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ABSTRACT 

 

From the viewpoint of quantum mechanics, a system must always be Hermitian since all its 

corresponding eigenvalues must be real. In contrast, the eigenvalues of open systems-unrestrained 

because of either decay or amplification-can be in general complex. Not so long ago, a certain 

class of non-Hermitian Hamiltonians was discovered that could have a completely real eigenvalue 

spectrum. This special class of Hamiltonians was found to respect the property of commutation 

with the parity-time (PT) operator. Translated into optics, this implies a balance between regions 

exhibiting gain and loss. Traditionally, loss has been perceived as a foe in optics and something 

that needs to be avoided at all costs. As we will show, when used in conjunction with gain, the 

presence of loss can lead to a host of counterintuitive outcomes in such non-Hermitian 

configurations that would have been otherwise unattainable in standard arrangements. We will 

study PT symmetric phase transitions in various optical settings that include semiconductor 

microrings and coupled fiber cavities, and show how they can allow mode-selectivity in lasers. 

One of the key outcomes of this effort was the realization of higher order degeneracies in a three-

cavity laser configuration that can exhibit orders-of-magnitude larger sensitivity to external 

perturbations. We will also consider systems that display nonlinear effects such as gain saturation, 

thus allowing novel phase transitions. Some interesting properties associated with degeneracies in 

non-Hermitian settings will be investigated as well. Such degeneracies, called exceptional points 

(EPs), are much more drastic compared to standard degeneracies of eigenvalues because the 

corresponding eigenvectors also coalesce, which in turn reduces the dimensionality of the phase 

space. We will show that dynamic parameter contours enclosing or close to EPs can lead to a 
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robust chiral mode conversion process – something that can be potentially used to realize omni-

polarizing optical devices.  
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Figure 4.5 A fiber-based omni-polarizing setup is depicted. An injected optical pulse, shown as green, is 

split into its TE (blue) and TM (yellow) components in a beam-splitting section. Loss modulation (LM) is 

imposed in the TE branch whereas phase modulation (PM) is introduced in the TM branch. After these 

modulated parts are combined together, the pulse passes through a polarization controller (PC) to couple 

the two orthogonal polarizations. The pulse then goes through an EDFA to in order to compensate for 

losses. Polarization evolution towards a single state can be monitored on a polarimeter connected via a tap-

out port. ....................................................................................................................................................... 97 

Figure 4.6 Assuming adiabatic conditions (small values of 𝛾), the shaded area shows the range of values of 

the loop center 𝑔0 and radius 𝜌, for which chiral mode conversion can take place even without enclosing 

an EP. Red line is the curve obtained from Eq. (4.23) and the black line depicts the boundary where the 

loop starts touching the EP located at (𝑔0 + 𝜌 = 1). ............................................................................... 103 

Figure 4.7 Two different c.w. parameter cycles are shown in panels (a) and (d) along with the ensuing 

behavior of 𝜒 in the corresponding panels [(b),(c)] and [(e),(f)] in each row. The loop in panel (a) lies away 

from the EP (EP is shown as a cross) with (𝑔0, 𝜌) = (0.82,0.1). In the one shown in panel (d), the contour 

includes the EP with (𝑔0, 𝜌) = 0.95,0.1. The terminal points, where the two eigenvectors |𝜓1,2⟩ are found, 

are marked by a yellow circle and the arrow shows the direction of encirclement. In panels (b) and (e), the 

resulting variation in 𝜒 at all times is shown when the rate of cycling is relatively large, i.e. 𝛾 = 0.5. Plots 

on the left (shown in red) depict the case when the system is excited with |𝜓1⟩ and those on the right (shown 

in blue) provide results for excitations with |𝜓2⟩. In these plots, solid (dashed) lines represent real 

(imaginary) parts of 𝜒. As mentioned in the text, for this c.w. cycle, the state expected at the output is |𝜓1⟩ 

that corresponds to 𝜒 → 𝑒𝑖𝜃. The real (imaginary) part of this expected result is shown as a filled (empty) 

circle at 𝑇 = 2𝜋𝛾 − 1. In the upper panels, these two circles lie very close to each other. In panels (c) and 

(f), the rate of cycling is reduced to 𝛾 = 0.1 and both excitations end up at the correct location even for the 

non-EP enclosing case, panel (c). Although mode conversion is not robust in panel (b) (consider the plot 
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on the right), results for the EP-inclusive loop show robust state conversion not only when the encirclement 

is slow [in panel (f)], but also when it is fast, 𝛾 = 0.5, as in panel (e). .................................................... 104 
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CHAPTER 1. INTRODUCTION 

 

It is commonly believed that real eigenvalues of an observable are associated with a Hermitian operator [1], 

where Hermiticity or self-adjointness for an operator 𝑂̂  means that the transpose-conjugate of the matrix 

representation for this operator leaves it unchanged i.e. 𝑂̂ϯ = 𝑂̂. But there were a few numerical studies 

that hinted at the possibility of having the spectrum of an observable as real and positive even when the 

operator was non-Hermitian. An example was 𝐻 = 𝑝2 + 𝑥2 + 𝑖𝑥3 studied by Bessis [2]. Later on, Bender 

and Boettcher discovered that such a Hamiltonian in fact belonged to a wide class of non-Hermitian 

Hamiltonians that exhibit entirely real spectra - Hamiltonians that commute with the parity-time (𝑃̂𝑇̂) 

operator [2]. This means that all the eigenfunctions of the operator are simultaneously eigenfunctions of the 

PT operator [3]. Using the notation (𝑝̂, 𝑥) for momentum and space respectively, the action of the parity 

operator 𝑃̂ is defined by the relations 𝑝̂ → −𝑝̂, 𝑥 → −𝑥 while that of the time operator 𝑇̂ by 𝑝̂ → −𝑝̂, 𝑥 →

𝑥, 𝑖 → −𝑖. Realizing non-Hermitian systems of a quantum nature are still a matter of debate, however, optics 

has proven to be a productive domain for their study. The main reason for this is the isomorphism between 

the Schrödinger equation and the paraxial wave equation. Gain and loss are the most basic ingredients that 

constitute non-Hermiticity – damping (loss) is inherent in optical waveguides due to absorption/scattering 

effects and amplification (gain) is also not difficult to implement, it can be introduced by optical/electric 

pumping mechanisms in a suitable gain material. In recent times, a flurry of research in this field has led to 

the demonstration of PT-symmetric effects in systems ranging from optics [4-9]  to electronics [10-12] and 

even in acoustics [13,14]. Some intriguing possibilities have been suggested; including solitons in PT 

lattices [15], Bloch oscillations [16], unidirectional invisibility [17]; and also demonstrated [18-22]. Such 

realizations have triggered a significant amount of activity and more possibilities are coming to the front 

with time. One of them is that of obtaining super-sensitivity. This relies on the fact that a class of highly 

interesting mathematical entities, known as exceptional points (EPs), are inherent to such non-Hermitian 

systems. Chapters 2 and 3 are dedicated to both linear and nonlinear PT-symmetric optical structures, with 
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a focus on how we can utilize this concept to obtain some desired properties such as enhanced detection 

capabilities and mode filtering.  

The physical reason why the phenomenon is called PT ‘symmetry’ is that the modes in such structures are 

symmetrically divided (intensity-wise) in the comprising channels, for example, the optical intensity 

profiles in two coupled waveguides will be exactly the same even though one of them is providing gain and 

the other one loss. But if the gain-loss contrast is too high, this symmetry vanishes and there is an unequal 

distribution of the field in the two waveguides. Moreover, in the symmetric regime, although the 

eigenvalues are real, the vector space in such non-Hermitian settings is skewed since the eigenvectors are 

no longer orthogonal. If the Hamiltonian 𝐻 depends on a parameter 𝜖, that is a measure of its ‘non-

Hermiticity,’ after a certain threshold value for 𝜖 [2] a sharp symmetry-breaking transition occurs and as a 

result, the eigenvalues of the system cease to be entirely real – causing a net amplification/loss. In addition, 

this transition to the broken PT-symmetry phase is associated with a passage through an exceptional point 

in the parameter space [7]. At an EP not only do the eigenvalues coalesce but so do the corresponding 

eigenvectors. Appearance of a degeneracy in the eigenvectors is in stark contrast from Hermitian systems 

that are known to only support degeneracies in the eigenvalues at so-called diabolic points (DPs) [23-25].  

In Chapter 2, the benefits afforded by these EPs will be studied in some detail with a special emphasis on 

the eigenvalue bifurcation upon a slight perturbation around such points. These bifurcations are found to 

be proportional to 𝜀1/𝑁 where 𝜀 is the perturbation and 𝑁 is the order of the EP. An immediate conclusion 

derivable from this behavior is the possibility of using EPs in enhancing the sensitivity of detection. The 

fact that 𝜀1/𝑁 ≫ 𝜀 leads to a major advantage compared to regular optical setups such as high-Q micro-

cavities where the locations of resonances vary on the order of 𝜀. These schemes have been abundantly 

used in the past for biosensing [26, 27] and detecting nanoparticles in a small monitored region [28, 29]. 

For demonstrating the advantage of using exceptional points, we first study a second order system. The 

most straightforward realization of this is through a coupled dimer of micro-cavities. We will show by 

numerical simulations that operating this system close to the EP results in a much larger change in the 
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resonance frequency compared to the same system but far away from the EP. The highly degenerate nature 

of the system at hand will allow us to write Jordan chain vectors for the Hamiltonian where orthogonality 

properties, along with some matrix algebra would be used to show that the eigenvalue splitting is indeed 

proportional to the Nth root of the perturbation. These findings will be confirmed through experimental 

results, both in two-cavity and three-cavity optical settings.  

In Chapter 3, we study a system of coupled cavities that undergo saturation effects. Lasers are by nature 

nonlinear devices and we theoretically and experimentally discuss these nonlinear effects within the context 

of PT-symmetry. Linear studies have already been extensively conducted, we thereby construct a saturable 

model of coupled multiple quantum well (MQW) semiconductor micro-cavities where one experiences 

saturated gain and the other saturated loss, on top of a linear loss due to absorption and scattering effects.  

This analysis would result in a quite unexpected conclusion, serving as an interesting twist to the commonly 

believed notions based on linear PT symmetric systems. The nonlinear nature of the system would be shown 

to lead to a reversal of the phase transition – broken-symmetry phase to an un-broken-symmetry phase – 

upon increasing the saturated gain-loss contrast. We also provide the first large-scale fiber-optic realization 

of PT-symmetric lasers. We will show that this setting demonstrates phase transitions despite the statistical 

nature of the optical fields that oscillate inside the (up to a km) long coupled fiber cavities.   

Chapter 4 is devoted to the analysis of effects associated with the encirclement of exceptional points in the 

domain of parameters that define our system. We will differentiate between two scenarios: a static 

encirclement of an EP, which leads to the accumulation of a geometric phase [30]; and a dynamic 

encirclement of an EP, that results in a chiral mode conversion process. The former leads to an interchange 

of the eigenvalues and eigenvectors, while in the later, only one of the eigenvectors dominates at the output 

[31]. This phenomenon has been studied in some detail in earlier works [32, 33] where an experimental 

observation was made in the microwave domain in 2001 [34]. However, the later provides much more 

intriguing conclusions – no matter what state the system is initialized in, the output is dominated only by a 

single eigenstate. We will formally prove the existence of this mode-preference mechanism and the fact 
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that only the direction of dynamic encirclement (clockwise or counter-clockwise) determines which of the 

two eigenstates dominates in a 2D system. At the end of this Chapter, experimental realizations are 

suggested, including the possibility of creating optical omni-polarizing devices that can convert arbitrary 

polarization states into a desired output state. 

Finally, in Chapter 5, we summarize our results and provide an outlook for future works. 
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CHAPTER 2. PARITY-TIME SYMMETRIC OPTICAL STRUCTURES 

 

Evolution of a quantum system can generally be described by the Schrödinger equation, which in the 

normalized form is given as 𝑖Ψt = 𝐻̂Ψ, for a time-independent potential, 𝐻̂ = 𝑝̂2/2 + 𝑉(𝑥). Under the 

condition of PT symmetry we proceed to derive a well-known relation for the potential involved in the 

Hamiltonian. The commutation [𝐻̂, 𝑃𝑇] = 0 implies, 

(
𝑝2

2
+ 𝑉(𝑥))𝑃𝑇 Ψ(𝑥) = 𝑃𝑇 (

𝑝2

2
+ 𝑉(𝑥))Ψ(𝑥) ( 2.1 ) 

(
𝑝̂2

2
+ 𝑉(𝑥))Ψ∗(−𝑥) = 𝑃𝑇 (

𝑝̂2

2
Ψ(𝑥) + 𝑉(𝑥)Ψ(𝑥)) 

𝑝̂2

2
Ψ∗(−𝑥) + 𝑉(𝑥)Ψ∗(−𝑥) =

𝑝̂2

2
Ψ∗(−𝑥) + 𝑉∗(−𝑥)Ψ∗(−𝑥)      

⟹     𝑉∗(−𝑥) = 𝑉(𝑥) ( 2.2 ) 

This shows that a necessary (but not sufficient) condition for PT symmetry to hold is that the potential 

should satisfy 𝑉(𝑥) = 𝑉∗(−𝑥) [1,2]. In other words, the real part of the complex potential must be an even 

function of position, while the imaginary part must be odd. The PT operator has the quite useful property 

that (𝑃𝑇)2 = 1. This means that the eigenvalues of 𝑃𝑇 are of the form 𝑒𝑖𝜃 [3]; consider an eigenfunction 

such that 𝑃𝑇𝜙𝑃𝑇 = 𝜆𝑃𝑇𝜙𝑃𝑇 where a second application of the PT operator on the left will give 𝜙𝑃𝑇 =

𝜆𝑃𝑇
∗ (𝜆𝑃𝑇𝜙𝑃𝑇) ⟹ |𝜆𝑃𝑇|2 = 1 and hence the eigenvalue should have a unit-complex number form. The 

commutation between 𝑃𝑇 and 𝐻 also means that they share the same set of eigenvectors in the symmetric 

regime whereas in the broken symmetry regime the eigenvectors of 𝑃𝑇 and 𝐻 are no longer all the same 

[3]. The reality of the spectrum of a PT-symmetric Hamiltonian can be derived considering the following 

stationary eigenvalue problem where 𝜓(𝑥) is a common eigenfunction of both 𝐻 and 𝑃𝑇, 
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𝐻𝜓(𝑥) = 𝐸𝜓(𝑥) ( 2.3 ) 

𝑃𝑇𝐻𝜓(𝑥) = 𝐸∗𝑒𝑖𝜃𝜓(𝑥) 

𝐻𝑃𝑇𝜓(𝑥) = 𝐸∗𝑒𝑖𝜃𝜓(𝑥) 

𝐸𝑒𝑖𝜃𝜓(𝑥) = 𝐸∗𝑒𝑖𝜃𝜓(𝑥) 

⟹     𝐸∗ = 𝐸 ( 2.4 ) 

The previous discussion has a direct relation to optics in the sense that it provides a fertile ground to 

investigate 𝑃𝑇-symmetric Hamiltonians [2,4-6]. The transition from quantum mechanics to optics can be 

formally justified by considering the isomorphism between the Schrödinger equation and the paraxial wave 

equation [2,7] which is given as, 

𝑖
𝜕𝐸

𝜕𝑧
+

1

2𝑛0𝑘0

𝜕2𝐸

𝜕𝑥2 + 𝑘0[𝑛𝑅(𝑥) + 𝑖𝑛𝐼(𝑥)]𝐸 = 0, ( 2.5 ) 

where 𝑘0 = 2𝜋/𝜆0, 𝑛0 is the substrate index, 𝑛𝑅,𝐼 are the real/imaginary parts of the index distribution and 

𝑛0 ≫ 𝑛𝑅,𝐼. Considering the 1-D Schrödinger equation, Ψt = (−
ℏ2

2𝑚

𝜕2

𝜕𝑥2 + 𝑉(𝑥))Ψ , it is easy to see that 

the complex refractive index profile plays the role of an optical potential, i.e. 𝑉(𝑥) = 𝑘0(𝑛𝑅(𝑥) + 𝑖𝑛𝐼(𝑥)). 

Figure 2.1  Schematic of a PT two-level system 

Hence, in optical systems, PT symmetry demands that the spatial distribution of the refractive index is an 

even function (𝑛𝑅(𝑥) = 𝑛𝑅(−𝑥)), whereas the imaginary component (representing gain or loss) is an odd 

function of position (𝑛𝐼(𝑥) = −𝑛𝐼(−𝑥)). One can also show that in high contrast settings, where the 

electrodynamic problem must be treated fully vectorially, the condition for PT symmetry is expressed 

+
𝑔

2
 −

𝑔

2
 

𝜅 
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through the complex permittivity, e.g. 𝜀(𝒓) = 𝜀∗(−𝒓) [37]. Nonetheless, since in most systems the 

imaginary part of the complex refractive index function is considerably smaller than its real counterpart, 

the PT condition in these two scenarios is almost equivalent. 

Dynamics of a PT system and the features associated with exceptional points are easily understood 

considering the schematic shown in Fig.2.1. It is a coupler of two cylindrically symmetric waveguides 

where one waveguide experiences gain (+𝑔/2) and its counterpart an equal amount of loss (−𝑔/2). It is 

assumed that the presence of gain or loss does not alter the real part of the refractive index in the guiding 

regions so that effectively the system models an even distribution of 𝑛𝑅 and an odd distribution of 𝑛𝐼 

considering the line of reflection between the two waveguides [4,5]. Note that as opposed to space, a time 

domain approach suitable for cavities can also be used as an example where the exchange of energy between 

two resonators would occur periodically over time. Considering time dependence of the electric field to be 

of the type 𝑒−𝑖𝜔𝑡, evolution dynamics for the slow-varying portions of the fields in the waveguides with 

gain (𝑎) and loss (𝑏) are described by:  

𝑖
𝑑

𝑑𝑧
𝑎 − 𝑖

𝑔

2
𝑎 + 𝜅𝑏 = 0

𝑖
𝑑

𝑑𝑧
𝑏 + 𝑖

𝑔

2
𝑏 + 𝜅𝑎 = 0.

 ( 2.6 ) 

Figure 2.2 Distribution of the eigenvalues and the corresponding supermodes for the formalism of coupling 

in space. 

Here 𝜅 is the coupling strength and 𝑧 is the propagation direction. This system supports two supermodes 

with distinct characteristics depending on the ratio between gain/loss (𝑔) and coupling (𝜅). When 𝑔 2𝜅⁄ <

1, the two eigenvalues, which are found by assuming [𝑎  𝑏]𝑇 = [𝑎0  𝑏0]
𝑇𝑒𝑖𝜆𝑧, are real and are given by 

Propagation 

constants 
𝛽0 − 𝜅 cos 𝜃 𝛽0 + 𝜅 cos 𝜃 

[𝟏, −𝒆−𝒊𝜽]𝑻 [𝟏, +𝒆+𝒊𝜽]𝑻 
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𝜆1,2 = ±𝜅cos (𝜃) where 𝜃 = 𝑠𝑖𝑛−1(𝑔/2𝜅) and the corresponding eigenvectors are |1⟩ = [1   𝑒𝑖𝜃]𝑇 

and  |2⟩ = [1    −𝑒−𝑖𝜃]𝑇. The two real eigenvalues imply that the two supermodes have propagation 

constants that lie on either side of the original propagation constant (𝛽0) of a single waveguide by an amount 

𝜅 cos(𝜃), shown in Fig. 2.2. And it reverts to the well-known result of 𝜆 = ±𝜅 if there is no gain/loss, i.e. 

𝜃 = 0. Note that these eigenvectors are not orthogonal in spite of the fact that the spectrum is real. In this 

case, neither of the two modes experiences a net gain or loss i.e. they remain neutral.  

On the other hand, the characteristics of the supermodes drastically change as soon as the gain-loss contrast 

exceeds the coupling strength ( 𝑔 2𝜅⁄ > 1). In this regime, the eigenvalues are expressed by 𝜆1,2 =

±sinh (𝜃) where 𝜃 = 𝑐𝑜𝑠ℎ−1(𝑔/2𝜅), and their corresponding non-orthogonal eigenvectors turn out to be 

|1⟩ = [1   𝑖𝑒−𝜃]𝑇 corresponding to 𝜆1 = +sinh (𝜃) and |2⟩ = [1   𝑖𝑒𝜃]𝑇 corresponding to 𝜆2 = −sinh (𝜃). 

Note that the relative intensity in 𝑎 is greater than in 𝑏 for |1⟩ and vice versa for |2⟩ indicating that the 

symmetry of each mode is broken such that one of them resides mostly in the gain waveguide and gets 

amplified while the other one inhabits the lossy counterpart and decays down with distance. Fig. 2.3 

displays the complex eigenvalues as a function of 𝑔 2𝜅⁄ .  

The transition point ( 𝑔 2𝜅⁄ = 1) between these two different regimes is called the exceptional point, EP. 

At this crossing, the dimensionality of the vector space is abruptly reduced from 2 to 1. This is evident from 

the fact that the two eigenvectors become entirely identical [ 1   𝑖]𝑇 and neither oscillate nor vary 

exponentially. Instead the modal amplitudes depend algebraically on time (~ 𝐶0 + 𝐶1𝑡).  Since this space 

was originally two-dimensional, this exceptional point is called an EP-2. This point exhibits a square-root 

singularity and it is known that the eigenvalues bifurcate as 𝜀1/2 upon a slight perturbation 𝜀 [9]. We shall 

consider this and higher order EPs in the next section and establish their connection with ultra-sensitivity. 
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 Figure 2.3 The imaginary part of the eigenvalue vs. the gain-loss to coupling ratio for a PT two-level 

system. After the exceptional point, one of the supermodes experiences amplification, while the other 

attenuation. 

 

2.1. Enhancing The Sensitivity of Optical Micro-sensors 

A second order exceptional point is not exclusive to a PT-symmetric system. It is possible to obtain such a 

point in a single microcavity, e.g. a microdisk [10,11]. Such a cavity on its own supports both a clockwise 

and an anticlockwise whispering gallery mode (WGM) [12,13]. It should be noted that most of the optical 

sensors, especially biosensors for molecular detection [12,14,15], employ such modes for detecting a shift 

in the resonance wavelength as small as a few fm [16]. WGMs exist in resonant geometries that include 

microspheres, microtoroids, microdisks and micro-rings. The Q-factors offered by these structures are 

usually in excess of 106 which means that the photon lifetimes are on the order of tens of ns and light gets 

a chance to circulate several thousands of times in the cavity if input is switched off. This allows very small 

linewidths 𝛿𝜆𝑟~ 1 pm that are a thousand times smaller than those available in fluorescence or absorption 
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spectroscopy. Fig. 2.4 shows simulation results of a WGM in a micro-ring of outer radius 10 μm, width 

500 nm and depth 200 nm  

  

 

Figure 2.4 (a) A typical whispering gallery mode in a micro-ring resonator (b) The first transverse mode is 

shown in a cross-section of the ring 

The modes (𝑎𝑅 − clockwise, 𝑎𝐿 − anticlockwise) in a single micro-disk/ring are effectively described by 

the following dynamics where Ω is the resonant frequency, 

𝑖
𝑑𝑎𝑅

𝑑𝑡
− Ω𝑎𝑅 = 0 ( 2.7) 

𝑖
𝑑𝑎𝐿

𝑑𝑡
− Ω𝑎𝐿 = 0 ( 2.8) 

It admits eigenvalues and eigenvectors given by, 

𝜆1,2 = Ω,         [
1
0
] , [

0
1
]. ( 2.9 ) 

(a) 

(b) 
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In the presence of a perturbation which could be caused by a scatterer, a coupling is induced between 𝑎𝑅and 

𝑎𝐿. Denoting the perturbation by 𝜀, which appears in the off-diagonal terms, the new Hamiltonian for the 

system and the corresponding eigen-values/vectors are given by, 

𝐻 = [
Ω 𝜀
𝜀 Ω

] ( 2.10) 

𝜆1,2 = Ω ± ε,         [
1
1
] , [

1
−1

] ( 2.11) 

It is obvious that due to the backscattering there arises a splitting in the eigenvalues and that this splitting 

is proportional to the amount of perturbation. Moreover, lifting of the degeneracy also gave rise to a doublet 

of standing wave modes (↑↑ and ↑↓). This is the mechanism behind the self-referenced detection schemes 

reported recently [17]. A schematic of the set-up is shown in Fig. 2.5 [18].  

Figure 2.5 (a) Degenerate clockwise and anti-clockwise modes in a single ring resonator (b) Degeneracy is 

lifted upon a perturbation by a nanoparticle. 
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Figure 2.6 A microcavity supports both CW and CCW traveling waves. (a) In the absence of sidewall 

roughness (scatterings), the frequency of these CW and CCW waves is exactly equal creating a DP. (b) 

Introducing a target nanoparticle splits the frequency. The splitting is proportional to the perturbation. (c) 

By judiciously positioning two fiber NSOM-tips it is possible to position the system at an EP. (d) At an EP, 

the introduction of the target nano-particle results in frequency splitting proportional to the square root of 

the perturbation. 

