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ABSTRACT

The generation of electron-hole pairs in materials has great importance. In direct

bandgap semiconductor materials, the mechanism of radiative recombination of electron-

hole pairs leads to the emission of photons, which is the basis of Light Emitting Diodes

(LEDs). The excitation of electron-hole pairs by absorption of photons is the active process

in photodiodes, solar cells, and other semiconductor photodetector devices. In optoelectronic

devices such as optical switches which are based on transmission and reflection of the photons,

electron-hole pairs excitation is a key for the device performance. Diodes and transistors

are also great discoveries in electronics which rely on the generation and recombination of

electron-hole pairs at p-n junctions. In three-dimensional topological insulators (3D TIs)

materials nanostructures excitation of electron-hole pairs can be utilized for the quantum

memory, quantum information and quantum teleportation. In two-dimensional (2D) layered

materials like graphene, MoS2, MoSe2, WS2 and WSe2 generation and recombination of

electron hole pairs is main process at p-n junctions, infrared detectors and sensors.

This PhD thesis is concerned with the physics of different types of electron-hole pairs

in various materials, such as wide-bandgap semiconductors, 3D topological insulators, and

plasmonic excitations in metallic nanostructures. The materials of interest are wide bandgap

semiconductors such as TiO2 , 3D TIs such as Pb1−xSnxTe and the 2D layered materials such
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as MoS2 and MoO3. We study the electronic and optical properties in bulk and nanostruc-

tures and find applications in the area of semiclassical and quantum information processing.

One of the interesting applications we focus in this thesis is shift in surface plasmon reso-

nance due to reduction in index of refraction of surrounding dielectric environment which in

turns shifts the wavelength of surface plasmon resonance up to 125 nm for carrier density of

1022/cm3. Employing this effect, we present a model of a light controlled plasmon switching

using a hybrid metal-dielectric heterostructures.

In 3D TIs nanostructures, the time reversible spin partners in the valence and con-

duction band can be coupled by a left and a right handed circular polarization of the light.

Such coupling of light with electron-hole pair polarization provides an unique opportunity

to utilize 3D TIs in quantum information processing and spintronics devices. We present a

model of a 3D TI quantum dot made of spherical core-bulk heterostructure. When a 3D TI

QD is embedded inside a cavity, the single-photon Faraday rotation provides the possibility

to implement optically mediated quantum teleportation and quantum information process-

ing with 3D TI QDs, where the qubit is defined by either an electron-hole pair, a single

electron spin, or a single hole spin in a 3D TI QD.

Due to excellent transport properties in single and multiple layers of 2D layered

materials, several efforts have demonstrated the possibility to engineer electronic and opto-

electronic devices based on MoS2. In this thesis, we focus on theoretical and experimental

study of electrical property and photoluminescence tuning, both in a single-layer of MoS2.

We present theoretical analysis of experimental results from the point of view of stability
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of MoO3 defects in MoS2 single layer and bandstructures calculation. In experiment, the

electrical property of a single layer of MoS2 can be tuned from semiconducting to insulating

regime via controlled exposure to oxygen plasma. The quenching of photoluminescence of a

single sheet of MoS2 has also been observed upon exposure to oxygen plasmas. We calculate

the direct to indirect band gap transitions by going from MoS2 single sheet to MoO3 single

sheet during the plasma exposure, which is due to the formation of MoO3 rich defect domains

inside a MoS2 sheet.
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CHAPTER 1
INTRODUCTION

Since the discovery of Bohr’s semiclassical theory of atom, it has been well-known

that electrons are permitted to circulate around the nucleus in a certain number of close

orbits. Along with motion of the electrons, these orbits around the nucleus are quantized

in discrete numbers, as given by the famous Bohr quantization relation, nλ = 2πr, where n

an is integer. λ and r are, respectively, the de Broglie’s wavelength and radius of the orbit.

Many fascinating phenomena in solid state physics rely on the quantization of the electronic

motion and the electron’s circular orbit around the nucleus. The quantized quantities are

always characterized by quantum numbers. These numbers uniquely identify the properties

of electrons and atoms in physics, and are the consequence of symmetries and boundary

conditions present in the physical system.

For example, in the hydrogen atom an electron experiences a spherically symmetric

potential due to the nucleus, which in turn provides a centrifugal force to keep the electron

in circular orbits. The consequence of the periodic boundary condition of the closed orbits is

that the electronic properties, such as the energy of the electron, are quantized with quantum

numbers such as n, l, ml, and so on. Each energy level is specified by a particular value of the

quantum numbers. The lowest possible energy state, which is determined by the zero-point
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energy, defines the ground state of the electron. When two or more atoms of the same or

different species bind together to form a molecule, the atomic orbitals from different atom

hybridize with each other to form molecular orbitals with bonding and antibonding states.

This means that the molecular orbitals are made of linear combinations of atomic orbitals,

which is the basis for the Linear Combination of Atomic Orbitals (LCAO) method.

A statistically large number (∼ 1023) of atoms bind together to form a solid. A

solid can have several symmetries, one of which is the translation symmetry due to the

periodic arrangements of atoms in a lattice. A simple band theory relies on the translation

symmetry of the solid. When many atoms are brought together to form a solid, the atomic

orbitals from the neighboring atoms hybridize with each other. Electrons are subjected to

a periodic potential V (r) = V (r + a), where r is the position vector of an electron and a is

the lattice constant. This leads to a compact and a continuous structure of orbitals in the

form of bands as shown in Figure 1.1. At 0 K, below the Fermi energy all the bands are

occupied by electrons. Above the Fermi energy all the bands are empty. For materials like

semiconductors, The Fermi energy lies between two bands. The energy separation between

these two bands is called the bandgap. The bands around the Fermi level are usually derived

from the valence orbitals of the atoms. Metals are zero bandgap materials because the Fermi

level lies inside a band, and therefore the electrons can be accelerated with an infinitesimally

small bias voltage. In contrast, semiconductors are materials with bandgaps ranging from

several hundreds of meV to a few eV. Thus, an excitation energy exceeding the bandgap is

required to generate mobile electrons in intrinsic semiconductor materials.
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Figure 1.1: Atomic level splitting into bands as the atoms are brought together. When

the atoms are far apart levels are discrete and N-fold degenerate. As they come closer the

discrete levels form bands.

The bandgap in a solid has a significant role in modern electronic and optoelectronic

devices. The semiconductor technology relies on the excitation of electrons and holes at band

extrema across the bandgap. At zero temperature in a semiconductor the valence band is

completely occupied and separated from the conduction band by an energy gap of magnitude

Eg. At room temperature the occupation of the conduction band is proportional to a factor

e−βEg/2 ∼ 10−9, where β = 1/kBT and kB is the Boltzmann constant. The thermal excitation

provides an exponentially growing number of charge carriers with exponential increase in

the conductivity with rising temperature, in contrast to metals where electron-electron and

electron-phonon scattering reduces the conductivity as temperature rises. If the bandgap

is below 1 eV, the thermal effect is more pronounced as the carriers can be excited due to

thermal excitation. The semiconductor crystal is transparent for incident light with photon
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energy below Eg. Photons with energy above Eg are absorbed with efficiency according to

the strength of the light-matter interaction. This process creates a large number of electron

and holes (carriers) in the semiconductor. Carrier generation leads to quasi-equilibrium

nonlinearities. The process drives the whole semiconductor into non-equilibrium dynamics,

but the carriers are locally in quasi-equilibrium in their respective bands. The generated

electron-hole pairs are thermalized at each band before they undergo [1] non-radiative Auger

and radiative recombination. The laser pump pulse excites electrons in the picosecond regime

and electrons acquire an electronic temperature Te which can be much higher than the lattice

temperature Tl, depending on laser pulse energy. In several hundreds of femtoseconds to a few

picoseconds after excitation, electrons lose energy by electron-phonon and electron-electron

scattering process, thereby thermalizing in the conduction band. The same happens to holes

in the valence band. The experiment shows that carriers are cooled to the lattice temperature

on a timescale of the order of 100 picoseconds. [2] Due to the principle of energy minimization,

thermalized electrons and holes in quasi-equilibrium occupy the available states from the

bottom of the conduction band and the top of the valence band, respectively, so that the

energetically lowest states are occupied first. These generated free electron-hole pairs can

alter the index of refraction of the materials. Due to Pauli’s exclusion principle, further

excitation of the carriers are suppressed if the lowest conduction bands are filled, which

causes a decrease in the rate of absorption of photons.

The generation of electron-hole pairs in materials has great importance. In direct

bandgap semiconductor materials, the mechanism of radiative recombination of electron-hole
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pairs leads to the emission of photons, which is the basis of Light Emitting Diodes (LEDs).

In photodiodes, solar cells, and other semiconductor photodetector devices the excitation of

electron-hole pairs by absorption of photons is the active process. In optoelectronic devices

such as optical switches which are based on transmission and reflection of the photons,

electron-hole pairs excitation is a key for the device performance. Diodes and transistors

are also great discoveries in electronics which rely on the generation and recombination of

electron-hole pairs at p-n junctions. A semiconductor heterostructures and semiconductor-

metal heterostructures can form barrier regions due to charges redistribution or due to band

misalignments. The working mechanism of devices that implement such heterostructures can

be well understood by studying the dynamics of the electrons and holes across the barrier.

In 2D materials like graphene, electron-hole pairs can be excited around the Dirac

point. An electron in a sheet of graphene has a linear excitation spectrum around the Dirac

point. The Fermi level can be tuned using a gate voltage.[3] An electron at the valence band

absorbs an energy ~ω ≥ 2 |EF |, where EF is the Fermi level measured from the Dirac point,

and is excited to the conduction band leaving a hole behind. Small band-gap semiconductors

usually have large electron-hole recombination rates due to Coulomb scattering. Due to linear

excitation, and energy and momentum conservation requirement, the Coulomb scattering in

graphene is restricted so that electron-hole recombination time can be much larger than 1

picosecond for electron-hole densities smaller than 1012cm−2.[4] The recombination rate is

mainly dominated by the Auger process. Graphene has large optical phonon energy (196
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meV).[5] Light absorption in graphene is universal[6], Pgraphene = πα, where α is the fine

structure constant.

Like in graphene, 3D topological insulator (3D TI) materials such as Bi2Te3, Bi2Se3,

Bi1−xSbx and Pb1−xSnxTe are also characterized by the presence of linear excitation energy at

band crossing point after which they enter into the topological regime.[7] These materials are

metallic on the surface due to the presence of gapless surface/interface states, but insulators

in the bulk.[8, 9, 10, 11] The electron’s spin is locked in perpendicular direction to the

momentum due to the Rashba spin-orbit coupling.[12] In graphene it is the pseudo-spin that

is locked to the momentum, pointing either in the same or in the opposite direction. The

spin-orbit coupling in graphene is negligibly small. Therefore the real spin is not locked

to the momentum direction in graphene. In topological insulators, time reversal symmetry,

leading to Kramers degeneracy, protects the surface states, which form Kramers pairs, from

back scattering off non-magnetic impurities. The interband and intraband transitions obey

strict optical selection rules that govern the low energy excitation of the electron-hole pairs

around the Dirac point on the surface. In 3D TIs nanostructures, the Kramers partners in

the valence and conduction band can be coupled by a left (σ−) and a right (σ+) handed

circular polarization of the light. Such coupling of light with electron-hole pair polarization

provides the unique opportunity to utilize 3D TIs in quantum information processing and

spintronics devices. There is an electron-hole symmetry in the linear excitation spectrum

of 3D TIs, which is in contrast to the electorn-hole dispersion in a semiconductor, where

electron and hole have different masses. In Bi2Te3 film with thickness exceeding 6 quintuple
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layers (QLs), the low energy absorption of photons by the gapless states always occurs with

photon energy ranging from 0 to 0.3 eV. Due to two Dirac cones from up and down surfaces,

which provide two real spins, the absorption is half of the one in graphene[4], Pgapless = π
2α.

In less than 6 QLs, the case would be different as the gap is opened due to interaction

between the states from the opposite surfaces, and therefore, the absorption becomes gap

dependent.

1.1 Light-matter Interaction

An electron in the ground energy level can be excited to a higher-energy level by

means of the absorption of a photon of energy matching the energy separation between

the two levels. In atoms, the valence electrons are loosely bound. They can be easily

excited to higher levels. Similarly, in a molecule electrons occupying the valence molecular

orbitals are loosely bound and can be excited with a small amount of energy. In a solid,

electrons occupying the bands around the Fermi level are more loosely bound than those

occupying the bands lying deeply below the Fermi level. In insulators the bandgap is wide

and energy needed to excite valence electrons close to the Fermi level is much larger than in

semiconductors. In metals, in principle, no energy is needed to excite the electrons as the

bandgap is zero.
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Let us consider a perfect crystal. The Hamiltonian of the system can be written as

H =
∑
i

p2
i

2m +
∑
j

P 2
j

2Mj

+ 1
2
∑
j′ , j

′ ZjZj′e
2

4πεo
∣∣∣Rj −Rj′

∣∣∣
−
∑
j, i

Zje
2

4πεo
∣∣∣ri −Rj′

∣∣∣ + 1
2

′∑
j, i

e2

4πεo
∣∣∣ri − rj′

∣∣∣ , (1.1)

where ri denotes the position of the ith electron, Rj is the position of the jth nucleus,

Zj is the atomic number of the nucleus, pi and Pj are the momentum operators of the

electrons and nuclei, respectively. ∑′ denotes the summation over pairs of indices which

are not identical. The quantum mechanical solution for such a large number of electrons is

formidable. We need some approximations to solve this problem. The first approximation

is that we separate electrons into two groups: valence and core electrons. Since the core

electrons are localized near the nuclei we can combine them with the nuclei to make ion cores.

The second approximation is called the Born-Oppenheimer approximation. The frequencies

of the ionic vibration in a solid are less than 1013 s−1, while in a typical semiconductor with

a gap of 1 eV the electronic frequencies are of the order of 1015 s−1. Thus, for the electrons

the ions appear to be at rest, i.e. the ions cannot follow the motion of the electrons, which is

the basis for the Born-Oppenheimer approximation. Consequently, the electronic motion in

Equation 4.1 can be separated from the ionic motion. The electronic Hamiltonian He reads

He =
∑
i

p2
i

2m + 1
2
∑
i, i′

′ e2

4πεo |ri − ri′ |
−
∑
i, j

Zje
2

4πεo |ri −Rjo|
, (1.2)

where Rjo is the ion’s position frozen at the equilibrium.

The diagonalization of HamiltonianHe is almost impossible for a semiconductor where

the density of the electrons is > 1023/cm3. To circumvent this problem we make a mean
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field approximation. Under this approximation, every electron experiences the same average

potential V (r). Therefore, the Hamiltonian describing the motion of each electron will be

identical and is given by

Ho = p2

2m + V (r). (1.3)

When the electron is placed in an external electromagnetic field, the electron’s momentum p

behaves as p −→ p + eA(r, t)/c, where A(r, t) is the vector potential of the electromagnetic

field and c is the velocity of light. Due to gauge invariance, the choice of A(r, t) is not

unique. We can choose a Coulomb gauge in which Φ(r, t) = 0 and ∇ · A(r, t) = 0, where

Φ(r, t) is a scalar potential. Equation 4.3 can be written as

He = (p + eA/c)2

2m + V (r). (1.4)

Since ∇·A(r, t) = 0 we have (e/2mc) p ·A=(e/2mc) A ·p. The quadratic term in A can be

neglected for the calculation of linear optical properties. Using this assumption, Equation

3.4 can be written as

He = Ho +HeR, (1.5)

where HeR = e
mc

A.p describes the interaction of radiation with a Bloch electron. In the

limit when the wave vector of the electromagnetic radiation is small compared to the lattice

constant, HeR = e
mc

A.p is equivalent to HeR = (−e)r · E, where E is the electric field. This

is called the electric dipole approximation. Both forms of HeR neglect the quadratic term

in the field. In HeR = (−e)r · E the Lorentz force has been neglected. This means there

is no quadratic term in the field as the Lorentz force depends on v × B, and v behaves as
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E, so v × B is quadratic in the field. The advantage of using the form HeR = e
mc

A.p in

semiconductors is that in the k · p method the matrix elements of the electron wave vector

enter directly. The matrix elements of the electron’s wave vector enter in many important

optical properties of the materials, such as e.g. the dielectric function of the materials.

1.2 Electron-hole pairs and surface plasmons in metallic structures

When an electron in the valence band absorbs a photon with energy ~ω ≥ Eg, it is

excited to the conduction band. During this process it creates a hole in the valence band. In

semiconductors, the Coulomb interaction between the electron and the hole creates a bound

system called the exciton. In metals, unlike semiconductors, the situation is different. The

metal has a Fermi level that lies in conduction band. Therefore, there are free carriers on

the metal’s surface which move under the influence of ion cores. In a sodium atom, for

example, the valence electron is in a 3s state and in sodium metal this becomes a conduction

electron in a 3s conduction band. The alkali metals such as lithium, potassium, cesium, and

rubidium have free electrons in their conduction bands. The collection of such electrons is

called a free electron Fermi gas.

The classical properties of the metal can be explained by a simple plasma model,

where a gas of free electrons of number density n moves against a homogeneous background

of positive ion cores. For alkali metals this model works up to the ultraviolet regime, while

for the noble metals the model is limited due to the interband transitions that occur at
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visible frequencies. The holes in valence bands are filled by the free carrier absorption which

are the intraband transitions. The classical plasma model does not incorporate the electron-

electron interaction and the notion of the effective mass from the band theory. Free electrons

subjected to the external electric field E oscillate with a frequency ω. The oscillations damps

with a characteristic collision frequency of γ = 1/τ , where τ is the relaxation time of the free

electrons (τ is in the order of 10−14 s in metal). The equation of motion of the free electron

gas can be written as

m
··x +mγ

·x = −eE. (1.6)

Using a harmonic dependence of the field as E(t) = Eoe
−iωt, the solution of Eq. (4.6) can

be written as x(t) = xoe−iωt. So, we obtain x(t) = e
m(ω2+iγω)E(t). The polarization P is

given by P = −nex = − ne2

m(ω2+iγω)E. The electric displacement vector D can be written

as D = εoE + P (in SI unit), where εo is the permittivity of free space. We also have

D = εoε(ω)E, where ε(ω) is the frequency dependent dielectric function. Therefore, ε(ω)

can be written as

ε(ω) = 1−
ω2
p

ω2 + iγω
, (1.7)

where ω2
p = ne2

εom
is called the plasma frequency of free electron gas. For the noble metals

such as gold (Au), silver (Ag) and copper (Cu), there is a residual polarization due to the

positive background of the ion cores the effect of which can be incorporated by writing Eq.

(4.7) as

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
(1.8)
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This model, while being able to explain the behavior of the dielectric function for the alkali

metals, fails to explain the dielectric function for the noble metals. Au has at least two inter-

band transitions occurring at the wavelength of 470 nm and 330 nm. [13] These interband

transitions are not described by Eq. (4.8). The Lorentz oscillator of the form Ai
ω2
i−ω2−iγiω can

be added to model each interband transition in Eq. (4.8). Other improved models such as

the Drude-critical model and the L4 model can be used to circumvent this drawback.[14]

The above model is also known as the Drude model for free electron gas.

The coherent oscillations of the free electron density described by Eq. (4.8) on the

positive background of the ion cores are known as plasmons. In noble metals these coherent

oscillations are disturbed by the interband transitions that occur at the visible frequencies.

The plasmons can be well described within classical electrodynamics by solving Maxwell’s

equations. Using Maxwell’s equation it is not difficult to show that for longitudinal waves

ε(K, ω) = 0 and for transverse waves K2 = ε(K, ω)ω2

c2
. For large frequency close to ωp,

ωτ � 1, we get ε(ω) = 1 − ω2
p

ω2 . This is the plasma oscillations for the undamped free

electrons. For the noble metals interband transitions alter the situation. Combining the

above relations we obtain that ω2 = ω2
p + K2c2. The ω > ωp is the transparency regime of

the metal and supports the propagation of the transverse modes. For ω < ωp, the metal

does not support the propagation of the transverse modes. For K = 0, i.e. for the long

wavelength limit, we obtain ω = ωp and hence ε(ω) = 0. The quanta of such oscillations are

known as the volume plasmons. The metal volume plasmon energy is in the range of 5 to

15 eV.
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The excitations of the quantum of the electron’s oscillations on the metal-dielectric

interface are known as surface plasmons. Surface plasmons can be coupled with the propa-

gating electromagnetic waves at the interface and evanescently confined in the perpendicular

direction. These are the surface plasmon polaritons which are characterized in terms of their

dispersion and spatial profile together with the field confinement. The resonance energy of

the surface plasmons at the metal dielectric interface depends on several parameters such as

geometry, compositions, and surrounding dielectric environment.

1.3 Electron-hole pairs and excitons in wide bandgap

semiconductors

In metals, valence electrons are treated as a free electron gas with the background

of positive ion cores. The interband transitions from d bands in noble metals create holes

which are filled by the free carrier absorption. In semiconductor crystals, the plasma model

usually fails due to lack of free electrons in the intrinsic (undoped) regime. The generated

electrons and holes are subjected to the periodic potential. As a result, when they travel

over a distance of few lattice spacings their motion is affected. Their masses also appear to

be different than the masses of the free electron or the free hole, and the new masses are

taken as the effective masses. The electron and hole have different effective masses. As an

example, the effective mass of electron in germanium is m∗ = 0.041mo, where mo is free
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electron mass. Due to the difference in effective masses, an electron has a sharper dispersion

of bands than a hole.

Electrons in semiconductors can be excited in two ways: a, an electron in the valence

band is excited to the conduction band by absorbing a photon with energy ~ω ≥ Eg (inter-

band transition) and b, an electron is excited within the valence or within the conduction

band by absorbing a photon of energy ~ω (intraband transition). The interband transition

creates a hole in the valence band. The hole can be filled either by a free carrier absorption

(phonon assisted transition) or by recombining with the excited electrons. A laser excites

an electron in semiconductors in few picoseconds. The electron relaxes to the bottom of the

conduction by thermalization process (carrier-carrier scattering and carrier-phonon scatter-

ing) in time of few picoseconds to about 100 nanoseconds.[1] In about 100 nanoseconds to

1 microsecond, the electron recombines with a hole either by Auger or radiative recombina-

tion. In several hundreds microseconds, thermal and structural effects may appear in the

semiconductor crystal due to ablation, thermal diffusion, or re-solidification.

If we ignore the effect of Coulomb interaction between an excited electron and a

hole, the pair is called the free electron-hole pair. In reality, Coulomb interaction is always

present, which may modify the electronic and optical properties of the materials. Consider

a bandstructure of a semiconductor as shown in Figure 1.2 a with full valence band and

an empty conduction band. There are no allowed states in the bandgap. Now consider the

case with one electron in the conduction band and one hole in the valence band as shown

in Figure 1.2 b. We now have an additional Coulomb interaction between the electron and
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the hole. The electron-hole system coupled through the Coulomb interaction is called the

exciton.

Figure 1.2: a, The bandstructure in the independent electron picture, and b, the Coulombic

interaction between the electron and hole: excitonic effect. c, a conceptual picture of the

periodic envelope function extent of the Frenkel and Mott excitons.

There are two types of exciton in general depending on the spatial extension of the

envelope function: Frenkel excitons and Mott excitons. Frenkel excitons are excitions with

envelope function confined to just a few unit cells, while the Mott excitions have envelope

functions spread over several unit cells. In effective mass theory both excitions can be

described by the following equation,

[
− ~2

2m∗e
∇2
e −

~2

2m∗h
∇2
h −

e2

4πε |re − rh|

]
ψex = Eψex. (1.9)

Here m∗e and m∗h are the effective masses, respectively, for the electron and the hole. ψex is

the excitonic wave function. This is a two-body problem and can be reduced to one body

problem by defining r = re − rh, k = m∗eke+m∗hkh
m∗e+m∗

h
, R = m∗ere+m∗hrh

m∗e+m∗
h

and K = ke − kh. The
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Hamiltonian of the system is

H = ~2K2

2(m∗e +m∗h)
+
{
~2k2

2m∗r
− e2

4πε |r|

}
, (1.10)

where m∗r is the reduced mass of electron and hole. The first term in Eq. (3.18) has the plane

wave solution in the center of mass system and has the form ψcm = eiK.R while the second

term can be solved in a similar way to the problem of the hydrogen atom. The complete

solution can be written as ψnKex = eiKex.RFn (r)φc (rc)φv (rh), where Fn (r) is the envelope

function that satisfies the second term in Equation 3.18. φc (rc) and φv (rh) represent the

bandedge states of the electron and hole, respectively. The excitonic energy levels are given

by

EnKex = En + ~2K2

2(m∗e +m∗h)
, (1.11)

where n is an integer and En = − m∗re
4

2(4πε)2~2
1
n2 . The second term in Equation 1.11 is simply

the kinetic energy of electon-hole’s center of mass. The excitonic levels appear slightly below

the bandgap. The typical values of E1 are 2-6 meV for most semiconductors.

