types within C. scutulatus and potentially all rattlesnakes to account for myotoxin

diversity and expression level which is obscured when only considering the relationship between

MTX and SVMPs. Our work represents the first complete venom gland transcriptome analysis

in C. scutulatus and the best representation of species polymorphic for both Type A and Type

B venoms. These data support utilizing Mojave Rattlesnakes as a model for understanding the

molecular mechanisms driving the evolution of phenotypic diversity.
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20. Borja, M.; Neri-Castro, E.; Castañeda-Gaytán, G.; Strickland, J.; Parkinson, C.;
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CHAPTER 4: ADDITIVE EXPRESSION SUGGESTS MENDELIAN

INHERITANCE OF POLYMORPHIC VENOM PHENOTYPES IN

MOJAVE RATTLESNAKES (CROTALUS SCUTULATUS)3

Abstract

The combination of phenotypes inherited from parents partially determines fitness of an

individual. Monomorphic phenotypes under strong selection tend to move to fitness optima but

polymorphic phenotypes that can be inherited in different combinations will result in offspring

with fitness that differs from one or both parents depending on the complexity of the genotype to

phenotype pathway. Venom is a polymorphic phenotype that is under strong selection and highly

tractable from the genotype to the phenotype. In rattlesnakes, particularly Mojave Rattlesnakes

(Crotalus scutulatus), a venom dichotomy exists. This dichotomy was initially defined based on

proteomic characteristics but recently, a genomic definition has been proposed. Some C. scutulatus

have Type A venom which is neurotoxic and lacks hemorrhagic activity (Type A) and others have

high hemorrhagic activity and no neurotoxic activity (Type B). Rarely, individuals have a third

venom type, Type A + B, where they have neurotoxic and hemorrhagic venom. We used the

proteomic definition to identify putative Type A + B C. scutulatus to test the applicability of

the genomic definition of venom type. To do this, we used comparative transcriptomics of the

venom-gland on 15 C. scutulatus and tested for differential expression between venom types. We

then applied the genomic definition of the two phenotypes and were able to identify the genotype

for the phospholipases and snake venom metalloproteinases responsible for the venom phenotypes.

The heterozygous individuals expressed the toxins at approximately half of the level found in

homozygous individuals. Additive expression in the eight toxins tested suggest the phenotypes in

3Chapter Four is being prepared as Strickland et al. Additive expression suggests Mendelian inheritance of
polymorphic venom phenotypes in Mojave Rattlesnakes (Crotalus scutulatus)
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C. scutulatus are inherited in a Mendelian fashion and cis-regulation is responsible for differences

in expression. We identified six of the nine possible genotypes for a dihybrid cross including five

from the F2 generation or later. By testing for additive expression, we were able to determine that

the Type A + B venom type is not a unique venom type and is generated through interbreeding

between Type A and Type B individuals.

Keywords: Allele, Hemorrhagic, Mojave toxin, Neurotoxic, Phospholipase A2, RNA-seq,

Transcriptome, Snake Venom Metalloproteinases

Introduction

An individual’s fitness is partially determined by the specific combination of phenotypes

inherited from its parents [1, 2]. Selection moves phenotypes towards fitness optima, driving the

frequency of these phenotypes up or down depending on what is selectively advantageous [3, 4].

However, individuals may also demonstrate mixed phenotypes, containing components of discrete

phenotypes which can have higher, lower, or equivalent fitness to either parent based on the costs

and benefits associated with the phenotype [5]. These mixed phenotypes may arise through a

variety of mechanisms and differ in inheritance complexity [6]. When multiple alleles of a single

trait generate a variety of phenotypes, but are tractable to a single genetic mechanism, such mixed

traits may be simply inherited via co-dominance or incomplete dominance [1]. On the other hand,

the genetic mechanism may be less clear when multiple loci are involved, potentially resulting

in a wide range of offspring phenotypes [5]. Such phenotypes could incorporate traits from both

parents, are intermediate between the two parents, or are superior to both parents (heterosis) [6].

Mixed phenotypes are often referred to as “hybrid” phenotypes, which posits an underlying

assumption about their generation. If the parents are from two distinct genetic lineages

(populations or species) which come together at hybrid zones and exchange genes, the resulting

phenotypes are appropriately referred to as ‘hybrid’ phenotypes because they are the result of a
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hybridization event [7, 8]. The breadth of the hybrid zone is constrained by the fitness of the hybrid

in comparison to the parental lineages [9]. However, within a single polymorphic population,

individuals can contain components from prevailing phenotypes (hereafter integrated phenotypes).

Integrated phenotypes may be the result of mating between parents from the same population who

exhibit different phenotypes or due to differential expression of the loci involved in the phenotype

through regulatory changes [10]. By comparing integrated phenotypes to the primary phenotypes,

it may be possible to infer inheritance patterns and regulatory mechanisms responsible for the

differing phenotypes [11]. In the simplest case – where discrete phenotypes are inherited in a

Mendelian fashion – heterozygous individuals should express proteins at 50% of the homozygous

dominant individuals if expression variation is additive [2, 11] which would indicate cis-regulation

[10, 12]. Unfortunately, comparing relative expression to test for additive expression is challenging

because few phenotypes are easily linked to the genotype [13].

Venom is a genetically tractable trait that is well suited for testing differences in expression

and inferring inheritance patterns. The Type A/B venom dichotomy found within rattlesnakes

(Crotalus and Sistrurus) provides an ideal system to test for additive expression. As currently

understood, one species of rattlesnake exhibits exclusively Type A venom, 38 exhibit exclusively

Type B, and nine species have demonstrated cases of both Type A or Type B intraspecifically [14,

15]. Type A venoms are characterized by the presence of a potent neurotoxin that is a heterodimeric

phospholipase A2 (Mojave toxin and homologs) that acts presynaptically and is highly toxic [16–

19]. Type B venoms lack the neurotoxin, are less toxic, and have high hemorrhagic activity due to

the prevalence of snake venom metalloproteinases [20–23]. The maintenance of the dichotomy is

hypothesized to be through balancing selection [24, 25] because of the important ecological role

venom plays in prey acquisition and defense [26]. However, the venom phenotype dichotomy lacks

both phylogenetic signal across rattlesnakes [15] and phylogeographic signal within polymorphic

species where tested [25].

These phenotypes were originally defined by proteomic composition [19, 27–31]; however,
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recent genetic work has indicated that there may be discrete genomic definitions as well [24, 32].

Dowell et al. [32] hypothesized that there are two distinct suites of PLA2 loci for each venom type.

Type A venom has both subunits of Mojave Toxin (Pla2-gA2-MTXA and Pla2-gB2-MTXB) and

Type B venom has Pla2-gK and Pla2-gB1 [24]. Two other PLA2s, Pla2-gA1 and Pla2-gC1 are

found in both venom types and Strickland et al. [33] described a sixth PLA2, PLA2-6, also found

in both venom types. Strickland et al. [33] also found Type A individuals with hypothesized Type

B PLA2s using transcriptomic data; however, if there are two suites of PLA2s, it might be possible

for an individual to be heterozygous at the PLA2 loci. For the SVMP loci, Dowell et al. [24] found

that C. scutulatus with Type B venom had 11 more SVMP loci than Type A individuals due to a

large deletion in the metalloproteinase region of the genome in Type A individuals. By testing for

the presence of the loci only found in Type B, it would be possible to genomically define Type B

individuals and not rely on the more variable metalloproteinase activity assays.

In three instances, a single individual has been found to exhibit characteristics of both

venom types where Mojave toxin (or homolog) is expressed and the individual has high

metalloproteinase activity. The first example involves changing the proportion of the two

components during ontogeny: Crotalus simus shifts from Type A to Type B venom as they grow

in size [34]. The second example involves hybridization between a Type B individual from the

C. viridis complex and a Type A individual of C. scutulatus. The hybridization event has been

documented in captivity [35] and at a narrow hybrid zone [36, 37]. The resulting progeny have

characteristics of both parent phenotypes [35, 37]. The final example of Type A + B phenotypes

existing within an individual occur in C. horridus [38–40] and C. scutulatus [25, 41–43]. These two

species have individuals with both Type A and Type B venom in their distribution with geographic

structuring [27, 42]. The primary hypothesis for the occurrence of the Type A + B phenotype is that

it is the result of mating between a Type A parent and a Type B parent [44]. However, Strickland

et al. [25] found C. scutulatus individuals with Type A + B venom in locations that were not contact

zones between Type A and Type B. Additionally, C. scutulatus in the Sonoran Desert, where Type
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A + B individuals are found most frequently, are genetically indistinguishable even though venom

type is geographically structured in the region [25, 45]. Because venom is highly tractable from

the genotype to phenotype [46] it may be possible to determine the inheritance pattern of the Type

A and Type B phenotypes by using Type A + B individuals as intermediates.

To determine if we could infer the inheritance pattern of venom phenotypes in Mojave

Rattlesnakes (C. scutulatus), we compared the venom gland transcriptomes of Type A, Type B,

and Type A + B individuals. We used the proteomic definition of Type A and Type B venom to

identify putative Type A + B C. scutulatus from the panmictic population in the Sonoran Desert.

Using comparative transcriptomics, we tested the applicability of the genomic definition of venom

type and assessed whether expression was additive depending on the transcripts present. We

first determined if each individual was homozygous or heterozygous at the PLA2 loci based on

presence/absence and the SVMP regions based on relative expression. Differential expression

could be higher in the Type A + B individuals (heterosis), lower due to incompatibility, or equal

to the parents. If venom phenotypes are inherited in a Mendelian fashion, we predicted that

heterozygous individuals would have approximately half the toxin expression compared to pure

Type A and Type B individuals. We present the first test of inheritance patterns of multiple toxin

loci and test the hypothesis that the Type A + B phenotype is generated through interbreeding of

Type A and Type B individuals within the same species.

Materials and methods

Ethics Statement

Scientific collecting permits were issued by the New Mexico Department of Game and

Fish (3563, 3576) and the State of Arizona Game and Fish Department (SP628489, SP673390,

SP673626, SP715023). All interactions with animals were approved by UCFs Institutional

Animal Care and Use Committee under protocol 13-17W and followed the American Society of
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Ichthyologists and Herpetologists ethical guidelines.

Sampling and venom type determination

In 2015 and 2016, we targeted the zone between Type A and Type B venom in Arizona

and specifically searched in locations where Type A + B individuals had been documented [42].

We collected venom and tissue from each C. scutulatus, preserved each specimen, and deposited

them in the appropriate museum based on permit requirements (Table 4.1). We collected venom

by coercing each snake into a polycarbonate tube (Get Hooked L.L.C., Sanford, FL, USA) of the

appropriate size. They would travel through the tube until their head was extended outside the tube

and then they were able to inject venom into a sterile collection container covered with parafilm

by voluntarily biting the container. We then collected the venom and vacuum dried it using a

vacuum sealed container (Vacu Vin Saver, Indian Trail, NC, USA). We sacrificed each snake four

days after venom collection when transcription was maximized [47] using 100 mg/kg of sodium

pentobarbitol injected intracoelomically. We harvested venom glands and stored them separately in

RNAlater (Thermo Fisher Scientific, Waltham, Massachusetts, USA) following the manufacturer’s

protocol. We preserved the specimen in 10% buffered formalin for five days and then transfered to

70% ethanol before depositing in a natural history museum.

