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ABSTRACT

Utilization of renewable energy has become the future trend in the trucking industry. Elec-

trical power generated from renewable energy can replace part of the fuel usage. There is usually

limited space for storing on-board battery. Thus, to better utilize the battery power, it becomes crit-

ical to have an efficient energy conversion device that can transfer energy from battery to amenities

such as air conditioner, microwave, TV, mini refrigerator, etc. In this dissertation, a designed per-

manent magnet synchronous motor (PMSM) can be such energy conversion device for an electric

Auxiliary Power Unit (APU) application, which will have a desired output power of 2 kW at 2

krpm, and maintain an efficiency greater than 90%. The design calls for good performance over a

speed range of 1.5 krpm to 2.5 krpm. The current air conditioning system for automobile works

only by “on” or “off” mode. For the heat mode, that means it is on with heat once the cabin tem-

perature drops down to a level and off if the temperature rises back above that level. For the cool

mode, that means it is on with cold air once the cabin temperature rises above a level, and off if

the temperature drops back to that level. This is because the motor does not have the speed control

functionality according to the temperature variation and people in the cabin do not feel much com-

fortable for that temperature change periodically as well as the inefficient energy consumption.

With our novel technology, the designed motor can adjust its speed through the embedded system

of our novel DC to AC inverter to provide a variable load. For example, with high efficiency, the

fully charged battery sets (48 volts) can supply the electrical power and cooling to the cabin for

about 10 hours without recharging using the main engine.

Copper loss is the most significant part of all the losses in low speed electric machines.

Reducing the copper loss is the key to build highly efficient machine. We use copper wires with

the current density lower than traditional design which result in large cross section of the wire and

thus reduce the copper loss and improve the efficiency. This also makes thermal management easier

and reduces the need to use active cooling methodologies (such as fan, liquid cooling or spray
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cooling); and hence the overall power density of the whole system (including cooling devices) will

not decease much. In traditional machine design, the torque angle is designed to be in the range

of 15 to 30 degrees at the rated power and speed. In our high efficiency motor design, we propose

to use much lower torque angle of 2 to 15 degrees at the rated power and speed. Such design can

effectively increase the overload power handling capability and efficiency. Besides, small torque

angle will result in large airgap size and increased thickness of the permanent magnets. Large

airgap helps to reduce the windage loss of the machine and generates a lot less mechanical noise

based on our design experience. Increased thickness of the permanent magnets helps to avoid the

demagnetization.

As the technology of advanced micro-controller develops, fast-response power electronic

devices can be used in the motor controller. A novel design of DC to AC inverter with the field

oriented control scheme and sliding mode observer algorithm for driving the designed motor is

developed. The inverter has the capability of driving the motor with its output power at 2 kW.
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CHAPTER 1: INTRODUCTION

A lot of applications have electric motor at their heart. For example, washing machines,

CD players, vacuum robot, hair dyers, electric tooth brush, etc. The list would be endless; most

of the electric appliances have either simple or complex electric motor inside them. Since the first

real rotating electric motor was created in 1834, a lot of other researchers in the world started

to build similar motors and later with better and better improved performance. DC motor was

originally developed from the power generators. It includes the brush commutator. DC motor

is used especially in the applications of low power and low voltage ranges [1] - [3]. In the late

19th century, people invented the three-phase electric power system, which is the basis for modern

electrical power system and more advanced electric machines. Around the same time, three-phase

induction motor and three-phase synchronous motor were invented which become the most popular

machines in the industry [4] - [12]. Currently, there are motor applications everywhere in our daily

life.

Synchronous machine means that the magnetic field generated by the stator windings ro-

tates with the same speed as the rotor; or asynchronous, means that there is a speed difference.

Induction machine is defined in a way when rotor winding is powered, from which it generates

a magnetic field, interacting with the stator magnetic field. People normally categorize induction

machines as asynchronous machines. They have been widely used because of the simplicity and

low cost. They dominate the market in applications which efficiency is not a high priority fac-

tor. Obviously, the advantage of the induction machine over brush machine is no brush further

required since it is a consuming component that have to be replaced periodically which increases

the maintenance burden [13] - [14].

Synchronous machines can achieve higher efficiency than induction machines. However,

due to the cost and design complexity they are not as widely used as induction machines. AC

reluctance machines have saliency on the rotor so that the windings powered on stator can exert
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torque on the rotor. Windings on the stator are grouped into several sub-groups. By controlling the

direction of the current flowing through individual sub-groups, it is possible to generate the torque

with the same direction which moves the rotor [15] - [22].

Permanent magnet machines have become the most advanced machines. Research on that

is a very popular topic. The big difference between the PM machines and the induction machines

is that the rotor windings are replaced by the permanent magnets which leads to high efficiency

due to the absence of the copper wires. It is usually driven by a three-phase balanced sinusoidal

voltage source as the electromagnet (EM). Since it does not require excitation and commutation

circuit, the maintenance required for the excitation circuit and the copper loss on the rotor are both

effectively eliminated. The efficiency can be improved by 2 - 8% compared to the induction motor

of the same power rating. The PMSM can maintain a high efficiency when its output power varies

from 50 - 120% of the rated power. In addition, PMSM has many other advantages: it is reliable

even at super high speed; advanced sensorless control method is possible; the output torque ripple

is very small, etc. [23] - [36]. The future direction of the PMSM research is to make the machine

to be more compact and have higher power density, higher torque, higher rotating speed and lighter

weight.

Researchers try to develop new methods to minimize the power losses in order to boost up

the efficiency of the motor. With a better structure of PMSM, people are hopeful to design PMSM

of even higher efficiency. In the future, PMSM with high efficiency may have more share of the

market once the cost goes down. In summary, PMSM can achieve better performance than other

types of machines such as efficiency, power density, weight, maintenance, durability, etc.

There are a lot of research of the machine design on hybrid energy automotive applications.

Hybrid energy vehicle contains both an internal combustion engine which is powered by the gas

or diesel and an electric motor which is powered by the battery. It depends on the specific type of

car that switch the power back and forth between the motor and the engine. However, all hybrid

energy vehicles alternate the power between the fuel and the battery. The big advantage is that they
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consume less gas than the traditional gas-only driven vehicles. Therefore they produce significantly

fewer polluting emissions. Unlike all-electric vehicles, the hybrids still need to be charged mostly

by the combustion engine. However, large hybrid vehicles are not as energy efficient as smaller

vehicles. Thus, we rarely see large size of hybrid cars in the market. There are different types of

machines that people design for hybrid energy vehicle such as switch reluctance motor, DC motor,

permanent magnet motor, etc. Control methods for each type of the motors are different [37] -

[52]. Electric energy used as the driven power has an obvious shortage that the power stored in the

battery is always limited so that the maximum mileage an electric car can drive is not comparable

to a traditional car. People try to design the battery with new technology which is able to store

more power. Besides, increasing the efficiency of the energy conversion device, which is the motor

system, is another way to improve the electrical car to make it comparable to a traditional gasoline

car.

In the next two sub-sections, we will start with the research motivation, then move on to

the dissertation outline.

1.1 Research Motivation

People are working on improving the design technology of PMSM. Researchers are inter-

ested in designing of super compact machines. This is important because the space for the machine

system to be mounted into is critical for some applications so that people have to design a machine

with small size. Furthermore, with the high-speed achievable, people can make high power rating

machines with the same volume since the volume is proportional to the power. Thermal issues

have to be considered if the volume of the machine becomes small. In another word, we wish to

design a compact machine and have a good solution for the heat dissipation.

By increasing the current density and the air gap flux density, it can contribute to a high

power density. However, it also makes the magnetic flux saturation possible which will result

3



in efficiency greatly reduced. To balance that, we have to investigate on finding high magnetic

saturation materials which may lead to high cost. We can also try to better shape the stator teeth in

order to reach an optimized peak flux density. Therefore, there are a lot of trade-offs in designing a

PMSM. A successful design of PMSM would be the one that can maximize its performance while

balances the trade-offs.

The hybrid energy idea on vehicles can be applied to the APU systems. APU is a device

that can offer energy for on-board functions other than the propulsion for aircraft, ships, large land

vehicles, etc. In the US, no-idle regulations in many jurisdictions require commercial truck drivers

to shut off main truck engines during meal times, deliveries and mandatory rest stops, especially

during a 10-hour period of air conditioning (at 10,000 BTU’s) or heat overnight. Thus, APU

powers air conditioner, TV, laptop, microwave and other personal amenities overnight and other

times without idling the main engine. Furthermore, the fuel require to run the APU is far less than

that used to run the main engine for the same amount of time so that both the economical cost

and air pollution can be significantly reduced. In addition, the lifetime of the main engine will be

extended due to the use of the APU system [53] - [63]. Most common APUs for a commercial

truck rely on diesel or other fossil fuel powered units. Their use is considered idle reduction,

not idle elimination. However, all-electric APUs with innovative technology can reduce the fuel

usage in commercial truck, and potentially have the ability of saving more than $2 million annually

[64]. The APU uses highly efficient lithium-ion batteries instead of the diesel engine as a source

of power. Together with a high efficiency motor, the APU can power up to 2,000 watts for 10

hours overnight. Therefore, drivers do not necessarily have to find a truck service stop for electric

power. Some practical limitations also restrict the flexibility of some truck operations. Besides,

truck drivers may also reject using the service stop for safety reasons. The batteries are recharged

whenever the truck is operating. As we discussed earlier, the fuel cost should be an important

factor considered as well as the polluting emissions issue. Consequently, idling elimination can be

achieved by using all-electric APU systems. Effective use of all-electric APUs is a very important

4



research area.

In this dissertation, the goal is to explore a novel design methodology of a high efficiency

PMSM and implement the design technology into a prototype. A sensorless controller with the

field oriented control scheme and sliding mode observer algorithm for this PMSM is developed

and tested. Eventually, a system including the PMSM, drive hardware and its supporting devices

help to make the all-electric APU a reality.

