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ABSTRACT 

Urbanization is accelerating in the United States and is contributing to fragmentation of 

natural habitats, causing changes in species composition and declines in native species. Human 

population growth in Orlando is typical of growth in the southeastern United States and 

throughout the range of cypress (Taxodium distichum). Orlando has numerous isolated cypress 

wetlands, called cypress domes, and many remain among the current urbanized area. This makes 

Orlando ideal to study the effects of urbanization on cypress domes. Specifically, I tested how 

urbanization and its effects on fragmentation, hydrology, and fire regime) affected (a) the 

numbers and spatial pattern of cypress domes in central Florida and (b) the recruitment of 

cypress within cypress domes. Analysis of historical loss found over 3,000 cypress domes 

identified in images from1984, of which 26% were lost or degraded (i.e., no longer cypress-

dominated) by 2004. Due to changed land use, many remaining cypress domes, formerly 

surrounded by natural lands, have become surrounded by urban lands causing spatial clustering 

and homogenization. Surprisingly, I found that both natural and urban cypress domes showed 

lower recruitment than agricultural cypress domes, where the natural fire regime has not been 

altered. The probability of cypress recruitment in cypress domes urbanized for more than 20 

years is very low. Previous to that, cypress tends to recruit on the edge of cypress domes where 

there is less competition and hydrological conditions are more favorable. I estimate that only 

~50% of the current cypress domes are recruiting and the existence of those wetlands are tied to 

the lifespan of the current adults. By 2104, I estimate that ~89% of the cypress domes currently 

recruiting will fail to recruit. I believe that reducing urban sprawl and restoring the natural fire 
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regime to natural cypress domes will mitigate the current fate of cypress domes. Without this, 

cypress in isolated wetlands in central Florida, and providing Orlando urbanization is typical, 

throughout urbanized areas of the range, could be at risk. Cypress in urban areas will be then 

relegated to riparian zones and with unknown consequences for the species that utilize the former 

cypress dome habitat.  
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CHAPTER 1: INTRODUCTION 

 For the first time in human history, more people live in urban areas than rural areas 

worldwide (UNFPA 2007).  Nearly 84% of the U.S. population lives in urban areas currently and 

that number is expected to rise (U.S. Census Bureau 2000, 2010a). The conversion of land to 

urban use (urbanization) is one of the leading causes of species loss in the United States (Czech 

et al. 2000) and conversion of land to urban use is increasing at faster rates than lands are being 

preserved as parks or conservation areas (McKinney 2002). Urbanization has been shown to 

increase fragmentation of natural habitat, decrease native species diversity, and increase invasion 

of exotic species (Medley et al. 1995, Blair 1996, Pickett et al. 2001, McKinney 2002, 2004, 

2006, D’Antonio and Meyerson 2002).  

 Human population growth in the southeastern U.S. has increased at faster rates than other 

areas of the country. For example, Florida’s population has doubled in size every 20 years since 

1900, causing a 3.5% increase annually (the nationwide average is 1.1%). Florida’s population 

growth is estimated to reach 20.3 million people by the year 2020, leading to 1.05 million ha of 

additional urban land use area and consuming 7.5% of the total land area in Florida (Reynolds 

2001). 

The southeastern U.S. and especially Florida are home to numerous freshwater wetlands 

including isolated wetlands. Isolated wetlands are often smaller than riverine or coastal wetlands 

but are very numerous and typically sum to the greatest area among all wetland types in any 

given region (Semlitsch and Bodie 1998, van der Valk and Pederson 2003).  Isolated wetlands 

also provide unique habitat for several species. Due to the lack of fish, amphibian species 
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diversity has been found to be highest in isolated wetlands (Semlitsch and Bodie 1998). In 

addition, isolated wetlands also provide important habitat for waterfowl breeding and feeding 

(Leibowitz 2003). In this study, “isolated” refers to wetlands that are not often hydrologically 

connected but could have biotic connections during large rainfalls or by overland dispersal.  

 Protection of isolated wetlands has been at issue in recent years. The 2001 U.S. Supreme 

Court decision in the Solid Waste Agency of Northern Cook County (SWANCC) vs. U.S. Army 

Corps of Engineers (USACE) limited federal protection of “non-navigable, intrastate” waters, 

possibly leaving isolated wetlands unprotected from further destruction (Mank 2003; SWANCC 

v. U.S. Army Corps of Engineers). The Court found that federal protection is limited to 

navigable waters and non-navigable waters that have a “significant nexus” to navigable waters, 

such as those adjacent to navigable waters. Recognition of biotic connections, via dispersal of 

organisms, could be considered as a “significant nexus” and could help protect isolated wetlands.    

 Many of these isolated wetlands are cypress domes, which are dominated by cypress 

(Taxodium distichum) and called domes because of the dome shape caused from taller trees in 

the middle and shorter trees around the edge. I chose cypress domes as a model system to study 

the effects of urbanization on isolated wetlands in a rapidly urbanizing area. I chose cypress 

domes and the dominant vegetation cypress (Taxodium distichum) for this study because of three 

main reasons. First, there are numerous cypress domes and cypress trees readily available for 

sampling. Second, cypress is readily distinguishable on color infrared aerial photography making 

analysis possible across large spatial scales and through time. Lastly, cypress is a long-lived 

species in which adults were present prior to urbanization and juveniles have recruited since 
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urbanization. This allows for evaluation of genetic differentiation between adults and juveniles to 

determine the effects of urbanization on the population genetics of the species. 

Cypress 

 Cypress trees dominate forested wetlands of the southeastern U.S. and occur in both 

isolated wetlands (such as cypress domes) and riparian zones of rivers and streams. The native 

range of cypress includes 17 states throughout the southeastern U.S. (Figure 1). Cypress are a 

gymnosperm and monoecious. Cypress produce an average of about 16 seeds per cone (Faulkner 

and Toliver 1983) and good seed crops are produced about every 3-5 years (U.S. Department of 

Agriculture 1974, Brandt and Ewel 1989). A major vector of dispersal of cypress cones is via 

hydrochory (Middleton 2000) during temporary hydrological connections that occur with 

significant rainfalls. Seeds will remain viable for up to 30 months underwater but they will not 

germinate underwater. Germination requires saturated but not flooded conditions in order to 

germinate and seedlings must stay above water for the first year in order to survive (Demaree 

1932). Adults can live to be several hundred years old if not logged (Burns and Honkala 1990).   

 Two varieties of cypress have been recognized: pond cypress, which is typically the 

dominant variety in cypress domes, and bald cypress, which is commonly found along flowing 

water systems. Bald cypress is morphologically different from pond cypress but the taxonomic 

difference between the two has been debated (Watson 1985, Brandt and Ewel 1989, Ewel 1995, 

Tsumura et al. 1999, Lickey and Walker 2002). I was most likely dealing with pond cypress but 

will, in general terms, often refer to T. distichum simply as cypress.   

 For cypress domes and the cypress trees that define them, urbanization can involve three 
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major alterations: fragmentation, alterations to hydrology and alterations to fire regime. Each 

alteration is discussed below. 

Fragmentation of a naturally-fragmented system works differently than in continuous 

habitats because entire patches of habitats and therefore entire populations of organisms can be 

removed. Fragmentation removes entire cypress domes from the landscape and should increase 

the dispersal distance for cypress. Thus, cypress gene flow should be reduced with increasing 

urbanization.  

Isolated wetlands have naturally variable hydrology, filling up during significant rainfalls 

and drying during periods of less rainfall. Urban stormwater systems often divert incoming 

rainfall into retention areas to avoid flooding roads and buildings. Cypress domes that remain 

among urbanization may be used in stormwater systems as retention ponds (that permanently 

hold water), or may be drained to reduce flooding risk. The hydrology then becomes “polarized”, 

changing from variable to the two extremes of permanently flooded or completely drained. 

Polarized hydrology is likely to limit cypress germination. In addition, urban hydrological 

regimes limit the temporary water connections that contribute to dispersal of cypress during 

significant rainfall. Removal of temporary water connections is likely to limit dispersal and gene 

flow of cypress in urban areas causing recruitment to occur from adults within a site and not 

from other cypress domes. Because cypress trees can live to be several hundred years old, adult 

metapopulation genetic structure may represent conditions before Orlando’s recent urbanization.  

However, juvenile cypress should have less genetic variation than adults on-site because gene 

flow among cypress domes is now limited. 
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Cypress domes dry out frequently and occur within a naturally pyrogenic upland 

landscape and are therefore adapted to frequent fires. A natural fire regime is likely to prevent 

succession to bay swamps and prevent build up of organic matter (Penfound 1952, Casey and 

Ewel 2006). Fires are suppressed in urban areas in order to avoid risk to real estate. Reduced fire 

frequency in urban areas allows encroachment of woody vegetation that can out-compete cypress 

seedlings and allows sub-canopy shading of cypress seedlings (Ewel 1995). It is possible that fire 

may also increase cypress seed production (Ewel 1995). In the absence of fire, woody vegetation 

encroachment in cypress domes also causes succession into mixed-hardwood swamps and 

bayhead swamps (Wade et al. 1980, Casey and Ewel 2006). 

 I tested how urbanization (fragmentation, altered hydrology, and altered fire regime) 

affected (a) the numbers and spatial pattern of cypress domes in central Florida and (b) the 

recruitment of cypress within cypress domes. I attempted to test (c) gene flow of cypress among 

cypress domes but encountered difficulties in the assessment and was unable to evaluate this 

hypothesis. I then combined information from a & b into a Geographic Information System 

(GIS) model that uses historical changes and recruitment projections to predict future effects of 

urbanization on cypress domes in central Florida.  My study will help guide management of 

remaining cypress domes for the effects of urbanization by investigating the cumulative effects 

of wetland loss and the value of biotic connectivity among wetlands.  
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CHAPTER 2: ISOLATED WETLAND LOSS AND DEGRADATION OVER 
TWO DECADES IN AN INCREASINGLY-URBANIZED LANDSCAPE 

 

Introduction 

The spatial distribution of modern human population growth has been heavily biased to 

urban areas, so that the majority of people now live in urban areas (UNFPA, 2007). For example, 

metropolitan populations in the U.S. increased 30% since 1990. Nearly 84% (>250 million 

people) of the US population lived in metropolitan areas in 2009 (U.S. Census Bureau 2000, 

2010b). Rapid urban human population growth leads to thorough and widespread land-use 

changes and increasing demands on regional natural resources in both developing and developed 

countries (Jenerette and Potere 2010). Conversion of land to urban use (urbanization) is 

essentially permanent and increasing at faster rates than lands are being preserved as parks or 

conservation areas (McKinney 2002). Urbanization is one of the leading causes of species loss in 

the United States (Czech et al. 2000);  it can decrease native species diversity directly by 

eliminating habitat (McDonald et al. 2008) and indirectly by increasing fragmentation and 

isolating natural habitat (McKinney 2002, 2006).  

