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ABSTRACT

The human face is frequently used as the biometric signal presented to a machine for identifi-

cation purposes. Several challenges are encountered while designing face identification systems.

The challenges are either caused by the process of capturing the face image itself, or occur while

processing the face poses. Since the face image not only contains the face, this adds to the data

dimensionality, and thus degrades the performance of the recognition system. Face Recognition

(FR) has been a major signal processing topic of interest in the last few decades. Most common

applications of the FR include, forensics, access authorization to facilities, or simply unlocking

of a smart phone. The three factors governing the performance of a FR system are: the storage

requirements, the computational complexity, and the recognition accuracy. The typical FR system

consists of the following main modules in each of the Training and Testing phases: Preprocessing,

Feature Extraction, and Classification. The ORL, YALE, FERET, FEI, Cropped AR, and Georgia

Tech datasets are used to evaluate the performance of the proposed systems. The proposed systems

are categorized into Single-Transform and Two-Transform systems. In the first category, the fea-

tures are extracted from a single domain, that of the Two-Dimensional Discrete Cosine Transform

(2D DCT). In the latter category, the Two-Dimensional Discrete Wavelet Transform (2D DWT)

coefficients are combined with those of the 2D DCT to form one feature vector. The feature vec-

tors are either used directly or further processed to obtain the persons’ final models. The Principle

Component Analysis (PCA), the Sparse Representation, Vector Quantization (VQ) are employed

as a second step in the Feature Extraction Module. Additionally, a technique is proposed in which

the feature vector is composed of appropriately selected 2D DCT and 2D DWT coefficients based

on a residual minimization algorithm.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

The term Biometrics refers to all recognition systems where the discriminating feature is either

a part of, or a trait of, the human body. As in all other recognition systems, Biometrics based

systems can be either an Identification or a Verification. In the Identification, the system assigns

the test sample to one of subjects in the dataset with no prior information about the correct identity,

which sometimes lead to an incorrect recognition. While in the Verification, the test sample should

be accompanied by an identity and the system decides if the identity is accurate or not based on

whether a certain criterion has been met. Biometrics can include faces, palm prints, fingerprints,

iris patterns, voices, DNA, signatures, etc. Several disciplines are incorporated in the Biometrics

field, including Signal Processing, Image Processing, Computer Vision, Machine Learning, etc [1].

To have a reliable Biometrics based recognition system, two of more layers of authentications are

commonly employed, e.g., a combination of a fingerprint and a PIN code.

1.1.1 Types of Biometrics

In general, the following categories are considered as types of Biometrics [2]:

1. Visual Biometrics: include FR, Fingerprint Recognition, Signature Recognition, Iris Recog-

nition, Hand Geometry Recognition, etc.

2. Chemical Biometrics: include Odor and DNA.

3. Behavioral Biometrics : include measurable human activities, e.g., Speech, Gait Analysis

[3], etc.
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1.2 Face Recognition

Face Recognition (FR), as one of the Biometrics, has been a major signal processing topic of

interest in the last few decades. Many approaches have been proposed to accomplish the FR task

while balancing three important design factors: recognition accuracy, computational complexity,

and storage requirements. The FR system comprises Training and Testing phases. The typical

FR system consists of the following main modules in each of the Training and Testing phases:

Preprocessing, Feature Extraction, and Classification. Furthermore, depending on the final goal,

FR systems can also be classified into Identification and Verification. In the Identification, the

system assigns the test image to one of subjects in the gallery with no prior information about the

correct identity, sometimes leading to an incorrect recognition. While in Verification, the test pose

should be accompanied by an identity and the system decides if the identity is accurate or not based

on whether a certain criterion has been met.

The following terminology is commonly associated with FR systems. The Training poses, or

gallery, is the set of face images retained for the training of the system. On the other hand, test

pose is a pose used in the Identification phase and that pose is not a member of the gallery. Training

Phase is the process of extracting discriminating features and forming the final model for poses in

the gallery. The Testing Phase, or the Identification phase, refers to the assigning a test pose to one

of the training models based on a specific rule. One of the most well known rules is the Euclidean

distance measure where distances between a test pose and training models are calculated. The

recognition system finds the minimum distance and reveals the identity based on the that minimum.

1.2.1 Face Recognition Advantages

Biometrics based recognition systems have several distinguished features including the following:
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1. They can not be forgotten, compared with passwords for instance.

2. They can not be easily altered.

3. Faces are fairly distinguishable by people, and constructing a machine to recognize people

based on their faces has a high chance of success. As the image acquiring technology ad-

vances, taking a face image is easier than before even when the distance to the lens is fairly

large.

1.2.2 Issues and Concerns Associated with the use of Face Recognition Systems

The same advantages of FR systems are the ones that may arise concerns. When it comes to the

privacy issue, the advantage of the capturing a pose without the need of the person being next to

the lens or even standing still may be considered a way to take away people’s privacy.

Another issue is that over fairly time period, human faces naturally change. The easiest solution to

this issue is done by periodically updating the dataset. Occlusions including legitimately justified

one like prescribed glasses affect the performance of the FR systems. Several systems have been

proposed to enhance the performance of the FR system, yet all systems have some limitations.

1.2.3 Remarks on Training and Testing Execution Times

The Training phase of the FR system is carried out over a longer time span compared to the Testing

phase due to the following:

• The number of Training poses is greater than the Testing ones. Commonly, the Testing is

performed for one pose only.
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• When the FR system is utilized as a security tool, the execution time and the recognition

accuracy in the Testing phase are crucial parameters. Therefore, more resources might be

dedicated to facilitate the Testing phase.

• In most of the FR systems, the Classification is done only in the Testing phase. Hence,

the Classification in the Testing phase should be as fast as possible since the test pose is

compared with all Training models.

1.3 Face Datasets

1.3.1 Olivetti Research Lab (ORL) Dataset

Formerly known as ’The ORL Database of Faces’, the ORL consists of 400 face images captured

between April 1992 and April 1994. This dataset was used in the framework of a face recognition

project carried out in collaboration with the Speech, Vision and Robotics Group of the Cambridge

University Engineering Department (AT&T Laboratories Cambridge). Each subject has ten differ-

ent images, twenty samples are shown in Fig. 1.1. For some of the subjects, their images were not

taken at the same time. The lighting conditions were changed against a dim homogeneous back-

ground with the subjects facing the lens in an upright position. Different facial expressions include

closed/open eyes, smiling/not smiling. The glasses were also worn by some of the subjects. The

image size is 92× 112 pixels with 256 gray levels per pixel [4].

1.3.2 YALE Dataset

The total number of face images in this dataset is 165 [5]. Eleven different poses for each person

of the 15 are available. The original size of each pose is 320× 243.
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Figure 1.1: Raw Samples of ORL Dataset
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All images were captured against white background while the surrounding illumination levels were

also varied. The participants have different expressions like, happy, sad, sleepy, surprised, and

wink. Samples of the dataset are shown in figure 1.2.

1.3.3 The Facial Recognition Technology (FERET) Dataset

The purpose of the Facial Recognition Technology (FERET) program was to develop new tech-

niques, technology, and algorithms for the automatic recognition of human faces. This dataset is

sponsored and developed by the DOD Counter-drug Technology Program. The technical agent for

distribution of the FERET dataset is the National Institute of Standards and Technology (NIST).

As part of the FERET program, this dataset of poses was gathered between December 1993 and

August 1996. In this dissertation, the subset fc of the FERET dataset is used, which consists of

200 subjects with 11 different poses per subject. Hence, the total number of poses in the dataset

is 2200. The resolution of each pose is 256× 384 pixels. Facial expressions were varied and face

rotations were also considered. Glasses were also worn by some subjects [6, 7]. Samples from this

dataset are shown in figure 1.3.

1.3.4 FEI Dataset

Face images in the FEI dataset were recorded at the Artificial Intelligence Laboratory of FEI in São

Bernardo do Campo, São Paulo, Brazil between June 2005 and March 2006. The FEI consists of

2800 poses where each of the 200 subjects, 100 males and 100 females, have 14 different images.

Each colored pose, captured against a white homogeneous background, is 640 × 480 × 3 pixels.

All subjects have an upright frontal position with rotation up to about ±90 degrees. RGB to gray

conversion is utilized for this dataset in this dissertation[8]. Samples from this dataset are shown

in figure 1.4.
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Figure 1.2: Raw Samples of YALE Dataset
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Figure 1.3: Raw Samples of FERET Dataset
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Figure 1.4: Raw Samples of FEI Dataset
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1.3.5 Cropped AR Dataset

This face dataset was created by Aleix Martinez and Robert Benavente in the Computer Vision

Center (CVC) at the U.A.B., Autonomous University of Barcelona, Spain. The version used in this

dissertation is the Cropped AR which consists of 100 subjects, each has 13 poses. The resolution

of each pose is 165 × 120 × 3 pixels. Different facial expressions and illumination conditions

were considered. The occlusions, in which sun glasses and/or scarf was/were worn, is the apparent

feature of this dataset. RGB to gray conversion is utilized for this dataset in this dissertation [9, 10].

Samples from this dataset are shown in figure 1.5.

1.3.6 Georgia Tech Face Dataset (GTFD)

The GTFD consists of 750 color poses for 50 subjects, each has 15 poses, taken in two or three

sessions between 06/01/99 and 11/15/99 at the Center for Signal and Image Processing at Georgia

Institute of Technology. The resolution of each pose is 640 × 480 × 3 pixels. Different facial

expressions, where the face was also tilted, along with changing the lighting conditions. RGB to

gray conversion is utilized for this dataset in this dissertation [11]. Samples from this dataset are

shown in figure 1.6.
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Figure 1.5: Raw Samples of Cropped AR Dataset
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Figure 1.6: Raw Samples of GTFD Dataset
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1.3.7 Experimental Results Analysis

In the literature of the FR, different authors utilize one of three approaches when analyzing the

obtained recognition accuracies. The tables usually contain recognition accuracies percentages

for pair(s) of Training-Testing set(s). For example, the ORL [4] (see 1.3.1) consists of ten poses

for each subject, five of the poses are used as a Training set while the other five are retained as a

Testing set. Thus, these Training and Testing sets are combined in one Training-Testing set.

1.3.7.1 Random/Specific Training-Testing Set Approach

In this approach, the available poses are divided into two groups, i.e., one Training-Testing set. In

the random sets, the results are reported with general description, e.g., the first five poses are used

as the Training set. While for some datasets this is sufficient, it is not valid for all the datasets

especially if the order of the poses is altered. On the other hand, specific Training-Testing Set

suits more datasets with universal labeling system when referring to poses can not be ambiguous.

Nevertheless, both procedures can be considered as a scenario out of several ones.

1.3.7.2 K-Fold Cross Validation Approach

For FR system results analysis, K-Fold Cross Validation (CV) [12] refers to the experimental

results obtained by averaging K recognition accuracies. The first recognition accuracy is obtained

when a subset of the Training-Testing set is used for Training while the other subsets are reserved

for Testing. The rest of the recognition accuracies are realized by the exchange of roles between

Training and Testing subsets.

13



1.3.7.3 Exhaustive Set Approach

In this approach and to avoid any bias in the test results, the average recognition accuracies are

obtained by averaging all the recognition accuracies resulting from all different possible combina-

tions of the available poses. For instance, the ORL [4] dataset has 10 poses, 5 of which were used

for training and 5 for testing. All possible combinations for Training-Testing pairs with 5 poses

are considered, which gives
(

10

5

)
= 252 possible combinations.

Depending on the other state-of-the-art systems under comparison, the Exhaustive Set and the

K-Fold CV approaches are employed in this dissertation. In addition, the maximum besides the

average obtained recognition accuracies are reported to highlight certain characteristics of the pro-

posed systems.
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1.4 Organization of this Dissertation

The organization of this dissertation is as follows:

1. Chapter Two: a literature review of the approaches and algorithms that have been developed

for the face recognition task is presented in this chapter.

2. Chapter Three: several approaches and techniques that were implemented in our research

are explained in details in this chapter.

3. Chapter Four: An alternative face recognition system that additively combines Two-Dim-

ensional Discrete Wavelet Transform (2D-DWT) coefficients and Two-Dimensional Discrete

Cosine Transform (2D-DCT) coefficients for image feature extraction is proposed [13]. Each

training pose is represented by superimposing the dominant coefficients from the two do-

mains taking into account the nonorthogonality of the coefficients in one domain with respect

to the coefficients in the other domain. The recognition system is tested with three publicly

available datasets, namely, ORL, YALE, and FERET. As shown in the sample results, the

proposed system significantly reduces the required storage size, a desirable property for big

data, while maintaining the accuracy recognition rates when compared with the 2D-DCT, the

2D-DWT, and the successive 2D-DWT/2D-DCT techniques. In addition, the computational

complexity in the testing phase is comparable with that of recently reported techniques

4. Chapter Five: Recently, a new discriminative sparse representation method for robust face

recognition via l2 regularization (NDSRFR) was reported. In this chapter [14], a transform

domain (TDNDSRFR) is presented. The Discrete Cosine Transform (DCT) implementation

of the TDNDSRFR is given and shown to maintain the recognition accuracy of the ND-

SRFR while yielding considerable reduction in the computational complexity and storage
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requirements. Also, a technique that selects the balance parameter is introduced. Exten-

sive simulations were performed on six face datasets, namely, ORL, YALE, FERET, FEI,

Cropped AR, and Georgia Tech and sample results are given which confirm the enhanced

properties of the TDNDSRFR.

5. Chapter Six: Recently, a new discriminative sparse representation method for robust face

recognition that uses `2-norm regularization was reported. In this chapter [15], direct data-

driven calculation of the balance parameter used in the objective function is presented. The

modified system preserves the advantages of the original method while improving the recog-

nition accuracy and making the system more automated, i.e., less dependent on the user’s in-

put. Extensive simulations are performed on six face datasets, namely, ORL, YALE, FERET,

FEI, Cropped AR, and Georgia Tech. Sample results are given demonstrating the properties

of the modified system.

6. Chapter Seven: A face recognition system which represents each image as a superposition

of the dominant components in two transform domains is presented in this chapter [16].

The Discrete Wavelet Transform (DWT) and DCT are the two domains. By the end of the

Training phase, each pose in the gallery will have two final matrices. Feature Extraction step

in the Training includes transforming the preprocessed image to the DWT domain followed

by the DCT. Then, the first feature matrix is obtained by retaining certain number of the DCT

coefficients while the rest of the DCT matrix, the Residual (R), is transformed back to the

Wavelet domain. Next, the DWT is applied several times to get the other feature matrix. The

Classification phase consists of the same sequence of steps as in the Training to calculate

the feature matrices. The Euclidean distance measure is used to compute the separation

of test matrices and the training ones. Since the features are in two different domains, a

voting scheme is utilized to give the final decision which is based on selecting the minimum

distance. Two publicly available datasets, namely, ORL, and YALE are used to evaluate the
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performance of the proposed technique. As shown in the results, the system gives higher

recognition rates compared with existing approaches. The other two design parameters, the

computational complexity and the storage requirements, were also lower.

7. Chapter Eight: A face recognition system using an integration of DCT and Support Vector

Machine (SVM) is proposed in this chapter [17]. Feature Extraction and Identification are

the two main phases of the system. The first phase consists of a preprocessing step, which

includes cropping and resizing techniques, followed by DCT coefficient selection and SVM

classifier creation. The final outputs contain the DCT coefficients beside several two-input

SVM classifiers. A DCT selection algorithm is employed to retain the coefficients which

have the maximum variability across each training pose. The data from the nearest, as mea-

sured by Euclidean distance, two subjects is used as an input to the SVM classifier. The

second phase aims to find the recognition rates based on the Euclidean distance criterion

and the output(s) of SVM classifier(s). Four different image datasets, namely, ORL, YALE,

FERET, and Cropped AR are used to evaluate the system. The proposed system is shown to

outperform some of the state of the art systems in terms of the recognition rates.

