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ABSTRACT

The Aquarius/SAC-D joint international science mission, between the National

Aeronautics and Space Administration (NASA) of United States and the Argentine Space

Agency (Comision Nacional de Actividades Espaciales, CONAE), was launched on a polar-

orbiting satellite on June 10, 2011. This mission of discovery will provide measurements of

the global sea surface salinity, which contributes to understanding climatic changes in the

global water cycle and how these variations influence the general ocean circulation. The

Microwave Radiometer (MWR), a three channel Dicke radiometer operating at 23.8 GHz

H-Pol and 36.5 GHz V-& H-Pol provided by CONAE, will complement Aquarius (NASA’s

L-band radiometer/scatterometer) by providing simultaneous spatially collocated environ-

mental measurements such as water vapor, cloud liquid water, surface wind speed, rain rate

and sea ice concentration.

This dissertation focuses on the overall radiometric calibration of MWR instrument.

Which means establishing a transfer function that relates the instrument output to the

antenna brightness temperature (Tb). To achieve this goal, the dissertation describes a mi-

crowave radiative transfer model of the instrument and validates it using the laboratory and

thermal-vacuum test data. This involves estimation of the losses and physical temperature

profile in the path from the receiver to each antenna feed-horn for all the receivers. As the

pre-launch laboratory tests can only provide a simulated environment which is very different

from the operational environment in space, an on-orbit calibration of the instrument is very

important. Inter-satellite radiometric cross-calibration of MWR using the Naval Research
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Laboratory’s multi-frequency polarimetric microwave radiometer, WindSat, on board the

Coriolis satellite is also an important part of this dissertation. Cross-calibration between

two different satellite instruments require normalization of Tb’s to account for the frequency

and incidence angle difference between the instruments. Also inter-satellite calibration helps

to determine accurate antenna pattern correction coefficients and other small instrument

biases.
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CHAPTER 1
INTRODUCTION

”The cycling of water and energy through the atmosphere and oceans is crucial to life

on Earth. Yet the ties among the water cycle, ocean circulation, and climate are poorly un-

derstood. Interestingly, global measurement of Sea Surface Salinity (SSS) over time provides

a clear way to resolve these relationships. By tracking SSS we can directly monitor variations

in the water cycle: land runoff , sea ice freezing and melting, evaporation and precipitation

over the oceans. Global SSS data will allow us to create unprecedented computer models

that bridge ocean-atmosphere-land-ice systems, with the goal of predicting future climate

conditions.” [3]

Existing SSS data is much too sparse in space and time to study the climatic interac-

tion between ocean and atmosphere. The current global knowledge of SSS from ships and

buoys is shown in the left panel of Fig. 1.1 [4]. This data is acquired over 125 years and

is limited mostly to summertime observations in shipping lanes. The Aquarius mission is

designed to provide complete global observations of SSS once every 7 days from a satellite

orbiting the earth 657 kilometers above the surface. It will deliver a monthly global map of

SSS with 150 km spatial resolution and 0.2 (PSS-78, practical Salinity Scale 1978) accuracy

1. Top right panel of Fig. 1.1 is a simulated example of Aquarius SSS data obtained over

7 days. The perspicuous advantage of the mission is evident in the lack of observations in

existing historic SSS data shown in the bottom right panel.[5]

1Achieve SSS accuracy of 0.2 psu: this is about a ”pinch” (i.e., 1/8th of a teaspoon) of salt in 1 gallon of
water
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Figure 1.1: Historical SSS Measurements compared with Aquarius measurements.

The remote-sensing of SSS is achieved by measuring microwave radiation (in terms

of brightness temperature, Tb) emitted by salty ocean. The variation of salinity, changes

the dielectric properties of sea water which in turn modulates the low frequency (L-band)

microwave emission from the ocean surface. The heart of the Aquarius instrument is a ra-

diometer which measures L-band (1.413 GHz) Tb. There are several error sources which

makes accurate SSS measurement very challenging from space. From the pre-launch error

analysis using simulated data it is discovered that the largest single error source is rough-

ness effects due to wind and waves [6]. Also the presence of rain and sea-ice contributes

a significant amount of measurement uncertainty. The L-band frequency used by Aquarius

radiometer is not suitable for measuring above mentioned geo-physical error sources. To this
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end another payload of the SAC-D satellite, the Microwave Radiometer (MWR) developed

by CONAE becomes invaluable. The MWR will make Tb measurements in K(23.8 GHz) and

Ku(36.5 GHz) band frequencies in an overlapping swath pattern with Aquarius. From these

measurements rain, wind and sea ice could be measured. The MWR data will be used by

Aquarius data processor for flagging rain and sea ice, and also for a rain and wind-speed

correction algorithm.

This dissertation discusses the process of converting raw instrument measurements

(counts) to an antenna main-beam Tb measurement for the CONAE MWR. The overall

radiometric calibration process spans over pre- and post-launch periods. The pre-launch

radiometric calibration algorithm development involved analysis of data from instrument’s

calibration tests and thermal vacuum chamber (TVAC) test. During the post-launch com-

missioning phase of the instrument an antenna pattern correction algorithm is developed

by comparing near simultaneous collocated Tb measurements by the WindSat radiometer

onboard Coriolis satellite. It has been shown that the calibration algorithm is capable of

eliminating instrument self-emission and the antenna pattern effects, and the measured Tb

is able to produce preliminary geo-physical retrievals.
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CHAPTER 2
AQUARIUS/SAC-D MISSSION AND SAC-D MWR

This chapter provides a brief overview of the Aquarius project and points out the im-

plications of MWR. Keeping in mind that MWR is an auxiliary instrument for the Aquarius

mission and recognizing that its design is greatly influenced by the Aquarius instrument,

the measurement geometry for both the instruments are presented together. Finally the

MWR hardware is described in brief along with some information on instrument’s along and

cross-track resolution.

2.1 Aquarius Mission

The Aquarius/SAC-D Mission (AQ) is a cooperative international scientific mission

developed between the National Aeronautics and Space Administration (NASA) of United

States of America (USA) and the Comision Nacional de Actividades Espaciales (CONAE)

of Argentina, which includes instrument contributions from Italian Space Agency (Agenzia

paziale Italiana, ASI), French Space Agency (Centre National d’Etudes Spatiales, CNES),

and the Canadian Space Agency (CSA)[7]. The satellite bus (SAC-D service platform) was

provided by CONAE and NASA provided the launch. SAC-D spacecraft was launched (us-

ing a Boeing Delta-II vehicle) on June 10th, 2011 from the Western Test Range (WTR) at

Vandenberg Air Force Base (VAFB), California. The Aquarius Mission focuses on under-

standing the interactions between global water cycle, ocean circulation and climate through
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Figure 2.1: Aquarius mission instruments on SAC-D spacecraft

the measurement of Sea Surface Salinity (SSS). Fig. 2.1 shows the SAC-D space-craft in

stowed and deployed configuration. The left hand side of the Fig. 2.1 is a cartoon depicting

the stowed SAC-D in side Delta II rocket flaring at launch. Sketch of a human body is

provided by the side to give an estimate of the size of the observatory. The right hand side

of this figure is showing fully deployed Aquarius antenna reflector and SAC-D solar panels

during mission mode. The X,Y,Z axes triads are pointing to the flight direction, anti-sun

direction and the nadir direction respectively. All the science instruments are pointed out

on the spacecraft along with their corresponding agency logos.
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The prime instrument of the mission, a L-band radiometer/scatterometer known as

Aquarius (built jointly by NASA’s Goddard Space Flight Center and Jet Propulsion Labo-

ratory), provides global measurements of salt concentration (salinity) at the ocean surface.

The Aquarius instrument comprises a passive microwave radiometer operating in the pro-

tected ”radio astronomy” frequency band at 1.413 GHz and an active scatterometer in the

space-radar frequency band at 1.26 GHz [7]. The measurement of L-band Tb by the Aquarius

radiometer is the primary means for remote sensing SSS, and the ocean backscatter mea-

surements from the scatterometer provides a critical roughness correction for the passive SSS

retrievals. In addition, the Microwave Radiometer (MWR, provided by CONAE), operating

at K(23.8 GHz)/Ka(36.5 GHz) bands, measures the surface Tb in the frequency range sensi-

tive to geophysical parameters over the ocean such as surface wind speed, rain rate, water

vapor, cloud liquid water, and sea ice. These geophysical products are useful to the Aquarius

microwave radiometer for key Tb corrections required to derive accurate sea surface salinity

estimates.

2.2 MWR Sensor Geometry

The Aquarius instrument consists of three L-band horn antennas sharing a common

parabolic reflector. The secondary (reflected) antenna pattern of these three horns produce

three elliptical foot-prints (yellow) on the ground in a cross-track direction (away from the

Sun) with respect to the flight direction as shown in the 3D cartoon in Fig. 2.2(a). With the
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Figure 2.2: MWR sensor geometry.
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motion of the satellite these three beams produces a continuous swath along track on the

anti-sun side of the orbit, which is shown in the right hand panel of Fig. 2.2(b). The two

swath edges are marked by two red-lines in Fig. 2.2(a). The choice of one-sided (anti-sun

side) swath is to avoid reflected solar intrusion off the ocean surface in the Aquarius main

beams. Being in a sun-synchronous orbit the Sun never crosses the orbit plane thus Aquarius

is always protected from main-beam solar intrusion with this particular swath geometry.

The CONAE MWR is designed to make measurements in Aquarius swath with a

higher spatial resolution than Aquarius. Several trade-offs between meeting the science

requirements and practical mission constraints produced the final design of the instrument.

MWR consists of two radiometer instruments operating at K and Ka band looking aft and

forward respectively with respect to the flight direction. Each radiometer is connected to

a set of eight feed-horns arranged in two rows of four feeds which illuminate a parabolic

torus reflector as shown in Fig. 2.3. The reflectors are scaled to match the 3dB beam width

of the secondary antenna pattern at both the frequencies.The common 3db beam-width is

1.64◦, which results in Instantaneous Field of View (IFOV) with resolution of 50 Km on

ground. Each row of feed-horn produces IFOV’s lying on a conical arc on the ground. The

left-hand side panel of Fig. 2.2(b) depicts the conical geometry of MWR beams. The IFOV’s

within a conical arc, closer to the sub-satellite point along the radial direction, are at 52◦

incidence angle and those within the conical arc farther from the sub-satellite point are at

58◦ incidence angle. The right hand side panel of Fig. 2.2(b) shows the time progression

of MWR IFOVs. The forward IFOVs at 36.5 GHz are marked in red and the aft IFOVs at
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23.8 GHz are marked blue. It should be noted that there is a time lag between the forward

and aft beams in sampling the same point on the Earth. This sensor geometry produces a

swath width of 380 Km, displaced 272 Km across-track (towards the right), which exactly

overlaps with the Aquarius instrument swath.
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Figure 2.3: MWR instrument configuration.
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Figure 2.4: Schematic of the Ka band radiometer in the MWR system [1].
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Figure 2.5: MWR Timing Diagram [1].
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2.3 MWR Hardware

The MWR instrument measures four polarization states of the electromagnetic radi-

ation at Ka band. The horizontal(H) and vertical(V) polarization component of the signal

from a Ka band horn antenna is separated using an ortho-mode transducer (OMT). After

the OMT these two signal components are guided through two separate wave-guide paths

and received by two separate radiometer receivers. Fig. 2.4 shows the schematic of the Ka

band receiver. The +45◦ & −45◦ polarized channels are synthesized by cross-correlating the

V and H pol electric field signals using a hybrid coupler. Four separate detectors are used

to detect all four polarimetric channels. These measurements enable MWR to produce first

three of the Stoke’s parameters at Ka band. Stoke’s parameters are very useful in finding

ocean surface wind direction and thus to correct for wind-direction induced wind-speed es-

timation error. For K band measurements there is only one radiometer receiver and one

detector which only measure the H pol component of the antenna signal. The K band chan-

nel is mainly used to estimate the water vapor content of the atmosphere.

The whole MWR system consists of three Dicke type radiometers (one K- and two

Ka-band channels), which calibrate themselves against gain fluctuations and thermal noise

variations, by taking measurements of antenna temperature, noise (controlled) injected an-

tenna temperature and a known reference temperature. For each of the radiometer three

layers of switches are added at the front-end just after the OMTs to connect the eight feed

horns on a time-shared basis. The eight MWR beams of a given polarization are input to a

single radiometer receiver. These beams are sampled sequentially with an integration time
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of 0.24 s as shown in Fig. 2.5. The beam number indicates the feed horn at any time. The

0.24s integration period is subdivided into eight subintervals of 30 ms duration and comprises

an antenna measurement (S), an antenna plus noise measurement (S+N), and the reference

load measurement (Tc). Thus 10 ms is allocated for taking each temperature measurement.

During the last 1 ms of each of these 10 ms interval the Dicke switch connects the receiver

to the reference load to protect MWR from potential Radio Frequency Interference (RFI)

produced by the Aquarius scatterometer transmit pulses. The 0.24 s integration time of

each beam results in a beam sampling time of 1.92 s (i.e., each beam is sampled once each

1.92 s). At an altitude of 657 Km, the SAC-D satellite travels with a velocity (Vs/c) of 7.53

Km/s, which corresponds to a ground velocity (Vg) of 6.82 Km/s. At this ground velocity,

in 1.92 s beam sampling time, the beams travel an along-track distance of 13.1 Km [2]. Thus

MWR footprints have 70% overlap in consecutive along-track sampling (considering a 50 km

footprint size). However in the cross-track direction there is no overlap and the cross-track

resolution is limited by the footprint size.
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CHAPTER 3
MWR CALIBRATION : PRE-LAUNCH

A microwave radiometer is a very sensitive instrument used to measure the radiant

power of blackbody electromagnetic radiation in terms of brightness temperatures (Tb), in

the microwave region of the spectrum. In general, a microwave radiometer has two parts;

an antenna and a receiver(as shown in Fig. 3.1). The antenna collects the energy radiated

by the scene under observation and delivers it to the receiver. In modern radiometers the

receiver output is typically a digital number, called ”count”, which is proportional to the

received signal power. Thus the calibration goal for a microwave radiometer is to establish

a relation between the instruments counts and the brightness temperature incident at the

antenna aperture. For earth remote-sensing scenario, the received noise signal is very weak

and typically below the noise floor of the receiver. This calls for high precision in the

received power measurements. The total power at the output of the radiometer receiver

is the sum of several sources. Some components are external in origin and others come

from the radiometer itself. If the unwanted components are not properly accounted for,

errors in Tb calibration result. Therefore, the characteristics of the radiometer must be well

Figure 3.1: Microwave radiometer
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understood. The antenna performance needs to be known; the receiver gain and equivalent

noise temperature must be characterized, etc. All of these can be done by careful and

complete radiometer calibration.

The complete end to end calibration of CONAE MWR can be temporally divided into

pre- and post-launch time periods. In this chapter only the pre-launch calibration activities

are discussed. The first section discusses the internal calibration of the MWR receivers

and points out the need for an external calibration based on the laboratory test. Laboratory

tests to calibrate MWR receiver using external hot and cold loads are discussed in the second

section. The last section documents the details of MWR antenna switch matrix calibration.

3.1 Internal Calibration of MWR Receivers

A typical total power radiometer block diagram is shown in Fig. 3.2. Microwave radia-

tion from the object under observation propagating in unbounded medium gets transformed

into a guided electromagnetic wave in a transmission line by the antenna and sent to the

receiver. A microwave radiometer antenna is typically a broad band structure and receives

radiation from a wide frequency band. The signal strength at the receiver input is very weak

and typically at or below the noise level of the receiver thermal noise. To make measurements

of the signal strength in the desired frequency band, the first stage of the receiver consists

of a low-noise amplifier that is followed by a bandpass high gain amplifier. Next, a square

law detector is used to extract the power in the amplified signal followed by a low-pass filter
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Figure 3.2: Block diagram of a total power radiometer. There are three major components:

the band pass filter and amplifier amplifies the received radiation only over the desired

bandwidth. The square law detector’s output voltage is proportional to the power of the

input signal. The final low pass filter acts as an integrator to reduce the noise in the power

measurement.

to remove high-frequency fluctuations from the measured power. The DC component of the

output from the low-pass filter is proportional to the brightness temperature at the receiver

input for the desired microwave bandwidth. The bandwidth of the low-pass filter determines

the integration time of the measurement.

There are two fundamental error sources present in a total power radiometer receiver.

1)Finite Integration Time and Bandwidth

A microwave radiometer measurement of brightness temperature (Tb) is an estimate

of the variance of a random thermal emission signal derived from samples of the signal.

Because the number of samples is always finite, the estimate is itself a random signal.

The standard deviation of the estimate is given by the ”radiometer uncertainty equation”

∆T = KTsys/
√
Bτ , where K is an instrument specific constant, Tsys is the system noise
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temperature of the radiometer, B is its pre-detection bandwidth, and τ is the integration

time of the measurement [8]. The ”∆T” of a radiometer measurement is of fundamental im-

portance and often determines the precision with which geophysical parameters of interest

can be estimated from measurements of Tb.

2)Receiver Gain Variation

The high gain amplifiers used in radiometer receivers have temperature sensitive com-

ponents and their stability plays a critical role in a radiometer’s performance. For a total

power radiometer, the statistical uncertainty ∆T and the gain uncertainty ∆TG can be con-

sidered to be uncorrelated because that they are caused by unrelated physical mechanisms.

The total RMS uncertainty is given by [9]

∆Ttotal =
√

(∆T )2 + (∆TG)2 = Tsys

√
1

Bτ
+ (

∆G

G
)2 (3.1)

where,

G is system power gain & ∆G is the rms value of the receiver gain variation

B is the pre-detection bandwidth of the receiver

τ is the integration time

Tsys is the system noise temperature

Let us consider a radiometer with 20 MHz bandwidth (B) having an integration time

τ = 0.1 s. If we consider a 1% gain uncertainty then for a receiver with system noise

temperature of 370 K the contribution of noise uncertainty in the total RMS uncertainty is

0.26 K whereas the gain uncertainty contributes 3.70 K.
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Figure 3.3: MWR receiver block diagram with internal calibration technique. The guided radiation from the antenna

is fed into the receiver through a directional coupler. When turned on, the signal from the calibration noise diode is

attenuated and coupled to the incoming antenna signal and provides a calibration reference. The Dicke switch constantly

switches between the internal reference load (To) and the signal from the coupler output to provide another calibration

point.
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be L (ratio).The equivalent increase in brightness at the radiometer input due to the calibration noise diode is assumed

to be Tn K.
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To reduce the effect of receiver gain variation, the receiver is usually housed in a

temperature regulated chamber. Even though the gain variation is minimized by controlling

the temperature, for accurate radiometric measurements receiver gain variation/drift has to

be tracked from one integration period to the other. In MWR receivers this is achieved by

using two internal noise sources with different noise levels. One is a matched load whose

brightness temperature is its physical temperature, and the other is an active noise diode

source of known Tb. A switch (Dicke switch, named after the inventor of this type of calibra-

tion scheme) connects the receiver sequentially between two calibration loads and antenna.

Fig. 3.3 shows the implementation of this calibration technique in the MWR receiver. Signal

from antenna enters the MWR receiver through a microwave directional coupler and arrives

at the port 1 of the Dicke switch. A noise diode is turned on and off sequentially to inject

a precise amount of brightness (TN’) into the antenna brightness temperature through the

directional coupler. This noise diode brightness serves as one calibration point. After taking

measurements for antenna and antenna + injected noise, the Dickie switch connects the

reference load (To) (at port 2) to the receiver (at port 3). The reference load is a matched

wave-guide termination (no reflection, blackbody) whose physical temperature is the bright-

ness temperature. As the receiver switches between 3 states (ant, ant+noise and reference

load) sequentially, it is called a ”three state Dicke radiometer”.