Table 4.1: Sample information for the six C. scutulatus sequenced from the U.S. Sonoran Desert. ASNHC =
Angelo State Natural History Collection, San Angelo, TX; ASU = Arizona State University Natural History
Museum, Tempe, Arizona; CLP = Christopher L. Parkinson Field Number

Specimen Museum ID Venom Sex SVL Mass State County Sequencing Read Merged BioSample1
ID Type (mm) (g) Platform Pairs Reads Accession

CLP1823 ASU36060 A+B F 597 146 AZ Yavapai HiSeq 10,153,085 8,985,119 SAMN08596264
CLP1829 ASU36074 A M 802 364 AZ Maricopa HiSeq 13,392,954 11,447,955 SAMN08596265
CLP1830 ASU36088 A+B M 736 270 AZ Pima HiSeq 12,588,955 10,927,477 SAMN08596266
CLP1832 ASU36090 A+B M 765 248 AZ Pima HiSeq 13,444,339 11,657,787 SAMN08596268
CLP1929 ASNHC14996 A F 283 18 NM Hidalgo HiSeq 15,312,266 13,215,275 SAMN08596270
CLP2111 ASU36063 A+B F 618 139 AZ Graham HiSeq 13,190,119 11,038,527 SAMN08596276

1 National Center for Biotechnology Information under BioProject PRJNA88989

To putatively identify individuals with Type A + B venom, we used reverse-phased high

performance liquid chromatography (RP-HPLC) following Strickland et al. [33]. Briefly, we
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resuspended the venom in millipore filtered water and then centrifuged to remove cellular debris

and insoluble particles. We used the Qubit Protein Assay (Thermo Fisher Scientific) and Qubit 3.0

Fluorometer (Thermo Fisher Scientific) following the manufacture’s protocol to determine venom

concentration. Then, 100 µg of venom was injected onto a Jupiter C18 column (250 x 2 mm;

Phenomenex, Torrence, California, USA) using two solvents: A = 0.1% trifluoroacetic acid (TFA)

in water and B = 0.075% TFA in acetonitrile. Run time was 180 minutes, flow rate was 0.2

mL/min, and the effluent was monitored at 220 and 260 nm using a four step linear gradient on a

Beckman System Gold HPLC (Beckman Coulter, Fullerton, California, USA): 95% A and 5% B

for 5 minutes, 1% per minute linear increase to 25% B, a 0.25% per minute linear increase to 55%

B, a 2% per minute linear increase to 75% B, a 14% per minute linear increase to 5% B, and then

5 minutes at the initial condition to allow the column to equilibrate. Individuals that were Type

A + B had both peaks corresponding to the acidic and basic subunits of MTX and snake venom

metalloproteinases.

Venom gland transcriptome sequencing and assembly

We used the nine venom-gland transcriptomes sequenced in Strickland et al. [33] and added

six Type A + B individuals that were sequenced following the same protocol. Briefly, TRIzol-based

RNA extraction was conducted on both both glands separately [33, 48]. Total RNA concentration

was determined using the Qubit RNA BR Assay (Thermo Fisher Scientific) and quality assessed

using an Agilent Bioanalyzer 2100 with an RNA 6000 Pico Kit (Agilent Technologies, Santa Clara,

California, USA) following the manufacturer’s protocol. RNA was combined from both glands in

equal concentration [49].

To generate our cDNA libraries, 1 µg of total RNA was used initially for mRNA isolation

with the New England Biolabs (NEB, Ipswich, Massachusetts, USA) NEBNext Poly(A) mRNA

magnetic isolation kit (E7490S). We moved directly into cDNA library preparation with the

NEBNext Ultra RNA Library Prep Kit for Illumina (E7530), and the NEBNext Multiplex Oligos
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for Illumina (E7335 -Index primer set 1). We followed the protocol as described and targeted

a mean insert size of 370bp by fragmenting for 15.5 minutes and using 14 PCR cycles for the

last enrichment step. DNA library concentration was determined using the Qubit DNA BR Assay

(Thermo Fisher Scientific) and quality assessed using a HS DNA Kit on the Bioanalyzer. To

determine the amplifiable concentration for each sample, we used KAPA qPCR in the Florida State

University Molecular Cloning Facility [33]. We combined samples in equal amounts, verified the

amplifiable concentration again using KAPA qPCR, and then sequenced the pooled samples on

an Illumina HiSeq 2500 at the Florida State University College of Medicine Translational Science

Laboratory. The final concentration was ∼10 nM for the pooled library and they were sequenced

using 150 bp paired-end reads (Table 4.1) [40].

Strickland et al. [33] found 75 toxins and 1889 nontoxins in the consensus transcriptome of

nine individuals from this region that were either Type A or Type B. To check for new transcripts

in the six Type A + B individuals added, we used the same assembly protocol described by

Rokyta et al. [49]. Briefly, we merged reads using PEAR v 0.9.6 [50] that passed the Illumina

quality filter. Merged reads were assembled using Extender [51] and DNAStar SeqMan NGen

version 12.3.1 (DNASTAR Inc., Madison, Wisconsin, USA) with default settings except that

only contigs with ≥200 assembled reads were kept [33]. We annotated transcripts using the

initial consensus transcriptome as well as a local database of compiled toxins published previously

[39, 40, 48, 49, 51]. To be annotated, they had to match at ≥90% using Cd-hit-est v.4.6 [52] and

had at least 10X coverage across the transcript. Remaining unannotated contigs were compared

against the curated Uniprot animal toxins database (downloaded 16 Nov 2017) via blastx v. 2.2.30+

searches (minimum e-value of 10−4) [39, 40, 51, 53]. All annotation was done in Geneious v 10.1.2

(Biomatters Ltd., Auckland, New Zealand) and signal peptides were added using SignalP v 4.1

[54, 55]. Only transcripts with complete coding sequences were kept and we removed duplicates

using the BBtools package Dedupe (Joint Genome Institute, Department of Energy, Walnut Creek,

California, USA) implemented in Geneious. We removed chimeric sequences that had irregular
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coverage after mapping in Bowtie2 v 2.3.0 [56] implemented in Geneious or if recombination

was detected using the ClustalW alignment algorithm [57] implemented in Geneious. Remaining

transcripts were clustered using Cd-hit at ≥98% (-c .98) and any new transcripts were added to the

initial consensus. Toxin names are the same as in Strickland et al. [33] and new toxins were added

to the series in order of expression levels.

Gene expression patterns among venom types

We determined the expression level of all loci using Bowtie2 [56, 58] implemented in

RSEM v1.3.0 [59] with default parameters on the Stokes HPC cluster at the UCF Advanced

Research Computing Center. Merged reads were mapped to the consensus transcriptome and

transcripts per million reads (TPM) values were used for further analyses as our estimate of

transcript abundance [60]. We used R v. 3.4.2 (R Development Core Team 2006) implemented

in RStudio v. 1.1.383 for further analyses. To remove 0 values and keep the compositional

structure of the TPM data, we used the R package zCompositions and the cmultRepl function

[61]. We used the pheatmap [62] package in R to create a heatmap of the toxins identified for all

individuals. Both the individuals and the toxins were hierarchically-clustered based on similarity

of expression (ln-transformed TPM) to examine overall toxin expression differences among venom

types. To determine which toxins were responsible for the variability in the toxin transcriptome,

we conducted a Principle Component Analysis (PCA) using the PCA function in the FactoMineR

[63] R package. Individuals were grouped based on venom type and the centroid and 95% ellipse

was calculated for each venom type.

Differential expression in Type A + B individuals

To determine if any loci were up- or down-regulated in Type A + B individuals, we tested

for differential expression among venom types. Because of the lack of consensus on which method

is best and because very few tests/programs allow for including three groups at once, we tested
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differences between Type A, Type B, and Type A + B using four methods [64]. When it was not

possible to look at all three venom types at once, we conducted three pairwise tests: Type A vs

Type B, Type A vs Type A + B, and Type B vs Type A + B. For all analyses, we used TPM output

from RSEM.

First, we utilized DESeq2 v. 1.14.1 [65] implemented in R with a false discovery rate (FDR)

threshold of 0.05. DESeq2 can only be used for pairwise comparisons so all three comparisons

were done independently. We used the TPM values generated in RSEM and venom type as the

factor. The Wald significance tests with default settings and a local fit of dispersions was used

to determine toxins that were differential expressed between venom types. The log-fold changes

were used to determine direction of the expression differences.

Second, we used edgeR [66, 67] implemented in R with negative binomial generalized

linear models. These models were fit to each gene and likelihood ratio tests were used to determine

differential expression between venom types. We used the calcNormFactors function to normalize

the TPM values and the estimateDisp function to estimate dispersion globally and locus-by-locus

simultaneously. Our model included comparing all three venom types at once and pairwise log-fold

changes were used to determine differential expression with an FDR threshold of 0.05.

Third, we used EBseq [68] implemented in R. Venom type was the factor and all three

venom types were compared at once. We had replication for each treatment so variance was

measured for each locus independently. We used the MedianNorm function to normalize the

TPM values and then the EBMultiTest function to compare the three conditions. For a three

treatment comparision, there can be five possible expression patterns: all treatments have the same

expression, all treatments have different expression, and then each of the treatments can be unique

in comparison to the other three treatments. EBseq does not directly measure the direction of the

difference so that was calculated post-hoc by averaging TPM values for loci that had differential

expression.

Fourth, we used RNentropy [64] implemented in R to determine which venom types were
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expressed higher or lower compared to overall expression. We used the RN calc function to

determine which loci diverge from the uniform background distribution by comparing relative

expression as opposed to absolute expression. This method calculates both global (among

treatments) and local p-values (among replicates) and tests for over- or under-expression at each

locus. The estimated FDR for this method is 0.01 [64].

Finally, we compared the Average A and Average B transcriptomes to the Average A

+ B transcriptome to identify differentially expressed toxins. We linearized the compositional

data and preserved the rank order of the transcripts by centered log-ratio (clr) transforming the

expression dataset [60, 69]. We used the nontoxin expression values to generate a null distribution

of expression divergence [49]. This was done by taking the absolute value of the difference

in the transformed data for the two individuals being compared and finding the 99th percentile

value. Any toxin outside of this value was identified as an outlier to the null distribution. For

each pairwise comparison, we used the Spearman’s rank correlation coefficient (ρ), Pearson’s

correlation coefficient (R), and coefficient of determination (R2) to examine the similarity of

individuals being compared.

PLA2 and SVMP diversity and inheritance testing

To determine which PLA2s and SVMPs were expressed in the transcriptomes of C.

scutulatus that were also found in the genome by Dowell et al. [32] and Dowell et al. [24],

we compiled the coding sequence identified and added them to the PLA2 and SVMP loci in

our consensus transcriptome. We clustered all sequences using Cd-hit at ≥90% (-c .90) and a

representative transcript was retained for each cluster. We then used Bowtie2 implemented in

RSEM to align merged reads from each individual to 10 PLA2s and 20 SVMPs. Presence in the

transcriptome required at least 5X coverage over 90% transcript.

We conducted a PCA analysis as above on the four PLA2 loci and the four SVMP loci that

are in the genome and where expression was found to be high by Dowell et al. [24]. Individuals
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that had both subunits of MTX (Pla2-gA2 and Pla2-gB2), Pla2-gK, and Pla2-gB1 expressed were

identified as heterozygotes at the PLA2 loci. For the SVMP loci, if SVMPIII-1 (mp238 in [24])

was not expressed, the individual was considered homozygous Type A. To differentiate between

putative heterozygotes and homozygous Type B individuals, we compared relative expression

of the four loci found exclusively in Type B individuals and were expressed at high levels:

SVMPIII-1/mp238, SVMPII-1/mp237, SVMPIII-3/mp240, SVMPIII-5/mp242. We calculated the

average expression for these four loci when present and then used a ratio of the individual to the

average expression. If the ratio was approximately 2:‘, they were classified as heterozygous.

Data availability

Raw data for the six venom gland transcriptomes added in this study were submitted to the

National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) accession

SRP011323. BioSample accession numbers are provided in Table 4.1 and are under BioProject

PRJNA88989. The consensus transcriptome was submitted to the NCBI Transcriptome Shotgun

Assembly (TSA) database. This TSA project has been deposited at DDBJ/EMBL/GenBank

under the accession GGIP00000000. The version described in this paper is the first version,

GGIP01000000.