1.4 Topological insulators in two and three dimensions

On the basis of charge flow, materials can be divided mainly into insulators, semicon-

ductors, and conductors. If we analyze materials going into their electronic levels, amazingly,

a semiconductor can be found to behave like a metal on its surface and a metal can be found

to behave like an insulator. A metal can become insulating if repulsive interactions localize
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the electrons, which leads to a strongly correlated Mott insulator. A disordered system can

also become insulating due to back-scattering events. In some materials an electron behaves

very differently from others in external electric and magnetic fields. The behavior of electrons

are deeply related to the symmetry in those materials. In addition, temperature is another

controlling factor that determines the behavior of electrons. At low temperature when the

system spontaneously loses one of the symmetries present at high temperature, it acquires

an ordered state. The energy dominates over the entropy. As an example, a magnet breaks

the time-reversal symmetry and the rotational symmetry in spin space. Their transport

properties also change drastically. Landau symmetry breaking theory can provides insight

in such order states. However, in 1980 the ordered state beyond the symmetry breaking was

observed which could not be explained by Landau symmetry breaking theory.[15] After that

many theoretical and experimental attempts have been done to understand such unusual

property of the electron. Here we briefly discuss the physics behind this interesting effect.

1.4.1 Edge states and quantum Hall effect

The experimental and theoretical understandings of the quantum Hall states in con-

densed matter physics have been established since the 1980’s.[15, 16] Such states occur when

an electron confined in a two dimensional plane is placed in a strong magnetic filed. The

electron’s orbit is quantized with the cyclotron frequency ωc. The quantized Landau levels

are given by En = ~ωc
(
n+ 1

2

)
. The Hall conductivity σxy is also quantized: σxy = Ne2/~,
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N being the number of filled Landau levels. The difference between a quantum Hall system

and a trivial insulator is determined by topology.[17] A 2D bandstructure is a mapping of a

wave vector k in a 2D Brillouin zone (which is a torus) to the Bloch Hamiltonian H (k). In

gapped insulators, two equivalent classes of H (k) can be deformed continuously from one

to another without closing the gap, and bandstructures can be classified in terms of these

classes. The integer quantity n ∈ Z, where Z is the integer domain, that distinguishes these

different classes is called Chern invariant. The Chern invariant can be understood in terms of

Berry phase associated with the Bloch wave function um (k) in Brillouin zone. When um (k)

changes adiabatically in parameter space (here k-space), it acquires a Berry phase γm which

is given by the line integral of the quantity A = i 〈um| ∇k |um〉 around a closed path. There

is a Berry flux Bm = ∇×Am associated with the closed path. The Chern number is given by

nm = (1/2π)
´
d2kBm. This is a quantized quantity. The total Chern number n =

N∑
m
nm over

all the occupied bands is invariant regardless of the degeneracies present in the system. This

explains that even if the Hamiltonian H (k) is smoothly deformed, the total Chern number

associated with the system remains unchanged. This is why the quantization of σxy is so

robust under deformation.

A fundamental consequence of topological classification of gapped insulators is that

it predicts the presence of gapless states at the interfaces. The topological invariant of the

system changes as we pass the gapless point in surface bandstructures. This identifies the

two phases of matter in contact to each other, say quantum Hall state (n = 1) and vacuum

(n = 0), which forms an interface. The quantum Hall states occur as the cyclotron motion
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of the electrons undergoes skipping orbits at the surface. Such electronic states are chiral.

This means the propagation is along one direction along the edges. These chiral states are

safe from the backscattering events as no states are available to make a U-turn.

To elucidate this fact further, we consider an interface with quantum Hall state and

vacuum perpendicular to y-axis. If the topological invariant of the system has to change

from n = 1 to n = 0, inevitably, the gap vanishes at the edge of the two-dimensional system.

At this point, it is instructive to consider a low energy Hamiltonian for quantum Hall system

as developed by Ludwig et al.[18] They showed that the low energy effective Hamiltonian can

be written as Hi = υF (σxkx + σyky) +miσz, where υF is the Fermi velocity, σi are the Pauli

matrices, mi is the effective mass in ith band. We can model the interface assuming m −→

m (y) such that m1 > 0 (quantum Hall state) and m2 < 0 (vacuum). Since the gapless states

are at the edges, we can write m1 (y) = −m10 arctan (y). At y = 0, m1 goes to zero. The

effective Hamiltonian has a simple solution, Ψ (x, y) = Ceikxxe
(1/vF )

ý

0
dyim1(y′ )

 1

1

, where C
is the normalization constant. This shows that wave function is localized along y direction,

whereas it is a plane wave in x direction. The energy eigenvalue for the gapless mode is

E = ~υFkx. By means of bosonization a representation in the form of one-dimensional right

and left movers along the edges can be found.[18]
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1.4.2 Z2 Topological insulators

In quantum Hall states, the time reversal (TR) symmetry is broken because the

applied magnetic field is odd under the TR operation. There is a new topological class that

occurs in a zero applied magnetic field but with a strong spin-orbit coupling. This class is

protected by the TR symmetry. To understand that, it is essential to know how the TR

operator Θ affects spin under operation. This operator is defined as Θ = e(iπSy/~)K, where

Sy is the spin operator and K is the complex conjugation. For electrons, Θ2 = −1. This

tells us that Bloch Hamiltonian H (k) that respects TR symmetry, Θ−1H (k) Θ = H (−k),

is at least two fold degenerate on the surfaces. This is known as Kramers theorem. In

the absence of spin-orbit interaction Kramers degeneracy is the degeneracy between up and

down spin. Consider the 2D bandstructures in Figure 1.3, plotted for half of the Brillouin

zone, 0 > kx > π/a.
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Figure 1.3: Dispersion relation for Kramers degenerate points at Γa = 0 and Γb = π/a. The

number of Fermi surface crossing the Fermi Level is even in a, and odd in b. The bulk

valence and conduction bands are also shown.

Two halves of the Brillouin zone are mirror images of each other, as required by

TR symmetry. From the Kramers theorem the points Γa = 0 and Γb = π/a are two-fold

degenerate. In Figure 1.3 a edge states cross the Fermi level at two points, whereas in b

there is only one edge that crosses the Fermi level. In the case of two crossings, edge states

are pushed out of the gap due to scattering, leading to a trivial insulator, whereas in the

case of a single crossing we get a nontrivial topological insulator. This topological nature

of the bands can be understood by introducing one more topological invariant with two

possible values: ν = 0 and ν = 1 [10], in addition to the previously introduced topological

invariant n. ν is also called the Z2 topological invariant. This new invariant distinguishes

weak topological insulators from strong topological insulators. Each band intersecting the
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Fermi level at kx has a Kramers pair at −kx. The number Nk of Kramers pairs intersecting

the Fermi level is related to the changes in the Z2 invariants as Nk = ∆ν mod 2. The Z2

invariant ν can be calculated in different ways. In a system which conserves spins along the

z direction, i.e. Sz is conserved, the difference nσ = (n↓ − n↑) /2 defines the Z2 invariant as

vν = nσ mod 2.[19]

1.4.3 Quantum spin Hall insulator

In 2006, Bernevig, Hughes, and Zhang predicted that the transverse spin Hall conduc-

tivity is quantized in a system which respects the TR symmetry.[20] Subsequently, Kronig et.

al in 2007 observed the quantized spin Hall conductivity effect in HgCdTe quantum well.[21]

This effect is called quantum spin Hall effect (QSHE). Consider a system with strong spin-

orbit coupling. The Hamiltonian decouples into two copies of the Haldane model[22] (a

model for quantum Hall states), one for up spin, the other one for down spin. The quantum

Hall conductivity is zero but the quantum spin Hall conductivity σsxy is quantized and is

given by σsxy = e/2π. The quantum spin Hall states are the gapless modes at edges. Figure

1.4 shows the interface modes in a quantum spin Hall insulator (QSHI).
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Figure 1.4: Interface modes in 2D quantum spin Hall insulator (QSHI) interfaced with trivial

insulator. Weak and strong topological insulators, a and b.

The QSH states are helical, which means spin tracks the direction of the momentum.

The spin and momentum are locked in perpendicular direction as required by the spin-orbit

coupling. The spin up component propagates in opposite direction to that of the spin down

component. Thus, there are two spin channels. Each channel is reserved for the flow of a

particular type of spin. This is analogous to a half of a trivial 1D conductor. Such states

cannot be localized even in presence of strong disorder, in contrast to ordinary conducting

states where the effect of Anderson localizations cannot be ignored. Therefore, the edge

states transport is always ballistic in QSHI.
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1.4.4 3D topological insulators

QSHI are 2D topological insulators. In 2007, Moore and Balents [23] along with other

research groups generalized the 2D topological insulators into 3D topological insulators. In

2008, Hsieh et. al[24]. experimentally observed the existence of the 3D topological nature of

the QSHI in Bi1−xSbx. In subsequent years, materials such as Bi2Te3 and Bi2Se3 were also

experimentally found to be 3D topological insulators.[25] The 3D topological insulators are

characterized by four Z2 invariants νo : ν1, ν2, ν3. The value of the invariant νo classifies

whether the 3D topological insulator is weak (νo = 0) or strong (νo = 1) as shown in Figure

1.4 a and b. A weak topological insulator can be realized with a stack of 2D quantum spin

Hall insulator layers, where the helical edge modes leads to anisotropic surface modes. In

such a setup the indices ν1, ν2 and ν3 are defined as Miller indices describing the orientation of

the layers. The Fermi surface is cut an odd number of times between Γa = 0 and Γb = π/a,

but no closed Fermi surface exists. These modes, unlike the 2D helical modes, are not

protected by TR symmetry. A strong topological insulator is not a simple generalization of

2D QSHI. The Fermi circle encloses an odd number of Dirac point. Due to TR symmetry,

the state with k and −k are Kramers partners and back-scattering from one to another is

always prohibited. An electron circling around a Dirac point always acquires a Berry phase

of π as its spin rotates by 2π. A strong 3D topological insulator can be described by a

low energy Dirac Hamiltonian, H = −i~υFσ · ∇, where σ are the in plane Pauli matrices.

Eigen functions are localized on the 2D plane and exponentially decay in z direction. The
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localization length is around few nanometers. Within k · p approximation, the band crossing

can be described by the two-band Dirac Hamiltonian. This results in two coupled equations

for low energy modes with free particle like solutions in plane and exponentially decaying

solutions in perpendicular direction. Those modes are called Weyl modes since they satisfies

the Weyl equation.

1.5 Electron-hole pairs generation in 3D topological insulators

There is an important difference between graphene and 3D TIs from the physics point

of view. The helicity operator in the graphene is given by hgra = − (1/ |p⊥|)σ · p, whereas

in 3D TIs the helicity operator is given by hTI = (1/ |p⊥|) β (σ⊥ × p⊥) · ẑ, where β is the

Dirac β-matrix. The root of this difference lies in the spin-orbit coupling. Due to the strong

spin-orbit coupling in 3D TIs, the electron spin points always in perpendicular direction to

its momentum. A pristine graphene monolayer has a very small spin-orbit coupling and

therefore the (real) spin-momentum locking is absent. Usually 3D TIs are compounds or

alloys with heavy elements, so spin-orbit coupling is large in 3D TIs. The electron spin lies in

the plane of the 2D Fermi surface encircling the Dirac point. Low energy excitations around

the Dirac point can be obtained by the absorption of photons with energy ~ω ≥ 2 |EF |.

Electron-hole pair generation is driven by strict spin selection rules. The interband coupling

of low energy modes is basically controlled by the matrix elements of the Dirac α-matrix and

the intraband coupling is driven by the matrix element of momentum matrix under dipole
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approximation. A photon traveling along x direction can excite a spin pointing along the

y direction, and vice versa. Due to the presence of the strong spin-orbit coupling in 3D

TI the induced spin polarization relaxes on a time scale of the momentum scattering. As

calculated in Ref. [26], the spin polarization decays rapidly within a time of the order of

T2 =0.01–0.1 ps, which results in loss of spin coherence. The large anisotropic dielectric

constant (ε ∼50-200) tells that the Coulomb interaction is strongly reduced in 3D TIs.[27]

This leads to a weak coupling between the generated electron and hole. Thus it is a good

approximation to assume that electron-hole pairs do not form bound excitons in 3D TIs.

1.6 Two-dimensional layered materials

The experimental discovery of two-dimensional (2D) sheets of graphene by mechanical

exfoliation from a layered solid and their unique mechanical, electrical, and optical properties

attracted many scientists and engineers in the area of physics, engineering, and chemistry.

These scientific efforts gave rise to the possibility of harvesting other 2D materials from

layered solids.[28, 29, 30] In addition to graphene, several 2D layered materials with a pos-

sibility of single sheet exfoliation have been experimentally found. Examples of 2D layered

materials include graphene, transition metal dichalcogenides (TMDs) (MX2; M= transition

metal from group IV, V or VI such as Mo, W and X=S, Se, Te), transition metal oxides

(TMOs), layered double hydroxides (LDHs), ultrathin layers of wurtzite materials (such as

AlN, BeO, GaN, ZnO, and ZnS), MXenes, silicene, germanene, and other compounds such as

26



the topological insulators (Bi2Te33, Bi2Se3). Novel 2D materials present new opportunities

in materials science, physics, chemistry, and engineering that are impossible to obtain from

their bulk counterpart. Molybdenum disulphide (MoS2), for example, a transition metal

dichalcogenides (TMDC), is an indirect band gap semiconductor in the bulk form. However,

when it is exfoliated to single layer, it becomes a direct bandgap semiconductor.[31] It also

provides an opportunity to tune the band gap varying the number of layers of MoS2.

Figure 1.5: A single sheet of MoS2 (a), and MoO3 (b).

As an example, Figure 1.5 shows a single sheet of MoS2 and MoO3 where Mo atoms

are sandwiched by the S atoms with honeycomb lattice structure and single sheet of MoO3

with orthorhombic layered structure. In both cases, weak van der Waal bonds connect

different layers stacking along c (MoS2) and along b (MoO3) direction.

The 2D layered materials are potential candidates for the development of field effect

transistor (FET) and other optoelectronic devices. A FET based on single layer of MoS2 has

current switching of up to 108 with a mobility of 250 cm2/Vs. In experiment, fabrication of

such quantum devices requires semiconductor-insulator-semiconductor heterojunction. Their

operation relies on the resonant tunneling of the carriers across the barriers. It is desirable to
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laterally align the heterostructures and create a pattern of insulating regions in a controlled

manner on 2D layered materials such as MoS2 rather than a vertical stacking of materials.

The insulating regions form barriers, which could be made of defected domains. In experi-

ment, such devices can be fabricated by treating MoS2 with energetic oxygen plasmas which

knock out sulfur atoms and create MoO3 reach domains. MoO3 has a higher band gap than

MoS2, leading to insulating regions for the carrier flow. One of the theoretical understand-

ings necessary in such experiments is to confirm the formation of MoO3. This can be studied

by using DFT calculations of electronic structures of MoS2 and MoO3.

1.7 Methodology of using density functional theory to describe

electron-hole pairs

In order to understand the material properties, we need to obtain and analyze the

electronic structure of the materials. To calculate the electronic structure of materials, first

principles computational methods can be used. The density functional theory (DFT) is

one of the computational methods which is widely used to study the electronic structure

and optical properties of the bulk and nanostructures of the materials. DFT is based on

the Hohenberg-Kohn theorems.[32] There are two theorems by Hohenberg and Kohn. The

first theorem states that the external potential V (r) is determined within a trivial adaptive

constant by the electronic density n (r) and the second theorem states that the exact ground

state is the global minimum value of functional of n (r) . Consequently, the ground state
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energy can be written as E [n (r)] = T [n] + Vext [n] + Ve−e [n], where T [n] is the kinetic

energy of the non interacting system, Vext [n] is the interaction with external potential and

Ve−e [n] is the electron-electron interaction potential. Using the Hohenberg-Kohn theorems,

we minimize the total energy of the system with respect to the orbitals in order to obtain the

density n (r). This leads to a effective single particle Kohn-Sham equation which is written

as [
−1

2∇
2 + Veff (r)

]
φi = εiφi, (1.12)

where φi are the single particle Khon-Sham orbitals, ni = ∑
i
|φi|2, Veff (r) = vext + VH +

δEXC/δn, vext is the kernel of Vext [n], VH is the Hatree potential and δEXC/δn is the

exchange correlation energy. εi are the single particle energies. Here the main problem is

to know the exchange-correlation term δEXC/δnXC that produces the exact ground state of

the system. The determination of the exchange-correlation energy is a difficult many-body

problem even for homogeneous electron gas. The exchange-correlation is usually obtained

by fitting theory with the experiments or more accurate Quantum Monte-Carlo (QMC)

method. One of the widely used methods in DFT is the local density approximation (LDA)

where the single-particle exchange-correlation energy depends only on local coordinates of

a given particle. This method is acceptable for the homogeneous gas; however, it fails

to describe accurately many electronic properties such as dissociation energy of molecule,

adsorption energy of atoms and molecules on solid surfaces, some magnetic properties, etc.

The generalized gradient approximation (GGA) can be used to circumvent some of the

problems with LDA.[33] In addition, on-site Coulomb interaction U can be included in
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LDA and GGA to get better results for transition metals. More improved versions of the

DFT approximations, such as the muffin tin approximation (MTA), the augmented plane

wave method (APW), and the projected augmented wave method (PAW) can be used to

get better results of electronic and optical properties. The GW approximation is further

improved method which is based on the solution to the quasiparticle equation (multi-particle

problem). It is based on the Green’s function formalism and the linear response theory, and

it is designed for the calculation of excited states.

DFT can be used to calculate the bandstructures and absorption properties of the

materials. Although the gaps are underestimated, it is a useful tool to calculate the types

of gaps, band characters, band topology and density of states, and compare them with the

experimental results to get further insight. The ground and excited states wave function can

also be calculated to obtain the transition dipole matrix elements: 〈e ·Pc,v〉 = 1
Ω

´
Ψ∗
c,k′e ·

i}∇Ψv,kdr. The wave function Ψv,k and Ψc,k can be written in terms of Bloch functions

uk (r) which carry the information about the crystal symmetry. The matrix element then

can be used to determine the absorption properties of the materials. Bloch functions can be

directly calculated using first principle computational packages. There are several packages

where DFT is implemented. Examples are the Vienna ab initio Simulation Package (VASP),

Quantum Expresso, Quantumwise (atomistic toolkit), and Siesta.
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1.8 Goal of this thesis

The projects in this thesis focus on the study of electron-hole pair generation in bulk

and nanostructures of different materials. The materials of interest are wide bandgap semi-

conductors such as TiO2, 3D TIs such as Pb1−xSnxTe, and the 2D layered materials such

as MoS2 and MoO3. We study the electronic and optical properties in bulk and nanostruc-

tures, and find applications in the area of semiclassical and quantum information processing.

In wide band gap semiconductors, several interesting applications arise from electron-hole

pair polarization. One of the interesting applications we focus on in this thesis is a shift

in surface plasmon resonance due to the reduction in index of refraction of the surrounding

dielectric environment. A change in index of refraction occurs when there is a decrease in

absorption of the incoming stream of photons due to the Pauli exclusion principle. A shift

up to 125 nm in wavelength of surface plasmon resonance is found. Employing this effect, we

also present a model of a light controlled plasmon switching using a hybrid metal-dielectric

heterostructures.

This thesis also covers electron-hole polarization in 3D TI materials, where we con-

sider surfaces, interfaces, heterostructures, and nanostructures of Pb1−xSnxTe. A detailed

study on electronic and optical properties of both bulk and nanostructures of 3D TIs are sys-

tematically presented. Nanostructures of 3D TIs are of special interest due to amplification

of the effect coming from those exotic surface states. We present a model of a quantum dot

(QD) consisting of a spherical core-bulk heterostructure made of 3D TI materials, such as
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PbTe/Pb0.31Sn0.69Te, with bound massless and helical Weyl states existing at the interface

and being confined in all three dimensions. The number of bound states can be controlled

by tuning the size of the QD and the magnitude of the core and bulk energy gaps, which

is determined by the confining potential. We propose the implementation of quantum spin

memory and quantum information processing in QDs of a few nanometers, where the qubit

is defined by either an electron-hole pair, a single electron spin, or a single hole spin in a 3D

TI QD. A giant Faraday effect is presented also for a 3D TI slab. The strict optical selection

rules are employed to calculate the Faraday effect due to Pauli exclusion principle in a pump-

probe setup using a 3D TI double interface of a PbTe/Pb0.31Sn0.69Te/PbTe heterostructure.

The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thick-

ness of the heterostructure. The maxima in the Faraday rotation angle are of the order of

millirads.

The 2D layered materials such as MoS2, MoSe2, WTe2, WS2 and WSe2 show impor-

tant advantages over graphene in terms of their electronic and optical properties due to the

presence of nonzero bandgaps. These materials are layered materials with weak interlayer

van der Waals bonds. A single sheet of MoS2 has direct band gap 1.8 eV. Due to excellent

transport properties in single and multiple layers, several efforts have demonstrated the pos-

sibility to engineer electronic and optoelectronic devices based on MoS2 . In this thesis, we

focus on two different tasks using single layer MoS2 from experimental and theoritical point

of view: a, study of electrical property tuning, and b, photoluminescence tuning, both in a

single-layer of MoS2 via oxygen plasma treatment. Both tasks have been done in collabora-
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tion with the Dr. Saiful Khondaker’s research group who have performed the experiments on

the current-voltage (I-V) characteristics, x-ray photoelectron spectroscopy (XPS) and Ra-

man spectroscopy measurements. Our task here is to provide the theoretical analysis for the

stability of MoO3 defects inside MoS2 single sheet and their bandstructures using DFT. The

electrical property of a single layer of MoS2 can be tuned from semiconducting to insulating

regime via controlled exposure to oxygen plasma. The quenching of photoluminescence of a

single sheet of MoS2 has also been observed upon exposure to oxygen plasmas. We calculate

the direct to indirect band gap transitions by going from MoS2 single sheet to MoO3 single

sheet during the plasma exposure, which is due to the formation of MoO3 rich defect domains

inside a MoS2 sheet.

1.9 Organization of thesis

The thesis is organized as follows. Chapter II is focused on the study of the surface

plasmons where we present our results on the surface plasmon resonance shift. Chapter

III and IV are dedicated to 3D TIs in heterostructures and QD nanostructures where we

provide interesting applications for the Faraday effect and quantum information processing.

