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ABSTRACT 

The magnitude of the overall settlement depends on several variables such as the 

Compression Index, Cc, and Recompression Index, Cr, which are determined by a consolidation 

test; however, the test is time consuming and labor intensive.  Correlations have been developed 

to approximate these compressibility indexes.  In this study, a data driven approach has been 

employed in order to estimate Cc and Cr.  Support Vector Machines classification is used to 

determine the number of distinct models to be developed.  The statistical models are built 

through a forward selection stepwise regression procedure.  Ten variables were used, including 

the moisture content (w), initial void ratio (eo), dry unit weight (γdry), wet unit weight (γwet), 

automatic hammer SPT blow count (N), overburden stress (σ), fines content (-200), liquid limit 

(LL), plasticity index (PI), and specific gravity (Gs).  The results confirm the need for separate 

models for three out of four soil types, these being Coarse Grained, Fine Grained, and Organic 

Peat.  The models for each classification have varying degrees of accuracy.  The correlations 

were tested through a series of field tests, settlement analysis, and comparison to known site 

settlement.  The first analysis incorporates developed correlations for Cr, and the second utilizes 

measured Cc and Cr for each soil layer.  The predicted settlements from these two analyses were 

compared to the measured settlement taken in close proximity.  Upon conclusion of the analyses, 

the results indicate that settlement predictions applying a rule of thumb equating Cc to Cr, 

accounting for elastic settlement, and using a conventional influence zone of settlement, 

compares more favorably to measured settlement than that of predictions using measured 

compressibility index(s).  Accuracy of settlement predictions is contingent on a thorough field 

investigation. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

Ground settlement from compressible soils is a phenomena that is quite commonplace in the 

construction world.  Florida, particularly, has vast amounts of organics, silts, and clays, whose 

soil skeleton has a tendency to collapse when exposed to moisture and loading conditions.  As 

Florida is wet for the majority of the year and the construction industry is booming due to 

upgrading an aging infrastructure and meeting the demands of population increases, conditions 

are ripe soil settlement, if unmitigated.  Soil settlement causes increased maintenance costs and a 

decreased lifespan for structures, roadways, and bridges. 

The magnitude of settlement is dependent on many variables, but the most important factors 

for primary settlement are the compressibility indexes.  The Compression Index, Cc, and 

Recompression Index, Cr, describe the soil’s reaction when being loaded and the degree in which 

permanent deformation is anticipated.  These factors can be measured in a laboratory or 

approximated via correlations to other, easier to obtain, soil descriptors.  Direct measurement 

comes in the form of a consolidation test, which takes approximately two weeks to perform, is 

fraught with potential for human error, and is relatively costly (in the rage of $500).   

The compressibility indexes can also be estimated from soil correlations that have been 

developed and are widely used in academia and industry, alike.  These correlations have been 

generated from soils all over the world, from Greece, to Brazil and Turkey, and even in the 

United States.  The use of these correlations in application of settlement predictions of Florida 

soils poses two important questions: 
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• How well can the existing correlations predict the compressible nature of Florida soils? 

• Can the existing correlations be improved upon to yield more reliable settlement 

predictions? 

1.2 Research Objectives 

The primary objective of this study is to answer the two questions stated above.  There are, 

however, several other research goals that are stated below: 

• The existing correlations assume that only certain soil descriptors will influence the 

compressibility indexes.  These correlations will be tested to verify their predictive 

capabilities.  In developed correlations from this study, additional descriptors will be 

added to determine if predictive capabilities can be enhanced. 

• Existing correlations are abundant for silts and clays (fine grained materials).  There is, 

however, a dearth of correlations for coarse grained materials and a precious few for 

organics.  This study aims to examine these materials as well and determine if reliable 

correlations for these soil types can be generated. 

• The Compression Index, Cc, has largely been studied and existing correlations are 

plentiful.  However, there is a noticeable lack of existing correlations for the 

Recompression Index, Cr.  As this parameter plays an important part in the potential 

settlement of a large portion of Florida’s soils (discussed later in the study), it will need 

to be included in data analysis to determine if dependable models can be created. 
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1.3 Research Methodology 

This study incorporates the following research approach to the development of soil 

compressibility prediction models and determination of applicability to site settlement: 

• Data Collection  

o Gathering SPT borings and consolidation tests 

o Building a Microsoft Access database to house and sort all data 

o Gathering existing models of compressibility indexes and reviewing existing 

literature 

• Data Analysis  

o Developing the soil classifications through Support Vector Machines 

o Creating regression models for each classification 

o Comparing to existing correlations 

o Identifying influential parameters for each regression model 

• Model Verification 

o Identifying sites with consolidation data and measured settlement 

o Performing field/laboratory tests to complete the soil profile, as needed 

o Developing settlement predictions based on measured compressibility indexes 

o Performing settlement predictions based on developed compressibility models 

o Comparing settlement predictions from measured compressibility indexes to 

predicted compressibility indexes. 
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1.4 Chapter Organization 

The chapters are organized similarly to the research methodology.  Chapter 2, which 

follows this section, covers consolidation theory and background information about how 

settlement predictions are made.  Existing compressibility index correlations are then covered.  

These correlations comprise both Cc and Cr, with notations for soil types that are applicable.  A 

settlement plate discussion is also included in Chapter 2.  Specifics will be discussed, such as 

how they are typically installed and what the settlement plots usually looks like.  A brief history 

of Florida’s geology will follow, as this establishes stress history and other specifics about what 

to expect when encountering Florida soils.  Lastly, the model development approach will be 

discussed. 

Chapter 3 will house the development of soil compressibility prediction model 

methodology.  This includes a discussion of data collection and a description of what is included 

in each data point.  After that, the methodology of developing soil classifications will be 

outlined.  This includes a framework of establishing assumed soil classes and testing them.  Also 

included is data processing, and the subsequent creation of soil classifications.  Afterwards, a 

summary of the process will be given, as well as preliminary results. 

Chapter 4 will consist of the creation of regression models for each soil classification.  

After each regression model is derived, they will then be compared to existing correlations, to 

determine which models are the strongest and most applicable for Florida soils.  Also included in 

this portion of the study is the identification of influential parameters for each soil class.  Upon 

conclusion of these analyses, a brief summary will be given. 
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 Chapter 5’s contents will include the verification of the regression models generated.  A 

site description will be given for SR 415.  Then, the field testing program will be highlighted, 

which includes both field and laboratory testing for soil index parameters and consolidation.  

After the field/lab testing is completed, two case studies will be performed for two different 

locations at the SR 415 site.  These case studies will include settlement predictions from 

measured compressibility indexes, as well as settlement predictions from predicted 

compressibility indexes.  These predictions will then be compared to measured settlement for 

both locations.  Afterwards, observations and conclusions will be discussed. 

Chapter 6 will summarize the findings of the study and provide limitations and 

recommendations. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Estimating settlement is an essential component of any geotechnical design.  As soil is 

subjected to a load from an overlying structure, it will begin to compress, or settle, immediately.  

This is called primary consolidation and is the main focus of this study.  Primary consolidation 

occurs immediately upon being loaded from dead or live loads (Das, 2002).  When subjected to a 

load, water escapes the pores of the soil skeleton.  The voids created from the vacated water are 

highly unstable and susceptible to collapse.  This continued displacement propagates its way to 

ground surface and settlement is observed.  Over time, the soil will continue to compress, in 

which case it may take several years to extract its entirety.  This is called secondary compression, 

and is not a component of this study.  

Mitigation can be costly and time consuming.  When settlement is expected, a surcharge 

can be placed at ground surface in an attempt to extract all structurally damaging settlement 

before construction begins.  This practice can take several years, which is not conducive to 

efficient construction.  The problematic soils, such as organics and clays, can also be excavated 

and replaced with clean, well-draining materials to prevent this phenomena from occurring.  If 

the compressible soils are too thick or too deep, this may not be practical. 

Mitigation can best be served with adequate settlement predictions.  This starts with a 

strong understanding of consolidation theory. 
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2.2 Predicting Settlement with Consolidation Theory 

and Measured Compressibility Indexes 

The magnitude of settlement is dependent on the soil’s stress state, which can be either 

normally consolidated (NC) or over-consolidated (OC).  Normally consolidated soils have never 

experienced a higher stress than the present stress; thus, are referred as “virgin” soils in their 

natural state.  Over-consolidated soils have experienced a higher stress in the past than the 

present stress (Hough, 1957).  The settlement of NC soils can be determined from Equation 1 

and the settlement for OC soils can be determined from Equations 2 and 3 (Das, 2002). 

 

Sc =
Cc Hc

1+eo
log (

σ’o +Δσ’ 

σ’o
) (1) 

 

Where Sc = settlement caused from loading condition, Cc = compression index in soil layer of 

interest, Hc = thickness of soil layer of interest, eo = initial void ratio in soil layer of interest, σ’o 

= initial vertical effective stress at midpoint of soil layer of interest, Δσ’ = change in vertical 

stress due to loading. 

If a soil is over-consolidated, the computed settlement can be determined from one of two 

cases.  If the initial stress, plus the change in stress from a load inducing agent, is less than the 

maximum past stress (σ’c), the following settlement equation applies: 

 

Sc =
Cr Hc

1+eo
log (

σ’o +Δσ’ 

σ’o
) (2) 

 

Where Cr = recompression index in soil layer of interest. 
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If the initial stress, plus the change in stress from a load inducing agent, is greater than the 

maximum past stress (σ’c), the following settlement equation applies: 

 

Sc =
Cr Hc

1+eo
log (

σ’c  

σ’o
) + 

Cc Hc

1+eo
log (

σ’o +Δσ’ 

σ’c
)  (3) 

 

For this study, the stress change in the settlement analysis will come in the form of a 

surcharge.  The encountered stress change of the soil layer will be determined by depth and 

spatial geometry in relation to embankment surcharge dimensions (Das, 2002) and governed by 

the following equation: 

Δσ =
𝑞𝑜

π
∗ [

𝐵1+𝐵2

𝐵2
∗ (𝛼1 + 𝛼2) −

𝐵1

𝐵2
∗ 𝛼2] (4) 

 

Where Δσ = stress change in soil layer of interest, B1 = horizontal distance from beginning of 

full height of surcharge to point of interest, B2 = horizontal distance from toe of surcharge 

embankment to full height of surcharge, α1 = angle from point of depth interest to horizontal 

point B1 at ground surface (in radians), and α2 = angle from point of depth interest to horizontal 

point B2 at ground surface (in radians).  The equations for α1 and α2 are defined below. 

 

 𝛼1 = 𝑡𝑎𝑛−1((𝐵1 + 𝐵2)/𝑧) − 𝑡𝑎𝑛−1(𝐵1/𝑧) (5) 

 

 𝛼2 = 𝑡𝑎𝑛−1(𝐵1/𝑧) (6) 

 

Where z = depth to point of interest (ft.). 

 

 𝑞𝑜 = γ𝐻 (7) 
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Where γ = unit weight of embankment soil (pcf.), and H = height of embankment (ft.). 

 

The following figure is used to further illustrate the meaning of these variables: 

 

 
 

Figure 1: Embankment Loading Schematic 

 

The initial vertical effective stress, σ’o, will then need to be determined for each layer of 

interest.  This can be accomplished by multiplying the height of the soil layer by its wet unit 

weight (accounting for water table depth and pore water pressure).  This will need to be 

performed up to the depth of interest, and is governed by the equation below: 

 

 𝜎𝑜 = 𝐻(𝛾𝑤𝑒𝑡 − 𝑢) (8) 
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Where σ’o = initial vertical effective stress (psf.), H = depth to point of interest (ft.), γwet = wet 

unit weight (pcf.), and u = pore water pressure (62.4 psf.).  The vertical effective stress will 

increase with depth.   

Correlations for determining wet unit weight from SPT blow counts can be used to 

simplify the process (Teng, 1962).  The following tables provide an estimate for wet unit weight 

to SPT blow counts for granular and cohesive soils. 

 

Table 1: Granular Soil Correlation from SPT Blow Count to Wet Unit Weight 

SPT Blow Count (N) Compactness Wet Unit Weight (pcf) 

0-4 Very Loose Less than 100 

5-10 Loose 101-110 

11-30 Medium 111-130 

31-50 Dense 131-140 

Above 50 Very Dense Greater than 140 

Source: Teng, 1962 

 

Table 2: Cohesive Soil Correlation from SPT Blow Count to Wet Unit Weight 

SPT Blow Count (N) Compactness Wet Unit Weight (pcf) 

0-2 Very Soft Less than 100 

3-4 Soft 101-110 

5-8 Medium 111-120 

9-16 Stiff 121-130 

17-32 Very Stiff 131-140 

Above 32 Hard Greater than 140 

Source: Teng, 1962 
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The compression indexes, Cc and Cr, can be measured via a consolidation test.  A 

consolidation test consists of one dimensional compression where lateral movement and strains 

are restricted.  The undisturbed sample of soil is prepared and loaded into a confining apparatus, 

called a consolidometer, such that soil strain and water flow are restricted to the vertical direction 

(Das, 2002).   

 

Figure 2: Consolidometer Schematic 

 

The soil sample is then subjected to a series of incremental loads with the resulting 

deformations recorded with time.  In a typical consolidation test, the incremental loads are 

applied at 24 hour intervals and will have a magnitude of twice the previously applied load.  

Deformation readings are usually noted throughout the 24 hour loading period at times such that 

the interval between readings approximately doubles (Das, 2002).  A commonly used 

deformation reading schedule is 2, 4, 8, and 24 hours after the application of the load. 
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As soils encountered in the field have a tendency to be over-consolidated, where the soil 

has experienced a higher stress in its history than what is currently being experienced, a common 

practice in a consolidation test is to run an unload-reload cycle.  This will capture the behavior of 

the soil as the subjected stress is reduced and the sample is allowed to recover.  Unloading 

intervals are taken at decreasing installments similar to loading intervals, such that the next 

interval will be decreased by half of the existing.  Since each loading and unloading cycle takes 

24 hours, a typical consolidation test will have approximately a two week duration.   

Consolidation test results are generally plotted in a graph that illustrates the sample’s 

compressive behavior throughout the loading sequence.  As the sample gets loaded, the air voids 

will slowly decrease and water will escape.  The graph is typically plotted showing the variation 

of the void ratio, e, with the corresponding changes in applied pressure, in kips per square foot, 

on a semilogarithmic graph in which void ratio, e, is plotted on the arithmetic scale and pressure 

on the log scale. 

 

Figure 3: Typical Consolidation Test Results 
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Upon conclusion of the consolidation test, the engineer will usually note the compression 

indexes (Cc and Cr) and other descriptors of the sample such as the liquid and plastic limit of the 

soil, dry or moist density, moisture content, initial and final void ratios, USCS (Unified Soil 

Classification System) soil classification, location of undisturbed sample extraction (boring 

number and depth), sample description, and the maximum past pressure, σ’c, that the soil has 

experienced.  

The maximum past stress, σ’c, also commonly referred to as the preconsolidation 

pressure, Pc, is normally interpreted from the void ratio to pressure relationship exhibited above.  

Consolidation tests performed on samples taken from the field generally show a change in slope 

at the preconsolidation pressure (Sabatini et al., 2002).  Sampling disturbance will usually lower 

the overall e-logσ curve relative to that of actual field conditions in the soil’s natural state.  As a 

result, the preconsolidation pressure is often underestimated during routine testing. The 

Cassagrande Method is used to reconstruct the e-logσ field curve to account for any disturbance 

during sample extraction from its natural state and during preparation for testing (Sabatini et al., 

2002).    

There are four primary steps to determining this value from the consolidation test results.  

They are as follows (NAVFAC, 1982): 

1. Select the point of maximum curvature 

2. Draw a tangent line at the point of maximum curvature defined in Step 1 

3. Draw a horizontal line at the point of maximum curvature defined in Step 1 

4. Bisect the lines drawn in Steps 2 and 3 
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5. Draw an extension of the line virgin compression zone 

The point of intersection between the bisector line in Step 4 and the extension line 

constructed, in Step 5, is the location of the preconsolidation pressure, as noted in the figure 

below:   

 

Figure 4: Determination of Maximum Past Stress  

Source: NAVFAC, 1982 

 

The compression indexes (Cc and Cr) can be determined from the slopes of various 

portions of the e-logσ curve.  The Compression Index, Cc, is approximated as the slope of the e-

logσ curve in the normally consolidated range.  This is the behavior the soil exhibits when it’s 

loaded to a stress beyond what it has been subjected to in its history.  The Recompression Index, 

Cr, is computed as the slope of the curve in which the soil is being unloaded and reloaded.  This 

portion of the curve captures the behavior when a loading has been removed from the soil and 
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then subsequently reloaded.  This mimics field conditions when new construction with various 

loading conditions are applied to a previously loaded soil.   

As can be seen in the settlement equations, the magnitude of the overall settlement 

depends on several variables such as the Compression Index, Cc, and Recompression Index, Cr.  

Due to the large amount of uncertainty for these parameters, engineers normally measure it 

directly via a consolidation test.  This test is time consuming and can be relatively expensive due 

to the equipment and technical expertise needed.  For this reason, correlations have been 

developed to approximate these compressibility indexes.   

2.3 Predicting Settlement with Estimated Compressibility Indexes 

 

For reasons previously stated, various attempts have been made to estimate the 

Compression Index, Cc, and Recompression Index, Cr, based on several soil descriptors.  These 

descriptors can be obtained from a series of different lab tests that are quicker and significantly 

easier to administer than the consolidation test.   

Existing correlations between index properties and consolidation parameters (Cc and Cr) 

are presented in the following table.  The correlations range from single parameter models (e.g., 

void ratio (e), natural moisture content (w), etc.) to multi-parameter models.  The multi-

parameter models incorporate a combination of different data from common lab tests for soil 

descriptors.  The majority that were obtained were for clays and were correlated to Cc.  However, 

there were a few correlations for peats and all soils, and some date back to the 1950s.  The 

strength of these correlations will be tested further in the study. 
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Table 3: Summary of Existing Correlations 

Ind. Variable Dep. 

