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ABSTRACT

Online social networks and recommender systems have become an effective channel for

influencing millions of users by facilitating exchange and spread of information. This dissertation

addresses multiple challenges that are faced by online social recommender systems such as: i)

finding the extent of information spread; ii) predicting the rating of a product; and iii) detecting

malicious profiles. Most of the research in this area do not capture the social interactions and

rely on empirical or statistical approaches without considering the temporal aspects. We capture

the temporal spread of information using a probabilistic model and use non-linear differential

equations to model the diffusion process. To predict the rating of a product, we propose a social

trust model and use the matrix factorization method to estimate user’s taste by incorporating user-

item rating matrix. The effect of tastes of friends of a user is captured using a trust model which

is based on similarities between users and their centralities. Similarity is modeled using Vector

Space Similarity and Pearson Correlation Coefficient algorithms, whereas degree, eigen-vector,

Katz, and PageRank are used to model centrality. As rating of a product has tremendous influence

on its saleability, social recommender systems are vulnerable to profile injection attacks that affect

user’s opinion towards favorable or unfavorable recommendations for a product. We propose a

classification approach for detecting attackers based on attributes that provide the likelihood of a

user profile of that of an attacker. To evaluate the performance, we inject push and nuke attacks, and

use precision and recall to identify the attackers. All proposed models have been validated using
iii



datasets from Facebook, Epinions, and Digg. Results exhibit that the proposed models are able to

better predict the information spread, rating of a product, and identify malicious user profiles with

high accuracy and low false positives.
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CHAPTER 1: INTRODUCTION

The Internet was primarily designed for networking networks of computers. However, over the

decades it has been used for much more than that– it has brought people, groups, and societies

together through their online presence and interactions. On-line social networks such as Facebook,

Google+, LinkedIn, etc, have transformed not only the way we communicate with each other but

also how we share information. Today, there are many social networking platforms that are used

to share multimedia contents (e.g., Flickr, YouTube, and Google Video) and there are many which

are primarily used for news and blogs (e.g., Twitter, LiveJournal, BlogSpot, and Digg).

These online social networks not only allow us to remain connected with our friends and

relatives but also facilitate information propagation– be it advertising of a certain product or dis-

semination of a political agenda. Realizing the potential of these online platforms to reach millions

of users, a lot of research has been initiated that try to find the most effective strategies for informa-

tion diffusion in these kinds of networks. Alongside, the availability of online social data has made

it possible to not only validate the new models that are being developed but also to allow us to pre-

dict the future behavior of users. However, to accurately model how a phenomenon would spread

across a network is a challenging problem due to the complexity of social interactions between

users.
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Furthermore, to exploit the power of social networks and realizing that people have the

ability to positively or negatively bias ones’ opinions, businesses have started using recommender

systems that help customers with item selection and purchasing decisions based on individual’s

tastes and preferences. Recommender systems help users narrow down the set to choose from; for

example, selecting an item (i.e., which movie to watch) based on user’s preference or helping with

online purchasing decisions based on how other users have rated the product to be bought. Recent

studies have shown that social recommendations play a significant role in our daily lives [94, 95,

112, 127]. We tend to value recommendations from people we know and trust rather than getting

opinions from recommender systems. It is intuitive that two users with similar tastes are more

probable to show similar behavior with regard to product or a news item.

1.1 Open Problems and Challenges

In spite of the advancements made on models that predict information diffusion, there remain

challenges that must be overcome to accurately predict how a phenomenon will spread across an

online social network given the network structure, connections between users, and the possibility

of having malicious users. Next, we discuss some open problems and challenges.
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1.1.1 Information Diffusion

Many empirical studies have characterized information diffusion in social networks [67, 121] and

multiple mathematical models have been proposed that quantitatively describe the diffusion pro-

cess [15,41,61,95,131]. The mathematical models extracted from epidemiological processes have

influenced social networks’ research as well [94]. According to previous studies on methods ap-

plied to information diffusion in online social networks, the non-graph based predicative models

are of 3 types: i) Epidemiological, ii) Linear Influence Model (LIM), and iii) Partial Differential

Equations (PDEs) [45]. The epidemiological models are based on Ordinary Differential Equations

(ODE) or probabilistic models [94]. However, they do not necessarily capture the temporal as-

pects of the information spread i.e., at what rate a piece of information spreads during its lifetime.

Though the LIM method [131] predicts the temporal dynamics of the information diffusion by

solving the non-negative least squares problems, it does not account for the carrying capacity of

the network. Thus, there is a need to develop a model that would capture the feature of dynamic

carrying capacity based on the influenced users in the system.

1.1.2 Recommender Systems

Traditional systems assume that users are independent and identically distributed and ignore the

varied level of social interactions between users. Thus, the traditional recommender systems fail to

capture the importance that we put on our social connections as it bases its recommendations only

3



on the user-item rating matrix. User’s social relationships play an important role in the behavior

of users regarding future ratings [30,119]. Moreover, users’ preferences are shaped by their social

connections which can be explained by homophily [86]– a phenomenon in which users with similar

interests are more likely to be connected.

Social recommender systems focus on easing information and interaction burden by apply-

ing different methods that present the most relevant information to the users. However retailing

platforms usually do not consider social factors such as relationships and trust among the users and

the power of social influence is not exploited. On the other hand, social networking platforms gen-

erally do not consider online shopping related factors such as purchase history and product rating.

In addition to social connections, trust relationships also influence one’s decisions and ought to be

considered for recommendations. In a social network, trust relationships and social relationships

are two different concepts. Two socially connected users would not necessary trust each other.

Also, multiple connections of a user would not have equal impact on user’s opinions and decisions.

Also social influence [81] suggests that connected users are more likely to have similar interests.

Since most of the similarities within a network are caused by the influence and interactions of its

users, it is reasonable to develop a social recommender system based on the user connections and

interactions. Despite many studies on similar problems, there is still a great potential in exploring

the social relationships in furnishing and harnessing the recommender systems.

4



1.1.3 Anomaly Detection

Typically, recommendations systems base their recommendations on product ratings and reviews

that the customers provide. Though such inputs from the users enrich the recommender database,

they also make the system vulnerable to numerous types of attacks. Recommender systems are

vulnerable to these attacks since their algorithms collect user profiles, which represent the taste

of users and make recommendation based on these tastes. One of the popular attack types is

the profile-injection attack where malicious users insert fake user profile in order to promote (i.e.,

push attack) or demote (i.e., nuke attack) a specific product. In a profile injection attack, an attacker

would interact with the recommender system to create a number of fake profiles that try to bias the

system’s output. Though producers of items want their own items to be recommended more often

than those of their competitors by injecting fake profiles, they are nevertheless considered mali-

cious or attackers [65]. To counter the above mentioned problems and to make a recommender

system robust to attacks, many methods have been proposed that deal with the profile injection

attacks [11, 65, 91]. Also many detection methods such as statistical techniques [12, 53], clas-

sification [19], unsupervised clustering [17, 100], and Beta-Protection algorithm [28] have been

proposed. However, other than simply applying commonly used user-item rating matrix, valuable

information can be obtained from social interactions which is represented by the user-connection

matrix.

5



1.2 Contributions of the Dissertation

In order to address the above mentioned challenges, we propose multiple methods to handle these

issues. We propose probabilistic and differential equation information diffusion models. We cap-

ture the effects of centrality and similarity in user rating prediction. We present a model that

analyzes the attributes of social connections in identifying malicious users.

1.2.1 Information Diffusion in Social Networks

The extent of information spread in a social network depends on how users react when a new

information is received. We consider two different models for information diffusion: i) probabilis-

tic model, and ii) differential equation model. For both models, we consider that the network is

scale-free and obeys power-law degree distribution.

Probabilistic Model

In this model, a node provides recommendations to its neighbors in a probabilistic manner.

A node that is the origin for the recommendation starts by recommending a product to its directly

connected neighbors. The neighbors in turn, recommend to their neighbors in a probabilistic man-

ner. Obviously, the distance of a node from the origin (i.e., hop-count) plays a crucial role as the

recommendation of the product propagates through the network. In order to find what fraction of

the nodes get the recommendation, we start by computing the probability with which a node gets

the recommendation. To do so, we divide the problem into three components: i) when a node gets
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recommendation from nodes that are closer to the origin (i.e., one hop-count less), ii) when the

node gets recommendation from nodes further from the origin (i.e., one hop-count more), and iii)

from nodes that have the same hop-count. We use the in-degree/out-degree distribution functions

and the clustering coefficients to compute these three probabilities. Using a dataset from Facebook

available at SNAP [85], we show the impact of how the location of a node from the origin affects

the probability of being recommended. Also, we find what happens when the origin node has a

certain connectivity and the impact of its distance from the hub.

Differential Equation Model

We use partial differential equations (PDEs) to study the temporal patterns of information

diffusion process considering the social carrying capacity to be dynamic. Typically, when a user

posts a piece of information like a news story, it draws the attention of followers of that user. If

the followers like/vote the story then their followers would be able to get that story. This process

might continue or die out depending on the level of interest of the story, user connections, and

their interactions. These factors determine the carrying capacity of the network at any point of

time. Our model is able to predict the influenced users at any time. The predicted values are

found by minimizing the Mean Absolute Error (MAE) between the observed and predicted values.

Genetic Algorithm (GA) with random initial guess was used for minimizing the error. In order

to validate our proposed model, we use real dataset collected from Digg [52] which is a popular

news aggregation website. The dataset consists of millions of votes on news stories during June of

2009. The news aggregation that does not emerge from the structure of social networks behaves

mostly randomly which would be similar to random walk in case of partial differential equations.
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This feature makes the Digg dataset a good source to analyze the information spreading. When the

votes are cast, their timestamps are recorded, which allows us to study and predict the diffusion

patterns.

1.2.2 Rating Prediction in Social Networks

Social recommender systems play a significant role in our daily lives since we tend to value rec-

ommendations from people we know and trust rather than getting opinions from traditional rec-

ommender systems. We investigate how different factors affect affecting user rating behavior. We

model the user rating prediction based on connections, trust relationships, centrality in the system,

and similarity to other users.

Rating prediction model based on centrality and trust

Based on the above observations, we propose to use the social network in conjunction with

the user-item rating matrix to accurately predict the rating of a product. We not only consider

the user connections but also consider that one values the opinions of all her connections differ-

ently. This is because there is non-uniformity in how we trust our connections. Also, trust is

non-transitive and asymmetric implying the extent to which A trusts B does not necessarily mean

that B would trust A to the same extent.

We predict how a user would rate a product based on not only what the system recommends,

but also on how her connections rated the product. We use the time-varying trust relationships to

compute how important each connection is and weigh that with the ratings provided by that con-
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nection. We update the predicted rating using an exponentially weighted moving average. Using

the trust matrix, we model the importance of a connection using two centrality measures: degree

and eigen-vector centralities. As trust changes over time, so does the centrality. For degree cen-

trality, we simply use the user adjacency matrix without caring for how trustworthy a connection

is. We update the eigen-vector centrality using the current trust matrix and the centrality from the

previous time period. To find the overall rating, we find how the connections and non-connections

affect the ratings. We use their linear combination using the social factor [131] as the weight for

the ratings by ones’ connections. Using the mean absolute error, we measure how accurate our

predictive model is.

In order to verify the accuracy of our predictive model, we resort to simulation using data

from Epinions [122]. The dataset primarily consists of the trust relationship matrix and the user-

item rating matrix for 11 time periods. Our method predicts the rating for products for each user

based on the ratings a user receives from her connections and from all the other users who rated the

same product. These two types of ratings are combined using the social impact factor, 0 ≤ λ ≤ 1.

We predict the overall rating of a product by a user and compare with the real data set for the

prediction accuracy given by the mean absolute error. For modeling the importance of the connec-

tions, we use both degree centrality and eigen-vector centrality. The results show that our method

outperforms the prediction schemes that do not consider centrality measures. Our method can also

be applied to larger datasets since it has a linear complexity.
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Rating prediction model based on centrality, similarity, and trust

We combine the features of social networks and e-commerce platforms to design a social

recommender mechanism to increase the prediction accuracy of product recommendations in e-

commerce by considering the factors of similarity, user importance in the network, and social trust

relationships. The proposed model could be practically applied to new emerging social commerce

platforms. We argue that users are influenced by social interactions, in particular, by the set of

trusted friends and their respective importance. To that end, we combine social trust connections

and user-item matrix to predict the rating that a user would assign to a product. We use matrix

factorization to factor user-item rating matrix into two low-dimensional matrices consisting of user

latent matrix and item latent matrix. For the social connections, we consider both user importance

and user similarity to build the social trust model between users. We use vector space similarity

(VSS) and Pearson Correlation Coefficient (PCC) to obtain the similarity between users. Using

degree, eigen-vector, Katz and PageRank centralities, we quantify the importance of users in the

network. We use a linear combination of similarity and centrality to model the trust parameter

between users. The proposed method captures the balance between user taste and her friends’

taste and adjusts the share of centrality and similarity in the trust values using two parameters.

