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ABSTRACT 

Space division multiplexing (SDM) is the most promising way of increasing the capacity 

of a single fiber. To enable the few mode fiber (FMF) or multi-mode fiber (MMF) transmission 

system, several major challenges have to be overcome. One is the urgent need of ideal mode mul-

tiplexer, the second is the perfect amplification for all spatial modes, another one is the modal 

delay spread (MDS) due to group velocity difference of spatial modes. The main subject of this 

dissertation is to model, fabricate and characterize the mode multiplexer for FMF transmission. 

First, we designed a novel resonant mode coupler (structured directional coupler pair). After that, 

we studied the adiabatic mode multiplexer (photonic lantern). 6-mode photonic lantern using 

graded-index (GI) MMFs is proposed and demonstrated, which alleviates the adiabatic require-

ment and improves mode selectivity. Then, 10-mode photonic lantern is demonstrated using novel 

double cladding micro-structured drilling-hole preform, which alleviates the adiabatic requirement 

and demonstrate a feasible way to scale up the lantern modes. Also, multi-mode photonic lantern 

is studied for high order input modes. In addition, for the perfect amplification of the modes, clad-

ding pump method is demonstrated. The mode selective lantern designed and fabricated can be 

used for the characterization of few mode amplifier with swept wavelength interferometer (SWI). 

Also, we demonstrated the application of the use of the few mode amplifier for the turbulence-

resisted preamplified receiver. Besides, for the reduction of MDS, the long period grating for in-

troducing strong mode mixing is demonstrated.  
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CHAPTER 1: INTRODUCTION 

Optical fiber communication is the backbone for the telecommunications infrastructure that sup-

ports the internet. As the internet demand keeps on increasing, the need for a single fiber to carry 

more information is crucial. It is very important to find smart solution to increase the capacity x 

times in a single fiber by increasing the cost much less than x times. That criterion was explored 

extensively by a large number of researchers. The capacity for a single fiber increases by a factor 

of 10 every 4 years. The capacity improvement includes improved transmission fibers, the use of 

wavelength division multiplexing (WDM)  [1,2] and Erbium doped fiber amplifier (EDFA)  [3–5] 

and recently the high spectral efficiency coding  [6,7]. The transmission fiber has been improved 

greatly, so far the loss of single mode fiber (SMF) is as low as 0.015 dB/km  [8]. The achievement 

of low loss can greatly increase the span length before it gets amplified by the EDFA. To have a 

more clear understanding of the significance of the low loss benefit, we take an example. One fiber 

has 0.02 dB/km loss and the other one has 0.2dB/km loss. If the amplification is 15dB, the maxi-

mum span length for fibers with 0.02dB/km loss can be 75km, while for fibers with 0.2 dB/km, 

the span length can only be 7.5 km. That is 10 times difference! Now the loss mainly comes from 

the fundamental limit of scattering  [9]. Further improvement of fiber loss can be difficult due to 

that fundamental limit. EDFA and WDM enable the utilization of various wavelength channels. 

The demonstration of EDFA has the great advantage of large gain and low noise figure, which 

greatly increase link transmission distance. In addition, EDFA can amplify a large bandwidth of 

signals simultaneously. With the arrival of WDM, a large number of wavelength channels can be 

launched into a single fiber. The sharing of amplification of wavelength channels could dramati-

cally increase the capacity per fiber with much less cost increase. With the utilization of both 

WDM and EDFA, the capacity increase can be more than 2 orders of magnitude per single fiber. 
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Another improvement is the high spectral coding with the availability of coherent receiver.  The 

signal can be modulated with multi-level phases, for example, quadrature phase-shift keying 

(QPSK), which has four phase states for a single pulse. That means for single pulse can carry 2 

bits. By the same token, 16 quadrature amplitude modulation (QAM) and 64 QAM can achieve 4 

and 6 bits per single pulse. For undersea long-haul transmission applications, QPSK signal with 

coherent detection has been widely used  [10].  

These improvements are based on single mode fiber transmission. Further improvement is 

difficult, since the recent progress has already close to the Shannon’s capacity limit which can be 

expressed as 𝐶𝐶 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(1 + 𝑆𝑆𝑆𝑆𝑆𝑆) where W is the bandwidth of the channel and SNR represents 

the signal-to-noise ratio. As current system has already exhausted all degrees of freedom, namely 

quadrature, wavelength channel and polarization plus the good quality low loss optical fiber. The 

only dimension not taken into consideration is the spatial modes. As we know, SMF has two vector 

modes (one spatial mode), each vector mode can carry independent information. Single fibers with 

modes more than 2 are termed as space division multiplexing (SDM) fibers. SDM fibers can be 

categorized as few-mode fibers (FMFs) or multi-mode fibers (MMFs), multi-core fibers (MCFs) 

and multi-element fibers. FMFs (MMFs) and MCFs are very promising candidates for the im-

provement of fiber capacity. We will discuss them in the following.  

 

1.1. Few-mode fibers for space division multiplexing 

Few-mode fibers have a larger core size than single mode fiber, thus it can support high-order 

modes. As shown is Figure 1.1, we draw a step-index fiber with increasing core diameter. The 

refractive index of the core is n1 and the index of the cladding is n2 (n1 > n2). We use a parameter 

V to get implication of the number of modes. The V number is defined as 𝑉𝑉 = 2𝜋𝜋
𝜆𝜆
𝑎𝑎�𝑛𝑛12 − 𝑛𝑛22 
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where 𝜆𝜆 is the wavelength and 𝑎𝑎 is the radius of the fiber core radius.  At the beginning, the core 

size is small, it can only support the fundamental spatial mode (2 vector modes). We call it LP01. 

We use the linear polarization (LP) basis which is more convenient without degrading the rigor of 

the analysis in the following chapters. As the core size becomes larger, V number also increases. 

When V number becomes more than 2.405, the fiber becomes a few-mode fiber. At 2.405<V<3.8, 

the fiber can support two more spatial modes (four vector modes), LP11a and LP11b.   

 

Figure 1.1 Transition from single mode fiber to few mode fiber by increasing the core diameter. 

 

As the core diameter further increases, the fiber can support more and more spatial modes. 

If a fiber can support N spatial modes, then the potential capacity of this fiber can be N times than 

the SMF. The mode scalability N can be very large, up to more than 100 spatial modes with the 

same 125 𝜇𝜇𝜇𝜇 as SMF. As the first step, we investigated the FMFs, which by convention can sup-

port the modes much less than 50 spatial modes. Tremendous efforts have been taken for the ex-

ploration of the potential advantages of transmitting signals in FMFs  [11–16].  Figure 1.2 shows 

SDM fiber transmission system. N independent information channels from N transmitters (Txs) 

are combined by N x N spatial multiplexer (Mux) into the SDM fiber. The role of the spatial Mux 

is to map all the modes from SMFs to the modes of SDM fiber with no information loss. During 
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transmission, the signals are amplified simultaneously by the SDM amplifier which requires the 

equalized amplification of all the modes. At the receiver, the signals are demultiplexed by the 

spatial demultiplexer (DeMux) and recovered through multiple-input multiple-output (MIMO) 

digital signal processing (DSP). 

 

Figure 1.2 Schematic for SDM transmission system 

  

However, transmission using few-mode fiber has some difficulties to overcome. There are 

in general three big challenges. The first is how to launch all the spatial modes carrying independ-

ent information into the few-mode fiber. The transmitter nowadays is single mode based, thus it 

poses big difficulties to launch spatial modes. Low mode dependent loss (MDL) and insertion loss 

(IL) mode Muxes are crucial to solve this problem. This is the major problem this thesis tries to 

tackle. The second challenge comes from the mode dependent gain (MDG) from the few-mode 

amplifier. The amplification of all spatial modes is performed in one few-mode amplifier. The gain 

of each spatial mode can be different, which is determined by the overlap of intensity profile of 

the spatial mode and pump light intensity profile on Erbium dopants. MDG would lead to capacity 

loss. The third challenge is the nature that modes propagate at different speed and modes weakly 

couple to each other during transmission, which would lead to a long modal delay spread at the 

coherent receiver. The complexity would be too large for the DSP to recover the signals. One effort 
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to reduce modal delay spread (MDS) is to use graded-index (GI) FMFs to replace SI SMFs. For 

the same number of modes, the MDS of GI FMFs has much shorter MDS than SI FMFs more than 

10 times  [17–19]. The spatial modes in GI FMFs can be divided into mode groups. Spatial modes 

within the mode group has almost same effective index and very close modal group delay (MGD). 

In addition, modes within the mode group have strong crosstalk during fiber transmission. For 

modes belong to different mode groups, they have different effective indexes and MGDs. The 

crosstalk between them is weak but cannot be neglected. We have typical few mode GI fibers 

supporting 3 modes (2 mode groups), 6 modes (3 mode groups), 10 modes (4 mode groups) and 

so on.  

The 3 challenges must be tackled before FMFs can be used for the replacement of SMFs.     

1.2. Multi-core fibers for space division multiplexing 

MCFs are another promising SDM fibers, which has multiple cores shared by the same cladding. 

MCFs can be divided into two categories, uncoupled-core MCFs  [20–27] and coupled-core 

MCFs  [28–32]. Uncoupled-core MCFs in essence are simply SMFs sharing the same core. The 

distance between the cores is large enough (more than 40 𝜇𝜇𝜇𝜇) so that the crosstalk between neigh-

boring cores is negligible, which in theory can achieve same performance as SMFs. The capacity 

can be more than 10 times than SMFs. The cost per bit margin of uncoupled-core MCFs over 

SMFs is not significant, since these two fibers are the same in physics. However, uncoupled-core 

MCFs do have certain advantages over SMFs, which is the compactness. The volume per mode of 

uncoupled-core MCFs over SMFs makes uncoupled-core MCFs promising in the application of 

data center connection  [33].  
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Coupled-core MCFs have smaller core to core distances, usually less than 20 𝜇𝜇𝜇𝜇. The cou-

pling between the neighboring cores can be strongly coupled to each other, which leads to signif-

icant advantages over SMFs. The big advantage over SMFs is reduced nonlinear impairment due 

to strong crosstalk. The capacity increase can be more than 20s compared to SMFs. The only 

penalty for coupled-core MCFs is the requirement of MIMO DSP at the receiver. The receiver 

complexity is directly related to the delay spread of the coupled-core MCFs, which is related to 

the core to core distance. We demonstrated that 17.5 𝜇𝜇𝜇𝜇 core to core distance would lead to small-

est delay spread  [34].  