8. Chapter Nine: A face recognition system using an integration of DCT and Vector quantiza-

tion (VQ) is proposed in this chapter [18]. The system consists of two main phases, namely,

Feature Extraction and Recognition. In the first phase, the input facial image is divided

into blocks with dimensions equal to the codeword dimensions. Then, DCT is applied on

each block. The codebook is initialized using the Kekre Fast Codebook Generation (KFCG)

method. The Final Codebook computed using VQ algorithm efficiently represents the input

facial image. The second phase aims to find the recognition rates based on the Euclidean dis-

tance criterion. The system is evaluated using four different datasets, namely, ORL, YALE,

FERET, and FEI that have different facial variations, such as facial expressions, illumina-

tions, etc. The experimental results are analyzed using K-fold Cross Validation (CV). The
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proposed system is shown to improve the storage requirements, as well as the recognition

rates.

9. Chapter Ten: This chapter develops a Linear Discriminant Analysis based face recognition

system in the DCT domain as a departure from the traditional analysis in the spatial domain

[19]. In the Training phase, the truncated DCT coefficients are used to find discriminating

features for all the subjects in the image dataset. The compact representation of the trun-

cated DCT coefficients leads to notable reductions in data dimensionality and also bypasses

the well-known Small Sample Size problem. The input data is projected on the dominant

Eigenvectors of the scatter matrix capturing within-class and between-class information. To

further enhance the system performance, a correction matrix computed in the Training phase

depending on a penalty function is used to adjust the Euclidean distances between the testing

and the training poses. The final classification decision is based on the minimum distance.

The ORL, YALE, FERET, and FEI datasets are used to evaluate the system performance.

The proposed system is shown to achieve higher recognition rates, reduced computational

complexity and low storage requirements compared to its existing counterparts.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Over the last few decades, a couple of hundreds of face recognition systems and algorithms have

been proposed. One of the difficult parts in the FR system is to have an efficient system, in terms of

storage requirements and computational complexity, without sacrificing the accuracy. Therefore,

feature extraction module is a fundamental segment of the FR system. Nevertheless, the feature

extraction module does not have to be a sophisticated element but rather a signal processing com-

pression algorithm that could be employed as a feature extractor.

2.1.1 Projections Approaches

Principle Component Analysis (PCA) is the most widely employed technique in the FR systems.

The set of training poses, or faces, are used to construct a Covariance matrix from which the

basis functions, i.e., eignfaces, are extracted [20, 21]. Then, Truk and Pentland in [22, 23] ex-

tended the work in [20, 21] to include the FR task. The eigenvectors associated with the dominant

eigenvalues of the Covariance matrix, known as eigenfaces, have much less dimensions compared

with the original matrix dimensions. While the eigenfaces, computed by employing Karhunen -

Loẽve Transform, approach offers space dimension reduction, it has the following drawback. If

the training data increased, it does not necessarily increase the data separability and it puts more

burden on the storage module and the computational complexity [24]. Under certain real life sce-

narios in which the pose acquiring environment can not be fully controlled, the PCA-based FR

system performance degraded drastically when one of the variables change. These variables in-

clude, surrounding lighting conditions, facial expressions, occlusions or any other deviations from
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the common pose acquisition settings [25]. Nevertheless, more robust PCA-based systems were

developed. The 2D-PCA [26] is one of the evolved version of the PCA, in which the face images

are treated as a 2D signal rather than the old 1D situation. Another example that employs Indepen-

dent Component Analysis (ICA) with PCA is the (2D)2PCA-ICA in which the two Directional 2D

PCA is employed [27]. To enhance the system performance in [27], the ICA was also used and it

was implemented using the fast ICA [28].

The Linear Discriminant Analysis (LDA) is closely related to the PCA. The PCA aims to find

linear projections of high-dimensional data into lower dimensional subspaces so that the residual

information loss is minimized. While PCA has been routinely used in various classification tasks,

its main drawback is that the within-class information is lost. On the other hand, LDA leverages

both within-class and between-class information [29, 30]. LDA has been used not only as a linear

classifier, but also to reduce the dimensions of the input data. In particular, the projection used by

LDA maximizes the between-class scatter and minimizes the with-in class scatter.

2.1.2 Transform Domain Approaches

According to Parseval’s theorem, when the signal transformed from one domain to another, the

total energy is preserved. Nevertheless, the pattern of energy distribution in a domain may offer

more discrimination compared with the other for a given recognition algorithm. One of the most

well-known and widely applied transforms is the DCT, or more specifically the 2D DCT. Although

DCT was developed as an image compression technique, it was found to be useful for FR. The

importance of the DCT is not only resides in its compact representation of an image, but also in its

capability to produce coefficients which can be utilized in FR. In [31], three different preprocess-

ing approaches were used, namely, Single Scale Retinex, Multi Scale Retinex, and Single Scale

Self Quotient image. The DWT, Extended Directional Binary codes, three matrix decompositions,

and Singular Value Decomposition are the algorithms in the feature extraction step. Their sys-
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tem was evaluated using parts of the following datasets: YALE, ORL, and GTAV. The maximum

correct recognition rates reported in [31] were higher than 90% for all datasets. A new feature

extraction approach was proposed in [32]. Gray scale conversion, resizing, Laplacian of Gaus-

sian Blur, Gamma Intensity Correction, Salt and Pepper noise detection, and Median and Weiner

filters were the six preprocessing steps which were employed in sequence. The modified image

is transformed to the DWT and to the DCT domains. A coefficient selection approach based on

triangle geometry truncation called Slope-form Triangular DCT technique replaced the truncation

of the whole DCT components. To remove the redundancy in the truncated DCT coefficients, the

Binary Particle Swarm Optimization algorithm is employed. ORL, JAFFE, and Color FERET,

datasets were used to evaluate the system. Their reported results based on the Euclidean distance

measure were: 91.86%, 98.66%, and 72.08% respectively. A new system based on Local Binary

Probabilistic Pattern (LBPP) was presented in [33]. To separate the homogeneous areas from peak

ones, the input image is first treated with LBPP descriptor. A 2D DCT was applied on each pose to

extract the features. The Euclidean distance criterion was used in the Classification step to find the

identity of the test pose. The reported results for ORL dataset was 95.5%. For the YALE dataset,

a claim of full correct recognition was recorded. The other domain which has been extensively

used for FR is the DWT, or its 2D DWT. To keep both time and frequency information together,

the DWT is employed. The DWT is based on the Multiresolution analysis in which the approaches

utilize various techniques from different disciplines to process and analyze a given signal. Besides

[31], in [34] three feature extraction approaches, namely, 3D-subband energy, 3D-subband over-

lapping cube and 3D-global energy, for facial hyperspectral image classification were reported. All

approaches employ a 3D DWT to extract features from face images. The vertical, spectral and hor-

izontal information are processed simultaneously. The classifier was the k-NN and collaborative

representation-based classifier (CRC). The dataset used to evaluate the performance of the systems

was the PolyU-HSFD. The proposed techniques achieved recognition rates ranging from 83% to

98% for the four different scenarios considered. In addition to 2D DWT, Discrete Multiwavelet
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Transform (DMWT) has been also employed in FR systems [35].

2.1.3 Compression Approaches

From a FR system point of view, a compressed version of a face image in any domain is better than

the original format as long as the compact version retains the important discrimination features of

faces. Four Vector Quantization (VQ) algorithms were discussed and compared with a DCT-based

system in [36] for facial recognition. These algorithms, namely, Linde-Buzo-Gray (LBG), Kekres

Proportionate Error Algorithm (KPE), Kekres Median Codebook Generation Algorithm (KMCG),

and Kekres Fast Codebook Generation Algorithm (KFCG) were used to generate codebooks with

different sizes. Georgia Tech and Indian face datasets were used to evaluate the four VQ algo-

rithms, with different codebook sizes, against DCT-based system. The highest recognition rates

achieved were 85.4% and 90.66% for Georgia Tech and Indian face datasets, respectively. In [37],

a facial recognition system based on DWT was presented. Various DWT filters were used for fea-

tures’ selection and dimensionality reduction. The recognition rate realized was 89.42% for the

ORL dataset. The authors in [38] used combination of the DCT and PCA for facial recognition.

The dimensionality reduction and features’ selection were accomplished using DCT and PCA. A

Neural Network based classifier was used for the classification task, and the highest recognition

rate recorded was 96.5% for the ORL dataset. DCT in conjunction with the Kernel Nearest Neigh-

borhood classifier (KNN) was presented in [39] for facial recognition. The features were extracted

using DCT and the recognition rates were measured using KNN. The highest rate achieved was

91.5% for the ORL dataset. A VQ histogram and Markov Stationary Features (MSF) were pro-

posed for facial recognition in [40]. There, the features were extracted using both VQ histogram

and MSF and the highest recognition rate obtained was 96.16% for the ORL dataset.

In [41], to achieve dimensionality reduction, preprocessed poses were transformed to the DCT do-

main. Then, the DCT coefficients matrix was truncated to appropriate dimensions. Then, KFCG
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codebook initialized VQ algorithm was employed to the truncated DCT matrix to further compress

the feature. In the four datasets namely ORL, YALE, FERET, and FEI, for each pose a final feature

matrix of a size of 4 × 4 × 16. The results reported in [41] claimed to be higher than the results

presented in [36, 42, 43]. Next, DWT with conjunction with VQ was used for FR in [44]. In that

paper, the one sub-band of each pose after being processed with 2D DWT transform was retained.

To achieve more dimensionality reduction, the KFCG codebook initialized VQ technique was uti-

lized. The dimensionality reduction in both [44], and [41] was at the same level. Nevertheless, the

recognition accuracies reported in [44] were higher than the ones in [41] for all datasets.

In [45], a VQ algorithm applied to features extracted from applying Face Part Detection (FPD)

on poses was used in FR system. Prominent face details were retained using the FPD to achieve

dimensionality reduction while all other relatively irrelevant information were discarded. In the

Feature Extraction step, each pose per person was replaced by four groups where each group is

one of the following {Mouth, Nose, Left Eye, Right Eye}. Those four groups form the model

for each pose and the VQ technique, employing the KFCG codebook initialization approach, was

utilized to retain compact versions of each group. By comparing the systems in [45] with the ones

in [41] and [44], each person has 4 × 4 × 4 × 16(4 × Centroid) in the first system regardless of

the number of training poses. On the other hand, the systems in [41] and [44] have dimensions of

4× 4× 16(Centroid).
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2.1.4 Enhancing the Performance of a Facial Recognition System

First, if the FR system starts with a preprocessing step, this is where the improvement should

also start. Different number of preprocessing techniques have been reported in the literature, e.g.,

Gamma Correction, illumination alteration, Histogram Equalization, etc.

Secondly, improving the feature extraction step enhances the performance of the FR system. For

instance, the FR system performs better if the PCA technique is applied on the 2D DWT coeffi-

cients rather than the direct employment of those coefficients as features. Further improvement

can be done by using the 2D PCA [26].

Finally, the classifier is the last module in which any improvement contributes to the overall per-

formance enhancement.
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CHAPTER 3: METHODOLOGY

3.1 Introduction

As stated in Parseval’s theorem, the total signal energy is preserved when that signal is transformed

from one domain to another. The variety of energy distributions offered by different transforms

facilitates the application of a classification algorithm in one domain rather than the other.

3.2 Discrete Cosine Transform (DCT)

In multidimensional signal processing, the DCT is one of the most widely employed transforma-

tions due to its efficient representation of those signals. This transform concentrates most of the

signal power in a small part of the domain. Thus, fewer coefficients are sufficient to approximate

the original signal. This was the motivation for its use in lossy compression algorithms, e.g. JPEG

for images and MP3 for audio. Figure 3.1 shows the 2D DCT of one of the poses in the gallery.

The 2D DCT can be calculated using the following forward and inverse equations,

G(m,n) =
2√

M ×N

M−1∑
u=0

N−1∑
v=0

g(u, v)cm (3.1)

cos

(
m(2u+ 1)π

2M

)
cn cos

(
n(2v + 1)π

2N

)
,
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where g(u, v) is the signal in the time domain and G(m,n) is the mth row, nth column DCT

coefficient for u = 0, 1, . . .M − 1 and v = 0, 1, . . . N − 1.

g(u, v) =
2√

M ×N

M−1∑
u=0

N−1∑
v=0

G(m,n)cm (3.2)

cos

(
m(2u+ 1)π

2M

)
cn cos

(
n(2v + 1)π

2N

)

where cm, and cn are defined as [46]:

cm =


1√
2

for m = 0

1 otherwise
(3.3)

 

Figure 3.1: Original image (left) and its 2D DCT Transform (right)

In this dissertation, a single application of the 2D DCT on poses in the Spatial domain is em-
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ployed. On the other hand, the Cosine coefficients selection approaches are: traditional truncation,

Variance-based, and Residual energy minimization.

3.3 Discrete Wavelet Transform (DWT)

While the time information is lost in the Fourier transform, the DWT [47] was found to keep both

time and frequency information together. The DWT is based on the Multiresolution analysis in

which the approaches utilize various techniques from different disciplines to process and analyze a

given signal. For images, as 2D signals, a single-level DWT, or decomposition, requires a scaling

function, ϕ(x, y), and three wavelets, ψ(x, y). These wavelets are calculated as follows:

ϕ(x, y) = ϕ(x)ϕ(y) (3.4)

ψH(x, y) = ψ(x)ϕ(y) (3.5)

ψV (x, y) = ϕ(x)ψ(y) (3.6)

ψDi(x, y) = ψ(x)ψ(y) (3.7)

whereϕ(x, y) is the scaling function (or the LL Band), ψH(x, y) measures variations along columns

(or the LH Band), ψV (x, y) is sensitive to variations along rows (or the HL Band), and finally

ψDi(x, y) emulates the variations along the diagonal (or the HH Band).

27



The 2D scaled and translated basis functions are defined as:

ϕj,m,n(x, y) = 2j/2ϕ(2jx−m, 2jy − n) (3.8)

ψij,m,n(x, y) = 2j/2ψi(2jx−m, 2jy − n) (3.9)

where index i identifies the wavelets shown in equations 3.4 through 3.7, and i = {H,V,Di}. The

2D DWT of an image g(x,y) of size M ×N is:

Wϕ(j0,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

g(x, y)ϕj0,m,n(x, y) (3.10)

W i
ψ(j,m, n) =

1√
MN

M−1∑
x=0

N−1∑
y=0

g(x, y)ψij,m,n(x, y) (3.11)

i = {H,V,Di}

j0 is an arbitrary starting scale and the Wϕ(j0,m, n) coefficients is the approximation of the g(x,y)

at scale j0. The W i
ψ(j,m, n) coefficients add horizontal, vertical, and diagonal details for scales

j ≥ j0. Normally j0 = 0 and select N = M = 2Jso that j = 0, 1, 2, ....J − 1 and m = n =

0, 1, 2, ..., 2j − 1. Figure 3.2 shows one-level of decomposition for one of the poses in the gallery.

In this dissertation, a single level of decomposition of the 2D DWT, the Haar, on poses in the

Spatial domain is employed [47].
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Figure 3.2: Original image (left) and its One-level of decomposition using the Haar function (right)

3.4 Linear Discriminate Analysis (LDA)

PCA aims to find linear projections of high-dimensional data into lower dimensional subspaces so

that the residual information loss is minimized.