Let the receiver’s equivalent noise temperature be TR and i represents the switching

state of the receiver. For example i could be equal to A(antenna look) or N(antenna+noise)

or O (reference load). The total system noise temperature detected by the receiver for the
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i-th state is given by T i
sys = (TiR + TR), where TiR is the brightness temperature for the

i-th switching state entering the noise free receiver at the reference line R. Hence the total

power entering the noise free receiver at the R-line is given by,

Pi = kT i
sysB (3.2)

where,

k is the Boltzman constant

B is the receiver bandwidth

T i
sys is the system noise temperature for the i-th switching state

The circuit diagram in Fig. 3.3 could be simplified if we consider the equivalent block

diagram shown in Fig. 3.4. We can model the MWR radiometer by inserting a calibration

block with lumped loss (transmission coefficient L) between the antenna block and the

receiver block. The shaded region of the circuit diagram in Fig. 3.4 shows the portion

included in the calibration block. Using microwave theory we can represent all the noise

generated by the calibration circuit and the receiver with a single noise temperature TREC

at the input of the calibration circuit i.e. the direction coupler’s antenna input. Then the

receiver and calibration circuit can be modeled as a series of noise free components with only

transmission coefficients. Thus for an antenna temperature Ta at the coupler input if the

radiometer count is Ca then we can write the following forward equation to relate Ca to Ta

Ca = k(Ta + TREC)BLGrecCdHvfc + Z (3.3)

where,

k is the Boltzman constant
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TREC is receiver noise temperature referenced to the coupler input B is the receiver band-

width

L is the equivalent transmission coefficient of the calibration circuit

Grec is the receiver amplifier gain

Cd is the diode detector constant

Hvfc is the transfer function of the voltage to frequency converter including the transfer

function of the post detection analog gain stages

Z is the digital and analog offsets of the receiver

Equation 3.3 can be further simplified by,

Ca = gain× Ta + offset (3.4)

where, gain = kBLGrecCdHvfc and offset = kTRECBLGrecCdHvfc + Z

Thus to apply equation 3.4 in MWR we define a calibration reference plane for the

receiver. The calibration reference plane separates the antenna and receiver and is defined

at the input of the coupler as shown in Fig. 3.5. The top left hand side panel showing a

CAD model of the MWR Ka band receiver. The top right panel shows the schematic of the

same receiver. The bottom panel is a simplified radiometer block diagram where equation

3.4 is applied for three switching states of the radiometer. The calibration reference plane is

marked by a red line in all the diagrams. In the radiometer block-diagram in Fig. 3.5, the

antenna temperature Tap after going through the antenna switch matrix becomes Tin at the

calibration reference plane. With Tin being input to the receiver the equations for the three
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Figure 3.5: (a) Computer rendering of the Ka band MWR receiver and switch matrix are

shown. The red line separates the two. (b) Schematic of the Ka band radiometer with red

line separating the switch matrix from the receiver. (c) Simplified Cal-model applied to

MWR receiver (Forward radiative transfer equations).
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switching states are

Cin = GTin +O (3.5)

Cin+n = G(Tin + Tn) +O (3.6)

Co = GTo +O (3.7)

It should be noted here as represented by equation 3.6 that the effect of turning on the noise

diode inside the receiver is represented by an addition of brightness level of Tn K at the input

of the receiver. Using equation 3.5, 3.6 and 3.7 we can solve for Tin,

Tin =
(Cin − Co)

(Cin+n − Cin)
× Tn + To (3.8)

Equation 3.8 enables us to determine Tin from the radiometer counts given To and Tn are

known. To is obtained in real time from MWR’s internal temperature sensors. Tn is measured

in laboratory using external calibration loads before launch and the assumption is it does

not during flight.
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Figure 3.6: Calibration waveguide connected to a MWR receiver during external calibration

test. The end of the ’blue’ waveguide is terminated in a matched load. A platinum temper-

ature sensor is attached to the termination. The matched termination is heated and cooled

to simulate hot and cold calibration reference.
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Figure 3.7: Radiative transfer through the calibration waveguide. The waveguide is divided into small sections. The

radiative transfer equations are solved using assumed temperature variation along the length of the waveguide.
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Figure 3.8: Assumed temperature distribution of the calibration waveguide.(a) Temperature distribution along the length

of the waveguide is shown while the warm load was connected. Temperature exponentially decays from load end to the

receiver end. (b) Temperature distribution when cold load is connected. Temperature exponentially rises from load end

to the receiver end.
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3.2 External Calibration of MWR Receivers

The main goal for external calibration is to determine Tn required for the counts-to-Tin

conversion. For this purpose the receiver and the antenna switch matrices were disconnected

at the calibration reference plane. Receiver is then connected to a calibration waveguide

terminated in a matched load. As there is no reflection from the matched load termination

it acts as a blackbody with unit emissivity. Thus the physical temperature of the termination

is equal to the brightness temperature emitted by termination towards the receiver. Thus by

heating (warm water) and cooling (liquid nitrogen) the termination external Tb sources are

created at two different noise levels. The ’hot’ and ’cold’ Tb sources cover a wide dynamic

range of Tb [77K, 330K] including the range of possible Tb observations from space. The

calibration waveguide connected to one of the MWR receiver is shown in Fig. 3.6. The

long piece of waveguide has a loss of about -0.18dB and this should be taken into account

while computing Tn. The radiometer equations 3.5-3.7 relates brightness temperatures at

the calibration reference plane to the output counts. Due to the loss in the waveguide the

Tb that arrives at the coupler input is different than the Tb generated by the matched load

termination. To accurately determine the input to the radiometer we need to apply radiative

transfer theory through the waveguide. Fig. 3.7 shows the block-diagram of the test setup

where the receiver calibration reference plane is shown with the red line. The hot/cold

load Tb’s (Th/Tc) after passing through the waveguide becomes Th’ and Tc’ at the receiver

input. Let us divide the length of the waveguide into n different sections with transmission

coefficients represented by L1 to Ln and physical temperatures represented by Tp1 to Tpn
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respectively. If the input to the waveguide is T1 and the output from the nth section be Tn+1

then it can be derived that,

Tn+1 = (
n∏

i=1

Li)T1 +
n∑

k=1

(1− Lk)Tpk(
n∏

j=k+1

Lj) (3.9)

During the calibration test only the temperature of the termination was measured. So the

waveguide loss and temperature distribution both are unknown. However from the measured

length of the waveguide we estimated the loss by assuming standard loss/unit length for silver

waveguide (MWR’s waveguides are silver coated from inside). Even though the temperature

distribution of the waveguide was not measured the temperature at both the ends were

known. Matched load termination end was measured by precision temperature sensor and

the receiver end was at the receiver internal temperature (which was controlled). Using

these two boundary conditions we assumed a ’realistic’ exponential temperature distribution

along the length of the waveguide as shown in Fig. 3.8. The left and right hand panel of the

figure are showing hot and cold waveguide terminations respectively. As you can see for the

’hot’ case the temperature at the load/termination end is higher than the receiver internal

temperature, so the temperature distribution is exponentially decaying from load end to the

receiver end. In the ’cold’ case the trend is opposite; the temperature rises exponentially

from the cold termination end to the receiver temperature on the other side. For the Ka

band H pol receiver the measured temperature of the hot termination was 330.86 K and it

was 77.4 K when cooled using liquid nitrogen. Using these two Tb’s as input (T1) to our

waveguide radiative transfer equation 3.9 we compute the waveguide output Tb to be 329.5

K and 84.8 K respectively. It should be noted that the loss affects the brightness of cold end
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more than the hot end. This is because the average physical temperature of the waveguide

loss is closer to the ’hot’ Tb. In a microwave network, if the physical temperature of a loss

is equal to the input Tb then the loss doesn’t affect the output of the network i.e. the loss

becomes transparent and the network can be assumed to be lossless with unity transmission

coefficient.
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Figure 3.10: Temperature of the internal reference load during HOT and COLD load tests (Ka band H-pol Rx)
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Figure 3.11: Counts for the internal reference during HOT and COLD load tests (Ka Band H-pol Rx)
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Figure 3.12: Noise diode deflection counts for HOT and COLD load tests. (Ka Band H pol receiver). The deflection is

higher for the cold input load compared to the hot input load case.
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With Tb values on the x-axis and corresponding measured counts on the y-axis

a least-square regression line is fitted using three points for each receiver. The x values

corresponding to the points are : 1) computed Tb values for the ’hot’ case, 2) computed

Tb values for the ’cold’ case and 3) measured value of the average To. The gain of each

receiver is readily obtained by computing the slope of the regression line (∆y/∆x). An

example is shown in Fig. 3.9.The assumption in the above calibration procedure is that the

receiver gain does not change during the cold and hot measurements. This was achieved by

maintaining the radiometer internal temperature at a controlled level. Figure 3.10 shows that

the temperature of the internal reference load varied less than 0.2 K (radiometer sensitivity

is ∼ 0.5 K) during the two tests. Figure 3.11 shows the radiometer output due to the input

temperatures of Fig. 3.10. The relationship between the count and input temperature for the

receiver is defined by equation 3.4. It is noteworthy that the radiometer counts are decreasing

for an increasing input temperature (blue) and vice versa (red). This is caused by the fact

that radiometer gain is very sensitive to internal temperature variation and it decreases with

increase in temperature and vice versa. It is clear from Fig. 3.11 that the radiometer gain is

almost identical for the first 3 minutes of the calibration test data. Therefore, only the first

3 minutes of data is averaged for the calibration test so that we can safely assume that the

gain of the radiometer did not change considerably between the hot and cold measurements.

To solve for injected noise diode temperature (Tn) we need to subtract equation 3.5 from

equation 3.6,

(Cin+n − Cin) = G(Tn) (3.10)
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Equation 3.10 is known as ”noise diode deflection equation” in the radiometer terminology.

Pertaining to the receiver calibration test Cin could be either counts due to hot load (Ch) or

counts due to cold load (Cc) connected to the receiver input. Thus there are two independent

solution of Tn possible given by,

(Cc+n − Cc) = G(Tn) (3.11)

(Ch+n − Ch) = G(Tn) (3.12)

Where, Cc+n and Ch+n are antenna counts while the internal noise diode was ’on’ for cold

load and hot load cases respectively. The injected noise diode temperature (Tn) does not

depend on the external load Tb, and we already verified that the receiver gain (G) is essen-

tially the same (except for a small drift) for both the calibration load cases. Therefore if

we plot and compare left hand side of the equation 3.11 and 3.12 they will show exactly

same number of counts, except a small drift similar to the drift in Fig. 3.11. However while

plotted in Fig. 3.12 for Ka band H pol receiver, the noise diode counts are 250 counts lower

in the HOT case compared to the COLD case. This is a non-ideal result. The small gain

difference is not the cause as the gain drift pattern (of Fig. 3.11) is not visible in the Fig.

3.12. For the Ka band H-pol receiver, the antenna + noise count for COLD case is ∼ 15500

and for HOT case ∼ 22200. If the receiver has a very small non-linearity it will be dominant

when the input is high. The nonlinearity may be expansive or compressive. What we are

seeing here is (in Fig. 3.12) the deflection count due to noise injection is less in HOT case

compared to COLD case. This suggests that the non-linearity is compressive.

In MWR the non-linearity is caused by the following components in the hardware: RF
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Amplifiers, Diode detector, Video amplifiers and Voltage to Frequency Converter (VFC). The

RF amplifiers are operated well below their 1 dB compression ratio and the video amplifiers

being consist of low THD (Total Harmonic Distortion) op-amps the non-linearity contri-

bution of these devices is negligible. The major sources of non-linearity are therefore the

diode-detector and the VFC. The square law diode detectors generally contribute ’expansive’

non-linearity while operated in the non - square-law region of the diode characteristic. On

the other hand the VFC acts compressive. Therefore, Fig. 3.12 demonstrate the domination

of VFC non-linearity over the detector non-linearity. The over-all effect is compressive. To

correct for the non-linear behavior of the receiver we need to formulate a linearizing model

function using receiver internal temperature and output counts (detected power). Unfor-

tunately, no suitable test data are available at this time to characterize the non-linearity

accurately. Because of this limitation, we have to assume that the receiver is linear over

the dynamic range of ocean observation (100K - 300K). And it only becomes significantly

non-linear when a noise diode Tb (> 270 K) is injected with an antenna temperature of ∼

300K (hot load). This assumption could be backed by the fact that a linear least-square line

is accurately fitted using the 3 points in Fig. 3.9 with minimum error. With this assumption

we can use equation 3.11 to obtain Tn which will calibrate the MWR Tb’s over ocean. If

the non-linearity is not corrected in future, the MWR will not produce accurate Tb’s over

land (> 300K). Using cold load deflection the computed noise diode brightness are given in

Table 3.1 for the three MWR receivers. The Tn values from Table 3.1 is used in equation 3.8

to determine the brightness temperature at the radiometer input (Tin) from the measured
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Table 3.1: Injected Noise Diode Tb values for MWR receivers

Tn (K)

K H-pol Ka V-pol Ka H-pol

390 274 270

counts. The only assumption here is the injected noise brightness is stable and does not

change during flight.

3.3 Antenna Switch Matrix Calibration

As described in chapter 2, in MWR system a single receiver is time-shared between eight

feed-horn antennas by means of a microwave waveguide 1x8 switching network. The total

radiation brightness (Tap) captured by any particular antenna feed horn under observation

is guided to the receiver through this switching network. The feed-horn and all successive

components in the path of the signal from antenna to the receiver have finite losses and

corresponding self-emissions, which modifies Tap. Also the reflections at the horn aperture

and leakage through the switches modify the input/output relationship of the radiative

transfer. Hence, a hardware radiative transfer model for the entire waveguide switch matrix

path from antenna aperture to the receiver is discussed. The forward model is inverted to

predict Tap from measured brightness at the input of the radiometer receiver (Tin).
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Figure 3.13: MWR K & Ka-band antenna feed-horn and switch-matrix assembly. The

receiver and antenna reflectors are not shown here. Ka band system uses OMT to guide

both V & H pol components of the incoming radiation to respective receivers. The K

band only measures H-pol component through a circular to rectangular waveguide adapter

connected to the horns. The feed horn numbers are shown; the even numbered horns are in

the top plane and the odd numbered ones are in the bottom plane for each antenna system.
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3.3.1 Front-End Hardware Radiative Transfer Model

A computer rendering of the MWR antenna system is shown in Fig. 3.13. It should

be noted that only the feed horns and the switching networks are shown, the reflectors and

receivers are not included in the figure. The Ka band antenna system uses an ortho-mode

transducer (OMT) to guide Vertical and Horizontal polarization components of the feed-horn

incident radiation through two separate waveguide paths. However for K band, a circular to

rectangular wave-guide adaptor is used to guide only the H-pol component of the incident

radiation to the receiver. After the OMT/Adaptor the guided radiation passes through three

layers of ferrite circulator switches. The ’magenta’ switches are shown in the 3D rendering of

Fig. 3.13. The three layers of the switch matrix comprise (staring from feed-horn side) four

switches, two switches and one switch respectively. Thus MWR antenna switching matrix

has all together seven switches for each channel, totaling 21 switches for all three channels (K

band H-pol, Ka band H & Ka Band V-pol). Figure 3.13 also shows the numbering scheme of

the antenna feed-horns. It is based on the location of the antenna foot-prints on the ground

with respect to the satellite sub-track e.g., horn 1 foot-prints are being closest and horn 8

are being furthest to the satellite sub-track. To compensate for the earth’s diurnal rotation,

SAC-D space-craft is yaw steered in a manner so that the K band horn n foot-prints exactly

overlaps with Ka band horn n foot-prints for every horn number n ( n = 1,2,...,8).

The antenna switch matrix for any particular channel (e.g. K-H or Ka-H or Ka-V) of

MWR could be simplified by the schematic shown in Fig. 3.14. Let us consider that horn

i is being sampled by the radiometer receiver. To guide the incident radiation Tap (in K)
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from the feed-horn to the input of the coupler (i.e. receiver input) all the ferrite circulator

switches in the path are connected in a particular orientation by sending control signals to the

individual switch drivers. The switches in horn i path are colored in ’magenta’ and the ports

are numbered in Fig. 3.14. In these three port circulator switches, switching between ports

is achieved by sending a current by the driver circuit to change the polarity of a magnetic

field sustained by a ferrite puck inside the switch. There is always a low-loss path between

any two adjacent ports of the switch. However, the way the ports are connected (clockwise

or counter-clockwise) is determined by the orientation of the magnetic field applied to the

ferrite puck. For example in Fig. 3.14, SW#1 and SW#3 are given a clockwise polarity

to establish a low loss path between port 2 to port 1 (also, port 1 to 3 and port 3 to 2 are

connected). And SW#2 is given an anti-clockwise polarity to connect between port 3 to

port 1 (also, port 1 to 2 and port 2 to 3 are connected).

An antenna acts as an impedance transformer between free-space propagating un-

bounded radiation and a guided wave inside microwave waveguide. In practice even in a well-

designed antenna there is a small amount of reflection present due to imperfect impedance

transformation at the antenna free-space boundary (i.e. at the antenna aperture). Let Γ

(unit-less ratio) be the power reflection coefficient at the aperture of horn i. Thus the guided

radiation (1 − Γ)Tap passes through the feed horn and OMT (or, waveguide adapter for

K band) loss L1, SW#3 loss Ls3, waveguide loss L2, SW#2 loss Ls2, waveguide loss L3,

SW#1 loss Ls1 and waveguide loss L4. Here Lh, L1, Ls3, L2, Ls2, L3, Ls1 and L4 are power

transmission coefficients (unit-less ratio) of the corresponding losses. The incoming radiation
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power that reaches the receiver input is given by (unit in K),

(1− Γ)LhL1Ls3L2Ls2L3Ls1L4Tap (3.13)

The switches SW#1, SW#2 and SW#3 are set to guide radiation entering horn i to the

receiver and isolate any radiation that might try to enter the receiver through other feed-

horns. It should be noted here that irrespective of the state of the other four switches in

the switching matrix free-space radiation can always find a low loss path up to the port

3 of SW#3, port 2 of SW#2 and port 3 of SW#1. So the isolation of these switches is

very important for proper functioning of the MWR antenna system. From the manufacturer

data sheets in Appendix A.1.1 and A.2.2 it is evident that the average isolation over the

bandwidth of the receiver varies between -30 dB to -35 dB, hence it is safe to assume that

the contribution from switch leakages is negligible. Even though free-space radiation from

other horns doesn’t leak through the switches, incident brightness T ′ap from adjacent horn j

finds a low-loss path through SW#3 to the aperture of the horn i. The reflection coefficient

Γ at the horn i aperture is in the order of -17 dB. For a 200 K signal the reflection is

close to 4 K, which cannot be ignored. In general, Tap and T ′ap are not correlated signals.

This is because the beam bore-sight of horn i and horn j look at scenes on earth separated

approximately 100 km apart (footprints of any two adjacent horns which share a 3rd level

switch e.g. SW#3, are separated by another horn footprint on ground i.e. |i − j| is always

2; assuming ∼ 50 km footprint size the beam bore-sight separation is ∼ 100 km). Thus the

power (in K) of the two uncorrelated signals could be added at the horn aperture as,

(1− Γ)Tap + (1− Γ′)L′hL
′
1Ls3L1LhΓT ′ap (3.14)
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The assumption in equation 3.14 is that the transmission coefficient between port 3 and port

2 of SW#3 is same as that between port 2 and port 1 (Ls3). The total brightness that arrives

at the port 2 of SW#2 finds a low loss path through port 3. This guided radiation flows

through the low loss path between port 1 and port 3 of SW#3 and gets reflected at aperture

of the horn j. This reflected signal travels further towards horn i in a way similar to T ′ap

and suffers one more reflection at the antenna-free space boundary. The double reflection

reduces the signal strength by ∼ -34 dB (-17 dB per reflection); thus, it is safely ignored in

the forward radiative transfer model. Similarly, the brightness that enters port 3 of SW#1

is also ignored. From equation 3.13 and 3.14 , the total free-space brightness that arrives at

the receiver input is given by,

{(1− Γ)Tap + (1− Γ′)L′hL
′
1Ls3L1LhΓT ′ap}LhL1Ls3L2Ls2L3Ls1L4 (3.15)

Next, thermal self-emission of all the components in the signal path needs to be consid-

ered in the radiative transfer modeling. In MWR the entire antenna switch matrix is housed

inside a temperature controlled environment. High precision platinum resistor temperature

sensors (PRT) are put on each of the front-end switches. All the feed-horns are mounted on

an aluminum plate with negligible temperature gradient ensuring all the horns (for a partic-

ular antenna system, K or Ka band) are maintained at the same temperature. There is only

one temperature sensor on the aluminum plate which represents the physical temperature

of all the eight horns for any particular antenna (K or Ka band). On orbit, The feed-horns

are exposed to cold space of temperature 2.73 K , hence they acts as thermal radiators.

The receiver is heated by active heaters attached under an aluminum plate on which all the
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microwave components are mounted. Thus there is a natural heat flow from receiver end to

the feed-horns via the waveguides and switches of the switching matrix which has no active

thermal control. To achieve the requirement of ±1o C temperature stability on orbit, this

heat-flow needs to be controlled. For this reason, a heater is put on the horn plate. Thus

a uniform temperature gradient could be established across the switching network by con-

trolling the temperatures at both ends. The temperature sensor data is obtained as a part

of MWR’s telemetry data packet and each sensor is sampled once in every 0.24 s (same as

MWR’s integration time). Let us assume that the physical temperatures of SW#1, SW#2,

SW#3 and Feed horns in Fig. 3.14 are T1,T2,T3 and T4 respectively. In MWR there are

no PRT sensors attached to the waveguides. Therefore for the radiative transfer modeling,

we will assume that the physical temperature of any waveguide in the switching matrix is

the average of the physical temperatures of the components at its both ends. For example,

in Fig. 3.14, physical temperature of L1 is 0.5(T4 + T3) K and physical temperature of L4

is 0.5(T1 + To) K etc. Here, To represents the physical temperature of the coupler at the

input of the receiver. It should be noted that in MWR there is no temperature sensor on the

coupler. Thus, To, the temperature of the internal reference load, which is measured by a

PRT sensor, is used. As all the receiver components are in close-proximity and are mounted

on aluminum plate with negligible temperature gradient, this is a very safe assumption.

The thermal self-emission from horn i has a direct and reflected (at the antenna aper-

ture) path to the receiver. If the relative electrical phase length between these two paths are
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denoted by Φ, then the contribution to the output by the feed horn i is,

(1− Lh)T4L1Ls3L2Ls2L3Ls1L4|1 +
√

(ΓLh)ejΦ|2 (3.16)

Note, however, that the feed losses are distributed over the length of the component, not

lumped at a single point. Each differential part of the loss will have its own relative phase

length associated with it. If the component is an appreciable number of half-wavelengths

long, then these phase lengths will tend to average out. There will be no net constructive or

destructive interference between the direct and the reflected emission from the feed to the

receiver input. In this case, the power in the two contributions can be added directly. The

contribution to the output by the feed is, then

(1− Lh)T4L1Ls3L2Ls2L3Ls1L4(1 + ΓLh) (3.17)

Similarly, the self-emission from the waveguide loss L1 will add in power from the direct and

reflected paths. This contribution to the output is,

(1− L1)0.5(T4 + T3)Ls3L2Ls2L3Ls1L4(1 + ΓLhL1) (3.18)

Finally, self-emission contribution of SW#3 due to direct and reflected path is,

(1− Ls3)T3L2Ls2L3Ls1L4(1 + ΓL2
1L

2
hLs3) (3.19)

The thermal self-emission of feed-horn j and the wave-guide loss L′1 both has a direct and

reflected (at the horn j aperture) path. After passing through SW#3 they both reflect at

the horn i aperture. Ignoring double reflection path, the horn j contribution to the output

is,

(1− L′h)T4L
′
1ΓL2

hL
2
1L

2
s3L2Ls2L3Ls1L4 (3.20)
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Similarly, output contribution of waveguide L′1 is,

(1− L′1)0.5(T4 + T3)ΓL2
hL

2
1L

2
s3L2Ls2L3Ls1L4 (3.21)

The self-emissions of all the components after SW#3, e.g. waveguides L2, L3, L4 and switches

SW#2, SW#1 find no single reflection path to the switch matrix output, hence the multiple

reflected paths are ignored. The direct self-emission contribution of all these components

are given by,

(1− L2)0.5(T3 + T2)Ls2L3Ls1L4

+(1− Ls2)T2L3Ls1L4

+(1− L3)0.5(T2 + T1)Ls1L4

+(1− Ls1)T1L4

+(1− L4)0.5(T1 + To) (3.22)
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The total brightness that appears at the input to the receiver (Tin) is obtained by combining

equations 3.15 and 3.17 through 3.22. It is given by,

Tin = {(1− Γ)Tap + (1− Γ′)L′hL
′
1Ls3L1LhΓT ′ap}LhL1Ls3L2Ls2L3Ls1L4

+(1− Lh)T4L1Ls3L2Ls2L3Ls1L4(1 + ΓLh)

+(1− L1)0.5(T4 + T3)Ls3L2Ls2L3Ls1L4(1 + ΓLhL1)

+(1− Ls3)T3L2Ls2L3Ls1L4(1 + ΓL2
1L

2
hLs3) + (1− L′h)T4L

′
1ΓL2

hL
2
1L

2
s3L2Ls2L3Ls1L4

+(1− L′1)0.5(T4 + T3)ΓL2
hL

2
1L

2
s3L2Ls2L3Ls1L4 + (1− L2)0.5(T3 + T2)Ls2L3Ls1L4

+(1− Ls2)T2L3Ls1L4 + (1− L3)0.5(T2 + T1)Ls1L4

+(1− Ls1)T1L4 + (1− L4)0.5(T1 + To) (3.23)

Acknowledging the fact that all the transmission and reflection coefficients are going to be

constant and not expected to change during MWR’s mission life time, the expression for Tin

can be simplified as,

Tin = gTap + g′T ′ap + aoTo + a1T1 + a2T2 + a3T3 + a4T4 (3.24)

where,

g = (1− Γ)LhL1Ls3L2Ls2L3Ls1L4,

g′ = (1− Γ′)ΓL′hL
′
1L

2
hL

2
1L

2
s3L2Ls2L3Ls1L4,

ao = 0.5(1− L4), a1 = 0.5(1− L4) + (1− Ls1)L4 + 0.5(1− L3)Ls1L4,

a2 = 0.5(1− L3)Ls1L4 + (1− Ls2)L3Ls1L4 + 0.5(1− L2)Ls2L3Ls1L4,

a3 = 0.5(1− L2)Ls2L3Ls1L4 + 0.5(1− L′1)ΓL2
hL

2
1L

2
s3L2Ls2L3Ls1L4

+(1− Ls3)L2Ls2L3Ls1L4(1 + ΓL2
1L

2
hLs3) + 0.5(1− L1)Ls3L2Ls2L3Ls1L4(1 + ΓLhL1),
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and

a4 = 0.5(1− L′1)ΓL2
hL

2
1L

2
s3L2Ls2L3Ls1L4 + (1− L′h)ΓL′1L

2
hL

2
1L

2
s3L2Ls2L3Ls1L4

+0.5(1− L1)Ls3L2Ls2L3Ls1L4(1 + ΓLhL1) + (1− Lh)L1Ls3L2Ls2L3Ls1L4(1 + ΓLh).