Chapter V is focused on analytical calculations for the transmission from a stack of 3D TI

materials. In Chapter VI we present the results for defect engineering and tuning of the

transport property in MoS2 single sheet. We provide both theoretical and experimental

evidence of the MoO3 defect formation during the exposure of MoS2 single sheet in oxygen
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plasma. Chapter VII is dedicated to the absorption calculations for ATPMS/FA/TiO2 for a

thin film. Here we also present the experimental results for photocurrent generation.
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CHAPTER 2
SURFACE PLASMONS AND PLASMONICS

2.1 Introduction

Electromagnetic properties of metal-dielectric interfaces have attracted vast amount

of resarch efforts. Ever since the work of Mie [34] for small particles and Ritchie [35] for flat

interfaces, wide spectrum of scientists ranging from physists, chemists, material scientists to

biologists are involdved to explore underlying phenomenon and their potential applications

in practical life. In such structure under the right circumstances a light waves propagting at

metal-dielectric interface induce a resonant interaction between mobile electrons and light

wave at the metal surface. This results a generation of density waves called surface plasmons

(SPs) that propagate along the interface like a ripples across the surface of water. SPs

help to concentrate and channel light using subwavelength structures.[36, 37] In metallic

nanostructures much smaller than the wavelength of light, SPs are used to enhance the signal

in surface-enhanced Raman spectroscopy (SERS), which allows for the detection of a single

molecule.[38] SPs generated at metal-dielectric interface can be utilized to carry information

in microprocessors faster than electronics transistor in current use.[39] Plasmonics can encode

more information than currently possible in conventional electronics.[40] Use of optically

excited plasmons as a tunable frequency source that can be mixed with a laser frequency
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through Raman scattering enables dynamical shifting of the wavelength of light in a control

manner.[41] In the experiment of Fluegel and co-workers,[42] the wavelength of the signal

beam undergoing inelastic Raman scattering downshifted by 13-15 nm. This experiment

demonstrates an approach to achieve larger wavelength shifts of an optical data using low

pump powers. Plasmonics can also be exploited in optical tweezers to confine nanoparticles

to small dimensions.[43] Grigorenko[44] and Juan[45] made electromagnetically coupled gold

pillars in which localized surface plasmons offer better trapping of nanometer-sized objects.

Recently, a method to achieve coupling between light and matter was proposed.[46]

There was a strong coupling between the optical field associated with plasmon modes on

conducting nanowires with emitters. Such a system also provided a remarkable optical

nonlinearity resulting from the interaction between individual photons.[47] A similar model

where a one-dimensional array of nanoshells replaces the nanowires can be thought of as an

efficient optical switch. In this model, plasmon excitations are dynamically controlled by

varying the nanoshell dielectric environment. A chain of nanoshells with fixed separation

from each other can support surface plasmon polaritons (SPPs). This is a light-controlled

SPP switch. Plasmonic switches are ultrafast and have high on/off contrast ratio.[48]

The optical resonances of a nanoshell exhibit an enhanced sensitivity to its local

dielectric environment relative to a solid nanoparticle.[49] In particle ensembles, additional

shifts are noticed due to electromagnetic interaction between localized plasmon modes. In

the case of dimers, plasmons can be viewed as bonding and antibonding combinations, whose

shift follow 1
d3 interaction between two classical dipoles.[50] Under the dipolar approximation,
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with d � λ, near-field interaction with 1
d3 dependence dominates and a particle array can

be described as point dipoles interacting via their near field.[51] Transport of energy along

such an array is the key to transmit information in plasmonics.[52, 53]

A recent experiment showed all-optical control of a single plasmonic nanoantenna

- ITO hybrid, which relies on the ITO free-carrier nonlinearity that modifies the plasmon

resonance.[54] A method to realize dynamically reconfigurable plasmon antennas has been

proposed.[55] This is based on engineering of the plasmon dispersion relations, relying on

the possibility that the host index can be changed by means of liquid crystals or other

phase-changing materials.

2.2 Objective

In this work, we present the proof of concept of a method to control the spectrum for

the surface plasmon modes in a spherical silver-TiO2 core-shell nanoparticle by varying the

dielectric function of TiO2 through excitation of electron-hole pairs in TiO2. The underlying

concept is that the frequency of the surface plasmon mode on the metal surface is sensitive

to its dielectric environment. Our spherical nanoparticle consists of a spherical metallic core

of a few nanometers in size and an outer spherically symmetric shell made of semiconducting

material. A pump laser pulse of energy equal to the band gap or above generates electron-

hole pairs in the semiconducting material, which leads to a decrease in absorption (bleaching)

due to Pauli blocking, thereby altering the dielectric function of the semiconducting shell.
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The resulting blue shift in the frequency of the surface plasmon can be measured by means of

a probe laser pulse that excites the surface plasmon mode at the altered plasmon resonance

frequency.
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Figure 2.1: Scheme of dynamically controlled plasmon excitation in a nanoshell. (a) The

probe pulse excites plasmons on the surface of silver at a resonance frequency. The pump

pulse generates electron-hole pairs in the semiconductor changing its dielectric function. The

plasmon resonance frequency is now blue-shifted because of the changed dielectric environ-

ment. (b) A pump pulse with energy at band gap or above generates electron-hole pairs in

the semiconductor. In quasi Fermi equilibrium, electrons and holes are settled at the bottom

and top of the conduction and valence band, respectively, with the different quasi Fermi

levels.
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In Figure 2.1, we show a scheme of our model where our pump-probe technique is

used. The model shows the dynamic control over the plasmon resonances by varying the

dielectric function of the semiconducting shell. The frequency of the probe pulse must be

below the band gap of the semiconducting shell in order to avoid generation of electron-hole

pairs when probing the surface plasmon mode. Therefore, we chose TiO2, which has a large

band gap of 3.0 eV, and for the metal core we chose silver, which allows for surface plasmons

with energy below 3.0 eV. Another advantage of TiO2 is its large dielectric function, which

leads to excitons that have a Bohr radius much smaller than the size of our nanoparticle.

This allows us to use bulk values for the excitonic properties in the TiO2 shell. Let us

describe these effects now in more detail.

2.3 Surface plasmon resonances in hybrid metal-semiconductor

heterostructures

The surface plasmon resonance of a nanoshell depends on the curvatures of outer and

inner shell surfaces. A metallic core dielectric nanoshell with inner metal core of radius r1

and outer dielectric shell of radius r2 exhibits plasmon resonance at a frequency depending

on the aspect ratio r1
r2

(see Figure 2.2). The plasmon modes are shifted if the nanoparticle is

coated with dielectric materials. The shift depends on the relative size of the shell and the

nanoparticle as well as on the surrounding medium. It has been shown that with increas-

ing shell thickness, the local field enhancement factor peak decreases and either red shifts
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nonlinearly for ε2 > ε3, or blue shifts nonlinearly for ε3 > ε2, where ε2and ε3 are dielectric

functions of shell and surrounding materials, respectively.[56] The local field enhancement

factor increases strongly in the vicinity of the metal surface. The enhancement is weaker on

the surface of the embedding medium.

Figure 2.2: Ag core dielectric shell nanostructure with the dielectric function ε1 for the Ag

core, ε2 for the TiO2 shell and ε3 for the embedding medium. The size of the nanoshell is

15 nm.

The enhancement of the local electric field in different regions of the nanoshell is differ-

ent due to the screening field in the presence of the dielectric environment. For a nanoparticle

size much smaller than the wavelength of the incident light, local field enhancement factors

are well approximated by quasi-static theory. The polarization of the nanoparticle oscillates

like a dipole with polarization proportional to the incident field. Under such condition elec-

trostatic solutions are obtained by solving Laplace’s equation. The treatment can be found
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in ref AverittHalas:1999. The solutions that we are using in our method are given by

E1 = 9ε2ε3

ε2εa + 2ε3εb
Eo(cos θr̂ − sin θθ̂) (2.1)

E2 = 3ε3

ε2εa + 2ε3εb
[{(ε1 + 2ε2)

+ 2(ε1 − ε2)
(
r1

r

)3
}
Eo cos θr̂

−
{

(ε1 + 2ε2)− (ε1 − ε2)
(
r1

r

)3
}

Eo sin θθ̂
]

(2.2)

E3 = {2 ε2εa − ε3εb
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(
r2

r

)3
+ 1}Eo cos θr̂
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(
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)3
− 1}Eo sin θθ̂ (2.3)

where

εa = ε1{1 + 2
(
r1

r2

)3
}+ 2ε2{1−

(
r1

r2

)3
} (2.4)

εb = ε1{1−
(
r1

r2

)3
}+ ε2{2 +

(
r1

r2

)3
} (2.5)

In eqs (2.1) - (2.3), E1, E2 and E3 are the electric fields in the core, shell and em-

bedding medium, respectively, and Eo is the incident electric field. The angle θ is an angle

between the direction of polarization and the scattered field direction, and ε1 is dielectric

function of the core. Various analytic models have been proposed in an attempt to account

accurately for the dielectric function of the noble metals, such as Ag and Au. Au has compar-
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atively simple surface chemistry compared to Ag; however due to the presence of interband

transitions (at least two transitions at 470 nm and 330 nm) in Au, optical properties are

more difficult to present in the visible and near-ultraviolet region with an analytic model.

Figure 2.3: Local field enhancement factor at different positions in the shell portion of the

nanoshell. The radius of the inner core is 3.5 nm. The magnitude of the local field factor

decreases with increasing distance from the center of the nanoshell. Smallest peak to largest

peak calculated, respectively, at positions r = 7, 6, 5 and 4 nm.
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Figure 2.4: Local field enhancement factor at different shell thickness on the surface of the

nanoshell. The resonance peak is blue shifted with decreasing shell thickness. Peaks are for

4, 3, 2 and 1 nm shell thickness, respectively, from right to left.

For particular frequencies, metals possess a negative real part of ε(ω) and very low

loss. The negative real part of ε(ω) is linked to plasmons and plasmon resonances. The

magnitude of the ratio of outgoing field to incident field is given by the local field enhancement

factor. These factors along the incident field polarization are plotted in Figures 2.3 and 2.4

at different positions inside the shell and on the surface of the shell, respectively, using ε(ω)

from Drude-critical point model.[14] The results show that there is significant decrease in

the enhancement intensity as we go deeper into the shell. If we decrease the shell thickness,
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the resonance peak on the shell surface gradually blue shifts. The shift is very sensitive to

the shell thickness. So, we can easily tune the resonances to a wide range of frequencies.

2.4 Electronic and optical properties of TiO2

The dynamic control over the plasmon resonances would be interesting for their poten-

tial application to plasmonic switches. Our main idea is to change the dielectric environment

in such a model so that there is a shift in plasmon resonance wavelength. An accurate picture

of this model requires the study of the electronic and the optical properties of the material.

We calculate the necessary electronic and optical properties of TiO2 in the rutile phase and

compare them with experiments. It has been reported that TiO2 has an effective electron

mass, m∗e, between 5 and 13me.[57, 58] Such a heavy mass results in an excitonic Bohr radius

between 0.75 and 1.9 nm and exciton ionization energy of 4 meV. It also has been reported

that quantum size effects in colloidal nanoparticles occur when d < 3 nm.[59, 60] So, for a

nanostructure of few nanometers in size, we are far away from the strong confinement limit

and expect properties similar to those of bulk.

In Figure 2.5, we show our calculated band structure within the first Brillouin zone

obtained by means of VASP (Vienna ab initio Simulation Package) in the framework of

density functional theory (DFT) using the generalized gradient approximation with ultrasoft

pseudopotentials.[61] The tightly bound O 2s bands are 16.355 eV below the top of the valence

band, zero of the energy is at the top of the valence band. The experimental value from Auger
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spectroscopy is 16-18 eV.[62] The bandwidth of the O 2s band is 1.699 eV. The upper valence

band is primarily due to the O 2p states with bandwidth of 5.626 eV, the experimental value

is in the range of 5-6 eV.[63] The lower conduction band is primarily due to Ti 3d states with

bandwidth of 7.800 eV. The band gap is calculated to be 1.649 eV, whereas the experimental

band gap is 3.0 eV in rutile structure.[57] The relative positions of the bands are in good

agreement with experiments and previously calculated results.[64, 65] The DFT band gaps

are inherently small due to the lack of integer discontinuity of the exchange-correlation energy

derivative (the well-know band gap problem of DFT). Correction is often done by adopting

a scissor operator that rigidly shifts the conduction band up relative to the valence band.

It is important to note that we calculated the transition dipole matrix elements Pc,v in the

momentum representation. Therefore Pc,v do not depend on the value of the band gap.
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Figure 2.5: Bandstructure calculated using VASP.

The optical properties of a material can be studied by calculating the imaginary part

of the dielectric function, ε(ω), which can be obtained using Fermi’s golden rule and is given

by

Im(ε(ω)) = 4π2e2

m2ω2
∑
k,c,v
|e ·Pc,v|2 f((Ev(k)) [1− f(Ec(k))]

×δ(Ec(k)− Ev(k)− }ω) (2.6)
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where e is the direction of incident field polarization. Ec(k) and Ev(k) are energies

of the conduction and valence band, respectively. The quantities f(Ev(k)) and f(Ec(k)) are

occupation probabilities of a state k in the valence and conduction band, respectively. In

the material with no laser excitation the valence band is occupied and the conduction band

is empty. We can set f(Ec(k)) to be zero and f(Ev(k)) to be one. Both the intraband and

interband transitions are included in eq 2.6. The intraband transitions are mostly important

in metals. Indirect transitions are due to scattering off phonons and are expected to give

small contribution to the dielectric function.[66] The dipole matrix element is given by

〈e ·Pc,v〉 = 1
Ω

ˆ
Ψ∗c,k′e · i}∇Ψv,kdr (2.7)

For the periodic system this can be written as

〈e ·Pc,v〉 = }
Ω

∑
G
a∗k,c(G)ak,v(G)e · (G + k) (2.8)

where the transitions are supposed to be vertical. The quantities ak,c and ak,v are

expansion coefficients in the periodic part of Bloch functions. These coefficients are directly

obtained from VASP in our calculation. G is a reciprocal lattice vector and Ω is the volume

of the unit cell.

Because of the anisotropic nature of the tetragonal cell structure of the rutile lattice,

optical properties depend strongly on the direction of the incoming light polarization. We
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resolve real and imaginary part of the dielectric function of this material in direction per-

pendicular and in direction parallel to the light polarization, as shown in Figure 2.6 and 2.7.

The real part has been obtained using Kramers-Kronig relations. A good approximation of

the delta function at all frequencies in the eq 2.6 can be obtained using a Gaussian wave

packet which gives the best match with the experimental spectra. A Lorentzian could be

used instead but due to the longer tail of the Lorentzian, absorption decreases rapidly in the

low frequency regime. Calculated spectra are convoluted with a Gaussian with full width

at half maximum (fwhm) of 0.30 eV. Results are in good agreement with the experiment of

Cardona and Harbeke.[67]

Figure 2.6: Imaginary part of dielectric function for polarization parallel (green line) and

perpendicular (blue line) to the electric field vector.
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Figure 2.7: Real part of dielectric function for polarization parallel (green line) and perpen-

dicular (blue line) to the electric field vector.
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The imaginary part of the dielectric function can be altered temporarily by the real

carriers generated by the pump pulse.The carrier gneration leads to a quasi-equilibrium non-

linearity in the semiconductor. The generated carriers are thermalized at the top and bottom

of the valence and conduction bands according to the principle of energy minimization. There

is a window of time before the generated carriers recombine to each other. The lifetime of

a single electron-hole pair in an excited 12 nm size TiO2 colloidal particle is reported to be

(30 ±15) nanoseconds.[60]

Under high intensity light illumination photoexcited electron density (∆n) and hole

density (∆p) are created with ∆n = ∆p. Generated electrons and holes have their respective

quasi Fermi energies Ec
f and Ev

f . These energies are determined from the quasi-Fermi distri-

bution function f(Ec) = 1/(1+eβ[Ec(k)−Ecf ]) for the electrons and f(Ev) = 1/(1 + eβ[Ev(k)−Evf ])

for the holes. The chemical potentials in f(Ec) and f(Ev) are determined using ni =
´
f(Ei)D(Ei)dEi for the excited carrier density, where D(Ei) is the density of states. In

order to obtain a change in the optical spectrum for the dielectric function, we need to gen-

erate a large number of electron-hole pairs which block further absorption due to the Pauli

exclusion principle and due to the lack of carriers for certain transitions.

In Figures 2.8 and 2.9, we show our calculations of the change in both the parallel

and perpendicular components of Im(ε) for different densities of excited carriers. After the

excitation, the value of Im(ε) is decreased for all densities we choose. Because the low-

lying conduction bands and the high-lying valence bands are occupied after pumping of the

electron-hole pairs, the absorption of further incoming photons is suppressed. This effect
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is called photobleaching. We also calculated the contribution to the dielectric function due

to two-photon absorption, which may occur due to the symmetry-allowed transitions of

electrons from the lower conduction bands to the upper conduction bands. Our results show

that this two-photon contribution is small. The net change in Im(ε) is therefore negative.

For 1018/cm3 excitation density, the change in peak value of Im(ε) is not noticeable in the

parallel component, but there is a 13% shift of the peak corresponding to an energy of 2.24

eV in the perpendicular component. For 1019/cm3 the peak value of Im(ε) is shifted by 52%

corresponding to 1.96 eV in the parallel component and 26% corresponding to 2.24 eV in

the perpendicular component, while for 1020/cm3 the peak shifts by 35% corresponding to

2.32 eV and 48% corresponding to 2.24 eV in the parallel and perpendicular components,

respectively. For even higher excitations of 1021/cm3 and 5 × 1021/cm3, the peak for the

parallel component shifts by 67% corresponding to 2.71 eV and by 95% corresponding to 3.06

eV, respectively, and the peak for the perpendicular component shifts by 59% corresponding

to 2.76 eV and by 95% corresponding to 3.06 eV, respectively. The onset of the negative

change starts at 1.50 eV for the parallel component and at 1.87 eV for the perpendicular

component.
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Figure 2.8: Parallel component of change in imaginary part of dielectric function.
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Figure 2.9: Perpendicular component of change in imaginary part of dielectric function.

It is evident that the onset of the absorption is blue shifting as we increase the density

of the excitation. This is because the filling of the bands results in a gradual bleaching of

the absorption in the vicinity of the band gap. For higher densities of excited electron-hole

pairs, the Pauli blocking is stronger and the lack of carriers for certain transitions is larger

and thus the bleaching is higher. In our calculation, we did not account for the Coulomb

interaction, which would give exciton effects for frequencies below the band gap. Calculating

the blue shift for higher densities of excited electron-hole pairs is not necessary, because at

around 1022/cm3 the material starts to melt.[68]
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2.5 Plasmon resonance shifts and plasmonic switching

The change in the dielectric function induces many important phenomena. The

change in dielectric function of the TiO2 in the nanoshell (as shown in Figure 2.2) pro-

vides a new dielectric environment for the surface plasmon resonance induced in the metallic

core. Surface plasmon resonances in the silver core dielectric nanoshell can be easily tuned

below the exciton resonances of the TiO2. The pump laser pulse excites electrons from the

valence band to the conduction band in TiO2 causing change in the dielectric function. The

probe laser pulse working at surface plasmon resonance frequency excites plasmons on the

surface of the silver. This frequency is in the transparency regime of TiO2 and can pass

through the outer shell of the nanostructure. A typical plasmon resonance frequency in

silver nanoshell occurs around 2.0 eV (620 nm), depending on the geometry of the nanoshell

structure. In an experiment, this plasmon mode can be excited with a probe pulse of energy

2.0 eV or above. The pumping of the electron-hole pairs does not depend on the band gap.

Generated electron-hole pairs that lead to change in index of refraction are determined by

the strength of the transition dipole matrix elements. Our calculated dipole matrix elements

are very accurate as can be seen from the accuracy of calculated absorption spectra (Figures

2.6 and 2.7). Therefore our proposed experimental model is reliable irrespective of the band

gap underestimation in TiO2.

As shown in Figure 2.10, without any electron-hole pair excitation resonance occurs

at 620 nm. For 1018/cm3 excitation, the conduction band is occupied by the generated
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electrons, thereby changing slightly the dielectric environment. Now the SP appears in a

changed surrounding, which blue shifts the resonance by 5 nm. At 1019/cm3 and 1020/cm3,

the shift is 9 and 13 nm, respectively, with respect to the nonexcited nanoparticle. For

higher density, 1021/cm3 and 5× 1021/cm3, the plasmon resonance is blue shifted by 55 nm

and 126 nm, respectively. It is interesting to see that even at low densities of 1018/cm3 the

blue shift is large enough to be measured. The fwhm of the plasmon resonance lines are

calculated to be 3 nm for the unexcited structure to 8 nm for 5× 1021/cm3 excitations. The

first resonance peak for 1018/cm3 excitation lies at 5 nm from the resonance peak for the

unexcited structure.
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Figure 2.10: Local field enhancement factor on the surface of a nanoshell of 3.5 nm silver

core coated with 4 nm TiO2 at different densities of excitation for parallel polarization of

the incident light. At higher densities, the resonance peak is gradually blue shifted.

We calculate the excitonic Rabi frequency from the interaction energy,HI = (e/m)pcvAo

where pcv is the magnitude of momentum matrix element between valence band and con-

duction band and Ao is the magnitude of the vector potential. At k = 0, our calculated

pcv at minimum band gap is 3.3 × 10−25 Js/m. Assuming a cavity of approximately the

size of wavelength of the pump laser pulse and the power of the laser pulse of 100 mW, the

interaction energy is around 16 meV. This gives rise to a switching time, the inverse of the

Rabi frequency, of 41 fs.
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In summary, the plasmon resonance peak shifts due to a change in dielectric envi-

ronment. We calculated the shift in a silver core TiO2 nanoshell. We showed that it is

possible to dynamically control the shift by varying the dielectric function of TiO2. We

calculated the band structure and the absorption spectra of TiO2; both are in good agree-

ment with the reported experimental results. Generation of electron-hole pairs leads to a

change in absorption due to Pauli blocking and lack of carriers for certain transitions. The

magnitude of the change varies for different densities of excited electron-hole pairs. The

spectra are blue-shifted for increasing carrier density. At the density 1018/cm3 the spectrum

is blue shifted by 5 nm and the blue shift increases at higher densities. For 5 × 1021/cm3

density, the blue shift is 126 nm, which can easily be measured in an experiment. Using the

mechanism of the dynamic control over the plasmon resonances we developed the concept

of a plasmonic switch that can be much faster than conventional electronic switches for the

purpose of controlling data transfer in future computer processors based on plasmonics.
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Figure 2.11: Light-controlled SPP switch. Propagation of surface plasmon-polariton in a

chain of nanoshells of two types: a nanoshell with silver (light blue color) core coated with

TiO2 (yellow color) embedded in PMMA and nanoshells with GaN (no color) core coated

with silver embedded in GaN . Nanoshells are separated by a distance a. This structure acts

as a grating necessary to supply momentum for efficient coupling. Probed surface plasmons

propagate across the chain because the excitation gap matches exactly in all nanoshells. The

pump pulse generates electron-hole pairs in TiO2. This results in a blue shift of plasmon

resonances.
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CHAPTER 3
THREE DIMENSIONAL TOPOLOGICAL INSULATOR

QUANTUM DOT

3.1 Background

3D TIs are narrow-bandgap materials with topologically protected gapless surface/interface

states that are characterized by the linear spectrum of massless Weyl fermions.[69, 7] In such

materials, the spins of the Kramers pairs are locked at a right angle to their momenta on the

Fermi surface due to spin-orbit coupling,[70, 24, 9, 25, 71, 72] which can be used for spin cur-

rent generation.[73, 74, 75] The surface states are protected by time reversal symmetry, lead-

ing to suppression of backscattering from edges and nonmagnetic impurities.[69, 7, 10, 76, 71]

Such states are of great importance in low-power opto-spintronics.[77, 73] Decoherence can

be circumvented by highly polarized spin states with helical spin texture,[70, 78, 76, 79]

leading to a phase coherence length of several hundred nanometers in nanostructures.[80, 81]

In 3D TI nanostructures the special properties of topologically protected surface

states of TIs are amplified because of the large surface-to-volume ratio. In addition, the

chemical potential can be electrically tuned using a gate voltage. For example, the coherent

propagation of the Weyl electrons around the perimeter of a nanoribbon provides excellent

evidence of the topological nature of the surface states in TI nanostructures.[81] Experiments
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on both the physical and chemical synthesis of TI nanostructures have been done recently

to understand their transport properties at the nanoscale.[82, 83, 84] Recently, in a TI QD

with tunable barriers based on ultrathin Bi2Se3 films, Coulomb blockade with around 5 meV

charging energy was observed.[85]

So far, a theoretical study of electronic properties of 2D helical states occurring at

nanoscale of 3D TIs, such as in QDs, is still lacking. In this article, we present the study of

bound Weyl states that are confined at the interface of a spherical core-bulk heterostructure

QD made of 3D TI materials such as Pb1−xSnxTe. We show that at the interface massless

Weyl fermions are confined in all three dimensions. The directions of spin and momentum

are tangent to the surface of the QD. Remarkably, their inherent spin-momentum locking

property exists even in a QD. Because of the linear dispersion there is a mirror symmetry in

the energy spectrum between positive and negative energy states, in contrast to topologically

trivial semiconductors. We demonstrate that this symmetry in energy spectrum is preserved

for the QD spectrum.
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Figure 3.1: A heterostructure spherical core-bulk 3D TI QD with a single interface. a. The

arrows indicate the infinite size of the host. The core and bulk host can be chosen as PbTe

and Pb0.31Sn0.69Te or vice versa. b. The potential ∆(r) binds Weyl fermions at the interface.