1.2 Dissertation Outline

The first chapter has presented the history and development of the research on electric ma-

chinery. It went over the research background including both the previous and current work on

electric machine design as well as the most popular topologies of various motor types. And, we

proposed the research motivation in this dissertation. Chapter 2 details the fundamentals of the

motor concepts, the design methodology of PMSM and key procedure of a design. Chapter 3 in-

troduces a 12-slot, 10-pole PMSM design for an APU application. Simulation results based on the

finite element analysis (FEA) are provided. Chapter 4 discusses the control principle and method-

ology for this designed motor and its inverter design. A controller prototype is presented as well as

the test results. Chapter 5 introduces the design of a permanent magnet motor capable of operating

at wide temperature range from -196 ◦C up to 300 ◦C. We present the specific design considera-

tions for such special requirement on temperature. Chapter 6 summarizes the contributions of the

research.
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CHAPTER 2: DESIGN METHODOLOGY OF PERMANENT MAGNET

SYNCHRONOUS MOTOR

2.1 Introduction

As it was discussed in the previous chapter, PM motor has many advantages in comparing

to the other machines with rotor that requires electromagnetic excitation. It results in the elimina-

tion of the copper loss on the rotor, easy maintenance and high power density. In a PMSM struc-

ture, stator windings are multiple copper wires wrapped around the tooth for various of winding

configurations. The winding configuration will play an important role in the motor performance.

Volumetric occupation of some supporting subsystems is reduced by high power density PMSM.

However, on the other hand, thermal management becomes a challenge as the volume decreases.

There will be a balance among the volume, thermal solution, efficiency, etc.

In this chapter, PMSM concepts are reviewed. A key design methodology is presented.

We introduce how to start a design with the design specification in hand. We discuss the design

of the stator, rotor, permanent magnet, winding, shaft, housing, etc. Besides, We present the

most popular materials and their characteristics for machine design applications. We also discuss

the importance of the winding configurations and introduce how to determine the coil pitch and

the winding sequence. And, we discuss the power losses and introduce the best loss control for

various machine designs. Lastly, computer aided design (CAD) is introduced and it will be applied

to confirm and optimize the designs in Chapters 3 and 5, separately.
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2.2 Key Design Procedure of PMSM

A complete design procedure of PMSM can be summarized as shown in Fig. 2.1. The

design begins with a specification with all the desired parameters such as the rotor rotational speed,

terminal bus voltage, output power, efficiency, volume requirement, cost, etc. There are a lot of

trade-offs among those design parameters. In another word, some performances can be achieved

by reducing the priority level of the other parameters. Therefore, it may not have an unique solution

for motor design because it depends on what are the most critical parameters in a specific design.

Figure 2.1: PMSM design flowchart.

We have created our own PMSM motor designer by MATLAB. The basic size of the ma-

chine can be determined based on the power level, rotating speed and cooling coefficient. Liquid

and air cooling are popular. The motor topology, such as the number of slots and poles can be

decided. We choose the materials for the stator, rotor, permanent magnet, shaft, etc. The design
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detail of the slot and permanent magnet is one of the design steps as illustrated in Fig. 2.1, it will

affect the performance, such as flux density, cogging torque, etc. With the stator and rotor designs

completed, we can decide the winding structure [65] - [77].

After the motor initial design is basically finished, it has to be confirmed by the electro-

magnetic simulation using FEA since FEA is good at analyzing electromagnetic variation and

distribution. It can provide a detail analysis on the performance of the PM motor [78] - [90].

Thermal analysis and mechanical analysis need to be done to confirm that not only the de-

sign meets the requirement from the electrical point of view but also meets the mechanical standard

[91]. In summary, the motor design process involves iterative FEA analysis for the electromag-

netic, thermal and mechanical performances. An optimum design has to consider all of these

design criteria.

Adjustment and optimization are necessary to obtain a better performance if the simulation

results are not acceptable. Therefore, some design steps in Fig. 2.1 need to be repeated until we

get the desired performance.
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2.3 Design of Physical Dimensions

Figure 2.2: 3D Structure of the PMSM.

A high performance PMSM structure is shown in Fig. 2.2. It is mainly made up of a stator

with windings, a rotor with surface-mounted permanent magnets and a shaft.

2.3.1 Volume of Machine

The general sizing of the motor can be determined from

D2L

Te
= Vo, (2.1)

Te =
P

ω

where D is defined as the stator inner diameter and L is the length of the machine as shown in

Fig. 2.2. The torque is represented by Te, which is determined by the required output power

P and the rotor rotational speed ω in rad/s. Therefore, the volume of the machine is inversely

proportional to the speed, and is directly proportional to the output power. Vo is a coefficient and

depends on the cooling method. Typically, V0 is around 5 - 7 in3/(ft·lb) for 10 hp output power
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or less with air cooled. While, Vo is around 2 - 5 in3/(ft·lb) for 10 hp output power or more with

water or other liquid cooled. Generally, the size of the motor would be smaller if better cooling

is applied. Otherwise, it needs to be designed in such a larger size for adequate heat dissipation.

The importance of Eqn. 2.1 is to determine a proper size of the machine based on the design

specifications as well as meeting the thermal requirement. Another assumption to be made is

that the length of the machine is equal to the inner diameter, i.e. D equals L. This should work

fairly well unless there is a special requirement of either the height or length of the machine. If

the diameter is much larger than the length, it will cause the motor to have high inertia. On the

other hand, if the motor length is much larger than the diameter, bearing and rotor-dynamics could

become issues.

2.3.2 Design of Slot

Power input of the three-phase stator windings can be calculated according to an estimation

of efficiency. For PMSMs, the efficiency can be greater than 90% and even higher on large power

rating machines. With the estimated efficiency and rated output power, we can get the estimated

input power. The power input can be expressed as

Pin = 3VφIAcosθ, (2.2)

where Vφ represents the phase voltage, IA is the phase current, and θ stands for the power angle.

Current density Js is also a key factor of the current rating. This determines how the stator

slot is designed [92]. In addition to the space that conductors occupy in the slot, sufficient area

for cooling is important. Thus, based on the calculation of the wire gauge and the thickness of the

insulation around the wire, it is necessary to create extra room for cooling.

The next step is the slot design. There are several types of the slot structure. We use our

own PMSM designer to generate a basic dimensional image of the slot. Slot pitch τs can be defined
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as

τs =
πD

S
, (2.3)

where S represents the number of the stator slots. The detail design of the stator slot can be

developed based on the slot pitch. The structure of the stator slot is shown in Fig. 2.3. Variation

on the slot dimensions as shown in Eqn. 2.4 can affect the motor performance such as efficiency,

air gap flux density, cogging torque, flux path, machine weight, etc.

Figure 2.3: Stator slot.



ts ≈ (0.4− 0.6)τs

ds ≈ (3− 7)ts

bs = τs − ts

bs0 ≈ (0.1− 0.5)bs

ds0 ≈ (0.1− 0.5)bs

ds1 ≈ (0.1− 0.5)bs.

(2.4)
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2.3.3 Design of Air Gap

For a rotor with multi-pole surface-mounted magnets as shown in Fig. 2.4, according to

the magnetic circuit analysis, we have

2Hgg + 2Hmdm = 0, (2.5)

where Hg represents the air gap magnetic field, Hm represents the PM magnetic field, g is the air

gap size and dm is the magnet thickness. Further we have

dm
g

= − Bm

µ0Hm

klAm
Ag

, (2.6)

where Bm stands for the magnetic flux density of the PM, Am is the cross section area that the

magnetic field passes the PM, Ag is the area that the magnetic field passes the air gap, kl represents

a leakage coefficient and µ0 is the permeability of free space. We will use the equation shown

above to decide the relation between the air gap size and the PM thickness.

Figure 2.4: Rotor with multi-pole surface-mounted magnets

Bm can be estimated by multiplying the residual flux density Br by a coefficient αm. Typ-
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ically, αm is picked up to be in the range of 0.6 to 0.95. The torque angle δ for PMSM is usually

designed to be in the range of 15-30 degrees (20 degrees is a common value). We design a torque

angle in the range of 2-15 degrees for more power handling capability. It leads to Eqn. 2.7, which

the peak value of the net magnetic field Bg,pk and peak winding magnetic field Ba,pk are defined:

Bg,pk = Br,pkcos(δ)

Ba,pk = Br,pksin(δ), (2.7)

where the peak air gap magnetic field, Br,pk, is calculated by

Br,pk =
4

π
sin(

ρpm
2

)Bm, (2.8)

where the electrical angle of the permanent magnet, ρpm, can be calculated by

ρpm = emπ, (2.9)

where em represents the embrace of the permanent magnet. It can be varied from 0.5 to 1. The

variation will mainly tell how efficient the permanent magnet can be utilized and how much it

contributes to the air gap magnetic field. Besides, the variation can also affect the peak flux density

of the teeth and yoke, cogging torque, etc.