3.3.2 Thermal/Vacuum Antenna Temperature Cal/Val

The thermal vacuum (T/V) test for MWR was performed during a four day time-period

in the month of September, 2009 in CONAE’s Teofilo Tabanera Space Center or CETT

(Centro Espacial Teofilo Tabanera), Cordoba, Argentina. There were several goals of this

test namely: to measure the performance of the instrument’s thermal control over a wide

range of temperature variation, to check the accuracy of the thermal model of the instrument

(which is used to predict the temperature of various parts of the instrument on orbit) and

finally to perform the radiometric calibration of the MWR instrument. The radiometric

calibration test requires a ’known’ target temperature to be seen by the feed horns. For this

reason, MWR’s flight reflectors were replaced by broadband foam absorbers (Fig. 3.15(a) &

3.15(c)). These absorbers’ pyramidal geometry simulates a continuous change in dielectric

constant for incident microwave radiation and thereby absorbs it based on the principle

of tapered impedance. By steadily increasing the impedance from that of ”free space” at

the incident surface of the absorber to a high impedance, lossy material at the rear surface,

energy is progressively absorbed and attenuated through ohmic loss as it propagates through

the absorber. Hence these absorbers act as blackbody targets at microwave frequencies,
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Calibration 
Targets 

(a)

MWR Coffin 

T/V Chamber 

(b)

(c)

Figure 3.15: (a) Picture of the MWR instrument covered with thermal blanket, prepared

for the T/V test. The flight reflectors are replaced by blackbody calibration targets. The

whole instrument is put inside the coffin before taking inside the T/V chamber (Fig. (b)).

(c) There are total five temperature sensors attached at the face of the blackbody absorber

target to monitor its temperature.
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producing brightness equal to their respective physical temperatures. To have a uniform

brightness temperature over the entire target cross section the absorber was mounted on

aluminum plate with high thermal conductivity. Platinum temperature sensors were put

at four corners and at the center of the calibration target, inside the foam material near

the base of the pyramid (Fig. 3.15(c)) to measure the physical temperature. Assuming a

blackbody target with unity emissivity, the temperature measured by these sensors were used

as the brightness seen by the feed horns. There were several other temperature sensors at

the back of the absorber, on the aluminum plate, to monitor any possible thermal gradient

that might exist during the test. The MWR instrument was covered with thermal blanket as

it would be in the flight configuration. The instrument and the calibration targets were put

inside an aluminum box (MWR coffin), coated with infrared (IR) absorbing paint (Aeroglaze

Z306, Absorptive Polyurethane) in both inside and outside. This box was then placed inside

the T/V chamber as shown in Fig. 3.15(b). In the T/V chamber air was evacuated to

create a vacuum, simulating space like environment. The MWR coffin was insulated from

the chamber so that negligible conductive heat transfer was possible. Radiative heating was

performed by IR heaters inside the chamber, and the chamber was cooled by liquid nitrogen.

During the four day period of the test the minimum temperature attained by the calibration

target was 180 K. The T/V test data provides us with various combination of temperatures

at different parts of the antenna switch matrix and MWR receivers while the feed-horn were

looking at ’known’ calibration targets. This is very useful to estimate the coefficients of

equation 3.24 for each feed-horn for all receivers.
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Tin From The Model 
Tin = gTap+a0T0+a1T1+a2T2+a3T3+a4T4  

(a)

Tin From Rad Counts 
Tin = {(Cin - Co)/(Cin+n - Cin)}*Tn+To 

(b)

Figure 3.16: (a) Computed Tin from the model using assumed losses and reflection coefficients for the entire duration of

the T/V test. (b) Tin calculated from the radiometer counts during T/V test.
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Figure 3.17: Computation of antenna temperature (Tap) from radiometer counts based on the radiative transfer model

inversion. The red line is the computed Tap. The black line is the measured Tap. The model does not follow the measured

Tap very well.
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Figure 3.18: Antenna temperature (Tap) computed based on regression based model (red). The blue line is the model

based inversion algorithm which assumes losses and reflection coefficients to guess coefficients.The black line is the

measured Tap
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Before empirically estimating the coefficients, a functional verification of the hard-

ware radiative transfer model was done using the radiometer’s T/V data. To calculate the

forward model coefficients in equation 3.24 various assumptions about losses and reflections

were made. For example, standard loss value for silver waveguide -0.5117 dB/m was used as

the MWR waveguides are silver coated from inside. To get the total loss for each waveguide

section, their lengths were measured from the CAD model. The lengths of each waveguide

section for the all three channels are given in Appendix C. All the switches were assumed

to have the same insertion loss of -0.2 dB (the datasheets in Appendix A suggests that it is

smaller in practice). The reflection coefficients at the horn aperture was computed using the

VSWR (Voltage Standing Wave Ratio) values from the OMT data sheets. In the T/V test

since all the horns are looking at the same calibration target Tap and T ′ap in equation 3.24

are the same. The Tap input to the RTM was obtained by averaging all the five sensor tem-

peratures from the face of the calibration target. The coefficients g and g′ were represented

by only one coefficient g. All other temperatures To, T1, T2, T3 and T4 were obtained from

MWR’s internal telemetry data packets. Thus using equation 3.24 Tin is computed for the

entire T/V test duration. This is shown in the Fig. 3.16(a), where, the black line represents

the temperature of the calibration target (Tap) and different colored plots are Tin computed

for various feed horn paths using the RTM for Ka Band H-pol channel. Tin measured by the

radiometer (calculated using equation 3.8) is plotted in the Fig. 3.16(b). The similarity of

Fig. 3.16(a) and 3.16(b) verifies the fact that our model is able to predict the receiver input

signal with considerable accuracy. There is a larger variation among the Tin values measured
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by the radiometer compared to those obtained from the model. This is because the model

did not have accurate estimate of the different switch losses and reflection coefficients for dif-

ferent paths and also the waveguide losses were assumed to be ”standard”. The imperfection

of the model assumption is demonstrated in Fig. 3.17. Here, similar to Fig. 3.16 the target

temperature Tap is plotted using the black line. The green line represents the Tin computed

from the radiometer counts for the Ka band V pol receiver, Horn# 1. Using this value of

Tin and inverting equation 3.24, Tap is solved and plotted in Fig. 3.17 using the red line. As

we can see the red plot does not exactly follow the black plot. Thus a better estimate of

the forward model coefficients are required. In Fig. 3.17 the switch matrix temperatures are

plotted using blue lines and the receiver internal temperature is represented by a magenta

line. As we can see, because of the active thermal control of the MWR instrument there is

a very high correlation among the switches and horn plate temperatures. Therefore for a

regression based algorithm these temperatures fails to become an independent estimator of

Tap . The following form of the regression model is assumed,

Tap = b1 + b2Tin + b3T
2
in + b4To + b5Tav (3.25)

Where, Tav = (T1 + T2 + T3 + T4)/4

The motivation behind the quadratic term is to correct for the small non-linearity of the

receiver observed during the receiver external calibration tests. The coefficients b1 to b5 were

estimated for each feed-horn path and for all receivers. Selected regions of the T/V data

were chosen for the regression so that the coefficients do not get biased by the temperature

plateaus in the data. The temperature of the black-body target was used as Tap to train
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the model. Tin was computed using counts and all other temperatures were obtained from

MWR’s internal telemetry. The Tap computed from the regression based algorithm (red line)

is plotted in Fig. 3.18. The blue line in the same plot is the forward model inversion based

algorithm (v1.0) which assumed nominal values of losses and reflections. From Fig. 3.18 it is

clear that the regression algorithm matches the measured antenna temperature (black line)

much better than the previous algorithm.This version of the calibration algorithm is v2.0

There are several limitations of this regression based Pre-Launch algorithm (v2.0).

The assumption of the antenna temperature (Tap) equal to the physical temperature of the

absorber is only valid if the emissivity of the absorber target is unity. This assumption was

never verified by any laboratory test. It was also assumed that the feed-horn only capturing

radiation from the target absorber, the effect of feed-horn spill-over in the T/V chamber was

not considered. Finally, it was assumed that the brightness of the noise diode was constant

and equal to the laboratory measurement. Because the physical temperature of the noise

diode varied during the T/V test, this may have caused a small change in the diode Tn,

which was not considered. Unfortunately, the stability of the noise diode was not measured

over temperature.
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CHAPTER 4
MWR CALIBRATION : POST-LAUNCH

As mentioned in the chapter 3, there are several limitations of the ”Pre-Launch Algo-

rithm”. The assumption of the antenna temperature (Tap) equal to the physical temperature

of the absorber is only valid if the emissivity of the absorber target is unity. This assump-

tion was never verified by any laboratory test. It was also assumed that the feed-horn only

capturing radiation from the target absorber, the effect of feed-horn spill-over in the T/V

chamber was not considered. Furthermore, no end to end Tb calibration was done in the lab-

oratory using the flight reflectors. MWR’s reflectors are made of pure metallic aluminum.

This eliminates the problem of them being emissive [10, 11].Therefore no separate laboratory

test was done to characterize reflector emissivity. The pre-launch anechoic chamber tests to

determine MWR’s antenna patterns were done only over a restricted range of ±40o azimuth

and ±30o elevation angles. This is not sufficient to formulate an accurate antenna pattern

correction algorithm. Also, irrespective of the knowledge of the entire 4π steredian antenna

pattern, it is almost impossible to simulate the space environment in laboratory to estimate

the contributions of far side lobes and spill overs in the measured antenna temperatures.

Finally, it was assumed that the brightness of the noise diode was constant and equal to the

laboratory measurement. Because the physical temperature of the noise diode varied during

the T/V test, this may have caused a small change in the injected Tn, which was not con-

sidered. Unfortunately, the stability of the noise diode was not measured over temperature.

In this chapter, post-launch calibration of MWR is discussed. On-orbit calibration
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is necessary to estimate accurate antenna pattern correction (APC) coefficients and other

residual instrument biases. The first section describes the inter-satellite calibration using the

polarimetric radiometer WindSat, on board Naval Research Laboratory’s Coriolis satellite.

WindSat and MWR shares similarities in orbit ground track and radiometric frequencies,

enabling the possibility of obtaining a large number of collocated radiometric measurements

which could be easily compared. Also, WindSat mission, to investigate the use of microwave

radiometers to measure both wind speed and direction over the ocean, is extremely demand-

ing on the quality of the calibration and the sensor had commensurate care applied to its

calibration.

4.1 Inter-Satellite Calibration With WindSat

4.1.1 Choice of WindSat

WindSat is a polarimetric microwave radiometer developed by the Naval Research

Laboratory Remote Sensing Division and the Naval Center for Space Technology (NCST) for

the U.S. Navy and the National Polar-orbiting Operational Environmental Satellite System

(NPOESS) Integrated Program Office (IPO) as a risk reduction mission for NPOESS [12].

It was launched on January 6, 2003 on board the United States Air Force (USAF) Coriolis

satellite in an 840 km near circular sun-synchronous polar orbit. WindSat comprises 22

channels operating at 5 frequencies: 6.8, 10.7, 18.7, 23.8, 37.0 GHz, of which the 10.7-, 18.7-,
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Table 4.1: MWR and WindSat Similarities

Parameter WindSat MWR

Altitude 840 Km 657 Km

Eccentricity 0.00134 0.00120

Orbit Inclination 98.7◦ 98.01◦

Ascending Node 6 p.m. 6 p.m.

6.5, 10.7, 18.7, 23.8 23.8 GHz (H)

Channels
& 37 GHz (V,H) & 36.5 GHz (V,H)

Swath Width ∼ 950 Km ∼ 380 Km

Earth Incidence

Angle
53◦ 52◦ & 58◦

and 37.0-GHz channels are fully polarimetric (V/H, ±45o, and left- & right-hand circular

polarized) with incidence angles ranging from 50o to 55o. This conically scanning instrument

has a forward-looking swath of approximately 950 km and an aft-looking swath of about

350 km. WindSat shares similarities with MWR in satellite groundtrack and radiometric

frequencies. Both the sensors fly in sun-synchronous orbit with similar inclination angles and

eccentricities. They also share the same local equatorial crossing times for ascending (6 p.m.)

and descending (6 a.m.) nodes. Although the viewing angles are different, the 3 channels

of MWR are a subset of the WindSat channels. Moreover, the WindSat swath is much

wider ( 950 Km) than the MWR swath ( 380 Km), which allows considerable radiometric

collocations between the two sensors. Table 4.1 lists the similarities between MWR and

WindSat [2].
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(a) (b)

Figure 4.1: STK Simulation of the (a) ascending and (b) descending collocations between MWR (green) and WindSat

(magenta) swaths. The red colored points show corners of collocated 0.5o resolution boxes.[2]
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Figure 4.2: 0.5o × 0.5o collocation boxes between MWR and WindSat in ∼ 45 hours as simulated in STK.[2]
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In the pre-launch time period the orbits of the two satellites were simulated in

Satellite Toolkit (STK) software [13]. SAC-D, orbiting at a lower altitude than Coriolis,

has a higher velocity and therefore, laps the Coriolis satellite in approximately 45 hours and

36 mins (lap time) [2]. For the simulation if we start with zero orbital phase between the

two satellites, as SAC-D begins to lead Coriolis, the ground-tracks gradually phase out to

a maximum value and then again phase in. When the temporal spacing between the two

satellites is exactly half of an orbit period (∼ 45 min), the ground-tracks are maximally

out of phase. It was also observed that it takes about 57 days for the satellites to become

collocated at approximately the same point on the surface of the earth. This orbit repeat

period consists of ∼ 30 lap times i.e., after SAC-D laps Coriolis 30 times in approximately

57 days, the ground tracks will repeat [2].

The STK simulations also suggested that MWR has a significant swath overlap with

WindSat. This will provide many spatial/temporal collocations, required for the post-launch

radiometric calibration of MWR using WindSat as a reference. The inter-satellite spa-

tial/temporal radiometric collocations were evaluated by simulations using Satellite Toolkit

(STK) software. The collocations were observed in a 0.5o resolution earth grid, restricted

between ±50o latitudes, with a ±45 min separation window. Fig. 4.1 shows the ascending

and descending collocations between MWR (green) and WindSat (magenta) swaths. The

red colored points show corners of collocated 0.5o resolution boxes. Fig. 4.2 shows the col-

location swath coverage in ∼ 45 hours. There are about 19,000 (0.5o lat/lng boxes within

±50o lat., ±45 min window) collocations in a 45 hour period. The swaths have maximum
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collocation when the ground-tracks of the two satellites are in-phase and they have minimum

collocation when the ground-tracks are out of phase [14].

4.1.2 Radiative Transfer Modelling

Inter-satellite calibration utilizes satellite observations that are collocated spatially &

temporally. In the simplest sense, if two radiometers of identical design made an observation

over the earth at the exact time and space, difference in Tb should reflect the radiometric

calibration bias between the satellites. Unfortunately, for radiometers of different design

the situation is more complicated because the scene brightness varies with the observing

frequency and viewing geometry (primarily earth incidence angle or EIA); therefore, nor-

malization between the sensors is required, before estimating the radiometric bias between

the satellites. In the context of MWR and WindSat, since MWR channels are a subset of

WindSat channels, there is no need for Tb normalization due to observation frequency differ-

ence. However, due to the EIA difference between MWR beams and WindSat normalization

of Tb is required before comparison.

The method used here for this normalization utilizes microwave radiative transfer the-

ory to translate the measurement of WindSat to MWR’s viewing parameters. This tech-

nique uses the double-difference of theoretical Tb difference minus the observed Tb difference

bwtween the two instruments, which minimizes the impact of the Radiative Transfer Model

(RTM) used. The need for a well predicted theoretical Tb adds constraints to the nature
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of the observed scene where this comparison could be done. Global Ocean is chosen for

its homogeneous nature and the availability of accurate ocean surface emissivity models.

Also the experiment is done for ”clear sky” conditions where there is negligible atmospheric

contribution to the observed Tb. The RTM used here is NASA’s Precipitation Measurement

Mission (PMM) Science Team’s Inter-Calibration Working Group’s (A.K.A. XCAL) RTM

that uses a combination of surface models developed by Meissner and Wentz [15], Elsaesser

[16], Wilheit [17], Hollinger [18], and Stogryn [19] for ocean isotropic emissivity (ignoring

small wind direction effects) to account for frequency and incidence angle. An in-depth dis-

cussion of radiative transfer theory can be found in Ulaby, Moore and Fung [9] and Elachi

[20].

For ”clear-sky” ocean scenes used in our calibration, the brightness temperature is

dominated by the surface emission. The XCAL emissivity (ε) model requires sea surface

temperature (SST), wind speed (WS), salinity, frequency and incidence angle as inputs. It

calculates the isotropic ocean surface emissivity and ignores small wind direction effects,

which were investigated and found to average to zero globally and have negligible effect

on the relative biases. In the frequency range of our interest 22-37 GHz (for this inter-

comparison) and for EIA between 52o to 58o, the sensitivity of surface emission to WS is

almost an order in magnitude greater for H-pol compared to V-pol. There is high confidence

in these RTM calculations over wind speed based upon excellent wind speed retrievals com-

pared to ocean buoys reported by Wentz [21]. The strongest variation in the ocean radiance
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with environmental parameters is associated with SST. In EIA range of interest the V-pol

exhibits higher sensitivity to SST compared to H-pol.
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Figure 4.3: Frequency spectrum of top-of-the-atmosphere brightness temperature (Tb) as seen by a downward looking

radiometer at 53o incidence angle for three different columnar WV densities ∼ 6 mm (red), ∼ 20 mm (green) and ∼ 70

mm (blue) for a fixed ocean surface conditions: wind speed 5 m/s, Sea Surface Temperature 300 K and salinity 36 ppt.

Even though atmospheric emissions are not polarized, greater dynamic range of Tb is observed at H pol (panel (b))

compared to V-pol (panel (a)) due to surface reflection modulation. The Tb’s peak up at 22.2 GHz WV resonance line.
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Rosenkranz models for water vapor (WV) [22], cloud liquid water (CLW) [23],

oxygen (O2) [24] and nitrogen (N2) [25] absorption in the atmosphere are used to calculate the

atmospheric absorption coefficients. The largest contribution to the atmospheric absorption

in the 18 GHz - 37 GHz frequency range comes from water vapor. For a set of oceanic

surface parameters, WS = 5 m/s, SST = 300 K, EIA = 53o, and salinity = 36 ppt, Fig.

4.3(a) & 4.3(b) illustrates the top of the atmosphere apparent Tb spectrum (6 to 37 GHz)

for 3 categories of columnar WV low (∼ 6 mm), medium (∼ 20 mm), and high (∼ 70 mm)

for V- & H-Pol, respectively. Our model captures the WV absorption for V & H-Pol, with

H-Pol having the expected larger dynamic range than V-Pol, reflecting larger Tb differentials

between the three WV categories. The absorption coefficient is low for the low frequencies,

peaks at 22.2 GHz and drops again before rising monotonically for frequencies higher than 33

GHz. For the simulation in Fig. 4.3, CLW is assumed to be zero mm. Even though CLW has

a significant effect on the Tb simulation, for calibration purposes, we usually look at ”clear

sky” scenes with very low CLW (CLW < 0.1 mm) to avoid uncertainties in simulated Tb’s.

There is extremely strong O2 absorption signal near 60 GHz, which does not affect the inter-

calibration analysis, as our radiometer channels are far removed from that frequency. Thus,

WV and CLW are the two atmospheric parameters that significantly affect 10.7 to 37 GHz

frequency emissions. Hence, over the range of frequencies of interest, these two parameters,

along with SST and wind speed are the four geophysical parameters that significantly impact

the RTM modeled Tb.

The environmental inputs to the RTM are obtained from the ancillary data (GDAS),
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which provides model outputs at 0000, 0600, 1200 and 1800 GMT and on a 100 km (1o×1o)

grid. These data include the atmospheric profiles of various parameters at different pressure

levels as well as columnar cloud liquid water, sea surface temperature, and ocean wind

speed at 10 m height. The atmosphere is divided into 100 layers of 200 m thickness each;

therefore, the atmosphere is modeled up to a height of 20 km, which extends beyond the

height of the tropopause [26]. Furthermore, the air in the atmosphere above the tropopause

is extremely rarified and does not significantly affect the apparent Tb. Thus, the RTM

adequately models the entire extent of the atmospheric contribution to the radiometer Tb.

The atmospheric profiles from the ancillary data are interpolated to the heights of the 100

layers in the RTM, using a piece-wise linear distribution for temperature and piece-wise

exponential distributions for pressure and water vapor. The lapse rates of the temperature,

pressure and water vapor have significant differences between the upper and lower layers for

some cases. Thus, generating a single fit for the entire vertical profile would have resulted

in large re-sampling errors for these cases. Therefore, piecewise interpolations were used to

adequately represent the non-uniform variation of environmental parameters in the different

layers. A uniform distribution is used for cloud liquid water, and the heights of the cloud top

and bottom are obtained from ocean climatology based on the ENVIMOD model developed

by Wisler and Hollinger [27]. These environmental parameters are matched-up with the

mean Tb observations for each 1o lat-lon box and are used to calculate the predicted Tb for

that box.
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4.1.3 Datasets

The available Tb data and the ancillary (GDAS) datasets are all in different formats

and varying temporal and spatial resolution.To enable inter-comparison between WindSat

and MWR their respective datasets are mapped into a common Latitude/Longitude grid on

earth. The ancillary data (GDAS) required as input to the RTM is also mapped to the same

grid points.

