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ABSTRACT

In this work, we explore the various Brain Neuron tracking techniques, one of the most

significant applications of Diffusion Tensor Imaging. Tractography is a non-invasive method

to analyze underlying tissue micro-structure. Understanding the structure and organiza-

tion of the tissues facilitates a diagnosis method to identify any aberrations which can occur

within tissues due to loss of cell functionalities, provides acute information on the occurrences

of brain ischemia or stroke, the mutation of certain neurological diseases such as Alzheimer,

multiple sclerosis and so on. Under all these circumstances, accurate localization of the aber-

rations in efficient manner can help save a life. Following up with the limitations introduced

by the current Tractography techniques such as computational complexity, reconstruction

errors during tensor estimation and standardization, we aim to elucidate these limitations

through our research findings. We introduce an End to End Deep Learning framework

which can accurately estimate the most probable likelihood orientation at each voxel along

a neuronal pathway. We use Probabilistic Tractography as our baseline model to obtain the

training data and which also serve as a Tractography Gold Standard for our evaluations.

Through experiments we show that our Deep Network can do a significant improvement over

current Tractography implementations by reducing the run-time complexity to a significant

new level. Our architecture also allows for variable sized input DWI signals eliminating the

need to worry about memory issues as seen with the traditional techniques. The advantage

of this architecture is that it is perfectly desirable to be processed on a cloud setup and

utilize the existing multi GPU frameworks to perform whole brain Tractography in minutes

rather than hours. The proposed method is a good alternative to the current state of the

art orientation estimation technique which we demonstrate across multiple benchmarks.
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1 INTRODUCTION

Magnetic Resonance Imaging (MRI) has changed the way we look at human anatomy [25]. We

are able to clearly picture the structure within an organ and the organ itself which facilitates

with 3D view of underlying abnormalities [43], seizures, damages which are usually overlook by

other imaging modalities such as X-Ray, Ultrasound or Computed Tomography (CT). When

it comes to the human brain, imaging the complex organization of the neuronal fibers and

pathways in order to diagnose an illness is something traditional MRI cannot capture [54]. In

fact, there was not an existing method which could identify the neuron connections between

different regions of our Brain. The introduction of variants of MRI, namely - Diffusion Weighted

MR Imaging (DW-MRI) and Diffusion Spectrum Imaging (DSI) [38] [15] provided an ability

to look into microscopic tissue organization of human brain [55][35]. The idea proposed here

was to observe and track the movement of water molecules across nerve-fibers. Myelination of

nerve fibers does not allow water to pass through them but to travel along them [7]. Tracing

these water molecules leads directly to the neuron connection pathway between any given two

regions.

DW-MRI involves capturing the water diffusivity directions across multiple activation gra-

dient directions feed in through the scanner machine [42]. Fiber orientation estimation at any

given point involves identifying the diffusion signals, noise removal and estimating a rank 3

tensor (denoted by D) representing the molecular mobility across x, y, z directions and the cor-

relation between them. Many techniques have been proposed until now with respect to diffusion

tensor estimation [6][20][8]. Diffusion at any point of a given region or a voxel is represented

by the concept of Diffusion Ellipsoids. These Ellipsoids are three-dimensional views of distance

occupied in space by molecules at any given time. These ellipsoids are usually in the form of a

sphere or dumb-bell shaped.

The document is organized as follows, First we will introduce the concept of Diffusion

Weighted Magnetic Resonance Imaging and Diffusion Tensor Imaging, the acquisition process

in very brief, define the state of the art protocols used in scanning. Followed by Introduction

we present the related work and dive into detail about the Diffusion Tensor Imaging and their

applications. Explain the important properties of tractography and their limitations. We briefly

introduce the concepts involved in Deep Learning and then explain about our research findings

and our contributions.
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2 BACKGROUND

2.1 Diffusion Magnetic Resonance Imaging (DMRI)

Probing the movement of water molecules within the tissue micro-structure can lead to a new

way to analyze morphological and anatomical changes caused by multiple different pathologies

[26]. Early identification of such pathologies can significantly reduce the diagnosis time and

improve the medication effectively. Hence it is important to track the myriad of diffusions

occurring within tissue membranes around the neuronal tracts. A DW-MRI image consists of

multiple shells of 3D images. A DWI image can be defined mathematically as

DW = [S0, S1, S2, S3, S4, S5....SN ], (1)

where DW denotes a DW-MRI image and S represents each shell. Each 3D image often

resembles the traditional structural MRI image but encodes the diffusion profile of water under

the hood. The voxels in the 3D image measure about 1mm each in thickness. One can view

this image as a brain sliced into N regions of thickness 1mm, where each slice is a 2D image.

Each shell is a diffusion weighted image with some parametric value settings defined dur-

ing acquisition. Two parameters help distinguish between the shells, namely - b-values and

gradient vectors [37]. So parametrically, the DWI image can be written as

[b0, b1, b2, b3, b4, b5....bN ], (2)

and

[g0, g1, g2, g3, g4, g5....gN ]. (3)

where b denotes the b-values and g denotes gradient vectors.

Figure 1 shows a DWI image with 240 shells. In the preceding sections, we will see in brief

about how the Diffusion wighted acquisition is done and what those parameters actually mean.

2.2 Acquisition Methods

MRI acquisition consists of magnetic field gradients projected onto different tissue regions. The

acquisition process is usually accompanied by attenuation of these magnetic field gradients due

to the diffusion of water molecules [42]. Phase shift in the presence of magnetic field gradient

[42] is given by

2



φt = γB0t+ γ

∫ t

0
G(i) · x(i)dt, (4)

where the first term represents the phase change to the static b-value field and the second

term represents the effect of magnetic field gradients [42]. The first term is proportional to the

strength of the gradient field and the gradients and the location of spin. In other words the

above equation can be used to localize the spin position.

Figure 1: A DWI image consists of multiple shells of 3D volumes each obtained using different

gradient vectors and diffusion sanitizing values.

Many techniques exist to make the MRI signal sensitive to diffusion of water molecules [37].

One such simplest approach is to use a spin echo pulse signal [42]. A set of gradient pulses are

sent out preceding and succeeding the −180◦ refocusing plane. For a spin captured the phase

accumulated is proportional to the spin displacement occurring in the direction of the gradient

pulse. For one spin echo, the phase change is given by the equation

φphaseshift = γ

∫ t1+δ

t1

G(i) · x(i)dt− γ
∫ t1+δ+∆

t1+∆
G(i) · x(i)dt. (5)

It is interesting to point out that, in the absence of motion with a nuclei during scanning

there would be no phase shift observed and the terms will cancel out each other. However, in

practice the phase shifts observed by each nuclei will differ.

