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ABSTRACT 

One main interest in crash frequency modeling is to predict crash counts over a spatial 

domain of interest (e.g., traffic analysis zones (TAZs)). The macro-level crash prediction models 

can assist transportation planners with a comprehensive perspective to consider safety in the long-

range transportation planning process. Most of the previous studies that have examined traffic 

crashes at the macro-level are related to high-income countries, whereas there is a lack of similar 

studies among lower- and middle-income countries where most road traffic deaths (90%) occur. 

This includes Middle Eastern countries, necessitating a thorough investigation and diagnosis of 

the issues and factors instigating traffic crashes in the region in order to reduce these serious traffic 

crashes. Since pedestrians are more vulnerable to traffic crashes compared to other road users, 

especially in this region, a safety investigation of pedestrian crashes is crucial to improving traffic 

safety. Riyadh, Saudi Arabia, which is one of the largest Middle East metropolises, is used as an 

example to reflect the representation of these countries’ characteristics, where Saudi Arabia has a 

rather distinct situation in that it is considered a high-income country, and yet it has the highest 

rate of traffic fatalities compared to their high-income counterparts. Therefore, in this research, 

several statistical methods are used to investigate the association between traffic crash frequency 

and contributing factors of crash data, which are characterized by 1) geographical referencing (i.e., 

observed at specific locations) or spatially varying over geographic units when modeled; 2) 

correlation between different response variables (e.g., crash counts by severity or type levels); and 

3) temporally correlated. A Bayesian multivariate spatial model is developed for predicting crash 

counts by severity and type. Therefore, based on the findings of this study, policy makers would 

be able to suggest appropriate safety countermeasures for each type of crash in each zone.  
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CHAPTER 1: INTRODUCTION 

1.1 Research Motivation and Problem Statement 

Traffic crashes are considered as one of the top ten contributors to the total death toll in the 

world. By 2030, it is expected to be one of the top five causes of death (WHO, 2015a). A report 

published by the World Health Organization (WHO) envisages that the road traffic crash death toll 

will rise from the 1.3 million reported in 2004 to 2.4 million by 2030. Such a huge increase is 

believed to be as a result of the consistently increasing numbers of vehicle ownership and the 

vehicle use associated with economic growth in developing countries.  

Furthermore, more than one-third of road traffic fatalities in developing countries were 

mostly pedestrian and cyclist related. Due to the ever-increasing demand for both travel and 

transportation related developmental infrastructures, ensuring the efficient movement and safety 

of road users has proven to be challenging for governments. In addition, the aftermath of increasing 

vehicular operations, such as traffic congestion, air pollution, and oil dependency, have worsened 

the situation.  

These alarming transportation-related issues have resulted in more governmental sanctions 

with a view to implementing more sustainable solutions. This has led governments in many 

countries to initiate policies that encourage walking and cycling because they are sustainable, 

inexpensive, environmentally friendly and, most importantly, they curb the alarming 

transportation-related issues. In communities that aim to be sustainable, walking has been 

recognized as one of the best active modes of transportation (Babalik-Sutcliffe, 2013; Loo and 

Chow, 2008). However, high crash rates of pedestrians have been a deterrent to choosing walking 
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as a major mode of transportation. Thus, one of the ways to promote walking is to ensure the safety 

of pedestrians. 

According to the WHO (WHO, 2015a), nearly 50% of registered motorized vehicles are in 

high-income countries (HICs), and only 10% of road traffic deaths take place there. The Kingdom 

of Saudi Arabia (KSA) has a rather distinct situation where it is considered a high-income country, 

and yet it has the highest rate of traffic fatalities compared to their high-income counterparts. The 

road traffic death burden (per 100,000 population) in the KSA was 65% higher than the average 

of the world's road traffic deaths and 3.5 times the average of HICs in 2015 (WHO, 2015b). In the 

context of neighboring countries with which the KSA shares many characteristics, the KSA’s rate 

of traffic fatalities is 75% higher than the average of other Gulf countries. Based on these estimates, 

the KSA ranked 157 out of 180 countries in terms of road safety, with a rate of 27 fatalities per 

hundred thousand of the population. 

The rapid increase in population and continued economic growth throughout the KSA has 

led to an enormous increase in the number of vehicles, which has consequently led to a high level 

of traffic crashes. According to the National Strategy for Traffic Safety (2014), the number of 

traffic crashes increased by 92% between 2006 and 2011 to reach 544,179 crashes in 2011. In that 

same period, the percentage of registered vehicles increased by 42% to reach 9.7 million vehicles; 

this is in contrast to the total population, which recorded only a 14% increase. Moreover, more 

than 20 fatalities per day can be directly linked to traffic crashes, and to every fatal crash, there are 

at least two permanent disabilities. In fact, statistics have shown that 73% of the total fatalities due 

to traffic crashes in the KSA were abled individuals below the age of 40, which makes up a large 

percentage of the nation’s active and productive adult population. This makes this ever-increasing 
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fatality rate a serious issue that requires national attention and interventions to improve road safety. 

Correspondingly, road safety has become increasingly important over the last few years in the 

KSA. An instance of drastic measures taken by the government is The National Transformation 

Program 2020, whose vision related to traffic crashes is to reduce the traffic fatality rate by 25% 

by 2020 (Saudi Arabia’s Vision 2030, 2016). 

Saudi Arabia is divided into 13 provinces, and its second-largest province overall is the 

Riyadh Province, as shown in Figure 1-1. Riyadh is the capital city of the Riyadh Province and the 

largest area in the region (5,961 km2); it is also one of the largest Middle East metropolises.  

 

Figure 1-1: Provinces of the Kingdom of Saudi Arabia 
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The rapid population and economic growth has led to an increase in travel demands, which, 

as a result, led to a high rate of traffic crashes. According to the Central Department of Statistics 

and Information (2010), Riyadh’s population in 2010 was rounded up to approximately 5,339,400 

and is expected to rise to seven million by the year 2021. In 2013, there were 5.7 million people 

in Riyadh, with 29% being non-Saudi. In addition, Riyadh has an estimated road network length 

of 13,850 km, which has 7.4 million daily trips (Central Department of Statistics and Information, 

2010). Figure 1-2 displays the distributions of the total number of traffic crashes in the three most 

heavily populated regions in the KSA (i.e., Makkah, Riyadh, and Eastern Regions) between 1997 

and 2012. During this period, more than 5.5 million traffic crashes occurred in the KSA, with 

26.4% of them occurring in Riyadh (Figure 1-2) (Directorate General of Traffic, 2013). This 

implies that over one-fourth of road traffic crashes in the KSA occurred in Riyadh. Furthermore, 

the total number of crashes is relatively high within the Riyadh Region, particularly in the last few 

years. 
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Figure 1-2: Distributions of the total number of traffic crashes in Saudi Arabia and its 

proportions of Eastern, Riyadh, and Makkah Regions between 1997 and 2012 

 

Also, between 1997 and 2012, around 60,000 people were either killed or injured due to road 

traffic crashes in Riyadh (Figure 1-3) (Directorate General of Traffic, 2013). In 2015, road traffic 

crashes caused 667 fatalities; 175 of them were pedestrians. This implies that over one-fourth of 

road traffic fatalities were pedestrians, necessitating a thorough investigation and diagnosis of the 

issues and factors instigating traffic crashes in the region in order to reduce these serious traffic 

crashes (Al-Ghamdi, 2003, 1996; Alarifi et al., 2017; Alkahtani et al., 2018; Altwaijri et al., 2011; 

Hassan and Al-Faleh, 2013; Koushki and Al-Ghadeer, 1992). 
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Figure 1-3: Total Road Traffic Crashes of Riyadh, KSA from 1997 to 2012 (Directorate General 

of Traffic, 2013) 

1.2 Research Objectives 

In order to achieve the objectives of this research, statistical models of crash frequency can 

be used to investigate the associations between traffic crash frequency and contributing factors, 

including traffic volume, land-use, socio-demographics and roadway characteristics. One of the 

motivation to use crash frequency models is to predict some dependent variables over geographical 

units (e.g., census tracts/blocks, zip/post codes, counties, traffic analysis zones (TAZs)). The 

macro-level crash prediction models provide transportation planners with a broad-spectrum 

perspective to consider safety in the long-range transportation planning process (Washington, 

2006).  

The purpose of this research is to investigate the contributing factors that cause traffic crash 

frequency by incorporating overdispersion and spatial effects in the City of Riyadh and to 
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determine potential countermeasures in order to improve traffic safety. The following procedures 

could achieve the specific objective: 

1- Examining the role of local variations of parameters in spatial data; 

2- Safety investigation of pedestrian crashes at the macroscopic level; and 

3- Predicting traffic crash counts by severity and type at the macro-level as well. 

These research objectives are broken down into a number of research tasks: 

The first objective could be accomplished by conducting a comparison between different 

approaches that incorporate spatial effects for crash counts modeling using the following tasks: 

a) Exploring the effect of random parameter on severe crashes. 

b) Exploring the effect of spatial random parameter on severe crashes. 

c) Exploring the effect of geographically weighted Poisson regression on severe crashes. 

d) Exploring new approaches that incorporate overdispersion in geographically weighted 

regression, i.e., geographically weighted negative binomial regression (i.e., GWNBR). 

e) Comparing the SVC, GWNBR, and random parameter models. 

f) Comparing the outcomes using different measures, e.g. DIC, MAD, and RMSE. 

Although many previous studies have been done that analyzed pedestrian crashes in 

developing countries, no study has explored pedestrian crashes using data from Middle East 

countries, such as Saudi Arabia. Thus, the second objective is to identify the causes and 

characteristics of pedestrian crashes in Riyadh. Specifically, it will estimate the effects of traffic 

volume, roadway characteristics, socio-economics, and land-use as credible factors associated with 

the involvement of pedestrians in road traffic crashes at the zonal level. It would also be 
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meaningful to compare the contributing factors to pedestrian crashes with those in other 

developing countries.  

In addition, most of the previous studies that have examined traffic crashes at the macro-

level are related to HICs, whereas there is a lack of similar studies among lower- and middle-

income countries (LMICs) where most of road traffic deaths (90%) occur, including Middle 

Eastern countries. The lack of laws that are related to some key risk factors for road safety, 

including speed, seatbelts, etc., is separating the KSA from their high-income counterparts. 

Moreover, there is an absence of safe infrastructure for the more vulnerable road users, including 

pedestrians and cyclists, as the typical mode of transportation in the KSA is the private car. 

Therefore, the third objective would be achieved by developing univariate and multivariate 

spatial models and comparing them with those of aspatial counterparts using the full Bayesian 

(FB) technique for analyzing crash counts by crash severity levels (i.e., fatal, injury, and property 

damage only (PDO)) and by crash type levels (i.e., pedestrian, bicycle, single- vehicle and multi-

vehicle) at the zonal level. Specifically, investigating the effects of contributing factors on crash 

counts by severity and contributing factors to crashes by type. That could be accomplished by 

using extensive crash data, including road networks, traffic volume, socio-economics and 

demographics, and land-use data, which are commonly used for long-range transportation plans. 

1.3 Organization of the Dissertation 

The organization of this dissertation is as follows: First, Chapter 2, following this chapter, 

summarizes the literature review on previous macroscopic traffic safety researches. Chapter 3 

presents a detailed description of the ways and efforts of the data collection and preparation used 
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in this research. Chapter 4 explains the statistical methodologies that were followed to achieve the 

research objectives. Chapter 5 explores the spatial dependency (autocorrelation) and heterogeneity 

in spatial crash data at the macroscopic level using most broadly used approaches for modeling 

spatially correlated data, i.e., geographically weighted regression (GWR) and spatially varying 

coefficients (SVC). Chapter 6 examines the research analyses and results of macroscopic crash 

modeling for pedestrian crashes in Riyadh, Saudi Arabia. Chapter 7 develops a multivariate spatial 

model for crash counts by severity and type levels. Several implications for traffic safety policies 

in Riyadh are suggested based on the results in Chapter 8. Finally, Chapter 9 summarizes the 

overall dissertation. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

There have been enormous studies in the literature focused on spatial predictions of crash 

data from a Bayesian perspective using a wide array of statistical methodologies based on data 

from different spatial units at the macro-level. A summary of these approaches, the spatial units, 

and the crash levels that were used in previous studies are listed in Table 2-1. 

2.2 Random Parameter model and Geographically Weighted Regression  

Crash data is observed at a specific location and then aggregated to a zonal level for analysis 

and modeling. Two common approaches that are employed to model such data are geographically 

weighted regression with Poisson (GWPR) and Negative Binomial (GWNBR) and random 

parameter or spatially varying coefficients (SVC) models. The first one explains the correlations 

across observations at different geographic units, whereas the latter one is to account for spatial 

heterogeneity when modeling the association between crash counts and contributing factors at the 

zonal level. 

A study by Hadayeghi et al. (2003) estimated total and severe crashes at the TAZ level in 

Toronto, Canada, using negative binomial regression at the macro-level. The authors revealed that 

the total crashes per zone increased as the vehicle-kilometers-traveled (VKT), the major roadway 

length, the total number of employment and the minor roadway length increased. However, higher 

posted speed limit and higher volume to capacity had a negative impact on total crashes. Moreover, 

the VKT, the major road length and the number of household members had a significant positive 

association with severe crashes in the morning peak hour. In contrast, the congestion and the posted 
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speed limit had a significantly negative association with severe crashes during the same period. In 

addition, the authors developed Geographically Weighted Regression (GWR) models to inspect 

the spatial variation between zonal crashes and covariates. The results indicated inconsistent 

improvements. Li et al. (2013) used the GWPR to study the spatial heterogeneity in the relationship 

between zonal fatal crash counts and contributing factors at the zonal level in California. The 

results uncovered that the GWPR successfully captured the spatial variation and outperformed the 

traditional model, i.e., generalized linear model (GLM), in predicting fatal crashes. Recently, Xu 

and Huang (2015) conducted a study to investigate the spatial heterogeneity in regional safety 

modeling for total and severe crashes using two advanced models that are commonly employed to 

account for spatial autocorrelation, i.e., a semi-parametric geographically weighted Poisson 

regression and a random parameter negative binomial model. The results revealed that both models 

captured the spatial variation between the zonal crash frequency and covariates, yet sets of 

outcomes were different. The semi-parametric geographically weighted Poisson regression (S-

GWPR) revealed a better goodness-of-fit, e.g., highest value of R-Squared, lowest mean absolute 

deviance (MAD) and Akaike information criterion (AIC). However, the S-GWPR may be affected 

by overdispersion in crash data. Therefore, it would be important in crash modeling to account for 

the overdispersion in GWR. In a recent study conducted by Gomes et al. (2017), the GWNBR was 

proposed for crash count modeling. The authors concluded the model is a promising tool in 

providing a better fit for the regional data because it accounts for overdispersion and reduces 

spatial dependence. However, one of the limitations of their study is the absence of the traffic 

exposure variable. 
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2.3 Contributing Factors to Pedestrian Crashes 

Several prior studies have been devoted to identifying the contributing factors associated 

with pedestrian crashes in the context of developing countries. Some of these studies analyzed the 

factors that affect the frequency of pedestrian crashes (Rifaat et al., 2017; Tulu et al., 2015; Wang 

et al., 2016). Tulu et al. (2015) conducted a study to estimate pedestrian crash frequency for two-

lane rural roads in Ethiopia using the random parameter negative binomial model. The authors 

revealed that younger pedestrians have a lower risk of crashes compared to older pedestrians. 

Moreover, it was found that crossing the road in pairs or in groups is safer than crossing alone. In 

a recent study carried out by Wang et al. (2016), the association between pedestrian crashes and 

several factors related to roadway characteristics, socio-economic features, and land-use data was 

examined in Shanghai, China. The authors found that the population had a positive impact on 

pedestrian crashes. In addition, length of major and minor arterials, higher roadway density, area 

of TAZ, and land-use intensity were statistically significant and positively associated with 

pedestrian crashes. However, average intersection spacing in kilometer and percentage of 3-way 

intersections were statistically significant and were revealed to be negatively associated with 

pedestrian crashes. Rifaat et al. (2017) explored the factors contributing to the number of vehicle-

pedestrian crashes at intersections in Dhaka, Bangladesh. The authors stated that most of the 

contributing factors are in line with those found in prior studies carried out in the context of 

developed countries. 

In addition, most of these studies analyzed pedestrian-involved crash severity (Amoh-

Gyimah et al., 2017a; Mabunda et al., 2008; Sarkar et al., 2011; Zhang et al., 2014). Mabunda et 

al. (2008) investigated the association between temporal factors, e.g., age, gender, and day/time of 
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death, and pedestrian fatalities in South Africa. The authors uncovered that during weekday 

afternoons and evenings, pedestrian-related crashes (child and adolescent) occurred more often. 

However, a study by Amoh-Gyimah et al. (2017), in Ghana, found that during weekends, 

pedestrian crashes are more likely to occur, in addition to at night-time on roads with no street 

lights, on untarred roadways, and in the middle of road intersections. Sarkar et al. (2011) employed 

logistic regression models to investigate significant factors affecting the probability of pedestrian 

fatalities along Bangladesh’s roadways. The authors found that the involvement of elderly 

pedestrians (population aged 55 years old and more) and young pedestrians (population aged less 

than 15 years old) increased the likelihood of a fatality. Furthermore, pedestrians who crossed the 

road had a higher risk of fatality compared to those who walked along the road. Moreover, there 

were higher odds of pedestrian fatalities on national highways with no traffic control or stop signs 

compared to those with traffic lights or police. Zhang et al. (2014) examined significant factors 

associated with fault and severity in pedestrian-involved crashes. The authors found that crashes 

involving elderly pedestrians (i.e., 45 years or older), drunk driving, other illegal driving, and 

speeding are more likely to cause serious injuries or death. 

In Saudi Arabia, their representation is rare in similar studies that address pedestrian safety 

in the region. Al-Ghamdi (2002) illustrated the factors affecting pedestrian-related crashes in the 

city of Riyadh using 638 pedestrian-related crashes over three years, from 1997 to 1999. The 

results showed that the pedestrian fatality rates were relatively high within the age group of 1–19 

years old and 60–80 years old, which indicates that the youngest and oldest age groups are more 

likely to be involved in fatal pedestrian crashes as compared to other age groups. In addition, 

77.1% of the pedestrians involved in these crashes were struck while crossing a road due to either 



14 

 

no crosswalk existing or crosswalk was not utilized. Additionally, Al-Shammari et al. (2009) 

analyzed 460 pedestrian crashes out of 1500 crashes over a 3-year period. They found that two-

thirds of drivers and close to half of the abled individuals below the age of 30. In addition, between 

4:00 pm and midnight was the time span in which two-thirds of pedestrian crashes happened. 

Regarding the crash conditions, they found that pedestrians being struck while crossing the road 

were about two-thirds.  

These studies, however, lack a thorough investigation of the effects of contributing factors 

on pedestrian crashes at the macro-level. Investigating the impact of traffic, socio-economic 

factors, and land-use on pedestrian safety could fill the gap of studying the safety of pedestrians in 

this region. 