Results

Consensus transcriptome of Crotalus scutulatus

We sequenced the venom-gland transcriptome of six C. scutulatus that were putatively

identified as venom Type A + B based on RP-HPLC profiles (Figure 4.1). We generated over 78

million raw read pairs and used over 67 million quality reads with an average number of reads

per individual of 11.2 million (Table 4.1). After we assembled, annotated, removed chimeric

sequences and duplicates for each individual, these transcriptomes were combined with the
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consensus transcriptome of Strickland et al. [33]. We removed duplicates and had a final consensus

transcriptome of 2202 putative nontoxins and 85 putative toxins. This was an increase of 313

nontoxins and nine toxins from Strickland et al. [33]. These nine toxins included two SVSPs

(SVSP-15 and -16), SVMPI-1, three SVMPIIs (2-4), Pla2-gC1, and two 3FTxs which is a toxin

family not recovered by Strickland et al. [33]. SVSP-15 had the third highest average expression

for all fifteen individuals and was missed previously [33]. SVSP-16 was highly expressed in

CLP1930 newly added in this study but present in at least four other individuals and had the

tenth highest average expression overall. The 3FTxs were very lowly expressed. 3Ftx-1 was

only expressed in CLP1823 and CLP1829 whereas 3FTx-2 was only expressed in CLP1829. The

SVMPs and Pla2-gC1 are discussed below.

Venom type expression patterns

Of the six individuals sequenced that were putatively Type A + B, CLP1829 and CLP1929

expressed SVMPs consistent with Type A individuals and not Type B individuals so they were

reclassified as Type A. The remaining four individuals expressed SVMPs consistent with Type

B individuals and MTX consistent with Type A individuals, thus were classified as Type A +

B (Figure 4.2). The average Type A + B transcriptome was created using CLP1823, CLP1830,

CLP1832, and CLP2111 (Figure 4.3).

The clustered heatmap of toxin expression separated the individuals into two clades based

on similarity in expression profiles. These were essentially a Type A and a Type B clade. Three

of the four Type A + B individuals clustered with the Type B individuals and one, CLP2111,

clustered with the Type A individuals (Figure 4.4). SVMPs and CTLs were primarily responsible

for the differentiation between the two clades. CLP2111 clustered with Type A individuals because

it was missing many of the CTLs that the remaining Type A + B individuals and the Type B

individuals have. These CTLs are generally associated with Type B individuals but were also

found in CLP1959 and CLP1961 so are not exclusively associated.
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Figure 4.1: Reverse-phased high performance liquid chromatography (RP-HPLC) profiles of Mojave
Rattlesnakes. The acidic (α) and basic subunit (β) peaks for Mojave toxin are marked and the region where
snake venom metalloproteinases elute is marked with a blue bar.

The three venom types had significantly different clusters in our PCA analysis and none

of the 95% confidence ellipses overlapped (Figure 4.5). The first axis explained 26.49% of

the variation in the toxin expression differences and corresponded with the Type A and Type B

dichotomy. The second axis explained 23.48% of the variation and corresponded with presence

and absence of MYO-1 which is homologous with Crotamine [70]. The pattern of the Type A
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Figure 4.2: Representation of the toxins in the venom gland transcriptome for six C. scutulatus added in
this study. The bar graphs represent each of the 84 toxins identified. The pie charts represent the proportion
of each toxin family in the venom gland transcriptome. 3FTX: three-finger toxin; BPP: bradykinin
potentiating peptide; CRISP: cysteine-rich secretory protein; CTL: C-type lectin; HYAL: hyaluronidase;
KUN: Kunitz peptide; LAAO: L-amino-acid oxidase; MYO: myotoxin; NGF: nerve growth factor; NUC:
5’ nucleotidase; PDE: phosphodiesterase; PLA2: Phospholipase A2; PLB: phospholipase B; SVMP: snake
venom metalloproteinase; SVSP: snake venom serine protease; VEGF: vascular endothelial growth factor;
MTX: Mojave toxin.
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Figure 4.3: Representation of the average Type A + B transcriptome of the four C. scutulatus with Type A
+ B venom. The majority of highly expressed transcripts were the 84 toxins identified. Pie charts represent
the proportion of each of the 19 toxin families identified.

+ B individuals being intermediate between the Type A and Type B clusters was driven by the

presence/absence of MTX, SVMPs, and CTLs rather than intermediate expression of toxin loci

per se (discussed below).

Differential expression among and between venom types

The four analyses conducted testing for differential expression among and between venom

types were largely consistent (Figure 4.6). A total of 61 toxins were identified as differential

expressed by either DESeq2, edgeR, EBseq, and/or RNentropy (Supplemental Table C.1).

DESeq2, edgeR, and EBSeq were more conservative and identified 18, 24, and 31 differentially
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Figure 4.4: Hierarchical clustered heatmap of all 84 toxins from the 15 individuals of C. scutulatus with
their venom gland transcriptome sequenced based on ln-transformed TPM data. Venom type is designated
for each individual and dark colors are low expression and lighter colors are higher expression. The putative
genotype for each individual is indicated below venom type.
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Figure 4.5: Principle component analysis (PCA) scatterplot of the 15 C. scutulatus from the Sonoran Desert
based on TPM data for 84 toxins. The squares are the average value for each venom type and the circles are
the 95% confidence ellipse for each venom type. The first two axes explain 49.97% of the variability. PCA
1 represents the Type A (left) and Type B (right) dichotomy and PCA 2 represents the presence (bottom)
and absence (top) of myotoxins in the venom gland transcriptomes.

expressed toxins, respectively and RNentropy identified 59. All methods identified the two

subunits of MTX as being expressed higher in Type A and Type A + B compared to Type B.

Additionally, all analyses in which the comparison was possible identified all but one SVMP

as being expressed higher in Type B and Type A + B individuals compared to Type A. EBSeq

and RNentropy identified SVMPII-4 as the only locus in which the Type A + B individuals

expressed it at a higher level than either the Type A or Type B individuals. SVMPIII-8 was the

only locus that Type A + B expressed at an intermediate level compared to Type A and Type B.

The remaining differentially expressed loci were predominately identified by RNentropy which
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is the least conservative in identifying differential expression. It compares each individual of

the treatment to the global distribution and is sensitive to rare transcripts that do not occur in

all treatments [64].

Figure 4.6: Graphical representation of differential expression based on the four methods used: DeSEQ2,
edgeR, EBseq, and RNentropy. Arrow direction goes from relatively low expression to relatively high
expression for each of the possible pairwise comparison between the three venom types in C. scutulatus.
Numbers indicate number of toxins out of 84 that are differential expressed in each comparison.

The clr transformed comparison of the average Type A + B transcriptome to the Average

Type A (Figure 4.7) and Average Type B (Figure 4.8) transcriptomes were consistent in identifying

the same outlier toxins as identified by the four methods above. In both comparisons, the

correlation between the nontoxins was greater than 0.90 for all three measures (Figures 4.7 and

4.8). In the Type A to Type A + B comparison, SVMPs and CTL-3 and CTL-4 were overexpressed

in Type A + B compared to Type A (Figure 4.7). The only locus overexpressed in Type A was

MYO-8 which is the most lowly expressed myotoxin and only found in CLP1936 (Figure 4.4).

In comparing Type B to Type A + B, the two subunits of MTX were overexpressed in Type A +

B. There were a few other toxins including MYO-1, Pla2-gA1, MYO-2, SVMPII-4, CTL-9, and
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CTL-12 that were also overexpressed in Type A + B.

Figure 4.7: Pairwise comparison of average Type A and Type A + B venom gland transcriptomes using
the centered log-ratio (clr)-transformed TPM data. The red line is the line of best fit through the non toxins
and the dashed black lines are the 99% confidence around that line. Anything above the upper line is
overexpressed in Type A + B and anything below the lower line is overexpressed in Type A.

Other toxins and toxin families did not have an expression pattern associated with venom

type. Myotoxins were present and absent in all three venom types. The only SVSPs that were

identified as differentially expressed in any of the analysis were not consistently found in all

individuals and were among the lowly expressed toxins in that family.

Snake venom metalloproteinase and phospholipase A2s in Type A + B individuals

As discussed above, we recovered SVMP and PLA2 loci in this study that were not

recovered by Strickland et al. [33]. SVMP-1 was recovered and expressed in CLP2111 and had
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Figure 4.8: Pairwise comparison of average Type B and Type A + B venom gland transcriptomes using
the centered log-ratio (clr)-transformed TPM data. The red line is the line of best fit through the non toxins
and the dashed black lines are the 99% confidence around that line. Anything above the upper line is
overexpressed in Type A + B and anything below the lower line is overexpressed in Type B.

low expression in CLP2136. SVMPIs are not generally recovered in venom-gland transcriptomes

because they are very similar to the metalloproteinase domain of SVMPIIs and SVMPIIIs [71].

CLP2111 was the only individual with a high TPM value for SVMPI-1 and even it had poor

coverage across the transcript. The three additional SVMPIIs recovered in this study were

expressed at a much lower level than SVMPII-1 recovered previously [33]. The PLA2 added

to the consensus transcriptome, Pla2-gC1, was tested for by Strickland et al. [33] because it was

recovered in C. scutulatus’ genome by Dowell et al. [32]. However, neither study identified it in

the transcriptomes. Here, we recovered and annotated Pla2-gC1 in CLP1829. It was also expressed
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in CLP1831, CLP1832, and CLP1835 although, at low levels overall.

In testing for all PLA2s and SVMPs that have been identified in the genome [24, 32] or

transcriptome [33] of C. scutulatus, we found that expression levels were not different between

venom types using the proteomic definition (Table 4.2). Type A + B individuals expressed MTX

at the same levels as Type A individuals and expressed SVMPs at the same level as Type B

individuals. The presence of the other PLA2 loci was variable across venom types. Two of the

Type A + B individuals had all six PLA2s present in the transcriptome (Table 4.2). The two MTX

subunits were the only PLA2s not found in Type B individual and all six were found in Type A and

Type A + B. For the 20 SVMP loci, there was a much clearer pattern. We identified one additional

SVMPII and SVMPIII that Dowell et al. [24] did not find in the genome and we included SVMPI.

Each of those was only found in one individual. Twelve of the SVMPs were found in all Type

B and Type A + B individuals and were also only found in the genome of Type B individuals by

Dowell et al. [24]. One of these loci, mp277, identified in Dowell et al. [24] was found in the

genome of Type A individuals but we did not find it in Type A individuals. SVMPIII-4 was the

only SVMP expressed in all 15 individuals and was also identified as mp244 in the genome of

Type A and Type B individuals. The two SVMP loci (mp245 and mp2442) that were found in the

genome by [24] but not in the transcriptome were not found in any individual in this study. Two

SVMPs (mp232 and mp233) were found in all but two Type A individuals.

Inheritance pattern of SVMPs and PLA2s in C. scutulatus

Using the genomic definition of venom type proposed by Dowell et al. [32] and Dowell

et al. [24], we were able to determine whether each individual was homozygous or heterozygous

at the PLA2 and SVMP loci. Of the 15 individuals six were homozygous for the Type A PLA2 loci

(MTXA and MTXB), four were homozygous for the Type B PLA2 loci (Pla2-gK and Pla2-gB1),

and five were heterozygous for the PLA2 loci and expressed all four (Table 4.2). The heterozygous

individuals included three of four Type A + B individuals and two Type A individuals. Using
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Table 4.2: Transcripts per million reads (TPM) values rounded to the closest integer for four PLA2 and four
SVMP loci identified as being unique to the genome of Type A and Type B Crotalus scutulatus [24, 32].
Values in bold met the criteria for presence and values in italics did not. Heterozygous individuals for
PLA2s express all four PLA2s. Heterozygous individuals (CLP1823, CLP2111) at the SVMP loci were
putatively identified based on relative expression of the four most highly expressed SVMP loci in the region
present in Type B: mp238, mp237, mp240, mp242. The putative genotype is listed with the following code:
AA–presence of MTX/absence of Pla2-gK and Pla2-gB1, Aa–expression of all four PLA2s, aa–absence of
MTX/presence of Pla2-gK and Pla2-gB1, BB–high expression of SVMPs, Bb–approximately half of the
average expression of SVMPs, bb–no expression of SVMPs.