While PCA has been routinely used in various classification tasks, its main drawback is that the

within-class information is lost. On the other hand, LDA leverages both within-class and between-

class information [48] and [49]. LDA has been used not only as a linear classifier, but also to

reduce the dimensions of the input data. In particular, the projection used by LDA maximizes the

between-class scatter and minimizes the with-in class scatter. Let I = g(u, v) denotes one image of

dimensions M ×N containing the entire head of a subject after cropping. A resizing technique is

also applied to have consistent pose dimensions across each dataset. For the face recognition task,

let PTot, PTr, and PTs denote the total number of individuals, the total number of poses available

for training per subject, and the total number of poses assigned for testing, respectively. The DCT

29



algorithm is used to transform I to the frequency domain. Since DCT concentrates most of the

signal power in the low and low-medium frequency bands, only these parts of the DCT coefficients

are stored. Therefore, a K × K sub-matrix is used to represent I , where K is the dimension of

the retained coefficients. Since (PTr × PTot) > K2, the Small Sample Size (SSS) problem does

not arise here [50]. All poses from all subjects are stacked next to each other to form the data

matrix X = [G1
1, G

2
1, . . . , G

PTr
PTot

], where the superscript of G refers to the index of the pose and the

subscript is the index of the subject. Hence, the dimensions of X are K2 × (PTr × PTot). Mean

vectors, µi where i = 1, . . . , PTot, are calculated by averaging all the columns in X belonging to

the same person. One global mean vector, µ, is also calculated for all the columns in X . Two

scatter matrices, within-class Sw and between-class Sb, are computed as [51],

Sw =
1

PTot

PTot∑
i=1

Σi, (3.12)

Sb =
1

PTot

PTot∑
i=1

(µ− µi)(µ− µi)T , (3.13)

where T denotes the transpose operator, and Σi is the covariance matrix for the ith subject.

The Eigenvalues, λi, i = 1, . . . , (M × N), of (S−1w × Sb) and the corresponding Eigenvectors are

computed using a standard Singular Value Decomposition (SVD). Only the dominant Eigenvalues

whose ratio to the sum of the Eigenvalues exceeds a predefined threshold ε are retained and used

in the next steps. The Eigenvectors U corresponding to the retained Eigenvalues are multiplied by

the input coefficients matrix to find the feature matrix Fm, i.e.,

Fm = UTX. (3.14)
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A correction matrix W with dimensions of PTr × PTot is initialized. All training poses are used

for testing and the output recognition rates are recorded. W is populated with elements that have

values equal to the ratio of distances between the recorded and correct ones, and this process is

repeated until the recognition rate hits 100%. The elements of W are calculated as follows,

w(i, j) =


minimum distance

distance of pose(i, j) if incorrectly identified

1 if correctly identified
(3.15)

where i = 1, 2, . . . , PTr, and j = 1, 2, . . . , PTot

3.5 Vector Quantization (VQ)

A vector quantizer(VQ), with L-levels and q × p dimensions, is similar to its scalar counterpart

but with the ability to deal with a whole vector rather than individual scalar. In [52], the authors

described the vector quantization design algorithm, that is known as the LBG algorithm, that is

based on Lloyd approach. The algorithm was developed as lossy data compression technique

that gave higher compression rates with as minimum error as possible. The algorithm satisfies

necessary but not sufficient conditions as an optimal solution, but at least it is guaranteed to reach

a local minimum. The key parameters when designing a VQ are: dimensions of codebook L ×

q × p, codebook initialization, and distortion measure used. The final codebook must have the

minimum distortion distance from the original data. The algorithm starts with the choice of L, q

and p. Then an initial codeword, initial centroid with dimensions q × p, is calculated. An iterative

splitting procedure is performed until the required number of codewords in the codebook, i.e. L,

is reached. For each part of the data, the nearest codeword is assigned as a replacement and the

total distortion, that is actually the possible total minimum, is computed. Each new codeword is

calculated by averaging all data part(s) that is/are encoded using that codeword. The codewords’
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updating process is repeated until either a predefined error is reached or the process goes through all

the maximum allowable iterations. Selecting L, q, and p are totally data dependent. The codebook

initialization, in [52], is done by adding and subtracting a small number ε to/from all elements in

the first centroid to get the first two centroids. The algorithm is applied to get updated versions of

these two. Again, ε’s vector is added and subtracted to/from the new two to get four new centroids.

This process is repeated until L centroids are found. Distortion measure is the last parameter to

choose and different measures fit different data. Most commonly used are: Squared error, Modified

Itakura-Saito, lvnorm, vthpower norm, Minkowski norm, and Mean Squared Error(MSE)[53].

In [54], a new, efficient, and fast method for generating an initial codebook was explained under

the abbreviated name of Kekre Fast Codebook Generation (KFCG). In that approach, the original

data is iteratively divided and the updated codewords for each new division are calculated without

going back to the original data stack.

3.6 Support Vector Machine (SVM)

One of the supervised learning methods which is used for data classification [55] when data la-

bels are available. SVM aims to find a hyperplane, i.e., Supporting Vectors, to separate the given

data, e.g. the straight line shown in Fig. 3.3 [56]. This can be done either in the space of data

or in a higher dimensional one. Depending on the data separability, Linear, with Hard margin,

or Nonlinear, with Soft margin, classifier is chosen [57]. In essence, the SVM is a two class, or

a one-versus-one, classifier. Nevertheless, it is used to classify labeled data with more than two

classes, which is called one-versus-all situation. For the later case, a partition tree is employed. An

improvement of the original SVM was developed, called Support Vector Clustering [58], which is

used when the data is not labeled. The effectiveness of the SVM is clearly obvious when there is a

clear margin separating the high dimensional data samples.
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Figure 3.3: An Example of a SVM Margin

Besides that and since the Supporting Vectors are parts of the training samples, the storage size

needed is reduced.

On the other hand, the performance of the SVM is degraded when the training samples are overlap-

ping. In addition, the higher the data dimensions, the more time needed to find the final Supporting

Vectors. It should be noted that for FR systems, the previous disadvantage is of a secondary im-

portance since the Training phase is frequently done over a longer time span compared with the

Testing phase.

For one-versus-one case, the output c of the classifier is calculated as follows:

c =
∑
i

αikernel(Si, x) + b (3.16)

where α is the weight of each kernel, S is the Support Vector, x is the unknown test sample, and b

is the bias respectively. If c > 0, the unknown sample is considered to be from the first class. The

kernel kernel for the linear case is simply a dot product operation. More complicated operators

including: Polynomial, Gaussian Radial Basis, and Hyperbolic tangent can function as kernels for

the nonlinear scenarios [59].
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3.7 Sparse Representation

For notation, let PTot denote the total number of subjects in a given dataset and PTr the number of

training poses per subject. Hence, the training matrix X consists of Tot = PTr × PTot samples.

3.7.1 `1-Norm Regularization Representation

Sparse representation based methods seek to obtain a sparse representation of a test sample t in

terms of the training samples in X , i.e., to represent the test sample t as a sparse weighted linear

combination t = XA of the columns of X , where A is a sparse vector of coefficients. To this end,

the approaches in this category aim at solving the optimization problem [60]:

min ‖A‖1 s.t. t = XA, (3.17)

in noise-free settings, or

min ‖A‖1 s.t. ‖t−XA‖2 < ε (3.18)

in presence of noise, where A = [a1, . . . , aN ]T is the coefficients vector and ε an error margin.

Among the `1-norm regularization based representation algorithms are Orthogonal Matching Pur-

suit [61], Homotopy and Augmented Lagrangian [62], the Fast Iterative Shrinkage and Threshold-

ing algorithm [63], and `1 Regularized Least Squares (L1LS).
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3.7.2 `2-Norm Regularization Representation

Collaborative representation classification (CRC) is one of the `2-norm regularization-based rep-

resentations. In this category, the vector A is given by

A = (XTX + γI)−1XT t (3.19)

where γ is a balance parameter, and I the identity matrix [64].
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CHAPTER 4: MIXED NON-ORTHOGONAL TRANSFORMS

REPRESENTATION FOR FACE RECOGNITION

An alternative face recognition system that additively combines Two-Dimensional Discrete Wavelet

Transform (2D-DWT) coefficients and Two-Dimensional Discrete Cosine Transform (2D-DCT)

coefficients for image feature extraction is proposed [13]. Each training pose is represented by

superimposing the dominant coefficients from the two domains taking into account the nonorthog-

onality of the coefficients in one domain with respect to the coefficients in the other domain.

The recognition system is tested with three publicly available datasets, namely, ORL, YALE,

and FERET. As shown in the sample results, the proposed system significantly reduces the re-

quired storage size, a desirable property for big data, while maintaining the accuracy recognition

rates when compared with the 2D-DCT, the 2D-DWT, and the successive 2D-DWT/2D-DCT tech-

niques. In addition, the computational complexity in the testing phase is comparable with that of

recently reported techniques.

4.1 Proposed System

The proposed system consists of Training and Testing phases.

4.1.1 Preprocessing Step

The first step in the Training phase is a preprocessing. The preprocessing consists of cropping and

resizing. The final preprocessed dimensions are shown in Table 4.1.
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Table 4.1: The Dimensions of The Datasets

Dataset Actual Dimensions Proposed Dimensions

ORL 112*92 64*64
YALE 243*320 64*64

FERET 384*256 64*64

4.1.2 Training Phase

The proposed system, shown in figures 4.1 and 4.2, includes Training and Testing phases. Fig. 4.3

shows the special case where F = 2 and the two transforms are the 2D-DWT, the Haar wavelet,

and the 2D-DCT since they are nonorthogonal to each other. In the Training phase and before the

application of the 2D-DWT, a preprocessing step which consists of image cropping and resizing,

as , is implemented on C1 coefficients.

First, a weight matrix, W2 = [α], is initialized and multiplied, using a Hadamard Product, by C2.

The result of 1− (C2 ◦ [α]), which is the Residual2 is transformed back to the first domain using

2D-Inverse DWT (2D-IDWT). Next, A 2D-DCT transformation [65] is applied on the modified

coefficients in the spatial domain C1, which were calculated using the 2D-IDWT. A second weight

matrix, W3 = [β], is initialized and multiplied in the same fashion as in the previous step. Also,

the result of 1 − (C3 ◦ [β]), which is the Residual3 is transformed back to the first domain using

2D-Inverse DCT (2D-IDCT). The energy residual, Φ(α, β), which is the difference between the

input energy and the energies retained in each domain is considered as a cost function that should

be minimized. In particular, Φ(α, β) is calculated as follows:

Φ(α, β) = [C1]
2 − [T2,1(C2)]

2 − [T3,1(C3)]
2 (4.1)

where [ ]2 is the element-wise square.
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A Steepest Descent Algorithm is employed to minimize the residual [66]. After the iteration stops,

a specific number of coefficients in each domain, the 2D-DCT and the 2D-DWT domains, is re-

tained and the final feature vector for each pose is the concatenation of the retained coefficients.

The parameters for the Training phase are as follows. The weight matrices α and β are initialized

with 0.5 and 0.3 as elements respectively. The updating equations in every iteration are as follows

[67]:

αi,j(n+ 1) = αi,j(n)− µαi,j
∇αi,j

Φ (4.2)

βi, j(n+ 1) = βi, j(n)− µβi,j∇βi,jΦ (4.3)

where i, and j span the entire domain and depending on αi,j and βi,j are elements in [α] and [β]

matrices respectively, n is the iteration index, and µ is the converging factor. The pose dimensions

here are M × M . The algorithm stops when the energy residual, Φ, falls below 0.05% of the

original energy, i.e., 0.05× [C1]
2. The converging factors, µαi,j

and µβi,j , are calculated as follows:

µα =
Φ(n)∑N−1

i=0

∑N−1
j=0 [∇αi,j

Φ]2
(4.4)

µβ =
Φ(n)∑N−1

i=0

∑N−1
j=0 [∇βi,jΦ]2

(4.5)

4.1.3 Testing Phase

The Testing phase starts with the test pose being preprocessed with the same cropping and resizing

steps as in the Training phase. The Euclidean distances between the test pose, or specifically its

combined 2D-DCT and 2D-DWT feature vectors, and each of the training poses are calculated.
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Figure 4.1: Training Phase

The subject in the gallery who has the nearest training pose to the test pose is considered as the

correct individual. Every recognition rate is calculated by dividing the number of all correctly

identified poses by the total number of the testing poses.
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Figure 4.2: Testing Phase

4.2 Experimental Results

The proposed system is evaluated using three datasets, namely, ORL [4], YALE[5], and FERET

[6, 7]. All combinations of training and testing sets are tested in all the FR systems.

40



 

D
o

m
a

in
1

 (
C

1
) 

 

Domain2 (C2) 

Hadamard 

Product of 

C2 and W2 

Residual2 

(1- W2 o C2) 

 

 

 

Domain3 (C3) 

Hadamard 

Product of 

C3 and W3 

Residual3 

(1- W3 o C3) 

 

                                                   . 

                                                   . 

                                                   . 

                                                   . 

 

DomainF (CF) 

Hadamard 

Product of 

CF and  WF 
ResidualF 

(1-WF o CF) 

 

T2,1 

T1,2 

T3,1 

T1,3 

TF,1 

T1,F 

Figure 4.3: Pose representation in F Nonorthogonal Transformations, T1,f is the forward transform
with f = 1, 2, ...F , Tf,1 is the inverse transform, Cf is the coefficient matrix in the f domain, Wf is
the weight matrix in the f domain, and Residualf is the result of 1 − (Cf ◦Wf ) where (◦) is the
Hadamard Product.
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Table 4.2: Final Feature Matrices Dimensions for Systems 1 through 4

Dataset
System 1 System 2

Trun dct Trun dwt Total Max dct Trun dwt Total
ORL 6*6 32*32 1060 36 32*32 1060

YALE 6*6 32*32 1060 36 32*32 1060
FERET 6*6 32*32 1060 36 32*32 1060

Dataset
System 3 System 4

Trun dct Max dwt Total Max dct Max dwt Total
ORL 6*6 400 436 36 400 436

YALE 6*6 1024 1060 36 1024 1060
FERET 6*6 1024 1060 36 1024 1060

The term System 1 in Tables 4.2 to 4.8 refers to the FR system in which the extracted features are

the truncated 2D-DCT, noted as trun dct, and truncated 2D-DWT, noted as trun dwt. The trunca-

tion dimensions for each dataset are shown in Table 4.2. Similarly, System 2 through System 4

have the same abbreviations except for Max dct, and Max dwt which refer to the selection of the

maximum coefficients, in terms of their energy, in the 2D-DCT and 2D-DWT domains receptively.

The final decision of each of the systems, System 1 through System 4, is based on the minimum

of the two normalized minimum distances of the 2D-DCT and the 2D-DWT. In the tables, the

average recognition rate is computed by averaging all the recognition accuracies resulting from

all combinations of pose sets. As an example in one trial, the FERET dataset has 11 poses, 5 of

which were used for training and the other 6 for testing. Therefore, all possible combinations of

training sets of size 5 and testing sets of size 6 are considered, which gives
(

11

5

)
= 462 possible

combinations. On the other hand, the maximum recognition rate refers to the highest achieved

accuracy.
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Table 4.3: Maximum Recognition Rates for the ORL Dataset

Number of Training Poses 2 3 4 5 6
System 1 87.81 93.92 97.5 99 99.4
System 2 86.88 94.64 96.67 98.5 99.4
System 3 87.81 93.93 97.5 99 99.4
System 4 86.88 94.64 96.67 98.5 99.4

System in [32] 85.31 92.15 95.42 97 98.13
Proposed System 86.88 94.3 97.08 98 98.75

Table 4.4: Average Recognition Rates for the ORL Dataset

Number of Training Poses 2 3 4 5 6
System 1 81.5 88.2 92 94.28 95.71
System 2 81.5 88.15 91.98 94.27 95.71
System 3 81.49 88.21 92.02 94.28 95.71
System 4 81.48 88.15 91.98 94.27 95.71

System in [32] 79.47 85.84 89.61 91.96 93.57
Proposed System 80.98 87.62 91.72 94.3 94.21

4.2.1 System Performance Evaluation using the ORL Dataset

Tables 4.3, and Table 4.4 show the results obtained for the ORL dataset [4]. This dataset consists

of ten poses for each of the 40 subjects.