4.1.3.1 WindSat Data

The WindSat data product used for the on-orbit calibration of MWR is the WindSat

Sensor Data Record (SDR). The SDR file contains calibrated, collocated, averaged brightness

temperatures for all WindSat channels. The file is composed of data records spaced in time

for every fourth 37 GHz V/H measurement along scan and every scan along track. This

results in approximately a 12.5 × 12.5 km grid locally. This Tb product includes antenna

pattern correction, (including spillover) and corrections for polarization rotation angle (PRA)

variations, which change the polarization basis of the antenna. The data from each frequency

band are then resampled to the 37 V/H locations. The data are then averaged to a common

spatial resolution. The swath of the SDR data is defined as the common swath of all channels

at 10.7, 18.7, 23.8 and 37.0 GHz.[28]

For our analysis we only use data from 23.8 GHz H-pol and 37.0 GHz V/H-pol channels.
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The raw sensor Tb’s are averaged spatially into 1o boxes, which typically have 50-100 samples.

For quality control purposes, these boxes are then filtered to remove outliers using the

standard deviation of these Tb measurements. Since high standard deviations are indicative

of nonhomogeneous environmental conditions, including weather fronts with rain and small

island contamination, these boxes are removed when standard deviations exceed 2 and 3 K

for vertical and horizontal polarizations, respectively. For ocean observations, further editing

is applied at all frequencies based on the upper limits of brightness temperatures expected

from rain-free ocean, and a conservative land mask is also applied to filter out nearby land

pixels. Apart from these filters, we also filter ocean data based on SDR ”Surface type” flag.

4.1.3.2 MWR Data

MWR’s binary data packets are multiplexed with other three instrument data streams,

viz. DCS (Data Collection System), NIRST (New InfraRed Sensor Technology) and ROSA

(Radio Occultation Sounder for Atmosphere) on SAC-D space-craft by the PAD (Data Ac-

quisition and Processing Subsystem) and transmitted down to the ground station. After a

successful downlink PAD packets are checked for CRC error by the ground processing sys-

tems and dumped into a storage server following proper timestamp and naming conventions.

From this binary data dump MWR frames are parsed to produce raw MWR serial data

stream. This data does not contain any geolocation information, hence it is not suitable

for inter-satellite calibration. CONAE’s ground processing system merges SAC-D naviga-
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tion data (satellite ephemeris) with the raw MWR instrument serial data stream to produce

MWR Level 1A data (Appendix F.1). This L1A data reports radiometer samples (counts)

for every 240 ms, where all the feed-horn measurements are time multiplexed (Fig. 2.5). This

dataset does not contain calibrated Tb measurements and location of antenna foot-prints on

ground for each feed-horn. The calibrated Tb measurements along with individual foot-print

locations for feed-horns are provided in the MWR Level 1B (Appendix F.2) dataset. The

form of this data is suitable for inter-satellite calibration and comparison. However, during

the early phase of mission and especially in the pre-launch period, the algorithm for produc-

ing calibrated Tb was not finalized. Therefore CFRSL has produced an experimental dataset

in MATLAB binary (.mat) format for internal cal/val purposes and for the purpose of defin-

ing the final counts to Tb algorithm coefficients. This CFRSL L1 dataset (Appendix F.3)

is produced by gathering the MWR serial data from CONAE L1A files, then applying the

CFRSL calibration algorithm to converts counts to Tb and finally attaching the geolocation

information read from the CONAE L1B files. The data is grouped separately for three re-

ceivers and for individual feed horn. A detail description of this dataset is given in Appendix

F.3. This data is used for the on-orbit calibration of MWR discussed in this dissertation. It

should be noted that CONAE L1B is the official MWR brightness temperature data product

which is currently implementing the CFRSL Tb calibration algorithm.

The raw sensor Tb’s are gridded into 1o boxes by treating each feed horn for each re-

ceiver separately. This results in 8 feeds × 3 receivers or 24 separate radiometer channels
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being individually collocated with WindSat 1o boxes. The RTM is run separately for each

of this 24 radiometer channels.

4.1.3.3 GDAS Data

The ancilliary dataset used here is the NCEP (National Centers for Environmental

Prediction) FNL (Final) Operational Global Analysis. This product is from the Global Data

Assimilation System (GDAS) that continuously collects observational data from the Global

Telecommunications System (GTS), and other sources, for many analyses. The FNLs are

made using the same model that NCEP uses to create Global Forecast System (GFS). From

this point forward these data will be addressed as GDAS. GDAS is prepared operationally

every six hours on a 1o × 1o lat/lon grid. The grid points are centered at integer values

of lat/lon points, including latitude grids at 90oS, 0o and 90oN, resulting in 181 x 360 grid

boxes. The atmospheric profile data are provided in 26 pressure levels from 1000 mb to 10

mb; but for input to our RTM, we only use the first 21 levels between pressures of 1000 mb

and 100 mb. Out of a plethora of GDAS environmental parameters we use the following:

height, temperature and relative humidity profiles, sea surface temperature, columnar cloud

liquid water and the u- and v-components of 10 meter wind speed.
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4.1.4 Inter-Satellite Radiometric Calibration Method

The inter-satellite radiometric calibration method involves collocating 1o brightness

temperature grids with ancillary data. The 1o × 1o Tb grids over ocean are generated per

orbit basis for each sensor (MWR & WindSat), for each radiometer channel. The average

time of all the observations falling in an one-degree box is assigned as the observation time of

that box. There are four environmental parameter file per day, generated at 00, 06, 12 and 18

hours Greenwich Mean Time (GMT). A file with time within ±3 hours of the box observation

time is chosen for collocation. Let us consider that the average Tb for a particular channel,

observed by a sensor in a 1o box, is T obs
b . The RTM is run using the collocated environmental

parameters and given sensor parameters (frequency, incidence angle and polarization). If the

RTM output Tb is represented by T rtm
b , then the single difference bias (BSD) is computed as,

BSD = T obs
b − T rtm

b (4.1)

Ideally, for all the radiometer sensors, we expect BSD statistic to be normally distributed

with zero mean. Since the RTM input parameters are only an estimation of the true geo-

physical scene under observation and the RTM (physics and absorption coefficients) is not

a perfect simulator, absolute biases may be present in the simulated brightness tempera-

tures. Therefore, a nonzero mean of BSD in equation 4.1 doesn’t necessarily points to an

absolute calibration error. Even though magnitude of BSD does not help us estimating abso-

lute calibration errors, BSD can be further analyzed to determine if the sensor is consistent

with itself. For example, BSD is checked for possible correlation with several instrument
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and flight parameters: scan position, solar heating (Sun beta angle), orbit phase, distance

from landmass, ascending/descending node time (for sunsynchronous satellites) etc. If a

significant correlation is found, a correction is introduced before considering the instrument

for inter-calibration. This technique has been successfully demonstrated for TMI solar bias

correction in [11] and [29].

The limitations of RTM are greatly overcome by the pairwise comparison of BSD’s

from two different satellite sensors. This technique is called ”Inter-Satellite Calibration”. In

this method, the bias for an arbitrary sensor A with respect to another sensor B is given by

the double difference of individual BSD’s,

BDD(AB) = BSD(A)−BSD(B)

= (T obs
b − T rtm

b )A − (T obs
b − T rtm

b )B (4.2)

The terms in equation 4.2 can be rearranged to represent the bias of sensor A with respect

to sensor B as a single difference term,

BDD(AB) = (T obs
b )A − (T pred

b )AB (4.3)

Where, (T pred
b )AB is the predicted Tb of sensor A based on the observation made by sensor

B, and is given by,

(T pred
b )AB = (T obs

b )B + {(T rtm
b )A − (T rtm

b )B} (4.4)

The second term in the right hand side of equation 4.4 is a difference in the RTM Tb’s of

sensor A and B. This difference essentially cancels out any absolute bias that may exist in the

RTM and provides us with an estimate of the theoretical difference between the observed
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Tb’s due to difference in sensor parameters (e.g. frequency, incidence angle) only. Thus,

adding this theoretical difference to the sensor B observed brightness temperature (T obs
b )B,

produces a theoretical prediction of sensor A Tb. If sensor B is known to be well-calibrated

and tested to be self-consistent, then using BDD(AB) instead of BSD(A) for checking sensor

A self-consistency, is a much more robust method.

In the scenario of MWR and WindSat, we want to check the calibration of MWR (sensor

A) against WindSat (sensor B). Due to the nature of the WindSat mission the calibration

requirements and design of the instrument is far superior compared to MWR and most of

the other existing space-borne radiometers. From equation 4.3 The double difference bias of

MWR with respect WindSat is given by,

MWRBias = (T obs
b )MWR − (T pred

b )MWR−WindSat (4.5)

Where, (T pred
b )MWR−WindSat is the predicted Tb of MWR based on the observation made by

WindSat, and is given by,

(T pred
b )MWR−WindSat = (T obs

b )WindSat + {(T rtm
b )MWR − (T rtm

b )WindSat} (4.6)

From now onwards, ”MWR Bias” given by equation 4.5 will be referred as simply ”bias”

unless otherwise mentioned.
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Figure 4.4: MWR and WindSat 1o × 1o collocation boxes for first 65 MWR revs.
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4.2 Results

The MWR instrument was powered on after 81 days from SAC-D launch on August

30th, 2011. The first Tb images were produced using the pre-launch algorithm (v2.0) ∼ 6

hours after the data reception on Wednesday, August 31st, 2011. The v2.0 algorithm is

based on the analysis of the T/V data and as mentioned earlier, it gives an estimate of the

antenna temperature (Ta) but not the actual main beam brightness temperature (Tb). Thus

a comparison of the MWR Ta with WindSat Tb is performed after gathering 65 MWR orbits.

Figure 4.4 shows the location of 1o × 1o collocation boxes over earth using these 65 MWR

revs. The MWR bias computed from this dataset is a bias between MWR Ta and the true

scene Tb. Thus the bias equation in equation 4.5 can be re-written as,

MWRBias = (T obs
a )MWR − (T pred

b )MWR−WindSat (4.7)

Where, (T obs
a )MWR is the MWR observed Ta computed using v2.0 of the calibration algo-

rithm. Now, if we model this bias as a linear function of (T obs
a )MWR ,

MWRBias = slope× (T obs
a )MWR + offset (4.8)

then the MWR observed Tb can be calculated as,

(T obs
b )MWR = (T obs

a )MWR − (slope× (T obs
a )MWR + offset) (4.9)

The form of equation 4.9 is an effective antenna pattern correction (APC) [9]. Figure 4.5(a)

shows the comparison between (T obs
a )MWR and (T pred

b )MWR−WindSat in equation 4.7 for K

band Horn#1. The purple line passing through the origin is of unity slope. If the v2.0
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algorithm output were ’true’ MWR Tb (at least with respect to WindSat) then the scatter

diagram would have lined up along the purple line. Instead, we can see a slope and offset error

which needs to be corrected using equation 4.9. Figure 4.5(b) shows how the comparison

looks like after correction. Note that the estimation of slope and offset is done for each beam

separately and for each receiver. The ’strange’ outliers, visible above the purple line away

from the dense region, are not considered while estimating correction coefficients. These

outliers will be discussed later in the ”MWR Anomalies” sub-section.Figure 4.6 and 4.7

shows the same comparison for Ka band H- and V-pol repectively. Note that, there is

smaller slope error compared to K band channel. The offset for Ka band V-pol seems to

be larger than all other channels. All the comparisons shown here are for Horn#1 of each

antenna system. This correction is implemented in the v2.1 of the calibration algorithm.
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Figure 4.5: Comparison between MWR real observations (y-axis) and Simulated MWR based on WindSat (x-axis)

observations for K band H-pol Horn#1, before (a) and after (b) slope offset correction.
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Figure 4.6: Comparison between MWR real observations (y-axis) and Simulated MWR based on WindSat (x-axis)

observations for Ka band H-pol Horn#1, before (a) and after (b) slope offset correction.
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Figure 4.7: Comparison between MWR real observations (y-axis) and Simulated MWR based on WindSat (x-axis)

observations for Ka band V-pol Horn#1, before (a) and after (b) slope offset correction.
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The earth-located brightness temperature images using v2.1 of MWR calibration

algorithm are shown in Figs. 4.8 to 4.10 for Ka band H-pol, Ka band V-pol and K band

H-pol respectively. These were the first global images from MWR instrument including only

ascending portions of all orbits from Aug 31st through Sept 4th, 2011. The along-track visible

gaps in the Tb images suggests that the one sided narrow swath of ascending MWR is unable

to completely cover the entire earth in five consecutive days. There is no spatial averaging or

gridding done to generate these images. The bore-sight location of the Tb’s are plotted here,

appending ascending portions of the consecutive orbits. The idea was to make a 7 day global

coverage map, similar to what is produced by the Aquarius instrument but due to technical

problem with PAD memory MWR data was lost starting Sept 5th, 2011. The PAD was reset

and data capturing again started after 9 days on Sept 14th. Therefore, being the first of

their kind, Figs. 4.8 to 4.10 has historical significance in MWR mission, even though they

fail to cover the entire earth. The figures are physically meaningful and they prove proper

functioning of the instrument hardware. For example, at Ka band, in the range of MWR

incidence angles (52o and 58o) the vertical polarized component of the ocean emission is much

stronger compared to the horizontal polarized component. This phenomenon is captured in

Figs. 4.8 and 4.9 where for Ka band H-pol (Fig. 4.8) the average ocean Tb is close to 140

K and for the V-pol (Fig. 4.9) it is above 200 K. Another interesting feature in the Fig.

4.9 is the visible stripes caused by the measured Tb difference between MWR even and odd

numbered beams which are at two different incidence angles (52o and 58o). The sensitivity

of ocean emission to the incidence angle variation is greater at V-pol compared to the H-pol.
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Hence the stripes are only visible in Fig. 4.9 but not in Fig. 4.8. As demonstrated by the

RTM simulations in Fig. 4.3 the Tb sensitivity to WV is higher for frequencies near 22 GHz

water vapor line. Thus MWR’s 23.8 GHz channel is expected to have strongest response

to atmospheric WV. This is demonstrated in Fig. ch4fig9; a much warmer Tb is observed

near ITCZ (Inter-Tropical Convergence Zone) and other precipitating regions where a higher

WV density is expected. The Ka band (36.5 GHz) images also show these features but the

contrast is much lower compared to K band (23.8 GHz). Also the presence of sea ice on

the ocean surface warms up the Tb emission for all the MWR channels. The sea ice edges

in the Antarctic region can be easily seen in the three images. The emissivity difference

between land ice and sea ice is also demonstrated in the figure. For example, there is a

distinct difference in color between the Greenland (land ice) and the ice sheet at the edge

of Antarctica (sea ice). It is exciting to notice some of the severe weather features like a

typhoon near Japan coast and a tropical storm in the Gulf of Mexico etc. The geolocation

accuracy of these images were verified separately and found to be exceeding the mission

requirements [30].
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Figure 4.8: Ka band (36.5 GHz) H-pol brightness temperature image for first five days (Aug 31st - Sept 4th, 2011)

combining all ascending passes. The colorbar is in Kelvin.
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Figure 4.9: Ka band (36.5 GHz) V-pol brightness temperature image for first five days (Aug 31st - Sept 4th, 2011)

combining all ascending passes. The colorbar is in Kelvin.
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Figure 4.10: K band (23.8 GHz) H-pol brightness temperature image for first five days (Aug 31st - Sept 4th, 2011)

combining all ascending passes. The colorbar is in Kelvin.
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The PAD was rebooted on Sept 14th, 2011 and MWR data capturing was resumed.

The slope/offset correction coefficients of v2.1 algorithm are further tuned after obtaining 127

revs of MWR data. The mean biases are observed to get shifted when the v2.1 algorithm

is applied to the new data. These shifts are adjusted in v2.2 algorithm. A comparison

between MWR bias histograms using pre-launch (v2.0) and the improved post-launch (v2.2)

calibration algorithm is shown in Fig. 4.11, for the 23.8 GHz H-pol channel. It should be

noted that the v2.0 bias histograms (marked with dashed lines) are severely distorted and not

any close to the ideal Gaussian shape. Whereas, after the slope/offset correction, the v2.2

bias histograms (solid line) are zero mean and of Gaussian shape. Also the biases for all the

beams are balanced with respect to each other. Figure 4.12 and 4.13 show similar histogram

plots for 36.5 GHz H- and V-pol respectively. At the time of writing this dissertation the

v2.2 data is already distributed to the Aquarius cal/val science team for evaluation.
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Figure 4.11: MWR 23.8 GHz H-pol bias histograms for all horns before (v2.0) and after (v2.2) final slope/offset correction.
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Figure 4.12: MWR 36.5 GHz H-pol bias histograms for all horns before (v2.0) and after (v2.2) final slope/offset correction.
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Figure 4.13: MWR 36.5 GHz V-pol bias histograms for all horns before (v2.0) and after (v2.2) final slope/offset correction.
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4.2.1 MWR Anomalies

The MWR ”On Orbit Check Out (OOCO)” period began just after the instrument

turn on. In this period several issues with MWR Tb’s were observed. The three major issues

which affect MWR Tb calibration are discussed in this section.

4.2.1.1 Beam Smearing

To investigate the outliers in Fig. 4.5 to 4.7 the plot in Fig. 4.5(a) is reproduced

in Fig. 4.14(a) with colorbar representing the positive bias magnitude in unit of Kelvin.

The 1o × 1o bias boxes with bias value <16 K are plotted on a global map in Fig. 4.14(b).

Close inspection revealed that these boxes are near coastline and near small islands in the

ocean. Also it can be seen that most of the times there are series of boxes aligned along the

MWR flight track. To understand these anomalies further Australia coast is chosen. Figure

4.15 shows an image of MWR 36.5 GHz H-pol channel made by combining few consecutive

ascending passes over Australia. The beam bore-sights are plotted with color indicating Tb

values in K. It is found that the ocean measurements near land getting affected by land

brightness. For example in region #1 & #2, in Fig. 4.15, non-physical warm Tb over ocean

is seen along the flight track for some of the MWR beams. These are the cause of the large

outliers in Tb biases as shown in Fig. 4.14.
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(a) (b)

Figure 4.14: (a) Comparison between MWR real observations (y-axis) and Simulated MWR based on WindSat (x-axis)

observations for K band H-pol Horn#1 using v2.1 algorithm. The colorbar represents positive bias in K. (b) The positive

biases <16 K is plotted on global map. Most of these points are located near coast line and islands.
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Figure 4.15: 36.5 GHz H-pol brightness temperature (Tb) measurements over Australia for consecutive ascending passes

showing Tb anomalies over land and ocean.
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From Fig. 4.15 another thing came into notice was that, it is not only ocean Tb’s that

are getting affected but the land Tb’s also showing similar anomaly. For example, in region

#3 and #4, non-physical colder Tb over land along the flight track for some of the MWR

beams was observed. The cause for these Tb anomalies, visible near land-water crossings, is

being analyzed at this moment.At the time of writing this dissertation CONAE has figured

out an effective correction at the ”count” level to tackle this problem.

MWR receivers are time-shared between different horns. The antenna-switching net-

work ensures that only the incident Tb from the horn under observation enters the receiver

during a complete observation period of 240 ms. This 240 ms is composed of 8 samples

from each of the radiometer states - antenna, antenna + noise and reference load [Fig. 2.5].

MWR’s digital back-end adds these 8 measurements for each state to produce a single sci-

ence measurement for a particular horn, which is then stored as a single MWR data frame

on-board PAD and transmitted later via downlink. All the receivers of MWR operate in

parallel. For example in a given 240 ms interval each of the outputs K band H, Ka band

V, H, +45 and -45 generate counts for three radiometer states - total 15 count values. All

the data from an integration period (240 ms) is put in one MWR data frame. There is a

pre-defined sequence in which MWR horns are being sampled by the receiver. This infor-

mation is encoded in the least significant byte (LSB) of the two bytes long ”MWR ID” field

in each MWR frame (Fig. 4.16). The mapping of antenna horn # and LSB identifier value

is different for 23.8 GHz and 36.5 GHz receiver.
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Figure 4.16: Description of MWR data frame containing 240 ms of integrated measurement.
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Table 4.2: K band (23.8 GHz) LSB identifier and corresponding feed horn #

23.8 GHz Antenna

Observed Horn LSB Identifier

Horn #2 0x01

Horn #4 0x02

Horn #6 0x03

Horn #8 0x04

Horn #1 0x05

Horn #3 0x06

Horn #5 0x07

Horn #7 0x08

Table 4.3: Ka band (36.5 GHz) LSB identifier and corresponding feed horn #

36.5 GHz Antenna

Observed Horn LSB Identifier

Horn #1 0x01

Horn #3 0x02

Horn #5 0x03

Horn #7 0x04

Horn #2 0x05

Horn #4 0x06

Horn #6 0x07

Horn #8 0x08

Table 1 and 2 tabulates the relationship for 23.8 GHz and 36.5 GHz receivers respectively.

It should be noted that for K band the horn sampling sequence is 7, 2, 4, 6, 8, 1, 3, 5, 7, 2,
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while the corresponding sequence for Ka band is 8, 1, 3, 5, 7, 2, 4, 6, 8, 1, . CONAE’s initial

investigation revealed that the ”beam smearing” problem visible near land-water crossings, is

due to mixing of Tb from the previously sampled horn in the current horn under observation.

For example, in the K band receiver, horn# 2 Tb is contaminated by horn# 7 Tb and horn#

4 Tb is contaminated by horn# 2 Tb etc. The same is true for the Ka band system also where

horn# 1 is affected by horn# 8 and all the successive measurements are affected by their

previous measurements. Thus the Tb’s are recursively coupled. This effect is the minimum

when consecutive horns are looking at same range of brightness temperature. Thus over the

Ocean in clear weather condition or over landmasses with not much Tb variation, this artifact

in Tb image is not clearly visible. The effect is the maximum when the two consecutive horns

are looking at Tb scenes with a very large difference, e.g. one foot-print is over land and

other is over ocean. The maximum effect is observed in horn# 2 (contaminated by horn #7)

because of the large spatial separation of the footprints of horn# 7 and horn# 2. Similar

problem exists also in horn# 1 due to horn#8. The findings of CONAE team and the

correction algorithm is reported in [31]. Even though a seemingly right correction is in place

the reason for this anomaly is not yet fully justified. More analysis is in progress.

4.2.1.2 Receiver Non-Linearity

During the laboratory calibration test using external ”hot” and ”cold” Tb sources it was

found the MWR receivers have a compressive non-linearity at higher input power level (see
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section 3.2). Figure 3.12 demonstrates that the noise diode deflection is lower for high input

power level (i.e. input Tb ∼ 300K) because of the compression. It was also mentioned that,

if the non-linearity is not corrected in future, the MWR will not produce accurate Tb’s over

Land (Tb¿300K). In equation 3.25 a quadratic term is introduced to take care of the non-

linear behavior of the receiver, but since non-linearity is a function of physical temperature,

a fixed coefficient for quadratic term may not work in practice. The presence of non-linearity

in MWR counts is experimentally verified using on-orbit data. In Fig. 4.17 the noise diode

deflection counts (Ca+n−Ca) is gridded into 0.5o× 0.5o boxes over earth with color showing

average number of deflection counts in a box. In an ideal linear radiometer, the plotted

quantity should be independent of antenna signal. The noise diode deflection (Ca+n−Ca) is

equal to the radiometer gain (G) times the injected noise diode temperature (Tn). Since Tn

is assumed to be a stable reference, the deflection is a measurement of instrument gain G.