Dowell et al. [24] Type A Type A + B Type B

Toxin Type A Type B 1829 1929 1930 1936 1959 1961 1972 1823 1830 1832 2111 1831 1835 2136 2142
Pla2-gA2-MTXA Genome - 428109 473400 600972 479870 348757 456812 518336 358265 247506 276057 405675 24 210 0 0
Pla2-gB2-MTXB Genome - 308910 246797 293026 258001 163398 318099 215095 225628 187681 217362 288133 18 97 0 0
Pla2-gK - Genome 705 5 0 2 6050 7 0 3803 889 512 9 6493 9432 3437 3683
Pla2-gB1 - Genome 56618 19 6 46 100015 20 0 68548 21906 37042 15 180956 149454 161831 148588
mp238/SVMPIII-1 - Genome 28 21 0 0 0 24 0 73163 191930 175233 88172 289626 230569 232942 187000
mp237/SVMPII-1 - Genome 10 7 0 0 0 9 0 40495 84910 56685 32417 125979 112314 85461 126060
mp240/SVMPIII-3 - Genome 3 4 0 1 2 103 13 7205 21588 18006 10815 34480 28586 23626 30223
mp242/SVMPIII-5 - Genome 1 1 0 0 0 1 0 4297 9741 7930 1278 6365 8983 12283 9253
Putative Genotype AAbb aaBB Aabb AAbb AAbb AAbb Aabb AAbb AAbb AaBb AaBB AaBB AABb aaBB aaBB aaBB aaBB

homozygous Type A, heterozygous, and homozygous Type B as our three treatments, we found that

the heterozygous individuals expressed the four PLA2s at approximately half of the parent type.

For the SVMP loci, all seven individuals proteomically identified as Type A were also genomically

Type A. They did not express any of the metalloproteinases found in the deletion region identified

by Dowell et al. [24] and are homozygous Type A (Table 4.2). The remaining eight individuals

each expressed the four metalloproteinases expressed in Type B individuals, two of the Type A +

B individuals had approximately half the expression level of the remaining individuals and were

classified as heterozygous (Table 4.2). The two other Type A + B individual and all four Type

B individuals were classified as homozygous Type B. In total, five individuals were homozygous

Type A for both PLA2 and SVMP loci, four individuals were homozygous Type B for both PLA2

and SVMP loci, one was heterozygous for PLA2 and SVMP loci and five were heterozygous for

one locus and homozygous for the other. These last five have to be at least F2 individuals which

indicates F1s can successfully reproduce.

Each genotype identified occupied a unique area in PCA space (Figure 4.9). The Type A

individuals clustered tightly on one end of PCA axis 1, the Type B individuals clustered at the

other end of PCA 1, and the six individuals that were heterozygous were located in between the
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two pure clusters (Figure 4.9). The second PCA axis only explained 10.05% of the variation and

the two toxins with the highest loading scores were Pla2-gK and Pla2-B1 which are variable in all

individuals except the pure Type A individuals (Figure 4.9).

Figure 4.9: Principle component analysis (PCA) scatterplot of the 15 C. scutulatus from the Sonoran Desert
based on TPM data for the four PLA2s and four SVMPs in Table 4.2. The squares are the average value
for each putative genotype and the circles are the 95% confidence ellipse for genotypes with more than two
individuals. The first two axes explain 94.78% of the variability. PCA 1 represents MTX presence/SVMP
absence (left) and MTX absence/SVMP presence (right) and PCA 2 is the variation of expression of Pla2-gK
and Pla2-gB1.

Discussion

Using comparative transcriptomics of the venom glands of 15 Mojave Rattlesnakes, C.

scutulatus, we were able to identify additive expression in a highly adapted phenotype. This
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suggests that the venom phenotype dichotomy in C. scutulatus and rattlesnakes more broadly

is Mendelianly inherited and cis-regulated. The integrated venom phenotype, Type A + B, is

not a unique venom type and can be traced to interbreeding between a Type A individual and a

Type B individual as previously hypothesized by Glenn and Straight [44]. We identified six of

the nine possible genotypes using the genomic definition of venom type based on Dowell et al.

[24]. Initially, by defining phenotypes based on the proteomic characteristics, we were unable

to identify intermediate expression of the integrated phenotype which suggested heterosis and

potentially trans-regulation. However, when we controlled for genotype, the eight loci involved

that can be detected transcriptomically, had mid-parent levels of expression (Table 4.2 and Figure

4.9). To our knowledge, this is the first time that transcriptomic data of a complex phenotype was

used to identify the putative genotype of individuals and demonstrates the power of RNA-seq in

linking the phenotype to the genotype.

The two venom phenotypes, Type A and Type B, were initially defined based on proteomic

characteristics [19, 27–31]. Using this definition, we were able to identify four C. scutulatus with

the Type A + B phenotype (Figure 4.2). The Type A + B individuals did cluster in the middle of

the Type A/Type B spectrum (Figure 4.5) but, by grouping the individuals by phenotype, we were

unable to find intermediate or differential expression outside of the Type A and Type B differences

(Figure 4.6). The lack of differentiation between the average Type A + B phenotype compared to

the average Type A and average Type B phenotypes is due in part to not controlling for genotype

(Figures 4.7 and 4.8). Using the clustering approach, the four Type A + B individuals did not

have the same expression pattern (Figure 4.4). By using the proteomic definition, we were not

able to detect mid-parent level expression of the Type A + B individuals. However, when we used

the genomic definition of the two venom types hypothesized by Dowell et al. [24], we were able

to detect mid-parent level expression (Table 4.2) and determine that the expression of MTX and

SVMPs is additive. Therefore, considering Type A + B as unique, is not helpful. It falls along the

spectrum of venom types in rattlesnakes and has a simple genetic mechanism.
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We were able to identify six of the nine possible genotypes in a two allele system (Figure

4.4). The three we did not recover were aaBb, AABB, aabb. However, Glenn et al. [38] identified

a “Type C” venom type in C. horridus which is a species that exhibits the same variability in

venom as C. scutulatus [38]. Type C venoms lack Canebrake toxin (Mojave toxin homolog) and

hemorrhagic activity. Using the Mendelian framework, this phenotype is likely one of the missing

genotypes, aabb, not recovered in this study. Type C has not been recovered in C. scutulatus

but, it is also one of the two rarest possible genotypes and likely has the lowest fitness of the

possible genotypes because of poor venom efficacy. The aaBb phenotype likely has the second

lowest fitness due to the lack of MTX and half of the SVMPs as pure Type B animals. The last

genotype not recovered, AABB, has the same probability of occurring in a dihybrid cross of F1

snakes (AaBb X AaBb) as the aabb phenotype. The AABB phenotype would likely produce the

most costly venom because the level of expression of MTX and SVMPs. Of the three instances of

A + B venom found in rattlesnakes, Mendelian inheritance explains the phenotype of the offspring

between C. viridis complex and C. scutulatus [35, 37] but the ontogenetic change from Type A to

Type B in C. simus is not possible under this framework.

Because of the ontogenetic change in C. simus, one of the hypotheses for the A/B venom

dichotomy in rattlesnakes was that the Type A venom was a pedomorphic characteristic retained

in the one species that is monomorphic for it (C. tigris) and the populations that have Type A

venom [15, 31, 72]. Crotalus simus is part of the C. durissus complex which has representatives

of the Type A and Type B phenotypes [73, 74]. Using the genomic definition of the two venom

types [24] and considering the Mendelian framework presented here, pedomorphism is not a good

explanation for the retention of the Type A venom state. The two subunits of Crotoxin (Mojave

toxin homolog) were the only PLA2s recovered in the transcriptome of C. simus as both juveniles

and adults. Additionally, no SVMPIIs were recovered in the transcriptome of either the adults

and juveniles. All the SVMPIIs are located in the genome in the region that is deleted in Type A

individuals. Therefore, Type A venom in C. tigris is due to the loss of the Type B SVMP portion
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of the genome and C. simus should be considered Type A. There is still an ontogenetic shift in the

relative proportion of Crotoxin and the small number of SVMPIIIs expressed, but it is not a change

from Type A to Type B venom. The fixation of venom types is likely due to selection for specific

prey and not the retention of juvenile characteristics as hypothesized.

Based on our results from other toxin classes, it may be possible that other toxins are

also inherited in a Mendelian fashion. MYO-1, which is homologous with Crotamine, showed

a similar pattern of presence/absence across the 15 individuals used in this study. Additionally,

CTLs may follow this pattern (Figure 4.4). High numbers of CTLs are generally associated with

the Type B phenotype [33]. One Type A + B individual, CLP2111 was missing a suite of CTLs

(CTL-1,2,5,6,7,11, and 13) that all of the other Type B and Type A + B individuals had. That

same suite was present in two Type A individuals (CLP1959 and CLP1961) and absent in the

other Type A individuals. CTLs, Myotoxins, PLA2s, and SVMPs are the four toxin families

that vary the most in C. scutulatus [33] and myotoxins were also highly variable proteomically

[41] and explained almost as much of the variation in venom as the A/B dichotomy (Figure 4.5).

Mendelian inheritance of these loci which causes additive expression through cis-regulation would

be a relatively simple way for fine scale local adaptation to occur.

Conclusions

We present evidence that supports Mendelian inheritance of the toxins responsible for

the venom type dichotomy in rattlesnakes. The additive expression in which the heterozgous

individuals expressed the toxins involved at approximately half of the parents indicating

cis-regulation is what determines expression for these loci. Using this framework, the four

phenotypes that have been described in rattlesnakes can be linked to nine possible genotypes in

a dihybrid cross. The possible ways to get the integrated venom type is limited to interbreeding

between a Type A individual and a Type B individual and precludes the ontogentic shift in C. simus
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as being “Type A + B”. Type A individuals and species should be defined based on the presence

of both subunits of Mojave toxin and the absence of Pla2-gA1, Pla2-gK, and almost all SVMP

loci. Type B individuals should be identified based on the presence of Pla2-gA1, Pla2-gK, and

mp237, mp238, mp240, and mp242 and the lack of MTX. Because of the presence of at least one

SVMPIII in Type A individuals, the proteomic definition will not always be accurate in predicting

the genotype of an individual.

Using the Mendelian inheritance framework, tests of relative fitness between the genotypes

will be more informative when testing if and how balancing selection is maintaining the venom

polymorphism in C. scutulatus and rattlesnakes more broadly. The development of PCR based

assay for the other PLA2 loci and the SVMP loci will make it possible to estimate the allele

frequency across populations to test for frequency dependent selection as the mechanism of

balancing selection. Additionally, by using venom from animals representing the nine possible

genotypes, relative efficacy could be easily assessed in prey items testing fine scale local adaptation

or heterozygote advantage. This could be used as a proxy for fitness of each genotype. We

hypothesize that the Mendelian inheritance pattern may extend to at least two other toxin classes

which would allow for the creation of more genotypes and test how different combinations of genes

change the composition of a highly adaptive phenotype.
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26. Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: the

evolutionary novelty of venoms. Trends in Ecology & Evolution 2013, 28, 219–29.

27. Glenn, J.; Straight, R. Mojave rattlesnake Crotalus scutulatus scutulatus venom: variation

in toxicity with geographical origin. Toxicon 1978, 16, 81–84.