In 2010 a study reported the controlled manipulation of WGMs in a microcavity with the help of two nano 

fiber probes [10]. Coalescence of the two resonances was associated with the presence of an exceptional 

point and later studies [11] analyzed in detail the method of generating an EP-2 in a single microcavity 

using two scatterers around it, based on the earlier reported experiment. Later on, it was suggested that the 

presence of an exceptional point in these optical systems can in fact enhance the sensitivity of detection due 

to the square-root dependence of the frequency-splitting [19]. The system at the exceptional point modeled 

a completely asymmetric coupling (playing the role of the perturbation – 𝐴) between the intrinsic clockwise 

and anticlockwise modes and the Hamiltonian was shown to be, 

𝐻0 = [
Ω 𝐴
0 Ω

]. ( 2.12) 
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where splitting of the resonance frequencies is now ~ √𝐴. Comparing with the diabolic point – degeneracy 

between the clockwise and anticlockwise modes in a standalone micro-cavity – there is a quite significant 

improvement in the amount of splitting. The two possibilities are schematically depicted in Fig. 2.6. 

Having established that there is an increase in the amount of splitting at the EP, the next obvious step is to 

find alternative means of generating such a point. One reason for doing so is the quite cumbersome nature 

of precisely positioning the two nano-fiber probes in the vicinity of a cavity. Moreover, it is also limited to 

the attainment of a second-order EP; we will show later on that via the PT-symmetric arrangement higher 

order EPs can be conveniently obtained.  

Figure 2.7 Coupled cavities with gain loss contrast g and coupling κ 

Based on the earlier discussion of balanced coupled waveguides, consider now two micro-cavities that 

undergo a coupling in time as opposed to space, see Fig. 2.7, where the dynamics are given by, 

𝑖
𝑑

𝑑𝑡
[
𝑎
𝑏
] + [

−Ω −
𝑖𝑔

2
𝜅

𝜅 −Ω +
𝑖𝑔

2

] [
𝑎
𝑏
] = 0, ( 2.13 ) 

where 𝑎, 𝑏 represent field amplitudes in the gain and loss cavities respectively. Similar to the waveguide 

case, eigenvalues and eigenvectors coalesce at 𝜃 = 𝜋/2, i.e. 𝑔 = 2𝜅. But the situation under a perturbation 

𝜀, say over the cavity with gain, is worth considering. The perturbed Hamiltonian, 𝐻 and the corresponding 

eigenvalues 𝜆1,2 near the EP are as follows, 

𝐻 = [
−𝛺 −

𝑖𝑔

2
+ 𝜀 𝜅

𝜅 −𝛺 +
𝑖𝑔

2

]  ( 2.14 ) 
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𝜆1,2 = Ω +
𝜀

2
±

1

2
√𝜀2 + 𝑖2𝑔𝜀. ( 2.15 ) 

Clearly, |𝜀2| ≪ 𝑔|𝜀|, which implies, 

𝜆1,2 = Ω +
𝜀

2
±

1

2
√𝑖2𝑔𝜀 ( 2.16 ) 

ΔΩ ∝ √𝑔𝜀 ( 2.17 ) 

This shows that the frequency splitting is again proportional to the square-root of the perturbation. But 

another interesting aspect is the scaling of this splitting with the amount of gain/loss contrast 𝑔. Not only 

do we get an enhancement due to the nature of the EP, but on top of it there exists the possibility of boosting 

it even more by using a higher value of 𝑔 (and also of 𝜅 accordingly). The convenience afforded by such 

an approach is based on a direct control over the value of 𝑔 through changing the pump level in a cavity 

and over 𝜅 through adjusting the intra-cavity separation or other geometric factors such as the outer 

curvature of the cavities. We move on towards an extrapolation of these ideas to configurations of multiple 

photonic cavities that would lead to higher order EPs. 

 

 

2.2. Experimental Realization of Enhanced Sensitivity Using Coupled Microrings 

 

A convenient method of establishing PT-symmetric configurations is based on coupled cavities where the 

dimensionality of the system is directly given by the number of interacting modes of these cavities. For 

instance, in a dual microring arrangement, one can describe the optical dynamics via two coupled 

differential equations. Similarly, a trimer geometry can be described by a set of three coupled differential 
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equations. In order to fulfil the requirements of PT-symmetry, one should be able to control not only the 

optical gain and loss but also the refractive index distribution [20-23]. The former is achieved by carefully 

tailoring the pumping profile in an InP based semiconductor quantum well structure while the later needs 

some extra measures. Although fabrication facilities are quite advanced, the fabricated microring structures 

can still experience errors on the order of 10 nm which can lead to resonance-detuning between adjacent 

resonators. To alleviate such deleterious effects, we utilize the thermo-optic effect, dynamically tuning the 

resonance frequencies of the microrings using microheaters (placed underneath) so that the resonances of 

interest in the adjacent cavities eventually overlap in the spectrum. Such a delicate control over both the 

gain-loss distribution (imaginary part of the refractive index) and the locations of the resonance frequencies 

(real part of the refractive index) is essential for establishing higher-order exceptional points [24] for 

improving the bifurcation response [25-27]. We demonstrate for the first time enhanced sensitivity both in 

a binary (EP-2) and ternary (EP-3) PT-symmetric microring laser system. The resulting bifurcations in the 

frequency domain are then monitored and characterized by allowing the system to experience net gain. 

Perturbations in the form of resonance detuning were introduced using the microhearters.  

PT-symmetric coupled geometries of two and three resonators are depicted in Fig.2.8 (a). Figure 2.8 (b) 

provides a schematic of the ternary PT-symmetric coupled microring system used in our experiments. As 

previously mentioned, the two side ring resonators are subjected to equal amounts of gain and loss (𝑔) 

while the ring in the middle is maintained neutral. In addition, the rings are evenly exchanging energy with 

each other with a coupling strength 𝜅. Three gold heaters are positioned underneath each cavity. An SEM 

image of the structure, at an intermediate stage of fabrication, is shown in Fig.2.8 (c). In general, the modal 

field evolution in this structure obeys 𝑖𝑑𝑉⃗ /𝑑𝑡 + 𝐻𝑉⃗ = 0 , where 𝑉⃗ = [𝑎, 𝑏, 𝑐]𝑇 represents the modal 

column vector ( 𝑎, 𝑏, and 𝑐 represent field amplitudes in the amplifying, neutral, and lossy cavity, 

respectively) and 𝐻 is the associated 3 × 3 non-Hermitian Hamiltonian, i. e., 

𝐻 = [

−𝑖𝑔 + 𝜖   𝜅  0
𝜅  0  𝜅
0  𝜅   𝑖𝑔

]. ( 2.18 ) 
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Figure 2.8 (a) Schematics of two possible PT-symmetric photonic molecule arrangements (b) A PT-

symmetric ternary microring system, with all cavities equidistantly spaced from each other. The two side 

ring resonators are experiencing a balanced level of gain and loss while the one in the middle is kept neutral. 

Three micro-heaters are positioned underneath each cavity for fine-tuning the resonance wavelengths and 

for subsequently introducing thermal perturbations. (c) An SEM image of the structure at an intermediate 

fabrication step. The heating elements are shown in the inset. 

Here 𝑔 accounts for the gain/loss levels and 𝜅 is the coupling strength between successive resonators. 𝜖 

denotes an external perturbation, that generally could be introduced anywhere along the diagonal elements 

of the matrix. Without loss of generality, the perturbation has been imposed on the cavity with gain.  

In the absence of any disturbance (𝜖 = 0), one can directly determine the complex eigenfrequencies 

(𝜔𝑛, 𝑛 = −1,0,1) of this trimer by solving the following cubic algebraic equation:  
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𝜔𝑛(𝜔𝑛
2 − 2𝜅2 + 𝑔2) = 0. ( 2.19 ) 

Equation (2.19) indicates that when the gain/loss contrast attains a critical value, in this case 𝑔 = √2𝜅, all 

three eigenfrequencies coalesce at 𝜔𝑛 = 0, where the system is operating at a third-order exceptional point. 

Moreover, at this specific point, the three eigenmodes of this ternary photonic molecule fuse at [𝑎, 𝑏, 𝑐]𝐸𝑃 =

𝐴0[1,−𝑖√2,−1], indicating that the energy in the central (neutral) cavity is twice as much of that circulating 

in the other two resonators which are subjected to gain and loss.  

To understand how a small detuning or gain variation may affect this arrangement, we next assume that 𝜖 

is finite. In this respect, the three complex eigenfrequencies of this PT-symmetric configuration can be 

obtained by solving the characteristic cubic equation associated with the Hamiltonian matrix (2.18). Of 

particular interest is how this system reacts around the EP3 singularity, when 𝑔 = √2𝜅. This response is 

highlighted in the two cross sections (in both the real and imaginary domain) in Figs. 2.9 (a) and (b) as well 

as in Figs. 2.9 (c) and (d) (solid curves). The differential between two eigenfrequencies (in this case 𝜔0 and 

𝜔1) is also plotted in Fig. 2.9 (e) (solid curve) as a function of 𝜖. By considering the logarithmic behavior 
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of this latter curve (solid line in Fig. 2.9 (f)), one finds that the slope of the response is 1/3, thus numerically 

confirming that indeed perturbations around EP3 experience an enhancement of the type 𝜖1/3.  

 

Figure 2.9 (a) The real parts of the three  eigen-frequencies of the ternary PT-symmetric system as a function 

of the gain/loss contrast and detuning. The exceptional point is located at 𝑔 = √2𝜅 and 𝜖 = 0 (b) Same as 

in (a) for the imaginary parts of the eigen-frequencies. (c) Analytical results (dashed lines) and numeral 

solutions (solid lines) for the real parts of the eigen-frequencies as the applied detuning varies when 𝑔 =

√2𝜅. (d) Same as in (c) for the imaginary part of the eigen-frequencies. (e) Analytical (dashed red line) and 

numerical (solid green line) results depicting the difference between 𝜔𝑛2 and 𝜔𝑛3 in the real domain, 

illustrating a cubic-root behavior. (f) Same result as in (e) only now shown in a log-log scale. A slope of 

1/3 confirms the cubic-root response with respect to detuning. 

To analytically explain this intriguing behavior, one can resort to perturbation theory. Around the EP3 point, 

the characteristic equation now assumes the form: 
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𝜔𝑛
3 − 𝜖𝜔𝑛(𝜔𝑛 − 𝑖√2𝜅) + 𝜖𝜅2 = 0. ( 2.20 ) 

Figure 2.10 (a) Observed square root wavelength splitting of the lasing modes as a function of power 

dissipated in the heaters (∝ 𝐼2) in a binary PT-symmetric system operating around an exceptional point 

(EP2). In this case, the perturbation is imposed on the active cavity.  The corresponding inset demonstrates 

a slope of 1/2 in a log-log scale, characteristic of an EP2 singularity. (b) Measured enhancement factor as 

a function of induced perturbation. An order of magnitude enhancement is obtained for a detuning of ~10 

GHz between the two resonators. The enhancement is defined in terms of experimentally accessible 

quantities, as the ratio Δ𝜔𝑛
𝐸𝑃/𝜖, where in this experiment 𝜖 represents the detuning observed in a single 

isolated cavity for the same heater power. Inset: a schematic and an SEM image of the microring laser 

arrangement under study. 

The roots of this cubic equation can be perturbatively and self-consistently obtained by assuming that 𝜔𝑛 =

𝑐1𝜖
1/3 + 𝑐2𝜖

2/3 + ⋯ , in stark contrast to what one might expect in Hermitian settings, where the 

perturbative series proceeds on integer powers of 𝜖. From here, one finds that 𝜔𝑛 = 𝑒𝑖(2𝑛+1)𝜋/3𝜅2/3𝜖1/3 −

𝑖√2𝑒−𝑖(2𝑛+1)𝜋/3𝜅1/3𝜖2/3/3. Based on this latter expression, the system response is plotted as dashed 

curves in Figs. 2.9 (c)-(f), in close agreement to that obtained numerically. Our analysis indicates that the 

real parts of the pair 𝜔−1, 𝜔1 as well as those of 𝜔0, 𝜔1 diverge from each other in an 𝜖1/3 fashion, while 

the differential between 𝜔1, 𝜔2 (that happened to be originally degenerate) varies instead according to 𝜖2/3. 

Hence, in characterizing the sensitivity response of this ternary laser arrangement we will monitor the 

separation of the 𝜔0, 𝜔1 spectral lines. In this case, the anticipated frequency splitting is given by:  
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Δ𝜔𝐸𝑃3 =
3

2
 𝜅2/3 √𝜖

3
. ( 2.21 ) 

The microring resonators used in this study had a radius of 10 nm, a width of 500 nm, and a height of 210 

nm. The cross-section of the rings is appropriately designed so as to ensure single-mode TE conditions at 

the wavelength of operation 𝜆0~1600 𝑛𝑚. The system was implemented by utilizing InGaAsP quantum 

wells, needed to provide the necessary modal gain, estimated to be ~200 𝑐𝑚−1. Given that the optical 

group index in these nano-waveguides is around 4, one finds that 𝑔~1012 𝑠−1. Meanwhile, the coupling 

coefficients 𝜅 were designed to reach similar levels by varying the distance between neighboring rings. In 

all our experiments, the imaginary components of the refractive index in the different regions of the 

structure are engineered by appropriately shaping the pump beam at 1064 nm. This is done via translation 

of a knife edge that is imaged onto the surface of the sample. On the other hand, the real part of the index 

profile is fine-tuned using micro-heaters, as mentioned before. Both these procedures are necessary in 

bringing the coupled microring lasers at their respective exceptional points, where all the lasing frequencies 

coalesce into one line. The gain cavity is then perturbed by supplying current into the corresponding heater. 

By doing so, the change in the refractive index varies linearly with the electrical power dissipated in the 

resistor (𝜖 ∝ 𝐼2). As a result, the lasing frequencies begin to diverge and the ensuing splitting – expected 

to vary in a square-root and cubic root manner for a dimer and trimer configuration, respectively –  is then 

monitored with respect to 𝜖. Since we can directly measure the current injected to the heaters, the induced 

differential detuning was experimentally characterized with respect to the power of the heaters (∝ 𝐼2). 

We first characterize the bifurcation behavior of an EP2 singularity associated with a PT-symmetric 

coupled-microring structure (see inset of Fig.2.10). Once a small frequency mismatch 𝜖 is thermally 

introduced to this optical oscillator around the EP2, the two lasing frequencies then split according to 

Δ𝜔𝐸𝑃2 = √2𝜖𝜅. The coupling factor in this binary arrangement is 1012 𝑠−1. Figure 2.10 (a) clearly 

demonstrates a square root wavelength splitting with respect to the power dissipated in the heater, in accord 

with theoretical expectations. A log-log plot with a linear slope of 1/2 reaffirms this behavior (inset in Fig. 
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2.10 (a)). Figure 2.10 (b) depicts the measured enhancement in sensitivity as a function of the induced 

perturbation (in terms of shift in resonance frequency). In our study, the enhancement is defined in terms 

of experimentally accessible quantities, as the ratio Δ𝜔𝐸𝑃2/𝜖. Clearly, because of the presence of an 

exceptional point, the enhancement factor increases for small values of 𝜖. In this case, we observed up to 

13 times enhancement in the detuning range below 10 GHz.  

Figure 2.11 (a) Image of the intensity profile of the lasing mode in a PT-symmetric ternary laser 

arrangement operating around the exceptional point (EP3). The energy in the central (neutral) cavity is 

approximately twice that in the side resonators. (b) Spectra of the three lasing modes as the system departs 
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from the exceptional point due to an imposed perturbation on the gain cavity. (c) Resulting cubic-root 

splitting between two neighboring lasing wavelengths as a function of 𝐼2. Inset: a log-log curve indicates a 

slope of 1/3. (d) Observed sensitivity enhancement in this arrangement when biased at an EP3 point. An 

enhancement as large as ~23 is now measured when the detuning is below 10 GHz. The enhancement factor 

is defined as in Fig. 2.10. 

 

This same approach is employed to investigate the sensitivity of a ternary PT-symmetric system operating 

close to EP3. The structure is comprised of three microrings equally spaced in a line and having a coupling 

strength of ~7 × 1011 𝑠−1 . To establish PT-symmetry in the system, the pump beam is completely 

withheld from one of the side rings. In addition, the central ring (neutral region) is partially illuminated 

while the third ring is fully pumped. By adjusting the position of the knife edge and the pump level, the 

three lasing modes of this structure gradually coalesce into one line (1602 nm), associated with the  

emergence of the third order exceptional point. The intensity profile (Fig. 2.11 (a)) of the lasing mode at 

this point is captured via a CCD camera and is in qualitative agreement with that expected from theory. 

Once the system is set on an EP3, the heater underneath the pumped cavity is activated. As a consequence 

of this perturbation, the single lasing mode splits into three distinct branches as anticipated from Fig. 2.9 

(c). The spectral evolution of this transition is collected using a spectrometer with an array detector (Fig. 

2.11 (b)). As previously indicated, in this experiment we monitor the difference between the resonance 

frequencies 𝜔0, 𝜔1. Figure 2.11 (c) indicates that indeed the frequency separation Δ𝜔𝐸𝑃3 follows a cubic 

root function with respect to 𝜖. This is also confirmed after plotting these data in a logarithmic scale from 

where one can directly infer a slope of 1/3. Finally, the enhancement factor corresponding to this trimer is 

plotted in Fig.2.11 (d). In this case, the sensitivity is magnified ~23 times when the detuning between the 

active and neutral resonators is below 5 GHz. We would like to mention that around exceptional points, the 

linewidth of a laser also undergoes an enhancement due to the Petermann factor which can reduce the 
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sensitivity of the pertutbation measurement. Such a limitation can be decreased by switching to other gain 

systems or by employing coherence improving geometries [28-29]. 

2.3. Transverse Optical Mode Filtering 

Integrated photonic laser systems with larger cross sections are desirable for many applications since they 

allow for higher energies within the cavities while managing the thermal load and keeping the impact of 

optical nonlinearities in check. Unfortunately however, merely enlarging the transverse dimensions of the 

waveguides inevitably gives rise to competing higher-order spatial modes, given that the refractive index 

contrast is not altered. This, in turn, compromises the spectral and spatial fidelity of the laser and limits the 

power that can be extracted from a specific mode [30]. These limitations exist on all scales, and may even 

be exacerbated in chip-scale semiconductor lasers, where the large gain bandwidths of the active media 

already pose a challenge in promoting single-mode operation [31]. So far, utilizing intra-cavity dispersive 

elements has been the primary approach for longitudinal mode selection [32], while tapering along the 

direction of propagation, engineering the refractive index in the cross section, as well as evanescent filtering 

are some of the extensively explored techniques to enforce single spatial mode operation in such 

arrangements [33-36]. Yet, in spite of their success, they are not always compatible with on-chip 

microcavity structures and in most cases are quite sensitive with respect to fabrication inaccuracies. In this 

respect, it would be desirable to explore alternative avenues to address these issues. 

The selective breaking of parity-time (PT) symmetry has been proposed as a viable strategy for obtaining 

single longitudinal mode operation [37]. By pairing an active resonator/waveguide with a lossy but 

otherwise identical partner, it is possible to enforce single- mode performance even in the presence of strong 

mode competition in multi-moded laser/amplifier configurations. The principle of operation is based on the 

spontaneous breaking of PT symmetry, which serves as a virtual lasing threshold and encourages single 

longitudinal mode operation. As in the previous subsection on enhanced sensitivity, PT-symmetry is 

achieved using a coupled microring system in which the pump power is selectively withheld from one of 
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the cavities. For a longitudinal mode at wavelength 𝜆, the two eigenvalues of this gain-loss balanced system 

are given by, 

𝜔1,2(𝜆) = ±√𝜅2 − 𝑔(𝜆)2, ( 2.22 ) 

where the inter-resonator coupling 𝜅 for different longitudinal modes is practically the same, but the gain-

loss contrast 𝑔(𝜆) varies with the wavelength due to the shape of the gain spectrum. If the coupling is now 

adjusted such that only the mode in the center of the gain spectrum (the fundamental mode) experiences a 

gain-loss differential exceeding 𝜅, one could obtain complex eigenvalues exclusively for the fundamental 

longitudinal mode. Specifically, if 𝑔(𝜆0) > 𝜅, only the mode at 𝜆0 exists in the PT-symmetry broken phase 

– enjoying amplification, while all other adjacent longitudinal modes stay in the PT-unbroken phase – 

remaining neutral [21,22]. 

Figure 2.12 Schematic representation of a multimode isolated ring versus a single mode PT symmetric 

arrangement. (a) In an isolated microring resonator, multiple transverse and longitudinal modes can lase 

simultaneously. (b) On the other hand, in a PT-symmetric arrangement, only one longitudinal mode with 

the lowest order transverse profile can lase. (c) Typical SEM image of a PT symmetric double ring structure 

during an intermediate fabrication step. 
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We show that PT symmetry can also be utilized in promoting the fundamental transverse (or radial) mode 

in spatially multi-moded micro-ring lasers. As it is well-known, higher order spatial modes systematically 

exhibit stronger coupling coefficients due to their lower degree of confinement. In mathematical terms it 

can be stated as 𝜅0 < 𝜅1 < 𝜅2 for the first three transverse modes TE0 TE1 and TE2. Consequently, in a PT 

symmetric arrangement, the fundamental mode is the first in line to break its symmetry as the gain increases 

(when g > κ), thus experiencing a net amplification. On the other hand, for this same gain level, the rest of 

the modes retain an unbroken symmetry and therefore remain entirely neutral. Indeed, following our 

approach, one can globally enforce single-mode behavior in both the spatial (transverse modes) and spectral 

domains. 

Figures 2.12 (a) and (b) schematically illustrate the transition from multimode behavior in a microring laser 

to single mode operation in a twin-ring configuration as enabled by preferential PT symmetry breaking. 

Our experiments were conducted in high-contrast active ring resonators of quaternary Indium-Gallium-

Arsenide-Phosphide (InGaAsP) multiple quantum wells embedded in silicon dioxide (SiO2) and air. An 

electron micrograph of such rings during an intermediate fabrication step is shown in Fig. 2.12 (c). Based 

on our measurements, we estimate the quality factor of the fabricated microrings to be on the order of 

120,000. The gain bandwidth of the active medium spans the spectral region between 1290 and 1600 nm 

[38]. Whereas the quantum wells are present in all wave-guiding sections, gain and loss are implemented 

by selectively pumping the respective rings (pump wavelength: 1064 nm). Accordingly, the effective pump 

powers are proportional to the geometric overlap between the active medium and the pump profile. In our 

proof-of-principle design, a ring of an outer radius of 6 μm and waveguide dimensions of 0.21 μm × 1.5 μm 

was chosen to simultaneously realize a comparably large free spectral range (λFSR=16 nm) and three 

readily discernible sets of transverse modes (see Fig. 2.13). 

Figures 2.13 (a)-(c) depict the transverse intensity profiles of different spatial modes supported by such a 

single microring resonator. The curvature of the ring imposes a radial potential gradient, which deforms the 

mode fields into whispering-gallery-like distributions. Whereas the centroid of all modes shifts towards the 
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ring center, the exponential decay outside the ring still grows strongly with the mode order. Note that the 

curvature-induced deformation and lateral displacement of the mode profiles slightly reduce the mutual 

overlap of their respective intensity profiles compared to a straight waveguide. Nevertheless, the 

competition for gain from the commonly occupied area of the active medium persists. As a result, even in 

microscopic ring geometries, locally introduced losses in principle cannot be prevented from impacting the 

desirable mode as well. Indeed, it is this fundamental limitation that the PT-symmetric approach can 

overcome. 

Figure 2.13 Spatial mode profiles and coupling strength for different transverse modes in the structure (a)-

(c) Intensity distributions in a microring resonator with a cross section 0.21 μm × 1.5 μm and a radius of 

𝑅 =  6 μm as obtained by finite element simulations for the first three transverse modes. (d)-(f) 

Corresponding intensity distribution of these same modes within the PT symmetric ring resonators. While 

the TE0 mode operates in the broken PT symmetry regime and lases, all other modes remain in their exact 

PT phase and therefore exhibit no net gain whatsoever. (g) Exponential decay of the temporal coupling 

coefficients κ with cavity separation d. Higher order modes exhibit larger coupling coefficients than their 

lower-order counterparts, providing an additional degree of freedom for tailoring the virtual lasing 

threshold. 

 

As shown in Figs. 2.13 (d)-(f), an appropriate choice of the coupling coefficient set by the distance between 

the two rings yields a selective breaking of PT symmetry for the TE0 mode, while all the higher order mode 
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sets (TE1, TE2) remain in the unbroken PT phase and hence occupy both rings equally. This behavior is 

mediated by the dependence of the coupling strength on the mode number, which is plotted as a function 

of the geometric separation between the two rings (see Fig. 2.13 (g)). For a given width of this gap, the  

coupling coefficient increases with the order of the transverse mode, since the effective indices of higher 

order modes lie closer to that of the surrounding medium and therefore allow for stronger evanescent 

interactions across the cladding region. This trend persists for all wavelengths, and in conjunction with the 

difference in confinement, enables the PT symmetry breaking transition to be employed as a transverse 

mode-selective virtual loss.  