3



2.3 Scanner Protocols

For each DWI scanning session, several scanner parameters have to be adjusted for better

visualization. The parameters to be adjusted are the following:

• Voxel/Isotropic Resolution,

• Echo Time (TE),

• Repetition Time (TR),

• Gradient Field Directions,

• Gradient Field strength / Diffusion Sensitizing value.

Here is an example for the State-of-the-art protocol

• Voxel/Isotropic Resolution: 1.2mm,

• Echo Time (TE): 68ms,

• Repetition Time (TR): 5.4s,

• Gradient Field Directions: 60,

• Gradient Field strength / Diffusion Sensitizing value: 1200 s/mm2.

Figure 2: A Spin echo sequence: Gradients of strength GDiff , duration d, and spacing D are

applied during each TE
2 period. At t

TE the spin echo is formed and a diffusion-weighted echo is

sampled. The attenuation factor is only dependent on the parameters GDiff , D, and d [42].

4



2.4 What is b-value?

The Diffusion Sensitizing value (b-value) [42] can be found using the equation

b = (γGδ)2(∆− δ

3
), (6)

where

δ = length of one diffusion encoding gradient,

∆ = interval between the gradients,

G = gradient strength,

γ = gyromagnetic ratio.

The b-value parameter is chosen during the DWI acquisition time. Selection of b-value

depends on the region or tissue of interest within the human body [49]. Figure below shows the

range of b-values depending on multiple tissue types

Figure 3: b-value range for various tissue types.
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3 RELATED WORK

Medical Imaging community has seen tremendous interest in the analysis and development

of Diffusion Weighted MR Images [22][10][46][13]. The basic principle of Brownian motion is

the backbone of Diffusion Magnetic Resonance Imaging. Ever since the development of DW-

MRI, many research groups have introduced several Diffusion Tensor reconstruction techniques,

preprocessing techniques to remove eddy currents, motion correction, scalar measures to char-

acterize molecule movements, and post analysis techniques such as Tractography. Most of these

developments were inspired through the research work of Behrens et al. [47]. This work exten-

sively used Bayesian statistics to obtain a parameterized model for the Diffusion data in hand.

[47] introduced the idea of obtaining point estimates of a model by associating a Probability

Density Function (PDF) to the model parameters. The posterior distribution can be used to

obtain a belief whether our data belongs to the true distribution of not. Since the posterior

distribution is analytically not tractable, joint marginal distributions is considered and then

performing a random sampling/Monte Carlo sampling over the distribution to obtain samples

belonging to the high probability area only. [47] also introduced three models to characterize

the diffusion process namely - Diffusion model, simple partial volume model and compartment

model. These models are the first step in analyzing the DW images. In a similar way, [57]

introduced a Bayesian approach for tracing white matter fiber pathways and demonstrated its

applicability in identifying connectivity between two regions of the brain. To sample a point

from posterior distribution at each voxel, this work used random sampling instead of resorting

to a complex monte carlo sampling. Though this approach reduces the time required in ana-

lyzing the posterior distribution, it still demonstrates huge amount of over head in calculating

the Likelihood at each voxel.

A very few research groups deviated from this traditional approach in estimating fiber tracts.

One such work is from [45][39]. This work approached tractography as a global optimization

problem in trying to estimate the shortest path between two points. The uncertainty at each

voxel was modeled as a random Riemannian metric and defined a the term geodesic to be a

distribution over tracts. Ordinary differential equations are used to solve the geodesic over

Riemannian manifold.

[21] optimizes the tractography process by accurately quantifying the uncertainty in the

fiber directions. Authors introduce the idea of using sub voxel geometry to characterize fiber

spread and show that this technique works with single and multi-crossing fibers as well. The

uncertainty at each voxel is repeatedly estimated within a residual bootstrap process. This

6



process yields accurate reconstructions of neuron pathways.

We use the Stochastic Tractography as described in [57] as a baseline for our research findings

and experiments. Technical details of the tractography methods are described in chapter 6.
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4 DIFFUSION TENSOR IMAGING (DTI)

As we read through the previous topics, DW-MRI imaging consists of measuring at each voxel an

Apparent Diffusion Coefficient (ADC). Apparent Diffusion Coefficient is a measure of molecular

displacement across any given direction. It has been observed that ADC is highly independent

of the brain fiber orientation in the Gray Matter area while showing high correlation with

brain fiber orientation in the regions of White Matter [51]. ADC is a scalar quantity and does

not give a measure of molecular displacement in a 3D space, hence its limitations. DW-MRI

would be useful if we could get deeper insights about the tissue properties at any given voxel. To

overcome these limitations we need a vector quantity measure which could provide with detailed

information on fiber orientation across any direction confined within a 3D space. The Diffusion

Tensor(D) provides with exactly that information. The process involved in identifying the

Diffusion Tensor at each Voxel of an DW-MRI scan is termed as Diffusion Tensor Imaging

(DTI).

4.1 Why and How is DTI useful?

The Diffusion coefficient correlates directly to the physical organization of the tissues. Since we

can infer the underlying structure within each anatomical region of the brain [13], studying the

DTI parameters can give exemplary information on any existing abnormalities.

4.1.1 Clinical applications

Brain Ischemia results in due to lack of blood flow into the tissues. Eventually, the tissues start

to have a decreased metabolic rate leading to cell damage leading to stroke within any region of

the brain [44][4]. This often leads to disruption in voluntary/involuntary muscle functionality.

During the initial stages of brain ischemia, the water diffusion in the affected region collapses

significantly due to the failure of Na/K pumping system [11]. However, prognosis has shown

considerable improvement in stroke cases who report within the first few hours after the stroke

has occurred. DTI can help medical experts in quickly identify the tissues which are affected

due to this condition and provide necessary counter measures [23]. Similarly we can find DTI

being used to treat diseases such as Alzheimer’s and motor neuron diseases. In the Brain White

Matter, water content of a tissue can be estimated by finding the Trace of the tensor D also

indicating integrity of nerve fibers. Recent studies have shown the usage of DTI in identifying

abnormal connectivity patters in patients suffering with Schizophrenia.
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4.1.2 Mapping structural connectivity of the Brain

Over recent years much effort has been used to map the anatomical connectivity between dif-

ferent parts of the brain for each individual [10][46]. Exploring neuron connections within the

brain is of importance in identifying functional dependency between various regions and their

associated activities. To identify these pathways we need to track the fiber orientation on a

voxel to voxel basis which are usually noisy signals because of their acquisition nature. This

technique is termed as Tractography. In the later chapters, we will see how tractography can

be performed and also discuss on the ways to improvise on existing techniques.