Variable 

Equation Reference Notes 

Cc 

w 

Cc = 0.01w – 0.05 Azzouz (1976) All 

soils 

Cc = 0.01w Koppula (1981) Clays 

Cc = 0.01w – 0.075 Herrero (1983) Clays 

Cc = 0.013w – 0.115 Park, Lee (2011) Clays 

Cc = 0.0075w Miyakawa (1960) Peat 

Cc = 0.011w Cook (1956) Peat 

e 

Cc = 0.54e – 0.19 Nishida (1956) Clays 

Cc = 0.43e – 0.11 Cozzolino (1961) Clays 

Cc = 0.75e – 0.38 Sowers (1970) Clays 

Cc = 0.49e – 0.11 Park, Lee (2011) Clays 

Cc = 0.4(e-0.25) Azzouz (1976) All 

soils 

Cc = 0.15e + 0.01077 Bowles (1989) Clays 

Cc = 0.287e – 0.015 Ahadiyan (2008) Clays 

Cc = 0.6e Sowers (1970) Peat 

Cc = 0.3(e-0.27) Hough (1957) Clays 

LL 

Cc = 0.006(LL-9) Azzouz (1976) Clays 

Cc = (LL-13)/109 Mayne (1980) Clays 

Cc = 0.009(LL-10) Terzaghi, Peck (1967) Clays 

Cc = 0.014LL-0.168 Park, Lee (2011) Clays 

Cc = 0.0046(LL-9) Bowles (1989) Clays 

Cc = 0.011(LL-16) McClelland (1967) Clays 

w, LL 
Cc = 0.009w + 0.005LL Koppula (1981) Clays 

Cc = 0.009w + 0.002LL – 0.01 Azzouz (1976) Clays 

Gs, e Cc = 0.141Gs
1.2*((1+e)/Gs)2.38 Herrero (1983) Fine 

Grained 
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Ind. Variable Dep. 

Variable 

Equation Reference Notes 

LL, Gs Cc = 0.0023*LL*Gs Nagaraj, Murthy (1986) Clays 

Gs, w Cc = 0.2343*w*Gs Nagaraj, Murthy (1985) Clays 

e, w Cc = 0.4(e + 0.001w – 0.25) Azzouz (1976) All 

soils 

e, LL 
Cc = -0.156 + 0.411e – 

0.00058LL 

Al-Khafaji, Andersland (1992) Clays 

Gs, γdry, γwet Cc = 0.141*Gs*(γwet/γdry)12/5 Al-Khafaji, Andersland (1992) Clays 

e, LL 

e, w, LL 

Cc = -0.023 + 0.271e + 

0.001LL 

Ahadiyan (2008) Clays 

Cc = 0.37(e + 0.003LL 

+).0004w – 0.34) 

Azzouz (1976) Clays 

e, w, LL 

w, LL, e, γdry 

Cc = -0.404 + 0.341e + 0.006w 

+ 0.004LL 

Yoon, Kim (2008) Clays 

Cc = 0.1597(w-0.0187)(1 + 

e)1.592(LL-0.0638)(γdry
-0.8276) 

Ozer (2008) Clays 

w, LL, e, γdry 

e 

Cc = 0.151 + 0.001225w + 

0.193e – 0.000258LL – 

0.0699γdry 

Ozer (2008) Clays 

Cr = 0.156e + 0.0107 Elnaggar, Krizek (1971) Clays 

Cr 

e 

w 

Cr = 0.208e + 0.0083 Peck, Reed (1954) Clays 

Cr = 0.14(e+0.007) Azzouz (1976) All 

soils 

Cr = 0.003(w + 7) Azzouz (1976) All 

soils 

LL Cr = 0.002(LL + 9) Azzouz (1976) All 

soils 

e, w Cr = 0.142(e – 0.009w + 0.006) Azzouz (1976) All 

soils 

w, LL Cr = 0.003w + 0.0006LL + 

0.004 

Azzouz (1976) All 

soils 

e, LL Cr = 0.126(e + 0.003LL-0.06) Azzouz (1976) All 

soils 
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Ind. Variable Dep. 

Variable 

Equation Reference Notes 

e, w, LL Cr = 0.135(e + 0.1LL-0.002w – 

0.06) 

Azzouz (1976) All 

soils 

LL, Gs Cr = 0.000463*LL*Gs Nagaraj, Murthy (1985) Clays 

 

2.4 Measuring Settlement with Settlement Plates 

 

Measured settlement data is obtained via settlement indicators or plates.  This apparatus 

is installed on site before a soil stress inducing agent is introduced, most commonly in the form 

of a surcharge (FDOT, 2013).  A surcharge is a large layer of soil fill, most likely clean sands, 

that varies in height.  This construction operation is introduced to extract primary consolidation 

settlement from deep pockets of thick problematic soil layers, such as high plasticity clays, 

mucks, and organic silts (NAVFAC, 1982).  These soil layers will compress over time due to the 

stress change from the surcharge.  If done correctly, the primary consolidation settlement will be 

extracted before the beginning of other construction operations (NAVFAC, 1982).  The duration 

of the surcharge will largely be dependent on depth of problematic soil layers and thickness 

(NAVFAC, 1982).  As the goal for every construction project is budget and time, outside factors 

will occasionally dictate the duration of the surcharge.  The primary objective of this activity 

would be to ensure the structural integrity of facilities at ground surface on a long-term basis. 

When settlement plates are implemented, they are placed in various locations where 

maximum settlement is predicted (FDOT, 2013).  Their purpose is to record the amount and rate 

of changes in elevation due to underlying settlement, from stress change via surcharge.  A 

settlement plate apparatus is composed of a square wooden platform or steel plate placed on 
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existing ground surface, prior to the surcharge being added (FDOT, 2013).  A reference rod and 

protective pipe sleeve are attached to the platform.  The reference rod is extended as needed, to 

account for additional lifts to the surcharge (FDOT, 2013).  A schematic of a typical settlement 

plate apparatus is in the figure below.   

 

 

 
 

Figure 5: Settlement Plate Schematic 

 

Readings are performed periodically by surveying the top of the rod, using benchmarks 

and reference datum.  The platform elevation is first recorded, prior to the addition of the 

surcharge.  All future readings are compared to the initial.  The settlement readings from field 

observation are then recorded and plotted as a function of time, with respect to changes in fill 

height above ground surface, as seen in the figure below (FDOT, 2013).   
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Figure 6: Typical Settlement Plate Measurement Plot 

 

As can be seen in the figure, as the surcharge height increases, there is an associated 

increase in measured settlement.  Fill height is measured in relation to the ground surface 

elevation (GSE).  In this example, the measured settlement reached a total of 4.5 inches, due to 

150 inches (12.5 feet) of surcharge.  Actual settlement plate data for multiple locations will be 

presented further in the study, in a similar fashion.   
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2.5 Florida’s Geological Formation 

 

Florida’s geology is unique from the Panhandle in the north, to the Central Highlands and 

Coastal Lowlands in the south (McVay, 2004).  The Panhandle houses much of Florida’s clayey 

sands and gravels, while the Central Highlands and Coastal Lowlands are comprised mainly of 

medium to fine sands and silts, shelly sands and clays, and large deposits of limestone, as noted 

in the figure below.  A large portion of Florida’s soils are clayey sands, defined as SC in the 

USCS (Unified Soil Classification System).  Due to the compressive nature of clay particles in 

this particular soil and the sand particle’s propensity for rearrangement during loading, there is a 

high settlement potential for this soil type that is unaccounted for in existing correlations, from 

previous literature. 
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Figure 7: Geology of Florida 

Source: Anderson, Krafft, Remington, 1981 

 

Over-consolidation of soil can be observed due to one of many reasons.  It could be that a 

greater depth of past overburden has eroded away over the course of time.  Land shifts over 

many years and glacial movement are common causes of this.  Cycles of wetting and drying 

could be subjected to the soil, such as shrinkage/swelling (Bowles, 1989).  As Florida has very 

wet and dry seasons, moisture intrusion/drying is very likely.  The soil could also be exposed to 

cycles of wetting and drying in the presence of certain sodium, calcium, and magnesium salts 

and there could be effective pressure changes from water table fluctuations (Bowles, 1989).   
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A brief look into Florida’s geologic history will illustrate how unique the state really is.  

Florida’s history begins out of the break-up of a supercontinent called Rodinia around 700 Ma 

(million years ago) into a new land mass called Gondwana.  This process is composed of two 

parts: rifting and seafloor spreading.  Rifting is the initial splitting apart of the continental mass 

and seafloor spreading is the formation of a new ocean basin (Hine, 2013).  What is now North 

America was a separate land mass that collided with Gondwana approximately 350 Ma.  When 

this occurred, it formed what we know as Florida today.  The shifting and movement that 

occurred throughout this process displaced what is now Florida from the South Pole to its present 

location (Hine, 2013).   

If one examines the topography of the state, the presence of numerous former beaches, 

scarps (steep slopes), and shorelines can be observed.  This suggests that sediment movement is 

very likely (Hine, 2013).  This occurs from the north to south orientation from peninsular Florida 

and must have occurred by breaking waves transporting soils from one location to another, much 

like how sand is moved in modern beaches today.  This transport occurs when sea levels were at 

a higher elevation.  When sea levels were lower, local streams and small rivers probably eroded 

into the former shorelines and moved various amounts of sediments from the east to west (Hine, 

2013).   

During the peak of the Middle Miocene era (18 Ma), approximately 300 feet of water 

covered south-central Florida, linking the Gulf of Mexico with the northern Straits of Florida 

(Hine, 2013).  During this time, sea levels fluctuated with great regularity leaving portions of 

Florida to become shallower and, at times, were emergent, which allowed rivers to flow overland 

to estuaries and coastlines (Hine, 2013).  There were, however, many time periods during this 
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time in which Florida was high and dry.  This provided an environment where land animals and 

terrestrial creatures thrived due to the rich soils left behind from receding oceans.  This sea level 

history of repeated flooding and exposing of land created one of the great fossil hunting locations 

in the world, mixing the remains of an abundancy of land and marine organisms (Hine, 2013).   

Given the geologic history of Florida, it is reasonable to assume that much of Florida’s 

soils are over-consolidated to some degree, as large portions of Florida have been subjected to 

rising/lowering water tables and sediment transport, and there have been thousands of cycles of 

wetting/drying throughout the state’s history.  For this reason, when the soil is subjected to a 

change in stress and settlement ensues, it is reasonable to assume that a portion of the soil’s 

behavior can be described by the unload-reload cycle of the consolidation curve.  When this 

occurs, the Recompression Index, Cr, will be a factor in the primary consolidation settlement as 

described in Equations 2 and 3.  Existing correlations for the Recompression Index, Cr, are not as 

abundant as for the Compression Index, Cc, particularly for fine grained and coarse grained soils.   

The existing correlations utilize soil descriptors such as liquid limit (LL), void ratio (e), 

moisture content (w), and dry unit weight (γdry).  While these soil descriptors are useful and 

relatively easy to obtain, there are several other parameters that also meet this criteria and could 

have as much, if not more, influence on the parameters that are directly proportional to primary 

consolidation settlement.  These parameters include the wet unit weight (γwet), automatic hammer 

SPT blow count (N), overburden stress (σ), plasticity index (PI), and fine content (-200).  Having 

a full spectrum of soil parameters to draw correlations from could yield stronger predictions of 

settlement. 
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2.6 Model Development Approach 

 

The application of a machine learning approach will be implemented to develop soil 

compressibility prediction models, and subsequent field verification through settlement analysis.  

The concept of machine learning, in the form of classification, is the process of estimating the 

category of a previously unknown object/observation, out of a finite set of predefined categories 

based on a set of objects/observations whose category is known (Bishop, 2006).  A pool of 

objects/observations that are pre-labeled, are used as the training set for machine learning 

algorithms.  The training set is used to infer a mapping function.  The mapping function is then 

used to predict the category of new objects/observations (Pappu et al., 2015; Panagopoulos et al., 

2016).  

Applications of machine learning in civil engineering include but are not limited to: The 

prediction of tunnel support stability using artificial neural networks (Leu et al., 2001), 

predicting the remaining service life of bridge decks (Melhem et al., 2003), predicting the ground 

surface settlement induced by deep excavation using artificial neural networks (Sou-Sen et al., 

2004), optimizing the energy efficiency of buildings and their cooperation (Panagopoulos et al., 

2015a; Alam et al., 2014; Panagopoulos et al., 2017), and predicting and optimizing building-

integrated renewable energy resources (Panagopoulos et al., 2015b; Panagopoulos et al., 2012). 

The data will be assumed to fall into different classifications and will be tested to 

determine if different models for each soil type are necessary.  In addition to the correlated 

parameters summarized in Table 1, this study accounts for other soil descriptors including 

automatic hammer Standard Penetration Test (SPT) blow count (N), plasticity index (PI), 
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overburden stress (σ), and fines content (-200) of the soil, which is defined as the portion of the 

soil sample that has a particle diameter smaller than .074 mm (Bowles, 1989).  These parameters 

may be able to increase the predictive capability of models generated.  As part of the study, 

existing correlations will be tested to determine their predictive capability and they will be 

compared to the new models that are generated from data collected.   

The correlations developed will then be tested through field study.  Two different sites 

that have experienced a known surcharge via a roadway widening project, and have a measured 

settlement, will be compared to a series of settlement predictions using the models.  The first 

settlement analysis will include direct measurements of Cc and Cr.  The second analysis will 

incorporate predictions of Cc and Cr, using the respective models for each soil type.  

Comparisons will be drawn to determine the predictive capabilities of the models. 

2.7 Summary 

  

Predicting soil settlement is an essential component of any geotechnical design for 

roadways and structures.  These predictions are based on many different factors, but perhaps the 

most difficult to obtain are the compressibility indexes.  This data can either be measured or 

predicted.  Measured compressibility indexes come in the form of consolidation testing which 

can be costly and time consuming.  Estimations for compressibility indexes have been done in 

the past for a variety of different soils around the world.  These correlations may or may not be 

applicable for Florida soils.  The approximations include a variety of correlations for Cc, but not 

nearly as much for Cr.  Given Florida’s geologic history and propensity to have over 
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consolidated soils, where Cc is not applicable, the application of any existing Cr correlation 

comes into question.  This will be vetted further in the study. 
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CHAPTER 3: DEVELOPMENT OF SOIL COMPRESSIBILITY 

PREDICTION MODELS - METHODOLOGY 

3.1 Introduction 

  

There have been many attempts to create predictions for compressibility indexes in the 

past.  This will be discussed later in the study.  When these predictions were made, data was 

gathered that included soil index parameters (LL, PI, w, e, etc.) and consolidation data.  The 

measured Cc and Cr, from the consolidation test, were then determined if they could be predicted, 

based on what the index parameters were.  In other words, if LL or PI or another parameter went 

up or down, Cc/Cr would act accordingly.  This involved segregating data into certain categories 

and developing regression models.  The specifics of how this was done was not always clear.  

This study will aim to develop classes for each soil type and create a regression model for each 

one.  This all starts with data collection, which will now be discussed. 

 

3.2 Data Collection 

 

A total of 619 consolidation test data conducted on soils throughout the state of Florida 

were used in this analysis.  Each consolidation test has an accompanying SPT boring to provide a 

description of the soil’s stiffness.  The vast majority of the data collected is from the Florida 

Department of Transportation (FDOT) District Five which includes the counties of Volusia, 

Seminole, Orange, Osceola, Brevard, Lake, Marion, Sumter, and Flagler.  
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Figure 8: FDOT District Map 

 

A breakdown of the data collected by location can be seen in the upper table in the figure above. 

The soil types were assumed to fall into one of four categories.  The first category is 

“Coarse Grained” materials, which is mainly comprised of sands with varying amounts of clays 

and silts intermingled.  These materials are defined as SC (clayey sands) in the USCS (Unified 

Soil Classification System).  Coarse grained materials are classified by having over half of the 

sample’s particle diameter larger than .074 mm, or the #200 sieve (Bowles, 1989).  It’s important 

to note that all coarse grained samples had an element on fines intermixed with the sample taken 

from the field.  The range of fine contents for each sample spanned from 12 to 49 percent of the 

sample.  For this reason, there is a compressive element associated with this soil type.   
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The second category is “Fine Grained” materials, which is primarily composed of clays 

and silts.  Fine grained materials are classified by having over half of the sample’s particle 

diameter smaller than .074 mm, or the #200 sieve (Bowles, 1989).  These samples are identified 

as being CH (high plasticity clay), CL (low plasticity clay), MH (high plasticity silt), or ML (low 

plasticity silt), by the USCS classification system.  The plasticity level of each sample is 

determined by where the plasticity falls on the A-line chart (Das, 2002).  Clays and silts are 

differentiated by the segregation of their soil particles.  Clays will have a larger amount of 

smaller particles, as compared to silts. 

The third category was assumed to be soils with large deposits of organics, and is called 

“Organic Peat”.  These fibrous soils are composed of decaying plant life and other degradable 

materials that are classified visually by inspection (Bowles, 1989).  They are distinguished by the 

PT classification, when classified using USCS.  They are often referred to as “muck” and are 

normally over-saturated with water.  There is normally as associated smell when encountering 

this soil type in the field.  It is highly compressible. 

The last category that the soils were assumed to be grouped in is “Organic Silts/Clays”.  

These are fine grained soils with traces of organic materials.  In order to have this classification, 

a series of Atterberg Limits needs to be performed for the soil, both before being oven dried and 

after.  If the fraction of the Liquid Limit after being oven dried over the Liquid Limit before 

being oven dried is less than 0.75, the material is classified as an Organic Silt or Organic Clay, 

depending on the Plasticity Index.  The assumed soil categories were tested to verify that 

separate correlations should be used based on soil type.  The soil types in this category are OH 
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and OL, as defined by the USCS soil classification system, where the H and L are identified by 

their respective level of plasticity from the A-line chart (Das, 2002). 

A Microsoft Access database has been created to store and sort the existing data for quick 

analysis.  This database houses the general information of where the sample was taken (project 

numbers/description, FDOT District and County, etc.), specific information of where the sample 

was taken (latitude/longitude, boring number, sample depth), sample description (soil type, 

USCS Classification, fines content (-200), moisture content (w), initial void ratio (eo), Atterberg 

limits (LL and PI), SPT automatic hammer blow count (N), specific gravity (Gs), etc.), and stress 

state of the soil (compression index (Cc), recompression index (Cr), effective overburden 

pressure (σ’o), and preconsolidation pressure (Pc)). 