1.3. Dissertation Outline 

In this dissertation, the main focus is on tackling the challenges in FMF transmission. The main 

effort is on the multiplexer for SDM. In addition, we demonstrate ways to introduce low MDG 

amplifiers and its new application in free space optical (FSO) communication and demonstrate 

mechanical grating for strong mode mixing to reduce MDS. CHAPTER 2:  provides introduction 

to resonant mode coupler and the work of directional coupler pair for mode Mux. CHAPTER 3: 

discusses the adiabatic mode Mux (photonic lantern) and a novel way for 6 mode photonic lantern 

which greatly reduce adiabatic requirement. CHAPTER 4:  discusses the proposal and demonstra-

tion of 10 mode photonic lantern using novel drilling-hole preform for further reducing adiabatic 

requirement. CHAPTER 5:  presents studies of cladding pumped low MDG amplifier, gain char-

acterization using photonic lanterns and its application in FSO communication. CHAPTER 6:  pre-

sents studies of the use of mechanical grating for mode mixing for few mode fiber transmission. 

Chapter 8 gives conclusions of this dissertation and discusses possible future research.   
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CHAPTER 2: RESONANT MODE MULTIPLEXER 

The resonant mode converter has been widely explored in applications of areas other than SDM 

transmission  [35–41]. The resonant mode converters include long-period grating  [37–41] and 

directional coupler  [35,36]. The most basic mechanism of long-period grating and directional 

coupler is the effective index matching, which resonantly couples one mode to the targeted mode 

with very low loss.  

For mode MUX applications, we have additional requirement, since the mode MUX re-

quires the fundamental modes from SMFs be converted to each spatial modes in FMF with low 

MDL and IL. In addition, we have one more criterion to follow for FMF long haul transmission, 

which is all the spatial modes converted must fully fill the modes FMF can support. For example, 

a 3-mode fiber can support 𝐿𝐿𝐿𝐿01 , 𝐿𝐿𝐿𝐿11𝑎𝑎  and 𝐿𝐿𝐿𝐿11𝑏𝑏 . By launching only 𝐿𝐿𝐿𝐿01  and 𝐿𝐿𝐿𝐿11𝑎𝑎  is not 

enough, since 𝐿𝐿𝐿𝐿11𝑎𝑎 and 𝐿𝐿𝐿𝐿11𝑏𝑏 will couple to each other during transmission, leading to capacity 

loss.  Long-period grating for this application is not suitable. Although it can convert the funda-

mental mode to any desired spatial mode, the lack of the ability to combine the converted mode 

together makes it not suitable as mode MUX. The directional coupler has the potential, since it can 

couple the fundamental mode of a single-mode fiber to a high-order mode of a FMF if the propa-

gation constants of the said modes are substantially the same. However, there is one major obsta-

cle, that is for few-mode fiber, we have degenerate spatial modes, like 𝐿𝐿𝐿𝐿11𝑎𝑎 , 𝐿𝐿𝐿𝐿11𝑏𝑏  and 

𝐿𝐿𝐿𝐿21𝑎𝑎 , 𝐿𝐿𝐿𝐿21𝑏𝑏. Those modes rotates and mixes in short distance. One proposed way of realizing 

independent excitation of degenerate modes using fiber-based direction couplers is to make the 

multimode fiber elliptical rather than circular  [42]. However, elliptical fibers are harder to make 

and they are not compatible with the circular MMFs used for optical transmission systems. We 
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propose here a method for multiplexing and demultiplexing degenerate mode using structured di-

rectional coupler pairs. 

2.1. Structured Directional Coupler Pair 

 Figure 2.1 illustrates an example of the structured directional coupler pair. For simplicity, 

we assume the fibers are step-index fibers. The FMF (fiber 1) has a core and cladding radius of a1 

and r1, respectively. The SMFs (fiber 2 and fiber 3) have core and cladding radius of a2 (a3) and 

r2 (r3), and length of L2 (L3), respectively. The orientation of the fibers are such that the angle 

subtended by the lines from the center of the FMF to the centers of the SMFs is φ. We use the 

multiplexing of the lowest-order degenerate LP11a (vertically oriented) and LP11b (horizontally ori-

ented) modes as an example. Multiplexing of higher-order degenerate modes will be similar. If we 

design the fiber index and core radius so that propagation constants of the LP11a and LP11b modes 

of the FMF and that of the fundamental mode of each of the SMFs are the same, the coupled-wave 

equations for the amplitudes of the four spatial modes are given by 
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of the extended core-to-core distance, waves in the two single-mode fibers do not couple to each 

other. The degenerate modes 11aLP  and 11bLP  are orthogonal to each other and are exactly the same 

if one degenerate mode is rotated by 90o. As a result, for the special case of 90oϕ = , the SMFs can 

be positioned in a way such that single-mode core 2 only couples to the LP11a and single-mode 

core 3 only couples to the LP11b. 

 

Figure 2.1 Structured directional coupler pair for mode MUX 

 

Based on that, we proposed a design for multiplexing and demultiplexing 3-spatial mode. 

In our design, the core radius of the FMF (fiber 1) is designed to be 10 mµ and the core-cladding 

index difference is 0.004 at wavelength1.55 mµ . The modes supported by the FMF are up to the 

degenerare 21LP modes. The two silica step-index SMFs are designed to be identical with core ra-

dius 3.5µm and the same core-cladding index difference, which is so designed that the effective 

index matches that of the LP11 mode (1.4459). Figure 2.2 illustrates the evolution of the field am-

plitude, simulated using the beam propagation method, in the structured directional coupler pair 

when the inputs in the two single-mode fibers are in phase, out of phase and in quadrature. The 

residual intensity is at least -20 dB down from the excited LP11 mode. The output fields in the FMF 

1a

2a

3a
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3r

ϕ
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are the 045+  LP11, 045−  LP11 and the right-handed vortex LP11 modes, respectively.  This clearly 

demonstrates the ability of the structured directional pair to generate the complete basis functions 

for the degenerate LP11 modes. Therefore, the signals in the two SMFs connected to two independ-

ent single-mode transmitters will be coupled to the two degenerate modes LP11a and LP11b. The 

launch of the fundamental mode can be achieved by splice SMF to the FMF directly. 

 

Figure 2.2 Evolution of the magnitude of the field at several distances in the coupling reason for in phase, out of 
phase and quadrature excitation. 

 

Figure 2.3 shows the coupling efficiency of the directional coupler pair for the degenerate 

LP11 modes as a function of wavelength in the C band optimized for 1550nm. It is found that when 

core to core distance is small, the bandwidth of the coupler can cover C band. 

In general, the structural directional coupler pairs can be cascaded as mode selective Mux 

for arbitrary many spatial modes. Figure 2.4 shows the schematic of the cascaded directional cou-

pler pairs. In that figure, up to 6 spatial modes can be multiplexed. Since each mode excited at the 

coupler pair is converted to a unique spatial mode of the FMF, the coupling matrix is diagonal. 
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Figure 2.3 Coupling efficiency of directional coupler pair for LP11 vs wavelength 

 

Figure 2.4 Cascaded directional coupler pairs of mode Mux 

  

11aLP

11bLP 21bLP

21aLP

01LP 02LP
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CHAPTER 3: PHOTONIC LANTERNS USING GRADED-INDEX FEW-

MODE FIBERS 

Fiber-based photonic lanterns (PLs), in which multiple optical fibers are adiabatically transformed 

into a single MMF, are a promising candidate for mode Muxes as they have low insertion loss (IL) 

and low mode dependent loss (MDL) if the PL is adiabatically tapered and packed optimally  [43–

47]. Also, the bandwidth of the PLs can be very broad compared to directional coupler pairs  [48] 

whose bandwidth is limited by the phase-matching condition. The only physics requirement for 

the PL is the mode evolution has to be adiabatic across the broad bandwidth. 

 

Figure 3.1 Schematic of photonic lantern based mode Mux (DeMux) 

 

 The structure of a photonic lantern is shown in Fig. 3.1. A PL-based multiplexer consists 

of M individual fibers with a core of index n2,m and core diameter rm surrounded by a cladding 

with refractive index n1,m that are packed into a capillary made of fluorine-doped silica with a 

refractive index n0 that is lower than the fiber cladding. The packing geometry is not arbitrary and 

it must follow certain geometry  [49]. The entire structure is then adiabatically tapered. During the 
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taper, light that is initially confined in the individual cores escape the cores as the cores shrink. 

The escaped light is captured and guided by the cladding and low-index capillary. At the end of 

the taper, each core is so small that they have little effect on the output modes of the PL, and the 

light is then guided by the core made of the fiber cladding material with the low-index capillary as 

the new cladding. When the individual fibers are identical, 𝑛𝑛2,𝑖𝑖 = 𝑛𝑛2,𝑗𝑗 and 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑗𝑗, the PLs are typ-

ically non-mode selective. Launching light into any individual fiber core will excite a combination 

of modes at the lantern output which is decided by the structural geometry of the PL. Mode-selec-

tive lanterns can be made if 𝑛𝑛2,𝑖𝑖 ≠ 𝑛𝑛2,𝑗𝑗 and/or 𝑟𝑟𝑖𝑖 ≠ 𝑟𝑟𝑗𝑗 for each mode. Similarly mode group selec-

tive (MGS) lanterns can be made if 𝑛𝑛2,𝑖𝑖 ≠ 𝑛𝑛2,𝑗𝑗 and/or 𝑟𝑟𝑖𝑖 ≠ 𝑟𝑟𝑗𝑗 for each mode group. Dissimilar fi-

bers break the degeneracy of the local modes of the lantern throughout the entire taper and force 

each input core to map to each mode of the output MMF. Symmetry can be selectively preserved 

for degenerate modes in the same mode group of the output fiber of the PL. For FMF transmission, 

modes in the same mode group couples strongly, thus mode MGS-PL is of interest. Demonstra-

tions of a MGS-PL for the LP01LP01 mode (1st mode group) and the LP11LP11 modes (2nd mode 

group) have verified this concept  [45]. A SMF with a higher effective index was mapped onto the 

𝐿𝐿𝐿𝐿01 output mode and two SMFs with a lower effective index were mapped onto the LP11 output 

mode group. 