The energy of the bound interface states depends on the size of the QD and the strength of

the potential. As an example, two bound states at the interface are shown with energies +ε

and −ε (short dashed lines) for a QD of size r0 =2 nm.

Several methods have been proposed to implement optically controlled quantum mem-

ory and optically mediated quantum computing with topologically trivial QDs. Quantum

memories have been recently reviewed in [86]. A recent review on optically controlled

quantum computing with electron spins can be found in [87]. Optically controlled single-

electron spin memory has been experimentally demonstrated using GaAs QDs[88] and In-

GaAs QDs.[89] Exciton memory has been implemented experimentally in a semiconductor
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nanopost.[90] For the purpose of using a hole spin as quantum memory or qubit, high coher-

ence of hole spins in InGaAs QDs has been experimentally shown.[91] Ref. [92] demonstrates

experimentally that a single spin can be read out using Faraday rotation. Schemes for op-

tically controlled two-qubit interaction have been proposed that are based on the exchange

of virtual photons inside a cavity,[93] the optical RKKY interaction and[94] dipole-dipole

interaction,[95] Substantial experimental progress has been made to implement optically

controlled electron spin state preparation,[92] hole spin state preparation,[96] single-spin

readout,[97] dephasing protection,[98] two-qubit gate,[99, 100] two QD-spin entanglement[101]

and spin-photon entanglement.[102]

In Refs. [103, 104] we developed the method of the Faraday rotation of a single

photon due to the Pauli exclusion principle occurring on a topologically trivial QD. Our

proposed method can be used for entangling remote excitons, electron spins, and hole spins.

We showed that this entanglement can be used for the implementation of optically mediated

quantum teleportation and quantum computing. Our ideas and methods have been copied

in Ref. [105].

Here we show that classical and single-photon Faraday rotation due to the Pauli

exclusion principle in a 3D TI QD occur due to strict optical selection rules satisfied by both

interband and intraband transitions that depend on the polarization of electron-hole pairs.

Based on this finding we propose that 3D TI QDs can be used as quantum memory and for

the implementation of optically mediated quantum teleportation and quantum computing.

First, we propose that a single e-h pair in a 3D TI QD can be used as a quantum memory.
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The information is stored in form of the polarization state of the e-h pair. In order to be

able to read out this information multiple times, we develop the method of Faraday rotation

of a classical electromagnetic field due to Pauli exclusion principle in a 3D TI QD. Second,

we propose that the polarization of a single e-h pair, a single electron spin, or a single hole

spin can be used as a qubit in a 3D TI QD for the implementation of optically mediated

quantum teleportation and quantum computing. We develop the method of single-photon

Faraday rotation in a 3D TI QD, which creates the entanglement between a single photon

and a qubit on the 3D TI QD. This entanglement is the resource for the implementation of

quantum teleportation and quantum computing.

In wide bandgap semiconductor QDs optical inter- and intraband transitions are

energetically separated because the bandgap is typically much larger than the QD level

spacing.[106] In contrast to that, we show that in 3D TI QDs inter- and intraband transitions

combine because of the vanishing bandgap at band crossing. The resulting large dipole

moment of up to 450 Debye provides the possibility to reach the strong-coupling regime for

a cavity quality factor of Q ≈ 104 in the infrared wavelength regime of around 10 µm.

The paper is organized as follows. In Sec. 3.2 we present the analytical derivation

of the Weyl solution of the radial Dirac equation using Greens function technique at the

bulk-quantum dot interface. The resulting eigenvalues and eigenfunctions are analyzed in

the Sec. 3.3. The Sec. 3.4 is devoted to the evaluation of the optical transition matrix

elements and the discussion on them. We also discuss on the potential applications of our

results. In Sec. 3.5 we explain the Faraday rotation effect achieve in the 3D TI QD. The
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application of the 3D TI QD as a quantum memory is explained in the Sec. 3.6. where

we also explain the Stark energy shift that can be used to achieve clean selection rules for

the excitation of a single electron-hole (e-h) pair. The Sec. 3.7 and 3.8 are devoted to the

detailed description of the single-photon Faraday effect, where we show that a single e-h pair,

a single electron, or a single hole can be used as a qubit to implement optically mediated

quantum teleportation and quantum computing with 3D TI QDs. In this section, different

possible level configurations of the Weyl states are shown to achieve the Faraday rotation

effect.

3.2 Model Based on Dirac Equation

In Figure 3.1 we show the model of our spherically symmetric 3D TI QD of a core-

bulk structure with a single interface at radius r = r0. This core-bulk structure consists,

for example, of an inner core of PbTe and an outer bulk of Pb0.31Sn0.69Te with bandgaps of

0.187 and -0.187 eV, respectively, or vice versa, so that Weyl fermions are generated at the

interface. Here we used the bandgap formula provided in Ref. 24 for determining x. Note

that the band crossing happens in Pb1−xSnxTe at x = 0.35 at 4 K. The Weyl fermions are

subjected to the spherically symmetric potential ∆(r) (Figure 3.1 (b)).

To understand the properties of a 3D TI QD, we start with the Dirac Hamiltonian

within the k · p approximation.[107] Neglecting the far band terms, we have

H = v‖αzp̂z + v⊥α⊥ · p̂ + β∆ (3.1)
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where α =

 0 σ

σ 0

 are the Dirac α- matrices, σ are the Pauli matrices, β =

 1 0

0 −1

 is

the Dirac β-matrix, and p̂ is the momentum operator. The component of the Fermi velocities

v⊥and v‖ in angular and radial direction are determined by the v⊥ = P⊥/m0 and v‖ = P‖/m0

respectively, where P⊥ and P‖ are the interband matrix elements. m0 = 9.10938188× 10−31

kg is the free electron mass. ∆(r) = εg (r) /2 is the gap energy parameter.

Assuming spherical symmetry for the 3D TI QD, ∆ (r) depends on the radial co-

ordinate only which breaks the crystal symmetry in radial direction and has the symme-

try ∆ (r − r0) = −4 (r0 − r), where r0 is the radius of the QD. Therefore, the angular

parts are separated from the radial part of the Dirac Hamiltonian (4.1). Thus, we can

follow the derivation of the solution for the central-force problem of a hydrogen atom in

relativistic quantum mechanics.[108] The eigenfunctions of H are four-component spinors

Φ =

 φ−

φ+

 =

 f−(r)Ymjjl−

if+(r)Ymjjl+

, where f−and f+ are the radial functions and Ymjjl−
and Ymjjl+

are the normalized spin-angular functions corresponding to the L− and L+ band, respec-

tively, such as in Pb1−xSnxTe. After eliminating the angular parts, the radial part of the

Dirac Hamiltonian (4.1) takes the form

H =

 ∆ (r) −v‖~
(
d
dr
− κ

r

)
v‖~

(
d
dr

+ κ
r

)
−∆ (r)

 (3.2)

where v‖ = 2.24 × 105 m/s for Pb1−xSnxTe and κ = ±
(
j + 1

2

)
is a nonzero positive or

negative integer, j being the total angular momentum quantum number. For given κ, it

is known from relativistic quantum mechanics that the angular momenta l− and l+ for
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φ− and φ+ are determined by the relations −κ = j (j + 1) − l− (l− + 1) + 1/4 and κ =

j (j + 1)− l+ (l+ + 1) + 1/4, respectively. By solving H2Φ = ε2Φ, we obtain

(
r2 d

2

dr2 + 2r d
dr

)
F∓ −

(
λ2r2 + κ (κ± 1)

)
F∓ = βr2d∆

dr
F± (3.3)

where F± = rf±, β = 1/v‖~ and λ = β
√

(∆2
0 − ε2). λ behaves like a wave vector k whose

allowed quantized values determine the particle’s energy levels. In a flat geometry of a thin

layer of a 3D TI, ∆ (z) can be chosen to be ∆ (z) = ∆ (∞) tanh (z/l).[109, 110] We adopt a

similar potential along the radial direction of the form ∆(r′) = ∆osgn(r′ − ro). Hence, the

source term in Eq. (4.3) is F±
(
r
′
)

= 2∆oβF± (ro) r
′2
δ
(
r
′ − ro

)
. Eqs. (4.3) can be solved by

using the corresponding differential equation for the Green’s function, i.e.

[
d

dr

(
r2 d

dr

)
−
(
λ2r2 + κ (κ± 1)

)]
G∓ = δ

(
r − r′

)
(3.4)

The solutions regular at r = 0 with outgoing wave behavior at r → ∞ are the product of

spherical modified Bessel functions of the order κ for G− and of the order κ − 1 for G+,

i.e. G−
(
r, r

′
, λ
)

= C−Iκ (λr<)Kκ (λr>), G+
(
r, r

′
, λ
)

= C+Iκ−1 (λr<)Kκ−1 (λr>), where

r< (r>) is the smaller (larger) of r and r
′ . The functions I (λr) and K (λr) are, respec-

tively, the first and the second kind of modified spherical Bessel functions, and C∓ are the

normalization constants. These constants are determined by the discontinuity in slope im-

plied by the delta function in Eq. (3.4). Integration is performed at the interface of the

QD along the radial direction:
[
r2 dG∓

dr

]r′+η
r′−η

= 1, where η is an infinitesimal quantity with

η > 0. For r = r
′ + η, r> = r, r< = r

′ and for r = r
′ − η, r> = r

′ , r< = r. Con-

sequently, the normalization constants are C− = 1/λr′20 Wκ and C+ = 1/λr′2oWκ−1, where
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Wκ =
[
Iκ
(
λr
′
)
K′κ (λr)− I ′κ (λr)Kκ

(
λr
′
)]
r=r′

and

Wκ−1 =
[
Iκ−1

(
λr
′
)
K′κ−1 (λr)− I ′κ−1 (λr)Kκ−1

(
λr
′
)]
r=r′

are the Wronskians of I (λr) and

K (λr), respectively, for κ and κ − 1 order, and I ′ (λr) and K′ (λr) are derivatives of the

Bessel functions. The Wronskian of two linearly independent functions is proportional to

1/r2 for Sturm-Liouville type equations such as Eq. (3.4) (see the App. A.1). The solutions of

Eqs. (4.3) are F∓ =
´
G∓

(
r, r

′
, λ
)
F±(r′)dr′ = 2∆oβ

´
G∓

(
r, r

′
, λ
)
F± (ro) r

′2
δ
(
r
′ − ro

)
dr
′ ,

i.e.

F− (r) = 2∆oβF+ (ro) Iκ (λr<)Kκ (λr>) /λWκ (3.5)

F+ (r) = 2∆oβF− (ro) Iκ−1 (λr<)Kκ−1 (λr>) /λWκ−1 (3.6)

where r< (r>) is now the smaller (larger) of r and r0. A transcendental equation is obtained

by solving Eqs. (4.5) and (4.6) is evaluated at r = r0,

[zIκ (z)Kκ (z)] [zIκ−1 (z)Kκ−1 (z)] = 1/4∆2
oβ

2r2
o (3.7)

where z = λr0. In Figure 3.2, we show the plot of Eq. (4.7) where the function F (z) is

defined as F (z) = [zIκ (z)Kκ (z)] [zIκ−1 (z)Kκ−1 (z)].
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Figure 3.2: Plot of Eq. (4.7) showing the intersections of the monotonically decreasing

F (z) (solid lines) with the constants (black dashed lines). Intersection at z = 0 gives the

minimum threshold of the size of a QD to have two bound states, one positive and one

negative energy state, for a given confining potential. For a larger QD, multiple bound

states exist, corresponding to multiple intersection points. The intersection points A, B and

C are example points where we evaluate the wavefunctions. The energy of the bound states

are determined by the relation z = λro.
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3.3 Bound States of the Weyl Fermions

Each term in the square bracket on the left hand side of Eq. (4.7) is a monotonically

decreasing function of z (for z > 0), with maximum value of 1/(2κ + 1) for κth order term

and 1/(2κ − 1) for (κ − 1)th order term occurring at z = 0 (see the App. A.2). Therefore,

their product has a maximum value of 1/(4κ2−1) at z = 0 and is equal to 1/4∆2
oβ

2r2
o. Since

F (z) is a monotonically decreasing function, for each κ, there is at most a single solution

given by the intersection of F (z) with the constant 1/4∆2
oβ

2r2
o (dashed line and solid line in

Figure 3.2). The critical limit for having a single solution is determined by the intersection

at the maximum value of F (z), which occurs at z = 0. This means that there exists a single

solution of Eq. (4.7) for each κ as long as the condition 1/4∆2
oβ

2r2
o ≤ 1/(4κ2−1) is satisfied.

Figure 3.2 shows the plot of the first three different values of κ, κ = 1 (red), 2 (blue) and 3

(pink), each a monotonically decreasing line (solid line) is cut by a horizontal line (dashed

line) at most one time. Since λ = β
√

(∆2
0 − ε2), each single solution gives rise to two bound

states with same magnitude but opposite sign of energy, giving rise to the mirror symmetry

in the energy spectrum. Indeed, this makes sense since Weyl fermions are massless at zero

band gap with the linear dispersion relation. Note that there is no radial quantum number

because in general a Dirac potential allows only for a single positive-energy and a single

negative-energy solution in radial direction.

As the size of the QD grows, it is filled with more and more bound states (see Figure

3.2) where for smaller value of F (z), a horizontal dashed line makes multiple cuts at different
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values of the energy (i.e. z) for different κ. For negative κ, the solutions diverge at the origin

and are therefore physically not valid. This result has profound implications because the

sign of κ determines whether j is parallel or antiparallel to the spin s (see Ref. 48). Since κ

is only allowed to be positive, only one spin orientation with respect to j is permitted. This

corresponds to the spin locking effect, which is a hallmark of 3D TIs. This allows us to write

down the more specific form of the spin-angular functions, i.e.

Ymjjl−
= −

√√√√ l− −mj + 1
2

2l− + 1 Y
mj− 1

2
l−

 1

0



+

√√√√ l− +mj + 1
2

2l− + 1 Y
mj+ 1

2
l−

 0

1

 (3.8)

Ymjjl+ =

√√√√ l+ +mj + 1
2

2l+ + 1 Y
mj− 1

2
l+

 1

0



+

√√√√ l+ −mj + 1
2

2l+ + 1 Y
mj+ 1

2
l+

 0

1

 (3.9)

where l− = j + 1
2 and l+ = j − 1

2 .

The condition 1/4∆2
oβ

2r2
o = 1/(4κ2 − 1) determines the lower limit of the size of

the QD to hold two bound interface states, a positive and a negative energy state, for a

given value of the confining potential strength. The critical QD size depends on the Fermi

velocities and band gaps of the 3D TI materials. In Pb1−xSnxTe, ∆o = 0.0935 eV, half of the

band gap of PbTe. Choosing v‖ = 2.24×105m/s,[110] results in a critical QD size of r0 = 1.4

nm for κ = 1 at z = 0. Similarly for κ = 2 at z = 0, the critical QD size for Pb1−xSnxTe is
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r0 = 3 nm. The energy of the bound states are determined from z = λro, which gives a very

shallow energy level of ε = ±∆o for z = 0.

Table 3.1: φ− and φ+ components

φ− φ+

κ l− j κ l+ j

1 1 1/2 1 0 1/2

2 2 3/2 2 1 3/2

3 3 5/2 3 2 5/2

4 4 7/2 4 3 7/2

For a given value of κ, quantum numbers characterizing the wavefunctions φ− and

φ+ can be determined. For κ = 1, 2, 3 and 4, the possible combination of the quantum

numbers are shown in Table 3.1 for both spinors φ− and φ+. Here we observe that the φ−

component is characterized by the spin being antiparallel to its angular momentum, whereas

the φ+ component is characterized by the spin being parallel to its angular momentum. We

show now how to identify the Kramers pairs. According to Kramers theorem, which applies

to a time-reversal invariant system, a spin 1/2 state is at least twofold degenerate on the

surface of a 3D TI. Hence, we obtain the following examples of Kramers pairs. For κ = 1,
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the 4-spinor state with m 1
2

= 1
2 ,

Φκ=1
1
2 ,

1
2

=

 f−(r)Y
1
2
1
2 1

if+(r)Y
1
2
1
2 0

 (3.10)

=



f−(r)

−√1
3Y

0
1

 1

0

+
√

2
3Y

1
1

 0

1




if+(r)Y 0
0

 1

0




has as Kramers partner the 4-spinor state with m 1

2
= −1

2 ,

Φκ=1
1
2 ,−

1
2

=

 f−(r)Y−
1
2

1
2 1

if+(r)Y−
1
2

1
2 0

 (3.11)

=



f−(r)

−√2
3Y
−1

1

 1

0

+
√

1
3Y

0
1

 0

1




if+(r)Y 0
0

 0

1




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For κ = 2, the 4-spinor state with m 3
2

= 3
2 ,

Φκ=2
3
2 ,

3
2

=

 f−(r)Y
3
2
3
2 2

if+(r)Y
3
2
3
2 1

 (3.12)

=



f−(r)

−√1
5Y

1
2

 1

0

+
√

4
5Y

2
2

 0

1




if+(r)Y 1
1

 1

0




has as Kramers partner the 4-spinor with m 3

2
= −3

2 ,

Φκ=2
3
2 ,−

3
2

=

 f−(r)Y−
3
2

3
2 2

if+(r)Y−
3
2

3
2 1

 (3.13)

=



f−(r)

−√4
5Y
−2

2

 1

0

+
√

1
5Y
−1

2

 0

1




if+(r)Y −1
1

 0

1




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For κ = 2, the 4-spinor state with m 3
2

= 1
2 ,

Φκ=2
3
2 ,

1
2

=

 f−(r)Y
1
2
3
2 2

if+(r)Y
1
2
3
2 1

 (3.14)

=



f−(r)

−√2
5Y

0
2

 1

0

+
√

3
5Y

1
2

 0

1




if+(r)

√2
3Y

0
1

 1

0

+
√

1
3Y

1
1

 0

1





has as Kramers partner the 4-spinor with m 3

2
= −1

2 ,

Φκ=2
3
2 ,−

1
2

=

 f−(r)Y−
1
2

3
2 2

if+(r)Y−
1
2

3
2 1

 (3.15)

=



f−(r)

−√3
5Y
−1

2

 1

0

+
√

2
5Y

0
2

 0

1




if+(r)

√1
3Y
−1

1

 1

0

+
√

2
3Y

0
1

 0

1





In general, the number of Kramers pairs is determined by the spin multiplicity for each mj

value.
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Figure 3.3: Spatial dependence of f− and f+ inside and outside the QD calculated for the

intersection point A shown in Figure 3.2. The QD has size r0 = 2 nm. The solid horizontal

lines represent the energy eigenvalues ε± = ±0.8∆o.

In Figs. 3.3 and 3.4 we show the spatial wavefunctions of the f− and f+ components

inside and outside the QD made of the core-bulk heterostructure PbTe/Pb0.31Sn0.69Te. The

Figure 3.3 shows the example of the intersection point A and the Figure 3.4 shows the

example of the intersection points B and C (points A, B and C are shown in Figure 3.2).

Since the 4-spinors must be continuous at the boundary, also each of the 2-spinor components

must be continuous, i.e. f in− = f out− and f in+ = f out+ at the QD surface. The horizontal solid

and short dashed lines in the figures represent the energy eigenvalues, respectively, at the
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intersection point A, corresponding to r0 = 2 nm, and at the intersection point B and C,

corresponding to r0 = 3.5 nm. Eigenvalues are ε± = ±0.80∆o at point A, ε± = ±0.91∆o at

point B, and ε± = ±0.48∆o at point C.

Figure 3.4: Spatial dependence of f− and f+ inside and outside the QD calculated for the

intersection points B and C shown in Figure 3.2. The QD has size r0 = 3.5 nm. The

horizontal solid lines represent the energy eigenvalues ε± = ±0.91∆o at point B and the

horizontal dotted lines represent the energy eigenvalues ε± = ±0.48∆o at point C.

In order to show that the solutions correspond to Weyl fermions, we perform an

expansion of Eq. (4.7) for large z to obtain the energy eignenvalues in the continuum limit.
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Using the second order in the expansion of the spherical modified Bessel functions for z →∞

(see the App. A.2), we get

1
2z

[
1− 2κ (κ+ 1)

(2z)2

]
× 1

2z

[
1− 2κ (κ− 1)

(2z)2

]
= 1/4∆2

oβ
2r2
o. (3.16)

This can be written as

ε4 − ε2∆2
o + ∆2

oκ
2

β2r2
o

= 0 (3.17)

which results in the energy eigenvalues for the electron and hole,

ε± = ±κvq~/ro. (3.18)

This corresponds to the linear spectrum of free massless Dirac fermions, i.e. free Weyl

fermions on a sphere. This means that the energy splittings between the trapped Weyl

states in the quantum dot result from the confinement of the Weyl fermions on a sphere.

The solution in Eq. (3.18) corresponds to the eigenspectra found in Ref. [111] for zero

magnetic field and without quantum confinement effects.

In the continuum limit, the Nielsen-Ninomiya fermion doubling theorem [112, 113,

114] is satisfied by the pairs of Dirac cones positioned at antipodal points of the sphere

defined by the surface of the QD (see App. A.3 for details). However, for a general finite

QD radius ro the eigenstates are bound and have a discrete energy spectrum. Since the

Nielsen-Ninomiya fermion doubling theorem is valid only for continuum states, it does not

apply to the bound Weyl fermions in a 3D TI QD with finite radius ro.
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3.4 Optical Excitations

The k · p Hamiltonian contains also a quadratic term in the momenta,[107] namely

Hq =


(pz+eAz)2

2m−‖
+ (p⊥+eA⊥)2

2m−⊥
0

0 (pz+eAz)2

2m+
‖

+ (p⊥+eA⊥)2

2m+
⊥

 , (3.19)

where m∓‖ and m∓⊥ are the longitudinal and transverse effective masses of the L∓ bands,

respectively. Through minimal coupling the quadratic term leads to a linear term in the

momentum, which we need to take into account. Hence, in the presence of electromagnetic

radiation, the total Hamiltonian for the Dirac particle is given by

Htot = v‖αz (p̂z + eAz) + v⊥α⊥ · (p̂ + eA⊥) + β∆− er̂ · E

=

 ∆− er̂ · E v‖σz (p̂z + eAz) + v⊥σ⊥ · (p̂ + eA⊥)

v‖σz (p̂z + eAz) + v⊥σ⊥ · (p̂ + eA⊥) −∆− er̂ · E

 (3.20)

where A = (Az, A⊥) is the vector potential, E = ∂A/∂t in the Coulomb gauge, and we

made use of the equivalence between (e/m)A ·p and −er̂ ·E.[108] We identify the interaction

Hamiltonian as

Hint = ev‖αzAz + ev⊥α⊥ ·A⊥ − er̂ · E (3.21)

=

 −er̂ · E ev‖σzAz + ev⊥σ⊥ ·A⊥

ev‖σzAz + ev⊥σ⊥ ·A⊥ −er̂ · E


It will turn out that both interband and intraband transitions contribute. It is important

to note that v‖ = P‖/m0 and v⊥ = P⊥/m0 include the Kane interband matrix elements P =
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〈
u∓kf

∣∣∣P̂∣∣∣u±kI

〉
, where u∓k are the Bloch’s functions for the L∓ bands. This means that the inter-

band transitions are governed by the interband Hamiltonian Hinter = ev‖αzAz +ev⊥α⊥ ·A⊥,

where the Dirac α- matrices couple the L− band with the L+ band. The Hamiltonian

Hintra = −er̂ · E accounts for intraband transitions with r̂ operating on the envelope wave-

functions only. Hintra is proportional to the identity in 4-spinor space and therefore couples

the L− band to itself and the L+ band to itself. Thus the interband Hamiltonian Hinter and

the intraband Hamiltonian Hintra are not equivalent in this description. On the one hand,

Hinter gives rise to interband transitions because it contains the Kane interband matrix el-

ements P⊥ and P‖. On the other hand, Hintra gives rise to intraband transitions because

the electric dipole operator er̂ operates on the envelope wavefunctions. Remarkably, both

terms lead to the same strict optical selection rules and add up to a combined optical matrix

element, as shown below. This enhancement of the optical matrix element is a feature of the

3D TI QD. In contrast, in a wide-bandgap semiconductor QD the interband and intraband

transitions are energetically separated, i.e. interband transitions occur typically around the

bandgap energy, whereas intraband transitions occur around the energy level separation due

to the confinement of the QD. [106]

Figure 3.5 shows the possible transitions between the states κ = 1 and κ = 2. It is

to be noted that there is a complete symmetry in the solutions in the sense that a κ state

can be chosen from either the positive- or the negative-energy solutions.
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Figure 3.5: Optical transitions between the states κ = 1 and κ = 2 in 3D TI QD. Transi-

tions are vertical. The transitions between
∣∣∣∣Φκ=1

1
2 ,±

1
2

〉
and

∣∣∣∣Φκ=2
3
2 ,±

1
2

〉
are coupled to the linear

polarization of the incoming photons, while the transitions between
∣∣∣∣Φκ=1

1
2 ,±

1
2

〉
and

∣∣∣∣Φκ=2
3
2 ,∓

1
2

〉
couple to σ∓ polarizations and the transitions between

∣∣∣∣Φκ=1
1
2 ,±

1
2

〉
and

∣∣∣∣Φκ=2
3
2 ,±

3
2

〉
couple to σ±

polarizations of the light.