Overburden pressure was computed using a correlation for SPT blow count to saturated 

unit weight of soil (Teng, 1962).  This was determined for each soil strata above the depth from 

which the sample was taken and each unit weight was then multiplied by the height of each 

respective soil strata, taken from the SPT boring.  The seasonal high water table was used to 

account for the effective overburden pressure computation.   

The SPT borings were also used to help identify some of the missing data from the 

consolidation test report.  If the moisture content (w) or fines content (-200) were not included 

on the consolidation test report, they may have been accounted for via lab tests in close 

proximity to where the undisturbed sample was taken, if these extra lab tests and undisturbed 

sample were taken from the same soil strata. 
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3.3 Methodology 

3.3.1 Framework and Theoretical Background 

 

A standard methodology is followed for data analysis.  The collected data are first 

checked for completeness.  Samples for which some of the descriptors (features) are missing are 

discarded.  Data are then brought on the same scale through normalization.  This ensures that all 

the descriptors will have an equal contribution to the machine learning model. 

The next step aims to determine the number of distinct groups of soil that exist.  Through 

this process, the goal is to decide if each soil type requires a different statistical model.  The 

machine learning algorithm that is used at this step is Support Vector Machines (SVMs) 

(Vapnik, 2000). A portion of the data is used to train the SVMs.  During the training, it is 

assumed that there are four distinct groups\classes (Coarse Grained, Fine Grained, Organic Peat, 

and Organic Silt/Clay).  The four classes are highly variant in terms of size.  The discrepancy in 

size between the classes has the potential to affect the efficient training of our model and thusly 

needs to be taken into consideration.  To that end, when building the model, a class weighting 

scheme is utilized in the optimization process (Veropoulos et al., 1999; Xanthopoulos et al., 

2014).  This is done in order to address the issue of having a different number of samples from 

each soil type.  The class weighting scheme we follow is a One-Versus-All approach of Support 

Vector Machines.  The multiclass problem is decomposed into four binary classification 

problems. In particular, four binary classifiers are built where the nth classifier separates the nth 

class from the rest.  The class of a new point is then determined according to a majority voting 

principle.  The trained model is evaluated on the remaining data which encompasses the test set.  
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The classification results of the test set aid in the confirmation or rejection of the hypothesis that 

each soil type requires a different statistical model.  Each group of samples will need a distinct 

statistical model, if, during the testing phase, the proportion of the correctly classified samples 

exceeds the 77% threshold.  To that end, the hypothesis test is set to H0: p=.77 and the  Hα: 

p>.77. 

The following notation is then introduced: 

Let xi denote a multidimensional data point with dimensionality equal to the number of 

columns of the data matrix; that is every point has a dimension of seven, which is the number of 

variables that are used, namely the moisture content (w), initial void ratio (eo), dry unit weight 

(γdry), wet unit weight (γwet), automatic hammer SPT blow count (N), overburden stress (σ), and 

fines content (-200).   

yi is denoted with the sign of the class/group membership.  It can obtain two distinct 

values +1 or -1 which are used to represent the class of a sample.  For example, when data are 

preprocessed in order to be inputted to the binary classifier, a sample that belongs to the Fine 

Grained class will obtain a corresponding yi equal to +1 while the rest of the samples that belong 

to the other classes will obtain a value of yi equal to -1. 

The details of SVMs are presented below.  

Let  S = {(xi,yi)}, xi ∈ Rd,  yi ∈{(-1, +1)}  ∀i = 1, ..., n  be the training set.   

Define the hinge loss function as,   

l(yi,f(xi)) = |1−yif(xi)|+ (9) 

During the training phase SVMs solve 
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min𝐰  
1

2
 ||w||2+ C ∑ l𝑛

𝑖=1 (yi,f(xi)) (10) 

where C is a positive regularization parameter and f(xi) = ⟨w, xi⟩ + b is the desired linear 

classifier, with w being the weight vector and b the bias term.  

For the case of imbalanced classification, different costs C+ and C- may be used for each class.  

The optimization problem can be rewritten as, 

min𝑤               
1

2
 ||w||2 + C+ ∑ 𝜉𝑖

𝑛
{𝑖|𝑦𝑖=+1}  + C- ∑ 𝜉𝑖

𝑛
{𝑖|𝑦𝑖=−1}  (11) 

subject to      yi ( ⟨w, xi⟩ + b ) ≥ 1 - 𝜉𝑖,   ∀i =1, ..., n  

                       𝜉𝑖 ≥ 0,       ∀i =1, ..., n 

SVMs can become non-linear through a transformation Φ:Rd →H, such that Φ(xi)∈H, where 

H is a reproducing kernel Hilbert space with dim(H) > dim (Rd ).  

The Lagrangian function can be written as,  

L(w, 𝜉, b, α, β) =  

1

2
⟨𝐰, 𝐰⟩+ C+ ∑ 𝜉𝑖

𝑛
{𝑖|𝑦𝑖=+1}  + C- ∑ 𝜉𝑖

𝑛
{𝑖|𝑦𝑖=−1} - ∑ α𝑛

𝑖=1 i(yi(⟨w, Φ(xi)⟩ + b) -1 + ξi) 

-∑ β𝑛
𝑖=1 iξi  (12) 

where α, β, are the Lagrange multipliers. 

Since this is a convex problem, its Wolfe dual can be obtained from the following stationary first 

order conditions of the primal variables w, b and 𝜉.  

∂𝐿

∂𝐰
 =  w - ∑ α𝑛

𝑖=1 iyiΦ(xi) = 0 (13) 

∂𝐿

∂b
  =  ∑ α𝑛

𝑖=1 iyi = 0 (14) 
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∂𝐿

∂ξ𝑘
 = {

𝐶+ −  𝑎𝑘  −  β𝑘 = 0          if   𝑦𝑘  =  +1     and  k = 1, . . . , n 
𝐶− −  𝑎𝑘  −  β𝑘 = 0          if   𝑦𝑘  =  −1     and  k = 1, . . . , n 

 (15) 

 

Substituting the equivalent expressions for w, b and 𝜉 back in, the Wolfe dual can then be 

written as,  

maxα               −
1

2
 ∑ ∑ α𝑛

𝑗=1
𝑛
𝑖=1 iαjyiyjK(xi,xj)+ ∑ α𝑛

𝑖=1 I (16) 

subject to       ∑ α𝑛
𝑖=1 iyi = 0                 

                0 ≤ αi ≤ C+   if   yi = +1     and i =1, ..., n  

                0 ≤ αi ≤ C-     if   yi = -  1     and i =1, ..., n  

The solution is used to evaluate,  

w* = ∑ α𝑛
𝑖=1 iyiΦ(xi) (17) 

Let V+ = { αi |0 < αi < C+ and  yi = +1},  I+ = {  i| αi ∈V+ }  

Let V-  = { αi |0 < αi < C- and yi = -  1},  I- = {  i| αi ∈V- }  

The bias can be computed as, 

b* = 
1

|V+|
 ∑ (yi∈I+ i - ∑ α𝑛

𝑗=1 jyjK(xi,xj)) + 
1

|V−|
 ∑ (yi∈I− i - ∑ α𝑛

𝑗=1 jyjK(xi,xj)) (18) 

Then during the testing phase, the class of a new data point x is determined as, 

class(x) = sign(⟨w∗, Φ(x)⟩ + b∗ ) = sign(∑ α𝑛
𝑖=1 iyiK(xi,x)+ b∗) (19) 

One of the most common kernels used in the training of SVMs is the Radial Basis Function 

kernel defined by, 

K(xi, xj) = exp( − γ‖ xi −xj‖2),  γ ≥ 0 (20) 
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Parameter γ as well as parameter C is tuned by the user during the training phase.  

If data can be separated with a hyperplane/decision surface in the trained SVMs, it will be 

an early indication that a regression model is needed for each distinct group\class; although the 

formal decision is made during the testing phase.  The figures below demonstrate instances of 

trained SVMs.  The straight line represents the two dimensional hyperplane/decision surface.  In 

particular, Figure 9 depicts an instance in which data are separable and thus a regression model 

could be developed for each distinct group\class.  This figure depicts the separation of a 

regression model for the Coarse Grained and Organic Peat class. 

Figure 10 demonstrates an inseparable dataset.  This example suggests that the Organic 

Silt/Clay class and Fine Grained class need to be grouped together when it comes to the 

development of the regression models.  That is, a single regression model should be developed to 

represent the group of samples that encompasses both Organic Silt/Clay and Fine Grained.  
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Figure 9: Hyperplane Generation for Coarse Grained and Organic Peat Classes 

 

 
Figure 10: Hyperplane Generation for Organic Silt/Clay and Fine Grained Classes 
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Once the necessary number of distinct groups of soil has been determined, the 

corresponding Cc and Cr models are developed for each group.  

A regression model is developed for each confirmed distinct group\class.  The optimal 

models are developed through a forward selection stepwise regression procedure.  The process 

begins with no predictors in the corresponding models and progresses by adding predictors, one 

by one, based on whether or not their addition increases the predictive power of the models.  

Interactions of predictors are considered as well as higher orders of the predictors in the models 

that can account for non-linearity.  At each step of the procedure the regression model is 

evaluated based on a term-trusted “goodness of fit” measure. 

The developed models are then compared to the ones presented in Table 3.  All of the 

models are evaluated in terms of root mean square error (RMSE) (Levinson, 1946) values, 

coefficient of determination (R2) (Nagelkerke, 1991) as well as adjusted coefficient of 

determination (R2
adj) values (Theil, 1959).  The overall predictive modeling framework for Cc 

and Cr appears in the figure below. 
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Figure 11: Overall Predictive Modeling Framework for Cc and Cr 
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The aforementioned framework is implemented in the following sections. 

 

3.3.2 Preprocessing 

 

In this portion of the study, full data sets were segregated from non-full data sets.  A full 

data set includes all pertinent soil descriptors.  The descriptors include moisture content (w), 

initial void ratio (eo), dry unit weight (γdry), wet unit weight (γwet), automatic hammer SPT blow 

count (N), overburden stress (σ), fines content (-200), liquid limit (LL), plasticity index (PI), and 

specific gravity (Gs).  Many data sets had a variety of soil descriptors missing from their profile.  

For simplification purposes, and abundance of full data sets, the non-full data sets were not 

included as part of the study.   

Data is first normalized through z-score normalization.  This process incorporates the 

means and standard deviations along the columns of the data matrix.  This method preserves the 

range and the geometry of the data while offering a way to compare observations that have 

different units and are measured in different scale.  Each soil classification has a unique 

dimensionality due to a varying number of full data sets. 

 

3.3.3 Classification 

 

In this stage, a classification model is developed that assists in determining the number of 

distinct groups of soil that exist, for classification purposes.  Through this process, the goal is to 

confirm or reject the hypothesis that each soil type requires a different statistical model.  If the 

hypothesis is confirmed, a specific model is then developed for each soil type.  The data is 
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divided into two sets: the training set and the testing set.  The training set is comprised of data 

used to teach the supervised learning algorithm, while the testing set will remain a set of 

unclassified data that will be used to evaluate the accuracy and predictive ability of the trained 

algorithm.  Moreover, it will help determine the count of distinct groups that the data forms in 

the next steps. 

The classification model is a One-Versus-All approach of Support Vector Machines.  The 

classification performance is evaluated using five-fold cross validation: all experiments are 

conducted with 80/20 split on data, where 80% of the data is randomly selected for training the 

classification model and the remaining 20% is used to test its performance (Kohavi 1995).  

SVMs are implemented using LIBSVM (Chang, 2011) in MATLAB (Guide, 1998).  

Experiments are performed with a Haswell 2.60 GHz Intel Core i5 CPU running OS X with 8.0 

GB of RAM.  

The table below depicts the resulting contingency table (confusion matrix) which 

illustrates the performance of actual versus predicted classes based on the classifications derived 

from the testing data set.  This matrix is used as a tool to evaluate how well the classifier 

performed.  The table contains the numerical counts for each grouping, from the testing data set.  

The assumed classifications are contained within the rows, while the predicted classifications are 

contained within the columns. Ideally, there would be a diagonal line from top left to bottom 

right, which would house the testing data.   
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Table 4: Confusion Matrix      

     Predicted Class 

 
 Coarse 

Grained 

 

Fine Grained 

 

Organic Peat 

 

Organic 

Silt/Clay 

 

Coarse 

Grained 

 

11 1 1 - 

Fine Grained 

 

1 44 - 1 

Organic Peat 

 

- - 12 1 

Organic 

Silt/Clay 

 

- 7 1 3 

 
 

As can be observed from the table above, the assumed classifications were confirmed by 

the testing data, with the exception of Organic Silt/Clay.  The testing data predicted that this 

classification behaved more like Fine Grained soil.  A group of samples will need a distinct 

statistical model if the proportion of the correctly classified samples exceeds the 77% threshold. 

The null and alternative hypotheses have been set to H0: p=.77 and Hα: p>.77.  The level of 

significance is chosen to be α = 0.05.  The corresponding p-values for the four assumed 

classifications are: pCoarse Grained = 0.04, pFine Grained  0, pOrganic Peat  0 and, pOrganic Silt/Clay  1. 

Therefore, at the selected alpha level we may reject the null hypothesis for the Coarse Grained, 

Fine Grained and Organic Peat groups of samples.  A distinct statistical model should be 

developed for each of these groups of samples.  However, for the Organic Silt/Clay the null 

hypothesis is rejected.   

  
  
  
  
  
A
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u
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In order to properly classify an Organic Silt/Clay, according to the USCS system, the soil 

sample must undergo an organic test and a series of Atterberg Limit tests: the first before being 

oven dried and the second after being oven dried.  If the equation below is verified as true, the 

sample can be classified as Organic Silt/Clay, depending on where the sample falls on the A-line 

(Das, 2002).  If the equation below is not verified as true, the sample will be classified as a silt or 

clay (fine grained), depending on where the sample falls on the A-line. 

LLoven dried

LLnot oven dried
< 0.75 (21) 

 

The process of identifying a sample as Organic Silt/Clay is time consuming.  Often times, 

engineers will skip this step and instead rely on visual inspection and results from the organic 

test (Gray, 2016).  If the sample has a high organic content, the engineer will label the sample as 

organic, although the USCS classification system demands the additional testing to use that 

classification.  The results noted in Table 4 indicate that when the engineer used the Organic 

Silt/Clay classification without enough information, the majority of the time they were incorrect.  

For this reason, it was determined that only three predictive models would be used for Cc and Cr 

- those being Coarse Grained, Fine Grained, and Organic Peat, eliminating Organic Silt/Clay.  

Since the Organic Silt/Clay data set behaved more like Fine Grained, the two data sets were 

combined. 
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3.4 Summary 

 

 A total of 619 data sets were collected throughout the state of Florida, which included the 

following soil parameters (fines content (-200), moisture content (w), initial void ratio (eo), 

Atterberg limits (LL and PI), SPT automatic hammer blow count (N), specific gravity (Gs), 

effective overburden pressure (σ’o), organic content (o), and the wet and dry density).  These 

parameters were used to describe the behavior of an assumed four soil classifications (Coarse 

Grained, Fine Grained, Organics, and Organic Silt/Clay).  These classes were tested through 

Support Vector Machines, to confirm their existence.  A training set of data was used to build the 

algorithms, while a testing set was used to confirm the presence of each soil type.  When the 

algorithms were tested, it was determined that only three soil classes were evident.  The Coarse 

Grained and Organics were classes were confirmed, while it was determined that the Organic 

Silt/Clay class behaved more like the Fine Grained class.  For this reason, the Fine Grained class 

absorbed the data for Organic Silt/Clay.  The goal going forward is to develop three regression 

models for Cc and Cr for each distinct soil class.  Chapter 3 will highlight each regression model, 

graphical results, and a comparison of developed correlations to the correlation strength of 

existing models. 
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 CHAPTER 4: DEVELOPMENT OF SOIL COMPRESSIBILITY 

PREDICTION MODELS - DATA ANALYSIS AND RESULTS 

4.1 Introduction 

 

 With three distinct soil classes, in Chapter 4, regression models for each class will be 

developed.  A graphical representation for each model will be presented to identify any 

anomalies in the data.  Other observations and conclusions will be drawn from the results of the 

regression analysis.  Correlational strength will then be identified for each existing correlation.  

Upon conclusion of this analysis, the correlational strength for the developed correlations will be 

compared to the correlation strength of correlations from existing literature. 

4.2 Regression Models 

 

A regression model was developed with interactions for each distinct group\class (Coarse 

Grained, Fine Grained, and Organic Peat).  Higher order factors were taken into account.  The 

optimal models are developed through a forward selection stepwise regression procedure in SAS 

JMP (SAS Institute, 2000) which minimizes the term-trusted “goodness of fit” measure Bayesian 

Information Criterion (BIC) (Claeskens & Hjort, 2008).  The variable selection procedure that 

takes place during the forward selection stepwise regression takes into consideration the 

correlation coefficients of the participating variables to minimize multicollinearity (Freud & 

Littell, 2000).  At the first step, of the process the initial regression model for every group of 

samples contains no variables.  At each iteration, the present independent variables in the 

equation are held fixed and only the variable that is the most highly correlated with the response 
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variable (i.e. Cc/Cr) enters the regression model.  This procedure leads to the most parsimonious 

model while trying to eliminate multicollinearity. 