The low-dimensional latent user-specific and item-specific matrices are estimated by performing

gradient descent on the objective function. As for the objective function we seek to minimize

the sum-of-squared-errors between the predicted and actual rating values. We use a dataset from

Epinions [122] to validate the proposed model. We estimate the accuracy of the proposed method

in terms of the mean absolute error by comparing the predicted and the actual user ratings of
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products. Results reveal that there is a high correlation between the predicted and the actual ratings.

The proposed method is also compared using binary trust values as well as considering the eigen-

vector and degree centralities. Our experiment results show that the proposed model could enhance

recommendation accuracy.

1.2.3 Anomaly Detection in User Behavior in Social Networks

In order to detect the suspicious users in online social networks, we take a different approach than

simply applying the commonly-used user-item rating matrix. We argue that valuable information

can be obtained from social interactions which is represented by the user-connection matrix. Also,

we observe that injecting fake user profiles would cause meaningless connections with other users.

To that end, we propose three detection attributes: i) deviation from predicted rating, ii) similarity

between two users, and iii) abnormal rating behavior. These attributes, based on user-item rating

matrix and user-connection matrix, provide the likelihood of a user having a profile of that of

an attacker. The output of these three attributes are fed to a k-means clustering algorithm that

categorizes users into authentic users and attackers. In order to verify the accuracy of our anomaly

detection framework, we used Epinions dataset [122] with 922267 ratings on 296277 products by

22166 users having 355754 connections between them. Based on values obtained by precision

and recall parameters, the clusters built using detection attributes can detect fake users with high

probability– the exact value of which depends on other system parameters. We also observe that
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detection of the attacker profiles is not only based on user behavior and attack types, but also are

based on the filler size and attack size for each attack type.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 discusses the previous studies in

recommender systems and presents the significant related work that are relevant to this disserta-

tion. Probabilistic Information Diffusion model is presented in chapter 3. Differential Equation

Diffusion model is presented chapter 4. In chapter 5, the connection-based rating prediction is

presented. In Chapter 6, the centrality, similarity and trust metrics are used to predict the user rat-

ing. Chapter 7 presents different detection attributes to identify malicious users in social networks.

Conclusions of this dissertation are drawn in chapter 8.
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CHAPTER 2: BACKGROUND AND RELATED WORK

Several studies have attempted to model how social networks influence users’ daily life. With the

availability of large data sets of various social networks, there have been various investigations on

what additional information those data sets reveal. In this chapter, we discuss how information

diffuses in a network and the role of recommender systems. We also discuss how malicious users

or fake profiles are identified in social networks.

2.1 Information Diffusion in Social Networks

The study of information spreading in social networks has recently become increasingly popular

among research communities [68]. Empirical methods have been applied to different online social

networks which showed information diffusion patterns in these networks. In [44] information

diffusion in weblogs has been studied. Multiple studies [23, 133] have analyzed spreading of

popular photos in Flickr. In [67], news spreading in Digg and Twitter have been studied based on

empirical data. Also, epidemic transmission of popular news and user characteristics of Digg have

been empirically studied [121, 124].

Multiple studies on mathematical models for the diffusion process have taken a more global

perspective– a survey of which can be found in [5]. Continuous time Markov chain has been used
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in [120] to model the information diffusion that is based on interpersonal discussion rate. The

Susceptible-Infectious-Susceptible (SIS) epidemic model has been used in [113] to characterize

information diffusion in social networks. Also [41, 131] have proposed different mathematical

models to capture the information diffusion in social networks. Another study [128] proposed a

PDE model for information diffusion validated by Digg dataset.

There are other models that have analyzed the system locally due to the importance of in-

terpersonal interactions in predicting the information diffusion. A model has been proposed to

predict the negative/positive impact of a user on her neighbors [68]. Linear Threshold and Inde-

pendent Cascade Models [61] were used to search the most influential users. Many studies have

been done in other areas such as biology, sociology, economics, and physics to model information

diffusion [15, 22, 39, 42, 60] which use dynamic mathematical models including ordinary differen-

tial equations and partial differential equations. The methods mentioned so far did not consider the

dynamic carrying capacity of the system-which is one of the contributions of this dissertation.

Businesses are making use of correlated data from social networks for product recommen-

dations and advertising. Assuming that a user’s chances of buying a product would be impacted by

the opinion of her trusted friends, a study to maximize the marketing was done using the Epinion

trust network in [112]. Efficiency of several algorithms for maximizing the influence in marketing

through a social network has been studied in [61]. It has been found that there are different patterns

of spreding in the network since a node may receive recommendation from multiple sources which

might even be contradicting [69]. Moreover, there could be cascading effects based on the connec-
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tivity of the network. Diffusion of information via word-of-mouth and viral marketing effects for

new products has been investigated in [14].

2.2 Rating prediction in social networks based on Similarity, Centrality and Trust

The rapid expansion of the online world and e-commerce has led to serious problem of information

overload, where the users find it difficult to quickly locate the right product. Users are overloaded

with many choices when making on-line purchasing decisions, and recommender systems have

become handy and alleviate the problem by providing customized recommendations. These sys-

tems offer a personalized experience based on social interactions or user preferences which are

considered as fantastic opportunities for retailers in e-commerce businesses.

2.2.1 Recommender Systems

Users have many choices while purchasing products online and recommender systems are becom-

ing more popular as they provide the needed information both for consumers and retailers. Many

recommendation techniques have been studied [64, 116] and have been well adapted to commer-

cial websites which offer a vast number of products for users with different tastes. Good examples

of such systems are Epinions [122], IMDb, and Amazon where there are sets of products which

have been rated by other users. Some systems like Netflix provide recommendations based on
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users’ taste and preferences. Users can read reviews about a variety of products which aid their

purchasing decision. Also users have the option to submit their own reviews.

When someone does not have sufficient information on a product that she wants to buy,

she would probably seek advice from friends and family. Such recommendations from our social

connections are often instrumental in forming an opinion about a product [62]. Recommender

systems are being used to address this need as well [2]. Recommender systems help customers

by providing useful information and recommendations on products they are interested in [116]. In

recommender systems, a node passes recommendations to its neighbors to spread the information

through the network [29]. E-commerce companies selling the products, know this fact and make

use of the social networks for advertising and reaching out to a target customer base.

In recent years, different types of recommender systems have been developed, most of

which use content-based filtering, collaborative filtering, or a mix of both [8]. Content-based sys-

tems use items’ characteristics and the ratings that users have given to generate recommendations.

Collaborative systems identify similar users and analyze their preferences to generate recommen-

dations. Hybrid methods, such as the content-based collaborative filtering algorithm [72,89], com-

bine these two techniques, hoping to avoid the limitations of either approach and improve the

recommendation performance.
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2.2.2 Collaborative Filtering

Collaborative filtering methods have proved to be useful and take advantage of the collaborative

world especially when combined with hybrid methods [8]. Collaborative filtering methods are

further divided into three categories: memory-based, model-based, and hybrid of both. An example

of an algorithm which is a hybrid between memory-based and model-based methods is personality

diagnosis [105].

Memory-based Methods: Memory-based methods utilize users’ past behavior and recommend

products that other users with similar interests have selected in the past [116]. They have been

widely used in commercial recommender systems [109]. Memory-based algorithms are either

user-based [13,50] or item-based [71,116]. User-based algorithms predict rating given by a user to

an item based on the ratings by similar users, whereas, item-based algorithms estimate the rating

based on the ratings of similar items previously chosen by the user.

Model-based Methods: Model-based methods utilize available data to train a predefined model

for rating prediction. Some of the commonly used methods are: clustering [63] and Matrix Fac-

torization [77]. Model-based approaches can handle problems with limited data using hierarchical

clustering to enhance the accuracy of the prediction [63]. Matrix factorization factorizes the user-

item rating matrix using low-rank representation.
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2.2.3 Factors Governing Rate Prediction

Let us now discuss some related research on trust, similarity, preference, and social influence which

we argue are the most important factors that govern the design of efficient recommender systems.

Trust: Since in online environments users do not have enough information about other users or

items being offered, online interactions involve taking some risks as doing business with people

we never met before requires a great deal of trust [56]. Trust has a significant impact on users’

online purchasing behavior. Therefore, trust plays a critical role in e-commerce experience. The

importance of a user must be taken into consideration for finding the true rating of a product. Thus,

it is crucial to model the importance of a user using a trust parameter so that the ratings by malicious

users can be purged. In online communities, it is essential to trust the data we receive. Trust helps

users to assign a value to other users based on their willingness to interact with them [7]. Trust

between users can be of two types: implicit [96] and explicit [83, 107]. Implicit trust is usually

obtained from user-item interactions (i.e., ratings), and explicit trust is extracted from the user

relationships (who they trust and upto what extent).

Similarity: Users with similar preferences or behavior tend to be interested in the same products,

even though they may not know each other [36]. The preference similarity of two customers can

be estimated according to their product purchases or rating records. The similarity measures (i.e.,

Vector Space Similarity (VSS) and Pearson Correlation Coefficient (PCC)) have been incorporated

in social recommender systems [13, 74]. Trust relations are typically bidirectional and equal in

both directions. However, this is not true in real world relationships where trust relationships are
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non-transitive [77]. Also in order to provide meaningful recommendation, trust must reflect user

similarity to some extent; recommendations only make sense when obtained from like-minded

people exhibiting similar taste [1, 57].

Preference: For personalized recommendations, there are two ways to capture users’ prefer-

ences [48]: implicit and explicit. In implicit feedback [26], the system infers users’ preferences

by monitoring different actions of users such as purchasing history, browsing history, clicks, email

contents, etc. Thus, this type of feedback reduces the burden from user. In explicit feedback [118],

recommender systems prompt users to provide ratings for items in order to reconstruct and im-

prove its model. The drawback with this method is that it requires some efforts from the users.

However, it seems that explicit feedback still provides more reliable data, since it does not involve

extracting preferences from actions [4,16]. However, an implicit feedback system lacks these char-

acteristics, at it observes the user’s actions and makes inferences about the users interests based

on these actions. Matrix factorization models can use both implicit and explicit feedbacks from

the system [64]. In [36], a framework has been developed to recommend similar users and re-

sources based on social network analysis. The work in [136] uses a social network to develop a

recommender system for peer-to-peer knowledge sharing.

Social Influence: Users with closer social ties to others are much worth to be believed and are

more powerful in influencing others [66]. In [75], user’s opinion is modeled based on her own and

her friends’ opinions which reflect real life social interactions. Also, social influence might create

shopping intention for people to consume a product [62] and is thus one of the important factors

for predicting the potential purchasing intention of a customer [66].
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2.2.4 Rating Prediction

Predicting the rating of a product that a user would have given is challenging. User-based algo-

rithms predict rating given by a user to an item based on the ratings by similar users, whereas,

item-based algorithms estimate the rating based on the ratings of similar items previously chosen

by the user. These methods find similar users [13, 50] or similar items [37, 71, 116] for provid-

ing accurate predictions. Methods used in traditional recommender systems are mostly based on

user-item rating matrix. These algorithms usually fail to find similar users since density of ratings

in user-item rating matrix is often less than 1 percent [71]. These methods assume that there are

at least two users who have rated some common items, which might not be possible for a sparse

user-item rating matrix. Moreover, almost none of the memory-based and model-based algorithms

can handle users who never rated any item [51].

2.2.5 Trust Models

Several models have incorporated trust into e-commerce decisions [82] which use trust as a tool

to identify and distinguish acceptable data from unacceptable data [56]. Collaborative filtering

methods are most effective when users have expressed enough ratings. Since these methods need

users to have mutually rated items, they perform poorly with respect to cold start users. Also, sim-

ilarity metrics would not be helpful with cold start users. However the trust-based recommenders

can make better recommendations since users can benefit from their trust relationships as well.
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Some methods use random walks, so to use enough ratings without suffering from noisy data due

to being far from source. TrustWalker proposed in [54] is a random walk model which combines

trust-based and item-based recommendations. There are some algorithms such as Eigentrust [59],

Appleseed [139] and another algorithm in [111] which use principal eigenvector to make trust

computations. However, these methods produce ranks of trustworthiness of users, so they would

be suitable for systems where ranks are considered. The TidalTrust model finds all raters with the

shortest path from the source user and aggregates their ratings weighted by the trust between them.