In Fig. 4.17, however we can see the landmasses and some of the strong weather patterns

over ocean. The noise diode deflection cannot be correlated with the geophysical scene under

observation, thus the image is definitely not of pure instrument gain. It should be noted that

the deflection is less in the regions where high value of scene Tb is expected; for example, over

land and strong weather etc. Thus it could be concluded that the receiver is compressing

high input power signal from land and weather causing systematic low deflection counts for

those scenes.
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Figure 4.17: Image of noise diode deflection (Ca+n − Ca) counts for 36.5 GHz H-pol, gridded in 0.5o × 0.5o boxes over

the earth. The colorbar unit is radiometer counts. Due to the non-linearity of the receiver the deflection is lower over

high Tb scenes like land, weather etc.
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Figure 4.18: Image of noise diode deflection (Ca+n−Ca) counts after non-linearity correction for 36.5 GHz H-pol, gridded

in 0.5o× 0.5o boxes over the earth. The colorbar unit is radiometer counts. The deflection does not depend on the scene

Tb anymore.
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Figure 4.19: Image of reference load temperature (To) for 36.5 GHz H-pol, gridded in 0.5o × 0.5o boxes over the earth.

The colorbar unit is in K. Due to the sun angle variation in orbit To is warmer in the northern hemisphere compared to

southern hemisphere. The instrument gain is supposed to follow the reverse trend which is observed in the deflection of

Fig. 4.18.
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Figure 4.20: The difference image of Fig. 4.18 and Fig. 4.17 showing the degree of correction in terms of count to correct

for non-linearity effect. The correction has a dynamic range of 40 counts which is equivalent to 2.44 K in terms of

brightness temperature.

104



As mentioned earlier, non-linearity is a strong function of physical temperature of

the receiver. The best possible correction method can be implemented on the raw MWR

measurement counts if the non-linear transfer function of the receiver could be characterized

over range of physical temperatures. For example, if the count from the non-linear receiver

is C, then the linearized count Clin could be modeled as,

Clin = f(C, Tphy) (4.10)

The function f(C, Tphy) is basically a polynomial function of counts where the coefficient of

the polynomial are a function of physical temperature (Tphy) of the instrument. A generic

form of this correction could be

f(C, Tphy) = a0 + a1C + a2C
2 + + anC

n (4.11)

where, the coefficients ai’s are function of Tphy. In simplest form they are linear functions of

the form,

ai = b0i + b1iTphy (4.12)

The polynomial expression in the equation 4.11 can be written in a compact form utilizing

mathematical functions. For example, in the case of MWR we know that the observed

nonlinear transfer function of the instrument is compressive. To correct for it we need an

expansive transfer function. A function of the form

f(C, Tphy) = C(1 + (1/a)exp(C/a)) (4.13)

is tested on the data used to create Fig. 4.17. Instead of n number of coefficient in equation

4.11 there is only one coefficient ′a′ in equation 4.13 which is a function of Tphy. A single
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coefficient is easier to manipulate and might be convenient while experimentally determining

the best fit.

The image in the Fig. 4.17 is reproduced in Fig. 4.18 using linearized counts from

equation 4.10 and 4.13 with a = 3500. Since the variation of To over the entire-period was

less than 1 K (see Fig. 4.19), a fixed value of a = 3500 is used. The land and weather

features in the deflection are not present in the corrected image of Fig. 4.18. Note that the

decompression algorithm modifies the range of count values hence the colorbar is slightly

adjusted so that the images could be compared appropriately. The difference between the

corrected image (Fig. 4.18) and the original image (Fig. 4.17) is shown in Fig. 4.20. As

the absolute values of the counts are increased by the expansive correction technique, the

original image is subtracted from the corrected image to keep the difference positive. The

dynamic range of this correction is 50 to 90 counts according to Fig. 4.20. Assuming the

mean deflection (from Fig. 4.18) to be 4425 and Tn = 270 K the equivalent correction

corresponding dynamic range of 40 counts is 2.44 K.

Unfortunately, there is no laboratory data available to characterize the non-linearity

with various physical temperatures so the ’a’ coefficient is determined based on several trials.

This correction is not implemented in current MWR calibration algorithms. Any form of

non-linearity correction affects the entire range of instrument counts including linear to non-

linear regions. Therefore, care should be taken so that the linear regions of the receiver not

get affected by the correction.

A vicarious way of correcting the effect of non-linearity is by introducing the quadratic
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term in equation 3.25, as mentioned before. If Tin is the computed brightness temperature

using the non-linear counts then the correct value of Tin can be obtained by [32],

(Tin)corrected = (Tin − a)2 (4.14)

This is equivalent to a 2nd order non-linear correction. The coefficient ’a’ is a function of

Tphy and can be approximated using a linear equation of the form in equation 4.12. Equation

4.14 is the motivation of introducing 2nd order term in equation 3.25.

In future we are hoping to characterize it properly after accumulating enough data

statistics. If not corrected, the estimation of receiver gain using noise diode deflection in

the calibration equations will be erroneous. Thus the calibrated Tb over land will always be

lower than its true value. The effect of non-linearity is expected to be small over the normal

range of ocean brightness. The inter-calibration of MWR Ocean Tb’s with WindSat is also

expected to correct for some of the non-linearity biases.

4.2.1.3 PAD Reset Transients

The Data Acquisition and Processing Subsystem (PAD) is the interface between the

NIRST, MWR, DCS and ROSA instruments and the service platform (S/P). In particular,

all these instruments do not have a direct interface with neither the S/P nor the downlink

but via the PAD. The thermal control algorithm for all these instruments including MWR is

implemented in the PAD computer. The memory storage requirement of these instruments

is also satisfied by the PAD mass memory. PAD subsystem is cold redundant and composed
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by two equivalent electronic boxes: PAD-A and PAD-B, each of them including the complete

PAD functionality. Only one is powered by the RTU (Remote Terminal Unit) at any given

time, being the selection made by Earth command. The stored information cannot be shared

between units as they are never simultaneously operative.

MWR commanding and data handling (C & DH) is controlled by PAD, which receives

all commands routed through the S/P C&DH. A total of 128 MB of the PAD mass mem-

ory is allocated for storing the MWR science packets, which include both Science data and

the high rate HKT (House Keeping Temperature) data. This memory allocation permits

two complete days of science and HK data storage without downloading, being flexible to a

S/P problem. Six days after MWR turn-on, on 5th September, 2011 a problem with PAD

memory was detected. This resulted in loss of MWR science and high rate HKT data. Ini-

tial investigations failed to determine the root-cause of the issue and a temporary fix was

implemented by resetting the PAD computer on 14th September, 2011. The rebooting of

PAD solved the problem for next few days and soon the problem re-surfaced. It should be

noted that there are two identical PAD boxes, PAD-A and PAD-B. In the current stage of

the mission PAD-A is only active. PAD-B is a complete back-up and will only be active if

a hardware failure with PAD-A is determined. However, the memory problem of PAD-A

seemed to be associated with the PAD software and most likely to repeat even after turn-

ing on the back-up PAD-B. Considering several situations it was determined by the SAC-D

project team that unless the problem with PAD-A is fully understood the cold redundant

PAD-B will not be turned on. Instead, the project team agreed on a periodic resetting of
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the PAD computer approximately every 1.5 days. The rebooting of PAD is planned in a way

that most of the time it should occur over land so that the loss of ocean data is minimized.

The periodic rebooting of PAD has a serious effect on the stability of the instrument.

As mentioned earlier, MWR’s thermal control is implemented in the PAD computer. There-

fore, PAD computer reset causes a disruption of MWR’s thermal control. This results in

temperature transients inside the instrument, which lasts for several orbits.
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Figure 4.21: Variation of the physical temperature (in K) of the internal reference load for 23.8 GHz (K band) receiver

during a one month period in February, 2012. The periodic drop in temperature approximately every 1.5 days is due to

the resetting of MWR’s thermal control caused by planned PAD reboot. The overall decreasing trend in the mean orbit

temperature is due to the Sun-angle change in the given period.
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~ 50 min 

Figure 4.22: Variation of the physical temperature (in K) of the internal reference load for 23.8 GHz (K band) receiver

on Valentine’s Day, 2012. The PAD was reset at ∼ 10 hrs GMT and it was back on ∼ 50 minutes after. It took

approximately 7 hrs for the temperature transient to come back to the normal range.
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Figure 4.21 shows the Variation of the physical temperature (in K) of the internal

reference load for 23.8 GHz (K band) receiver during a one month period in February, 2012.

The periodic drop in temperature approximately every 1.5 days is due to the resetting of

MWR’s thermal control caused by planned PAD reboot. As mentioned in chapter 3, MWR’s

thermal control uses heaters to control temperature of the instrument. These heaters are

driven by pulse width modulated current sources. The duty cycle of the driver current

determine the total heat (power) output of the heater. During the time period of Fig. 4.21,

MWR’s thermal control was programmed such a way that always the heaters are driven with

10% duty cycle. So after every reset the thermal control returns to the same 10% duty cycle

mode irrespective of the temperature of the instrument. The reason for such a setting was

to track the mean orbit temperature variation over season due to Sun-angle variation and to

find the maximum possible temperature on orbit. This information is very useful in deciding

a proper thermal control approach. Therefore, in Fig. 4.21 we can see the overall decreasing

trend in the mean orbit temperature due to the Sun-angle change in the given period. The

same temperature variation for a PAD reset day in February, 2012 is plotted in Fig. 4.22.

Note that the reset took place just before ∼ 10 hrs GMT and lasted for ∼ 50 minutes.

During this time the value of mean To dropped by 0.4-0.5 K and it took approximately 7

hours for the heaters to stabilize the temperature again. There is a much larger peak to

peak oscillation of To in the transient region and at the end of the large fluctuations the

temperature steadily rises up to the normal level. However, due to the decreasing trend in

the mean orbit temperature and fixed heat supply from the heaters, To doesn’t recover fully
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to the previous level after the PAD reset.

The effect of these transient on MWR calibration is being analyzed now. The analysis

will be better when an active thermal control is in place i.e. the thermal control always

bring back MWR to a fixed temperature set point instead of floating. In any case, resetting

of thermal control will hurt the long term stability of the instrument. Hence, a solution to

the PAD problem in near future is quite essential.
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CHAPTER 5
CONCLUSIONS

Aquarius/SAC-D is the first NASA mission to measure global sea surface salinity from

space. This unprecedented mission has several stringent requirements to be met for its data

to be useful to the science community. One of the major sources of SSS error comes from

the increase in Aquarius L-band Tb due to the presence of atmospheric liquid water (L) in

the forms of rain and cloud. Here is an excerpt from a technical memo written by Frank

J. Wentz on this topic:” The overall error in salinity retrievals due to atmosphere liquid

water is about 0.07 to 0.08 psu. Although this average global error is relatively small, its real

impact is that it is spatially correlated with rain systems and can become quite large in areas

of intense rain. About 11% of the Aquarius observations will have a salinity error greater

than 0.1 psu if no flagging or correction procedure is implemented.”[33]. Later in this memo

the author proposes three options, the first and the best of which is:” Aquarius will have a

23/37 GHz radiometer onboard that is collocated with the 1.4 GHz salinity observations. If

this radiometer operates successfully, it will provide an ideal tool for flagging and correcting

observations that are affected by large L values. For this application, the requirements on

the 23/37 GHz radiometer calibration are not very stringent. The radiometer only needs to

be stable over time scales of 10-minutes to measure the contrast between rain and no-rain

scenes. Furthermore, this TB contrast only needs to be measured to an accuracy of a few

Kelvin. These requirements are well within the design goals of the 23/37 GHz radiometer.”

Apart from the flagging/correcting for rain contamination in Aquarius SSS retrievals, MWR
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instrument is capable of producing geo-physical retrievals of its own e.g. atmospheric water

vapor content, ocean surface wind vector, atmospheric liquid water (rain) and sea ice con-

centration. Being the first satellite microwave radiometer of CONAE, MWR’s data will be

used by a great number of scientists in Argentina for various applications over ocean, land

and ice.

This dissertation presents a system level description of the SAC-D MWR instrument

and its internal calibration scheme. It also addresses some of the requirements that had

driven the design of this instrument. Just like any other microwave radiometer, calibration

is an absolute necessity for MWR’s data to be useful for scientific study. In the pre-launch pe-

riod, MWR’s receivers were calibrated in laboratory using external blackbody noise sources

with brightness temperatures at both high and low ends of the earth viewing Tb dynamic

range. A method to obtain the injected noise diode temperature from this test is described

here. Using the internal reference load temperature and the injected noise diode brightness,

the instrument’s forward model equations are inverted to obtain the relationship between

measured digital counts and the Tb at the receiver input. In MWR system, Tb’s from multiple

antenna feed horns are observed by a common receiver for a particular channel (frequency

and polarization). This is implemented using a microwave waveguide switching network.

The presence of a switching network with finite loss between the antenna and the receivers

attenuates the Ta captured by the antenna. The self-emission of this loss adds an unwanted

component to the antenna signal measured by the receiver. A radiative transfer model for

the antenna switching network is presented here to quantify these effects and remove them
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from the Tb measurements. The thermal vacuum (T/V) test data is used to calibrate this

correction algorithm. Finally, in the post launch period MWR Tb’s are compared against

the Tb measurements from the WindSat instrument. The comparison is used to estimate an

effective antenna pattern correction for MWR.

Initial On-orbit-checkout and Tb comparison with Windsat revealed several problems

with the MWR data. The most prominent of these is the beam smearing problem described

in Section 4.2.1.1. At the time of writing this dissertation there is an empirical correction

that is being put by CONAE and the results are being analyzed. Like any other empirical

correction, this is not going to eliminate the problem completely but hopefully the residual

error will be reduced to an acceptable level. The second issue with the MWR Tb’s come from

the presence of receiver non-linearity which is not being accounted for in the calibration

algorithm. This problem, if not corrected, will affect the Tb’s over land, ice and heavy rain.

Approximately a maximum of 2.5 K Tb error is estimated over land due to non-linearity

effect. The third problem with MWR comes from the frequent resetting of the MWR’s

thermal control system due to an unresolved issue with the flight computer (PAD) memory.

This compromises the thermal stability of the instrument causing drift in its calibration.

Irrespective of the current issues with the instrument, the calibration algorithm de-

scribed here is able to produce MWR Tb’s, which statistically match well with the collocated

WindSat Tb observations. The preliminary geo-physical retrieval algorithms has already pro-

duced water vapor density, wind speed and sea ice concentration from the MWR Tb’s with

reasonable accuracy. The thermal instability issue with MWR is expected to be solved soon
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resulting in a more stable Tb product. More data and analysis is needed to correct for the

non-linearity and smearing problem accurately. The calibration of ±45o polarization chan-

nels of the Ka band system is not addressed in this dissertation. This is an important and

required future effort. The proper calibration of these channels will enable MWR to detect

ocean surface wind direction. The retrieval of wind vector (magnitude and direction) will

improve other geophysical retrievals.
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A.1 K Band Receiver

A.1.1 Circulator Switch

119



A.1.2 Isolator
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A.1.3 Coupler
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A.1.4 Filter
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A.1.5 Low Noise Amplifier (LNA)
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A.1.6 Noise Diode
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A.1.7 Wave Guide Termination (Match Load)
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A.2 Ka Band Receiver

A.2.1 Ortho-Mode Transducer (OMT)
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A.2.2 Circulator Switch
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A.2.3 Isolator
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A.2.4 Coupler
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A.2.5 Filter
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A.2.6 Low Noise Amplifier (LNA)
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A.2.7 Noise Diode
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A.2.8 Wave Guide Termination (Match Load)
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B.1 K Band Receiver Schematics
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B.2 Ka Band Receiver Schematics

Po l ar í m e t r o 36 .5 Ghz P r o to f l i g h t
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MWR WAVEGUIDE LENGTHS
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C.1 Waveguide Length Computation Example

WG L (mm) Code
1 39.898 CE90

2 30.308 TGAM30.31-36

3 39.898 CH90

4 39.898 CH90

5 1.366 TGAM1.37-36

SW1 Dickie Switch

6 39.898 CH90

7 102.540 TGAM102.54-36

SW2 Dickie Switch

8 23.272 TGAM23.27-36

9 39.898 CH90
10 50.652 TGAM50.65-36
11 39.898 CE90
12 33.345 TGAM33.34-36
SW3 Dickie Switch

5

4

3 2
1

9

7

10

8

11
12

6

Feed Horn 8 – OMT Horizontal path (green)

241.483mm + 4*CH90+2*CE90
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C.2 K Band Waveguide Lengths
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C.3 Ka Band V-pol Waveguide Lengths

Ka Band V-pol 
WG Lengths (mm)
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C.4 Ka Band H-pol Waveguide Lengths

Coupler

Ls
8 151.368

6 124.798

Ls
4 124.606

2 175.072

Ls

142.438

70.638

Ls
7 196.142

5 119.694

Ls
3 123.694

1 164.346

Ls

39.898

88.498

Ls

187.065

183.914

650.309

To
p 

Pl
an

e
B

ot
to

m
 P

la
ne

Ka Band H-pol 
WG Lengths (mm)

146
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MWR SWITCH MATRICES
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D.1 K Band Switch Matrix
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D.2 Ka Band Switch Matrix (H-pol)
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D.3 Ka Band Switch Matrix (V-pol)
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APPENDIX E

MWR THERMAL VACUUM TEST
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23.8 GHz Absorber 

D 

E.1 K Band Absorber Temperature sensors
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36.5 GHz Absorber 

E.2 Ka Band Absorber Temperature sensors
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TIME AND DATE (001-006) 

COL DESCRIPTION 

1 Day of Month 

2 Month Number 

3 Year 

4 Hour 

5 Minute 

6 Seconds 

 

MWR Modes & Sampling Sequence (007-008) 

COL DESCRIPTION 

7 Mode of Operation 

8 Horn ID of the horn being sampled 

 

 

 

 

 

MODE 

HORN ID 

E.3 Thermal Vacuum Test Data Readme
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MWR Measurement Counts (009-023) 

OFFSET_1 = 8 

Column No = OFFSET_1 + SD no 

 

MWR Telemetry (024-087) 

OFFSET_2 = 23 

Column No = OFFSET_2 + Parameter no 
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Thermal Control Parameters (088-089) 

COL DESCRIPTION 

88 Thermal Control 

89 Thermal Control 

 

 

Cyclic Redundancy Check - CRC  (090-091) 

COL DESCRIPTION 

90 First 8 bit (0-255) 

91 Last 8 bit (0-255) 
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External Temperature Sensors  (092-132) 

 23 GHz 

 36 GHz 

COL DESCRIPTION 

92 101 

93 102 

94 103 

95 104 

96 105 

97 106 

98 107 

99 108 

100 109 

101 110 

102 111 

103 112 

104 113 - ABS 23 A 

105 114 

106 115 

107 116 

108 117 

109 118 - ABS 23 B 

110 119 - Sensor Inside 23 GHz HORN 

111 120 - Sensor Inside 36 GHz HORN 

  

112 201 

113 202 - ABS 23 E 

114 203 - ABS 23 D 

115 204 - ABS 23 C 

116 205 - ABS 23 

117 206 

118 207 

119 208 

120 209 

121 210 

122 211 

123 212 

124 213 - ABS 36 H 

125 214 - ABS 36 I 

126 215 - ABS 36 J 

127 216  

128 217- ABS 36 

129 218 - ABS 36 

130 219 

131 220 - ABS 36 
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CHAMBER Temperature Sensors  (132-155) 

COL DESCRIPTION 

132 TC#243- ABS 36 

133 TC#245 

134 TC#246- ABS 36 

135 TC#247- ABS 23 

136 TC#248- ABS 36 

137 TC#249 

138 TC#250- ABS 23 

139 TC#251- ABS 23 

140 TC#252- ABS 23 

141 TC#253- ABS 36 

142 TC#254- ABS 23 

143 TC#255 

144 TC#256- ABS 36 

145 TC#257 

146 TC#258 

147 TC#259- ABS 23 

148 TC#260- ABS 23 

149 TC#261- ABS 23 

150 TC#262- ABS 36 

151 TC#263- ABS 36 

152 TC#264 

153 TC#265- ABS 36 

154 TC#266- ABS 36 
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1 Description of Hdf5 Global Metadata Attributes

1.1 Group ‘/’

Root group for the product.

• hdf5 especification filename

description: Filename of the .xml hdf5 estructure especification file from which this product was
created.
default value: mwr l0a l1a hdf5 esp.3 0.xml
datatype: string

1.2 Group ‘Global Metadata/Acquisition’

Information related to the acquisition of data by the sensor.

• Cycle Number

description: Counter of weekly cycles (103 orbits) since Aquarius’s Commisioning end.
datatype: 4 bytes signed integer

• End Time GPS

description: GPS time tag for the last MWR data included in the product (seconds since
1980/01/06 00:00:00 UTC)
datatype: 4 bytes unsigned integer

• End Time UTC

description: UTC time time tag for the last MWR data included in the product
datatype: string

• Length Seconds

description: Elapsed time period between the first and last MWR data included in the product
datatype: 4 bytes unsigned integer

• MWR Reference System Pass Number

description: Id of revolution inside the weekly cycle. Consecutive numbers 1 to 103 represent
geographically adjacent revolutions. Refer to ’MWR Reference System Pass Number to In Cycle
Pass Number Map’ to map between these two ids.
datatype: 1 byte unsigned integer

• Orbit End Time UTC

description: UTC time time tag for the end of the MWR orbit (descending crossing of the south
pole)
datatype: string

• Orbit Node Longitude

description: Longitude of orbit ascending node (equatorial crossing at PM node)
datatype: 4 bytes IEEE floating point
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• Orbit Node Time UTC

description: UTC time time tag for orbit ascending node (equatorial crossing at PM node)
datatype: string

• Orbit Number

description: Counter of revolutions since launch.
datatype: 4 bytes signed integer

• Orbit Start Time UTC

description: UTC time time tag for the start of the MWR orbit (ascending crossing of the south
pole)
datatype: string

• Overlapped Orbit End Time UTC

description: UTC time time tag for end of the Overlapped MWR orbit (end of the MWR orbit
plus 10 minutes)
datatype: string

• Overlapped Orbit Start Time UTC

description: UTC time time tag for start of the Overlapped MWR orbit (start of the MWR orbit
minus 10 minutes)
datatype: string

• Pass Number in Cycle

description: Id of revolution inside the weekly cycle. Consecutive numbers 1 to 103 represent
revolutions adjacent in time. Refer to ’MWR Reference System Pass Number to In Cycle Pass
Number Map’ to map between these two ids.
datatype: 1 byte unsigned integer

• Start Time GPS

description: GPS time tag for the first MWR data included in the product (seconds since
1980/01/06 00:00:00 UTC)
datatype: 4 bytes unsigned integer

• Start Time UTC

description: UTC time time tag for the first MWR data included in the product
datatype: string

1.3 Group ‘Global Metadata/Downloading/Pass Id %s’

Information related to the download Pass Id %s

More than one instance of this group, and its subgroups, may be present in the product. Each
instance will be identificated with an Id replacing the %s character sequences.