The table below presents the regression models (prediction expressions) that were 

developed.  Strength of correlation parameters, such as root mean square error values, coefficient 

of determination as well as adjusted coefficient of determination values were noted.  A perfect 

correlation yields an R2 value of 1.0, and an RMSE value of 0.0.  Note that the wet and dry 

densities (γwet and γdry) are in pcf and the fines and natural moisture (w) are in percent.  
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Table 5: Statistical Strength of Developed Correlations 

Equation Notes R2 R2
adj RMSE 

Cc = -0.146 + 0.001* γwet - 0.003* γdry 

+ 0.007 * N + 0.005 * Fines + 0.373* eo 

 - 0.0006 * [(γwet - 115.484) *(N - 6.493)]  

+ 0.001 * [(γwet - 115.484) * (Fines - 31.584)]  

+ 0.032 * [(Fines - 31.584) * (eo - 1.028)] 

+ 0.001 * [(γwet - 115.484) * (γwet - 115.484)] 

- 0.0003* [(γdry - 86.024) * (γdry - 86.024)]  

-0.0005 * [(N - 6.493) * (N - 6.493)] 

Coarse 

Grained 

0.9079 0.8888 0.1108 

Reduced Model 

Cc = 0.759 +0.0048* γwet - 0.012* γdry -0.002* N - 0.0012 * eo 

- 0.0006 * [(γwet - 115.484) * (γwet - 115.484)] 

 

  

 

0.8308  

 

 

0.8133 

 

0.1436 

Cc = -0.217 + 0.006* w + 0.287* eo 

 

Fine 

Grained  

0.6487 0.6462 0.3906 

Cc = 1.272 + 0.006 * w - 0.021 * Fines + 0.121 * eo 

- 0.000009 * [(w - 359.133) * (Fines - 65.666)] 

- 0.000985 * [(w - 359.133) * (eo - 5.543)] 

+ 0.0521 * [(eo - 5.543) * (eo - 5.543)] 

Organic 

Peat 

0.7724 0.7480 1.0904 

Cr = 0.0607 + 0.0004 * w - 0.0024 * Fines + 0.0303 * eo 

- 0.00001 * [(w - 359.133) * (Fines - 65.666)] 

+ 0.00549 *[(eo - 5.543) * (eo - 5.543)] 

 

Organic 

Peat  

0.8101  

 

0.7935 0.1387 

 

 

Table 5 does not include models generated for Cr for the coarse or fine grained 

categories.  The reason for this is because the models weren’t strong enough to report.  Upon this 

finding, it was postulated that the addition of other parameters to the analysis would yield better 

results.  One will note the R2 parameters for comparison between Table 5 and Table 6.  In Table 

5, the R2 values for coarse grained (Cc), fine grained (Cc), and organic peat (Cc and Cr) are 

0.9079, 0.6487, 0.7724, and 0.8101, respectively. 
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The models were then updated to include the soil parameters LL (liquid limit), PI 

(plasticity index), and Gs (specific gravity).  As can be seen in Table 6, the addition of these 

parameters had a positive overall effect on the developed correlations.  The R2 value for the fine 

grained Cc increased from 0.6487 to 0.6740.  Also, the Cr models for coarse and fine grained 

increased in reliability and are now worthy of reporting, with R2 values of 0.695 and 0.532, 

respectively.  One will note that LL was added to the strongest models for the coarse and fine 

grained Cr models.  PI was added to the strongest model for the fine grained Cc model, and Gs 

was added to the strongest model for the fine grained Cr model. 
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Table 6: Statistical Strength of Developed Correlations 

Equation Notes R2 R2
adj RMSE 

Cc = -0.146 + 0.001* γwet - 0.003* γdry 

+ 0.007 * N + 0.005 * Fines + 0.373* eo 

 - 0.0006 * [(γwet - 115.484) *(N - 6.493)]  

+ 0.001 * [(γwet - 115.484) * (Fines - 31.584)]  

+ 0.032 * [(Fines - 31.584) * (eo - 1.028)] 

+ 0.001 * [(γwet -115.484) * (γwet - 115.484)] 

- 0.0003* [(γdry - 86.024) * (γdry - 86.024)]  

-0.0005 * [(N - 6.493) * (N - 6.493)] Coarse 

Grained 

 

  

 

0.9079 0.8888 0.1108 

Reduced Model 

Cc = 0.759 +0.0048* γwet - 0.012* γdry -0.002* N - 0.0012 * eo 

- 0.0006 * [(γwet - 115.484) * (γwet - 115.484)] 

 

0.8308  

 

 

0.8133 

 

0.1436 

Cr = 0.071 + 0.006 * σ - 0.0005 * γwet + 0.0004 * N + 0.0002 * 

Fines - 0.0001 * LL - 0.0006 * [(σ – 1.966) *(Fines - 32.934)] 

- 0.00005 * [(γwet - 117.148) * (N - 6.439)] 

- 0.00003 * [(γwet - 117.148) * (LL - 50.943)] 

- 0.00001 * [(γwet - 117.148) * (γwet - 117.148)] 

0.695 0.666 0.013 

Cc = - 0.296 + 0.001 * PI 

+ 0.485 * e 

+ 0.001 * [(PI - 65.685) *(e -1.859)] 

Fine 

Grained  

 

0.6740 0.6700 0.3600 

Cr = -0.276 + 0.003 * γdry + 0.002 * w - 0.0003 * Fines + 0.0002 * 

LL - 0.005 * Gs 

+ 0.00005 * [(γdry – 61.171) * (w - 71.207)] 

+ 0.000007 * [(w - 71.207) * (LL – 98.843)] 

- 0.002 * [(w - 71.207) * (Gs - 2.595)] 

+ 0.004 * [(Fines - 80.226) * (Gs - 2.595)] 

 

0.532 0.516 0.058 

Cc = 1.272 + 0.006 * w - 0.021 * Fines + 0.121 * eo 

- 0.000009 * [(w - 359.133) * (Fines - 65.666)] 

- 0.000985 * [(w - 359.133) * (eo - 5.543)] 

+ 0.0521 * [(eo - 5.543) * (eo - 5.543)] Organic 

Peat 

 

0.7724 0.7480 1.0904 

Cr = 0.0607 + 0.0004 * w - 0.0024 * Fines + 0.0303 * eo 

- 0.00001 * [(w - 359.133) * (Fines - 65.666)] 

+ 0.00549 *[(eo - 5.543) * (eo - 5.543)] 

 

0.8101  

 

0.7935 0.1387 
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The Cc model for the Coarse Grained class is able to explain 91% of the variability of the 

data. This is the strongest predictive model that was obtained.  Its corresponding RMSE value of 

0.1108 is the lowest among all the existing correlations in the literature.  This confirms that not 

only is a separate, distinct model necessary for Coarse Grained soils, but also that the generated 

model is accurate to a high degree.  The Cr model has noticeably more variability, but is stronger 

than the strongest Cr correlations from existing literature, as one will notice further in the study.  

The Cc model for the Fine Grained materials, which includes data from the previous 

Organic Silt/Clay category, is able to explain 67% of the variability of the data while achieving a 

low RMSE score of 0.360.  This is within the same range as other correlations generated in 

previous literature, per Table 4 (Nishida (1956), Sowers (1970)).  Again, the Cr model is 

markedly weaker and less able to predict the actual Cr for this soil class, but is still on par with 

the strength of existing Cr models for this soil class. 

Two strong models were developed for the Organic Peat class.  The Cc model achieves an 

R2
adj value of 0.772 and a RMSE value of 1.09.  The explanatory power of this model is higher 

than the models found in the literature.  The Cr model for the Organic Peat class explains 81% of 

the variability of the data while achieving a very low RMSE value of 0.1372.  This model 

outperforms the existing correlations for Cr.  

Predicted versus Measured Plots as well as the Residual versus Predicted Plots for each 

soil class can be seen in the following figures. 
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Figure 12: Predicted versus Measured Plot for Cc model of Coarse Grained 

 

 
Figure 13: Residual by Predicted Plot for Cc Model of Coarse Grained 
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Figure 14: Predicted versus Measured Plot for Cr model of Coarse Grained 

 

 

Figure 15: Residual by Predicted Plot for Cr Model of Coarse Grained 
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Figure 16: Predicted versus Measured Plot for Cc model of Fine Grained 

 

Figure 17: Residual by Predicted Plot for Cc Model of Fine Grained 
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Figure 18: Predicted versus Measured Plot for Cr model of Fine Grained 

 

Figure 19: Residual by Predicted Plot for Cr Model of Fine Grained 
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Figure 20: Predicted versus Measured Plot for Cc Model of Organic Peat 

 
Figure 21: Residual by Predicted Plot for Cc Model of Organic Peat 
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Figure 22: Predicted versus Measured Plot for Cr Model of Organic Peat 

 

Figure 23: Residual by Predicted Plot for Cr Model of Organic Peat 
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In the Predicted versus Measured Plots the solid red line is the line of fit and the dashed 

red curves are the confidence bands for an alpha level set at 5%.  The dashed horizontal blue line 

is set at the mean of the Cc and Cr leverage residuals. 

In the Residual versus Predicted Plots, the dashed horizontal blue line is set at zero.  The 

Predicted versus Measured Plot suggests very strong goodness of fit of the Cc model for the 

Coarse Grained class. The random pattern in the residuals for this class indicate that the predictor 

variables of the model indeed capture all explanatory information. 

The funnel shape that can be observed in the Residual versus Predicted Plot for the Cc 

model of Fine Grained including Organic Silt/Clay is an indication of non-constant variance.  

This means that when the predicted Cc is low, relatively speaking, the actual Cc will be either 

slightly higher or lower.  This indicates a small amount of uncertainty.  As the predicted Cc gets 

higher, the actual Cc will vary by a higher degree.  This indicates a growing amount of 

uncertainty, as the predicted Cc rises.   

This can be attributed to disturbance of the soil sample during extraction or preparation 

for testing.  As the level of disturbance increases, the remolded strength decreases, and the 

sensitivity subsequently increases.  Sensitivity is a concern for cohesive soils such as silts and 

clays, where minimal amounts of disturbance can largely effect the strength. The growing 

uncertainty of this soil classification, for Cc, confirms the ideal that this correlation should be 

limited to fine grained soils with low sensitivity (Bowles, 1989).  This demonstrates one of the 

limitations of using correlations to quantify the settlement potential of highly compressible soils. 
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All the points are close to the regressed diagonal line while being minimally dispersed.  

In addition, there is not a non-random pattern in the residuals. This suggests that the response 

variable Cc is accurately predicted by the developed model for the Organic Peat class.  The 

predicted values are indeed close to the actual values. The random pattern of the residuals 

suggests that the developed Cr model for the Organic Peat class is sufficient and any error in the 

model is of stochastic nature. 

Through the analysis, it’s evident that separate models for each soil type are needed.  The 

correlations generated having varying degrees of predictive capabilities.  The Cc model for Fine 

Grained (clays and silts) is strong and compares well with existing correlations.  It’s unfortunate 

that a reasonable model for Cr could not be obtained.  The Cc and Cr models for Coarse Grained 

(sands) are very strong and in fact are stronger than all the other existing correlations for any soil 

type, which is an important finding.  The Cc and Cr models for the Organic Peat class are also 

very strong and are indeed considerably stronger than the existing correlations for this soil type, 

as seen in the table below.  The correlations generated also incorporate parameters not seen in 

existing correlations such as the fines content (-200), automatic hammer blow count (N), and the 

interactions between the wet and dry density (γwet and γdry).  This confirms that the addition of 

parameters to the generation of soil compressibility models has the potential to increase their 

predictive capability, not detract from it. 
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4.3 Comparison of Existing Correlations 

 

The focus of this study is to find the best predictors for Cc and Cr.  The strength of 

existing correlations was analyzed for comparison to the previous findings.  The coefficient of 

determination (R2) and the root mean squared error (RMSE) were used to evaluate the strength of 

the existing correlations, with respect to the data that was gathered for the various soil types.  

The predicted Cc and Cr was compared to the measured Cc and Cr.  As previously stated, a 

perfect correlation yields an R2 value of 1.0, and an RSME value of 0.0.  The table below 

represents a summary of these statistical values for the strength of the various existing 

correlations, based on the data collected. 

 

Table 7: Statistical Strength of Existing Correlations 

Equation Reference Notes R2 RMSE 

Cc = 0.01w – 0.05 Azzouz (1976) All soils 0.7448 0.8359 

Cc = 0.01w Koppula (1981) Clays 0.5202 0.4191 

Cc = 0.01w – 0.075 Herrero (1983) Clays 0.5189 0.4336 

Cc = 0.013w-0.115 Park, Lee (2011) Clays 0.6729 0.3953 

Cc = 0.0075w Miyakawa (1960) Peat 0.5784 1.5194 

Cc = 0.011w Cook (1956) Peat 0.6611 1.9601 

Cc = 0.54e – 0.19 Nishida (1956) Clays 0.7236 0.3945 

Cc = 0.43e – 0.11 Cozzolino (1961) Clays 0.6120 0.4046 

Cc = 0.75e – 0.38 Sowers (1970) Clays 0.7362 0.5552 

Cc = 0.49e – 0.11 Park, Lee (2011) Clays 0.6847 0.3924 

Cc = 0.4(e – 0.25) Azzouz (1976) All soils 0.5676 0.7501 

Cc = 0.15e + 0.01077 Bowles (1989) Clays 0.3157 0.7536 
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Equation Reference Notes R2 RMSE 

Cc = 0.287e – 0.015 Ahadiyan (2008) Clays 0.3847 0.7692 

Cc = 0.6e Sowers (1970) Peat 0.6715 1.7876 

Cc = 0.3(e-0.27) Hough (1957) Clays 0.4081 0.5425 

Cc = 0.006(LL – 9) Azzouz (1976) Clays 0.2857 0.6213 

Cc = (LL-13)/109 Mayne (1980) Clays 0.4323 0.5638 

Cc = 0.009(LL -10) Terzaghi, Peck (1967) Clays 0.4236 0.5641 

Cc = 0.014LL – 0.168 Park, Lee (2011) Clays 0.5569 0.7921 

Cc = 0.0046(LL-9) Bowles (1989) Clays 0.2780 0.6989 

Cc = 0.011(LL-16) McClelland (1967) Clays 0.5094 0.5991 

Cc = 0.009w + 0.005LL Koppula (1981) Clays 0.5701 0.5518 

Cc = 0.009w + 0.002LL – 0.01 Azzouz (1976) Clays 0.5866 0.4875 

Cc = 0.141Gs
1.2*((1+e)/Gs)2.38 Herrero (1983) Fine 

Grained 

0.7217 0.4992 

Cc = 0.0023*LL*Gs Nagaraj, Murthy (1986) Clays 0.2111 0.5212 

Cc = 0.2343*w*Gs Nagaraj, Murthy (1985) Clays 0.3229 0.5373 

Cc = 0.4(e + 0.001w – 0.25) Azzouz (1976) All soils 0.7057 0.7414 

Cc = -0.156 + 0.411e – 0.00058LL Al-Khafaji, Andersland 

(1992) 

Clays 0.5276 0.3881 

Cc = 0.141*Gs*(γwet/γdry)12/5 Al-Khafaji, Andersland 

(1992) 

Clays 0.6439 0.8965 

Cc = -0.023 + 0.271e + 0.001LL Ahadiyan (2008) Clays 0.3400 0.4597 

Cc = 0.37(e + 0.003LL +).0004w – 0.34) Azzouz (1976) Clays 0.5014 0.3888 

Cc = -0.404 + 0.341e + 0.006w + 0.004LL Yoon, Kim (2006) Clays 0.6805 0.4991 

Cc = 0.1597(w-0.0187)(1 + e)1.592(LL-0.0638)(γdry
-

0.8276) 

Ozer (2008) Clays 0.6824 0.5886 

Cc = 0.151 + 0.001225w + 0.193e – 0.000258LL 

– 0.0699γdry 

Ozer (2008) Clays 0.3006 0.5204 

Cr = 0.156e + 0.0107 Elnaggar, Krizek (1971) Clays 0.5330 0.2536 

Cr = 0.208e + 0.0083 Peck, Reed (1954) Clays 0.5419 0.3643 

Cr = 0.14(e+0.007) Azzouz (1976) All soils 0.6016 0.3369 
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Equation Reference Notes R2 RMSE 

Cr = 0.003(w + 7) Azzouz (1976) All soils 0.5780 0.4415 

Cr = 0.002(LL + 9) Azzouz (1976) All soils 0.5485 0.1682 

Cr = 0.142(e – 0.009w + 0.006) Azzouz (1976) All soils 0.6089 0.1802 

Cr = 0.003w + 0.0006LL + 0.004 Azzouz (1976) All soils 0.5674 0.2344 

Cr = 0.126(e + 0.003LL-0.06) Azzouz (1976) All soils 0.5808 0.2109 

Cr = 0.135(e + 0.1LL-0.002w – 0.06) Azzouz (1976) All soils 0.5548 0.3131 

Cr = 0.000463*LL*Gs Nagaraj, Murthy (1985) Clays 0.3418 0.0862 

 

 

The following observations can be drawn from the generated correlations: 

1. Existing correlations for Cc and Cr were gathered for a variety of different soil types and 

regions throughout the world.  The predictive ability of these correlations were tested, 

based on soil samples collected throughout the State of Florida.  Based on this analysis, 

it was determined that the Azzouz (1976) correlation for all soils (moisture content), the 

Nishida (1956) correlation for clay (void ratio), and the Herrero (1983) correlation for 

clay (void ratio and specific gravity) were the strongest, from previous literature.  

2. When new correlations were created, it was determined that three distinct soil classes are 

evident, these being Coarse Grained, Fine Grained, and Organic Peat.  Each soil class 

has a separate model for predictive ability for Cc and Cr. 

3. The model for the Coarse Grained classification performs very well, with respect to Cc, 

which is an important observation considering the dearth of previous correlations 

generated for this classification and the abundance of this soil type in the State of 

Florida, per Figure 1. 
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4. The model for the Fine Grained classification absorbed the data from the Organic 

Silt/Clay classification.  When including all representative data for this class, it was 

determined that the predictive capability for Cc is comparable to the strength of existing 

correlations. 

5. The model for the Organic Peat classification performed considerably better than that of 

existing correlations, with respect to both Cc and Cr.  This observation is especially 

critical for settlement predictions in the southern portion of the State of Florida, where 

wetlands are widespread. 

6. The correlations generated incorporate several factors not utilized in correlations from 

previous literature.  These factors include the fines content (-200), plasticity index (PI), 

and the interactions between the wet and dry density (γwet and γdry). 

Correlations are a useful tool to make preliminary predictions of settlements, but should not 

be relied upon with any degree of accuracy for a final design.  Only correlations that have been 

developed using site-specific laboratory consolidation test data should be relied upon (Sabatini et 

al., 2002).  Evidence suggests that the soil structure, geological history, and other factors 

strongly influence the compression index, and for this reason any correlation used should be with 

caution (Bowles, 1989). 

4.4 Identification of Influential Parameters 

With the abundance of soil parameters included in the study, and the noticeable absence 

of some of them in the Fine Grained and Organic models (i.e. overburden stress, automatic 

hammer blow count, etc.), it is evident that some parameters have more influence on Cc and Cr 
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than others.  This has been hypothesized in previous studies, but the concept has been mostly 

untested.  Table 8 outlines influential factors from previous studies. 