Previously, in order to calculate the air gap size, Magnetic Magneto Force (MMF) was

simply represented by multiplying the total flux of the air gap by the length of the air gap. However,

it will not be accurate if the designed air gap is large such as in PMSM design. Therefore, we

analyze the mathematical model of the air gap and express the MMF by a logarithm function, from

which we can determine the air gap size more accurately. The calculation of the air gap size is

derived according to Fig. 2.5. Thus, MMF that generated from the permanent magnet, Fpm, can

13



be found by the equation below:

Figure 2.5: Air gap modeling

Fpm =

∫ ra+dm

ra

Hm(rm)drm =
Φm

2πLµ0µrm
ln

(
ra + dm
ra

)
, (2.10)

where Φm is the flux of the permanent magnet, ra represents the inner radius of the rotor, and dm

represents the thickness of the permanent magnet. The MMF that generated from the air gap, Fgap,

can be found as

Fgap =

∫ r
′
is

ra+dm

Hg(rg)drg =
Φg

2µ0

ln

(
r
′
is

ra + dm

)
, (2.11)

r
′

is = ra + dm + geff

where Φg is the flux of the air gap, and geff represents the effective air gap size. For any given

machine, Φg almost equals Φm. Therefore, the total MMF from the two parts can be added up and

expressed by
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Ftotal =
rgBr,pk

µ0

[
1

µrm
ln

(
ra + dm
ra

)
+ ln

(
r
′
is

ra + dm

)]
, (2.12)

r
′

is = ra + dm + geff

where rg is the radius of the actual air gap. Then we can get geff . With the effective air gap size

known, we can get the actual air gap by

g = (1− αm)g
′

total, (2.13)

g
′

total =
geff
kc

where kc is the Carter′s coefficient. We need to pay attention that the size of the air gap is also

dependent on the motor’s operating speed because high speed will generate big windage friction

in the air gap area which will cause annoying noises even if the design of the air gap is reasonable

from the electrical point of view.

Ideally the power angle θ should be zero, which means the power factor cosθ = 1, as

shown in Fig. 2.6. The phasor diagram can represent the relation among the phase voltage Vφ,

induced voltage EA, and voltage drop on the winding jXsIA. Besides, the phasor diagram can

also represent the relation among Br,pk, Ba,pk, and Bg,pk.

However, in actual design, it is hard for the power factor to be exactly equal to 1. We

normally design it to be 0.95, which leads to cosθ = 0.95, the phasor diagram for the motor operates

at underexcited mode is in Fig. 2.7 and overexcited mode in Fig. 2.8, respectively.
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Figure 2.6: Phasor diagram for power angle = 0

Figure 2.7: Phasor diagram for underexcited mode

2.3.4 Design of Permanent Magnet

The thickness of the surface-mounted permanent magnets, dm, can be calculated by

dm = αmg
′

totalµrm, (2.14)

where µrm is the permeability of the permanent magnet material. The length of the permanent

magnets in the axial direction usually can be the same as the length of the rotor, unless special

requirements are proposed. Typically, the force that the permanent magnets can provide is directly
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Figure 2.8: Phasor diagram for overexcited mode

proportional to the amount of usage of the permanent magnets. However, rare-earth permanent

magnet materials are expensive in the market, we will therefore optimize the usage of the perma-

nent magnet in order to control the overall cost.

2.3.5 Design of Rotor, Shaft and Housing

Eventually, we can get the outer diameter of the rotor:

Dr = D − 2g. (2.15)

However, there is a minimum requirement for the diameter of the shaft, Dsh, due to the maximum

stress limit that the shaft can handle. The stress capability coefficient, τmax, depends highly on the

material of the rotor, resulting in

Dsh = 3

√
2Te
πτmax

. (2.16)

Furthermore, there is also a limit for the maximum rotor diameter allowed which is cal-

culated from the maximum peripheral speed of the rotor. It may be possible that with certain
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peripheral speed, the tip speed might even reach sonic speed level if the radius of rotor is large

enough, resulting in structure failure. The maximum allowed tip speed is 250 m/s in this design.

Lastly, a neat housing should be designed to encase the machine, which can prevent dust,

water, etc. In addition, it can also be used as a powerful heat sink. A good housing with a high

thermal dissipation capability can be equivalent to a design with a smaller cooling coefficient Vo

being introduced in Eqn. 2.1. It should be pointed out that the total end-turn length on both sides

of the winding may reach up to the length of the stator itself. Therefore, we need to design the

housing with enough room in the axial direction to cover the end-turn windings.

2.4 Material Selection

The performance of the electrical and magnetic materials depends highly on the operating

temperature. Many materials are subject to degradation of performance with an increase in tem-

perature. Therefore, to demonstrate that the designed permanent magnet motor can work in the

entire operational temperature range, the motor must meet all the specifications at the worst-case

scenarios. Thus, material selection for the stator and rotor core, windings, and permanent magnets

are most critical in determining the performance of the motor [93] - [97].

Since Neodymium Iron Boron (NdFeB) is the strongest rare-earth material, it is popular

to be used as the permanent magnet material. However, the suggested operating temperature for

NdFeB is only 150 ◦C thus will weak the performance at temperatures above 150 ◦C. Other good

materials such as Samarium Cobalt (SmCo) can work up to 350 ◦C. We will have SmCo being

applied to a design of PM motor with wide temperature in Chapter 5.

Soft magnetic materials such as steels usually saturate at magnetic flux density of 1.7 tesla

(T), and have poor performance at higher temperature. For motor design applications which will

not exceed 100 ◦C, we use steel as the stator and rotor materials. However, for machines that

need to run with a higher temperature, Hiperco50, which is an iron cobalt vanadium soft magnetic
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alloy, is used as the soft magnetic material. It exhibits at high magnetic saturation around 2.3 T,

high DC maximum permeability, low DC coercive force, and low AC core loss. Higher magnetic

saturation results in the ability to reduce the rotor and stator volume and reduce the iron core loss,

thus increasing the efficiency and power density. Hiperco50 can stand a temperature up to 350 ◦C.

In Chapter 5, we will use Hiperco50.

Stator windings are made of copper, therefore it is important to consider the dependence of

the resistivity of the copper on temperature. As temperature increases, resistivity increases, result-

ing in an increase in resistance in the winding. Copper loss of the motor goes up as temperature

increases. In addition, copper windings generally have an operating temperature limit of 200 ◦C

maximum with regular insulation materials. Insulation materials deteriorate and fail primarily due

to high temperatures. Thus, for other motor applications which will run in a higher temperature

environment, special materials such as ceramic fiber with higher heat tolerance will be applied. It

can work at a temperature up to 700 ◦C. It costs more compared to the regular insulation.

2.5 Design of Winding Configuration

Windings of the PMSM refer to the copper wires in the stator slots. The input of the motor

is three-phase AC voltages. There are numerous ways to configure the winding in a PM motor such

as single-layer lap winding, double-layer lap winding, concentric winding, etc. Various winding

structures will have effect on the flux linkage, inductance, MMF, etc. [98]. Flux linkage and

inductance are the fundamental concepts of the stator winding. The flux φ is represented as

φ =
NI

R
, (2.17)

whereN represents the number of turns, I is the current, andR describes the reluctance. Therefore,

the flux linkage λ can be defined by

λ = Nφ. (2.18)
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Once the shape of the slot is determined, the number of the conductors per coil Nc is calculated by

using

Nc =
1.1Vφ

2
√

2πfeqkwBg,pkDL
, (2.19)

where Vφ represents the phase voltage, fe is the electrical frequency, q describes the number of the

winding groups per pole, and the winding factor is given by kw, it varies with how the wires are

wounded around the teeth [99] - [104]. Similarly the effective turns per phase is calculated by

Neff =
pqNckw

1.1
, (2.20)

where p refers to the number of poles. In addition to the number of turns per coil, we also need to

know the coil pitch in order to wind the wires. The method introduced in the following can help to

determine the coil pitch. It can be divided into several steps.

Step 1: Find the nominal coil span in slots. If S/p is an integer, we have

Sc =
S

p
− 1. (2.21)

However, if S/p is NOT an integer, we have

Sc = max(fix(
S

p
), 1). (2.22)

Step 2: Calculate the relative electric angle of “in” slot of all coils. The relative electrical

angle (expressed in the range of -180 ◦ to 180 ◦) of the kth slot is

θslot(k) = mod[(k − 1)γ + 180 ◦, 360 ◦]− 180 ◦, (2.23)
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and

γ =
p

2

360 ◦

S
, (2.24)

where γ stands for the slot pitch. And, the relative electrical angle of “in” slot of the kth coil is

θcoil(k) = mod[(k − 1)γ + 180 ◦, 360 ◦]− 180 ◦. (2.25)

Step 3: Re-adjust “in” slot angles if their magnitude are greater than 90 ◦. For coil an-

gles who have a magnitude greater than 90 ◦, the coil direction will be reversed; thereby simply

changing the angle by 180 ◦ should get you a correct angle.

Step 4: Picking up (S/m) coils for Phase A. For the angles calculated in the last step, pick

up those (S/m) close to 0 ◦ as phase A coils for convenience.

Step 5: Calculate the slot offset to wind the other phases. From Eqn. 2.24 and Eqn. 2.26,

we can derive Eqn. 2.27.

mod[Soffγ, 360 ◦] =
360 ◦

m
. (2.26)

Soff = 2
S

mp
(1 +mn) = 2q(1 +mn), (2.27)

where n is an integer that makes Soff also an integer. From the calculated Soff , we can have an

idea where to wind phase B, which is from the slot (mod(Soff , S) + 1).

Step 6 (final step): Confirm the winding is valid. The winding will be considered as valid

if all slots contain two coil sides each. If it can not pass the validity check, go back to Step 4 and

pick up more appropriate coils for phase A.

By following the method discussed above, we can make a good winding scheme based on

the combination of the number of slots and poles. Since it will increase the difficulty of hand-

winding, we normally choose a suitable wire gauge so that the slot fill factor will not exceed 85%.
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Furthermore, we can simulate the winding setup by the computer aided design tool to compare

with the analytical results.

2.6 Power Losses

Power loss is important to be evaluated to know the motor performance. The efficiency pri-

marily depends on the copper loss, iron core loss, bearing friction loss, windage loss, etc. Bearing

friction loss typically is very small, it can be ignored compared to the other losses in most cases.