• Agency Id

description: Identification of space agency that downloaded this data.
datatype: string
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• Country Id

description: Identification of the country the space agency that downloaded this data belongs
to.
datatype: string

• Facility Id

description: Identification of the facility inside the space agency that downloaded this data.
datatype: string

• Service Id

description: Identification of the service inside the space agency that downloaded this data.
datatype: string

• Start Time UTC

description: UTC time tag for the start of the downloading of this data.
datatype: string

1.4 Group ‘Global Metadata/Mission’

Information related to the mission.

• Name

description: Full name for the mission associated to this product.
default value: SAC-D Aquarius
datatype: string

1.5 Group ‘Global Metadata/Platform’

Information related to the platform.

• Name

description: Full name of the spacecraft platform associated to this product.
default value: SAC-D
datatype: string

• Reference Time

description: Main reference time system used in relation with platform information.
default value: GPS
datatype: string

1.6 Group ‘Global Metadata/Platform/Orbit’

Information related to the orbit of the platform.
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• Mean Argument Perigee Degrees

description: Mean Argument of Perigee for the orbit of the platform associated to the product
default value: 90.0
datatype: 4 bytes IEEE floating point

• Mean Eccentricity

description: Mean Eccentricity for the orbit of the platform associated to the product
default value: 0.0012
datatype: 4 bytes IEEE floating point

• Mean Equatorial Altitude Km

description: Mean Altitude, when crossing above the equator, for the orbit of the platform asso-
ciated to the product
default value: 657.0
datatype: 4 bytes IEEE floating point

• Mean Inclination Degrees

description: Mean Inclination for the orbit of the platform associated to the product
default value: 98.01
datatype: 4 bytes IEEE floating point

• Mean Local Time of ascending Node

description: Mean Local Time of Ascending Node for the orbit of the platform associated to the
product
default value: 06:00 PM
datatype: string

• Mean Period Min

description: Mean minutes required by the platform in order to complete a revolution.
default value: 98.0
datatype: 4 bytes IEEE floating point

• Mean SemiMajor Axis Km

description: Mean Semimajor Axis for the orbit of the platform associated to the product
default value: 7028.87
datatype: 4 bytes IEEE floating point

• Revisit Cycle Days

description: Number of days needed by the platform in order to pass above the same point in
earth.
default value: 7
datatype: 1 byte signed integer

• Revisit Cycle Revolutions

description: Number of revolutions needed by the platform in order to pass above the same
point in earth.
default value: 103
datatype: 1 byte unsigned integer

Page 6 of 37

166



MWR L1A Product HDF5 Data Format Reference Feb 29, 2012

• Type

description: Description of the main characteristics of the orbit of the platform associated to the
product
default value: Frozen, Almost circular, Dawn-Dusk, Sun Synchronous
datatype: string

1.7 Group ‘Global Metadata/Product’

Information related to the product contents.

• CODS Attitude Vector Algorithm Version

description: Version of Algorithm used to generate included CODS attitude vectors (if applica-
ble)
datatype: string

• CODS State Vector Algorithm Version

description: Version of Algorithm used to generate included CODS state vectors (if applicable)
datatype: string

• Data Format

description: Base product data format.
default value: NCSA-HDF5
datatype: string

• Data Format Version

description: Base product data format version.
datatype: string

• Data Type

description: Identifies the kind of data present in the product. One of SCI (Science data), CAL
(Calibration data), ENG (Engineering data).
datatype: string

• Geometric Tables Update Id

description: Update Id of Geometric Calibration Tables included in the product.
datatype: string

• Level

description: Indication of the production level. One of L0A, L1A, L1B.
default value: L1A
datatype: string

• Level Version

description: Version number for the level of this product.
default value: 3.0
datatype: string
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• Name

description: Full name of the product, used also in file names. Format: EO YYYMMDD
HHMMSS SERVICE SPACECRAFT SENSOR LEVEL DATA. Where time info refers to UTC

time tag associated to the start of the overlapped orbit, SERVICE is Production Service Id,
SPACECRAFT is Platform Name, SENSOR is Sensor Name, LEVEL is Product Level, DATA is
Product Data Type.
datatype: string

• Radiometric Tables Update Id

description: Update Id of Radiometric Calibration Tables included in the product.
datatype: string

• Reference Coordinate System

description: Reference coordinate system used to generate geographical information for this
product.
default value: J2000
datatype: string

• Reference Datum

description: Reference datum used to generate geographical information for this product.
default value: WGS84
datatype: string

• Title

description: Identifies Sensor Name, and Product Level.
default value: MWR Level-1A Data
datatype: string

1.8 Group ‘Global Metadata/Product/Stats’

Statistics for the product contents.

• Number of CSDP frames

description: Number of Conae Science Data Packages whose data is included in the product
datatype: 4 bytes unsigned integer

• Number of CSDP frames with CRC error

description: Number of Conae Science Data Packages whose data is included in the product
that contains CRC errors
datatype: 4 bytes unsigned integer

• Number of MWR Data frames

description: Number of MWR data/housekeeping frames whose data is included in the product
datatype: 4 bytes unsigned integer

• Number of Quaternion Vectors

description: Number of quaternion vectors included in the product
datatype: 4 bytes unsigned integer
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• Number of SAC-D Telemetry frames

description: Number of SAC-D telemetry frames included in the product
datatype: 4 bytes unsigned integer

• Number of SAC-D Telemetry frames with CRC error

description: Number of SAC-D telemetry frames included in the product that contains CRC
errors
datatype: 4 bytes unsigned integer

• Number of State Vectors

description: Number of state vectors included in the product
datatype: 4 bytes unsigned integer

• Number of missing CSDP frames

description: Number of Conae Science Data Packages missing in the package sequence in-
cluded in the product
datatype: 4 bytes unsigned integer

• Number of missing MWR Data frames

description: Number of MWR data/housekeeping frames missing in the frame sequence in-
cluded in the product
datatype: 4 bytes unsigned integer

1.9 Group ‘Global Metadata/Production’

Information related to the production activity.

• Agency Id

description: Identification of space agency that generated this product
datatype: string

• Center

description: Identification of the facility and agency that generated this product.
datatype: string

• Center Reference Time

description: Main reference time system used in the results of the production.
default value: UTC
datatype: string

• Contact Organization Name

description: Address of the Production Center
datatype: string

• Control Parameters

description: Command line arguments of the program used to generate this product.
datatype: string
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• Country Id

description: Identification of the country the space agency that generated this product belongs
to.
datatype: string

• Facility Id

description: Identification of the facility inside the space agency that generated this product.
datatype: string

• Input Files

description: List of input files used to generate this product.
datatype: string

• Service Id

description: Identification of the service inside the space agency that generated this product.
datatype: string

• Start Time UTC

description: UTC time tag for the start of the generation of this product.
datatype: string

1.10 Group ‘Global Metadata/Sensor’

Information related to the sensor.

• BeamWidth Degrees

description: Length in degrees of the beam received by a horn.
default value: 1.7
datatype: 4 bytes IEEE floating point

• Frequency Bands

description: List of frequency bands of the sensor.
default value: 23.8 GHz (K) - 36.5 GHz (Ka)
datatype: string

• K Band BandWidth MHz

description: Measured bandwidth around the central frequency for the K band H polarization
default value: 400.0
datatype: 4 bytes IEEE floating point

• Ka Band BandWidth MHz

description: Measured bandwidth around the central frequency for the Ka band at all polariza-
tions
default value: 1000.0
datatype: 4 bytes IEEE floating point
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• MWR Reference System Pass Number to In Cycle Pass Number Map

description: Map between the two systems used to identify a particular revolution inside the
weekly cycle: MWR Reference System Pass Number and Cycle Pass Number
default value: 001: 100 , 002: 041 , 003: 085 , 004: 026 , 005: 070 , 006: 011 , 007: 055 , 008:
099 , 009: 040 , 010: 084 , 011: 025 , 012: 069 , 013: 010 , 014: 054 , 015: 098 , 016: 039 ,
017: 083 , 018: 024 , 019: 068 , 020: 009 , 021: 053 , 022: 097 , 023: 038 , 024: 082 , 025: 023
, 026: 067 , 027: 008 , 028: 052 , 029: 096 , 030: 037 , 031: 081 , 032: 022 , 033: 066 , 034:
007 , 035: 051 , 036: 095 , 037: 036 , 038: 080 , 039: 021 , 040: 065 , 041: 006 , 042: 050 ,
043: 094 , 044: 035 , 045: 079 , 046: 020 , 047: 064 , 048: 005 , 049: 049 , 050: 093 , 051: 034
, 052: 078 , 053: 019 , 054: 063 , 055: 004 , 056: 048 , 057: 092 , 058: 033 , 059: 077 , 060:
018 , 061: 062 , 062: 003 , 063: 047 , 064: 091 , 065: 032 , 066: 076 , 067: 017 , 068: 061 ,
069: 002 , 070: 046 , 071: 090 , 072: 031 , 073: 075 , 074: 016 , 075: 060 , 076: 001 , 077: 045
, 078: 089 , 079: 030 , 080: 074 , 081: 015 , 082: 059 , 083: 103 , 084: 044 , 085: 088 , 086:
029 , 087: 073 , 088: 014 , 089: 058 , 090: 102 , 091: 043 , 092: 087 , 093: 028 , 094: 072 ,
095: 013 , 096: 057 , 097: 101 , 098: 042 , 099: 086 , 100: 027 , 101: 071 , 102: 012 , 103: 056
datatype: string

• Name

description: Name of the sensor.
default value: MWR
datatype: string

• Number of beams per channel

description: Number of beams/horns per channel
default value: 8
datatype: 1 byte unsigned integer

• Number of channels

description: Number of channels measured by the sensr
default value: 5
datatype: 1 byte unsigned integer

• Off Nadir Pointing Degrees

description: Off nadir central pointing for each band.
default value: 23.8 GHz 47.95El/143.73Az - 36.5 GHz 47.95El/36.27Az
datatype: string

• Polarizations

description: List of all central frequencies and associated polarizations.
default value: 23.8 GHz H - 36.5 GHz H - 36.5 GHz V - 36.5 GHz +45 - 36.5 GHz -45
datatype: string

• Spatial Resolution Km

description: Length of the footprint of a horn at the earth surface.
default value: 54.23
datatype: 4 bytes IEEE floating point
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• Swath Width Km

description: Total distance covered at the earth surface by the 8 horns of a band and polariza-
tion pair.
default value: 367.89
datatype: 4 bytes IEEE floating point

1.11 Group ‘Global Metadata/Software’

Information related to the software used to generate the product.

• Name

description: Name of the software that generated this product
datatype: string

• Release

description: Configuration control release name of the software that generated this product
datatype: string

• Version

description: Version of the software that generated this product
datatype: string
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2 Description of Hdf5 Datasets

2.1 Group ‘Block Attributes’

Raw values of variables obtained from CSDP headers and trailers, associated to MWR data frames.

Datasets

• csdp packet sequence count

description: CSDP primary header packet sequence count. Increments for each CSDP frame
with PAD data.
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• csdp source sequence count

description: CSDP secondary header source sequence count. Increments for each CSDP
frame with PAD data associated to MWR data
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• missing mwr frames

description: Indicates the number of missing MWR data frames before the current one
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• pad csdp crc

description: CRC of the CSDP frame as calculated by PAD
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• pad csdp crc is valid

description: Equal to 1 if CSDP CRC was validated
valid values: [0,1]
datatype: 1 byte unsigned integer
size: Number of MWR Data frames

• pad csdp fill

description: Fill bytes at the end of CSDP MWR frames
datatype: 1 byte unsigned integer
size: Number of MWR Data frames x 182

• tlm qual

description: Telemetry quality: indicates the degree of quality of the MWR data frame contents
valid values: [5=good quality, 4, 3, 2, 1=poor quality]
datatype: 1 byte unsigned integer
size: Number of MWR Data frames

• tlm qual flags

description: Telemetry quality flags: bitmask indicating invalid data in MWR data frames
units: bitmask
valid values: byte0: bit7 (msb) = tm t01, ..., bit0 = tm t08; byte1: bit7 = tm t09, ..., bit0 = tm t16;
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byte2: bit7 = tm t17, ..., bit0 = tm t24; byte3: bit7 = tm t25, ..., bit0 = tm t32; byte4: bit7 = tm t33,
..., bit0 = tm t40; byte5: bit7 = tm t41, ..., bit0 = tm t48; byte6: bit7 = vm v01, ..., bit0 = vm v08;
byte7: bit7 = im i01, ..., bit0 = im i08; byte8: bit7 = sacd vbusa rtu1, bit6 = sacd vbusb rtu1, bit5
= K H antenna, bit4 = K H antenna plus noise, bit3 = K H load, bit2 = Ka H antenna, bit1 = Ka
H antenna plus noise, bit0 = Ka H load; byte9: bit7 = Ka V antenna, bit6 = Ka V antenna plus
noise, bit5 = Ka V load, bit4 = Ka +45 antenna, bit3 = Ka +45 antenna plus noise, bit2 = Ka +45
load, bit1 = Ka -45 antenna, bit0 = Ka -45 antenna plus noise; byte10: bit7 = Ka -45 load
datatype: 1 byte unsigned integer
size: Number of MWR Data frames x 11

2.2 Group ‘Calibration/Geometric Data’

Calibration data needed to perform geometric processing.

Datasets

• k h line of sight

description: Line of sight of each horn of K band H polarization, expressed in the platform fixed
coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 3

• k h n3db approximating ellipse

This dataset is optional, it may be present on the product only due to specific user request.

description: Lines of sight of the center, first semimajor axis, first semiminor axis, second
semimajor axis, second semiminor axis, of the ellipse that approximates the -3dB contour for all
horns of K band H polarization, expressed in the platform fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5 x 3

• k h n3db contour

This dataset is optional, it may be present on the product only due to specific user request.

description: Lines of sight of selected points from the -3dB contour for all horns K band H
polarization, expressed in the platform fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 20 x 3

• ka h line of sight

description: Line of sight of each horn of Ka band H polarization, expressed in the platform
fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 3

• ka h n3db approximating ellipse

This dataset is optional, it may be present on the product only due to specific user request.

description: Lines of sight of the center, first semimajor axis, first semiminor axis, second
semimajor axis, second semiminor axis, of the ellipse that approximates the -3dB contour for all
horns of Ka band H polarization, expressed in the platform fixed coordinate system.
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datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5 x 3

• ka h n3db contour

This dataset is optional, it may be present on the product only due to specific user request.

description: Lines of sight of selected points from the -3dB contour for all horns Ka band H
polarization, expressed in the platform fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 20 x 3

• ka n45 line of sight

description: Line of sight of each horn of Ka band -45 polarization, expressed in the platform
fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 3

• ka n45 n3db approximating ellipse

This dataset is optional, it may be present on the product only due to specific user request.

description: Lines of sight of the center, first semimajor axis, first semiminor axis, second
semimajor axis, second semiminor axis, of the ellipse that approximates the -3dB contour for all
horns of Ka band -45 polarization, expressed in the platform fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5 x 3

• ka n45 n3db contour

This dataset is optional, it may be present on the product only due to specific user request.

description: Lines of sight of selected points from the -3dB contour for all horns Ka band -
45 polarization, expressed in the platform fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 20 x 3

• ka p45 line of sight

description: Line of sight of each horn of Ka band +45 polarization, expressed in the platform
fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 3

• ka p45 n3db approximating ellipse

This dataset is optional, it may be present on the product only due to specific user request.

description: Lines of sight of the center, first semimajor axis, first semiminor axis, second
semimajor axis, second semiminor axis, of the ellipse that approximates the -3dB contour for all
horns of Ka band +45 polarization, expressed in the platform fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5 x 3

• ka p45 n3db contour

This dataset is optional, it may be present on the product only due to specific user request.
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description: Lines of sight of selected points from the -3dB contour for all horns Ka band +45
polarization, expressed in the platform fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 20 x 3

• ka v line of sight

description: Line of sight of each horn of Ka band V polarization, expressed in the platform
fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 3

• ka v n3db approximating ellipse

This dataset is optional, it may be present on the product only due to specific user request.

description: Lines of sight of the center, first semimajor axis, first semiminor axis, second
semimajor axis, second semiminor axis, of the ellipse that approximates the -3dB contour for all
horns of Ka band V polarization, expressed in the platform fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5 x 3

• ka v n3db contour

This dataset is optional, it may be present on the product only due to specific user request.

description: Lines of sight of selected points from the -3dB contour for all horns Ka band V
polarization, expressed in the platform fixed coordinate system.
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 20 x 3

• line of sight horn id

description: Horn id associated to line of sight datasets.
valid values: [1,...,8]
datatype: 1 byte unsigned integer
size: Number of beams per channel

• platform to attitude alignment matrix

description: Platform fixed to Attitude fixed alignment matrix. Transformation from a vector
expressed in the Platform fixed reference system to a vector expressed in the Attitude control
subsystem fixed reference system.
datatype: 4 bytes IEEE floating point
size: 3 x 3

2.3 Group ‘Calibration/Radiometric Data’

Calibration data needed to perform radiometric processing.

Datasets

• beta params horn id

description: Horn id associated to beta params datasets.
valid values: [1,...,8]
datatype: 1 byte unsigned integer
size: Number of beams per channel
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• k h beta params

description: Beta params for K band H polarization: B1 (coupler input temperature offset), B2
(coupler input temperature weight), B3 (squared coupler input temperature weight), B4 (refer-
ence load temperature weight), B5 (average front end temperature weight).
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5

• k h noise diode temperature

description: Noise diode temperature for K band H polarization.
units: kelvins
datatype: 4 bytes IEEE floating point
size: 1

• k h temperature sensors

description: Selected temperature sensors for radiometric correction formulae of K band H po-
larization: T0A (reference load temperature A), T0B (reference load temperature B), T1 (switch
1 temperature), T2 (switch 2 temperature), T3 (switch 3 temperature), T4 (horn temperature)
datatype: 1 byte unsigned integer
size: Number of beams per channel x 6

• ka h beta params

description: Beta params for Ka band H polarization: B1 (coupler input temperature offset), B2
(coupler input temperature weight), B3 (squared coupler input temperature weight), B4 (refer-
ence load temperature weight), B5 (average front end temperature weight).
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5

• ka h noise diode temperature

description: Noise diode temperature for Ka band H polarization.
units: kelvins
datatype: 4 bytes IEEE floating point
size: 1

• ka h temperature sensors

description: Selected temperature sensors for radiometric correction formulae of Ka band H po-
larization: T0A (reference load temperature A), T0B (reference load temperature B), T1 (switch
1 temperature), T2 (switch 2 temperature), T3 (switch 3 temperature), T4 (horn temperature)
datatype: 1 byte unsigned integer
size: Number of beams per channel x 6

• ka n45 beta params

description: Beta params for Ka band -45 polarization: B1 (coupler input temperature offset),
B2 (coupler input temperature weight), B3 (squared coupler input temperature weight), B4 (ref-
erence load temperature weight), B5 (average front end temperature weight).
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5

• ka n45 noise diode temperature

description: Noise diode temperature for Ka band -45 polarization.
units: kelvins
datatype: 4 bytes IEEE floating point
size: 1
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• ka n45 temperature sensors

description: Selected temperature sensors for radiometric correction formulae of Ka band -
45 polarization: T0A (reference load temperature A), T0B (reference load temperature B), T1
(switch 1 temperature), T2 (switch 2 temperature), T3 (switch 3 temperature), T4 (horn temper-
ature)
datatype: 1 byte unsigned integer
size: Number of beams per channel x 6

• ka p45 beta params

description: Beta params for Ka band +45 polarization: B1 (coupler input temperature offset),
B2 (coupler input temperature weight), B3 (squared coupler input temperature weight), B4 (ref-
erence load temperature weight), B5 (average front end temperature weight).
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5

• ka p45 noise diode temperature

description: Noise diode temperature for Ka band +45 polarization.
units: kelvins
datatype: 4 bytes IEEE floating point
size: 1

• ka p45 temperature sensors

description: Selected temperature sensors for radiometric correction formulae of Ka band
+45 polarization: T0A (reference load temperature A), T0B (reference load temperature B), T1
(switch 1 temperature), T2 (switch 2 temperature), T3 (switch 3 temperature), T4 (horn temper-
ature)
datatype: 1 byte unsigned integer
size: Number of beams per channel x 6

• ka v beta params

description: Beta params for Ka band V polarization: B1 (coupler input temperature offset), B2
(coupler input temperature weight), B3 (squared coupler input temperature weight), B4 (refer-
ence load temperature weight), B5 (average front end temperature weight).
datatype: 4 bytes IEEE floating point
size: Number of beams per channel x 5

• ka v noise diode temperature

description: Noise diode temperature for Ka band V polarization.
units: kelvins
datatype: 4 bytes IEEE floating point
size: 1

• ka v temperature sensors

description: Selected temperature sensors for radiometric correction formulae of Ka band V po-
larization: T0A (reference load temperature A), T0B (reference load temperature B), T1 (switch
1 temperature), T2 (switch 2 temperature), T3 (switch 3 temperature), T4 (horn temperature)
datatype: 1 byte unsigned integer
size: Number of beams per channel x 6
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2.4 Group ‘Converted Telemetry’

Engineering values of selected variables from sensor and spacecraft hkp telemetry, useful for pro-
cessing. Mainly voltages, currents, and temperature measurements.

