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Abstract
The application of data mining and knowledge discovery 
in databases for petroleum exploration and development 
(PE&D) is becoming promising, though still at an early 
stage. Up to now, the data mining tools usually used in 
PE&D are four classifiers: multiple regression analysis 
(MRA), Bayesian discrimination (BAYD), back-
propagation neural network (BPNN), and support vector 
machine (SVM). Each of the four classifiers has its 
advantages and disadvantages. A question, however, has 
been raised in applications is: which classifier is the most 
applicable to a specified application? This paper has given 
an answer to the question through two case studies: 1) trap 
quality evaluation of the Northern Kuqa Depression of the 
Tarim Basin in western China, and 2) oil identification of 
the Xiefengqiao anticlinal structure of the Jianghan Basin 
in central China. Case 1 shows that the results of BAYD, 
BPNN and SVM are same and can have zero residuals, 
while MRA has unallowable residuals; but Case 2 shows 
that the results of only SVM have zero residuals, while 
BAYD, BPNN and MRA have unallowable residuals. The 
reasons are: a) since the two cases are nonlinear problems, 
the linear MRA is not applicable; b) since the nonlinearity 
of Case 1 is weak, the nonlinear BAYD, BPNN and SVM 
are applicable; and c) since the nonlinearity of Case 2 is 
strong, only nonlinear SVM is applicable. Therefore, it 
is proposed that: we can adopt MRA when a problem is 
linear; adopt BAYD, BPNN, or SVM when a problem is 

weakly nonlinear; and adopt only SVM when a problem 
is strongly nonlinear. In addition, the predictions of 
the applicable classifiers coincide with real exploration 
results, and a commercial gas trap was discovered after the 
forecast in Case 1 and SVM can correct some erroneous 
well-log interpretations in Case 2. 
Key words: Multiple regression analysis; Bayesian 
discrimination; Back-propagation neural network; Support 
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INTRODUCTION
The data to be studied in data mining are divided into 
two categories: the learning samples, and the prediction 
samples. Each learning sample contains y (an object) value 
and x (the related parameters of y) values, whereas each 
prediction sample only contains x values. Data mining 
consists of three steps (Fig. 1): 1) “Data preprocessing”, 
such as data selection, data cleaning, dandling missing 
data, identifying misclassifications, identifying outliers, 
data transformation, min–max normalization, etc; 2) 
“Knowledge discovery”, using the learning samples 
(y, x), to use a proper data mining algorithm to obtain 
an expression y=f(x) that is so-called new knowledge 
discovered. 3) “Knowledge application”, using the 
prediction samples (x), to substitute each x values in 
y=f(x), each y value is obtained.
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Figure 1
Flowchart of Data Mining

In the early 21 century, data mining was predicted to be 
“one of the most revolutionary developments of the next 
decade,” and chosen as one of 10 emerging technologies 
that will change the world[1, 2, 3]. In fact, in the recent 20 
years, the field of data mining has seen enormous success, 
both in terms of broad-ranging application achievements 
and in terms of scientific progress and understanding[4]. 
Data mining is the computerized process of extracting 
previously unknown and important actionable information 
and knowledge from large databases. This knowledge 
can then be used to make crucial decisions by leveraging 
the individual's intuition and experience to objectively 
generate opportunit ies  that  might  otherwise go 
undiscovered. So Data mining is also called discovering 
knowledge in data (Fig. 1). It has been widely used in 
some fields of business and sciences, but the data mining 
application to petroleum exploration and development 
(PE&D) is still in initial stage[5, 6, 7, 8].

Facing the large amount of PE&D databases, people 
can use the database management system to conduct 
conventional applications (such as query, searches and 
simple statistical analysis), but cannot obtain the available 
knowledge inhered in data, falling in a puzzledom of ‘rich 
data but poor knowledge’. The only solution is to develop 
data mining techniques (Fig. 1) in PE&D databases.

The application of data mining and knowledge 
discovery in databases for PE&D is becoming promising, 
though still at an early stage. Up to now, the data mining 
tools usually used in PE&D are four classifiers: multiple 
regression analysis (MRA), Bayesian discrimination 

(BAYD), back-propagation neural network (BPNN), 
and support vector machine (SVM). Each of the four 
classifiers has its advantages and disadvantages. A 
question, however, has been raised in applications is: 
which classifier is the most applicable to a specified 
application? This paper has given an answer to the 
question through two case studies below: 1) trap quality 
evaluation of the Northern Kuqa Depression of the Tarim 
Basin in western China, and 2) oil identification of the 
Xiefengqiao anticlinal structure of the Jianghan Basin in 
central China.

1.  OVERVIEW OF THE FOUR CLASSIFIERS
In this study, MRA, BAYD, BPNN, and SVM use 
the same known parameters, and also share the same 
unknown to be predicted. Only the results calculated by 
each classifier are different (Figs. 2 and 3).