Figure 2.14 PT-mediated single mode operation in the presence of higher order transverse modes. (a) 

Measured emission spectrum from a coupled arrangement of evenly pumped microrings, comprised of 

various TE0 and TE1 modes. (b) Global single-mode operation in the PT arrangement. Selective breaking 

of PT symmetry is used to suppress the entire set of TE1 modes as well as all competing longitudinal 

resonances from the TE0 set. The minimum separation between the coupled rings is 50 nm. The resolution 
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of the spectrometer is set at 0.5 nm. More refined measurements using scanning Fabry-Perot techniques 

reveal a line width of 10 GHz at 1.5 times the threshold. 

The emission spectra of the fabricated microring structures were collected using a micro-PL 

characterization set-up. Utilizing a rotating diffuser, the output of a single mode pump laser is converted to 

spatially incoherent light with a large and uniform spot size at the sample plane. The knife-edge in the path 

of the pump beam allows the selective withholding of illumination from specific rings. The location of the 

shadow in respect to the rings is adjusted by translating the knife-edge and is monitored via the incorporated 

confocal microscope. The intensity distribution and the spectrum of the light oscillating in the microrings 

are then observed via scattering centers by means of an infrared camera and a grating spectrometer, 

respectively. In order to illustrate the selective breaking of PT symmetry, we consider a scenario where a 

coupled arrangement of identical microring resonators is evenly illuminated by the pump beam. In this case, 

as shown in Fig. 2.14 (a), every resonance in each ring bifurcates into a doublet because of coupling between 

the two resonators. In our system, the modes can be distinguished both theoretically and experimentally by 

considering their wavelength splitting (coupling strength) as well as their corresponding free spectral 

ranges. For example, the TE1 supermodes exhibit greater frequency splitting compared to the TE0 ones due 

to their higher coupling coefficient. In the PT-symmetric system, Fig. 2.14 (b), where only one of the two 

rings is pumped, the TE0 modes preferentially undergo PT symmetry breaking due to a smaller value for 

the coupling coefficient and fuse into a singlet. In addition, given that different longitudinal modes 

experience different amounts of gain, one can restore the PT symmetry of only one of the TE0 modes by 

adjusting the pump level. As a result, global single mode operation (spectrally and spatially) can be achieved 

in this twin-microring system, as only one single longitudinal resonance of the fundamental TE0 mode 

experiences sufficient gain to induce PT symmetry breaking. Figure 2.14 (b) shows the fusion of a doublet 

in the frequency domain and the formation of a single lasing mode. 

Conventional approaches for the suppression of transverse modes rely on implementing mode-dependent 

losses, e.g. by means of evanescent coupling to a lossy waveguide [30,39]. Although widely used, these 



30 
 

schemes invariably introduce losses to all modes – including the desirable, fundamental one. Although the 

PT-inspired design approach presented here likewise exploits the fact that various transverse modes exhibit 

different degrees of confinement, it differs fundamentally from traditional filtering techniques. The abrupt 

onset of PT symmetry breaking at the exceptional point relocates the selected mode to the active region, 

whereas all higher order modes remain equally distributed between loss and gain. Consequently, our 

approach offers a high degree of mode discrimination, without any detrimental effect on the overall lasing 

efficiency 

2.4. Dark-state Lasers 

Microring resonators have emerged as important building blocks of photonic integrated circuits [40,41]. 

Their small footprint, high quality factor, and modularity make them ideal candidates for on-chip laser 

systems. Within the domain of these micro-structures, recently, dark state lasers have been proposed as a 

new class of resonators that make use of the intrinsic properties of non- Hermitian exceptional points to 

enforce single longitudinal mode operation [42]. Unlike PT-symmetric lasers [21,22] and judiciously 

balanced gain-loss arrangements [43-45], here the emergence of exceptional points results from the unique 

geometrical arrangement. In dark state lasers, single-mode lasing is accomplished by selectively endowing 

one of the supermodes with a substantially higher quality factor. Inspired by the design provided in [42], 

here we demonstrate lasing in the dark state mode in a coupled microring system. This is implemented by 

coupling two dissimilar microrings through a common central waveguide channel on an InP-based multi-

quantum well semiconductor gain material. In this system, single-frequency emission was enforced with a 

30 dB sidemode suppression ratio (SMSR). In addition, by the means of adjusting the ambient temperature, 

an 8 nm hop-free continuous wavelength tunability was achieved. Figure 2.15 (a) provides a schematic of 

the configuration used in our experiments. This arrangement is composed of two dissimilar microring 

resonators (same widths and heights, different radii), indirectly coupled to each other via a central 
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waveguide. The cross section of the three identical guides is designed so as to favor a single transverse TE 

mode. Figure 2.15 (b) depicts an SEM image of the fabricated structure. 

Figure 2.15 (a) Schematic of a dark state laser. Two active microring resonators of different radii are 

coupled through a central waveguide. The dots on the middle waveguide are used to scatter the light for 

detection in this channel. (b) SEM image of the dark state laser system at an intermediate fabrication step 

The presence of exceptional points and the ensuing mode discrimination in the above dark state arrangement 

can be explained by investigating the corresponding eigenvalue spectrum provided in Fig. 2.16 and 

considering Eqs. (2.23)-(2.26). The passive dark state arrangement without any intrinsic gain or loss is 

considered in this analysis. Here, the eigenfrequencies and eigenmodes of the system can be determined 

using temporal coupled mode formulations [42,46,47]. By considering the nth longitudinal resonance 

frequency of the system, the equations representing the evolution of the fields in the two resonators and the 

bus waveguide can be written as follows: 

𝑑𝑎

𝑑𝑡
= −𝑖𝜔1𝑎 − 𝛾𝑎 − 𝛾𝑐 + 𝑖𝜇𝑏𝑖 ( 2.23 ) 

𝑏0 = 𝑏𝑖 + 𝑖𝜇𝑎 + 𝑖𝜇𝑐 ( 2.24 ) 

𝑑𝑐

𝑑𝑡
= −𝑖𝜔2𝑐 − 𝛾𝑐 − 𝛾𝑎 + 𝑖𝜇𝑏𝑖 ( 2.25 ) 

In this model, the ring resonators are viewed as two oscillators with field amplitudes 𝑎(𝑡) and 𝑐(𝑡), 

normalized in such a way that |𝑎(𝑡)|2and |𝑐(𝑡)|2 represent stored energies in the rings, 𝑏𝑖 and 𝑏0 represent 

the amplitudes of the input and output waves in the bus channel normalized to the power. 𝜔1,2 are the 
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resonance frequencies of the rings – deliberately kept different, and 𝜇 is the coupling coefficient between 

each resonator and the bus waveguide. In this analysis, 𝛾 represents the out-coupling loss of the two cavities. 

Note that 𝜇 and 𝛾 are not independent parameters and conservation of energy demands that 𝜇 = √2𝛾. 

Assuming eigenmode solutions of the form (𝑎, 𝑐) = (𝑎0, 𝑐0)𝑒
−𝑖𝜔𝑡, one can find the longitudinal 

eigenfrequencies to be 

𝜔𝑛
(1,2)

= (
𝜔1+𝜔2

2
) − 𝑖𝛾 ± √(

𝜔1−𝜔2

2
)
2
− 𝛾2 , ( 2.26 ) 

The associated eigenmodes can be written as, 

(
𝑎0

𝑐0
) = (

1

𝑖𝛿 ± √1 − 𝛿2), ( 2.27 ) 

where 𝛿 = (𝜔2 − 𝜔1)/(2𝛾). When the resonance frequencies of the two dissimilar rings are relatively far 

away from each other (𝜔1 − 𝜔2 ≫ 𝛾), Eq. (2.26) reveals that the eigenfrequencies bifurcate in the real 

frequency domain. In this scenario, the supermodes are effectively localized in each cavity [notice modal 

content in the cavities 𝑎 and 𝑐 from Eq. (2.27)] and require higher pump levels to reach the lasing threshold, 

as indicated in Fig. 2.16 (a)-(b). The system is exactly at the exceptional point when the detuning between 

the two rings satisfies (𝜔1 − 𝜔2 = ±2𝛾). At this singular point, the two eigenfrequencies and their 

respective eigenvectors coalesce, as indicated by Eqs. (2.26) and (2.27). Finally, if (𝜔1 − 𝜔2 ≪ 𝛾), the 

system is operating beyond the phase transition point. In this case, the two coinciding resonances tend to 

fuse in the real domain, while they split along the imaginary axis. In other words, the two emerging 

supermodes will resonate at the same frequency, having two very different quality factors (𝑄~|𝜔𝑅/𝜔𝐼|) – 

see Fig. 2.16 (c). These two supermodes cam be classified into an even and an odd mode. The even mode 

overlaps with the central channel – experiencing loss – consequently having a low quality factor and is 

termed as the bright state (because the bus waveguide is bright). On the other hand, the odd mode has a 

negligible overlap with the lossy central channel and hence has a much higher quality factor – making it 
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the first mode to start lasing and is termed as the dark state. Notice that the dark state has a lower loss 

compared to the uncoupled modes in the individual rings (Fig. 2.16 (a) and (b)) because unlike the dark 

state, those individual modes are still coupled to the lossy bus waveguide. 

Figure 2.16 Principle of operation of a microring-based dark state laser. (a) Due to out-coupling losses, all 

the longitudinal modes of the upper microring have a low Q factor and, therefore, a high lasing threshold 

(dashed line). (b) Similarly, modes of the lower microring cannot reach lasing threshold. (c) In a dark state 

arrangement, the spectrally coinciding modes of the upper and lower rings form a pair of bright and dark 

modes. While the bright state loses a significant fraction of its energy to the central waveguide, the dark 

state has zero overlap with this channel and, therefore, has a high Q-factor and a low lasing threshold. The 

difference between Q-factors is conveyed in the depicted linewidths of the resulting dark and bright state 

modes. 

We experimentally investigate the formation of dark state modes in a microring system implemented on an 

InP based semiconductor gain material, as in Fig. 2.15 (b). The central waveguide, as well as the microrings, 

involve InGaAsP multiple quantum wells and are surrounded by low-index dielectrics (SiO2 and air). The 

microrings were optically pumped with a 1064 nm laser beam focused onto a circular area with a diameter 
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of ∼80 μm on the sample surface. A microscope objective is used to project the pump beam on the rings, 

as well as to collect the output light from the samples. The alignment of the pump beam on the desired 

cavity was performed by imaging the sample surface through two cascaded 4-f imaging systems onto an IR 

CCD camera. Output spectra were obtained using a monochromator in conjunction with an LN2 cooled 

InGaAs detector. The monochromator resolution was set to 0.4 nm by adjusting the slits. The reported pump 

power is calculated by taking the ratio of the ring top surface area to the pump laser spot size. Only the 

output power collected by the objective lens is considered in the reported results. 

Figure 2.17 Experimental demonstration of dark state formation at room temperature. (a) Emission 

spectrum of the upper microring when illuminated by the pump beam (peak pump power: 1.2 mW). In this 

regime, several longitudinal modes are lasing within the gain bandwidth. (b) Corresponding intensity 

pattern as obtained from scattering imperfections. The presence of light in the central waveguide is observed 

from the bright scattering centers. (c) and (d) Same as in (a) and (b) when the lower ring is pumped at the 

same power level; the dotted line in (c) repeats the spectrum of the upper ring for comparison. (e) When 

both rings are pumped at the same power densities as in (a) and (c), the double-ring system lases in a single 

dark mode emerged from two coalescing longitudinal frequencies. (f ) In this case, a weak emission is seen 

from the scattering dots, indicating a negligible excitation of the central waveguide, as compared to the first 

two cases. 
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Figure 2.17 shows the emission characteristics of a dark state structure composed of two microrings with 

radii of 9 and 11 μm (width 500 nm; height 210 nm) separated by a waveguide of an identical cross section, 

centered at a distance of 200 nm from each of the two rings. Single-mode lasing is achieved at room 

temperature under pulsed pumping conditions (pulse width 15 ns; repetition rate, 290 kHz). To ensure that 

the observed mode is of the dark state type, the spectrum of this two-ring configuration (Fig. 2.17 (e)) is 

compared to that obtained from the lower and upper rings when they are pumped individually [Figs. 2.17 

(a) and (c)]. As expected, independently, each ring exhibits lasing in a multiple number of modes. However, 

when a resonance from the upper microring happens to be in close proximity to another one of the lower 

ring, a dark state mode emerges as the fundamental oscillation in this coupled system [Fig. 2.17 (e) and (f)]. 

Given that the dark state mode has a larger Q-factor and a lower threshold with respect to the rest of the 

modes, it can deplete the pool of charge carriers. This prevents the lasing of uncoupled modes in, although 

the supplied pump intensity is the same as in Figs. 2.17 (a) and 2.17 (c). To observe the light intensity in 

the middle waveguide, a set of scatterers has been intentionally implanted in the central channel, away from 

the coupling region shown in Figs. 2.15 (a) and (b). As Figs. 2.17 (b) and (d) show, the scatterers in the 

middle channel light up when the resonances of the individual rings are excited. On the other hand, these 

same centers appear dim when both rings are pumped simultaneously, Fig. 2.17 (e)-(f), suggesting that only 

a dark state mode is present. 

Equation (2.27) indicates that under simultaneous pumping conditions and having 𝛿 ≪ 1, the fields of the 

two coalesced supermodes are approximately in-phase and π-out-of-phase within these two rings, 

(𝑎0, 𝑐0) = (1,±1). Given that the symmetric in-phase mode strongly excites the central waveguide through 

constructive interference, a considerable amount of energy is expected to be irreversibly lost through this 

channel. On the other hand, the anti-symmetric π-out-of-phase mode (dark state) does not inject light into 

the middle channel and, hence, experiences minimum attenuation. In this latter scenario, the mode remains 

well confined within the two rings, as shown in the inset of Fig. 2.16 (c). Note that this is consistent with 

the results of Eqs. (2.26) and (2.27). Since any noncoinciding resonance associated with the two dissimilar 
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rings endures a significant amount of loss through coupling to the central waveguide, in the presence of 

gain, the anti-symmetric dark state mode is the first in line to lase with a large margin for mode 

discrimination. By properly choosing the radii of the rings, one can ensure that only one of the dark state 

resonances coincides with the gain bandwidth of the active system. This then leads to single-mode operation 

and enables a larger tunability range [42]. In Fig 2.18, we compare the light-light curve (output power 

versus pump intensity) associated with this configuration when operating in the dark state mode with the 

case when only one of the rings is pumped. The total output power is measured using a lock-in amplifier 

and a single-cell cooled InGaAs detector. The lower threshold and higher slope efficiency of the dark state 

configuration indicate a larger quality factor, in agreement with theoretically anticipated results. Our 

measurements also show that the dark state laser remains single-mode with SMSR of 30 dB (limited by the 

dynamic range of the detector) throughout a wide range of pump powers (more than seven times the 

threshold pump power). 

Figure 2.18 Light-light curves associated with dark state mode (when both rings are pumped), and when 

either the upper or lower rings is pumped. In addition to the remaining single mode for the entire pump 

power range, the dark state configuration shows lower lasing threshold, higher slope efficiency, and 

enhanced total output power. 
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CHAPTER 3. SATURABLE PARITY-TIME SYMMETRIC SETTINGS 

 

Over the past few years, there has been a significant research interest in optical systems that simultaneously 

employ loss and gain in a judicious manner. This area of study came to be known as parity-time (PT) 

symmetric optics which had its roots in quantum mechanics where a special class of non-Hermitian 

Hamiltonains was proposed that had completely real eigenvalues. Physically, this implied the existence of 

constant-amplitude modes despite the presence of inherent amplification and/or attenuation [1-10]. 

However, if the difference between the amount of gain and loss present in the system exceeds a certain 

critical value, the spectrum ceases to be real and some modes start experiencing a net amplification – known 

as the PT-broken phase. One of the most impressive realizations of this phenomenon in optics was that of 

obtaining single-longitudinal mode lasing from multimode semiconductor laser cavities [11]. It required 

the selective breaking of PT-symmetry for a single preferred longitudinal mode that lied at the center of the 

gain spectrum and had the highest gain-loss contrast. On the other hand, all the rest of the possible lasing 

modes were kept in the PT-symmetric, better known as PT-unbroken, phase – not experiencing any net 

amplification – hence were prevented from lasing. Even if the laser is divested of unwanted longitudinal 

modes, there still exists a possibility of lasing in multiple transverse modes. This is especially problematic 

for broad area structures that inherently allow higher order optical modes to propagate. Earlier, we used a 

PT symmetric paired configuration of two similar broad cross-sectional-area microrings and obtained mode 

discrimination by relying on the fact that higher order modes penetrate further out of the periphery of the 

ring. This implies that in comparison to the preferred fundamental mode, these higher order modes couple 

more strongly to the lossy counterpart ring resonator and as a result are prevented form lasing. The 

theoretical results underpinning these effects were all obtained assuming linear dynamics, and studies of 

nonlinear evolution of optical fields in this regard have been few [12-13]. Since lasers are by nature 

nonlinear devices, in a separate study we introduced nonlinear gain-saturation into the evolution equations 

for the optical field and found altogether new results. In particular, a new phase transition behavior was 
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uncovered for the first time in which the field could transition from the PT-broken phase into the PT-

unbroken phase, in opposition to what was previously expected. 

In semiconductor structures, both the gain and loss are in fact saturable. This implies that as the field 

strength in the cavities increases, the effective gain and loss tend to decrease. We theoretically and 

experimentally studied a pair of coupled microring InGaAsP lasers under different pumping conditions. 

Under optical excitation, a semiconductor microring provides amplification, while if it is kept in the dark, 

it acts as an attenuating element. Initially, we equally pumped both the microrings and two lasing lines were 

observed in the spectrum due to coupling induced mode-splitting. On establishing a PT-symmetric profile 

by withholding the pump light from one ring, the lasing lines were observed to merge into a single line 

indicating the onset of a PT-broken phase. According to all previous results in PT-symmetric optics, the 

lasers should have stayed in this phase even if the gain levels were raised. Our nonlinear theoretical results 

indicated an altogether different behavior. If this were true, we expected a reverse transition back into the 

PT-unbroken phase with two lasing lines in the spectrum. And as per expectation, as we increased the pump 

power in the exposed microring, the single peak bifurcated back to two split lasing peaks. In addition, we 

introduced parity-time symmetry for the first time in a statistical fiber network. In this realization, we used 

two optical fibers coupled together through a fiber bragg grating mirror. One fiber included a semiconductor 

optical amplifier to introduce a controlled amount of gain and a variable optical attenuator was placed in 

the other fiber for an adjustable loss. This fiber system naturally includes statistical phase variations because 

of their long lengths. In spite of this, we were able to observe a phase transition from the unbroken to the 

broken PT regime by simply increasing the amount of loss through the variable optical attenuator. The loss 

in this system, not the gain, has to be tuned to observe any phase transition. This is because in a laser, the 

gain always clamps to the value of loss. In addition, we carried out the complete modelling for this 

configuration where saturation was included in the fiber with gain but the analysis was kept linear in the 

lossy fiber. The results were impressive in the sense that initially the light output from the gain cavity kept 

decreasing with loss but after the phase transition, interestingly, the lasing power increased with an increase 
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in loss. Our results not only further the understanding of lasing phenomena in PT-symmetric optics but also 

offer opportunities for dynamically modulating the lasing spectrum through adjusting the pump profile. The 

results obtained also hold true in the case of the much more efficient electrical pumping procedure that 

could be employed for wide-scale use. 

3.1. Nonlinear Dynamics of a Dimer of Semiconductor Laser Cavities 

A schematic of a dual micro-ring arrangement is shown in Fig. 3.1. Each micro-ring in our system involves 

a multiple quantum well InGaAsP-InP structure that is embedded in a silica substrate [11]. The top surface 

of the rings is exposed to air that serves as a cladding. At 1.55 μm, in this quantum well system, the effective 

refractive index is 𝑛𝑒~3 while the group index in the waveguide rings is 𝑛𝑔~4. 

Figure 3.1 A PT-symmetric arrangement of two coupled micro-ring resonators. 

 

For demonstration purposes here we assume that each cavity supports only a single longitudinal and 

transverse mode [14]. In general, the dynamics in each cavity in isolation are described by a corresponding 

set of modal field amplitude equations in conjunction with a carrier evolution equation. Yet, once the 

carriers attain a steady-state, the field equation can be further simplified according to [15]:  

𝑑𝐸

𝑑𝑡
=

1

2
(

𝜎(𝑝−1)

1+𝜀|𝐸|2
− 𝛾𝑝) (1 − 𝑖𝛼𝐻)𝐸. ( 3.1 ) 

Here 𝑝 = 𝜏𝑒𝑅𝑝/𝑁0 is a pump parameter, where the carrier generation rate, 𝑅𝑝 = 𝜂𝐼/(ℏ𝜔𝑑) and 𝐼,𝜂, and 𝑑 

are the pump intensity, the external quantum efficiency and the depth of each micro-ring respectively. In 

addition, 𝜏𝑒 represents the carrier lifetime, 𝑁0 stands for the transparency carrier population density, 𝜔 is 
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the frequency of the emitted light and ℏ is the Planck’ s constant. The parameter 𝜀 is inversely proportional 

to the saturation intensity 𝜀 = 𝑛𝑒𝑐𝜖0Γ𝑎𝜏𝑒/(2ℏ𝜔) and 𝜎 is proportional to the saturated loss in the absence 

of pumping (𝜎 = Γ𝑣𝑔𝑎𝑁0). The linear loss 𝛾𝑝 is the inverse of the photon lifetime (𝜏𝑝) in the cavity and 

𝛼𝐻 is the linewidth enhancement factor. Finally, 𝑐 and 𝜖0 are the speed of light and permittivity in vacuum 

respectively, Γ is the confinement factor, 𝑣𝑔 represents the group velocity and 𝑎, the gain constant (𝑔 =

𝑎(𝑁 − 𝑁0)). Note that in formulating the evolution equations the material response is assumed to be fast 

compared to carrier and photon lifetimes and hence is considered here to be instantaneous [15]. In our 

arrangement we assume that the coupling strength between the two rings is strong and hence any frequency 

detuning that could result from the 𝛼𝐻 factor can be ignored. By adopting this latter assumption and 

denoting the unsaturated gain as 𝑔̃0 = 𝜎(𝑝 − 1), unsaturated loss (at 𝑝 = 0) as 𝑓0 = 𝜎, we obtain the 

following two equations describing the dynamics in the aforementioned coupled cavities, 

𝑑𝐴1

𝑑𝑡
= −𝛾̃𝐴1 + (

𝑔̃0

1+𝜀|𝐴1|2
) 𝐴1 + 𝑖𝜅𝐴2, ( 3.2 ) 

𝑑𝐴2

𝑑𝑡
= −𝛾̃𝐴2 − (

𝑓̃0

1+𝜀|𝐴2|2
)𝐴2 + 𝑖𝜅𝐴1. ( 3.3 ) 

In Eqs. (3.2)-(3.3), the modal field amplitudes 𝐴1,2 correspond to the pumped and un-pumped resonators 

respectively, 𝛾̃ is the linear loss present in both cavities and 𝜅 is the coupling strength between the 

resonators. A normalized version of these equations can be easily obtained by adopting the normalized 

quantities, 𝑎1,2 = √𝜀𝐴1,2; 𝜏 = 𝜅𝑡; 𝛾 = 𝛾̃/𝜅; 𝑓0 = 𝑓0/𝜅; and 𝑔0 = 𝑔̃0/𝜅: 

𝑎̇1 = −𝛾𝑎1 + (
𝑔0

1+|𝑎1|2
)𝑎1 + 𝑖𝑎2, ( 3.4 ) 

𝑎̇2 = −𝛾𝑎2 − (
𝑓0

1+|𝑎2|2
)𝑎2 + 𝑖𝑎1, ( 3.5 ) 
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where 𝑎̇ = 𝑑𝑎/𝑑𝜏. In what follows we will study the behavior associated with this system of nonlinear 

evolution equations. 

To analyze the response of this arrangement under linear conditions, we assume that the modal field 

amplitudes are small, i.e.|𝑎1,2|~0. Under these assumptions, saturation effects in both the gain and loss 

mechanisms can be ignored. Hence, this regime can be effectively described by a linearized version of Eqs. 