 

Table 8: Existing Delineational Models for Soil Compressibility 

Correlation Applicability Influential 

Factor 

Source 

Cc = 0.75e – 0.38 Soils w/low 

plasticity 

e Sowers (1970) 

Cc = 0.006*(LL-9) Clays (LL<100) LL Azzouz (1976) 

 

 

As can be determined from these correlations, they were developed in an attempt to 

delineate soil classes using a certain influential parameter.  How this influential parameter was 

identified is uncertain.  It’s fair to assume that soils with high plasticity, as is the case for the 

Sowers correlation, would be treated with a different model for soil compressibility.  The same 

can be said about the Azzouz correlation for clays above 100.  During their study, there must 

have been a noticeable behavior change when this dividing line was crossed. 

With the updated correlations generated for compressibility indexes, a separate analysis 

will now be performed to determine influential factors for each respective class.  Data analysis 

begins with the evaluation of the relationships between key index parameters and soil 

compressibility (Cc and Cr). The key index parameters that were examined include effective 

overburden pressure (ksf), wet density (pcf), dry density (pcf), natural moisture (%), automatic 

hammer blow count, fines (-200) (%), liquid limit (LL), plasticity index (PI), initial void ratio 

(e), and specific gravity (Gs).   
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The data was split into five categories.  The first three are identical to the soil 

classifications derived from the previous study – Coarse Grained, Fine Grained, and Organics.  

In the last two categories, the Fine Grained class was split into clays and silts.  This was done for 

two reasons, the first being an abundance of data, particularly for clays, and the second being the 

majority of existing correlations for compressibility indexes are for fine grained materials.  When 

fine grained materials were more closely analyzed, there was a tendency to focus on clays, due to 

its highly compressible nature.  For this reason, it was decided to split clays out for more detailed 

analysis of influential parameters and determine if a delineational model exists.  Since clays were 

being split out, it was decided to perform the same operation for silts, due to this category being 

largely unstudied.   

A Pearson’s Correlation Coefficient analysis was implemented to identify “better” 

performing parameters in the prediction of Cc and Cr of a specific soil (Lee Rodgers et al., 1988).  

A high (positive) correlation coefficient indicates that there is a strong, directly proportional, 

relationship between key index parameters and soil compressibility (Cc and Cr).  Such a 

relationship implies that as an index parameter increases, the Cc and Cr will increase as well.  On 

the contrary, a low (negative) correlation coefficient indicates that there is a strong, inversely 

proportional, relationship between key index parameters and soil compressibility (Cc and Cr).  

Such a relationship indicates that as an index parameter increases, the Cc and Cr will decrease 

and vice versa.  Thusly, the closer the Pearson’s Correlation Coefficient is to 1 or -1, the more 

influence it will have on the outcome of the compressibility index.  The closer it is to zero, the 

less likely it is to have any influence at all. 
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Coefficient of Determination and Root Mean Square Error values were calculated to 

quantify the performance level of the key index parameters.  The results appear in tables below.  

The rows highlighted in light red illustrate the top three negative Pearson’s Correlation 

Coefficient, and the rows highlighted in light blue illustrate the top three positive Pearson’s 

Correlation Coefficient. 

Table 9: Silts: Pearson’s Correlation Coefficient for Cc 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

Silts Cc Effective Overburden 

Pressure (ksf) 

0.0566 0.0032 0.8855 

Wet Density (pcf) -0.5679 0.3225 0.7300 

Dry Density (pcf) -0.6111 0.3734 0.7021 

Natural Moisture (%) 0.7388 0.5458 0.5977 

Automatic Hammer Blow 

Count 

-0.0566 0.0032 0.8855 

Fines (-200) (%) -0.6704 0.4495 0.6580 

Liquid Limit (LL) 0.7469 0.5578 0.5897 

Plasticity Index (PI) 0.7347 0.5398 0.6016 

Initial Void Ratio (e) 0.5699 0.3248 0.7287 

Specific Gravity (Gs) -0.7154 0.5118 0.6196 
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Table 10: Silts: Pearson’s Correlation Coefficient for Cr 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

Silts Cr Effective Overburden 

Pressure (ksf) 

0.0039 0.0001 0.1974 

Wet Density (pcf) -0.5505 0.3031 0.1648 

Dry Density (pcf) -0.5752 0.3308 0.1615 

Natural Moisture (%) 0.7176 0.5150 0.1375 

Automatic Hammer Blow 

Count 

-0.2678 0.0717 0.1902 

Fines (-200) (%) -0.6351 0.4034 0.1525 

Liquid Limit (LL) 0.6159 0.3793 0.1555 

Plasticity Index (PI) 0.6336 0.4014 0.1527 

Initial Void Ratio (e) 0.5380 0.2894 0.1664 

Specific Gravity (Gs) -0.7426 0.5514 0.1322 

 

As illustrated in the tables above, w, LL, and PI are the strongest positive factors with 

respect to both Cc and Cr, for the Silts classification.  The strongest negative factors are also the 

same for the Silts classification, with respect to both Cc and Cr.  The factors are γdry, fines 

content, and Gs. 
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Table 11: Fine Grained: Pearson’s Correlation Coefficient for Cc 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

Fine 

Grained 

Cc Effective Overburden 

Pressure (ksf) 

0.0510 0.0026 0.6212 

Wet Density (pcf) -0.6288 0.3954 0.4836 

Dry Density (pcf) -0.6888 0.4744 0.4509 

Natural Moisture (%) 0.7645 0.5845 0.4009 

Automatic Hammer Blow 

Count 

-0.2349 0.0552 0.6046 

Fines (-200) (%) -0.0566 0.0032 0.6210 

Liquid Limit (LL) 0.5332 0.2843 0.5262 

Plasticity Index (PI) 0.4542 0.2063 0.5541 

Initial Void Ratio (e) 0.7641 0.5838 0.4012 

Specific Gravity (Gs) -0.0748 0.0056 0.6203 
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Table 12: Fine Grained: Pearson’s Correlation Coefficient for Cr 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

Fine 

Grained 

Cr Effective Overburden 

Pressure (ksf) 

-0.0656 0.0043 0.0847 

Wet Density (pcf) -0.4260 0.1815 0.0768 

Dry Density (pcf) -0.4764 0.2270 0.0746 

Natural Moisture (%) 0.5762 0.3320 0.0694 

Automatic Hammer Blow 

Count 

-0.1311 0.0172 0.0841 

Fines (-200) (%) -0.0616 0.0088 0.0847 

Liquid Limit (LL) 0.4906 0.2407 0.0740 

Plasticity Index (PI) 0.3947 0.1558 0.0780 

Initial Void Ratio (e) 0.5236 0.2742 0.0723 

Specific Gravity (Gs) -0.1292 0.0167 0.0842 

 

Illustrated in Table 8 and Table 9, w, LL, and e are the strongest positive factors with 

respect to both Cc and Cr, for the Fine Grained classification.  The strongest negative factors are 

also the same for the Fine Grained classification, with respect to both Cc and Cr.  The factors are 

γwet, γdry, and N.  
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Table 13: Clays: Pearson’s Correlation Coefficient for Cc 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

 Clays Cc Effective Overburden 

Pressure (ksf) 
0.0693 0.0048 0.5981 

Wet Density (pcf) -0.6266 0.3926 0.4673 

Dry Density (pcf) -0.6912 0.4778 0.4332 

Natural Moisture (%) 0.7725 0.5967 0.3807 

Automatic Hammer Blow 

Count 
-0.2396 0.0574 0.5821 

Fines (-200) (%) 0.1679 0.0282 0.591 

Liquid Limit (LL) 0.5132 0.2634 0.5146 

Plasticity Index (PI) 0.4366 0.1906 0.5394 

Initial Void Ratio (e) 0.7913 0.6262 0.3666 

Specific Gravity (Gs) -0.0063 0.00004 0.5996 
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Table 14: Clays: Pearson’s Correlation Coefficient for Cr 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

Clays Cr Effective Overburden 

Pressure (ksf) 
-0.0500 0.0025 0.0711 

Wet Density (pcf) -0.3965 0.1572 0.0653 

Dry Density (pcf) -0.4589 0.2106 0.0632 

Natural Moisture (%) 0.4999 0.2499 0.0616 

Automatic Hammer 

Blow Count 
-0.1086 0.0118 0.0708 

Fines (-200) (%) 0.1049 0.011 0.0708 

Liquid Limit (LL) 0.5007 0.2507 0.0616 

Plasticity Index (PI) 0.3953 0.1563 0.0654 

Initial Void Ratio (e) 0.4893 0.2394 0.0621 

Specific Gravity (Gs) -0.0141 0.0002 0.0712 

 

Illustrated in tables above, w, LL, and e are the strongest positive factors with respect to 

both Cc and Cr, for the Clay classification.  The strongest negative factors are also the same for 

the Clay classification, with respect to both Cc and Cr.  The factors are γwet, γdry, and N.  These 

are the same influential factors for the Fine Grained classification, which would be expected due 

to this classification being predominantly clays. 
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Table 15: Organics: Pearson’s Correlation Coefficient for Cc 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

Organics Cc Effective Overburden 

Pressure (ksf) 
-0.2610 0.0681 2.1162 

Wet Density (pcf) -0.3743 0.1401 2.0328 

Dry Density (pcf) -0.6022 0.3626 1.7501 

Natural Moisture (%) 0.7062 0.4987 1.5521 

Automatic Hammer Blow 

Count 
-0.1625 0.0264 2.1631 

Fines (-200) (%) -0.1865 0.0348 2.1537 

Organic Content (%) 0.4358 0.1899 1.9731 

Initial Void Ratio (e) 0.7162 0.5129 1.5299 

Specific Gravity (Gs) -0.1967 0.0387 2.1493 
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Table 16: Organics: Pearson’s Correlation Coefficient for Cr 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

Organics Cr Effective Overburden 

Pressure (ksf) 
-0.2218 0.0492 0.297 

Wet Density (pcf) -0.2726 0.0743 0.293 

Dry Density (pcf) -0.4668 0.2179 0.2694 

Natural Moisture (%) 0.5412 0.2929 0.2561 

Automatic Hammer Blow 

Count 
-0.1819 0.0331 0.2995 

Fines (-200) (%) -0.1811 0.0328 0.2995 

Organic Content (%) 0.2546 0.0648 0.2945 

Initial Void Ratio (e) 0.8230 0.6774 0.173 

Specific Gravity (Gs) -0.0071 0.00005 0.3046 

 

Illustrated in tables above, w, o, and e are the strongest positive factors with respect to 

both Cc and Cr, for the Organic classification.  The strongest negative factors are also the same 

for the Organic classification, with respect to both Cc and Cr.  The factors are γwet, γdry, and 

effective overburden pressure.   
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Table 17: Coarse Grained: Pearson’s Correlation Coefficient for Cc 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

Coarse 

Grained 

Cc Effective Overburden 

Pressure (ksf) 

0.0872 0.0076 0.2980 

Wet Density (pcf) -0.7348 0.5400 0.2029 

Dry Density (pcf) -0.7664 0.5874 0.1921 

Natural Moisture (%) 0.8854 0.7839 0.1390 

Automatic Hammer Blow 

Count 

-0.0911 0.0083 0.2979 

Fines (-200) (%) 0.0678 0.0046 0.2984 

Liquid Limit 0.7276 0.5294 0.2052 

Plasticity Index 0.5549 0.3079 0.2488 

Initial Void Ratio (e) 0.8592 0.7383 0.1530 

Specific Gravity (Gs) -0.2706 0.0732 0.2879 
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Table 18: Coarse Grained: Pearson’s Correlation Coefficient for Cr 

Soil 

Type 

Compressibility 

Index 

Parameter Pearson’s 

Correlation 

Coefficient 

R2 RMSE 

Coarse 

Grained 

Cr Effective Overburden 

Pressure (ksf) 

0.1300 0.01690 0.0241 

Wet Density (pcf) -0.5958 0.3550 0.0195 

Dry Density (pcf) -0.5695 0.3243 0.0200 

Natural Moisture (%) 0.6914 0.4781 0.0176 

Automatic Hammer Blow 

Count 

0.1095 0.0120 0.0242 

Fines (-200) (%) 0.0063 0.0001 0.0243 

Liquid Limit 0.5332 0.2843 0.5262 

Plasticity Index 0.3838 0.1473 0.0225 

Initial Void Ratio (e) 0.6711 0.4504 0.0180 

Specific Gravity (Gs) -0.2581 0.0666 0.0235 

 

Illustrated in tables above, w, LL, and e are the strongest positive factors with respect to 

both Cc and Cr, for the Coarse Grained classification.  The strongest negative factors are also the 

same for the Coarse Grained classification, with respect to both Cc and Cr.  The factors are γwet, 

γdry, and Gs.   

4.5 Discussions 

The following table outlines the results of the influential parameter analysis for 

compressibility indexes.  The influential parameters are listed from highest to lowest influence 
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on compressibility indexes and include the statistical value of influence in parentheses.  Only the 

top three most positive and negative factors are noted. 

 

Table 19: Influential Parameter Breakdown by Soil Classification 

Soil 

Classification 

Positive Factor Negative Factor 

Cc Cr Cc Cr 

Silts 

LL (0.75) w (0.72) Gs (-0.72) Gs (-0.74) 

w (0.74) PI (0.63) -200 (-0.67) -200 (-0.63) 

PI (0.74) LL (0.62) γdry (-0.61) γdry (-0.58) 

Fine Grained 

w (0.77) w (0.58) γdry (-0.69) γdry (-0.48) 

e (0.76) e (0.52) γwet (-0.63) γwet (-0.43) 

LL (0.53) LL (0.49) N (-0.23) N (-0.13) 

Clay 

e (0.79) LL (0.50) γdry (-0.69) γdry (-0.46) 

w (0.77) w (0.50) γwet (-0.63) γwet (-0.40) 

LL (0.51) e (0.49) N (-0.24) N (-0.11) 

Organic 

e (0.72) e (0.82) γdry (-0.60) γdry (-0.47) 

w (0.71) w (0.54) γwet (-0.37) γwet (-0.27) 

o (0.44) o (0.25) σ (-0.26) σ (-0.22) 

Coarse Grained 

w (0.89) w (0.69) γdry (-0.77) γwet (-0.60) 

e (0.86) e (0.67) γwet (-0.74) γdry (-0.57) 

LL (0.73) LL (0.53) Gs (-0.27) Gs (-0.26) 

 

There are several things that can be noted from this analysis.  The first is that LL, w, and 

e, were the most positive influential factors for every category, with the exception of PI for Silts 

and o for Organics.  The most negative influential factors were noticeably less consistent, in 

regards to inclusion for all soil classifications.  The only consistently included negative 

influential factor is γdry.  In fact, it was the most negative influential factor for four out of the five 

classifications, with the exception of Silts.  γwet also follows γdry for each of the same 

classifications, with respect to most negative influential factor, with the same exception of the 
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Silts classification.  This makes sense as these two parameters are interconnected through a 

relationship with moisture content (Das, 2002). 

Results for the most influential factors typically illustrate Pearson’s Correlation 

Coefficients in the range of 0.60 to 0.70 for the most positive, and -0.60 to -0.70 for most 

negative for predictions for compressibility index.  For Cr, the most influential parameters (both 

positive and negative) appeared to be of smaller magnitude.  This stands to reason, since Cr 

correlations, developed during this study, are noticeably weaker than Cc correlations.  The 

Pearson’s coefficients for the Clays and Silts appear to be on par with the others.  This leads one 

to believe that relatively strong predictions for Cc and Cr, based on developed correlations in the 

future, could be made. 

The strongest Pearson’s Correlation Coefficients were for the Coarse Grained 

classification (0.89 for moisture content and 0.86 for void ratio, both being for Cc) and for the 

Organic classification (0.82 for void ratio, for Cc).  Note that the strongest coefficients were both 

positive influential factors and were contained in predictions for Cc.  In a future study, where 

delineational models for Cc and Cr are to be examined, these would be good places to start 

looking for data trends.  If such a trend exists, delineational models may be present that would 

create two separate, distinct models, once a certain threshold is crossed.  For example, if w < 85, 

a separate correlation for Cc may be needed than if w is greater than or equal to 85. 

Geotechnically speaking, many of these influential factors make sense.  For example, as 

the void ratio goes up, one would expect Cc and Cr to increase proportionally.  As the voids in 

the soil skeleton become greater, so would the soil’s propensity to collapse once loaded (Bowles, 

1989).  The same can be said about the moisture content.  The more the soil has a tendency to 
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hold water, the greater the propensity to expel it once loaded (Hough, 1957).  Also, as the wet 

and dry densities increase, one would expect the soil to be stiffer and more resilient to 

deformations once loaded (Lambe et al., 1969).  All of these phenomena have been statistically 

endorsed through data analysis.  However, one would also expect that the fines content would 

play a larger part in these compressibility index predictions.  As the percentage of smaller 

particles in the soil skeleton increases, so does the tendency to behave like a cohesive soil (i.e. 

clay/silt).  These soils have a tendency to be sensitive to changes in stress due to its honeycomb 

composition (Bowles, 1989).  Its stability and subsequent ability to compress increases when 

loaded. 

The next noteworthy item worthy of discussion is the inclusion/exclusion of some of the 

most influential parameters in the developed correlations.  This is best illustrated with a 

summary as noted in the following table.  It includes all factors included in the correlation for 

each classification and also Pearson’s Correlation Coefficient in parentheses for that respective 

parameter. 
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Table 20: Pearson’s Correlation Coefficient of Parameters Included in Compressibility 

Correlations 

Compressibility Index Soil Classification Included Parameter in 

Correlation 

Cc 

Coarse Grained 

σ (0.09) 

γwet (-0.74) 

γdry (-0.77) 

w (0.89) 

N (-0.09) 

-200 (0.07) 

LL (0.73) 

PI (0.55) 

e (0.86) 

Gs (-0.27) 

Fine Grained 

w (0.77) 

-200 (-0.06) 

PI (0.45) 

e (0.76) 

Organic 

γwet (-0.37) 

w (0.71) 

-200 (-0.19) 

o (0.44) 

e (0.72) 

Gs (-0.20) 

Cr 

Coarse Grained 

σ (0.13) 

γwet (-0.60) 

N (0.11) 

-200 (0.01) 

LL (0.53) 

Fine Grained 

γdry (-0.48) 

w (0.58) 

-200 (-0.06) 

LL (0.49) 

Gs (-0.13) 

Organic 

w (0.54) 

-200 (-0.18) 

e (0.82) 
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The table above includes the same shading pattern for the most positive and negative 

influential factors, as seen in the previous tables, where red is strongest negative factors, while 

blue is the strongest positive factors.  One will note that all of the most positive and negative 

influential factors were included in the developed correlation for Coarse Grained soils.  