 The ability for the PL to scale to more mode groups is very desirable for high-capacity 

SDM transmission systems. Theoretically for MGS-PLs, there is no restriction in terms of scala-

bility, provided that the adiabaticity criterion is satisfied in the taper transition, given by  [50]: 
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where Ψ1 and Ψ2 are the normalized field distribution of the local modes that are likely to couple 

to each other, 𝛽𝛽1 and 𝛽𝛽2 are their respective propagation constants, ρ is the local core radius, z is 

the longitudinal distance along the PL, A is the cross-sectional area of the PL. The first term of 

Eq. (3.1) dictates that the tapering rate 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is inversely proportional to the differences in the propa-

gation constants of the two modes (i.e., propagation constant criterion). The second terms of Eq. 

(3.1) suggests that mode profiles that change slowly as the fiber is tapered will lead to low crosstalk 

(i.e., mode profile criterion). It was argued in [50] that each of these two effects requires tapering 

length to increase linearly with 𝑁𝑁 and therefore the combined effect requires the tapering length 

to increase approximately as 𝑁𝑁2. In [50], reduced-cladding SMFs, which has much slower change 

of the mode field diameter as it is tapered, was used to satisfy the adiabaticity requirement via the 

mode profile criterion. 

 We proposed methods to alleviate the adiabatic requirement and demonstrated PLs with 

these improvements experimentally. 

3.1. Rationale of Photonic Lanterns using Few-mode Fibers 

 We propose to use GI-MMFs as the input fibers instead of SMFs to satisfy the adiabatic 

requirement via both the propagation constant criterion and the mode profile criterion. To improve 

the propagation constant criterion, large difference of (𝛽𝛽1 − 𝛽𝛽2) will greatly reduce the adiaba-

ticity requirement. Dissimilar MMFs as input fibers offer a much larger range of propagation con-

stant differences between their fundamental modes than what dissimilar SMFs allow. Propagation 

constant differences between dissimilar SMFs are constrained by the available core diameter and 

refractive index to maintain single-mode operation. To improve the mode-profile criterion, we use 
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GI-MMFs because the mode changes slower than that of the step-index MMF, which will be dis-

cussed in the following paragraph. 

 

Figure 3.2 (a) Refractive index profile of MMFs. Step index MMF (red), α = 2 graded index MMF (green), α = 0.5 
graded index MMF(blue). (b) Effective area of the fundamental mode of different fibers in the taper. Step index 

MMF (red), α = 2 graded index MMF (green), α = 0.5 graded index MMF(blue). The black line represents the ef-
fective area of SSMF (80 μm²). 

  

The use of multimode fiber for the input/output PL is practical for two reasons. First, when 

the length of the MMF is short, mode coupling between different spatial modes of the MMF is 

negligible. Second, standard SMFs (SSMFs) can be coupled to the fundamental mode of GI-MMFs 

with low splice-loss even if the diameter of the dissimilar GI-MMFs varies. The effective area of 

the fundamental mode of the GI-MMF can be designed to be approximately equal to SSMF for a 

wide range of core diameters. Figure 3.2(a) shows the refractive index profile of three types of 

MMFs [step-index MMF (red), GI-MMF with α = 2 (green) and α = 0.5 (blue)]. Figure 3.2 dis-

plays the effective areas of the fundamental mode of these fibers as a function of core diameter. 

The core-cladding index contrast is set to 1%. From Figure 3.2 (b), two advantages of GI-MMF 

compared to step-index MMF are apparent: 1) the effective area of the GI-MMFs changes much 

slower than step-index MMFs as the core diameter varies which better satisfies the mode-profile 
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criterion, and 2) the effective area of GI-MMF with α = 2, almost matches the SSMF (80μm²) 

over a wide range of core diameters between 15 µm and 25 µm, which results in low splice loss. 

Changing α and the core-cladding index contrast can further optimize the splice loss between GI-

MMFs and the external SSMF. Finally, GI-MMFs with 125 µm claddings are easier to handle than 

reduced cladding fibers.  

 

Figure 3.3 (a) Six-mode lantern index profile with 3 types of dissimilar cores (1, 2 and 3) (b) effective indexes vs 
taper ratio and (c) intensity of the modes at different stages of the taper. 

From discussions above, selection of dissimilar GI-MMFs is critical to building a MGS-

PL. The selection rules are two-fold. First, the difference of propagation constants between funda-

mental modes corresponding to the output mode groups should be as large as possible to make 

adiabatic tapering robust. For MGS PLs using GI-MMFs, the fundamental mode launched into an 
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individual core maps to the corresponding lantern mode, while higher order modes in an individual 

core couple to the cladding modes (guided by the capillary) that eventually becomes radiative. 

Figure 3.3 shows a simulation using input fibers that meet those selection rules for a three 

mode group MGS-PL. Figure 3.3(a) shows the fiber cross section. The input fiber at the center is 

a 22µm-core-diameter GI-MMF for exciting the LP01 output mode (group 1), the two 20µm-core-

diameter GI-MMFs excite the two LP11 modes (group 2) and the three 15µm-core-diameter GI-

MMFs excite the three nearly-degenerate LP21 + LP01LP21 + LP02 modes (group 3). The index 

contrast of the GI-MMF in the simulation is 1%. The claddings have diameters of 125µm. In Fig-

ure 3.3 (b), the effective indexes of the 3 mode groups of interest (1-black, 2-blue, 3-green) and 

other higher order mode groups (red) of the individual fibers that become cladding modes are 

plotted as functions of the taper ratio. It is noted that the effective index of the higher-order modes 

are smaller than that of any of the fundamental modes of the 6 dissimilar fibers, ensuring no reso-

nant coupling occurs between a high-order mode from one input fiber to a fundamental mode of 

another fiber. Another constraint is that the effective index of the modes should not cross or interact 

with each other during the taper. To be more specific, the effective index of the fundamental mode 

of each GI-MMF must be larger than that of any higher order mode in any of the input fibers. 

At a taper ratio around 0.9, the highest-order modes of each fiber begin to couple to the 

cladding modes (guided by capillary). At a taper ratio around 0.4, all the higher order modes evolve 

to the modes guided by the capillary, while the fundamental modes are still guided by individual 

cores. Geometric requirement ensures that the effective indexes of any higher-order mode were 

smaller than that of one of the fundamental modes during the tapering shown in Figure 3.3(b). 

Figure 3.3(c) depicts the intensity patterns of the PL modes at different points in the taper 

region. For taper ratios from 1 to 0.2 (region before A), the cores are brought closer together but 
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the lantern modes are still well confined within the GI-MMF cores. At B (taper ratio=0.15), the 

mode escapes the individual core and becomes guided by a combination of cores. At C (taper ratio 

around 0.11), the cores become small enough that the PL modes appear in the MMF composed of 

the fused-cladding core and capillary cladding. After C, the cores become so small that they have 

negligible effect on the PL modes and the structure can be tapered to desired dimensions. The 

transition between A and C (especially around B) is the most sensitive because the mode profiles 

change significantly as the photonic-lantern modes transition from core-guiding and cladding-

guiding. As a result, the taper speed in fabrication could be fast for taper ratios from 1.0 to A and 

should be slow between points A and C.  

3.2. Fabrication and Characterization of Photonic Lantern 

Table 3.1 shows detailed construction of GI-MMF-based MGS-PL supporting 2 and 3 mode 

groups. The GI-MMFs are selected such that the effective indices between the fundamental mode 

and the higher order modes do not cross. Figure 3.4(a) and (b) show the end facet and the near-

field output mode intensity profiles of the fabricated two mode group MGS-PL. High modal se-

lectivity is observed between these two mode groups. As expected, for the degenerate LP11LP11 

mode groups, a ring-like intensity profile representing linear combination of the two LP11LP11 

modes exhibits high selectivity to LP01LP01 mode. Figure 3.5(a) and (b) show the end facet and 

near-field output intensity profiles of a three mode group MGS-PL. Three mode groups can be 

clearly observed. The tapered end of the PL is butt coupled to a 50-µm core diameter GI-MMF. 

Figure 3.4(c) and Figure 3.5(c) show the output field at the end of a 50-m GI-MMF which indicates 

qualitatively that the desired mode groups have been excited using the MGS-PLs.  
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Table 3.1 Parameters of mode group selective lanterns 

 2-mode group selective 

lantern 

3-mode group selective 

lantern 

Fiber for 𝐿𝐿𝐿𝐿01 mode   

(mode group 1) 

20µm GI-MMF 22µm GI-MMF 

Fiber for 𝐿𝐿𝐿𝐿11 modes  

(mode group 2) 

15µm GI-MMF 20µm GI-MMF 

Fiber for 𝐿𝐿𝐿𝐿21 + 𝐿𝐿𝐿𝐿02 

modes (mode group 3) 

 

 

15µm GI-MMF 

Taper Ratio 8.5 11.2 

 Final Diameter 27µm 29µm 

 

 

Figure 3.4 (a) End facet of the two mode group selective lantern supporting two mode groups (b) near field intensity 
profile (c) intensity profiles after 50-m of GI-MMF when illuminated with a C-band broadband source 
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The time-domain transfer matrix for the three mode group MGS-PL is shown in Figure 3.6 

and contains 36 cells. The transfer matrix for a two MGS-PL would contain only 9 cells and is 

shown as a subset of the three MGS-PL transfer matrix. The columns correspond to the received 

ports, and the rows to the launched ports. The 50-m GI-MMF contains 8 degenerate mode groups 

and each group has a unique group delay. Therefore, the time-domain impulse responses can have 

8 mode-peaks. The first 3 peaks correspond to group 1, group 2, and group 3 and the last 5 peaks 

correspond to higher-order-mode (HOM) groups. For a MGS-PL with high mode selectivity, light 

launched into the fibers in mode group I (I=1,2,3) should be received on the fibers for mode group 

I. In addition, the majority of the power should be contained in the mode-peak mode groups DGD. 

These ‘signal’ cells are on the diagonal and form a 1×1 block for the first group (gray cell), a 2×2 

block for the second group (blue cells), and a 3×3 block for the third group (green cells). The 

energy that does not couple into these cells are crosstalk (red cells).  Additionally, the mode peaks 

indicate which modes are causing crosstalk. 
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Figure 3.5 (a) end facet of the three mode group selective lantern supporting two mode groups (b) near field inten-
sity profile (c) intensity profiles after 50-m of GI-MMF when illuminated with a C-band broadband source 
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Figure 3.6 Full transfer matrix for the three mode-group MGS-PL (6 spatial modes). Crosstalk between groups are 
indicated by red cells. Cell blocks on the diagonal are the signal cells. The two mode group MGS-PL matrix is a 

subset of the 6×6 matrix. 

 

The MGS-PL supporting two mode groups has a transfer matrix that contains 9 elements. 