28. Glenn, J.L.; Straight, R.C. The rattlesnakes and their venom yield and lethal toxicity. In

Rattlesnake Venoms: Their actions and treatment.; Tu, A.T., Ed.; Marcel Dekker, Inc.:

New York, 1982; pp. 3–119.

29. Mackessy, S.P. Venom composition in rattlesnakes: trends and biological significance. In

The Biology of Rattlesnakes; Hayes, W.K.; Beaman, K.R.; Cardwell, M.D.; Bush, S.P.,

Eds.; Loma Linda University Press: Loma Linda, CA, 2008; pp. 495–510.

117



30. Doley, R.; Zhou, X.; Kini, R. Snake venom phospholipase A2 enzymes. In Handbook

of Venoms and Toxins of Reptiles; Mackessy, S.P., Ed.; CRC Press: Boca Raton, Florida,

2009; pp. 173–205.

31. Mackessy, S.P. Evolutionary trends in venom composition in the Western Rattlesnakes

(Crotalus viridis sensu lato): toxicity vs. tenderizers. Toxicon 2010, 55, 1463–74.

32. Dowell, N.L.; Giorgianni, M.W.; Kassner, V.A.; Selegue, J.E.; Sanchez, E.E.; Carroll, S.B.

The deep origin and recent loss of venom toxin genes in rattlesnakes. Current Biology

2016, 26, 2434–2445.

33. Strickland, J.; Mason, A.; Rokyta, D.; Parkinson, C. Phenotypic variation in Mojave

Rattlesnake (Crotalus scutulatus) venom is driven by four toxin families. Toxins 2018,

10, 135.

34. Calvete, J.J.; Sanz, L.; Cid, P.; de la Torre, P.; Flores-Diaz, M.; Dos Santos, M.C.; Borges,

A.; Bremo, A.; Angulo, Y.; Lomonte, B.; Alape-Giron, A.; Gutierrez, J.M. Snake venomics

of the Central American Rattlesnake Crotalus simus and the South American Crotalus

durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus

dispersal in South America. Journal of Proteome Research 2010, 9, 528–544.

35. Smith, C.F.; Mackessy, S.P. The effects of hybridization on divergent venom phenotypes:

characterization of venom from Crotalus scutulatus scutulatus x Crotalus oreganus helleri

hybrids. Toxicon 2016, 120, 110–123.

36. Glenn, J.L.; Straight, R.C. Venom characteristics as an indicator of hybridization between

Crotalus viridis viridis and Crotalus scutulatus scutulatus in New Mexico. Toxicon 1990,

28, 857–862.

37. Zancolli, G.; Baker, T.; Barlow, A.; Bradley, R.; Calvete, J.; Carter, K.; de Jager, K.;

Owens, J.; Price, J.; Sanz, L.; Scholes-Higham, A.; Shier, L.; Wood, L.; Wüster, C.;
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proteolytic variation in the venom of Crotalus scutulatus scutulatus from Mexico. Toxins

2017, 10, 35.

44. Glenn, J.L.; Straight, R.C. Intergradation of two different venom populations of the Mojave

Rattlesnake (Crotalus scutulatus scutulatus) in Arizona. Toxicon 1989, 27, 411–8.

45. Schield, D.R.; Card, D.C.; Adams, R.H.; Corbin, A.; Jezkova, T.; Hales, N.; Meik, J.M.;

Spencer, C.L.; Smith, L.; Campillo-Garcia, G.; Bouzid, N.; Strickland, J.L.; Parkinson,

C.L.; Flores-Villela, O.; Mackessy, S.P.; Castoe, T.A. Cryptic genetic diversity, population

119



structure, and gene flow in the Mojave Rattlesnake (Crotalus scutulatus). Molecular

Phylogenetics and Evolution 2018 In Review.

46. Margres, M.J.; Wray, K.P.; Hassinger, A.T.B.; Ward, M.J.; McGivern, J.J.; Moriarty

Lemmon, E.; Lemmon, A.R.; Rokyta, D.R. Quantity, not quality: rapid adaptation in

a polygenic trait proceeded exclusively through expression differentiation. Molecular

Biology and Evolution 2017, 34, 3099–3110.

47. Rotenberg, D.; Bamberger, E.S.; Kochva, E. Studies on ribonucleic acid synthesis in the

venom glands of Vipera palaestinae (Ophidia, Reptilia). The Biochemical Journal 1971,

121, 609–12.

48. Rokyta, D.R.; Wray, K.P.; Lemmon, A.R.; Lemmon, E.M.; Caudle, S.B. A

high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake

(Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes.

Toxicon 2011, 57, 657–671.

49. Rokyta, D.R.; Margres, M.J.; Ward, M.J.; Sanchez, E.E. The genetics of venom ontogeny

in the Eastern Diamondback Rattlesnake (Crotalus adamanteus). PeerJ 2017, 5, e3249.

50. Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: a fast and accurate Illumina

Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620.

51. Rokyta, D.R.; Lemmon, A.R.; Margres, M.J.; Aronow, K. The venom-gland transcriptome

of the Eastern Diamondback Rattlesnake (Crotalus adamanteus). BMC Genomics 2012,

13, 312.

52. Li, W.; Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein

or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659.

53. Margres, M.J.; Aronow, K.; Loyacano, J.; Rokyta, D.R. The venom-gland transcriptome

of the Eastern Coral Snake (Micrurus fulvius) reveals high venom complexity in the

intragenomic evolution of venoms. BMC Genomics 2013, 14, 531.

54. Bendtsen, J.D.; Nielsen, H.; Van Heijne, G.; Brunak, S. Improved prediction of signal

120



peptides:SignalP 3.0. Journal of Molecular Biology 2004, 340, 783–795.

55. Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: discriminating signal

peptides from transmembrane regions. Nature Methods 2011, 8, 785–786.

56. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nature Methods

2012, 9, 357–359.

57. Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity

of progressive multiple sequence alignment through sequence weighting, position-specific

gap penalties and weight matrix choice. Nucleic Acids Research 1994, 22, 4673–4680.

58. Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biology 2009, 10, R25.

59. Schrider, D.R.; Gout, J.F.; Hahn, M.W. Very few RNA and DNA sequence differences in

the human transcriptome. PLoS ONE 2011, 6, e25842.

60. Rokyta, D.R.; Margres, M.J.; Calvin, K. Post-transcriptional mechanisms contribute little

to phenotypic variation in snake venoms. G3 2015, 5, 2375–2382.

61. Palarea-Albaladejo, J.; Martı́n-Fernández, J.A. Software Description zCompositions – R

package for multivariate imputation of left-censored data under a compositional approach.

Chemometrics and Intelligent Laboratory Systems 2015, 143, 85–96.

62. Kolde, R. Pretty Heatmaps. R package version 1.0.8., 2015.
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CHAPTER 5: CONCLUSION

Mutation, selection, drift, and gene flow can generate a mosaic of phenotypic diversity

across species distributions due to complex interactions between phenotypes and environment

[1, 2]. Phenotypic polymorphisms within populations provide an opportunity to test the relative

contributions of these four evolutionary mechanisms and examine how diversity is maintained

[3–5]. Mutation is the origin of genetic variation, but the interaction between selection, drift,

and gene flow determines the maintenance of polymorphisms [6, 7]. Balancing selection is the

primary way in which phenotypic polymorphism can be maintained in populations. Balancing

selection is rare relative to directional, stabilizing, or disruptive selection, but several cases, such

as major compatibility complex, self incompatibility in plants, and butterfly mimicry, have been

well documented [8–11].

The maintenance of phenotypic polymorphisms through balancing selection has several

proposed mechanisms: heterozygote advantage, negative frequency-dependent selection, sexual

antagonism, density-dependent selection, local adaptation to heterogeneous niches over space

and/or time, and trait linkage based on the genetic architecture of the polymorphism [12, 13]. These

mechanisms are not mutually exclusive and, overall, balancing selection likely includes several of

these mechanisms [12]. Balancing selection is difficult to identify, but the geographic arrangement

of polymorphisms in a population can provide evidence for it [14]. However, phylogeographic

structure of the polymorphism must be ruled out first because local adaptation in populations where

gene flow is absent can result in the same geographic pattern as balancing selection [14].

In this study, I used the venom phenotype dichotomy in Mojave Rattlesnakes, Crotalus

scutulatus, to determine the distribution and evolution of the neurotoxic (Type A) and hemorrhagic

(Type B) phenotypes (Figure 5.1). Using morphological, proteomic, transcriptomic, and genomic

data, I inferred that balancing selection is likely responsible for the maintenance of the phenotype.

Using DNA and/or venom from 216 individuals, I first ruled out phylogeographic structure as the
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mechanism maintaining the two phenotypes in C. scutulatus [15]. There are at least three distinct

genetic lineages within C. scutulatus [16] but both venom types are found in all three [17]. By

ruling out phylogeographic structure, I was able to test predictions of the different mechanisms of

balancing selection.

I did not find any evidence for sexual antagonism as sex did not explain any of the

variability in the distribution of venom type or the expression of venom components. Additionally,

the genetic architecture of the components responsible for the two venom phenotypes are not

linked. There are distinct suites of PLA2s and SVMPs for each venom type but they can be

inherited in any combination and therefore not physically linked to each [18]. However, it may still

be possible for these loci to be in linkage disequilibrium or that selection could be acting on both

loci simultaneously. To test this would require knowing the allele frequency of the different loci

and the relative efficacy of the different genotypes involved. This would also make it possible to

determine if negative frequency dependent selection is occurring based on the relative frequency

of the two genotypes. There is not enough data on the prey items of C. scutulatus so density

dependent selection for snakes or different prey item was not testable in this study.

I did find evidence for local adaptation to heterogeneous niches over space and/or time that

is likely mediated by fine scale adaptation to prey [17]. I determined that the ecological niches

between the two venom types were not equivalent but they were similar. One climatic variable,

minimum temperature of the coldest month, was the most important component of both niche

models and was also significantly different between Type A and Type B venom phenotypes [17].

The Type B individuals are located in regions that are warmer for longer in the year which could

mean that their active season is longer. At the beginning and end of the active season Type B

venom may be advantageous for the prey being consumed. Additionally, we found functional

morphological differences in the distance between the fangs which may be co-adapted with the

Type A phenotype [17].

Overall, venom variability in C. scutulatus was higher than expected. Toxins from four
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toxin families, PLA2s, SVMPs, CTLs, and myotoxins-a, varied in presence/absence and as a

percentage of total expression [15]. Because of the variation found even on small spacial scales, it

is important to include as many individuals as possible to represent the transcriptomic diversity

of highly adaptive phenotypes such as venom. Although data were only presented from 15

individuals in this study, data from an additional 12 indicate the pattern of high variability in

expression patterns occurs in the remainder of C. scutulatus distribution (Figure 5.1). I was able

to test several hypotheses regarding the venom phenotype dichotomy in C. scutulatus. I ruled out

pedomorphism as being responsible for the venom type dichotomy as the ontogenetic change seen

in C. simus does not meet the genomic definition of the venom types [18, 19]. Many of the new

hypothesis I presented require fine-scale ecological data on the activity and diet of these snakes or

testing relative efficacy on potential prey items. By collecting ecological data, it may be possible

to determine the proximal cause of selection on venom phenotypes in C. scutulatus and other

rattlesnake species.

Significance

This dissertation utilized the largest number of venom-gland transcriptomes from a single

species to date. The venom phenotype dichotomy in C. scutulatus is likely being maintained

by balancing selection and the primary toxin components responsible for the dichotomy are

Mendelianly inherited. This framework extends to other species of rattlesnakes where the

venom dichotomy exist within and among species [20]. Balancing selection can lead to a

trans-species polymorphism which matches the pattern found within Crotalus and Sistrurus for

the presence/absence of the two venom types. I support using the genomic definition of the two

venom phenotypes [19, 21] because it provides for a discrete test of the efficacy of the venom

which can be used to test relative fitness of the genotypes. Further utilization of C. scutulatus as

a model for understanding the evolutionary and ecological mechanisms for phenotypic diversity

will provide unique insights on how a highly adaptive trait influence fitness and the molecular
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mechanisms responsible.