4.2 Tensor Estimation Methods

At scan time, the measurement of Diffusion with MRI signal causes the signal to attenuate(S).

The extent of Diffusion at a given voxel depends on the Diffusion Tensor D(a symmetric tensor)

and the b-value [11]. These 3 parameters are related by the equation

S = S0exp(−bĝTkDĝk), and (7)

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (8)

The terms off-diagonal do not exist as the reference frame [x′, y′, z′] coincides with principal

diffusivity direction. The tensor D reduces to only its diagonal terms along the principal diffu-

sivity direction. The matrix D exhibits 6 degrees of freedom,nso in order to estimate the tensor,

at least 7 measurements are needed including the baseline image data S0, where the b-value is

0. The signal intensities/attenuation for each of the six images gives a set of equations

where

log(Si) = log(S0)− bĝTi Dĝi,

for i=1, ... , 6 ,

gi = gradient field strength vector.

By solving this set of equations for every voxel in the DWI image, we obtain the Diffusion

Tensor (D) to characterize the diffusion of water across brain neurons/tissue microstructure.

4.3 Measuring Tissue Properties

Brain tissue structure has been composed of multiple layers/subcomponents the Apparent Dif-

fusion Coefficient (ADC) computed depends on the b-values initialized during the scanning

9



stage [49]. Selecting a particular b-value for a brain region is tricky as it can vary across each

individual. Low b-values could help in capturing fast-diffusion occurring voxels effectively and

vice-versa [11]. DTI data can be exploited in different ways to understand the tissue microstruc-

ture. Here we will discuss some of the measures frequently used along with DTI analysis

4.3.1 Mean Diffusivity

Mean Diffusivity is a measure of displacement of molecules/measure of diffusion hindering tissue

structures. Mean diffusivity is an invariant quantity that does not depend on the reference frame

orientation [11]. The invariant to compute Mean Diffusivity is

Trace(D) = (Dxx +Dyy +Dzz)/3. (9)

4.3.2 Fractional Anisotropy

Fractional Anisotropy is a measure of the the isotropic properties of the underlying medium.

The FA value is in the range 0 to 1, where 0 indicates strong isotropic movement and 1 indicates

strong anisotropic movement of water molecules as seen in the fiber tracts. FA can be computed

using

FA(D) =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

, (10)

where λ are the Eigen values obtained by decomposing the Diffusion Tensor D.

10



5 TRACTOGRAPHY

DW-MRI has seen tremendous progress in being utilized as a clinical methodology. The DWI

images are primarily used for diagnosis and prognosis of lesions/abnormalities in the brain

tissues [12]. Apart from these applications, curiosity has allowed rapid growth in the efforts

to map the connectivity of nerve fibers within our brain [36]. Understanding the embedded

connections between different parts of the brain allows to discern the flow of impulses across

nerve fibers, functional connectivity and dependencies between activities, observe the growth of

evolution of nerves within fetal brain [18][22], cognitive neuroscience as well as in neurosurgeries.

Tractography or DTI fiber tracking aims at finding out inter-voxel connectivity using the scalar

measures which define the water diffusion profile in that voxel.

5.1 Why Tractography is important?

3D visualization of brain tracts has both clinical and scientific importance for identifying changes

within the micro-structural integrity of brain fibers [34]. In cases such as brain lesions, the

infection is capable enough to slightly alter the orientation of the fibers surrounding the affected

region. It is important to know the location of the lesion and the nerve fibers passing through

it and around it in case of a neurosurgery planning and thereby help prevent false decisions by

the neuro surgeons.

5.2 Tractography Methods

Fiber tracking algorithms are broadly classified into two types depending on the technique used

to reconstruct fiber pathways

5.2.1 Deterministic/Streamline Tractography

Streamline tractography is a simple and most basic method to track the nerve fibers and their

connections on a Voxel to Voxel basis. The eigenvalue decomposition of the diffusion tensor

yields a vector which indicates the principal direction of diffusivity. Starting with a seed point

only one direction is sampled at the given connecting voxel along the direction of diffusivity only.

However, this method does not provide any measure of uncertainty associated with noise which

occurs during the scan time. Moreover, this method fails to utilize the noise characteristics of

a DWI image. One of the popular toolkits available to perform tractography is SlicerDMRI

[56]. Figures 5 and 6 shown are some visuals obtained by performing tractography on a sample

Diffusion Weighted Image with SlicerDMRI.
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Figure 4: A) Location of Tumor within a brain region, B) Seed Points to initiate tractography,

C) Axial DTI slice, D) Sagittlal DTI slice, E) Corononal DTI slice. Source: nanda-kishore.com

[60].

Figure 5: Streamline tractography from the Cortico-spinal tract. Source: nanda-kishore.com

[60].
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Figure 6: Streamline tractography from the Cortico-spinal tract. Also shows the fibers running

around the tumor region. Source: nanda-kishore.com [60].

5.2.2 Probabilistic Tractography

Probabilistic Tractography takes into account the uncertainty due to noise signals [47]. Here

diffusion at each voxel is represented by a Orientation Distribution Function (ODF). ODFs

are a measure of uncertainty associated with each orientation [27]. Starting from a seed point,

multiple directions are sampled from a distribution, usually a posterior distribution and thereby

leading to a probability map of connections between two voxels. Figure 7 is a visual displaying

the probability heat map of connections between different regions of the brain.

5.3 Tractography Softwares

A number of tractography tools are available which can perform both Streamline and Proba-

bilistic Tractography. Listed below are few most popular toolkits

• SlicerDMRI [32]

Open source module for DW-MRI analysis. Provides a neat GUI with necessary software

implementations for extracting the Diffusion tensors, compute scalar maps and visualiza-

tion. This software implements only the streamline tractography and has no support for

probabilistic approach.
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Figure 7: A view of the whole brain tractography performed using the Connectome Mapper.

Used with permission [5].

• FSL [31]

Analysis tools for different MRI modalities such as Functional, Structural, Diffusion and

Perfusion MRI [31]. With regard to DWI, this toolkit can be used to perform motion

correction on scanned images, brain extraction, DTI estimation and probabilistic tractog-

raphy.