The full transfer matrix is not shown, but it would be similar to the 3x3 matrix in Figure 3.6. To 

quantify mode selectivity we can find the total signal power received in mode group I by summing 

the ‘signal’ cells together. The total crosstalk on group I is the summation of the crosstalk cells in 

the columns corresponding to mode group I. The mode-selectivity for mode group I is defined as 

the ratio of the crosstalk on group I to the signal power received in mode group I. Figure 3.7 shows 
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these summations. The 1-1 cell shows the clean excitation of the LP01LP01 mode with suppression 

of the HOMs (e.g., the additional mode peaks). The 2-2 summation (e.g., blue cells in Figure 3.6) 

shows excitation of the LP11 modes with 40-dB rejection of the LP01LP01 mode, and about 18-dB 

rejection of the LP02 + LP21 modes. The 1-2 summation (1-2 cells in Figure 3.7) shows the total 

crosstalk between groups, and is roughly 18-dB smaller than the signals. These measurements 

show that MGS-PL supporting two mode groups has 20-dB mode selectivity for mode group 1 and 

2 into the GI-MMF. 

 

Figure 3.7 Summation of signal and crosstalk cells from the reflection transfer matrix for mode group selective lan-
tern supporting two mode groups. 

 

Next, we analyze the MGS-PL supporting three groups. Figure 3.8 shows the signal cells 

and the crosstalk cells. The 1-1 cell shows excitation of only the LP01LP01 with 31-dB suppression 

of the mode group LP21 + LP02 which has the largest crosstalk among all the undesired modes. The 

2-2 cell shows excitation of the LP11LP11 modes with 40-dB rejection of the LP01LP01 mode and 

16-dB rejection of the LP21 + LP02LP21 + LP02 modes. The 3-3 cell shows excitation of the LP21 + 

LP02LP21 + LP02 modes with 35-dB rejection of the LP01 mode, 13-dB rejection of the HOM 
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(fourth peak), and 15-dB rejection of the 𝐿𝐿𝐿𝐿11 modes. The mode selectivity is 20-dB, 10-dB and 

7-dB for groups 1, 2 and 3, respectively. 

 

Figure 3.8 Summation of signal and crosstalk cells from reflection transfer matrix for mode group selective lantern 
supporting three mode groups. 

 

By further optimizing the fabrication processes (fluorine tube size, tapering processing, 

preparation etc.), the IL of the 6-mode (3-mode group) PL can be below 1 dB when spliced to 6-

mode transmission GI fiber. The MDL for a pair of them as Mux and DeMux is around 2 dB across 

the whole C band. 

  

  

LP21+LP02

LP21+LP02

LP21+LP02

LP21+LP02 LP21+LP02 LP21+LP02
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CHAPTER 4: PHOTONIC LANTERNS SCALING TO MORE MODES 

USING NOVEL LOW-INDEX DOUBLE CLAD DRILLED MICRO-

STRUCTURED PREFORM 

For LPs scaling to more modes, in principle, we can keep on with the same method. However, we 

are encountered with two big obstacles. First, which is from the fabrication point of view, is to 

maintein the geometry of the photonic lantern input fibers. For 3-mode and 6-mode PL, it is 

possible to place fibers into right geomtry by hand. But for more modes, it is difficult to achieve it 

simply by hand. One way to overcome it is to use structures to facilitate fabrication. Both stack 

and draw preform  [51] and drilling preforms  [52] can be used for the ease of fabrication. The 

other obstacle is the adiabaticity requirement. As we have shown in Eq. 3.1 that scaling to N modes 

requires roughly N2 times tapering length due to the adiabatic requirement  [50]. What is worse is 

that the new preform adds more cladding material which makes adiabaticity requirement even 

more difficult to meet.  

 We demonstrated PLs using double-clad micro-structured preforms fabricated by drilling, 

which not only ease the fabrication complexity for mode scalablity but also alleviate the adiabatic 

requirement for lantern tapering. Additionally, the output modes are circular, and the individual 

cores have less effect on the final mode patterns. For a10-mode (20 vector modes) PL, the IL 

ranges from 0.6 to 2.0 dB across all the modes when spliced to a 10-mode GI fiber. The MDL for 

a pair of these PLs reaches a record low level of 4 dB. 

4.1. Rationale 

Figure 4.1 shows the two double cladding micro-structured drilling preforms for a 10-mode PL, 

with only slight difference. The proposed double cladding micro-structured preforms is shown in 
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Fig.1 (b). The material of the inner structure shown in Figure 4.1 (a) is the same as the fiber clad-

ding (refractive index 1.444). The structure we propose is shown in Figure 4.1 (b), whose index 

(1.442) of the inner cladding (weakly fluorine doped) is lower than the cladding of the input fibers. 

Hence, this structure is called the low-index double cladding micro-structured preform. In this 

structure, mode profile evolution is more adiabatic than the structure shown in Figure 4.1(a) for 

the same tapering length. The reason is the following, as the preform gets tapered down, the fun-

damental mode launched in each core will become less guided and expand rapidly. Structure in 

Figure 4.1(a) adds more cladding material, which makes the expansion faster and extend across 

the entire structure. While for our proposed low-index micro-structured preform, the lower index 

(1.442 of the inner) which is smaller than the cladding index captures the expanding modes. 

 

Figure 4.1 Double-clad drilled preform with the refractive index of the inner cladding (a) same as the fiber cladding 
(b) smaller than fiber cladding 

 

To demonstrate this quantitatively, we simulate mode evolution using the single-core ge-

ometries in Figure 4.2(a) and (b). It is the simplified version compared to the structure in Figure 

4.1, but the mechanism is similar. For both cases, the input fibers are the same GI-FMF. In Figure 
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4.2(a), the cladding of the fiber has the same refractive index as the inner cladding of the preform 

as indicated by the same color, while in Figure 4.2(b), the index of the fiber cladding is higher than 

that of the inner cladding of the preform as indicated by a lighter color. We then calculate the 

profiles of the fundamental of the both structures at different tapering ratios. Figure 4.2(c) shows 

the mode-field diameter (MFD) of the fundamental mode versus the taper ratio (from 1 to 0.03). 

The MFD of both cases initially decreases at the same rate until the taper ratio around 0.3, after 

which The MFD starts to increase. However, the slope of the increase of MFD is more than five 

times for structure (a) than the structure (b). 

 

Figure 4.2 Simplified one hole structure of double cladding drilled preform with GI-FMF inserted and the inner 
cladding of the one hole structure has the refractive index (a) same as the fiber cladding (b) smaller than the fiber 

cladding (c) mode field diameter vs taper ratio for both cases 

 

4.2. Non-mode selective photonic lantern 

PLs can be roughly divided into two categories: mode selective and non-mode selective PL. If the 

input fibers of the PLs are dissimilar, they become mode selective  [46]. One important type of 

mode selective lantern is mode group selective PLs  [53], which are suitable for both long haul 

transmission system and short reach applications  [54–57]. Mode group selective PLs can selec-

tively excite modes belonging to certain mode group. The transfer matrix of mode group selective 

PL is block diagonal  [53] due to mode group selectivity. 

 For non-mode selective PLs, the input fibers are identical. To make the PL shown in Figure 

4.1(b), we use 10 identical GI-FMFs as input fibers. The transfer matrix of a non-mode-selective 
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PL, in general, cannot be obtained easily, except for a 3-mode non-mode-selective PL. For a 3-

mode non-mode-selective PL, the transfer matrix can be derived from symmetry considerations 

alone. But for larger-size non-mode-selective PLs, such kind of symmetry does not exist. Since 

the input fibers are identical, the transfer matrix should be dominated by the structure, i.e., the 

geometrical arrangement of the input fibers and the claddings, of the PL. 

 

Figure 4.3(a) Double-clad drilled preform with labeled cores (b) Intensity coupling matrix between launched labeled 
core and received LP mode at the end of the photonic lantern. 

 

Due to the complexity of its transfer matrix, the only way to effectively characterize a non-

mode-selective PL is to measure its IL and MDL instead of only measuring the power transfer 

characteristics of the PL. We used the beam propagation method to first numerically calculate the 

transfer matrix and verify the effectiveness of the proposed structure, such as shown in Figure 

4.3(a), from the MDL and IL. The total length of the photonic lanterns in the simulations is 5 cm 

and the linear taper ratio is 1/36. We launch fundamental mode into each input fiber one at a time, 

then collect the output field at the output few-mode fiber of the PL. The transfer matrix can be 

calculated by computing the overlap integrals between the output field and the 10 lowest-order 

spatial modes of output few-mode fiber of the PL. MDL and IL can also be derived from the 
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transfer matrix. The simulated IL and MDL obtained from the simulations are 0.01dB and 0.03dB. 

Therefore, in theory, nearly lossless 10-mode PLs are possible using the preform shown in Figure 

4.3(a) within a taper length of only 5 cm. 

4.3. Fabrication 

We realized the preform proposed in Figure 4.1(b) in several steps. First, we fabricated the inner 

cladding and outer cladding individually. The micro-structured inner cladding, shown in Figure 

4.4 (a), was fabricated from a light fluorine-doped rod by drilling. The outer cladding shown in 

Figure 4.4 (b) is a heavily fluorine-doped tube. The inner and outer cladding have refractive indices 

of 1.442 and 1.43, respectively. Ten holes with a diameter of 130 µm arranged in two circles were 

drilled into the inner cladding. The small circle of diameter 203 µm has three holes while the larger 

circle of diameter 528 µm has seven holes. The outer diameter of the inner cladding is 780 µm. 

Ten identical GI FMFs were inserted into the 10 holes. The heavily-doped outer cladding has an 

inner diameter around 350 µm and thickness of 280 µm. Since the inner diameter of outer cladding 

is smaller than the outer diameter of inner cladding, we tapered the inner cladding by a ratio of 

1/2.4. At this taper ratio, the fundamental mode in the input GI FMF is still well confined in the 

core. Then the inner cladding was inserted into the outer cladding to complete the preform for the 

PL. Lastly, the entire preform was tapered by a ratio of 1/16 as shown in Figure 4.4 (c). The pho-

tonic lantern was then cleaved and spliced to a piece of short 10-mode GI fiber. 



30 

 

Figure 4.4 (a) The facet image of the drilled preform as the inner cladding of the proposed preform (b) insert the ta-
pered lightly doped preform into heavily doped fluorine tube to form the proposed structure (c) final taper for the 

fabrication of the photonic lantern. 