Another method is MoleTrust [6] where computation of trust value between two users is based on

backward exploration. Also, trust values in recommender systems help to predict the behavior of

those users who have rated fewer products [74]. A trust metric in [3] has been proposed in order

to discover which users are trusted by members of an online network. Each user is assigned a

capacity, where trust values will need to be normalized within that capacity, and for computing

the trust of the entire network is required. Moreover, it only produces the nodes to trust; not the

value of the trust. Since there is no distinction between trusted users, and number of users to trust

is independent of users and items, this method is not appropriate for trust-based recommendation

systems. Other work such as [84] uses similarity measures, however it is only designed to be used

in systems with binary trust ratings.
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2.2.6 User Preference Model

To provide personalized recommendation, there are two ways to capture users’ preferences [48]:

implicit and explicit. The implicit method gathers users’ behavior to obtain their preferences [26].

Matrix factorization models built in [64] use implicit feedback from the system. The explicit

method filters and analyzes interactions and feedback to obtain users’ specifications [118]. In [78]

a user-item matrix is considered with users’ social trust graph to build a latent low-dimensional

matrix for providing a better recommendation. Users opinion is modeled based on her own and

her friends’ opinions which reflect real life social interactions [76]. The similarity between users

is incorporated in social recommender systems [74]. Also social recommendation algorithms with

social regularization terms is used in [75] to constrain matrix factorization objective functions. In

addition, using trust values in recommender systems would help to predict the behavior of those

users who have rated fewer products [74].

2.3 Anomaly Detection in User Behavior

Recommender systems are vulnerable to profile-injection attacks: these systems collect user pro-

files, which represent the taste of users, and make recommendation based on these tastes. Profile

injection attack was first introduced in [100]. Different attacks and defenses have been identi-

fied since then. In [88] the authors present various recommendation algorithms that use different

model-based methods, particularly techniques based on k-means and probabilistic latent semantic
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analysis (pLSA) that compare the profile of an active user to aggregate user clusters, rather than the

original profiles. In [46] the authors presented different attack types, detection methods, robustness

analysis and cost benefit analysis.

Generic of model-specific attributes capture different statistical features of user profiles

which could be used to classify users. In [25], multiple metrics to distinguish between authen-

tic and fake profiles such as number of prediction-differences (NPD), standard deviation in user’s

ratings, degree of agreement with other users, degree of similarity with top neighbors, and rating

deviation from mean agreement (RDMA) were proposed. In [18, 19], weighted deviation from

mean agreement (WDMA) and weighted degree of agreement (WDA) were proposed. Though

WDMA is derived from RDMA, it puts more weight on rating deviations for sparse items which

provides higher information gain. Length Variance (LengthVar) that measures the difference be-

tween a given profile rating and system’s average rating was also proposed. Three classification

methods have been used in [129] which were simple nearest-neighbor classification using kNN,

decision-tree learning using C4.5, and support vector machine (SVM) classifier. The attributes

used were RDMA, WDA, WDMA, degree of similarity with top neighbors (DegSim), and Length-

Var. The discussed attributes so far are included in the generic category.

Model-specific attributes were also introduced in [18, 19] including Filler Mean Variance,

Filler Mean Difference, Profile Variance for average attacks, and Filler Mean Target Difference

(FMTD) for segment attacks. Also in [129], these model-specific attributes were used with Filler

Average Correlation attribute for random attacks. Another method for attacker detection is based

on out-lier identification. These out-lier detection methods can be based on distance, density,
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clustering, or depth. In [87], the authors mentioned that attacker profiles are highly correlated,

thus members of small clusters are considered attack profiles. Clustering has an advantage of

being completely unsupervised compared to other approaches used for out-lier detection.

Statistical analysis such as statistical process control (SPC) can also help in detecting prod-

ucts that are under attack [12]. Also a method has been proposed [135] that can detect random

attacks by computing the log-likelihood of each rating profile given the low dimensional linear

model of the rating matrix. However, it cannot detect the average attacks. Algorithms using neigh-

borhood selection and similarity weight transformations for attack detection and defense were

proposed in [98].
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CHAPTER 3: PROBABILISTIC INFORMATION DIFFUSION IN SOCIAL
NETWORKS

To analyze information diffusion (recommendation spreading), we consider a probabilistic model

where a node passes the information it receives to its connections in a probabilistic manner. A

node recommends a product to all of its neighbors with probability 0 < w < 1. Generalizing,

each node will recommend to all its neighbors. However, the recommendation of a product has to

begin at some node which we refer to as the origin node. We are interested in knowing how the

recommendation will spread in the network, given that a node recommends to its neighbor(s) in a

probabilistic manner.
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Figure 3.1 An example network showing origin O and nodes marked with hop-count from O.
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3.1 Probabilistic Information Diffusion

Our objective is to investigate i) what fraction of nodes will receive the recommendation, ii) the

effect of the distance of a node from the origin, iii) the impact of w, and iv) the effect of the nature

of the origin (i.e., hub or not).

Let us consider an origin node O as shown in Fig. 3.1. The nodes that are direct neighbors

of O (i.e., 1 hop neighbors) are referred to as layer-1 nodes. Similarly, nodes that are 2 hops away

from O are referred to as layer-2 nodes, and so on. To have better tractability, we proceed by

finding the probability that a layer-1 node will receive the recommendation from O. Then, we

find the probability that a layer-2 node will receive the recommendation from one or more layer-1

nodes. We continue the process till we reach the node(s) in the farthest layer (e.g., node M in

Fig. 3.1). It is to be noted that a node at layer-i could receive the recommendation from nodes at

layer-(i− 1), nodes that belong to layer-(i+ 1), and nodes that belong to the same layer-i.

We consider both previous layer and the next layer as recommendations propagate in all

directions. At each time t, nodes that are influenced at time t − 1 try to influence their neighbor-

ing nodes with some probability. Influence spreading is known to be an NP -hard optimization

problem [61].

We use a directed probability model for recommendation probability spreading which con-

siders the probability of a node being recommended by previous layer nodes (i.e., the in-degree),

next layer nodes (i.e., the out-degree) and nodes that belong to the same layer. Obviously, the
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enumeration of the layers is based on the distance and direction from the origin O. Since it would

be impossible to compute the layers in advance, we compute the layers whenever a recommen-

dation is initiated by a node. That node determines the out-degree, in-degree, and the same-layer

probabilities. As pre-determining the distances of all nodes would cause significant amount of

computation and storage overheads, we compute the layers dynamically when the origin node is

known.

3.2 Recommendation Probabilities

To find the recommendation probability, we first consider the probability that a node is recom-

mended from node(s) from the previous layer, i.e., nodes that are closer to the origin. We refer to

this as the outward probability. Similarly, inward probability is defined as the probability that a

node is recommended from nodes from a latter layer, i.e., nodes that are farther from the origin.

We also define same-layer probability as the probability that a node gets recommendation from

nodes in the same layer.

It is to be noted that these probabilities are dependent on their respective degree distri-

butions. Thus we decompose the degree distribution into out-degree, in-degree, and same-layer

degree distributions. Without loss of generality, we assume out-degree and in-degree distributions

are identical and follow the power law distribution, denoted by pout(k) and pin(k), respectively.

The same-layer degree distribution, denoted by psl(k) follows a binomial distribution as discussed
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in section 3.2.3. The outward, inward, and the same-layer probabilities can be combined to obtain

the total probability.

In order to find the inward and outward probabilities, it is essential to know the inward and

outward degree distribution. Assuming kout is the number of out going edges, kin is the number of

incoming edges, and ks is the number of edges in the same layer, the total degree of a node denoted

by k is given by:

k = kout + kin + ks (3.1)

We consider a connected social network that obeys the power law for its degree distribu-

tion i.e., p(k) = αk−γ and assuming identical inward pin(k) and outward pout(k) distribution as

pin(k) = αink
−γin
in , and pout(k) = αoutk

−γout
out where −γin and −γout can be approximated as −γ.

As for the scale factors αin and αout, we assume both to be α1.

To estimate inward and outward probabilities, we need to first find the distribution of r =

kout
kin

. The probability distribution for r is a joint distribution of variables kout and kin which is

calculated as [90]:

p(r) =

∫ ∞

0

kin(kinr)
−γα1(kin)

−γα1dkin (3.2)

p(r) =

∫ ∞

0

α2
1k

(−2γ+1)
in r−γdkin =

α2
1r

−γ

−2γ + 2
(3.3)
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Since kout and kin have identical distributions, the expected ratio (the average of r = kout
kin

)

would be 1. Thus,
∫ ∞

0

rp(r) = 1 (3.4)

From Eq. (3.3) and Eq. (3.4), we get

α1 =
√

(−2γ + 2)(−γ + 2) (3.5)

With α1 known, we can find the in- and out-degree distributions which can be used to find the

inward and outward recommendation probabilities.

3.2.1 Outward Recommendation Probability

We compute the outward recommendation probability for one layer at a time, starting with layer-1

and moving outwardly away from the origin node.

Layer-1:

First layer nodes are immediate neighbors of the origin node, and therefore would get

recommendation from the origin node with probability w. Thus the outward recommendation

probability for all layer-1 nodes, denoted by P out
1 , is given by:

P out
1 = w (3.6)
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Layer-2: With the recommendation probability for layer-1 nodes known, we can find the recom-

mendation probability for the layer-2 nodes. Being a layer-2 node necessarily means that it is

connected to at least one layer-1 node. Thus, such a node can get the recommendation from one or

more layer-1 nodes– the number of which is the in-degree of that node.

If a node has k links from the previous layer, i.e., an in-degree of k, then the probability

of not getting recommended is (1− w)k. Thus, getting a recommendation occurs with probability

1 − (1− w)k. Since, k ≥ 1 and is distributed as per pin(k), the average outward probability for a

layer-2 node, denoted by P out
2 , can be found by the weighted sum of the probabilities. Thus,

P out
2 = P out

1

∑

k

pin(k)(1− (1− w)k) (3.7)

The term P out
1 appears because each of the layer-1 nodes will get the recommendation with prob-

ability P out
1 as was shown in Eq. (3.6).

Layer-L: Continuing in the same manner and noting that layer-L nodes can only get recommended

from directly connected layer-(L− 1) nodes, we can compute the recommendation probability for

a layer-L as:

P out
L = P out

L−1

∑

k

pin(k)(1− (1− w)k) (3.8)
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3.2.2 Inward Recommendation Probability

We compute the inward recommendation probability from the outer most layer and move towards

the origin.

Layer-L:

The last layer nodes are farthest from the origin and thus cannot get recommendation from

any farther node; thus their inward probability is zero. Thus,

P in
L = 0 (3.9)

Layer-(L− 1):

The inward probability for the layer-(L− 1) depends on what the recommendation proba-

bility was from layer-L nodes which was obtained in Eq. (3.9) and Eq. (3.8). Thus, we get P in
L−1

as:

P in
L−1 = (P out

L + P in
L )

∑

k

pout(k)(1− (1− w)k) (3.10)

Layer-1: Continuing to move towards the origin, we get P in
1 as:

P in
1 = (P out

2 + P in
2 )

∑

k

pin(k)(1− (1− w)k) (3.11)
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3.2.3 Same-layer Recommendation Probability

A common feature of social networks is the circle or triangle of friends one knows. This tendency

to cluster is reflected in the clustering coefficient [127]. Fig. 3.2 shows nodes A, B, C, D, and E

that belong to the same layer (Layer-1) by virtue of being directly connected to the origin O. The

same-layer probability depends on the number of links among the nodes in a given layer which is

directly related to the clustering coefficient of the network. Consider node i that is connected to ki

nodes. Suppose those ki nodes have Ei links/edges among them. Then the clustering coefficient of

node i, denoted by Ci, is the ratio of Ei and the total number of links possible among the ki nodes

i.e., Ci =
Ei

(ki
2
)

[10]. Though Ci is for node-i, the average clustering coefficient, C, of the network

could be found [49], which we use as the connection probability of having links within the same

layer.

O

A

B
C

D
E

Outward Inwardlayer
Same

Figure 3.2 Example: Links among nodes within the same layer are shown with solid lines; links

from O are shown with dashed lines; links of far away nodes are not shown.
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The probability of having k links among the n nodes in any layer is binomially distributed

as we assume the links appear with the same probability C and are independent of each other.