• Camino [33]

Open source toolkit for DWMRI processing [33]. Unlike other softwares, Camino supports

multiple tractography techniques, multiple-fiber and High Angular Resolution Diffusion-

Weighted Imaging(HARDI) data reconstruction techniques.

• TrackVis [41]

Trackvis is much more of a tracts visualization library. It also offers a Diffusion Toolkit

capable of tasks mentioned above.
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5.4 Limitations

Though tractography is widely popular it has few constraints associated with orientation esti-

mation

• Execution Time

With regard to deterministic tracking the execution time is very low, but at the cost of

ignoring the uncertainty at the given voxel. Many of the practical applications of DTI

cannot live without considering the noise in the voxel signals and the measure of uncer-

tainty produced by this noise. Robust tracking of fibers can be done with probabilistic

tractography.

However, probabilistic tractography involves expensive computations to determine the

likelihood distribution at each voxel. One way to avoid this issue is to cache the likelihood

estimations at each voxel so that any fiber which visits the same voxel again can just look

up for the distribution at that voxel instead of computing it again. With this technique,

whole brain probabilistic tractography can take around 8 hours to complete for a DWI

image of dimension (140 - Height, 140 - width, 80 - 3D slices, 96 - Shells) on a 8 core

CPU machine. This impedes the implementation of this analysis technique in cloud based

setup or for clinical use.

• Q-Space constraints

The analysis techniques used to extract structural information form the DWMRI imaging

by the use of simple model approximations is termed as Q-space analysis [52]. However,

reconstruction of the tensor at a given voxel using Q-space analysis, illustrates that a

minimum number of 6 required DWI shells successfully reconstruct the diffusion tensor D.

In most of the clinical studies and evaluations, the number of DWI shells is in the order of

40 to 500 DWI shells scanned with different combinations of b-values and gradient vectors.

Analysis of data this huge requires more computational power and hence its limitations.

Real time analysis is nearly impossible with multiple shells.

• Crossing Fibers

Analysis of the regions within the white matter regions is difficult as the level of Diffusion

tensor orientation uncertainty is too high [9][48]. In other words, this uncertainty arise due

to the fact that at any given point in the brain can have multiple crossing fibers. Tracking

multiple fiber orientations using deterministic tractography is not possible (remember that
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deterministic tracking is done by moving in the direction of eigen vector corresponding to

the maximum eigen value obtained after decomposing the diffusion tensor).

• Lack of data harmonization

Data harmonization refers to the process of gathering data from different sources and

processing them to a standard format. As many researchers/clinical studies are working

on DWI analysis it is difficult to adapt to image scans obtained using different scanning

machines (such as a Philips, Siemens or GE healthcare scanners). Also, defining a standard

acquisition protocols is also not feasible as the protocols are much of a situation dependent

(pertaining to some modality) [17]. Tractography methods have to be more robust in

trying to adapt to any given data regardless of scanning protocols and acquisition device.
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6 TRACTOGRAPHY: STATE OF THE ART

We build our proposed architecture in reference to the current state of the art implementation

of Diffusion Probabilistic Tractography [57]. The true voxel signal intensities across the DWI

shells are a measure of local water diffusion profile. The authors propose to use the compartment

model, whose description is within the equations below. As we know, the intensity of signal at

any given voxel of a DWI image is a noisy observation of the actual intensity. To obtain a more

non-linear relationship between the observed intensity and model parameters, by considering

logarithm of actual signal intensities. Assuming a Gaussian distribution for the noise, the joint

probability of the observed logarithm data D is given by the equation below

p(D|v̂, θ) =
N∏
j=1

µj
2
√

2πσ2
e−(

µ2
j

2σ2
(zj − lnµj)2), (11)

where

D = [z1, z2, z3, z4......zN ] with zj = lnyj + ε,

ε = a Gaussian approximation for the noise observed,

yj = observed voxel signal intensity,

µj = A model illustrating the water diffusion profile based on voxel intensity,

In this implementation a constrained model is used to measure µj ,

µj = µ0e
−αbje−βbj(gTj v)2 ,

g = gradient direction vector,

v = water diffusivity direction,

b = diffusion sensitizing value,

θ = denote the nuisance parameters in the model - α, β and v̂

A prior knowledge about the fiber organization and the parameter, is encoded by using a

Dirac impulse signal, where the prior is defined by the condition

p(v̂i|v̂i−1) ∝

 (v̂Ti v̂i−1), v̂Ti v̂i−1 ≥ 0

0 , v̂Ti v̂i−1 < 0

Since the nuisance parameters differ from voxel to voxel, they can be computed using the

diffusion tensor matrix of the voxel.
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The nuisance parameters α, β and v̂ are given by

α = λ2+λ3
2 ,

β = λ1 − α,

v̂ = ê1,

ê1 = principal eigen vector from the decomposition of Diffusion Matrix D.

λi = eigen values from the decomposition of Diffusion Matrix D.

These parameters help to get an estimate of the posterior distribution at each voxel. The

v̂ is defined over a unit sphere. The number of points chosen on the unit sphere depends

on the amount of precision required, throughout this work a unit sphere with 2562 points

is constructed upon which the likelihood and posterior distributions are approximated upon.

This arrangement of points is taken from [58]. The distribution functions are also termed as

Orientation Distribution Function. The posterior distribution can now be written as

p(v̂i = v̂k|v̂i−1, D) =
p(D|v̂k, θ)p(v̂k|v̂i−1)∑
v̂k∈S p(D|v̂k, θ)p(v̂k|v̂i−1)

. (12)

Having defined these formulations, the tractography steps are as defined in Figure 8.
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Figure 8: Steps describing the process of tracking a brain fiber from a given Seed Point. The

tracking is terminated when the degree of anisotropy is too low in the voxel.
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7 DEEP LEARNING

7.1 Introduction

Deep Learning has taken the whole Machine Learning community on a Storm [50]. Due to

its unprecedented results on tasks across multiple disciplines [24], Deep Learning has become

much of a industry standard at this moment. Deep Learning is backed by Neural Networks [19].

These networks try to mimic the way human sensory receptors work.

Let’s suppose a new stimulus is being perceived by any of our sensory organs, this event

generates a surge of chemicals reactions among the neurons which propagate along the con-

nections within some specific network. The most interesting part is that, amidst transferring

message (stimulus signal) to the next neuron, the receiver neuron also communicates to the

sender that the information has been carried forward. This creates a small feedback loop where

the signals passed between to and fro between two points dampen or strengthen. When the

stimulus is removed, the neurons which participated in this activity reinforce themselves and

be prepared to react/perceive the stimulus which occurs again easily. In case the stimulus does

not occur for a long time the neurons involved in that specific activity will lose its activations.