There have been several studies that investigate the contributing factors for pedestrian 

crashes, which are mostly Western-related studies. They found several socioeconomic factors for 

pedestrian crashes at the macro-level. LaScala et al. (2000) pointed out that traffic flow, population 

density, and some socio-economic factors such as age composition of the local population, 

unemployment, gender, and level of education have an association with pedestrian injury rates. Ng 

et al. (2002) examined the risk of traffic crashes across 274 traffic analysis zones (TAZs) in Hong 

Kong. In terms of pedestrian-related crashes, the authors found that the number of cinema seats, 

commercial areas, flatted factory areas, market stalls, and mass transit railway (MTR) catchment 

areas had a positive impact on pedestrian crashes, whereas the greenbelt areas, specialized factory 

areas, and territory school places (primary, secondary, and tertiary) had a negative impact on 

pedestrian crashes. Noland and Quddus (2004) revealed that severe pedestrian crashes increase 

when total population, a lower percentage of the population aged between 45 and 64, and a higher 
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percentage of the population aged between 64 or over increased. Loukaitou-Sideris et al. (2007) 

showed that pedestrian crashes are more likely to take place in zones with high population and 

employment density and high traffic volumes. Regarding land-use type, a large concentration of 

commercial/retail and multifamily residential land uses contributes to pedestrian collisions. 

Further, a higher concentration of the Latino population was associated with more pedestrian 

crashes than other ethnicities.  

Wier et al. (2009) stated that there is a positive association between pedestrian crashes and 

traffic volume, arterial roads without transit, the proportion of commercial and residential land 

uses, employee and resident populations, and the proportion of people living below the poverty 

level. However, the land areas and the proportion of the population aged 65 years old or over had 

negative effects. Siddiqui et al. (2012) found out that there was a positive association between the 

number of pedestrian crashes and roadway length with a 35 mph posted speed limit, number of 

intersections, total number of dwelling units, population density, percentage of households with 0 

or 1 vehicle, and number of employment. However, association with family income was negative. 

Lee et al. (2015b) found that the vehicle-miles-traveled, population density, proportion of African 

Americans and Hispanics, proportion of families without vehicles, rooms of hotel/motel, time-

share employment, and the number of intersections and traffic signals were found to significantly 

and positively affect pedestrian crashes. In contrast, the proportion of roadways with speed limits 

more than or equal to 55 mph had a negative effect on pedestrian crashes.  

2.4 Multivariate Crash Frequency Prediction Models 

There is a substantial body of previous studies devoted to exploring the correlations among 

crash counts by severity (number of crashes resulting in fatalities, injuries, and PDO) 
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simultaneously. For example, Ladron de Guevara et al. (2004) analyzed crash frequency 

simultaneously by severity level (i.e., no injury, injury, and fatal) using traffic analysis zone (TAZ) 

crash data. Recently, Aguero-Valverde (2013) used the multivariate conditional autoregressive 

(CAR) model by applying a full Bayesian hierarchical approach to simultaneously estimate crash 

counts by crash severity (i.e., fatal, injury, and PDO) and compare it with its univariate counterpart 

at the macro-level. Five years of 81 cantons crash data in Costa Rica was utilized. The author 

revealed that the multivariate spatial model performed better than the univariate one. Yasmin and 

Eluru (2017) proposed a joint negative binomial-ordered logit fractional split model framework to 

jointly analyze motor vehicle crash severities (no injury, minor injury, incapacitating injury and 

fatal injury) at the statewide traffic analysis zone (STAZ) level in Florida. The authors confirmed 

the superiority of the multivariate model in terms of data fit compared to the univariate model. 

In addition, there are many studies which have also examined correlations among crash 

counts by type or mode (Narayanamoorthy et al., 2013; Nashad et al., 2016; Osama and Sayed, 

2017; Song et al., 2006; Wang and Kockelman, 2013). Song et al. (2006) developed Bayesian 

multivariate conditional autoregressive (MCAR) models that can account for the spatial effect 

using 254 counties in Texas to simultaneously analyze crash frequency by roadway locations (i.e., 

intersection, intersection-related, driveway-access, and non-intersection). The authors revealed 

that the model with multivariate CAR and the univariate model with correlated CAR performed 

much better than the model with univariate CAR. Narayanamoorthy et al. (2013) and Wang and 

Kockelman (2013) employed a bivariate spatial modeling approach for counts of non-motorized 

traffic crashes (i.e., pedestrian and bicycle) by injury severity crash analysis at the census tracts 

(CTs) level. Nashad et al. (2016) developed a bivariate model by adopting a copula-based negative 
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binomial model for pedestrian and bicycle crash frequency considering crashes at the STAZ level 

in Florida. The authors illustrated the importance of incorporating dependence between pedestrian 

and bicycle crashes in the macro-level analysis. Osama and Sayed (2017) developed a bivariate 

CAR to analyze counts of crash types of pedestrians and bicyclists in each of 134 TAZs of the city 

of Vancouver between 2009 and 2013. The authors concluded that the crash modes and spatial 

correlations are found to significantly affect the models’ performance in the macro level safety 

analysis. 

Also, several previous studies have shown the presence of correlations between non-

motorized crashes (i.e., pedestrian and bicycle) and counts of motorized-related traffic crashes. 

Recently, Lee et al. (2015) (macro-scale) and Huang et al. (2017) (micro-scale) developed a 

multivariate spatial model to simultaneously analyze the frequency of motor vehicle, bicycle, and 

pedestrian crashes. These two studies concluded that the multivariate spatial model significantly 

outperformed the corresponding univariate spatial model, and that the spatial error component 

played an important role in significantly improving the model performance. In addition, the highly 

correlated heterogeneous residuals in modeling crash risk among these three transportation modes 

were confirmed. However, the results were different regarding spatial correlation. The correlations 

for spatial residuals between different crash modes at neighboring locations were not statistically 

significant in the micro-level safety analysis. 

Regarding motorized-related crashes, Geedipally and Lord (2010) asserted that motorized 

crashes (i.e., single- and multi-vehicle) should be analyzed separately, and a joint NB model should 

be utilized. Ma et al. (2016) developed a random effect bivariate Poisson-lognormal model to 

explore the effect of geometric features, weather, and traffic conditions on crash frequency at the 
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micro-level. The authors confirmed the existence of correlations between single- and multi-vehicle 

crashes. Therefore, it would be meaningful to explore the correlation between counts of non-

motorized (i.e., pedestrian and bicycle) and motorized (i.e., single- and multi-vehicle) crashes and 

to examine the contributing factors at the macro-level. 
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Table 2-1: Summary of Previous Studies Related to Macroscopic Crash Analysis 

Study Methodology Spatial Unit Crash level Study Methodology Spatial Unit Crash level 

(Aguero-

Valverde, 

2013) 

Multivariate and 

Univariate, FB 
Canton 

Fatal, injury 

and PDO 

(Cai et al., 

2017a) 

Bayesian joint 

modeling 
TAD  

Total crash, 

Non-motorist 

crash, 

Proportion of 

non-motorist 

crashes 

(Cai et al., 

2018b) 

Grouped random 

parameters 

multivariate spatial  

TAD  Total crashes 

(Ladron de 

Guevara et 

al., 2004) 

Simultaneous NB TAZ 

Fatal crashes, 

Injury crashes, 

PDO crashes 

(Lee and 

Abdel-Aty, 

2017) 

Multivariate 

Bayesian Poisson 

lognormal CAR 

ZIP  

Total 

Pedestrian 

crashes, Total 

bicycle 

crashes 

(Lee et al., 

2015b) 

Multivariate 

Poisson 

lognormal 

conditional 

autoregressive 

model 

TAZ Total crashes 

(Narayanamoo

rthy et al., 

2013) 

Spatial 

multivariate, 

generalized 

ordered-response 

(GOR) framework 

CT 

Pedestrian and 

bicycle 

Possible 

injury, Non-

incapacitating 

injury, 

Incapacitating 

injury, Fatal 

injury crashes 

(Nashad et 

al., 2016) 

Copula based 

bivariate NB 
STAZ 

Total 

Pedestrian 

crashes, Total 

bicycle crashes 
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Study Methodology Spatial Unit Crash level Study Methodology Spatial Unit Crash level 

(Osama and 

Sayed, 2017) 

Multivariate 

conditional 

autoregressive 

(CAR)  

TAZ 

Total 

Pedestrian 

crashes, Total 

bicycle 

crashes 

(Song et al., 

2006) 

Multivariate 

conditional 

autoregressive 

(CAR)  

County Severe crashes 

(Wang and 

Kockelman, 

2013) 

Multivariate 

Poisson-lognormal 

conditional-

autoregressive, 

GMCAR 

TAZ 

Severe crash 

counts, non-

Severe crash 

counts 

(Yasmin and 

Eluru, 2018) 

Joint NB-Ordered 

Logit Fractional 

Split 

STAZ 

Total crashes, 

no injury 

crashes, minor 

injury crashes, 

incapacitating 

injury crashes, 

fatal injury 

crashes 

(Abdel-Aty et 

al., 2011) 
NB TAZ 

Total crashes, 

Severe 

crashes, Peak 

hour crashes, 

Pedestrian and 

Bicycle 

crashes 

(Abdel-Aty et 

al., 2013) 

Poisson-

lognormal 

BG, CT, 

TAZ 

Total crashes, 

Severe crashes, 

Pedestrian 

crashes 

(Aguero-

Valverde and 

Jovanis, 2006) 

Full Bayes 

hierarchical model 
County 

Fatal crashes, 

Injury crashes 

(Amoros et 

al., 2003) 
NB County 

Total crashes, 

Fatal crashes 

(Cai et al., 

2016) 

NB, zero-inflated 

NB and hurdle NB 
TAZ 

Total 

pedestrian 

crashes, Total 

bicycle 

crashes 

(Cai et al., 

2017b) 

aspatial Poisson-

lognormal model 

(PLN), Poisson-

lognormal 

Conditional 

TAZs, TADs 

Total crashes 

severe crashes, 

total bicycle 

and pedestrian 

crashes 
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Study Methodology Spatial Unit Crash level Study Methodology Spatial Unit Crash level 

Autoregressive 

mode 

(Cai et al., 

2018a) 

Bayesian Poisson-

lognormal 
TAD  Total crashes 

(Cho et al., 

2009) 
Path analysis 

Community 

analysis 

zones 

Total crashes 

(Cottrill and 

Thakuriah, 

2010) 

Poisson Regression 

with heterogeneity 
CT Total crashes 

(Guo et al., 

2017) 

Poisson-

lognormal, 

spatial Poisson-

lognormal, 

TAZ 
Total, severe 

and slight 

(Hadayeghi et 

al., 2007) 
NB TAZ 

Total crashes, 

Severe crashes 

(Hanna et al., 

2012) 

Conditional 

logistic 

regression 

County Fatal crash 

(Huang et al., 

2010) 

Bayesian spatial 

model 
County 

Total crashes, 

Severe crashes 

(Huang et al., 

2016) 

Bayesian spatial 

model with CAR 

prior, Bayesian 

spatial joint 

model 

TAZ Total crashes 

(Karim et al., 

2013) 

NB, Spatial 

Poisson-Gamma, 

Full Bayes 

Estimation 

Technique 

TAZ 

Total number 

of crashes, 

Number of 

injury crashes, 

Property 

damage only 

crashes PDO 

(Karlaftis and 

Tarko, 1998) 

Cluster analysis, 

NB 
County 

Total crashes, 

Urban crashes, 

Rural crashes 

(Kim et al., 

2006) 
NB 

Grid 

structure 

Total crashes, 

Bicycle 

crashes, 

Pedestrian 

crashes 

(LaScala et 

al., 2000) 

Spatial 

autocorrelation 

corrected 

regression 

CT Injury crashes 
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Study Methodology Spatial Unit Crash level Study Methodology Spatial Unit Crash level 

(Lee et al., 

2014b) 

Bayesian Poisson 

Lognormal 
TAZ, TSAZ 

Total crashes, 

Severe crashes 

(Lee et al., 

2014a) 

Bayesian 

Poisson-

lognormal 

ZIP  Total crashes  

(Lee et al., 

2015a) 

Bayesian Poisson 

lognormal 

simultaneous 

equations spatial 

error model 

ZIP  

Total 

Pedestrian 

crashes  

(Lee et al., 

2017) 

Mixed-effects 

NB  

BG, TAZ, 

CT, ZCTA, 

TAD, CCD, 

and County 

Total and 

severe crashes, 

total pedestrian 

crashes and 

total bicycle 

crashes 

(Loukaitou-

Sideris et al., 

2007) 

OLS CT 

Total 

pedestrian 

crashes 

(Lovegrove 

and Sayed, 

2006) 

GLM assuming 

NB  

Neighborhoo

ds  
Total/severe  

(MacNab, 

2004) 

Bayesian spatial 

and ecological 

regression model 

Local health 

areas 
Injury crashes 

(Moeinaddini 

et al., 2014) 
NB City 

Fatalities per 

million 

inhabitants 

(Naderan and 

Shahi, 2010) 
NB TAZ 

Total crashes, 

PDO crashes, 

Injury crashes, 

Fatal crashes 

(Ng et al., 

2002) 

Cluster analysis, 

NB 
TAZ 

Total crashes, 

Fatal crashes, 

Pedestrian 

crashes 

(Noland, 

2003) 
NB State 

Fatal injury 

crashes 

(Noland, 

2003) 
RE-NB State 

Fatal crashes, 

Injury crashes 

(Noland and 

Oh, 2004) 
NB County Total and fatal 

(R. Noland 

and Quddus, 

2004) 

NB 

Standard 

statistical 

regions 

Fatal/Serious 

injury crashes, 

Slight injury 

crashes 

(R. B. Noland 

and Quddus, 

2004) 

NB County 
Total crashes, 

Fatal crashes 

(R. B. Noland 

and Quddus, 

2004) 

NB 
Census 

wards 

Fatal crashes, 

Serious injury 

crashes, Slight 

injury crashes 
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Study Methodology Spatial Unit Crash level Study Methodology Spatial Unit Crash level 

(Noland et al., 

2013) 
NB BG 

Total severe 

crash and total 

severe 

pedestrian 

crashes 

(Osama and 

Sayed, 2016) 
GLM and FB TAZ 

Total Cyclist-

motorist 

(Pulugurtha et 

al., 2013) 

NB with log-link, 

Wald Chi-square,  
TAZ 

Total number 

of crashes, 

Number of 

injury crashes, 

Property 

damage only 

crashes PDO 

(Quddus, 

2008) 

NB, Spatial 

autoregressive 

model, Bayesian 

hierarchical 

model 

Census ward 

Fatal crashes, 

Serious injury 

crashes, Slight 

Injury crashes 

(Siddiqui and 

Abdel-Aty, 

2012) 

Bayesian Poisson-

lognormal 
TAZ 

Total 

Pedestrian 

crashes  

(Siddiqui and 

Abdel-Aty, 

2016) 

NB, Bayesian 

Poisson-

lognormal 

TAZ 
Total and 

severe crashes 

(Siddiqui et 

al., 2012) 

NB, Bayesian log-

normal model 
TAZ 

Total 

pedestrian 

crashes, Total 

bicycle 

crashes 

(Siddiqui et 

al., 2014) 

Bayesian 

Poisson-

lognormal 

TAZ 

Total 

Pedestrian 

crashes  

(Stamatiadis 

and Puccini, 

2000) 

Quasi induced 

exposure method 
State Fatal crashes 

(Ukkusuri et 

al., 2012) 

NB, NB with 

heterogeneity in 

dispersion 

parameter, Zero-

inflated NB 

CT Total crashes 

(Wang et al., 

2009) 
NB  Census ward 

Fatalities 

Serious 

injuries Slight 

injuries 

(Wang et al., 

2016) 
Bayesian CAR TAZ 

Total 

pedestrian 

crashes 

(Wei and 

Lovegrove, 

2013) 

NB TAZ Total crashes 
(Wier et al., 

2009) 

Ordinary least 

square regression 
CT Injury crashes 
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Study Methodology Spatial Unit Crash level Study Methodology Spatial Unit Crash level 

(Xu et al., 

2014) 

regionalization 

with dynamic 

constrained 

agglomerative 

clustering and 

partitioning, 

Bayesian Poisson 

lognormal model, 

Bayesian spatial 

TAZ 
Total crashes, 

severe crashes 

(Yasmin and 

Eluru, 2016) 

Latent 

segmentation 
TAZ 

Total 

pedestrian 

crashes 

(Amoh-

Gyimah et al., 

2017b) 

GLMs, RP-NB, S-

GWPR 

Statistical 

area, 

Thiessen 

polygon-

based TAZ, 

state 

electoral 

divisions, 

postal areas, 

grid 

Total crash  

Serious crash  

Minor crash  

(Gomes et al., 

2017) 
GWNBR TAZ Severe crashes 

(Hadayeghi et 

al., 2003) 

Negative binomial 

Geographically 

weighted 

regression 

TAZ 
Total crashes, 

Severe crashes 

(Hadayeghi et 

al., 2010a) 

GWPR, Full 

Bayesian 

Semiparametric 

Additive 

TAZ 
Total crashes, 

Severe crashes 

(Hadayeghi et 

al., 2010b) 
GWPR TAZ 

Total crashes, 

Severe crashes 

(Li et al., 

2013) 
GWPR County Fatal crashes 

(Rhee et al., 

2016) 

GWR, OLS, spatial 

error model, spatial 

lag model 

TAZ 

Total crash, 

fatal and 

severe injury 

and minor 

injury 

(Xu and 

Huang, 2015) 
GWPR, RP-NB TAZ 

Total and 

severe crashes 
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Study Methodology Spatial Unit Crash level Study Methodology Spatial Unit Crash level 

(Zhang et al., 

2015) 
GWPR CT 

Total crashes 

involving 

pedestrians 

and bicyclists 

(Amoh-

Gyimah et al., 

2016) 

NB, RP-NB, and 

Poisson-Gamma-

CAR. 

Statistical 

Area census 

classification 

Total crash  

Serious crash  

Minor crash  

(Coruh et al., 

2015) 
RP-NB City Total crash 

(Ukkusuri et 

al., 2011) 
RP-NB CT Total crashes 

(Xu et al., 

2017) 

Bayesian spatially 

varying 

coefficients 

TAZ Severe crashes  
(Tasic et al., 

2016) 

Generalized 

Additive Models, 

Bayesian 

Hierarchical 

Models 

CT 

Total crashes, 

total pedestrian 

crashes, total 

bicycle crashes 

(Dissanayake 

et al., 2009) 

Generalized Linear 

Model, Generalized 

Poisson model, NB 

GLMs 

Census ward 

Total, severe, 

school time 

slight, school 

time severe, 

non-school 

time slight, 

non-school 

time severe 

(Dong et al., 

2016) 

Poisson 

Lognormal 

model, the 

Bayesian spatial 

and temporal 

model, the 

Bayesian spatio-

temporal 

interaction model 

TAZ Total crash 

(Hadayeghi et 

al., 2006) 
NB TAZ 

Total and 

severe crashes 

(Truong et al., 

2016) 

RE-NB, RP-NB, 

ST-CAR 
Provinces Fatal 

(Levine et al., 

1995) 
Spatial lag CB Total crashes 

(Wang et al., 

2018) 

Poisson 

lognormal CAR 
TAZ Total crash 
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2.5 Literature Review Summary “Current Issues” 

Considering previous studies, the research gaps can be summarized as follows: 

1- A lack of studies that used complete and accurate traffic crash data to represent the situation 

in LMICs, including Middle Eastern countries; 

2- Few studies addressed the contributing factors that affect frequency of traffic crashes in 

these countries, especially the most vulnerable road users, i.e., pedestrians; 

3- A need to conduct a comparison to investigate the effect of spatial dependency and 

heterogeneity in crash count modeling incorporating overdispersion at the zonal level using 

advanced spatial models; and 

4- A lack of studies that addressed the contributing factors that affect frequency of traffic 

crashes in Riyadh at the macro-level. 