Thus, the same-layer degree distribution of having k links, psl(k), is given by

psl(k) =

(

n

k

)

× Ck × (1− C)(n−k) (3.12)

Given the degree distribution, we can find the same-layer recommendation probability as:

P sl
L =

∑

n

∑

k

psl(k)(1− (1− w)k) (3.13)

3.2.4 Total Recommendation Probability

Total recommendation probability is calculated by combining the inward, outward and the same-

layer probabilities for each node. Noting that a node in layer-i could get a recommendation from

one of the three layers, we proceed by finding the probability of not getting recommended– given

by (1−P out
i ), (1−P in

i ), and (1−P sl
i ). The probability of not getting recommended from any layer

is: (1−P out
i )(1−P in

i )(1−P sl
i ). Thus, the total probability of a layer-i node getting recommended

is:

P tot
i = 1− (1− P out

i )(1− P in
i )(1− P sl

i ) (3.14)

Discussion: We considered the outward, inward, and same-layer recommendations only

once. However in real systems, a node might get recommended multiple times over a time span
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necessitating the need to consider the probabilities for the second time, third time and so on. We

argue that those probabilities would be orders of magnitude smaller (as they multiply with each

other multiple times) than the probability obtained for the first outward, inward, and same-layer

recommendations. Thus, we ignore the those higher order terms.

3.3 Experimental Results

In order to verify the proposed mathematical framework, we used the data of Facebook from

Stanford Network Analysis Project (SNAP). This data set includes 4039 nodes and 88234 edges.

We confirm that the network is scale-free as the degree distribution follows a power law distribution

as shown in Fig. 3.3 (in linear scale) and in Fig. 3.4 (in log-log scale). Using curve fitting, we

obtain the scale (α) of the distribution as 4.928 and the exponent (γ) as 2.9277. Thus, the degree

distribution is p(k) = 4.928k−2.9277.

We analyze the inward, outward, and the same-layer recommendation probabilities of each

layer based on mathematical framework described in section 3.2. The degree distribution for out-

ward and inward probabilities are power law distribution pin(k) and pout(k) as defined earlier.

Beside the probability w, we consider four types of origin nodes:

Case i): A highly connected node (i.e., hub shown as node H in Fig. 3.1).

Case ii): A neighbor of a hub but connected to other(s) (node L∗ in Fig. 3.1).

Case iii): A neighbor of a hub that is only connected to the hub (node L in Fig. 3.1), which we call

a leaf.
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Figure 3.3 Degree distribution in linear scale
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Figure 3.4 Degree distribution in log-log scale
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Case iv): A leaf node far from the hub (node M in Fig. 3.1).

Our objective is to show the effects of the location and the degree of the originating node.
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Figure 3.5 Total number of nodes in each layer with the number of recommended nodes with a hub

as the origin

3.3.1 Case (i): Hub as the origin (H)

Fig. 3.5 shows the number of nodes in each layer along with the number of recommended nodes

for 0.1 ≤ w ≤ 0.6. The first layer contains 1047 nodes implying that the origin node is a hub. We

choose the highest degree node as a representation for all high degree nodes. All the nodes in the

network also lie within 5 hopes from the origin.

36



We show the outward, inward, and same-layer recommendation probabilities as obtained

from Eq. (3.8), Eq. (3.10), and Eq. (3.13) in Figs. 3.6, 3.7, and 3.8, respectively. The total recom-

mendation probability is shown in Fig. 3.9. Since the origin node is a hub, there is a relatively high

number of nodes in the first layer. As evident from Fig. 3.5, most of the nodes are within the first

three layers and not many in layers 4 and 5.
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Figure 3.6 Outward recommendation probability with a hub as the origin.

From Fig. 3.9, we observe that the third layer has less recommendation probabilities than

the first two layers. Comparing inward, outward, and same-layer probabilities, we can see the

same-layer probability is directly related to the number of nodes in that layer. However, both in-

ward and outward probabilities are independent of the number of nodes in each layer. As expected,

both inward and outward probabilities decrease with increasing distance from the origin.
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Figure 3.7 Inward recommendation probability with a hub as the origin.
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Figure 3.8 Same-layer recommendation probability with a hub as the origin.
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Figure 3.9 Total recommendation probability with a hub as the origin.

3.3.2 Case (ii): Neighbor of a hub as the origin (L∗)

The number of nodes along with the number of recommended nodes in each layer is shown in

Fig. 3.10. Comparing with the case when the hub was the origin, we see the same trend but the

high number of nodes continues for one more layer (4th layer comparing to third layer in Fig. 3.5).

This is due to an additional layer that the recommendation should travel to get to a hub. Similarly,

the total recommendation probability shown in Fig. 3.11 decreases a layer later than compared to

Fig. 3.9. For this setting and the latter ones, we do not show the inward, outward, and same-layer

probabilities.
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Figure 3.10 Total number of nodes in each layer with the number of recommended nodes with a

neighbor of a hub as the origin
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Figure 3.11 Total recommendation prob. with a neighbor of a hub as the origin.
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3.3.3 Case (iii): Leaf as the origin (L)

When the origin node is only connected to a hub, the recommendation probability is dominated by

the neighboring hub (see Figs. 3.9 and 3.11). Despite the minor differences, the pattern is almost

the same as the two previous cases. However, the peak occurs one layer further (at the 4th layer).

This implies that having a neighboring hub has a great impact on the number of nodes that receive

the recommendation.
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Figure 3.12 Total number of nodes in each layer with the number of recommended nodes with a

leaf neighbor with a hub as the origin.
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Figure 3.13 Total recommendation probability with a leaf neighbor with a hub as the origin.

3.3.4 Case (iv): Leaf far from the hub as the origin (M)

When the origin node is a leaf somewhat far from the hub, the maximum number of recommended

nodes appears further from the origin node compared to all the previous cases. As shown in

Fig. 3.14, the majority of the recommended nodes are within the sixth layer while the number of

recommended nodes after the 4th layer is relatively small. With the origin far from most of the

nodes (i.e., high average distance to others), the recommendation needs to travel more layers to

reach more nodes which decreases the total recommendation probability and shifts the peak value

to the right.
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Figure 3.14 Total number of nodes in each layer with the number of recommended nodes with a

leaf as the origin.
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Figure 3.15 Total recommendation probability with a leaf as the origin.
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3.3.5 Comparing the four cases

We compare the impact of the origin– the fraction of the recommended nodes is shown in Fig. 3.16.

As expected, when the origin node is a hub, the spread of the recommendation is the highest. Also,

we see that when the origin is not a hub but close to a hub, there is not much difference in how the

recommendation propagates since the recommendation process is dominated by the neighboring

hub. If the origin node is far from the hub, it has the lowest spreading probability.
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Figure 3.16 Comparing total recommendation probabilities based on type of the origin and distance

from the hub.
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3.4 Summary

With the growing popularity of social networks, recommendation systems are becoming impor-

tant due to their commercial, social, and political impacts. Businesses are exploring ways on how

to best exploit social links to spread recommendation about their products. In this chapter, we

developed a model to investigate how a recommendation spreads when all nodes pass on the rec-

ommendation to their neighbors in a probabilistic manner. In our model, the nodes are categorized

in layers based on their distances from the origin node. We derived the probabilities of nodes in

any layer getting a recommendation from a node in the previous layer, from a node in the next

layer, and from a node in the same layer. We validated the theoretical framework on a Facebook

dataset and studied how various node parameters such as degree and distance from the origin affect

the recommendation process.
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CHAPTER 4: NON-LINEAR INFORMATION DIFFUSION IN SOCIAL
NETWORKS

Having developed a probabilistic model, we proceed to develop a Diffusive Logistic model to

characterize the temporal dynamics of information diffusion in online social networks. The lo-

gistic model is a non-linear model that represents the dynamics of the population in the system

where the growth rate (reproduction) is proportional to the current population and the available re-

sources [93]. This model has been used for different populations and growth prediction of bacteria

and tumors.

4.1 Non-Linear Information Diffusion

In social networks, the information spreads through the users’ interactions such as commenting,

liking, forwarding, and other activities. We seek to answer the following question. Given an

information initiated from a source, what is the fraction of influenced user after a period of time?

Let the number of the influenced users at time t be denoted by I(t). The growth process is modeled

using the Logistic model which captures the user influence and is defined as:

∂I(t)

∂t
= r × I(t)× (1−

I(t)

K
) (4.1)
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where r denotes the intrinsic growth rate of influenced users and measures how fast the informa-

tion spreads and K shows the carrying capacity of the influenced users. K represents the number

of users that can be potentially influenced by a specific news or a story. Parameter K usually is

assumed to be a constant; however, there are some evidences against this assumption. Figure 4.1

shows I(t) for six different stories in Digg’s data set. The figures clearly show a change in tem-

poral dynamics of information spreading. For instance, the pattern of I(t) for Story 70 changes

significantly at t = 1.8× 105s. The same pattern is observed for the other stories as well.

To better understand the pattern observed in Figure 4.1, one should investigate the mecha-

nism utilized by Digg. In Digg, information spreading happens when a user votes for a news that

his followee submitted. Also if a news makes it to the front page, users who are not the submitter’

s follower can vote for it. Therefore, it can be concluded that the abrupt change in the trend of

I(t) (as explained for Figure 4.1) is attributed to the state when the story moves to the front page.

This transition can also be explained in terms of change in the carrying capacity K [31]. Initially,

the story can only be seen by the followers which indicated relatively smaller number of potential

readers and therefore small K. However, moving to first page, increases the visibility of the story

and consequently raises the carrying capacity. Based on the same reasoning, one can also expect

another change in K when the users lose interest in the story since it is not new or interesting

anymore. This is schematically shown in Fig. 4.2. The initial (before moving to the front page),

the secondary (after moving to the front page), and the final carrying capacities are denoted by K1,

K2, and K3 respectively. It is also assumed that a change in the carrying capacity does not happen

immediately and occurs between [I1, I2] and [I3, I4]. For the sake of simplicity, we assume that
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(a) Story_ID = 22 (b) Story_ID = 30

(c) Story_ID = 70 (d) Story_ID = 140

(e) Story_ID = 147 (f) Story_ID = 161

Figure 4.1 I(t) for six different stories from Digg’s data set.
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K changes linearly during the transition phases between [I1, I2] and [I3, I4]. I1 denotes when

the followers of the submitter act on the story. With more and more followers acting on the story,

K increases till I2 when no further votes are made. This is when the carrying capacity is at its

maximum, denoted by K2. At I3, the news loses its interest and is removed from the front page.

The carrying capacity decreases; nevertheless, it is not zero as the news has already been exposed

to a large number of users. Based on this discussion, Equation (4.1) can be written as:

dI(t)

dt
= r × I(t)× (1−

I(t)

K(I(t))
) (4.2)

I

K

K1

K3

K2

I1 I2
I3 I4

Figure 4.2 Schematic representation of temporal dynamics of carrying capacity.
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We define parameter K as follow:

K(I) =















































































K1 I(t) ≤ I1

K2−K1

I2−I1
(I(t)− I1) +K1 I1 < I(t) ≤ I2

K2, I2 < I(t) ≤ I3

K2−K3

I3−I4
(I(t)− I2) +K2, I3 < I(t) ≤ I4

K3, I(t) > I4

(4.3)

4.2 Experimental Results

4.2.1 Dataset Description

To validate our diffusion model we used the Digg dataset. Digg is a news sharing website where

users post news links and also vote and comment on submitted news story. Users form following

relationship resulting in a directed social graph The initiator or the source of the news is the first

user who posts the news link. The data is time stamped based on the voting time. Diffusion of the

story happens in two different ways: 1) a user shares a news link which all his followers can see

and by voting for that news it become visible to their followers as well, and 2) high popularity of

the news would bring it to the front page, which makes the non-friends/followers able to see the

news and vote for it. This description makes the Digg dataset suitable for analysis of information
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(a) Story_ID = 24 (b) Story_ID = 25

(c) Story_ID = 30 (d) Story_ID = 35

(e) Story_ID = 49 (f) Story_ID = 68

(g) Story_ID = 70 (h) Story_ID = 78

(i) Story_ID = 106 (j) Story_ID = 140

(k) Story_ID = 147 (l) Story_ID = 161
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Figure 4.3 The observed (red dots) and extracted dI/dt versus I for selected stories in Digg data

set. 51



spreading in a social platform setting. This dataset has 3553 news story for June 2009. The number

of users were 139,409 who casted a total number of 3,018,197 votes.