Figure 2
Sketch Map of the Learning Process for MRA, BAYD, 
BPNN, and SVM

Figure 3
Sketch Map of the Prediction Process for MRA, 
BAYD, BPNN, and SVM

Learning process (Fig. 2)
Assume that there are n learning samples, each associated 
with m+1 independent parameters (x1, x2, …, xm, y) and 
a set of observed values (x1i, x2i, …, xmi, yi), with i=1, 2, 

SHI Guangren (2011). 
Advances in Petroleum Exploration and Development , 2(2), 12-23



14Copyright © Canadian Research & Development Center of Sciences and Cultures 15

…, n for these parameters. In principle, n>m−1, but in 
actual practice n>>m−1. The n samples associated with m 
parameters are defined as n vectors:

xi=(x1i, x2i, …, xmi)    (i=1, 2, …, n)                                   (1)

Let x be the general form of a vector as defined in Eq. 
(1). The principles of MRA, BAYD, BPNN and SVM are 
the same, i.e. try to construct an expression, y=f(x), such 
that

(2)

is minimized. However, in detail the different classifiers 
use different approaches, and provide results of differing 
accuracy.
Prediction process (Fig. 3)
Assume that there are N prediction samples, each 
associated with m independent parameters (x1, x2, …, 
xm) and a set of observed values (x1i, x2i, …, xmi), with i= 
n+1, n+2, …, n+N for these parameters. The N samples 
associated with m parameters are defined as N vectors:

xi=(x1i, x2i, …, xmi)   (i=n+1, n+2, …, n+N)                      (3)

In Figs. 2 and 3, MRA is a linear function, whereas 
BAYD, BPNN and SVM are nonlinear function. These 
characteristics will be seen in the following instructions 
and case studies.

1.1  MRA
The MRA procedure was established in the 1970’s, 
and has been widely applied in the natural and social 
sciences[e.g. 9]. Successive regression analysis, the most 
popular MRA technique, is still a very useful tool in some 
fields[e.g. 8, 10, 11, 12, 13].

The formula created using MRA is the following linear 
combination with respect to m parameters (x1, x2, …, xm), 
plus a constant term, which is so-called y=MRA(x1, x2, …, 
xm) in Figs. 2 and 3:

y=b0+b1x1+b2x2+…+bmxm                                                (4)

where the constants b0, b1, b2, …, bm are deduced using 
regression criteria and calculated by the successive 
regression analysis of MRA. Eq. (4) is a so-called 
“regression” equation. As indicated in Fig. 4, in rare cases 
an introduced xk can be deleted in the regression equation, 
and in much rarer cases a deleted xk could be again 
introduced into the regression equation. Therefore, usually 
Eq. (4) is solved via m iterations (Fig. 4).

( )
2

1

n
i ii

f y
=

−∑   x

Figure 4
Sketch Map of the Learning Process by Successive 
Regression Analysis

1.2  BAYD
The BAYD procedure has been widely applied in the 
natural and social sciences since the 1990’s[14]. Bayesian 
discrimination, the most popular Bayesian technique, is 
still a very useful tool in some fields[e.g. 15, 16]. The following 
introduces a BAYD technique: the successive Bayesian 
discrimination.

The formula created using BAYD is the following a set 
of nonlinear combinations with respect to m parameters 
(x1, x2, …, xm), plus two constant terms:

(5)

where l is the class number, L is the number of classes, 
Bl(x) is the discrimination function of the lth class of 
y with respect to x, cjl is the coefficient of xj in the lth 
discrimination function, pl and c0l are two constant terms in 
the lth discrimination function. The constants pl, c0l, c1l, c2l, 
…, cml are deduced using Bayesian theorem and calculated 
by the successive Bayesian discrimination of BAYD. Eq. 
(5) is a so-called Bayesian discrimination function. As 
indicated in Fig. 5, in rare cases an introduced xk can be 
deleted in the Bayesian discrimination function, and in 
much rarer cases a deleted xk could be again introduced 
into the Bayesian discrimination function. Therefore, 
usually Eq. (5) is solved via m iterations (Fig. 5).

0 1
( ) ln( ) ( 1, 2, ... )

m
jl l l jlj

B p c c x l L
=

= + + =∑x
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Figure 5
Sketch Map of the Learning Process by Successive 
Bayesian Discrimination

Once Eq. (5) is created, we can substitute a sample 
shown by Eq. (1) or (3) in Eq. (5) to obtain L values: B1, 
B2, …, BL.

If                                                                                      (6)

then y=lb                                                                          (7)

Eq. (7) is so-called y= BAYD(x1, x2, …, xm) in Figs. 2 
and 3.