The southeastern United States has experienced greater population growth than other US 

regions and has many rapidly expanding urban areas (Figure 1).  For example, the Orlando 

metropolitan area of central Florida gained over 850,000 people (a 70% increase) from 1990-

2009. This growth is very similar to mean population growth (68%) of the major cities in the 

Southeast during the same time (Figure 1; U.S. Census Bureau 2000; 2010b). Thus, the Orlando 
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metropolitan area is representative of typical urbanization patterns in the southeastern US and is 

an ideal location to evaluate the effects of urbanization.  

Compared to regions in which wetlands were long since destroyed by extensive human 

land use (McCauley and Jenkins 2005), central Florida was developed relatively recently and 

includes numerous extant wetlands, many of which remain among current urbanization (Haag 

and Lee 2010). Urban wetlands provide valuable ecosystem services including flood water 

storage, sediment filtration, nutrient and pollutant removal, and ecological habitat (Xu et al. 

2009, Haag and Lee 2010). However, increasing urban demands can alter urban wetlands and 

reduce their ability to provide such services. Thus, understanding the effects of urbanization on 

wetlands embedded in an urbanized landscape is essential to maintaining and improving the 

ecosystem services they provide and conserving their biodiversity. 

Wetlands can be categorized as either hydrologically connected or hydrologically 

isolated, and this distinction is important in U.S. wetland protection laws. Isolated wetlands are 

not protected as fully as “navigable”, riverine wetlands (SWANCC v. U.S. Army Corps of 

Engineers 2001; Craig 2002). Both types of wetlands are important in urban landscapes but 

isolated wetlands are particularly susceptible to urbanization because they are located within a 

modified, upland matrix, whereas riverine areas are less often urbanized due to flooding risk. 

Isolated wetlands are often smaller than riverine or coastal wetlands but are very numerous, 

naturally fragmented, and typically sum to the greatest area among all wetland types in any given 

region (Semlitsch and Bodie 1998). Isolated wetlands also provide unique habitat for multiple 
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species and are numerous in central Florida (Semlitsch and Bodie 1998, Leibowitz 2003, Herault 

and Thoen 2009, Haag and Lee 2010).  

Many forested wetlands in the southeastern U.S. are dominated by cypress (Taxodium 

distichum) trees. This species has a distinct spectral appearance making them readily detectable 

in color infrared (CIR) images ( Blazquez 1992a; 1992b). Two varieties of cypress (bald cypress 

and pond cypress) are recognized in the U.S. and I was most likely dealing with pond cypress, 

but I will generally refer here to T. distichum as cypress. Because urbanization in the 

southeastern U.S. has been rapid and recent, CIR images can be used to describe individual 

wetlands through decades and at spatial scales that would otherwise be challenging. For the 

Orlando metropolitan area, CIR photos are available beginning in 1984, making landscape-level 

analysis of cypress across a 20-year time period possible in this rapidly urbanizing landscape. 

Because Orlando is typical of urbanization in the southeastern US and the range of cypress 

encompasses much of that rapid urbanization (Figure 1), results obtained here may represent 

trends throughout much of the range for this currently common species, and thus for the isolated 

wetlands it dominates. 

Isolated wetlands dominated by cypress are known as “cypress domes” because cypress 

trees are taller in the middle and shorter around the edge. Cypress domes (and riparian zones of 

rivers and streams also dominated by cypress) are important habitat for diverse other wetland 

species (Brandt and Ewel 1989, Ewel 1998, McKinney 2002). It is important to evaluate the 

effects of urbanization on wetland metapopulations and on wetland habitat quality for the variety 

of species that utilize cypress domes. This is possible using CIR photos because it is possible to 
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distinguish cypress dome degradation (increase of non-cypress vegetation) from cypress dome 

destruction (loss of the entire wetland). Cypress domes are ideal for metapopulation and 

metacommunity studies because they are naturally discrete patches in which populations are 

likely connected by dispersal.  

The purpose of this study was to quantify the effects of urbanization on cypress dome 

number, size and pattern across space and time, using Orlando, FL as a case study. I described 

changing land use and cypress dome numbers, sizes, and spatial distributions in different land 

use categories in the Orlando region in 1984 and 2004, during a period of rapid urbanization.  

Methods 

Detecting cypress domes 

Color-infrared aerial photos from 1984 and 2004 and land cover data from 1990 and 2004 were 

acquired from St. John’s River Water Management District for Orange and Seminole counties in 

the Orlando region of central Florida, USA (28°36’N, 81°18’W; Figure 2). In order to use the 

greatest time span possible, the oldest color infrared photographs (from 1984) were used. 

However, land cover from 1984 was unavailable so 1990 land cover data was substituted. A 

small portion (10%) of the study area was not included in the analysis because color-infrared 

aerial photos from 1984 were unavailable for those areas. Using ArcGIS v9.2 (ESRI  2006), all 

forested wetlands were exported from the total land cover database and overlain onto the aerial 

photos. Landcover data were manually corrected to match aerial photos by examination at a 

1:12,000 scale; forested wetlands were removed, added, or modified as necessary to obtain an 

accurate coverage of cypress domes. Automated selection procedures were attempted but were 
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found to lack sensitivity and results were inaccurate relative to manual processing. Polygons in 

close proximity to riverine habitats were removed so that only hydrologically isolated cypress 

domes were chosen for analyses. 

Quantifying urbanization 

In order to quantify the urbanization intensity of each cypress dome, I categorized land cover 

surrounding each cypress dome. I first created a demarcated zone (called a “buffer”) in ArcGIS 

v.9.2 (ESRI 2006) around each cypress dome equal to the average nearest neighbor distance (263 

m).  Based on descriptions provided with the land cover data layer, five potential land cover 

categories were identified: natural, agriculture, low urban, medium urban, or high urban. For 

example, land cover descriptions such as golf courses, recreation, and low density housing were 

classified as low urban and descriptions such as crops, cattle operations, and citrus groves were 

classified as agricultural. Principal Component Analysis (PCA) was used to reduce the 

proportions of each of the 5 land cover categories within the buffer to two multivariate axes. 

Each axis was then plotted against each of the 5 original land cover proportions. Each graph was 

evaluated and a range of axis values that represented that category was estimated, based on 

where the majority of points fell on the graph. For example, when each axis was plotted against 

the agricultural proportions in each buffer, the majority of points that were high in agriculture 

were less than -0.5 for axis 1 and between -1 and 1 on axis 2. The ranges obtained from the 

graphs were used to assign each cypress dome into one of the 5 categories. Canonical 

Discriminant Analysis was used to test the categories and 92.4% of the cases were classified 

correctly, which I considered sufficient to represent the urbanization gradient. To ensure the 
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accuracy of dome categorization between years, I also evaluated differences in assignment 

between years for all cypress domes. Any cypress dome identified as becoming less urban (an 

unlikely event) during the 20-year time period was re-evaluated to verify its urbanization 

category. Only ~5% of the 1984 polygons were re-categorized by this data-quality processing.  

Urbanization effects on wetland loss and local degradation 

 Cypress domes that were present in 1984 but judged as absent in 2004 were evaluated further 

in GIS to determine if the loss was due to habitat destruction or habitat degradation. Habitat 

destruction was apparent because vegetation had been removed and the wetland was destroyed 

(e.g., replaced by roads or buildings). Habitat degradation was assumed in those cypress domes 

that existed in 1984 but no longer had the spectral signature of cypress in 2004 though the 

wetland still existed. In most of these cases, other vegetation had encroached so that the cypress 

trees could no longer be distinguished from the upland vegetation. Losses by destruction or 

degradation were recorded separately.  

Urbanization effects on cypress dome pattern 

Changes in cypress dome spatial patterns were calculated by evaluating statistical 

descriptors spatial position and size. I used ArcGIS v9.3 (ESRI 2009) to calculate three measures 

of cypress dome spatial pattern by urbanization category in 1984 and 2004. I used Ripley’s K to 

evaluate spatial clustering of dome locations. Ripley's K evaluates spatial clustering of locations, 

relative to Monte Carlo randomizations, such that an observed Ripley's K value greater than 

expected indicates spatial clustering of cypress domes. Ripley’s K values were calculated for 

each urbanization category in 1984 and 2004 with 20 distance classes and 99 permutations 
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representing approximately a 99% confidence interval. Significant clustering was indicated by an 

observed Ripley’s K value greater than the upper 99% confidence limit of the expected Ripley’s 

K.  

Anselin Local Moran’s I values for each urbanization category in 1984 and 2004 were 

calculated to estimate spatial autocorrelation of cypress dome size (area). Finally, a Spatial 

Isolation index was calculated for each cypress dome by drawing a buffer equal to twice the 

nearest neighbor distance of the 1984 cypress domes (490m) and using Hawth’s Tools (Beyer 

2004) to count the number of other cypress domes present within each buffer in both 1984 and in 

2004. One way analysis of variance (ANOVA) and independent samples t-tests were used to 

evaluate significant differences in Local Moran’s I values, cypress dome areas, and Spatial 

Isolation index values across urbanization levels and years.  

Results 

Numbers and Area 

A total of 3,393 cypress domes (6,363 ha) were detected from the 1984 aerial photos. Of 

these, 92% were categorized as natural or agricultural (Figure 2, Table 1).  By 2004, the total 

number of cypress domes dropped to 2,498 (4,677 ha), for a loss of 26% in number and area.  

Nearly half of the natural cypress domes were destroyed, degraded, or re-categorized because 

surrounding land use had changed (Figure 2, Table 1). The number of cypress domes categorized 

as urban increased substantially from 1984 to 2004, and within the urban subcategories, low-

urban cypress domes increased three-fold, medium-urban cypress domes increased by 50%, and 

high-urban cypress domes increased two-fold (Table 1). Similarly, from 1984 to 2004, cypress 
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dome size (area) was significantly reduced in natural and agricultural categories and significantly 

increased in urban categories (Table 1). This was a result of increased urban land use 

surrounding the remaining cypress domes in 2004.  