5- Therefore, Riyadh, Saudi Arabia, which is one of the most densely populated and heavily 

motorized cities in the Middle East, is used as an example to reflect the representation of 

these countries’ characteristics, where Saudi Arabia has a unique situation in that it is 

considered a high-income country, and yet it has the highest rate of traffic fatalities 

compared to its high-income counterparts. 
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CHAPTER 3: DATA DESCRIPTION  

3.1 Introduction  

In order to achieve useful results for this study, substantial data was obtained. Several 

meetings and communications were done with different authorities and departments in Riyadh to 

collect relevant data. At the beginning, it was hard to figure out which department had the related 

data and even harder to obtain it due to the requirements, many of which take a long time to process 

and respond to. 

There are two zoning systems that are used by the Higher Commission for the Development 

of Riyadh (HCDR) and The General Department of Studies and Designs in the Riyadh 

municipality: TAZ and HAY. However, the most complete data is based on the HAY-level from 

the HCDR, which was used in this study. The HCDR is using a HAY zone system for 

transportation planning and modeling. HAY is the term traditionally referring to a neighborhood, 

and it is relatively comparable to the traffic analysis districts (TADs), (a group of TAZs), in the 

USA. The city of Riyadh is composed of 208 HAYs, as can be seen in (Figure 3-1). 
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Figure 3-1: HAYs of Riyadh City 

 

These 208 HAYs are considered to be the development protection boundaries that contain 

all types of land-use as shown in Figure 3-2 (dotted lines). However, around 80% of the area in 

these 208 HAYs is either uninhabited or unused, including valleys and empty or undeveloped 

areas. Figure 3-2 and Figure 3-3 display the spatial distribution of total crashes and total pedestrian 

crashes per HAY of the study areas (179 HAYs) utilized in this study (discussed later in following 

sections). 
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Figure 3-2: Map of development protection boundaries, study areas, and spatial distribution of 

total crashes per HAY 
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Figure 3-3: Map of Pedestrian Crash Spatial Distributions per HAY 

3.1.1 Crash Data 

The main source of road crash data is the traffic police. The General Directorate of Traffic 

publishes the road crash statistics each year, which contains all reported crashes with general 

information on the crash, vehicle(s) and individual(s) involved. The available reports cover the 

period from 1997 to 2012. Since 2004, the Higher Commission for the Development of Riyadh 

“HCDR” has collected road crash details from the Riyadh Traffic Department using a new system 

to store this data for analysis and study. Table 9-1 shows the traffic crash report template that the 

traffic department is using to report the details of the crash. Thus, the details of crash data were 
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essentially received from the HCDR in Excel file format that has three worksheets containing 

details of the crash, vehicle(s) involved and the person(s) that were involved in the crash for the 

period from 2004 to 2016. This crash data is provided for all types of severity, including PDO 

crashes. Moreover, part of the property damage only crashes (PDO) are collected by a private 

company, namely, NAJM. Two conditions are required in order for the NAJM company to handle 

and report the PDO crash: 1) at least one of the vehicles or individuals that were involved in the 

crash has insurance and 2) there is no injury caused by the crash. The NAJM company was 

established in 2007 and covers 27 cities in the KSA. That is, enough to have the most recent and 

complete crash data.  

The crash dataset contains the details of the crash date and time, crash type, crash location 

(i.e., latitudes, longitudes), street, HAY, zone, district, crash point, direction, type of private and 

public damage, lighting, land surface and weather conditions, crash severity, crash reasons, crash 

type, e.g., head-on and angle, number of major and minor injuries, and number of fatalities. In 

order to investigate crash data, the contributing factors for the crashes as marked by the police are 

provided relevant to the driver, passenger, pedestrian, road and vehicle. For example, Figure 3-4 

and Figure 3-5 show the contributing factors for pedestrian crashes relevant to driver and 

pedestrian respectively for this research. Figure 3-4 shows the contributing driver factors for 

pedestrian crashes. The most relevant factor is distraction at 42.93%, followed by sudden deviation 

at 32.15% and speeding at 17.62%. In addition, Figure 3-5 illustrates the contributing pedestrian 

factors for pedestrian crashes. The most prominent factor is the pedestrian crossing the road at 

non-allowed places at 87.47%. 



32 

 

 

Figure 3-4: Pedestrian Crash Causes Relevant to Driver 

 

Figure 3-5: Pedestrian Crash Causes Relevant to Pedestrian 

The second file contains the vehicle(s) dataset and contains details of the percentage of 

blame, vehicle make, model and color, driver direction, vehicle registration type, registration 

country, vehicle status, and point of collision. 
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The third file contains the person(s) dataset and contains details of the age, birth year, 

person type, e.g., driver, pedestrian etc., health status, gender, license type, and nationality. In 

regard to this research, Figure 3-6 and Figure 3-7 illustrate the distribution of age-cohort fatality 

rates per hundred thousand people related to pedestrian and driver respectively in 2015. It can be 

seen that the people aged 60 years old and over had the highest pedestrian fatality rate. Moreover, 

the young population (aged 14-25 years old) was the highest group involved in pedestrian crashes 

as a driver.  

 

Figure 3-6: Distribution of Fatality Rates by Age Cohort (Death per 105 Population) in 2015, 

Riyadh Related to Pedestrian  
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Figure 3-7: Distribution of Fatality Rates by Age Cohort (Death per 105 Population) in 2015, 

Riyadh Related to Vehicle Driver 

There are two key identifications to link these three datasets; first is to link the crash record 

to each vehicle(s)- and person(s)-related record, and the second is to link each involved vehicle(s) 

to each involved person(s). These two key IDs were used to identify single- and multi-vehicle 

crashes and pedestrian and bicycle crashes as well. There were 1,487,140 crash reports in the 

period from 2004-2016. In addition, there were 104 different nationalities reported in crash reports. 

Pedestrian crashes were extracted using the two key IDs where the person type is pedestrian. There 

were 10,075 pedestrian crashes. Then, using ArcGIS to locate these records, only 4,655 pedestrian 

crashes were located in the study area and considered in this research. However, some of the 

records were not geocoded in the data, especially older ones. In addition, using several years of 

data could be misguided because of the changes in the road network (e.g., adding a new road), 

rapid change in land-use and population growth, or some other changes which have developed 

during the study period that may skew the analysis (Herbel et al., 2010). Therefore, 2,131 

pedestrian-vehicle crashes during the period from 2013 to 2015 were used in this study for 
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investigation of pedestrian crashes. In addition, a total of 253,217 crashes within the period from 

2012 to 2015 were used in this study for predicting crash counts by severity and type. 

3.1.2 Road Network and Traffic Volume Data 

There were several maps of the road network. The General Department of Studies and 

Designs in the Riyadh municipality has the road network data for 2012, which contains the traffic 

volume data, speed limits of roads, road functions and sub-functions, number of lanes and other 

information. This data was obtained in the beginning of this research for the initial analysis. The 

issue with this data was that the data did not align with the ArcGIS Basemap for which the 

projection needs to be corrected (recently, they have been working to update the map). Therefore, 

with the help of ESRI, the network was aligned to the Basemap. After several trials, the following 

steps were able to fix the projection issue: 

- Transforming the geographic coordination system from “Ain_el_Abd_1970” to the 

“GCS_WGS_1984”.  

- Using the project tool (Data Management) in ArcMap to project the data from 

“GCS_WGS_1984” (Geographic Coordinate System) to 

“WGS_1984_Web_Mercator_Auxiliary_Sphere” (Projected Coordinate system). 

- Editing in ArcMap and zooming to a major street intersection for the reference. 

- Dragging and moving the features to match the street intersections shown in ESRI 

Basemaps. 

However, during the research, it was found that the HCDR has an accurate map that covers 

most of the road network. Therefore, the road network data was also obtained from HCDR in a 
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shapefile format, which includes road classification (limited-access highway, arterial, and 

collector), posted speed, number of lanes, and traffic volume. In addition, the number of 

intersections and number of traffic signals were extracted from an additional layer using ESRI 

ArcMap 10.3 to be used in this study. One of the significant factors in safety-related studies is the 

use of traffic exposure. Thus, traffic volume data was provided by the HCDR as average weekly 

daily traffic, which is calibrated and modeled based on traffic counts, demographic survey, and 

land-use data. Based on this, the vehicle-kilometers-traveled was calculated as the length of the 

road multiplied by the traffic volume on each road, and then aggregated to HAY-based data also 

using ESRI ArcMap 10.3 software. Figure 3-8 and Figure 3-9 illustrate the positive association 

between the vehicle exposure (vehicle-kilometers-traveled (VKT)) and population and total 

crashes and pedestrian crashes per HAY. 
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Figure 3-8: Scatter plot of the VKT and population vs. total crashes  
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Figure 3-9: Scatter plot of the VKT and population vs. total pedestrian crashes 
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3.1.3 Socio-Economic and Demographic Data  

The socio-economic and demographic data was collected from the field household survey 

conducted by HCDR in 2012. It includes 16 age groups of population, gender, Saudi and non-

Saudi populations, home and vehicle ownership, employment status, education level, and marital 

status. The socio-economic survey was based on 185 HAYs that are fully developed and inhabited. 

Therefore, these 185 HAYs were considered in this research.  

3.1.4 Land-Use Data 

The land-use data was provided in a shapefile format. It was categorized mainly by 17 

different types: Residential, Industrial, Warehouse, Transportation Services, Communication and 

Public Facilities, Commercial, Professional and Business Services, Governmental, Cemeteries, 

Health, Educational, Mosques, Cultural, Recreational, Agriculture, Empty (Unused Area), and 

Unknown. For example, the governmental area includes police, traffic, civil defense and ministry 

buildings and any government authority buildings. In addition, the transport services area contains 

the railway network and building services, passenger and cargo utilities, transport vehicle parking 

and airports. Recreational Areas include the areas of sports facilities and stadiums, sports arenas, 

swimming pools, amusement parks and exhibition halls, and all the campgrounds and parks and 

children's playgrounds. It also includes the public garden recreational parks. Lastly, agricultural 

areas include agriculture lands and farms and their related activities, mining extraction activities, 

crude oil and natural gas mineral areas and any other resources. As shown in Figure 3-10, the 

largest area is the residential area with 31.4%, followed by the agricultural and governmental areas 

with 18.32% and 10.5% respectively.   
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Figure 3-10: Percentages of Land-Use Categories in Riyadh 

3.2 Data preparation 

The ESRI ArcMap 10.3 GIS and SAS softwares were used to integrate, aggregate, and 

manage all these datasets. The layer of road network does not cover six HAYs out of the 185 

HAYs; these six HAYs were omitted from the analysis, thus, 179 out of 208 units were utilized in 

the analysis.  

Prior to the model estimation, transformation of some variables is important to reduce the 

variance and minimize the heteroscedasticity and correlation among the variables (Lee et al., 

2015b; Quddus, 2008). For example, VKT and population density are transformed into the natural 

logarithmic, and numbers of young and elderly people are transformed into a proportion. 

Descriptive statistics of the data are listed in Table 3-1. 
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Table 3-1: Descriptive statistics of the data (N=179) 

Type Description Mean Std Dev Min Max 

Dependent 

Variables 

Total fatal crashes 7.430 10.027 0 78 

Total injury crashes 32.486 35.094 0 247 

Total PDO crashes 1378.940 1245.290 0 7997 

Total pedestrian crashes 14.251 13.666 0 75 

Total bicycle crashes 3.670 4.062 0 22 

Total single-vehicle crashes 258.145 333.735 0 2212 

Total multi-vehicle crashes 1138.550 1009.260 0 5874 

Severe Pedestrian Crashes 8.201 10.597 0 70 

Severe Crashes 33.905 38.104 0 267 

Traffic Demand 
Vehicle-Kilometers-Traveled 49878.49 36206.59 566.444 193305.31 

Log of Vehicle- Kilometers -Traveled(LVKT) 10.472 1.007 6.339 12.172 

Socioeconomic  

and Demographic 

Population density (population/m2) 0.008 0.008 0 0.043 

Log of Population Density(LPoD) -5.857 2.046 -12.736 -3.14 

Proportion of Non-Saudi people(NonSa) 0.407 0.300 0 1.00 

Proportion of young people (15–24 years old) 

(YNGP) 
0.201 0.088 0 0.8 

Proportion of elderly people (65 years old or 

older) (EldGP) 
0.020 0.018 0 0.143 

Proportion of Retired people(RetP)  0.023 0.019 0 0.08 

Proportion of Households without 

vehicles(VEH0P) 0.023 0.039 0 0.257 

Proportion of Illiteracy (LitP) 0.038 0.073 0 0.667 

Proportion of unemployed people(UEmP) 0.024 0.046 0 0.571 

Proportion of people whose educational 

attainment higher than high school(UniUpP) 
0.19 0.115 0 0.747 

Land-Use 

Residential Area(Res) 0.240 0.163 0 0.530 

Commercial Area(Com) 0.024 0.035 0 0.200 

Educational Area(Edu) 0.025 0.043 0 0.336 

Governmental Area(Gov) 0.025 0.052 0 0.266 
 Agricultural Area(Agr) 0.032 0.110 0 0.904 

Road Network 

Number of traffic signals(SIs) 1.905 2.981 0 19.00 

Proportion of divided Collector Roads(CLDP) 0.223 0.196 0 0.752 

Proportion of Undivided Collector 

Roads(CLUDP) 0.205 0.237 
0 1.00 

Proportion of Collector Roads(CLP) 0.425 0.234 0 1.00 

Proportion of Freeway Roads(FWP) 0.138 0.166 0 1.00 
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In addition, multicollinearity between independent variables was examined using the most 

commonly used Pearson correlation coefficient, which measures the strength of a linear association 

between two continuous variables (Table 3-2). A high correlation between independent variables 

can lead to high uncertainty and a large standard error. In this study, the correlation between two 

variables was deemed high if the absolute value of the Pearson correlation coefficient was 0.6 or 

higher according to Evans (1996). Moreover, multicollinearity has been detected by using the 

variance inflation factors (VIFs) method for all independent variables. As a common rule of thumb, 

a variable is considered highly collinear if the VIF exceeds 10 (Chatterjee and Hadi, 2015; 

Gujarati, 2009). In this study, all VIF values were less than 2, indicating no evidence of 

multicollinearity. Therefore, considering all above variables as candidate variables to be included 

in the model, only statistically credible variables were left in the final models. 
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Table 3-2: Pearson and Spearman correlation coefficients for variables 

Note: The numbers in the lower left triangle of the matrix are the Pearson correlations, and the ones in the upper right are the Spearman 

correlations. 

 

 

Var LVKT LPoD NonSa UniUpP RetP VEH0P LitP UEmP YNGP EldGP Res Com Edu Gov Agr SIs CLUDP CLDP CLP 

LVKT 1 -0.126 0.312 0.099 0.327 -0.010 0.026 0.103 0.131 0.227 -0.022 0.256 -0.013 0.077 -0.088 0.368 -0.208 0.272 -0.147 

LPoD -0.059 1 0.716 -0.036 0.085 0.394 0.220 0.218 -0.083 0.169 0.740 0.569 0.583 0.136 -0.333 0.300 0.322 0.209 0.436 

NonSa 0.262 0.478 1 0.051 0.165 0.381 0.230 0.235 -0.119 0.254 0.521 0.545 0.390 0.064 -0.206 0.498 0.186 0.236 0.291 

UniUpP 0.119 -0.007 -0.055 1 0.111 -0.303 -0.552 -0.260 -0.205 0.108 0.210 -0.047 0.130 0.169 -0.198 -0.035 -0.044 0.148 -0.028 

RetP 0.235 0.209 -0.074 0.046 1 -0.198 0.157 0.343 0.396 0.617 0.265 0.174 0.199 -0.105 -0.015 0.153 -0.192 0.307 -0.004 

VEH0P -0.156 0.065 0.073 -0.204 -0.372 1 0.267 0.087 -0.282 -0.030 0.131 0.299 0.216 0.106 -0.074 0.219 0.235 -0.016 0.178 

LitP 0.000 -0.244 -0.035 -0.361 -0.118 -0.023 1 0.318 0.117 0.154 0.132 0.205 0.151 -0.019 0.105 0.070 0.119 0.058 0.161 

UEmP -0.030 -0.109 -0.020 -0.251 0.003 -0.098 -0.021 1 0.353 0.450 0.175 0.219 0.228 0.055 0.090 0.214 0.146 0.114 0.245 

YNGP 0.101 0.050 -0.084 -0.257 0.319 -0.367 0.207 0.192 1 0.211 -0.024 0.040 0.018 -0.139 -0.039 -0.020 -0.261 0.239 -0.020 

EldGP 0.052 0.122 0.031 -0.020 0.456 -0.251 -0.109 0.555 0.194 1 0.275 0.263 0.200 0.012 0.035 0.182 0.066 0.096 0.087 

Res -0.028 0.723 0.363 0.209 0.224 -0.069 -0.136 -0.080 0.023 0.184 1 0.494 0.603 0.212 -0.337 0.264 0.232 0.282 0.380 

Com 0.084 0.326 0.207 -0.124 -0.025 0.137 0.019 0.012 -0.010 0.064 0.239 1 0.479 0.163 -0.285 0.398 0.286 0.141 0.260 

Edu -0.002 0.174 -0.002 0.104 0.054 -0.059 -0.061 -0.014 0.104 0.011 0.169 0.053 1 0.378 -0.257 0.204 0.272 0.188 0.345 

Gov 0.055 -0.023 -0.049 0.224 -0.228 0.002 -0.092 -0.091 -0.052 -0.111 -0.016 -0.054 0.340 1 -0.265 0.135 0.251 0.025 0.209 

Agr -0.241 -0.250 -0.160 -0.099 -0.172 -0.090 0.012 0.152 -0.137 -0.080 -0.288 -0.066 -0.120 -0.110 1 -0.135 0.102 -0.255 -0.062 

SIs 0.341 0.205 0.489 -0.016 0.095 -0.021 -0.065 -0.011 -0.006 0.126 0.162 0.159 -0.008 -0.059 -0.127 1 0.139 0.153 0.182 

CLUDP -0.326 0.214 0.172 -0.098 -0.227 0.091 0.050 0.024 -0.198 0.019 0.133 0.252 0.032 0.071 0.374 -0.003 1 -0.355 0.573 

CLDP 0.211 0.294 0.091 0.084 0.287 -0.087 -0.133 -0.063 0.199 -0.021 0.259 -0.077 0.126 -0.047 -0.250 0.085 -0.435 1 0.429 

CLP -0.147 0.472 0.253 -0.032 0.019 0.022 -0.059 -0.026 -0.018 0.008 0.358 0.193 0.140 0.035 0.167 0.072 0.650 0.407 1 
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CHAPTER 4: STATISTICAL METHODOLOGIES 

4.1 Introduction  

Initially, a traffic crash is, in theory, the output of a Bernoulli trial. Each time a vehicle enters 

any type of entity (a trial), e.g., an intersection, a highway segment, etc., on a given transportation 

network, it will result in either a crash or no crash. For the sake of consistency, a crash is termed a 

“success” when occur and a “failure” otherwise; more details can be found in the study of Lord et 

al. (2005). Because crash count data is discrete, random events and non-negative integers, the 

Poisson distribution is employed to estimate the crash occurrence model. Based on that, several 

statistical frequency models have been adapted.  

For data collected for areal units, many statistical modeling approaches have been 

developed. One of the advantages of using crash frequency models is the ability to predict crash 

count levels over spatial units (e.g., census units, wards, counties, traffic analysis zones (TAZs)). 

The macro-level crash prediction models provide transportation planners with a wide-spectrum 

perspective to consider safety in the long-range transportation planning process (Washington, 

2006). Statistical methodology is a vital tool to investigate the association between traffic crash 

frequency and contributing factors for crash data that are characterized by 1) geographically 

referenced based on the crash locations or varying over geographic units when modeled; 2) 

correlation among crash count levels; and 3) temporally correlated. Unfortunately, the latter one 

cannot be incorporated due to lack of data for several years. Therefore, in this research, a wide 

array of statistical models at the macro-level will be developed for crash frequency modeling, 

including traditional regression models, Poisson and Poisson-gamma (PG) models, Poisson-
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lognormal (PLN), random-effects and spatial models for univariate and multivariate crash counts. 