Figure 5.1: Distribution map of Mojave Rattlesnakes, Crotalus scutulatus, with venom type labeled with
dots and pie charts used to represent the proportion of toxin family in the venom-gland transcriptome of 27
individuals.
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Table B.1: Specimen information and associated data used for analyses in Chapter 2.

Specimen Museum Schield et al
Species Subspecies

Venom
Country State

RadSeq
HPLC

MTX MTX MTX MTX MP
Kallikrein

SVL TL HL HW IF RightFL LeftFL

ID ID 2018 Type Clade A2-3 A3-4 B2-3 B3-4 Activity (mm) (mm) (mm) (mm) (mm) (mm) (mm)

070401-SPUN — — C. scutulatus scutulatus A USA California 1 A — — — — 0 — — — — — — — —

083101-SPUN — — C. scutulatus scutulatus A USA California 1 A — — — — 0 — — — — — — — —

090101-SPUN — — C. scutulatus scutulatus A USA California 1 A — — — — 0 — — — — — — — —

318 2013-128 — — C. scutulatus scutulatus A USA New Mexico 1 A — — — — 0 — — — — — — — —

676-25490 — — C. scutulatus scutulatus A USA California 1 A — — — — 0 — — — — — — — —

CLP2390 CHFCB-ID 302 — C. scutulatus salvini A Mexico Puebla 3 A A A A A 0 — — — — — — — —

CLPT598 — — C. scutulatus scutulatus A USA Texas 2 A A A A A 0 305.8879 — — — — — — —

CLS899 MVZ:Herp:275538 CS0223 C. scutulatus scutulatus A Mexico Guanajuato 3 A — — — — 0 — — — — — — — —

CLS900 MVZ:Herp:275555 — C. scutulatus salvini A Mexico Tlaxcala 3 A — — — — 0 — — — — — — — —

CLS902 MVZ:Herp:275557 CS0215 C. scutulatus salvini A Mexico Tlaxcala 3 A — — — — 0 — — — — — — — —

Css26-SPUN — — C. scutulatus scutulatus A USA California 1 A — — — — 0 — — — — — — — —

NMB075 MVZ:Herp:275541 CS0216 C. scutulatus scutulatus A Mexico Guanajuato 3 A — — — — 0 — — — — — — — —

OFV1124 MVZ:Herp:275552 CS0146 C. scutulatus salvini A Mexico Puebla 3 — A A A A 0 — — — — — — — —

CLP2027 ASNHC 15003 CS0176 C. scutulatus scutulatus A USA Texas 2 A A A A A 0.0009 733.1964 — — — — — — —

Css24-SPUN — — C. scutulatus scutulatus A USA California 1 A — — — — 0.0018 — — — — — — — —

102-SM161 — — C. scutulatus scutulatus A USA Arizona 1 A — — — — 0.0021 — — — — — — — —

117-SM165 — — C. scutulatus scutulatus A USA Arizona 1 A — — — — 0.0034 — — — — — — — —

CLPT1095 — — C. scutulatus scutulatus A Mexico Aguascalientes 3 A A A A A 0.0046 — — — — — — — —

CLP2152 ASU 36039 CS0190 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0057 290.4145 713 61 32.71 23.63 7.31 10.52 10.12

CLS898 MVZ:Herp:275542 — C. scutulatus scutulatus A Mexico Guanajuato 3 A — — — — 0.0070 — — — — — — — —

CLP1971 ASU 36091 CS0172 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0072 — 717 38.71 30.83 21.01 7.85 8.68 8.51

671-25359 — — C. scutulatus scutulatus A USA California 1 A — — — — 0.0083 — — — — — — — —

070402-SPUN — — C. scutulatus scutulatus A USA California 1 A — — — — 0.0084 — — — — — — — —

307 2010-160 — — C. scutulatus scutulatus A USA Arizona 1 A — — — — 0.01 — — — — — — — —

CLP1959 ASU 36061 CS0169 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0106 — 730 57.64 32.22 21.01 8.65 9.16 9.07

NMB056 MVZ:Herp:275546 CS0144 C. scutulatus scutulatus A Mexico San Luis Potosi 3 A A B? B? B? 0.0113 — — — — — — — —

CLP2021 ASNHC 15002 CS0175 C. scutulatus scutulatus A USA Texas 2 A A A A A 0.0117 352.6722 — — — — — — —

CLP1829 ASU 36074 — C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0119 132.7679 801 65 35.96 29.56 11.4 11.36 10.57

CLS894 MVZ:Herp:275532 — C. scutulatus scutulatus A Mexico Aguascalientes 1 A — — — — 0.0123 — — — — — — — —

99-SM156 — — C. scutulatus scutulatus A USA Arizona 1 A — — — — 0.0124 — — — — — — — —

CLS896 MVZ:Herp:275533 CS0218 C. scutulatus scutulatus A Mexico Aguascalientes 3 A — — — — 0.0127 — — — — — — — —

672-25471 — — C. scutulatus scutulatus A USA California 1 A — — — — 0.0133 — — — — — — — —

CLP2114 ASU 36065 CS0185 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0138 372.9393 519 45.3 26.46 17.15 5.84 8.66 8.66

CLP2108 CAS 259916 CS0181 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0139 387.2598 777 63 34.07 24.77 8.37 10.79 9.66

670-25358 — — C. scutulatus scutulatus A USA California 1 A — — — — 0.0154 — — — — — — — —

NMB074 MVZ:Herp:275540 CS0151 C. scutulatus scutulatus A Mexico Guanajuato 3 A — — — — 0.0158 — — — — — — — —

CLP1808 ASU 36069 — C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0162 243.4482 680 36.99 30.61 21.08 8.07 9.59 8.24
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Specimen Museum Schield et al
Species Subspecies

Venom
Country State

RadSeq
HPLC

MTX MTX MTX MTX MP
Kallikrein

SVL TL HL HW IF RightFL LeftFL

ID ID 2018 Type Clade A2-3 A3-4 B2-3 B3-4 Activity (mm) (mm) (mm) (mm) (mm) (mm) (mm)

CLS881 MVZ:Herp:275545 CS0133 C. scutulatus salvini A Mexico Veracruz 3 A A A A A 0.0164 — — — — — — — —

673-25473 — — C. scutulatus scutulatus A USA California 1 A — — — — 0.0172 — — — — — — — —

332-SM164 — — C. scutulatus scutulatus A USA New Mexico 1 A — — — — 0.0175 — — — — — — — —

674-25482 — — C. scutulatus scutulatus A USA California 1 A — — — — 0.0188 — — — — — — — —

CLP1972 ASU 36092 CS0173 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0192 340.5362 635 42 26.85 20.96 6.78 8.4 8.15

CLP2112 ASU 36036 CS0183 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0197 406.9201 643 43 30.21 20.74 7.37 9.26 8.84

CLP2154 ASU 36038 CS0192 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0201 462.6243 732 62 31.94 24.68 9.62 10.61 10.61

CLP1824 ASU 36072 — C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0202 275.1838 696 54 30.57 23.3 8.27 9.92 9.12

CLPT548 — — C. scutulatus scutulatus A USA Texas 2 A A A A A 0.0203 — — — — — — — —

CLP1930 ASNHC 14997 CS0165 C. scutulatus scutulatus A USA New Mexico 1 A A A A A 0.0226 360.2572 724 37.22 32.99 23.03 8.74 8.58 8.59

CLP2076 CAS 259910 CS0178 C. scutulatus scutulatus A USA California 1 A A A A A 0.0227 466.6292 765 42.71 33.28 22 7.85 10.98 10.96

CLP2116 ASU 36067 CS0187 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0236 280.1596 558 32 29.52 25.04 7.03 8.91 8.11

CLS895 MVZ:Herp:275537 CS0222 C. scutulatus scutulatus A Mexico Aguascalientes 3 A — — — — 0.0242 — — — — — — — —

CLP2077 CAS 259911 CS0179 C. scutulatus scutulatus A USA California 1 A A A A A 0.0251 420.5731 566 32 24.7 20.2 6.8 8.49 8.12

CLPT545 — — C. scutulatus scutulatus A USA Texas 2 A A A A A 0.0263 438.1703 — — — — — — —

CLP1957 ASU 36076 CS0168 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0293 194.0546 643 34.73 30.4 19.76 8.45 9.05 9.04

CLP1837 ASU 36034 — C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0296 556.739 649 52 30.03 22.68 7.84 9.96 9.96

CLS891 MVZ:Herp:275539 CS0134 C. scutulatus scutulatus A Mexico Guanajuato 3 A B? A B? A 0.0303 — — — — — — — —

LomaLindaMJ — — C. scutulatus scutulatus A USA California 1 A — — — — 0.0315 — — — — — — — —

CLP2173 ASNHC 14999 CS0197 C. scutulatus scutulatus A USA New Mexico 1 A A A A A 0.0321 257.89 741 43 33.81 22.45 9.44 10.69 9.82

CLP1822 ASNHC 15007 — C. scutulatus scutulatus A USA Texas 2 A A A A A 0.0329 346.7862 758 61 35.73 25.5 7.88 11.03 10.6

CLP1836 ASU 36033 — C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0369 617.2976 769 65 33.92 25.6 7.97 9.95 9.52

CLPT549 — — C. scutulatus scutulatus A USA Texas 2 A A A A A 0.0378 — — — — — — — —

CLPT963 — — C. scutulatus salvini A Mexico Puebla 3 A A A A A 0.0416 — — — — — — — —

669-25081 — — C. scutulatus scutulatus A USA California 1 A — — — — 0.0473 — — — — — — — —

CLP2075 CAS 259909 CS0177 C. scutulatus scutulatus A USA California 1 A A A A A 0.0479 467.9035 696 57.02 31.94 22.96 7.52 9.87 9.87

CLP2389 CHFCB-ID 301 — C. scutulatus salvini A Mexico Puebla 3 A A A B? A 0.05 — — — — — — — —

CLP1953 ASU 36075 CS0167 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0506 — 589 51 28.65 18.53 8.02 7.96 8.03

CLP1825 ASU 36073 — C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0565 476.9448 662 52 30.52 24.82 8.54 9.38 9.74

CLP1936 ASU 36035 CS0166 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.059 — 441 28 23.76 15.64 5.78 6.69 5.78

CLP1821 ASNHC 15006 — C. scutulatus scutulatus A USA Texas 2 A A A A A 0.0599 415.9614 561 35 28.85 21.13 7.33 9.46 7.71

CLPT965 — — C. scutulatus salvini A Mexico Puebla 3 A A A A A 0.067 — — — — — — — —

CLS876 MVZ:Herp:275544 CS0217 C. scutulatus salvini A Mexico Veracruz 3 A — — — — 0.0694 — — — — — — — —

CLP2113 ASU 36064 CS0184 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0725 178.1565 509 31 26.17 19.66 7.93 8 7.36

CLP1963 ASU 36077 CS0171 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.0738 — 464 25.98 25.09 15.79 5.38 7.7 broken

CLPT546 — — C. scutulatus scutulatus A USA Texas 2 A A A A A 0.0779 — — — — — — — —

CLP2333 CHFCB-ID 245 — C. scutulatus salvini A Mexico Veracruz 3 A A B? B? A 0.0808 — — — — — — — —

CLS875 MVZ:Herp:275543 CS0220 C. scutulatus salvini A Mexico Veracruz 3 A — — — — 0.0811 — — — — — — — —