Overall, almost four times more cypress domes were lost to habitat degradation than were 

lost to habitat destruction and this general pattern was true for all land use categories (Table 2).  

Surprisingly, the proportion of cypress domes that degraded in natural lands was twice the 

proportion that disappeared and degradation exceeded the rate of conversion to urban land use. 

Degradation also affected nearly 25% of the 1984 agricultural cypress domes but cypress dome 

degradation was less common in agricultural lands than in natural lands.  

 Many cypress domes that were formerly surrounded by natural lands became surrounded 

by low-urban land use. This conversion occurred mainly at the periphery of Orlando, especially 

in the southeast portion of the study area (Figure 2). In contrast, most of the extant agricultural 

cypress domes that changed land use categories were re-categorized to natural domes. These 

were mainly in large tracts of land that were taken out of agricultural production and put into 

management as natural lands. The cypress domes that were classified as urban in 1984 tended to 

become more urban or disappear/degrade. No cypress dome classified as urban in 1984 was 

converted back to a natural or agricultural category by 2004 (Table 2).  

Spatial Pattern 

Cypress domes were significantly clustered in both 1984 and became more so by 2004 at 

most, as indicated by Ripley’s K values (Figure 3). Low-urban cypress domes showed increased 

clustering from 1984 to 2004. In 1984, both low-urban and medium-urban cypress domes were 
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not significantly clustered at large distances (10,000 – 12,000 m) but by 2004 both categories 

were significantly clustered at all distances (Figure 3). Similarly, the spatial isolation index 

showed significant differences among groups (1984: p<0.01, F=60.55; 2004: p<0.01, F=22.59) 

and low-urban cypress domes were less clustered in 1984, significantly grouping with other 

urban categories (p<0.01), but by 2004 low-urban cypress domes were more clustered, 

significantly grouping with natural and agricultural domes (p<0.01; Figure 4). It is important to 

note that increased clustering was not caused by cypress domes being created or moved, but was 

due to the conversion of surrounding land cover that caused cypress domes to be re-categorized.  

 In 1984, agricultural cypress dome sizes were significantly more heterogeneous in space 

(i.e. small cypress domes were intermixed with larger cypress domes) than natural or urban 

domes (local Moran's I; p=0.002, F=6.455). By 2004, this effect was largely gone (p=0.105, 

F=2.253) and sizes were more homogeneous (i.e. small cypress domes were now nearer other 

small cypress domes and large cypress domes were now nearer other large cypress domes) in all 

land use categories. Across all categories, cypress domes that were lost from 1984 to 2004 were 

significantly smaller (p=0.04, F=4.209) than cypress domes that remained.  In 1984, urban 

cypress domes were significantly larger than agricultural and natural cypress domes (p< 0.001, 

F=15.81) but by 2004, this heterogeneity was largely lost (p= 0.079, F=2.545). Large, urban 

cypress domes and small, agricultural and natural cypress domes were both lost, causing all 

categories to converge on an average wetland size of ~ 1 ha (Figure 5).  
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Discussion 

Although urbanization began in the Orlando metropolitan region in the 1960’s (Gladstone 

1998), 92% of the cypress domes remaining in the two counties encompassing the core Orlando 

metropolitan region were still categorized as natural or agricultural in 1984. However, half of the 

natural cypress domes and 30% of the agricultural cypress domes were lost, degraded or re-

categorized by 2004, despite legal protection of these habitats (FDEP 2007). 

During the study period, a number of conservation and wetland protection programs (e.g., 

Florida Forever, Preservation 2000; FDEP, 2007) were established to preserve natural lands or 

convert lands into conservation areas. This effort is demonstrated in the re-categorization of 140 

wetlands (230 ha) of cypress domes from agricultural to natural. However, these efforts did not 

equal the urbanization that has surrounded and affected many cypress domes (Table 1). 

Urbanization appears to be widespread and essentially permanent, with no cypress domes 

categorized as urban in 1984 moving to a more natural category by 2004. 

During the twenty years, one fifth of cypress domes were degraded, meaning that the 

wetland remained but was so overgrown by other vegetation that cypress trees were no longer 

detected on aerial photos. Beyond potential effects on cypress population structure and habitat 

quality for other wetland species, degradation alone may cause the habitat to lose protection 

under wetland regulations (University of Florida/ IFAS Extension 2006) making subsequent, 

legally-permitted destruction of the wetland more probable. Degradation is likely due to 

urbanization-driven alterations in hydrology and/or fire regime in the cypress dome and 

surrounding matrix. Urbanization alters hydrology to avoid flooded homes. The changes to 
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drainage patterns can “polarize” the hydrology of isolated wetlands that naturally have variable 

hydrology to become either permanent retention ponds or drained wetlands. Both hydrological 

regimes reduce local recruitment of cypress by limiting both germination and seedling 

survivorship. Cypress germination requires saturated but not flooded conditions and seedlings 

must not be immersed for the first year in order to survive (Demaree 1932). Urbanization also 

reduces fire frequency because fires are immediately suppressed, which is an especially 

pronounced change from the natural fire regime that prevents succession of cypress domes into 

hardwood swaps (Penfound 1952, Casey and Ewel 2006). Fire suppression allows for 

encroachment of woody vegetation, potentially reducing possible fire-induced increases in 

cypress seed production and increasing sub-canopy shading of cypress seedlings (Ewel 1995). I 

hypothesize that these processes may ultimately reduce recruitment in isolated cypress 

populations in urbanized areas and, if Orlando has typical urbanization, this may occur 

throughout the cypress range.  

Changes in spatial patterns from 1984 to 2004 have likely affected metapopulation-level 

processes for cypress, such as dispersal and gene flow. Land cover conversions have caused 

cypress domes surrounded by natural lands in 1984 to be surrounded by low- or medium-urban 

land use in 2004. Urbanization should fragment remaining cypress populations through both the 

loss of entire cypress domes and loss of hydrological connections between wetlands (Fahrig 

2003). In natural landscapes, hydrological connections may occur after significant rainfalls and 

can be an important means of biotic connectivity for several species, especially plants with 

floating seeds (Kirchner et al. 2003). Hydrological connections disperse cypress seeds among 
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cypress domes in natural landscapes (Middleton 2000). Altered hydrology as a result of ditches, 

roads, and increased impermeable surfaces in urban landscapes limit hydrological connections 

among cypress domes. Thus, urbanized areas throughout the range of cypress should have fewer 

connections among fewer cypress domes, leading to less dispersal and gene flow and a 

breakdown of the metapopulation structure. Recruitment within a population, rather than among 

cypress domes, should then dominate and lead to higher levels of inbreeding in juveniles when 

compared to pre-urbanization adults. The ultimate consequence of widespread urbanization for 

cypress domes will then be limited dispersal and gene flow, increased inbreeding of juveniles, 

and reduced germination and seedling survival in extant populations throughout the southeastern 

U.S. range of cypress.   

Cypress domes became more homogeneous in size across the greater Orlando region 

during the 20-year study period. Land use changes appear to have caused the loss of small 

cypress domes in natural and agricultural areas. Small cypress domes have a greater edge:area 

ratio and are more susceptible to degradation due to encroachment by woody vegetation in the 

absence of fire. In the two decades studied, smaller cypress domes continued to be lost in natural 

areas and the remaining larger cypress domes were lost in urban areas likely due to both 

hydrological and fire frequency changes. The result was the average size of cypress domes 

across the region became more similar, leaving only medium-sized domes around 1 ha (Figure 

4). Loss of small populations, while seemingly unimportant demographically, can lead to a 

decrease in overall genetic diversity because some small populations can be particularly valuable 

genetically, potentially containing rare alleles (Godt et al. 1995, Fleishman et al. 2001). In 
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addition, small wetlands often lack predatory fish and alligators and can support populations of 

species not found in other, larger wetlands, including some invertebrates, plants, amphibians, and 

waterbirds (Semlitsch and Bodie 1998, Herault and Thoen 2009, Ma et al. 2009). Small, isolated 

wetlands also contribute to high landscape-level species diversity because they differ greatly 

from larger wetlands and from one another (Scheffer et al. 2006).  Considering cypress wetlands 

provide habitat for a variety of plants, birds, mammals, reptiles, amphibians and invertebrates 

throughout its range (Brandt and Ewel 1989, Ewel 1998), loss of heterogeneity can affect a  

variety of species. Species-area relationships and island biogeography theory (MacArthur and 

Wilson 1967) suggest that large wetlands are also important to maintenance of regional 

biodiversity. Oertli et al. (2002) measured diversity in 80 similarly sized ponds and found that 

while some species were most frequent in small wetlands and some species were more numerous 

in large wetlands, none of the 64 examined taxa preferred medium-sized ponds. Homogenized 

wetland size during the course of 20 years' urbanization in central Florida likely contributed to a 

decrease in both species-level genetic diversity and regional biodiversity in remaining cypress 

domes. Similar range-wide urbanization effects could lead to detrimental consequences for 

cypress domes and the species that utilize the habitat. 

 Our results differ from other studies examining urbanization effects on patch pattern. 

Previous studies examined “continuous” systems (forests and deserts) in which urbanization 

divided large areas into smaller patches, increased patch numbers, and decreased patch sizes 

(Medley et al. 1995, Luck and Wu 2002).  Cypress domes are naturally fragmented and 

urbanization removed or degraded entire cypress domes, leading to fewer patches with increased 
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dispersal distances. However, other studies (McKinney 2006, Blair and Johnson 2008) found 

similar effects in which urbanization also removed some small and some large cypress domes, 

leaving medium-sized patches and contributing to a loss of heterogeneity.  

Providing Orlando urbanization is typical, our results suggest that Taxodium distichum in 

isolated wetlands could be at risk in urban areas throughout the range.  During the 20-year study 

period, one-quarter of the cypress domes were either destroyed or degraded and many remaining 

wetlands were urbanized. If this trend continues range wide, natural populations of T. distichum 

may persist only in riparian zones and species that depend on cypress dome habitats will likely 

be affected.  The T. distichum populations in extant isolated wetlands will likely show further 

loss and degradation and I hypothesize will show reduced gene flow, decreased genetic diversity, 

and lower recruitment. Also, the wetlands may harbor lower regional species diversity and 

increased invasive species as urbanization continues to threaten wetland habitats (Duguay et al. 