1.3  BPNN
The BPNN procedure was established in the 1980’s[e.g. 17, 

18], and the application of BPNN is still predominant[e.g. 11, 

13, 19, 20, 21, 22].
The formula created using BPNN is the following 

implicit expression with respect to m parameters (x1, x2, …, 
xm), which is mentioned in Figs. 2 and 3:

y=BPNN(x1, x2, …, xm)                                                    (8)

where BPNN is a nonlinear function constructed by error 
BPNN (Fig. 6), which cannot be expressed as a usual 
mathematical formula and is an implicit expression. Fig. 
6 illustrates only one hidden layer, but in practice BPNN 
can have more than one hidden layer. There is no theory 
yet to determine how many hidden layers are needed for 
any given case, but in the case of only one output layer, 
it is enough to define one hidden layer. Moreover, it is 
also difficult to determine how many nodes a hidden 
layer should have. For solving local minima problem, 

{ }
b 1

( ) max ( )ll l L
B B

≤ ≤
=x x

it is suggested to use the large Nhidden=2(Ninput+Noutput)−1 
estimate where Nhidden is the number of hidden nodes, Ninput 
is the number of input nodes and Noutput is the number of 
output nodes. The values of the network learning rate for 
the output layer and the hidden layer are within (0, 1), and 
in practice they can be the same and taken as 0.6.

Figure 6
Sketch Map of the Learning Process by Back-
Propagation Neural Network

The term back-propagation refers to the way[13, 19]: the 
error computed at the output side is propagated backward 
from the output layer, to the hidden layer, and finally to 
the input layer. Each iteration of BPNN constitutes two 
sweeps: forward to calculate a solution by using a sigmoid 
activation function f(z)=1/[1+exp(z)], and backward to 
compute the error and thus to adjust the weights and 
thresholds for the next iteration (Fig. 6). This iteration is 
performed repeatedly until the solution agrees with the 
desired value within a required tolerance.

1.4  SVM
The SVM procedure was established in the 1990’s, 
and includes two principal methods: LP-SVM, the 
linear programming SVM[23]; and C-SVM, the binary 
classification SVM[24]. Numerous methods for feature 
selection in SVMs have been proposed[25, 26].

SVM is a new approach utilizing machine-learning 
based on statistical learning theory. It is essentially 
performed by converting a real problem (the original 
space) into a new higher dimensional feature space 
using the kernel function, and then constructing a linear 
discriminate function in the new space to replace the 
nonlinear discriminate function. Theoretically, SVM can 
obtain the global optimal solution and avoid converging 
to a local optimal solution as can possibly occur in BPNN, 
though this problem in BPNN is rare.
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The technique of C-SVM binary classifier[13, 24, 27, 28, 29, 

30] has been employed (Fig. 7). The formula created using 
this technique is the following nonlinear expression with 
respect to a vector x, which is so-called y= SVM(x1, x2, …, 
xm) in Figs. 2 and 3:

(9)

where α is the vector of Lagrange multipliers, α=(α1, α2, 
…, αn), 0≤αi≤C where C is the penalty factor, and the 
constraint        =0; exp(−γ || x−xi ||

2) is the RBF (radial 
basis function) kernel function; γ is the regularization 
parameter, γ>0; and b is the offset of the separating 
hyperplane, which can be calculated using the free vectors 
xi. These free xi are those vectors corresponding to αi>0, 
on which the final SVM model depends. It is better to 
take the RBF as a kernel function than to take the linear, 
polynomial and sigmoid functions under strong nonlinear 
conditions[30].

αi, C, and γ can be solved using the dual quadratic 
optimization:

 {               [                              ]}                                (10)
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Figure 7
Sketch Map of the Learning Process by C-SVM Binary 
Classifier

1.5  Summary of the Four Classifiers
Each of the above four classifiers follow the same 
calculating flowchart: a) “Knowledge discovery”, i.e., 
determine a formula, that is, Eq. (4), Eq. (7), Eq. (8), or 
Eq. (9), using the n learning samples shown by Eq. (1); 
b) “Knowledge validation”, i.e., substitute the n learning 
samples in the formula to obtain the prediction values 
y1, y2, …, yn to verify the fit of the classifier; and c) 
“Knowledge application”, i.e., substitute the N prediction 
samples shown by Eq. (3) in the formula to obtain the 
prediction values yn+1, yn+2, …, yn+N.

The expression y=y(x) obtained by MRA, BAYD, 
BPNN and SVM can be defined as y=MRA(x), y= 
BAYD(x), y=BPNN(x) and y=SVM(x) respectively, where 

MRA is a linear function but BAYD, BPNN and SVM are 
nonlinear functions. Moreover, MRA, BAYD and SVM are 
explicit, and can be concretely expressed as mathematical 
formulas, whereas BPNN is implicit.

It is noted for the following two case studies that: 
since the output y of MRA and BPNN are real-type values 
whereas the output y of BAYD and SVM are integer-type 
values, the output y of MRA and BPNN are converted to 
integer-type values using the Round function for the sake 
of comparability between the four classifiers.