 

4.4. Characterization 

The output intensity profiles of the PL before and after splicing to 10-mode GI-FMF are shown in 

Figure 4.5 and Figure 4.6. From the Figure 4.5, we can see that the output intensity of each core 

launch is truly non mode selective. However, we can still observe that the inner three cores couples 

largely to LP01 and LP11. The quality of the PL must be evaluated by both IL and MDL after spliced 

to the 10m 10-mode GI-FMF. 

 

Figure 4.5 Mode intensity profile of photonic lantern before splicing to the 10 mode GI fiber. 
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Figure 4.6 Mode intensity profile of photonic lantern after spliceing to the 10 mode GI fiber. 

 

The loss for the ten input fibers range from 0.6 dB to 2 dB and the IL is less than 1.5 dB. 

MDL measurements require measurement of the full amplitude and phase transfer matrix. Since 

we made only one device, the MDL is measured in reflection mode. The setup for the characteri-

zation of MDL is shown in Figure 4.7 which includes a swept-wavelength interferometer (SWI) 

and the 10-mode PL under test. The SWI comprises a tunable laser source, a polarization Mux, a 

fiber interferometer and a polarization-diversity coherent receiver. The receiver includes one po-

larization beam splitter (PBS), two 2 x 2 couplers, two balanced photodiodes and two 100-MS/s 

analog-to-digital converters. In the experiment, light coming from the swept-wavelength laser 

source is split into two branches, the signal and the reference. In the signal branch, a polarization 

multiplexer ensures that two orthogonal polarizations are launched with same power. Fiber delays 

were added at the input and output of the signal to differentiate the input-output response in the 

time domain.  The swept-wavelength signal goes through one fiber delay bank into the PL and gets 

reflected by a mirror. Then it goes through the PL from the opposite side, enters the other delay 

bank and finally into the receiver. In this arrangement, light goes through the photonic lantern back 

and forth, yielding characterization of a pair of identical PLs. The full 20×20 (20 vector modes) 
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complex transfer matrix at each wavelength can be obtained as shown in  [58,59]. The MDL can 

be calculated by using singular value decomposition (SVD) of the transfer matrix at each wave-

length. The MDL for the pair of identical PLs over the entire C band (191.45 – 195.85 THz) is 

around 4 dB, as shown in Figure 4.8.The variation of MDL comes from noise and can be cleaned 

up by averaging over more traces. 

 

 

Figure 4.7 Experimental setup for transfer matrix measurement. 

 

Figure 4.8 MDL vs frequency 
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CHAPTER 5: SPACE DIVISION MULTIPLEXING AMPLIFIERS 

SDM amplifiers are indispensable components for transmission systems  [60–66]. We need few-

mode amplifier for FMF transmission and multi-core amplifier for MCF transmission. Amplifica-

tion using SDM amplifiers adds further equal MDG requirement. Perfect amplification requires 

all the spatial modes to have the same gain characteristics.  

For multi-core amplifier, the requirement is to have the same gain in each core, which 

requires that the signals from MCF be launched into the amplifier with negligible loss and the 

pump light be launched into the amplifier channel with equal power. Two pump scheme can be 

used for amplification, core pump and cladding pump. For core pump scheme, we have two op-

tions, fiber based and free space. The fiber based method requires two fan-in fan-out couplers  [67–

69] for both signal and pump light to go into the amplifier. The first fan-in fan-out coupler convert 

the N spatial channels of MCFs into N fundamental modes of SMFs, the pump and the signal are 

then combined by WDM. Then through the second fan-in fan-out coupler, N fundamental modes 

of SMFs with pump light are coupled to N spatial channels of MCFs. This technique does not 

require very complex components and is in general cheap. However, at current stage, the IL and 

MDL of the fan-in fan-out are still not negligible and the loss increases with the core number. The 

other method for core pump is free space, this method requires bulk free space optical component. 

However, the loss can be made to be very low. The other pump scheme cladding pump  [70–74]. 

Pump light is launched into the cladding modes of the MCF through side pump. The non-zero 

intensity overlap between the cladding modes and core mode ensures the amplification. This tech-

nique ensures very compact structure, MCF can be directly connected to the multi-core amplifier 

with pump fiber fused to the multi-core amplifier. Also this structure has very low IL and MDL. 
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However, one drawback is this scheme requires large amount of pump power, which is not energy 

efficient.  

The pump scheme for few-mode amplifier is quite similar. For core pump, we can use free 

space pump scheme and directional coupler based core pump. Free space pump scheme combines 

the signal and pump in free space while the directional coupler which couples the single mode 

pump of 980nm into the FMF core mode. The cladding pump scheme is the same as multi-core 

amplifiers. MDG in few-mode amplifiers is slightly more complicated than MCF since the gain is 

related to the pump intensity distribution, erbium dopant distribution and the signal mode intensity 

distribution. Thus MDG depends on the pump mode, erbium dopant distribution. Methods to 

achieve low MDG have been widely explored by tailoring the erbium dopant distribution  [75] and 

controlling the pump modes  [76]. 

In the following chapters, we first discuss our method for achieving low MDG of few-

mode amplifier. Then we discuss a novel way of measuring MDG of few-mode amplifier using 

mode selective PL. After that, we discuss the application in turbulence resisted free space optical 

(FSO) communication.  

5.1. Multi-mode amplifier for the amplification of few mode fiber channels  

We present a much simpler scheme to minimize the MDG that is compatible with cladding pump 

by intentionally oversizing the core to support many more modes required. This ensures that the 

desired amplified modes are well confined inside the core to maximize each modes overlap with 

the gain, and the cladding pump ensures that the gain medium is illuminated uniformly. Despite 

of the fact many more modes are supported, the performance is not degraded because mode mixing 

is negligible in the short amplifying fiber. We demonstrate amplification of 10 spatial modes with 

MDG below 2 dB and output power of 25 dBm. 
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Figure 5.1 a) Er-doped fiber facet image. b) modes from each mode group. c) mode dependent small signal gain vs. 
amplifier core diameter for different mode groups. The refractive index step is 2.3×103. 
 

 The amplifier is designed to minimize both MDG for up to 15-spatial modes and MDL 

when spliced to the transmission fiber which is typically graded-index to minimize the differential 

group delay. Figure 5.1(a) shows the facet image of erbium doped fiber (EDF). The core has a 

diameter of 22-24 𝜇𝜇𝜇𝜇, a refractive index (RI) difference of 2.3 × 10−3 with respect to the cladding 

and supports approximately 26-28 spatial modes. Figure 5.1 (b) shows measured mode profiles at 

the output of a 20m EDF for mode groups 1 through 7. To guide multi-mode pump light in the 

cladding, the polymer coating has a numerical aperture (NA) of 0.46 with respect to the glass 

cladding. The cladding diameter is restricted to 73 𝜇𝜇𝜇𝜇 to enhance the pump intensity. The erbium 

ion concentration is 4.5 × 1025𝑚𝑚−3 and can provide a maximum gain around 10dB/m at 1550 nm. 

 Figure 5.1(c) shows a simulation of the small signal MDG for different modes in a uniform 

doped core for a target LP01 gain of 20 dB assuming uniform illumination of the gain material 

using cladding pump. It is calculated as exp (2gLΓ𝑖𝑖𝑖𝑖) where Γ𝑖𝑖𝑖𝑖 is the intensity overlap integral of 

mode LPij with the core and gL (gain × length) is a scaling factor to adjust the LP01 gain to 20 dB. 
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When the gain is above 19 dB for the amplified mode, the MDG is less than 1 dB. 1 dB MDG is 

achieved for 10(15) modes with the amplifying core supporting 20(28) modes, respectively. 

 

Figure 5.2 a) Measured refractive index profiles. b) Simulated splice loss between amplifier and transmission fiber. 
c) Amplifier characterization. d) Gain and noise figure for 1.2-m EDF under different coupled pump powers. e) Gain 
and noise figure at 1550 nm vs. signal input power. 
 

 Any improvements by minimizing the MDG are undone if it is difficult to eliminate MDL 

at the splice to the GI transmission fiber. Figure 5.2 (a) shows the refractive index cross section of 

the amplifier and a 10 and 15 mode transmission fiber. Figure 5.2 (b) shows the simulated MDL 

and IL for splices to a 10 and 15 mode GI fiber indicating that an amplifying core of 24 𝜇𝜇𝜇𝜇 will 

have splice induced IL and MDL well below 1 dB. 

 The amplifier NF, gain and the saturated output power are characterized by launching and 

receiving the LP01 mode. Figure 5.2 (c) shows the setup for testing the amplifier. Mode selective 

PLs spliced to a 5 m piece of 10 mode GI fiber are used at the input and output to couple SMFs to 

all the modes of the amplifier. Side pump is used to couple the multi-mode pump light into the 

cladding modes (60% efficient) and eliminates the need for any wavelength dependent components. 
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 Figure 5.2 (d) shows the gain and NF for a 1.2 m EDF under different pump powers. Ap-

proximately 11 W of 980 nm pump power can fully invert the gain which is indicated by the large 

gain at 1530 nm and flat external NF of 6 dB. Figure 5.2 (e) shows the gain and NF under different 

signal powers at 1550 nm for a 1.2 m and 3.2 m EDF. The 3.2 m EDF can achieve over 25 dBm 

output power with input power between 5 and 10 dBm, however its NF performance suffers due 

to self-saturation of the input from backwards amplified spontaneous emission (ASE) which im-

proves slightly as the input signal power is increased. From these results, the optimal EDF length 

for a transmission amplifier 20 dB gain and low NF is around 2 m. 

 In a fiber without mode mixing, MDG can be measured by launching and receiving each 

mode one by one. However, in real fibers the modes mix and scramble in the fibers and at splice 

points making mode selective excitation and reception erroneous. In particular, in this setup, the 

mode selectivity is limited by the mode Mux, strong intra mode group mixing in the 10 mode GI 

fiber, and at the 4 splices between the mode Mux, 10 mode fiber and the amplifier to less than 5 

dB. Therefore, the most accurate way to measure MDL/MDG is to characterize the amplitude and 

phase transfer matrix of the amplifier between each input and output pair across all wavelengths. 

From this transfer matrix, the MDL/MDG and IL can be computed by an eigen-analysis of the 

transfer matrix. 