The copper loss can be calculated by

Pcopper = 3I2R, (2.28)

where

R = ρ
l

s
, (2.29)

ρ = ρref + αT (T − Tref )

where ρ represents the resistivity of the copper, and αT is a temperature coefficient. Other losses

from the windings can be called stray losses. They can be generated from the skin and proximity

effects. Specifically, in skin effect, the density of the current flowing in a conductor tends to

migrate toward the surface of the conductor. While, in proximity effect, when conductors are

packed together, as they are in the stator slots, induced fields of the individual conductor affect the

surrounding conductors packed next to it.

Iron core loss can be subcategories as the hysteresis and eddy current losses. Hysteresis

losses are primarily due to the alternating magnetic field passing through the stator core. While,

eddy current losses are due to the induced current by alternating magnetic field. The core loss in

22



total can be represented as

Pcore = khB
2fe + kc(Bfe)

2 + ke(Bfe)
3/2, (2.30)

where kh, kc and ke are the coefficients of the hysteresis loss, classical eddy current loss and

excess eddy current loss, respectively. They depend on the type of the magnetic material, fe is the

electrical frequency, B is the flux density on the soft material and it decreases with the temperature

increases due to the demagnetizing phenomenon [94]. It follows the equation:

B = Bc,ref + αc(T − Tref ), (2.31)

where Bc,ref is the residual flux density at the reference temperature, αc is a coefficient and can be

chosen in the range of 0.001-0.005. For low speed machine, the copper loss is dominated, unless

for high speed applications, calculation of the core loss will become more involved. Choosing

the most suitable material for the stator core is critical for the design characteristics. It would be

successful to pick the material which can tolerate high flux density saturation in order to decrease

the machine volume, weight, losses as well as high permeability for less reluctance. However,

there are always trade-offs between the electromagnetic saturation point and the iron core loss

consumption. The rotor also experiences loss due to the eddy current effect induced in the shaft

and the permanent magnets. Lamination technique is needed for the rotor and stator. Typically,

there are several factors that can help reducing those losses such as fractional number of slot to

pole ratio, shape of the slot opening, winding pitch, etc.

Windage loss is significant on high speed machine applications. The air property changes

at higher temperature. The following method has been used in calculating the windage loss [69].
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Firstly, the Reynolds coefficient is expressed as

Re = ωrlgρair/µ, (2.32)

where r stands for the radius of the rotor, lg is the length of air gap, ρair is the air density, and µ

represent the air viscosity. Besides, the Taylor coefficient is

Ta = Re(lg/r)
0.5. (2.33)

When the Taylor coefficient is very large, such as above 400, it will have a phenomenon called

turbulence behavior, and another coefficient Cd is

Cd = 0.0095(Ta)
−0.2. (2.34)

Eventually, we can derive the final expression of the windage loss, Pw:

Pw = Cdπρairω
3r4L. (2.35)

As shown in the equation, with a high mechanical speed ω, the windage loss can increase tremen-

dously. However, for low speed operation, the windage loss can be assumed simply by 2% of the

total power loss. It is estimated that PMSMs dissipate about 5-10% of the total input power as

heat to the ambient. We can choose the nature air cool, or shaft-attached fan, or liquid pipe to

manage the thermal issues. They are all popular and efficient ways in thermal management. Test

work is necessary to confirm the initial estimation after the motor is fabricated. It is important that

temperatures for both the motor and controller device should be under the control. More details

about the thermal management for the drive system will be introduced in Chapter 4.
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2.7 Computer Aided Simulation

In order to model the machine in computer, we need to extract some parameters from the

initial design and build the machine in the software. Some parameters are obtained based on the

experience, and for others, they may be either difficult or even impractical to acquire through the

experimentation. Therefore, in such cases, the simulation is able to provide accurate information.

Furthermore, we use both Maxwell 2D and 3D packages to do the post-design FEA and determine

the performance of the machine. The simulation can be very time-consuming. However, it is still

worthy to do so. In the next chapter, we will provide the simulation results for a 12-slot 10-pole

motor design by Maxwell. In addition, in Chapter 5, we will use Maxwell simulation for a 24-slot,

6-pole motor design.

2.8 Summary

In this chapter, we presented the fundamental theory of designing a PMSM. Based on

a design specification, we need to consider the most important parameters for a specific design

as opposed to treat all of the parameters as the same priority level. The reason of doing this is

because there are always trade-offs in PM motor design that we may have to sacrifice some in

order to achieve the others, vice versa. We introduced how to determine the dimensions of the

motor using our own analytic tool. We showed the design of the stator slot, air gap, permanent

magnet and rotor, etc. We explained the reason that why CAD analysis needs to be included. In

addition, we introduced the material selection which depends highly on the actual environment

that the motor runs at. We need to choose the material which can operate in a desired ambient

temperature, but at a minimum cost. Besides, the principle of the winding setup is discussed as well

as the cooling considerations for PMSM. We can follow that methodology to design the winding

configuration, and then check the air gap flux distribution in the computer simulation. Adjustments

can be made to the winding if the distribution curve is not smooth. The PMSM design procedure
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is an iterative process which means re-design would be needed if the performance of the machine

from the computer simulation is not acceptable.

In the next chapter, we will implement the design methodology into a 12-slot, 10-pole

motor design for an electric APU application.
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CHAPTER 3: DEIGN OF A PERMANENT MAGNET SYNCHRONOUS

MOTOR FOR ALL-ELECTRIC AUXILIARY POWER UNIT

3.1 Introduction

In the previous chapter, we have described the methodology of how to design a PMSM

machine. In this chapter, we apply the methodology to the design for an electric APU application.

Utilization of renewable energy have become the future trend in the trucking industry,

which can significantly reduce the usage of fuel. As it was discussed in Chapter 1, there are cur-

rently APUs on commercial truck which use a small combustion engine to drive the air conditioner

compressor while the truck is parked. However, it still consumes fuel and produces emissions.

Our purpose is to design an all-electric APU system which uses electrical power generated from

renewable energy to replace the small engine powered by fuel and a high efficiency motor to drive

the air conditioner compressor. Therefore, fuel consumption and pollution can be greatly reduced

by applying the all-electric APU.

There is usually limited space for storing on-board batteries. People try to improve the

technology on the batteries so that they can have more storage capacity for power. On the other

hand, to better utilize those batteries, it becomes necessary to have a highly efficient energy con-

version device. In this chapter, we design a permanent magnet electric motor that can be used to

compete the market of the electric APU products. The designed motor will have an output power

of 2 kW at 2 krpm, and maintain a high efficiency greater than 90%. It has to meet the design

requirements such as space saving, high efficiency, low noise, etc. The design calls for good per-

formance over a speed range of 1.5 krpm to 2.5 krpm. The automobile air conditioning system

currently works by a “on” or “off” mode. For the heat mode, that means it is on with heat once

the cabin temperature drops down to a level and off if the temperature rises back above that level.

For the cool mode, that means it is on with cold air once the cabin temperature rises above a level,
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and off if the temperature drops back to that level. This is because the motor does not have the

speed self-control functionality according to the temperature variation and people in the cabin do

not feel much comfortable for that temperature change periodically as well as the inefficient energy

consumption.

Copper loss is the most significant of all the losses in low speed electric machines. Re-

ducing the copper loss is the key to build highly efficient machine. We use copper wires with the

current density lower than the traditional design which result in large cross section of the wire and

thus reduce the copper loss and improve the efficiency. The preferred value of the current density

is in the range of 3 to 8 A/(mm)2. This also makes thermal management easier and reduces the

need to use active cooling methodologies (such as fan, liquid cooling or spray cooling); and hence

the overall power density of the whole system (including cooling devices) may not decrease much.

Besides, since the copper loss of the machine is proportional to the current squared, reducing the

current is an effective way to reduce the copper loss and improve the efficiency. In practice, the

magnetic saturation will be reduced due to the current reduction. The size of the machine depends

on the electrical frequency due to the number of turns per coil is inversely proportional to the elec-

trical frequency. Since the electrical frequency is equal to the pole pair multiply by the mechanical

frequency, increasing the speed and number of poles will decrease the number of turns per coil

which will result in less window areas needed. Therefore the size of the machine can be reduced.

For low speed machine, when the mechanical speed is fixed, large number of poles can effectively

increase the electrical frequency. Thus, in order to balance back the reduction of the power density,

we use 10 poles to boost up the electrical frequency and thus reduce the number of turns per coil.

In traditional machine design, the torque angle is in the range of 15 to 30 degrees at the rated power

and speed. In our high efficiency motor design, we use much lower torque angle of 2 to 15 degrees

at the rated power and speed. Design with small torque angle can effectively increase the overload

power handling capability and efficiency. Besides, small torque angle will result in large airgap

and large thickness of the permanent magnets. Large airgap helps to reduce the windage loss of
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the machine and generates less noise based on our motor design experience. Large thickness of the

permanent magnets also helps to avoid the demagnetization issue.

With our novel technology, the designed motor can adjust its speed through the embedded

system of our novel DC to AC inverter to provide a variable load. For example, with high efficiency,

the fully charged battery set (48 volts) can supply the electrical power and cooling to the cabin

for about 10 hours without recharging using the main engine. The design exploits theoretical

investigation, empirical data, lessons learned and best practices as well as carefully measured data

derived from observation and testing.

In the following sections, we will have an analytical design based on the methodology

being discussed in the previous chapter. We will show the results from CAD with finite element

analysis to confirm the initial design. The motor system includes laminated stator, rotor, surface

mounted permanent magnets, wound stator with electromagnets, housing, and sensorless control

system [96].

The rest of the chapter is organized as follows. Design and simulation results will be

introduced in section 3.2. The prototype of the designed PMSM will be presented in section 3.3.

Finally, we present a summary in section 3.4.
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3.2 Design and Simulation Results

The geometry of the designed motor can be viewed, which is a 12-slot, 10-pole fractional

pitch design. To avoid the magnetic saturation, we carefully designed the dimensions of the slot as

illustrated in Fig. 3.1. We have chosen concentric winding for our design.