2.  CASE STUDY 1: TRAP QUALITY 
EVALUATION
Located to the north of the Tarim Basin in western 
China, the Kuqa Depression covers about 40,000 km2, 
stretching from the mountainous southern Tianshan fold 
belt in the north to the Tabei uplift in the south. It is about 
400 km long (E-W) and 50–140 km wide (N-S), wide 
to the west and narrowing to the east. Over 10 oil and 
gas fields have been discovered in this depression. It is 
one of the richest areas of natural gas accumulation in 
China, of which the large gas field Kela2 has become the 
major gas supplier in the state project “gas in the west 
delivered to the east”. In the light of the differences of the 
structural features and migration mechanisms, the Kuqa 
Depression can be divided into two separate, north and 
south petroleum systems. The gas-rich Northern Kuqa 
Depression comprises about half the whole depression 
and includes the northern monocline belt, the linear Keyi 
anticline belt, the Qiulitake anticline belt, the Baicheng 
sag and the Yangxia sag. Since it has experienced stronger 
tectonic movements, the geological conditions are more 
complicated than in the Southern Kuqa Depression[11, 

31, 32]. Therefore, it is a challenge to study the traps in 
the Northern Kuqa Depression under such complicated 
conditions, and it is a new trial to apply MRA, BAYD, 
BPNN and SVM to the evaluation of trap quality.

The objective of this case study is to conduct the 
optimal selection of traps using multi-geological factors 
of oil and gas pool-forming, which has practical value in 
the stage of rolling exploration.

Using data from the Northern Kuqa Depression[33], 30 
traps were selected, of which 27 were taken as learning 
samples and 3 as prediction samples (Table 1). MRA, 
BAYD, BPNN and SVM were then applied to trap quality 
evaluation, using 14 independent variables (x1, x2, …, x14) 
and one variable y. In the learning samples, y* is the input 
data y assigned by geologists; in the prediction samples 
y* (in parenthesis) is also assigned by geologists but it is 
not used as input data, it is only used for calculating the 
absolute relative residual R between y and y* (Table 1). It 
is worth pointing out that: though geologists had assigned 
trap quality values to the three prediction samples, these 
values were judged to be less reliable.
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Table 1
Input Data of Trap Quality Evaluation of the Northern Kuqa Depression of the Tarim Basin in Western China

Sample         Trap         x1  x2          x3          x4             x5        x6        x7      x8    x9 x10          x11           x12           x13           x14       y*
 type       No.                                            (m)         (m) (km2)                                                                            (Mt) 

Learning
samples

Prediction
 samples

Note: x1 = unit structure (1–linear anticline belt, 2–Yangxia sag, 3–Qiulitake anticline belt); x2 = trap type (1–faulted nose, 2–anticline, 
3–faulted anticline); x3 = petroliferous formation (1–E, 1.5–E+K, 2–K, 3–J, 4–T); x4 = trap depth; x5 = trap relief; x6 = trap closed area; 
x7= formation HC identifier (1–oil, 2–gas); x8 = data reliability (0–1); x9 = trap coefficient (0–1); x10 = source rock coefficient (0–1); x11 = 
reservoir coefficient (0–1); x12 = preservation coefficient (0–1); x13 = configuration coefficient (0–1); x14 = resource quantity (million ton oil-
equivalent); y* = trap quality value (1–high,2–low) assigned by geologists.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
3
1
1
3

1
2
2

1
2
2
2
3
2
2
1
1
2
1
1
1
1
2
2
1
1
3
2
1
3
1
3
2
1
3

2
3
1

2
1.5

2
2
2
2
2
2
3
3
2
2
2
2
1
3
3
3
1
3
3
1
1
2
3
4
1

3
3
3

2362
3150
3650
2630
5950
3970
4680
1450
1450
1200
1550
6700
5500
5500
850

1510
3510
2700
4220
5600
8580
4940
1855
4755
1000
3670
2750

4450
5660
5850

300
350
350
150
750
300
300
700

1000
750

1780
250
500
200
550
750

1150
300
460
300
300
260

1800
700
400
300

1100

250
340
180

58
42
12
17

135
28
27
54
74
23
34
11
16
11
50
57

161
56
66
27
17
46
42
83
82

133
118

35
56
17

2
2
2
2
2
2
2
1
1
1
2
2
2
2
1
1
2
1
2
2
2
2
2
2
1
2
2

2
2
2

0.45
0.85
0.51
0.51
0.45
0.75
0.75
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.75
0.45
0.51
0.51
0.51
0.51
0.85
0.85
0.45
0.45
0.85

0.60
0.51
0.51

0.753
1.000
0.975
0.818
0.895
0.950
0.828
0.778
0.778
0.888
0.778
0.693
0.693
0.753
1.000
1.000
0.865
0.888
0.808
0.828
0.780
0.808
0.865
0.808
0.913
0.753
0.955

0.853
0.808
0.753

0.960
1.000
1.000
0.898
0.940
0.868
0.868
0.898
0.898
0.970
0.860
0.930
1.000
1.000
0.868
1.000
1.000
0.970
0.882
0.882
0.898
0.798
0.798
1.000
0.970
0.970
0.898

0.898
0.860
0.758

0.935
0.935
0.935
0.935
0.820
0.820
0.820
0.935
0.935
0.840
0.820
0.935
0.935
0.935
0.820
0.840
0.900
0.840
0.840
0.840
0.840
0.840
0.840
0.850
0.885
0.885
0.780