 We measure the TM using a SWI with spatial diversity. Figure 5.3(a) shows the intensity 

of the 20 × 20 transfer matrix (10 spatial modes and 2 polarizations each) measured across the 

entire C band. The matrix is dense which indicates some mode scrambling from the inputs to the 

outputs. Each one of the cells contains the full amplitude and phase information across the entire 

measurement range. Figure 5.3  (b) shows the impulse response computed by taking the Fourier 

transform of the impulse response of a single cell. The first 4 mode groups are 25 dB stronger than 
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the unused mode groups 5, 6 and 7 indicating good suppression of the additional unused spatial 

modes.  

 

Figure 5.3 Mode-dependent gain measurements for 10 spatial modes of a 1.6-m EDF. a) Transfer matrix, b) impulse 
response, c) mode dependent loss/gain, and mode averaged gain. 
 

 Figure 5.3 (c) shows the MDG change as the coupled pump power varies from 1.2W to 

9W. The background MDL is around 8.5 dB and is from the MDG inside the two PL. The im-

portant point is the MDG changes less than 2 dB as the pump power is varied. This means that all 

modes experience the same gain regardless of the inversion of the gain material. 

5.2. Spatially and spectrally gain characterization of few mode amplifier using photonic 

lantern 

As already mentioned, achieving optimal performance for long-haul transmission systems requires 

that FMF amplifiers produce wide band gain across the entire C-band with negligible mode-de-

pendent gain, and with a low noise figure (NF). These properties are a function of pump power, 

input signal power, and EDF length given Erbium distribution and concentration. Therefore, it is 

critical to characterize the gain of the few mode EDFAs based on input signal and pump conditions 

as a function of amplifier length. Standard techniques such as cut-back method can determine the 

gain vs. length, but they are time-consuming, destructive and not applicable for the measurement 
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of backward or bi-directionally pumped amplifiers. Alternatively, measuring the time-resolved 

Rayleigh backscattering  [77] using a swept wavelength interferometer (SWI) operated in the re-

flection mode is non-destructive and has been demonstrated to determine the distributed gain and 

appropriate length for SMF amplifiers with resolution as short as 2 cm  [78,79]. We further develop 

the SWI technique to characterize few mode EDFAs by measuring the time-resolved backscattered 

light for spatial channels. We measured the spatially and spectrally resolved gain across the C band 

of a few mode EDFA supporting 3 spatial modes. To verify the validity of SWI, we compared the 

results to well established cut-back measurements. 

Figure 5.4 shows the schematic of the SWI used for the characterization of the SDM 

EDFA  [80]. SWI capable of characterizing single mode EDFA is well established in pa-

pers  [80,81]. We will provide a brief description of operation principles and discuss spatially and 

spectrally modal gain measurement for few mode EDFA.  

 
Figure 5.4 Swept wavelength interferometer setup for SDM EDFA characterization. 

 
A SWI comprises of a tunable laser source, a fiber interferometer, and a polarization di-

versified coherent receiver. The receiver includes one polarization beam splitter (PBS), two 2×2 

couplers, two balanced photodiodes and two 100-MS/s analog-to-digital converters. Laser light 

coming from the wavelength swept laser is split into two arms of the interferometer: signal and 
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reference. The signal light is coupled into one input of the 2×2 coupler and the Rayleigh backscat-

tered light from the SDM amplifier couples out of the coupler from the other input port. Then, the 

Rayleigh backscattered light from the SDM amplifier beats with the reference beam in the polari-

zation diversity receiver which produces an interferogram that contains the amplitude and phase 

information of the backscatter vs. frequency. To further explain this, we consider one polarization 

for simplicity. An ideal swept laser source’s electric field is expressed as: 

 2
0 0( ) exp[ 2 ( / 2)]LE t E i t tπ υ γ= +   (6.1) 

Where EL(t) is the electric field of the local oscillator, E0 is the amplitude, γ  is the swept rate of 

the tunable laser. The instantaneous frequency ν(t) is the derivative of the phase in (4.1):  

 0( )t tυ υ γ= +  (6.2) 

The backward reflected signal Esig(t) can be represented as: 

 2
0 0( ) ( ) exp{ 2 [ ( ) ( ) / 2]}sigE t h E i t t dτ π υ τ γ τ τ= ⋅ − + −∫   (6.3) 

Where τ  is the delay between the signal and the reference, h is the impulse response of the device 

under test (DUT). The beat current isig(t) at the receiver can be expressed as: 

 *
1( ) Re( ( ) ( ))sig L sigi t C E t E t= ⋅   (6.4) 

Where C1 is a constant. Inserting (6.1) and (6.3) into (6.4), we can derive: 

 * 2
1 0 0 0( ) Re{( ( ) exp[ 2 ( / 2 )] }sigi t C E E h i t dτ π υ τ γτ γ τ τ= ⋅ − +∫   (6.5) 

Equivalently, we can write the beat current as the instantaneous frequency through the relation 

(6.2): 

 * 2
1 0 0( ) Re{( ( ) exp[ 2 / 2]exp[ 2 ] }sigi C E E h i i dυ τ πγτ πυτ τ= ⋅ −∫   (4.6) 
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Equation (6.5) describes the signal output at the receiver which gives an interferogram that con-

tains the amplitude and phase of the backscatter vs frequency. It can also be viewed as the Fourier 

transform of the kernel h(τ)exp(-iγτ2) once isig(t) is normalized to E0
*E0C1. The phase and amplitude 

of the kernel can be recovered from the real part of isig(ν) through a Hilbert transform of isig(t) 

provided that the h(τ) is single sided. The squared absolute value of the recovered kernel gives the 

intensity impulse respose Isig(t) in time domain, which can also be written as Isig(L) through the 

relation: 

 / 2gL v t=   (6.7) 

Isig(L) is proportional to the backward reflected signal power averaged across the swept bandwidth. 

Also for the amplifier, the unwanted backward amplified spontaneous emission (ASE) and back 

reflected forward ASE also needs to be taken into account at the receiver. The total ASE noise 

contribution at the receiver is iASE(ν). Since iASE(ν) is incoherent with the laser, only the ASE that 

beats with ELO and falls within the detector bandwidth is added to the measurement. The complete 

measured current at the receiver is:  

 ( ) ( ) ( )sig ASEi i iυ υ υ= +   (6.8) 

In the spectral domain, iASE(ν) shows the accumulated ASE noise beat with reference beam aver-

aged through the amplifier length. In the time domain impulse response, IASE(t) spreads across the 

entire time domain and produces a power offset to the trace. The measured impulse response I(L) 

(in dB) is the sum of signal impulse response Isig(L) and ASE contribution IASE(L). Since IASE(L) 

simply produces a power offset, the gain G(L0) averaged across the swept bandwidth at amplifier 

length L=L0 can be deduced directly from the measured current I(L): 

 0 0( ) ( ( ) ( 0)) / 2G L I L I L= − =   (6.9) 
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Spatially and spectrally resolved modal gain can be estimated by further exploiting the data. Spec-

tral gain at amplifier length L=L0 can be estimated by: 

 0 0( , ) ( ( , ) ( 0, )) / 2sig sigG L i L i Lυ υ υ= − =   (6.10) 

Where isig(L0,υ ) is the current representing spectrally backward reflected signal power at amplifier 

length L=L0 and isig(L=0,υ ) is the current representing spectrally backward reflected power at the 

beginning of the amplifier. isig(L=0,υ ) only reflects Rayleigh backscattering level of the amplifier 

and can be approximated as a constant. Thus isig(L=0,υ ) can be written as isig(L=0). isig(L=0) can 

be estimated when no pump or small pump is launched into the amplifier. isig(L0,υ ) can be calcu-

lated by: 

 0 0( , ) ( , ) ( )sig tot ASEi L i L iυ υ υ= −   (6.11) 

Where itot(L0,υ ) is the current representing spectrally backward reflected measured power at am-

plifier length L=L0. I(L0,υ ) can be calculated by retrieving a block of data points of I(L) centered 

at L=L0, multiplying by a Hanning window to prevent spectral leakage and then performing a 

Fourier transform. I(L) is the intensity impulse response calculated from the Hilbert transform of 

the measured current at the receiver i(υ ). iASE(υ ) can be measured at the location before or after 

the amplifier where only ASE dominates.  

    Characterization of few-mode fiber amplifiers need to selectively excite and receive spatial 

modes. For the SWI technique, one additional high extinction ratio fiber based mode multiplexer 

is required. Fiber based mode multiplexers can be used to excite one spatial mode at the input of 

the few mode fiber amplifier and collect the backscattered light of the same spatial mode. Some 

high-performance fiber multiplexers are mode selective photonic lanterns  [53] and directional 

coupler pairs  [48]. In this experiment, mode selective photonic lantern was used. 
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The 3 spatial mode selective photonic lantern was first spliced to a 3-mode GIF. The losses 

for LP01 and LP11 mode are 0.4 dB and 1.8dB at 1550nm and the extinction ratio is better than 12 

dB at the lantern output. The GIF was then spliced to the few mode EDF which has step-index 

profile. Figure 5.5 (a) shows the geometry structure of the few mode EDF. The core diameter and 

NA of the EDF are 15 μm and 0.1 respectively. Figure 5.5(b) shows the mode intensity profile 

from the few mode EDF at wavelength 980nm (above) and 1550nm (below). To estimate the loss 

of the splice induced by mode mismatch, the photonic lantern was first spliced to a passive fiber 

which has the same index profile as the EDF. The loss measured for LP01 is 0.6dB and the loss for 

LP11 is around 1.4- 1.7dB. The total loss difference is compensated at the swept laser. 

 
Figure 5.5 (a) Geometry of few mode fiber amplifier (b) mode intensity profile at 980nm and 1550nm when spliced 

to the few mode EDF (c) experimental setup for the characterization of few mode amplifier. 

 
Figure 5.5 (c) shows the experimental setup for characterizing few mode amplifier. The pump light 

is coupled into the few mode EDF through WDM and photonic lantern. The pump mode can be 

either LP01, LP11 or mixed. In this experiment, we launched and measured the gain one spatial 

mode with LP01 pump. For the amplifier fully loaded with spatial modes, this technique is still 

available given calculated or characterized Rayleigh backward coupling matrix. The signal power 

at the lantern input for LP01 and one of LP11 (either LP11a or LP11b would have similar amplification 

behavior) characterization are -11.5dBm and -9dBm so that the signal power levels fed into the 



44 

EDF are the same for both modes. The 2.5 dB input power difference comes from the loss differ-

ence of two spatial modes from the photonic lantern to the EDF. The same amount of input power 

fed into the EDF allows the comparison of mode dependent gains between two modes. The EDF 

length in the experiment is 500 m, which eliminates the need of coreless fiber since light would be 

totally absorbed and attenuated at the end facet of the EDF. 