Figure 3.1: Geometry of the PMSM.

The results of the designed motor are summarized in Table. 3.1.

Copper loss is dominated in comparing with the other losses especially in low speed electric

machines. The calculation of the copper loss is estimated by

P = I2R. (3.1)

Copper wires with low current density result in large wire diameter which will reduce the copper

loss since the copper resistance is inversely proportional to the cross section area of the wire.

Although large wire needs more slot area, highly efficient machine generates much less heat. The

copper loss of the machine is proportional to the current squared. Reducing the current is an
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Table 3.1: Results of the PMSM design.

Machine Type PMSM
Rated Output Power 2 kW

Rated Voltage 48 V
Number of Poles 10

Number of Stator Slots 12
Outer Diameter of Stator 157 mm
Inner Diameter of Stator 87 mm

Length of Machine 87 mm
Outer Diameter of Rotor 83 mm

Minimum Air Gap 2 mm
Type of Steel Steel 1010
Type of PM NdFeB 48

Max. Thickness of Magnet 8 mm
Number of Conductors per Slot 6

Wire gauge 21
Number of wire in each strand 60

Stator Slot Fill Factor 73%
Total Machine Weight 11.2 kg

Efficiency >90%

effective way to reduce the copper loss and improve the efficiency.

The magnetic saturation will also be reduced due to the reduced current. Therefore, wide

teeth are used to avoid the magnetic saturation even if the machine runs at heavy load as shown

in Fig. 3.2. Besides, PMs are marked by the purple and orange colors, representing the north and

south poles, respectively. Layers in the slots are also marked by various colors for easy recognition.

In addition, we use Litz wire in this design to reduce the skin effect and proximity effect which

will eventually contribute to the efficiency improvement. This can also help to reduce the size of

the slot opening and hence reduce the current and cogging torque.

Fig. 3.3 shows the actual connection of the three-phase windings in groups. Each turn is

wrapped around adjacent slot as the concentric winding structure. In addition, the connection can
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also be illustrated in a format of table, as shown in Table. 3.2.

Figure 3.2: Motor geometry.

Figure 3.3: Configuration for the concentric winding.
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Table 3.2: Winding table.

Until now, the PMSM design is completed. According to the dimensions, we draw a 3D

structure of the motor as shown in Fig. 3.4.

Figure 3.4: 12-slot 10-pole PMSM design.
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Fig. 3.5 to Fig. 3.12 illustrate the magnitude distribution of the flux density (B) in 3D plot,

it varies as the rotor rotates to a position of 45 degrees, 90 degrees, 135 degrees, 180 degrees, 225

degrees, 270 degrees, 325 degrees, 360 degrees, respectively. From the results, we can monitor

the peak flux density while the motor is operating. The “rainbow” legend tells where the highest

density is located at. We need to make the peak density under the control in order to avoid the

magnetic saturation. The average magnitude distribution of the flux density (B) meets the property

requirement of the soft material we used.

Figure 3.5: Magnitude distribution of the flux density (B) with rotor rotates 45 degrees.
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Figure 3.6: Magnitude distribution of the flux density (B) with rotor rotates 90 degrees.

Figure 3.7: Magnitude distribution of the flux density (B) with rotor rotates 135 degrees.
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Figure 3.8: Magnitude distribution of the flux density (B) with rotor rotates 180 degrees.

Figure 3.9: Magnitude distribution of the flux density (B) with rotor rotates 225 degrees.

36



Figure 3.10: Magnitude distribution of the flux density (B) with rotor rotates 270 degrees.

Figure 3.11: Magnitude distribution of the flux density (B) with rotor rotates 315 degrees.
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Figure 3.12: Magnitude distribution of the flux density (B) with rotor rotates 360 degrees.

The air gap flux density distribution is shown in Fig. 3.13. As we have discussed in Chapter

2, for a good design, the waveform of the flux density should be close to a sinusoidal distribution.

Figure 3.13: Air gap flux density.

The motor’s winding currents from the simulation can be seen in Fig. 3.14. The value of

the AC winding current is an important factor for the inverter design to ensure that the controller

can hold that amount of phase current at full load. The winding flux linkages are shown in Fig.
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3.15. They are designed to be a sinusoidal distribution with harmonics and the simulation result

proves that.

Figure 3.14: Winding currents.

Figure 3.15: Winding flux linkages.

In addition, the three-phase induced voltages are presented in Fig. 3.16.
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Figure 3.16: Winding induced voltages.

3.3 Motor Prototype

In the previous section, the design was finalized and we are going to discuss the fabrication

process of the motor in the following. By using the lamination technique, the core loss of the motor

can be significantly reduced. The lamination layers are stacked together for the stator and rotor as

shown in Fig. 3.17. We can see that the wide tooth structure is applied to the design.

Figure 3.17: Stator and rotor lamination.
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The concentric winding structure is shown in Fig. 3.18. As we discussed how to select a

proper coil pitch in Chapter 2, concentric winding is a good option for this 12-slot and 10-pole

machine. It will have less end-turn length, less cogging torque, better efficiency, etc.

The fabricated stator with the winding assembly and the motor with housing can be viewed

in Fig. 3.19 and Fig. 3.20, respectively.

Figure 3.18: Winding.

41



Figure 3.19: Stator of the motor.

Figure 3.20: Motor with housing.

The test work of the designed motor will be carried out with the controller in Chapter 4,

Section 4.6.
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3.4 Summary

The research motivation and target of the design have been introduced. We have success-

fully developed a PMSM as an energy conversion device for a truck all-electric APU application.

We chose to use a 12-slot, 10-pole topology with surface-mounted permanent magnets and a con-

centric winding scheme. The designed motor has an output power of 2 kW at 2 krpm, and is able

to reach the efficiency greater than 90%. The use of the permanent magnets as the main magnetic

field can help to save the electrical energy and reduce the carbon footprints as well as requiring less

maintenance while providing improved reliability. Small torque angle has been applied to increase

the overload power handling capability and efficiency for this motor. We have provided the design

and simulation results, which show the key characteristics and performance of the motor. Besides,

we also fabricated a motor prototype based on our design data for test.

43



CHAPTER 4: DRIVE SYSTEM DESIGN FOR PERMANENT MAGNET

SYNCHRONOUS MOTOR

4.1 Introduction

Traditionally, synchronous motors use rotor windings to generate the rotor flux. The contact

between the rotor and stator windings are commutator segments. To improve the drawbacks of

maintenance needs and less reliability issue of the brushes, the rotor windings can be replaced by

permanent magnets. The interaction between the stator and rotor magnetic field produces a torque

and we want to maximize the torque to get the best performance. Therefore, the angle between

the rotor magnetic field and stator magnetic field should be controlled to be orthogonal in order to

produce the maximum torque and the best electromechanical conversion. The rotating magnetic

field generated from the stator windings is the key that we need to control, by controlling the stator

currents. The rotor’s instant position needs to be tracked in order to adjust the position of the stator

magnetic field and ensure a maximum generated torque. In addition, we tune up the parameters

in the PID compensator and implement the closed loop control. By doing that, we can achieve a

good control with a minimum amount of current input drawn [105] - [118].

In this chapter, we design the drive system and implement the field oriented control algo-

rithm into the micro-controller. Besides, we successfully drive the designed motor by the sensor-

less motor controller.

The rest of the chapter is organized as follows. The dynamic modeling of the PMSM is pre-

sented in section 4.2. The space vector PWM control principles are introduced in section 4.3. The

fundamental principle of FOC is presented in section 4.4. Thermal considerations are discussed in

section 4.5. We implement the control algorithm and build a controller prototype in section 4.6.

Section 4.7 introduces an updated inverter design targeting for higher power applications. Finally,

we conclude the chapter in section 4.8.
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4.2 Dynamic Modeling

It is complicated when doing the analysis directly on a three-phase reference frame of the

stator. Instead, when people start to transform the three-phase abc quantities into two constant

d-q quantities, calculations become a lot easier. The transformation is called dq0 transformation.

As described earlier, the magnetic torque is created by the interaction of the rotor magnetic field

generated either from the permanent magnet or electromagnet and the induced magnetic field from

the stator windings. A maximum value of the torque occurs when the rotor magnetic field is

orthogonal to the stator magnetic field. In another word, we can get the maximized torque if we

can control the stator winding current to generate a field which is orthogonal to the rotor magnetic

field. The new reference frame called dq0 frame will give us a help to do the analysis. We align

the stator flux with the q axis of the rotor flux, as shown in Fig. 4.1. Furthermore, the stator current

component on q axis is controlled to generate the commanded torque, and the component on d axis

is set to zero.

Figure 4.1: d-q axis on synchronous machine.
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We will need to jump out of the rotating reference frame back to the stationary coordinate

system to make the modulated correction voltages onto motor terminals through Reverse Park’s

and Reverse Clarke’s Transformations.

It is possible that the motor needs to be controlled under such circumstances as frequently

ramp up or down. Therefore, the control design has to consider the dynamic behavior of the motor.

The transformation for a PM motor is described by the following equation:

Sdq0 = KSabc, (4.1)

and its inverse format is

Sabc = K−1Sdq0, (4.2)

where S can represent the variables such as voltage (V ), current (i), or flux linkage (λ), etc. In

addition, K matrix and its inverse format can be seen in Eqn. 4.3:

K =
2

3


cos(θme) cos(θme − 2π/3) cos(θme + 2π/3)

−sin(θme) −sin(θme − 2π/3) −sin(θme + 2π/3)

1/2 1/2 1/2



K−1 =


cos(θme) −sin(θme) 1

cos(θme − 2π/3) −sin(θme − 2π/3) 1

cos(θme + 2π/3) −sin(θme + 2π/3) 1

 , (4.3)

where

θme =
p

2
θm, (4.4)

where p represents the number of poles, and θm is the rotor rotational angle. By using the K matrix
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transformation, we can transform the abc reference frame to d-q reference frame, vice versa.