The connections will get stronger if the same stimulus occurs again and again. Hence proved -

Practice makes anyone perfect.

Figure 9: Two interconnected neurons. The Dendrites can pick up signals from thousands of

other neurons and pass on the message to the preceding neurons through Axon connections.

Source: www.mos6502.com [1].

Deep Learning mimics this exact behavior to learn representations fed into the input neurons

and the responses for specific input pattern [19]. Figure 14 shows a Perceptron: A single layer

neural network in its simplest settings. A perceptron represents a single biological neuron,

with dendrites resembling the inputs X and the weights W determine the activation probability
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along that connection. The intermediate function does some transformation on the inputs

signals along with the bias. S can be any activation function of choice which is used to clip the

resulting activations acting as a decision making function. In the preceding sections we shall

discuss on the most commonly used activation functions.

response = s(b+
N∑
i=0

XiWi). (13)

Figure 10: Perceptron as a single feed-forward neural network.

7.2 Convolution Layers

Figure 11 illustrates the inspiration behind the development of Convolutional Neural Network.

The eye perceives the visual information and pass on the signals through a series of inter

connected regions and hits the visual cortex region [19] [14]. The area V1 receives the sensory

inputs and is associated with the task of identifying edges of an object. V2 exhibits feed-forward

connections to the preceding layers and maintain information such as subject orientation and

color. Regions beyond V2 activate upon complex object features such as object recognition

and motion and spatial awareness. The convolutional layers in the example demonstrate how

intermediate layers are comparable to the human visual cortex system.

Following up with this understanding of the human visual cortex, Neocognitron was intro-

duced by Fukushima [19]. The proposed architecture consisted of two types of layers: S-layer-
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a feature extractor and C-layer- a feature organizer). S-layer consisted of several trainable cells

resembling the receptive field of primary visual cortex, which could be trained to respond to

different input signal patterns. The C-layer mimics the neural pathways in the visual cortex.

Figure 11: Human Visual Cortex system and the corresponding approximation with Convolu-

tional Neural Networks. Source: neuwritesd.org [2].

Convolutional Neural networks consist of a series of convolution layers followed by sub-

sampling layers. Figure below illustrates a simple case of convolution in two dimensions.

Figure 12: 2D-Convolution operation with a kernel K.

Given two functions ’f’ and ’k’ commonly referred to as a ’kernel’ in machine learning, the

convolution operation * produces a function which gives the amount of overlap between the two

inputs with one held constant and the second function ’k’ shifted over ’f’ for a given stride (the

stride value in this example is 1). Convolution operation is particularly important in computer
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vision problems as it is locally shift invariant. Here stride indicates the amount by which the

kernel has to be slided over for subsequent convolutions.

The convolution operation is mathematically given by

h(t) =

∫ ∞
−∞

f(α)k(t− α)dα. (14)

7.3 Pooling

Using convolution layers in a vision task would produce features which are a function of the

input region, kernel and the stride [29]. However, using multiple convolution layers would

create an overhead as the classifier would have to learn over a large set of features. One way to

minimize the number of features produced would be to somehow collect/aggregate the features

which are likely to be present in different regions of the input image. This operation is termed

as pooling. Below example shows pooling operation selecting the max feature value within

the window (max pooling)

Figure 13: Max pooling operation with a stride of 2.

7.4 Loss Functions

Given a function f(x), response y and its predictions ŷ a loss function is used to measure the

disparity between the predicted ŷ and the ground truth variable y. The risk of using the function

f(x) in decision making is given by [53]

Loss = L(f(x), y), and (15)

Riskf(x) = Eq[L] =

∫ ∫
q(x, y)Ldxdy, (16)

where q(x,y) is the actual distribution over the inputs x and y.
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Some of the commonly used loss functions in Deep Learning are the following

7.4.1 Mean Squared Error (MSE)

The most popular loss function used in Machine Learning. MSE gives a measure of the how

good an estimated signal is given the actual signal. It produces a qualitative score indicating

the level of disparity between two signals/values.

In case of an estimator, given a set of input labels y and the estimator predictions ŷ, the

MSE between these two variables is given by

MSE(y, ŷ) =
1

N

∑
i=1,N

(yi − ŷi)2, (17)

where N denotes the dimension of the values.

7.4.2 Cross Entropy Loss

Given a discrete variable x and two distributions, p̂(x) an estimate of the of the actual distri-

bution p(x) the cross entropy between the two distributions is given by the equation

H(p, p̂) = −
∑
∀x

p(x)log(p̂). (18)

7.5 Activation Functions

Artificial neural networks comprise of matrix multiplications and addition, which are linear

operations. Since the data in real world involve complex and non-linear relationships, a linear

model cannot be used to fit such non-linear data. To introduce non-linearity into the network,

activation functions are used. These activation functions are a non-linear function which are

continuously differentiable. Some of the popular activation functions used are as described

below:

7.5.1 Sigmoid

Sigmoid is one of the oldest activation functions used in neural networks. The function “squashes”

the input values to a range from zero to one. Equation shown below represents the sigmoid

activation function. One of the drawbacks of this function is that it saturates values closer to

zero or values closer to one, this results in diminishing gradient values. This makes the training

slower and causes problems in training deep networks.
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Hence, this function is avoided in hidden layers and sometimes used in output layers when

they want to output values ranging from zero to one.

f(x) =
1

1 + e−x
. (19)

7.5.2 Hyperbolic Tangent

Hyperbolic tangent function function scales the input values to a range from -1 one to +1 one.

This function is symmetrical along y-axis. Tanh activation function is defined by

f(x) =
2

1 + e−2x
− 1. (20)

7.5.3 ReLU

ReLU stands for rectified linear unit. This is a very popular non-linear activation function used

in recent years. ReLU maps all input values below zero to zero and has a ramp function for

values above zero. Equation below represents a ReLU function

f(x) =

 0, x < 0

x, x ≥ 0
.

Figure 14: Sigmoid, TanH and ReLU activation functions.
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ReLU overcomes some of the shortcomings of sigmoid and tanh functions. It mitigates the

vanishing gradient or exploding gradient problem. It also promotes sparse activations in the net-

work. They are computationally efficient, since they consist of only addition and multiplication.