The optical matrix elements are given by

〈φf |Hint|φI〉 =ev‖ 〈φf |αz|φI〉Az

+ ev⊥ 〈φf |α⊥|φI〉 ·A⊥

− e 〈φf |̂r|φI〉 · E (3.22)

The incoming photon’s wavelength is much larger than the dot size. Therefore, the tran-

sitions are vertical, which means A = (Ax0, Ay0, Az0)eiq·r ≈ (Ax0, Ay0, Az0) can be used,

yielding the electric dipole approximation. The transition energies ~ω0 = εκ=2 − εκ=1 are

large compared with the room temperature kBT = 25 meV and the Coulomb charging energy
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of about 5 meV.[85] For the control of the number of electrons and holes in the 3D TI QD

it is necessary to work at low temperatures of around 1 K.

As an example, here we consider transitions between the states κ = 1 (at point C)

and κ = 2 (at point B). The matrix elements of the Dirac-α matrix are given by

〈Φf |α|ΦI〉 =
〈
φκ=2
− |σ|φκ=1

+

〉
+
〈
φκ=2

+ |σ|φκ=1
−

〉
(3.23)

The matrix elements of r̂ are given by

〈φf |̂r|φI〉 =
〈
φκ=2
− |̂r|φκ=1

−

〉
+
〈
φκ=2

+ |̂r|φκ=1
+

〉
(3.24)

The spherical harmonics can be determined using the Table 3.1. In order to obtain optical

selection rules for circular polarizations, it is useful to express the scalar products of the

interband and the intraband Hamiltonian in the form e · α = ezαz + e−α+ + e+α− and

e · r̂ = ez ẑ + e−r̂+ + e+r̂−, respectively, where e± = (ex ± iey) /
√

2 are the unit vectors of

circular polarizations, α± = (αx ± iαy) /
√

2, and r̂± = (x̂± iŷ) /
√

2 = −
√

4π
3 rY

±1
1 . Using

our spinor states |φ∓〉 and radial wavefunction functions |f∓〉 we obtain the following nonzero
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matrix elements for α:

〈
Φκ=2

3
2 ,±

1
2
|αz|Φκ=1

1
2 ,±

1
2

〉
π=

〈
φκ=2

+, 32 ,±
1
2
|σz|φκ=1

−, 12 ,±
1
2

〉
= 2

√
2

3 i 〈f+ | f−〉 (3.25)
〈
Φκ=2

3
2 ,−

1
2
|α−|Φκ=1

1
2 ,+

1
2

〉
σ−=

〈
φκ=2

+, 32 ,−
1
2
|σ−|φκ=1

−, 12 ,+
1
2

〉
= 2

3i 〈f+ | f−〉 (3.26)
〈
Φκ=2

+, 32 ,+
1
2
|α+|Φκ=1

−, 12 ,−
1
2

〉
σ+
=

〈
φκ=2

+, 32 ,+
1
2
|σ+|φκ=1

−, 12 ,−
1
2

〉
= −2

3i 〈f+ | f−〉 (3.27)
〈
Φκ=2

3
2 ,+

3
2
|α+|Φκ=1

1
2 ,+

1
2

〉
σ+
=

〈
φκ=2

+, 32 ,+
3
2
|σ+|φκ=1

−, 12 ,+
1
2

〉
= − 2√

3
i 〈f+ | f−〉 (3.28)

〈
Φκ=2

+, 32 ,−
3
2
|α−|Φκ=1

−, 12 ,−
1
2

〉
σ−=

〈
φκ=2

+, 32 ,−
3
2
|σ−|φκ=1

−, 12 ,−
1
2

〉
= 2√

3
i 〈f+ | f−〉 (3.29)

For r̂ we obtain the following nonzero matrix elements:

〈
Φκ=2

3
2 ,+

1
2
|ẑ|Φκ=1

1
2 ,+

1
2

〉
π=

√
2
15
〈
f−Y

0
2

∣∣∣ ẑ ∣∣∣f−Y 0
1

〉
+
√

6
15
〈
f−Y

1
2

∣∣∣ ẑ ∣∣∣f−Y 1
1

〉
+
√

2
3
〈
f+Y

0
1

∣∣∣ ẑ ∣∣∣f+Y
0

0

〉
, (3.30)

〈
Φκ=2

3
2 ,−

1
2
|ẑ|Φκ=1

1
2 ,−

1
2

〉
π=

√
6
15
〈
f−Y

−1
2

∣∣∣ ẑ ∣∣∣f−Y −1
1

〉
+
√

2
15
〈
f−Y

0
2

∣∣∣ ẑ ∣∣∣f−Y 0
1

〉
+
√

2
3
〈
f+Y

0
1

∣∣∣ ẑ ∣∣∣f+Y
0

0

〉
, (3.31)
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〈
Φκ=2

3
2 ,−

1
2
|r̂−|Φκ=1

1
2 ,+

1
2

〉
σ−=

√
3
15
〈
f−Y

−1
2

∣∣∣ r̂− ∣∣∣f−Y 0
1

〉
+
√

4
15
〈
f−Y

0
2

∣∣∣ r̂− ∣∣∣f−Y 1
1

〉
+
√

1
3
〈
f+Y

−1
1

∣∣∣ r̂− ∣∣∣f+Y
0

0

〉
, (3.32)

〈
Φκ=2

3
2 ,+

1
2
|r̂+|Φκ=1

1
2 ,−

1
2

〉
σ+
=

√
4
15
〈
f−Y

0
2

∣∣∣ r̂+

∣∣∣f−Y −1
1

〉
+
√

3
15
〈
f−Y

1
2

∣∣∣ r̂+

∣∣∣f−Y 0
1

〉
+
√

1
3
〈
f+Y

1
1

∣∣∣ r̂+

∣∣∣f+Y
0

0

〉
, (3.33)

〈
Φκ=2

3
2 ,+

3
2
|r̂+|Φκ=1

1
2 ,+

1
2

〉
σ+
=

√
1
15
〈
f−Y

1
2

∣∣∣ r̂+

∣∣∣f−Y 0
1

〉
+
√

8
15
〈
f−Y

2
2

∣∣∣ r̂+

∣∣∣f−Y 1
1

〉
+
〈
f+Y

1
1

∣∣∣ r̂+

∣∣∣f+Y
0

0

〉
, (3.34)

〈
Φκ=2

3
2 ,−

3
2
|r̂−|Φκ=1

1
2 ,−

1
2

〉
σ−=

√
8
15
〈
f−Y

−2
2

∣∣∣ r̂− ∣∣∣f−Y −1
1

〉
+
√

1
15
〈
f−Y

−1
2

∣∣∣ r̂− ∣∣∣f−Y 0
1

〉
+
〈
f+Y

−1
1

∣∣∣ r̂− ∣∣∣f+Y
0

0

〉
, (3.35)

where σ+ = (σx + iσy) /
√

2 =

 0
√

2

0 0

, σ− = (σx − iσy) /
√

2 =

 0 0
√

2 0

, and the nor-

malization and orthogonality condition
´
Ω
dΩY ∗m

′
,l
′
(Ω)Y m,l (Ω) = δl′ lδm′m have been used.

All other matrix elements are zero.

The transition energy difference between the states κ = 1 (at point C) and κ = 2 (at

point B) is 0.43∆o and 1.39∆o within the same energy solution and between the negative and

positive energy solutions, respectively (see Figure 3.4). For ∆o = 93.5 meV (half of the band
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gap of PbTe), the corresponding wavelengths are 31µm and 9.5µm. Consider the transitions

as shown in Figure 4.5. We find that the z-component of the matrix element gives rise to π-

transitions with κ = 2, mj = 1/2←→ κ = 2, mj = 1/2 and with κ = 2, mj = −1/2←→ κ =

1, mj = −1/2). Thus, these π-transitions are coupled to light polarized linearly in z-direction.

The x− iy- and x+ iy-components of the matrix element give rise to the σ+ transition with

κ = 2, mj = +1/2←→ κ = 1, mj = −1/2 and with κ = 2, mj = 3/2←→ κ = 1, mj = 1/2

and to the σ− transition with κ = 2, mj = −1/2 ←→ κ = 1, mj = +1/2 and with κ =

2, mj = −3/2←→ κ = 1, mj = −1/2. Thus, σ+ and σ− transitions couple to the components

of corresponding circular polarization of the light. We can take advantage of these strict

optical selection rules to implement the semi-classical and quantum Faraday effect shown

below. The overlap integrals 〈f+ (κ = 2) | f− (κ = 1)〉 and 〈f− (κ = 2) | f+ (κ = 1)〉 for the

transitions between the points B and C are evaluated to be 0.31 and 0.24, respectively. The

Kane energy, Ep = 2P 2
⊥/mo, is calculated to be 7.3 eV which is about 3 times smaller than the

Kane energy value of 22.7 eV for GaAs.[115, 116] The smaller Kane energy here is due to the

fact that the Fermi velocity is an order of magnitude smaller than the Fermi velocity in GaAs.

The polarization matrix elements of r̂∓ accounts for the strength of the in-plane intraband

transitions at the band crossing. We calculate the magnitude of the matrix elements for σ∓

transitions and find that e
∣∣∣∣〈Φκ=2

3
2 ,−

1
2
|r̂−|Φκ=1

1
2 ,+

1
2

〉∣∣∣∣ = e

∣∣∣∣〈Φκ=2
3
2 ,+

1
2
|r̂+|Φκ=1

1
2 ,−

1
2

〉∣∣∣∣ = 128 Debye and

e

∣∣∣∣〈Φκ=2
3
2 ,+

3
2
|r̂+|Φκ=1

1
2 ,+

1
2

〉∣∣∣∣ = e
∣∣∣∣〈Φκ=2

3
2 ,−

3
2
|r̂−|Φκ=1

1
2 ,−

1
2

〉∣∣∣∣ = 221 Debye. For the π transitions we find

the magnitude of the matrix elements as, e
∣∣∣∣〈Φκ=2

3
2 ,+

1
2
|ẑ|Φκ=1

1
2 ,+

1
2

〉∣∣∣∣ = e

∣∣∣∣〈Φκ=2
3
2 ,−

1
2
|ẑ|Φκ=1

1
2 ,−

1
2

〉∣∣∣∣ = 181

Debye.
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3.5 Faraday Effect for 3D TI QDs

In Refs. [103, 104, ?, 117, 118] we showed that the single-photon Faraday rotation

cannot only be used for quantum spin memory but also for quantum teleportation and

quantum computing with wide-bandgap semiconductor QDs. In Ref. citeThompson:2009 we

showed that the conditional Faraday rotation can be used for optical switching of classical

information. In Ref. [119] we proposed a single-photon Mach-Zehnder interferometer for

quantum networks based on the single-photon Faraday effect. In Ref. [120] a single spin

in a wide-bandgap semiconductor QD was detected using the Faraday rotation. In order to

implement these applications with 3D TI QDs, we need strict optical selection rules for the

circular polarization of the photons. Since, indeed, for 3D TI QDs we obtain strict optical

selection rules for circular polarization of photons, we suggest that it is possible to implement

quantum memory, quantum teleportation and quantum computing using the single-photon

Faraday rotation in 3D TI QDs. In order to prove this conjecture, we derive the Faraday

effect for 3D TI QDs. For the derivation of the Faraday effect for a classical laser beam due

to Pauli exclusion principle we are going to follow Ref. [?]. In Sec. 3.7 we are going to derive

also the Faraday effect for a single photon using quantum optical calculations, where we use

Ref. [121].

In order to simplify the notation, we write the light-matter interaction Hamiltonian

as Hint = evα · A − er̂ · E. Without loss of generality, the anisotropy coming from the

band velocity can be introduced back into the solutions at a later time. Since the incident
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light is a plane wave with wavevector q and frequency ω and the electric field component is

E = −∂A/∂t, the interaction Hamiltonian reads

Hint = ePE0

im0ω

(
ei(q·r−ωt) − e−i(q·r−ωt)

)
e · α

−eE0
(
ei(q·r−ωt) + e−i(q·r−ωt)

)
e · r̂ (3.36)

where P = m0v is the Kane interband matrix element. The transition rate for a single 3D

TI QD can then be calculated using Fermi’s golden rule,

WfI = 2π
~

(eE0)2
∣∣∣∣〈Φf |

P

im0ω
e · α+ e · r̂ |ΦI〉

∣∣∣∣2
×f (εI) [1− f (εf )] δ (εf − εI ∓ ~ω) (3.37)

where f (ε) =
[
exp

(
ε−εF
kBT

)
+ 1

]
is the Fermi-Dirac distribution function, εF is the Fermi

energy, |ΦI〉 denotes the initial Weyl state, |Φf〉 denotes the final Weyl state, and the - sign

in front of ~ω corresponds to absorption and the + sign to emission. Thus, the absorption

of energy per spin state is P = ~ω∑I,f WfI . Comparing with the total power P = 2σ1V E
2
0

dissipated in the system of volume V , where σ = σ1 + iσ2 is the complex conductivity, and

including absorption and emission, it follows that the real part of the conductivity is given

by

σ1 = πe2ω

V

∑
I,f

∣∣∣∣〈Φf |
P

im0ω
e · α+ e · r̂ |ΦI〉

∣∣∣∣2
× [f (εI)− f (εf )] δ (εf − εI − ~ω) (3.38)
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which can be written in terms of the oscillator strengths

ffI = (2m0ωfI/~)
∣∣∣〈Φf | P

im0ω
e · α+ e · r̂ |ΦI〉

∣∣∣2 as

σ1 (ω) = πe2

2m0V

∑
fI

ffI [f (εI)− f (εf )] δ (εf − εI − ~ω) (3.39)

Using the relation εr = 1+ i
ωε0
σ, where ε0 is the free-space permittivity, between the complex

conductivity and the complex dielectric function εr = ε1 + iε2 and taking advantage of the

Kramers-Kronig relations the complex dielectric function is given by

εr (ω) = 1− e2

ε0m0V

∑
fI

ffI [f (εI)− f (εf )](
ω2 − ω2

fI

)
+ iγω

(3.40)

In order to describe the Faraday rotation, we need to consider only the states
∣∣∣∣Φκ=1

1
2 ,±

1
2

〉
,∣∣∣∣Φκ=2

3
2 ,±

1
2

〉
, and

∣∣∣∣Φκ=2
3
2 ,±

3
2

〉
coupled by circular polarized light (see Figure 3.5). We denote their

energy difference by ~ω0 = εκ=2 − εκ=1. Defining the the quantity

Mf ;I =
∣∣∣∣〈Φκ=2

f

∣∣∣ P

im0ω
e · α+ e · r̂

∣∣∣Φκ=1
I

〉∣∣∣∣2
× [f (εI)− f (εf )] (3.41)

we can rewrite the complex dielectric function as

εr (ω) = εQD (ω)− 2e2ρω

ε0~

{
M 3

2 ,+
3
2 ; 1

2 ,+
1
2

+M 3
2 ,−

3
2 ; 1

2 ,−
1
2

(ω2 − ω2
0) + iγω

+
M 3

2 ,+
1
2 ; 1

2 ,−
1
2

+M 3
2 ,−

1
2 ; 1

2 ,+
1
2

[ω2 − (ω0 + ∆S/~)2] + iγω

}
(3.42)

where ∆S is the Stark energy shift (see below) and γ is the line boardening. Summation

over the other states is included in εQD (ω), which is the dielectric function of Pb0.63Sn0.37Te,

corresponding to the material at the interface. ρ = 1/V is the 3D TI QD density. This

89



expression can be split into a component of the dielectric function for the σ+ polarization,

ε+ (ω) = εQD (ω)− 2e2ρω

ε0~

{
M 3

2 ,+
3
2 ; 1

2 ,+
1
2

(ω2 − ω2
0) + iγω

+
M 3

2 ,+
1
2 ; 1

2 ,−
1
2

[ω2 − (ω0 + ∆S/~)2] + iγω

}
(3.43)

and a component of the dielectric function for the σ− polarization,

ε− (ω) = εQD (ω)− 2e2ρω

ε0~

{
M 3

2 ,−
3
2 ; 1

2 ,−
1
2

(ω2 − ω2
0) + iγω

+
M 3

2 ,−
1
2 ; 1

2 ,+
1
2

[ω2 − (ω0 + ∆S/~)2] + iγω

}
(3.44)

Consequently, the indices of refraction for σ± polarizations of the light are given by n± =

√
ε±. Assuming that the length of the material is L, the Faraday rotation can now be

understood by considering the electric component of the plane wave after passing through

the material at position z = L,

E(z = L) = E0√
2
(
eik−Le+ + eik+Le−

)
e−iωt

= E0

(
cos ∆nωL

c
ex + sin ∆nωL

c
ey
)

×ei(kL−ωt+(n−1)ωL
c ) (3.45)

where e± = (ex ± iey) /
√

2 are the circular polarization unit vectors, n = (n+ + n−) /2 is

the average index of refraction, c is the speed of light in vacuum, and ∆n = n+ − n− is the

difference in index of refraction between σ+ and σ− circular polarization. Thus, the Faraday

rotation angle is given by

ϑ = ∆nωL
2c . (3.46)
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This formula shows that the Faraday rotation angle depends on the populations of the

states
∣∣∣∣Φκ=1

1
2 ,±

1
2

〉
,
∣∣∣∣Φκ=2

3
2 ,±

1
2

〉
, and

∣∣∣∣Φκ=2
3
2 ,±

3
2

〉
, as determined by the Fermi functions, which can

be used in the quasi-equilibrium, i.e. when the time is much smaller than the electron-

hole recombination time. A similar Faraday effect has already been successfully used to

experimentally detect a single spin inside a GaAs QD.[120]

3.6 Quantum Memory with 3D TI QDs

Let us first describe the quantum memory with 3D TI QDs. In order to obtain the

maximum Faraday effect, it is possible to apply an oscillating electric field E(t) pointing in

z-direction, which splits the
∣∣∣∣Φκ=2

3
2 ,±

1
2

〉
states from the

∣∣∣∣Φκ=2
3
2 ,±

3
2

〉
states due to the optical Stark

effect (see Figure 3.6). The coupling to the electric field is described by the relativistic Stark

Hamiltonian

HS =

 −ezEze
iωSt ev‖σzAz

ev‖σzAz −ezEzeiωSt

 , (3.47)

where Ez(t) = ES (eiωSt + e−iωSt) and thus Az(t) = iES
ωS

(eiωSt − e−iωSt). In second-order

perturbation theory we obtain the quadratic Stark effect. The only nonzero contributions

come from the matrix element coupling the
∣∣∣∣Φκ=2

3
2 ,+

1
2

〉
state to the

∣∣∣∣Φκ=1
1
2 ,+

1
2

〉
state, and from

the matrix element coupling the
∣∣∣∣Φκ=2

3
2 ,−

1
2

〉
state to the

∣∣∣∣Φκ=1
1
2 ,−

1
2

〉
state. This yields the Stark
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energy shift

∆S = e2E2
S

∣∣∣∣〈Φκ=1
1
2 ,+

1
2

∣∣∣∣ P
im0ωS

αz + z
∣∣∣∣Φκ=2

3
2 ,+

1
2

〉∣∣∣∣2
~(ω0 − ωS)

= e2E2
S

∣∣∣∣〈Φκ=1
1
2 ,−

1
2

∣∣∣∣ P
im0ωS

αz + z

∣∣∣∣Φκ=2
3
2 ,−

1
2

〉∣∣∣∣2
~(ω0 − ωS) (3.48)

Figure 3.6: This is one possible level configuration that can be used for the implementation

of the quantum memory.

The Stark energy shift can be determined by applying an oscillating electric field

whose amplitude is measured along z-direction. The amplitude of the electric field can

be calculated as |ES| =
√

2Sn/Aεoc, where S is the power of the laser, n is the index

of refraction of the medium through which the light propagates and A is the area of the

aperture of the laser source. A laser power of 50 mW with energy ~ωS = 30 meV and area
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of the aperture of 1µm2 in a medium with n = 5.7 (for Pb0.68Sn0.32Te at room temperature)

can produce an electric field of 1.46 × 107 V/m. Using the Fermi velocity of v‖ = 2.24 ×

105 m/s to calculate P , our calculations show that the matrix element in Eq. (4.39) is

e
∣∣∣∣〈Φκ=1

1
2 ,+

1
2

∣∣∣∣ P
im0ωS

αz + z
∣∣∣∣Φκ=2

3
2 ,+

1
2

〉∣∣∣∣ = 410 Debye. With the transition energy difference of ~ω0 =

130 meV we get a Stark energy shift of ∆S = 14 meV.

It has already been shown experimentally that single-electron loading is possible in

3D TI QDs. [85] We focus on two possible level configurations due to the electron-hole

symmetry in 3D TI QDs:

1. Figure 3.6 shows the first level configuration where the electron states are given by

the s-like states
∣∣∣∣Φκ=1

1
2 ,±

1
2

〉
and the hole states are given by the p-like states

∣∣∣∣Φκ=2
3
2 ,±

1
2

〉
and∣∣∣∣Φκ=2

3
2 ,±

3
2

〉
.

2. Figure 3.7 shows the second level configuration where the electron states are given by

the p-like states
∣∣∣∣Φκ=2

3
2 ,±

1
2

〉
and

∣∣∣∣Φκ=2
3
2 ,±

3
2

〉
and the hole states are given by the s-like states∣∣∣∣Φκ=1

1
2 ,±

1
2

〉
.

Only due to the symmetry between positive- and negative-energy solutions in a 3D TI QD

it is possible to choose either of these two level configurations.
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Figure 3.7: This is another possible level configuration that can be used for the implemen-

tation of the quantum memory.