Datasets

• mwr hkp im i01

description: Current Monitor of the first LNA of RX 23GHz. Subsystem: LatchUp Board
units: milliamperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp im i02

description: Current Monitor of the second LNA V of RX 36GHz. Subsystem: LatchUp Board
units: milliamperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp im i03

description: Disabled Sensor
units: milliamperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp im i04

description: Current Monitor of the second LNA H of RX 36GHz. Subsystem: LatchUp Board
units: milliamperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp im i05

description: Current Monitor of the first LNA H of RX 36GHz. Subsystem: LatchUp Board
units: milliamperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp im i06

description: Current Monitor of the second LNA of RX 23GHz. Subsystem: LatchUp Board
units: milliamperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp im i07

description: Disabled Sensor
units: milliamperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp im i08

description: Current Monitor of the first LNA V of RX 36GHz. Subsystem: LatchUp Board
units: milliamperes
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datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t01

description: Sensor at Detector 2 (+45)Rx 36GHz. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t02

description: Sensor at Detector 3 (-45)Rx 36GHz. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t03

description: Sensor at Detector 4 (V)Rx 36GHz. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t04

description: Sensor at L23-1. Subsystem: Switch Matrix 23 GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t05

description: Sensor at L23-2. Subsystem: Switch Matrix 23 GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t06

description: Sensor at L23-3. Subsystem: Switch Matrix 23 GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t07

description: Sensor at L23-4. Subsystem: Switch Matrix 23 GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames
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• mwr hkp tm t08

description: Sensor at L23-5. Subsystem: Switch Matrix 23 GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t09

description: Sensor at Dicke LOAD 36GHz V / CALIBRATION. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t10

description: Sensor at RED Dicke LOAD 36GHz V / CALIBRATION. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t11

description: Sensor at Dicke LOAD 23GHz / CALIBRATION. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t12

description: Sensor at RED Dicke LOAD 23GHz / CALIBRATION. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t13

description: Sensor at Noise Diode Rx 23GHz. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t14

description: Sensor at Noise Diode Rx 36GHz. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t15

description: Sensor at DETECTOR Rx 23GHz. Subsystem: Rx-Front-end
units: celsius degrees
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valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t16

description: Sensor at Detector 1(H)Rx 36GHz. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t17

description: Sensor at CTA-7. Subsystem: MRBOX
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t18

description: Sensor at CTA-8. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t19

description: Sensor at CTA-9. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t20

description: Sensor at CTA-10. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t21

description: Sensor at Horn 6 RX 23GHz. Subsystem: Horns Plane 23 GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t22

description: Sensor at Horn 6 RX 36GHz. Subsystem: Horns Plane 36 GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames
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• mwr hkp tm t23

description: Sensor at Dicke LOAD 36GHz H / CALIBRACION. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t24

description: Sensor at RED Dicke LOAD 36GHz H / CALIBRACION. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t25

description: Sensor at Horn 8. Subsystem: Rx-Switches
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t26

description: Sensor at LUP BOX. Subsystem: MRBOX
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t27

description: Sensor at CTA-1. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t28

description: Sensor at CTA-2. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t29

description: Sensor at CTA-3. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t30

description: Sensor at CTA-4. Subsystem: Rx-Front-end
units: celsius degrees
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valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t31

description: Sensor at CTA-5. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t32

description: Sensor at CTA-6. Subsystem: Rx-Front-end
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t33

description: Sensor at L23-6. Subsystem: Switch Matrix 23GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t34

description: Sensor at L23-7. Subsystem: Switch Matrix 23GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t35

description: Sensor at L36V-1. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t36

description: Sensor at L36V-2. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t37

description: Sensor at L36V-3. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames
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• mwr hkp tm t38

description: Sensor at L36V-4. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t39

description: Sensor at L36V-5. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t40

description: Sensor at L36V-6. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t41

description: Sensor at L36V-7. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t42

description: Sensor at L36H-1. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t43

description: Sensor at L36H-2. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t44

description: Sensor at L36H-3. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t45

description: Sensor at L36H-4. Subsystem: Switch Matrix 36GHz
units: celsius degrees
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valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t46

description: Sensor at L36H-5. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t47

description: Sensor at L36H-6. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp tm t48

description: Sensor at L36H-7. Subsystem: Switch Matrix 36GHz
units: celsius degrees
valid values: [0,50]
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp vm v01

description: Disabled Sensor
units: volts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp vm v02

description: Disabled Sensor
units: volts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp vm v03

description: Voltage +12V Analog Channels. Subsystem: LatchUp Board
units: volts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp vm v04

description: Voltage -12V Analog Channels. Subsystem: LatchUp Board
units: volts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp vm v05

description: Supply Voltage of the first LNA of RX 23GHz. Subsystem: LatchUp Board
units: volts
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datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp vm v06

description: Voltage 5V Analog Channels. Subsystem: LatchUp Board
units: volts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp vm v07

description: Disabled Sensor
units: volts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• mwr hkp vm v08

description: Disabled Sensor
units: volts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint00 current

description: Current at active thermal control heater 0
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint00 percent

description: Duty cycle percent for active thermal control heater 0
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint00 power

description: Power at active thermal control heater 0
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint01 current

description: Current at active thermal control heater 1
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint01 percent

description: Duty cycle percent for active thermal control heater 1
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint01 power

description: Power at active thermal control heater 1
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames
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• pad atc data cell pwm setpoint02 current

description: Current at active thermal control heater 2
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint02 percent

description: Duty cycle percent for active thermal control heater 2
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint02 power

description: Power at active thermal control heater 2
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint03 current

description: Current at active thermal control heater 3
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint03 percent

description: Duty cycle percent for active thermal control heater 3
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint03 power

description: Power at active thermal control heater 3
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint04 current

description: Current at active thermal control heater 4
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint04 percent

description: Duty cycle percent for active thermal control heater 4
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint04 power

description: Power at active thermal control heater 4
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames
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• pad atc data cell pwm setpoint05 current

description: Current at active thermal control heater 5
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint05 percent

description: Duty cycle percent for active thermal control heater 5
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint05 power

description: Power at active thermal control heater 5
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint06 current

description: Current at active thermal control heater 6
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint06 percent

description: Duty cycle percent for active thermal control heater 6
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint06 power

description: Power at active thermal control heater 6
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint07 current

description: Current at active thermal control heater 7
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint07 percent

description: Duty cycle percent for active thermal control heater 7
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint07 power

description: Power at active thermal control heater 7
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames
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• pad atc data cell pwm setpoint08 current

description: Current at active thermal control heater 8
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint08 percent

description: Duty cycle percent for active thermal control heater 8
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint08 power

description: Power at active thermal control heater 8
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint09 current

description: Current at active thermal control heater 9
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint09 percent

description: Duty cycle percent for active thermal control heater 9
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint09 power

description: Power at active thermal control heater 9
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint10 current

description: Current at active thermal control heater 10
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint10 percent

description: Duty cycle percent for active thermal control heater 10
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint10 power

description: Power at active thermal control heater 10
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames
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• pad atc data cell pwm setpoint11 current

description: Current at active thermal control heater 11
units: amperes
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint11 percent

description: Duty cycle percent for active thermal control heater 11
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• pad atc data cell pwm setpoint11 power

description: Power at active thermal control heater 11
units: watts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• sac vbusa rtu1

description: SAC-D bus A voltage RTU1 measurements interpolated to MWR time tags
units: volts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

• sac vbusb rtu1

description: SAC-D bus B voltage RTU1 measurements interpolated to MWR time tags
units: volts
datatype: 4 bytes IEEE floating point
size: Number of MWR Data frames

2.5 Group ‘Navigation’

Navigation data for the orbit, consisting of SAC-D orbit and attitude data. Based on the best available
source. Orbit data sources in decreasing quality order: Cods Definitive Ephemerides, Cods Post Fact
Ephemerides, Raw Spacecraft Telemetry, Cods Predicted Ephemerides. Attitude data sources in de-
creasing quality order: Cods Interpolated Attitude, Raw Spacecraft Telemetry.

Attributes

• name: Attitude Data Source
description: Source of the attitude vectors include in the product. One of: Cods Interpolated
Attitude, Raw Spacecraft Telemetry
datatype: str

• name: Attitude Data Time Between Samples In Seconds
description: Seconds between quaternion vector samples included in the product
datatype: f4

• name: Orbit Data Source
description: Source of the state vectors included in the product. One of: Cods Definitive
Ephemerides, Cods Post Fact Ephemerides, Raw Spacecraft Telemetry, Cods Predicted Ephemerides
datatype: str
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• name: Orbit Data Time Between Samples In Seconds
description: Seconds between state vector samples included in the product
datatype: f4

Datasets

• att ang

description: roll, pitch, yaw associated to transformation from a vector expressed in the Orbital
reference system to a vector expressed in the Platform fixed reference
units: degrees
valid values: <-180,...,180; -180,...,180; -180,...,180>
datatype: 4 bytes IEEE floating point
size: Number of Quaternion Vectors x 3

• att flags

description: Attitude vectors description and quality flags
units: bitmask
valid values: bit5 (msb) = cods vectors; bit4 = vector passed consistency tests; bit3 = science
mode attitude; bit2 = yaw steering attitude; bit1 = ongoing propulsion maneuver; bit0 (lsb) =
ongoing attitude maneuver
datatype: 1 byte unsigned integer
size: Number of Quaternion Vectors

• att is valid

description: Equal to 1 if attitude vector is valid for science purposes
valid values: [0,1]
datatype: 1 byte unsigned integer
size: Number of Quaternion Vectors

• att quaternion

description: J2000 to platform quaternion. Transformation from a vector expressed in the J2000
inertial system to a vector expressed in the Platform fixed reference system
units: normalized 4-tuple
valid values: <-1,...,1; -1,...,1; -1,...,1; -1,...,1>
datatype: 4 bytes IEEE floating point
size: Number of Quaternion Vectors x 4

• att time

description: GPS time tag of attitude data (seconds since 1980/01/06 00:00:00 UTC)
units: seconds
datatype: 8 bytes IEEE floating point
size: Number of Quaternion Vectors

• orb flags

description: Orbit vectors description and quality flags
units: bitmask
valid values: bit7 (msb) = cods vectors; bit6 = vector passed consistency tests; bit5 = sps
solution vectors; bit4 = nkf solution vectors; bit3 = problems with gps time; bit2 = problems
with sps convergence; bit1 = problems with nkf convergence; bit0 (lsb) = ongoing propulsion
maneuver
datatype: 1 byte unsigned integer
size: Number of State Vectors x 3
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• orb is valid

description: Equal to 1 if orbit vector is valid for science purposes
valid values: [0,1]
datatype: 1 byte unsigned integer
size: Number of State Vectors x 3

• orb lla

description: Orbit position vector in latitude, longitude, altitude (WGS84 datum)
units: degrees,meters
valid values: <-90,...,90, -180,...,180, 650000,...,660000>
datatype: 4 bytes IEEE floating point
size: Number of State Vectors x 3

• orb pos

description: Orbit position vector in J2000 inertial reference frame (mean vernal equinox, mean
equator, at Terrestrial time J2000)
units: meters
valid values: <-7100000,...,7100000; -7100000,...,7100000; -7100000,...,7100000>
datatype: 4 bytes IEEE floating point
size: Number of State Vectors x 3

• orb time

description: GPS time tag of orbit vectors (seconds since 1980/01/06 00:00:00 UTC)
units: seconds
datatype: 8 bytes IEEE floating point
size: Number of State Vectors

• orb vel

description: Orbit velocity vector in J2000 inertial reference frame (mean vernal equinox, mean
equator, at Terrestrial time J2000)
units: meters per second
valid values: <-7600,...,7600; -7600,...,7600; -7600,...,7600>
datatype: 4 bytes IEEE floating point
size: Number of State Vectors x 3

2.6 Group ‘Raw MWR Data’

Raw values of variables obtained from MWR data frames.

Datasets

• mwr atc param 1

description: Parameter 1 of last active thermal control command received by MWR. Heater id
and an indication of the kind of command received (either duty cycle configuration or redundancy
selection).
valid values: [0x20,...,0x37]
datatype: 1 byte unsigned integer
size: Number of MWR Data frames

• mwr atc param 2
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description: Parameter 2 of last active thermal control command received by MWR. Either duty
cycle configuration value or redundancy selection value for the heater.
valid values: [0x20,...,0x7F]
datatype: 1 byte unsigned integer
size: Number of MWR Data frames

• mwr hkp im

description: Raw counts for the 8 MWR current measurements
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames x 8

• mwr hkp tm

description: Raw counts for the 48 MWR temperature measurements
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames x 48

• mwr hkp vm

description: Raw counts for the 8 MWR voltage measurements
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames x 8

• mwr horn id

description: Raw horn id for both K and Ka bands
valid values: [0x1,...,0x8]
datatype: 1 byte unsigned integer
size: Number of MWR Data frames

• mwr k band horn id

description: Id of measured horn for K band
valid values: [1,..,8]
datatype: 1 byte unsigned integer
size: Number of MWR Data frames

• mwr k h antenna

description: Raw counts for K band H polarization antenna measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr k h antenna plus noise

description: Raw counts for K band H polarization antenna plus noise measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr k h load

description: Raw counts for K band H polarization reference load measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka band horn id

description: Id of measured horn for Ka band
valid values: [1,..,8]
datatype: 1 byte unsigned integer
size: Number of MWR Data frames
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• mwr ka h antenna

description: Raw counts for Ka band H polarization antenna measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka h antenna plus noise

description: Raw counts for Ka band H polarization antenna plus noise measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka h load

description: Raw counts for Ka band H polarization reference load measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka n45 antenna

description: Raw counts for Ka band -45 polarization antenna measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka n45 antenna plus noise

description: Raw counts for Ka band -45 polarization antenna plus noise measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka n45 load

description: Raw counts for Ka band -45 polarization reference load measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka p45 antenna

description: Raw counts for Ka band +45 polarization antenna measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka p45 antenna plus noise

description: Raw counts for Ka band +45 polarization antenna plus noise measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka p45 load

description: Raw counts for Ka band +45 polarization reference load measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka v antenna

description: Raw counts for Ka band V polarization antenna measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames
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• mwr ka v antenna plus noise

description: Raw counts for Ka band V polarization antenna plus noise measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr ka v load

description: Raw counts for Ka band V polarization reference load measurement
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr mode

description: MWR operation mode
valid values: 0x05 = mission; 0x06 = stand alone; 0x07 = stand by; 0x08 = calibration; 0x0c =
stand alone calibration; 0x09 = diagnostic
datatype: 1 byte unsigned integer
size: Number of MWR Data frames

• mwr sync word

description: Sync word of the MWR frame
datatype: 4 bytes unsigned integer
size: Number of MWR Data frames

• mwr time

description: GPS time tag for MWR frame including milliseconds (seconds since 1980/01/06
00:00:00 UTC)
units: seconds
datatype: 8 bytes IEEE floating point
size: Number of MWR Data frames

• mwr time ms

description: GPS time tag for MWR frame (milliseconds since mwr time s)
units: milliseconds
datatype: 2 bytes unsigned integer
size: Number of MWR Data frames

• mwr time s

description: GPS time tag for MWR frame (seconds since 1980/01/06 00:00:00 UTC)
units: seconds
datatype: 4 bytes unsigned integer
size: Number of MWR Data frames

• pad atc data cell pwm setpoint

description: Active thermal control raw duty cycle configuration value for each of the 12 heaters.
datatype: 1 byte unsigned integer
size: Number of MWR Data frames x 12

• pad atc data configuration report

description: Partitioned dump of active thermal control configuration.
datatype: 4 bytes unsigned integer
size: Number of MWR Data frames
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• pad hkp

description: Raw PAD housekeeping associated to the MWR frame.
datatype: 1 byte unsigned integer
size: Number of MWR Data frames x 20

2.7 Group ‘SAC-D Telemetry’

SAC-D raw telemetry frames associated to the orbit.

Datasets

• sacd telemetry

description: SAC-D raw telemetry blocks. 4000 bytes every 8 seconds
datatype: 1 byte unsigned integer
size: Number of SAC-D Telemetry frames x 4000

• sacd telemetry crc is valid

description: Equal to 1 if SAC-D raw telemetry CRC was validated.
valid values: [0,1]
datatype: 1 byte unsigned integer
size: Number of SAC-D Telemetry frames
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1 Description of Hdf5 Global Metadata Attributes

1.1 Group ‘/’

Root group for the product.

• hdf5 especification filename

description: Filename of the .xml hdf5 estructure especification file from which this product was
created.
default value: mwr l1b hdf5 esp.2 0.xml
datatype: string

1.2 Group ‘Global Metadata/Acquisition’

Information related to the acquisition of data by the sensor.

• Cycle Number

description: Counter of weekly cycles (103 orbits) since Aquarius’s Commisioning end.
datatype: 4 bytes signed integer

• End Time GPS

description: GPS time tag for the last MWR data included in the product (seconds since
1980/01/06 00:00:00 UTC)
datatype: 4 bytes unsigned integer

• End Time UTC

description: UTC time time tag for the last MWR data included in the product
datatype: string

• Length Seconds

description: Elapsed time period between the first and last MWR data included in the product
datatype: 4 bytes unsigned integer

• Mwr Reference System Pass Number

description: Id of revolution inside the weekly cycle. Consecutive numbers 1 to 103 represent
geographically adjacent revolutions. Refer to ’MWR Reference System Pass Number to In Cycle
Pass Number Map’ to map between these two ids.
datatype: 1 byte unsigned integer

• Orbit End Time UTC

description: UTC time time tag for the end of the MWR orbit (descending crossing of the south
pole)
datatype: string

• Orbit Node Longitude

description: Longitude of orbit ascending node (equatorial crossing at PM node)
datatype: 4 bytes IEEE floating point
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• Orbit Node Time UTC

description: UTC time time tag for orbit ascending node (equatorial crossing at PM node)
datatype: string

• Orbit Number

description: Counter of revolutions since launch.
datatype: 4 bytes signed integer

• Orbit Start Time UTC

description: UTC time time tag for the start of the MWR orbit (ascending crossing of the south
pole)
datatype: string

• Overlapped Orbit End Time UTC

description: UTC time time tag for end of the Overlapped MWR orbit (end of the MWR orbit
plus 10 minutes)
datatype: string

• Overlapped Orbit Start Time UTC

description: UTC time time tag for start of the Overlapped MWR orbit (start of the MWR orbit
minus 10 minutes)
datatype: string

• Pass Number in Cycle

description: Id of revolution inside the weekly cycle. Consecutive numbers 1 to 103 represent
revolutions adjacent in time. Refer to ’MWR Reference System Pass Number to In Cycle Pass
Number Map’ to map between these two ids.
datatype: 1 byte unsigned integer

• Start Time GPS

description: GPS time tag for the first MWR data included in the product (seconds since
1980/01/06 00:00:00 UTC)
datatype: 4 bytes unsigned integer

• Start Time UTC

description: UTC time time tag for the first MWR data included in the product
datatype: string

1.3 Group ‘Global Metadata/Mission’

Information related to the mission.

• Name

description: Full name for the mission associated to this product.
default value: SAC-D Aquarius
datatype: string
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1.4 Group ‘Global Metadata/Platform’

Information related to the platform.

• Name

description: Full name of the spacecraft platform associated to this product.
default value: SAC-D
datatype: string

• Reference Time

description: Main reference time system used in relation with platform information.
default value: GPS
datatype: string

1.5 Group ‘Global Metadata/Platform/Orbit’

Information related to the orbit of the platform.

• Mean Argument Perigee Degrees

description: Mean Argument of Perigee for the orbit of the platform associated to the product
default value: 90.0
datatype: 4 bytes IEEE floating point

• Mean Eccentricity

description: Mean Eccentricity for the orbit of the platform associated to the product
default value: 0.0012
datatype: 4 bytes IEEE floating point

• Mean Equatorial Altitude Km

description: Mean Altitude, when crossing above the equator, for the orbit of the platform asso-
ciated to the product
default value: 657.0
datatype: 4 bytes IEEE floating point

• Mean Inclination Degrees

description: Mean Inclination for the orbit of the platform associated to the product
default value: 98.01
datatype: 4 bytes IEEE floating point

• Mean Local Time of ascending Node

description: Mean Local Time of Ascending Node for the orbit of the platform associated to the
product
default value: 06:00 PM
datatype: string

• Mean Period Min

description: Mean minutes required by the platform in order to complete a revolution.
default value: 98.0
datatype: 4 bytes IEEE floating point
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• Mean SemiMajor Axis Km

description: Mean Semimajor Axis for the orbit of the platform associated to the product
default value: 7028.87
datatype: 4 bytes IEEE floating point

• Revisit Cycle Days

description: Number of days needed by the platform in order to pass above the same point in
earth.
default value: 7
datatype: 1 byte signed integer

• Revisit Cycle Revolutions

description: Number of revolutions needed by the platform in order to pass above the same
point in earth.
default value: 103
datatype: 1 byte unsigned integer

• Type

description: Description of the main characteristics of the orbit of the platform associated to the
product
default value: Frozen, Almost circular, Dawn-Dusk, Sun Synchronous
datatype: string

1.6 Group ‘Global Metadata/Product’

Information related to the product contents.

• CODS Attitude Vector Algorithm Version

description: Version of Algorithm used to generate CODS attitude vectors used to generate
this product (if applicable)
datatype: string

• CODS State Vector Algorithm Version

description: Version of Algorithm used to generate CODS state vectors used to generate this
product (if applicable)
datatype: string

• Data Format

description: Base product data format.
default value: NCSA-HDF5
datatype: string

• Data Format Version

description: Base product data format version.
datatype: string
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• Data Type

description: Identifies the kind of data present in the product. One of SCI (Science data), CAL
(Calibration data), ENG (Engineering data).
datatype: string

• Geometric Tables Update Id

description: Update Id of Geometric Calibration Tables used to generate this product
datatype: string

• Level

description: Indication of the production level.
default value: L1B
datatype: string

• Level Version

description: Version number for the level of this product.
default value: 2.0
datatype: string

• Name

description: Full name of the product, used also in file names. Format: EO YYYMMDD HH-
MMSS SERVICE SPACECRAFT SENSOR LEVEL DATA. Where time info refers to UTC time
tag associated to the start of the overlapped orbit, SERVICE is Production Service Id, SPACE-
CRAFT is Platform Name, SENSOR is Sensor Name, LEVEL is Product Level, DATA is Product
Data Type.
datatype: string

• Radiometric Tables Update Id

description: Update Id of Radiometric Calibration Tables used to generate this product
datatype: string

• Reference Coordinate System

description: Reference coordinate system used to generate geographical information for this
product.
default value: J2000
datatype: string

• Reference Datum

description: Reference datum used to generate geographical information for this product.
default value: WGS84
datatype: string

• Title

description: Identifies Sensor Name, and Product Level.
default value: MWR Level-1B Data
datatype: string
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1.7 Group ‘Global Metadata/Product/Stats’

Statistics for the product contents.

• Number of MWR lines

description: Number of MWR lines included in this product.
datatype: 4 bytes unsigned integer

• Number of MWR lines where the geolocation algorithm failed

description: Number of MWR lines included in this product that contains geolocation errors.
One counter for each band: K H, Ka H, Ka V, Ka +45, Ka -45.
datatype: 4 bytes unsigned integer

• Number of MWR lines whose input data has CRC error

description: Number of MWR lines included in this product that contains CRC errors. One
counter for each band: K H, Ka H, Ka V, Ka +45, Ka -45.
datatype: 4 bytes unsigned integer

• Number of MWR lines whose input data was flagged as invalid

description: Number of MWR lines whose input data was flagged as invalid. One counter for
each band: K H, Ka H, Ka V, Ka +45, Ka -45.
datatype: 4 bytes unsigned integer

• Number of MWR samples where the geolocation algorithm failed

description: Number of MWR samples included in this product that contains geolocation errors.
One counter for each band: K H, Ka H, Ka V, Ka +45, Ka -45.
datatype: 4 bytes unsigned integer

• Number of MWR samples whose input data has CRC error

description: Number of MWR samples included in this product that contains CRC errors. One
counter for each band: K H, Ka H, Ka V, Ka +45, Ka -45.
datatype: 4 bytes unsigned integer

• Number of MWR samples whose input data was flagged as invalid

description: Number of MWR samples whose input data was flagged as invalid. One counter
for each band: K H, Ka H, Ka V, Ka +45, Ka -45.
datatype: 4 bytes unsigned integer

• Number of filled MWR samples

description: Number of MWR samples that were filled in this product, due to missing frames.
One counter for each band: K H, Ka H, Ka V, Ka +45, Ka -45.
datatype: 4 bytes unsigned integer

• Number of missing MWR lines

description: Number of missing MWR lines for the line sequence included in this product.
datatype: 4 bytes unsigned integer
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1.8 Group ‘Global Metadata/Production’

Information related to the production activity.