Despite the popularity, it suffers from certain disadvantages. ReLU function has unbounded

output. There is also a problem called Dying ReLU which could make the activations zero for

all inputs. This problem is being mitigated by a modified version of ReLU called Leaky ReLU,

which allows small gradient values for negative inputs.
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8 THE PROPOSED APPROACH

8.1 Motivation

We follow from the work of Firman et al. [57], build upon the limitations introduced by Trac-

tography techniques and try to solve the limitations. Particularly focusing on the runtime

complexity, data harmonization and q-space limitations of probabilistic tractography. We im-

plement [57] as our baseline tractography technique and use it for our model data preparation,

experiments and evaluations. For rendering the generated tracts we use TrackVis. Unless

otherwise mentioned, we refer to the Firmans et al. [57] work through out this chapter.

Very recently DW-MRI analysis and fiber orientation estimation have come under the radar

of Deep Learning [59]. Yet, the implementations do not completely make use of the true potential

of deep learning. Golkov et al. [59] introduced a state of the art method to estimate DTI model

parameters, tissue segmentation and scalar quantities using Deep Learning. Their proposed

technique uses a 3 layered neural network to estimate DTI scalar measures. However, does not

help solve one of the important application of DTI - Tractography. Ye et al. [61] introduced a

Deep Network to guide an orientation estimator. They used sparse dictionary based learning

to train a neural network to estimate fiber orientations. This work consists of two stages: In

the first stage a neural network is trained to coarsely estimate Fiber orientations and then the

second estimator utilizes the coarse predictions to produce a much more refined output using

weighted L-1 regularization.

We introduce a deep learning network to demonstrate an end-to-end DWI signals to Fiber

Orientation estimation technique. This chapter is organized by first briefly introducing our

architecture, about the DWI data source, training data preparation and followed by our training

and experiment setup with benchmarks compared to our gold standard/state of the art.

8.2 Architecture

Figure below shows our Neural Network architecture which is trained from end-to-end with

DWI signals and orientations. Our architecture consists of 3 channels, which takes as input

the 3 anatomical views of the 3D brain scan. It is important to note that the input here is

considered as a function of a brain slice across all shells in the DWI image. At each seed point,

a 7x7 window is extracted at each slice and concatenated with the windows extracted across

the remaining shells. The tensor is of shape 7x7x69, where 69 is the number of shells.
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We perform 2D convolutions with 2 filters per channel to increase the dimensionality of the

input space in the first layer. Followed by this we have dense block where the feature maps

from the previous layer is fed to the immediate layers as well as to the next succeeding layers

in the dense block. The dense block helps retain high level features extracted by the preceding

layers and thereby help learn effectively across the given inputs.

Figure 15: Our Fiber likelihood orientation estimator using the concept of DenseNet.

We train the network with RMSprop Optimizer at initial learning rate of 0.00006 using

the Angular Distance loss metric as explained in the following sub sections. The training is

carried out for multiple epochs until the training starts to converge and we use early stopping

to stop training at a best validation score. This network provides an estimate of the likelihood

orientation at each voxel, which can then be used to perform tractography in real time.

8.3 DWI Scan Sources

We make use of the MGH (Massachusetts General Hospital) data obtained using a Siemens 3T

Connectom MRI scanner. This data is of particular importance for the Human Connectome

Project, whose effort is to map the structural connectivity of the Human brain. The MGH-

USC HCP data consists of 35 healthy adults between the ages of 20-59. Provided below are the

protocols used for data preparation

• Echo Time (TE) = 57ms,

• Repeat Time (TR) = 8800 ms,

• Image Matrix = 140 x 140,

• Number of Slices = 96,

28



• Voxel Size = 1.5mm,

• b-values = 1000, 3000, 5000, 10,000 s/mm2,

• Acquisition time = 89 minutes.

The data provided is partially preprocessed to remove gradient nonlinearities, motion and

eddy current correction [30].

Table 1: Orientation Estimation Network architecture. All convolutional layers and the FC

output layer follow Tanh activation function.

Layer Type Input Size Kernel Stride Feature Depth Output Size

Input 7 × 7 - - 69 -

Conv 1 7 × 7 3 × 3 1 × 1 138 5 × 5

Conv 2 - Dense 5 × 5 2 × 2 1 × 1 207 4 × 4

Conv 3 - Dense 4 × 4 1 × 1 1 × 1 207 4 × 4

Conv 4 - Dense 4 × 4 1 × 1 1 × 1 414 4 × 4

Conv 5 - Dense 4 × 4 2 × 2 1 × 1 1656 3 × 3

Dropout (p=0.1) 3 × 3 - - 1656 3 × 3

Conv 6 3 × 3 2 × 2 1 × 1 828 2 × 2

Max. Pool 1 2 × 2 2 × 2 1 × 1 828 1 × 1

Max. Pool 2 828 20 20 40 40

Dense 40 - - - 10

Concat 10 [× 3 views] - - 30 30

FC Output 30 - - - 3

8.4 Training Data Preparation

Since our network is a likelihood orientation estimator, we have to train it to learn the non

linearity dependence between the diffusion weighted signal and the orientation vector. As we

extract a window across at a voxel, our network will also capture the anatomical dependency

across the three channels.

We use the state of the art probabilistic tractography algorithm to perform tractography.

Amidst the process of performing whole brain tractography we also cache and store the likelihood
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orientation calculated at each voxel and their corresponding likelihood distribution and posterior

distribution. The MGH dataset from the Human Connectome Project consists of 35 subjects

[46]. So in total this gives about approximately 17 Million voxels - orientation pairs. As we

are demonstrating a proof of concept, we train our architecture using 100K samples and 10K

validation/test samples.

8.5 Rhombicuboctahedron Mapping of a Voxel

In the probabilistic tractography technique introduced by Firmans et al. [57], if at any given

voxel, one random direction is drawn from the posterior distribution to get the next probable

fiber direction. However, the sampled direction does not always indicate the next voxel direction

is a conclusive way. The authors propose to use any of the neighboring voxels to proceed with

the fiber tracking process. This tantamount to the overall fiber loss value, as the error due to

uncertainty propagates from voxel to voxel due to randomness involved in choosing the next

neighbor (see figure below).

Figure 16: Layout of sample DWI voxels as seen from a 2D plane. The uncertainty involved in

choosing the next voxel on path. The yellow region indicates the seed point and the tilted line

represents the orientation sampled from the posterior distribution. Regions in red indicate the

two voxels into which the fiber can propagate to.