4.2.2 System Performance Evaluation using the YALE Dataset

In the YALE dataset [5], each of the 15 people has 11 different poses. The face expressions and

illumination levels vary. Other than the cropping and resizing, no further preprocessing steps are

implemented. Tables 4.5, and 4.6 show all results.
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Table 4.5: Maximum Recognition Rates for the YALE Dataset

Number of Training Poses 2 3 4 5 6
System 1 82.9 90 95.24 95.55 97.3
System 2 80 87.5 93.3 94.4 97.3
System 3 82.9 90 95.3 95.5 97.3
System 4 80 87.5 93.4 94.4 97.3

System in [32] 77.78 84.16 88.58 94.4 96
Proposed System 81.5 88.3 93.3 96.7 97.3

Table 4.6: Average Recognition Rates for the YALE Dataset

Number of Training Poses 2 3 4 5 6
System 1 74.78 79.3 81.6 82.9 83.8
System 2 72.59 77.3 79.6 80.9 81.9
System 3 74.78 79.4 81.6 82.9 83.79
System 4 72.6 77.32 79.6 80.92 81.84

System in [32] 68.5 73.9 76.7 78.5 79.75
Proposed System 70.7 75.7 78.98 81 81.3

4.2.3 System Performance Evaluation using the FERET Dataset

To test the modified system for performance, the FERET dataset is utilized [6, 7]. Containing two

hundred subjects, each has 11 different poses. Tables 4.7, and 4.8 enlist all results achieved by the

systems.

4.2.4 Remarks on the Proposed System Design Parameters

Although the proposed system retains fewer coefficients per pose, the computational complexity

of the proposed technique, especially in the Testing phase, is still maintained at the same level as

for the other FR systems under comparison.
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Table 4.7: Maximum Recognition Rates for the FERET Dataset

Number of Training Poses 2 3 4 5 6
System 1 56.5 63.4 71.71 76.33 82.2
System 2 58.8 65.06 72.57 77.75 83.6
System 3 56.6 63.43 71.7 76.3 82.2
System 4 58.9 65.1 72.6 77.75 83.6

System in [32] 46.9 52.93 59.3 65 70.7
Proposed System 55 61.5 68.9 74.42 81.3

Table 4.8: Average Recognition Rates for the FERET Dataset

Number of Training Poses 2 3 4 5 6
System 1 42 50.76 56.6 61.3 65.1
System 2 44.77 52.9 58.96 63.5 67.2
System 3 42.8 50.76 56.7 61.35 65.11
System 4 44.7 52.98 58.95 63.54 67.18

System in [32] 32 40 45 50.4 54.3
Proposed System 40.6 48.6 54.4 59.1 63

Among the three datasets used, the proposed technique reduces the required storage per pose, on

average, around 60% compared with the systems under comparison. Based on the obtained results,

to achieve more data compaction only the 2D-DWT feature vector for each pose is retained.

4.3 Conclusion

A face recognition system employing image signal decomposition in the 2D-DWT and the 2D-

DCT domains simultaneously is presented in this chapter. Here, the decomposition of an image

into two appropriately selected mutually nonorthogonal transform domains is shown to represent

the image more efficiently, while retaining the same number of coefficients in those transform

domains. Equivalently, the technique still yields a lower residual energy for the unrepresented part
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of the image for the same number of extracted features compared with other transform domain

techniques. The approach is evaluated using three datasets, namely, ORL, YALE, and FERET, and

compared with several state-of-the-art methods. From the experiments, it is shown that the system

achieves similar high recognition accuracy, as well as comparable computational complexity in the

testing phase, while significantly reducing the storage requirements by 60% on average.
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CHAPTER 5: A TRANSFORM DOMAIN IMPLEMENTATION OF

SPARSE REPRESENTATION METHOD FOR ROBUST FACE

RECOGNITION

Recently, a new discriminative sparse representation method for robust face recognition via l2 reg-

ularization (NDSRFR) was reported. In this chapter [14], a transform domain (TDNDSRFR) is

presented. The Discrete Cosine Transform (DCT) implementation of the TDNDSRFR is given

and shown to maintain the recognition accuracy of the NDSRFR while yielding considerable re-

duction in the computational complexity and storage requirements. Also, a technique that selects

the balance parameter is introduced. Extensive simulations were performed on six face datasets,

namely, ORL, YALE, FERET, FEI, Cropped AR, and Georgia Tech and sample results are given

which confirm the enhanced properties of the TDNDSRFR.

5.1 Proposed System

The proposed system consists of Training and Testing phases.

5.1.1 Preprocessing Step

The FR system employs a preprocessing step, consisting of Cropping and Resizing, using the

proposed dimensions shown in Table 5.1.
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5.1.2 Training Phase

The DCT transform follows the preprocessing step. The DCT coefficient matrix is truncated up to

specific dimensions. The previous steps are repeated in both the Training and the Testing phases.

The proposed FR system is shown in Figures 5.1 and 5.2 which consists of two phases, namely,

Training and Testing.

In [68], during the Training phase, Tot column vectors, each of length of D, are stacked in matrix

X. Accordingly, each of the test samples t have the dimensionsD×1. The given objective function

in [68] is as follows:

min
B
||t−XB||2 + γ

Tot∑
i=1

Tot∑
j=1

||XiBi +XjBj||2 (5.1)

where γ > 0 is inserted to make the contribution of each term to the value of the objective function

as equal as possible. A modification to the calculation of γ is proposed in [15] (chapter 6) as

follows:

γ = ||X||1/PTr (5.2)

In this paper, the objective function is modified to:

min
B
||t− TB||2 + γ

Tot∑
i=1

Tot∑
j=1

||TiBi + TjBj||2 (5.3)

where each column in T is the transform of the corresponding column in matrix X in (5.1).
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Specifically, T here represents the DCT, and the length of each column in T is reduced to d, where

d is the truncated DCT coefficients and d < D. Therefore, T is d× Tot and test sample t is d× 1.

By following the same procedure as in [68] (Appendix A) to derive the final expression for B, the

modified B is:

B = ((1 + 2γ)T TT + 2γ × Tot E)−1T T t (5.4)

where E is defined in [68] as:

E =



T T1 T1 ... 0

. . .

. . .

. . .

0 ... T TTotTTot


(5.5)

5.1.3 Testing Phase

In the Testing phase, distances between each training pose and the test vector are calculated as

follows:

di = ||TiBi − t||22, i = 1, ...., T ot (5.6)

The subject having a training pose with minimum distance to t is considered as the author of that

test sample.
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Table 5.1: The Dimensions of The Datasets

Dataset Actual Dimensions Proposed Dimensions

ORL 112*92 32*32
YALE 243*320 32*32

FERET 384*256 64*64
FEI 480*640*3 32*32

Cropped AR 165*120*3 64*64
GTFD 241*181*3 32*32

5.2 Remark on the Computational Complexity of the Recognition System

As stated in [68], the complexity of computing (5.4) is on the order of O(D × Tot2 + Tot3 +

D × Tot). The proposed γ calculation in [15] increased the computational complexity by only

D× Tot− 1, i.e., around 0.2%. The computational complexity of the proposed implementation is

on the order of O(d × Tot2 + Tot3 + d × Tot). Hence, a reduction of roughly 74% is achieved

when the Fast 2D-DCT is utilized [69].

5.3 Experimental Results

The TDNDSRFR system is evaluated using six datasets, namely, ORL[4], YALE[5], FERET [6, 7],

FEI [8], Cropped AR [9, 10], and Georgia Tech Face dataset (GTFD)[11]. All possible training

and testing data sets were tested when the NDSRFR is used. To simulate all possible scenarios,

the Average Recognition Accuracy (ARA) in Tables 5.3 to 5.8 are calculated by averaging all the

recognition accuracies resulting from all different combinations of poses. As an example, in one

experiment, the FEI dataset which has 14 poses, 7 of which were used for training and the other

7 for testing. Therefore, all possible combinations for training and testing with 7, and 7 poses
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are considered, which gives
(

14

7

)
= 3432 possible combinations. The highest recognition accu-

racy, which corresponds to the accuracy when one set of poses partitioned to training and testing

groups, is inserted in the column titled the Maximum Recognition Accuracy (MRA). Meanwhile,

the MRA∗ refers to the MRA achieved when the input sets, training and testing, are different

from the ones used as inputs to the system in [68]. The DCT Dimensions in Table 5.2 refer to

the minimum required coefficients truncation to yield the MRA, and the MRA∗. As an example,

12× 12 refers to the retention of only 144 DCT coefficients starting from the upper left corner and

following the Zigzag pattern. The Storage Reduction % is calculated from the dimensions of the

coefficients matrices as follows:

StorageReduction% = (
Proposed−DCT

Proposed
) ∗ 100 (5.7)

On the other hand, the Execution Time Reduction % in Table 5.2 refers to the average, over 100

runs, time reduction percentage when the proposed modification is implemented compared with

the time required by the original system. the Execution time includes the Training and the Testing

phases for only one testing pose.

Table 5.2: Storage and Time Reduction Percentages for the Proposed Modification

Dataset
DCT Storage The Number Execution,Time

Dimensions Reduction % of Training Poses Reduction %
ORL 12*12 85.9 5 70

YALE 12*12 85.9 5 50
FERET 14*14 95.21 5 73.1

FEI 12*12 85.9 7 52
Cropped AR 12*12 95.21 6 70

GTFD 12*12 85.9 7 74.5
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5.3.1 System Performance Evaluation using the ORL Dataset

Table 5.3 shows the results obtained from the two systems for the ORL dataset [4]. This dataset

consists of ten poses for each of the 40 subjects.

Table 5.3: Recognition Rates for the ORL Dataset

Number of Training Poses
Proposed System System in [68]

MRA % ARA% MRA∗ % MRA% ARA%
2 89.68 83.3 90.94 89.68 82.57
3 95 90.3 95.71 95 89.55
4 97.5 94.07 98.33 97.5 93.38
5 99 96.1 99.5 99 95.57
6 99.37 97.2 100 99.37 96.87

5.3.2 System Performance Evaluation using the FERET Dataset

To test the modified system for performance, the FERET dataset is utilized [6, 7]. Containing two

hundred subjects, each has 11 different poses. Table 5.4 lists all results achieved by the original

and modified systems.

Table 5.4: Recognition Rates for the FERET Dataset

Number of Training Poses
Proposed System System in [68]

MRA % ARA% MRA∗ % MRA% ARA%
2 55.77 45.59 55.92 55.77 42.2
3 65.32 51.99 65.62 65.3 51.67
4 71.57 59.47 71.64 71.57 59.5
5 77.41 64.96 77.58 77.25 64.57

53



5.3.3 System Performance Evaluation using the GTFD Dataset

In this dataset [11], there are 15 poses for each one of the 50 subjects. Table 5.5 shows all the

results for this dataset.

Table 5.5: Recognition Rates for the GTFD Dataset

Number of Training Poses
Proposed System System in [68]

MRA % ARA% MRA∗ % MRA% ARA%
3 67.5 62.49 67.83 66.67 61.2
4 72.18 68.16 73.45 72.18 66.73
5 77 72.38 78 76.4 70.86
6 80 75.95 80.67 79.78 74.09
7 83 78.34 83.5 83 76.71
8 83.14 80.56 86 84 78.87
9 87.67 82.42 88 86 80.7

5.3.4 System Performance Evaluation using the YALE Dataset

In the YALE dataset [5], each person of the 15 has 11 different poses. The face expressions and

illumination levels are varying. Other than the cropping and resizing, no further preprocessing

steps are implemented. Table 5.6 shows all results. One expected observation about the results is

that the MRA increases as more training poses are added. On the other hand, the unanticipated

note is that the ARA decreases. The reason behind that is some of the recognition accuracies drop

drastically for some combinations, i.e., when some poses are either in a training set or in a testing

set.
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Table 5.6: Recognition Rates for the YALE Dataset

Number of Training Poses
Proposed System System in [68]

MRA % ARA% MRA∗ % MRA% ARA%
2 87.4 78.08 88.15 88.89 75.85
3 97.5 76.89 97.5 95.83 74.73
4 98.09 72.94 99.04 98 71
5 98.89 67.5 98.89 98.89 65

5.3.5 System Performance Evaluation using the FEI Dataset

The colored FEI dataset [8] consists of 200 subjects, each with 14 different poses. Beside the

cropping and resizing, bitmap to gray-scale conversion is employed. Table 5.7 displays all results.

Table 5.7: Recognition Rates for the FEI Dataset

Number of Training Poses
Proposed System System in [68]

MRA % ARA% MRA∗ % MRA% ARA%
6 66.87 46.37 67.25 65.4 50
7 74.92 50.73 74.92 73.35 53.5
8 81.3 53.7 81.33 80.75 58.3
9 87.6 52.79 88.7 86.3 64

10 91 54.5 91 91 66

5.3.6 System Performance Evaluation using the Cropped AR Dataset

Cropped AR is a two-session dataset [9, 10] consisting of 100 individuals with 26 poses for each

person. To simulate more realistic situations where the training and testing poses are taken sepa-

rately, the poses in the two sessions are kept fixed but were filmed at two different times. So, only

13 poses from the first session are tested. Facial expressions and occlusions are varied across the

poses. All results are contained in Table 5.8.
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Table 5.8: Recognition Rates for the Cropped AR Dataset

Number of Training Poses
Proposed System System in [68]

MRA % ARA% MRA∗ % MRA% ARA%
4 89.67 62.73 89.67 92.66 69.29
5 94.37 71.75 94.37 95.75 76
6 97.43 82.72 97.43 97.43 82.72
7 98.33 87.89 98.33 98.33 87.89
8 99 91.68 99 99 91.68

5.4 Conclusion

A new discriminative sparse representation approach via `2-norm regularization for robust face

identification was recently published. A transform domain implementation of the objective func-

tion was presented in this chapter. This FR system implementation achieves better recognition

accuracy, requires less storage, and needs fewer computation steps compared with the NDSRFR.

The ORL, YALE, FERET, FEI, Cropped AR, and Georgia Tech datasets were used to evaluate

the system performance. The results of the TDNDSRFR system confirmed the improved perfor-

mance.
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CHAPTER 6: A MODIFIED DISCRIMINANT SPARSE

REPRESENTATION METHOD FOR FACE RECOGNITION

Recently, a new discriminative sparse representation method for robust face recognition that uses

`2-norm regularization was reported. In this chapter [15], direct data-driven calculation of the bal-

ance parameter used in the objective function is presented. The modified system preserves the

advantages of the original method while improving the recognition accuracy and making the sys-

tem more automated, i.e., less dependent on the user’s input. Extensive simulations are performed

on six face databases, namely, ORL, YALE, FERET, FEI, Cropped AR, and Georgia Tech. Sample

results are given demonstrating the properties of the modified system.

6.1 Proposed System

The proposed FR system is shown in Figures 6.1 and 6.2 which consists of two phases, namely,

Training and Testing.

6.1.1 Preprocessing Step

The first step in the Training phase is a preprocessing. The preprocessing consists of cropping

and resizing. All poses in the gallery, including testing, are subjected to that first step. Table 6.1

contains the actual and the suggested dimensions of the images in each dataset.
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6.1.2 Training Phase

In [68], in the training phase, Tot column vectors, each of length D, are stacked in the matrix X .