4.2.2 Results

The proposed Diffusive Logistic model with variable carrying capacity has been applied to 200

stories in Digg data set. Figure 4.3 shows the observed dI(t)/dt versus I(t) (red dots) for some

selected stories. dI(t) is calculated using central differences based on finite differences approach.

dI(t)

dt
≈

I(t+△t)− I(t−△t)

2△ t
(4.4)

where △t is the time interval corresponding to 500 steps throughout the spreading process. The

parameters of the model in previous Equations are extracted by minimizing the Mean Absolute

Error (MAE) between the observed and predicted values of dI(t)/dt. The predicted curves are

shown as the black solid lines. The minimization is done using Genetic Algorithm (GA) with

random initial guess. In order to avoid local optimums, the optimization is performed 100 times

for each story and the parameters with best agreement with the observations are selected.

As shown in Figure 4.3, the proposed Diffusive Logistic model with variable carrying ca-

pacities captures the temporal dynamic of information spreading in Digg data set. The initial,

secondary, and final phases corresponding to K1, K2, and K3 are accurately estimated using the

proposed method. Table 1 shows 25, 50 and 75th percentiles of the extracted parameters. The wide
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range of the parameters observed in Table 1 clearly indicates that the parameters are not unique

and they change based on the story and the structure of the network around the source user.

Table 4.1 Values for influenced users and carrying capacity

Percentiles I1(t) I2(t) I3(t) I4(t) K1 K2 K3

25th percentile 56 73 111 170 70 178 291

50th percentile 70 105 165 284 122 289 407

75th percentile 115 187 316 511 341 505 668

4.3 Summary

In this chapter, we proposed a diffusion model to predict the information spreading in online social

networks considering dynamic carrying capacity. Our model is able to predict the influenced users

at any time by minimizing the Mean Absolute Error (MAE) between the observed and predicted

values. We used Genetic Algorithm with random initial guess for the error minimization. We

validated our model using real data from Digg dataset, a popular news sharing website. To the best

of our knowledge, our work is the first attempt to propose dynamic carrying capacity to model and

predict information diffusion in a large social platform.
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CHAPTER 5: CONNECTION-BASED RATING PREDICTION

Users are overloaded with many choices when making on-line purchasing decisions, and recom-

mender systems have become handy to alleviate this problem by providing customized recom-

mendations. These systems offer a personalized experience based on social interactions or user

preferences. In this chapter, we propose multiple methods for product rating prediction consider-

ing a recommender system with a dynamic set of users and their social connections.

5.1 Connection, Trust and Centrality-Based Rating Prediction

Users and Products: We denote the set of users present in the system at time t by U(t), where

NU(t) = |U(t)| is the number of users at time t. These users have the option to rate some prod-

uct(s) from the set of products at any time. We denote the set of products as P (t), where where

NP (t) = |P (t)| is the number of products at time t. Let the rating by user i for product j at time t

be given by Ri,j(t). All such ratings at time t is given by the matrix R(t)NU (t)×NP (t). The ratings

are typically integer values between a predefined minimum and a maximum value.
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Trust Relationships: The social connections among users are usually given by an adjacency ma-

trix A(t)NU (t)×NU (t) which has binary values that represent if two users are connected or not. As

discussed earlier, each user trusts her connections with varying degrees. A real number 0 <

Tl,m(t) ≤ 1 represents how much user l trusts user m at time t. If users l and m are not con-

nected, we set Tl,m(t) = 0. Matrix T(t)NU (t)×NU (t) captures all trust relationships at time t. It is to

be noted that Tl,m(t) is not necessarily equal to Tm,l(t).

Rating of Products: The rating of a product by an individual user depends on two factors: i) the

impression on the product from the user’s connections and ii) the impression from others (non-

connected users). Trusted users also affect the opinion of a user towards a specific product. As

users interact socially with their connections and exchange views on a product, different opinions

emerge. Based on how much a user trusts a particular connection, the views on the product are

regarded accordingly. As the number of ratings observed from non-connected users is usually large

compared to the number of connections of a user, we tend to consider the ratings even by others

even though there is no interaction. In some cases, a user may get the first impression about a

product on commercial websites (e.g., Amazon, eBay, and Epinion) even before interacting with

her connections.

Problem Statement: Our objective is to predict the rating user i will assign to product j at time

t + 1 (i.e., Ri,j(t + 1)) given the state of the system up to time t i.e., given R(t)NU (t)×NP (t) and

T(t)NU (t)×NU (t).
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5.1.1 Analysis of Rating Prediction

We argue that the rating of a product by a user depends on how others have rated the product so far

and how the user’s connections view that product. To that end, we propose a linear combination

of these two factors and use an exponentially weighted moving average to capture the temporal

variations of the ratings. We also make use of the trust matrix to find how much a user is trusted

by her connections and weigh her opinion accordingly.

Based on the information available at time t, we find the rating of product j by user i at

time (t+ 1) as:

Ri,j(t+ 1) = λ× RC
i,j(t) + (1− λ)×RNC

i,j (t) (5.1)

where RC
i,j(t) is the weighted average of the ratings for product j by the connections of user i and

RNC
i,j (t) is the average rating up to time t by the non-connections of user i who rated product j.

The social factor, 0 ≤ λ ≤ 1, weighs the impressions from the connections and non-connections.

λ = 0 implies that there is no societal impact from connections and λ = 1 refers to pure social

impact in which the user only follows her connections.

Effect of Connections

It is to be noted that both i) the ratings provided by connections and ii) how much one

trusts her connections are functions of time. In order to consider the effect of user’s connections

on the rating, we must consider how one’s connections have rated a product in the past and how

would they rate it now. As products undergo modifications, we must put more weight on the latest
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version, but at the same time should not ignore the history of the product. To that end, we propose

an exponentially weighted moving average (EWMA) where we use a weight of α for the latest

rating and 1−α for all the past ratings. We get the overall rating from i’s connections at time t by:

RC
i,j(t) = (1− α)× RC

i,j(t− 1) + α×Rins
i,j (t) (5.2)

where Rins
i,j (t) is the instantaneous ratings for product j.

For calculating Rins
i,j (t), each neighbor of i is weighted individually based on their pre-

viously measured importance. It is to be noted that not all connections are trusted equally and

therefore we must consider how i trusts her connections.

Centrality measures are typically used to determine one’s importance and there are multiple

ways of defining what importance is. If Cl(t) is the centrality measure of l at time t, then Rins
i,j (t)

is obtained as:

Rins
i,j (t) =

∑

l∈Ni

Il,j(t)×Rl,j(t)× Cl(t)

∑

l∈Ni

Il,j(t)× Cl(t)
(5.3)

where Ni refers to the connections (neighbors) of i. We use the indicator function Il,j(t) as not all

connections of i would rate the product j and therefore, we define this binary function as:

Il,j(t) =















1 if user l rated product j

0 if user l did not rate product j

(5.4)
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We use degree centrality and eigen-vector centrality [95] to quantify the trust of the con-

nections of i at time t.

Degree centrality is the simplest indication of one’s importance which is quantified as the number

of connections, i.e., the number of incoming edges (in-degree). Thus, the degree centrality of l is

given as:

Cl(t) =
∑

∀m,l 6=m

Al,m(t) (5.5)

Obviously, a higher in-degree means higher importance.

Eigen-Vector centrality of l is quantified as the sum of the trust of all connections of l which is

given as:

Cl(t) =
∑

∀m

Tl,m(t)× Cm(t− 1) (5.6)

The initial values for the eigevector centralities are usually set to 1 i.e., Cl(0) = 1 for all i

which evolves over time based on Eqn. (5.6).
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Effect of Non-connections

For the non-connections of i, we treat all equally to compute the average rating (i.e.,

RNC
i,j (t)) which is given as:

RNC
i,j (t) =

Xj
∑

i=1

t
∑

k=1

Ii,j(k)× Ri,j(k)

Xj
∑

i=1

t
∑

k=1

Ii,j(k)

(5.7)

where Xj ∈ N are the ones that rated product j.

Using RC
i,j(t) from Eqn. 5.2 and RNC

i,j (t) Eqn. 5.7, we can find Ri,j(t+ 1).

5.1.2 Error Metric

We would like to verify how accurate is our rating prediction model. To that end, we use the Mean

Absolute Error (i.e., MAE) which is defined as the difference between the predicted rating and the

actual rating and is denoted by:

MAE =

∑

i

∑Ji
j=1 |R

pre
i,j − Ract

i,j |

Ji

(5.8)

where Rpre and Ract are the predicted rating and actual rating respectively, and Ji is the set of

products rated by (i ∪ Ni).
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5.1.3 Simulation Model and Results

In order to test the proposed rating prediction framework, we used Epinions dataset [122]. We

used λ as an indication of social effect of connections and consider the entire range from 0 to 1.

We calculate the mean absolute error with and without centrality.

Dataset Description

In the Epinions dataset, we use the item rating matrix in addition to the trust relationship

matrix. In order to deal with a particular product, we use the product ID, the product category, and

time-stamps of creation of the ratings. Though our method works for real trust values, this data set

provides only binary values for trust; Ti,j = 1 when i is connected to j and Ti,j = 0 when i is not

connected to j.

An important reason for using Epinions dataset is that is provides evolving trust relation-

ships between users over a total of 11 time periods. In period 1, there were 155,323 trust rela-

tionships and 135,859 rating incidents, which increased to 300,545 trust relationships and 348,773

ratings by the end of the 11th period. We chose a product such that all the rating incidents for that

product occurring after 1st period had at least 1 previous rating from the connections.

Simulation Results

Fig. 5.1 shows the impact of social factor (λ) on the mean absolute error (MAE) of the

predicted ratings for all products. Here, λ = 0 implies no social impact from one’s connections.

In this case, the estimated rating is only affected by the average rating by the non-connections. On

the other hand, λ = 1 refers to a pure social impact in which each user is only affected by her
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connections. We show effects of connections when eigen-vector and degree centralities are used

compared to when no centrality measure (i.e., all the neighbors are equally weighted) is used.

Increasing λ initially enhances the rating prediction up to a certain point, which is λ = 0.35

in this case, followed by increasing errors. In other words, besides the average rating of a product

which reflects the general quality, social impact from immediate neighbors can also affect the

rating. λ = 0.35 suggests that the impact from overall rating is relatively higher than the social

impact. Considering the impacts of centrality measures, modeling social impacts using eigen-

vector centrality leads to better performance. However increasing the social factor, reduces the

positive effects of centrality measures on rating estimation.
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Figure 5.1 The effects of social factor (λ) and on the MAE. The least error occurs for λ = 0.35
and for eigen-vector centrality.
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Fig. 5.2 shows the probability density function (pdf) of the mean absolute error using eigen-

vector centrality for three different values of the social impact factor. The majority of estimated

ratings (almost 70%) contain error of less than 1 when eigen-vector centrality is used. The proba-

bility of MAE decreases sharply for higher values of error.

The pdf of the mean error (ME) considering positive and negative values are shown in

Fig. 5.3 for three values of λ. The right-skewness of the pdf indicates that the ratings have been

overestimated.
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Figure 5.2 The probability distribution of MAE using eigen-vector centrality for λ = 0 (i.e., no

social impact), λ = 0.35 (i.e., optimal social impact), and λ = 1 (i.e., pure social impact).

In Fig 5.4, the MAE is plotted as the function of actual rating. Interestingly, for smaller

values of actual rating, the estimated ratings have relatively high errors. For instance, when actual

rating is 1, the error is almost 2, which is higher than the error for actual rating equal of 5 which has
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Figure 5.3 The probability distribution of mean error (ME) for all ratings using eigen-vector cen-

trality

an error of 0.5. This trend suggests that, for small ratings (i.e., less than 2) the rating mechanism is

different from the mechanism governing higher rating values. We believe that small actual ratings

are impacted more by biased opinions and the social connections did not play a crucial role. In

such cases, we choose not to buy the product and as a result there would be less number of ratings.

The overestimated ratings shown in Fig. 5.3 can be attributed by this fact.

In order to further analyze the skewness, we remove the low ratings (i.e., lower than 2) and

use ratings that are more than 2. In Fig. 5.5, we show the pdf of mean error (i.e., ME) for products

with higher ratings. Comparing Figs. 5.3 and 5.5, we observe that the pdf is more symmetric as

expected, for mean error.
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Figure 5.4 MAE for actual ratings using eigen-vector centrality
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Figure 5.5 The probability distribution of mean error (ME) for high ratings using eigen-vector

centrality
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5.2 Summary

Recommender systems do not always consider the role of social interactions and the fact that users

tend to trust the views of their connections more than non-connections. In this chapter, we studied

how the rating of a product can be predicted using the user-item matrix and the trust relationship

matrix. Using eigen-vector centrality, we modeled the trustworthiness of the connections one has.