0.900
0.850
0.840

0.808
0.921
0.763
0.763
0.808
0.763
0.808
0.751
0.808
0.681
0.856
0.936
0.936
0.936
0.681
0.794
0.794
0.714
0.756
0.756
0.748
0.756
0.909
0.920
0.673
0.673
0.763

0.898
0.748
0.728

0.900
0.900
0.900
0.900
0.900
0.900
0.900
0.900
0.900
0.900
0.900
0.900
0.900
0.900
0.900
0.930
0.930
0.900
0.930
0.930
0.930
0.930
0.900
0.900
0.930
0.900
0.900

0.900
0.930
0.930

6.6
210.5

8.3
1.9

171.9
5.5

12.6
7.13
9.8
1.4

43.2
13.6
20.3
13.6
1.82
3.48

179.9
3.41
9.8

29.2
18.5
3.9

4
169.4
2.61
37.9
10.2

58.9
71.8
19.1

2
1
1
2
1
2
2
2
2
2
2
1
1
1
2
1
1
2
2
2
2
2
1
1
2
2
2

(1)
(2)
(2)

Using the 27 learning samples (Table 1) and by MRA, 
BAYD, BPNN, and SVM, the relationship between the 
predicted trap quality value (y) and the 14 geological 
factors (x1, x2, …, x14) has been determined.

Using MRA, the result y=MRA(x1, x2, …, x14) obtained 
is an explicit expression:

y=13.766−0.026405x1−0.038781x2−0.0016605x3

−0.00012343x4−0.00038344x5−0.002442x6+0.045162x7

+0.58229x8−3.3236x9−2.1313x10−3.3651x11−4.1977x12

−0.67296x13+0.0010516x14                                            (11)

Equation (11) yields a mean square error of 0.14157 
and a multiple-correlative coefficient of 0.92652. In 
addition, the trap quality value (y) is shown to depend on 
the 14 geological factors in decreasing order: x12, x10, x9, 
x4, x5, x11, x8, x6, x14, x1, x2, x7, x13, x3.

Using BAYD, the Bayesian discrimination function 
defined in Eq. (5) obtained is an explicit expression:

( )

( )

1 1 2

3 4 5

6 7 8

9 10 11

12 13 14

2 1 2

ln(0.37) 6090.107 37.076 31.65

11.927 0.042 0.194

1.062 8.483 15.526

1305.707 1175.127 1799.427

1870.111 7090.26 1.129

ln(0.63) 5746.595 37.817 30.562

11.97

B x x x

x x x

x x x

x x x

x x x

B x x x

= − − +

− + +

+ + −

+ + +

+ + −

= − − +

− 3 4 5

6 7 8

9 10 11

12 13 14

4 0.038 0.184

0.993 9.75 0.806

1212.488 1115.348 1705.045

1752.377 7077.386 1.099

x x x

x x x

x x x

x x x

+ +

+ + +

+ + +

+ + −

















      (12)

In addition, the trap quality value (y) is shown to 
depend on the 14 geological factors in decreasing order: 
x12, x10, x9, x4, x5, x11, x8, x6, x14, x1, x2, x7, x13, x3. This 
order is the same as that obtained by the above MRA 
calculation, which is resulted from the fact that: though 
MRA is linear while BAYD is nonlinear, the nonlinearity 
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of the studied problem is quite weak.
The BPNN classifier used consists of 14 input layer 

nodes, 1 output layer node and 29 hidden layer nodes; 
the value of the network learning rate for the output layer 
and the hidden layer is 0.6, the termination of calculation 
accuracy is 0.0001, and the learning time count is 13120. 
The result

y=BPNN(x1, x2, …, x14)                                                  (13)

obtained is an implicit expression with a global error of 
0.00135.

Using C-SVM binary classifier, the termination of 
calculation accuracy is 0.001, C=32 and γ=0.03125, and 
the cross-validation accuracy is 92.6%. In total, there are 
14 free xi. The result

y=SVM(x1, x2, …, x14)                                                    (14)

obtained is a nonlinear function that can be concretely 
expressed as a mathematical formula corresponding to Eq. 
(9), an explicit expression. It is not, however, reproduced 
here due to its large size.

Substituting the independent variables determined 
from the 27 learning samples (Table 1) in Eq. (11), Eq. (12) 
[and then use Eq. (7)], Eq. (13) and Eq. (14) respectively, 
the predicted trap quality value of each learning sample 
for the four classifiers is obtained, thus verifying the 
predictive accuracy of each classifier. Similarly, the 
predicted trap quality values of the 3 prediction samples 
(Table 1) were obtained (Table 2). It can be calculated 
from Table 2 that for the learning samples, the mean 
absolute relative residuals between y and y* for the four 
classifiers are all 0%, and for the prediction samples, 
16.67%, 0%, 0%, and 0%, respectively (Table 3).