2006, Biamonte et al. 2011) . Despite the current commonality of cypress throughout its range 

and the fact these wetlands are partially protected by legislation, cypress in isolated wetlands of 

urban areas may become rare. 
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CHAPTER 3: THE EFFECT OF URBANIZATION ON RECRUITMENT 
OF CYPRESS (TAXODIUM DISTICHUM) IN ISOLATED WETLANDS IN 

CENTRAL FLORIDA 
 

Introduction 

Conversion of land to urban use (urbanization) is one of the leading causes of native 

species diversity loss because it permanently destroys natural habitats, fragments remaining 

natural systems, and causes biotic homogenization (McKinney 2002, McDonald et al. 2008). 

Urban areas are expanding globally because human population growth in urban areas is 

increasing at rapid rates worldwide (UNFPA 2007).  Nearly 84% of the U.S. population now 

lives in metropolitan areas (U.S. Census Bureau 2000; 2010a). Urbanization in the southeastern 

U.S. is increasing at some of the fastest rates in the country as population growth increases in 

that region. Central Florida, and specifically the Orlando metropolitan region, is typical of recent 

population growth in the southeastern United States.  Greater Orlando’s population grew by 70% 

from 1990 to 2009, very similar to the mean population growth of other major cities in the 

Southeast (Chapter 2).  

Despite rapid urbanization in greater Orlando, numerous freshwater, forested wetlands 

remain within the urbanized areas (Chapter 2). Freshwater wetlands are categorized as either 

hydrologically connected or hydrologically isolated and isolated wetlands have less protection 

under federal U.S. laws (SWANCC v. U.S. Army Corps of Engineers 2001; Craig 2002). 

Isolated wetlands have a higher risk of being destroyed during urbanization because they are 

often embedded in an upland matrix that is easily drained. In contrast, hydrologically connected 

wetlands are often in riverine systems where urbanization is difficult. It is important to note that 
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despite being legally categorized as isolated because of physical isolation, non-navigability, and 

rare surficial hydrological connections, isolated wetlands are typically coupled to surface water 

and/or groundwater systems (Whigham and Jordan 2003). Many isolated wetlands in regions 

with flat topography, like central Florida, have hydrological connections via subsurface 

hydrology or sheet flow during significant rainfalls. In addition, the cumulative area of isolated 

wetlands can rival that of hydrologically-connected wetlands, especially in Florida and other 

portions of the relatively flat Coastal Plain (Semlitsch and Bodie 1998, van der Valk and 

Pederson 2003). In this paper, I focus on isolated wetlands within a rapidly urbanized landscape 

because they are relatively vulnerable to destruction and/or degradation (Chapter 2) and rapidly 

become surrounded by urban land use with potentially subtle (in human terms) but long-lasting 

consequences for ecosystem services and biodiversity. 

Urban wetlands provide valuable ecosystem services (Xu et al. 2009, Haag and Lee 

2010) and are an important habitat for native species, including threatened and endangered 

species  (Brandt and Ewel 1989, Ewel 1998, McKinney 2002). Understanding the effects of 

urbanization on urban wetlands is important to maintaining those services and conserving their 

biodiversity. Like natural wetlands in the southeastern U.S., many urban wetlands are dominated 

by the deciduous conifer cypress (Taxodium distichum). Two varieties of cypress are recognized, 

bald cypress and pond cypress, and I was most likely dealing with pond cypress, but I will refer 

to T. distichum in this study simply as cypress. In virgin stands of cypress, adults can average 

400-600 years old with some as old as 1,200 years old. While most cypress stands have, at some 

point, been logged, second-growth stands have been shown to reach heights of 30m (Burns and 
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Honkala 1990).  Isolated wetlands dominated by cypress are called “cypress domes” because 

trees are taller in the middle and shorter around the edge. These are important habitats for 

multiple species (Brandt and Ewel 1989, Ewel 1998, McKinney 2002). Cypress domes provide 

three practical advantages for studying urbanization effects on natural systems: (1) cypress trees 

are easily distinguished on color infrared photographs (Chapter 1) and thus habitat fragmentation 

(Chapter 1) and cypress demographic studies across large spatial scales are possible; (2) cypress 

domes comprise separate cypress populations that enable a naturally-replicated system to test for 

general patterns across an urbanization gradient; and (3) urbanization of cypress domes occurs 

rapidly relative to the lifespan of cypress trees, meaning that demographic effects of urbanization 

can be readily evaluated by quantifying juvenile and adult trees. 

Cypress has very specific germination requirements that I hypothesized should be 

affected by urbanization. Cypress requires saturated but not flooded soils in order to germinate 

and seedlings must remain above water level for the first year in order to survive (Demaree 

1932).  Urban stormwater systems often divert incoming rainfall into retention areas to avoid 

flooding roads and buildings. Cypress domes that remain in urban areas may be used in 

stormwater systems as retention ponds, or they may be drained to reduce flooding risk. Either 

scenario alters the naturally variable hydrology of isolated wetlands and likely affects cypress 

recruitment.  

Urbanization also changes the fire regime in which multiple species have evolved.  

Florida is a naturally pyrogenic landscape, meaning that fire is required to maintain many native 

ecosystems (Mitchell et al. 2006, Slapcinsky et al. 2010), including cypress domes (Penfound 
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1952, Marois and Ewel 1983, Casey and Ewel 2006). Fires are suppressed in urban areas in order 

to prevent burning of homes and other real estate. Fire suppression in cypress domes allows for 

encroachment of other woody vegetation that may out-compete or shade out cypress seedlings 

and reduce seed production that is stimulated by fire (Ewel 1995).  I hypothesized that the 

combined effect of urbanization on hydrology and fire regime will reduce recruitment of cypress 

in isolated cypress wetlands and predicted that recruitment would decrease along an urbanization 

gradient (i.e., wetlands embedded in natural, agricultural, and urban landscapes). 

Methods 

Identifying cypress domes  

 Color infrared aerial photographs and land cover data from 2004 were obtained from the 

St. Johns River Water Management District for Orange and Seminole counties in the Orlando 

region of central Florida, USA (28°36’N, 81°18’W, Chapter 2). Using ArcGIS 9.2 (ESRI 2006), 

polygons identified as forested wetlands in the land cover data were extracted and overlaid on 

the color infrared aerial photography. At a 1:12,000 scale, the entire study area was scanned and 

the wetlands observed in the forested wetlands data layer were removed, added or modified to 

create the cypress dome layer. This manual processing technique was more accurate than 

automated techniques. Cypress wetlands that were in close proximity to riverine habitats were 

removed in order to obtain a data layer of “hydrologically isolated” cypress domes. 

Determining urbanization gradient 

 In order to quantify the urbanization intensity of each cypress dome, I categorized land 

cover surrounding each cypress dome. I first created a buffer in ArcGIS v.9.2 (ESRI 2006) 
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around each cypress dome equal to the average nearest neighbor distance (263 m).  Based on 

descriptions provided with the land cover data layer, five potential land cover categories were 

identified: natural, agriculture, low urban, medium urban, or high urban. For example, land cover 

descriptions such as golf courses, recreation, and low density housing were classified as low 

urban and descriptions such as crops, cattle operations, and citrus groves were classified as 

agricultural. Principal Component Analysis (PCA) was used to reduce the proportions of each of 

the 5 land cover categories within the buffer to two multivariate axes. Each axis was then plotted 

against each of the 5 original land cover proportions. Each graph was evaluated and a range of 

axis values that represented that category was estimated, based on where the majority of points 

fell on the graph. For example, when each axis was plotted against the agricultural proportions in 

each buffer, the majority of points that were high in agriculture were less than -0.5 for axis 1 and 

between -1 and 1 on axis 2. The ranges obtained from the graphs were used to assign each 

cypress dome into one of the 5 categories. Canonical Discriminant Analysis was used to test the 

categories and 92.4% of the cases were classified correctly (Figure 6), which I considered 

sufficient to represent the urbanization gradient. 

Field data collection 

 Sixteen cypress domes, 8 small (less than 0.5 ha) and 8 large (greater than 0.5 ha) were 

randomly selected from each urbanization category for sampling. Random points were generated 

within each cypress dome to establish enough100 m2 plots (at least two) to cover 2% of the area. 

Preliminary analysis compared data obtained from random points that covered 1%, 2%, 3%, and 

5% of dome area and no significant difference was found among percentages. I sampled plots to 
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equal 2% of the area of the dome in order to obtain sufficient sample size. Preliminary analysis 

also found that no trees less than 2 m height had cones, but trees > 2m could have cones. I 

identified any tree < 2 m height as a juvenile, and trees > 2 m height were considered adults. 

Within each plot, the number of adults and the number of juveniles were recorded.  

A vegetation index was also recorded for each plot by taking a picture, at a distance of 10 

m, of a 0.9 m x 1.5 m piece of blue vinyl displayed vertically at a height of 2 m in the plot. MVH 

(Measuring Vegetation Health) Analyzing Digital Images software (Pickle and Kirtley 2004) 

was used to quantify the area of blue visible through the vegetation. The vegetation index was 

calculated as 1- (visible blue area  /  total area of the sign).. Two such vegetation index values 

were obtained at each plot. Vegetation index values range from 0 to 1 with 1 being the greatest 

amount of vegetation present. 

GIS variables 

 During field sampling, it became apparent that additional a posteriori variables may be 

necessary to explain the variation in juvenile cypress recruitment. Using ArcGIS (ESRI 9.2 

2006), distance from the plot to the wetland edge was calculated as the proportion of the wetland 

radius. For cypress domes categorized as urban, time since urbanization was calculated from 

Orange and Seminole County property parcel databases (natural and agricultural cypress domes 

had no time since urbanization). Cypress dome area was also calculated in GIS and used as a 

predictor variable in additional analyses. 