Then, using the optical selection rules shown in Figure 3.5, we can use σ+ polarized

light to create an e-h pair with polarization +1, as shown in Figure 3.6. This corresponds

to writing the information +1 on the 3D TI QD. Alternatively, we can use σ− circularly

polarized light to create an e-h pair with polarization -1, as shown in Figure 3.6. This

corresponds to writing the information -1 on the 3D TI QD.
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Figure 3.8: (a) The incident photon can be either σ+ or σ− polarized. The initial level

configuration is the one shown in Figure 3.6. (b) If the photon is σ+ polarized, an e-h pair

with +1 polarization is created, which can be probed using off-resonant linearly polarized

light that acquires a negative Faraday rotation angle through virtual excitation of an e-h

pair and virtual recombinations of the present e-h pair. (c) If the photon is σ− polarized,

an e-h pair with -1 polarization is created, which can be probed using off-resonant linearly

polarized light that acquires a positive Faraday rotation angle through virtual excitation of

an e-h pair and virtual recombinations of the present e-h pair. (d) After the probing, the

e-h pair relaxes into the ground state configuration.
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If we want to read out the information several times before the electron-hole recombi-

nation, we can take advantage of the Faraday effect due to the Pauli exclusion principle. For

this method, we apply a π-pulse of circularly polarized light, thereby writing the information

+1 or -1 as shown in Figure 3.8. For +1 polarization, the Fermi functions, correspond-

ing to populations in quasi-equilibrium, are f
(
ε 1

2 ,+
1
2

)
= 0, f

(
ε 1

2 ,−
1
2

)
= 1, f

(
ε 3

2 ,+
3
2

)
= 1,

f
(
ε 3

2 ,+
1
2

)
= 1, f

(
ε 3

2 ,−
1
2

)
= 1 and f

(
ε 3

2 ,−
3
2

)
= 0. For -1 polarization, the Fermi func-

tions, corresponding to populations in quasi-equilibrium, are f
(
ε 1

2 ,+
1
2

)
= 1, f

(
ε 1

2 ,−
1
2

)
= 0,

f
(
ε 3

2 ,+
3
2

)
= 0, f

(
ε 3

2 ,+
1
2

)
= 1 f

(
ε 3

2 ,−
1
2

)
= 1 and f

(
ε 3

2 ,−
3
2

)
= 1. Since the off-resonant

interaction does not destroy the quantum state on the 3D TI QD, the information can be

read out several times before recombination. These results are in complete agreement with

the quantum-optical calculations shown below.

Let us assume that σ+ polarized pump pulse of energy ~ω0 excites an e-h pair with

polarization +1 from the state
∣∣∣∣Φκ=2

3
2 ,−

3
2

〉
to the state

∣∣∣∣Φκ=1
1
2 ,−

1
2

〉
in the level configuration shown

in Figure 3.6. Then a linearly polarized probe pulse of energy ~ω with certain detuning energy

is applied to read it out. There are three virtual transitions that can occur while probing,

one σ− transition:
∣∣∣∣Φκ=2

3
2 ,

3
2

〉
←→

∣∣∣∣Φκ=1
1
2 ,+

1
2

〉
and two σ+ transitions:

∣∣∣∣Φκ=1
3
2 ,−

3
2

〉
←→

∣∣∣∣Φκ=2
1
2 ,−

1
2

〉
and∣∣∣∣Φκ=2

3
2 ,−

1
2

〉
←→

∣∣∣∣Φκ=1
1
2 ,+

1
2

〉
. The matrix elements are evaluated to beM 3

2 ,±
3
2 ; 1

2 ,±
1
2

= ∓8.07×10−18

m2 and M 3
2 ,−

1
2 ; 1

2 ,+
1
2

= −2.67×10−18 m2. The sign of the matrix elements Mf,I is determined

by the Fermi functions. The corresponding dipole moments are 454 Debye and 261 Debye.

For a quantitative estimate, we choose a transition energy gap between the negative and

positive energy solution of ~ωo = 130 meV , a linearly polarized probe pulse with detuning
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energy of ~δ = 1 meV and a cavity photon with a bandwidth of ~γ = 100 µeV.[122, 120]

We further assume that there is a single QD in a slab material of length L = 0.1 µm. With

these values for our 3D TI QD of size 3.5 nm we obtain the real part of the Faraday rotation

angle of ϑ+1 = −624 µrad. This Faraday rotation angle is well above the angle value that

has been measured for the experimental detection of a single spin in GaAs QDs.[120] A

similar calculation can be done for σ− polarized pump pulse that excites an e-h pair with

polarization -1 from the state
∣∣∣∣Φκ=2

3
2 ,+

3
2

〉
to the state

∣∣∣∣Φκ=1
1
2 ,+

1
2

〉
. Due to the symmetry of the

positive- and negative-energy solutions in 3D TI QDs, a large variety of level configurations

can be considered to achieve the Faraday effect.

The largest dipole moment of 452 Debye is one order of magnitude larger than the

typical value of 75 Debye for GaAs QDs,[123] and two orders of magnitude larger than the

typical value of a few Debye for atoms.[124] This large strength of the coupling of infrared

light to 3D TI QDs can partially compensate the weak overlap of the photon with the 3D

TI QD, which is due to the wavelength of the infrared light being so much larger than the

size of the 3D TI QD.

3.7 Single-Photon Faraday Effect for 3D TI QDs

Let us consider a 3D TI QD in the level configuration shown in Figure 3.6 inside

a cavity. We define c1±, c2± and c3± as the annihilation operators of the states
∣∣∣∣Φκ=2

3
2 ,±

1
2

〉
,∣∣∣∣Φκ=2

3
2 ,±

3
2

〉
, and

∣∣∣∣Φκ=1
1
2 ,±

1
2

〉
, respectively. Then the Jaynes-Cummings model[121] gives rise to the
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Hamiltonian H = Hp +HQD +Hp−QD, where

Hp = ~ωc
(
a†+a+ + a†−a−

)
, (3.49)

HQD =
3∑
j=1

~ωj
(
c†j+cj+ + c†j−cj−

)
,

Hp−QD = ~g1
(
a+c

†
3+c1− + a−c

†
3−c1+

)
+ h.c. (3.50)

+~g2
(
a+c

†
3−c2− + a−c

†
3+c2+

)
+ h.c., (3.51)

are the cavity photon Hamiltonian, the QD Hamiltonian describing the Weyl states, and the

interaction Hamiltonian describing the photon-QD interaction, respectively. We can safely

neglect the vacuum energy ~ωc/2 per mode. The photon-QD coupling constants are given by

~g1 =
√
~ω/2ε0V0e

〈
Φκ=2

3
2 ,±

1
2

∣∣∣∣ P
im0ω

e · α+e·̂r
∣∣∣∣Φκ=1

1
2 ,∓

1
2

〉
and ~g2 =

√
~ω/2ε0V0e

〈
Φκ=2

3
2 ,±

3
2

∣∣∣∣ P
im0ω

e · α+

e · r̂
∣∣∣∣Φκ=1

1
2 ,±

1
2

〉
, where V0 is the modal volume. After switching to the electron-hole picture

using the new electron and hole operators c± = c3± and v†j∓ = cj± for j = 1, 2, we obtain

Hp = ~ωc
(
a†+a+ + a†−a−

)
, (3.52)

HQD = ~ω3
(
c†+c+ + c†−c−

)
+

2∑
j=1

~ωj
(
v†j+vj+ + v†j−vj−

)
, (3.53)

Hint = ~g1
(
a+c

†
+v
†
1+ + a−c

†
−v
†
1−

)
+ h.c. (3.54)

+~g2
(
a+c

†
−v
†
2+ + a−c

†
+v
†
2−

)
+ h.c. (3.55)

where ~ω3 − ~ω2 = ~ωc + ~δ and ~ω2 − ~ω1 = ∆S. Since the interaction between the EM

fields and the QDs is off-resonant, we can apply an adiabatic approximation. For that, let

us calculate the time evolution of the polarization operators pjσσ′(t) = vjσcσ′ (coherences)
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by means of the Heisenberg equation of motion, i.e.

∂pjσσ′(t)
∂t

= 1
i~

[pjσσ′(t), H] = 1
i~

[pjσσ′(t), HQD +Hint] (3.56)

Since

[
pjσσ′ , p

†
λj′λ′

]
= vjσv

†
j′λ′δσ′λ − c

†
λcσ′δjj′δσλ′

=
(
1− v†j′λ′vjσ

)
δσ′λ − c†λcσ′δjj′δσλ′ (3.57)

and

[
pjσσ′ , c

†
λcλ

]
= pjσλδσ′λ[

pjσσ′ , v
†
j′λvj′λ

]
= pj′λσ′δjj′δσλ (3.58)

we obtain

i
∂p1±±

∂t
=

(
ωc + δ + ∆S

~

)
p1±±

+g1a±
(
1− c†±c± − v†1±v1±

)
+g2a∓

(
1− v†2∓v1±

)
, (3.59)

i
∂p2±∓

∂t
= (ωc + δ) p2±∓

+g1a∓
(
1− v†1∓v2±

)
+g2a±

(
1− c†∓c∓ − v†2±v2±

)
, (3.60)

where the + (-) sign denotes the components of the circular polarization. Since the states∣∣∣∣Φκ=2
3
2 ,±

1
2

〉
and

∣∣∣∣Φκ=2
3
2 ,±

3
2

〉
are not resonantly coupled, no coherences v2±v

†
1∓ and v2±v

†
1∓ are cre-

ated. Therefore they are zero. It is possible to transform to the rotating frame by means of
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p̃1±± = p1±±e
−iωct, p̃2±∓ = p2±±e

−iωct and ã± = a±e
−iωct, resulting in

i
∂p1±±

∂t
=

(
δ + ∆S

~

)
p1±±

+g1a±
(
1− c†±c± − v†1±v1±

)
, (3.61)

i
∂p2±∓

∂t
= δp2±∓ + g2a±

(
1− c†∓c∓ − v†2±v2±

)
, (3.62)

where we omitted the tildes. The Heisenberg equations for the polarization operators p†1±±

and p†2±∓ can be obtained by taking the Hermitian conjugate. Since in the case of the

Faraday effect the photon is off-resonant with the energy difference ~ω21 = ~ω2 − ~ω1, we

can apply the adiabatic approximation, which corresponds to setting the time derivatives in

the Heisenberg equations to zero, i.e. taking the stationary limit. Then we obtain

p1±± = −
g1a±

(
1− c†±c± − v†1±v1±

)
(
δ + ∆S

~

) , (3.63)

p2±∓ = −
g2a±

(
1− c†∓c∓ − v†2±v2±

)
δ

. (3.64)

Inserting this result into the interaction Hamiltonian leads to an effective interaction Hamil-

tonian of the form

Heff
int = − ~g2

1(
δ + ∆S

~

) ∑
σ

(
2a†σaσ + 1

) (
1− c†σcσ − v

†
1σv1σ

)

−~g2
2
δ

∑
σ

(
2a†σaσ + 1

) (
1− c†σ̄cσ̄ − v†1σv1σ

)
, (3.65)

where σ̄ has the opposite sign of σ. It becomes obvious that if electrons or holes are present,

the effective interaction can be suppressed. Most importantly, this suppression of interaction

depends on the spin of the present electrons or holes. This is exactly the mechanism for the
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Faraday effect due to Pauli exclusion principle. Let us now calculate the time evolution of

the photon operator in the rotating frame under the effective interaction Hamiltonian, i.e.

i~
∂a±
∂t

=
[
a±, H

eff
int

]
= −2a±

[(
~g2

1

δ + ∆S

~

)(
1− c†±c± − v†1±v1±

)

+
(
~g2

2
δ

)(
1− c†∓c∓ − v†2±v2±

)]
, (3.66)

resulting in the solution

a±(t) = a±(0) exp
{
−i
[

2g2
1

δ + ∆S

~

(
1− c†±c± − v†1±v1±

)

+ 2g2
2
δ

(
1− c†∓c∓ − v†2±v2±

)]
t

}
. (3.67)

This formula is the main result of this section. It shows that the Faraday rotation of the

linearly polarized light depends strongly on the presence of electrons and holes due to the

Pauli exclusion principle.

3.8 Quantum Teleportation and Quantum Computing with 3D TI

QDs

Here we show that the single-photon Faraday rotation can be used to entangle a single

photon with either a single e-h pair, a single electron, or a single hole. This entanglement can

be used as a resource to implement optically mediated quantum teleportation and quantum

computing 3D TI QDs based on the Faraday effect due to the Pauli exclusion principle, where
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the qubit is defined as either the polarization of a single e-h pair, the spin of a single electron,

or the spin of a single hole. The quantum-informational methods for the implementation

of quantum teleportation and quantum computing are described in Refs. [103, 104]. We

describe here the physical methods for creating the entanglement.

3.8.1 Photon polarization - e-h pair polarization entanglement

Let us consider now the Faraday effect due to an e-h pair on the QD for the level

configuration shown in Figure 3.7. The initial state before the photon-QD interaction reads

|ψ∓1(0)〉 = 1√
2
(
e−iϑ0a†+ + eiϑ0a†−

)
c†±v

†
2∓ |0〉 (3.68)

where the photon is linearly polarized at an angle ϑ0 from the x-axis. If the initial e-h pair

is −1 polarized, then the state after time t is given by

|ψ−1(t)〉 = 1√
2
(
e−i(ϑ0+ϑ+)a†+(0) + ei(ϑ0+ϑ−)a†−(0)

)
×c†+v†2− |0〉 (3.69)

= e
−i
(
ϑ+−ϑ−

2

)
√

2

(
e
−i
(
ϑ0+ϑ++ϑ−

2

)
a†+(0)

+ e
i

(
ϑ0+ϑ++ϑ−

2

)
a†−(0)

)
c†+v

†
2− |0〉 (3.70)

with ϑ+(t) = −2g2
2
δ
t and ϑ−(t) =

(
2g2

1
δ+ ∆S

~
− 2g2

2
δ

)
t, resulting in a Faraday rotation angle of

ϑ−1(t) = [ϑ+(t) + ϑ−(t)] /2 = −
(

2g2
2
δ
− g2

1
δ+ ∆S

~

)
t. If the initial e-h pair is +1 polarized, then
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the state after time t is given by

|ψ+1(t)〉 = 1√
2
(
e−i(ϑ0+ϑ+(t))a†+(0) + ei(ϑ0+ϑ−(t))a†−(0)

)
×c†−v†2+ |0〉 (3.71)

= e
−i
(
ϑ+−ϑ−

2

)
√

2

(
e
−i
(
ϑ0+ϑ++ϑ−

2

)
a†+(0)

+ e
i

(
ϑ0+ϑ++ϑ−

2

)
a†−(0)

)
c†−v

†
2+ |0〉 (3.72)

with ϑ+(t) = −
(

2g2
1

δ+ ∆S
~
− 2g2

2
δ

)
t and ϑ−(t) = 2g2

2
δ
t, resulting in a Faraday rotation angle of

ϑ+1(t) = [ϑ+(t) + ϑ−(t)] /2 = +
(

2g2
2
δ
− g2

1
δ+ ∆S

~

)
t. These results are in complete agreement

with the result using Fermi’s golden rule above.

In addition, the quantum-optical calculation lets us entangle the photon with the

electron-hole state on the 3D TI QD. In particular, if we choose the initial state to be

|ψ(0)〉 = 1√
2
(
a†+ + a†−

) (
c†+v

†
2− + c†−v

†
2+

)
|0〉 (3.73)

the photon and the e-h pair get fully entangled for ϑ∓1(τ) = ±π
4 , i.e. after a time τ =

π/4
(

2g2
2
δ
− g2

1
δ+ ∆S

~

)
, yielding

|ψ(τ)〉 = 1√
2
(
e−i

π
4 a†+(0) + ei

π
4 a†−(0)

)
c†+v

†
2− (3.74)

+ 1√
2

(
e−i(−

π
4 )a†+(0) + ei(−

π
4 )a†−(0)

)
c†−v

†
2+ |0〉

This state consists of a photon entangled to the e-h pair on the 3D TI QD.
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Figure 3.9: This is one possible level configuration that can be used for the implementation

of the quantum Faraday rotation, where the quantum information is stored in form of an

electron (a) in the spin up state or (b) in the spin down state. (a) A single spin up electron

is probed by using off-resonant linearly polarized photon that acquires a positive Faraday

rotation angle through virtual excitation of e-h pairs. (b) A single spin down electron is

probed by using off-resonant linearly polarized photon that acquires a negative Faraday

rotation angle through virtual excitation of e-h pairs.
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We consider two possible level configurations due to the electron-hole symmetry in

3D TI QDs:

1. Figure 3.9 shows the first level configuration, in which only one of the states
∣∣∣∣Φκ=1

1
2 ,±

1
2

〉
is populated with an electron.

2. Figure 3.10 shows the second level configuration, in which only one of the states
∣∣∣∣Φκ=1

1
2 ,±

1
2

〉
is populated with a hole.
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Figure 3.10: This is another possible level configuration that can be used for the implemen-

tation of the quantum Faraday rotation, where the quantum information is stored in form

of a hole (a) in the spin up state or (b) in the spin down state. (a) A single spin up hole

is probed by using off-resonant linearly polarized photon that acquires a positive Faraday

rotation angle through virtual excitation of e-h pairs. (b) A single spin down hole is probed

by using off-resonant linearly polarized photon that acquires a negative Faraday rotation

angle through virtual excitation of e-h pairs.
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3.8.2 Photon polarization - electron spin entanglement

Now let us consider the Faraday effect due to a single electron for the level config-

uration shown in Figure 3.10. Here the electron is in a s-like state. If the initial state is

|ψ(0)〉 = 1√
2
(
e−iϑ0a†+ + eiϑ0a†−

)
c†+ |0〉 (3.75)

then state after the interaction is given by

|ψ(t)〉 = 1√
2

e−i
(
ϑ0−

2g22
δ
t

)
a†+(0)

+ e
i

(
ϑ0+

2g21
δ+∆S

t

)
a†−(0)

 c†+ |0〉 (3.76)

resulting in ϑ+1(t) =
(

g2
1

δ+ ∆S
~
− g2

2
δ

)
t. Conversely, if the initial state is (see Figure 3.10 (b))

|ψ(0)〉 = 1√
2
(
e−iϑ0a†+ + eiϑ0a†−

)
c†− |0〉 (3.77)

then state after the interaction is given by

|ψ(t)〉 = 1√
2

e−i
(
ϑ0−

2g21
δ+ ∆S

~
t

)
a†+(0)

+ e
i

(
ϑ0+

2g22
δ
t

)
a†−(0)

 c†− |0〉 (3.78)

resulting in ϑ−1(t) = −
(

g2
1

δ+ ∆S
~
− g2

2
δ

)
t. This result is also in complete agreement with the

Faraday effect obtained above.

Again, the quantum-optical calculation allows us to entangle the photon with the

single electron on the 3D TI QD. In particular, if we choose the initial state

|ψ(0)〉 = 1√
2
(
a†+ + a†−

) (
c†+ + c†−

)
|0〉 (3.79)
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then the state after the interaction is fully entangled after a time τ = π/
[
4
(

g2
1

δ+ ∆S
~
− g2

2
δ

)]
,

i.e.

|ψ(τ)〉 = 1√
2
(
e−i

π
4 a†+(0) + ei

π
4 a†−(0)

)
c†+ (3.80)

+ 1√
2

(
e−i(−

π
4 )a†+(0) + ei(−

π
4 )a†−(0)

)
c†− |0〉

This state is a fully entangled electron-photon state.

The Faraday effect due to a single hole for the level configuration shown in Figure

3.9 can be calculated in a similar way. Here the hole is in an s-like state. Other possible

configurations include a single electron in a p-like state or a single hole in a p-like state.

Due to the symmetry between positive- and negative-energy solutions, in a 3D TI

QD it is possible to define an electron spin qubit in terms of an s-like or a p-like state. At

the same time it is possible to define a hole spin qubit in terms of an s-like or a p-like state.

This cannot be done in a conventional wide-bandgap semiconductor QD, where the electron

is associated with an s-like state and the hole is associated with a p-like state.[106]

For a quantitative description, we can assume a single 3D TI QD embedded in a

semiconductor microcavity. The strong and weak interaction can occur between the QD

e-h pair and discretized cavity modes at resonance, ω21 = ωc. The e-h-photon coupling

parameter g is given by g = (πe2f)1/2
/ (4πεrεomoVm)1/2, where εr is the dielectric constants

for the cavity material, [?] mo is the free electron mass, and Vm is the mode volume. The

mode volume for a mode of wavelength λ is Vm ≈ (λ/2n)3, where n = √εr (for a GaAs

microcavity, n = 3.31). Using ~ω21 = 130 meV, the oscillator strengths for the transition
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3
2
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1
2 ,−

1
2
are obtained, respectively, f1 ≈ 9 and f2 ≈ 27. This

gives us an estimate of ~g1 ≈ 10µeV and ~g2 ≈ 17µeV. For a detuning energy of ~δ = 100µeV

the time it takes to fully entangle the electron spin and the photon polarization is calculated

to be of the order of 180 ps. The necessary condition to be in the strong coupling regime

is that g must be large compared to both spontaneous emission rate and cavity decay loss

rate.[125] Thus, for Q ≥ ω/g1 ≈ 1.3 × 104 the 3D TI QD is in the strong coupling regime.

For Q = 105, the photon decay rate is given by κ = ω
2πQ = 3.1× 109 s−1. This gives a cavity

photon life time of 3 ns.

3.9 Conclusions

We have shown that Weyl fermions can be confined in all three dimensions at the

spherically shaped interface between two narrow-bandgap semiconductor alloys, such as the

core-bulk heterostructure made of PbTe/Pb0.31Sn0.69Te. This configuration provides us with

the model of a spherical 3D TI QD with tunable size r0 and potential ∆0, which allows for

complete control over the number of bound interface states. The most important features of

3D TI have been identified in a 3D TI QD, namely the spin locking effect and the Kramers

degeneracy. We found that the Weyl states are confined on the surface of the QD, in contrast

to the electrons and holes in topologically trivial semiconductor QDs. We showed that due

to the large dipole moment of 450 Debye it is possible to reach the strong-coupling regime

inside a cavity with a quality factor of Q ≈ 104 in the infrared wavelength regime around
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10 µm. Because of the strict optical selection rules, the 3D TI QD gives rise to interesting

applications based on the semi-classical and quantum Faraday effect. We found that the

3D TI QD is a good candidate for quantum memory, quantum teleportation, and quantum

computing with single spins in 3D TI QDs using infrared light. In particular, a single e-

h pair, a single electron or a single hole can be used as a qubit for the implementation

of optically mediated quantum computing with 3D TI QDs. Interestingly, we found that

due to the symmetry between positive- and negative-energy solutions, in a 3D TI QD it is

possible to define an electron spin qubit in terms of an s-like or a p-like state. At the same

time it is possible to define a hole spin qubit in terms of an s-like or a p-like state. This

cannot be done in a zincblende wide direct-bandgap semiconductor QD, where the electron

is associated with an s-like state and the hole is associated with a p-like state.[106]
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CHAPTER 4
TOPOLOGICAL INSULATORS WITH BULK GEOMETRY

4.1 Introduction

The 3D TI is a new state of matter on the surface or at the interface of narrow-bandgap

materials where topologically protected gapless surface/interface states appear within the

bulk insulating gap.[7, 8, 24, 69, 78, 126, 127] These states are characterized by the linear

excitation energy of massless Weyl fermions. The spins of the Kramers partners are locked

at a right angle to their momenta due to the Rashba spin-orbit coupling,[12] protecting them

against perturbation and scattering.[7, 10, 11, 69] Because of the presence of a single Dirac

cone with fixed spin direction at the surface, the main feature of strong TIs,[23, 128] the

materials Bi2Se3 and Bi2Te3 are currently being widely studied.[129, 78, 127]

The heterostructures of compound semiconductors such as Bi1−xSbx and Pb1−xSnxTe

exhibit a strong topological phase.[11] In Bi1−xSbx, the L+ and L− bands cross at x = 0.04.

The pure PbTe has inverted bands at the band gap extrema with respect to SnTe. In

Pb1−xSnxTe, initially increasing the concentration of Sn leads to a decreasing band gap. At

around x = 0.35, the bands cross and the gap reopens for x > 0.35 with even parity L+ band

and odd parity L− band being inverted with respect to each other.[130] The band inversion
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between PbTe and SnTe results in interface states,[131, 132, 133] which can be described by

the Weyl equation.[110]

Figure 4.1: (a) Band inversion in between two end members in Pb1−xSnxTe. (b) Energy

spectrum of the inverted contact. The solid lines are Weyl states and dashed lines are

additional branches that appear for contact thickness l > lo.

Here we investigate the giant Faraday effect due to Pauli exclusion principle and

the strict optical selection rules governing the low energy excitation of electron-hole pairs

around a Dirac point in a 3D TI. Due to interference effects, the Faraday rotation angle

exhibits oscillations as a function of probe wavelength and thickness of the slab material on

either side of the 3D TI double interface of a PbTe/Pb0.31Sn0.69Te/PbTe heterostructure.