Accordingly, any test sample t has dimensions D × 1. The given objective function is:

min
B
‖t−XB‖2 + γ

Tot∑
i=1

Tot∑
j=1

‖XiBi +XjBj‖2 (6.1)

where γ > 0. By changing the balance parameter γ, the contribution of each term in the objective

function is varied. In [68], γ is selected from the set {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, and

100}.
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Table 6.1: The Dimensions of The Datasets

Dataset Actual Dimensions Proposed Dimensions

ORL 112*92 32*32
YALE 243*320 32*32

FERET 384*256 64*64
FEI 480*640*3 32*32

Cropped AR 165*120*3 64*64
GTFD 241*181*3 32*32

Following the same procedure in [68], the matrix B is calculated as

B = ((1 + 2γ)XTX + 2γ × Tot E)−1XT t (6.2)
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where E is defined in [68] as

E =



XT
1 X1 ... 0

. . .

. . .

. . .

0 ... XT
TotXTot


. (6.3)

In this work, γ is calculated as follows:

γ = ||X||1/PTr (6.4)

6.1.3 Testing Phase

In the testing phase, the following formula is used to calculate the distances between all training

poses and the test vector

di = ‖XiBi − t‖22, i = 1, . . . , T ot. (6.5)

The label is chosen as that of the subject whose training pose is at minimum distance from t.

6.2 Remark on the Computational Complexity of the Recognition System

As stated in [68], the computational complexity of (6.2) is of the order ofO(D×Tot2+Tot3+D×

Tot). The increase in the computational complexity of the modified system is only D × Tot− 1,

which is only an increase of roughly 0.2%.
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6.3 Experimental Results

The recognition system with the new parameter is evaluated using six datasets, namely, ORL [4],

FERET [6, 7], Georgia Tech Face dataset (GTFD) [11], YALE [5], FEI [8], and Cropped AR

[9, 10]. To have a fair comparison with the system in [68], all possible training and testing pose

sets are tested here with all the suggested values for γ. Then, the same sets are used to evaluate

the system performance with γ values adjusted according to (6.4). Since only three out of the six

datasets were reported in [68] and to save the time needed to calculate results for a range of the γ

values, only three tables have results from both recognition systems. The results for the other three

datasets are directly calculated with γ values adjusted according to (6.4).

The Average Recognition Rate (ARR) in all tables is calculated by averaging over all recognition

accuracies, where each accuracy is determined by summing all properly identified testing poses’

percentages resulting from all different combinations of poses. As an example, for the GTFD

dataset [11] (which has 15 poses), 7 poses were used for training and the other 8 poses for testing.

Therefore, all possible combinations for training and testing with 7 and 8 poses are considered,

which gives
(

15

7

)
= 6435 possible combinations. On the other hand, the Maximum Recognition

Rate (MRR) in all tables refers to the highest recognition accuracy obtained from one specific pair

of training-testing poses.

6.3.1 Experiments on the ORL Dataset

Ten different poses are available for each of the 40 subjects in the ORL dataset [4]. Table 6.2

contains the results from the two systems. As shown in Table 6.2, the results are fairly close.
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Table 6.2: Recognition Rates for the ORL Dataset

Number Number Modified System System in [68]
of Training Poses of Trails MRR% ARR% MRR% ARR%

2 45 89.68 82.57 89 82
3 120 95 89.55 95 89
4 210 97.5 93.38 97 92.9
5 252 99 95.57 98.3 94.9
6 210 99.37 96.87 99.37 96.87

6.3.2 Experiments on the the FERET Dataset

This dataset [6, 7] has been widely used as a performance test data. It is a collection of 200 subjects,

each with 11 different poses. All results are shown in Table 6.3.

Table 6.3: Recognition Rates for the FERET Dataset

Number Number Modified System System in [68]
of Training Poses of Trails MRR% ARR% MRR% ARR%

2 55 55.77 42.2 55.77 42.2
3 165 65.3 51.67 65.3 51.67
4 330 71.57 59.5 71.57 59.5
5 462 77.25 64.57 76 63

6.3.3 Experiments on the GTFD Dataset

Table 6.4 shows all the results for the GTFD dataset [11], which consists of 50 subjects with 15

poses each.
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Table 6.4: Recognition Rates for the GTFD Dataset

Number Number Modified System System in [68]
of Training Poses of Trails MRR% ARR% MRR% ARR%

3 455 66.67 61.2 68 60.5
4 1365 72.18 66.73 72.5 66.25
5 3003 76.4 70.86 76.6 70.4
6 5005 79.78 74.09 79.78 73.63
7 6435 83 76.71 82.5 76.3
8 6435 84 78.87 85.1 78.4
9 5005 86 80.7 86.67 80.3

6.3.4 Experiments on the YALE Dataset

Each person of the 15 has 11 different poses in the YALE dataset [5]. The participants were

asked to change their faces expressions while the ambient light intensity was also altered. No

preprocessing steps other than the cropping and resizing are employed. All results are shown in

Table 6.5. As shown in this table, the MRR increases with the increase of the training poses. On

the other hand, the ARR decreases since some of the classification accuracies drop drastically for

some combinations, i.e., when certain poses are either in a training set or in a testing set.

Table 6.5: Recognition Rates for the YALE Dataset

Number Number Modified System
of Training Poses of Trails MRR% ARR%

2 55 88.89 75.85
3 165 95.83 74.73
4 330 98 71
5 462 98.89 65
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6.3.5 Experiments on the FEI Dataset

In the colored FEI dataset, 200 individuals are available, each with 14 different poses [8]. All

results are shown in Table 6.6. A Bitmap to gray-scale conversion is employed.

Table 6.6: Recognition Rates for the FEI Dataset

Number Number Modified System
of Training Poses of Trails MRR% ARR%

6 3003 65.4 50
7 3432 73.35 53.5
8 3003 80.75 58.3
9 2002 86.3 64
10 1001 91 66

6.3.6 Experiments on the Cropped AR Dataset

This dataset [9, 10] consists of 100 subjects with 13 poses each in a two-session filming. The poses

in the two sessions are similar, except there is a time interval between the first and the second

one. Therefore, 13 poses from the first session are tested here. Different facial expressions and

occlusions were captured in the dataset. Table 6.7 contains all the results obtained for this dataset.

Table 6.7: Recognition Rates for the Cropped AR Dataset

Number Number Modified System
of Training Poses of Trails MRR% ARR%

4 715 92.66 69.29
5 1287 95.75 76
6 1716 97.43 82.72
7 1716 98.33 87.89
8 1287 99 91.68
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6.4 Conclusion

A new discriminative sparse representation approach for robust facial recognition via `2-norm

regularization was recently published. A dataset dependent parameter in the objective function

was presented in this chapter. This modification retained the high performance of the original

recognition system while making it more convenient for users by introducing more automation in

the choice of the balance parameter. Six face datasets, namely, ORL, YALE, FERET, FEI, Cropped

AR, and Georgia Tech, were used to test the system with the modification. As shown in the given

sample results, all properties of the modified system were satisfied.
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CHAPTER 7: FACE RECOGNITION SYSTEM BASED ON FEATURES

EXTRACTED FROM TWO DOMAINS

A face recognition system which represents each image as a superposition of the dominant compo-

nents in two transform domains is presented in this chapter [16]. The Discrete Wavelet Transform

(DWT) and the Discrete Cosine Transform (DCT) are the two domains. By the end of the Training

phase, each pose in the gallery will have two final matrices. Feature Extraction step in the Training

includes transforming the preprocessed image to the DWT domain followed by the DCT. Then,

the first feature matrix is obtained by retaining certain number of the DCT coefficients while the

rest of the DCT matrix, the Residual (R), is transformed back to the Wavelet domain. Next, the

DWT is applied several times to get the other feature matrix. The Testing phase consists of the

same sequence of steps as in the Training to calculate the feature matrices. The Euclidean dis-

tance measure is used to compute the separation of test matrices and the training ones. Since the

features are in two different domains, a voting scheme is utilized to give the final decision which

is based on selecting the minimum distance. Two publicly available datasets, namely, ORL, and

YALE are used to evaluate the performance of the proposed technique. As shown in the results, the

system gives higher recognition rates compared with existing approaches. The other two design

parameters, the computational complexity and the storage requirements, were also lower.

7.1 Proposed System

The proposed FR system is shown in Figures 7.1 and 7.2 which consists of two phases, namely,

Training and Testing.
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7.1.1 Preprocessing Step

The first step in the Training phase is a preprocessing. The preprocessing consists of cropping and

resizing. The final preprocessed dimensions are shown in Table 7.1.

Table 7.1: The Dimensions of The Datasets

Datasets Actual Proposed Final Dimensions
Size Dimensions DCT DWT

ORL 112× 92 128× 128 5× 5 16× 16
YALE 243× 320 256× 256 5× 5 16× 16

7.1.2 Training Phase

A preprocessing step, consists of cropping and resizing, is applied on each training pose before the

required features are being extracted. The original and the proposed dimensions of images in each

dataset used are shown in Table 7.1.

Each preprocessed training pose is transformed to the Wavelet domain using 2D DWT (using the

Haar function). Then, only the LL Band is transformed to the Cosine domain using 2D DCT. The

DCT coefficient matrix is truncated and only a specific number of coefficients are retained counted

from the upper left corner of the matrix. The rest of the coefficients, R plus the DC component,

are converted back the Wavelet domain using 2D IDCT. The 2D DWT is applied several times to

get the DWT feature matrix. The final feature matrix is the concatenation of the 2D DCT and the

2D DWT. The dimensions of each feature matrix are shown in Table 7.1.
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7.1.3 Testing Phase

In the Testing Phase, the same preprocessing and the feature extraction steps are applied on each

testing pose as in the Training. The Euclidean distances between each DCT testing matrix and the

DCT stored training matrices are calculated. The same holds true for the DWT part. Since the

final decision is based on the minimum distance and those distances are calculated in two different

domains, each vector of distances is normalized by dividing all the values of that vector by the

maximum value. Two subjects’ identities are found based on the minimum values in each distances

vector separately. If the two identities are coincide with each other, one identity is revealed. If the

identities are different, the identity with the minimum distance between the final two is chosen.

Each recognition rate is calculated by collecting all correctly identified poses and dividing by the

total number of the testing poses.

7.2 Experimental Results

This section contains the results obtained from evaluating the proposed system over several sce-

narios. The two image datasets which are used are: the ORL, and the YALE. Different number

of subjects, changing intensity levels, and many face headings are some of the details of those

datasets.

To study all possible training and testing data sets and also to avert any bias in the test results, the

Average Recognition Rates (ARR) in Tables 7.2, and 7.3 are obtained by averaging all the recog-

nition rates resulting from all different combinations of the poses. For example in one experiment,

the YALE dataset which has 11 poses, 5 of which were used for training and the other 6 for testing.

Therefore, all possible combinations for training and testing with 5, and 6 poses are considered,
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which gives
(

11

5

)
= 462 possible combinations. In addition, the Maximum Recognition Rate

(MRR) is also shown in Tables 7.2, and 7.3

7.2.1 System Performance Evaluation using the ORL Dataset

This dataset [4] consists of 10 different poses are available for each one of the 40 subjects. Table

7.2 contains the results from each case studied.

Table 7.2: Recognition Rates for The ORL Dataset

Index Number of Number of Number of MRR ARR
Training Poses Testing Poses Trails % %

1 1 9 10 71.67 68.66
2 2 8 45 87.19 82
3 3 7 120 95 88.83
4 4 6 210 97.92 92.69
5 5 5 252 98.5 95
6 6 4 210 99.4 96.5
7 7 3 120 100 97.55
8 8 2 45 100 98.4
9 9 1 10 100 99

7.2.2 System Performance Evaluation using the YALE Dataset

Fifteen subjects are in this dataset [5]. Each person has 11 different poses. Illumination levels are

varied across the poses beside the changing in the face expressions. All obtained recognition rates

are shown in Table 7.3.
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Table 7.3: Recognition Rates for The YALE Dataset

Index Number of Number of Number of MRR ARR
Training Poses Testing Poses Trails % %

1 1 10 11 76.66 65.69
2 2 9 55 83.7 76.74
3 3 8 165 90.83 81.13
4 4 7 330 94.3 83.35
5 5 6 462 96.67 84.7
6 6 5 462 97.3 85.68
7 7 4 330 98.3 86.4
8 8 3 165 100 87
9 9 2 55 100 87.5
10 10 1 11 100 87.87

7.3 Conclusion

In this chapter, a new face recognition system which is based on features from two domains was

presented. The input image is converted to the Wavelet domain by the DWT after being pre-

processed. The transformed pose is converted to the Cosine domain using DCT. Only a specific

number of the DCT coefficients are kept, which forms the DCT feature matrix, while the rest of the

DCT coefficients, i.e., R, are transformed back to the Wavelet domain by the IDCT. Then, the DWT

is applied several times to get the final Wavelet coefficients matrix. The rationale behind the use of

such transformations is to encode the given pose in an efficient way. While the DCT feature matrix

captures the general pose description and smooth areas, the final Wavelet feature matrix represents

the fine details of the given pose. Each training pose is replaced by two feature matrices, one in

each domain. In the testing phase, the test pose is transformed in the same way as in the Training

phase and compared with all training matrices. By using the Euclidean distance as a measure, two

minimum matrices are found and one person is identified based on a voting scheme. The proposed

technique outperforms some of the state-of-the-art systems in the identification rates as shown in

the evaluations employing two datasets, namely, ORL, and YALE. The proposed system is shown
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to require less storage to store the final dataset models and fewer calculation steps in the testing

phase which is desirable for real time applications.
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CHAPTER 8: TWO-STEP FEATURE EXTRACTION IN A TRANSFORM

DOMAIN FOR FACE RECOGNITION

A face recognition system using an integration of Discrete Cosine Transform (DCT) and Support

Vector Machine (SVM) is proposed in this chapter [17]. Training and Testing are the two main

phases of the system. The first phase consists of a preprocessing step, which includes cropping and

resizing techniques, followed by DCT coefficient selection and SVM classifier creation. The final

outputs contain the DCT coefficients beside several two-input SVM classifiers. A DCT selection

algorithm is employed to retain the coefficients which have the maximum variability across each

training pose. The data from the nearest, as measured by Euclidean distance, two subjects is used

as an input to the SVM classifier. The second phase aims to find the recognition rates based on the

Euclidean distance criterion and the output(s) of SVM classifier(s). Four different image databases,

namely, ORL, YALE, FERET, and Cropped AR are used to evaluate the system. The proposed

system is shown to outperform some of the state of the art systems in terms of the recognition

rates.

8.1 Proposed System

The proposed system is shown in Figures 8.1 and 8.2. The system, besides the preprocessing,

consists of two phases, namely, Training and Testing.

8.1.1 Preprocessing Step

A preprocessing step, consists of cropping and resizing, is applied on each training pose before

the required features are being extracted. Table 8.1 shows both the original and the proposed
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dimensions of images in each database used.

Table 8.1: The Dimensions of The Databases

Databases Actual Size Proposed Dimensions Parameter K
ORL 112× 92 128× 128 32

YALE 243× 320 256× 256 64
Cropped AR 165× 120 64× 64 32

FERET 384× 256 256× 256 64

8.1.2 Training Phase

To have a better representation of a pose, DCT is applied on it and the DC coefficient is set to zero.

Unlike the traditional techniques which keep the DCT coefficients that lie on low and low-medium

frequency bands, a new selection technique is implemented here. The following procedure is

followed for each training pose. The DCT of the same pose from all individuals are stacked in three

dimensional arrangement. Only the coefficients that have maximum dynamic ranges are retained,

the number of such coefficients K is shown in Table 8.1. A simple example for DCT selection

order for a training pose when K = 25 is shown in Fig. 8.3. The parameter K is chosen to give the

maximum possible recognition when the system is tested with the training poses. A binary map is

created for that pose to indicate the locations of nonzero elements. The final DCT matrices to be

stored are the results from Hadamard product of the binary map and each DCT matrix. Thereafter,

Euclidean distances between each subject and the rest of the dataset are calculated based of the

final DCT matrices. The two subjects whose their distance is the minimum are grouped together.