(3.4) and (3.5), e.g., 

𝑎̇1 = −𝛾𝑎1 + 𝑔0𝑎1 + 𝑖𝑎2, ( 3.6 ) 

𝑎̇2 = −𝛾𝑎2 − 𝑓0𝑎2 + 𝑖𝑎1. ( 3.7 ) 

The eigenvalues of this system, 𝜆, can be directly obtained by adopting the form, (𝑎1 𝑎2) =

(𝑎01 𝑎02)𝑇𝑒−𝑖𝜆𝜏, where 𝑎01,02 are complex constants and 𝑇 represents a transpose operation. In this 

respect, two regimes can be identified depending on whether(𝑔0 + 𝑓0) ≶ 2. In the first case where 

(𝑔0 + 𝑓0) < 2, the modal solutions of Eqs. (3.6) and (3.7) are given by, 

(
𝑎1

𝑎2
) = (

1
±𝑒±𝑖𝜃) 𝑒

(
𝑔0−𝑓0

2
−𝛾)𝜏

𝑒±𝑖(cos𝜃)𝜏, ( 3.8 ) 

where sin𝜃 = (𝑔0 + 𝑓0)/2. We note that the structure of the modal fields closely resembles that expected 

from an unbroken PT-symmetric coupled arrangement [16]. In particular, the two eigenvectors are by nature 

non-orthogonal with a phase factor 𝜃 that depends on the gain/loss contrast. In addition, a PT-like 

bifurcation is present around a threshold value given that, 

cos 𝜃 = √1 − (
𝑔0+𝑓0

2
)
2
. ( 3.9 ) 

If on the other hand (𝑔0 + 𝑓0) > 2, the eigenvectors of Eqs. (3.6) and (3.7) are, 
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(
𝑎1

𝑎2
) = (

1
±𝑖𝑒±𝜃) 𝑒

(
𝑔0−𝑓0

2
−𝛾)𝜏

𝑒∓(sinh𝜃)𝜏, ( 3.10 ) 

Where cosh𝜃 = (𝑔0 + 𝑓0)/2. As opposed to those described by Eq. (3.8), these latter solutions exhibit 

features of a broken PT-symmetric configuration. In this regime the modal field amplitudes are phase 

shifted by /2  and moreover, they are unequal. 

Figure 3.2 Imaginary components of eigenvalues (blue curves) of the linear system are displayed as the 

gain level increases. In all cases amplification occurs if 𝐼𝑚{𝜆} > 0— represented by the gray regions. The 

broken PT-symmetric phase appears after a bifurcation takes place. The graph in (a) shows that 𝐼𝑚{𝜆} > 0 

before branching occurs, i.e. when (𝛾 + 𝑓0) < 1, whereas in (b) lasing begins in the broken phase, which 

takes place when (𝛾 + 𝑓0) > 1. In both cases the dashed lines indicate the two possible thresholds, where 

the red line corresponds to the broken phase (𝑔𝑡ℎ
(𝐵)

= 𝛾 + 1/(𝛾 + 𝑓0) ) and the green to the unbroken 

(𝑔𝑡ℎ
(𝑈)

= 2𝛾 + 𝑓0). The system parameters used here are 𝛾 = 0.1 and (a)𝑓0 = 0.5, (b) 𝑓0 = 1.3. 

If the system is operating in the first regime (unbroken PT-symmetry, given by Eq. (3.8), then the fields 

will experience linear amplification as long as the gain is above the total loss in the system, i.e.𝑔0 >

(2𝛾 + 𝑓0) = 𝑔𝑡ℎ
(𝑈)

. Conversely, in the broken PT-symmetric phase, described by Eq. (3.10), growth will 

occur provided that, 
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(
𝑔0−𝑓0

2
− 𝛾) + √(

𝑔0+𝑓0

2
)
2
− 1 > 0. ( 3.11 ) 

Equation  (3.11) implies that in this case, the threshold for lasing is dictated by the following condition, 

𝑔0 > 𝛾 +
1

𝛾+𝑓0
, ( 3.12 ) 

i.e. the gain threshold in this broken symmetry is 𝑔𝑡ℎ
(𝐵)

= 𝛾 + (𝛾 + 𝑓0)
−1. In view of the above results, one 

can conclude that the lasing thresholds corresponding to these two regimes (above/below the PT-symmetry 

breaking point) are uniquely determined by the parameters, 𝛾, and 𝑓0. To compare these thresholds, one has 

to consider whether (𝛾 + 𝑓0) > 1 or (𝛾 + 𝑓0) < 1. If for example, (𝛾 + 𝑓0) > 1 then the broken phase – 

Eq. (3.10), has a lower threshold and therefore will lase (𝑔𝑡ℎ
(𝐵)

< 𝑔𝑡ℎ
(𝑈)

). Interestingly however, if (𝛾 + 𝑓0) <

1, the situation is reversed and the unbroken PT eigenstate, as given by Eq. (3.8), will experience 

amplification. The behavior of the system eigenvalues (imaginary part) in these two different domains is 

depicted in Figs. 3.2 (a) and  (b) for various values of the gain, 𝑔0. Figure 3.2 (b) clearly suggests that for 

(𝛾 + 𝑓0) > 1 i.e. 𝑔𝑡ℎ
(𝐵)

< 𝑔𝑡ℎ
(𝑈)

, the lasing threshold is in fact lower than the total loss in the system (2𝛾 +

𝑓0). This counter-intuitive result is attributed to the coupling process which is in this case relatively slow 

and therefore does not allow the photon energy to see the entire two-ring system. These two lasing 

thresholds can be summarized by the following inequality, 

𝑔0 > min [𝛾 +
1

𝛾+𝑓0
, 2𝛾 + 𝑓0]. ( 3.13 ) 

With these preliminary conditions for 𝑔0, needed for lasing, we can now consider the ensuing nonlinear 

response of this system. 

As the fields in the PT-coupled cavity configuration start to grow, nonlinear saturation effects come into 

play, as described by Eqs. (3.4) and (3.5). Yet, as we will see, the properties of the linear system (assuming 
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|𝑎1,2|
2

≪ 1) not only determine the lasing thresholds, but also provide valuable information as to how this 

arrangement will respond in the nonlinear regime. More specifically, if (𝛾 + 𝑓0) > 1, the system will start 

from a linear broken PT-symmetry and then enter a broken PT-like nonlinear domain. By further increasing 

the gain, this same arrangement will transition into a nonlinear unbroken PT phase and will remain there. 

If on the other hand, (𝛾 + 𝑓0) < 1, this structure will lase into an unbroken PT-like domain (whether linear 

or nonlinear) for all values of the gain 𝑔0 above threshold. It is important to emphasize that in the first case, 

upon increasing the pump level, a reversal in the order in which symmetry breaking occurs is observed, i.e. 

the solutions transition from a broken to an unbroken state. The two possible nonlinear phases of lasing are 

described below along with their corresponding gain parameter ranges. 

 

We first describe the regime where lasing takes place in the linear PT-broken regime when (𝛾 + 𝑓0) > 1. 

In this scenario, the nonlinear broken-PT supermodes can be directly obtained by assuming stationary 

solutions for the field amplitudes that have the form, (𝑎1 𝑎2)𝑇 = (𝑎01 𝑎02)𝑇, where 𝑎01,02 are complex 

constants. Equations (3.4) and (3.5) are then reduced to, 

0 = −𝛾𝑎01 + (
𝑔0

1+|𝑎01|2
) 𝑎01 + 𝑖𝑎02, ( 3.14 ) 

0 = −𝛾𝑎02 − (
𝑓0

1+|𝑎02|2
) 𝑎02 + 𝑖𝑎01. ( 3.15 ) 

These equations clearly suggest that 𝑎01 and 𝑎02 are out of phase by 𝜋/2. This in turn allows one to write 

𝑎02 = 𝑖𝜌𝑎01, where 𝜌 ∈ ℝ+ (see Eq. (3.15)) represents the modal ratio. From Eqs. (3.14) and (3.15), we 

readily obtain the following quartic polynomial equation for 𝜌, 

𝜌4 − (𝑔0 +
1

𝛾
− 𝛾) 𝜌3 + (

𝑔0−𝑓0

𝛾
− 2)𝜌2 + (−𝑓0 +

1

𝛾
− 𝛾) 𝜌 + 1 = 0. ( 3.16 ) 
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In solving Eq. (3.16), we look for a real root in the interval [0,1] since, from a physical perspective, one 

expects that under steady state conditions, the modal field in the lossy ring will be less than that with gain. 

In addition, one can show that among all four possible roots, that contained in [0,1] happens to be the only 

stable one. It is important to note that similar to the broken symmetry modes in linear PT systems, the 

solution sets in this regime are characterized by an asymmetric distribution of modal fields in the two 

coupled resonators. For this specific reason, the point 𝜌 = 1 is crucial since it marks a PT-restoring 

transition. The critical gain value (𝑔𝑐) where this transition occurs is found to be, 

𝑔𝑐 = 𝑓0 (
1+𝛾

1−𝛾
). ( 3.17 ) 

Figure 3.3 Light intensity in the pumped ring as a function of the modal ratio 𝜌, as obtained from Eqs. 

(3.14)-(3.16) when 𝑓0 = 2 and 𝛾 = 0.1. The linear gain 𝑔0is varied between 𝑔𝑡ℎ
(𝐵)

= 0.58 to 𝑔𝑐 = 2.44. 

Note that this critical gain value is smaller than the lasing threshold needed for the linear unbroken phase, 

𝑔𝑡ℎ
(𝑈)

, that is possible in the parameter range (𝛾 + 𝑓0) < 1. Hence this nonlinear broken PT phase only arises 

once lasing begins in the linear broken PT phase which only occurs when (𝛾 + 𝑓0) > 1, where we also have 

𝑔𝑐 > 𝑔𝑡ℎ
(𝐵)

. To demonstrate the energy occupancy in the two cavities, we vary the value of 𝑔0 in the range 

𝑔𝑡ℎ
(𝐵)

< 𝑔0 < 𝑔𝑐. Figure 3.3 depicts these results for 𝛾 = 0.1 and 𝑓0 = 2. 
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As it can be seen in Fig. 3.3, higher values of 𝑔0 not only result in higher steady state intensities in the 

resonators but also lead to an increased ratio (𝜌) that eventually becomes unity. As previously mentioned, 

an unequal distribution of the fields in the two rings, along with a phase difference of 𝜋/2 clearly indicates 

that the solution sets in this regime have broken PT-like forms as in Eq. (3.10). Moreover, there is no 

frequency shift associated with the resonance of the ring system— another indicator of a broken PT-

symmetry. 

Figure 3.4 The unequal distribution of steady state intensities (broken symmetry) in the rings with gain 

(red) and loss (black) is shown. The curves are obtained after numerically integrating Eqs. (3.4) and (3.5) 

for 𝛾 = 0.1 and 𝑓0 = 2. Dashed lines represent the solution for 𝑔0 = 1 and solid lines are obtained for 𝑔0 =

2.3. A higher gain naturally results in higher intensities but at the same time, the intensity contrast between 

the two resonators decreases. 

 

Remarkably, if one considers linear PT-symmetric dimers, it is well known that the difference between the 

field intensities in the two components of the dimer becomes larger as we increase the gain-loss contrast 

beyond the spontaneous symmetry breaking point, indicated by the term 𝑒±𝜃 in Eq. (3.10). However, in the 

nonlinear case, higher pumping levels (larger values of gain) eventually lead the system to the symmetric 

phase, at 𝜌 = 1. Figure 3.4 shows the time evolution of the modal intensities as a function of   after 
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solving Eqs. (3.4) and (3.5) for 𝑔0 = 1 and𝑔0 = 2.3. This latter figure demonstrates that higher pump levels 

eventually enforce a transition towards an unbroken phase where the modal ratio is unity. To summarize, 

the relevant gain range for solutions within this regime is 𝑔𝑡ℎ
(𝐵)

< 𝑔0 < 𝑔𝑐, provided that (𝛾 + 𝑓0) > 1.  

Before we discuss in detail the properties associated with the nonlienar unbroken PT-symmetry, we note 

that the results of this subsection are applicable in both regimes, i.e. (𝛾 + 𝑓0) ≶ 1. To obtain the nonlinear 

eigenmodes in the PT-unbroken phase, we now assume time harmonic solutions, (𝑎1 𝑎2)𝑇 =

(𝑎01 𝑎02)𝑒𝑖𝜆𝜏, where 𝜆 ∈ ℝ. In this case, Eqs. (3.4) and (3.5) lead to the following relations: 

𝑖𝜆𝑎01 = −𝛾𝑎01 + (
𝑔0

1+|𝑎01|2
) 𝑎01 + 𝑖𝑎02, ( 3.18 ) 

𝑖𝜆𝑎02 = −𝛾𝑎02 − (
𝑓0

1+|𝑎02|2
) 𝑎02 + 𝑖𝑎01. ( 3.19 ) 

Figure 3.5 The eigenvalues of the nonlinear system exhibit a square-root bifurcation when entering the 

unbroken symmetry regime. The region 𝑔0 < 𝑔𝑐 represents broken symmetry where the eigenvalues are 

degenerate. The parameter values used here are 𝛾 = 0.1 and 𝑓0 = 2. The eigenvalues 𝜆1,2 approach the 

asymptotes ±√1 − 𝛾2 for large values of 𝑔0. 
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Using the representation 𝑔𝑠 = 𝑔0/(1 + |𝑎01|
2)  for the saturated gain and 𝑓𝑠 = 𝑓0/(1 + |𝑎02|

2) for the 

saturated loss and assuming that 𝑎01,02 ≠ 0, we get a quadratic equation for the eigenvalues, 

𝜆2 − 𝑖(2𝛾 + 𝑓𝑠 − 𝑔𝑠)𝜆 − [𝛾2 + 𝛾(𝑓𝑠 − 𝑔𝑠) − 𝑔𝑠𝑓𝑠 + 1] = 0. ( 3.20 ) 

Given that 𝜆 is real, it is necessary that, 

(
𝑔𝑠

2𝛾
) − (

𝑓𝑠

2𝛾
) = 1. ( 3.21 ) 

This last relation is directly satisfied through the parametric representation 𝑔𝑠 = 2𝛾 cosh2 𝜂 and 𝑓𝑠 =

2𝛾 sinh2 𝜂, where 𝜂 is a positive real quantity. In this respect we arrive at the following relations for the 

intensities,  

|𝑎01|
2 =

𝑔0

2𝛾 cosh2 𝜂
− 1, ( 3.22 ) 

|𝑎02|
2 =

𝑓0

2𝛾 sinh2 𝜂
− 1. ( 3.23 ) 

The eigenvalue equation Eq. (3.20), now readily reduces to, 𝜆2 = 1 − 𝛾2 cosh2(2𝜂), in which case, 𝜆1,2 =

±cos𝜃nl provided that 𝛾 cosh(2𝜂) = sin𝜃nl. Here 𝜃nl represents a nonlinear phase shift ranging between 

0 and 𝜋/2. Moreover, after dividing Eq. (3.18) by 𝑎01 and Eq. (3.19) by𝑎02, upon subtraction we obtain, 

2𝑖 sin 𝜃nl = (𝜌 − 𝜌−1) cos𝜙 + 𝑖(𝜌 + 𝜌−1) sin𝜙, ( 3.24 ) 

Where 𝑎02 = 𝜌𝑒𝑖𝜙𝑎01. Equation (3.24) can be solved for the real and imaginary parts, from where one 

finds that, 𝜌 = ±1 and 𝜙 = ±𝜃nl, which clearly suggests that |𝑎01| = |𝑎02|. This is only possible as long 

as (by considering Eqs. (3.22) and (3.23)), 

tanh 𝜂 = √
𝑓0

𝑔0
, ( 3.25 ) 
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i.e. 𝑔0 > 𝑓0. The eigenvalue expression in Eq. (3.20) now simplifies to, 

𝜆2 = 1 − 𝛾2 (
𝑔0+𝑓0

𝑔0−𝑓0
)
2
. ( 3.26 ) 

Equation (3.26) directly indicates that real eigenvalues are only possible if, 𝑔0 ≥ 𝑓0(1 + 𝛾)/(1 − 𝛾) , 

which is equivalent to 𝑔0 > 𝑔𝑐, corroborating the earlier findings. In other words the gain level has to be 

above this critical value – a necessary condition for observing solution sets in this regime. The unfolding 

of the nonlinear eigenvalues as a function of the gain level is shown in Fig. 3.5. From these results, one can 

then determine the unbroken nonlinear PT-symmetric eigenvectors, e.g., 

(
𝑎1

𝑎2
) = √

𝑔0−𝑓0

2𝛾
− 1 (

1
±𝑒±𝑖𝜃nl

) 𝑒±𝑖(cos𝜃nl)𝜏, ( 3.27 ) 

Where sin𝜃nl = 𝛾(𝑔0 + 𝑓0)/(𝑔0 − 𝑓0) . When Equations (3.22) and (3.23) are used in conjunction with 

Eq. (3.25), they provide another restriction on the value of 𝑔0 since |𝑎1,2|
2

> 0. More specifically, the 

restriction is given by 𝑔0 ≥ (2𝛾 + 𝑓0) = 𝑔𝑡ℎ
(𝑈)

. Hence, the complete range of 𝑔0 for this solution to exist is: 

𝑔0 ≥ 𝑔𝑐 ∩ 𝑔0 ≥ 𝑔𝑡ℎ
(𝑈)

. ( 3.28 ) 

It should be noted here that under the condition, (𝛾 + 𝑓0) > 1 i.e. when lasing begins in the broken PT 

phase, once the gain level exceeds 𝑔𝑐, both conditions in Eq. (3.28) are satisfied and the steady state now 

assumes the nonlinear unbroken form of Eq. (3.27). This confirms the aforementioned reversal of PT-

symmetric phase transition due to the nonlinearity. However, if (𝛾 + 𝑓0) < 1, where lasing begins in the 

linear unbroken PT phase, the lasing threshold 𝑔𝑡ℎ
(𝑈)

 is greater than 𝑔𝑐, which immediately implies that once 

lasing begins, the system will eventually attain the nonlinear unbroken PT-symmetric steady state solutions, 

described by Eq. (3.27). 
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Figure 3.6 Intensity evolution in the two rings is plotted against time 𝜏, when 𝑔0 = 2.25, 𝑓0 = 1 and 𝛾 =

0.1. Trajectory of the modal fields when (b) Δ𝜙0 = 𝜋/2 + 0.1 – clockwise rotation and (c) Δ𝜙0 = 𝜋/2 −

0.1 – counter-clockwise rotation. 

 

The time evolution of intensities in the two coupled resonators can be studied by numerically solving Eqs. 

(3.4)-(3.5). These results are displayed in Fig. 3.6 (a). Notice that in this domain, the modal amplitudes 

eventually become equal (irrespective of initial conditions), an indication of nonlinear unbroken PT-

symmetry. The analytical expressions in Eq. (3.27) suggest that the system admits two fixed point solutions, 
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𝜆1,2 = ±cos 𝜃nl. The choice between the two depends upon the initial conditions provided. An effective 

method of deducing which initial conditions correspond to which of the two attractors, is to project the 

initial vector onto the two nonlinear eigenmodes. 

The projection operation has to be carried out in a PT-symmetric sense [17], i.e. respecting bi-orthogonality, 

which implies that for two vectors Φ1 = (𝜙1𝑥 𝜙1𝑦)
𝑇

 and Φ2 = (𝜙2𝑥 𝜙2𝑦)
𝑇

, 

⟨Φ1|Φ2⟩ = (𝜙1𝑦
∗ 𝜙1𝑥

∗ ) (
𝜙2𝑥

𝜙2𝑦
). ( 3.29 ) 

By considering the eigenvectors in Eqs. (3.8) or Eq. (3.27), and by letting 𝑣1 = (1 𝑒𝑖𝜃)𝑇 and 𝑣2 =

(1 −𝑒−𝑖𝜃)𝑇, any initial state 𝑣0 = (𝑎01 𝑎02)𝑇 can then be projected. Absolute values of the complex 

coefficients 𝑐1,2 = ⟨𝑣0|𝑣1,2⟩ associated with these eigenvectors can then be obtained and are given by, 

|𝑐1|
2 = |𝑎01|

2 + |𝑎02|
2 + 2|𝑎01||𝑎02| cos(Δ𝜙0 − 𝜃), ( 3.30 ) 

|𝑐2|
2 = |𝑎01|

2 + |𝑎02|
2 − 2|𝑎01||𝑎02| cos(Δ𝜙0 + 𝜃), ( 3.31 ) 

where Δ𝜙0 = 𝜙𝑎01
− 𝜙𝑎02

 is the initial phase difference between the fields 𝑎01 and 𝑎02. As we will see, 

the eigenvector with the larger initial amplitude will eventually dominate. 

The eigenvalue corresponding to the vector 𝑣1 is 𝜆1 = cos 𝜃 which implies a counter-clockwise rotation in 

the complex plane. Note that this corresponds to the low frequency supermode since the fast variations in 

the field, leading to Eq. (1) were assumed to be of the form 𝑒−𝑖𝜔0𝑡 where 𝜔0 is the resonance frequency of 
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each individual resonator. Similarly, the other eigenvalue, 𝜆2 = −cos 𝜃 corresponds to its high frequency 

counterpart. 

Figure 3.7 System response as a function of gain in two different parameter regimes is schematically shown. 

In the upper half, where (𝛾 + 𝑓0) < 1, the system is always in an unbroken PT phase. In the lower half, 

however, where (𝛾 + 𝑓0) > 1, the configuration first transitions from a linear broken to a nonlinear broken 

phase and then eventually enters the nonlinear unbroken domain when 𝑔0 exceeds𝑔𝑐. 

For counter-clockwise rotation, one requires that |𝑐1|
2 > |𝑐2|

2 and vice versa for clockwise rotation. Since 

cos 𝜃 > 0 for 𝜃 = [0, 𝜋/2 ], these conditions can be reduced to, (i) Δ𝜙0 ≤ 𝜋/2, where the low frequency 

supermode survives and (ii) Δ𝜙0 > 𝜋/2, favoring its high ferquency counterpart. As an example, let 𝑔0 =

2.25, 𝑓0 = 1 and 𝛾 = 0.1, that satisfy the conditions in Eq. (23). We now consider two cases for the phase 

difference in the initial values 𝑎01 and 𝑎02. Figure 6 (b) shows the field evolution when the initla amplitudes 
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in the two rings are equal, |𝑎01| = |𝑎02| = 0.2, but the phase difference is Δ𝜙0 = 𝜋/2 + 0.1, and (c) shows 

the same case when Δ𝜙0 = 𝜋/2 − 0.1. The initla exponential growth is evident and the intensities finally 

saturate to a common value as given by Eq. (22). We note that in an actual experiment, under PT-unbroken 

conditions, both eigenmodes will be excited from noise and hence the spectrum will involve two lines at 

±𝜅 cos 𝜃nl around 𝜔0. 

Figure 3.8 Emitted spectrum from (a) uniformly pumped coupled microrings with the pump power of 0.4 

mW (b) PT-symmetric structure when 0.4 mW of pump power reaches the active ring (c) PT-symmetric 

structure when the active ring is subjected to about 10 times the previous power. The insets depict mode 
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profiles of the different scenarios, recorded by the scattering from the surface of the rings. Dashed vertical 

lines are used to compare the locations of resonances. 

Based on the results presented above, it can be established that in the steady state, the form of the nonlinear 

solutions is predetermined by the system parameters, specifically by the normalized values of unsaturated 

absorption (𝑓0) and linear loss (𝛾). In the coupled ring resonator arrangement, as the pumping level is 

increased (as 𝑔0 increases), there are two possible scenarios for the system behavior. If (𝛾 + 𝑓0) < 1, lasing 

begins in the linear unbroken PT-symmetric domain (Eq. (3.8)) and then moves into the nonlinear unbroken 

PT-symmetric regime where the field intensities are equal in both rings albeit with a phase difference, 

according to Eq. (3.27). If on the other hand (𝛾 + 𝑓0) > 1, lasing starts in the linear broken  

PT-symmetric domain (Eq. (3.10)) and then transitions into the nonlinear broken PT-symmetric phase 

where the distribution of field strengths in the two coupled resonators is asymmetric and a phase difference 

of 𝜋/2 exists between them. At even higher gain levels, interestingly, a phase transition occurs from the 

broken domain into the nonlinear unbroken PT domain when 𝑔0 > 𝑔𝑐.  

The two scenarios are summarized in Fig. 3.7, where the nonlinear reversal of a PT-symmetric phase 

transition (broken to unbroken) is displayed in the lower half. It should be noted that the lasing thresholds 

in these two cases are different and both paths eventually end up in the unbroken PT-like phase as the gain 

is increased. 

 

To experimentally verify our findings, we used lithographic techniques to fabricate sets of coupled 

microring resonators comprised of six InGaAsP (Indium-Gallium-Arsenide-Phosphide) quantum wells 

embedded in InP, capable of providing amplification in the wavelength range 1350 − 1600 nm. The rings 

in our experiments have an outer radius of 10  m, a width of 500 nm, and a height of 210 nm. Such 

dimensions are deliberately chosen so as the rings support a single transverse mode and to also favor the 

TE polarization. At first, the two coupled resonators were evenly illuminated using a circular pump beam 
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with a diameter of 80  m. The intensity distribution and spectrum of the modes in the microrings are 

monitored using a CCD camera and a spectrometer respectively. Figure 3.8 (a) shows the spectrum of the 

two active rings when are both exposed to a peak pump power of 0.4 mW (15 ns pulses with a repetition 

rate of 290 kHz).  