Originally, the stator winding voltages on the abc reference frame can be presented by

Vabc = Rsiabc +
d

dt
λλλabc, (4.5)

which represents the phase voltage expression as a function of the phase resistance, current, and

flux linkage.

For rotor who uses field winding on it and with damper winding, the final expression of the

voltage on both the stator and rotor after applying the K matrix is:



Vd

Vq

V0

Vf

0

0


=



Rsid + d
dt
λd − λqωme

Rsiq + d
dt
λq + λdωme

Rsi0 + d
dt
λ0

Rf if + d
dt
λf

Rkdikd + d
dt
λkd

Rkq ikq + d
dt
λkq


. (4.6)

In order to model the flux linkage, we need to relate the current to it by the inductance.

For a salient pole rotor structure, the inductance can be generally expressed as the equation in the

following [119] [120].

Labcf =

 Lss Lsr

LTsr Lrr

 , (4.7)

where
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Lss =


Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc

 , (4.8)

Lsr =


Laf Lakd Lakq

Lbf Lbkd Lbkq

Lcf Lckd Lckq

 , (4.9)

and

Lrr =


Lf Lfkd Lfkq

Lkdf Lkd Lkdkq

Lkqf Lkqkd Lkq

 . (4.10)

The terms in Eqn. 4.8 can be substituted by



Laa = Lls + LA + LBcos2θme

Lbb = Lls + LA + LBcos2(θme − 2π
3

)

Lcc = Lls + LA + LBcos2(θme + 2π
3

)

Lab = Lba = −1
2
LA + LBcos(2θme − 2π

3
)

Lbc = Lcb = −1
2
LA + LBcos(2θme)

Lac = Lca = −1
2
LA + LBcos(2θme + 2π

3
).

(4.11)
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The terms in Eqn. 4.9 can be substituted by



Laf = Lfa = Lsfcos(θme)

Lbf = Lfb = Lsfcos(θme − 2π
3

)

Lcf = Lfc = Lsfcos(θme + 2π
3

)

Lakd = Lkda = Lskdcos(θme)

Lbkd = Lkdb = Lskdcos(θme − 2π
3

)

Lckd = Lkdc = −Lskdcos(θme + 2π
3

)

Lakq = Lkqa = −Lskqsin(θme)

Lbkq = Lkqb = −Lskqsin(θme − 2π
3

)

Lckq = Lkqc = −Lskqsin(θme + 2π
3

).

(4.12)

The terms in Eqn. 4.10 can be substituted by



Lf = Llf + Lmf

Lkd = Llkd + Lmkd

Lkq = Llkq + Lmkq

Lfkd = Lkdf

Lfkq = Lkqf = 0

Lkdkq = Lkqkd = 0.

(4.13)

Until now, we have the derivations of the inductance matrix in abc frame. In addition, we

can get the matrix in a d-q frame and further get the flux linkage matrix linked with the current.

λλλabcf = Labcf iabcf . (4.14)
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Then we can have the flux linkage in a matrix expression for conciseness:

Ldqf =



Ld 0 0 Lsf Lskd 0

0 Lq 0 0 0 Lskq

0 0 L0 0 0 0

3
2
Lsf 0 0 Lf Lfkd 0

3
2
Lskd 0 0 Lkdf Lkd 0

0 3
2
Lskq 0 0 0 Lkq .


, (4.15)

where 
Ld = Lls + Lmd

Lq = Lls + Lmq

Lls = L0

, (4.16)

and 
Lmd = 3

2
(LA + LB)

Lmq = 3
2
(LA − LB).

(4.17)

The instantaneous input power on the stator windings can also be expressed through dq0 theory:

Pin =
3

2
Rs(i

2
d + i2q + 2i20) +

3

2
(id
dλd
dt

+ iq
dλq
dt

+ 2i0
dλ0
dt

) +
3

2

P

2
ωm(λdiq − λqid). (4.18)

The third term of the equation above is the mechanical power. Thus, we can get the expression of

the electromagnetic torque on the rotor

Te =
Pmech
ωm

=
3

2

P

2
(λdiq − λqid). (4.19)
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For the rotor without a damper winding, the analysis would be easier. The voltages on the

stator and rotor can be expressed in a matrix format as



Vd

Vq

V0

Vf


=



Rsid + d
dt
λd − λqωme

Rsiq + d
dt
λq + λdωme

Rsi0 + d
dt
λ0

Rf if + d
dt
λf


. (4.20)

The inductance matrix on abc frame should be

Labcf =

 Lss Lsf

LTsf Lf

 , (4.21)

where

Lsf =


Laf

Lbf

Lcf

 . (4.22)

The flux linkage expression becomes

λλλabcf =

 λλλabc

λλλf

 . (4.23)

The current expression becomes
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iabcf =

 iabc

if

 . (4.24)

Winding flux linkage on the stator after being converted to d-q frame is

λλλdq0 = (KLssK
−1)idq0 + KLsf if . (4.25)

Besides, from Eqn. 4.21, we have Ldqf :

Ldqf =

 KLssK
−1 KLsf

LTsfK
−1 Lf

 . (4.26)

With windings replaced by the permanent magnet on the rotor, the dynamical modeling is

actually a lot easier to be analyzed. Fig. 4.2 shows a structure of a two-pole permanent magnet

machine.
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Figure 4.2: d-q axis on permanent magnet machine.

The derivations would be very similar with the previous type of machine with the field

winding on the rotor. Instead, the flux linkage on the rotor will only come from the permanent mag-

net, λPM . The final expressions are presented in the following. The detail derivation is skipped.

The flux linkage on the abc frame is

λλλabc = Labciabc + λλλPMabc. (4.27)

and its expression on d-q frame is

λλλdq0 = Ldq0idq0 + λλλPMdq0. (4.28)

The voltage on d-q frame will be
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V =


Vd −Rsid + λqωme

Vq −Rsiq − λdωme

V0 −Rsi0

 , (4.29)

where

λd = Ldid + λPM , (4.30)

λq = Lqiq. (4.31)

And, the electromagnetic torque on a PM machine is

Te =
Pmech
ωm

=
3

2

P

2
[λPM iq + (Ld − Lq)idiq]. (4.32)

For round rotor PM machine, the inductance on d and q should be equal. Thus, the EM torque will

only be a function of the q axis current iq only since λPM is constant. It would be a lot easier to

control one variable in order to control the torque.

We can apply the dynamic equations to describe the motor’s non-linear behavior. There are

primary four equations that decide the dynamical characteristics of the motor from Eqn. 4.33 to

Eqn. 4.36.

did
dt

=
1

Ld
(−Rsid + p/2ωmLqiq + ud) (4.33)

diq
dt

=
1

Lq
(−Rsiq − p/2ωmLdid − p/2ωmλPM + uq) (4.34)
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dωm
dt

=
1

J
(Te − TL − cωm) (4.35)

dθm
dt

= ωm, (4.36)

where ud describes the input voltage on d axis, uq represents the input voltage on q axis, TL is the

load torque, J is the moment of inertia of the rotor, and c represents a coefficient of friction.

A block diagram can illustrate the transformation model in Fig. 4.3, which explains that the

three-phase abc voltages can be converted to d-q system, then fed into the dynamical equations, the

output can be converted back to abc reference frame, and fed back to the motor terminals. In addi-

tion, the motor’s dynamical model by simulink is shown in Fig. 4.4. It shows the transformation

between abc and dq0 reference frame as well as the feedback to the dynamical equations.

Figure 4.3: Transformation model.
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Figure 4.4: Dynamic model of the motor.

4.3 Space Vector Modulation

The three-phase inverter made of MOSFET bridges and Y-connection load can be described

as shown in Fig. 4.5. There are eight different states including two redundant vectors and six other

active vectors with different switches from S1 to S6. It is good to be pointed out that S1 and S2 are

always complementary, so do S3 and S4, S5 and S6 [121].
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Figure 4.5: Three-phase circuit.

In the space vector PWM (SVPWM) modulation, with the switch of the MOSFET and a

desired duty cycle in each phase, it comes up to various combinations as shown in Table. 4.1. The

space vector representation can be expressed as

−→
V (t) =

2

3
[VAn(t)ej0 + VBn(t)ej2π/3 + VCn(t)ej4π/3]. (4.37)

Accordingly, a space vector diagram that can show the space vector representation is in Fig. 4.6.

Valid states are from V1 to V6 [121].
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Table 4.1: Switching states.

Figure 4.6: Space vector diagram.
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We can have a general expression for the space vector, which is

−→
V k =

2

3
Vde

j(k−1)π
3 , (4.38)

where k= 1,2,...,6, and Vd is the dc bus voltage.

Generally speaking, SVPWM method generates less harmonic distortion in the output volt-

ages or currents in comparison with the sinusoidal PWM method. Besides, SVPWM utilizes the

source voltage more efficiently compared to the sinusoidal PWM.

4.4 Field Oriented Control System

The Field Oriented Control (FOC) is an adaptive and closed loop process which can it-

eratively update the current and speed value through a PID compensator. The key of FOC is to

decouple the torque and magnetization flux component of the winding current in the PMSM. In

addition to that, a good control algorithm can be applied so that it can achieve better dynamic

performance.

The controller provides the closed loop feedback to the input of the system. It will record

the rotor position and calculate the required amount of voltage input to the motor terminals, and

then send gate control signals to the MOSFETs. A block diagram of the controller is shown in Fig.

4.7. We describe it as three main control loops: current loop, speed loop and position loop. In each

of these loops, a PI controller is applied to tune up the subsystem in order to minimize the error

signal [122]. A DSP based micro-controller is used to assure a fast mathematical processing.
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Figure 4.7: Closed loop control.