The maxima in the Faraday rotation angle are in the mrad regime. We find that in 3D TIs

both interband transitions (between positive and negative energy solutions) and intraband

transitions (within the same energy solutions) are allowed. Note that the selection rules
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obtained here are different from the selection rules in ARPES experiments, which record the

number of photoelectrons as a function of kinetic energy and emission angle with respect

to the sample surface. A number of experiments have shown the existence of the helical

surface states in 3D TI.[129, ?] As an example, we consider the alloy Pb1−xSnxTe, which

has topologically nontrivial interface states under appropriate doping level. Our results are

qualitatively valid for all strong 3D TIs. Pb1−xSnxTe has a rocksalt type crystal lattice

with four non-equivalent L points located in the center of the hexagonal facets on [111] axis.

The valence and conduction band edges are derived from the hybridized p-type and s-type

orbitals at the L point.[134] Its end species have inverted band character, L+ character of

PbTe band switches to L− character of SnTe band and vice versa as shown in Figure 4.1. The

Brillouin zone has eight hexagonal faces each with center at the L point (see figure4.2). Two

faces lying diametrically opposite are equivalent. As a result, the band inversion happens

at four distinct Dirac points. The crystal possesses a mirror symmetry. Therefore, it is a

distinct class of 3D TI where surface states are protected by mirror symmetry.[135] We choose

the z-axis to point in direction of the gradient of the concentration ∇x. At the two band

extrema, the low energy Hamiltonian is described by a 3D relativistic Dirac equation whose

solutions are localized near the z = 0 plane where the band crossing occurs, which defines the

interface. Dispersion is nearly linear owing to the large band velocities of v⊥ = 8× 105 m/s

and v‖ = 2.24× 105 m/s with a small gap.[110] Such properties result in a small localization

length lo of the interface wave functions along the z-axis. Due to the absence of a center

of inversion, a Rashba-type spin-orbit coupling is present, which is automatically taken into
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account through the Dirac equation. We also present the details of our ab-initio calculation of

the bandstructure in the supercell Brillouin zone obtained by doubling the lattice parameters

in each direction. Analysis of the alloy band structures is usually complicated due to folding

of the bands from neighboring Brillouin zones, making it difficult to map the calculated

bandstructures onto the bandstructures obtained from momentum-resolving experiments.

The analysis is further complicated by the presence of impurity bands inside the normal

bulk energy gap. The interface states sometimes overlap with bulk energy states. Therefore,

we unfold the band structures along the [111] direction in order to shift the band crossing

from the Γ point, as seen in the supercell Brillouin zone, to the L point in the primitive cell

Brillouin zone.[136, 137]
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Figure 4.2: Brillouin zone for rocksalt type crystal with space group Fm3̄m. There are four

inequivalent L points at the center of the faces on the surface of the Brillouin zone. The

growth direction is along [111] and is chosen to point along the z-axis. With the appropriate

level of doping by Sn atoms in PbTe, band gap goes to zero at L point with a linear excitation

energy that traces out a cone in the 2D Fermi surface parallel to the face of Brillouin zone

that is perpendicular to the growth direction .

We developed a method of the Faraday rotation of a single photon due to Pauli

exclusion principle for a topologically trivial quantum dot[103, 104] and for a 3D TI quantum

dot.[138] The proposed method can be used for entangling remote excitons, electron spins,

and hole spins. We showed that this entanglement can be used for the implementation of

optically mediated quantum teleportation and quantum computing.
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Here we investigate the Faraday effect due to the Pauli exclusion principle for a 3D

TI double interface of a PbTe/Pb0.31Sn0.69Te/PbTe heterostructure. This Faraday effect is

completely different from the Faraday effect due to an external magnetic field, which was

presented in Ref. MacDonald:2012 for a thin film of a 3DTI where a gap was opened

by breaking the time reversal symmetry through a magnetic field. When a thin film of

topological insulator material is placed between ferromagnets or placed between paramagents

with an externally applied magnetic field, the transverse Hall effect is observed due to the

presence of the transverse conductivity σxy. Consequently, the Dirac fermion performs a

cyclotron motion acquiring a Berry phase of π due to the Dirac node. The Faraday rotation

angle in this case comes from the topological contribution.[127] In our case, as we show in

our calculations below, there is no magnetic field and hence σxy = 0. Therefore, in our case

there is no topological contribution to the Faraday effect.

The Faraday effect presented here arises from the polarization of electron-hole (e-h)

pairs that are excited by means of a linearly polarized laser pump beam. A laser probe beam

with energy below twice the absolute value of the Fermi energy measured from the Dirac

point cannot be absorbed due to the absence of charge carriers in this energy regime. The

excitation of the Weyl fermion can happen when a photon has an energy of ~ω ≥ 2EF as

shown in the Figure 4.3 a. There are no interband transitions with the photon energy less

than 2EF . A gate voltage can also be applied to shift the Fermi level below the Dirac node.

[3] Figure 4.3 b shows the scheme of the gate-induced shift in the Fermi level. In the Figure

photon of energy ~ω ≥ |EF | can excite a Weyl fermion. We call this energy regime the
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transparency region, in order to avoid confusion with a bandgap in a gapped semiconductor

material. When x- and y-linearly polarized e-h pairs are present, a probe beam linearly

polarized along the diagonal direction x+ y experiences a Faraday rotation on the Poincare

sphere as shown in Figure 4.9[139]. The resulting Faraday rotation angle is giant and of

the order of mrad. It exhibits oscillations as a function of the slab thickness of the two

PbTe layers of the PbTe/Pb0.31Sn0.69Te/PbTe heterostructure containing two interfaces (see

Figure 4.8). The Pb0.31Sn0.69Te is 10 nm thick in order to introduce a gap for three out of the

four L-points, as described below. The Faraday effect results then only from the excitation

of e-h pairs at a single L-point.

The paper is organized as follows. In Sec. 4.2 we present the analytical derivation

of the Weyl solution of the Dirac equation that describes the level crossing at the L point.

Using the Rashba spin-orbit Hamiltonian, we derive the helicity operator for 3D topological

insulators in Sec. 4.3. Sec. 4.4 is devoted to the evaluation of the optical transition matrix

elements. In order to obtain a quantitative result for the optical transition matrix elements,

we perform a bandstructure calculation of the alloy Pb1−xSnxTe in Sec. 4.5. The Sec. 4.6

is devoted to the explicit derivation of the Faraday rotation effect and calculation of the

Faraday rotation angle in the PbTe/Pb0.31Sn0.69Te/PbTe heterostructure.
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Figure 4.3: Transparency region for the optical excitation of the Weyl fermion. The light

yellow color (online) represents the filled Fermi sea of the electrons. The zero energy is

defined by the apex of the Dirac cone. a With the photon energy of ~ω ≥ 2EF a Weyl

fermion can be excited. There are no transitions for a photon energy below 2EF . The Fermi

level is measured from the zero of the energy. b The Fermi level can be shifted below the

Dirac node by applying a gate voltage Vg ≥ EF . Then a Weyl fermion can be excited with

a photon energy of ~ω ≥ |EF |.
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4.2 Model based on Dirac equation

The energy spectrum of Pb1−x SnxTe near the L∓6 band crossing is described within

the k · p perturbation theory by the two-band Dirac Hamiltonian[107]

H =

 ∆(z) v‖σzp̂z + v⊥σ⊥ · p̂⊥

v‖σzp̂z + v⊥σ⊥ · p̂⊥ −∆(z)

 , (4.1)

where σ are the Pauli matrices, p̂ = −i~∇ is the momentum operator and ∆(z) = εg (z) /2 is

the gap energy parameter with symmetry ∆ (z) = −4 (−z). σ⊥ = (σx, σy) and p̂⊥ = (p̂x, p̂y)

denote the Pauli matrices and momenta in the interface plane, respectively. The transverse

and longitudinal velocities are determined by v⊥ = P⊥/m0 and v‖ = P‖/m0, where P⊥ and

P‖ are the transverse and longitudinal Kane interband matrix elements, respectively. m0 =

9.10938188×10−31 kg is the free electron mass. The inhomogeneous structure is synthesized

by changing the composition along one of the [111] axes, whose symmetry breaking leads to

a single Dirac cone in the chosen direction,[140] thereby recovering the Z2 strong topological

insulator phase. The direction of the gradient of the concentration ∇x defines our z-axis.

After the unitary transformation of the Hamiltonian H = UH ′U † using

U = 1√
2

 1 i

i 1

 , (4.2)
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the time-independent Dirac equation H ′Φ′± = (ε− ϕ (z)) Φ′± can be written as
 0 i∆ + v‖σzp̂z + v⊥σ⊥ · p̂⊥

−i∆ + v‖σzp̂z + v⊥σ⊥ · p̂⊥ 0



×

 φ′L
−

φ′L
+

 = (ε− ϕ (z))

 φ′L
−

φ′L
+

 (4.3)

where φ′L
−
and φ′L

+
are the two-component spinors of the L− and the L+ band, respectively.

The potential ϕ (z) (work function) describes the variation of the gap center. For simplicity

we consider the case ϕ(z) = 0. From Eq. (4.3), the two-component spinor φ′L
±
satisfies

(
p2 + U± (z, σz)− ε2

)
φ′
L± = 0 (4.4)

where U± (z, σz) = ∆2 ± ~v‖σz ∂∆
∂z

. In its origin, the linear Weyl spectrum ε±o (k⊥) =

±~v⊥k⊥at k⊥ = 0 is approximately equal to the soliton spectrum in the 1D Peierl’s in-

sulator. This implies that ∆ (z) can be chosen to be ∆ (z) = ∆ (∞) tanh (z/l). Interface

states are localized along the z-axis with the localization length lo = ~v‖/∆ (∞). For lo < l,

additional branches with finite mass appear. There are several solutions at ε2 > ∆2 (∞)

which are localized at the contact. For lo > l, only Weyl solutions exist. We focus on the

case when lo > l. Then we have only zero-energy solutions, which correspond to the Weyl
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states and are given by [?]

Φ′± = C



±e− iθ2

0

0

e
iθ
2


e
− 1

~v‖

ź

0
∆
(
z
′
)
dz
′+ik⊥·r

(4.5)

where C is a normalization constant, k⊥ = (kx, ky, 0) and e∓iθ = kx∓iky
k⊥

. These solutions

have eigenenergies ε±o (k⊥) = ±~v⊥k⊥. For ∆ (z) to vanish at the inverted contact, it can

be seen from Eq. (4.3) that φ′L
−

± and φ′L
+

± must have only non-zero spin down and spin

up components, respectively. Each spinor at L∓ band can be represented with the spin up

states from the L− band and spin down states from the L+ band for both the positive and

the negative energies. The motion of the particle at the inverted contact is separated into

free motion in the xy-plane and confinement along the z-axis. A remarkable property of Eq.

(4.3) is the presence of the zero mode (Weyl mode) localized around z = 0. It is this mode

that has a locked spin structure. In order to understand the direction in which the 4-spinors

point, we have to transform the solutions back to the original basis of the Hamiltonian in

Eq. (4.1). After the back transformation Φ± = UΦ′±, the Weyl solutions are

Φ± = Ce±i
π
4



±e−i
(θ±π/2)

2

±ei
(θ±π/2)

2

e−i
(θ∓π/2)

2

ei
(θ∓π/2)

2


e
− 1

~v‖

ź

0
∆(z′ )dz′+ik⊥·r

(4.6)
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where C is a normalization constant. These solutions have eigenenergies ε±o (k⊥) = ±~v⊥k⊥

and are helical. At this time, it is useful to introduce the notation

Φ± =

 φL
−
±

φL
+
±

 =

 χL
−
±

χL
+
±

F (r) = χ±F (r), (4.7)

where χ± is the four-spinor consisting of the two-spinors χL−± and χL+
± are two-spinors, and

F (r) = Ce
− 1

~v‖

ź

0
∆(z′ )dz′+ik⊥·r

. We define F (z) = e
− 1

~v‖

ź

0
∆(z′ )dz′

.

4.3 Helicity operator

We show in this section that it is possible to clearly identify the positive and negative

energy solutions by means of a spin helicity operator. In the representation shown in Eq.

(4.7), the spin directions reveal themselves clearly: the spins of the two-spinors χL−± and χL+
±

point perpendicular to k⊥ owing to the ∓π/2 shifts. For an asymmetric scalar potential V

applied to a semiconductor heterostructure, the inversion symmetry is broken, which leads

to the Rashba spin-orbit coupling.[12, 139] Here in the case of the interface of a 3D TI

we have antisymmetric potentials V ∓ = ±∆, which correspond to the diagonal elements

of the Hamiltonian H and whose signs depend on the band L∓. This results in a band-

dependent Rashba spin-orbit coupling. For the positive (negative) solutions the Rashba

spin-orbit coupling has the form HR = ∓λRσ · (p×∇V ∓) = ∓λR∇V ∓ · (σ × p), ((−) sign

for positive energy solutions and (+) sign for negative energy solutions), where λR ≥ 0 is the

Rashba spin-orbit coupling constant. It is to be noted that in both cases each spin S(∓) is
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perpendicular both to the momentum and to the potential gradient direction, i.e. the z-axis

(see Figure 4.4). Our findings are consistent with the spin density functional calculations

(DFT).[141]

Figure 4.4: Effect of Rashba spin-orbit coupling. Spin vector S(−) (S̃(−)) in the L− band and

spin vector S(+) (S̃(+)) in the L+ band are perpendicular to both the z-axis and p⊥ (p̃⊥) for

Weyl interface states (Weyl Kramers partner states). (a) and (b) ((c) and (d)) correspond

to positive (negative) eigenenergy.

In order to determine the Kramers partners explicitly, we rotate the phase of each of

the two-spinor wavefunction by an angle π in the 2D interface plane, yielding φL−± (θ + π) =
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e∓i
π
4

 −e
−i (θ∓π/2)

2

−ei
(θ∓π/2)

2

F ∗(r) and φL
+
± (θ + π) = e∓i

π
4

 ±e
−i (θ±π/2)

2

±ei
(θ±π/2)

2

F ∗(r). Their spin and

momentum direction are flipped by an angle π (Figure 4.4). This provides a theoretical

hallmark of Kramers partners in 3D TI.

Helical properties of solutions given by Eq. (4.6) apply to all 3D TIs. In the case of

free neutrinos in 3D space, the standard helicity operator ĥn = − (1/ |p⊥|)σ · p for the spin

S = ~σ/2 can be used. Similarly, in the case of graphene the helicity for the pseudospin is

given by ĥg = − (1/ |p⊥|)σ · p. However, in the case of 3D TI this definition is not useful,

because the spin points perpendicular to the momentum. Therefore, since we know that the

Rashba spin-orbit coupling is responsible for the helicity in 3D TIs, we define the 3D TI

helicity operator as

ĥTI = (1/ |p⊥|)

 (σ⊥ × p⊥) · ẑ 0

0 − (σ⊥ × p⊥) · ẑ


= (1/ |p⊥|) β (σ⊥ × p⊥) · ẑ (4.8)

where σ⊥ = {σx, σy} is the 2D vector of Pauli matrices in the xy-plane and β =

 1 0

0 −1


is a Dirac matrix. Note that the + and − signs in front of the diagonal terms are due to

the direction of ∇V ∓ and thus a direct consequence of the Rashba spin-orbit coupling. The

eigenfunctions of the operator ĥTI are the 4-spinor wavefunctions given by the Eq. (4.6)

with the eigenvalues (+1) for the positive energy solution and (−1) for the negative energy

solution, i.e. ĥTIΦ± = (±1/2) Φ±. ĥTI commutes with the Hamiltonian in Eq. (4.1). This

provides the possibility to write an effective 2D Hamiltonian for the Weyl fermions on the
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surface of 3D topological insulators, i.e.

H2D = ~v

 (σ⊥ × k⊥) · ẑ 0

0 − (σ⊥ × k⊥) · ẑ

 (4.9)

This effective 2D Hamiltonian can be reduced to two Weyl Hamiltonians of the form H2×2
2D =

±~v (σ⊥ × k⊥) · ẑ. It is important to note that both 2-spinors of χ±, the 2-spinor χL−± of

the L− band and the 2-spinor χL+
± of the L+ band have the same helicity, in contrast to

the commonly used Weyl Hamiltonians HW (k) = ±~vσ·k. The reason for this is that the

two 2-spinors are coupled through the mass term ∆(z) in z-direction, as given in the 3D

Hamiltonian in Eq. (4.1).

4.4 Optical transition matrix elements

We calculate the low-energy transitions around the L valley that is lifted up along

the z-direction from the other three L valleys. With the proper choice of uniform strain,

composition and layer width, there exist practically gapless helical states for the [111] valley

inside the gapped states of the oblique valleys.[140] In unstrained Pb1−xSnxTe, band inversion

occurs simultaneously at four L points and the phase is topologically trivial. For most

experiments, in a structure with a layer of thickness d ≈ 10 nm between the two interfaces

in a PbTe/Pb0.31Sn0.69Te/PbTe heterostructure, dispersion of the [111] valley states can be

assumed to be gapless while the states in the oblique valleys are gapped.[140] The interface

can be modeled with the bulk of Pb0.31Sn0.69Te and PbTe with bandgaps of, respectively,
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-0.187 and 0.187 eV, so that Weyl fermions are generated at the two interfaces. Here, the

bandgap formula provided in Ref. Grassie:1985 was used. It is to be noted that localized

spin states of 2D Weyl fermions in 3D TI are solutions of the k · p Hamiltonian given in

Eq. (4.1).

Now we proceed to calculate the optical selection rules for the excitation of electron-

hole pairs, keeping in mind that the Dirac equation provides an effective description of the

two-band system consisting of the L∓ bands. The k ·p Hamiltonian contains also a quadratic

term in the momenta,[107] namely

Hq =


(pz+eAz)2

2m−‖
+ (p⊥+eA⊥)2

2m−⊥
0

0 (pz+eAz)2

2m+
‖

+ (p⊥+eA⊥)2

2m+
⊥

 , (4.10)

where m∓‖ and m∓⊥ are the longitudinal and transverse effective masses of the L∓ bands,

respectively. Through minimal coupling the quadratic term leads to a linear term in the

momentum, which we need to take into account. Hence, in the presence of electromagnetic

radiation, the total Hamiltonian for the Dirac particle is given by

Htot = v‖αz (p̂z + eAz) + v⊥α⊥ · (p̂ + eA⊥) + β∆(z) + (e/m)A · p

=


∆(z) + e

(
pzAz
m−‖

+ p⊥·A⊥
m−⊥

)
v‖σz (p̂z + eAz) + v⊥σ⊥ · (p̂ + eA⊥)

v‖σz (p̂z + eAz) + v⊥σ⊥ · (p̂ + eA⊥) −∆(z) + e
(
pzAz
m+
‖

+ p⊥·A⊥
m+
⊥

)
 .(4.11)

where A = (Az, A⊥) is the vector potential, α = (αz, α⊥) and β are the Dirac matrices

αi =

 0 σi

σi 0

, β =

 I 0

0 −I

, and E = ∂A/∂t in the Coulomb gauge. We identify the
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interaction Hamiltonian as

Hint = ev‖αzAz + ev⊥α⊥ ·A⊥ + (e/m)A · p (4.12)

=


e
(
pzAz
m−‖

+ p⊥·A⊥
m−⊥

)
ev‖σzAz + ev⊥σ⊥ ·A⊥

ev‖σzAz + ev⊥σ⊥ ·A⊥ e
(
pzAz
m+
‖

+ p⊥·A⊥
m+
⊥

)
 .

It will turn out that only interband transitions contribute for a 2D interface, whereas both

interband and intraband transitions contribute in the case of a 3D TI quantum dot as shown

in [138]. It is important to note that v‖ = P‖/m0 and v⊥ = P⊥/m0 include the Kane

interband matrix elements P =
〈
u∓kf

∣∣∣P̂∣∣∣u±kI

〉
, where u∓k are the Bloch’s functions for the L∓

bands. This means that the interband transitions are governed by the interband Hamiltonian

Hinter = ev‖αzAz + ev⊥α⊥ ·A⊥, where the Dirac α- matrices couple the L− band with the

L+ band. The Hamiltonian Hintra = (e/m)A · p accounts for intraband transitions with

p̂ operating on the envelope wavefunctions only. Hintra is proportional to the identity in

4-spinor space and therefore couples the L− band to itself and the L+ band to itself. Thus

the interband Hamiltonian Hinter and the intraband Hamiltonian Hintra are not equivalent

in this description. On the one hand, Hinter gives rise to interband transitions because it

contains the Kane interband matrix elements P⊥ and P‖. On the other hand, Hintra gives rise

to intraband transitions because the term (e/m)A·p operates on the envelope wavefunctions.

We start with calculating the interband matrix elements which are given by the

off diagonal elements of the interaction Hamiltonian. We identify jz = ev‖Ψ†αzΨ and j⊥ =

ev⊥Ψ†α⊥Ψ as the longitudinal and transverse relativistic current densities, respectively[108].
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Therefore, the evaluation of the optical transition matrix elements is reduced to calculating

the matrix elements of αi.

Figure 4.5: The interband transitions for the spin selection rules in 3D TIs. The Dirac

cone represents the component of the Weyl states. The interband transitions occur between

positive and negative energy solutions. The helicity of the band is represented by h = +1/2

(h = −1/2) for the positive energy solution (negative energy solution).

The optical transition matrix elements involve the integral over the envelope functions

and the periodic part of the Bloch functions. The integral over the envelope function can

be carefully separated out from the remaining part, similarly to the case of wide-bandgap

semiconductor materials.[142] The idea is to separate the slowly varying envelope part from
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the rapidly varying periodic part of the total wavefunction. For that we need to first replace

the position vector by r = r′+Rm, where Rm is a lattice vector and r′ is a vector within one

unit cell. Writing the vector potential A = (Ax0, Ay0, Az0)eiq·r and taking advantage of the

periodicity uL±k (r′ +Rm) = uL
±

k (r′) and the fact that φL±± (r′ +Rm) ≈ φL
±
± (Rm), we obtain

〈Φf |Hint|ΦI〉 ≈
e

m0

∑
m

|F (z)|2 ei(q+kI−kf)·Rm

×
∑
i

Ai0

ˆ

Ω

uL
−

kf

∗
(r′)P̂iuL

+

kI
(r′)

×ei(q+kI−kf)·r′d3r′

×
(
χL
−

f σiχ
L+

I + χL
+

f σiχ
L−

I

)
(4.13)

for an optical transition from the initial state |ΦI〉 to the final state |Φf〉. Ω is the volume

of the unit cell. By applying the secular approximation to the term with the exponential

function ei(q+kI−kf)·Rm , we obtain kf = q + kI, which ensures momentum conservation in

the plane of the interface. Using the normalization
´∞
−∞ |F (z)|2 dz = 1, the optical matrix

element is well approximated by

〈Φf |Hint|ΦI〉 ≈
e

m0

∑
i

Ai0

ˆ

Ω

uL
−

kf

∗
(r′)P̂iuL

+

kI
(r′)d3r′

×
(
χL
−

f σiχ
L+

I + χL
+

f σiχ
L−

I

)
= eAz0v‖ 〈χf |αz|χI〉

+eAx0v⊥ 〈χf |αx|χI〉

+eAy0v⊥ 〈χf |αy|χI〉 . (4.14)
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Note that in contrast to semiconductor quantum wells where the overlap between electron

and hole envelope wavefunctions is smaller than 1 in general, here the overlap between

Weyl envelope wavefunctions is
´∞
−∞ |F (z)|2 dz = 1. We assume that the wavelength of

incoming photon is small compared to the lattice constant. This means we can use the

dipole approximation: A ≈ (Ax0, Ay0, Az0). Since there is no net momentum transfer the

directions of the initial and final momentum vectors are the same; i.e. we consider only

vertical transitions. For the α matrix elements we obtain the following interband matrix

elements:

〈χ+ |αx|χ−〉 = 4i sin θ 〈χ+ |αy|χ−〉 = −4i cos θ, (4.15)

These transitions are vertical. The z-component of the matrix element of α vanishes.