We proposed a framework to predict how a user would rate a product based on how her connections

and non-connections rated that product which are linearly combined using the social impact factor.

We updated the predicted rating using an exponentially weighted moving average. For evaluating

the prediction accuracy of our framework, we used the mean absolute error. To validate, we used

the Epinions dataset that supports the hypothesis that using centrality measures to quantify the

importance of users improves the performance of rating estimation. We found that a social impact

factor of 0.35 leads to the best prediction accuracy. We also found the probability density functions

for the absolute error and mean absolute error.
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CHAPTER 6: SIMILARITY AND CENTRALITY-BASED RATING
PREDICTION

We consider a social recommender system for a social network that is represented as a weighted

directed graph of users where edges represent the social trust relationship between users. The

existence of a social connection between two users would not necessarily reflect their level of trust

in each other. The method presented here is based on the assumption that the trust between users

is impacted by similarity and importance of users. Our objective is that in a given recommender

system, how can we predict the rating that user i would assign to product j, when the social

relationship graph and the user-item rating matrix are given.

6.1 Proposed Social Trust Model

We model a social recommender system as a social network represented as a weighted directed

graph with M users. In this social network, edges represent the social trust relationship between

users. The users rate their items of interests on a scale of 1 to 5. The social relationships (connec-

tions) between users are built into the adjacency matrix AM×M . The rating assigned by each user

to each item is represented by the user-item rating matrix RM×N , where N represents number of

items (products).
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6.1.1 Similarity-based Trust

A critical part of collaborative filtering is to compute similarities among users by building a user-

item rating matrix. However, collaborative filtering methods suffer from various issues such as data

sparsity and cold start users. To address this issue, some studies have incorporated user similarity

in trust models. In [70], user similarity and weighted trust propagation are used to reconstruct trust

matrix which helps with the cold start problem. In [38], the authors proposed an algorithm for

trust score which combines the number of items with the similarity score between users, and build

a trust relationship matrix. Another study [137], proposed a trust model which is based on using

propagated trust and similarity of users rating habits. A novel algorithm based on the trust model

combined with the user similarity factor has been proposed in [132]. Our method assumed that

the trust between users is impacted by similarity between two users and importance of each user.

Similarity between users is one of the most important factors that affect the value of trust between

users since two users with the same taste are more likely to trust each other. Here we apply both

rating-based and connection-based methods to capture the similarity between two users.

6.1.1.1 Rating Similarity

We apply similarity algorithms to identify the similarity between users. The VSS algorithm utilizes

the common items that have been rated by both users i and f to compute similarity which is given
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by:

Sim(i, f) =

∑

j∈I(i)∩I(f)

Ri,j · Rf,j

√

∑

j∈I(i)∩I(f)

R2
i,j ·

√

∑

j∈I(i)∩I(f)

R2
f,j

(6.1)

where j is an item that both users i and f have rated and Ri,j is the rating that user i assigned

to item j. I(i) represents the set of items rated by user i. VSS is defined in [0, 1]; a larger value

implies more similarity between user i and user f .

The trust values enforced by similarity can be modeled by weighted average rating of the

users using the similarity scores as the weights. Consequently, a connection with high similarity

will have more impact on the user’s rating. When calculating the VSS value, the difference in

user’s rating style is not considered (e.g., always high rating or always low rating). The PCC

method can obtain better performance than the VSS approach, since the PCC method considers

the differences of user ratings. So we apply the PCC algorithm to identify the similarity between

users. The similarity between users that have been rated by both users i and f is given by:

Sim(i, f) =

∑

j∈I(i)∩I(f)

(Ri,j − Ri) · (Rf,j −Rf )

√

√

√

√

∑

j∈I(i)∩I(f)

(Ri,j −Ri)2 ·

√

∑

j∈I(i)∩I(f)

(Rf,j −Rf )2

(6.2)

where Ri is the average rating of user i. We use the mapping function, f(x) = (x + 1)/2, to map

PCC values to [0, 1]. It is important to note that the value of similarity could be negative and its

magnitude signifies the dissimilarity degree.
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6.1.1.2 Connection Similarity

There are some drawbacks with using the rating-based similarity methods. These methods (VSS

and PCC) are rating-based, so they would not be applicable if two users have not mutually rated

the same product. Also these similarity measures are restricted to symmetric ones such that the

similarity between users u and v are the same for v and u, although the symmetry may not hold in

many real world applications specifically in a social network modeled by a directed graph.

The similarity between two users can be measured by the connections they have in com-

mon. This can be done using each user’s list of connections. A larger value is an indication of

the users having more similarity which shows that their connection is more valid in shaping the

trust [33]. The list of friends for each user i is defined as F (i). The proportion of mutual friends

to the total number of friends is defined as follows:

Sim(i, f) =
F (i) ∩ F (f)

F (i)
(6.3)

6.1.2 Centrality-based Trust

A user with high importance (i.e., high impact) is more likely to be followed by her friends regard-

less of their similarities. This aspect of trust relationship is modeled by considering the importance

of users which can be quantified using centrality measures. To obtain the importance of users, we

use degree centrality, eigen-vector centrality, Katz centrality and PageRank [95]. We choose these
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centrality measures since they consider the connections and also the importance of each connection

by adding the free initial centrality to deal with special cases.

Degree centrality is used as the basic indication of a user’s importance which can be defined as the

number of connections. In our case, it is the number of incoming edges (in-degree) in the social

graph. Recall from chapter 5, we define the degree centrality Cl of a user l as:

Cl =
∑

∀m,l 6=m

Al,m (6.4)

where Al,m is the element of the adjacency matrix which represents the connection between user

l and user m. Thus, with all connections treated equally, a user with more incoming edges has

higher importance in the network.

Eigen-vector centrality gives each node a value which is proportional to the sum of values of its

neighbors. Eigen-vector centrality has a property: it can be large either because a node has many

neighbors or because it has important neighbors (or both). Recall from chapter 5, eigen-vector

centrality of user l at time t is the defined as sum of the centrality of all connections of user l which

is given as:

Cl(t) =
∑

∀m

Al,m(t)× Cl(t− 1) (6.5)

where Cl(t − 1) is the centrality of user l at time t − 1. In contrast to the degree centrality, the

eigen-vector centrality considers both the number of incoming edges and also the centrality of the

neighboring users. The eigen-vector centrality is computed iteratively by setting all initial values

to 1 i.e., Cl(0) = 1 for all user l.
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Katz centrality is similar to eigen-vector centrality except that it adds a free centrality value to

each node. In this centrality, we consider a value which is called free centrality. We add the free

centrality to account for users that do not have any outgoing edges. The Katz centrality of user l at

time t is defined as:

Cl(t) = α×
∑

∀m

Al,m(t)× Cl(t− 1) + ǫ (6.6)

where ǫ is the free centrality value. By adding this second term, even nodes with zero in-degree still

get centrality ǫ, and once they have a non-zero centrality, then the nodes they point to derive some

advantage from being pointed to. This means that any node that is pointed to by many others will

have a high centrality, although those that are pointed to by others with high centrality themselves

will still do better.

PageRank centrality A problem with with Katz centrality is that if a node with high Katz centrality

points to many others then those others also get high centrality. The centrality gained by virtue

of receiving an edge from a prestigious node is diluted by being shared with so many others. The

PageRank centrality fixes this by defining a variation of the Katz centrality in which the centrality a

node derives from others is proportional to their centrality divided by their out-degrees (kout 6= 0).

Nodes that point to many others pass only a small amount of centrality to each of those others,

even if their own centrality is high. In mathematical terms, we define this centrality by:

Cl(t) = α×
∑

∀m

Al,m(t)×
Cl(t− 1)

kout(t− 1)
+ ǫ (6.7)
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6.1.3 Linear Social Trust Ensemble

To model the social trust between users in a social recommender system, we use a linear combina-

tion of similarity and centrality to represent the trust of user i on user k as [34, 35]:

Γi,k = β
Sim(i, k)

∑

l∈T (i)

Sim(i, l)
+ (1− β)

Ck
∑

l∈T (i)

Cl

(6.8)

Here, β is the parameter that defines the contribution of similarity and centrality to the overall

trust. β = 0 implies purely centrality enforced trust while β = 1 refers pure similarity-based trust

values. T (i) refers to the set of trusted friends of user i. Ck refers to the centrality (i.e., measured

using either degree or eigen-vector centrality) of user k.

6.2 Social Trust Model using Matrix Factorization

Matrix factorization has been widely used to develop social recommender systems as it helps to

estimate either the user-item rating or user-trust matrix [74] using low-dimensional representative

latent matrices. Here, matrix factorization for social recommendation proposed in [77] is employed

to examine the performance of the proposed trust relationship.

The user-item rating matrix is factorized to learn two l−dimensional feature representation

of users U and items V matrices. The user-item rating matrix R consists of M users and N items

with rating values in the range [0, 1]. Ui and Vj represent the l−dimensional user-specific and
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item-specific latent feature vectors of user i and item j. A low-rank matrix factorization approach

seeks to approximate the matrix R by multiplication of l−dimensional factor R ≈ UTV , where

U ∈ Rl×M and V ∈ Rl×N with l ≤ min(M,N). In real datasets, matrix R is usually very sparse.

The conditional distribution for R, given Γ, U , V and σ2
R is defined as [77]:

p(R|Γ, U, V, σ2
R) =

M
∏

i=1

N
∏

j=1

[N (Rij |g(
∑

k∈T (i)

ΓikU
T
k Vj), σ

2
Γ)]

IRij (6.9)

where N (Ri,j|µ, σ2
Γ) is probability density function of the Gaussian distribution with mean µ and

variance σ2
Γ. Here, Γ is the proposed trust parameter given by Eq. (6.4), Γi,k is the trust value

between users i and k. Ri,j is the rating given to item j by user i, and σ2
R is the rating variance. IRij

is an indicator function representing whether user i rated item j. Based on the Bayesian inference

and assuming Γ is independent of U and V , the conditional probability of U and V , given R, Γ,

σ2
R , σ2

U , and σ2
V , is defined as:

p(U, V |R,Γ, σ2
Γ, σ

2
U , σ

2
V ) =

M
∏

i=1

N
∏

j=1

[N (Ri,j|g(αU
T
i Vj + (1− α)

∑

k∈T (i)

Γi,kU
T
k Vj), σ

2
Γ)]

IRi,j

×
M
∏

i=1

N (Ui|0, σ
2
UI)×

M
∏

i=1

N (Vj|0, σ
2
V I) (6.10)

where σ2
U and σ2

V are the variances of user and item feature matrices. I is the identity matrix. The

function g(x) = 1/(1+ exp(−x)) is a mapping function whose range is within [0, 1]. The set T (i)

contains user i’s trusted friends.
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The proposed social recommender system is based on the idea that user’s ratings are impacted

by her own taste and her immediate friends’ tastes. The parameter α is used to balance be-

tween these two factors. The term UT
i Vj represents the estimated taste of user i of item j, while

∑

k∈T (i) Γi,kU
T
k Vj term reflects her immediate friends’ taste, given as the weighted average of their

taste using the trust value as weights.

6.2.1 User-Specific and Item-Specific Matrices

In this section, we seek to find the U and V matrices. The log of posterior distribution for the

recommendation is given by:

ln p(U, V |R,Γ, σ2
Γ, σ

2
U , σ

2
V ) = −

1

2σ2
Γ

M
∑

i=1

N
∑

j=1

IRi,j(Ri,j − g(αUT
i Vj + (1− α)

∑

k∈T (i)

Γi,kU
T
k Vj))

2

−
1

2σ2
U

M
∑

i=1

UT
i Ui −

1

2σ2
V

N
∑

j=1

V T
j Vj −

1

2
(

M
∑

i=1

N
∑

j=1

IRi,j)lnΓ
2 −

1

2
(Ml lnσ2

U +Nl ln σ2
V ) + C

(6.11)

Here C is a constant independent of other parameters. Maximizing the log-posterior over

the two latent features is equivalent to minimizing the sum-of-squared-errors objective functions

with quadratic regularization terms to derive U and V :
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L(R,Γ, U, V ) =
1

2

M
∑

i=1

N
∑

j=1

IRi,j(Ri,j−g(αUT
i Vj+(1−α)

∑

k∈T (i)

Γi,kU
T
k Vj))

2+
λU

2
||U ||2F+

λV

2
||V ||2F

(6.12)

Here λU = σ2

σ2

U

, λV = σ2

σ2

V

and ||.||2F is the Frobenius norm. λU and λV are user and item

latent variance ratios.