Table 2
Prediction Results of Trap Quality Evaluation of the Northern Kuqa Depression of the Tarim Basin in Western 
China

Sample            Trap                                                                       Predicted trap quality value
type          No.                 y*         MRA                                  BAYD                            BPNN                     SVM

                       y   R (%)            y              R (%)                y       R (%)                y              R (%)

Learning
samples

Prediction
samples

Note: y* and y are the trap quality value (1–high, 2–low) where y* is assigned by geologists and y is calculated by classifier; R is the 
absolute relative residual between y and y*.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

2
1
1
2
1
2
2
2
2
2
2
1
1
1
2
1
1
2
2
2
2
2
1
1
2
2
2

(1)
(2)
(2)

2
1
1
2
1
2
2
2
2
2
2
1
1
1
2
1
1
2
2
2
2
2
1
1
2
2
2

1
2
3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

50

2
1
1
2
1
2
2
2
2
2
2
1
1
1
2
1
1
2
2
2
2
2
1
1
2
2
2

1
2
2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

2
1
1
2
1
2
2
2
2
2
2
1
1
1
2
1
1
2
2
2
2
2
1
1
2
2
2

1
2
2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

2
1
1
2
1
2
2
2
2
2
2
1
1
1
2
1
1
2
2
2
2
2
1
1
2
2
2

1
2
2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
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Table 3
Comparison between the Applications of MRA, BAYD, BPNN, and SVM to Trap Quality Evaluation in the 
Northern Kuqa Depression of the Tarim Basin in Western China

Classifier                         Fitting         Mean absolute             Dependence of the predicted value (y) on           Time consuming         Integrated
                                      formula     relative residuals (%)   parameters (x1, x2, …, x14), in decreasing order   on PC (Intel Core 2)      evaluation

                        Learning    Prediction 
                                                       samples       samples   

MRA (successive           Linear,
regression analysis)       explicit          0          16.67         x12, x10, x9, x4, x5, x11, x8, x6, x14, x1, x2, x7, x13, x3                  <1 s          Average

BAYD (successive      Nonlinear,
Bayesian                        explicit          0            0           x12, x10, x9, x4, x5, x11, x8, x6, x14, x1, x2, x7, x13, x3                    3 s         Excellent
discrimination) 
 
BPNN (back-              Nonlinear,
propagation neural        implicit          0            0                                             N/A                                                1 min 20 s         Excellent
network) 

SVM (C-SVM            Nonlinear,
binary classifier)       explicit          0            0                                             N/A                                      3 s         Excellent

For 27 learning samples and 3 prediction samples 
(Table 1), the predicted results by all of BAYD, BPNN 
and SVM are available, which all coincide with trap 
quality value assigned by geologists (Table 2). BAYD, 
BPNN and SVM yield values of 1, 2 and 2 for Traps No. 
28, 29 and 30 respectively, i.e., the trap quality of No. 28 
is high whereas that of both No. 29 and 30 is low. During 
recent exploration work conducted after the forecast, 
commercial gas was discovered at Trap No. 28 with 0.7814 
tcf (22.127×109 m3) of reserves in place and 0.5470 tcf 
(15.489×109 m3) of recoverable reserves, but none has 
yet been discovered at Traps No. 29 and 30. As for MRA, 
though its mean R is 0% for 27 learning samples, its mean 
R is 16.67% for 3 prediction samples (Table 3), which is 
larger than 5% (a standard threshold in general).The fit 
achieved by MRA is poor, therefore the results can only 
be used as auxiliary data to show the dependence of the 
predicted value (y) on parameters (x1, x2, …, x14).

3.  CASE STUDY 2: OIL IDENTIFICATION
Located on the southwestern margin of the Jianghan Basin 

in central China, the Xiefengqiao anticlinal structure is 
a litho-structure complex oil reservoir with low porosity 
and low permeability lying at depths of 3100–3600 m.

The objective of this case study is to conduct an oil 
identification of the oil-bearing layers in tight sandstones 
using conventional well-log data, which has practical 
value when oil test data is limited.

Using data from the Xiefengqiao anticlinal structure[34], 
27 samples were selected, of which 24 were taken as 
learning samples and 3 as prediction samples (Table 4). 
MRA, BAYD, BPNN and SVM were then applied to oil 
identification, using five independent variables: (x1, x2, x3, 
x4, x5) and one variable y. In the learning samples, y* is the 
input data y determined by the oil test; in the prediction 
samples y* (in parenthesis) is also determined by the 
oil test but it is not used as input data, it is only used for 
calculating the absolute relative residual R between y and 
y* (Table 4). It is worth pointing out that: since the oil test 
of the last three samples was judged to be relatively less 
reliable, these samples are taken as the prediction samples.
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Table 4
Input Data of Oil Identification of the Xiefengqiao Anticlinal Structure of the Jianghan Basin in Central China

Sample           Sample            Well             Layer                   x1                       x2                         x3                     x4                    x5                      y*
 type            No.                 No.    No.         (Ω•m)                (μs/m)              (%)                   (%)         (mD) 

Learning
samples

Prediction
samples

Note: x1 = true resistivity log (RT); x2 = compensated acoustic log (AC); x3 = porosity (ø); x4 = oil saturation (So); x5 = permeability (k); y* = 
oil identification value (1–oil layer, 2–poor oil layer, 3–dry layer) determined by the oil test.