In addition, the spatial variations can be investigated using two common approaches; 

geographically weighted regression and random parameter or spatially varying coefficients 

models. 

4.2 Local variations of parameters 

Because regional crash data is observed and collected at specific geographic units (e.g., 

number of crashes per zones, socio-economic and land-use changes across census units, etc.), 

spatial dependency (autocorrelation) may occur between the observations. In addition, when 

modeling the relationship between crash counts and contributing factors, spatial heterogeneity may 

develop due to spatial correlation among neighboring sites. Therefore, the impact of local 

variations of parameters in spatial data can be investigated using more commonly employed 

approaches: geographically weighted regression (GWR) and random parameter (RP) or spatially 

varying coefficients (SVC) models. That is to account for the spatial dependency (autocorrelation) 

and heterogeneity in crash count modeling at the zonal level.  

4.2.1 Geographically Weighted Regression 

4.2.1.1 Overview and Model Development 

The most commonly used global negative binomial regression is NB-2, and it can be 

obtained by introducing heterogeneity into the conditional mean of the Poisson as follows (Greene, 

2007; Hilbe, 2011):  

𝑦𝑗~𝑁𝐵[𝑡𝑗𝑒𝑥𝑝(∑ 𝛽𝑘𝑘 𝑥𝑘), 𝛼] ( 1 ) 
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where 𝑦𝑗 is the response variable, i.e., number of observed crashes per HAY j, 𝛼 represents 

the overdispersion parameter, and 𝛽𝑘 is the model fixed estimate related to the corresponding 

covariate 𝑥𝑘, for k = 1, …, k. 

The local negative binomial regression, i.e., geographically weighted negative binomial 

regression (GWNBR) is the extension of the global negative binomial in Eq. (1) as the following 

formula. Readers are referred to da Silva and Rodrigues (2016) for more details: 

𝑦𝑗~𝑁𝐵[𝑡𝑗𝑒𝑥𝑝(∑ 𝛽𝑘𝑘 (𝑢𝑗 , 𝑣𝑗)𝑥𝑗𝑘), 𝛼(𝑢𝑗 , 𝑣𝑗)] ( 2 ) 

where (𝑢𝑗 , 𝑣𝑗) are the locations (coordinates) of the HAY’s centroids j, for j = 1, …, n. A special 

case of this methodology is the Geographically Weighted Negative Binomial Regression with 

global overdispersion (GWNBRg), in which only the 𝛽𝑘 are allowed to spatially vary. 

4.2.1.2 Model Comparison 

The Corrected Akaike Information Criterion (AICc) can be employed to select the best 

model where smaller values indicate the preferred model (McMillen, 2004; Nakaya et al., 2005). 

4.2.2 Spatially varying coefficients model 

A wide array of spatial statistical approaches have been used to account for spatial 

dependence in crash count models. Mainly, the Bayesian hierarchical models are employed in such 

analyses by including a set of random effects at the second level of hierarchy to incorporate spatial 

correlation (Xu et al., 2017). The Gaussian Conditional Autoregressive (CAR) prior with a normal 

(∅𝑖, τi
2), which was originally proposed by Besag (1991), is commonly used to model this effect. 
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One of the alternative formulations for the CAR model is the one proposed by Leroux et 

al. (2000). As opposed to CAR, which mainly formulates the random effect into two components 

(i.e., heterogeneity effects and spatial correlation effects, which will be discussed in the following 

section (4.3)), the authors used only one random effect. Lee (2011) compared four of the most 

commonly used conditional autoregressive prior distributions in Bayesian analysis, including these 

two models. The author found that the model proposed by Leroux et al. (2000) was the best overall, 

as it consistently presents better in the presence of independence and strong spatial correlation. 

The formulations of the model are as follows (Congdon, 2014): 

log(μ𝑖) = β0 + ∑ β𝑗Xi
𝐽
𝐽=1 + 𝜀𝑖 ( 3 ) 

𝜀𝑖|𝜀[𝑖]~𝑁 (
𝜌

1−𝜌+𝜌𝑑𝑖
∑ 𝜀𝑖 ,

𝜎𝜀
2

1−𝜌+𝜌𝑑𝑖
𝑗𝜖𝛿𝑖

) ( 4 ) 

where 𝜌(0 ≤ 𝜌 ≤ 1) presents the spatial correlation parameter and where 𝜌 = 0 indicates 

independence, while 𝜌 = 1 the Leroux priors for the spatial effects correspond to the CAR model 

(Banerjee et al., 2014), 𝑑𝑖 is the number of neighbors of HAY i. 

𝜌~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) ( 5 ) 

𝜎2~𝐺𝑎𝑚𝑚𝑎(1,0.001) ( 6 ) 

For the SVC model, the coefficients were spatially varying as follows: 

log(μ𝑖) = β0 + ∑ (β𝑗 ∗ Xji + β∗
𝑗𝑖
∗ Xji)

𝐽
𝐽=1  ( 7 ) 
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where β∗
𝑗𝑖

 represents the corresponding estimate of spatially varying coefficient over HAY i for 

J (j=1, 2, …, J) covariate Xji with mean µ𝑗𝑖 and precision matrix Ʃ𝜏𝑗∗𝑗 with a hyper-prior 𝑅𝑗 ∗ 𝑗 

estimated by a Wishart distribution as follows:  

µ𝑗𝑖|µ𝑘∈𝜕𝑗𝑖 =
𝜌∑ μ𝑗𝑘𝑘∈𝜕𝑖

1−𝜌+𝜌𝑑𝑖
 ( 8 ) 

Ʃ𝜏𝑗∗𝑗 = [1 − 𝜌 + 𝜌𝑑𝑖]𝑅𝑗 ∗ 𝑗 ( 9 ) 

4.2.2.1 Model Comparison 

The Deviance Information Criterion (DIC) is mainly used for model comparison. Small 

values of the (DIC) suggest preferred models (Guo and Carlin, 2004).  

Other goodness-of-fit measures were employed for the comparison between all developed 

models: Mean Absolute Deviation (MAD) and Root Mean Squared Errors (RMSE). The (MAD) 

can be obtained by dividing the sum of absolute errors by the size of the sample as follows: 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑌𝑖 − �̂�𝑖|
𝑁
𝑖=1  ( 10 ) 

where N is the size of the sample, 𝑌𝑖 and �̂�𝑖 are the observed and predicted values, respectively. 

The RMSE can be obtained by the square root of the total of the squared errors divided by the 

size of the sample, as shown in the following formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)2
𝑁
𝑖=1  ( 11 ) 

Models with smaller (MAD and RMSE) values are preferred.  
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4.3 Full Bayesian analysis 

Recent developments in Markov chain Monte Carlo (MCMC) allow a Full Bayes analysis 

of sophisticated models for complex spatial data (Banerjee et al., 2014). A Full Bayes hierarchical 

technique (FB) was used to estimate univariate and multivariate crash models with and without 

spatial effects. 

Poisson regression is appropriate to model crash count data since it is random, taking 

integer values and non-negative events. The probability of areal uniti (i.e., HAY𝑖 in this study) 

having 𝑦𝑖 crashes per time period is given by the following formula (Lord and Mannering, 2010): 

P(𝑦𝑖) =
exp(−𝜇𝑖)𝜇𝑖

𝑦𝑖

𝑦𝑖!
 ( 12 ) 

where P(𝑦𝑖) is the probability of HAY𝑖 having 𝑦𝑖 crashes per time period, and 𝜇𝑖 is the Poisson 

parameter, which shows the expected number of crashes per period. 

Poisson regression models are estimated by specifying the Poisson parameter 𝜇𝑖 as a function of 

explanatory variables, with the most broadly used functional form being: 

𝜇𝑖 = exp(𝛽𝑋𝑖) ( 13 ) 

where 𝑋𝑖 is a row vector of explanatory variables indicating characteristics of HAY𝑖, and 𝛽 is a 

coefficient estimate of model covariates 𝛽𝑋𝑖. 

One problem when using the Poisson regression model is not accounting for overdispersion 

where the variance of the crashes is limited to being equal to the mean. Most crash frequency data 

is overdispersed where the variance is greater than the mean. To overcome this issue, the Poisson-
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gamma (PG) modeling methodology is appropriate because it includes a disturbance term, which 

accounts for the overdispersion (Agresti and Kateri, 2011; Washington et al., 2010). Hence, several 

studies employed it (Abbas, 2004; Abdel-Aty and Radwan, 2000; Amoros et al., 2003; Cafiso et 

al., 2010; Carson and Mannering, 2001; El-Basyouny and Sayed, 2006; Hauer and Hakkert, 1988; 

Karlaftis and Tarko, 1998; Kim and Washington, 2006; Kulmala, 1995; Lee et al., 2013; Lord et 

al., 2010, 2005; Lord and Bonneson, 2007; Malyshkina and Mannering, 2010; Maycock and Hall, 

1984; Miaou, 1994; Miaou and Lord, 2003; Milton and Mannering, 1998; R. B. Noland and 

Quddus, 2004; Persaud and Nguyen, 1998; Poch and Mannering, 1996; Pulugurtha et al., 2013; 

Shankar et al., 1998, 1995; Ukkusuri et al., 2011): 

𝜇𝑖 = exp(𝛽𝑋𝑖 + 𝜃𝑖) ( 14 ) 

where 𝜃𝑖 is a gamma distributed error term with mean 1 and variance σ2. 

However, Poisson-lognormal (PLN) regression has been widely used by many researchers, 

as it is more flexible than the Poisson-gamma to handle the overdispersion issue (Abdel-Aty et al., 

2013; Lord and Mannering, 2010; Lord and Miranda-Moreno, 2008). The Poisson-lognormal 

model has a structure similar to the Poisson-gamma model except that the exp(𝜃𝑖) term used to 

compute the Poisson parameter is assumed to follow lognormal distribution instead of gamma 

distribution. Specifically, 𝜃𝑖 is suggested to follow a normal distribution with zero mean and 

variance σ2.  

4.3.1 Univariate Bayesian Spatial Poisson-lognormal Modeling 

A Bayesian Spatial Poisson-lognormal model is identified as follows: 

y𝑖~Poisson(μ𝑖) ( 15 ) 
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log(μ𝑖) = β0 + ∑ β𝑗Xi
𝐽
𝐽=1 + θ𝑖 + ∅𝑖 ( 16 ) 

θ𝑖~Normal(0, τθ) ( 17 ) 

Where y𝑖 is the number of observed crashes, β0 is the intercept term, β′s are the fixed effect 

parameters, Xi denotes a vector of covariates in the ith HAY, θ𝑖 is the error term of the model that 

accounts for overdispersion or unobserved heterogeneity (because of excluded variables in the 

model) across HAYs, ∅𝑖 is the spatial autocorrelation error term in which both variables represent 

the random effects (Aguero-Valverde and Jovanis, 2006), and τθ is the precision parameter which 

is the reciprocal of the variance, and it follows a prior gamma (0.5, 0.0005). This variance (1/τθ) 

provides the amount of variation not explained by the Poisson assumption (Lawson et al., 2003). 

Moreover, a non-informative normal (0, 100,000) prior is assumed for β0 and β′s. 

For the spatial distribution, the Gaussian Conditional Autoregressive (CAR) prior with a 

normal (∅𝑖, τi
2), which was originally proposed by Besag (1974), was used to model spatial 

correlation (Banerjee et al., 2014). Mean of ∅𝑖 is defined by: 

∅𝑖 =
∑ ∅𝑗×Wiji≠j

∑ Wiji≠j
 ( 18 ) 

Where, Wij(thematrixofspatialweights) {
1, iandjareadjacent
0, Otherwise

 

The impact of spatial correlation proportion is calculated as follows (Huang et al., 2010): 

α =
σ∅𝑖

σθ𝑖
+σ∅𝑖

 ( 19 ) 

Where σ(.) is the empirical marginal standard deviation function. 
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Univariate crash frequency models could be developed for specific crash levels; however, if 

there are correlations between crash levels, a potential statistical issue might develop. Thus, 

multivariate models are necessary in crash-frequency modeling because they explicitly consider 

the potential correlation among crash counts by severity or type level (Lord and Mannering, 2010). 

4.3.2 Multivariate Bayesian Spatial Poisson-lognormal Modeling 

Crash count data can be classified into k categories (k=1, 2, …, k) (e.g., crash severity 

counts, i.e., fatality, injury, and PDO, and crash type counts, i.e., pedestrian, bicycle, single- 

vehicle, and multi-vehicle). Because crash outcomes are rare, the observed counts of crashes 𝑌𝑖𝑘 

of the crash category k in 𝐻𝐴𝑌𝑖 (i=1, 2, ..., 179) are assumed to follow independent Poisson 

distributions, conditional on expected Poisson rate 𝜇𝑖𝑘. 

𝑌𝑖𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑘) ( 20 ) 

The Poisson rate is modeled as a function of the covariates following a log-normal 

distribution, as follows (Aguero-Valverde, 2013; Thomas et al., 2004): 

log(𝜇𝑖𝑘) = β0𝑘 + ∑ β𝑘𝑗
𝐽
j=1 X𝑖𝑗 + θ𝑖𝑘 + ∅𝑖𝑘 ( 21 ) 

where β0𝑘 is the intercept for crash category k, β𝑘𝑗′s are the corresponding regression estimates 

for J ( j=1, 2, …, J) covariate and crash category k, X𝑖𝑗 is the value of the J covariate for HAY𝑖 of 

the crash category k, and θ𝑖𝑘 and ∅𝑖𝑘 denote the unstructured (heterogeneity) and the structured 

(spatially correlated) random effect term in HAY𝑖 for each crash category k, respectively. The first 

one is to account for overdispersion, while the latter is to account for spatial correlation. These 

random effects represent unobserved covariates by capturing the extra-Poisson heterogeneity 



53 

 

among HAYs. It is common to incorporate both heterogeneity and the spatial random effects to 

determine the importance of the spatial dependency. If the spatial random effect dominates the 

unstructured random effect, then estimated risks will show spatial structure and, if it is the opposite, 

then the effect will be to shrink the estimated risks towards the overall mean (Besag, 1991). This 

spatial model borrows strength from neighboring locations when estimating variables, thus 

improving model estimation (Ancelet et al., 2012). 

Obtaining the fully Bayesian posterior estimates requires the specification of prior 

distributions. The intercept 𝛽0𝑘 and the regression coefficient 𝛽𝑘𝑗 were assigned highly non-

informative Normal priors (Aguero-Valverde and Jovanis, 2009): 

𝛽0𝑘~𝑁(0,10,000) ( 22 ) 

𝛽𝑘𝑗~𝑁(0,10,000) ( 23 ) 

Following, specifications of prior distributions for random effects used in the univariate model 

were specified and contrasted to their corresponding multivariate model. 

4.3.2.1 Priors specification for the heterogeneity effects in the univariate model (PLN) 

The univariate Bayesian spatial model assumes that the random effects for different crash 

categories are independent, which does not account for the correlations between heterogeneities 

of crashes by categories k. The prior distributions for the heterogeneity 𝜃𝑖𝑘 was proposed as an 

independent normal distribution with an expected mean of zero and a variance of 𝜏𝑘𝜃: 

𝜃𝑖𝑘~𝑁(0, 𝜏𝜃𝑘
−1) ( 24 ) 
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where τθk is the precision parameter, which is the reciprocal of the variance for each crash category 

k, and follows a commonly used gamma distribution as suggested by Wakefield et al. (2000) and 

used by Aguero-Valverde and Jovanis (2006): 

𝜏𝜃𝑘~𝐺𝑎𝑚𝑚𝑎(0.5,0.0005) ( 25 ) 

This variance (1/τθk) provides the amount of variation not explained by the Poisson assumption. 

4.3.2.2 Priors specification for the spatial effects in the univariate spatial model (PLN-

CAR) 

The previous model assumes sites are independent of one another and ignore the spatial 

interactions among sites. In contrast, spatial dependency or autocorrelation exists among the 

regional crash observations because, by nature, the crash data is observed with reference to location 

(Lai et al., 2008; LeSage, 1997; Quddus, 2008). Neglecting spatial autocorrelations may invalidate 

the assumption of the random distribution (LeSage and Pace, 2004) and hence lead to a biased 

estimation of the model parameters. Several traffic safety studies have found that spatial 

autocorrelations exist in the crash count data (Aguero-Valverde, 2013; Hadayeghi et al., 2010b; 

LaScala et al., 2000; Levine et al., 1995). 

Spatial data from near locations is more likely to be similar than data from distant locations, 

which is known as spatial autocorrelation (O’Sullivan and Unwin, 2003; Schabenberger and 

Gotway, 2004). A spatial autocorrelation or dependence may exist if a particular variable of a 

geographic location is affected by the same variable of the adjacent location. The presence of 

spatial autocorrelation between neighboring units may introduce bias into the statistical analyses 

because of the violation of the assumption of unit independence (LeSage and Pace, 2004). 
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Although Poisson log-normal models can handle the effect of unobserved heterogeneity among 

HAYs, such models cannot account for the spatial autocorrelation. In order to account for the 

spatial autocorrelation, a spatial error term (∅𝑖) was involved in the model specification.  

Two common models that incorporate spatial dependence are the simultaneously 

autoregressive (SAR), which was originally developed by Whittle (1954), and the conditionally 

autoregressive (CAR), which was proposed by Besag (1974). The SAR model considers adding 

an explanatory variable in the form of a spatially lagged dependent variable or adding spatially 

lagged error structure into a linear regression model using likelihood methods. In contrast, the 

CAR model formulates the random effect into two components to account for both spatial 

dependence and uncorrelated heterogeneity using Gibbs sampling (Banerjee et al., 2014). The 

intrinsic Gaussian Conditional Autoregressive (ICAR) prior with a normal (∅𝑖𝑘 , τ∅k
2 ), which was 

originally proposed by Besag (1974), was used to model spatial correlation (Banerjee et al., 2014). 

Mean of ∅𝑖𝑘 is defined by: 

∅𝑖𝑘 =
∑ ∅𝑗𝑘×Wiji≠j

∑ Wiji≠j
 ( 26 ) 

where, Wij(thematrixofspatialweights) {
1, iandjareadjacent
0, Otherwise

  

This specification is essentially equivalent to the specification of the univariate Poisson 

log-normal for each crash category. Nevertheless, it offers the possibility of being directly 

comparable with the multivariate specifications. 
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4.3.2.3 Priors specification for the heterogeneity effect in the multivariate model 

(MVPLN) 

Unlike the univariate model specification for the heterogeneity effect, the multivariate 

model takes into account the correlations across random effects. Therefore, the main differences 

between the multivariate model and the univariate model are the prior specifications of the random 

effects. 