070601-A — — C. scutulatus scutulatus A USA California 1 A — — — — 0.1108 — — — — — — — —
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Specimen Museum Schield et al
Species Subspecies

Venom
Country State

RadSeq
HPLC

MTX MTX MTX MTX MP
Kallikrein

SVL TL HL HW IF RightFL LeftFL

ID ID 2018 Type Clade A2-3 A3-4 B2-3 B3-4 Activity (mm) (mm) (mm) (mm) (mm) (mm) (mm)

CLP1961 ASU 36062 CS0170 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.1162 — 564 44 28 18.81 7.48 9.03 9.05

CLPT1073 — CS0234 C. scutulatus scutulatus A Mexico Mexico State 3 A A A A A 0.1229 — — — — — — — —

CLP2175 ASU 36044 CS0199 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.1433 — 258 20 16.44 11.46 3.94 4.63 4.19

CLP2153 ASU 36037 CS0191 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.1866 — 261 14 16.54 9.4 3.54 4 4.16

CLP2191 ASNHC 15004 CS0201 C. scutulatus scutulatus A USA Texas 2 A A A A A 0.2168 453.7650 — — — — — — —

CLP2382 CHFCB-ID 295 — C. scutulatus salvini A Mexico Puebla 3 A A A B? A 0.2317 — — — — — — — —

CLPT1074 — CS0235 C. scutulatus scutulatus A Mexico Mexico State 3 A A A A A 0.2546 535.6830 — — — — — — —

CLS905 MVZ:Herp:275553 CS0221 C. scutulatus scutulatus A Mexico Querataro 3 A — — — — 0.2933 — — — — — — — —

CLP2174 ASU 36043 CS0198 C. scutulatus scutulatus A USA Arizona 1 A A A A A 0.4195 — 257 17 15.87 10.76 3.75 4.84 4.01

CLP2182 ASNHC 15000 CS0200 C. scutulatus scutulatus A USA New Mexico 1 A A A A A 0.6675 — — — — — — — —

CLP1798 ASNHC 15005 — C. scutulatus scutulatus A USA Texas 2 — A A A A — — 561 51 31.55 20.92 8.87 broken broken

CLP1801 ASU 36068 — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — 671 56 30.5 22.36 7.73 broken broken

CLP1809 ASU 36070 — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — 694 61 32.46 26.34 10.32 10.61 10.89

CLP1810 ASU 36071 — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — 645 46 30.67 23.3 8.92 8.85 8.85

CLP1816 ASU 36032 — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — 632 67 32.05 24.54 8.69 8.88 9.45

CLP1980 ASNHC 15001 CS0174 C. scutulatus scutulatus A USA Texas 2 — A A A A — — — — — — — — —

CLP2096 ASU 36078 CS0180 C. scutulatus scutulatus A USA Arizona 1 — A A A A — — 693 61 30.53 22.69 8.7 broken broken

CLP2115 ASU 36066 CS0186 C. scutulatus scutulatus A USA Arizona 1 A A A A A — 589.2028 548 43 27.09 19.9 6.89 7.94 7.87

CLP2166 ASU 36040 CS0193 C. scutulatus scutulatus A USA Arizona 1 — A A A A — — 646 41 30.13 25.31 8.57 broken broken

CLP2167 ASU 36041 CS0194 C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLP2168 ASU 36042 CS0195 C. scutulatus scutulatus A USA Arizona 1 — A A A A — — 656 53 33.43 23.12 8.68 8.45 7.9

CLP2172 ASNHC 14998 CS0196 C. scutulatus scutulatus A USA New Mexico 1 — A A A A — — 716 56 31.96 26.41 8.93 broken broken

CLP72 — — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT162 — CS0202 C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT177 — CS0207 C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT180 — CS0208 C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT181 — CS0209 C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT195 — CS0210 C. scutulatus scutulatus A USA New Mexico 1 — A A A A — — — — — — — — —

CLPT200 — CS0211 C. scutulatus scutulatus A USA New Mexico 1 — A A A A — — — — — — — — —

CLPT291 — CS0212 C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT518 — — C. scutulatus scutulatus A USA Texas 2 — A A A A — — — — — — — — —

CLPT528 — — C. scutulatus scutulatus A USA Texas 2 — A A A A — — — — — — — — —

CLPT531 — — C. scutulatus scutulatus A USA Texas 2 — A A A A — — — — — — — — —

CLPT540 — — C. scutulatus scutulatus A USA Texas 2 — A A A A — — — — — — — — —

CLPT587 — — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT589 — — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT590 — — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT594 — — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLS800 MVZ:Herp:265259 CS0131 C. scutulatus scutulatus A USA California 1 — A A A A — — — — — — — — —
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Specimen Museum Schield et al
Species Subspecies

Venom
Country State

RadSeq
HPLC

MTX MTX MTX MTX MP
Kallikrein

SVL TL HL HW IF RightFL LeftFL

ID ID 2018 Type Clade A2-3 A3-4 B2-3 B3-4 Activity (mm) (mm) (mm) (mm) (mm) (mm) (mm)

CLS811 MVZ:Herp:275565 CS0132 C. scutulatus scutulatus A USA California 1 — A A A A — — — — — — — — —

CLS868 MVZ:Herp:275548 CS0148 C. scutulatus salvini A Mexico Puebla 3 — B? A B? A — — — — — — — — —

CLS908 MVZ:Herp:275567 CS0136 C. scutulatus scutulatus A USA Nevada 1 — A A A A — — — — — — — — —

CLS909 MVZ:Herp:275568 CS0137 C. scutulatus scutulatus A USA Nevada 1 — A A A A — — — — — — — — —

CLS911 MVZ:Herp:275561 CS0138 C. scutulatus scutulatus A USA Arizona 1 — B? A B? A — — — — — — — — —

CLSRB6 MVZ:Herp:286077 CS0147 C. scutulatus scutulatus A Mexico Guanajuato 3 — A A A A — — — — — — — — —

JAC29013 — CS0019 C. scutulatus scutulatus A Mexico Chihuahua 2 — A A B? B? — — — — — — — — —

JAC29014 — CS0020 C. scutulatus scutulatus A Mexico Chihuahua 2 — A B? B? A — — — — — — — — —

JAC29076 — CS0022 C. scutulatus scutulatus A Mexico Chihuahua 2 — A B? B? B? — — — — — — — — —

JAC29089 — CS0024 C. scutulatus scutulatus A Mexico Chihuahua 2 — A A A A — — — — — — — — —

KW1107 — — C. scutulatus scutulatus A USA Texas 2 — A A A A — — — — — — — — —

MBCS010 — — C. scutulatus scutulatus A Mexico Zacatecas 3 — A A A ? — — — — — — — — —

MBCS011 — — C. scutulatus scutulatus A Mexico Coahuila 2 — A A A A — — — — — — — — —

MM107 — — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

MM240 — — C. scutulatus scutulatus A USA Texas 2 — A A A A — — — — — — — — —

NMB037 MVZ:Herp:275535 CS0142 C. scutulatus scutulatus A Mexico Aguascalientes 3 — B? B? B? A — — — — — — — — —

NMB038 MVZ:Herp:275536 CS0143 C. scutulatus scutulatus A Mexico Aguascalientes 3 — A A A A — — — — — — — — —

YPMR17525 YPMHERR 017525 — C. scutulatus scutulatus A USA Arizona 1 — A A A A — — — — — — — — —

CLPT1050 — — C. scutulatus scutulatus AB Mexico Jalisco 3 A+B A A A A 0.483 — — — — — — — —

CLP2111 ASU 36063 CS0182 C. scutulatus scutulatus AB USA Arizona 1 A+B A A A A 0.6756 216.8703 623 32 27.42 21.15 7.92 8.42 8.94

CLP1823 ASU 36060 — C. scutulatus scutulatus AB USA Arizona 1 A+B A A A A 0.6913 336.8347 597 54 31.26 24.47 7.58 9.53 8.82

CLPT1052 — — C. scutulatus scutulatus AB Mexico Jalisco 3 A+B A A A A 0.7258 — — — — — — — —

CLP1832 ASU 36090 — C. scutulatus scutulatus AB USA Arizona 1 A+B A A A A 0.7354 298.3029 788 55.96 33.69 23.59 8.32 9.61 10.63

CLPT1051 — — C. scutulatus scutulatus AB Mexico Jalisco 3 A+B — — — — 0.8518 — — — — — — — —

CLP1781 CHFCB-ID 371 — C. scutulatus scutulatus AB Mexico Jalisco 2 A+B A A A A 0.856 382.7694 — — — — — — —

CLPT1135 — — C. scutulatus scutulatus AB Mexico Nuevo Leon 3 A+B A A A A 0.9159 — — — — — — — —

CLP1830 ASU 36088 — C. scutulatus scutulatus AB USA Arizona 1 A+B A A A A 0.9467 272.9386 784 59.55 34.27 23.8 7.7 10.3 10.47

CLP2272 CHFCB-ID 186 — C. scutulatus scutulatus AB Mexico Coahuila 3 A+B A B? B? A 1.275 — — — — — — — —

CLP1929 ASNHC 14996 CS0164 C. scutulatus scutulatus AB USA New Mexico 1 A+B A A A A — — 283 14 17.41 11.09 3.42 3.11 3.63

CLP1834 ASU 36101 — C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.2081 469.2384 661 41 32.94 24.38 7.78 10.02 10.56

CLPT479 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.5862 — — — — — — — —

CLPT1136 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.6738 — — — — — — — —

CLPT1141 — — C. scutulatus scutulatus B Mexico Durango 2 B B B B B 0.6876 — — — — — — — —

CLPT576 — — C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.7019 322.6962 — — — — — — —

CLPT449 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.7294 — — — — — — — —

CLP1833 ASU 36100 — C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.7755 409.7720 508 24 25.26 18.72 5.93 6.87 6.65

CLPT452 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.7755 281.2518 — — — — — — —

CLPT456 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.7852 — — — — — — — —

CLP1786 CHFCB-ID 376 — C. scutulatus scutulatus B Mexico Durango 2 B B B B B 0.7998 244.5404 — — — — — — —
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Specimen Museum Schield et al
Species Subspecies

Venom
Country State

RadSeq
HPLC

MTX MTX MTX MTX MP
Kallikrein

SVL TL HL HW IF RightFL LeftFL

ID ID 2018 Type Clade A2-3 A3-4 B2-3 B3-4 Activity (mm) (mm) (mm) (mm) (mm) (mm) (mm)

CLS897 MVZ:Herp:275534 — C. scutulatus scutulatus B Mexico Zacatecas 3 B — — — — 0.8031 — — — — — — — —

CLP1787 CHFCB-ID 377 — C. scutulatus scutulatus B Mexico Durango 2 B B B B B 0.8104 356.8591 — — — — — — —

CLPT476 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.8204 152.9743 — — — — — — —

CLP2136 ASU 36103 CS0188 C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.8281 101.5176 1030 69.35 40.67 32.56 10.89 13.12 13.63

CLPT1137 — — C. scutulatus scutulatus B Mexico Chihuahua 2 B B B B B 0.8411 — — — — — — — —

CLS892 MVZ:Herp:275549 CS0135 C. scutulatus scutulatus B Mexico Zacatecas 3 B B B B B 0.8483 — — — — — — — —

CLPT578 — — C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.8583 — — — — — — — —

CLP1783 CHFCB-ID 373 — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.8797 139.3213 — — — — — — —

CLPT577 — — C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.8856 229.9772 — — — — — — —

CLPT1134 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.8871 — — — — — — — —

CLPT1069 — CS0230 C. scutulatus scutulatus B Mexico Durango 2 B B B B B 0.8949 — — — — — — — —

CLP1784 CHFCB-ID 374 — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.8951 405.4638 — — — — — — —