Two motor phase currents ia, ib are sampled as shown in Fig. 4.8. These measurements

go to the Clarke’s Transformation module. The outputs coming out of this module are iα and iβ .

Next, these two components of the currents are the inputs of the Park’s Transformation module

which generates id, iq. These two current components on d-q frame are compared to the reference

idref and iqref through a PI controller. After the comparison, the modulated voltages, Vd and Vq,

become the inputs of the inverse Park’s Transformation module. The outputs of this are Vα and Vβ .

They will be applied to the space vector PWM module. The output PWM signals will drive the

inverter.

Figure 4.8: Control scheme of FOC.
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Rotor angle is an important parameter in the FOC control. A position sensor in the market

not only increases the cost, maintenance work and complexity, but also causes problems to the

system robustness and reliability. Thus, sensorless control method is valuable to our design [123] -

[129]. In FOC, the rotor angle is estimated by a sliding mode observer (SMO). The SMO module

contains a first order low-pass filter for the back-EMF estimation. However, the low pass filter

will cause a delay in the estimated angle. In order to accurately achieve the FOC algorithm,

compensation is made to the estimated angle. The phase lag differs at various speeds, and therefore,

the compensation must be adaptive. The angle delay is calibrated at different speeds utilizing a

function to interpolate the delay angle vs. speed curve. The appropriate phase lag compensation is

automatically calculated based on the speed of the motor and applied to the feedback loop. This

adaptive phase lag compensation increases the accuracy of the control.

It is required and desirable to produce the rated power with the highest attainable speed

for many applications such as electric vehicles. However, due to the upper limit placed on the dc

bus voltage and current ratings of a given inverter, the motor’s input voltage and current ratings

are limited as well. In addition, the limit of the voltage and current impacts the maximum speed

with the rated torque and the maximum torque generation of the motor drive system, respectively.

For example, above certain speed, the induced voltage in the winding would exceed the maximum

input voltage, making the flow of the current back into the machine terminals. In order to solve

the problem, the induced voltage has to be constrained to be less than the applied voltage by

weakening the air gap flux linkages, which is by adding a negative d axis current to compensate

for the increasing of the induced voltage [122].
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4.5 Thermal Analysis

The temperature rise with the actual power consumption by the device is related to the

thermal resistance. The simulation of temperature distribution is more accurate than the analytical

calculation. We build a simple thermal model with the MOSFETs and a fan as we can see in Fig.

4.9. Since the power dissipated as heat will be primarily on the MOSFETs, it will be minor losses

on the other components of the inverter. Therefore, we ignore them in the thermal model to reduce

the complicity of the simulation [130] - [137].

Figure 4.9: Simplified thermal modeling of the controller.
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Fig. 4.10 shows the temperature distribution, from which we can see the hot spot of the

system. Therefore, as long as we can keep the worst-case scenario, which is the temperature of

the most hot spot, under the control, we can assure the whole system will work. In addition, the

simulation can also help to choose a fan with the proper air flow value in cubic feet per minute

(CFM).

Figure 4.10: Temperature distribution.
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4.6 Inverter Prototype and Test

We apply the FOC principle into the micro-controller to achieve the control system design.

Based on that, we have designed the inverter system and built the controller prototype as shown in

Fig. 4.11. Current sensors are being applied to sample the terminal phase currents. Besides, we try

to avoid the signal disturbances by separating the trace routing of the small signals from the bus

power.

Figure 4.11: Three-phase DC to AC inverter.

As shown in Fig. 4.12, we use a motor-generator pair with electric load to build the test

system. DC power from a battery set is fed into the DC to AC inverter to power the motor using the

controller, which in turn drives the generator, the power coming out of the generator is dissipated

by a resistor bank. We can adjust the power output by changing the rotational speed of the rotor.

The inverter is designed for up to 2 kW equipped with a cooling fan.

64



Figure 4.12: System test.

Since we have implemented the sensorless control rather than a position sensor, the SMO

is responsible for recording the position of the rotor. After a transient time, which is a very short

initial start up period when the initial position of the rotor is detected, the SMO algorithm captures

the position of the stator magnetic field and send signals to the motor phase terminals. The sam-

pled phase current is compared to the commanded current. The estimation of the back-EMF is not

correct according to the non-linear variation of the motor’s parameters if there is an error signal

existing between the sampled current and commanded current. Thus, the algorithm will automat-

ically re-estimate the back-EMF value until the sampled current matches the commanded value.

In another word, the error signal between them will eventually converge to zero. In Fig. 4.13, the

blue curve shows that the SMO can successful record the movement of the rotor in the range of 0

to 2π.
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Figure 4.13: Position measurement.

At the initial start up, the machine needs a large start up Id current to generate enough

start up torque. The software needs to capture the initial position of the rotor before the algorithm

begins. By applying a large current, the rotor will quickly be attracted to a nearest position due to

the interaction of the electromagnet and permanent magnet. Firstly, verification of the currents on

both d and q axis can be controlled as we need is necessary as shown in Fig. 4.14. The red line

represents the commanded value we give to the software, and the green curve follows the red line.

The blue curve is set to be zero.

Figure 4.14: d-q currents follow the commanded value.

Secondly, as shown in Fig. 4.15, the red curve represents Id, which starts from zero, reaches

up to about 70 amps for a short period, then drops down to zero. Iq begins to rise right after Id
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is down to zero. The blue curve stands for the mechanical speed of the rotor, which shows it will

begin to speed up smoothly after the initial transient time period. Besides, Fig. 4.16 shows the

currents of Ia and Ib at the initial start up.

Figure 4.15: d-q currents and rotating speed at the initial start up.

Figure 4.16: Ia, Ib currents and rotating speed at the initial start up.

The full load operation is achieved when the machine is running at 2000 rpm. Besides, we

have also recorded the performance of the system running at 500 rpm, 1000 rpm and 1500 rpm. It

is necessary to test and prove that the system can have a reliable operation at various loads.

At 500 rpm, Iq is about 29 amps, and Id current is zero as in Fig. 4.17. Iq is controlled to

generate the torque component. The Ia and Ib currents are shown in Fig. 4.18.
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Figure 4.17: d-q currents and rotating speed at 500 rpm.

Figure 4.18: Phase currents and rotating speed at 500 rpm.

Moreover, terminal voltages Ua, Ub and Uc are shown in Fig. 4.19. They are curves similar

with sinusoidal distribution. We capture them in the test software created by Visual C++.

Figure 4.19: Phase voltages at 500 rpm.
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As the speed increases to 1000 rpm, Iq turns out to be about 37 amps, and Id current is zero

as in Fig. 4.20. And, the new Ia and Ib currents are shown in Fig. 4.21.

Figure 4.20: d-q currents and rotating speed at 1000 rpm.

Figure 4.21: Phase currents and rotating speed at 1000 rpm.

Terminal voltages of Ua, Ub and Uc are shown in Fig. 4.22 with the machine running at

1000 rpm.
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Figure 4.22: Phase voltages at 1000 rpm.

The screen shot result captured from the oscilloscope shown as PWM output of the line-to-

line voltages when the machine is running at 1000 rpm is presented in Fig. 4.23.

Figure 4.23: PWM output of the line to line voltages at 1000 rpm.

Once the speed reaches 1500 rpm, Iq and Id current are illustrated in Fig. 4.24. The Ia and

Ib currents are shown in Fig. 4.25. We can see the current variation as the speed increases.
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Figure 4.24: d-q currents and rotating speed at 1500 rpm.

Figure 4.25: Phase currents and rotating speed at 1500 rpm.

Similarly, the terminal voltages of Ua, Ub and Uc are shown in Fig. 4.26 with larger peak to

peak values.

Figure 4.26: Phase voltages at 1500 rpm.
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The screen shot result captured from the oscilloscope shown as the PWM output of the

line-to-line voltages when the machine is running at 1500 rpm is presented in Fig. 4.27.

Figure 4.27: PWM output of the line to line voltages at 1500 rpm.
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As the speed reaches up to 2000 rpm, Id current is zero as it supposed to be, while Iq is

constant at around 40 amps, which is illustrated in Fig. 4.28. The Ia and Ib currents are also shown

in Fig. 4.29.

Figure 4.28: d-q currents and rotating speed at 2000 rpm.

Figure 4.29: Phase currents and rotating speed at 2000 rpm.

Terminal voltages of Ua, Ub and Uc are shown in Fig. 4.30. The screen shot result captured

from the oscilloscope shown as the PWM output of the line-to-line voltages when the machine

is running at 2000 rpm is presented in Fig. 4.31. We can confirm the mechanical speed of the

machine by measuring the electrical frequency of the PWM waveform.
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Figure 4.30: Phase voltages at 2000 rpm.

Figure 4.31: PWM output of the line to line voltages at 2000 rpm.
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4.7 High Power Applications

As shown in Fig. 4.11, for the current inverter topology, we have to use a fan to dissipate

the heat generated. There is limited room for attaching a powerful heat sink. However, for further

optimization, we have researched on building new structure with an aluminum board for the high

power transfer, the updated design is shown in Fig. 4.32. The bus power traces have been placed on

the aluminum board and we have the option to further attach it to additional metal plate in order to

increase the thermal management capability. Copper bar is very powerful in carrying large current.

We therefore use the copper bars for the bus power. The inverter would be able to deliver higher

power even up to 5 kW without the need for a cooling fan and the overall size of the control board

is reduced by about 40%.

Figure 4.32: Inverter design by using aluminum board.
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4.8 Summary

We have introduced the fundamental dq0 control theory of the PM motor. We presented the

derivations, including voltages, inductances, flux linkages, etc. and the motor dynamic modeling.