For the multivariate model, correlated priors in the heterogeneity random effects vector are 

estimated using multivariate normal priors (Aguero-Valverde, 2013; Ma and Kockelman, 2006; 

Park and Lord, 2007): 

𝜃𝑖 = 𝑀𝑁(𝜇𝑖, Ʃ𝜃) ( 27 ) 

where 𝜇𝑖 is a vector with all elements zeroes and Ʃ𝜃 is the variance–covariance matrix with a 

hyper-prior estimated by a Wishart distribution. The Wishart distribution is commonly used as a 

conjugate prior for the inverse of the variance–covariance parameters of multivariate normal 

distributions (Gelman et al., 2003). The diagonal elements of the variance–covariance matrix Ʃ𝜃 

i.e., Ʃ11, Ʃ22, … , Ʃ𝑘𝑘 represent the heterogeneous variances of 𝜃𝑖1, 𝜃𝑖2, … , 𝜃𝑖𝑘 respectively, whereas 

the off-diagonal elements e.g., Ʃ12 and Ʃ21, represent the heterogeneous covariance between 𝜃𝑖1 

and 𝜃𝑖2: 

Ʃ𝜃
−1~𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑅, 𝑑) ( 28 ) 

where Ʃ𝜃
−1 is a symmetric positive definite matrix, also called the precision matrix, while 𝑅 and 𝑑 

are the scale matrix and the degrees of freedom, respectively. In order to produce a non-informative 
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prior for the precision matrix Ʃ𝜃
−1, the following values of 𝑅𝑎𝑛𝑑𝑑 were used (Aguero-Valverde, 

2013; Gelman et al., 2003): 

𝑅 = 𝑑 × 𝑑 = [

0.100 0.005 0.005 ⋯
0.005
0.005

0.100 0.005
0.005 0.100

⋯
⋯

⋮ ⋮ ⋮ ⋱

] , 𝑑 = 3𝑜𝑟4 ( 29 ) 

4.3.2.4 Priors specification for the spatial effects in the multivariate spatial model 

(MVPLN-CAR) 

The specification in the multivariate model is a zero-centered multivariate conditional 

autoregressive (MCAR), which is an extension of the univariate conditional autoregressive model 

(CAR) in the univariate model (Aguero-Valverde, 2013; Banerjee et al., 2014): 

∅𝑖𝑘|(∅−𝑖1, ∅−𝑖2, … , ∅−𝑖𝑘)~𝑀𝑁(∅𝑖𝑘̅̅ ̅̅ ,
Ʃ∅

𝑛𝑖
) ( 30 ) 

where ∅𝑖 is the mean vector ∅�̅� = (∑𝑗≠𝑖𝜔𝑖,𝑗∅𝑗1/𝑛𝑖 , ∑𝑗≠𝑖𝜔𝑖,𝑗∅𝑗2/𝑛𝑖)
𝑇, and Ʃ∅ is the k × k 

covariance matrix. 

Similar to the univariate model, the intrinsic MCAR model depends only on the adjacency 

matrix. Analogous to the specification of ∑𝜃 in Eq. ( 27 ), the diagonal elements of the variance–

covariance matrix Ʃ∅ represent the spatial variances, while the off-diagonal elements represent the 

spatial covariances of different category k. Furthermore, a highly non-informative Wishart 

distribution is employed for the precision matrix Ʃ∅
−1 as defined by Eq. ( 28 ). 
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The posterior correlation between the total random effects is also calculated. In addition, 

the posterior proportion of variation explained by the spatial effects in univariate and multivariate 

models is determined as follows (Aguero-Valverde, 2013; Banerjee et al., 2014): 

α𝑘 =
sd∅𝑘

sdθ𝑘+sd∅𝑘
 ( 31 ) 

where (sd) means the marginal standard deviation. 

4.4 Detecting the Existence of Spatial Autocorrelation 

In order to identify the existence of spatial autocorrelation among the residuals, Moran’s I 

statistic was used. Moran’s I is one of the standard statistics that has been developed to measure 

strength of spatial association among areal units (Banerjee et al., 2014). 

Moran’s I is given by the following formula: 

I =
n×∑ ∑ wij(yi−y)(yj−y)

n
j=1

n
i=1

(∑ wij)×∑ (yi−y)
2n

i=1
n
i≠j

 ( 32 ) 

where n is the number of HAYs units indexed by i and j, and y is the mean of crashes y. 

4.5 Model Comparison 

The Deviance Information Criterion (DIC) and posterior mean deviance D̅ are used for 

model comparison. The Deviance Information Criterion is defined in analogy with the Akaike 

information criterion (AIC) (Spiegelhalter et al., 2002). It is used to assess model complexity and 

compare different models, and it can be obtained once the model has converged after running a 

number of iterations. 

DIC is defined as: 
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DIC = D̅ + pD = 2 ∗ D̅ − D̂ ( 33 ) 

where the pD denotes the effective number of parameters, the D̅ is the posterior mean of the 

deviance (−2 ∗ log(likelihood)) and the D̂ is a point estimate of the deviance obtained by 

substituting in the posterior means θ̅ of θ; therefore, D̂ = −2 ∗ log(p(y|θ̅)).  

Since small values of the deviance indicate good fit, while small values of the effective 

number of parameters indicate a parsimonious model, small values of the sum (DIC) indicate 

preferred models (Guo and Carlin, 2004). According to Spiegelhalter et al. (2005), differences in 

the DIC values of more than 10 might definitely rule out the model with a higher DIC and a 

difference between 5 and 10 can be considered substantial. 
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CHAPTER 5: SPATIAL DEPENDENCY AND HETEROGENEITY IN 

CRASH COUNT MODELING 

5.1 Introduction 

This chapter compares most commonly used methods for modeling spatially correlated 

data, i.e., geographically weighted regression (GWR) and spatially varying coefficients (SVC) for 

severe (fatal and serious injuries) crash data based on the past 2 years (2014 and 2015). Figure 5-1 

illustrates the distribution of severe crashes per HAY. Several models were attempted, including 

global negative binomial (NB) and random parameter (RP) models and locally varying coefficients 

models, i.e., geographically weighted regression with Poisson distribution (GWPR) and negative 

binomial regression with global overdispersion (GWNBRg) and local overdispersion (GWNBR). 

In addition, Bayesian hierarchical models such as SVC and the one proposed by Leroux et al. 

(2000) as an alternative formulation for the Gaussian Conditional Autoregressive (CAR) prior, 

which was originally proposed by Besag (1991), were used to model spatial correlation.  
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Figure 5-1: Distribution of severe crashes per HAY 

5.2 Model development and discussion 

Before proceeding to the model estimation, some variables were transformed to reduce the 

correlation between them as discussed in section 3.2). Table 3-1 presents the descriptive statistics 

of the data. In addition, the Pearson and Spearman correlation coefficients were calculated to detect 
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if there is any correlation between two variables to avoid multicollinearity due to high correlation 

between the local variable estimates (Wheeler and Tiefelsdorf, 2005). The results are presented in 

Table 3-2. Based on the suggested methodologies in part (4.2) and available data, seven models 

were developed to examine the parameters’ variations in crash frequency models. Table 5-1 

presents the results of the models and the models’ performance measures. Following are the 

discussions about each model’s outputs. 

5.2.1 Global negative binomial and random parameter models 

Initially, the random effect model is considered as a special case of the random parameter 

model where the intercept is random, and all other parameters are fixed. However, the random 

parameter negative binomial (RP-NB) model does not appear to be appropriate to fit the data. That 

may be due to the small sample size. Moreover, the overdispersion parameter estimated with the 

NB model is about 0.18. Fitting the RP model with only a random constant revealed a convergence, 

but the overdispersion increased dramatically with a very high standard error. This extreme result 

means that the NB-RP model is inappropriate for the data and the Poisson distribution will be used 

alternatively. That means that the RP-NB model is a Poisson model with two forms of unobserved 

disturbance, as follows (Greene, 2007); 

𝐸[𝑦|𝑥, 𝑢, 𝑒] = exp(𝑏𝑒𝑡𝑎′𝑥 + 𝑢 + 𝑒) ( 34 ) 

where 𝑢 has a log-gamma distribution and 𝑒 has a normal distribution. Since this is a cross 

section, there are two random terms (implied) in the Poisson model. Introducing the random effect 

into a negative binomial model essentially adds a heterogeneity term to a model that is obtained 

by adding a heterogeneity term to a lower level (the Poisson) model. As such, it will be common 
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that attempts to fit the negative binomial model with random effects will be unsuccessful (Greene, 

2016). 

The negative binomial (NB) models (global) and Poisson random parameter (RP-P) models 

(local) were employed using the NLOGIT 6.0 software (Greene, 2007). The RP-P models were 

estimated by specifying a functional form of the parameter density function and using simulation-

based maximum likelihood with 200 Halton draws and some parameters found to be random with 

best fit of the normal distribution. Based on the results, it is found that the random parameter does 

not improve the fit of the data compared to the global model (NB). 

5.2.2 Geographically weighted regression (GWR)  

The SAS macro developed by da Silva and Rodrigues (2014) and (2016) was used to 

estimate the GWPR, GWNBRg and GWNBR models. In addition, the software GWR 4.0 

developed by Nakaya et al. (2012) was used to confirm the results of the GWPR models. The main 

objective of using the GWNBR model was to account for overdispersion and to reduce the spatial 

dependency. The adaptive bi-square kernel was used to determine the geographical weights using 

the nearest-neighbor bandwidth. Both models were fitted using AIC and Cross-Validation (CV) 

approaches, but the comparison between the models was conducted based on log-likelihood.  

The results revealed that the GWNBR model was superior compared to all other developed 

models in terms of the goodness-of-fit measures for severe crash models. Regarding the MAD and 

RMSE measures, it can be shown that the GWPR had lower values compared to the GWNBRg 

and GWNBR, which may be due to two reasons: 1) the GWPR is more vulnerable to extreme 

values, as can be observed from its smaller bandwidth size, and 2) as can be shown in Figure 5-2 
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to Figure 5-5, the GWNBRg and GWNBR had a more homogeneous spatial variation of the 

coefficients than the GWPR model (Gomes et al., 2017). However, they present a better fit in terms 

of a lower value of the goodness-of-measure (AICc). The findings of these models would be 

compared with the results of the SVC model, as discussed in the following section. Table 5-2 

summarizes the models’ results and their performances based on goodness-of-fit measures. 

5.2.3 Spatially varying coefficients (SVC) 

The software WinBUGS 1.4 was used to estimate the Leroux and SVC models using two 

chains taken to 10,000 iterations. The first 4,000 iterations were set as a burn-in sample. The results 

show that the SVC model performed better than the Leroux model in terms of the DIC.  

To sum up, the GWNBR model provides the best fit of the data in terms of the goodness-of-

fit measure, i.e., the AICc with its GWR counterparts. In addition, in comparing the GWNBR with 

the two Bayesian spatial models (i.e., Leroux and SVC), the GWNBR had significantly lower 

values of the MAD and RMSE. 

 

 



65 

 

Table 5-1: Summary of the coefficient estimates of the models and the models’ performances for severe crashes (1) 

Variable\Model 
NB RP-P GWPR GWNBRg GWNBR 

Mean P-value Mean P-value Mean Min Max Lq Uq Mean Min Max Lq Uq Mean Min Max Lq Uq 

Intercept -6.958 <.0001 -6.95 0.0000 -7.816 -11.967 -3.655 -8.826 -6.811 -7.527 -8.242 -6.068 -7.943 -7.224 -7.728 -9.014 -5.978 -8.023 -7.382 

S.D. of Ran. 

Parameter Dist. 
  0.043 0.0000                

Log of vehicle-

kilometers-traveled 
0.687 <.0001 0.693 0.0000 0.732 0.104 1.314 0.568 0.918 0.734 0.534 0.882 0.670 0.803 0.745 0.486 0.922 0.672 0.825 

S.D. of Ran. 

Parameter Dist. 
  0.041 0.0000                

Log of population  0.285 <.0001 0.283 0.0000 0.291 -0.051 0.814 0.168 0.390 0.285 0.175 0.443 0.222 0.334 0.286 0.137 0.499 0.207 0.344 

S.D. of Ran. 

Parameter Dist. 
  0.014 0.0000                

Proportion of 

Freeway Roads 

lengths 

0.607 0.0175 0.616 0.0000 -0.093 -3.068 3.107 -1.078 0.975 0.014 -1.072 1.781 -0.593 0.475 -0.003 -1.380 2.394 -0.722 0.476 

Proportion of 

population aged 

(15-24 years old) 

0.939 0.039 0.546 0.0000 1.235 -2.820 6.852 0.360 1.921 1.004 -0.003 2.565 0.554 1.308 1.058 -0.513 2.666 0.658 1.492 

S.D. of Ran. 

Parameter Dist. 
  0.080 0.0560                

Proportion of 

population aged 

(>=60 years old) 

2.772 0.0256 1.79 0.0000 1.825 -9.569 11.321 -0.412 4.560 2.066 -1.257 5.159 0.790 3.494 2.033 -3.506 6.282 0.243 4.010 

S.D. of Ran. 

Parameter Dist. 
  2.5 0.0000                

Residential Area -1.525 <.0001 -1.66 0.0000 -0.577 -2.243 1.335 -1.207 0.056 -1.126 -1.938 -0.366 -1.531 -0.702 -0.980 -2.043 0.079 -1.500 -0.441 

Number of traffic 

signals 
0.035 0.0104 0.032 0.0000 0.029 -0.050 0.186 0.004 0.040 0.022 0.004 0.072 0.012 0.028 0.021 -0.003 0.103 0.009 0.027 

Overdispersion 0.188 -  0 0.188 - 

AIC 1364.191 1367.473 1303.668 1333.582 1303.765 

AICc 1365.256 1369.679 1386.619 1340.896 1316.205 

Bandwidth - - 54 153 130 

MAD 11.592 11.861 5.243 9.360 8.622 

RMSE 17.994  19.7047 7.601 14.933 13.733 
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Table 5-2: Summary of the coefficient estimates of the models and the models’ performances for severe crashes (2) 

Variable\Model 

Leroux  SVC 

Mean Std Dev 
BCI  

Mean Std Dev 
BCI 

2.5% 97.5%  2.5% 97.5% 

Intercept -6.301 0.263 -6.768 -5.669  -6.051 0.428 -6.954 -5.286 

D. of Ran. Parameter Dist. - - - -  2.648 1.064 0.568 0.703 

Log of vehicle-kilometers-traveled 0.645 0.028 0.590 0.710  0.633 0.042 0.568 0.703 

S.D. of Ran. Parameter Dist. - - - -  0.635 0.040 0.570 0.281 

Log of population 0.239 0.024 0.190 0.278  0.229 0.026 0.181 0.280 

S.D. of Ran. Parameter Dist. - - - -  0.229 0.026 0.181 0.948 

Proportion of Freeway Roads lengths 0.316## 0.222 -0.132 0.733  0.375## 0.269 -0.124 0.947 

Proportion of population aged (15-24 years old) 0.402 0.351 -0.277 1.082  0.535## 0.401 -0.279 1.313 

S.D. of Ran. Parameter Dist. - - - -  0.375## 0.269 -0.125 1.313 

Proportion of population aged (>=60 years old) 2.875 0.899 1.101 4.600  2.647 1.064 0.571 4.827 

S.D. of Ran. Parameter Dist. - - - -  0.535## 0.401 -0.280 4.826 

Residential Area -0.660 0.260 -1.152 -0.141  -0.685 0.292 -1.272 -0.119 

Number of traffic signals 0.040 0.009 0.021 0.057  0.042 0.011 0.021 0.063 

DIC 1171.940  1165.940 

MAD 12.752  12.597 

RMSE 23.951  23.485 

##statistically significant at 80% Bayesian credible interval 
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Figure 5-2 to Figure 5-5 illustrate the distributions of the local estimates over the 179 HAYs 

of GWPR, GWNBRg, GWNBR, and SVC models for severe crashes. The parameters demonstrate 

patterns of spatial variations. However, the maps of the coefficients of the three GWR models 

display more smoothness than the SVC model. In addition, all local estimates had a positive impact 

on severe crashes. However, the minimum and maximum of the values vary across all three GWR 

models. The GWPR produces the highest number of HAYs with negative signs. The number of 

HAYs that had negative values in GWPR for log of population, proportion of population aged 15-

24 years old, and proportion of population aged 65 years and more were 2, 16, and 50, respectively. 

This indicates that because the GWPR does not account for the overdispersion in crash count data, 

the model estimates may have unexpected signs (Gomes et al., 2017).   

Lastly, Figure 5-6 depicts the distribution of posterior mean of the overdispersion in 

GWNBR. It can be found that the highest values were distributed in the middle and south, while 

the lowest values were distributed in the north and north east. The first regions may have 

unobserved factors that affect severe crashes. This may be explained by the main role of 

incorporating overdispersion in modeling crash counts, as it is to account for unobserved/omitted 

variables. For example, the models’ results indicated that increases of severe crashes were 

associated with increases of “logarithm of VKT”, some of the areas may have missing information 

about traffic volumes, e.g., on minor roads. This is also illustrated by the models’ performances as 

discussed earlier, as the GWNBR was superior compared to GWPR and GWNBRg. Therefore, it 

would be better to allow overdispersion to spatially vary over regions in spatial data, as the model 

GWNBR showed better fit compared to its counterpart (GWNBRg).  
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GWPR-LN-VKT GWNBR-LN-VKT 

  
GWNBRg-LN-VKT SVC-LN-VKT 

  
Figure 5-2: Distributions of the Posterior mean of the GWPR, GWNBRg, GWNBR, and SVC models, LN-VKT 
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GWPR-LN-Population GWNBR-LN-Population 

  
GWNBRg-LN-Population SVC-LN-Population 

  
Figure 5-3: Distributions of the Posterior mean of the GWPR, GWNBRg, GWNBR, and SVC models, LN-Population 
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GWPR-YNGP GWNBR-YNGP 

  
GWNBRg-YNGP SVC-YNGP 

  
Figure 5-4: Distributions of the Posterior mean of the GWPR, GWNBRg, GWNBR, and SVC models, YNGP 
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GWPR-EldGP GWNBR-EldGP 

  
GWNBRg-EldGP SVC-EldGP 

  
Figure 5-5: Distributions of the Posterior mean of the GWPR, GWNBRg, GWNBR, and SVC models, EldGP
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GWNBR-Local Overdispersion 

 

Figure 5-6: Distributions of the Posterior mean of the GWNBR, overdispersion 

5.3 Conclusion 

This chapter examined the issue of the spatial dependency and heterogeneity in crash count 

modeling at the zonal level. Two advanced methods that are commonly employed for modeling 

spatially correlated data, i.e., geographically weighted regression (GWR) and spatially varying 

coefficients (SVC), were used for severe crashes. The results show that the GWNBR model 

outperformed all other developed models in terms of fit of the data.  
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CHAPTER 6: SAFETY INVESTIGATION OF PEDESTRIAN CRASHES 

AT THE ZONAL LEVEL 

6.1 Select Appropriate Pedestrian-Involved Crash Exposure 

The most common vehicular exposure in traffic safety is the vehicle-kilometer-traveled. 

Pedestrian-involved crash frequency is highly affected by traffic volume and population due to the 

collisions between motor vehicles and pedestrians (Lee et al., 2015a). The population density can 

be used as a measure of exposure (Cottrill and Thakuriah, 2010). There were two related factors: 

population density as a socioeconomic surrogate exposure and proportion of residential area as a 

land-use surrogate exposure, and both of these factors can be used in the model. Both variables 

after transformation were attempted at the same time in the model beside the vehicular exposure, 

“i.e., Log of vehicle-kilometers-traveled”; however, due to the high correlation between them, (r 

= 0.723) as shown in Table 3-2, the most statistically credible variable was used in the model. 

Table 6-1 indicates that the model using the population density (LPoD) variable had a better 

goodness-of-fit measure. Both VKT and population density were used in this study as surrogate 

exposures to pedestrian-involved crashes. 

Table 6-1: Selection of Exposure Variables for Total Pedestrian Crashes 

  
Mean S.D. 

BCI   
Mean S.D. 