By SWI technique, we can estimate spatially and spectrally resolved modal gain and also cal-

culate the single trip gain slope of LP01 and LP11. The round trip gain averaged across C band and 

spectrally resolved gain at 𝐿𝐿 = 14 𝑚𝑚 of LP01 are shown in Figure 5.6 (a) and (b). In Figure 5.7(a) 

and (b), the round trip gain and spectrally resolved gain at 𝐿𝐿 = 14 𝑚𝑚 of LP11 are illustrated. From 

Figure 5.6(a) and Figure 5.7(a), in the linear region, the single trip gain slopes for LP01 and LP11 

are approximately 2.5 dB/m and 2 dB/m. The spectrally resolved modal gains of LP01 and LP11 at 

𝐿𝐿 = 14 𝑚𝑚 are shown in Figure 5.6 (b) and Figure 5.7(b). The signal gain spectrum is flat for LP01 

while tilted towards longer wavelength for LP11. The modal dependent gain varies from 3dB to 

5dB across the C band. 

 
Figure 5.6 (a) The round trip gain of LP01 (b) the comparison between SWI measurement and cutback measurement 

at EDF length 14 m. 
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Figure 5.7 (a) The round trip gain of LP11 (b) the comparison between SWI measurement and cutback measurement 

at EDF length 14 m. 

 
The cut back methods were performed at 𝐿𝐿 = 14 𝑚𝑚 as comparison. For LP01, the two 

measurements agree well as shown in Figure 5.6 (b). For LP11, two measurements agree well 

within 1 dB except for the wavelength around 1560nm as shown in Figure 5.7 (b). That distinct 

point is due to the mode beating between LP01 and LP11, it comes from the crosstalk of photonic 

lantern and may come more from the splice between the EDF and the GIF due to fiber mode 

mismatch and splice offset. The possible reason why interference is first observed at longer wave-

length is that the modal delay of the EDF between LP01 and LP11 is larger at longer wavelength, 

which makes beating between LP01 and LP11 faster.  

 By using intermediate fiber with better modal match to the EDF or optimizing the pho-

tonic lantern with better mode extinction ratio, the modal crosstalk can be significantly suppressed 

and the accuracy of the proposed SWI solution can be improved. 
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5.3. Turbulence-resistant free-space optical communication using few-mode preamplified 

receiver 

The low MDG amplifier mentioned can find another niche application in turbulence-resistant FSO 

communications. FSO communication offers an orders-of-magnitude increase in transmission ca-

pacity, while simultaneously reducing antenna size compared to that of modern radio-frequency 

(RF) technology. Unfortunately, atmospheric turbulence distorts the wavefront, resulting in both 

amplitude and phase errors at the detector  [82]. Several methods to combat turbulence for FSO 

have been investigated including arrayed incoherent receivers  [83], pulse-position modulation 

signaling with coherent arrayed receivers  [84], and digital coherent arrays with electronic wave-

front correction  [85]. Nevertheless, the state of the art in FSO communication is dominated by the 

use of adaptive optics (AO) to correct for wavefront distortions caused by atmospheric turbulence, 

followed by optically single-mode preamplified receivers. If wavefront correction is perfect, such 

a system can restore the ideal receiver sensitivity at 38.3 photons/bit for OOK. However, AO FSO 

systems are expensive and have large size, weight, and power consumption. More importantly, 

AO FSO systems still leave much to be desired in terms of reliability since AO does not provide 

perfect wavefront correction due to the limited throw, limited spatial resolution of the optics, and 

limited response time making such a system inadequate to follow rapid changes in turbulent con-

ditions. As a result, the theoretical sensitivity limit is rarely achieved in practice. Since reliability 

is the key impediment to widespread adoption of FSO communication systems, it is highly desir-

able to develop alternative solutions to combat turbulence and improve FSO reliability. 

A distorted wavefront is a superposition of the fundamental mode (Gaussian) and high-

order modes (e.g. Hermite-Gaussian). If photons in all of the modes in a distorted wavefront are 
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detected and the photocurrent due to photons in every mode are summed up constructively, wave-

front correction becomes dispensable. A multimode photodetector can readily detect photons in 

all of the modes in a distorted wavefront. However, sensitivity for the multimode photodetector 

will be thermal noise limited at 1000s photons/bit for OOK.  Taking advantage of recent advances 

in SDM, we demonstrate a turbulence-tolerant FSO communication system using a few-mode pre-

amplified receiver consisting of a few-mode EDFA and a multimode photodetector. In comparison 

with an FSO system using a single-mode preamplified receiver, our few-mode FSO system can 

achieve error-free transmission with a 6 dB advantage in power budget over a single-mode FSO 

system under the same conditions. 

 

Figure 5.8 (a) Schematic of the FSO communication system including simulated atmospheric turbulence and the 
few-mode preamplifier. (b) Interferogram at 442 nm for phase retrieval. (c) Unwrapped phase at 1553nm derived 

from the interferogram. 

 

 A FSO communication system consists of a transmitter, the free-space channel and a re-

ceiver, as shown in Figure 5.8. In general, the free-space channel is turbulent as a result of spatial 

inhomogeneities in temperature and pressure, which lead to transverse and longitudinal variations 

of the refractive index. Instead of the conventional approach of using AO to correct wavefront 

distortion, our solution is to use a few-mode preamplified receiver to convert photons in all modes 
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into electrons. We used a 10-mode GI fiber to collect the light instead of a SMF. The collected 

signal is then amplified by a cladding-pumped few-mode amplifier before going to the multimode 

detector. We will present the details of the receiver and system performance in the next sections. 

Here we briefly describe how turbulence was generated in our experiments. For propagation dis-

tances within a few kilometers, intensity variation is typically much less than phase variation. 

Thus, turbulence can be simulated by a phase plate with appropriate randomness  [86]. The 

strength of turbulence can be characterized by a phase structure function D(r), which describes the 

mean squared phase variations at different locations as defined by:  

 𝐷𝐷(𝑟𝑟) = 〈(𝜑𝜑�𝑟𝑟′���⃑ � − 𝜑𝜑�𝑟𝑟′���⃑ +  𝑟𝑟�)2〉      (6.12) 

where 𝜑𝜑 denotes the local phase. In the sense of Kolmogorov turbulence  [87,88], the phase struc-

ture function D is a function of the coherence length r0: 

𝐷𝐷(𝑟𝑟) = 6.88(𝑟𝑟/𝑟𝑟0)5/3                                                 (6.13) 

The wavenumber (𝑘𝑘) spectral density is: 

Φ(𝑘𝑘) = 0.023𝑟𝑟0−5/3𝑘𝑘−11/3                                             (6.14) 

We emulate such a phase variation in our experiment using phase plates created by repeatedly 

spray coating glass substrates. We measured the phase distribution using a phase-shifting interfer-

ometer, in which the optical path difference is achieved by applying different voltages to a liquid 

crystal cell. Figure 5.8 (b) shows one of the phase interferograms. The phase structure function 

can be calculated by Eq. (6.12).  The Fried parameter is calculated to be 5 mm. The total wavefront 

distortion within the 6.3 mm aperture of the interferometer is approximately π± . 
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Figure 5.9 (a) Schematic of the few-mode EDFA. (b) MDG between the lowest (LP01) and the highest-order mode 

(LP31) vs EDF core diameter. (c) Gain characterization of the LP01 mode at different pump powers for an input 
power of -12 dBm. (d) Gain characterization of the LP01 mode at 1553nm with different input powers. 

 

 Low noise figure (NF) and low mode-dependent gain (MDG) of the few-mode amplifier is 

critical for the preamplified few mode receiver. Figure 5.9 (a) shows the schematic of the low 

MDG cladding pumped EDFA. A cladding-pumped few-mode amplifier with an EDF of core di-

ameter 26 µm was built which can support 42 spatial modes. The few-mode Er-doped fiber has 

two cladding layers, an outer layer having lower refractive index and an inner cladding having 

higher refractive index. Pump light coming from a multi-mode laser diode (MMLD) is coupled 

into the inner cladding of the EDF through side pumping. To realize side pumping, we spliced the 

MMF pigtail of the MMLD to a coreless fiber and down tapered the coreless fiber from 125 μm 

to 20 μm with a tapered length of 30 mm. Then, the tapered coreless fiber was wrapped 1.5 turns 

around the 2m EDF. The small-signal gain is 10.5 dB/m. Since the intensity overlap of the 10 

spatial modes of the input signal with the multimode pump is approximately the same, MDG is 
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greatly reduced. Our simulation in Figure 5.9 (b) shows that, when the EDF core diameter in-

creases, the small-signal MDG can be reduced to less 0.5 dB. Figure 5.9 (c) and (d) show the gain 

characterization of the LP01 mode at different pump power and input power, respectively. 

 To evaluate the advantage of using few-mode preamplified receivers, phase plates repre-

senting various turbulence levels were generated based on Eq. (6.12), with each turbulence level 

having 500 statistically independent realizations. We simulate turbulence-induced power loss for 

both the 10-mode receiver (blue) and the single-mode receiver (red), as shown in Figure 5.10 (a). 

The term (d/r0)  on the x-axis is a measure of phase variation and d is the aperture size (1cm in 

this simulation). The average losses are represented by solid lines. The shaded region represents 

the power variation for different realizations of each turbulence condition. It is observed that the 

average loss and received power fluctuation for the10-mode receiver are much smaller than the 

single-mode receiver. Inclusion of more mode will improve the performance in this regard further. 

 However, the sensitivity of the few-mode preamplified OOK receiver decreases as the 

number of modes increases. This is because of the increase in the degrees of freedom of the spon-

taneous emission noise. Assuming that each mode has equal gain and noise figure, the few-mode 

preamplified receiver sensitivity as a function of the number of modes in the distorted wavefront 

is shown in Figure 5.10 (b). Fortunately, the sensitivity increases slowly as the number of modes 

increases, leading to a sensitivity penalty of only 1.2 dB (3 dB) when using 10 (50) modes. 
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Figure 5.10 (a) Received power loss at different phase variations. (b) Sensitivity of few-mode preamplified OOK 
receiver as a function of the number of modes. (c)  BERs for the 10-mode and single-mode preamplified receiver vs 

transmitter power. 