CLPT1091 — — C. scutulatus scutulatus B Mexico Chihuahua 2 B B B B B 0.9112 — — — — — — — —

CLPT1179 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.9158 — — — — — — — —

CLPT1094 — — C. scutulatus scutulatus B Mexico Jalisco 2 B B B B B 0.9188 — — — — — — — —

CLP1780 CHFCB-ID 370 — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.9198 244.1763 — — — — — — —

CLPT1071 — CS0231 C. scutulatus scutulatus B Mexico Durango 2 B B B B B 0.927 — — — — — — — —

MBCS006 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.9303 214.9286 — — — — — — —

CLP2142 ASU 36104 CS0189 C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.9346 353.6430 775 56.86 34.34 24.89 7.67 10.04 9.82

CLPT1138 — — C. scutulatus scutulatus B Mexico Chihuahua 2 B B B B B 0.937 — — — — — — — —

CLPT1177 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.9494 — — — — — — — —

CLP1794 ASU 36096 — C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.9559 319.2982 556 42 28.27 21.52 6.98 8.83 8.83

CLPT579 — — C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.9597 — — — — — — — —

CLPT1072 — CS0232 C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.9938 — — — — — — — —

CLP1778 CHFCB-ID 369 — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 0.9961 257.2832 — — — — — — —

CLPT581 — — C. scutulatus scutulatus B USA Arizona 1 B B B B B 0.9969 — — — — — — — —

CLP1785 CHFCB-ID 375 — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 1.0119 362.1382 — — — — — — —

CLP1828 ASU 36099 — C. scutulatus scutulatus B USA Arizona 1 B B B B B 1.0226 70.6922 766 55.55 32.77 24.69 8.05 10.49 10.39

CLP1831 ASU 36089 — C. scutulatus scutulatus B USA Arizona 1 B B B B B 1.0329 195.8144 795 51 35.63 24.44 9.27 8.86 9.61

CLP2261 CHFCB-ID 177 — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 1.0508 — — — — — — — —

CLPT580 — — C. scutulatus scutulatus B USA Arizona 1 B B B B B 1.0543 308.9219 — — — — — — —

CLP1777 CHFCB-ID 368 — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 1.06 280.2202 — — — — — — —

CLP2262 CHFCB-ID 178 — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 1.0608 — — — — — — — —

CLPT1090 — CS0233 C. scutulatus scutulatus B Mexico Chihuahua 2 B B B B B 1.0612 — — — — — — — —

CLP1827 ASU 36098 — C. scutulatus scutulatus B USA Arizona 1 B B B B B 1.0792 287.9873 706 41 34.27 24.72 8.8 10.18 10.57

CLP1835 ASU 36102 — C. scutulatus scutulatus B USA Arizona 1 B B B B B 1.1616 385.318 685 34.97 29.26 20.86 6.35 7.76 7.73

CLP1782 CHFCB-ID 372 — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 1.2258 285.8635 — — — — — — —

CLP1826 ASU 36097 — C. scutulatus scutulatus B USA Arizona 1 B B B B B 1.226 295.5723 739 65 34.57 24.17 8.7 10.79 10.14

CLPT455 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B 1.9306 294.6014 — — — — — — —
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Specimen Museum Schield et al
Species Subspecies

Venom
Country State

RadSeq
HPLC

MTX MTX MTX MTX MP
Kallikrein

SVL TL HL HW IF RightFL LeftFL

ID ID 2018 Type Clade A2-3 A3-4 B2-3 B3-4 Activity (mm) (mm) (mm) (mm) (mm) (mm) (mm)

CLP2276 CHFCB-ID 190 — C. scutulatus scutulatus B Mexico Coahuila 3 B B B B B 2.0433 — — — — — — — —

CLP2163 ASU 36095 — C. cerberus — B USA Arizona Outgroup — — — — — — — — — — — — — —

CLP2046 CAS 259882 — C. oreganus — B USA California Outgroup — — — — — — — — — — — — — —

ANMO1369 MZFC22927 CS0141 C. scutulatus scutulatus B Mexico Zacatecas 3 — B B B B — — — — — — — — —

CLP1813 ASU 36087 — C. scutulatus scutulatus B USA Arizona 1 — B B B B — — 637 33 28.07 22.44 7.12 broken 8.14

CLPT1148 — — C. scutulatus scutulatus B Mexico Coahuila 3 — B B B B — — — — — — — — —

CLPT1149 — — C. scutulatus scutulatus B Mexico Coahuila 3 — B B B B — — — — — — — — —

CLPT1150 — — C. scutulatus scutulatus B Mexico Coahuila 3 — B B B B — — — — — — — — —

CLPT167 — CS0203 C. scutulatus scutulatus B USA Arizona 1 — B B B B — — — — — — — — —

CLPT172 — CS0204 C. scutulatus scutulatus B USA Arizona 1 — B B B B — — — — — — — — —

CLPT173 — CS0205 C. scutulatus scutulatus B USA Arizona 1 — B B B B — — — — — — — — —

CLPT174 — CS0206 C. scutulatus scutulatus B USA Arizona 1 — B B B B — — — — — — — — —

CLPT451 — — C. scutulatus scutulatus B Mexico Coahuila 2 — B B B B — — — — — — — — —

CLPT471 — — C. scutulatus scutulatus B Mexico Durango 2 — B B B B — — — — — — — — —

CLPT474 — — C. scutulatus scutulatus B Mexico Durango 2 — B B B B — — — — — — — — —

CLPT475 — — C. scutulatus scutulatus B Mexico Coahuila 2 B B B B B — 215.1713 — — — — — — —

CLPT500 — — C. scutulatus scutulatus B Mexico Durango 2 — B B B B — — — — — — — — —

CLPT586 — — C. scutulatus scutulatus B USA Arizona 1 — B B B B — — — — — — — — —

CLPT591 — — C. scutulatus scutulatus B USA Arizona 1 — B B B B — — — — — — — — —

CLS893 MVZ:Herp:275550 CS0214 C. scutulatus scutulatus B Mexico Zacatecas 3 — B B B B — — — — — — — — —

DAR108 — CS0149 C. scutulatus scutulatus B Mexico San Luis Potosi 3 — B B B B — — — — — — — — —

JAC 29015 — CS0021 C. scutulatus scutulatus B Mexico Chihuahua 2 — B B B B — — — — — — — — —

JMM242 MZFC25003 CS0150 C. scutulatus scutulatus B Mexico Durango 3 — B B B B — — — — — — — — —

KWS294 MZFC17996 CS0139 C. scutulatus scutulatus B Mexico Durango 2 — B B B B — — — — — — — — —

NMB058 MVZ:Herp:275547 CS0145 C. scutulatus scutulatus B Mexico San Luis Potosi 3 — B B B B — — — — — — — — —

CLP1914 ASNHC 15008 — C. viridis — B USA New Mexico Outgroup — — — — — — — — — — — — — —
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Table C.1: Differential toxin expression output for the four methods used. Genes not shown were not differentially expressed in any analysis.
For the log-fold changes, anything that is negative was higher in the first venom type being compared.

Toxin
RNentropy RNentropy Pairwise EBSeq EBSeq Pairwise DESeq2 log fold change edgeR log fold change

A AB B A to B A to AB B to AB Pattern A to B A to AB B to AB A to B A to AB AB to B A to B A to AB AB to B
3FTx-1 - 0 AB Unique UpAB UpAB
BPP-1 0 - + - + + -
CRISP-1 0 - - 0 - 0 - A Unique UpA UpA -1.20
CTL-3 - 0 + - + - 0 + - A Unique DownA DownA 12.41 12.31 10.07
CTL-1 0 0 + - + + -
CTL-11 0 0 + - + + -
CTL-12 + 0 - + - 0 - - + B Unique DownB DownB -3.46
CTL-2 0 0 + - + + -
CTL-6 0 - + + -
CTL-17 - - 0 - 0 0 - B Unique UpB UpB 10.31
CTL-23 0 - 0 0 - 0 - A Unique UpA UpA
CTL-22 - - + - + + - B Unique UpB UpB 5.57
CTL-13 0 0 + 0 + + -
CTL-18 0 - - 0 - + - 0 - A Unique UpA UpA -3.42 -3.40
CTL-20 - - 0 - 0 0 - 10.29
CTL-7 0 0 + 0 + + -
CTL-19 0 0 - 0 - - 0
CTL-9 + - - + - + - B Unique DownB DownB
CTL-4 - 0 + - + - 0 + - A Unique DownA DownA 13.68 12.35 13.47 12.13
CTL-21 - - + - + + - B Unique UpB UpB 7.21 7.06
CTL-5 0 0 + 0 + + -
CTL-16 0 0 - + - 0 - - 0 B Unique DownB DownB
CTL-10 0 0 + + -
MYO-6 - - 0 - 0 0 -
MYO-7 - - 0 - 0 0 -
MYO-5 - 0 0 - 0 - 0 A Unique DownA DownA
MYO-1 0 0 - 0 - - 0
MYO-2 0 0 - 0 - - 0
MYO-8 0 - - 0 - 0 - -11.11
NUC-1 0 - 0 0 - 0 -
PDE-1 0 - 0 0 - 0 - + 0
Pla2gA2-MTXA + 0 - + - - + B Unique DownB DownB -13.39 -13.76 -13.37 -13.22
Pla2gB1 0 0 + - + + - A Unique DownA DownA
Continued on next page
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Toxin
RNentropy RNentropy Pairwise EBSeq EBSeq Pairwise DESeq2 log fold change edgeR log fold change

A AB B A to B A to AB B to AB Pattern A to B A to AB B to AB A to B A to AB AB to B A to B A to AB AB to B
Pla2gK 0 0 + 0 + + 0
Pla2gB2-MTXB 0 0 - + - - + B Unique DownB DownB -13.53 -13.26 -13.51 -13.72
PLA2-6 0 0 + 0 + + 0
PLB-1 B Unique UpB UpB
SVMPI-1 - 0 0 - + - + A Unique DownA DownA 6.77 8.58
SVMPII-4 - 0 - - 0 - 0 AB Unique UpAB UpAB 4.78
SVMPII-1 - 0 + - + - + + - A Unique DownA DownA 10.16 10.11
SVMPII-3 - + + - + - + A Unique DownA DownA 11.75 11.98 11.02 11.22
SVMPII-2 - + 0 - + - + A Unique DownA DownA 9.30 9.89 9.19 9.76
SVMPIII-10 - + 0 - + - + A Unique DownA DownA 11.77 12.77 10.49 11.46
SVMPIII-3 - 0 + - + - + + - A Unique DownA DownA 7.84 7.51
SVMPIII-1 - + + - + - + + - A Unique DownA DownA 10.38 10.25
SVMPIII-4 0 0 + 0 +
SVMPIII-9 - 0 0 - + - + A Unique DownA DownA 12.79 12.94 11.85 11.96
SVMPIII-6 - 0 0 - + - + A Unique DownA DownA 6.70 6.23 6.72 6.22
SVMPIII-7 - + + - + - + A Unique DownA DownA 10.70 10.39 10.56
SVMPIII-5 - 0 + - + - + A Unique DownA DownA 9.43 9.48 9.47 9.48
SVMPIII-8 - - 0 - + - 0 0 - All Different UpB UpAB UpB 8.14 12.45 6.31
SVSP-16 0 0 - 0 -
SVSP-1 0 0 + 0 + + 0
SVSP-5 0 0 - 0 - - 0 -1.85
SVSP-10 0 - 0 0 - 0 -
SVSP-3 0 - 0 0 - + -
SVSP-2 + 0 - + - + 0 B Unique DownB DownB -1.72
SVSP-11 0 - 0 0 - 0 -
SVSP-4 0 0 + + 0
SVSP-15 0 0 + 0 + + 0
Vespryn-1 0 - 0 0 -
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