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24

25
26
27

ES4

ES6

ES8

ES8

5
6
7
8
9

10
11
12
13

4
5
6
8

51
52
53
6

11
121
122
123
124
131
132

134
135
72

64
140
63

116
17
49
44
90
69

49
80
95

164

21
56
36

128
34
10
6
6

10
7

15

11
25

109

206
208
206
196
267
226
208
208
260

207
207
218
212

202
192
198
196
197
208
226
225
206
224
197

201
197
199

6.0
6.5
6.0
3.8

19.6
10.6
6.6
6.5

18.1

6.2
6.3
8.7
7.5

5.1
2.9
4.1
3.4
3.9
6.4

10.4
10.3
6.0
9.9
3.8

4.8
3.8
4.4

48.6
41.5
36.4
0.7

44.0
57.2
36.1
29.7
81.7

67.5
50.9
77.5
67.5

22.2
24.2
28.8
19.2
28.4
42.4
45.6
50.4
44.0
44.4
34.2

39.3
16.9
17.8

1.1
1.3
1.1
0.5

32.4
5.2
1.4
1.3

16.8

0.9
1.0
2.2
1.5

1.0
0.6
0.8
0.6
0.7
1.7
5.8
6.1
1.7
5.2
0.6

0.8
0.6
0.8

2
3
2
3
1
2
2
3
1

2
3
3
3

2
3
2
3
2
1
1
1
1
1
1

(1)
(2)
(3)

Using the 24 learning samples (Table 4) and by MRA, 
BAYD, BPNN, and SVM, the relationship between the 
predicted oil identification value (y) and the five well-logs 
(x1, x2, x3, x4, x5) has been determined.

Using MRA, the result y=MRA(x1, x2, x3, x4, x5) 
obtained is an explicit expression:

y=62.641+0.0134x1−0.3378x2+1.3781x3−0.0007x4+0.0386
x5                                                                                    (15)

Equation (15) yields a mean square error of 0.16649 
and a multiple-correlative coefficient of 0.91297. In 
addition, the oil identification value (y) is shown to 
depend on the five well-log data in decreasing order: x1 
(RT), x2 (AC), x3 (POR), x5 (k), x4 (So).

Using BAYD, the Bayesian discrimination function 
defined in Eq. (5) obtained is an explicit expression:

In addition, the oil identification value (y) is shown 
to depend on the five well-log data in decreasing order: 
x1 (RT), x2 (AC), x3 (POR), x5 (k), x4 (So). This order is 
the same as that obtained by the above MRA calculation, 
which is resulted from the fact that: though MRA is linear 
while BAYD is nonlinear, the nonlinearity of the studied 
problem is quite strong, whereas the ability of nonlinearity 
of BAYD is low.

The BPNN classifier used consists of 5 input layer 
nodes, 1 output layer node and 11 hidden layer nodes; 
the value of the network learning rate for the output layer 
and the hidden layer is 0.6, the termination of calculation 
accuracy is 0.0001, and the learning time count is 41467. 
The result

y=BPNN(x1, x2, x3, x4, x5)                                               (17)

obtained is an implicit expression with a global error of 
0.0009111.

Using C-SVM binary classifier, the termination of 
calculation accuracy is 0.001, C=8192 and γ=0.007813, 
and the cross-validation accuracy is 91.7%. In total, there 
are 9 free xi. The result

y=SVM(x1, x2, x3, x4, x5)                                                  (18)

( )

( )

( )

1 1 2

3 4 5

2 1 2

3 4 5

3 1 2

3 4

ln(0.333) 93842.2 3.892 1039.76

4468.595 0.712 73.876

ln(0.333) 93203.96 3.807 1036.232

4454.111 0.701 73.528

ln(0.333) 92927.46 3.674 1034.66

4447.812 0.729 73.2

B x x x

x x x

B x x x

x x x

B x x x

x x

= − − +

− − −

= − − +

− − −

= − − +

− − − 579x
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obtained is a nonlinear function that can be concretely 
expressed as a mathematical formula corresponding to Eq. 
(9), an explicit expression. It is not, however, reproduced 
here due to its large size.

Substituting the independent variables determined 
from the 24 learning samples (Table 4) in Eq. (15), Eq. (16) 
[and then use Eq. (7)], Eq. (17) and Eq. (18) respectively, 
the predicted oil identification value of each learning 
sample for the four classifiers is obtained, thus verifying 

the predictive accuracy of each classifier. Similarly, the 
predicted oil identification values of the 3 prediction 
samples (Table 4) were obtained (Table 5). It can be 
calculated from Table 5 that for the learning samples, 
the mean absolute relative residuals between y and y* 
for the four classifiers are 8.33%, 11.11%, 4.17%, and 
0% respectively, and for the prediction samples, 33.33%, 
33.33%, 16.67%, and 0% (Table 6).