BCI 

 2.5% 97.5%  2.5% 97.5% 

Intercept -4.1361 0.6078 -5.3274 -2.9448 Intercept -5.8332 0.6468 -7.1010 -4.5654 

LNVKT 0.7355 0.0559 0.6259 0.8451 LNVKT 0.7402 0.0595 0.6236 0.8568 

LPoD 0.2100 0.0379 0.1602 0.2598 Res 1.8638 0.3117 1.2529 2.4747 

DIC   1144.106 DIC   1169.612 
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6.2 Model Development 

Based on the suggested methodology in part 4.3.1 and available data, the aspatial Bayesian 

models (PG and PLN) and the Bayesian Poisson-lognormal Conditional Autoregressive (PLN-

CAR) model were employed to develop the macro-level safety models. The variables were 

aggregated at the HAY level, such as VKT, proportion of collector roadways, and number of 

signalized intersections, in addition to the socioeconomic and land-use variables. Any variables 

that were consistently not credible have been omitted from the final model. The final model was 

determined based on the smallest DIC among candidate models.  

The spatial distribution of total and severe (i.e., fatal and serious injury) pedestrian-

involved crashes varied among HAYs, which indicates different models need to be attempted to 

identify the contributing factors. Therefore, in addition to the model estimation outcome for 

pedestrian crashes of all severities combined per HAY, the severe pedestrian crash (fatal and 

serious injury) model was estimated to examine the factors affecting the severity level of 

pedestrian-involved crashes, which may differ based on previous studies (Aguero-Valverde and 

Jovanis, 2006; Quddus et al., 2012). Several models were developed to explore the best model that 

can estimate the contributing factors that affect pedestrian crashes and all outcomes in accordance 

with intuition.  

The software SAS 9.4 was used to estimate the PG models using procedure GENMOD 

Bayes analysis. Using one chain, the convergence in these two models was obtained after 10,000 

iterations and 2,000 burn-ins size. 
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The software WinBUGS 1.4 was used to estimate the Bayesian PLN and the Bayesian PLN-

CAR models using two chains taken to 30,000 and 20,000 iterations for total and severe pedestrian 

crash models respectively. The convergence was obtained after 4,000 iterations. The model 

convergence was assured based on Brooks-Gelman-Rubin statistics, with overlaps among the 

Markov chains, and density plots. To determine statistical significance of the model parameters, 

the assessment was based on 95% and 90% Bayesian credible intervals (BCIs). A BCI provides 

an estimated range of values (interval) that likely contains the true value of the parameter. 

6.3 Results and Discussion 

The number of credible variables in the severe pedestrian-involved crash model was higher 

than that of the total pedestrian-involved crashes. The Bayesian Poisson-lognormal Conditional 

Autoregressive models show substantial improvement compared to the aspatial Bayesian models 

(Poisson-gamma and Poisson-Lognormal models) for both total and severe pedestrian-involved 

crash frequency, and it is in line with previous studies (e.g., Amoh-Gyimah et al., 2016; Lord and 

Miranda-Moreno, 2008; Siddiqui et al., 2012).  

The variations explained by the spatial correlations relative to variations in total and severe 

pedestrian-involved crashes at HAYs were 94.4% and 93.1% respectively.  

Table 6-2 presents the Global Moran’s I statistics calculated from the pedestrian crash 

models’ residuals and the corresponding Z-score and P-value. It showed that the spatial correlation 

could be controlled by spatial models. The results demonstrated statistically significant spatial 

autocorrelations at a 99.9% confidence level in aspatial models’ residuals, both in total and in 

severe pedestrian crashes. Thus, the spatial autocorrelation should be accounted for in the 
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estimation of the models. With respect to the total pedestrian crash model, the residuals of the 

Poisson-lognormal spatial model were revealed to be spatially correlated, which shows the 

existence of a spatial autocorrelation. However, for the severe pedestrian crash model, there seems 

to be no significant spatial autocorrelation among spatial Poisson-lognormal model residuals. 

Table 6-2: Moran’s I Statistics of Pedestrian Crashes’ Residuals 

Model 
Total Pedestrian Crash  Severe Pedestrian Crash 

Global Moran’s I Z-Score P-value  Global Moran’s I Z-Score P-value 

PG 0.247154 5.42797 0.0000  0.148146 3.31719 0.0009 

PLN 0.247785 5.44147 0.0000  0.147344 3.28695 0.0010 

PLN-CAR -0.108031 -2.20010 0.0278  -0.063218 -1.23978 0.2151 

 

The model results in Table 6-3 and Table 6-4 showed that the spatial correlation affects the 

credible level of some variables. Some variables became not credible, e.g., proportion of undivided 

collector roads in total pedestrian crash models, proportion of population aged 15-24 years old, 

and proportion of divided collector roads in the severe pedestrian model. The parameter 

interpretation will be based on the models that showed the best goodness-of-fit, which were the 

spatial Poisson lognormal models. 
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Table 6-3: Total Pedestrian-Involved Crash Models for HAYs in Riyadh 

Variable Description 

  Total Pedestrian Crashes   
 

PG PLN PLN-CAR 

Mean S.D. 
BCI 

Mean S.D. 
BCI 

Mean S.D. 
BCI 

2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Intercept -3.880 0.653 -5.161 -2.600 -3.724 0.609 -4.989 -2.543 -4.351 0.605 -5.506 -3.194 

Log of vehicle-kilometers-traveled 0.674 0.062 0.553 0.795 0.658 0.059 0.546 0.777 0.732 0.058 0.620 0.836 

Log of population density 0.145 0.029 0.088 0.201 0.154 0.029 0.099 0.214 0.168 0.030 0.108 0.226 

Proportion of people whose 

educational attainment higher than 

high school 

-0.633# 0.371 -1.360 0.094 -0.676# 0.401 -1.473 0.099 -1.147 0.476 -2.102 -0.200 

Proportion of Retired people -4.784# 2.520 -9.723 0.155 -5.447 2.601 -10.63 -0.418 -3.334## 2.562 -8.300 1.744 

Commercial Area 2.545 1.248 0.100 4.991 2.679 1.305 0.122 5.258 2.343 1.082 0.215 4.454 

Agricultural Area -1.208# 0.643 -2.468 0.053 -1.176# 0.652 -2.486 0.074 -1.231# 0.670 -2.597 0.039 

Number of traffic signals 0.054 0.014 0.026 0.081 0.058 0.014 0.030 0.086 0.060 0.012 0.037 0.084 

Proportion of Undivided Collector 

Roads 
0.417# 0.238 -0.050 0.884 0.355## 0.240 -0.117 0.830 0.191 0.253 -0.303 0.691 

Dispersion 0.188 0.031 0.137 0.259 - - 

𝜃 - 0.451 0.039 0.379 0.531 0.051 0.038 0.014 0.160 

∅ - - 0.845 0.082 0.690 1.014 

𝛼 - - 0.944 0.040 0.830 0.984 

DIC 1117.092 1019.28 1001.75 

#statistically significant at 90% Bayesian credible interval        ##statistically significant at 80% Bayesian credible interval 
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Table 6-4: Severe Pedestrian-Involved Crash Models for HAYs in Riyadh 

Variable Description 

  Severe Pedestrian Crashes   

PG PLN PLN-CAR 

Mean S.D. 
BCI 

Mean S.D. 
BCI 

Mean S.D. 
BCI 

2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Intercept -6.738 0.757 -8.221 -5.254 -6.831 0.621 -7.928 -5.486 -5.658 0.803 -7.248 -3.951 

Log of vehicle-kilometers-traveled 0.7998 0.071 0.660 0.939 0.801 0.059 0.662 0.896 0.754 0.077 0.592 0.904 

Log of population density 0.131 0.032 0.069 0.194 0.135 0.033 0.068 0.196 0.192 0.037 0.124 0.267 

Proportion of Households without 

vehicles 
3.232 1.393 0.502 5.963 3.002 1.453 0.106 5.840 2.319## 1.652 -0.967 5.555 

Proportion of Illiteracy 1.313# 0.715 -0.089 2.714 1.223## 0.753 -0.291 2.668 1.033## 0.797 -0.569 2.562 

Proportion of unemployed people 2.936 1.061 0.857 5.014 2.989 1.083 0.796 5.052 2.406 1.071 0.259 4.464 

Proportion of population aged (15-

24 years old) 
1.557 0.718 0.150 2.964 1.576 0.696 0.249 2.930 0.607 0.730 -0.884 1.935 

Commercial Area 3.774 1.360 1.109 6.440 3.752 1.420 0.998 6.536 2.402# 1.323 -0.225 4.946 

Educational Area -4.313 1.228 -6.719 -1.907 -4.268 1.310 -6.878 -1.743 -3.612 1.235 -6.085 -1.241 

Number of traffic signals 0.077 0.015 0.049 0.106 0.081 0.015 0.052 0.111 0.077 0.015 0.047 0.105 

Proportion of divided Collector 

Roads 
0.638 0.254 0.141 1.136 0.634 0.271 0.107 1.166 0.136 0.300 -0.459 0.714 

Dispersion 0.181 0.037 0.121 0.271 - - 

𝜃 - 0.453 0.049 0.362 0.553 0.070 0.065 0.014 0.255 

∅ - - 0.936 0.116 0.713 1.162 

𝛼 - - 0.931 0.064 0.757 0.986 

DIC 938.124 871.69 854.491 

#statistically significant at 90% Bayesian credible interval        ##statistically significant at 80% Bayesian credible interval 
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6.3.1  Parameters Interpretation 

6.3.1.1 Effect of Traffic Demand and Socio-economic and Demographic Factors 

As expected, the model indicates that total and severe pedestrian crashes increase when the 

vehicle-kilometers-traveled (vehicular exposure) and population density increase. These results 

are in line with the studies conducted in developed countries (LaScala et al., 2000; Lee et al., 2014; 

Loukaitou-Sideris et al., 2007; Cai et al., 2017a, 2016; Noland and Quddus, 2004; Siddiqui et al., 

2012; Wier et al., 2009). It is expected that a large part of traffic trips are made by foreign drivers, 

since they make up a significant part of the population of Riyadh (around one-third of the 

population). However, it has a high correlation with some variables, e.g.; veh0p (r= 0.53528, p-

value= <0.0001) and proportion of retired population (r= -0.52394, p-value= <0.0001). 

Furthermore, the model that includes the proportion of non-Saudi has a worse goodness-of-fit and 

has fewer credible variables as compared to the developed model in this study, which may be due 

to overfitting when having too many variables in a model. A model that has been overfitted may 

perform poorly when applied to a new sample drawn from the same population (Hadayeghi et al., 

2003). In addition, the DIC as a goodness-of-fit measure is penalizing larger variable models 

(Spiegelhalter et al., 2005). 

Road users involved in road collisions are affected by their own characteristics and not 

only the environment and the behavior of other individuals (Loo and Anderson, 2015). These 

characteristics are related to their social status, e.g., income and education level, and/or to the 

characteristics of the places in which they live. In general, people with low socio-economic status 

or who live in more deprived areas (low educational attainment, unemployed status, etc.) and low-

income families are more likely to be pedestrians. The data about the direct measure of income 
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was not available. However, there is information about education level and employment status. 

There have been many studies that have shown that an education level has a strong positive 

relationship with an income level (Bailey and Dynarski, 2011; Belley and Lochner, 2007). That is 

because low-income families might not be able to support their young ones academically. 

Although income and education are often correlated, education can be used as a proxy for academic 

abilities, intelligence, knowledge, awareness, etc. Moreover, the proportion of unemployed people 

can theoretically be a better proxy for income than education. The results showed that people with 

higher education had a lower possibility to be involved in pedestrian crashes, which implies that 

households with a high proportion of people that achieved a higher education were less exposed 

to pedestrian activities. This finding is consistent with the previous study of LaScala et al. (2000).  

Furthermore, the proportion of unemployed people was credible at a 95% level and had a 

positive correlation with severe pedestrian crashes. Hence, in HAYs where unemployed people 

make up a significant part of the population, a high number of pedestrian-involved crashes might 

develop. 

These findings are consistent with previous studies (e.g., Cottrill and Thakuriah, 2010; 

LaScala et al., 2004, 2000) that have shown that populations with a low socio-economic status, in 

a “deprived area,” are more prone to severe pedestrian crash causalities. Several implications of 

these findings for improved pedestrian safety measures for areas forming a significant part of these 

population groups. Education is the first priority and the most effective way to build knowledge 

of pedestrians’ rights and safety. Therefore, continuing safety education/campaigns should be 

implemented, especially in deprived areas, to improve people’s pedestrian safety awareness. 
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In the literature, there have been several studies which have examined different age cohorts 

to explore the variation in zonal pedestrian crash frequency. Therefore, different disaggregated age 

cohorts were included to investigate age cohorts’ impact on pedestrian-involved crashes. The 

aspatial model uncovered that the likelihood of severe pedestrian crash frequency increased when 

the proportion of the young population (aged 15-24 years old) increased. However, it was not 

statistically credible in the spatial Poisson-lognormal model. That might be because the effect of 

this variable was captured by the spatial effects. In addition, the proportions of the population aged 

under 14 (young population) and the elderly population (aged 60 and more) were consistently 

found to be statistically not credible.  

The proportion of the young population and older people may have positive, or, conversely, 

negative effects on pedestrian crashes. For example, older people are fragile, with slower reaction 

times and poorer vision, which may increase the likelihood of being involved and severely injured 

in crashes. However, their activities are much lower compared to younger people and/or they are 

mostly served by their children, so they are less likely to be exposed to pedestrian activities, e.g., 

shopping in nearby stores. Moreover, children under 14 are fragile, more impulsive, and 

unpredictable, and have poorer judgment of vehicle speed. In contrast, they may still be under the 

protection of their parents, e.g., they do not walk alone. Therefore, maybe these two opposite 

effects canceled out and the variable turned out to be not credible. In addition, that might be due 

to the fact that the impacts of these variables were captured by another variable, e.g., retired people 

or the surrogate exposure population density. It is recommended to initiate well-structured safety 

campaigns for young people or apply strict enforcement in order to reduce this type of crash. 
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6.3.1.2 Effect of Land-Use 

Land-use is considered as another significant category for modeling pedestrian-involved 

crash occurrence. The results show that commercial areas increase the likelihood of total and 

severe pedestrian crash frequency. This is also consistent with studies conducted by Loukaitou-

Sideris et al. (2007), Wier et al. (2009), and Kim and Yamashita (2002). It is interpreted that more 

commercial areas in HAYs trigger the rise of pedestrian-involved crash frequency. Therefore, 

around dense pedestrian activities (e.g., commercial areas), crosswalks should be marked clearly 

and designed safely. 

In addition, there are two more credible land-use variables, as agricultural and educational 

areas had a negative association with total and severe pedestrian-involved crashes respectively. 

The effects may be due to low vehicular and pedestrian traffic. The HCDR defines an agricultural 

area as one that includes all agricultural lands, and related activities, including places of industry 

and mineral resources. Furthermore, educational areas include not only schools but also areas of 

universities and colleges for all different educational levels. In a recent study conducted by 

Altwaijri et al. (2012), they stated that educational areas are negatively correlated with fatal crashes 

in Riyadh. Unlike general educational areas, Ng et al. (2002) found out that the primary, secondary, 

and tertiary school places had a credible and negative correlation with pedestrian-related crash 

frequency. On the other hand, Loukaitou-Sideris et al. (2007; 2011) pointed out that a greater 

number of schools in a census tract is associated with increased pedestrian crash frequency. In a 

recent study by Lee et al. (2015a), they found that the school areas of  kindergarten (4-6-year-olds) 

through twelfth grade (7-19-year-olds) is more vulnerable to pedestrian crashes. The classification 

of land-use is useful for planning and development purposes and may not necessarily be the best 
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category for crash analysis (Kim and Yamashita, 2002). Therefore, it would be useful if further 

studies are conducted to investigate the effects of schools in pedestrian-involved crash frequency. 

6.3.1.3 Effect of Road Network 

The aspatial models also indicate that HAYs with more collector road kilometers have 

more pedestrian crashes. However, it was not statistically credible in the spatial Poisson-lognormal 

model. That may be because of the impact of the spatial effects. It is worth mentioning that the 

maximum posted speed on collector roads is 70 kph. In addition, divided collector roads increase 

the likelihood of developing severe pedestrian crashes. However, it was not statistically credible 

in the spatial Poisson-lognormal model, as well. Moreover, it confirms the results that are shown 

in Figure 3-5. Police have to be present more at these locations and there has to be enforcement to 

prevent pedestrians from crossing the roads at non-allowed places. However, some locations may 

suffer from lack of crosswalks. Several countermeasures can be implemented to improve 

pedestrian safety, e.g., pedestrian bridges with escalators seem to be an effective solution to 

promote pedestrian bridge use (Räsänen et al., 2007). Figure 6-1 and Figure 6-2 show two different 

situations related to crosswalks. The first photo (Figure 6-1) shows an inappropriate pedestrian 

access design and no markings. The second photo (Figure 6-2) illustrates that there are no 

crosswalk pavement markings at an intersection. It is well known that intersections are among the 

most hazardous locations for pedestrians because of the traffic conflicts with pedestrians crossing 

at intersections. The total and severe pedestrian crash models indicated that pedestrian crashes 

increased when the number of traffic signals increased. Therefore, a better engineering design of 

the signalized intersections that accommodate pedestrian timing and appropriate signage to restrict 

pedestrian movements can be implemented to reduce these conflicts and enhance pedestrian safety 
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at intersections, e.g., adequate time for pedestrians to cross the street safely using countdown 

signals and clear crosswalk pavement markings. Regarding enforcement, installing crosswalk 

cameras to catch drivers who enter an intersection or marked crosswalk on red or fail to stop or 

yield the right-of-way to pedestrians could be helpful. A clear sign should be installed to order 

drivers to stop before the pedestrian crosswalk/intersections, or they would be fined.  

 

Figure 6-1: Unmarked Crosswalk on Collector road 

 

Figure 6-2: Unmarked Crosswalk at an Intersection 
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6.4 Summary and Conclusions 

This chapter aims to examine the variations in pedestrian crashes in HAYs in Riyadh using 

2,131 pedestrian crashes between 2013 and 2015. The results revealed the factors that contribute 

to pedestrian crashes. The data shows that driver distraction was the highest reason for pedestrian 

crashes relevant to drivers, followed by sudden deviation and speeding. Such behavior should be 

prevented by providing appropriate awareness, safety campaigns, and education to the drivers. In 

addition, the main reason for pedestrian crashes relevant to the pedestrian was that the pedestrians 

cross the road at undesignated places. Decision makers should take into consideration 

implementing pedestrian safety countermeasures to achieve better effectiveness in improving 

pedestrian safety. Lastly, the proportion of the young population (aged 14-25 years old) was the 

highest group involved in pedestrian crashes. 

Several models were developed using aspatial models (i.e., Poisson-gamma and Poisson-

lognormal) and spatial Poisson-lognormal models to examine the association between contributing 

factors and pedestrian crashes, including total and severe (i.e., fatal and serious injury) pedestrian 

crash models. It was illustrated that the spatial Poisson-lognormal models were superior compared 

to aspatial models (Poisson-gamma and Poisson-lognormal). In addition, the traffic volume, socio-

economics, land-use, and roadway characteristic factors have an influence on pedestrian crashes. 

Although both total and severe pedestrian crash models have common key variables, 

including VKT, population density, and the number of traffic signals, there were some factors 

affecting total pedestrian crash occurrences that are different from those affecting severe 

pedestrian crashes. In the total pedestrian crash model, the proportion of people whose education 

level is higher than high school was negatively associated with pedestrian crashes.  
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Meanwhile, in the severe pedestrian crash model, it was found that areas with low socio-

economic status (low educational attainment, unemployed status, etc.) are prone to higher severe 

pedestrian-involved crash frequencies. It illustrates some of the risks related to the areas most 

affected by these crashes, which need to be targeted with better-designed educational and 

awareness programs to improve pedestrian safety. 