A SVM classifier is built for each group to discriminate between such individuals.
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Figure 8.3: Example of The DCT Selection Order for K = 25

8.1.3 Testing Phase

In the Testing phase, the same preprocessing step applied in training is repeated for each testing

pose. The DCT of a preprocessed pose is multiplied by all binary maps using Hadamard products

to sift the required coefficients. Euclidean distances between the input pose and all saved poses, for

one training pose at a time, are calculated. The index of the subject whose model has the minimum

distance is found. Up to the number of the training poses, unique figure of indexes exist. The final

identity is found based on majority voting on the outputs of SVM classifiers from each training

pose. The final recognition rate is calculated by collecting all correctly identified poses.

8.2 Experimental Results

The experimental results obtained from evaluating the proposed system are presented in this sec-

tion. Four publicly accessible image datasets are used: ORL, YALE, Cropped AR, and FERET.
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These datasets have different number of subjects, changing intensity levels, and many face head-

ings. Table 8.2 shows the average of one hundred recorded recognition rates for each dataset.

8.2.1 System Performance Evaluation using ORL Dataset

This dataset [4] is a standard dataset to verify the performance of a facial recognition system. Ten

different poses are available for each one of the 40 people. The result is tabulated in Table 8.2.

8.2.2 System Performance Evaluation using YALE Dataset

This dataset [5] consists of 15 people with 11 different poses. Besides the changing in the face

expressions, illumination levels are also varied across the poses. Table 8.2 displays the recognition

rate.

8.2.3 System Performance Evaluation using Cropped AR Dataset

To test the system with more number of participants, the Cropped AR [9], [10] is used. One

hundred members each has 26 poses captured in two different sessions. Here, only images from

one session are used. Recognition rate is shown in Table 8.2.

8.2.4 System Performance Evaluation using FERET Dataset

To simulate more realistic scenario, FERET dataset [6], [7] is utilized. Two hundred people each

has 11 poses with different face rotation. Table 8.2 contains the obtained result.
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Table 8.2: Average Recognition Rates for The Datasets

Dataset Number of Number of Average Recognition
Training Poses Testing Poses Rate

ORL 5 5 98.9 %
YALE 5 6 98.8 %

Cropped AR 6 7 98.6 %
FERET 5 6 97.7 %

8.3 Conclusion

An improved DCT selection technique along with SVM classifiers for face recognition task is pro-

posed in this chapter. The first stage in the Training phase is storing the DCT coefficients which

have high variability across the subjects for each pose. To overcome the limitations of such co-

efficients, two-input SVM classifiers are utilized to further separate the nearest two individuals’

data. The combination of DCT selection and the SVM classifier improve the recognition rates

compared to the use of DCT only. The proposed technique maintains the simplicity in the Testing

phase, since the final decision is based on Euclidean distance and one output(s) from SVM classi-

fier(s). In terms of the recognition rates, higher values are also achieved, 98.9% for ORL, 98.8%

for YALE, 98.6% for Cropped AR, and 97.7% for FERET.
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CHAPTER 9: EMPLOYING VECTOR QUANTIZATION IN A

TRANSFORM DOMAIN FOR FACE RECOGNITION

A face recognition system using an integration of Discrete Cosine Transform (DCT) and Vec-

tor quantization (VQ) is proposed in this chapter [18]. The system consists of two main phases,

namely, Training and Testing. In the first phase, the input facial image is divided into blocks

with dimensions equal to the codeword dimensions. Then, DCT is applied on each block. The

codebook is initialized using the Kekre Fast Codebook Generation (KFCG) method. The Final

Codebook computed using VQ algorithm efficiently represents the input facial image. The second

phase aims to find the recognition rates based on the Euclidean distance criterion. The system is

evaluated using four different datasets, namely, ORL, YALE, FERET, and FEI that have different

facial variations, such as facial expressions, illuminations, etc. The experimental results are ana-

lyzed using K-fold Cross Validation (CV). The proposed system is shown to improve the storage

requirements, as well as the recognition rates.

9.1 Proposed System

Figures 9.1 and 9.2 show the proposed system. The system consists of two phases, namely, Train-

ing and Testing.

9.1.1 Preprocessing Step

A cropping technique is applied on each pose for each person for all datasets used. Then, different

dimensions of different datasets are converted into power of two dimensions that are compatible
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with the transformation used in this paper as shown in Table 9.1.

Table 9.1: The Dimensions of The Datasets

Datasets Actual Dimensions Proposed DimensionsSize After Cropping
ORL 112× 92 112× 92 128× 128

YALE 243× 320 160× 150 128× 128
FERET 384× 256 220× 170 128× 128

FEI 480× 640 320× 290 128× 128

9.1.2 Training Phase

Thereafter, the input facial image is divided into blocks of 2×2 dimensions. Each block is trans-

formed from the spatial to the DCT domain for better representing the data. Fig. 9.3 shows the

procedure to calculate the initial mean of the facial image, which is expressed as:

X =
x1 + x2 + . . .+ xY

L× L
(9.1)

Where X ∈ {A,B,C,D}, x ∈ {a, b, c, d}, y ∈ {1, 2, . . . , Y }, and Y = L × L = (64 × 64) =

proposed dimensions
codeword dimensions

. The initialized codebook is generated using the KFCG algorithm using mean-

based splitting technique. Then, VQ algorithm, namely the LBG, is applied to find the final code-

book for that pose. This procedure is repeated as many as the number of the training poses, i.e.,

PTr. Therefore, the total number of codebooks is PTot × PTr.
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Figure 9.3: Calculating Initial Pose Mean

9.1.3 Testing Phase

In the Testing phase, the same cropping step is applied to the input image as in the Training phase.

The cropped image with the proposed dimensions is encoded using all codebooks from all the

participating parties in each image dataset and the Euclidean distances(the distance is between the

input image and the reconstructed one using that particular codebook) are calculated. The person

whose codebook has the minimum error is considered to be the correct one. The recognition rate

is based on collecting all the poses that are correctly identifying each person.

9.2 Experimental Results

In this section, the obtained experimental results are presented. System evaluation is performed

using four known image datasets: ORL, YALE, FERET, and FEI. These datasets offer a wide range

of variations including: different number of persons per dataset, changing intensity conditions, and

people in each dataset pose in certain ways that are varied across datasets.
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9.2.1 System Performance Evaluation using ORL Dataset

In the last few years, this dataset [4] is considered as a perfect, and easy, starting point to test

any facial recognition system. Nevertheless, it offers 40 person with 10 different poses each. The

results are tabulated in Table 9.2.

Table 9.2: Recognition Rates for ORL Dataset

K-Fold Number of Number of Average Recognition
Training Poses Testing Poses Rate

2 5 5 98 %
3 7,6 3,4 98.22 %
5 8 2 98.75 %

9.2.2 System Performance Evaluation using YALE Dataset

This dataset [5] consists of 15 members that is less compared to the previous one, in terms of

number of persons. The number of poses per person here is 11. The illumination condition across

poses for each person is also changing. Table 9.3 has the recognition rates for this dataset.

Table 9.3: Recognition Rates for YALE Dataset

K-Fold Number of Number of Average Recognition
Training Poses Testing Poses Rate

2 6,5 5,6 95.77 %
3 8,7 3,4 96.67 %
5 9,8 2,3 98.05 %
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9.2.3 System Performance Evaluation using FERET Dataset

In a real life situation, the number of people in a medium-size firm is usually few to several hun-

dreds. Therefore, 200 people in a dataset can simulate that scenario. Each person in FERET dataset

[6], [7] has eleven poses with different face rotation. The obtained results are contained in Table

9.4.

Table 9.4: Recognition Rates for FERET Dataset

K-Fold Number of Number of Average Recognition
Training Poses Testing Poses Rate

2 6,5 5,6 95.95 %
3 8,7 3,4 97.08 %
3 9,8 2,3 98 %

9.2.4 System Performance Evaluation using FEI Dataset

The last tested dataset is FEI [8]. Two hundred people each has 14 different poses are all included

in this dataset. Recognition rates are shown in cells of Table 9.5.

Table 9.5: Recognition Rates for FEI Dataset

K-Fold Number of Number of Average Recognition
Training Poses Testing Poses Rate

2 7 7 95.715 %
3 10,9 4,5 96.94 %
5 12,11 2,3 97.94 %
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9.3 Conclusion

DCT and VQ utilization in a face recognition system was proposed in this chapter. The use of

these two techniques makes the final persons’ models need 64 times less storage space than orig-

inal images, without losing essential information. Besides data compression, recognition phase

depends only on Euclidean distance between input test image and the dataset. This comparison

process does not have to be in series since the results do not depend on each other, but rather the

final distances are searched for a minimum. High recognition rates are also achieved , 98.75% for

ORL, 98.05% for YALE, 98% for FERET, and 97.94% for FEI.
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CHAPTER 10: FACE RECOGNITION USING THE PRINCIPLE

COMPONENTS OF THE SCATTER MATRIX IN THE FREQUENCY

DOMAIN

This chapter develops a Linear Discriminant Analysis based face recognition system in the Dis-

crete Cosine Transform (DCT) domain as a departure from the traditional analysis in the Spatial

domain [19]. In the Training phase, the truncated DCT coefficients are used to find discriminating

features for all the subjects in the image database. The compact representation of the truncated

DCT coefficients leads to notable reductions in data dimensionality and also bypasses the well-

known Small Sample Size problem. The input data is projected on the dominant Eigenvectors of

the scatter matrix capturing within-class and between-class information. To further enhance the

system performance, a correction matrix computed in the Training phase depending on a penalty

function is used to adjust the Euclidean distances between the testing and the training poses. The

final classification decision is based on the minimum distance. The ORL, YALE, FERET, and

FEI databases are used to evaluate the system performance. The proposed system is shown to

achieve higher recognition rates, reduced computational complexity and low storage requirements

compared to its existing counterparts.

10.1 Proposed System

In this section, we present the details of the proposed recognition system. Both the Training and

Testing Phases are shown in Figures 10.1 and 10.2.
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Table 10.1: The Dimensions of the Datasets and the Dimension of Truncated DCT Coefficients K.

Dataset Original Dimensions Proposed
Ksize after cropping dimensions

ORL 112× 92 112× 92 128× 128 8
YALE 243× 320 160× 150 256× 256 8

FERET 384× 256 220× 170 256× 256 5
FEI 480× 640 320× 290 256× 256 8

10.1.1 Preprocessing Step

Let I = g(u, v) denotes one image of dimensions M × N containing the entire head of a subject

after cropping. A resizing technique is also applied to have consistent pose dimensions across each

dataset. The dimensions used for each dataset are shown in Table 10.1.

10.1.2 Training Phase

For the face recognition task, let PTot, PTr, and PTs denote the total number of individuals, the

total number of poses available for training per subject, and the total number of poses assigned for

testing, respectively. The DCT algorithm is used to transform I to the frequency domain. Since

DCT concentrates most of the signal power in the low and low-medium frequency bands, only

these parts of the DCT coefficients are stored. Therefore, a K ×K sub-matrix is used to represent

I , where K is the dimension of the retained coefficients. Since (PTr × PTot) > K2, the Small

Sample Size (SSS) problem does not arise here [50]. All poses from all subjects are stacked next

to each other to form the data matrix X = [G1
1, G

2
1, . . . , G

PTr
PTot

], where the superscript of G refers

to the index of the pose and the subscript is the index of the subject. Hence, the dimensions of X

are K2 × (PTr × PTot). Mean vectors, µi where i = 1, . . . , PTot, are calculated by averaging all the

columns in X belonging to the same person.
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One global mean vector, µ, is also calculated for all the columns in X . Two scatter matrices,

within-class Sw and between-class Sb, are computed as [51],

Sw =
1

PTot

PTot∑
i=1

Σi, (10.1)

Sb =
1

PTot

PTot∑
i=1

(µ− µi)(µ− µi)T , (10.2)

where T denotes the transpose operator, and Σi is the covariance matrix for the ith subject.

The Eigenvalues, λi, i = 1, . . . , (M × N), of (S−1w × Sb) and the corresponding Eigenvectors are

computed using a standard Singular Value Decomposition (SVD). Only the dominant Eigenvalues

whose ratio to the sum of the Eigenvalues exceeds a predefined threshold ε are retained and used

in the next steps. The Eigenvectors U corresponding to the retained Eigenvalues are multiplied by

the input coefficients matrix to find the feature matrix Fm, i.e.,

Fm = UTX. (10.3)

A correction matrix W with dimensions of PTr × PTot is initialized. All training poses are used

for testing and the output recognition rates are recorded. W is populated with elements that have

values equal to the ratio of distances between the recorded and correct ones, and this process is

repeated until the recognition rate hits 100%. The elements of W are calculated as follows,

w(i, j) =


minimum distance

distance of pose(i, j) if incorrectly identified

1 if correctly identified
(10.4)

94



where i = 1, 2, . . . , PTr, and j = 1, 2, . . . , PTot. The minimum distance in (10.4) refers to the

distance between the input pose and the nearest erroneous pose identified.

10.1.3 Testing Phase

The Testing phase starts by computing a K2 × 1 vector from the input test pose using the same

steps that are used in the Training phase to compute the data matrix X . This includes cropping,

resizing, transforming to the DCT domain, and truncating K ×K from the resultant DCT matrix.

Then, the resultant vector is projected onto the directions of U and the result is compared to the

feature matrix Fm. The Euclidean distance measure matrix Eu, which has the same dimensions as

W , is populated with the distances between the test pose and the different training poses, such that

Eu(i, j) is the distance between the test pose and the ith pose of the jth person. The test pose is

assigned the class of the minimizer of Eu �W , where � is the Hadamard (element-wise) matrix

product.

10.2 Experimental Results

In this section, we present some experimental results of the proposed approach. We use the ORL,

YALE, FERET, and FEI image datasets to evaluate the system performance. These datasets have

different numbers of subjects, variable intensity levels, and various view angles for each subject.

The ORL dataset [4] consists of 40 subjects, each with 10 poses. Each subject has different facial

expressions. It contains poses with tilted head and subjects wearing glasses. The YALE dataset

[5] consists of 15 members. The number of poses per person is 11 with varying illumination

conditions. The previous two datasets are useful in evaluating the performance of face recognition

systems. The FERET dataset [6, 7] consists of 200 subjects, which simulates a real life scenario
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for a face recognition system. The face rotation in the FERET dataset changes across the 11 poses

each person has in the dataset. The last tested dataset is FEI [8] which consists of 200 people. Each

subject has 14 different poses.

Table 10.2 presents the results of the proposed recognition system tested with all the datasets, with

ε = 10−4. To avoid any bias in the test results, the average recognition rates in Table 10.2 are

obtained by averaging all the recognition rates resulting from all different combinations of the

available poses. For instance, the ORL dataset has 10 poses, 5 of which were used for training

and 5 for testing. Therefore, we consider all possible combinations for training and testing with 5

poses, which gives
(

10

5

)
= 252 possible combinations.

As Table 10.2 shows, the results of our proposed approach are shown to outperform the ones

reported in [70] in terms of the storage requirements and the recognition rates for both ORL, and

YALE datasets.