Under these conditions, coupling-induced mode splitting can clearly be seen. Next, a knife edge is used to 

selectively withhold the pump power from one of the rings, hence establishing a PT-symmetric gain/loss 

microring arrangement. Figure 3.8 (b) illustrates the lasing spectrum of this PT system. As expected, lasing 

occurs exclusively in the active cavity and the frequency of the resonance shifts to the center of the 

supermode peaks. In other words, the system starts lasing in the broken PT-phase. Next, the pump power 

illuminating the active ring is increased by a factor of two while keeping again the lossy ring in the dark. 

The emission spectrum of the PT arrangement subjected to such a high pump power is depicted in Fig. 3.8 

(c). In agreement with our theoretical predictions, the PT-symmetry of the combined structure is now 

restored due to a saturation of nonlinearities. In this regime, both resonators are again contributing equally 

to lasing and as a result two supermode wavelength peaks are now present in the measured spectrum. Our 

experimental results confirm the fact that nonlinear processes are indeed capable of reversing the order in 

which the symmetry breaking occurs. 

The discussions in earlier sections are also applicable to the findings in Ref. [11]. In that work, lasing was 

observed when both microrings were at first equally illuminated (in a way similar to Fig. 3.8 (a)), in which 

case the system was positioned in the unbroken PT-symmetry phase. This behavior is in agreement with 

our theoretical results presented, e.g. in Eq. (3.27), provided that one sets 𝑓0 = −𝑔0. In this case, 𝜂 is purely 

imaginary and 𝜃nl = 0, and hence the normalized eigenvalues are 𝜆1,2 = ±1, i.e. the mode splitting is twice 

the coupling between the two cavities—resembling that in standard Hermitian systems. On the other hand, 

by removing the pump from one of the rings, saturable losses are introduced since now 𝑓0 is positive. In 

this scenario, Eq. (3.28) is no longer satisfied and as a result the system enters the broken PT phase, in 

agreement with the observed behavior in Ref. [11]. 
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3.2. Integrable PT-Symmetric Optical Oscillator 

In many optical settings, nonlinearity typically manifests itself at high intensities by influencing the real as 

well as the imaginary part of the refractive index. In general, the imaginary component of the refractive 

index (gain or loss) is nonlinearly modified through the presence of saturation effects in the effective gain 

or loss. In addition, the real part of the index also varies with intensity depending on whether the 

nonlinearity is of the focusing or defocusing type, as dictated by pumping conditions [15]. In semiconductor 

systems, gain saturation is responsible for clamping the light intensity within a resonator as well as the 

output power. 

Here, we study the case where the light density within a semiconductor structure remains below its 

saturation limit. This can be achieved by restricting the small-signal gain to relatively low values above the 

system loss. Moreover, in a travelling waveguide amplifier arrangement, the length of the device provides 

another degree of freedom in controlling the output optical intensity. Under these considerations, balancing 

the amount of gain and loss in an evanescently coupled structure composed of two identical elements, 

renders the system PT-symmetric. In this respect, the optical/electrical pumping level in typical designs 

based on semiconductor quantum wells allows control over the values of both the gain and loss [11, 18], 

whereas the spatial separation between the components of a dimer determines the respective coupling 

strength. 

In such a configuration the solution regimes are dictated by the gain (or loss) to coupling ratio which we 

here represent by 𝑔 ∈ 𝐑+. By assuming that the linear losses due to scattering and absorption are small in 

comparison with the coupling strength, the field dynamics in the two components are found to obey the 

following dimensionless differential equations, 

𝑑

𝑑𝜏
𝑢 = 𝑔(1 − |𝑢|2)𝑢 + 𝑖𝑣, ( 3.32 ) 

𝑑

𝑑𝜏
𝑣 = −𝑔(1 − |𝑣|2)𝑣 + 𝑖𝑢. ( 3.33 ) 
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In the above equations, 𝑢 represents the field amplitude in the amplifying element while 𝑣 that in the lossy 

counterpart. Both 𝑢 and 𝑣 have been normalized with respect to a common gain/loss saturation value. The 

independent variable 𝜏 represents a spatial propagation coordinate (in the case of waveguide geometries) 

or time (in cavities), and is also scaled with respect to the coupling coefficient, 𝜅. In what follows we 

determine the critical points of this nonlinear system and through the use of Stokes parameters, identify 

conservation laws and regimes of oscillatory and stationary responses. 

Before we establish the integrability of Eqs. (3.32) and (3.33), it may be beneficial to first study the critical 

points involved and their associated stability properties. It is important to note that if (𝑢0, 𝑣0) represents a 

critical point, then so does (𝑢0, 𝑣0)𝑒
𝑖𝜙0 , where the phase 𝜙0 is atbitrary. This leads to the conclusion that 

only the relative phase between the two complex quantities (𝑢0, 𝑣0) should be considered in the analysis. 

If we take for convenience 𝑢 to be real, it then follows from Eq. (3.33) that 𝑣0 = 𝑖𝜌𝑢0 where 𝜌 ∈ 𝐑. In this 

case, under steady-state conditions, one finds that, 

(𝜌2 − 1)(𝜌2 − 𝑔𝜌 + 1) = 0, ( 3.34 ) 

𝑢0
2 = 1 −

𝜌

𝑔
. ( 3.35 ) 

The algebraic roots of Eq.(3.34), signifying the critiocal points, are given by, 𝜌 = ±1,
1

2
(𝑔 ± √𝑔2 − 4). As 

we will show, among these four possible values of the modal ratio 𝜌, only one of them happens to be stable. 

To this end, linear stability analysis is carried out assuming small perturbations, i.e. (𝑢, 𝑣) →

(𝑢0 + 𝜀1(𝜏), 𝑖𝜌𝑢0 + 𝜀2(𝜏)) where in general 𝜀1,2 are complex. Upon substitution in Eqs. (3.32) and (3.33), 

we obtain the following differential equations concerning these perturbations, 

𝜀1̇ + 𝑔𝑢0
2(𝜀1 + 𝜀1

∗) − 𝑔(1 − 𝑢0
2)𝜀1 − 𝑖𝜀2 = 0, ( 3.36 ) 

𝜀2̇ + 𝑔𝜌2𝑢0
2(𝜀2

∗ − 𝜀2) + 𝑔(1 − 𝜌2𝑢0
2)𝜀2 − 𝑖𝜀1 = 0. ( 3.37 ) 



60 
 

Given that these relations only feature 𝑢0
2, the sign of 𝑢0 is unimportant for the purposes of stability analysis 

and henceforth we only consider its positive branch. Breaking down 𝜀1,2 in terms of their real (𝜀1𝑅,2𝑅) and 

imaginary (𝜀1𝐼,2𝐼) parts, one obtains the eigenvalue equation, 𝑀𝑋 = 𝜆𝑋 by assuming a temporal dependence 

of the form 𝑒𝜆𝜏. Here 𝑋 represents the eigenvector, 𝑋 = (𝜀1𝑅0
, 𝜀1𝐼0 , 𝜀2𝑅0

, 𝜀2𝐼0)
𝑇

 of the matrix M,  

𝑀 = (

3𝜌 − 2𝑔 0 0               −1
0 𝜌 1                 0

0
1

−1
0

−1/𝜌          0

                   0        −(3/𝜌 − 2𝑔 )

)  ( 3.38 ) 

The characteristic equation for this system is given by the following expression, 

𝜆 {𝜆 − (𝜌 −
1

𝜌
)} {𝜆2 − 3(𝜌 −

1

𝜌
) 𝜆 + 1 − (2𝑔 − 3𝜌) (2𝑔 −

3

𝜌
)} = 0. ( 3.39 ) 

We next separately analyze the stability properties of the four stationary points 𝜌. In this case we find:  

(i) 𝜌 = −1 

 

𝜆1,2 = 0 

𝜆3,4 = ±2√(𝑔 + 1)(𝑔 + 2) 

Since 𝑔 > 0, there always exists a positive real 𝜆 which renders this point unstable. 

 

(ii) 𝜌 = +1 

𝜆1,2 = 0 

𝜆3,4 = ±2√(𝑔 − 1)(𝑔 − 2) 

For 𝑔 < 1 or 𝑔 > 2, it is clear that one eigenvalue is a positive real number so that this point 

becomes unstable. Moreover, the double eigenvalue (𝜆1,2 = 0) is not semi-simple [19] (also 
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true for 1 < 𝑔 < 2) and leads to terms proportional to 𝜏 in the general solution, thus introducing 

instability. 

(iii) 𝜌 = 
1

2
(𝑔 + √𝑔2 − 4) 

𝜆1 = 0 

𝜆2 = √𝑔2 − 4 

𝜆3,4 =
√𝑔2 − 4

2
(3 ± 1) 

If 𝑔 > 2, then all eigenvalues are positive and hence this stationary point is unstable. On the 

other hand, for 𝑔 < 2, 𝜌 is complex, hence violating Eq. (3.35) for 𝑢0
2. 

 

(iv) 𝜌 = 
1

2
(𝑔 − √𝑔2 − 4)  

𝜆1 = 0 

𝜆2 = −√𝑔2 − 4 

𝜆3,4 = −
√𝑔2 − 4

2
(3 ± 1) 

Stability is here ensured for 𝑔 > 2 since all the eigenvalues are negative (𝜆 ≤ 0). On the other 

hand if 𝑔 < 2, this point does not exist for the same reason mentioned in the previous case. 

Note that the critical point corresponding to the value of 𝑔 = 2 makes the cases (ii)-(iv) 

equivalent and is found to be stable.  
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A bifurcation diagram describing the behavior of the critical points as a function of the gain/loss 𝑔 constant 

is shown in Fig. 3.9 (a), where the stable branch of 𝜌 is depicted as a solid line. As the value of gain increases 

beyond 𝑔 = 2, the ratio between the fields starts decreasing, starting from 𝜌 = 1 and asymptotically 

reaching 𝜌 = 0. This behavior is reminsscent of linear PT-symmetric systems where in the broken 

symmetry domain (after a bifurcation in the eigenvalues beyond an exceptional point) the field strengths in 

the gain and loss components become unequal [16]. This is shown in Fig. 3.9 (b) for 𝑔 > 2. However, in 

contrast with a linear PT-symmetric dimer where an exponential increase in intensities is expected with 

time, the saturation in Eqs.(3.32) and (3.33) will enforce a bounded steady-state for 𝑔 > 2. Furthermore, 

once this PT-symmetry is broken, light tends to predominantly reside in the cavity that offers amplification, 

as the gain-loss contrast is increased. 

Figure 3.9 The various branches of the ratio 𝜌 associated with the critical points as a function of 𝑔 are 

displayed in (a) where the solid line indicates stable behavior while the dashed unstable. (b) Intensities in 

the two optical elements corresponding to the stable critical point are plotted as the value of 𝑔 increases. 

Moreover, the stability of the trivial critical point at the origin (𝑢0 = 𝑣0 = 0) needs also to be considered. 

Here, the differential equations for the perturbations assume the following form, 

𝜀1̇ − 𝑔𝜀1 − 𝑖𝜀2 = 0, ( 3.40 ) 

𝜀2̇ + 𝑔𝜀2 − 𝑖𝜀1 = 0. ( 3.41 ) 

(a) (b) 
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Again, using the representation, (𝜀1, 𝜀2) = (𝜀01, 𝜀02)𝑒
𝜆𝜏, the eigenvalues of this system are found to be 

𝜆1,2 = ±√𝑔2 − 1. In the range 𝑔 < 1, these values are purely imaginary and conjugate to each other, thus 

implying an unstable saddle point. On the other hand, for 𝑔 > 1, there exists a positive real 𝜆 indicating 

linear exponential growth. 

However, it is instructive to notice that, when the fields in both cavitites start from noise where |𝑢0|, |𝑣0|~0, 

the dynamics reduce to that of a linear PT-symmetric coupler, governed by Eqs. (3.40) and (3.41), with 𝜀1 

and 𝜀2 being replaced with 𝑢 and 𝑣 respectively. In this linear scenario, it is well known that the PT-

symmetric phase transition occurs at the point where the gain/loss contrast to coupling ratio is unity. The 

role of this spontaneous symmetry breaking point at 𝑔 = 1 is apparent in Fig. 3.10, where the initial values 

were choosen to be small, |𝑢(0)|, |𝑣(0)| = 10−2. Below this breaking point, the intensities evolve 

sinusoidally – characteristic of unbroken symmetry eigenmodes [20]; For 𝑔 > 1, the linear symmetry 

breaks and an initial exponential growth occurs up to the point where the intensites get larger and saturation 

starts to limit this growth.  

Figure 3.10 The effect of the linear PT symmetry breaking, around 𝑔 = 1, is depicted. (a) For 𝑔 = 0.9 

sinusoidal oscillations occur while (b) for 𝑔 = 1.1 an exponential growth takes place until saturation comes 

into play. 
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In this section we analyze the properties and behavior of this non-Hermitian nonlinear dynamical system 

(Eqs. (3.32) and (3.33)) using Stokes parameters.  To do so, we first obtain the conservation laws that are 

needed to establish integrability.  The Stokes parameters are defined as follows, 

𝑆0 = |𝑢|2 + |𝑣|2, ( 3.42 ) 

𝑆1 = |𝑢|2 − |𝑣|2, ( 3.43 ) 

𝑆2 = 𝑢∗𝑣 + 𝑢𝑣∗, ( 3.44 ) 

𝑆3 = 𝑖(𝑢∗𝑣 − 𝑢𝑣∗). ( 3.45 ) 

These four real quatnities listed here are interrelated by the expression, 

𝑆0
2 = 𝑆1

2 + 𝑆2
2 + 𝑆3

2. ( 3.46 ) 

The dynamical equations for each of these four parameters can be directly obtained using Eq.(3.32)-(3.33), 

i.e. 

𝑆0̇ = −2𝑔𝑆0𝑆1 + 2𝑔𝑆1, ( 3.47 ) 

𝑆1̇ = −𝑔(𝑆0
2 + 𝑆1

2) + 2𝑔𝑆0 + 2𝑆3, ( 3.48 ) 

𝑆2̇ = −𝑔𝑆1𝑆2, ( 3.49 ) 

𝑆3̇ = −(2 + 𝑔𝑆3)𝑆1. ( 3.50 ) 
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Figure 3.11 Intersections between two surfaces in the (𝑆1, 𝑆3𝑆0)-space are plotted that describe the solution 

trajectories. These are shown for two values of 𝑔 both below, (a) and (b), and above, (c) and (d), the 

nonlinear phase transition point 𝑔 = 2. Corresponding plots in the lower panel depict the intersections in 

the (𝑆1, 𝑆0) plane. The stable critical point appears for 𝑔 > 2 and is shown as a yellow dot. In all cases, the 

initial values of the fields are 𝑢0 = 0.7(1 + 0.1𝑖) and 𝑣0 = 0. 

From Eqs. (3.47), (3.49) and (3.50), one can establish that, 𝑆1 = −
𝑆2̇

𝑔𝑆2
= −

𝑆3̇

(2+𝑔𝑆3)
= −

𝑆0̇

2𝑔𝑆0−2𝑔
, which 

immediately leads to the following two conservation laws, 

𝐴 =
𝑆2

(2+𝑔𝑆3)
, ( 3.51 ) 

𝐵 =
𝑆2

2

(𝑆0−1)
. ( 3.52 ) 

Clearly, the existence of these two constants of motion implies integrability. These two constants are 

determined by the initial values of the Stokes parameters and the gain-loss contrast. To find the evolution 

trajectory of 𝑢(𝜏) and 𝑣(𝜏), it suffices to know the dynamics of only one Stokes parameter. In this case, by 
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first expressing 𝑆3 and 𝑆0 in terms of 𝑆2 [using Eq. (3.51) and Eq. (3.52)] in Eq. (3.46) and finally using 

Eq. (3.49) that relates 𝑆1 to 𝑆2 and 𝑆2̇, we obtain a differential equation solely involving 𝑆2, 

(𝑆2̇)
2

= 𝑔2𝑆2
2 {(1 +

𝑆2
2

𝐵
)
2

− 𝑆2
2 −

1

𝑔2 (
𝑆2

𝐴
− 2)

2
}. ( 3.53 ) 

In principle, Eq.(3.53) can be solved by quadrature. Hence from 𝑆2(𝜏), 𝑆3(𝜏) and 𝑆0(𝜏) can then be 

recovered from the conservation laws and finally 𝑆1(𝜏) can be found using Eq. (3.49) or Eq.(3.46). This 

enables the dynamics of all four Stokes parameters to be determined. From here one can obtain the original 

field amplitudes and phases via Eqs. (3.42)-(3.45), e.g. |𝑢(𝜏)|2 = (𝑆0(𝜏) + 𝑆1(𝜏))/2 etc. 

Figure 3.12 Different solution trajectories in the (𝑆1, 𝑆0)-space are found as the initial conditions are 

changed. For these plots, 𝑢0 is fixed at  𝑢0 = 0.7, while 𝑣0 is varied in the imaginary space from 𝑣0 = 0.1𝑖 

to 𝑣0 = 0.7𝑖. The gain/loss value used here is 𝑔 = 1.8. Arrows indicate the evolution over time. 

The trajectories followed by the solutions can be conveniently described through plots in the Stokes space 

of (𝑆1, 𝑆3, 𝑆0). These are governed by the intersections between a hyperboloid and a parabola, as dictated 

by Eqs. (3.46), (3.51) and (3.52),  

(𝐵 −
𝐵2

4
) = 𝑆1

2 + 𝑆3
2 − (𝑆0 −

𝐵

2
)
2
, ( 3.54 ) 
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𝑆0 = 1 +
𝐴2

𝐵
(2 + 𝑔𝑆3)

2. ( 3.55 ) 

Figure 3.13 The behavior of the intensities over time in the two cavities is shown. The four graphs 

correspond to the four values of 𝑔 used in Fig. 3. Parts (a) and (b) depict a Van der Pol-like oscillatory 

regime and (c) and (d) the PT-broken phase. 

Following this approach, it is possible to determine the domains pertaining to instability, i.e. the conditions 

leading to open-ended intersections or trajectories. When this system is initiated within the linear regime 

(|𝑢0|
2, |𝑣0|

2 ≪ 1), no such domains of instability were identified as 𝑔 was varied. To explore the behavior 

of the system we chose to map the Stokes dynamics on the hyperboloid of Eq.(3.54) since it is independent 

of 𝑔. Figure 3.11 shows relevant plots for four different values of 𝑔. For 𝑔 < 2, the Stokes parameters 

follow periodic trajectories. On the other hand, when 𝑔 > 2, the intersection of the paraboloid and 

hyperboloid passes through the critical point which is stable under these conditions, see part (iv) of the 

earlier listed conditions. Here, instead of a periodic evolution, the field values attain a steady state of 

unequal values analogous to that occurring in a PT-symmetry broken scenario. This case is shown in (c) 

and (d) of Fig. 3.11. Note that the solution profiles depicted in Figs. 3.11 (a) and (b) indicate the presence 

of oscillations akin to stable limit cycles. On the other hand, by changing the initial conditions (keeping 𝑔 
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fixed), these orbits become modified. This implies that these are not exactly limit cycles but instead 

neutrally stable cycles. To demonstrate this, in Fig. 3.12 we set the field in the cavity with gain to be 𝑢0 =

0.7 and we then increase the initial value of the field in the cavity with loss. In this case, the cycles in the 

(𝑆1, 𝑆0) space are found to change accordingly. 

Considering the results presented, one can infer the existence of two distinct responses associated with 

Eqs.(3.32) and (3.33). The first corresponds to solutions expected in a system like the well-known Van der 

Pol oscillator [21]. This domain is defined by 𝑔 <  2, and here the intensities in both cavities behave in a 

very similar manner (reflected versions of each other) having the same period and lying within an identical 

bounded interval. Whereas in the second regime, the fields are pulled into the stable critical point given 

earlier in the condition of part (iv). The former relates to the PT-symmetric phase since |𝑢|2 and |𝑣|2 

oscillate symmetrically over time, while the latter is analogous to the symmetry broken phase where the 

two intensities are unequal.  Numerical results from a Runge-Kutta simulation for these two phases 

(corresponding to values of 𝑔 used in Fig. 3.11) are depicted in Fig. 3.13 where panels (a) and (b) show 

intensities in the symmetric domain and panels (c) and (d) display the broken phase. In this latter scenario, 

we also found that the fields in both components of the dimer are locked at the common resonant frequency 

(or propagation constant) of the cavities (or waveguides) —a feature of a spontaneously broken PT-

symmetry.  Another characteristic of this PT-phase can be deduced from the fact that as 𝑔 inceareses, the 

ratio |𝑣0|
2/|𝑢0|

2 becomes gradually smaller. In addition, once the system starts to oscillate within the 

symmetric regime, the transition between the two domains occurs at the nonlinear boundary 𝑔 =  2 as the 

gain-loss value is increased. This is in contrast to a linear PT-symmetric coupler where the transition occurs 

instead at 𝑔 =  1. Although nonlinear saturation effects tend to modify the location of this transition in the 

parameter space, the order in which it takes place is not affected-unlike in other nonlinear PT-symmetric 

settings [18].  

Finally, an interesting feature associated with of this oscillator is the fact that within the exact PT-symmetry 

domain, as the system gets closer to the nonlinear phase transition point, the period of oscillations tens to 
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approach infinity. Hence, operation close to 𝑔 =  2, for instance in a coupled micro-ring resonator 

configuration, could lead to periodic flashes of light observable at much longer time scales compared to 

coupling times which are typically on the order of picoseconds. 

3.3. Lasing Dynamics of Non-Hermitian Coupled Fiber Cavities 

Since PT-symmetry has been thought of as fragile [22], experimental realizations to date have been usually 

restricted to on-chip micro-devices. Here, we demonstrate that certain features of PT-symmetry are 

sufficiently robust to survive the statistical fluctuations associated with a macroscopic optical cavity. We 

construct optical-fiber-based coupled-cavities in excess of a kilometer in length (the free spectral range is 

less than 0.8 fm) with balanced gain and loss in two sub-cavities and examine the lasing dynamics. In such 

a macroscopic system, fluctuations can lead to a cavity-detuning exceeding the free spectral range. 

Nevertheless, by varying the gain-loss contrast, we observe that both the lasing threshold and the growth 

of the laser power follow the predicted behavior of a stable PT-symmetric structure. Furthermore, a 

statistical symmetry-breaking point is observed upon varying the cavity loss. These findings indicate that 

PT-symmetry is a more robust optical phenomenon than previously expected, and points to potential 

applications in optical fiber networks and fiber lasers. 

Here, we demonstrate that many features of PT-symmetry are sufficiently robust so as to survive the 

statistical fluctuations associated with macroscopic fiber cavities – even ones having a length in excess of 

1 km. Starting from a generic linear PT-symmetric laser cavity model, we construct a conceptually 

analogous lumped-component model that we experimentally realize in a single-mode-fiber cavity. Coherent 

coupling and feedback from the interfaces in the traditional model are replaced by partially reflective fiber 

Bragg mirrors connecting two sub-cavities in which optical amplification and attenuation are provided by 

localized components in lieu of the distributed gain and loss used in previous approaches. In such an 

arrangement, the gain-loss balance is readily maintained and varied deterministically, but the sub-cavity 

phases cannot be held fixed due to unavoidable fluctuations in such a large system – thereby leading to  
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resonance detuning. Nevertheless, we demonstrate experimentally and theoretically that the lasing 

threshold and the post-lasing output-power scaling in the PT-symmetric configuration survives the 

statistical detuning effects of the sub-cavity resonances – even when this detuning spans the full FSR. We 

present the first quantitative identification of lasing thresholds and broken and unbroken PT-symmetric 

lasing phases, which is made possible by the unambiguous separation of the power emitted by the gain and 

loss sub-cavities. Furthermore, we find that although detuning precludes the existence of an exact unbroken 

PT-symmetric phase, observation of the signature of symmetry breaking is nevertheless enabled through 

tuning the attenuation of the loss sub-cavity. The demonstrated robustness of PT-symmetry in macroscopic 

fiber systems could pave the way to applications of such concepts in telecommunications and fiber lasers. 

Figure 3.14 A lumped-component model of a PT-symmetric laser cavity. (a), A PT-symmetric structure 

formed of two homogeneous layers of refractive indices 𝑛g and 𝑛ℓ, (corresponding to optical gain and loss, 

respectively) and equal thicknesses. PT-symmetry requires 𝑛g = 𝑛ℓ
∗. A continuous version of the reference 

cavity given in Table 1 (d) is also shown on the right. As a reference, we also depict the gain layer only 

after removing the loss segment. (b), A model composed of discrete components to replace the continuum 

model in (a): the interfaces are replaced with localized mirrors, and the distributed gain and loss are replaced 
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with lumped components – an amplifier (amplification factor 𝐺) and an attenuator (attenuation factor ℒ), 

respectively. PT-symmetry requires that 𝑅1 = 𝑅3 = 𝑅. The cavity corresponding to the gain layer alone is 

formed of the side mirrors containing the amplifier. (c), Schematic of an experimental realization of the 

system shown on the left in (b) using single-mode optical fibers. Specially designed fiber Bragg grating 

(FBGs) are used as partially reflecting mirrors with reflectivies 𝑅, 𝑅2, and 𝑅 from left to right. Gain is 

provided by a semiconductor optical amplifier (SOA) and attenuation by a variable optical attenuator 

(VOA). (d), Optical setup in (c) after inserting an additional 1-km-long fiber spool. A polarization controller 

(PC) is added to maintain the state of polarization throughout the cavity. 