In terms of land-use influence, the HAYs with a greater fraction of commercial areas have a 

greater likelihood of total and severe pedestrian-involved crashes, whereas a significantly higher 

fraction of agricultural and educational areas reduces it. 

Overall, this study provides a better understanding of pedestrian safety effects at the macro-

level and its contributing factors in Saudi Arabia. Decision makers can implement appropriate 

education and effective campaigns, benefit from the development of engineering countermeasures, 

traffic control, and management policy, as well as apply law enforcement to enhance pedestrian 

safety. There should be complementary improvements between all related agencies and 

departments in Riyadh city to integrate walking in daily life to foster the environment of a friendly 

transportation mode that satisfies people’s safety and convenience. We believe that this study is 

the first study to explore pedestrian crashes at the macro-level using data from Saudi Arabia. 

Obtaining the most complete and recent crash data from Riyadh, Saudi Arabia, is considered a 

major contribution of this paper, where such data is rare in developing countries. 
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CHAPTER 7: A BAYESIAN MULTIVARIATE SPATIAL MODEL FOR 

PREDICTING CRASH COUNTS BY SEVERITY AND TYPE AT THE 

MACRO-LEVEL  

7.1 Results and discussion 

Because each HAY has its own parameters, the random parameters models were employed to 

allow each estimated parameter to vary spatially (Lord and Mannering, 2010). However, they did 

not improve the fit based on the goodness-of-fit measures. In addition, one advantage of the 

Bayesian perspective is that previous knowledge about the parameters can be incorporated into the 

analysis (Yu and Abdel-Aty, 2013). Therefore, different approaches, including two-stage 

updating, previous studies, moment, and maximum likelihood estimation to develop informative 

priors for the parameters have been investigated. Yet, the models’ results showed no improvement 

compared to the models with non-informative priors. 

Two chains with 50,000 iterations, 5,000 of which are discarded as a burn-in sample, were set 

up for each model using WinBUGS 1.4.3 software. The developed model convergence and 

performance are thoroughly assured based on the Gelman–Rubin convergence statistic set, and the 

ratios of the Monte Carlo errors relative to the standard deviations of the estimates are less than 

0.05. A total of eight univariate and multivariate Poisson-lognormal models with and without the 

spatial random effects in a Bayesian framework were estimated for crash counts by crash severity 

(i.e., fatal, injury, and PDO) and by crash type (i.e., pedestrian, bicycle, single- and multi-vehicle) 

using the methodology in section (4.3.2). Table 7-1 summarizes the models’ performances. The 

results show that the multivariate models (MVPLN & MVPLN-CAR) performed much better than 
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the corresponding univariate models (PLN & PLN-CAR) in both crash type and crash severity 

models. Furthermore, the univariate and multivariate spatial models outperformed the 

corresponding aspatial models in both models. This implies that incorporating spatial effects 

improves model performance, and it is consistent with the findings of Osama and Sayed (2017). 

In terms of crash type model, in comparing the two multivariate models, the MVPLN-CAR model 

provides a significantly lower value of the posterior mean of the deviance and a slightly lower 

value of the DIC. This indicates that the multivariate heterogeneity random effects’ residuals are 

partially spatially correlated, which justifies the use of a multivariate spatial model (Huang et al., 

2017). Moran's I test was conducted to examine the existence of spatial autocorrelation among 

aspatial models’ residuals (heterogeneity random effects), and the results are discussed in the 

following section. These findings are consistent with previous studies that demonstrated that 

accounting for correlation among different crash levels significantly improves the crash model 

performance (Aguero-Valverde, 2013; Aguero-Valverde and Jovanis, 2009; Huang et al., 2017; 

Lee et al., 2015b; Osama and Sayed, 2017). 

Table 7-1: Summary of the models’ performances 

 Crash severity model  Crash type model 

Model D̅ pD DIC  D̅ pD DIC 

PLN 3511.76 399.432 3911.19  4572.18 560.938 5133.12 

PLN-CAR 3502.83 384.798 3887.62  4549.42 525.918 5075.34 

MVPLN 3502.60 343.760 3846.36  4568.49 500.335 5068.82 

MVPLN-CAR 3487.17 345.240 3832.41  4563.27 504.098 5067.37 

 

In order to control for spatial autocorrelation in the crash models’ residuals (heterogeneity 

random effects), the Global Moran’s I statistic was calculated. Table 7-2 presents the Global 
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Moran’s I statistic calculated from the crash models’ residuals and the corresponding Z-score and 

P-value. It revealed that the spatial correlation could be controlled by spatial models for both crash 

type and crash severity models. The results showed statistically significant spatial autocorrelations 

at a 99.9% confidence level in univariate and multivariate aspatial models’ residuals both for crash 

type and crash severity models. Therefore, the spatial autocorrelation should be accounted for in 

the estimation of the models. With respect to the fatal crash model, there seems to be no significant 

spatial autocorrelation among the PLN model’s residuals, and this is in line with the previous study 

by Aguero-Valverde and Jovanis (2006). However, the residuals of the counterpart model 

(MVPLN) were revealed to be spatially correlated, which demonstrates the existence of a spatial 

autocorrelation among the fatal crash model’s residuals. Finally, there appears to be no significant 

spatial autocorrelation among MVPLN-CAR models’ residuals for both models, which indicates 

that applying multivariate spatial models at the macro-level is appropriate, because it can account 

for spatial autocorrelations. Therefore, the discussion of the results will be based on the outputs of 

the MVPLN-CAR models. 
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Table 7-2: Moran’s I statistic of crash models’ residuals 

Model 
Crash 

Severity 
Index Z-Score P-value  

Crash 

Type 
Index Z-Score P-value 

PLN 

Fatal -0.019 -0.306 0.759  Pedestrian 0.261 5.735 0.000 

Injury 0.234 5.1640 0.000  Bicycle 0.237 5.237 0.000 

PDO 0.196 4.363 0.000  Single-vehicle 0.432 9.417 0.000 

     Multi-vehicle 0.251 5.553 0.000 

PLN-CAR 

Fatal -0.060 -1.163 0.244  Pedestrian -0.113 -2.312 0.021 

Injury -0.086 -1.730 0.083  Bicycle -0.088 -1.792 0.073 

PDO -0.132 -2.742 0.006  Single-vehicle -0.024 -0.403 0.687 

     Multi-vehicle -0.125 -2.595 0.0095 

MVPLN 

Fatal 0.1287 2.899 0.003  Pedestrian 0.263 5.787 0.000 

Injury 0.211 4.666 0.000  Bicycle 0.296 6.504 0.000 

PDO 0.197 4.385 0.000  Single-vehicle 0.411 8.973 0.000 

     Multi-vehicles 0.250 5.537 0.000 

MVPLN-CAR 

Fatal -0.075 -1.497 0.134  Pedestrian -0.033 -0.595 0.5514 

Injury -0.044 -0.830 0.406  Bicycle  -0.007 -0.039 0.9686 

PDO -0.064 -1.253 0.210  Single-vehicle -0.048 0.9194 0.358 

     Multi-vehicle -0.061 -1.208 0.2270 

 

Table 7-3 and Table 7-4 present the posterior variance–covariance and correlation matrices of 

error terms for crash severity and crash type models respectively. The whole covariance matrix of 

heterogeneity effects was insignificant for the crash severity model. The correlations among crash 

severities was insignificant as well. The same trend also appeared for the four types of crashes, 

except for single-vehicle and multi-vehicle crashes and for pedestrian and single-vehicle or multi-

vehicle crashes, which were significant at 80% BCI. This might be because a substantial portion 

of the heterogeneity random errors was captured by the spatial random errors. In addition, the 

model contains two random effects and the majority of the variation of these effects is explained 

by the spatial component (discussed in the following section). 
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The spatial covariance was significant at 95% BCI for all response variables. In addition, the 

posterior correlations between the spatial errors for all response variables were significant at 95% 

BCI. Although the posterior correlation among all response variables for heterogeneity’s residuals 

were insignificant, that may indicate that any residual in the data is spatially associated; the 

underlying covariates that explain the lack of fit in the model are spatially correlated. Therefore, 

the search for unobserved/missing covariates can be restricted to covariates that vary spatially. To 

investigate more, two more models were estimated to uncover the impact of the heterogeneity and 

spatial components. The heterogeneity term was removed in the first model. In the second model, 

the correlations among all response variables for heterogeneity component was set to zero. The 

results revealed no improvement of the fit in terms of the goodness-of-fit (DIC). Since the spatial 

effects of risk dominate, the correlations between the total random effect (heterogeneity and spatial 

effects) for all response variables were significant at 95% and very high (>0.8), except for the 

multi-vehicle and single-vehicle, which was high (0.5043) and was less (0.315 and 0.321 

respectively) for the single-vehicle and pedestrian or bicycle, which indicates a strong shared 

geographical pattern of risk between the severities/types of crashes. In general, the highest 

correlation is between pedestrian and bicycle, and it is consistent with previous studies (Huang et 

al., 2017; Lee et al., 2015b). 

These findings are inconsistent with the findings of Aguero-Valverde (2013), who found that 

the correlations among the three levels of crash severity (i.e., fatal, injury, and PDO) were 

significant for the heterogeneity effects, while insignificant for the spatial effects. In addition, the 

finding which revealed that the correlations between neighboring locations are more significant 
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than among crash modes is consistent with the studies at the macro-level (Lee et al., 2015b; Osama 

and Sayed, 2017) and is in contrast with Huang et al.’s (2017) micro-level study. 

Table 7-3: Posterior of variance–covariance/correlation matrices for crash severity model 

 
Fatal crash Injury crash PDO crash 

Unstructured (heterogeneity) errors 

Fatal crash 0.0552(0.0327) 0.0181(0.0189) 0.0075(0.0181) 

Injury crash 0.4077(0.3028) 0.0254(0.0138) 0.0102(0.0119) 

PDO crash 0.1204(0.3660) 0.3017(0.2991) 0.0331(0.0163) 

 Structured (spatial) errors 

Fatal crash 0.6740(0.2134) 0.6817(0.1599) 0.7163(0.1649) 

Injury crash 0.9201(0.0451) 0.8270(0.1524) 0.7894(0.1350) 

PDO crash 0.8711(0.0768) 0.8601(0.0473) 1.0210(0.1569) 

 Total random effects 

Injury crash 0.8911(0.0446) - - 

PDO crash 0.8284(0.0698) 0.8439(0.0432) - 

Note: Shading cells indicate correlation matrix. Bold indicates significant coefficients at 95% BCI. Standard deviation in 

parentheses. 

Table 7-4: Posterior of variance–covariance/correlation matrices for crash type model 

 
Pedestrian Bicycle Single-vehicle Multi-vehicle 

Unstructured (heterogeneity) errors 

Pedestrian crash 0.0504(0.0256) -0.0125(0.0191) 0.0214##(0.0198) 0.0227##(0.0193) 

Bicycle crash -0.2684(0.3377) 0.0596(0.0373) -0.0065(0.0194) -0.0038(0.0173) 

Single-vehicle crash 0.4375##(0.3013) -0.1559(0.3686) 0.0380(0.0222) 0.0184##(0.0168) 

Multi-vehicle crash 0.4945##(0.2753) -0.1184(0.3632) 0.4613##(0.2765) 0.0326(0.0180) 

 Structured (spatial) errors 

Pedestrian crash 0.7923(0.1874) 1.0340(0.2131) 0.3628(0.1641) 0.7833(0.1639) 

Bicycle crash 0.9592(0.0319) 1.4990(0.3978) 0.5360(0.2215) 1.0770(0.2243) 

Single-vehicle crash 0.3082(0.1153) 0.3355(0.1129) 1.6770(0.2471) 0.6966(0.1670) 

Multi-vehicle crash 0.8303(0.0569) 0.8345(0.0691) 0.5043(0.0778) 1.1230(0.1708) 

 Total random effects 

Bicycle crash 0.8972(0.0386) - - - 

Single-vehicle crash 0.3150(0.1039) 0.3210(0.1073) - - 

Multi-vehicle crash 0.8163(0.0529) 0.8023(0.0655) 0.5053(0.0730) - 

Note: Shading cells indicate correlation matrix. Bold indicates significant coefficients at 95% BCI. ##statistically significant at 

80% BCI. Standard deviation in parentheses. 
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The model results of the multivariate CAR models for crash severity and crash type are 

presented in Table 7-5 and Table 7-6 respectively. 

The posterior means for the standard deviations of heterogeneity effects for all response 

variables ranged from 0.154 to 0.234. However, the posterior means for the standard deviations of 

spatial effects were higher, ranging from 0.81 to 1.292. All of them were statistically significant 

at 95% BCI. Although the correlations of the heterogeneity random effect were insignificant in the 

MVPLN-CAR models, the proportions of variability in the random effects due to spatial effects 

were significant. The variations explained by the spatial random effects for fatality, injury, and 

PDO were 0.780, 0.854, and 0.850 respectively. The spatial correlation is high in the injury and 

PDO models compared to the fatality model. This finding is in line with previous studies (Aguero-

Valverde and Jovanis, 2006; Quddus, 2008). Similarly, the variation explained by the spatial 

random effects for all models of crash types was high (>0.8). This indicates that the spatial random 

effect is dominating the heterogeneity random effect. 

Regarding the parameter interpretation of the models, the results showed that the number of 

significant variables is exactly the same in both the crash severity model and the crash type model. 

However, signs and magnitudes of coefficients vary. There are several common significant 

variables for the response variables. For example, ‘log of vehicle-kilometers-traveled’, which was 

used as exposure variables, and number of traffic signals were commonly significant and positively 

associated with all response variables. These findings are consistent with previous studies, e.g., 

Aguero-Valverde (2013) and Lee et al. (2015b). In roadway networks, intersections are among the 

most dangerous locations for vehicles and road users due to the traffic conflicts between vehicles 

and with pedestrians crossing at intersections. An implication of this result is, to reduce these 



94 

 

crashes, to enhance traffic signal timing and pedestrian safety at signalized intersections; for 

example, encouraging pedestrians to cross from crosswalk pavement markings and setting 

adequate time for pedestrians to cross the street safely using countdown signals. 

In terms of land-use variables, a residential area was significant for fatal, PDO, pedestrian, 

and multi-vehicle crashes. Although it had a positive relationship with PDO, pedestrian, and multi-

vehicle crashes, it is negatively associated with fatal crashes. This is consistent with the findings 

of previous studies, e.g., Ng et al. (2002) and Noland and Quddus (2005, 2004), in which they 

asserted that higher dense urban areas are associated with reductions in casualties. This effect may 

be because of the relatively low speed compared to other land-use types. In addition, the 

commercial area is also commonly significant for PDO, pedestrian, and multi-vehicle crashes and 

positively related to them. These findings are consistent with previous studies that found that the 

land area zoned for residential and commercial uses were found to significantly and positively 

affect pedestrian crashes, including Kim et al. (2006), Loukaitou-Sideris et al. (2007), and Wier et 

al. (2009). In contrast, the governmental area was significant and negatively associated with fatal, 

injury, bicycle, and single-vehicle crashes. Furthermore, the agricultural area was significantly and 

negatively associated with fatal, injury, PDO, pedestrian, bicycle, and multi-vehicle crashes. The 

effects may be due to low vehicular and pedestrian traffic. Moreover, there are many police officers 

patrolling around government buildings, which makes drivers more cautious and likely to observe 

traffic regulations. An implication of these findings is to target the affected areas (i.e., residential 

and commercial) with appropriate educational and awareness campaigns and programs, e.g. about 

pedestrian safety and security. Furthermore, applying law enforcement in commercial areas can 

reduce fatal crashes and other types of crashes. Lastly, revisiting the engineering design of road 
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networks or urban planning in these areas could help, because it can play a vital role in preventing 

these types of crashes related to each HAY and to improve traffic safety in these areas. For 

example, installing traffic calming, which is the combination of physical controls and community 

support, can alleviate traffic hazards in these areas, which can contribute to reducing these types 

of crashes (Huang and Cynecki, 2000). 

Different age groups were aggregated to investigate the effect of age on crash frequency for 

all severities and types. However, only the age groups 15-24 years old and 65 and older were 

significant at an 80% BCI and positively related to injury and single-vehicle crashes. 

It was revealed that the proportion of collector roads was significant and positively associated 

with PDO, pedestrian, bicycle, and multi-vehicle crashes. Urban collector roads are characterized 

be their complexity in terms of driving environments, often encompassing both mobility and 

roadside activity accessibility. Consequently, motorized traffic and the most vulnerable road users, 

e.g., pedestrians, are competing continually (Domenichini et al., 2018). This finding is in line with 

the findings of Lovegrove and Sayed (2006), who uncovered that the association between zones 

containing increasing amounts of collector roads and PDO crashes is positive. This highlights the 

necessity of assuring road users’ safety and security, especially for pedestrians and cyclists, as they 

are more vulnerable to traffic crashes not only at traffic signals, but also along collector roads, by 

implementing appropriate countermeasures. Instances of such countermeasures include dedicating 

exclusive lanes for pedestrians and cyclists and designing pedestrian bridges and pedestrian 

crossing markings, etc. In addition, enforcement can be installed along this type of road in order 

to reduce crashes occurrence on collector roads.  
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The proportion of non-Saudi population was significant and positively associated with PDO 

and multi-vehicle crashes. This is expected, since they make up a significant part of the population 

of Riyadh (around thirty percent of the population) and because several of these individuals work 

as private drivers or in companies, which consequently directly involves them in a large part of 

traffic trips every day. An implication of this result is that establishing appropriate education for 

foreigners, e.g., using different languages, could contribute to limiting this type of crash. Some of 

them are workers with no driver’s license, so it is imperative to emphasize the need to apply for 

one. Also, since most of these workers have access to company vehicles, the company may be 

compelled to conduct competency assessments with a view to substantiating workers’ compliance 

with traffic safety regulations. New arrivals need to be trained before being involved in the road 

environment. In contrast, the proportion of people whose educational attainment is higher than 

high school was significant and negatively associated with fatal and pedestrian crashes. 
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Table 7-5: Summary of the coefficient estimates for the crash severities models 

Variable 

Fatal crash Injury crash PDO crash 

Mean S.D. 
BCI 

Mean S.D. 
BCI 

Mean S.D. 
BCI 

2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Intercept -6.931 0.847 -8.586 -5.211 -5.988 0.590 -7.133 -4.890 -3.281 0.315 -3.930 -2.662 

Log of Vehicle- Kilometers -

Traveled 
0.847 0.072 0.706 0.989 0.818 0.053 0.719 0.916 0.880 0.029 0.830 0.937 

Proportion of Collector Roads 0.089 0.287 -0.465 0.650 0.336## 0.234 -0.105 0.805 0.445 0.228 0.036 0.924 

Proportion of Non-Saudi -0.163 0.231 -0.611 0.290 0.129 0.184 -0.235 0.492 0.392 0.162 0.069 0.703 

Proportion of young people 

(15–24 years old) 
0.495 0.632 -0.732 1.731 0.6198## 0.476 -0.316 1.566 0.480 0.411 -0.322 1.298 

Proportion of elderly people (65 

years old or older) 
3.525 3.012 -2.485 9.350 3.305## 2.319 -1.192 7.911 0.989 2.211 -3.265 5.382 

Proportion of people whose 

educational attainment higher 

than high school 

-2.346 0.608 -3.530 -1.132 -0.272 0.434 -1.109 0.595 0.014 0.389 -0.696 0.789 

Residential area -0.863 0.430 -1.689 -0.002 -0.086 0.338 -0.751 0.582 0.906 0.329 0.267 1.569 

Commercial area 0.576 1.542 -2.474 3.563 0.716 1.148 -1.575 2.955 2.413 1.124 0.088 4.596 