 

 In our transmission experiment, a 10 GHz OOK signal from a single-mode transmitter is 

expanded into a beam of diameter around 1 cm. With a coherence length of 5 mm, the phase 

variation across the beam is scaled by (d/r0)  to 2π± . The pump power for the few-mode amplifier 

is 6.63 W, which provides a ~15 dB gain shown in Figure 5.9 (d). The bit error rate (BER) was 

measured at different transmitter power levels as shown in Figure 5.10 (c). As a comparison, BERs 

using a single-mode preamplifier with the same gain were also measured. The comparison shows 

that the 10-mode preamplified receiver can provide a 6 dB increase in power budget over the 

single-mode preamplified receiver. 

 We take advantage of recent advances in space-division multiplexing to construct turbu-

lence-resistant FSO communication systems. By converting the current single-mode preamplified 

receivers to few-mode preamplified receivers, we eliminate the complicated, expensive and some-

time unreliable adaptive optics in FSO. A 6 dB increase in FSO link power budget was demon-

strated in this experiment. The technique presented here can significantly expand the application 
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space for FSO communication. Also, the few-mode preamplified receivers can be used with AO 

systems for more severe environment or algorithm reduction. 

  



53 

CHAPTER 6: LONG-PERIOD GRATING FOR INTRODUCING STRONG 

MODE CROSSTALK 

Another problem facing few mode fiber transmission system is the group delay spread at the re-

civer side. One way to mitigate it is to introduce strong mode coupling in the FMF  [89]. One can 

simply insert a mode scrambler sandwiched between a pair of mode multiplexers. Another pro-

posal is using long-period gratings (LPG) to achieve strong mode coupling between mode groups 

in GI FMFs  [90–92]. LPG is a low-loss mode converter mediated by phase-matched mode cou-

pling. It has been used for gain equalization  [93], chromatic dispersion compensation  [94] and 

sensors  [95]. LPGs can be fabricated using UV exposure  [96–102], CO2 laser writing  [103–109] 

or simply mechanical pressure  [110–114]. The main drawback of using LPG directly written on 

GI transmission fiber for mode mixing is losses due to phase-matched output coupling of the 

modes of the highest mode group to lossy cladding modes. 

 

Figure 6.1 (a) The schematic of mechanical grating using 8 mode step index fiber (b) the effective index of spatial 
modes of 8-mode step index fiber. 
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Here we propose a new architecture of grating as a strong coupling device. We first show 

that such a loss could be avoided for 3-mode mixing if the LPG is installed on an 8-mode step-

index (SI) FMF. The architecture for the mode mixing is shown in Figure 6.1(a) in which the 3-

mode graded-index transmission fiber is spliced to an 8-mode SI FMF on which a LPG is installed. 

We show that LP11 modes in 8-mode SI FMF will not couple to higher order modes or cladding 

modes. Figure 6.1(b) shows the effective indexes of the modes of the 8-mode SI FMF. The effec-

tive index difference between the LP01 and LP11 modes is 2.21 × 10-3. The effective index differ-

ence between the LP11 and LP21 modes is 2.83 × 10-3 and the effective index difference between 

the LP11 mode and all other modes is larger than 2.83 × 10-3. As a result, an LPG phase matched 

between the LP01 and LP11 modes of the SI FMF is not phase matched for mode coupling between 

LP11 and any other modes.  So signals of the LP01 and LP11 modes in transmission fibers cannot 

be coupled to the higher-order mode or cladding modes, thus ultra-low loss mode conversion can 

be achieved. 

 

 

Figure 6.2 Image of the long period grating. 
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More generally, if the transmission fiber supports more than 3 modes, more gratings may 

be needed for the mode mixing since each grating is installed on the SI-FMF which has different 

effective index between the mode groups. Each grating is installed on a specially designed SI-

FMF, which requires no resonant coupling from the transmission modes to the higher order modes 

or cladding modes. Such a design is in principle similar to 3-mode mixing case. Then by concate-

nating the gratings, mode mixing can be achieved. A possible drawback of the proposed approach 

is the splice loss between the designed SI-FMF and GI transmission fiber or one designed SI-FMF 

to another designed SI-FMF due to mode mismatch. The splice loss due to mode mismatch could, 

however, be largely suppressed by using intermediate fibers. 

In experiment, we demonstrated mixing of three spatial modes in a GI transmission fiber 

using LPG on an eight-mode SI-FMF. Also, we fully characterized the coupling matrix character-

istics of the grating for the first time. The LPG used in experiment is a pressure-induced mechan-

ical grating, as shown in Figure 6.2. When a fiber is placed across the grating held by a clamp, a 

pressure can be exerted by the pressure screw through the flat pressure plate. A corresponding 

index perturbation is thus introduced through the elasto-optic effect. The grating period used is 

710µm which is designed to match the index difference between the LP01 and LP11 modes in the 

SI-FMF. The phase-matching condition is given by: 

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,01 − 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒,11 = 𝜆𝜆
Λ�                                                    (8.1) 

where neff,01 and neff,11 are the effective indexes of the LP01 and LP11 modes, 𝜆𝜆 is the wavelength 

and Λ is the grating period. The grating was attached to a base that allows adjustment of the angle 

between the fiber and the grating, and thus effective grating period or resonant wavelength. 
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Figure 6.3 Spectrum response of the LP01 under the long period grating. 

 

To characterize the LPG, we measured the transmission spectrum of the LPG using a broadband 

laser source and an optical spectrum analyzer (OSA). The SMF-pigtailed broadband laser source 

was center launched into the 8-mode SI FMF to predominantly excite the fundamental LP01 mode. 

At the output end, the 8-mode SI FMF is center spliced to the input SMF of the OSA Figure 6.3 

shows the transmission spectrum of the LPG, which is optimally phase matched at 1542 nm. The 

3-dB bandwidth for mode coupling is more than 80nm. This broad mode-coupling bandwidth is 

determined by the shape of each tooth of the LPG and the corresponding spatial frequency content 

of the index perturbation. 
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Figure 6.4 Mode intensity profile of each spatial mode without and with grating pressure. 

 

Figure 6.5 (a) Experimental setup for grating characterization. (b) MDL without and with grating vs wavelength (c) 
coupling matrix without and with grating at different wavelengths. 



58 

To characterize the mode-mixing performance, the two ends of the SI LPG were spliced to 

the 3-mode GI transmission fibers. The insertion loss (IL) was characterized by selectively exciting 

each spatial mode (LP01 or LP11) using a mode-selective photonic lantern, which maps fundamen-

tal modes of input fibers to spatial modes of a FMF [xx]. Figure 6.4 shows the output (GI FMF-SI 

LPG-GI FMF) intensity profiles corresponding to each photonic lantern input fiber when (upper) 

no pressure is applied on the grating and (lower) when pressure is exerted on the grating. When no 

pressure is applied to the grating, the output is relatively pure LP mode. When pressure is exerted 

on the grating, the output becomes a mixture of the LP01 and LP11 modes, which is an evidence of 

strong coupling. When a pressure is applied to the LPG for strong mode mixing, the insertion loss 

was measured to be around 0.5 dB when each of the three modes was selectively excited. This loss 

includes the LPG and also the two splices from the SI FMF to the GI transmission fiber. Similar 

loss for selective excitations of the LP01 and LP11 modes is an indication of low MDL. 

To characterize the MDL of the LPG, a pair of mode-selective photonic lanterns and a 

swept wavelength interferometer (SWI) were used. The experimental setup is shown in Figure 

6.5(a). The SWI comprises a tunable laser source, a polarization multiplexer (Pol Mux), a fiber 

interferometer and a polarization-diversity coherent receiver. The receiver includes one polariza-

tion beam splitter (PBS), two 2 x 2 couplers, two balanced photodiodes and two 100-MS/s analog-

to-digital converters. In the experiment, the swept-wavelength laser light was first split into the 

signal and reference arms of the interferometer. The signal light goes through the Pol Mux so that 

two orthogonal polarizations of equal power were generated. Fiber delays were added at the input 

and output of the pair of 3-mode photonic lanterns to differentiate the input-output response in the 

time domain. The LPG was inserted in between the two lanterns. The principle of operation of the 

SWI has been explained in previous chapter.The SWI can measure the 6x6 transfer matrix of the 
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system at each wavelength within the sweeping range. The 3x3 power transfer matrix between the 

total powers in both polarizations of output modes and those of the input mode can be readily 

derived from the 6x6 transfer matrix. MDL is defined as the ratio between the largest and smallest 

singular value of the transfer matrix. The transfer matrix of an ideal mode selective photonic lan-

tern is unitary and block diagonal. Thus the MDL of the system is the same as the MDL of the 

grating. However, due to fabrication imperfections, especially the mode mismatch between the 

photonic lantern to the 3-mode GI, the transfer matrix without the LPG is not unitary.  Since the 

transfer matrix of the photonic lanterns, even including the mode mismatch between the output 

fiber of FMF photonic lantern to the 3-mode GI transmission FMF, is quasi unitary, the MDL of 

the LPG can be estimated from two measurements. One measures the MDL of a pair of photonic 

lanterns and the other measures the pair of photonic lanterns plus the LPG inserted in between. 

The difference in MDL between these two measurements can be approximated as the MDL intro-

duced by the LPG itself. Figure 6.5(b) shows the MDLs without (blue) and with (red) the LPG 

from 1520nm to 1580nm. The blue curve and the red curve almost overlap with each other, which 

means that the MDL the LPG is negligible. This result is in agreement with the loss measurements 

for the LP01 and LP11 mode presented earlier. 

We next looked at the details of the power transfer matrix at different wavelengths, pre-

sented graphically in Figure 6.5 (c). The power transfer matrix without and with grating at three 

wavelengths within the C band are shown. The column shows the specific mode launched while 

the row shows the specific mode received, which forms the 3 × 3 power coupling matrix. Without 

grating, the power coupling matrix is almost block diagonal. More than 80% of the power of LP01 

is received by LP01, the LP11 behave in a similar fashion. When a pressure is applied on the grating, 

the power transfer matrix changes dramatically. We now observe large off-block diagonal terms 
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which represent strong coupling between the LP01 and LP11 modes. At 1535nm and 1545nm 

(1570nm), more than 90% (70%) of the power in the LP01 mode couples to the LP11 mode, which 

is in consistency with Fig. 3. Similarly, coupling from the two LP11 modes to the LP01 mode can 

be clearly observed. More than 70% of the power in the LP11 modes are coupled to the LP01 mode, 

which can be estimated by adding two power matrix elements: row 2 column 1 and row 3 column 

1 

In conclusion, we demonstrated strong mode mixing across large bandwidth for 3-spatial 

mode using long period mechanical grating on an 8 mode SI FMF with low IL and MDL. 
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