 

We start by abstracting from an archetypical optical PT-symmetric configuration (Fig. 3.14 (a)) an 

equivalent discrete ‘lumped-component’ system (Fig. 3.14 (b)-(d)). The arrangement shown in Fig. 3.14 

(a) consists of equal lengths of homogeneous materials of refractive indices 𝑛g and 𝑛ℓ in intimate contact 

and surrounded with symmetric external media. The imaginary part of the index corresponds to either 

optical loss (𝑛ℓ) or gain (𝑛g), depending on its sign. If the indices satisfy 𝑛g
∗ = 𝑛ℓ, then the structure is said 

to be PT-symmetric. This condition entails that the real part of the refractive index has an even distribution 

(it is equal in both layers), whereas the imaginary part has an odd distribution (optical gain in one layer and 

matching losses in the other). Index discontinuities at all three interfaces provide reflection that is 

particularly weak at the interface between the two layers (where it depends on only the contrast between 

the imaginary components of 𝑛g and 𝑛ℓ) – resulting in strong coupling between the two layers. Despite the 

simplicity of this fundamental model, it has not been experimentally realized to date – in part due to the 

constraints placed by the Kramers-Kronig relationships on the commensurate values of the real and 

imaginary components of the refractive index of any material [23]. To date, many physical realizations of 

PT-symmetric cavities have focused instead on other micro-systems such as coupled ring cavities, or 

parallel waveguides. 
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The optical structure shown in Fig. 3.14 (b) that comprises two coupled sub-cavities is conceptually 

equivalent to that in Fig. 3.14 (a). Fresnel reflection at the interfaces is replaced by partially reflecting 

mirrors: outer symmetric mirrors M1 and M3 having equal reflectivities 𝑅1 = 𝑅3 = 𝑅 that correspond to 

the interfaces with the external media, and a middle mirror M2 of reflectivity 𝑅2 that couples the two sub-

cavities and corresponds to the interface between the gain and loss layers. Discrete optical amplifiers and 

attenuators provide amplification 𝐺 and attenuation ℒ in the sub-cavities. Crucially, in such a configuration 

the reflections are no longer constrained by the physical limitations on the refractive indices of materials as 

dictated by the Kramers-Kronig relationships. Instead, coherent feedback between the sub-cavities becomes 

independent of the gain/loss contrast. 

To realize the lumped-component PT-symmetric structure shown in Fig. 3.14 (b), we have constructed a 

C-band single-mode-fiber-based cavity in which all the degrees of freedom are independently accessible, 

as illustrated in Fig. 3.14 (c). Gain is produced by a fiber-pigtailed semiconductor optical amplifier (SOA), 

the loss is induced by a variable optical attenuator (VOA), and optical feedback is provided by custom-

made fiber Bragg gratings (FBG) with desired reflectivity, central wavelength, and bandwidth (Methods). 

A single polarization is maintained by utilizing a polarization-sensitive SOA and polarization-maintaining 

optical components. Here we keep the reflectivities of the side mirrors fixed (𝑅, representing left and right 

external FBGs 𝑀1 and 𝑀3) and vary the reflectivity 𝑅2 for the intra-sub-cavity coupling FBG M2:  

𝑅 ≈ 82%,𝑅2 = 7% − 99%. ( 3.56 ) 

In the nonlinear regime, we employ a mean-field temporal coupled-mode approach [44] in which the 

averaged field amplitudes in the gain sub-cavity 𝑎 and the loss sub-cavity 𝑏 are coupled through, 

𝑑𝑎

𝑑𝑡
= −𝛾1𝑎 + 𝑖

Δ

2
𝑎 +

𝑔

1+|𝑎|2
𝑎 + 𝑖𝜅𝑏, ( 3.57 ) 

𝑑𝑏

𝑑𝑡
= −𝛾2𝑏 − 𝑖

Δ

2
𝑏 + 𝑖𝜅𝑎. ( 3.58 ) 
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Here we have introduced an effective temporal coupling coefficient 𝜅 between the sub-cavities (to be 

defined below); 𝛾1 and 𝛾2 are temporal linear losses in the amplifying and attenuating sub-cavities, 

respectively, which incorporate leakage from the side mirrors and the loss imposed by the VOA; Δ is the 

frequency detuning between the resonances of the sub-cavities (Fig. 3.15 (a)-(b)); and 𝑔 is the small-signal 

gain. These parameters are all related to the mirror reflectivities and fiber lengths. We introduce gain 

saturation in Eq. (3.58) to capture the power dynamics after the onset of lasing [18]. A useful feature of this 

model is that it can apply to a wide range of non-Hermitian photonic systems beyond ours. The coupling 𝜅 

can be obtained from [24,25], 

𝜅 =
𝑣𝑔

2𝑛o
2𝐿

(1 − 𝑅)√
1−𝑅2

𝑅2
.  ( 3.59 ) 

In light of the macroscopic nature of the fiber-based cavity, we assume that the detuning Δ is a random 

variable. Indeed, given the long cavity length, and thus the extremely small free spectral range (FSR), slight 

perturbations in the experimental conditions may cause Δ to potentially vary across the whole FSR. The 

solutions are obtained numerically by carrying out an ensemble average over a distribution for Δ, either a 

Gaussian distribution 𝑃(∆) ∝ exp{−∆2/(2𝜎2)} (Fig. 3.15 (c)) or a uniform distribution (Fig. 3.15 (d)) as 

candidate models. Analysis under these considerations leads to the intriguing conclusion that features 

associated with the presence of an exceptional point (a non-Hermitian degeneracy) can – in principle – still 

be detected. 

The lasing modes can be obtained from Eqs. (3.57) and (3.58) in the steady-state. However, this model is 

valid both before and after lasing occurs. To ensure the consistency of our analysis, we first obtain the 

lasing threshold of the PT-symmetric arrangement from the linear transfer matrix method which is given 

below. 

𝐺PT =
1−𝑅

2𝑅̃
+ √1 + (

1−𝑅

2𝑅̃
)
2
. ( 3.60 ) 



74 
 

Figure 3.15 (a), Without detuning, the resonance frequencies of the gain (red) and lossy (blue) sub-cavities 
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are aligned. (b), In the presence of detuning Δ, the sub-cavity resonances are no longer aligned. (c) Gaussian 

or (d) Uniform distributions as candidates for the detuning probability distribution 𝑃(Δ) (e)-(f), Trajectories 

of (e) the real and (f) imaginary components of the eigenvalues 𝜆1,2 for a linear PT-symmetric configuration 

𝑔 + 𝛾1 = 𝛾2. Dashed curves represent Δ = 0, and solid curves depict Δ = 𝜔𝐹𝑆𝑅/10. Shaded regions 

correspond to all the intermediate detuning values. As 𝑔 increases, Re{𝜆} tend to coalesce whereas Im{𝜆} 

bifurcate. The exceptional point at zero-detuning (yellow triangle) occurs at 𝑔 = 𝜅, whereupon Re{𝜆} = 0 

and Im{𝜆} = 𝛾1. We define a transition between an unbroken PT-symmetric phase (U) and a broken PT-

symmetric phase (B) at the EP. Lasing occurs when Im{𝜆} < 0, which may occur before or after the 

bifurcation. The green circle depicts the experimental values for the lasing threshold corresponding to 𝑅2 =

6.8%. Inset in (e) shows the PT-cavity configuration. (g), A general schematic for the lasing domains is 

provided when 𝛾1 = 0. Along the dotted line, the PT-symmetric condition 𝑔 = 𝛾2 is satisfied and the 

dashed line corresponds to 𝑔 + 𝛾2 = 2𝜅. From Eq. (3.61), the system is in the unbroken domain if 𝑔 <

2𝜅 − 𝛾2 – circles, and is instead in the broken domain beyond this region – edges. The lasing and non-

lasing regions are depicted with red and blue colors, respectively. Lasing thresholds are shown with a solid 

line. In U, lasing occurs when 𝑔 > 𝛾2, whereas in B, when 𝑔 > 𝜅2/𝛾2. 

 

In Eq. (3.60), 𝑅̃ = √𝑅𝑅2. This expression remains unaffected whether the cavities are deterministic or if 

we assume randomly varying phases inserted in the sub-cavities. The values of gain required for onset of 

lasing can also be obtained based on Eqs. (3.57) and (3.58). To achieve this, we linearize Eq. (3.57) by 

ignoring gain saturation and set the detuning to Δ = 0, and then determine the lasing thresholds by assuming 

a harmonic ansatz of the form (
𝑎(𝑡)
𝑏(𝑡)

) = (
𝑎0

𝑏0
) 𝑒𝑖𝜆𝑡 , where (

𝑎0

𝑏0
) is a constant vector. The general solution 

for the eigenvalues has the form 

𝜆1,2 = −
𝑖

2
(𝑔 − 𝛾1 − 𝛾2) ± 𝜅√1 − (

𝑔−𝛾1+𝛾2

2𝜅
)
2
. ( 3.61 ) 
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Within the linear, zero-detuning, PT-symmetric configuration (𝑔 + 𝛾1 = 𝛾2), the two eigenvalues are 

𝜆1,2 = 𝑖𝛾1 ± √𝜅2 − 𝑔2. The lasing threshold is then easily identified by determining the onset for a 

negative imaginary component of the eigenvalues, 𝑔th = √𝛾1
2 + 𝜅2. Computing the lasing threshold based 

on this model Eq. (3.61) reveals excellent agreement with the predictions of the transfer matrix method, Eq. 

(3.60), for the PT-symmetric structure. 

The behavior of the eigenvalues while varying 𝑔 displays a bifurcation, as illustrated in Fig. 3.15 (e)-(f) 

(dashed curves). When 𝑔 < 𝜅, the eigenvalues have the same imaginary part 𝑖𝛾1 but distinct real parts 

±√𝜅2 − 𝑔2. As 𝑔 → 𝜅, the real parts coalesce at zero (Fig. 3.15 (e)) whereas the imaginary components 

diverge along forked trajectories (Fig. 3.15 (f)). We denote the range 𝑔 < 𝜅 as the ‘unbroken’ PT-symmetry 

regime (U), and the range 𝑔 > 𝜅 the ‘broken’ PT-symmetry regime (B), separated by the exceptional point 

at 𝑔 = 𝜅. The behavior of the field is quite distinct in these two regimes. The unbroken-PT regime features 

equal field amplitudes in the two sub-cavities (
𝑎0

𝑏0
) = (

1
±𝑒±𝑖𝜃), where sin𝜃 = 𝑔/𝜅. The power emitted 

from the gain and loss sub-cavity ports are thus expected to be equal. In the broken-PT regime, the modal 

field is more concentrated in the gain (or loss) sub-cavity having unequal amplitudes (
𝑎0

𝑏0
) = (

1
𝑖𝑒±𝜃), where 

cosh𝜃 = 𝑔/𝜅, leading to unequal power emission from the two ports. 

We now consider the impact of detuning ∆ on the system while retaining the linear PT-symmetric condition 

(𝐺ℒ = 1). As ∆ increases, the bifurcation in the real and imaginary parts of the eigenvalues is ‘smoothed 

out’ in a complementary fashion. Prior to the EP, the real part closely resembles the zero-detuning results, 

but deviates considerably after the EP. The opposite is observed in the imaginary part: it closely follows 

the zero-detuning results after the EP and diverges beforehand. It can be shown on theoretical grounds that 

there is an absence of a pure unbroken-PT mode (|𝑎0| ≠ |𝑏0|) in the presence of detuning. We can 

nevertheless define a pseudo-unbroken symmetry regime, whereupon the amplitudes |𝑎0| and |𝑏0| are 

approximately equal and are affected in a similar manner upon changing the gain and loss [18]. 
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Note that in a strict PT-symmetric configuration (the dashed zero-detuning curves in Fig. 3.15 (e)-(f) 

corresponding to 𝐺ℒ = 1), lasing will only occur in the broken-symmetry regime, which has been the case 

in previous experiments [11,26,27]. This restriction can be relaxed by relying on unbalanced gain and loss 

(𝐺ℒ ≠ 1) [18]. The calculation in Fig. 3.15 (e)-(f) show that detuning ∆≠ 0 can result in lasing in the 

unbroken-PT regime. 

Lately, various models have been put forward to study the interplay of nonlinearity and PT-symmetry 

[12,13,28,29]. In the structure under consideration, the lasing field dynamics, such as power-scaling with 

gain, can be conveniently analyzed using the nonlinear model in Eqs. (3.57)-(2.58). An important property 

of lasing structures in the steady-state is that the saturated gain always clamps to the net amount of 

attenuation present in the system [15,23]. A critical consequence of this general physical restriction is that 

the gain/loss contrast no longer determines the transition between different symmetry phases, only the loss 

does. We confirm this prediction by again employing a harmonic ansatz (with Δ = 0) but without imposing 

a balance of the gain and loss. Instead we regard them as independent variables. By allowing for only real 

eigenvalue solutions (as a result of gain clamping), we obtain analytical expressions for two distinct phases 

of field oscillation, which we map to the unbroken (U) and broken (B) PT-symmetry regimes, 

𝛾2 ≤ 𝜅: (
𝑎
𝑏
)
U

= √
𝑔

𝛾1+𝛾2
− 1 (

1
±𝑒±𝑖𝜃) 𝑒±𝑖(𝜅 cos𝜃)𝑡, ( 3.62 ) 

𝛾2 > 𝜅: (
𝑎
𝑏
)
B

= √
𝑔

𝛾1+𝜅2 𝛾2⁄
− 1 (

1
𝑖𝜅/𝛾2

),  ( 3.63 ) 
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where the parameter 𝜃 in Eq. (3.62) is obtained from sin 𝜃 = 𝛾
2

𝜅⁄ . Two new features emerge here. In 

contrast to the linear model in which the gain/loss contrast determines the boundary between the broken 

and unbroken regimes, here in the nonlinear regime, this boundary is dictated by the loss 𝛾2 in the lossy 

sub-cavity alone. The unbroken PT-phase, U, in Eq. (3.62), is characterized by equal intensities |𝑎|2 = |𝑏|2 

in the sub-cavities and the two nonlinear supermodes are split in frequency by 2𝜅 cos 𝜃. On the other hand, 

the broken PT-phase, B, entails an unequal distribution of intensities with |𝑎|2 > |𝑏|2. Another important 

feature is that the supermodes now exhibit fixed amplitudes because of nonlinearity, dictated by the cavity 

gain and loss values, in contradistinction to the linear regime. 

Figure 3.16 Growth in output power from a PT-symmetric laser with gain-loss contrast. Plot of the output 

power from the loss and gain laser cavity ports as the gain-loss contrast is increased while maintaining PT-

symmetry, 𝐺ℒ = 1; inset shows the cavity configuration. Measured values are shown as circles and crosses 

for two different cavity configurations of total lengths 𝑑 = 6 m and 𝑑 = 1 km, respectively. The solid and 

dashed curves are simulations of the output power from loss and gain ports, respectively, obtained from the 

nonlinear model of the coupled fiber system in Eqs. (3.57)-(3.58) after making use of the actual 

experimental values of parameters. 
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In our experiment conducted on a macroscopic fiber system extending for many meters, a pertinent question 

is whether the observation of such prominent broken and unbroken phases is still possible in the presence 

of the unavoidable resonance detunings. As a first demonstration of the validity of the nonlinear analysis 

described above, we measure the power-scaling characteristics of the 𝒫𝒯-laser while holding 𝑅2 = 6.8% 

fixed and increasing the gain-loss contrast (maintaining 𝐺ℒ = 1). A unique feature of our experimental 

arrangement is that the output power from the loss and gain sub-cavity ports (𝐼Gain = |𝑎|2 and 𝐼Loss = |𝑏|2) 

can be recorded separately and quantitatively; see Fig. 3.16. It is thus possible to determine unambiguously 

whether lasing is initiated in the broken or unbroken symmetry phases. The data reveals clearly that lasing 

occurs in the broken regime. Note however that 𝐼Gain and 𝐼Loss approach each other at low gain/loss 

contrasts, which indicates that an unbroken phase is approached. 

To compare the data on power-scaling with predicted values based on the nonlinear model, we must include 

the impact of phase detuning in the system of Eqs. (3.57)-(3.58). We compute an ensemble average over a 

Gaussian distribution for Δ over one free spectral range; Fig. 3.16 (c). The standard deviation 𝜎 plays an 

important role in determining the lasing characteristics. We fitted the results of the coupled model for 

different values of 𝜎 and obtained a good match for 𝜎 = 𝜔𝐹𝑆𝑅/10. This quantifies the amount of average 

resonance detuning between the two coupled fiber sub-cavities. Utilizing a uniform probability distribution 

(Fig. 3.15 (d)) predicts a substantially larger contrast between 𝐼Gain and 𝐼Loss than that observed 

experimentally. Furthermore, we inserted an extra 1-km-long fiber spool in the loss sub-cavity (Fig. 3.14 

(d)), which exacerbates the detuning between the two sub-cavities. Nevertheless, we observe the same 

contrast between 𝐼Gain and 𝐼Loss at the output.  

Furthermore, the trends in Fig. 3.16 clearly show that the disparity between 𝐼Gain and 𝐼Loss continues to 

grow with 𝑔, thus confirming that the mode in the gain sub-cavity further localizes as the gain-loss contrast 

in the PT-system is enhanced [1-6]. This is a well-known feature of the broken PT phase. Since the steady-

states always remain in this phase for the values of 𝛾2 = 𝑔 + 𝛾1 considered here, we deduce from the results 

in Eq. (3.63) that the range over which the loss (and gain) is varied is actually higher than the coupling 
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strength between the fiber cavities for 𝑅2 = 7%. It is also interesting that an extremely large cavity (>

1 km) as that employed here does not change the final data as shown in Fig. 3.16 by crosses. 

Figure 3.17 Lasing characteristics of the PT-symmetric cavity around the exceptional points. (a), Measured 

values of the output power from the gain port 𝐼Gain (red circles) at different gain values 𝐺 (30, 25, 20, and 

15 dB). The solid curves are fits to guide the eye. As the loss is gradually increased at fixed gain, 𝐼Gain is 

non-monotonic. First 𝐼Gain decreases, goes through a minimum at the exceptional point (indicated by the 

vertical dashed line), and then increases with loss as the gain and loss subcavities decouple. (b), Simulations 

for 𝐼Gain at different values of G obtained from Eqs. (3.57)-(3.58). The red circles correspond to the data in 

the top-most graph in (a) for 𝐺 = 30 dB. (c), Same as (a) for the power from the loss port – 𝐼Loss. Inset 

shows theoretical plots of 𝐼Gain and 𝐼Loss at 𝐺 = 30 dB for the statistical PT-symmetric configuration of 

our experiment (solid curves) and the ideal deterministic configuration (dashed curve – Δ = 0) highlighting 

the bifurcation in output power as a consequence of PT-symmetry breaking upon passing through the 

system’s exceptional point. (d), Same as (b) for 𝐼Loss in lieu of 𝐼Gain. 

Finally, we demonstrate that our macroscopic fiber-based laser-cavity system – despite the random detuning 

between the sub-cavities – still displays the features of an exceptional point. As described above, 
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transitioning between the unbroken and broken symmetry phases in the nonlinear regime (associated with 

a lasing system in the steady state) is determined by the loss 𝛾2 alone. In carrying out such an experiment, 

it is crucial that the gain and loss are tunable in an independent manner and the two output ports are 

accessible to obtain quantitative results that may be compared to theoretical predictions. Both of these 

requirements are satisfied in our experimental arrangement. 

The loss is tuned via the VOA while the gain provided by the SOA is held fixed at a value well above the 

lasing threshold of the gain sub-cavity, such that lasing appears in both cavity outputs regardless of the 

amount of the induced loss. We then sweep the loss of the VOA from zero to a large value while recording 

the lasing power at the two sub-cavity output ports. Increasing the loss results in a power drop from the loss 

port as might be expected (Fig. 3.17 (c)-(d)). However, the result for the gain port is counterintuitive: the 

power initially drops with increasing loss, but then increases with further increase in the added loss (Fig. 

3.17 (a)-(b)). This increase in lasing power with additional loss is particularly visible when the gain is held 

at 30 dB. At a gain of 15 dB, this effect has vanished and a transition is no longer detectable. 

Loss-induced enhancement of lasing power has been observed in microcavities and is attributed to the 

notion of an exceptional point. While the same effect is observed in this macroscopic cavity, it is worth 

mentioning that there are no pure broken or unbroken phases in this cavity, since the propagation phase is 

not deterministic. Yet, even in this statistical environment, we have proved for the first time that a PT-phase 

transition is still observable in large-scale active cavities. 

In terms of lasing powers from the gain and loss ports of our system, we have not only observed the two 

well-known phases of unbroken and broken symmetry in this statistical system but also the transition 

between the two phases occurring around an exceptional point (EP). The presence of random phase 

fluctuations has one drawback in the sense that it prevents a complete coalescence of eigenvalues and hence 

the lasing powers from the gain and loss ports are never equal. More importantly, in this nonlinear system 

the transition behavior between the unbroken and broken PT-phases is dictated only by the loss in the lossy 

cavity. Despite the statistical nature of the experimental setup, with increasing cavity loss, optical power 
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decays in unison from both the loss and gain cavities up to a certain critical point (i.e., the EP) after which 

it counterintuitively begins to rise from the gain port. Such loss-induced transparency effects and other 

lasing characteristics had so far been thought to be observable only in micrometer-scale devices. Our results 

are thus promising in advancing PT-symmetry and non-Hermitian optics in general to large scale non-

deterministic platforms such as fiber networks. 
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CHAPTER 4. DYNAMICAL PHENOMENA AROUND EXCEPTIONAL 

POINTS 

 

In physical systems, a degeneracy occurs if two or more eigenvalues or energy levels coalesce. 

Degeneracies play an important role in understanding various physical phenomena, from energy levels in 

atoms to band theory and Zeeman and Stark splitting [1]. The topological structure of these entities has also 

been extensively explored. One particular example is the accumulation of a geometric phase, known as the 

Berry phase, upon adiabatic parameter changes around such points [2]. All such effects and similar studies 

in quantum mechanics were largely restricted to the Hermitian domain where degeneracies only exist for 

eigenvalues of a system. On the other hand, if one removes this restriction of Hermiticity and considers 

non-conservative arrangements, better known as non-Hermitian systems, the nature of degeneracies 

becomes more drastic. At non-Hermitian degeneracies called exceptional points (EPs), not only do two or 

more eigenvalues coalesce, but their corresponding eigenvectors also merge onto a single eigenvector [3-

6]. Some very intriguing phenomena have been found to occur around these non-Hermitian degeneracies 

including band merging, mode-selection and unidirectional transmission, to mention a few [7-12]. 

Modulating the governing parameters of the system, such as the gain/loss or coupling strengths, allows for 

the possibility of tuning the input-output relationship. If one dynamically changes the system parameters 

along a contour that encloses an EP of order 2 (where two eigenvalues and eigenvectors merge), remarkably 

only a single eigenstate was found to emerge at the end of the cycle.  

Moreover, this effect occurred independently of what input the system was excited with, and the final state 

just depended on the direction of encirclement around the EP, i.e. clockwise or counter-clockwise. We 

studied such a dynamical system that comprised two coupled elements that could represent optical/electrical 

fields in two cavities, waveguides or even the two components of polarized light, e.g. horizontal and vertical 

polarizations. The coupling strength was considered as constant while variations were introduced in the 
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gain/loss contrast and propagation constants (or resonant frequencies for cavities) between the two 

channels. The variations imposed were in the form of circles centered on the location of the EP in the 

gain(x)-detuning(y) parameter plane. In doing so, we successfully obtained analytical solutions describing 

the complete field evolution during the parameter cycle. In addition, to prove the existence of a robust mode 

conversion effect, we used asymptotic expansions of these solutions after an extensive search in the digital 

library of mathematical functions from NIST. The results obtained firmly establish the fact that in this 

dynamical evolution, any input leads to the fist eigenvector at the output if the encirclement occurs in a 

clockwise sense and it instead leads to the second eigenvector if it occurs in the counter-clockwise sense. 

This was the first analytical explanation of this chiral mode conversion process in non-Hermitian systems. 

We then used our model to propose an optical omni-polarizing device that is capable of converting any 

input polarization of light into a desired polarization eigenstate (e.g. horizontal or vertical) along a single 

waveguide channel. This was designed in a GaAs-AlGaAs ridge waveguide configuration with a slanted 

side-wall to couple x-y polarizations. The gain and detuning were varied by respectively changing the 

optical/electrical pump profile and waveguide width along the propagation direction. We are currently 

pursuing experimental realizations of this physically realizable design on semiconductor platforms and 

other variants of this design using fiber optics The intriguing topological properties of exceptional points 

constitute hot research topics and definitely hold promise for developing new and useful optical 

functionalities. 