Governmental area -2.251 1.018 -4.267 -0.265 -1.669 0.788 -3.213 -0.113 0.626 0.737 -0.826 2.059 

Agricultural area -2.478 0.938 -4.387 -0.696 -1.350 0.568 -2.475 -0.258 -1.527 0.438 -2.385 -0.678 

Number of traffic signals 0.038 0.014 0.010 0.066 0.067 0.012 0.043 0.090 0.045 0.012 0.023 0.068 

Heterogeneity random effect 0.226 0.066 0.118 0.370 0.154 0.039 0.093 0.246 0.177 0.043 0.106 0.272 

Spatial random effect 0.810 0.132 0.541 1.065 0.906 0.084 0.744 1.073 1.008 0.078 0.854 1.161 

Proportion of variation 

explained by the spatial effect 
0.780 0.070 0.617 0.888 0.854 0.038 0.766 0.912 0.850 0.037 0.769 0.910 

#statistically significant at 90% BCI        ##statistically significant at 80% BCI 

Bold indicates significant coefficients at 95% BCI. 
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Table 7-6: Summary of the coefficient estimates for the crash types models 

Variable 

Pedestrian crash Bicycle crash Single-vehicle crash Multi-vehicle crash 

Mean S.D. 
BCI 

Mean S.D. 
BCI 

Mean S.D. 
BCI 

Mean S.D. 
BCI 

2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Intercept -6.069 0.838 -7.780 -4.540 -8.579 1.305 -11.190 -6.067 -7.272 0.565 -8.544 -6.123 -3.958 0.621 -5.140 -2.841 

Log of Vehicle- 

Kilometers -Traveled 
0.741 0.074 0.608 0.891 0.859 0.112 0.644 1.090 1.076 0.058 0.957 1.210 0.923 0.053 0.805 1.028 

Proportion of Collector 

Roads 
0.594 0.248 0.094 1.072 0.942 0.393 0.174 1.713 0.319 0.265 -0.182 0.866 0.510 0.214 0.059 0.916 

Proportion of Non-Saudi 0.3896# 0.211 -0.017 0.817 0.4435## 0.325 -0.177 1.091 -0.104 0.231 -0.526 0.383 0.416 0.187 0.091 0.837 

Proportion of young 

people (15–24 years old) 
-0.080 0.622 -1.312 1.121 -0.068 1.046 -2.163 1.919 0.8147## 0.579 -0.327 1.912 0.617 0.466 -0.219 1.629 

Proportion of elderly 

people (65 years old or 

older) 

-0.427 2.736 -5.765 4.938 -0.303 4.604 -9.389 8.676 4.121## 2.699 -1.379 9.157 -0.388 2.204 -4.682 4.060 

Proportion of people 

whose educational 

attainment higher than 

high school 

-1.305 0.510 -2.296 -0.279 -0.193 0.756 -1.679 1.293 0.562 0.551 -0.513 1.612 0.002 0.467 -0.839 0.979 

Residential area 0.930 0.386 0.150 1.671 -0.418 0.581 -1.539 0.728 0.266 0.430 -0.626 1.063 0.969 0.367 0.207 1.640 

Commercial area 3.382 1.227 0.963 5.768 1.651 1.940 -2.230 5.360 1.388 1.424 -1.419 4.167 2.499 1.151 0.178 4.748 

Governmental area 0.265 0.872 -1.425 1.988 -3.453 1.492 -6.414 -0.543 -1.386 0.950 -3.232 0.476 0.701 0.745 -0.701 2.204 

Agricultural area -1.568 0.688 -2.944 -0.253 -4.099 1.485 -7.161 -1.371 -0.729 0.647 -2.016 0.527 -1.534 0.454 -2.428 -0.631 

Number of traffic signals 0.074 0.014 0.046 0.103 0.048 0.021 0.006 0.089 0.036 0.016 0.004 0.068 0.046 0.014 0.019 0.075 

Heterogeneity random 

effect 

0.218 0.055 0.122 0.336 0.234 0.071 0.120 0.392 0.187 0.053 0.103 0.308 0.174 0.047 0.101 0.279 

Spatial random effect 0.884 0.105 0.679 1.092 1.214 0.161 0.916 1.547 1.292 0.095 1.111 1.485 1.057 0.081 0.896 1.214 

Proportion of variation 

explained by the spatial 

effect 

0.802 0.052 0.688 0.888 0.838 0.048 0.731 0.915 0.873 0.035 0.794 0.929 0.858 0.038 0.771 0.917 

#statistically significant at 90% BCI        ##statistically significant at 80% BCI 

Bold indicates significant coefficients at 95% BCI. 
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7.2 Conclusion 

This chapter used a multivariate Poisson-lognormal CAR (MVPLN-CAR) model in a 

Bayesian framework to simultaneously model correlated crash counts, which accounts for spatial 

autocorrelation and correlations among different crash counts by severity and type levels at the 

HAY level in Riyadh, Saudi Arabia. The MVPLN-CAR model was compared to the corresponding 

aspatial model. 

The results reveal that the multivariate models (MVPLN & MVPLN-CAR) outperformed the 

corresponding univariate models (PLN & PLN-CAR) in both crash type count and crash severity 

count models in terms of goodness-of-fit measures. Furthermore, the univariate and multivariate 

models incorporating both unstructured (heterogeneity) and structured (spatially correlated) 

effects performed better than those not incorporating the spatial effect counterparts in both models. 

This indicates that adopting the multivariate models by incorporating both the unstructured 

(heterogeneity) random error term and spatially structured conditional autoregressive term at the 

zonal level significantly improves the crash model performance. 

There are significant correlations between the total random effect (heterogeneity and spatial 

effects) for the three severity levels and the four type levels of crash counts, indicating a strong 

shared geographical pattern of risk between each of these levels. In terms of crash type model, the 

correlation is very strong between pedestrian and bicycle crashes, but it is relatively less strong 

between single-vehicle and pedestrian or bicycle crashes. In addition, the traffic volume, road 

characteristics, socio-economics and demographics, and land-use factors have a significant 

influence on different crash severities and types. However, the variable estimates and statistical 

significance vary across different models. 
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The findings of this study can help and guide decision makers and practitioners in selecting 

more appropriate safety countermeasures for enhancing traffic safety policies in Riyadh, which 

can contribute to achieving the goal of the KSA National Transformation Program 2020 relative 

to reducing traffic fatalities. 
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CHAPTER 8: RESEARCH IMPLICATIONS 

8.1 Introduction 

The findings in Chapter 7 may provide a useful implication for decision makers and 

practitioners using the crash hot zone screening results. The crash hot zone screening results show 

the overall crash distributions within the study area. Identification of sites with promise is a vital 

task to improving highway safety by finding spatial units where the crash risk is high (Hauer, 

1996). Therefore, the outputs of the best multiple models in Chapter 7 were used for hotspot 

identification. Based on that, the potential for safety improvements (PSIs) was calculated for hot 

zone identification using the models. 

8.2 Screening of the hot zones 

In order to rank hot zones, a Potential for Safety Improvement (PSI) was employed in this 

study as a measure of how many crashes can be effectively reduced. It can be calculated by the 

difference between the expected and predicted crash counts (Aguero-Valverde and Jovanis, 2010; 

Hauer et al., 2002; Lee et al., 2015a). PSI is defined as: 

𝑃𝑆𝐼 = 𝑁expected − 𝑁predicted ( 35 ) 

𝑃𝑆𝐼 = exp(𝛽0𝑘 + ∑ 𝛽𝑘𝑗
𝐽
𝑗=1 𝑋𝑖𝑗 + 𝜃𝑖𝑘 + ∅𝑖𝑘) − exp(𝛽0𝑘 + ∑ 𝛽𝑘𝑗

𝐽
𝑗=1 𝑋𝑖𝑗) ( 36 ) 

𝑃𝑆𝐼 = exp(𝛽0𝑘 + ∑ 𝛽𝑘𝑗
𝐽
𝑗=1 𝑋𝑖𝑗) ∗ (exp(𝜃𝑖𝑘 + ∅𝑖𝑘) − 1) ( 37 ) 
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All zones in the study area were classified into three categories based on their PSI values: hot 

‘H’, warm ‘W’, and cold ‘C’ zones (Lee et al., 2015a). 

where, rankingofhotzonescategories {
H, Top10%PSI
W, BetweenPSI = 0andTop10%
C, PSI < 0

PSI 

Therefore, ‘H’ has much more crashes compared to other zones with similar characteristics. 

Zones that are categorized as warm zones also have some room for crash reduction; however, the 

issue of safety is not as risky as in ‘H’ zones. With respect to cold zones, they have fewer crashes 

compared to other similar zones. 

8.3 Results and Discussion 

In order to identify hot zones, the PSI performance measure was calculated and mapped. 

Figure 8-1 to Figure 8-4 display the macroscopic screening results using PSI calculated based on 

MVPLN-CAR models. The first two figures illustrate maps of the ranking HAYs for crash severity 

models, while the other two illustrate maps of the ranking HAYs for crash type models. The map 

distribution is based on the three categories of the PSI values (i.e., hot, warm, and cold), where the 

hot is the top 10% PSI, the warm is between PSI=0 and less than the top 10% PSI, and the cold is 

the PSI less than zero (Lee et al., 2015a). 

It was found that the distributions of hot zones for both models (i.e., crash severity model and 

crash type model) can be compared. This could help to explain which severity/type(s) of crash/es 

affected each HAY the most. For example, the spatial distribution of PDO crashes is mostly similar 

to the multi-vehicle crash distributions. In other word, the majority of PDO crashes are multi-

vehicle-related crashes. The results also show common similar categories of screening results for 

each HAY of all crash severity/type level models. For example, in the south (the HAY indicated 
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by the arrow in the bottom of the figure as “commercial area” as shown in Figure 3-2 is categorized 

as hot for all response variables. This may be as a result of its very dense population and 

commercial activities. It can be seen also that the middle (the HAYs located in the CBD area) 

shows the highest PSI for all response variables except for single vehicle crashes. These HAYs are 

being considered as the HAYs where most of the population and commercial activities are fiercely 

concentrated. In contrast, some HAYs are indicated by common similar categories of screening 

results for some response variables, i.e., non-motorized and/or motorized related crashes. For 

example, in the north (the HAY near the airport where most of the attractions (recreational) are 

concentrated), is being classified as hot for fatal crashes and it seems to be affected by non-

motorized (pedestrian and/or bicycle) related crashes. Furthermore, in the northeast, the HAY 

where it is considered as one of the most-visited for social activities is being categorized as hot for 

fatal and injury crashes. This HAY is also indicated mostly by pedestrian and/or single-vehicle 

related crashes, which may be due to its high concentration of social activities. However, some 

HAYs seem to be affected by only one type of crash 

This illustrates some of the risks related to the HAYs most affected by these crashes, which 

means there is a need to target the affected HAYs with better-designed educational and awareness 

programs, law enforcement, and engineering designs related to each category to improve traffic 

safety, as discussed in the earlier section. 
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Fatal crashes Injury crashes 

  

Figure 8-1: Results of screening based on PSI of fatal and injury crashes per HAY 
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PDO crashes 

 

Figure 8-2: Results of screening based on PSI of PDO crashes per HAY 
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Pedestrian crashes Bicycle crashes 

  

Figure 8-3: Results of screening based on PSI of pedestrian and bicycle crashes per HAY 
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Single vehicle crashes Multiple vehicles crashes 

  

Figure 8-4: Results of screening based on PSI of single- and multi-vehicle crashes per HAY
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Further analysis of the results in order to investigate the impact of percentage of residential 

area is based on the results in Table 7-5 and Table 7-6. Figure 8-5 shows that the maximum 

percentage of residential area is 90% compared to all other 17 land-use areas. Furthermore, 33.52% 

(60 out of 179) of HAYs in Riyadh have 15% or less of residential areas. Also, 42% of them have 

between 45% and 90% of residential areas. The overall average of percentage of residential areas 

in these 179 HAYs is 34.59%. 

 

Figure 8-5: Percentage of residential area 

The overall percentage of residential areas (total residential area divided by total area) is 

8.3, and it was used for calculating the relative risk of fatal, PDO, pedestrian, and multi-vehicle 

crashes. There are 48 out of 179 HYAs that have less than 8% of the residential land-use, as is 

shown in Figure 8-6. 
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Figure 8-6: Distributions of the residential land-use based on its percentage of the total land use 

The following equation was employed to compute the relative risk of these crashes for the 

residential area factor considering all other covariates are zero: 

𝐸𝑋𝑃(𝑋𝑖 ∗ 𝛽𝑗) ( 38 ) 

Figure 8-7 shows that the relative risk of fatal crashes at 2.3% of residential areas is almost 

1.87 times the overall percentage of residential area.  
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Figure 8-7: Relative risks of fatal crashes 

Regarding PDO, pedestrian, and multi-vehicle crashes, the relative risk of fatal crashes at 

the percentage of residential areas of 2.3 were 48.23%, 49.097%, and 50.53% respectively, lower 

than at the overall percentage of residential areas of 8.3, as is shown in Figure 8-8. Moreover, the 

increased trend of the relative risk of pedestrian crashes is the lowest compared to the other type 

of crash (i.e., multi-vehicle).  
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Figure 8-8: Relative risk of PDO, pedestrian, and multi-vehicle crashes 

The goal of the KSA’s National Transformation Program 2020 relative to reducing traffic 

fatalities is ambitious, but achievable. The National Strategic Plan for Traffic Safety is one of the 

significant tools that can be used to achieve it. Based on the plan’s vision, ten key ‘action areas’ 

were identified to improve road safety throughout the KSA, including data and research. An 

implication of this study’s results to reduce these crashes is to share mapping of crash data and the 

analysis results in an easy and professional way with law enforcement, traffic engineers in related 

departments, transportation planning agencies, and interested researchers, and even with the public 

to improve people’s traffic safety awareness. For example, Figure 8-9 illustrates an interactive web 

mapping application created for Riyadh’s crashes per HAY. In this app, the distributions of all of 

crash data by severity and type were mapped with pop-up windows for each HAY to show the 

number of crashes.  
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Figure 8-9: Web mapping application of Riyadh crashes per HAY 
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CHAPTER 9: CONCLUSIONS 

This dissertation examined the contributing factors that could cause traffic crash occurrences, 

incorporating overdispersion and spatial effects at the macro-level, in the City of Riyadh, Saudi 

Arabia. It also suggests potential countermeasures based on the results in order to improve traffic 

safety. The primary objectives of this study are: 1) to explore the impact of local variations of 

parameters in spatial count data; 2) to examine the causes and characteristics of pedestrian crashes 

at the macroscopic level; and 3) to conduct a safety investigation of traffic crashes by severity and 

type at the macro-level as well. 

Chapter 5 conducts a comparison between the Geographically Weighted Negative 

Binomial Regression (GWNBR) and spatially varying coefficients (SVC) model, which are both 

used for modeling spatially correlated data to account for spatial heterogeneity and to minimize 

spatial dependency (autocorrelation). It was found that incorporating overdispersion and spatial 

effects in crash frequency modeling would improve the model estimation, where the GWNBR 

performs better than all other developed models, including global negative binomial, random 

parameter, geographically weighted regression, either with Poisson distribution or negative 

binomial with global overdispersion, and spatially varying coefficients models. 

In Chapter 6, the variation in pedestrian crashes among HAYs in Riyadh was inspected using 

several aspatial and spatial (i.e., Poisson-gamma and Poisson-lognormal) models. The results show 

that the spatial Poisson-lognormal model outperformed its counterparts in both total and severe 

pedestrian models.  
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There were common key variables that affect both total and severe pedestrian crashes (i.e., 

VKT, population density, and the number of traffic signals). However, there were some factors 

affecting total pedestrian crash frequency that are different from those affecting severe pedestrian 

crashes. In the total pedestrian crash model, the proportion of people whose education level is 

higher than high school had a negative association with pedestrian crashes. Meanwhile, in the 

severe pedestrian crash model, it was revealed that areas with a low socio-economic status (low 

educational attainment, unemployed status, etc.) are prone to higher severe pedestrian-involved 

crash frequency. It explains some of the risks related to the areas most affected by these crashes. 

Based on that, well-structured educational and awareness programs can be applied in these areas 

to enhance pedestrian safety. With respect to land-use effects, the HAYs with a greater proportion 

of commercial area have a greater likelihood of total and severe pedestrian-involved crashes, while 

a significantly higher proportion of agricultural and educational areas decreases it. 

In addition, in Chapter 7, the multivariate Poisson-lognormal CAR model in a Bayesian 

framework was used to simultaneously model correlated crash counts, which accounts for spatial 

autocorrelation and correlations among different crash counts by severity and type levels at the 

zonal level. Then, it was compared to the corresponding aspatial model. It was found that the 

multivariate models performed better than the corresponding univariate models in both crash type 

and severity models in terms of goodness-of-fit measures. In addition, the spatial univariate and 

multivariate models outperformed the aspatial counterparts. This indicates the importance of 

incorporating both the heterogeneity effects and spatial correlation effects in the zonal level 

analysis. 



115 

 

The results revealed that there are significant correlations between the total random effect 

(heterogeneity and spatial effects) for all response variables, indicating a strong shared 

geographical pattern of risk between each of these variables. In terms of the crash type model, the 

correlation is very strong between pedestrian and bicycle crashes, yet it is relatively less strong 

between single-vehicle and pedestrian or bicycle crashes. Furthermore, several contributing 

factors, including the traffic volume, road characteristics, socio-economics and demographics, and 

land-use factors have a significant influence on different crash severities and types. In contrast, the 

variable estimates and statistical significance across different models are varying. 

As practical implications of the findings of this study, Chapter 8 illustrates the overall crash 

distributions within the study area using the crash hot zone screening results. The results revealed 

some of HAYs are exposed to all of crash types, while others show only motorized and/or non-

motorized-related crashes, and a few were solely highly exposed for only one type of crash. This 

would assist decision makers and practitioners with a useful implication to understand risks related 

to the HAYs most affected by these crashes. 

Overall, this dissertation provides a comprehensive understanding of traffic safety impacts at 

the macroscopic level and their contributing factors in Riyadh, Saudi Arabia. The findings of this 

study could help and guide decision makers and practitioners in selecting more appropriate safety 

countermeasures and in implementing appropriate education and effective campaigns, as well as 

assist in the development of engineering countermeasures, traffic control, and management policy 

and applying law enforcement to enhance traffic safety policies in Riyadh. This would improve 

traffic safety with the aim toward achieving the goal of the KSA’s National Transformation 

Program 2020 relative to reducing traffic fatalities. It would be expected that the results would 
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also be beneficial to other countries in the region with the same socioeconomic structure and 

characteristics. 
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APPENDIX: TRAFFIC CRASH REPORT 
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Table 9-1: Traffic crash report 

Time and 

Date 

Time of Min Hr Date AM PM Crash plan 

Crash        

 

  

Call Order      

First police arrival      

Report closed      

location City/district/neibourhood      

Latitude      

Longitude       

Street name and number      

Closest street or 

landmark 

     

Distance from landmark  Direction  KM road 

board  

 

Vehicle(s) No. 

 

direction Plate no. Reg. 

Type 

Manufac. 

Country  

Issue 

dept. 

color Model Make Type Acc point status Name No. sign 

A B C D     

1                  

2                  

Person(s) No. Name Nationa. Id Type Health 

Sta. 

% Ins. 

Com. 

No. Exp. 

Date 

Lic. 

type 

 

1           

2           

Crash 

Summary 

 

Witness  Name ID No  

1   

2   

 Surface cond. Light reason Acc 

place 

W. Acc 

type 

Prv. 

Dmg 

Pub 

dmg 

 

Dry Wet Clear Dark       
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