 

 



26 

 

Differences in recruitment among urbanization categories 

 Recruitment was analyzed as either the simple number of juveniles or the ratio of 

juveniles to adults. The number of juveniles was compared among urbanization categories using 

a zero-inflated Poisson regression model (pscl package; Zeileis et al. 2008) in R (R Development 

Core Team 2011), with distance to edge of wetland as a covariate. A chi-squared test on the 

difference of log likelihoods was used to determine if this model was significantly better than the 

null model (Zeileis and Hothorn 2002). A Vuong test was used to evaluate if the zero-inflated 

Poisson regression model was significantly better than a simple Poisson model (Vuong 1989). 

This procedure was repeated with different grouping variables to test for significant differences 

between (a) non-urban (i.e., natural and agricultural) and urban cypress domes and (b) 

agricultural cypress domes and all other categories.  

 The juvenile:adult ratio normalized the number of juveniles to the adult population size, 

but a substantial number of zeros prevented transformations to meet normality or variance 

assumptions of traditional ANOVA analyses.  Instead, I used Monte Carlo simulation tests (1000 

permutations) in R (R Development Core Team 2011) to test for significant differences in 

juvenile:adult ratio among urbanization categories.  

Factors affecting recruitment in urban domes 

 In order to include distance to the edge of the wetland in analyses, plots were analyzed as 

independent samples using a mixed effects model to account for variation among domes. Mixed 

effects models analyze covariates separately as fixed effects or random effects. Random effects 

are not parameters but are unobserved random variables in which the levels observed represent a 
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random sample from all possible levels (Bates 2010). The variation among domes was accounted 

for by analyzing the data with dome ID as a random effect. Mixed effects models were analyzed 

in R v2.13.0 (R Development Core Team 2011) using the lme4 package (Bates et al. 2011). 

In order to evaluate the effect of time since urbanization on juvenile recruitment, which is 

not available for natural and agricultural domes, urban domes were analyzed separately. As 

above, juvenile:adult ratio was not significantly correlated with response variables due to the 

large number of zeros in the data, so presence or absence of juveniles was used as the response 

variable in mixed effects logistic regressions. Predictor variables in models included various 

combinations of distance to the edge, area of cypress dome, vegetation index, time since 

urbanization, and PCA Axis 2. PCA Axis 1 distinguished between natural, agricultural, and 

urban domes while PCA Axis 2 distinguished between the different levels of urbanization 

(Figure 1). I selected the best model as the one having the lowest Akaike’s Information Criteria 

(AIC; Akaike 1973; Burnham & Anderson 2001) value and highest weight. Model weights 

indicate the likelihood of each model in comparison to the other models. Thirty total models 

were compared to determine the best predictors for juvenile:adult ratio in urban cypress domes. 

Relative variable importance values were also calculated by adding the weights of each model in 

which a particular variable appeared. Relative variable importance values were calculated using 

all thirty models. 

Factors affecting recruitment in natural and agricultural domes 

Juvenile:adult ratio (log transformed) was used as a response variable in linear mixed 

effects regressions, where predictor variables were distance to the edge of the wetland, area of 
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cypress dome, vegetation index, and PCA Axis 1.  P-values are not provided in a linear mixed 

effects model produced by the lme4 package because it is currently unknown how to calculate 

the denominator degrees of freedom (Bates et al. 2011). Markov chain Monte Carlo simulations 

with 10,000 permutations were conducted and p-values were calculated. P-values based on the t 

statistic with the upper bound for the degrees of freedom were also calculated (Baayen 2011). I 

selected the best model using AIC as the model with the lowest AIC value and highest weight. 

Model weights indicate the likelihood of each model in comparison to the other models. Fifteen 

total models were run to determine the best predictors for juvenile:adult ratio in natural and 

agricultural cypress domes. Relative variable importance values were calculated using all 15 

models. 

Projection to other cypress domes in space and time 

 In order to project recruitment to cypress domes not sampled, I needed to account for 

random effects in cypress domes. Due to the random effects in mixed effects models, multiple 

intercepts are generated for every regression equation, yielding one intercept for each cypress 

dome. The random intercepts for the top urban and top natural/agricultural model (above) were 

extracted and determined to be normally distributed. Using the mean and standard deviation of 

the normal curve generated from the intercepts, 100 random numbers were generated for each of 

the cypress domes for which I were going to project recruitment. In order to account for variation 

in the distance to the edge, 100 random points were generated within each cypress dome and the 

distance to the edge was calculated for each. Using the randomly generated intercepts and 

distance to the edge values, along with the other fixed effects values, 100 predicted regression 
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values for each dome were calculated. The 100 predicted values were then averaged to obtain 1 

value of either probability of juvenile presence (for urban cypress domes) or juvenile to adult 

ratio (natural and agricultural cypress domes). The regression predicted values were used to 

create maps in ArcGIS version 9.3 (ESRI 2009). 

Results 

Differences in recruitment among urbanization categories 

 Urbanization category, with distance to the edge as a covariate, was a significant 

predictor of the number of juveniles using the zero-inflated Poisson regression model (p = 0.02), 

which was significant compared to the null model (chi-squared = 30.85, df = 4, p<.0001) and a 

significant improvement over a standard Poisson model (Vuong test; p<0.0001). Urbanization 

groups no longer significantly predicted the number of juveniles if natural and agricultural 

domes were grouped together and compared to urban domes grouped together (p = 0.0994). 

However, grouping agricultural domes as separate from all other categories combined yielded a 

significant prediction of the number of juveniles (p < 0.0001), showing that agricultural cypress 

domes had a significantly different number of juveniles than all other categories. Monte Carlo 

simulations also showed significantly different juvenile to adult ratio among the urbanization 

categories (p < 0.0001). Overall, cypress did not follow a simple urbanization gradient (from 

natural to agricultural and low-, medium-, and high-urban). Instead, agricultural cypress domes 

(which were primarily in cattle ranches) had higher recruitment than other categories (Figure 7). 
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Factors affecting recruitment in urban cypress domes 

 In urban cypress domes, time since urbanization (z = -2.22, p = 0.026) and distance to the 

edge of the wetland (z = -2.51, p = 0.01) best explained the juvenile:adult ratio (Table 3; Figure 

8). Using a presence/absence threshold of 0.5 (as in a binomial coin toss), this model based on 

time since urbanization and distance to the wetland edge (Table 3) correctly predicted 94% of 

absences and 93% of presences. Less cypress recruitment occurred in the centers of cypress 

domes than on the edges, and recruitment drops precipitously at about 20 years after urbanization 

(Figure 8). Consistent with that model, 9 out of the 48 sampled cypress domes had time since 

urbanization values ranging from 22 to 60 years and recruitment was not seen in any of them. In 

decreasing order, the relative variable importance values were: time since urbanization (0.988), 

distance to the edge of the wetland (0.893), Axis 2 (0.287), vegetation index (0.037), and area of 

cypress dome (0.028). 

Factors affecting recruitment in natural and agricultural cypress domes 

 In natural and agricultural cypress domes, the model with PCA Axis 1 (PMCMC = 0.066, t 

= -1.92, Pt = 0.080), distance to the edge of the wetland (PMCMC = 0.030, t = -2.71, Pt = 0.005), 

and area of the cypress dome (PMCMC = 0.0001, t = 3.691, Pt = 0.000) was the best model (Table 

4; R2 = 0.764). Juvenile:ratio was negatively correlated with PCA Axis 1 and distance to the 

edge of the wetland and positively correlated with cypress dome area (Figure 9; lower Axis 1 

values correspond to agricultural domes – see Figure 6). This result indicates that the greatest 

cypress recruitment is occurring on the edge of large, agricultural cypress domes, rather than 

cypress domes in natural lands. In decreasing order, the relative variable importance values were: 
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area of cypress dome (0.986), distance to the edge of the wetland (0.881), PCA Axis 1 (0.656), 

and vegetation index (0.267). 

Projection to other cypress domes in space and time 

 Using the mixed effects regression models allowed us to estimate the probability of 

juvenile presence in urban cypress domes and a juvenile:adult ratio for natural and agricultural 

cypress domes throughout the two-county study area. Using a presence/absence threshold of 0.5, 

only 114 of 728 urban cypress domes (15.7%) are estimated to be recruiting cypress and those 

cypress domes typically fall on the periphery of urbanization (Figure 10). In addition, 

juvenile:adult ratios in natural and agricultural cypress domes show high recruiting and low 

recruiting cypress domes spatially intermixed, with the highest recruitment projected to occur in 

the largest cypress domes (Figure 11). 

 Destruction and degradation caused the loss of 20.2% and the conversion of 25.8% of the 

natural cypress domes to urban categories from 1984 to 2004 (Chapter 1). During the same time 

period, 25.6% of the agricultural cypress domes were lost and 3.1% were converted to urban 

categories. Assuming that recent urbanization patterns continue at the same rate, I projected that 

~89% of the cypress populations in cypress domes that are currently recruiting will fail to recruit 

in 100 years, and that most (87%) remaining cypress populations that still recruit will be on 

agricultural lands (Table 5). 
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Discussion 

 Surprisingly, I found that natural and urban cypress domes have lower cypress 

recruitment but agricultural cypress domes generally maintain higher levels of recruitment. Thus 

cypress recruitment did not follow a natural-to-urban gradient as expected, and this result is 

important to the conservation and management of isolated wetlands dominated by cypress 

throughout its range. The main factors driving cypress recruitment were time since urbanization 

(among urban land use classes), distance to the wetland edge, and wetland area.  

Alterations to both hydrology and fire regimes should reduce recruitment in cypress 

domes. Both alterations affect cypress recruitment in urbanized areas but an altered fire regime 

likely occurs in natural areas as well. In natural fire regimes, fire often burns wetlands until it 

reaches enough moisture to run out of fuel (Frost et al. 1986). Many managers of natural 

(typically forested) lands prevent prescribed or wild fires from burning through wetlands (Frost 

et al. 1986) in order to prevent muck or peat fires, and I observed several natural cypress domes 

with fire breaks to prevent prescribed fires from encroaching into the wetland. Muck or peat fires 

arise from overdrying of organic wetland soils and can lead to underground smoldering than can 

last several weeks (Reardon et al. 2007, Leeds et al. 2009) and cause persistent smoke plumes 

and reignited wildfires – a severe problem to be avoided near a metropolitan region. Our results 

suggest that fire management practices on natural lands may lead to lower cypress recruitment in 

cypress domes, equivalent to that seen in urbanized domes. Based on this result, I recommend 

that managers of natural lands evaluate cypress domes on their lands for the actual presence of 

muck or peat; cypress domes with relatively short hydroperiods (i.e, substantial periods of 
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oxidative soil conditions) are unlikely to accrue substantial organic matter and should not cause 

muck or peat fires. In addition, a natural fire regime will prevent build up of organic materials 

that would lead to muck fires (Penfound 1952, Casey and Ewel 2006). Natural wetlands can be 

subjected to prescribed fires and in turn help restore and maintain cypress recruitment.  