4.1. Chiral Mode Conversion Through Dynamic Exceptional Point Encirclement 

Eigenvectors, by their very nature, are states of a system that remain invariant as they evolve. However, if 

the Hamiltonian governing the dynamics itself happens to change with time, it becomes naive to expect 

invariance for any initial eigenstate. One special case is that of cyclic variations whereby the initial and 

final Hamitonians are equivalent. Here, the excited eigenstate at the start might appear at the end of the 

cycle given that the so-called adiabatic theorem holds [13]. The theorem holds true but only as far as 
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Hermitian systems are concerned. Parameter variations in such settings not only introduce the usual 

dynamical phase but also a measurable topological phase that depends on the geometry of the specific path 

followed. Better known as Berry's phase, it is a gauge-invariant geometric phase that carries the information 

of which (parameter) path the system followed, as opposed to the regular dynamical phase that simply 

depends upon the time it took for the adiabatic cycle [2]. Of particular interest is the case where eigenvalue 

degeneracies (diabolic points DP) are enclosed within the parameter loop. In this latter scenario, the 

geometric phase is robust against perturbations in the control path since it is related to the flux generated 

from the degeneracies that act as topological sources. Since its discovery, it has appeared in widespread 

manifestations, from optical fibers to neutron beams and can even be used to explain the rotation of the 

Foucault pendulum [14-16]. 

Such results were then naturally extended to the non-conservative regime in dissipative systems where, in 

contrast with the Hermitian case, the complex multipliers of eigenstates no longer have unit moduli [17]. 

The situation is much different when Hermiticity is dispensed with: the eigenvectors are no longer 

orthogonal to each other and branch points are known to arise. Recently, there has been a growing interest 

in the dynamics of systems where parameter excursions occur around such branch points. In these non-

Hermitian scenarios, the adiabatic theorem may not hold altogether [18-19]. A peculiar consequence of this 

is the dominance of one eigenstate over the other depending upon the sense of rotation of the parameter 

cycle [20-21]. 

As opposed to DPs in Hermitian systems, where the eigenvalues converge while still supporting linearly 

independent eigenvectors, a non-Hermitian configuration supports a branch point known as an exceptional 

point (EP). Here, besides the eigenvalues, the eigenvectors also tend to converge on to a single self-

orthogonal eigenvector [3-6] while unfolding associated vectors of the Jordan form [22]. Encircling of EPs 

leads to richer phenomena such as eigenstate-flips and asymmetric state-exchange mechanisms. 

Specifically, one eigenstate happens to be preferred over the other depending on the sense of rotation in the 

parameter space. Recently, two experiments confirming this remarkable phenomenon were reported in 
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optomechanics [23] and coupled waveguides in the microwave domain [24]. We describe closed form 

solutions in terms of Hypergeometric functions for the occupancies of two coupled states whose dynamics 

are governed by a non-Hermitian Hamiltonian undergoing cyclic parameter variations. In the past, a few 

studies have been aimed at explaining the asymmetry of state exchanges based on numerical schemes but 

a clear understanding of the dynamics of the process is still lacking. A noteworthy analysis was that of Ref. 

[25] where a certain non-Hermitian Hamiltonian was shown to possess solutions in terms of Bessel 

functions and the precedence of one state over the other was traced to the Stokes phenomenon of 

asymptotics. Our analysis reveals Bessel functions as a special case and the underlying state conversions 

are shown to unfold through asymptotic expansions of the relevant solutions. We theoretically analyze the 

behavior of two coupled states whose dynamics are governed by a non-Hermitian Hamiltonian undergoing 

cyclic variations in the diagonal terms. The model presented here is readily realizable and even more 

importantly, allows one to track the modal populations at all times without imposing restrictions on the 

degree of adiabaticity or the size of EP encirclement. Analytical solutions obtained via confluent 

hypergeometric functions clearly explain the underlying asymmetric conversion into a preferred mode and 

the chiral nature of this mechanism is brought to the fore through appropriate transformations. 

The generic system under consideration is composed of two coupled entities that could represent energy 

levels, cavities or waveguides. If the respective lifetimes or gain-loss values are different in the two 

elements, one can reduce the dynamics to a balanced gain-loss form via a gauge transformation. Such a 

description is then akin to standard parity-time symmetric couplers in optical systems, but with an additional 

detuning term, that are natural hosts for observing EP-related phenomena. EPs have been reported in a 

number of other physical systems as well such as in chaotic microcavities and exciton polariton systems. 

In the Schrodinger description, also applicable to paraxial optics, the dynamics of the optical field are 

governed by 𝑖𝜕𝑡𝜓(𝑡) = 𝐻(𝑡)𝜓(𝑡). Here the time-dependent Hamiltonian is, 

𝐻(𝑡) = (
𝑖𝑔̃(𝑡) + 𝛽̃(𝑡) −𝜅

−𝜅 −𝑖𝑔̃(𝑡) − 𝛽̃(𝑡)
). ( 4.1 ) 
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The state vector is given by 𝜓(𝑡) = (𝑎(𝑡), 𝑏(𝑡))𝑇, where 𝑎(𝑡) represents the amplitude in the element that 

undergoes relative amplification, 𝑏(𝑡) describes its lossy counterpart, 𝛽̃(𝑡) and 𝜅 denote the resonance 

detuning and coupling strength, respectively. Since variations in at least two parameters are required to 

complete a cycle around an EP, in our analysis we choose the gain-loss contrast 𝑔̃(𝑡) and 𝛽̃(𝑡) while 

assuming the coupling to be fixed over time. It is important to note that other combinations are also possible 

which might lead to different solutions. Henceforth we use the normalized variables, (𝑔(𝑡), 𝛽(𝑡), 𝜏) =

(𝑔̃(𝑡)/𝜅, 𝛽̃(𝑡)/𝜅, 𝜅𝑡). The EP in this representation lies at (𝑔(𝑡), 𝛽(𝑡)) = (1,0) where the eigenvalues are 

𝜆1,2 = 0 with a single eigenvector 𝜓 = (1, 𝑖)𝑇. A circular trajectory around this EP is defined by, 

𝑔(𝜏) = 1 − 𝜌 cos(𝛾𝜏) , 𝛽(𝜏) = 𝜌 sin(𝛾𝜏). ( 4.2 ) 

This describes a clockwise (c.w.) loop with a radius of 𝜌 (𝜌 ≤ 1) and 𝛾 being the measure of adiabaticity. 

A counterclockwise (c.c.w.) loop simply corresponds to 𝛾 → −𝛾. In analogy with previous studies in PT- 

symmetric systems, the trajectory is chosen to start (𝜏 = 0) and end (𝜏 = 2𝜋𝛾−1 = 𝜏end) at the point that 

corresponds to the unbroken PT-symmetric phase (where detuning is zero and the gain-loss contrast is less 

than the coupling 𝜅) so that one does not have to deal with amplifying or decaying modes at the input-

output interfaces in experimental realizations. At these terminal points, the eigenvectors and eigenvalues 

are 𝜓1,2 = (1,±𝑒±𝑖𝜃)
𝑇

 and 𝜆1,2 = ±cos𝜃, where sin𝜃 = (1 − 𝜌). Notice that 𝜓1,2 are not orthogonal to 

each other but are in fact biorthogonal with their corresponding left eigenvectors 𝜓̃1,2 = (1,± 𝑒∓𝑖𝜃 )
𝑇

. 

The motion of the instantaneous eigenvalues and the eigenvector component 𝑏(𝜏)/𝑎(𝜏) is shown in Fig. 

4.1 for three types of parameter loops. Figure 4.1 (a) – 4.1 (c) clearly reveals the eigenvalue and eigenvector 

switching attribute associated with quasi-static EP-encircling [26,27]. In a compact form, it can be described 

as, (𝜆1, 𝜆2) →  (𝜆2, 𝜆1), (Ψ1 , Ψ2) → (Ψ2, −Ψ1) with reversed signs of eigenvectors for the opposite loop. 

Most importantly, the gain-loss component of the dynamical phase, 𝑒−∫ 𝑑𝑡′𝐼𝑚[𝜆(𝑡′)]
𝜏

0  where ‘Im’ represents 

the imaginary part, is quite different for the two eigenvalue paths. As is shown in Fig. 4.1 (b), one of these 
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stays longer in the negative imaginary plane and hence experiences a much higher gain compared to the 

other. This, together with the coupling arising between the instantaneous eigenstates due to non-

orthogonality in such non-Hermitian settings, leads to the preferential output of the eigenvector associated 

with the amplified eigenvalue – to give this process an intuitive garb. The fact that no switching of 

eigenvalues and their associated eigenvectors takes place if the EP is not encircled, is also shown in panels 

(d)-(f) of Fig. 4.1. 

Figure 4.1 The upper [(a)–(c)] and lower [(d)–(f)] panels represent eigenvalue trajectories when the EP 

(marked with ×) is quasi-statically encircled (a) or excluded (d), respectively, from the parameter loop. Path 

directions are shown with arrows in (a) and (d) and black dots depict the starting points. Solid lines 

throughout indicate results for a CW path and dashed lines the CCW. The eigenvalues (𝜆1,2) at the start of 

the loop are depicted as green and gray dots in (b) and (e) where their trajectories are also shown in the 

corresponding colors.When the EP is enclosed, the eigenvalues swap with each other—(b) and when it is 

excluded, they return to themselves—(e). The accumulated gain, 𝑒𝑄 (see text) corresponding to the different 

eigenvalue paths is plotted in (c) and (f) against time 𝜏. 

Analytical solutions underlying these graphical aides can be obtained by first following the dynamics of a 

single component of the dimer. Based on the geometry defined in Eq. (4.2), a second order differential 

equation for each dependent quantity, e.g. for 𝑎(𝜏), can be expressed as, 
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𝛾2 𝑑2𝑎

𝑑𝜏2 − (𝜌2𝑒2𝑖𝛾𝜏  − 𝜌(2 + 𝑖𝛾)𝑒𝑖𝛾𝜏)𝑎(𝜏) =  0, ( 4.3 ) 

At the outset, we would like to mention that if the solutions corresponding to the c.w. loop are obtained, 

they suffice also for the c.c.w. case. A transformation of the form (𝑎, 𝑏) → (𝑎∗, −𝑏∗) allows one to 

immediately write down the field trajectories for the opposite loop. 

Hypergeometric solutions – Confluent hypergeometric functions are commonly encountered when solving 

for the radial component of the wavefunction for atom-like potentials; in describing the velocity distribution 

of electrons in high frequency gas discharges; and some diffusion problems. To the best of our knowledge, 

we here report the first occurrence of these functions in the domain of classical optics as a result of 

dynamically changing the geometry of a wave-guiding element. In Eq (4.3), upon using the substitution 

𝜂 = −2𝑖𝜌𝛾−1 𝑒𝑖𝛾𝜏 and 𝑎(𝜂) = 𝑒−
𝜂

2𝑤(𝜂), the second order differential equation for 𝑤(𝜂) can be expressed 

in the degenerate hypergeometric differential form [28], 

𝜂
𝑑2𝑤

𝑑𝜂2 + (1 − 𝜂)
𝑑𝑤

𝑑𝜂
− (

𝑖

𝛾
)𝑤 = 0. ( 4.4 ) 

This immediately results in the following solution for 𝑎(𝜂), 

𝑎(𝜂) = 𝑒−𝜂/2 [𝑐1𝐹1 (
𝑖

𝛾
, 1, 𝜂) + 𝑐2𝑈 (

𝑖

𝛾
, 1, 𝜂)]. 

Here 𝐹1 and 𝑈 are the confluent hypergeometric functions of the first and second kind respectively. The 

coefficients 𝑐1,2 depend on the initial conditions concerning the field, 𝑎(0) and its derivative at the start. 

Retracting to the scaled time variable 𝜏, we can express the complete solution in the form of a transfer 

matrix, 

[
𝑎(𝜏)

𝑏(𝜏)
] = 𝜎(𝜏)𝑀1(𝜏)𝑀2𝑀3 [

𝑎(0)

𝑏(0)
]. ( 4.5 ) 
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Notice that only the scalar, 𝜎 and the matrix 𝑀1 are 𝜏-dependent. These and the other matrices are described 

below. 

𝜎(𝜏) = 𝑖Γ(𝑖𝛾−1)𝛾−2𝑒
𝑖
𝜌

𝛾
(1+𝑒𝑖𝛾𝜏)

, ( 4.6 ) 

𝑀1(𝜏) = [
𝐹1

(0)
𝑈(0)

𝑖𝐹1
(0)

+ 2𝜌𝛾−1𝑒𝑖𝛾𝜏𝐹1
(1)

𝑖𝑈(0) − 2𝜌𝛾−1𝑒𝑖𝛾𝜏𝑈(1)
], ( 4.7 ) 

𝑀2 = [
−𝜌𝛾𝑈𝜏=0

(0)
− 2𝑖𝜌𝑈𝜏=0

(1)
−𝛾2𝑈𝜏=0

(0)

𝜌𝛾𝐹1𝜏=0
(0) − 2𝑖𝜌𝐹1𝜏=0

(1) 𝛾2𝐹1𝜏=0
(0)

], ( 4.8 ) 

𝑀3 = [
1 0

(1 − 𝜌)𝛾−1 𝑖𝛾−1]. ( 4.9 ) 

The abbreviated forms of the hypergeometric functions, 𝐹1
(𝑛)

 and 𝑈(𝑛), represent 𝐹1(𝑛 + 𝑖𝛾−1, 𝑛 +

1,−2𝑖𝜌𝛾−1𝑒𝑖𝛾𝜏) and 𝑈(𝑛 + 𝑖𝛾−1, 𝑛 + 1,−2𝑖𝜌𝛾−1𝑒𝑖𝛾𝜏), respectively. The generic function 𝐹1(𝑝1, 𝑝2, 𝑥) is 

single-valued for all complex 𝑥, where 𝑝1,2 are some complex parameters. However, 𝑈(𝑝1, 𝑝2, 𝑥) is a many-

valued function of 𝑥 and its principal value is defined in the range −𝜋 < arg(𝑥) ≤ 𝜋. In the case at hand, 

starting from −0.5𝜋, the relevant argument arg(−2𝑖𝜌𝛾−1𝑒𝑖𝛾𝜏) reaches 𝜋 when 𝜏 = 1.5𝜋𝛾−1. Outside this 

range, i.e. for 𝜏 ∈ [1.5𝜋𝛾−1, 2𝜋𝛾−1], one has to use the connection formula according to [28],  

𝑈(𝑝1, 𝑝2, 𝑥) = Γ(𝑝2 − 𝑝1)𝑒
−𝑖𝜋𝑝1 [

𝐹1(𝑝1,𝑝2𝑥)

Γ(𝑝2)
−

𝑒−𝑖𝜋(𝑝2−𝑝1)

Γ(𝑝1)
𝑒𝑥𝑈(𝑝2 − 𝑝1, 𝑝2, 𝑒

−𝑖𝜋𝑥)]. ( 4.10 ) 

Here Γ is the gamma function. In view of the results above, intensity evolution (|𝑎|2, |𝑏|2) in the two 

coupled entities according to Eqs. (4.6)-(4.9) is shown in Fig. 4.2 for 𝛾 = 0.4 and 𝜌 = 1, i.e. 𝜃 = 0. Figures 

4.2 (a)-4.2 (c) depict the CW case whereas Figs. 4.2 (d)-4.2 (f) show similar results for a CCW scenario. 

Upon observing the real and imaginary components of the fields, it was revealed that excitation with either 

of the eigenvectors |𝜓1,2⟩ at 𝜏 = 0, leads to |𝜓(𝜏𝑒𝑛𝑑)⟩ ∝ |𝜓1⟩ = (1, 𝑒𝑖𝜃)
𝑇

 at the output for a CW loop – 
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Figs. 4.2 (b) and 4.2 (c). Moreover, |𝜓(𝜏𝑒𝑛𝑑)⟩ ∝ |𝜓2⟩ = (1,−𝑒−𝑖𝜃)
𝑇
 for a CCW parameter trajectory for 

both excitations |𝜓1,2⟩. The analytic explanation of this mode-conversion follows from first noticing the 

dependence of the ratio χ(τ) = 𝑏(𝜏)/𝑎(𝜏) on the matrix elements of 𝑀(𝜏) = 𝑀1(𝜏)𝑀2𝑀3 and the initial 

values 𝑎(0), 𝑏(0), 

𝑏(𝜏)

𝑎(𝜏)
=

𝑚21𝑎(0)+𝑚22𝑏(0)

𝑚11𝑎(0)+𝑚12𝑏(0)
. ( 4.11 ) 

Figure 4.2 Intensity evolutions (|𝑎(𝜏)|2, green; |𝑏(𝜏)|2, gray) for a CW loop are shown in (a), normalized 

with respect to the maximum value 𝐼𝑚𝑎𝑥. The real (orange) and imaginary (blue) parts of the ratio 𝜒(𝜏) =

𝑏(𝜏)/𝑎(𝜏) are depicted in (b) and (c). Dashed lines correspond to the input |𝜓1⟩ and solid to |𝜓2⟩. The 

same scenario for a CCW parameter loop is shown in (d)–(f). At the end of the excursion (𝜏 = 2𝜋𝛾−1), in 

the CW case, 𝑅𝑒[𝜒] → 1 and 𝐼𝑚[𝜒] → 0 for both local eigenvector inputs – showing the dominance of the 

mode |𝜓1⟩. While in the CCW case 𝑅𝑒[𝜒] → −1 and 𝐼𝑚[𝜒] → 0, indicating that the mode |𝜓2⟩ is observed 

at the output. 
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At the end of the parameter excursion 𝜏 = 𝜏𝑒𝑛𝑑 the asymptotic behavior of the matrix elements can be 

shown to assume the form 
𝑚21

𝑚11
=

𝑚22

𝑚12
= 𝑖 +

2𝜌𝐹1,𝜏=0
(1)

𝛾𝐹1,𝜏=0
(0) . It remains then to observe the expansion of 𝐹1 at 𝜏 =

0. Since the terms 𝑖𝛾−1 and −2𝑖𝜌𝛾−1 are both large for 𝛾 ≪ 1, we use the expansion of 𝐹1(𝑝1, 𝑝2, 𝑥) for 

large 𝑝1 which is given by [28,29], 

𝐹1(𝑝1, 𝑝2, 𝑥) ~ Γ(𝑝2)𝑒
𝑥

2(𝑘𝑥)
1−2𝑝2

4 cos (2√𝑘𝑥 −
𝜋𝑝2

2
+

𝜋

4
), ( 4.12 ) 

where 𝑘 = 𝑝2/2 − 𝑝1. As a result we find that 𝐹1,𝜏=0
(1)

/𝐹1,𝜏=0
(0)

 ~ 𝛾(𝑒𝑖𝜃 − 𝑖)/(2𝜌). This leads to the 

concluding remark that explains the input-independent mode-conversion process: 

𝑚21

𝑚11
=

𝑚22

𝑚12
 ~ 𝑒𝑖𝜃. ( 4.13 ). 

Therefore for a CW loop, χ(τend) =
𝑏(𝜏𝑒𝑛𝑑)

𝑎(𝜏𝑒𝑛𝑑)
→ 𝑒𝑖𝜃. Equations (4.11) and (4.13) lie at the heart of our results 

since they explain in a comprehensive manner why this mode-conversion process takes place, with all 

possible inputs converging towards |𝜓1⟩ = (1, 𝑒𝑖𝜃)
𝑇

. Moreover, given the fact that (𝑎, 𝑏) → (𝑎∗, −𝑏∗) for 

the counterclockwise loop, while leaving the matrix elements unchanged, trivially leads to the result that 

for a CCW encirclement of an EP, χ(τend) → −𝑒−𝑖𝜃. In this case, as a result, the mode that appears at the 

output is instead |𝜓2⟩ = (1,−𝑒−𝑖𝜃)
𝑇

. 

4.2. Realization of An Optical Omni-Polarizer 

In many applications it is often required to control the polarization state at the output of a system. In 

particular, significant effort has been invested in overcoming the polarization dependent performance of 
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components such as optical amplifiers and wavelength filters [30]. Based on the results presented earlier, 

we here propose a single channel omnipolarizer. This structure is expected to transform any input into a 

desired state of polarization (|𝜓1⟩) when light traverses it in one direction.  

Conversely, in the opposite direction, any arbitrary input is mapped into the biorthogonal vector (|𝜓2⟩). A 

possible realization is shown in Fig. 4.3 (a). In this case, the slanted sidewall [31] allows for coupling (𝜅) 

between the TE (𝑥) and TM (𝑦̂) polarizations while variations in the width of the waveguide 𝑤 can introduce 

a variable birefringence. To achieve the aforementioned conversion of any input to a single polarization, w 

Figure 4.3 (a) A possible realization of an omnipolarizer is shown that highlights the variations in the 

width—𝑤 (sinusoidal) and pumping—𝑃 (strongest in the center). Direction-dependent polarization 

conversions are also schematically illustrated with green arrowheads. (b) To limit the required maximum 

amplification, the parameter loop around the EP (×) is here chosen to be skewed. Detuning is given by 𝛿 

and 𝛥𝑔 represents the difference between the TE and TM modal gains, i.e.,(Δ𝑔 = 𝑔𝑥/2 − 𝑔𝑦/2). (c) A 

cross section at 𝑧 = 0,
𝐿

2
and 𝐿 (L—length of the device) is shown where the dimensions are (ℎ, 𝑤, 𝑡) =

(0.8,1.42,0.1)μm and 𝜃 = 70°. In this system ℎ, 𝑡, and 𝜃 are kept constant throughout, while 𝑤 varies as, 

e.g., 𝑤 = 1.42 −  0.08 sin(2𝜋𝑧/𝐿). The refractive indices for this GaAs-AlGaAs structure are also shown 

in (c) at the wavelength of 800 nm. (d) The two resulting orthogonal eigenmodes with their electric field 

polarizations. 
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and the amount of carrier injection P (optical or electrical) need to be varied along propagation so as to 

encircle the EP, as shown for example in Fig. 4.3 (b). Note that the 𝑤 and 𝑃 are directly related to the 

detuning 𝛿 and the gain differential 𝛥𝑔, respectively. The TE and TM polarization gains vary linearly with 

𝑃, only the latter being less by a factor of 𝜀, typically 𝜀 ∼  1 − 3. A crosssectional view of this structure is 

shown in Fig. 4.3 (c) where the birefringence (𝛿) is negligible and the eigenpolarizations (±45°) are 

|𝜓12⟩ = (1,±1)𝑇—Fig. 4.3 (d). 

Figure 4.4 Evolution of intensities (|𝐸𝑥|
2, green and |𝐸𝑦|

2
, gray) for the nonlinear system are shown in (a) 

and (b) corresponding to a TE and TM input, respectively. The results are scaled with respect to the 

saturation intensity (𝐼𝑠) of the gain medium. Polarization dynamics on the Poincaré sphere corresponding 

to these two cases are depicted in (c) and (d), where yellow dots indicate the input light state and crosses 

that of the output. 
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In the design presented, κ remains nearly constant at 𝜅 ∼  1.4 × 103 m−1. The corresponding value of 

maximum gain (intensity wise) required is 100 cm−1 near the middle of the device. Meanwhile 𝑤 needs to 

be gradually varied according to 𝑤 = 1.42 →  1.34 →  1.50 →  1.42 μm, as schematically shown in Fig. 

4.3 (a). Here the nonlinear evolution dynamics are given by [32], 

𝑑𝐸𝑥

𝑑𝑧
=

𝑔𝑥𝐸𝑥

1 + |𝐸𝑥|
2 + 𝜖|𝐸𝑦|

2 − (𝛼 + 𝑖𝛿)𝐸𝑥 + 𝑖𝜅𝐸𝑦,         (3.2.11𝑎) 

𝑑𝐸𝑦

𝑑𝑧
=

𝜖𝑔𝑦𝐸𝑦

1 + |𝐸𝑥|
2 + 𝜖|𝐸𝑦|

2 − (𝛼 − 𝑖𝛿)𝐸𝑥 + 𝑖𝜅𝐸𝑥 ,         (3.2.11𝑏) 

where 𝛼 ∼  0.9𝜅 is a linear absorption loss, adiabaticity parameter 𝛾 is here chosen to be 𝛾 =  0.3 

corresponding to a device length of 𝐿 = 1.5 cm. For a CW loop shown in Fig. 4.3 (b), gain and detuning 

are dynamically varied as 𝑔𝑥 = 3.6𝜅 sin(𝛾𝜅𝑧/2) and 𝛿 = 𝜅 sin(𝛾𝜅𝑧) for 𝜅𝑧 ∈ [0,2𝜋𝛾−1]. The ensuing 

evolution of intensities |𝐸𝑥|
2 and |𝐸𝑦|

2
, scaled with the saturation level, is shown in Fig. 4.4 (a) for a TE 

and in Fig. 4.4 (b) for a TM input. Unlike the linear case studied before, here the intensities evolve within 

reasonable limits due to saturation effects. The nature of the underlying polarization conversion is revealed 

in Figs. 4.4 (c) and 4.4 (d) where the corresponding field trajectories are plotted on the Poincaré sphere. 

Clearly, both TE and TM polarizations end up in the same eigenstate, i.e., +45° linearly polarized. 