The gradient decent approach can be used to solve the minimization problem given in

Eq. (6.11) for finding U and V . Gradient decent is a local optimization method based on the partial

derivative of the objective function with respect to the decision variables (i.e., U and V ). The

partial derivatives of L with respect to U and V are given in Eqs. (6.12) and (6.13).

∂L

∂Ui

= α
N
∑

j=1

IRi,jg
′(αUT

i Vj+(1−α)
∑

k∈T (i)

Γi,kU
T
k Vj)Vj×(g(αUT

i Vj+(1−α)
∑

k∈T (i)

Γi,kU
T
k Vj−Ri,j)

+(1−α)
∑

p∈φ(i)

N
∑

j=1

IRp,jg
′(αUT

p Vj+(1−α)
∑

k∈T (p)

Γp,kU
T
k Vj)×(g(αUT

p Vj+(1−α)
∑

k∈T (p)

Γp,kU
T
k Vj)

−Rp,j)Γp,iVj + λUUi (6.13)
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∂L

∂Vj

=

M
∑

i=1

IRi,jg
′(αUT

i Vj+(1−α)
∑

k∈T (i)

Γi,kU
T
k Vj)×(g(αUT

i Vj+(1−α)
∑

k∈T (i)

Γi,kU
T
k Vj−Ri,j)

× (αUi + (1− α)
∑

k∈T (i)

Γi,kU
T
k ) + λV Vj (6.14)

Here g′(x) is the derivative of logistic function where g′(x) = exp(x)/(1 + exp(x))2. φ(i)

is the set of the users who trust user i [75].

6.3 Accuracy Measures

In order to test the validity and accuracy of the proposed rate prediction framework, we conduct

extensive simulation experiments with data from Epinions [122].

6.3.1 Data Source

We base our experimental analysis on a dataset based on trust-based product review website Epin-

ions.com which is a product comparison website that features products reviews with a social com-

ponent. It allows users to post reviews about products with a rating from 1 to 5. It also allows

users to create directional social links that can be defined as trust and distrust links towards other

users. Since the distrust links are not publicly available, we study only the trust links. Also users

can provide feedback about the quality of product reviews written by other users. Each review
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has a helpfulness score summarized as very helpful, somewhat helpful, helpful, not helpful, or no

feedback. The Epinions website takes into account the trust links in order to make personalized

recommendations.

The social connections in this dataset are binary values and do not represent the actual trust

values. The dataset includes 22166 users and 355754 social connections, leading to 0.0724 percent

density in the user social relationship matrix. The total number of items is 296277, with a total of

922267 ratings, which results in a very sparse item-rating matrix with 0.0140 percent density. As

a result, the user-item rating matrix is also relatively sparse. On average, users have 16.05 trusted

friends. The maximum number of friends for a user is 1551 and the most trusted user has 2023

other users trusting her.

6.3.2 Accuracy Metric

Evaluation measures for recommender systems are divided into three classes of prediction accuracy

metrics: i) Predictive accuracy measures (such as MAE, RMSE), evaluate how close the recom-

mender system is in predicting actual rating values, ii) Classification accuracy measures (such as

Precision, Recall, F1) which measure the frequency with which a recommender system makes cor-

rect/incorrect decisions regarding items based on the relevancy of the recommended items, and iii)

Rank accuracy measures (such as Discounted cumulative gain (DCG) and Mean Average Precision

(MAP)) which evaluate the correctness of the ordering of items performed by the recommendation

system. Since our proposed model focus on the error in the rating prediction, we use the metrics
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in the first category which evaluate the prediction accuracy of the recommender system. The other

two categories are typically used for classification and ranking, are therefore not considered.

6.3.3 Predictive Accuracy Measures

Different types of error metrics are defined as follows.

Mean Absolute Error (MAE): This metric measures the average variation in the predicted

rating vs. the actual rating. Let Rpre
i,j be the predicted rating and Ract

i,j be the actual rating given by

the user i to the product j. Recall from chapter 5, the MAE is defined as follows:

MAE =

∑

i,j |R
pre
i,j − Ract

i,j |

M
(6.15)

Root Mean Squared Error (RMSE): This metric is the most popular metric used in eval-

uating accuracy of predicted rating. It is a variant of mean square error and is defined as follows:

RMSE =

√

∑

i,j |R
pre
i,j − Ract

i,j |
2

M
(6.16)

All these metrics measure the accuracy of the actual predictions and are easy to compute

efficiently. Moreover, MAE and MAE-based error estimates have well known statistical properties.

These characteristics makes MAE and RMSE good representative of error metrics to analyze the

accuracy of the proposed model.
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6.4 Results and Discussions

We present how our trust models perform with the data obtained from Epinions. Based on the pro-

posed model, the trust relationships between users are built on the two components of centrality

and similarity measures. We demonstrate the probability density function of centrality, normal-

ized similarity, and trust. These distributions reveal what and how much impact each of these

parameters have for various values of the parameter in question.

6.4.1 Distribution Analysis

Fig. 6.1 shows the distribution of different centrality measures that have been analyzed in our

model: degree, eigen-vector, Katz, and PageRank centrality.

In Fig. 6.2, the distribution of rating-based (i.e., VSS and PCC) and connection-based

similarity are shown. VSS and PCC have a relatively sparse distribution due to the lack of mutually

rated products by two friends in many cases. The trust values are calculated as the weighted

summation of centrality of similarity using the weight constant β.

Fig. 6.3, Fig. 6.4, and Fig. 6.5 show the distribution of trust values for different types

of similarity being applied; PCC, VSS, and connection-based similarity. These figures show the

distribution of trust values using β = 0.5. The proposed trust model is used to predict users’ rating

based on the discussed matrix factorization technique using 75 percent of the data as the training

set. According to Eq. (6.5), a user’s opinion about a particular product would be a linear function
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of her connections’ taste and her own taste using a weighting factor α. Smaller values of α is

an indication of less impact from neighbors. As previously defined in Eq. (6.4), the trust model

is presented as the linear combination of centrality and similarity using the weighting factor β.

Higher values of β indicate higher impact of similarity rather than centrality on the trust values.

Here, user and item latent variance ratio (λU and λV ) are set to 0.001. The latent size is L = 4,

α = 0.4, and the number of iterations is 300.
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Figure 6.3 Distribution of trust values for PCC similarity

6.4.2 Performance Analysis

The performance of the proposed trust model for different values of β in terms of MAE is shown in

Fig. 6.6 for PCC similarity, Fig. 6.7 for VSS similarity, and Fig. 6.8 for connection-based similarity.
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Figure 6.5 Distribution of trust values for connection similarity
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Figure 6.6 MAE using binary trust and the proposed trust model for PCC similarity
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Figure 6.7 MAE using binary trust and the proposed trust model for VSS similarity
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Figure 6.8 MAE using binary trust and the proposed trust model for connection similarity

The same is shown for RMSE for the performance of the proposed trust model for different

values of β in Figs. 6.9, 6.10, and 6.11.

Compared to the binary trust model (dashed black lines), the proposed trust model has

better performance. Comparing different definitions of trust reveals that degree centrality is the

better measure to model trust compared to using other centrality measures. The same is true for

connection-based similarity compared to rating-based. An interesting observation is that, although

including centrality in trust model enhances the recommendation performance compared to the

binary trust model, the trust models solely based on similarity (i.e., β = 1) show the best perfor-

mance for the studied network.

The probability distribution of rating estimation error (i.e., estimated rating minus actual

rating) for the binary trust and proposed trust model is shown in Fig. 6.14. Both probability dis-
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Figure 6.9 RMSE using binary trust and the proposed trust model for PCC similarity
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Figure 6.10 RMSE using binary trust and the proposed trust model for VSS similarity
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Figure 6.11 RMSE using binary trust and the proposed trust model for connection similarity

tributions are right skewed, implying over-estimation. However, the proposed trust model seems

to have relatively better performance especially for errors between 0.5 and 2, since it estimates

more between 0.5 and 1 and less between 1 and 2 compared to the binary model. The probability

distribution of absolute error ratio (i.e., absolute error divided by the actual rating) is shown in

Fig. 6.15. The proposed trust model leads to lower error ratio between 1 and 2 and more between

0 and 1 which implies relatively better performance.

6.4.3 Error Analysis

The performance of the trust model (the definition which had the best performance in Figs. 6.3,

6.4, and 6.5) for different latent sizes and training percentages are shown in Fig. 6.12 and Fig. 6.13.
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Generally, increasing the latent size as well as using more training data enhance the performance

of the recommender system.
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Figure 6.14 The probability distribution of error for rating estimation using binary trust and the

proposed trust model

Figs. 6.16 and 6.17 show the estimated versus actual ratings for the proposed and the binary

trust models. The boxes illustrate the lower, upper, and inter quartiles, while the red line is the

medium. The height of the boxes represents the variation of the estimated rating. Comparing

Figs. 6.16 and 6.17, it is observed that the proposed trust model produces better estimations for

low ratings (1 and 2) by slightly undermining the estimation. In addition, for high ratings, the

proposed trust model reduces the variation of estimations, i.e., the height of the quartile boxes.

As previously discussed, the trust-walker method use random walk; however our method

uses similarity and centrality metrics. The similarity and centrality elements used to build the
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Figure 6.16 The quartile plot of actual versus estimated rating for the proposed trust model
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Figure 6.17 The quartile plot of actual versus estimated rating for the binary model.

trust gives individual value to each user affected by new neighbor and new place in the social

trust network. Compared with TrustWalker, TidalTrust and MoleTrust, our method shows equal

or lower RMSE values for the trust model. Considering centrality of the users to build the trust

between users also helps with the cold start problem with users who have rated few items.

6.5 Summary

With emerging applications of social networks and considering the role of social interactions in our

daily life decisions, extracting information from user’s social relationships is becoming a popular

method for predicting user’s behavior. To consider and balance these factors, this paper proposes

a social trust model that incorporates the preference similarity, user’s centrality, and social relation

90



in order to predict the rating for the social recommender system. We capture the trust relationships

between users considering users with similar profile and their importance. We argue that users with

more similarity would trust each other more; also users with higher importance would be trusted

more. Similarity is quantified by using rating-based approaches and a connection-based centrali-

ties. The importance of users is modeled by degree, eigen-vector centrality, Katz and PageRank

centralities. We define trust as a linear combination of similarity and centrality using a weighting

parameter. The proposed framework is validated using real data from Epinions. Our result indi-

cates that the proposed trust model produces better rating estimation in terms of the mean absolute

error (MAE), the root mean squared error (RMSE) and error distribution, compared to the tradi-

tional binary trust model which is widely used in recommender systems. Trust enforced by degree

centrality shows better performance compared to other centrality methods. The same conclusion

is valid for connection-based similarity compared to rating-based. The trust relationships are also

observed to be more dependent on the similarity rather than centrality. The proposed framework

can thus be effectively applied to electronic retailers in promoting their products and services.
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CHAPTER 7: USER PROFILE ANOMALY DETECTION

Recommender systems are subject to profile-injection attacks due to the recommender database

being populated by users inputs. We propose a detection approach where each user profile is

examined to extract attributes which are used to identify and label each user profile as either an

attacker or a genuine user.

7.1 Detection Attributes

Our hypothesis [32] is based on the fact that the features of attackers would be significantly dif-

ferent from the overall statistical characteristics of all user profiles. This difference in features

can be extracted from two different sources: i) the rating a user assigns to a product and ii) the

relationship between those users. Earlier studies have shown that it is unlikely, if not unrealistic,

that an attacker to have complete knowledge of the ratings or the connections in a real system.

So the synthetically generated user profiles would be different from authentic user profiles. These

differences can be quantified in different ways, including abnormal deviation from user’s friends

ratings assigned to the products, or a connection between two users with a low similarity value. As

a result, a carefully designed criteria can capture the abnormalities and deviations which can help

to identify potential attacker profiles.
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One of the attributes is Rating Deviation from Mean Agreement (RDMA), which identifies

attackers through examining the user’s average deviation per item, weighted by the inverse of the

number of ratings for that item. Motivated by RDMA, we propose a variant of it that is found to be

valuable when used in conjunction with a clustering technique which is based on attributes derived

from each individual profile. We propose the following attributes that can be used to differentiate

between a genuine profile and an attacker profile.