However, the developed correlation also incorporates parameters that are seemingly not as 

important, such as the overburden pressure, automatic hammer SPT blow count, plasticity index, 

and fines content.  According to the Pearson’s Correlation Coefficient for PI, N, and -200, these 

parameters should have little to no influence at all, since they are so close to zero.  For this 

reason, one could conclude that their removal would have little to no impact in the strength of the 

correlation. 

The Fine Grained classification has a correlation that includes moisture content, fines 

content, plasticity index, and void ratio.  Of these parameters, only the moisture content and void 

ratio were identified to have significant influence on the compression index.  These were the top 

two most positive influential factors.  However, the wet and dry densities, as identified in Table 

19, were the top negative influential factors and neither of them were incorporated into the 

developed correlations.  This classification also included the fines content, which has a Pearson’s 

Correlation Coefficient very close to zero.  This signifies that if a reduced model were to be used 

for better more efficient field use, the parameter could be excluded with little to no effect on 

compressibility predictions. 

The developed correlation for compression index for the Organic classification included 

the top three most influential factors, those being void ratio, moisture content, and organic 

content.  However, only one of the top negative influential factors was included, this being the 
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wet density.  This seems a bit out of place, since the dry density had a much stronger Pearson’s 

Correlation Coefficient (-0.60 and compared to -0.37 for wet density), but was not included in 

the prediction for compression index.  This correlation also included the fines content and 

specific gravity, with both of their coefficients being closer to zero.  This, again, leads one to 

believe that a reduced model could be created for easier field application. 

The Organic classification also included a prediction for the recompression index.  

However, only two of the top positive influential factors, these being moisture content and void 

ratio were included, and none of the top negative influential factors were included.  The 

exclusion of the top influential factors makes a bit of sense, as none of the top negative 

parameters has a Pearson’s Correlation Coefficient below -0.50.  Also, the third best positive 

influential parameter, the organic content, only had a Pearson’s Correlation Coefficient of 0.25.  

Again, the fines content appeared in the prediction of the compressibility index, although the 

coefficient was relatively low.  This is a consistent observation with each of the soil 

classifications. 

4.6 Summary 

 

Regression models were developed for each distinct soil classification.  The model for the 

Coarse Grained classification performs very well, with respect to Cc, which is an important 

observation considering the dearth of previous correlations generated for this classification.  The 

model for the Fine Grained classification absorbed the data from the Organic Silt/Clay 

classification.  The predictive capability for Cc is comparable to the strength of existing 
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correlations.  The model for the Organic Peat classification performed considerably better than 

that of existing correlations, with respect to both Cc and Cr.  The correlations generated 

incorporate several factors not utilized in correlations from previous literature, such as the fines 

content (-200), plasticity index (PI), and the interactions between the wet and dry density (γwet 

and γdry). 

When the influential parameter analysis was performed, it was noted that LL, w, and e, 

were the most positive influential factors for every category, with the exception of PI for Silts 

and o for Organics.  The most negative influential factors were noticeably less consistent, in 

regards to inclusion for all soil classifications.  Some of the Pearson’s Correlational Coefficients 

were strongly negative or positive.  This leads one to conclude that viable delineational models, 

segregating the data based on a dividing line (i.e.  LL > 50) and subsequently creating different 

regression models for each data set, may be possible.  When the influential parameters were 

examined, in relation to their inclusion in the regression models, it was noted that some were 

included and some weren’t.  This leads one to believe that the regression models that have been 

generated can likely exclude certain parameters, for simplicity of use purposes, without losing 

much correlational strength. 
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CHAPTER 5: VERIFICATION OF SOIL COMPRESSIBILITY 

PREDICTION MODELS 

5.1 Introduction 

 

The developed correlations show promise for their predictive capabilities.  In the next 

portion of the study, the strength of the correlations will be tested through additional field 

exploration and comparison to existing data.  This will be accomplished through comparison of 

measured field settlement data to settlement predictions derived from measured compression 

indexes and predicted compression indexes from developed correlations.   

In order for this to be achieved with any level of confidence, sites must be chosen with a 

known soil stratigraphy, measured settlement from a known source, and preferably, existing 

consolidation data.  A known soil stratigraphy provides a general concept of the types of soil on 

site, thickness of soil layers, and depths.  An accurate settlement prediction cannot be achieved 

without this information.  It would also be preferable to have existing consolidation data on site 

for some of the soil layers.  Although it would be ideal if there was a consolidation test for each 

soil layer on site and each depth interval, due to budgetary and time constraints, most consultants 

will test only the most problematic clay or organic layers, if any at all.  This leads their 

settlement predictions to be less accurate.  Having at least some consolidation tests would 

provide a better sense of soils on site, and eliminate the need for extracting additional samples. 

Two locations were chosen for further study that meet the criteria specified above.  They 

both are at SR 415 in Volusia County, Florida.  This portion of SR 415 has been previously 

surcharged and has existing settlement data, as well as a wealth of SPT borings and consolidation 
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testing data.  This translates to a known soil stratigraphy which is instrumentally helpful in the 

event that further field /lab testing needs to be performed.  Each site will now be explained in 

detail. 

5.2 Site Description 

 

The SR 415 corridor was once a two-lane roadway through the border of Volusia and 

Seminole county, crossing the St. John’s River Bridge.  In order to meet the increasing traffic 

demand in the area, a large roadway section from Reed Ellis Rd. in Volusia County to the 

Seminole County line was widened, including the construction of an additional bridge to house 

the traffic moving southbound.  The entire area throughout this corridor is littered with pockets 

of thick, problematic soils, such as organic sandy clay and peat.  There were several SPT 

borings, lab tests for index properties and consolidation tests performed for this project.   

 

 
 

Figure 24: Site Plan 
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Sample SPT borings from the original widening project are below: 

 

 
 

Figure 25: Sample SPT Borings 

Source: Sewell & Abboud, 2012 

 

 As can be seen in the sample SPT borings above, sand pockets are intermingled with 

larger clay strata.  The clays are loose and highly compressible, as demonstrated by relative low 

SPT blow counts (less than 10), Atterberg limits above 50, and several high moisture content 

readings (above 70%).  Seasonal high-water table is at or near ground surface.  This leads one to 

believe that this area is continually saturated year-round.  When these soils were encountered, 

engineers deemed consolidation testing necessary, due to a high probability of significant soil 

settlement when loaded. 
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5.3 Field Testing Program 

5.3.1 Settlement Measurement and Monitoring 

 

As part of this project, an embankment would need to be constructed for the roadway and 

bridge approaches.  This embankment would be contained with the construction of new MSE 

walls.  Due to large stress changes from these overlying loads and construction activities, along 

with the soil profile having thick clay layers, engineers deemed it necessary to surcharge the area 

to extrude the hazardous settlement (Sewell & Abboud, 2012).  This surcharge was installed in 

2007 and concluded in December of 2009, for a total of just over 2 years.  The fill was composed 

of clean sands and was over 20 feet high in certain locations (Sewell & Abboud, 2012).  The 

figure below depicts the surcharge details and is not to scale. 

 

 
 

Figure 26: Surcharge Details 

 

Settlement plates were incorporated into surcharge operations to monitor the settlement 

of the area.  Settlement readings were performed weekly for the first three months after 
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installation, then bi-weekly for six months, and then on a monthly basis afterwards (Sewell & 

Abboud, 2012).  The following table represents a summary of the readings taken for the site: 

 

Table 21: Settlement Plate Data 

Settlement Plate Info Primary Settlement Reading (in.) 

Settlement Plate # Station Offset 

S-4 523+00 40’ LT 8.6 

S-5 523+50 40’ LT 7.3 

S-6 524+00 40’ LT 7.2 

S-7 525+00 40’ LT 10.0 

S-8 530+00 40’ LT 2.3 

S-9 535+00 40’ LT 3.7 

S-10 540+00 40’ LT 4.5 

S-11 545+00 40’ LT 5.5 

S-12 550+00 40’ LT 3.0 

S-13 555+00 40’ LT 4.0 

S-14 560+00 40’ LT 3.2 

S-15 565+00 40’ LT 3.5 

S-16 570+00 40’ LT 5.2 

S-17 575+00 40’ LT 2.6 

S-18 580+00 40’ LT 3.2 

S-19 585+00 40’ LT 5.0 

S-20 590+00 40’ LT 5.1 

S-21 595+00 40’ LT 4.2 

S-22 600+00 40’ LT 3.0 

 

Source: Sewell & Abboud, 2012 
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As can be seen in the table above, all of the locations within the surcharge area 

experienced settlements less than one foot, and were frequently in the range of three to five 

inches.  The observed variation in settlement throughout this area can be attributed to varying 

surcharge height and change in soil stratigraphy. 

The following figures detail the measured settlement and surcharge history of settlement 

plate S-12 and S-18.  These two locations will be discussed in greater detail, further in the study. 

 

 

 Figure 27: Measured Settlement and Surcharge History for S-12 
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Figure 28: Measured Settlement and Surcharge History for S-18 

 

5.3.2 Site Characterization 

 

There were two locations chosen for additional testing at the SR 415 site.  These were 

chosen due to a SPT boring being performed in close proximity to where a settlement plate was 

later placed, similar to the criteria in Location 1.  The SPT boring provides information for the 

soil profile underneath the surcharge, and the settlement plate provides the information for how it 

behaves during loading.  With a known surcharge loading, a settlement analysis can be 

performed to compare the predicted settlement to the measured. 

The two locations that were chosen for further study were at SPT boring location TB-6 

and TB-12.  A summary of these locations is below. 
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Figure 29: Additional Field Testing Locations 

 

 The figure above depicts the locations in which an SPT boring was performed and its 

proximity in relation to where settlement plate data exists.  In this case, the SPT boring TB-6 

closely relates to the location of settlement plate S-12 and SPT boring TB-12 closely relates to 

the location of settlement plate S-18.  For further description of these locations, please see the 

table below. 
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Table 22: Field Testing Locations 

Location Boring # Station Offset Settle. Plate # Station Offset 

Location 1 TB-6 549+63 58’ LT S-12 550+00 40’ LT 

Location 2 TB-12 580+00 83’ LT S-18 580+00 40’ LT 

 

 

As can be seen, at SPT location TB-6, a settlement plate was later placed 37 feet further 

east and 18 feet closer to the centerline of the roadway.  At SPT location TB-12, a settlement 

plate was later placed at the exact same station, but 43 feet closer to centerline.  These were the 

locations that had closest proximities between existing SPT borings and settlement plates.  Soil 

spatially varies in thickness and depth, which will ultimately have an influence on total 

settlement.  While the SPT borings are fairly consistent in this project, with respect to depth and 

thickness of soil layers, it may not be a safe assumption that the settlement plate reading would 

be the same at the SPT location, had one been placed there.  This will be vetted during settlement 

predictions and compared to measured settlement. 

In order to confirm site soils, CPT soundings were performed at the existing SPT 

locations, prior to additional SPT borings and laboratory testing.  The CPT profile for the 

location of SPT TB-6 matches up fairly well with the SPT boring profile.  According to the CPT 

sounding profile, there should be approximately four feet of fill for this area.  While the 

settlement plate data specifies 12.5 feet (discussed later in the study), the surcharge was stated to 

be partially removed for roadway embankment construction, upon completion of the surcharge 

program (Sewell & Abboud, 2012).  The CPT sounding profile suggests that approximately 8.5 

feet of fill was removed at this location, leaving approximately four feet to remain.  The clay and 
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sand layers match up reasonably well, with the exception of the second clay layer, which appears 

to behave more like a sand, according to the CPT sounding profile. 

The zone of influence is defined as the depth in which there is significant stress change so 

as to influence soil settlement.  This depth is on the magnitude of 2*H below ground surface of 

the surcharge, where H is the surcharge height.  At this depth, stress change generally falls to 

10% of the stress change at ground surface, due to loading (Bowles, 1989).  This largely depends 

on the unit weight of the soil layers above the influence zone depth.  Typical subsoil 

investigation underneath an embankment calls for borings to be taken at a depth of twice the 

proposed embankment height or 10% of the original overburden pressure (FDOT, 2013).  

For the SPT boring TB-6 location, two consolidation tests were carried out on the two 

clay layers within the influence zone of 25 ft. beneath the fill (2H for this area would be 2 X 12.5 

ft. of fill).  The sand layer was viewed as incompressible.  The SPT boring profile in Figure 30 

continues to 40 ft.  If the fill is eliminated, this accounts for a profile 36 ft. deep, which is 11 ft. 

beyond the conventional influence zone of settlement.  The entire boring profile will be included 

in the settlement analyses.   

The CPT profile for the location of SPT TB-12 illustrates approximately 4 ft. of fill.  This 

varies from the 13.5 ft. of fill specified within the settlement plate results, but, as specified 

previously, a portion of the surcharge fill was later removed to account roadway embankment 

construction.  The clay layer looks to be dispersed with silty sands, according to the CPT 

sounding profile.  Note that the sand layer was viewed as incompressible.  The SPT boring 

profile for TB-12 continues to 40 ft.  With the same influence zone of settlement, as in boring 

TB-6 (25 ft.), if the fill is eliminated, the boring profile contains 11 additional feet below the 
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conventional influence zone of settlement.  Both SPT locations will include a deeper than 

conventional influence zone of settlement in the settlement predictions.  The results of the 

applicability of the conventional influence zone of settlement will be vetted in the results. 

A depiction of the CPT sounding profile is highlighted in the figure below. 

 

 
 

Figure 30: Geotechnical Profile at both SPT Locations 

 

Details of the proposed additional testing are below.  With this information, settlement 

analyses can be performed and compared to measured settlement. 
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Table 23: Additional Index Parameters Needed to Complete Soil Profile 

Location Depth 

(ft.) 

Specific 

Gravity 

(Gs) 

Fines 

(-200) 

Atterberg 

Limits 

(LL, PI) 

Moisture 

Content 

(w) 

Wet Unit 

Weight 

(γwet) 

Organic 

Content 

(o) 

TB-6 20 X X  X X  

TB-12 30 X X  X X  

 

SPT borings were then performed in close proximity to where the existing borings were 

taken in the past and had very little variation in soil stratigraphy.  Note that they could not be 

performed in the exact location, due to utilities and other conflicts in the area.  The SPT borings 

were performed in an effort to gather the required index properties for the use of correlations in 

the settlement analyses.  Although the SPT borings were performed in slightly different 

locations, the naming convention will be kept the same.  The SPT borings, and accompanying 

lab testing, can be seen in Figure 31.  Table 24 houses a tabular version of the laboratory testing.   
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Figure 31: SPT Results and Lab Testing for Complete Soil Profiles 
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Table 24: Additional Laboratory Testing 

SPT 

Boring 

Depth USCS -200 (%) LL (%) PI (%) w (%) Gs 

TB-6 

2 SP-SM 7 - - 14 2.61 

4 SP-SM 8 - - 12 2.67 

5 SM 23 - - 20 2.63 

6 CH 58 56 40 23 2.75 

8 CH 64 60 47 29 2.68 

11 CH 68 69 54 33 2.72 

14 CH 92 64 50 29 2.69 

16 SP-SM 6 - - 24 2.64 

20 SP-SM 6 - - 27 2.67 

25 SP-SM 7 - - 27 2.66 

30 SM 32 - - 47 2.59 

35 SP-SM 6 - - 28 2.64 

40 SM 49 - - 64 2.52 

TB-12 

1 SP-SM 11 - - 11 2.60 

3 SP-SM 8 - - 10 2.63 

4 SP 3 - - 5 2.65 

6 SP 4 - - 11 2.65 

7 SM 15 - - 25 2.61 

8 SC 37 32 18 25 2.58 

13 SC 50 42 28 28 2.61 

16 SM 19 - - 25 2.66 

19 SM 16 - - 23 2.66 

25 CH 97 99 67 52 2.68 

30 SM 34 - - 34 2.72 

35 SP-SM 11 - - 22 2.66 

40 SP-SM 11 - - 26 2.65 

 

Two clay samples were taken for consolidation testing for TB-6 and one clay sample was 

tested for TB-12.  The consolidation test results can be seen in Figure 32.  For TB-6, the upper 

clay layer shows Cc of 0.49 and Cr of 0.10 while the lower clay layer shows Cc of 2.50 and Cr of 

0.09.  For TB-12, the clay layer shows Cc of 0.43 and Cr of 0.08.  
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Figure 32: Consolidation Test Results 

5.4 Case Studies Comparing Predicted Settlement to Measured Settlement 

5.4.1 Case Study 1: SPT Boring TB-6 Analysis 

 

Settlement can be computed using Equations 1 through 3 for all soil types, as discussed 

during the introduction.  The stress state of the soil will dictate which equation is used.  If the 

sample is normally consolidated, Equation 1 will be used.  If the sample is overly consolidated, 

Equation 2 or 3 will be used, depending on the maximum past pressure, as previously discussed.  
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The settlements for each soil type will be determined, and then summed for a total primary 

consolidation settlement. 

The settlement analyses are organized via a case study for each location.  Two different 

analyses were performed for each location, including: (1) settlement computed using the 

measured compressibility indexes by consolidation test and (2) settlement computed using the 

predicted compressibility indexes via the developed correlations.  The computed settlements are 

then compared with the measured settlements.  In the settlement analyses, three different Cr 

indexes were used, including (1) measured Cr from consolidation test, (2) predicted Cr from the 

correlation, and (3) predicted Cr from a rule of thumb correlating Cc to Cr.  In addition to this, the 

predicted Cr from the strongest Cr prediction model from existing literature will be used 

(Azzouz). 

 The site geometry below, will be used in the analysis.  Note that depths are taken prior to 

surcharge fill operations. 
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Figure 33: SPT Results and Lab Testing for Complete Soil Profiles 

The applicable data will be input in a series of tables for clarity. 

The depths of interest are 5 and 25 feet.  The depths are taken prior to surcharge 

operations, in the middle of the soil layer.  This is done in order to determine the initial stresses, 

before any stress changes occur. 