In our work, we mitigate this uncertainty involved in choosing the next voxel by mapping

the posterior distribution or the unit sphere of a voxel into possible 26 regions. We project a

Rhombicuboctahedron onto a unit sphere to clearly draw boundaries between the 26 neighbors

and the orientations which direct into each of the neighbors. one can view this as a router which

can take one input vector and direct it to one of the 26 outgoing connections.
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The advantage with this technique is clear: You can now specifically choose the true next

voxel without having to do a random choice over the neighbors.

Figure 17: A Voxel visualized as a unit sphere.

Figure 18: Rhombicuboctahedron: A polygon with 26 faces. Source: oz.nthu.edu.tw [3].
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Figure 19: Rhombicuboctahedron projected onto a unit sphere.

Figure 20: Layout of sample DWI voxels as seen from a 2D plane. The uncertainty involved

in choosing the next voxel on path is eliminated and no random neighbor choice is required to

continue fiber tracking from the seed point.

8.6 Training Setup

The proposed architecture is trained with following specifications:

8.6.1 Hardware Setup

We make use of the AWS P2.8x Large instance GPUs to train our architecture. The P instances

are equipped with Nvidia Tesla K80 GPUs having 12 GB of memory and houses a Intel’s

Broadwell 16 CPU cores with 488 GB of memory. We use a batch size of 40 per GPU, with

a total of 320 samples per batch across all 8 GPUs. Unless otherwise mentioned, we use the

above setup and batch size for all our experiments.
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8.6.2 Network parameters setup

• L2 Regularizer = 0.001,

• Dropout = 0.1,

• Activation Function = hyperbolic tangent,

• Learning Rate = 0.00006.

In choosing the learning rate, we apply linear scaling rule as explained in [40]. After a small

sanity check on a single GPU with a learning rate we scale it linearly with the number of GPUs

in our setup to obtain a new learning rate.

We implement a Data Parallelism approach to train our network across multiple GPUs using

TensorFlow [28]. Explained below are the steps involved in the training process -

• Data Preprocessing - As an initial step we extract 7x7 patch for each voxel in the dataset

across the 3 anatomical views.

• FIFO Queues - This queue is our entry point into the multi-gpu training setup. They

constantly receive data from a preprocessing function and remain at full capacity always.

FIFO queue management is handled by the CPU. Through our initial experiments we

observed a severe bottleneck produced by the pre-processing function. The GPUs almost

instantly processed the data input to the queue and had to wait for the CPU to finish

en queuing. As a workaround, we setup a warm up phase which loads all voxel windows

into the system memory rather than preprocessing them individually and then initiate the

training process. With this setup the GPUs are always fully utilized.

• Staging Area - These are the entry points to our GPU memory. We predefine 8 GPU

staging areas, one per GPU. FIFO queue injects a unique batch to each of these staging

areas to facilitate faster training. Staging areas are used to remove the bandwidth latency

introduced between GPU memory and CPU memory.

• Gradient Aggregation - We make use of the CPU to gather gradients across all the GPUs

synchronously and average out on them. The resulting gradient update is picked up by

the optimizer and applies the gradient across all trainable variables in the network.
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Figure 21: Multi GPU Setup on TensorFlow.

8.7 Experiments and Results

As per our network outcome, we are interested in predicting a vector which is as close to the

ground truth vector on a sphere/manifold. So we define the minimization objective for our

architecture as follows

Given a ground truth orientation vector v and the predicted vector, v̂ the objective here is to

objective = minimize(θ). (21)

where θ is the angle between the two vectors.
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8.7.1 Angular Distance Cost Function

Angular Distance Loss is a measure of vector angle difference on a given manifold. Below we

discuss two cost functions which we experimented upon and drawbacks associated with them.

8.7.1.1 Cosine Distance

Given two vectors v and its estimate v̂, the angular distance between the two points is given

by the equation

cosine similarity = cos(θ) =
v · v̂

||v||2||v̂||2
, (22)

angular distance(θ) = arccos(cosine similarity). (23)

Figure 22: Angular Distance metric as viewed on the surface of spherical manifold.

Though cosine distance can provide with the angle difference between two vectors it has a

serious limitation. Consider a scenario where a ground truth vector v and its estimate v̂ occur

on a same plane during the course of network optimization. From equation 22, The cosine

similarity between these two vectors is 1, since the dot product is equal to 1. Hence the angle

between the two vectors and the gradient of our cost function are as below

θ = arccos(x), (24)

∇(θ) =
−1

2
√

1− x
. (25)

As we can deduce, the derivative of the cosine loss function with x = 1 gives rise to divide

by zero error during the course of optimization.
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In our initial trails, we observed this scenario very frequently, hence we needed to devise a

loss function which is impermeable to the cases where vectors overlap or appear on the same

plane.

8.7.1.2 Tangent Formulation

With an alternative look into cosine similarity we can accommodate the failure scenarios

described above by intuitively combining the sine and cosine formulation for angle estimation.

sin(θ) =
||v × v̂||
||v||2||v̂||2

, (26)

cos(θ) =
||v · v̂||
||v||2||v̂||2

. (27)

Combining these equations, we get

tan(θ) =
||v × v̂||
||v · v̂||

, (28)

θ = arctan(
||v × v̂||
||v · v̂||

). (29)

The above equation cannot distinguish if the angle between two vectors reside at any of the

four quadrants. This equation is bounded from (−π2 ) to (π2 ). So in order to extract correct

quadrant location of the angle we make use of atan2 formulation which has a bound from (−π)

to (π). Our cost function can now be written as

θ = arctan 2(
||v × v̂||
||v · v̂||

), (30)

and its derivative

∇(θ) = (
x

x2 + y2
+

−y
x2 + y2

). (31)

This derivative is undefined only when x (numerator of the arctan2 argument in 30) and

y (denominator of the arctan2 argument in 30) are both equal to 0. As we can observe the

tangent formulation is more stable than the cosine formulation. Throughout our experiments

we use atan2 as our cost function.
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8.7.2 Experimental Results

Our baseline architecture was trained with DWI input samples with 69 shells for each of the

anatomical views. Figure below shows the training and validation mean error rates vs the

number of epochs required to converge.

Figure 23: Training vs Validation Error Rate. Here the Error rate is defined in Radians.

8.7.2.1 How many DWI signals do we actually need to retain correct likelihood

estimation?

As we discussed before, the limitations associated with Diffusion Tensor Imaging, at least

a minimum of 100 DWI shells are usually used in practice to reconstruct the Diffusion tensor.

However, using the analytical reconstruction techniques with just 7 DWI samples is near to

impossible because of the noisy nature of MRI acquisition. The reconstruction technique is

very likely to fail.