• Agency Id

description: Identification of space agency that generated this product
datatype: string

• Center

description: Identification of the facility and agency that generated this product.
datatype: string

• Center Reference Time

description: Main reference time system used in the results of the production.
default value: UTC
datatype: string

• Contact Organization Name

description: Address of the Production Center
datatype: string

• Control Parameters

description: Command line arguments of the program used to generate this product.
datatype: string

• Country Id

description: Identification of the country the space agency that generated this product belongs
to.
datatype: string

• Facility Id

description: Identification of the facility inside the space agency that generated this product.
datatype: string

• Input Files

description: List of input files used to generate this product.
datatype: string

• Service Id

description: Identification of the service inside the space agency that generated this product.
datatype: string

• Start Time UTC

description: UTC time tag for the start of the generation of this product.
datatype: string
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1.9 Group ‘Global Metadata/Sensor’

Information related to the sensor.

• BeamWidth Degrees

description: Length in degrees of the beam received by a horn.
default value: 1.7
datatype: 4 bytes IEEE floating point

• Frequency Bands

description: List of frequency bands of the sensor.
default value: 23.8 GHz (K) - 36.5 GHz (Ka)
datatype: string

• K Band BandWidth MHz

description: Measured bandwidth around the central frequency for the K band H polarization
default value: 400.0
datatype: 4 bytes IEEE floating point

• Ka Band BandWidth MHz

description: Measured bandwidth around the central frequency for the Ka band at all polariza-
tions
default value: 1000.0
datatype: 4 bytes IEEE floating point

• MWR Reference System Pass Number to In Cycle Pass Number Map

description: Map between the two systems used to identify a particular revolution inside the
weekly cycle: MWR Reference System Pass Number and Cycle Pass Number
default value: 001: 100 , 002: 041 , 003: 085 , 004: 026 , 005: 070 , 006: 011 , 007: 055 , 008:
099 , 009: 040 , 010: 084 , 011: 025 , 012: 069 , 013: 010 , 014: 054 , 015: 098 , 016: 039 ,
017: 083 , 018: 024 , 019: 068 , 020: 009 , 021: 053 , 022: 097 , 023: 038 , 024: 082 , 025: 023
, 026: 067 , 027: 008 , 028: 052 , 029: 096 , 030: 037 , 031: 081 , 032: 022 , 033: 066 , 034:
007 , 035: 051 , 036: 095 , 037: 036 , 038: 080 , 039: 021 , 040: 065 , 041: 006 , 042: 050 ,
043: 094 , 044: 035 , 045: 079 , 046: 020 , 047: 064 , 048: 005 , 049: 049 , 050: 093 , 051: 034
, 052: 078 , 053: 019 , 054: 063 , 055: 004 , 056: 048 , 057: 092 , 058: 033 , 059: 077 , 060:
018 , 061: 062 , 062: 003 , 063: 047 , 064: 091 , 065: 032 , 066: 076 , 067: 017 , 068: 061 ,
069: 002 , 070: 046 , 071: 090 , 072: 031 , 073: 075 , 074: 016 , 075: 060 , 076: 001 , 077: 045
, 078: 089 , 079: 030 , 080: 074 , 081: 015 , 082: 059 , 083: 103 , 084: 044 , 085: 088 , 086:
029 , 087: 073 , 088: 014 , 089: 058 , 090: 102 , 091: 043 , 092: 087 , 093: 028 , 094: 072 ,
095: 013 , 096: 057 , 097: 101 , 098: 042 , 099: 086 , 100: 027 , 101: 071 , 102: 012 , 103: 056
datatype: string

• Name

description: Name of the sensor.
default value: MWR
datatype: string

• Number of beams per channel
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description: Number of beams/horns per channel
default value: 8
datatype: 1 byte unsigned integer

• Number of channels

description: Number of channels measured by the sensr
default value: 5
datatype: 1 byte unsigned integer

• Off Nadir Pointing Degrees

description: Off nadir central pointing for each band.
default value: 23.8 GHz 47.95El/143.73Az - 36.5 GHz 47.95El/36.27Az
datatype: string

• Polarizations

description: List of all central frequencies and associated polarizations.
default value: 23.8 GHz H - 36.5 GHz H - 36.5 GHz V - 36.5 GHz +45 - 36.5 GHz -45
datatype: string

• Spatial Resolution Km

description: Length of the footprint of a horn at the earth surface.
default value: 54.23
datatype: 4 bytes IEEE floating point

• Swath Width Km

description: Total distance covered at the earth surface by the 8 horns of a band and polariza-
tion pair.
default value: 367.89
datatype: 4 bytes IEEE floating point

1.10 Group ‘Global Metadata/Software’

Information related to the software used to generate the product.

• Name

description: Name of the software that generated this product
datatype: string

• Release

description: Configuration control release name of the software that generated this product
datatype: string

• Version

description: Version of the software that generated this product
datatype: string
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2 Description of Hdf5 Datasets

2.1 Group ‘Ancillary Data’

Ancillary data useful for higher level processing

Datasets

• ascending flag

description: Indicator of whether the spacecraft is ascending or descending.
valid values: 0 = descending; 1 = ascending
datatype: 1 byte unsigned integer
size: Number of MWR lines

• k h surface type

description: Surface type associated to K band H polarization measurement.
valid values: -1 = unknown; 0 = land; 1 = ocean; 2 = coast; 3 = near coast; 4 = ice; 5 = possible
ice
datatype: 1 byte signed integer
size: Number of MWR lines x Number of beams per channel

• ka h surface type

description: Surface type associated to Ka band H polarization measurement.
valid values: -1 = unknown; 0 = land; 1 = ocean; 2 = coast; 3 = near coast; 4 = ice; 5 = possible
ice
datatype: 1 byte signed integer
size: Number of MWR lines x Number of beams per channel

• ka n45 surface type

description: Surface type associated to Ka band -45 polarization measurement.
valid values: -1 = unknown; 0 = land; 1 = ocean; 2 = coast; 3 = near coast; 4 = ice; 5 = possible
ice
datatype: 1 byte signed integer
size: Number of MWR lines x Number of beams per channel

• ka p45 surface type

description: Surface type associated to Ka band +45 polarization measurement.
valid values: -1 = unknown; 0 = land; 1 = ocean; 2 = coast; 3 = near coast; 4 = ice; 5 = possible
ice
datatype: 1 byte signed integer
size: Number of MWR lines x Number of beams per channel

• ka v surface type

description: Surface type associated to Ka band V polarization measurement.
valid values: -1 = unknown; 0 = land; 1 = ocean; 2 = coast; 3 = near coast; 4 = ice; 5 = possible
ice
datatype: 1 byte signed integer
size: Number of MWR lines x Number of beams per channel
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2.2 Group ‘Geolocation Data’

Geolocation Data associated to MWR measurements

Attributes

• name: Cell Length x
description: Grid cell length over x axis of the geolocation grid.
datatype: u2

• name: Cell Length y
description: Grid cell length over y axis of the geolocation grid.
datatype: u2

Datasets

• k h azimuth angle to moon

description: Azimuth angle to moon for K band H polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• k h azimuth angle to spacecraft

description: Azimuth angle to spacecraft for K band H polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• k h azimuth angle to sun

description: Azimuth angle to sun for K band H polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• k h latitude

description: Latitude for K band H polarization measurement.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• k h longitude

description: Longitude for K band H polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel
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• k h n3db approximating ellipse lat

This dataset is optional, it may be present on the product only due to specific user request.

description: Latitude of the center, first semimajor axis, first semiminor axis, second semi-
major axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for K band
H polarization
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• k h n3db approximating ellipse lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of the center, first semimajor axis, first semiminor axis, second semima-
jor axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for K band H
polarization
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• k h n3db contour lat

This dataset is optional, it may be present on the product only due to specific user request.

description: Latitude of selected points from the -3dB contour, for K band H polarization.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• k h n3db contour lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of selected points from the -3dB contour, for K band H polarization.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• k h range to spacecraft

description: Distance between spacecraft and position of K band H polarization measurement.
units: meters
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• k h zenith angle to moon

description: Zenith (incidence) angle to moon for K band H polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel
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• k h zenith angle to spacecraft

description: Zenith (incidence) angle to spacecraft for K band H polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• k h zenith angle to sun

description: Zenith (incidence) angle to sun for K band H polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h azimuth angle to moon

description: Azimuth angle to moon for Ka band H polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h azimuth angle to spacecraft

description: Azimuth angle to spacecraft for Ka band H polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h azimuth angle to sun

description: Azimuth angle to sun for Ka band H polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h latitude

description: Latitude for Ka band H polarization measurement.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h longitude

description: Longitude for Ka band H polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h n3db approximating ellipse lat

This dataset is optional, it may be present on the product only due to specific user request.
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description: Latitude of the center, first semimajor axis, first semiminor axis, second semi-
major axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for Ka
band H polarization
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• ka h n3db approximating ellipse lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of the center, first semimajor axis, first semiminor axis, second semima-
jor axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for Ka band
H polarization
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• ka h n3db contour lat

This dataset is optional, it may be present on the product only due to specific user request.

description: Latitude of selected points from the -3dB contour, for Ka band H polarization.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• ka h n3db contour lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of selected points from the -3dB contour, for Ka band H polarization.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• ka h range to spacecraft

description: Distance between spacecraft and position of Ka band H polarization measurement.
units: meters
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h zenith angle to moon

description: Zenith (incidence) angle to moon for Ka band H polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h zenith angle to spacecraft

description: Zenith (incidence) angle to spacecraft for Ka band H polarization measurement.
units: degrees
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valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h zenith angle to sun

description: Zenith (incidence) angle to sun for Ka band H polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 azimuth angle to moon

description: Azimuth angle to moon for Ka band -45 polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 azimuth angle to spacecraft

description: Azimuth angle to spacecraft for Ka band -45 polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 azimuth angle to sun

description: Azimuth angle to sun for Ka band -45 polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 latitude

description: Latitude for Ka band -45 polarization measurement.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 longitude

description: Longitude for Ka band -45 polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 n3db approximating ellipse lat

This dataset is optional, it may be present on the product only due to specific user request.

description: Latitude of the center, first semimajor axis, first semiminor axis, second semi-
major axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for Ka
band -45 polarization
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units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• ka n45 n3db approximating ellipse lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of the center, first semimajor axis, first semiminor axis, second semima-
jor axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for Ka band
-45 polarization
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• ka n45 n3db contour lat

This dataset is optional, it may be present on the product only due to specific user request.

description: Latitude of selected points from the -3dB contour, for Ka band -45 polarization.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• ka n45 n3db contour lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of selected points from the -3dB contour, for Ka band -45 polariza-
tion.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• ka n45 range to spacecraft

description: Distance between spacecraft and position of Ka band -45 polarization measure-
ment.
units: meters
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 zenith angle to moon

description: Zenith (incidence) angle to moon for Ka band -45 polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 zenith angle to spacecraft

description: Zenith (incidence) angle to spacecraft for Ka band -45 polarization measurement.
units: degrees
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valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 zenith angle to sun

description: Zenith (incidence) angle to sun for Ka band -45 polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 azimuth angle to moon

description: Azimuth angle to moon for Ka band +45 polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 azimuth angle to spacecraft

description: Azimuth angle to spacecraft for Ka band +45 polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 azimuth angle to sun

description: Azimuth angle to sun for Ka band +45 polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 latitude

description: Latitude for Ka band +45 polarization measurement.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 longitude

description: Longitude for Ka band +45 polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 n3db approximating ellipse lat

This dataset is optional, it may be present on the product only due to specific user request.

description: Latitude of the center, first semimajor axis, first semiminor axis, second semi-
major axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for Ka
band +45 polarization
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units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• ka p45 n3db approximating ellipse lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of the center, first semimajor axis, first semiminor axis, second semima-
jor axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for Ka band
+45 polarization
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• ka p45 n3db contour lat

This dataset is optional, it may be present on the product only due to specific user request.

description: Latitude of selected points from the -3dB contour, for Ka band +45 polarization.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• ka p45 n3db contour lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of selected points from the -3dB contour, for Ka band +45 polariza-
tion.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• ka p45 range to spacecraft

description: Distance between spacecraft and position of Ka band +45 polarization measure-
ment.
units: meters
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 zenith angle to moon

description: Zenith (incidence) angle to moon for Ka band +45 polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 zenith angle to spacecraft

description: Zenith (incidence) angle to spacecraft for Ka band +45 polarization measurement.
units: degrees
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valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 zenith angle to sun

description: Zenith (incidence) angle to sun for Ka band +45 polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka v azimuth angle to moon

description: Azimuth angle to moon for Ka band V polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka v azimuth angle to spacecraft

description: Azimuth angle to spacecraft for Ka band V polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka v azimuth angle to sun

description: Azimuth angle to sun for Ka band V polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka v latitude

description: Latitude for Ka band V polarization measurement.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka v longitude

description: Longitude for Ka band V polarization measurement.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka v n3db approximating ellipse lat

This dataset is optional, it may be present on the product only due to specific user request.

description: Latitude of the center, first semimajor axis, first semiminor axis, second semi-
major axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for Ka
band V polarization
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units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• ka v n3db approximating ellipse lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of the center, first semimajor axis, first semiminor axis, second semima-
jor axis, second semiminor axis, of the ellipse that approximates the -3dB contour, for Ka band
V polarization
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 5

• ka v n3db contour lat

This dataset is optional, it may be present on the product only due to specific user request.

description: Latitude of selected points from the -3dB contour, for Ka band V polarization.
units: degrees
valid values: [-90,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• ka v n3db contour lon

This dataset is optional, it may be present on the product only due to specific user request.

description: Longitude of selected points from the -3dB contour, for Ka band V polarization.
units: degrees
valid values: [-180,...,180]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel x 20

• ka v range to spacecraft

description: Distance between spacecraft and position of Ka band V polarization measurement.
units: meters
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka v zenith angle to moon

description: Zenith (incidence) angle to moon for Ka band V polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka v zenith angle to spacecraft

description: Zenith (incidence) angle to spacecraft for Ka band V polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel
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• ka v zenith angle to sun

description: Zenith (incidence) angle to sun for Ka band V polarization measurement.
units: degrees
valid values: [0,...,90]
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

2.3 Group ‘MWR Calibrated Radiometric Data’

MWR calibrated radiometric measurements

Datasets

• k h antenna temperature

description: K band H polarization antenna temperature measurement
units: celsius degrees
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka h antenna temperature

description: Ka band H polarization antenna temperature measurement
units: celsius degrees
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka n45 antenna temperature

description: Ka band -45 polarization antenna temperature measurement
units: celsius degrees
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka p45 antenna temperature

description: Ka band +45 polarization antenna temperature measurement
units: celsius degrees
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

• ka v antenna temperature

description: Ka band V polarization antenna temperature measurement
units: celsius degrees
datatype: 4 bytes IEEE floating point
size: Number of MWR lines x Number of beams per channel

2.4 Group ‘Quality indicators’

Datasets indicating quality of measurements and measurements positions

Datasets
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• filled mwr samples

description: Bitmask indicating the filling MWR samples included in the product.
units: bitmask
valid values: byte0: bit7 (msb) = Horn 1 of K band H polarization, ..., bit0 = Horn 8 of K band H
polarization; byte1: bit7 (msb) = Horn 1 of Ka band H polarization, ..., bit0 = Horn 8 of Ka band
H polarization; byte2: bit7 (msb) = Horn 1 of Ka band V polarization, ..., bit0 = Horn 8 of Ka band
V polarization; byte3: bit7 (msb) = Horn 1 of Ka band +45 polarization, ..., bit0 = Horn 8 of Ka
band +45 polarization; byte4: bit7 (msb) = Horn 1 of Ka band -45 polarization, ..., bit0 = Horn 8
of Ka band -45 polarization;
datatype: 1 byte unsigned integer
size: Number of MWR lines x Number of channels

• k h quality

description: Quality of each MWR sample of K band H polarization. Indicates the degree of
quality of the data. [5=good quality, 4, 3, 2, 1=poor quality]
valid values: [5=good quality, 4, 3, 2, 1=poor quality]
datatype: 1 byte unsigned integer
size: Number of MWR lines x Number of beams per channel

• ka h quality

description: Quality of each MWR sample of Ka band H polarization. Indicates the degree of
quality of the data. [5=good quality, 4, 3, 2, 1=poor quality]
valid values: [5=good quality, 4, 3, 2, 1=poor quality]
datatype: 1 byte unsigned integer
size: Number of MWR lines x Number of beams per channel

• ka n45 quality

description: Quality of each MWR sample of Ka band -45 polarization. Indicates the degree of
quality of the data. [5=good quality, 4, 3, 2, 1=poor quality]
valid values: [5=good quality, 4, 3, 2, 1=poor quality]
datatype: 1 byte unsigned integer
size: Number of MWR lines x Number of beams per channel

• ka p45 quality

description: Quality of each MWR sample of Ka band +45 polarization. Indicates the degree of
quality of the data. [5=good quality, 4, 3, 2, 1=poor quality]
valid values: [5=good quality, 4, 3, 2, 1=poor quality]
datatype: 1 byte unsigned integer
size: Number of MWR lines x Number of beams per channel

• ka v quality

description: Quality of each MWR sample of Ka band V polarization. Indicates the degree of
quality of the data. [5=good quality, 4, 3, 2, 1=poor quality]
valid values: [5=good quality, 4, 3, 2, 1=poor quality]
datatype: 1 byte unsigned integer
size: Number of MWR lines x Number of beams per channel

• missing mwr lines

description: Indicates the number of missing MWR lines before the current one
datatype: 2 bytes unsigned integer
size: Number of MWR lines
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• mwr samples with crc errors

description: Bitmask indicating the MWR samples whose input data contains CRC errors.
units: bitmask
valid values: byte0: bit7 (msb) = Horn 1 of K band H polarization, ..., bit0 = Horn 8 of K band H
polarization; byte1: bit7 (msb) = Horn 1 of Ka band H polarization, ..., bit0 = Horn 8 of Ka band
H polarization; byte2: bit7 (msb) = Horn 1 of Ka band V polarization, ..., bit0 = Horn 8 of Ka band
V polarization; byte3: bit7 (msb) = Horn 1 of Ka band +45 polarization, ..., bit0 = Horn 8 of Ka
band +45 polarization; byte4: bit7 (msb) = Horn 1 of Ka band -45 polarization, ..., bit0 = Horn 8
of Ka band -45 polarization;
datatype: 1 byte unsigned integer
size: Number of MWR lines x Number of channels

• mwr samples with geolocation errors

description: Bitmask indicating the MWR samples where the geolocation algorithm failed.
units: bitmask
valid values: byte0: bit7 (msb) = Horn 1 of K band H polarization, ..., bit0 = Horn 8 of K band H
polarization; byte1: bit7 (msb) = Horn 1 of Ka band H polarization, ..., bit0 = Horn 8 of Ka band
H polarization; byte2: bit7 (msb) = Horn 1 of Ka band V polarization, ..., bit0 = Horn 8 of Ka band
V polarization; byte3: bit7 (msb) = Horn 1 of Ka band +45 polarization, ..., bit0 = Horn 8 of Ka
band +45 polarization; byte4: bit7 (msb) = Horn 1 of Ka band -45 polarization, ..., bit0 = Horn 8
of Ka band -45 polarization;
datatype: 1 byte unsigned integer
size: Number of MWR lines x Number of channels

• mwr samples with invalid data

description: Bitmask indicating the MWR samples whose input data was tagged as invalid.
units: bitmask
valid values: byte0: bit7 (msb) = Horn 1 of K band H polarization, ..., bit0 = Horn 8 of K band H
polarization; byte1: bit7 (msb) = Horn 1 of Ka band H polarization, ..., bit0 = Horn 8 of Ka band
H polarization; byte2: bit7 (msb) = Horn 1 of Ka band V polarization, ..., bit0 = Horn 8 of Ka band
V polarization; byte3: bit7 (msb) = Horn 1 of Ka band +45 polarization, ..., bit0 = Horn 8 of Ka
band +45 polarization; byte4: bit7 (msb) = Horn 1 of Ka band -45 polarization, ..., bit0 = Horn 8
of Ka band -45 polarization;
datatype: 1 byte unsigned integer
size: Number of MWR lines x Number of channels
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The File Name: 

Qyyyydddhhmmss_MWR_L1_Vn.0 

%%% 

yyyy : year 

ddd : Julian Day (day of the year) 

hh,mm,ss : hours, minutes, seconds  (start of the file) 

L1 : Level of the data product 

Vn.0: version of the calibration 

 

The file Structure: 

%%% 

it is a Matlab structure (.mat) that consists of three main structure (three radiometers): 

1) RX23H 

2) RX37H 

3) RX37V 

 

Each of these main structures is divided to eight sub-structures representing the eight horns for that 

specific radiometer: 

B1 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

F.3 CFRSL L1 Data (.mat)
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Inside of each of these horns there are three variables and three sub-structures 

Variables: 

1)Lat  Latitude in deg 

2)Lon  Longitude in deg 

3) EIA  earth incidence angle (deg) 

4) Tin  Brightness temperature at the input of the coupler 

5) Tb   Calibrated main-beam antenna brightness temperature 

6) time  time in matlab serial date format 

7)Ca  Antenna Counts 

8)Cn  Antenna + Noise Counts 

9)Co  Reference Load Counts 

You can use matlab command datestr(time) to see sampling time and date for each sample. 

Sub-Structures: 

1) calib_coeff : This structure contains the following calibration coefficients  

slope, offset, b 

2) Telem_Temp :This structure contains 5 temperature sensor measurements  in K=>  To T1 T2 T3 T4 
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data 

RX23H 

B1 

Tb  Co  Cn  Ca  Tin time Telem_Temp 

To 

T1 

T2 

T3 

T4 

calib_coeff 

slope 

offset 

b 

EIA Lat Lon 

B2 B3 B4 B5 B6 B7 B8 

RX37V RX37H 
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