Table 25 includes information for the settlement equations, and total settlement (Δ) 

computed for this location, using measured Cr.  The predicted settlement, Δ, is determined from 

total surcharge height at the end of fill operations. The maximum past stress, σ’c, is taken directly 
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from the consolidation tests.  The change in pressure for each depth is determined by spatial 

geometry, with respect to depth of interest and location of settlement plate. 

 

Table 25: Predicted Settlement from Measured Cr, SPT Boring TB-6 

Soil # H (ft.) σ’o 

(psf.) 

Δσ 

(psf.) 

σf 

(psf.) 

σ’c 

(psf.) 

1Cr eo Δ 

(in.) 

Total 

Δ (in.) 

2Measured 

Δ (in.) 

1 11.5 488 785 1273 2000 0.10 1.31 2.17 
2.92 3.60 

3 11.5 1550 755 2305 5600 0.09 3.05 0.75 

1 Cr is measured by consolidation test  
2 Settlement was measured by the field test  

 

The maximum past stress, σ’c, is taken directly from the consolidation tests.  The change 

in pressure for each depth is determined by spatial geometry, with respect to depth of interest and 

location of settlement plate. 

The critical piece of information that will change with Analysis #2, is the compressibility 

index(s).  This will now be predicted using the correlations generated.  All other information 

involved in the settlement analysis will remain the same. 

The predicted settlement is highlighted in the table below.  Note that index properties 

were either taken from existing information, where there was no additional testing, or was taken 

as an average of index properties from that soil layer.  Also note that the sand layer is treated as a 

compressible layer and is incorporated into the analysis. 
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Table 26: Predicted Settlement from Predicted Cr, SPT Boring TB-6 

Layer 

# 

H 

(ft.) 

σf 

(psf.) 

σ’o 

(psf.) 

1Cr eo Δ (in.) Total Δ 

(in.) 

2Measured 

Δ (in.) 

1 11.5 1273 488 0.03 1.31 0.98 

2.43 3.60 2 13 1848 1071 0.01 0.66 0.39 

3 11.5 2305 1550 0.07 3.05 1.06 

1 Cr is the predicted value using Table 6 and applicable index parameters 
2 Settlement was measured by the field test  

             

            As the overall site has exhibited being heavily over-consolidated (see Figure 5), with the 

maximum past stress significantly higher than the final stress (from embankment surcharge 

construction), it was assumed that the same settlement equation would apply for this analysis. 

One will notice that in Table 6, the correlations generated for Cc are significantly stronger 

than Cr, particularly for coarse grained soils.  Although Cc is not applicable for this site, due to 

stress history, there is a rule of thumb that can be used, such that the recompression index is 1/5 

of the compression index (Das, 2002).  It is governed by the equation below: 

 

 𝐶𝑟 = 0.20(𝐶𝑐) (22) 

This correlation of Cr to Cc may be able to compensate for the lack of correlational 

strength of coarse and fine grained soils, with respect to the comparison of Cr to Cc, using Table 

6.  Note that as previously stated in Figure 8, a total of 619 consolidation tests were collected for 

the State of Florida.  These consolidation tests identify the compressibility indexes, both Cc and 

Cr.  For this reason, the rule of thumb previously stated in Equation 22 can be tested for each soil 

type.  Results of this analysis can be seen in the table below. 
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Table 27: Cc to Cr Ratio for Each Soil Type 

Soil Type Cc/Cr Ratio 

Coarse Grained 0.13 

Fine Grained 0.24 

Organic 0.11 

Average 0.16 

 

 As can be seen, there was some variability with the ratios for each soil type, with coarse 

grained being 0.13, fine grained being 0.24, and organic being 0.11.  The average of these soil 

types came to 0.16, which is within close proximity to 0.20, so Equation 22 will apply. 

 

Table 28: Total Settlement from Predicted Compressibility Index(s) using the Cc correlation to Cr 

Layer 

# 

H 

(ft.) 

σf 

(psf.) 

σ’o 

(psf.) 

σ’c 

(psf.) 

1Cc
 2Cr

 e Δ 

(in.) 

Total 

Δ (in.) 

3Measured 

Δ (in.) 

1 11.5 1273 488 2000 0.40 0.08 1.31 1.73 

3.03 3.60 2 13 1848 1071 3400 0.09 0.02 0.66 0.39 

3 11.5 2305 1550 5600 0.53 0.11 3.05 0.91 

1Cc is the predicted value using Table 2 and applicable index parameters 
2Cr is computed by Eq. 22 

3Settlement was measured by the field test  

 

The settlement plate data for location S-12 (SPT Boring TB-6) can be seen in Figure 8, 

with various line colors representing the measured and predicted settlements.  The settlement 

using the correlation of Cc to Cr exhibits the closest values to the measured settlement and the 

error is within 15%.  On the other hand, the settlement by the predicted Cr shows lowest 
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predicted values over time and the error range is up to 31%.  Since the recompression of soils is 

typically small and much lower than Cc, its sensitivity to other index properties can be much less 

sensitive compared to Cc.  In addition, the accuracy of Cr correlation exhibits much lower than Cc 

as shown in Table 6.  

 

Figure 34: Settlement Plate Results for Location S-12 (TB-6 Location) 

Along with using the developed correlations, the settlement will now be predicted from 

the strongest of the existing correlations for Cr, this being the Azzouz correlation using moisture 

content and void ratio. The following table includes the pertinent information and computed 

settlement using Azzouz’s correlation for Cr for all soil types: 
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Table 29: Total Settlement from Predicted Cr using Azzouz’s correlation (Cr = 0.142(e – 0.009w 

+ 0.006)) for all soils 

Layer # σf (psf.) σ’o 

(psf.) 

H (ft.) w 

(%) 

eo Cr Δ (in.) Total 

Δ (in.) 

1 1273 488 11.5 26 1.31 0.15 3.31 

7.40 2 1848 1071 13 29 0.66 0.06 1.28 

3 2305 1550 11.5 77 3.05 0.34 2.82 

 

 With the exception of the settlement prediction from using the Azzouz correlation, the 

remainder of the settlement predictions are all below the measured settlement.  This leads one to 

believe that there is a missing component of immediate settlement that can be compensated by 

examining the elastic contribution.  This is determined by accounting for the change in Modulus 

of Elasticity within the influence zone of settlement (Bowles, 1989).  This parameter can be 

correlated using information from the SPT Boring N value (blow count) for coarse grained 

materials with varying amounts of fine particles, or using information from the CPT tip 

resistance for fine grained materials (NAVFAC, 1982), using the table below: 
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 Table 30: Correlations for Modulus of Elasticity for Various Soil Types 

Soil Type Correlation Field Test Used 

Silts, sandy silts, slightly cohesive silt-sand mixtures E = 4N SPT 

Clean, fine to medium, sands and slightly silty sands E = 7N SPT 

Coarse sands and sands with little gravel E = 10N SPT 

Sandy gravels and gravel E = 12N SPT 

Fine grained materials E = 2*qtip CPT 

 

 This procedure involves splitting up to subsurface profile in layers, similar to what has 

already been performed.  The Modulus of Elasticity will then be computed using Table 30.  The 

influence factor will then be determined for each soil layer using spatial geometry and depth of 

interest (NAVFAC, 1982).  Lastly, a creep correction factor is applied to compensate for any 

long-term contribution for settlement over time.  This process is outlined in the following table. 

 

Table 31: Elastic Settlement Parameters SPT Boring TB-6  

Layer H (ft.) Type N qtip E multiplier E (tsf) 1I I/E*H (in/tsf) 

1 11.5 Clay - 25 2.5 62.5 0.49 1.08 

2 13 Sand 21 N/A 7 147 0.47 0.50 

3 11.5 Clay - 150 2.5 375 0.47 0.17 

Sum 1.75 

1Influence Factor underneath embankment loading (NAVFAC, 1982) 

 

 Total elastic settlement can then be computed using Equation 23 

𝛥𝐻 = C ∗ q ∗ Σ (
𝐼

𝐸
)(𝐻) (23) 
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Where C is a creep correction factor, determined from Equation 24, q is the final surcharge 

pressure (tsf), and ΔH is the elastic settlement (in.). 

 

𝐶 = 1 + 0.2log (10𝑡) (24) 

Note that t is in years.  For immediate settlement, t is zero, so C = 1. 

The elastic settlement can then be computed using the table below. 

 

Table 32: Elastic Settlement SPT Boring TB-6  

q (tsf) C I/E*H (in/tsf) ΔH (in.) 

0.81 1 1.75 1.42 

 

The total immediate settlement can then be computed for SPT Boring TB-6. 

 

Table 33: Total Settlement SPT Boring TB-6  

1Consolidation 

Settlement (in.) 

Elastic 

Settlement 

(in.) 

Total Settlement 

Prediction (in.) 

2Measured 

Settlement (in.) 

3.03 1.42 4.45 3.60 

1Settlement Prediction using the Predicted Cr (Using Cr = 0.2*Cc) 
2Settlement was measured by the field test  

 

Note that when the elastic settlement component was examined, the total settlement 

prediction increased to 4.45 inches, which is less than an inch above the measured settlement.  

As the zone of settlement was taken 11 feet beyond the conventional influence zone, one would 

expect that if the influence zone of settlement was taken as 2H below ground surface, settlement 
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predictions would move closer to the measured.  Table 28 will now be revised to account for the 

reduced influence zone of settlement. 

 

Table 34: Total Settlement from Predicted Compressibility Index(s) using the Cc correlation to Cr 

using Conventional Influence Zone of Settlement 

Layer 

# 

H 

(ft.) 

σf 

(psf.) 

σ’o 

(psf.) 

σ’c 

(psf.) 

1Cc
 2Cr

 e Δ 

(in.) 

Total 

Δ (in.) 

3Measured 

Δ (in.) 

1 11.5 1273 488 2000 0.40 0.08 1.31 1.73 

2.52 3.60 2 13 1848 1071 3400 0.09 0.02 0.66 0.39 

3 1 1958 1200 5600 0.53 0.11 3.05 0.40 

1Cc is the predicted value using Table 2 and applicable index parameters 
2Cr is computed by Eq. 22 

3Settlement was measured by the field test  

 

Tables 31 and 32 will now be modified for the reduction in the influence zone of settlement. 

 

Table 35: Elastic Settlement Parameters SPT Boring TB-6 using Conventional Influence Zone of 

Settlement 

Layer H (ft.) Type N qtip E multiplier E (tsf) 1I I/E*H (in/tsf) 

1 11.5 Clay - 25 2.5 62.5 0.49 1.08 

2 13 Sand 21 N/A 7 147 0.47 0.50 

3 1 Clay - 150 2.5 375 0.47 0.01 

Sum 1.59 

1Influence Factor underneath embankment loading (NAVFAC, 1982) 
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Table 36: Elastic Settlement SPT Boring TB-6 using Conventional Influence Zone of Settlement 

q (tsf) C I/E*H (in/tsf) ΔH (in.) 

0.81 1 1.59 1.29 

 

Table 33 will now be modified for the reduction in influence zone of settlement. 

 

Table 37: Total Settlement SPT Boring TB-6 using Conventional Influence Zone of Settlement 

1Consolidation 

Settlement (in.) 

Elastic 

Settlement 

(in.) 

Total Settlement 

Prediction (in.) 

2Measured 

Settlement (in.) 

2.52 1.29 3.81 3.60 

1Settlement Prediction using the Predicted Cr (Using Cr = 0.2*Cc) 
2Settlement was measured by the field test  

 

As can be seen, using a conventional influence zone of settlement (2*H below ground 

surface), and accounting for elastic settlement improved the results for the settlement prediction, 

as it moved closer to the measured settlement at this location.  The same procedure will be 

replicated at the TB-12 location, first assuming a deeper than conventional influence zone of 

settlement and then using conventional, if needed.  

5.4.2 Case Study 2: SPT Boring TB-12 Analysis 

 

According to the SPT boring (TB-12) in Figure 31, the clay layer has a depth of interest 

at 13.5 ft.  The depth is taken prior to surcharge operations, in the middle of the soil layer.  Table 

38 includes the predicted settlement from measured Cr. 
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The following table includes information for the settlement equations, and total 

settlement computed for this location, using the pertinent measured compressibility index(s): 

 

Table 38: Predicted Settlement from Measured Cr  

Layer 

# 

H 

(ft.) 

σ’o 

(psf.) 

Δσ 

(psf.) 

σf 

(psf.) 

σ’c 

(psf.) 

1Cr eo Δ 

(in.) 

2Measured 

Δ (in.) 

1 15 548 809 1357 2600 0.08 1.10 2.72 3.80 

1Cr is measured by consolidation test  
2Settlement was measured by the field test  

 

The predicted settlement, as described in the SPT Boring TB-12 from Figure 31, is 

highlighted in Table 39.  Note that in this analysis, the sand layer is treated as compressible and 

the applicable model from Table 6 is applied. 

 

Table 39: Predicted Settlement from Predicted Cr, SPT Boring TB-12 

Layer 

# 

H 

(ft.) 

σf 

(psf.) 

σ’o 

(psf.) 

1Cr e Δ 

(in.) 

Total 

Δ (in.) 

2Measured 

Δ (in.) 

1 15 1357 548 0.05 1.10 1.70 
2.25 3.80 

2 19 3045 2305 0.03 0.98 0.55 

1Cr is the predicted value using Table 6 and applicable index parameters 
2Settlement was measured by the field test  

 

The predicted settlement using a correlation of predicted Cc to Cr is highlighted in Table 40. 
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Table 40: Total Settlement from Predicted Compressibility Index(s) using the Cc correlation to Cr 

Layer 

# 

H 

(ft.) 

σf 

(psf.) 

σ’o 

(psf.) 

1Cc 
2Cr e Δ 

(in.) 

Total 

Δ (in.) 

3Measured 

Δ (in.) 

1 15 1357 548 0.30 0.06 1.10 2.01 
2.76 3.80 

2 19 3045 2305 0.20 0.04 0.98 0.75 

1Cc is the predicted value using Table 2 and applicable index parameters 
2Cr is computed by Eq. 22 

3Settlement was measured by the field test  

 

The settlement plate data for location S-18 (SPT Boring TB-12) can be seen in Figure 35, 

with various line colors representing the measured and predicted settlements.  The same trend is 

observed as shown in Figure 34.  The settlement using the correlation of Cc to Cr exhibits closest 

values to the measured settlement, and the settlement by the measured Cr and the settlement by 

the predicted Cr are followed in order.  

 

Figure 35: Settlement Plate Results for Location S-18 (TB-12 Location) 
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Along with using the developed correlations, the settlement will now be predicted from 

the strongest of the existing correlations for Cr, this being the Azzouz correlation using moisture 

content and void ratio. The following table includes the pertinent information and computed 

settlement using Azzouz’s correlation for Cr for all soil types: 

 

Table 41: Total Settlement from Predicted Cr using Azzouz’s correlation (Cr = 0.142(e – 0.009w 

+ 0.006)) for all soils 

Layer # σf (psf.) σ’o 

(psf.) 

H (ft.) w 

(%) 

eo Cr Δ (in.) Total 

Δ (in.) 

1 1357 548 15 26 1.10 0.13 4.22 
6.08 

2 3045 2305 19 29 0.98 0.11 1.86 

 

With the exception of the settlement prediction from using the Azzouz correlation, the 

remainder of the settlement predictions are all below the measured settlement, similar to what 

was observed at the previous location.  As the TB-6 location yielded better results when elastic 

settlement was considered, the same procedure will be implemented for the TB-12 location.  

Table 42 outlines the elastic settlement parameters for this location. 

 

Table 42: Elastic Settlement Parameters SPT Boring TB-12  

Layer H (ft.) Type N qtip E multiplier E (tsf) 1I I/E*H (in/tsf) 

1 15 Clay - 25 2.5 62.5 0.49 1.41 

2 19 Sand 15 N/A 7 105 0.47 1.02 

Sum 2.43 

1Influence Factor underneath embankment loading (NAVFAC, 1982) 

 



111 
 

The elastic settlement can then be computed using the table below. 

 

Table 43: Elastic Settlement SPT Boring TB-12  

q (tsf) C I/E*H (in/tsf) ΔH (in.) 

0.81 1 2.43 1.97 

 

The total immediate settlement can then be computed for SPT Boring TB-6. 

 

Table 44: Total Settlement SPT Boring TB-12  

1Consolidation 

Settlement (in.) 

Elastic 

Settlement 

(in.) 

Total Settlement 

Prediction (in.) 

2Measured 

Settlement (in.) 

2.76 1.97 4.73 3.80 

1Settlement Prediction using the Predicted Cr (Using Cr = 0.2*Cc) 
2Settlement was measured by the field test  

 

Note that when the elastic settlement component was examined, the total settlement 

prediction increased to 4.73 inches. Similar to the TB-6 location, the total settlement is less than 

an inch above the measured settlement.  As the zone of settlement was taken 11 feet beyond the 

conventional influence zone.  Similar to the TB-6 location, one would expect that if the influence 

zone of settlement was taken as 2H below ground surface, settlement predictions would move 

closer to the measured.  Table 40 will now be revised to account for the reduced influence zone 

of settlement. 
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Table 45: Total Settlement from Predicted Compressibility Index(s) using the Cc correlation to Cr 

using Conventional Influence Zone of Settlement 

Layer 

# 

H 

(ft.) 

σf 

(psf.) 

σ’o 

(psf.) 

1Cc 
2Cr e Δ 

(in.) 

Total 

Δ (in.) 

3Measured 

Δ (in.) 

1 15 1357 548 0.30 0.06 1.10 2.01 
2.32 3.80 

2 8 2592 1800 0.20 0.04 0.98 0.31 

1Cc is the predicted value using Table 2 and applicable index parameters 
2Cr is computed by Eq. 22 

3Settlement was measured by the field test  

 

Tables 42 and 43 will now be modified for the reduction in the influence zone of settlement. 

 

Table 46: Elastic Settlement Parameters SPT Boring TB-12 using Conventional Influence Zone 

of Settlement 

Layer H (ft.) Type N qtip E multiplier E (tsf) 1I I/E*H (in/tsf) 

1 15 Clay - 25 2.5 62.5 0.49 1.41 

2 8 Sand 15 N/A 7 105 0.47 0.43 

Sum 1.84 

1Influence Factor underneath embankment loading (NAVFAC, 1982) 

 

Table 47: Elastic Settlement SPT Boring TB-12 using Conventional Influence Zone of 

Settlement 

q (tsf) C I/E*H (in/tsf) ΔH (in.) 