Table 5
Prediction Results of Oil Identification of the Xiefengqiao Anticlinal Structure of the Jianghan Basin in Central 
China

Sample            Trap             Well            Layer                                                  Predicted oil identification value
type          No.              No.              No.             y*                     MRA                          BAYD                       BPNN                     SVM

                                                        y               R (%)          y     R (%)          y          R (%)           y       R (%)

Learning
samples

Prediction
samples

Note: y* and y are the oil identification value (1–oil layer, 2–poor oil layer, 3–dry layer) where y* is determined by the oil test and y is 
calculated by classifier; R is the absolute relative residual between y and y*.

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
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2
3
2
3
1
2
2
3
1

2
3
3
3

2
3
2
3
2
1
1
1
1
1
1

(1)
(2)
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2
3
2
3
1
2
2
3
1

2
2
2
4

2
3
2
3
2
1
1
1
1
1
1

2
2
3

0
0
0
0
0
0
0
0
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0
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0
0
0
0
0
0
0
0
0
0
0

100
0
0

2
3
2
3
1
2
2
3
1

2
3
2
3

2
2
2
3
2
1
1
1
2
1
2

2
2
3

0
0
0
0
0
0
0
0
0

0
0

33.33
0

0
33.33

0
0
0
0
0
0
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0

100

100
0
0

3
3
3
3
1
2
2
3
1

2
3
3
3

2
3
2
3
2
1
1
1
1
1
1

1
3
3
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0
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0
0
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0
0
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0
0
0
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0
0
0
0
0
0
0
0
0
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0
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0

2
3
2
3
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2
2
3
1

2
3
3
3

2
3
2
3
2
1
1
1
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1

1
2
3

0
0
0
0
0
0
0
0
0

0
0
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13

4
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6
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6
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Table 6
Comparison Between the Applications of MRA, BAYD, BPNN, and SVM to Oil Identification of the Xiefengqiao 
Anticlinal Structure of the Jianghan Basin in Central China

Classifier                         Fitting         Mean absolute             Dependence of the predicted value (y) on           Time consuming         Integrated
                                      formula     relative residuals (%)  parameters (x1, x2, x3, x4, x5), in decreasing order  on PC (Intel Core 2)      evaluation

                        Learning    Prediction 
                                                       samples       samples   

MRA (successive           Linear,
regression analysis)       explicit       8.33            33.33                               x1, x2, x3, x5, x4                                  <1 s           Poor

BAYD (successive      Nonlinear,
Bayesian                        explicit      11.11           33.33                               x1, x2, x3, x5, x4                                    3 s           Poor
discrimination) 
 
BPNN (back-              Nonlinear,
propagation neural        implicit       4.17          16.67                                      N/A                                                1 min 5 s         Average
network) 

SVM (C-SVM            Nonlinear,
binary classifier)       explicit          0            0                                        N/A                                                       3 s         Excellent

For 24 learning samples (Table 4), the predicted 
results by only SVM are available, which not only all 
coincide with oil test data (Table 5) but also all with well-
log interpretation results[34], though the mean R of BPNN 
is 4.17% (Table 6) which is less than 5% (a standard 
threshold in general). Three prediction samples (Table 
4), from layers 134, 135 and 72, were mistakenly judged 
by well-log interpretation to be a dry layer, dry layer and 
poor oil layer respectively. In fact they are an oil layer, 
poor oil layer, and dry layer, as validated by oil tests[34]. 
Table 5 shows that the three results predicted by SVM 
are all correct, but only two results determined by MRA, 
BAYD and BPNN are correct with one result being 
incorrect. This indicates SVM has the ability to correct 
some erroneous well-log interpretations[34], while MRA, 
BAYD and BPNN are less accurate. The fit achieved by 
MRA and BAYD are poor, therefore the results can only 
be used as auxiliary data to show the dependence of the 
predicted value (y) on parameters (x1, x2, x3, x4, x5).

CONCLUSIONS
From the two case studies of trap quality evaluation and 
oil identification by using four classifiers (MRA, BAYD, 
BPNN and SVM), we can draw the following conclusions:

1) Since the nonlinearity of Case 1 is weak, the 
results of BAYD, BPNN and SVM are same and can have 
zero residuals, while MRA has unallowable residuals.

2) Since the nonlinearity of Case 2 is strong, the 
results of only SVM have zero residuals, while BAYD, 
BPNN and MRA have unallowable residuals.

3) MRA and BAYD can establish the order of 
dependence between y and each variable (x1, x2, …, xm), 
which could be used for dimensional reduction in data 
mining[8] and which cannot be estimated using BPNN and 
SVM.

4) BPNN is more time-consuming than BAYD and 

SVM, and MRA runs the fastest.
5) The predictions of the applicable classifiers 

coincide with real exploration results, and a commercial 
gas trap was discovered after the forecast in Case 1 and 
SVM can correct some erroneous well-log interpretations 
in Case 2.

Therefore, it is proposed that: we can adopt MRA 
when a problem is linear; adopt BAYD, BPNN, or SVM 
when a problem is weakly nonlinear; and adopt only SVM 
when a problem is strongly nonlinear.
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