Table 10.2: Recognition Rates for all the Datasets

Dataset Number of Number of Average Recognition
Training Poses Testing Poses Rate

ORL 5 5 98.5 %
YALE 5 6 96.6 %

FERET 5 6 96 %
FEI 7 7 96 %

10.3 Conclusion

This chapter developed a new technique combining DCT and LDA for facial recognition. Unlike

prior related work which focused on the Spatial domain, the proposed algorithm uses LDA analysis

in the transform domain thereby bringing about substantial savings in computational and storage
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requirements. Specifically, since the DCT coefficients concentrate in the lower frequency bands,

truncation was used to reduce the dimensions of the input matrix to overcome the Small Sample

Size problem. In addition, it reduced storage requirements given the compact representations of

the facial images. Further dimensionality reduction was achieved by retaining only the dominant

eigenvectors. A correction weight matrix computed in the Training phase was used to adjust the

Euclidean distances between the unknown image and the training poses in the Testing phase. The

proposed recognition system was shown to outperform some of the state-of-the-art LDA-based sys-

tems in recognition rates based on evaluations using four different datasets, namely, ORL, YALE,

FERET, and FEI with varying illumination conditions, facial expressions, and face rotations.
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CHAPTER 11: CONCLUSION AND FUTURE WORKS

The three factors that are taking into consideration while designing a FR system are: the recogni-

tion accuracy, the computational complexity, and the storage requirements. Most of FR systems

found in the literature were focusing on achieving higher recognition rates. In such systems, it was

assumed that the large storage size and the high computational complexity are issues that can be

solved by using the available signal processing techniques.

In this dissertation, several FR systems were proposed. In each of the Training and Testing phases

of the FR system, the following parts are main modules: Preprocessing, Feature Extraction, and

Classification.

The ORL, YALE, FERET, FEI, Cropped AR, and Georgia Tech datasets were used to evaluate the

performance of the proposed systems in chapters 5, and 6. For systems described in chapter 8,

the datasets used to evaluate the performance of those systems were ORL, YALE, Cropped AR,

and FERET. In chapters 9, and 10, the ORL, YALE, FERET, and FEI were the datasets used to

evaluate the performance of systems. In chapter 4, the datasets ORL, YALE, and FERET were

used to evaluate the performance of system. Finally, in chapter 7 the ORL, and YALE were used to

evaluate the performance of system. The proposed systems are categorized into Single-Transform

and Two-Transform systems. In the first category, the features are being extracted from one do-

main which is the Two-Dimensional Discrete Cosine Transform (2D DCT) domain. In the latter

category, the Two-Dimensional Discrete Wavelet Transform (2D DWT) coefficients are concate-

nated with the 2D DCT ones to form one feature vector. Feature vectors are either used directly or

further processing is performed on them to obtain the persons’ final models. The Principle Com-

ponent Analysis (PCA), the Sparse Representation, Vector Quantization (VQ) are the employed

approaches where each of them is utilized as a second step in the Feature Extraction Module. Be-

side that, a proposed technique in which the feature vector is composed of appropriately selected,
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based on a residual minimization algorithm, 2D DCT and 2D DWT coefficients is also presented.

Proposed techniques are evaluated using experiments executed in a MATLAB environment. The

results confirm the improved performance of the proposed systems in terms of better recognition

accuracy, less storage, and fewer computation steps compared with some of recently reported ap-

proaches.

By comparing results of the proposed systems presented in this dissertation, the system described

in chapter 5 outperformed the others in terms of the recognition accuracy, the computational com-

plexity, and the storage requirements.

11.1 Future Work

Several suggestions for future work will be enlisted in this section.

• Based on the results we obtained for Face Recognition, we will further investigate the appli-

cation of the nonorthogonal mixed transforms representation for different kinds of signals.

• To realize more realistic scenario, we would like to apply the proposed techniques to face

datasets after adding different types of noise.

• Even though the Cropped AR dataset has poses with occlusions, we would like to evaluate

the performance of the proposed systems for datasets with missing parts of the face.

• We would like to apply the proposed recognition techniques on Biomedical signals, e.g.,

Electroencephalogram (EEG) signals.
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APPENDIX A: OBJECTIVE FUNCTION OPTIMIZATION
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This appendix contains the derivation of finding the optimal solution of the objective function used

in chapter 5 as explained in details in [68]. The objective function of the proposed system in [68]

is defined as:

min
B
||t−XB||2 + γ

Tot∑
i=1

Tot∑
j=1

||XiBi +XjBj||2 (A.1)

The objective function in A.1 is convex and differentiable [68]. The derivative of A.1 can be found

as follows. The derivative of the first part of A.1 is:

d

dB
||t−XB||2 = −2XT (t−XB) (A.2)

The derivative of the second part of A.1 is:

d

dB
(γ

Tot∑
i=1

Tot∑
j=1

||XiBi +XjBj||2) (A.3)

The partial derivatives (∂f/∂Bk) have to be calculated since f(B) = γ
∑Tot

i=1

∑Tot
j=1 ||XiBi +

XjBj||2 does not contain explicit definition of B. Then, all these partial derivatives (δf/δBk)(k =

1, ...., T ot) are summed to obtain (∂f/∂B). The sum of L2 terms constitutes f(B), out of such

terms only 2 × Tot − 1 are dependent on Bk. To determine (∂f/∂Bk), only the Bk dependent
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terms are needed. The procedure is as follows:

f(B) =γ

( ∑
j=1,....,T ot

j 6=k

||XkBk +XjBj||2

+
∑

i=1,....,T ot
i 6=k

||XkBk +XiBi||2

+
∑

i=1,....,T ot
i 6=k

∑
j=1,....,T ot

j 6=k

||XiBi +XjBj||2
)

= γ

(
2

∑
j=1,....,T ot

j 6=k

||XkBk +XjBj||2

+
∑

i=1,....,T ot
i 6=k

∑
j=1,....,T ot

j 6=k

||XiBi +XjBj||2
)

(A.4)

The partial derivative of f(B) over Bk is

∂f

∂Bk

=
∂

∂Bk

(
γ
Tot∑
i=1

Tot∑
j=1

||XiBi +XjBj||2
)

=
∂

∂Bk

γ

(
2

∑
j=1,....,T ot

j 6=k

||XkBk +XjBj||2 +
∑

i=1,....,T ot
i 6=k

∑
j=1,....,T ot

j 6=k

||XiBi +XjBj||2
) (A.5)
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∂f

∂Bk

=2γ
∑

j=1,....,T ot
j 6=k

∂

∂Bk

||XiBi +XjBj||2

= 2γ
∑

j=1,....,T ot
j 6=k

2XT
k (XkBk +XjBj)

= 4γXT
k

(
(Tot− 1)XkBk +

∑
j=1,....,T ot

j 6=k

XjBj

)

= 4γXT
k

(
Tot XkBk +

Tot∑
j=1

XjBj

)
4γXT

k (Tot XkBk +XB)

(A.6)

Hence, the (∂f/∂Bk) is

∂f

∂Bk

=


∂f

∂B1
...
∂f

∂BTot

 =


4γXT

1 (Tot X1B1 +XB)

...

4γXT
Tot(Tot XTotBTot +XB)



= 4γTot


XT

1 X1 ... 0

... . . . ...

0 ... XT
TotXTot

B + 4γXTXB

(A.7)

Let

E =



XT
1 X1 ... 0

. . .

. . .

. . .

0 ... XT
TotXTot


(A.8)
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then

df

dB
= 4γ(Tot E B +XTXB). (A.9)

Let g = ||t−XB||2+γ
∑Tot

i=1

∑Tot
j=1 ||XiBi+XjBj||2, then ( dg

dB
) = −2XT (t−XB)+4γ(Tot E B+

XTXB). When ( dg
dB

) = 0, then ((1 + 2γ)XTX + 2γTot E)B = XT t. The optimal solution of

A.1 is

B = ((1 + 2γ)XTX + 2γ Tot E)−1XT t (A.10)
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APPENDIX B: VECTOR QUANTIZATION CODEBOOK

INITIALIZATION METHODS
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In this appendix, simplified explanations are given to demonstrate two codebook initialization

approaches. Let the quantizer input data dimensions are M ×M while the outputs are: L levels

(Centroids) each has the dimensions of q × p. For simplicity, let L = 2, i.e., the final codebook

consists of 2 Centroids, q = 2, p = q, and M = 4.

1. LBG Initial Codebook Generation Method:

Figure B.1 shows a cartoon of how to form the initial codebook using the approach explained

in the LBG article.

(a) Calculate first average as follows:

Average1,1 =
x1,1 + x1,3 + x3,1 + x3,3

4
(B.1)

The rest of the averages are calculated using B.1 after replacing indexes by appropriate

ones.

(b) Add a small number ε to each element of the first average matrix. Then, the new

Average1,1 equals to Average1,1 + ε and so on. This forms the first Centroid.

(c) Subtract small number ε to each element of the first average matrix. Then, the new

Average1,1 equals to Average1,1 − ε and so on. This forms the second Centroid.

                                         

                                                                                                                                                                                                                                                                                                   

 

 

 

x1,1 x1,2 x1,3 x1,4 

x2,1 x2,2 x2,3 x2,4 

x3,1 x3,2 x3,3 x3,4 

x4,1 x4,2 x4,3 x4,4 

Average 1,1 Average 1,2 

Average 2,1 Average 2,2 

Average 1,1 +ε Average 1,2 +ε 

Average 2,1 +ε Average 2,2 +ε 

Average 1,1 -ε Average 1,2 -ε 

Average 2,1 -ε Average 2,2 -ε 

First Centroid  

Second Centroid  

Figure B.1: LBG Initialization Method
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2. Kekre Fast Codebook Generation (KFCG):

To expedite the process of calculating the initial codebook, authors of [54] proposed this

approach. The cartoon of how this method creates the initial codebook is shown in Fig. B.2.

(a) The Calculation of average matrix is the same as in the LBG Initial Codebook Genera-

tion Method.

(b) Split the data into two groups based on the following criterion:

• if x1,1 >= Average1,1, then ”First sub image” belongs to the first group, otherwise

it belongs to the second group.

• The above step is repeated for the rest of the subimages.

(c) The new average is calculated as follows:

Average11,1 =
x1,1 + x3,1

2
(B.2)

The rest of the averages are calculated using B.2 after replacing indexes by appropriate

ones. The new average matrices are the initial Centroids.
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x1,1 x1,2 x1,3 x1,4 

x2,1 x2,2 x2,3 x2,4 

x3,1 x3,2 x3,3 x3,4 

x4,1 x4,2 x4,3 x4,4 

x1,1 x1,2 x2,1 x2,2 First subimage 

x1,3 x1,4 x2,3 x2,4 Second subimage 

x3,1 x3,2 x4,1 x4,2 Third subimage 

x3,3 x3,4 x4,3 x4,4 Fourth subimage 

     

Average 1,1 Average 1,2 Average 2,1 Average 2,2  

x1,1 x1,2 x2,1 x2,2 First subimage 

x3,1 x3,2 x4,1 x4,2 Third subimage 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 1 1,1 𝐴𝑣𝑒𝑟𝑎𝑔𝑒1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅1,2 𝐴𝑣𝑒𝑟𝑎𝑔𝑒1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2,1 𝐴𝑣𝑒𝑟𝑎𝑔𝑒1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2,2 First Centroid 

     

x1,3 x1,4 x2,3 x2,4 Second subimage 

x3,3 x3,4 x4,3 x4,4 Fourth subimage 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2 1,1 𝐴𝑣𝑒𝑟𝑎𝑔𝑒2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅1,2 𝐴𝑣𝑒𝑟𝑎𝑔𝑒2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2,1 𝐴𝑣𝑒𝑟𝑎𝑔𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 22,2 Second Centroid  

First Group 

Second Group 

Figure B.2: Kekre Fast Codebook Generation Method
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APPENDIX C: MIXED NON-ORTHOGONAL TRANSFORMS

REPRESENTATION FOR FACE RECOGNITION/SOFTWARE CODE
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c l e a r v a r s ; c l o s e a l l ; c l c ; % C l e a r / C lose V a r i a b l e s

t i c ; % S t a r t I n t e r n a l Clock . Th i s l i n e i s used t o c a l c u l a t e t h e

e x e c u t i o n t ime

% Cropping Codes o f Th i s Program Were W r i t t e n by Dr . Ahmed Aldhahab

DB= 1 : 6 ; % L i s t A l l D a t a s e t s

f o r co =1: l e n g t h (DB)

f o r C a l p h a =1:100 % Those Numbers a r e f o r i l l u s t r a t i o n

P u r p o s e s Only

f o r C b e t a =1:100 % Those Numbers a r e f o r i l l u s t r a t i o n

P u r p o s e s Only

s w i t c h DB( co )

c a s e 1

t o t P e r =40; ToT POS =10; d a t a b a s e = ’ORL’ ;

c a s e 2

t o t P e r =15; ToT POS =11; d a t a b a s e = ’YALE’ ;

c a s e 3

t o t P e r =200; ToT POS =11; d a t a b a s e = ’FERET ’ ;

c a s e 4

t o t P e r =200; ToT POS =14; d a t a b a s e = ’ FEI ’ ;

c a s e 5

t o t P e r =100; ToT POS =13; d a t a b a s e = ’AR’ ;

o t h e r w i s e

t o t P e r =50; ToT POS =15; d a t a b a s e = ’GEO’ ;

end

Th =5; % T h r e s h o l d
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c o u n t =1 ;

f o r Per =1: t o t P e r

f o r Pos =1: ToT POS

s w i t c h DB( co )

c a s e 1

%%%%%%%%%%ORL%%%%%%%%%

Im cove r = do ub l e ( imread ( s t r c a t ( ’ l o c a t i o n \ ’ , ’ s ’ , num2s t r ( Per ) ,

’\ ’ , num2s t r ( Pos ) , ’ . bmp ’ ) ) ) ; Im cove r = Im cove r ( : , : , 1 ) ; % Laptop

%%%%%%%%%%ORL%%%%%%%%%

c a s e 2

%%%%%%%%%%YALE%%%%%%%%%

I m r e s i z e = dou b l e ( imread ( s t r c a t ( ’ l o c a t i o n \ ’ , ’ y ’ , num2s t r ( Per ) ,

’\ ’ , num2s t r ( Pos ) , ’ . g i f ’ ) ) ) ; I m r e s i z e = I m r e s i z e ( : , : , 1 ) ;

% i f Per ==6 | | Per ==14

% Im cove r = imcrop ( I m r e s i z e , [ 5 5 55 149 1 5 9 ] ) ;

% e l s e

% Im cove r = imcrop ( I m r e s i z e , [ 1 0 0 20 160 2 0 0 ] ) ;

% end

%%%%%%%%%%YALE%%%%%%%%%

c a s e 3

%%%%%%%%%%FERET%%%%%%%%%

Per1 = Per ;%Per −55;

I m r e s i z e = do ub l e ( imread ( s t r c a t ( ’ l o c a t i o n c \ ’ , ’ r ’ ,

num2s t r ( Pe r ) , ’\ ’ , num2s t r ( Pos ) , ’ . t i f f ’ ) ) ) ;
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I m r e s i z e = I m r e s i z e ( : , : , 1 ) ;

% i f Per1 ==34 | Per1 ==24 | Per1 ==25 | Per1 ==11 | Per1 ==13

| Per1 ==8 | Per1 ==35 | Per1 ==44 | Per1 ==57 | Per1 ==58 | Per1 ==60

| Per1 ==69 | Per1 ==70 | Per1 ==76 . . .