In our results below we show that our Deep Learning architecture is capable enough to

retain the DWI signal and likelihood orientation dependencies using just 6 DWI shells. We

train our architecture with the similar hardware and hyperparameter settings. Figure 24 shows

our model performance.
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Figure 24: Training vs Validation Error Rate with 6 Shells.

Table 2: Average Error Rate for Input Shells in Radians.

No. of Input Shells Mean Training Error Mean Validation Error Convergence Epoch

6 0.0835 0.0888 380

69 0.0763 0.0800 220

In both the cases, our proposed approach has an angle error rate of approximately 5

degrees! This means that a subpixel accuracy is obtained when estimating the orientation of

the tracts at each voxel.
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8.8 Benchmarks

In this section we provide a benchmark on the execution times for tract identification using

our proposed Deep Learning approach and the current state-of-the-art implementation. We

also discuss on the choice of our network architecture and also provide a comparison to an

architecture using traditional convolutional layer blocks(without using Dense block).

8.8.1 Execution Times

We consider the time required to reconstruct a neuronal pathway starting from a pre-defined

seed point. Table below shows the execution times on both GPU and CPU.

Figure 25: Time line associated with our proposed architecture compared to the state-of-the-art

Please note: execution times are benchmarked for one CPU and one GPU. However, parallel-

processing across available cores can reduce the likelihood computation for all methods.

8.8.2 Do we really need Dense blocks?

Densely Connected Convolutional Network [16] is a very recent addition to the family of Deep

Learning architectures. Rather than having a series of convolutional blocks in a traditional feed

forward fashion, DenseNet proposes the idea of concatenating feature maps from one layer to

all other succeeding convolutional layers thereby introducing a feature map Growth Rate of K,
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where K is the number of feature maps incoming from the preceding layers to the next layers

within the Dense Block.

Figure 26: Timeline associated with one fiber tracking using our proposed architecture com-

pared to the state-of-the-art. Conventionally, GPUs are faster than a CPU. However, the GPU

run-time displayed here are including the I/O latency between data preprocessing(on CPU),

execution(on GPU) and neighborhood estimation(on CPU). Implementing all these tasks on

GPU itself is considered for future work.

We have utilized the feature concatenation technique from DenseNet in our Orientation

Estimator architecture. Since our input space is small compared to most other computer vision

tasks, we use one Dense Block in between our proposed architecture as a feature amplification

block. Using Dense Block has significantly helped our architecture in reducing depth of the

network and improving the feature learning space for our dataset.

Figure 27 shows a dense block where we replace the intermediate layers with 2 convolutional

layers without feature concatenation across all channels. We re-run this architecture on the

same hardware and hyperparameter setup to have similar comparison benchmarking between

the two networks.
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Figure 27: Dense Block replaced by Conv. Layers.

Figure 28: Comparison of Error rates between our proposed Architecture on 69 Shells, 6 Shells

and the Non Dense architecture with 69 Shells. Here we use 220 Epochs as a finish line to have

equal comparison.
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From experiments we observed that the non dense architecture differed significantly to our

proposed architecture in training convergence time and average error rate (see comparison graph

below). This behavior is very evident as in order to have a network similar to Dense Block, we

need to design a much more deeper architecture which can learn over the invariant features in the

input. However, since out input space is small, i.e of 7x7 size, developing an architecture with

deeper layers is difficult as we are constrained on the number of convolutional layers to use before

reducing the input space to somewhere close to 1x1. In other words, we have a strict constraint

on the number of convolutional layers to use when working with such small input space data.

Dense Net outperforms in this scenario, the dense block formulation in our architecture has

allowed to sufficiently capture and retain all incoming higher level details, equivalent to a very

deep architecture. Apart from convergence time, we also observed over-fitting after reaching

280 epochs for the non dense network. We did not observe any over/under-fitting with Dense

Block formulation, a big advantage which authors also highlight in [16].
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8.9 Orientation Visualization

Figure 29: A set of seed points to estimate their likelihood orientation vector.

Figure 30: Diffusion tensor ellipsoid and the predicted orientation.

Figure 31: Visualization of the tracts generated from the seed points using our method.
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9 CONCLUSION

Through this research we have introduced, for the first time in this literature space, a new

deep learning architecture to estimate brain fiber orientation. We discussed upon the existing

challenges in DTI analysis and constraints associated with DWI acquisition times and post

prognosis. Particularly, we have demonstrated possible solutions to existing problems such as

neighborhood voxel selection, number of DWI shells needed for DTI measurements and the

runtime complexity associated with state-of-the-art tractography techniques. Our proposed

architecture can significantly reduce the amount of time required for DWI acquisition during

acute diagnosis, since our network can estimate orientation to almost as identical to the state of

the art. On a bigger picture, this method can be applied across examining fetus/baby brain in

a short time span, as spending more time in the MRI machine is harmful for their development.

We also benchmark the discrepancies between using different number of input DWI shells and

the execution times in tract identification as experienced on CPU and GPU setup.

Our contributions are summarized as follows

• A Novel deep learning architecture is proposed to estimate Brain Fiber Orientation, first

time in the literature,

• Demonstrated efficient orientation estimation using just 6 DWI shells,

• Proposed a new method to remove uncertainty associated with neighbor selection,

• Introduced a whole new application perspective for Tractography using CNN which is

easily scalable for a cloud based clinical setup,

and

• Demonstrated a significant reduction in tract generation time using our proposed method

compared to the state of the art method which takes several minutes to achieve efficient

results.
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10 FUTURE DIRECTIONS

With a dataset size of 17 Million, we are quite sure that a lot more information about underlying

tissue structure or properties can be identified. Particularly we need to devise a measure which

can quantify the uncertainty in fiber orientation from an anatomical perspective. Regions

such as Corpus Callosum and White Matter areas exhibit huge variation with their respective

associated orientations. Though our current model can effectively understand the anatomical

views around each voxel of the brain, we believe that knowing uncertainty property associated

with each Voxel (or each point on the tissue) can improve Fiber reconstruction by huge margin.

As we present a proof-of-concept in this work using just 100K training samples, we need to

scale the training procedure to all of the 35 subjects/17 Million samples to have a model which

can generalize across multiple subjects and across different regions of the brain. Training the

architecture over all the samples would accurately capture tissue dependencies between different

regions and the global organization of the human brain. Training this huge data with 40 batches

per GPU would yield around 53125 step updates per Epoch and would take approximately 120

days for the network to converge on 8GPU setup. We look forward to run this experiment in

the near future.
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