Fire breaks were not present in the agricultural cypress domes I sampled, most of which 

occurred on cattle ranches. Prescribed fires are common in cattle ranches to suppress woody 

vegetation in pastures and stimulate forage grasses growth. Due to the lack of fire breaks, I 

expect that fires on ranches are often allowed to burn into cypress domes.  Interestingly, this 

practice may more closely mimic natural fire regime than fire management practices in natural 

forested lands and has maintained recruitment in agricultural cypress domes because more 

frequent fire leads to decreased competition and more available sunlight for cypress seedlings. 

Ranchlands also have numerous cattle that can contribute to increased cypress recruitment. 

Cattle forage on multiple types of vegetation and can clear the understory, limiting competition 

for cypress seedlings. Nutrient input from cattle may also increase cypress recruitment. The 

combined effect of increased fire and cattle presence could help explain the higher recruitment in 

agricultural cypress domes.   

Urban cypress domes have virtually no fire regime and tend to have altered hydrology 

(either longer to permanent hydroperiod or drained) relative to the variable hydrology of non-

urban isolated wetlands. Changes to fire regime and hydrology appear to be consistent across the 

three levels of urbanization (low, medium, or high) because levels were far less important to 

cypress recruitment than was time since urbanization. Recruitment dropped substantially around 



34 

 

20 years post-urbanization and we sampled cypress domes with varying ages including several 

from 20 to 60 years post-urbanization, none of which showed recruitment. With good seed crops 

every 3-5 years in cypress (U.S. Department of Agriculture 1974), I would expect multiple 

cohorts of juveniles to have recruited in cypress domes 20 to 60 years post urbanization. While it 

is unknown how long it takes for a tree to reach 2 m (and thus be classified as an adult in this 

study) and that time period is likely to vary dependent on nutrient availability, I would estimate it 

may take 10 years or less.  Thus, if recruitment was occurring in cypress domes 20 post-

urbanization, juveniles would have been present.  

Prior to ~20 years, the most important variable in determining presence or absence of 

juveniles is distance to the edge of the wetland (Figure 8). This result is consistent with the fact 

that many urban cypress domes are used for stormwater retention, which serves to hold more 

water longer in the center and thus have conditions favorable for germination only on the edge of 

the wetland. These cypress domes will continue to recruit at the edge of the wetlands until 

around 20 years post-urbanization when the encroachment of other vegetation (including 

nonnative, invasive species) becomes evident enough to completely halt recruitment.  

Wetland area and distance to the wetland edge were the most important variables to 

predict juvenile:adult ratio in natural and agricultural cypress domes. Larger cypress domes have 

more edge and often have longer hydroperiods allowing for standing water in the center and 

increased saturation of the soil near wetland edges.  Saturated, but not flooded soils are ideal for 

cypress germination and seedling survival (Brandt and Ewel 1989, Burns and Honkala 1990). 

Potentially better hydrology and reduced competition at the edge as a result of frequent 
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prescribed fire (provided there are no fire breaks) likely contribute to the effect of wetland size 

on cypress recruitment in natural and agricultural cypress domes.   

Overall, management in the form of both prescribed fire and altered hydrology in 

urbanized areas will lead to the loss and degradation of hundreds of cypress populations within 

the Orlando metropolitan area (Chapter 1). The same processes will also halt recruitment in 

remaining urban populations and the existence of those populations will be tied to the lifespan of 

the current adults. Urbanization is essentially permanent, and will not be practically altered to 

preserve cypress populations rather than prevent flooding of buildings and widlfires. However, 

reduced urban sprawl would mitigate the ongoing extirpation of viable cypress populations that 

is happening in the area.  

Management practices in natural lands are far more amenable to change, and a small 

change in prescribed fire practice (i.e., burning through cypress domes with seasonal or 

ephemeral hydroperiods) should permit ongoing cypress recruitment and not lead to muck or 

peat fires. In addition, preliminary surveys (soil cores, pits, visual records of surface water) can 

readily ascertain which wetlands in natural areas can be burned (as often happens in cattle 

ranches) and which wetlands will need fire breaks. This simple change in practice should have a 

strong effect on recruitment and long-term viability of the dominant species in many wetlands of 

the southeastern U.S. within natural lands. In the absence of this simple change in management 

practice, thousands of wetlands may remain on regional natural lands, but cypress will fail to 

recruit within decades in many wetlands, and the once typical and valued “cypress domes” will 

be replaced by a mixture of other vegetation, with unknown consequences for regional 



36 

 

ecosystem services and biodiversity. Moreover, cypress will be relegated to riparian zones and 

largely obliterated from the many isolated wetlands in urban areas throughout the region, with 

potential genetic and demographic effects.  
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CHAPTER 4: POPULATION GENETIC STRUCTURE OF CYPRESS 
(TAXODIUM DISCTICHUM) IN ISOLATED WETLANDS IN AN URBAN 

LANDSCAPE 
 

Introduction 

Urbanization has caused loss and degradation of cypress domes in Orlando (Chapter 2). 

Alterations to hydrology and fire regimes have also caused lower recruitment in urban cypress 

domes (Chapter 3). I hypothesized that the same alterations to hydrology in urban areas would 

limit dispersal and gene flow in urban areas. Cypress cones float and in natural areas cypress are 

likely dispersed through ground water and through surficial connections during significant 

rainfalls (Middleton 2000). Urbanization alters the hydrology and removes natural water 

connections leading to a reduction of gene flow among urban wetlands. Limited gene flow 

among wetlands would likely lead to higher inbreeding as the juveniles in the population could 

only recruit from adults within a population. Since adults were recruited pre-urbanization and 

juveniles post-urbanization, I expected to see a genetic differentiation between the two groups. I 

hypothesized that urban cypress domes would have lower gene flow among wetlands and 

juveniles in urban wetlands would have higher levels of inbreeding than their adult counterparts. 

Methods  

I attempted to analyze microsatellite markers for Taxodium distichum in order to test this 

hypothesis. Microsatellite markers are short tandem repeats and are highly variable markers 

often used in population genetic studies (Jarne and Lagoda 1996). Genetic samples were 

collected from 21 randomly selected populations from across all 5 urbanization categories. 

Within each cypress domes, 30 points were randomly generated using ArcGIS v. 9.2 (ESRI 
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2006). At each point the nearest adult and nearest juvenile (if any were present) were located and 

needles were collected from each. In some instances, adult trees were so tall that the lowest 

branch with available needles was out of reach. In those cases, a slingshot was used to shoot a 

fishing weight attached to fishing line into the tree and over an available branch. I attempted to 

get the fishing weight to drop back down the other side of the branch and was then able to break 

the branch or shake it in order to obtain needles. Once collected, needles were dried and stored in 

Dri-Rite desiccant until DNA extraction could be completed.  

Microsatellite primers for this species did not exist and had to be developed for this 

study. I successfully created a microsatellite library based on a CA repeat because dinucleotide 

repeats are common in plants (Jarne and Lagoda 1996). I obtained ~50 sequences throughout the 

genome that were positive for repeat regions. From those, I created primer pairs from the 

flanking regions of those repeats using Primer 3 (Rozen and Skaletsky 2000). I ordered 25 of the 

primer pairs and attempted to amplify those repeat regions. I was initially not able to get a 

successful PCR using the primer pairs. After several attempts using a variety of different PCR 

conditions, I was able to get between 8-10 primer pairs to amplify. The conditions required 2 

times the amount of MgCl initially tested and annealing temperatures around 44-46° C. While 

annealing temperatures can vary by locus and species, I had not found literature with annealing 

temperatures that low; annealing temperatures are generally between 50-65° C (Tsumura et al. 

1997, Soranzo et al. 1999, Hoffman et al. 2003).  

After verifying that amplification was possible, I extracted DNA from ~875 samples of 

cypress needles using both a modified CTAB protocol and Qiagen DNeasy Plant Mini Kits. I 
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amplified several individuals at approximately 10 loci in order to verify that proper microsatellite 

allele peaks could be visualized in a fragment analysis. I analyzed samples using both a Beckman 

Coulter CEQ 8800 and an Applied Biosystems, Inc ABI 3730 DNA Analyzer. I obtained 

electropherograms for all loci analyzed. Some primer pairs were removed from future analyses 

because they either did not show amplification or the amplified loci were monomorphic. At that 

point, there were 6 polymorphic loci included in future analyses. Three of those loci appeared to 

be polyploid, with one individual typically amplifying more than two alleles and up to 6 alleles 

(Figure 12).  

Polyploidy is common in angiosperms, but only one family of gymnosperms is known to 

contain polyploids, Cupressaceae. This is the same family as Taxodium distichum which is 

known to be a diploid organism (Ahuja and Neale 2002, Kado et al. 2006). Conifers have a large 

genome size, ranging from ~6,500 Mb to ~37,00 Mb and Ahuja & Neale (2005) suggested that 

ancient polyploidy or gene duplication could be responsible. If ancient polyploidy or large 

segments of the genome had been duplicated for Taxodium distichum in the past, this may 

explain the multiple alleles seen in this study. With this explanation in mind, all of the samples 

were amplified at 6 loci, sent to the University of Arizona Genetics Core and analyzed using an 

ABI 3730 DNA analyzer. Electropherograms were evaluated using STRand software (Toonen 

and Hughes 2001).  

Preliminarily, 8 of the 21 populations (Figure 13) were scored and genotypes were 

recorded. The allele sizes in about half of the loci amplified did not match the expected sizes 

obtained from the Primer 3 output and it was often difficult to distinguish the genotypes from 
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“noise” in the electropherograms. There were also “alleles” present in the negative controls that 

scored similar to other individuals. There was a great deal of similarity between samples with 

most individuals having the same alleles at each locus and I was unsure if the data showed real 

alleles or non-specific amplification because the annealing temperatures were so low. In order to 

find this out and evaluate the population structure using the current data, I ran several analyses 

on the preliminary subset of populations. 