0.81 1 1.84 1.49 

 

Table 44 will now be modified for the reduction in influence zone of settlement. 
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Table 48: Total Settlement SPT Boring TB-12 using Conventional Influence Zone of Settlement 

1Consolidation 

Settlement (in.) 

Elastic 

Settlement 

(in.) 

Total Settlement 

Prediction (in.) 

2Measured 

Settlement (in.) 

2.32 1.49 3.81 3.80 

1Settlement Prediction using the Predicted Cr (Using Cr = 0.2*Cc) 
2Settlement was measured by the field test  

 

As can be seen, using a conventional influence zone of settlement (2*H below ground 

surface), and accounting for elastic settlement greatly improved the results for the settlement 

prediction.  In fact, the results very closely match the measured settlement.  This is a positive 

indicator that using a conventional influence zone of settlement and including the elastic 

settlement component, in conjunction with using the 0.2 factor relating Cc to Cr, can yield 

accurate settlement predictions. 

 

5.5 Discussions 

 

The root mean squared error (RMSE) method was implemented to summarize the 

variance between the predicted and measured values for each settlement prediction and evaluate 

their performance, statistically.  A perfect predictive model yields an RMSE value of 0.0.  The 

lower the RMSE value of a predictive model the better the model performs.  In a perfect model, 

the predicted settlements as seen in figures above would coincide with the measured settlement.  

The closer the predicted settlement follows the measured settlement, the better the model 

performs. 
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RMSE = √(𝑓 − 𝑜)2/n (25) 

Where f = predicted settlement (per day), o = measured settlement (per day), and n = number of 

observations. 

For each increment of time in which a settlement reading was taken, the difference 

between predicted settlement and measured settlement is evaluated and this statistical operation 

is a summary of those differences.  

The following table presents a summary of this measure for each location.  Keep in mind 

that these statistical parameters are for the predictions made using a deeper than conventional 

influence zone of settlement and a non-elastic settlement contribution. 

 

Table 49: Statistical Strength of Prediction Models 

RMSE Settlement Prediction Method 
Location  

TB-6 (S-12) 

Location 

TB-12 (S-18) 

0.131 0.200 Settlement Prediction from the 

Measured Cr 

0.208 0.305 Settlement Prediction from the 

Predicted Cr  

0.128 0.186 Settlement Prediction using the 

Predicted Cr (Using Cr = 0.2*Cc) 

 

 

As can be determined from the table above, the predicted Cr (using a correlation from 

predicted Cc) was the strongest settlement prediction at both locations.  The differences between 

predicted and measured settlements can be attributed to a number of factors.  As stated 
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previously, the settlement plates were not placed at the exact location of the SPT borings.  As 

soil varies spatially and with depth, there is the potential that the soil stratigraphy could be 

different between where the settlement plate was placed and where the SPT boring was 

performed.  The soil sampling may also not have occurred has frequently as it needed to be.  

There is a chance that slight variances and small pockets of varying soils could have been missed 

between sampling intervals. 

Table 50 illustrates the comparison between the settlement using the measured and 

predicted compressibility index(s) and the measured settlement.  The measurements and 

predictions are reported for the last observed reading of the settlement plate, as noted in Figures 

34 and 35.  The predicted settlement from the predicted Cr from both locations was noticeably 

less accurate when comparing to the measured settlement.  With the weakness of correlational 

strength between measured and predicted Cr for coarse and fine grained soils (as compared to the 

correlational strength of Cc), it was then hypothesized to use a standard rule of thumb to equate 

Cc to Cr.  When this analysis was performed, it yielded better results, when compared to the 

measured settlement.  Although this ratio has been widely accepted and adopted in field practice, 

it is still a generalization that may not be applicable for all soils, including those encountered at 

this site.  This generalization may have had an effect on the settlement predictions. 
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Table 50: Measured vs. Predicted Settlement Summary 

Settlement 

Plate 

Location 

Measured 

Settlement 

(in.) 

Predicted 

Settlement 

w/Measured 
1Cr (in.) 

Predicted 

Settlement 

w/Predicted 
2Cr (in.) 

Predicted 

Settlement 

w/Predicted 
3Cr (in.) 

Predicted 

Settlement 

w/Predicted 
4Cr (in.) 

S-12 (TB-6) 3.60 2.92 2.43 3.03 7.40 

S-18 (TB-12) 3.80 2.72 2.25 2.76 6.08 

1Cr is measured from consolidation test 
2Cr is the predicted value from the correlation shown in Table 2. 

3Using a correlation from Cc to Cr 

4Using the strongest correlation from existing literature (Azzouz) 

 

The influence zone of settlement was taken as two times the surcharge height below 

ground surface.  The other rule of thumb for this depth is wherever the stress change from the 

overlying load moves to 10%.  The slight variance between predicted and measured settlements 

can be attributed to ambiguity of the identification of the influence zone of settlement.  As can be 

determined from the previous table, the predicted settlements were less than the measured.  This 

leads one to believe that the influence zone of settlement is deeper than 2H below ground 

surface.   

The elastic settlement contribution was considered and added to the analyses for the last 

measured settlement reading at both locations.  When this contribution was added to the study, 

settlement predictions increased beyond the measured settlement at both locations.  For this 

reason, the influence zone of settlement was brought back to 2H below ground surface.  Results 

of this analysis can be seen in Table 51. 
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Table 51: Measured vs. Predicted Settlement Summary, Considering Conventional Influence 

Zone of Settlement and Elastic Settlement Contribution 

Settlement 

Plate 

Location 

Measured 

Settlement 

(in.) 

Predicted 

Settlement 

w/Predicted 
1Cr (in.) 

S-12 (TB-6) 3.60 3.81 

S-18 (TB-12) 3.80 3.81 

1Using a correlation from Cc to Cr 

 

5.6 Summary and Conclusions 

 

The following conclusions can be made: 

• In general, Cr correlations show lower accuracy than Cc correlations.  Cr values are 

smaller than Cc and its sensitivity to other soil index properties may be lower.  Using the 

rule of thumb, Cr=0.2*Cc, is an alternative when the Cr correlation has low performance.  

• The predicted settlement from predicted Cr (using a correlation from predicted Cc) was 

the most accurate settlement prediction for both locations. 

• The predicted settlement using the predicted Cr values exhibits the weakest settlement 

prediction but still in reasonable prediction range. The difference in settlement prediction 

between the measured and predicted Cr approaches is over an inch for both locations and 

the error range is from 16% to 17%.  

• When elastic settlements were considered and predicted settlements subsequently 

increased in excess of the measured settlement, the influence zone of settlement was 

reduced to 2H below ground surface.  This yielded much stronger settlement predictions. 
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As depicted in Table 49, at both settlement plate locations, the predicted settlement from 

measured compressibility indexes was more accurate than the predicted settlement using 

predicted compressibility indexes.  With the weakness of correlational strength between 

measured and predicted Cr for coarse and fine grained soils (as compared to the correlational 

strength of Cc), it was then hypothesized to use a standard rule of thumb to equate Cc to Cr.  

When this analysis was performed, it yielded much better results, compared to the measured 

settlement.  The difference between predicted and measured settlement was about an inch for the 

S-18 location and about half an inch for the S-12 location.  This is an important finding, as the 

predicted settlement using this method is much more favorable to measured settlement than that 

of predictions using the strongest correlation from existing literature.  Although this ratio has 

been widely accepted and adopted in field practice, it is still a generalization that may not be 

applicable for all soils, including those encountered at this site.  This generalization may have 

had an effect on the settlement predictions. 

When the strongest correlation from existing literature was used (Azzouz, 1976) for both 

SPT boring locations, the predicted settlements (7.40 inches and 6.08 inches, for SPT boring 

location TB-6 and TB-12, respectively) were both significantly higher than the measured 

settlement for these locations (3.6 inches and 3.8 inches, respectively).  The strongest settlement 

prediction for both SPT boring locations, continues to be using the derived Cc correlations from 

this study (stronger than derived Cr correlations) and a subsequent rule of thumb applied, such 

that Cr = 0.2 * Cc.  This signifies that using Cc correlations derived from this study can have a 

positive effect on having an accurate computation of predicted settlement, when a correlation for 
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Cr is used in conjunction with it.  This is a critical finding to engineers and designers trying to 

determine how long and how high to design a surcharge for. 

The differences between predicted and measured settlements can be attributed to a 

number of factors.  As stated previously, the settlement plates were not placed at the exact 

location of the SPT borings.  As soil varies spatially and with depth, there is the potential that the 

soil stratigraphy could be different between where the settlement plate was placed and where the 

SPT boring was performed.  The soil sampling may also not have occurred has frequently as it 

needed to be.  There is a chance that slight variances and small pockets of varying soils could 

have been missed between sampling intervals. 

The following table summarizes the optimal correlations to use in the field: 

 

Table 52: Optimal Correlations for Field Use 

Equation Notes 

Cc = 0.759 +0.0048* γwet - 0.012* γdry -0.002* N - 0.0012 * eo 

- 0.0006 * [(γwet - 115.484) * (γwet - 115.484)] 

Coarse 

Grained 

Cc = - 0.296 + 0.001 * PI 

+ 0.485 * e 

+ 0.001 * [(PI - 65.685) *(e -1.859)] 

Fine 

Grained  

 

 

Note that the recommendation is to use the reduced model for coarse grained soils (Cc).  

For Cr, coarse and fine grained soils, research suggests using the 0.2 factor for Cc to Cr will likely 

provide better results in settlement analyses than using the developed models in Table 6.  For the 

organic classification, the developed models in Table 6 appear applicable, although they were 

not field verified as part of this study. 
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The influence zone of settlement was taken as two times the surcharge height below 

ground surface.  The other rule of thumb for this depth is wherever the stress change from the 

overlying load moves to 10%.  The slight variance between predicted and measured settlements 

can be attributed to ambiguity of the identification of the influence zone of settlement.  In this 

study, soil profiles were examined that extended beyond the conventional influence zone of 

settlement.  As can be determined from Table 50, the predicted settlements were less than the 

measured.  When the elastic settlement contribution was added and in the influence zone of 

settlement reduced to 2B below ground surface, settlement predictions were much stronger.  This 

signifies that elastic settlement needs to be included in all settlement predictions. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

 

The following conclusions can be drawn from this study: 

1. The predicted settlement from measured compressibility index(s) was largely more 

accurate, when comparing to measured settlement, than the predictions using predicted 

index(s). 

2. The predicted settlement using the predicted Cc values, and a subsequent rule of thumb 

for correlating to Cr, were the strongest predictions of settlement made during this study, 

for both locations. 

3. When elastic settlement was considered and the influence zone of settlement moved to 

2H below ground surface, predictions improved dramatically and we far more favorable 

to measured settlement. 

4. A complete soil profile, with index parameters, is imperative for accurate settlement 

predictions.   

5. Settlement predictions using the strongest existing correlation from Azzouz were 

significantly higher than the measured settlement for both locations, and compared less 

favorably than that of predictions using predicted Cr from other methods. 

6. There are strong Pearson’s Correlation Coefficients present for each soil classification.  

This signifies that data trends may be present and reliable delineational models for 

certain soil classifications may be able to be generated. 
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7. Evidence suggests that reduced models can be created for the Fine Grained and Organic 

models for Cc. 

8. Based on influential parameter analysis, it appears evident that reliable models for Cc can 

be created for Clays and Silts and it should also be determined if models for Cr can be 

developed for these classifications. 

9. The fines content is included in all of the generated prediction models but none of them 

have a strong Pearson’s Correlation Coefficient. 

10. Moisture content, void ratio, and liquid limit have demonstrated to be directly 

proportional to the influence of compressibility indexes, while the wet and dry densities 

have proven to be equally as inversely proportional. 

The following comprises opportunities for future studies: 

1. The SR 415 site had organic soil layers throughout its limits.  Unfortunately, the 

locations identified that had a measured settlement in close proximity to an existing 

boring, and somewhat complete soil profile, did not contain any organic soil layers.  

There were several areas in which a settlement plate was placed near an existing SPT 

boring containing organic layers, but the soil profile with existing consolidation tests was 

largely absent.  In a future study, this soil type will need to be verified in a similar 

manner as what was performed in this field verification process.  This can be 

accomplished through further study at this site, or a new one altogether. 

2. The areas of SR 415 that were examined had a mostly sandy profile.  For this reason, 

when existing correlations were to be used for settlement predictions, it appeared only 

prudent to examine those correlations that were applicable for all soils, since there were 
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no existing correlations for coarse grained materials only.  As it happened, the strongest 

existing correlation worked out to be applicable for all soils.  In the future, sites with a 

clayey profile should be examined to determine the applicability of existing correlations 

for fine grained materials to settlement predictions. 

3. The SR 415 site was observed to be heavily over consolidated, such that Cc was not 

applicable in settlement predictions.  For this reason, the Cr prediction models were 

exclusively used for settlement predictions.  As can be observed in Table 6, there is a 

noticeable drop off in statistical strength of generated models from Cc to Cr for both of 

these soil types.  When settlement predictions were made using predicted Cr, there was a 

wider margin of error, as compared to measured settlement, than that of predictions 

using other methods.  A site with normally consolidated soils, where Cc would be more 

applicable for settlement predictions, should be evaluated in the future, so that the 

stronger compressibility prediction models can be tested. 

4. As developed correlations get fine-tuned by adding index parameters, this study should 

be revisited and settlement predictions updated.  The addition of these index parameters 

to the generated models could have the potential to develop reliable models for Cr for 

Coarse Grained and Fine Grained models as well as improve upon the existing models 

for Cc.  These improvements could thusly increase the accuracy of settlement 

predictions. 

5. Upon the completion of data analysis and the evidence of strong influential parameters, 

it has been postulated that delineational models exist.  It should be researched to 

determine if they can be developed with any reliability.  If they can, they can be 
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compared to those presented from previous literature, as outlined in Table 7.  It would be 

an important finding, as there is a dearth of these models from previous studies. 

6. The Clay and Silt data sets should also be analyzed to determine if reliable prediction 

models for Cc and Cr can be created.   According to data analysis, these classes have 

strong influential factors, similar to the data sets in which prediction models have been 

derived.  Previous models for clays have been generated, but nothing substantial for silts. 

6.2 Limitations and Recommendations 

As previously discussed, this study pertains to primary settlement.  This is said to occur 

immediately.  However, primary settlement is difficult to quantify, as the definition of 

“immediate settlement” is arbitrary.  If one observes the measured settlement in Figures 27 and 

28, one will notice that the settlement reading “jumps” when additional fill was added did not 

occur on the same day.  Often, there was a short duration in which the settlement change took 

place.  In this time duration, there could have likely been other factors affecting the overall 

settlement, aside what would be expected from the sudden increase in load.  These factors could 

have likely come from creep settlement, which is the slow expulsion of water from overly 

saturated cohesive soils over time. 

When deciding on how high or how long to stage a surcharge, accurate settlement 

predictions are of critical importance.  This will likely call for several consolidation tests for 

measured compressibility indexes.  Where there is not enough time or money in the budget, 

settlement predictions will need to be made without consolidation tests.  When this happens, it is 

imperative that a full soil profile be examined.  This includes taking index parameters (LL, PI, w, 
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-200, etc.) for each soil layer.  Without having a complete idea of the characteristics of each soil 

layer, the accuracy of settlement predictions will come into question, particularly if the 

correlations derived from this study are to be used. 

When an SPT boring is performed and an “undisturbed” sample gathered, there will 

always be a fair amount of disturbance.  This is especially true with silts and desiccated clays, 

whose soil structure is susceptible to instability when encountered, particularly under a loading.  

As previously stated, as the level of soil disturbance increases, the remolded strength of a soil 

sample decreases, and the sensitivity subsequently increases.  Sensitivity is a concern for 

cohesive soils such as silts and clays, where minimal amounts of disturbance can largely effect 

the strength.  The growing uncertainty of this soil classification, for Cc, confirms the ideal that 

this correlation should be limited to fine grained soils with low sensitivity (Bowles, 1989).  This 

demonstrates one of the limitations of using correlations to quantify the settlement potential of 

highly compressible soils.  The sensitivity could also affect correlations developed for other fine 

grained classes in the future, such a separating the category into clays and silts. 

It is also apparent from this study that performing settlement predictions with measured 

compressibility indexes is still a reliable method and should be a continued practice (as seen in 

the statistical strength Table 49).  The only exception to this, in this study, is when predictions 

were made using a correlation for Cc to Cr.  These were the strongest predictions made during the 

study (accounting for elastic settlement and influence zone of settlement 2H below ground 

surface).  This signifies that there is a fair amount of variability with these correlations and a 

standard rule of thumb should be avoided for blanket use.  As previously stated, correlations are 

a useful tool to make preliminary predictions of settlements, but should not be relied upon with 
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any degree of accuracy for a final design.  Only correlations that have been developed using site-

specific laboratory consolidation test data should be relied upon (Sabatini, Bachus, Mayne, 

Schneider, Zettler, 2002).  Evidence suggests that the soil structure, geological history, and other 

factors strongly influence the compression index, and for this reason any correlation used should 

be with caution (Bowles, 1989).   

It is recommended that normally consolidated soils be tested in the future.  This would 

provide an opportunity to examine the prediction potential of the Cc correlations which are 

considerably stronger that the Cr correlations, statistically speaking.  For this reason, it is a 

reasonable assumption that settlement predictions on normally consolidated soils from predicted 

Cc would likely more closely match the measured settlements.  Observations from this exercise 

will likely shed more light on the applicability of using compressibility correlations for 

settlement predictions. 
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APPENDIX: 

FIELD TESTING PICTURES 
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Figure A1: Cone Penetration Test Rig on SR 415 

 

Figure A2: Cone Penetration Test Push Rods 
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Figure A3: Cone Penetration Test Hydraulic Press for Ground Penetration 
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Figure A4: Cone Penetration Test Real Time Ground Resistance 

 

Figure A5: SPT Drill Rig on SR 415 
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Figure A6: Sample Collection from SPT Test 

 

Figure A7: SPT Test Preparation – Adding Drill Rods 
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