7.1.1 Deviation from Predicted Rating

Several attributes for detecting the differences that occur in the presence of attackers were in-

troduced in [25]. Users who deviate from their own prediction for a particular product can be

considered as being malicious. We use the differences from the predicted value for all the ratings

as a measure of deviation which can also be used to measure the error in the rating system. The

matrix factorization method [55] is a popular prediction technique. Suppose r∗u,j is the predicted

rating obtained via the matrix factorization method for user u for product j. Then the deviation by

user u, denoted by D(u), is obtained as:

D(u) =

∑

j∈Iu
|ru,j − r∗u,j|

nru
(7.1)

where ru,j is the actual rating by the user u for the product j, and nru is the number of ratings by

user u.
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7.1.2 Similarity among Two Users

Connections between users in a social network are usually created between similar users or users

who have similar interests. When an attacker joins the network, he tends to connect to users in a

random fashion. Such artificiality created connections result in low similarity between the attacker

and the users he connects to. Here, we capture the similarity between two users based on: i) the

mutually rated products, and ii) the common connections that both have.

Rating Similarity

High similarity between users reveal that the users which are very likely to have the same

taste are more likely to connect to each other. The effect of similarity has been incorporated

in social recommender systems for predicting user rating. Here we apply the VSS algorithm to

identify the similarity between users utilizing the common items that have been rated by both

users v and u. Recall from chapter 6, the similarity is given by:

R(u, v) =

∑

j∈I(u)∩I(v)

Ru,j · Rv,j

√

∑

j∈I(u)∩I(v)

R2
u,j ·

√

∑

j∈I(u)∩I(v)

R2
v,j

(7.2)

where j is an item that both users u and v have rated and Ru,j (Rv,j) is the rating that user u (v)

assigned to item j. I(u) represents the set of items rated by user u.

If we want to study from only one user’s (attacker’s) perspective, say user u, then there

might not be many products that both users u and v have rated i.e., the set I(u) ∩ I(v) could be

small. To expand the set, we also consider all the first hop neighbors of user u, denoted by N(u).
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We modify Eqn. 7.2 as:

R(u) =

∑

v∈N(u) R(u, v)

|N(u)|
(7.3)

Connection Similarity

The similarity between two users can also be measured by the connections they have in

common. More mutual connections would indicate a larger similarity. For malicious connections,

it is expected that the number of mutual connections would be low, and hence a small similarity

value. We define the connection similarity as:

C(u, v) =
|N(u) ∩N(v)|

|N(u)|
(7.4)

Just like the rating similarity of user u, we define the connection similarity for user u as:

C(u) =

∑

v∈N(u) C(u, v)

|N(u)|
(7.5)

7.1.3 Abnormal Rating Behavior

Now, we consider users with abnormal rating behavior. Abnormality could be manifested through

several ways. We consider two cases.
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Extreme Rating Behavior

Here, the users only assign either high ratings (e.g., 5) or low ratings (e.g., 1) to products.

In such cases, we can expect the very low deviations among the ratings. We capture these extreme

ratings for user u as:

E(u) = 1−
σ(Ru)

Rh − Rl

(7.6)

where σ(Ru) is the standard deviation of all the ratings by user u. Rh and Rl are the highest and

lowest ratings allowed by the recommender system. For extreme behavior, E(u) will be close to

1. It is to be noted, a fix-rater, where the user always assigns products the same rating, also would

have E(u) close to 1.

Different Rating Behavior

Here, we try to identify users whose ratings vary significantly from their connections. This

difference could be for the same product or it could be for a range of products. For user u, we

consider the deviations of the ratings from N(u) for product j as:

Bj(u) =

∑

v∈N(u) |ru,j − rv,j |2

N(u)
(7.7)

A generalization of equation 7.7 would be to include not just the neighbors of user u but all users

who rated product j.

B(u) =
1

Nu(j)

∑

j

Bj(u) (7.8)
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where Nu(j) is number of products.

7.1.4 k-Means Clustering

The k-means algorithms are based on finding k centroids for the k clusters in a higher dimensional

space. A standard model-based collaborative filtering algorithm uses k-means to cluster similar

users. Given a set of user profiles, the space can be partitioned into k clusters– users belonging to

a cluster are close to each other based on a measure of similarity. We use the similarity based on

a user profile being authentic or being an attacker. So the clustering aims to make two clusters of

user profiles based on the attributes discussed in section 7.1.

7.2 Experimental Evaluation

In order to verify the efficacy of our proposed framework, we conducted extensive simulation

experiments. Before, we present the results, let us first discuss the performance metrics, datasets,

and the attack models.

7.2.1 Evaluation Metrics

There are various metrics that are used to evaluate recommender systems [34]. Our aim is to

measure the effectiveness of the method in differentiating between attackers and authentic users.
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We use precision an recall for identifying attackers. Precision is a measure of exactness and is

the ratio of the number of attackers identified to the total number of users who are identified as

attackers. Recall is a measure of completeness and is the ratio of number of attackers identified to

the total number of attackers in the system. These are defined as follows.

Precision =
nTP

nTP + nFP

(7.9)

Recall =
nTP

nTP + nFN

(7.10)

Here, nTP is number of true positives which represents the number of attackers (user pro-

files) correctly classified as attackers, and nFP is number of authentic profiles misclassified as

attack profiles (i.e., false positives), and nFN is the number of attack profiles misclassified as au-

thentic profiles (i.e., false negatives).

7.2.2 Dataset

We use the publicly available Epinions dataset [122]. This dataset consists of 922267 ratings

on 296277 products by 22166 users having 355754 relationships. All ratings are integer values

between 1 and 5 where 1 is the worst and 5 is the best. From the dataset, we use the users-

connection matrix in addition to the item-rating matrix. The density of user connections matrix is

0.0724 and for item-rating matrix is 0.0140. It can be observed that these matrices are relatively
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sparse. For each attack profile, we also consider different attack sizes and filler sizes. For each

attack, we injected a number of attack profiles and evaluated each scenario. The data has been

tested by inserting a mix of attack models discussed next.

7.2.3 Attack Models

An attack type defines the algorithm for assigning ratings to the set of filler products and the target

product. The set of filler products represents a group of randomly selected products in the database

that are assigned ratings within the attack profile. For specific attack types, we selected a subset

of filler products before a specific impact on the recommender system. For each attack profile, we

considered four sets of products: i) a set of unrated products, ii) a set of filler products, iii) a set

of products with specific characteristics which is determined by the attacker, and iv) one or more

target products.

The two types of attacks that we considered are the random attack and the average attack

which were introduced in [65]. In random attack, a maximum (push attack) or minimum (nuke at-

tack) rating is assigned to the target product and random ratings are assigned to the filler products.

For this attack model the selected product set is empty. In average attack model, the rating for

each filler product is based on the mean rating of that product across the rating matrix. Generally

an average attack is more effective than a random attack. However, it requires more knowledge

about the system rating behavior and distribution. The cost of this knowledge can be minimized

considering that an average attack could be successful with a smaller number of filler items. How-
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ever, in random attack there needs to be a rating for every product so that it makes this attack more

effective and efficient.

7.2.4 Experimental Setup

Several attack scenarios are simulated to evaluate the performance of the proposed framework.

In each attack scenario, a number of fake profiles are injected into the system. The fake profiles

start their attack by sending a number of connection requests to get attached to the existing users.

Added profiles add-back the attackers randomly with some with probability, Pab. In order to evade

detection, the attackers also rate a number of fillers, i.e., they rate products in addition to the target

item. For the average attack, the filler items are rated as the average of the ratings, whereas, the

ratings to the filler items are assigned randomly in random attacks.

We considered the number of attackers between 5 and 50, number of filler items between 20

and 120, and the probability of add back between 0.1 and 0.6. The number of connection requests

per attackers is set to 100 for all the scenarios. As mentioned earlier, matrix factorization is used

to estimate the rating behavior of users. The number of latent for matrix factorization is set to 2.

7.2.5 Simulation Results

Fig. 7.1 shows the precision with varying number of attackers for push (random and average) and

nuke (random and average). Fig. 7.2 shows the recall with varying number of attackers for push
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(random and average) and nuke (random and average). As more attacks are launched, the proposed

method is able to identify the attackers with better accuracy. A small number of attackers usually

do not disturb the normal activity of the system significantly; therefore it is relatively difficult to

detect those small size attacks.
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Figure 7.1 Effect of number of attackers on precision

Precision and recall are shown in Figs. 7.3 and 7.4 for increasing number of fillers. A

higher number of fillers also increases the chance of detecting the attackers. This is because,

attackers with high number of fillers are more likely to behave abnormally in terms of their rating

behavior. In those cases, the attackers would have difficulty to produce ratings for fillers which

are statistically consistent with the rest of the system. Intuitively, an average attack profile should

be very similar to an authentic user profile than a random attack profile. As a result, for small

filler sizes, it is difficult to differentiate the average attack from real users simply by checking the
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Figure 7.2 Effect of number of attackers on recall

difference in the average rating for that products. However, in random attacks with small filler

sizes, random ratings would be more affected by the number of connections.

We also investigate the impact of add-back probability on precision and recall. From

Figs. 7.5 and 7.6, we see that the probability of add-back inversely influences the performance

of the anomaly detection. Higher add-back probability indicates social acceptance of the attackers

by the rest of the users in the system. This will make the detection of the attackers difficult since

they blend in with the genuine profiles. This clearly indicates the willingness to accept unknown

connection requests plays an adverse role in anomaly detection.
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Figure 7.3 Effect of number of fillers on precision
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Figure 7.4 Effect of number of fillers on recall
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Figure 7.5 Effect of add-back probability on precision
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Figure 7.6 Effect of add-back probability on recall
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7.3 Summary

Profile injection attacks threaten the trustworthiness of social recommender systems. Though there

are techniques that try to identify such profiles, most of them are focused on individual profiles and

ignore the social interactions between attackers and authentic users. In this chapter, we exploit the

social connections to detect the anomalies of user profiles and the corresponding ratings using

k-means clustering. We propose three attributes that capture the deviations of ratings, user simi-

larities, and abnormal rating behavior. We use the Epinions dataset to evaluate the performance of

our framework. we inject attacker profiles to the system to perform nuke and push attacks. These

attackers randomly add multiple connections and assign biased ratings to the selected products. We

use precision and recall as the performance metrics to show that k-means clustering algorithm that

uses the three attributes can identify the attack profiles with high accuracy and low false positives.
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CHAPTER 8: CONCLUSIONS

With the growing popularity of social networks, recommendation systems are becoming important

due to their commercial, social, and political impacts. In this dissertation, we investigate various

issues in online social recommender systems: information spreading, rating prediction, and mali-

cious profile detection. We developed a probabilistic spreading model for information diffusion in

online social networks and tested the proposed model using Facebook dataset. We also proposed a

diffusion model to predict the same by considering the dynamic carrying capacity of the network.

Our model is able to predict the influenced users at any time by minimizing the Mean Absolute

Error (MAE) between the observed and predicted values. We used Genetic Algorithm with random

initial guess for the error minimization. We validated our model using real data from Digg dataset.

For rating prediction of products in social recommender systems, we proposes a social trust

model that incorporates the preference similarity, user’s centrality, and social relation in order to

predict the rating of a product. We capture the trust relationships between users considering users

with similar profile and their importance. We argue that users with more similarity would trust

each other more; also users with higher importance would be trusted more. Similarity is quanti-

fied by using rating-based approaches and connection-based centralities. The importance of users

is modeled by degree, eigen-vector centrality, Katz, and PageRank centralities. We define trust

as a linear combination of similarity and centrality using a weighting parameter. The proposed
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framework is validated using real data from Epinions. Our result indicates that the proposed trust

model produces better rating estimation in terms of the mean absolute error (MAE), the root mean

squared error (RMSE) and error distribution, compared to the traditional binary trust model which

is widely used in recommender systems. Trust enforced by degree centrality shows better perfor-

mance compared to other centrality methods. The same conclusion is valid for connection-based

similarity compared to rating-based. The trust relationships are also observed to be more dependent

on the similarity rather than centrality. The proposed framework can thus be effectively applied to

electronic retailers in promoting their products and services.

As for identifying profile injection attacks that threaten the trustworthiness of social rec-

ommender systems, we exploit the social connections to detect the anomalies of user profiles and

the corresponding ratings using clustering methods. We propose multiple attributes that capture

the deviations of ratings, user similarities, and abnormal rating behavior. We use the Epinions

dataset to evaluate the performance of our framework. We inject attacker profiles to the system to

launch nuke and push attacks. These attacks randomly add multiple connections and assign biased

ratings to the selected products. We use precision and recall as the performance metrics using the

attributes to help identify the attack profiles with high accuracy and low false positives.
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