Following methods in Andreakis et al. (2009) for analyzing polyploidy data, I converted 

all genotype data to a binary matrix where each allele or amplification variant (AV) was given a 

0 or 1 for presence or absence, respectively in that individual. Data were then analyzed as 

dominant markers where each possible AV was considered independently instead of 

codominantly as is usual with microsatellites. AV’s were combined into one banding pattern for 

each individual and the resulting pairwise binary matrix was used to analyze differences between 

populations. A regular analysis of molecular variance (AMOVA) was performed in GenAlEx v. 

6.41 (Peakall and Smouse 2006) and pairwise Φpt estimates were calculated to obtain gene flow 

levels between populations and the number of immigrants (Nm) = 0.25(1 – Φpt)/Φpt. Pairwise 

Φpt estimates were calculated and used in a Principal Component Analysis (PCA) to show 

population differentiation and to conduct a Mantel test to look for isolation by distance.  

A Bayesian AMOVA was conducted in Hickory v. 1.1 (Holsinger and Lewis 2003) to 

estimate population differentiation. Two estimates of population differentiation were estimated, 

θ(I) and θ(II). θ(I), is most closely related to Wright’s FST and  measures allele frequency variance 

within a population and assumes a stationary evolutionary process. θ(II), is most closely related to 
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Nei’s GST  and  is a scaled allelic frequency variation measured across contemporaneous 

populations. It treats populations as a random subsample from all possible populations. Due to 

the recent loss of several populations of cypress domes (Chapter 2), θ(II) may be the most 

accurate estimate of population differentiation. According to the software manual (Holsinger and 

Lewis 2003), Hickory can infer estimates of ƒ (the within-population inbreeding coefficient) 

from dominant markers, though these calculations may be unreliable. It is suggested that several 

models be run including the full model, the ƒ =0 model, and the ƒ -free and θ(I) = 0 null-models 

(Holsinger and Lewis 2003, Andreakis et al. 2009). 

Results 

The regular AMOVA shows that 87% of the variation was from within populations and 

only 13% of the variation was from among populations (Table 6). Pairwise genetic distances 

were low and did not show an obvious correlation with genetic distances (Table 7). Mantel test 

confirmed that there was little evidence of isolation by distance (Figure 14). PCA analyses 

showed that the most obvious factor separating populations were the plate on which they were 

run (Figure 15). PCR and fragment analyses were done on 96-well plates that would typically 

hold 2-3 populations per plate. The 8 populations run in the preliminary analyses were run on 3 

plates.  The DIC values for the Bayesian AMOVA show that the full model is the best model to 

represent population differentiation.  θ(II) values, the most accurate to represent differences 

between contemporaneous populations, show extremely low population differentiation at 0.003 

in the full model. This shows there is very little structure to the populations analyzed despite the 

wide variety of distances between populations (Figure 13).   
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Discussion 

 Results suggest that the alleles analyzed may not actually be microsatellite alleles. The 

lack of population differentiation, the presence of “alleles” in negative controls, and the “noise” 

seen in a majority of the samples all suggest that low annealing temperatures are contributing to 

non-specific amplification not representative of actual markers. I believe that while I definitively 

found positive microsatellites in the sequences generated from the microsatellite library 

development, the primers developed from those failed to amplify actual microsatellite markers. 

This was verified by the allele sizes not matching the allele sizes from the original sequences 

input into Primer 3. I had an extremely hard time getting PCR to be successful and was only able 

to have “success” using one specific brand of taq polymerase, high amounts of MgCl, and 

annealing temperatures well below most published temperatures. I believe these conditions led to 

bands on electrophoresis gels that seemed as if they were microsatellite markers. However, when 

fragment analysis was done and populations were analyzed, they failed to represent what 

expected microsatellite markers should. The only way to know for sure if the amplified products 

are actually microsatellite markers and Taxodium distichum actually has polyploidy portions of 

the genome is to clone and sequence several of them to see if the repeats are present in the 

sequence. Without this information, I can only assume that the genetics analyses in the project 

failed and I still do not know the effects of urbanization on the population genetics of cypress.
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CHAPTER 5: DISCUSSION 

Modern human population growth is biased to urban areas, causing increased 

urbanization of landscapes worldwide, including large population increases in the southeastern 

United States. The Orlando metropolitan area is typical of the population growth in the Southeast 

and also has numerous cypress domes, many of which still remain among current urbanization. 

Urbanization both fragments and disturbs natural ecosystems and causes decreases in native 

species diversity. The purpose of this study was to evaluate the effects of urbanization on cypress 

domes in central Florida. Specifically, I tested how urbanization (fragmentation, altered 

hydrology, and altered fire regime) affected (a) the numbers and spatial pattern of cypress domes 

in central Florida and (b) the recruitment of pond cypress within cypress domes. I attempted to 

test (c) gene flow of pond cypress among cypress domes. I then combined information from a & 

b into a Geographic Information System (GIS) model that depicts historical changes and can be 

used to predict future effects.   

Analyses of historical loss found over 3,000 cypress domes identified in images 

from1984, of which 26% were lost or degraded (i.e., no longer cypress-dominated) by 2004. Due 

to changed land use, many remaining cypress domes, formerly surrounded by natural lands, 

became surrounded by urban lands. These recently urbanized cypress domes were also more 

spatially clustered. Cypress dome sizes became more homogeneous with the loss and 

degradation of small cypress domes in natural and agricultural lands and large cypress domes in 

urban lands. Despite legal protection of these habitats, urbanization, and its accompanying 

alterations to fire and hydrology regimes, fragmented and degraded wetlands. Urbanization will 

likely continue to decrease heterogeneity among cypress domes and landscape-level biodiversity 

of cypress domes range wide will be decreased.  
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Recruitment analyses indicate that urban cypress domes as well as natural cypress domes 

had lower recruitment than cypress domes in agricultural areas, mainly cattle ranches. Many land 

managers place fire breaks around cypress domes in natural areas to avoid burning wetlands and 

creating long-lasting muck fires that can smolder for several weeks.  This practice seems to be 

limiting recruitment as cypress domes in agricultural areas did not have fire breaks and these 

cypress domes had higher recruitment. Our results also showed that time since urbanization and 

distance to the edge were the best predictors of juvenile:adult ratio in urban cypress domes. 

Recruitment dropped substantially at 20 years post urbanization; previous to that, recruitment 

occurred near the edge of wetlands where hydrological conditions were most favorable. In 

natural and agricultural cypress domes, recruitment again occurred near the edge of the wetlands 

and was higher in larger domes.  

While chapter 1 showed significant degradation over a 20 year period and chapter 2 

showed substantial reduction in recruitment at 20 years post-urbanization, I believe this may 

simply be coincidence. I didn’t sample cypress domes that degraded from 1984 to 2004 because 

they were no longer identified as cypress domes in 2004 so I don’t know if cypress may have 

still been recruiting. Also, I only evaluated degradation at a 20-year time interval and it is 

unknown to what extent degradation may have been occurring at shorter intervals. While it is 

possible that degradation may reduce recruitment, I did not specifically test this and the 20-year 

time period observed in both chapters likely has no significance. 

If past urbanization patterns continue, ~89% of the cypress domes in the study area now 

recruiting could cease recruitment by 2104. I suggest that reducing urban sprawl and enacting 

prescribed burning of natural cypress domes may mitigate this effect but in the absence of 

management practice changes, cypress recruitment will cease in many isolated wetlands, leading 
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to unknown genetic and demographic consequences. This study illustrates how susceptible 

cypress wetlands are to urbanization. Without proper management, cypress domes are likely to 

continue to be lost to urbanization and recruitment may cease in most remaining wetlands. 

Cypress will then be relegated to riparian zones in urban areas and cypress in isolated cypress 

wetlands may be at risk.  



46 

 

APPENDIX A: CHAPTER 2 FIGURES AND TABLES 
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Figure 1. Population change in the southeast U.S. from 1990-2009 and species range of cypress. Cities shown are those where the city (or surrounding counties) 
had population growth greater than 75,000 people. Counties that grew >75,000 people but lacked a major city nearby are also indicated. Embedded graph is 
histogram of city/county population growth. 
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Figure 2. Cypress domes present in the Orlando metropolitan area in 1984 and 2004. Low-, medium-, and high-
urban dome categories have been combined and displayed as “Urban Domes”.  
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Figure 3. Ripley's K values for 1984 and 2004 cypress domes. Values in the above plots represent [observed values 
– (upper 99% confidence limit of expected values)]. Thus, values greater than 0 on above plots indicate significant 
clustering. This shows that low and medium urban cypress domes had less clustering and were close to randomly 
distributed at 10,000 m in 1984 but by 2004 both categories became more clustered. Natural and agricultural domes 
became less clustered from 1984 to 2004. 
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Figure 4. Spatial Isolation Index of cypress domes. Domes were enumerated within a 490 m buffer (twice the 
nearest neighbor distance for domes present in 1984). Black bars (from 1984) show that natural and agricultural 
categories grouped together and the urban categories grouped together while grey bars (from 2004) show that the 
low urban category groups with natural and agricultural categories. This also shows that natural and agricultural 
cypress domes became less clustered and urban cypress domes became more clustered from 1984 to 2004. Error 
bars represent 95% confidence intervals. 
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Figure 5.  Mean area for cypress domes. Black bars (1984) show a larger difference between natural/agricultural 
domes and urban domes while the grey bars show all categories are closer to 1 ha. This also shows that the average 
size of natural and agricultural cypress domes got larger from 1984 to 2004 and the average size of urban cypress 
domes got smaller during the same time period. Low-, medium-, and high-urban domes have been combined into 
one “Urban” category. Error bars represent 95% confidence intervals. 

 

 

1 ha 
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Table 1. Number and percent change of cypress domes for each year. 