We discussed the space vector PWM. In addition, FOC principle and the control methodology

for the motor control system have been introduced. According to that, an inverter topology has

been proposed and the PCB layout has been completed. Thermal issues of the PCB board are

considered through computational fluid dynamics (CFD) simulation. We built a prototype of the

designed controller and have tested with the designed motor as a complete system. The test results

are provided. Furthermore, we optimized the inverter topology which can completely avoid the

need for a cooling fan by applying an aluminum board structure for the bus power design.
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CHAPTER 5: DESIGN OF A PERMANENT MAGNET SYNCHRONOUS

MOTOR WITH WIDE TEMPERATURE RANGE

5.1 Introduction

Super compact permanent magnet synchronous motors with wide temperature range are in

great demand for industrial applications such as mineral mining, aerospace engineering, defense

applications, etc. These applications usually occur in either extremely cold or hot environment.

The performance of the magnetic materials depends highly on the operating temperature. Many

materials are subject to degradation of performance with an increase in temperature. Although Nd-

FeB is the strongest permanent magnet, it can only operate at an ambient temperature up to 150 ◦C.

SmCo is the second strongest permanent magnet, which can operate from cryogenic temperature

up to 350 ◦C. Therefore, we will choose SmCo as the permanent magnet material. Soft magnetic

materials such as steels usually saturate at magnetic flux density around 1.7 T with poor perfor-

mance at higher temperature. In comparison, Hiperco50 is an iron cobalt vanadium soft magnetic

alloy which exhibits high magnetic saturation (2.3 T) and low core loss [96]. This extra 0.6 T

provided by Hiperco50 material would allow the motor size to be scaled down and the iron loss

to be reduced. This will in turn increase the power density and efficiency of the motor. The Curie

temperature of Hiperco50 is 940 ◦C which can assure that it is able to work within the tempera-

ture range in the current design. Thus, we use Hiperco50 as the material for the stator and rotor.

Besides, traditional wire insulation for the motor or generator applications is only capable of oper-

ating at the temperature limit of 200 ◦C maximum. Thus, for other motor applications which will

run in a higher temperature environment, we will need to use stainless steel clad copper wire with

pre-ceramic polymer resins insulation, which can tolerate a temperature up to 700 ◦C. However,

due to the use of the ceramic material, the minimum bend radius of the wire is quite large, which

may cause difficulty in assembly. Besides, in order to achieve the electrical connection of this type
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of wire, welding rather than soldering must be chosen due to the stainless steel cladding.

We have designed a PM motor, which is able to run within a wide temperature range from

-196 ◦C up to 300 ◦C. The designed motor is required to output 12 kW power at 12 krpm rotating

speed with the efficiency greater than 90%. It is also required to work with good efficiency in a

relatively wide speed range as well. We have developed our own tool to simulate the temperature

variation of the residual flux density, copper loss, core loss, windage loss, etc. In the next section,

we will introduce the key design methodology for this work. We will determine the most important

dimensions of the design by our design tool, and we will further calculate and estimate its perfor-

mance under various temperatures and speed conditions. Finally, we will provide results from the

FEA analysis and confirm the initial design.

5.2 Design and Simulation Results

The design methodology for the PMSM with wide temperature range is basically similar

with the one introduced in Chapter 2 with additional thoughts and considerations for the specific

requirement on temperature. The key features of the designed motor are summarized in Table. 5.1,

from which it can tell the volume of the motor, the net weight, the materials that will be used, and

the key winding information, etc.

As discussed in Chapter 1 and Chapter 2, the electromagnet is basically made up of a stator

tooth and the winding wrapped around it. The stator three-phase windings are excited by AC

voltages converted through a DC to AC inverter. To avoid the magnetic saturation especially at the

stator tooth area, we carefully design the dimensions of the slot as shown in Fig. 5.1. In addition,

we purposely make the slot window area to be relatively large so that the “slot fill factor” is low

due to the extra room is prepared for the insulation layers on such special design requirement of

temperature. Based on the winding theory we discussed in chapter 2, we use double-layer lap

winding for our design.
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Table 5.1: Results of the PMSM design.

Machine Type PMSM
Rated Output Power 12 kW

Rated Mechanical Speed 12 krpm
Rated Voltage 270 V

Number of Poles 6
Number of Stator Slots 24

Outer Diameter of Stator 165 mm
Inner Diameter of Stator 83.3 mm

Length of Machine 83.3 mm
Outer Diameter of Rotor 81.7 mm

Minimum Air Gap 0.8 mm
Type of Steel Hiperco 50
Type of PM SmCo 28

Max. Thickness of Magnet 1.4 mm
Number of Conductors per Slot 6

Copper Wire Diameter 4.62 mm
Stator Slot Fill Factor 52%
Total Machine Weight 13.4 kg

Efficiency >90%

Figure 5.1: Dimensions of the stator slot.

According to the parameters in Table. 5.1, a complete structure of the PMSM is drawn in

Fig. 5.2. The three-phase windings on the stator are marked in red, green and yellow, respectively.
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It is emphasized that we make appropriate design of the shaft and housing to get enough room for

the end-turns.

Figure 5.2: 24-slot 6-pole PMSM design.

The magnetic flux density (B) vector plot is shown in Fig. 5.3. It shows the vector distribu-

tion of the magnetic field while the motor is operating, from which we can verify that the magnetic

path is correct [76].
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Figure 5.3: Flux density vector distribution.

We will show the plot of the magnitude distribution of the flux density (B) in 3D from Fig.

5.4 to Fig. 5.11, with the rotor rotates to a position of 45 degrees, 90 degrees, 135 degrees, 180

degrees, 225 degrees, 270 degrees, 325 degrees, 360 degrees, respectively. We can monitor the

value of the peak flux density. The “rainbow” legend tells where the highest density is located at.

We need to make the peak flux density under the control in order to avoid the magnetic saturation.
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Figure 5.4: Magnitude distribution of the flux density (B) with rotor rotates 45 degrees.

Figure 5.5: Magnitude distribution of the flux density (B) with rotor rotates 90 degrees.
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Figure 5.6: Magnitude distribution of the flux density (B) with rotor rotates 135 degrees.

Figure 5.7: Magnitude distribution of the flux density (B) with rotor rotates 180 degrees.
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Figure 5.8: Magnitude distribution of the flux density (B) with rotor rotates 225 degrees.

Figure 5.9: Magnitude distribution of the flux density (B) with rotor rotates 270 degrees.
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Figure 5.10: Magnitude distribution of the flux density (B) with rotor rotates 315 degrees.

Figure 5.11: Magnitude distribution of the flux density (B) with rotor rotates 360 degrees.
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The motor’s winding currents from the simulation can be seen in Fig. 5.12. We will use

this as a reference for the inverter design to ensure that the controller can hold that amount of phase

current at full load.

Figure 5.12: Winding currents.

The winding flux linkages are shown in Fig. 5.13. They are designed to be a sinusoidal

distribution with harmonics and the simulation result proves that.

Figure 5.13: Winding flux linkages.

We consider all the effects discussed above to estimate the efficiency as a function of the

rotating speed for various temperatures. With a wide temperature range from -196 ◦C up to 300 ◦C,
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the efficiency is calculated by our analytic tool created in MATLAB, as shown in Fig. 5.14. It

shows that the efficiency is inversely proportional to the temperature for certain speed range. How-

ever, with the speed further increasing up, the efficiency starts to be proportional to the temperature.

The reason of that is because the windage loss decreases much faster due to the air property change

than the copper loss increases when temperature increases.

Figure 5.14: Efficiency as a function of the rotating speed for various temperatures.
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5.3 Summary

We discussed the special thoughts and considerations for a PM motor design with wide

temperature range from -196 ◦C up to 300 ◦C, including the analysis of the material property and

performance. We have successfully developed and simulated the design with the efficiency greater

than 90% at the designed speed of 12 krpm. The motor is able to run over a wide speed range,

8 krpm to 16 krpm. We have provided the design and simulation results. In addition, we have

analyzed the performance of the motor according to the temperature influences based on numerical

analysis, thereby helping to make this novel design a reality. With proper permanent magnet

material, core material, and advanced pre-ceramic polymer resins insulation material, the motor

can achieve its performance according to the design specifications. The future work of this design

is to have the motor fabricated and the hardware tested.
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CHAPTER 6: CONCLUSION

In this dissertation, we have developed a novel design methodology for a surface-mounted

permanent magnet motor design. We have showed the key design procedure for a good start up

design. Small torque angle is designed in order to increase the overload power handling capability

and efficiency. Moreover, small torque angle results in a larger airgap and increased thickness

of the permanent magnets, which helps to reduce the windage loss, noise and demagnetization.

Therefore, new treatment of the MMF is developed through the integration due to the large size of

the airgap. In order to boost up the efficiency of the PMSM, the most effective way is trying to

reduce the copper loss. We use large cross section wire to reduce the resistance and thus reduce the

copper loss. We use wide stator teeth structure to avoid the magnetic saturation, which results in

less stator current and lower copper loss. Besides, we use large number of poles which decreases

the required number of turns per coil, resulting in less slot areas and motor weight needed. We

use stranded wire to reduce the AC copper loss. We have adjusted the size of the slot opening to

reduce the cogging torque, which will result in a smooth electromagnetic torque.

We have implemented the design methodology into a 12-slot, 10-pole PMSM design as

an energy conversion device for a truck all-electric battery-based APU system. We have also

fabricated a prototype based on our design data. We have designed a three-phase sensorless inverter

with the field oriented control scheme and sliding mode observer algorithm. We have tested the

controller with the permanent magnet motor we designed and provided with the test results. In

addition, we have researched on the thermal management of the PCB board and developed an

inverter design with aluminum board structure targeting for higher power applications without

the need for a cooling fan. It can significantly increase the power handling capability. Besides,

we have researched on a novel design of a 24-slot, 6-pole PMSM that has the capability to work

under an extreme temperature environment, which can be applied to some special applications. We

proposed some considerations for the design and analyzed the performance of the motor according

89



to the temperature influences. The simulation results of the designed motor are also provided.
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