We intend to realize this omni-polarizing functionality via repeated circulation of an optical pulse in a fiber 

loop. All previous studies in this regard were based on continuous variation of parameters such as gain-loss 

and detuning between the optical elements. In a fiber loop setting, we create a discrete analog of this process 

which can be modeled using first order coupled difference equations instead of differential equations. This 

will not only be a first discrete treatment of dynamic EP-encirclement but it would also provide a 

mechanism to monitor the polarization state of the pulse along the parameter contour. A schematic of the 

experimental setup is shown in Fig. 4.5. An optical pulse of a few nanoseconds is injected into the main 

loop through a 90/10 coupler which then keeps circulating inside in a round-trip time of a few microseconds. 
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The TE and TM components of the pulse constitute the two coupled channels of this optical system where 

coupling is introduced using a polarization controller (PC). For EP-encirclement, external modulations 

would be applied on these two polarization components of the pulse. In this case, the parameter space is 

comprised of the gain-loss and phase difference between these two orthogonal constituents. For separate 

control of the TE and TM parts, a small polarizing fiber beam-splitting section is incorporated in the loop. 

Whenever the pulse traverses this section, the gain-loss difference between the two arms is changed using 

a LiNbO3 loss modulator whereas the phase difference is modified using a phase-modulator. During this 

process, the temporal dependence of these variations are imposed in a manner such that the parameters 

follow a closed contour that includes the EP. In addition, to prevent the pulse from dying out due to losses, 

an EDFA is included in the main loop that imposes a constant but equal amount of gain in the two 

polarization components. An exclusive advantage afforded by this fiber based setting is the possibility of 

monitoring the polarization state of the pulse in each round-trip using a tap-out port connected to a 

polarimeter. 

Figure 4.5 A fiber-based omni-polarizing setup is depicted. An injected optical pulse, shown as green, is 

split into its TE (blue) and TM (yellow) components in a beam-splitting section. Loss modulation (LM) is 

imposed in the TE branch whereas phase modulation (PM) is introduced in the TM branch. After these 

modulated parts are combined together, the pulse passes through a polarization controller (PC) to couple 

the two orthogonal polarizations. The pulse then goes through an EDFA to in order to compensate for 

losses. Polarization evolution towards a single state can be monitored on a polarimeter connected via a tap-

out port. 
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We intend to complete this project in the coming few months. During the course of this work, preliminary 

simulations suggest that after approximately 300 roundtrips, any arbitrary input polarization state is 

topologically converted into linearly polarized light, described by (TE, TM) = (1,1). The chirality of this 

process becomes evident by simply reversing the direction in which the input pulse is injected inside the 

fiber loop, keeping the modulation functions the same as before. In this case, the final polarization state is 

the orthogonal linearly polarized state, i.e. (TE, TM) = (1,−1). Our setup also opens up the possibility of 

studying other linear discrete maps or even non-linear settings such as gain-saturated dynamics through the 

use of semiconductor optical amplifiers inside the fiber loop. In addition, if one considers higher pulse 

powers in such optical settings, other nonlinear effects such as self-phase modulation can be induced that 

would significantly enrich the study of non-Hermitian arrangements. The intriguing topological properties 

of exceptional points warrant a significant further investigation and definitely hold promise for developing 

new and useful optical functionalities. 

4.3. Chiral Mode Conversion Through Dynamic Loops Not Encolsing An Exceptional Point 

A quasi-static encirclement of an EP allows the instantaneous eigenstates to swap with each other [26,27] 

at the end of the parameter cycle while at the same time imparting a geometric phase [19]. On the other 

hand, if the same parameters are varied dynamically, i.e. when the field is forced to evolve alongside the 

parameters, only one of the eigenstates remarkably dominates at the end of the cycle [18,20,21]. 

Importantly, this effect occurs in a faithful manner and is inherently chiral. Experiments carried out in the 

microwave [24] and optomechanical [23] domains have recently confirmed this unconventional behavior. 

An analytical explanation of this asymmetric (or chiral) mode selection mechanism was provided, along 

with the fact that this effect can persist even in the presence of nonlinearities [33]. In addition, the possibility 

of a single-channel optical omni-polarizer was proposed. At this point, one might ask the following 

fundamental question: is this effect exclusive to contours that enclose an EP or is it more generic in nature? 
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Here we analytically show that this phenomenon can manifest itself under more general conditions. In other 

words, chiral state conversion can faithfully occur even when the trajectory along which the parameters are 

varied does not enclose an exceptional point. We demonstrate that in the limit of slow variations, only a 

single eigenstate will emerge at the output, regardless of initial conditions. In a two-level system, the sense 

of rotation of the parameters, clock-wise (c.w.) or counter-clockwise (c.c.w.) is the only factor that 

determines the prevailing eigenstate. The model considered here is exactly solved in terms of Bessel 

functions, thus allowing one to continuously track the modal populations. Asymptotic expansions of these 

functions furnish an analytical proof of chiral mode selection even for non-EP enclosing loops. 

To analyze the dynamics of two coupled states, constantly exchanging energy in space or time, we consider 

a non-Hermitian Hamiltonian undergoing circular variations in the diagonal terms. For example, in optics, 

this can be implemented using dielectric cavities (in the temporal t-domain) or waveguides (in the spatial 

z-coordinate). For this 2 × 2 system, the modal dynamics obey a Schrödinger-type equation, 

𝑖𝑑

𝑑𝑡
Ψ = (

𝑖𝑔(𝑡) + 𝛿(𝑡) −1

−1 −𝑖𝑔(𝑡) − 𝛿(𝑡)
)Ψ. ( 4.14 ) 

In Eq. (4.14), the state vector Ψ(𝑡) = [𝑎(𝑡), 𝑏(𝑡)]𝑇 describes the optical fields in the two coupled elements. 

The quantities 𝑔(𝑡) and 𝛿(𝑡) represent variations in the gain/loss and resonance-detuning, respectively. All 

variables are normalized with respect to the coupling constant (off-diagonal entries). Based on the values 

𝑔(𝑡) and 𝛿(t) assume at any given time 𝑡, the instantaneous eigenvalues 𝜆𝑖 and eigenvectors 𝜓𝑖 can be 

always found by using the ansatz Ψ = 𝜓𝑖𝑒
{−𝑖𝜆𝑖𝑡}. A circular trajectory in the (𝑔, 𝛿)-space can be 

parametrically described by: 𝑔(𝑡) = 𝑔0 − 𝜌𝑐𝑜𝑠(𝛾𝑡), 𝛿(𝑡) = 𝜌𝑠𝑖𝑛(𝛾𝑡). This circle, centered at 𝑔0, has a 

radius of 𝜌 while 𝛾 provides a measure as to how slowly the variations are performed. A c.w. (c.c.w.) loop 

is described by 𝛾 > 0 (𝛾 < 0). In this framework, 𝑔 and 𝛿 return to their initial values at the end (𝑇̃ =

2𝜋/𝛾) of a cycle. Hence the forthcoming discussion is centered on the two eigenvectors corresponding to 

the terminal point (𝑔, 𝛿) = (𝑔0 − 𝜌, 0). At this location, one obtains, 
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𝜓1 = (
1

𝑒𝑖𝜃) , 𝜓2 = (
1

−𝑒−𝑖𝜃). ( 4.15 ) 

The two corresponding eigenvalues are given by, 𝜆{1,2} = ±𝑐𝑜𝑠𝜃, where 𝜃 can be obtained from 𝑠𝑖𝑛𝜃 =

(𝑔0 − 𝜌)he two vectors in Eq. (2) are biorthogonal with the left eigenvectors 𝜓̃{1,2} = (1 +

𝑒∓𝑖2𝜃)
−1

[1,±𝑒{∓𝑖𝜃}]
𝑇

, ⟨𝜓̃𝑚|𝜓𝑛⟩ = 𝑑𝑚𝑛 (𝑑𝑚𝑛 represents the Kronecker delta function). In this non-

Hermitian arrangement, the point of extreme degeneracy (EP) occurs in parameter space at 𝑔 = 1 and 𝛿 =

0, where the two eigenvalues coalesce at 𝜆{1,2} = 0 and the corresponding eigenvectors collapse to 𝜓1,2 =

[1, 𝑖]𝑇. As previously shown, if this EP is enclosed in a single cycle parameter loop, then any input state 

will robustly transform into 𝜓{1} if the encirclement is carried out in a c.w. sense. However, upon changing 

the direction of encirclement to c.c.w., 𝜓{2} instead dominates the output [18].  

In what follows, we will reexamine this same effect even when the EP is excluded from the parameter loop. 

To do so, we recast Eq. (4.14) into a second order differential equation for the first element 𝑎(𝑡), according 

to, 

𝑑2𝑎(𝑡)

𝑑𝑡2 = [𝜌2𝑒2𝑖𝛾𝑡 − 𝜌(2𝑔0 + 𝑖𝛾)𝑒𝑖𝛾𝑡 + 𝑔0
2 − 1]𝑎(𝑡). ( 4.16 ) 

A similar equation also holds for 𝑏(𝑡). For all practical purposes, it is sufficient to solve the system of Eq. 

(4.14) [and Eq.(4.16)] for a c.w. trajectory only. Solutions obtained as such can then be directly used to 

describe the counterpart c.c.w. case, simply by employing the transformation (𝑎, 𝑏) → (𝑎∗, −𝑏∗) or by 

replacing 𝛾 with −𝛾. In general, Eq. (4.16) can be solved through hypergeometric functions [28]. However, 

considerable insight into the system’s behavior can be gained if we assume small encirclements, 𝜌 ≪ 1, 

which allows the 𝜌2 term to be neglected in Eq. (4.16). In this case, this system can be reduced to a modified 

Bessel differential equation of 𝜈𝑡ℎorder (one might use the regular Bessel differential equation as well but 

the asymptotic expansions for the modified equation are much more convenient to deal with). For example, 

by employing the substitution 𝑥 = 𝑥0𝑒
𝑖𝛾𝑡

2  where 𝑥0 = 2𝛾−1√𝜌(2𝑔0 + 𝑖𝛾), one finds that 𝜈 =
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2𝛾−1√1 − 𝑔0
2. As in previous studies, 𝑔0 = 1 can be used to describe contours that are centered at the EP. 

Here on the other hand, we allow 𝑔0 to vary in the domain [0,1] when 𝜌 is sufficiently small. Under these 

conditions, one finds that 𝑎(𝑡) = 𝑐1𝐼𝜈(𝑥0𝑒
𝑖𝛾𝑡/2) + 𝑐2𝐾𝜈(𝑥0𝑒

𝑖𝛾𝑡/2) where 𝑐{1,2} depend on initial conditions 

and 𝐼𝜈 , 𝐾𝜈 are modified Bessel functions of the first and second kind, respectively, of order 𝜈. From here, 

one can directly determine the field 𝑏(𝑡) in the second element from Eq. (4.14). Therefore, the complete 

solution of this problem is given by, 

Ψ(𝑡) =

[
 
 
 
 𝐼𝜈 (𝑥0𝑒

𝑖𝛾𝑡
2 ) 𝐾𝜈 (𝑥0𝑒

𝑖𝛾𝑡
2 )

𝑖(𝑔0 − 𝜌𝑒𝑖𝛾𝑡)𝐼𝜈 (𝑥0𝑒
𝑖𝛾𝑡
2 ) − 𝑖

𝑑𝐼𝜈 (𝑥0𝑒
𝑖𝛾𝑡
2 )

𝑑𝑡
 𝑖(𝑔0 − 𝜌𝑒𝑖𝛾𝑡)𝐾𝜈 (𝑥0𝑒

𝑖𝛾𝑡
2 ) − 𝑖

𝑑𝐾𝜈 (𝑥0𝑒
𝑖𝛾𝑡
2 )

𝑑𝑡 ]
 
 
 
 

[
𝑐1

𝑐2
] 

[
𝑐1

𝑐2
] = −

2

𝛾
[
𝑖(𝑔0 − 𝜌) 𝐾𝜈(𝑥0) − 𝑖

𝑑𝐾𝜈(𝑥0)

𝑑𝑡
 −𝐾𝜈(𝑥0)

−𝑖(𝑔0 − 𝜌) 𝐼𝜈(𝑥0) + 𝑖
𝑑𝐼𝜈(𝑥0)

𝑑𝑡
 𝐼𝜈(𝜂0)

]Ψ(0). ( 4.17 ) 

Equations (4.17) describe the behavior of the fields in both elements at all times, from the start to the end 

of the cycle. For slow cycles, where 𝛾 ≪ 1, the Bessel functions can be asymptotically expanded in terms 

of elementary functions in order to find the modal content at the output in terms of the eigenvectors 𝜓1,2. 

To do so, notice that the time variable only appears in the form of an exponential and results in a complex 

phase inside the arguments of the Bessel functions. In this regard, the end of the parameter loop amounts 

to acquiring a phase of 𝑒𝑖𝜋 which reduces the analysis to finding expansions of: 

𝐼𝜈(𝑥0𝑒
𝑖𝜋), 𝐾𝜈(𝑥0𝑒

𝑖𝜋), 𝐼′𝜈(𝑥0𝑒
𝑖𝜋) and 𝐾′𝜈(𝑥0𝑒

𝑖𝜋), where prime indicates a time derivative Expansions for 

either a large argument or a large order do not apply since both 𝜈 and 𝑥0 happen to be large in the adiabatic 

limit (even though 𝜈 ≫ |𝑥0|) as 𝛾 → 0. In fact, one requires uniform asymptotic expansions as given in 

Eqs. (10.41.3)-(10.41.6) of Ref. [29] where the order and argument simultaneously go to large values. 

Moreover, to accommodate (cancel out) the extra phase of 𝑒𝑖𝜋, we use analytic continuation according to: 
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𝐼𝜈 (𝑥0𝑒
𝑖𝛾𝑡

2 ) = 𝑒𝑖𝜈𝜋𝐼𝜈 (𝑥0𝑒
𝑖𝛾𝑡

2 𝑒−𝑖𝜋), ( 4.18 ) 

𝐾𝜈 (𝑥0𝑒
𝑖𝛾𝑡

2 ) = 𝑒−𝑖𝜈𝜋𝐾𝜈 (𝑥0𝑒
𝑖𝛾𝑡

2 𝑒−𝑖𝜋) − 𝑖𝜋𝐼𝜈 (𝑥0𝑒
𝑖𝛾𝑡

2 𝑒−𝑖𝜋). ( 4.19 ) 

Finally, to conform with the notation in Ref. [21], we substitute 𝑧 = 𝑥0/𝜈, 𝜂 = √1 + 𝑧2 + ln (
𝑧

1+√1+𝑧2
), 

and using the fact that |𝑒𝜈𝜂| ≫ |𝑒−𝜈𝜂|, which only happens when Re[𝜂] > 0, the modal fields at the end of 

the parameter cycle (𝑇̃ = 2𝜋𝛾−1) assume a simplified structure, 

Ψ(𝑇̃)~
𝑒𝑖𝜈𝜋

√2𝜈𝜋
(1 + 𝑧2)−

1

4𝑒𝜈𝜂 [

1 −𝑖𝜋𝑒−𝑖𝜈𝜋

𝑖(𝑔0 − 𝜌) +
𝛾𝑥0

2
√1 +

1

𝑧2 −𝑖𝜋𝑒−𝑖𝜈𝜋 [𝑖(𝑔0 − 𝜌) +
𝛾𝑥0

2
√1 +

1

𝑧2]
] [

𝑐1

𝑐2
].

 ( 4.20 ) 

To see whether Ψ(𝑇̃) has any semblance of 𝜓{1,2}, it is more convenient to convert it into the form Ψ(𝑇̃) ∝

[1, 𝜒]𝑇, where 𝜒 = 𝑏(𝑇̃)/𝑎(𝑇̃). Mode conversion into 𝜓1 or 𝜓2 would be established only if 𝜒 → 𝑒𝑖𝜃 or 

𝜒 → −𝑒−𝑖𝜃, respectively. From Eq. (4.20) it can be found that 𝜒 →  𝑖(𝑔0 − 𝜌) +
𝛾𝑥0

2
√1 + 𝑧−2, and 

substituting back 𝑧 = 𝑥0/𝜈  we directly find that, 

𝜒cw → 𝑖(𝑔0 − 𝜌) + √1 − 𝑔0
2 + 2𝜌𝑔0 = 𝑒𝑖𝜃. ( 4.21 ) 

Thus the final state at the output is indeed only 𝜓1. The result in Eq. (4.21) holds for a c.w. loop since 𝛾 >

0 was assumed. If instead, one solves for the c.c.w. loop, the only change in the analysis will be a reflection 

𝛾 → −𝛾. In this regard, the following relation can be immediately inferred: 

𝜒ccw → 𝑖(𝑔0 − 𝜌) − √1 − 𝑔0
2 + 2𝜌𝑔0 = −𝑒−𝑖𝜃 . ( 4.22 ) 
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Here, mode conversion occurs into the state 𝜓2 instead. The above results not only prove that robust state 

conversion is possible even in the absence of an EP encirclement, but also reaffirm the inherent chirality of 

this process. The reason why this mechanism is input independent becomes clear after inspecting the matrix 

elements of 𝑀 in Eq. (4.21) when it is written as Ψ(𝑇̃)~𝑀[𝑐1, 𝑐2]
𝑇. For example, in the c.w. case, both 

𝑚21 = 𝑒𝑖𝜃𝑚11 and 𝑚22 = 𝑒𝑖𝜃𝑚12, which directly leads to the conclusion that 𝜒 is independent of any 

initial conditions 𝑎(0), 𝑏(0) – since 𝑐1,2 are just simple linear combinations of them. Similar conclusions 

hold for a c.c.w. contour. 

Figure 4.6 Assuming adiabatic conditions (small values of 𝛾), the shaded area shows the range of values of 

the loop center 𝑔0 and radius 𝜌, for which chiral mode conversion can take place even without enclosing 

an EP. Red line is the curve obtained from Eq. (4.23) and the black line depicts the boundary where the 

loop starts touching the EP located at (𝑔0 + 𝜌 = 1). 

We would like to mention that robust chiral mode conversion is not realized for any arbitrary loop in the 

𝑔 − 𝛿 plane, but takes place only if the loop is close to an EP. Our analysis suggests that as the loop center 

𝑔0 moves further away from the EP, the radius of this circle must be kept larger if mode conversion is 

desired. In this regard, we were able to obtain an approximate analytical form for this demarcation by 

analyzing the condition, i.e. 𝑅𝑒[𝜂] > 0, so that |𝑒𝜈𝜂| ≫ |𝑒−𝜈𝜂|. For small values of 𝑧 = 𝑥0/𝜈, this latter 

requirement is satisfied provided that the following approximate expression holds true: 

𝜌 > 2(
1

𝑔0
− 𝑔0) 𝑒

−2sinh−1(
𝑒

2
)
, ( 4.23 ) 
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where 𝑒 is Euler’s number. The region that excludes the EP but still gives mode conversion is depicted as 

shaded in Fig. 4.6. 

Figure 4.7 Two different c.w. parameter cycles are shown in panels (a) and (d) along with the ensuing 

behavior of 𝜒 in the corresponding panels [(b),(c)] and [(e),(f)] in each row. The loop in panel (a) lies away 

from the EP (EP is shown as a cross) with (𝑔0, 𝜌) = (0.82,0.1). In the one shown in panel (d), the contour 

includes the EP with (𝑔0, 𝜌) = (0.95,0.1). The terminal points, where the two eigenvectors |𝜓1,2⟩ are 

found, are marked by a yellow circle and the arrow shows the direction of encirclement. In panels (b) and 

(e), the resulting variation in 𝜒 at all times is shown when the rate of cycling is relatively large, i.e. 𝛾 = 0.5. 

Plots on the left (shown in red) depict the case when the system is excited with |𝜓1⟩ and those on the right 

(shown in blue) provide results for excitations with |𝜓2⟩. In these plots, solid (dashed) lines represent real 

(imaginary) parts of 𝜒. As mentioned in the text, for this c.w. cycle, the state expected at the output is |𝜓1⟩ 

that corresponds to 𝜒 → 𝑒𝑖𝜃. The real (imaginary) part of this expected result is shown as a filled (empty) 

circle at 𝑇̃ = 2𝜋𝛾−1. In the upper panels, these two circles lie very close to each other. In panels (c) and 

(f), the rate of cycling is reduced to 𝛾 = 0.1 and both excitations end up at the correct location even for the 

non-EP enclosing case, panel (c). Although mode conversion is not robust in panel (b) (consider the plot 

on the right), results for the EP-inclusive loop show robust state conversion not only when the encirclement 

is slow [in panel (f)], but also when it is fast, 𝛾 = 0.5, as in panel (e). 
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At this point, one might ask what benefit, if any, accrues from including the EP in a dynamic parameter 

contour, if mode conversion can take place even through non-EP encircling loops? To this end, we found 

that for a given rate of change of parameters (or adiabaticity 𝛾), mode conversion becomes more robust as 

the contour moves closer to and eventually encloses the EP. In Fig.4.7, we show two distinct c.w. circular 

trajectories on the (𝑔, 𝛿)-plane [(a) and (d)], with a radius 𝜌 = 0.1. In the upper panel, the loop is 

deliberately centered at𝑔0 = 0.82 so that it excludes the EP. While in the lower panel, we set 𝑔0 = 0.95 so 

that the EP lies inside the contour. In both rows of Fig. 4.7, the ensuing behavior of 𝜒 is shown for 𝛾 = 0.5 

[middle column – (b) and (e)] and for 𝛾 = 0.1 [last column – (c) and (f)]. In doing so, the fields were 

expressed as ∝ [1, 𝜒]𝑇 at all times. When the cycle is not adiabatic enough, both initial eigenvectors, 𝜓{1,2} 

do not end up in the anticipated location (𝜒 → 𝑒𝑖𝜃), see the right plot in (b). However, when the loop is 

traversed in a more adiabatic fashion, i.e. 𝛾 = 0.1, state conversion is apparent in (c), even in the non-EP 

inclusive case. On the other hand, when the EP is located inside the parameter path (lower panel), robust 

mode conversion takes place for both large (e) and small (f) values of adiabaticity 𝛾. We would also like to 

point out that for paths that are not circular, e.g. deformed loops, one can still obtain the aforementioned 

chiral mode conversion – another indication as to how robust this mechanism is. 

We have theoretically demonstrated that asymmetric (or chiral) mode conversion is not exclusive to 

parameter loops that include an EP. Instead, it can also take place even if the contour lies in the vicinity of 

an exceptional point, provided that the parameters are varied in an adiabatic manner. An immediate 

ramification of this result could be the potential reduction of the amount of gain-loss contrast needed in 

coupled optical configurations to observe this effect. For example, instead of cycling around 𝑔 = 𝜅 (where 

𝜅 is the coupling strength), one can achieve the same outcome by staying longer around, say 𝑔 = 0.5𝜅 – 

hence reducing the maximum amount of gain-loss needed. This could facilitate the observation of the 

aforementioned chiral effects in various settings such as meta-surfaces and optical waveguide 

arrangements, as well as in atomic systems [34-36]. The inclusion of nonlinearities in such non-EP 

enclosing loops could be an interesting aspect for further study. 
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CHAPTER 5. CONCLUSIONS 

 

Non-Hermitian optics is the study of optical structures where the distribution of gain and loss is tailored in 

a judicious manner – something that leads to various interesting functionalities. In standard quantum 

mechanics, the possibility of incorporating gain and loss for a particle’s wavefunction is an extremely 

complex problem to deal with, if not altogether neglected because of its absurd nature. However, gain and 

loss are natural ingredients in many classical optical systems such as photonic waveguides and resonators.  

In this dissertation, we have explored how PT-symmetry and its associated degeneracies can be utilized to 

obtain certain desired outcomes such as significantly enhanced sensitivity of micro-sensors, transverse and 

longitudinal mode-selection in on-chip ring-lasers and dark-state lasing action. We introduced gain-

saturation in these settings which lead to the prediction of anomalous phase transition behavior which we 

successfully confirmed in a coupled semiconductor micro-ring geometry. The dynamics of gain-loss 

balanced optical fields, along with their counter-intuitive phase transitions such as loss-induced increase of 

lasing power, were extended to the statistical domain of fiber cavities.  

In the last part of this dissertation, we ventured into the analysis of optical field evolution around non-

Hermitian degeneracies known as exceptional points where the system’s phase space dramatically reduces. 

Recently, a quite unexpected behavior was observed upon a dynamic parameter contour around these 

points, namely, the breakdown of the adiabatic theorem and the dominance of one eigenstate over the other 

regardless of initial conditions. We were able to rigorously explain this phenomenon using closed form 

solutions and appropriate asymptotic expansions. Our effort also revealed the possibility of realizing omni-

polarizing functionalities based on exceptional points. Such devices are envisioned to convert arbitrary 

incoming polarizations into a desired polarization state which could have immense implications in fiber 

transmission systems, for example. It was believed that one necessarily has to include an exceptional point 

within a parameter contour to obtain the aforementioned behavior. We analytically proved that this is in 
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fact not the case and that a parameter loop only needs to be adiabatic and to be in the vicinity of an 

exceptional point to observe such counter-intuitive effects. Such results could reduce the stringent 

requirements on experimental realizations by bringing the parameter variations to much more accessible 

domains. 
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