    1984 % of 84 
domes 

2004 % of 2004 
domes 

change % change 

Natural Number 1517 45% 767 31% -750 -49% 

 

Area 2925.9 46% 1379 29% -1546.9 -53% 

Ag Number 1588 47% 1110 44% -478 -30% 

 

Area 2782.9 44% 1927.6 41% -855.3 -31% 

Low Urban Number 98 3% 294 12% 196 200% 

 

Area 167.2 3% 602 13% 434.8 260% 

Med Urban Number 109 3% 169 7% 60 55% 

 

Area 290.2 5% 421.9 9% 131.7 45% 

High Urban Number 81 2% 158 6% 77 95% 

 

Area 197.2 3% 346.8 7% 149.6 76% 

Total Number 3393 

 

2498 

 

-895 -26% 

 

Area 6363.4 

 

4677.3 

 

-1686.1 -26% 
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Table 2. Matrix of urbanization category changes, loss and degradation of cypress domes (number and area) from 1984 to 2004.a 

    

Natural            

in 2004 

Ag                       

in 2004 

Low urban in 

2004 

Med urban in 

2004 

High urban in 

2004 Disappeared Degraded 

Natural Number 629 (41.5%) 130 (8.6%) 220 (14.5%) 79 (5.2%) 92 (6.1%) 122 (8.0%) 245 (16.2%) 

in 1984 Area (m2) 1326.6 (45.3%) 244.1 (8.3%) 420 (14.4%) 196.9 (6.7%) 294.5 (10.1%) 129.9 (4.4%) 313.8 (10.7%) 

         Ag  Number 140 (8.8%) 992 (62.5%) 24 (1.5%) 20 (1.3%) 5 (0.3%) 37 (2.3%) 370 (23.3%) 

in 1984 Area (m2) 230.4 (8%) 1877.9 (67.5%) 37.9 (1.4%) 38 (1.4%) 8.7 (0.3%) 47.4 (1.7%) 542.5 (19.5%) 

         Low urban Number 0 0 49 (49.5%) 11 (11.1%) 12 (12.1%) 6 (6.1%) 21 (21.1%) 

in 1984 Area (m2) 0 0 72.8 (43.5%) 34.4 (20.6%) 16.9 (10.1%) 10.2 (6.1%) 32.9 (19.7%) 

         Med urban Number 0 0 0 55 (50.5%) 14 (12.8%) 10 (9.2%) 30 (27.5%) 

in 1984 Area (m2) 0 0 0 181.2 (62.4%) 18.3 (6.3%) 29.3 (10.1%) 61.4 (21.2%) 

         High urban Number 0 0 0 0 35 (43.2%) 11 (13.6) 35 (43.2%) 

in 1984 Area (m2) 0 0 0 0 87.1 (44.2%) 27 (13.7%) 83 (42.1%) 

         Total Number 

     

186 (5.5%) 701 (20.7%) 

 

Area (m2) 

     

243.8(3.83%) 

1033.6 

(16.24%) 

 a Any differences in numbers from Table 1 are a result of merging of multiple domes into one and splitting of one dome into 
multiple domes from 1984 to 2004.
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Figure 6. Canonical discriminant analysis results. Functions 1 and 2 correspond to PCA Axis 1 and 2, respectively. 
Ungrouped cases represent the 7.6% of the cypress domes in which the PCA and Canonical discriminant analysis 
did not agree. Function 1 (PCA Axis 1) separates natural, agricultural, and urban domes while function 2 (PCA Axis 
2) separates low-, medium-, and high-urban cypress domes. 
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Figure 7. Juvenile:adult ratio among the 5 urbanization categories. Agricultural cypress domes had a significantly 
higher juvenile:adult ratio than other urbanization categories. Natural and urban cypress domes do not have 
significantly different juvenile:adult ratio. 
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Figure 8. Mixed effects logistic regression model with fitted values of the sampled domes. Juvenile:adult ratio drops 
significantly around 20 years post-urbanization and is higher at the edge of the dome than in the center. 
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Figure 9. Mixed effects linear regression model of juvenile to adult ratio. Large cypress domes have higher 
juvenile:adult ratio than small cypress domes. There is higher recruitment in at the edge of the wetland than in the 
center. Agricultural cypress domes have higher juvenile:adult ratio than natural cypress domes. 
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Figure 10. Projected juvenile presence and absence for urban cypress domes. Cypress domes are represented as polygons. Roads represent the more urbanized 
portions of the study area. Cypress domes that have predicted juvenile presence are on the periphery of the urban area. 
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Figure 11. Projected juvenile to adult ratio for natural and agricultural cypress domes. Cypress domes are represented as polygons. Roads are shown to 
represent the more urbanized portions of the study area. Cypress domes with low juvenile:adult ratio are intermixed with cypress domes with high 
juvenile:adult ratio. The highest recruiting cypress domes (green) are the larger cypress domes.  
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Table 3. Top 5 models for predicting probability of juvenile presence for urban cypress domes in central Florida.  
Thirty total models were run but only models with weight values greater than 0.025 shown a. AIC: Akaike 
Information Criterion value (lower values indicate better models), log (£): log likelihood,  Δi : difference between 
lowest AIC value and AICi, wi : model weight. 

Model AIC Δi log(£) wi 
Distance to edge + Time since urbanization 150.10 0.000 1.000 0.425 
Vegetation index + Distance to edge + Time since urbanization 151.70 1.600 0.449 0.191 
PCA Axis 2 + Distance to edge + Time since urbanization 152.00 1.900 0.387 0.164 
Vegetation Index + PCA Axis 2 + Distance to edge + Time since 
urbanization 153.40 3.300 0.192 0.082 
Time since urbanization 154.30 4.200 0.122 0.052 

a Relative variable importance of all models: Time since urbanization: 0.988, distance to edge: 0.893, PCA 
Axis 2: 0.287, vegetation index: 0.037, area of cypress dome: 0.028 

 

 

Table 4. Top 5 models for predicting juvenile to adult ration in natural and agricultural cypress domes in central 
Florida.  Fifteen total models were run but only models with weight values greater than 0.02 shown.a AIC: Akaike 
Information Criterion value (lower values indicate better models), log (£): log likelihood,  Δi : difference between 
lowest AIC value and AICi, wi : model weight. 

Model AIC Δi log(£) wi 
PCA Axis 1 + distance to the edge + Dome area -33.64 0 1 0.42 
Distance to the edge + Dome area -32.11 1.53 0.47 0.20 
PCA Axis 1 + vegetation index + distance to the edge + Dome area -31.66 1.98 0.37 0.16 
Vegetation index + distance to the edge + Dome area -30.48 3.16 0.21 0.09 
PCA Axis 1 + Dome area -29.25 4.39 0.11 0.05 
Dome area -28.72 4.92 0.09 0.04 

a Relative variable importance of all models: Area of cypress dome: 0.986, distance to edge: 0.881, PCA Axis 
1: 0.656, vegetation index: 0.267 
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Table 5. Projections of recruiting cypress domes in central Florida through 2064.  

 
In 2004 In 2104 

  
total 

remaining 
total 

recruiting 
total 

remaining 
total 

recruiting 
Natural 891 576 28 18 
Ag 1189 769 219 142 
Urban 730 115 206 4 
Total 2810 1460 453 164 

Conversion calculations: 25.8% of natural converted to urban, 3.1% of agricultural converted to urban; Loss calculations: 24.2% of natural lost, 25.6% of 
agricultural lost, 39.2% of urban lost; Recruitment calculations: 64.7% of natural/agricultural recruiting (based on sampling) & 15.7% of urban domes newer 
than 20 years recruiting (based on predictions), no urban domes older than 20 years recruiting.  
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APPENDIX C: CHAPTER 4 FIGURES AND TABLES 
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Figure 12. An example of an electropherogram showing 5 alleles at one locus. 

 



65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. 8 populations analyzed for preliminary genetics analyses. 
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Figure 14. Mantel test on pairwise genetic distances from 8 of the 21 populations. This shows there is very little 
evidence of isolation by distance. 

 

 

Figure 15. Principal Coordinate Analysis (PCA) of pairwise genetic distances in 8 of the 21 populations. This shows 
that the populations are most closely related to other populations in the same plate. 
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Table 6. Results from regular AMOVA showing genetic differentiation among and within populations. Φpt, is the correlation between individuals within a 
population relative to that of individuals from the whole data set. Number of migrants, Nm = 0.25(1 – Φpt)/Φpt 

  df Percentage 
Among populations 7 13% 
within populations 247 87% 

φpt 0.135 
 Nm 1.604 
  

 

Table 7. Φpt and geographic distances between 8 of the 21 populations. ΦPT Values below diagonal. Geographic distances above the diagonal. 

 

 

 

 

 

 

 

 

 
2248 2169 1854 1459 1928 179 1091 2092 

2248 0 35,312.12 20,770.12 8,118.80 29,871.50 13,345.26 18,616.37 44,815.59 
2169 0.063 0 44,583.85 36,946.72 51,771.00 33,506.70 18,814.36 10,319.75 
1854 0.017 0.019 0 0.01 9,175.80 34,062.55 26,070.96 54,902.12 
1459 0.066 0.050 0.026 0 21,909.41 21,324.39 18,386.41 47,047.26 
1928 0.127 0.058 0.095 0.070 0 43,195.91 33,901.83 62,009.35 

179 0.099 0.040 0.065 0.111 0.185 0 23,050.06 41,114.10 
1091 0.167 0.169 0.144 0.248 0.334 0.156 0 29,087.88 
2092 0.098 0.183 0.119 0.211 0.264 0.191 0.136 0 
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Table 8. Results from Bayesian AMOVA in 8 of the 21 populations.  

Model Dbar Dhat pD DIC ƒ θ (I) θ (II) 
Full 2024.43 1944.01 80.4135 2104.84 0.693 0.018 0.003 

     
0.158 - 0.989* 0.011-0.028* 0.0003-0.006* 

ƒ -free 2029.66 1772.67 256.988 2286.65 0.494 0.027 0.014 

     
0.026-0.975* 0.017-0.041* 0.007-0.025* 

ƒ = 0 2024.55 1940.83 83.7208 2108.28 - 0.012 0.002 

     
 

0.007-0.018* 0.0003-0.004* 
θ = 0 2058.22 2000.48 57.7446 2115.97 0.971 0.028 - 

     
0.894-0.999* 0.018-0.043* 

 DIC, deviance information criterion; Dbar, measure of how well the model fits the data; Dhat, measure of how well the best point estimate fits the data; pD, 
indicates the complexity of the model (approximate number of parameters being estimated). ƒ, the inbreeding coefficient within populations (FIS); θ(I) and θ(II), the 
analogues of FST and Nei’s GST, respectively; an asterisk denotes upper and lower bounds of the 95% confidence interval. 
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