% | Per1 ==146 | Per1 ==164 | Per1 ==192 | Per1 ==196

%

% i f Pos ==1 | Pos ==10

% Im cove r = imcrop ( I m r e s i z e , [60 85 169 2 1 9 ] ) ;

% e l s e

% Im cove r = imcrop ( I m r e s i z e , [50 85 169 2 1 9 ] ) ;

% end

%

% e l s e

% i f Pos ==1 | Pos ==10

% Im cove r = imcrop ( I m r e s i z e , [60 60 169 2 1 9 ] ) ;

% e l s e

% Im cove r = imcrop ( I m r e s i z e , [50 60 169 2 1 9 ] ) ;

% end

% end

%%%%%%%%%%FERET%%%%%%%%%

c a s e 4

%%%%%%%%%%FEI%%%%%%%%%

i f Pos < 10

I m r e s i z e = imread ( s t r c a t ( ’ l o c a t i o n \ ’
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, num2s t r ( Pe r ) , ’−0 ’ , num2s t r ( Pos ) , ’ . jpg ’ ) ) ;

e l s e

I m r e s i z e = imread ( s t r c a t ( ’ l o c a t i o n \ ’

, num2s t r ( Pe r ) , ’− ’ , num2s t r ( Pos ) , ’ . jpg ’ ) ) ;

end

% i f Pos ˜=14

% I m r e s i z e = r g b 2 g r a y ( I m r e s i z e ) ;

% end

% i f Pos < 5

% Im cove r = imcrop ( I m r e s i z e , [135+3∗L1−10 35 289 3 1 9 ] ) ;

% e l s e i f Pos < 10

% LL=LL+5;

% Im cove r = imcrop ( I m r e s i z e , [175+LL−10 35 289 3 1 9 ] ) ;

% e l s e i f Pos == 10

% Im cove r = imcrop ( I m r e s i z e , [210 35 289 3 1 9 ] ) ;

% e l s e

% Im cove r = imcrop ( I m r e s i z e , [180 35 289 3 1 9 ] ) ;

% end

%%%%%%%%%%FEI%%%%%%%%%

c a s e 5

%%%%%%%%%%AR%%%%%%%%%

Im cove r = imread ( s t r c a t ( ’ l o c a t i o n ’ ,

num2s t r ( Pe r ) , ’− ’ , num2s t r ( Pos ) , ’ . bmp ’ ) ) ; Im cove r = Im cove r ( : , : , 1 ) ;
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Im cove r = do ub l e ( Im cove r ) ;

%%%%%%%%%%AR%%%%%%%%%

o t h e r w i s e

%%%%%%%%%%Geo%%%%%%%%%

Im cove r = do ub l e ( imread ( s t r c a t ( ’ l o c a t i o n / s ’ ,

num2s t r ( Pe r ) , ’− ’ , num2s t r ( Pos ) , ’ . jpg ’ ) ) ) ; Im cove r = Im cove r ( : , : , 1 ) ;

%%%%%%%%%%Geo%%%%%%%%%

end

% Image R e s i z i n g

Im cover1 = i m r e s i z e ( d ou b l e ( Im cove r ) , [ Dim Dim ] ) ;

[ a lpha , be t a , wav or i , p o r i ]= re17 ( Im cover1 , Th ) ;

% C a l l i n g The O p t i m i z a t i o n SubProgram

% R e t a i n A l l C o e f f i c i e n t s With T h e i r R e s p e c t i v e Weights

v2 ( : , c o u n t )= a l p h a 1 ( : ) ;

V2 ( : , c o u n t )= b e t a 1 ( : ) ;

w v2 ( : , c o u n t )= a l p h a ( : ) ;

W V2 ( : , c o u n t )= b e t a ( : ) ;

v 2 o r i ( : , c o u n t )= w a v o r i ( : ) ;

P o r i ( : , c o u n t )= p o r i ( : ) ;

% S e l e c t i n g C e r t a i n Number o f C o e f f i c i e n t s

a l p h a o r i = a l p h a ( : ) ; map= z e r o s ( l e n g t h ( a l p h a o r i ) , 1 ) ;

f o r n1 =1: l e n g t h ( a l p h a )

[ ˜ , i n d e x ]=max ( a l p h a o r i ) ;

a l p h a o r i ( i n d e x (1))=− i n f ;

M alpha ( n1 , c o u n t )= i n d e x ( 1 ) ;
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end

c l e a r n1 a l p h a o r i i n d e x map

% S e l e c t i n g C e r t a i n Number o f C o e f f i c i e n t s

b e t a o r i = b e t a ( : ) ; map= z e r o s ( l e n g t h ( b e t a o r i ) , 1 ) ;

f o r n1 =1: l e n g t h ( b e t a )

[ ˜ , i n d e x ]=max ( b e t a o r i ) ;

b e t a o r i ( i n d e x (1))=− i n f ; M beta ( n1 , c o u n t )= i n d e x ( 1 ) ;

end

c l e a r n1 b e t a o r i i n d e x map

a l p h a ( : , c o u n t ) = a 1 ; b e t a ( : , c o u n t ) = a 2 ; v2 ( : , c o u n t )= c ;

R Vec ( : , c o u n t ) = r e ; PHI ( count , 1 ) = p h i ;% c o u n t = c o u n t +1;

c o u n t = c o u n t +1 ;

c l e a r ALL Temporary V a r i a b l e s

d i s p ( s t r c a t ( d a t a b a s e , ’ ’ , num2s t r ( Pe r ) , ’ ’ ,

num2s t r ( Pos ) ) )% d i s p ( [ Per Pos ] )

%d i s p ( [DB( co ) Per Pos C a l p ha C b e t a ] )

end %vv =1: t o t P o s

end % Per =1: t o t P e r

c l e a r Temporary V a r i a b l e s

save ( s t r c a t ( ’ Rawdata ’ , d a t a b a s e ) , ’− v7 . 3 ’ ) ;

% Save Ma t r i x C o n t a i n i n g ALL C o e f f i c i e n t s

% Keeping C o n s i s t e n c y Between C o e f f i c i e n t s and Weights

ve c 1 = z e r o s ( Dim∗Dim , count −1); ve c 2 = vec 1 ;

f o r j =1 : count−1

f o r C a l p h a =1:10
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% Those Numbers a r e f o r i l l u s t r a t i o n P u r p o s e s Only

f o r i =1 : count−1

ve c 1 ( M alpha ( 1 : C a l p ha ) , i )= v 2 o r i ( M alpha ( 1 : C a l p ha ) , i ) ;

end

f o r C b e t a =1:10

% Those Numbers a r e f o r i l l u s t r a t i o n P u r p o s e s Only

f o r i =1 : count−1

ve c 2 ( M beta ( 1 : C b e t a ) , i )= P o r i ( M beta ( 1 : C b e t a ) , i ) ;

end

end

end

end

% C a l c u l a t i n g E u c l i d e a n D i s t a n c e s Between

A l l Poses / Th i s Saves Time Needed Every Time

New T r a i n i n g−T e s t i n g S e t s Are T e s t e d

f o r a 1 =1: count−1

v3 ( : , a 1 ) = ( sum ( ( repmat ( v2 ( : , a 1 ) , 1 , count−1)−v2 ) . ˆ 2 ) . ˆ ( 1 / 2 ) ) ’ ;

d i s p ( a 1 )

v3 1 ( : , a 1 ) = ( sum ( ( repmat ( V2 ( : , a 1 ) , 1 , c

ount−1)−V2 ) . ˆ 2 ) . ˆ ( 1 / 2 ) ) ’ ;

end

v3 ( v3 ==0)= i n f ; v3 1 ( v3 1 ==0)= i n f ;

% Th i s Code E n s u r e s Tha t The System Does Not

Count The Same Pose as The C o r r e c t One

c l e a r Temporary V a r i a b l e s
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s ave ( s t r c a t ( ’ l o c a t i o n ’ , d a t a b a s e , ’−v7 . 3 ’ ) ;

end % C b e t a

c l e a r Temporary V a r i a b l e s

end% C a l p h a

end

t o c ; % End I n t e r n a l Clock .

d i s p ( ’ T r a i n i n g Ended ’ )
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f u n c t i o n [ a lpha , be t a , wav or i , p o r i ]= re17 ( c , Th )

% a l p h a Alpha C o e f f i c i e n t s V ec t o r / F i n a l Weights

% b e t a Beta C o e f f i c i e n t s V ec t o r / F i n a l Weights

% w a v o r i DWT Ma t r ix

% p o r i DCT Ma t r i x

% re17 ( c , Th ) r e17 F u n c t i o n Name / c The I n p u t Vector ,

o r M a t r i x / Th T h r e s h o l d S t o p p i n g C r i t e r i o n

[ D1 , D2]= s i z e ( c ) ;

d1=D1 ; d2=D2 ;

% C o n s t r u c t i n g 2D DWT C o n v e r s i o n M at r i x

H= z e r o s ( d1 , d1 ) ; H( 1 , 1 : d1 )= ones ( 1 , d1 ) / s q r t ( d1 ) ;

f o r k =1: d1−1

p= f i x ( l o g ( k ) / l o g ( 2 ) ) ;

q=k−(2ˆ p ) ;

k1 =2ˆ p ; t 1 =d1 / k1 ;

k2 = 2 ˆ ( p + 1 ) ; t 2 =d1 / k2 ;

f o r i =1 : t 2

H( k +1 , i +q∗ t 1 ) = ( 2 ˆ ( p / 2 ) ) / s q r t ( d1 ) ;

H( k +1 , i +q∗ t 1 + t 2 ) =−(2ˆ( p / 2 ) ) / s q r t ( d1 ) ;

end

end

c l e a r i k k1 k2 p q t 1 t 2

E c=sum ( sum ( c . ˆ 2 ) ) ;

wav=H∗c∗H’ ;

w a v o r i =wav ; wav1=wav ( : ) . ˆ 2 ; wav2=wav ( : ) ;
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map= z e r o s ( l e n g t h ( wav2 ) , 1 ) ;

map res = ones ( l e n g t h ( wav2 ) , 1 ) ; a l p h a = z e r o s ( d1 , d2 ) ;

% I n i t i a l i z a t i o n

f o r i =1 : f l o o r ( ( d1∗d2 ) / 2 )

[ ˜ , i n d e x ]=max ( wav1 ) ;

wav1 ( i n d e x (1))=− i n f ; map ( i n d e x ( 1 ) ) = 1 ;

map res ( i n d e x ( 1 ) ) = 0 ; a l p h a ( i n d e x ( 1 ) ) = 8 e−1;

end

wav= w a v o r i .∗ r e s h a p e ( map , [ d1 d2 ] ) ;

r 1 = w a v o r i .∗ r e s h a p e ( map res , [ d1 d2 ] ) ;

c l e a r wav1 wav2 i n d e x map map res

x=H∗ r 1 ∗H’ ;

D=H∗ ( wav . ∗ a l p h a )∗H’ ;

D 1=−2∗D;

f o r i =1 : d1

f o r j =1 : d2

temp= z e r o s ( d1 , d2 ) ; temp ( i , j ) = 1 ;

D a lpha ( i , j )= sum ( sum ( D 1 . ∗ ( H’ ∗ ( temp )∗H ) ) ) ;

end

end

c l e a r i j temp

% C o n s t r u c t i n g 2D DCT C o n v e r s i o n M at r i x

mx= dc tmtx ( d1 ) ;

p=mx∗D∗mx ’ ;

p o r i =p ; p1=p ( : ) . ˆ 2 ; p2=p1 ( : ) ;
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map= z e r o s ( l e n g t h ( p2 ) , 1 ) ; map res = ones ( l e n g t h ( p2 ) , 1 ) ;

b e t a = z e r o s ( d1 , d2 ) ;

f o r i =1 : f l o o r ( ( d1∗d2 ) /2 )%N2

[ ˜ , i n d e x ]=max ( p1 ) ; p1 ( i n d e x (1))=− i n f ;

map ( i n d e x ( 1 ) ) = 1 ;

map res ( i n d e x ( 1 ) ) = 0 ; b e t a ( i n d e x ( 1 ) ) = 6 e−1;

end

p= p o r i .∗ r e s h a p e ( map , [ d1 d2 ] ) ;

r 2 = p o r i .∗ r e s h a p e ( map res , [ d1 d2 ] ) ;

c l e a r p1 p2 i n d e x map map res

T=mx’ ∗ ( p .∗ b e t a )∗mx ;

T 1=−2∗T ;

f o r i =1 : d1

f o r j =1 : d2

temp= z e r o s ( d1 , d2 ) ; temp ( i , j ) = 1 ;

T b e t a ( i , j )= sum ( sum ( T 1 . ∗ ( mx’ ∗ ( temp )∗mx ) ) ) ;

end

end

c l e a r i j temp

R e s i d u a l =sum ( sum ( ( c . ˆ 2 ) − (D. ˆ 2 ) − ( T . ˆ 2 ) ) ) / E c ;

p h i = R e s i d u a l ;

c l e a r x x1

% % I t e r a t i o n

A( : , : , 1 ) = a l p h a ; B ( : , : , 1 ) = b e t a ; PHI ( 1 , 1 ) = p h i ;

f o r a 2 =1:100
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mu alpha = p h i / ( sum ( sum ( D alpha . ˆ 2 ) ) ) ;

% C a l c u l a t i n g mu f o r Alpha

a l p h a = a lpha−mu alpha ∗D alpha ;

% Upda t ing Alpha , Upda t ing Weights

D=H’ ∗ ( wav . ∗ a l p h a )∗H;

D 1=−2∗D;

f o r i =1 : d1

f o r j =1 : d2

temp= z e r o s ( d1 , d2 ) ; temp ( i , j ) = 1 ;

D a lpha ( i , j )= sum ( sum ( D 1 . ∗ (H∗ ( temp )∗H ’ ) ) ) ;

end

end

c l e a r i j temp

mu beta = p h i / ( sum ( sum ( T b e t a . ˆ 2 ) ) ) ; % C a l c u l a t i n g mu f o r Beta

b e t a = be t a−mu beta ∗ T b e t a ; % Upda t ing Beta , Upda t ing Weights

p=mx∗D∗mx ’ ;

T=mx’ ∗ ( p .∗ b e t a )∗mx ;

T 1=−2∗T ;

f o r i =1 : d1

f o r j =1 : d2

temp= z e r o s ( d1 , d2 ) ; temp ( i , j ) = 1 ;

T b e t a ( i , j )= sum ( sum ( T 1 . ∗ ( mx∗ ( temp )∗mx ’ ) ) ) ;

end

end

c l e a r i j temp
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R e s i d u a l =100∗sum ( sum ( ( c . ˆ 2 ) − (D. ˆ 2 ) − ( T . ˆ 2 ) ) ) / E c ;

% C a l c u l a t i n g R e s i d u a l

p h i = R e s i d u a l ;

A ( : , : , a 2 +1)= abs ( a l p h a ) ;

B ( : , : , a 2 +1)= abs ( b e t a ) ;

PHI ( a 2 +1 ,1)= p h i ;

E ( a 2 , 1 ) = p h i ; R( a 2 , 1 ) = p h i ;

% B r e a k i n g c r i t e r i a i s e i t h e r when t h e r e s i d u a l i s l e s s t h a n

Th or when t h e r e s i d u a l s t a r t s t o i n c r e a s e

i f R( a 2 , 1 ) < Th & R( a 2 , 1 ) > 0

d i s p ( ’ Break ONE ’ ) ; b r e a k ;

end

i f a 2 ˜=1 & R( a 2 , 1 ) > R( a 2 −1 ,1)

a l p h a =A ( : , : , a 2 ) ; b e t a =B ( : , : , a 2 ) ; p h i =PHI ( a 2 , 1 ) ;

d i s p ( ’ Break TWO ’ ) ;

b r e a k ;

end

end

% To a v o i d p o s s i b l e e r r o r i n t h e we igh t s , t h e f o l l o w i n g warn ing

message i s c r e a t e d

i f sum ( sum ( a l p h a > 1 ) ) ˜ = 0 | sum ( sum ( b e t a > 1 ) ) ˜ = 0

warn ing ( ’ P l e a s e check The Weights ’ ) ;

end

end
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