The Kane interband matrix element can be calculated explicitly. The periodic func-

tion uk(r) can be written as uL±k = ∑
G
aL±(G)eiG·r, where G is the reciprocal lattice vector

and aL±(G) are the expansion cofficients for the L± bands. The Kane interband matrix

elements can be evaluated as

ˆ

Ω

uL
−∗

kf
P̂uL+

kI
d3r =

∑
Gf ,GI

ˆ

Ω

e−i(Gf−GI)·rd3r

×a∗L− (Gf) GIaL+ (GI) (4.16)

For the vertical transitions kf ≈ kI and
´
Ω
e−i(Gf−GI)·rd3r = δ (Gf −GI), we obtain

ˆ

Ω

uL
−∗

k P̂uL+

k d3r =
∑
G

a∗L−(G)GaL+(G). (4.17)
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Figure 4.6: Spin selection rules in 3D TIs. The states are labeled with φL±± . The transitions

are vertical conserving the spin’s direction. The direction of the momentum is shown along

x-axis (a) in which case the polarization of the light couples the spin pointing along y-axis

and along y-axis (b) in which case the polarization of the light couples the spin pointing

along x-axis. In each case the spin points perpendicular to the momentum (see Figure 4.5).

The diagonal matrix elements of the interaction Hamiltonian give rise to the intra-

band transitions. As stated above, the intraband matrix elements operate on the envelope

functions only and thus couple to the L− band to itself and L+ band to itself. In the elec-

tric dipole approximation the transitions within the same energy solutions are absent. The

intraband matrix elements for the transitions occurring between the positive and negative
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energy solutions are given by

〈Φ+ |ê.p|Φ−〉 =
[〈
χL
−

+

∣∣∣χL−− 〉
+
〈
χL

+

+

∣∣∣χL+

−

〉]
×〈F (r) |ê.p|F (r)〉 , (4.18)

where the Bloch’s functions are already integrated to unity. From the Eqs. (4.6) and (4.7), it

is seen that the 2-component spinors for the same band corresponding to different energy so-

lutions are orthogonal to each other:
〈
χL
−

+

∣∣∣χL−− 〉
= 0 and

〈
χL

+
+

∣∣∣χL+
−

〉
= 0. This implies that

〈Φ+ |ê.p|Φ−〉 = 0. This is, indeed, different from the case of wide bandgap semiconductor

materials where we usually have both intraband and interband transitions.

In Figure 4.6 we show the possible transitions allowed by the spin selection rules. In

each case transitions happen between the L+ and L− components of the positive and negative

energy solutions. Since we use the dipole approximation initial and final momentum point

in same direction and have the same magnitude; i.e. the transitions are vertical. If the

momentum vector in one of the bands points along the x-axis, according the Eq. (4.15), the

polarization of the photon couples to the spin pointing along y-axis. If the momentum vector

in one of the bands points along the y-axis, the polarization of the photon couples to the

spin pointing along x-axis. In each case the spin’s direction is conserved.
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4.5 Bandstructure calculation

In order to observe the band linearity at the crossing, it is important to calculate the

complete bandstructures of Pb1−xSnxTe, which also provides the cofficients of the periodic

part of Bloch functions that appear in the selection rules. Figure 4.7 shows the calculations

of the complete bulk bandstructures of Pb1−xSnxTe at 37.5% doping by Sn impurities in

a supercell Brillouin zone using density functional theory within PAW approximation as

implemented in VASP.[61, 143, 144] We unfold the bandstructures along the Γ to L point in

the first Brillouin zone using unfolding recipes.[136]
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Figure 4.7: Bulk bandstructure of Pb1−xSnxTe at x = 0.375 doping level including spin-orbit

coupling. The crossing has been reported around x = 0.35. In the supercell Brillouin zone

bands are folded from the neighboring Brillouin zones into the first Brillouin zone [(a) and

(b)]. A small band gap of 1.8 meV appears at the Γ point of the supercell Brillouin zone,

which corresponds to the band gap minimum at the L point in the primitive cell Brillouin

zone after unfolding, as shown in c. LSC and LPC are L points in the supercell Brillouin zone

and the primitive cell Brillouin zone, respectively. The solid green color peaks in (c) denotes

the spectral functions. Bands of opposite parity nearly cross at around 67 meV below the

Fermi level at the L point where a single Dirac point is observed (d).
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The unfolded bandstructure is equivalent to the folded bandstructure in terms of the

magnitude of band separation as required by the energy conservation law. The point LPC

in the unfolded bandstructure is a mirror image of the point Γ in the folded bandstructure,

therefore, bands appear with the same dispersion as they were before unfolding. In the

unfolded bandstructures, bands around the L point are almost linear, which is best described

by Weyl fermions. The Dirac point appears at 67 meV below the Fermi level at the L point.

The valence band maximum is derived from the p orbitals of Pb and Sn hybridized with the

s orbital of Te and the conduction band minimum is derived from the s orbitals of Pb and

Sn hybridized with the p orbital of Te. They have opposite parity, thus making interband

transitions allowed. As measured in the experiment, the anisotropy in the crystal structure

gives velocity components as v⊥ = 4.2× 105 m/s and v‖ = 1.7× 105 m/s.[135]

The localization length lo for the Weyl states along z-axis can be obtained using our

calculated band gap of 350 meV including spin-orbit coupling for PbTe. Using the band

velocity, v‖ = 1.7×105 m/s, we obtain lo = 0.32 nm. This length measures the characteristic

scale of the confinement of Weyl states along z-axis at the interface.

4.6 Faraday Effect for 3D TIs

In Refs. Leuenberger:2005,Leuenberger:2006,Seigneur:2011,Gonzalez:2010,Seigneur:2010

it has been shown that the single-photon Faraday rotation can be used for quantum spin

memory and quantum teleportation and quantum computing with wide-bandgap semicon-
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ductor QDs. The conditional Faraday rotation can be used for optical switching of classical

information[145]. A single-photon Mach-Zehnder interferometer for quantum networks based

on the single-photon Faraday effect has been proposed in Ref. Seigneur:2008. In Ref. Bere-

zovsky a single spin in a wide-bandgap semiconductor QD was detected using the Faraday

rotation. It is evident from the calculation above that we have strict optical selection rules

for the x and y polarization states of the photons. We show below that these strict optical

selection rules give rise to a giant Faraday effect due to Pauli exclusion principle for 3D TIs

using our continuum eigenstates.

Figure 4.8: a. A slab of thickness d = 10 nm of 3D TI material Pb1−xSnxTe is sandwiched

by PbTe with thickness t. This structure can have Weyl fermions at the interface with zero

bandgap at one of the L point in the Brillouin zone while the rest of the L points have

non-zero bandgaps due to the interactions between the L valleys of the two interfaces. b.

Solutions inside and outside the material can be found by dividing the geometry into five

different regions, I, II, III, IV and V with the fields EI , EII , EIII , EIV and EV ,
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Let us consider the PbTe/Pb0.31Sn0.69Te/PbTe heterostructure shown in Figure 4.8.

A laser pump beam excites e-h pairs at the two interfaces between Pb0.31Sn0.69Te and PbTe.

It is important to understand the working scheme of the driving fields and a dynamics

of the hot carriers in the excited states so that maximum Faraday effect can be achieved

in an experiment. The e-h pairs pumped by the driving field relax mainly through the

electron-phonon interaction before they recombine. On a time scale of several hundred ps,

the electrons and holes cool down after the driving field is turned off[?]. Due to the presence

of the strong spin-orbit coupling in 3D TI, the induced spin polarization relaxes on a time

scale of the momentum scattering. As calculated in Ref. [?], the spin polarization decays

rapidly within a time of the order of T2 =0.01–0.1 ps, which results in a loss of spin coherence.

Consequently, it is very difficult to measure the Faraday effect after the pump pulse is turned

off. To circumvent the problem of fast spin decoherence, we suggest to use both the pump

and the probe fields simultaneously, thereby maintaining the coherence of the induced spin

polarization in the excited states. Therefore, the probe field experiences a response from the

spin polarized carriers. We use an off-resonant probe field with detuning energy of around

10 meV.

Let us write the light-matter interaction Hamiltonian as Hint = evα · A, which

contains the interband term only because the intaband term is zero, as shown in Sec. 4.4.

Without loss of generality, the anisotropy coming from the band velocity can be introduced

back into the solutions at a later time. Since the incident light is a plane wave with wave

vector q and frequency ω and the electric field component is E = −∂A/∂t, the interaction
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Hamiltonian reads

Hint = ePE0

im0ω

(
ei(q·r−ωt) − e−i(q·r−ωt)

)
e · α (4.19)

where P = m0v is the Kane interband matrix element. The transition rate can be calculated

using Fermi’s golden rule,

WfI = 2π
~

(
eE0P

m0ω

)2
|〈Φf | e · α |ΦI〉|2

×nI(t) [1− nf (t)] δ (εf − εI ∓ ~ω) (4.20)

where nI,f is the population distribution function for the initial and final states, εF is the

Fermi energy, |ΦI〉 denotes the initial Weyl state, |Φf〉 denotes the final Weyl state, and

the - sign in front of ~ω corresponds to absorption and the + sign to emission. Thus, the

absorption of energy per spin state is P = ~ω∑I,f WfI . Comparing with the total power

P = 2σ1AE2
0 dissipated in the system areaA, where σ = σ1+iσ2 is the complex conductivity,

and including absorption and emission, it follows that the real part of the conductivity is

σ1 = πe2P 2

Am2
0ω

∑
I,f

|〈Φf | e · α |ΦI〉|2

× [nI(t)− nf (t)] δ (εf − εI − ~ω) (4.21)

which can be written in terms of the oscillator strengths ffI =
(

2P 2

~m0ωfI

)
|〈Φf | e · α |ΦI〉|2,

σ1 (ω) = πe2

2m0A
∑
fI

ffI [nI(t)− nf (t)] δ (εf − εI − ~ω) (4.22)

Using the Kramers-Kronig relations σ2 (ω) can be obtained. It is important to note that

σ1 (ω) is equivalent to the imaginary part of the dieletric function, ε (ω). The physical
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significance of σ1 (ω) and σ2 (ω) appear in different way, σ1 (ω) being for the dissipiation

while σ2 (ω) for the polarization.

We calculate now the Faraday rotation angle due to Pauli exclusion principle between

the initial and final continuum states. In order to this, a strong π-pulse of the laser pump

beam is used to excite e-h pairs. The direction of the polarization can be along x−and

y−axis. The dynamics of the excitation of e-h pairs can be described by the optical Bloch

equations [?]. Due to the large screening the exciton binding energies in perpendicular and

parallel directions are small, i.e. Eb⊥ = 143 µeV and Eb‖ = 1.68 meV.[146] Therefore, we

can safely neglect the Coulomb interaction. Then the time dependences of the polarization

Pk and the electron population distribution ne,k for the state k are given by

dPk

dt
= iεgPk + i(ne,k + nh,k − 1)ωR,k, (4.23)

dne,k
dt

= −2Im(ωR,kP ∗k), (4.24)

where εg = εe,k + εh,k εe,k and εh,k are the electron and hole kinetic energies, respectively, in

the state k, and ωR,k is the Rabi frequency. An equation similar to Eq. (4.24) can be written

for the hole distribution function nh,k. It is to be noted that nh,k = ne,k. In the rotating

frame approximation, Pk(t) = P̃ (t)e−iεgt and ωR,k(t) = ωo,ke
−iεgt. Using this Eqs. (5.4) and

(4.24) yield dη̃k/dt = 2(ne,k − 1)ωo,k and ñe,k = −2ωoη̃, where η̃ = (P̃ − P̃ ∗)/2i. These two

equations can be solved for ne,k. We obtain, ne,k = 1
2 [1− cos(2ωo,kt)]. A similar solution

can be obtained for nh,k. For 2ωo,kt = mπ, ne,k = 1 if m is an odd integer, ne,k = 0 if

m is an even integer, and ne,k = 1/2 if m is an odd half-integer. A strong π-pulse excites
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the maximum number of electrons so that ne,k ≈ 1 with 2ωo,kt ≈ π. In the absence of

Coulomb interaction the Rabi frequency can be written as ωo,k = dfIEcosθ/~, where dfI is

a transitions dipole moment, E is the strength of the electric field and θ is the direction of

polarization.

It is useful to estimate the value of the Rabi frequency. The amplitude of the electric

field can be calculated as |ES| =
√

2Sn/Aεoc, where S is the power of the laser, n is the

index of refraction of the medium through which the light propagates and A is the area of the

aperture of the laser source. A laser power of 0.5 mW with an area of the aperture of 10µm2

in a medium with n = 5.8 (for Pb0.68Sn0.32Te at room temperature) can produce an electric

field of 4.67× 105 V/m. Using v⊥ = 4.2× 105 m/s and the matrix elements from Eq. (4.15),

we obtain a maximum Rabi frequency of ωo,max = 5.89 × 1012/s which occurs for θ = 0 or

π. During the pump beam a laser probe beam is incident on the double interface within the

transparency region. The polarization of this probe beam experiences the Faraday rotation

that we compute in the following.

The time dependence of the population becomes, ne,k = 1
2

[
1− cos

(2dfIEcosθt
~

)]
. The

pump pulse duration, Tp, can be calculated using as Tp = π ~
2dfIE

. Probe and pump pulses are

illuminated simultaneously to circumvent the problem of decoherence of spin polarization,

as described above. Therefore, the probe pulse experiences the response from the average

spin coherent population distribution excited by the pump pulse. If the probe pulse has the

duration of Tr = Tp, the average population distribution is calculated as, n̄e,k = 1
Tp

´ Tp
0
ne,k dt

which gives n̄e,k = 1
2 −

1
2

1
πcosθ sin(πcosθ). Since, nv,k − nc,k = 1− 2ne,k, for nv,k = nI(t) and
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nc,k = nf (t), the average of the net population distribution is nI(t)− nf (t) = 1
πcosθ sin(πcosθ).

If the probe pulse has the duration of Tr = Tp/10 and lasts from the time 0.9Tp to the time

Tp of the pump pulse, the average population distribution is n̄e,k = 1
Tr

´ Tp
0.9Tp

ne,k dt, which

gives n̄e,k = 1
2 −

1
2

10
πcosθ sin(πcosθ) + 1

2
10

πcosθ sin(0.9πcosθ). Thus, we obtain nI(t)− nf (t) =

10
πcosθ [sin(πcosθ)− sin(0.9πcosθ)]. These average populations give rise to the Faraday rota-

tion of the probe field polarization.

Now we proceed to describe the Faraday effect due to the 2D Weyl fermions living at

the interface of the 3D topological insulators. The difference in the phase accumulated for

the x and y polarization of the light as it passes through the material is measured by the

Faraday rotation angle, which is solely due to the difference in response of surface carriers

to the x and y polarized light. This response of the surface carriers at the two interfaces

between Pb0.31Sn0.69Te and PbTe is given by the optical conductivity tensor σij, i = x, y,

j = x, y, which can be calculated by means of Eq. (5.6). The interband matrix element,

|〈Φf | e · α |ΦI〉|2, for the linear polarization of light in x and y direction can be written as

|〈Φf | e · α |ΦI〉|2 =
[
|〈Φf |αx |ΦI〉|2

+2 〈ΦI |αx |Φf〉 〈Φf |αy |ΦI〉

+ |〈Φf |αy |ΦI〉|2
]
. (4.25)

The first and last terms of the RHS in Eq. (4.25) are the matrix elements that give rise

to σxx and σyy, respectively, in x and y directions. The middle term gives rise toσxy.

Using Eq. (4.25) and the average population distribution nI(t)− nf (t) after pumping us-
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ing a linearly polarized light in x direction in Eq. (5.6), one can solve for σxx , σyy and

σxy. The summation can be changed into the integration over the momentum space area,

∑
fI
−→

[
1/Ωk (2π)2

] ´
k dk
´
dθ, 0 ≤ θ ≤ 2π, where Ωk is the cross sectional area of the Bril-

louin zone. Using dε = ~vFdk, k-space integration can be written as
´
k dk = [1/~2v2

F ]
´
εdε,

where vF = P/m0 is the Fermi velocity. As discussed above, here we calculate the conduc-

tivity tensors for two examples of pulse duration: Tr = Tp and Tr = Tp/10. We obtain

that σ1xy = 0. This signifies that there is no transverse Hall effect with this type of pop-

ulation distribution. If the polarization of the pump pulse is in y direction the transverse

conductivity is still zero. σ1xx (ω) and σ1yy (ω) are calculated as follows: using Eq. (5.6), we

obtain

σ1xx (ω) = 16πe2

ωfI~2 (2π)2

∞̂

2|EF |

2π̂

0

εdεδ (εf − εI − ~ω)

×nI(t)− nf (t) sin2 θdθ, (4.26)

σ1yy (ω) = 16πe2

ωfI~2 (2π)2

∞̂

2|EF |

2π̂

0

εdεδ (εf − εI − ~ω)

×nI(t)− nf (t) cos2 θdθ. (4.27)

Using the population distribution nI(t)− nf (t) obtained for Tr = Tp, Eqs. (4.26) and

(4.27) yield σ1xx (ω) = σoxxΘ(ω − 2 |EF | /~) and σ1yy (ω) = σoyyΘ(ω − 2 |EF | /~) with

σoxx = 2.707 e2/~ and σoyy = 0.725 e2/~. Using the population distribution nI(t)− nf (t)

obtained for Tr = Tp/10, Eqs. (4.26) and (4.27) yield σ1xx (ω) = σoxxΘ(ω − 2 |EF | /~) and

σ1yy (ω) = σoyyΘ(ω − 2 |EF | /~) with σoxx = 0.926 e2/~and σoyy = −2.952 e2/~. These re-

sults can be compared with the conductivity tensors obtained in case of a graphene sheet
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in Ref. Ferreira:2011. The difference here is that we have use the population distribution

obtained by solving the optical Bloch equations, whereas in Ref. Ferreira:2011 the Fermi

Dirac distribution function has been used.

Using Kramers-Kronig relation, σ2 (ω) can be calculated from σ1 (ω) according to

σ2 (ω) = − 2
π
P
∞̂

0

ωσ1
(
ω
′
)

ω′2 − ω2 dω
′
, (4.28)

where P denotes the Cauchy principle part of the integral. The measurement of the Faraday

rotation angle is performed with the probe pulse with frequency in the transparency region.

In the experiment, the probe pulse has an energy of 2~ωF − ~δ, where ~ωF is the Fermi

energy and ~δ is the detuning energy. Therefore the width of the transparency region is

given by 2~ωF . Thus, the Eq. (4.28) can be evaluated for ~ω ≤ 2~ωF . There are poles at

ω
′ = ±ω. Using σ1xx (ω), Eq. (4.28) gives

σ2xx (ω) = −2σoxx
π

lim
η→0


ω−ηˆ

0

ωΘ(ω′ − 2ωF )
ω′2 − ω2 dω

′

+
∞̂

ω+η

ωΘ(ω′ − 2ωF )
ω′2 − ω2 dω

′

 , (4.29)

where η is an infinitesimal positive quantity. Since ~ω < 2~ωF , the first integral in Eq. (4.29)

is zero. After evaluating the second integral we get

σ2xx (ω) = iσoxx + 2σoxx
π

arctan h
(2ωF
ω

)
(4.30)

We are in the transparency region for the probe pulse, which means 2ωF
ω
> 1. The functionarctan h (z)

can be then expanded in terms of a Maclaurin series at infinity, i.e. arctan h (z) = − iπ
2 +
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∞∑
n=1

z−2n+1

2n−1 . Consequently, Eq. (4.30) yields

σ2xx (ω) = 2σoxx
π

∞∑
n=1

1
2n− 1

(2ωF
ω

)−2n+1
. (4.31)

Similarly we obtain

σ2yy (ω) = 2σoyy
π

∞∑
n=1

1
2n− 1

(2ωF
ω

)−2n+1
. (4.32)

As shown in Ref. Buczko:2012, there are interface bound states (IBS) localized at

two decoupled interface states of a PbTe/Pb1−xSnxTe/PbTe heterostructure with d = 10 nm

grown in the [111] direction. It has been shown that the L-valley in [111] direction remains

gapless while gaps are opened in the oblique L valleys due to the coupling of the IBS from

the opposite interface states. Here we calculate the Faraday rotation angle produced by the

Weyl fermions at the two interfaces with gapless L valley. We consider a structure with a

slab of thickness d of 3D TI material Pb1−xSnxTe sandwiched by PbTe with thickness t,

as shown in Figure 4.8a. We choose the thickness of the slab to be d = 10 nm. A probe

pulse linearly polarized along the x + y-direction and propagating along z-direction travels

perpendicularly to the two interfaces. This probe pulse is partially reflected and partially

transmitted at the boundaries. Solutions inside and outside the material can be solved by

dividing the space into five different regions as shown in Figure 4.8b, where EI , EII , EIII ,

EIV and EV ,are the fields in the region I, II, III, IV and IV , respectively. The solutions
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are

EI =

 Eax

Eay

 eikIz +

 Ebx

Eby

 e−ikIz, (4.33)

EII =

 Ecx

Ecy

 eikIIz +

 Edx

Edy

 e−ikIIz, (4.34)

EIII =

 Eex

Eey

 eikIIIz +

 Efx

Efy

 e−ikIIIz, (4.35)

EIV =

 Egx

Egy

 eikIIz +

 Ehx

Ehy

 e−ikIIz, (4.36)

EV =

 Eix

Eiy

 eikIz, (4.37)

where Eαx (Eαy), α = a, b, c, d, e, f, g, h, i, are the x (y) components of the field amplitudes

in regions I through V . kI , kII and kIII are the wave vectors in air (region I), in PbTe

(region II and IV ) and in Pb1−xSnxTe (region III), respectively. The incident probe pulse

is polarized along the x + y-axis. Therefore Eax = Eay. For simplicity, we assume that the

wave vectors within the material Pb1−xSnxTe and PbTe do not differ significantly and thus

kII ≈ kIII .

Our geometry has a dimension of length 2t + d with top, bottom, and interface

surfaces being parallel to the plane of polarization. Rotation of the polarization on the

Poincare sphere is due to the charge carriers at the interfaces, which are excited by the

pump pulse with energy at least twice the Dirac point energy measured from the Fermi level
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(see Figure 4.3). The accumulation of the phase difference is only due to surface carriers

that come from the difference in the optical conductivity tensor for the x and y polarization

of the light. There is no contribution to the phase shift in the polarization from the bulk.

However, the index of refraction of the bulk leads to interference effects due to reflection and

transmission at the boundaries. The Maxwell equations to be solved are given by[147]

∂2Ei
∂z2 = iωµo [δ (z − t) + δ (z − t− d)]

∑
j=x, y

σijEj

+ω2εrµoEi, (4.38)

where µo is the permeability of the free space and εr is the dielectric constant of the material in

the bulk. It is important to note that the delta functions ensure that the optical conductivity

tensor originates only from the interface carriers. The optical conductivity tensor that enters

Maxwell’s equations is the imaginary part of σ (ω), i.e. σ2 (ω) [see Eqs. (4.31) and (4.32)],

which gives rise to the dispersion of the incident light inside the material. The boundary

conditions are determined by the continuity of the tangential components of the electric

field and their derivatives at the boundaries of the materials at z = 0, z = t, z = t + d and

z = 2t + d. The details of matching of the fields at the boundaries are shown in Appendix

A. The transmission amplitudes for x and y components of the electric field are calculated

to be Tx,y = Eix,iy/Ea = |Tx,y| eiθx,y , where |Tx,y| is the transmission amplitude and θx,y are

the Faraday rotation angles for the light polarized in x and y direction. Tx and Ty are given
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by

Tx = 4kIkIIe−ikI(2t+d)

/
{

(kI + kII)e−ikII t [α(kIIAx + Cx)

+ β(kIIBx +Dx)] + (kI − kII)eikII t

× [α(kIIAx − Cx) + β(kIIBx −Dx)]} (4.39)

Ty = 4kIkIIe−ikI(2t+d)

/
{

(kI + kII)e−ikII t [α(kIIAy + Cy)

+ β(kIIBy +Dy)] + (kI − kII)eikII t

× [α(kIIAy − Cy) + β(kIIBy −Dy)]} (4.40)

where Ax(Ay) , Bx(By), Cx(Cy) and Dx(Dy) are the x(y) components of the parameters A,

B, C and D, respectively (see Appendix A). After solving Eqs. 4.39 and 4.40 for θx and

θy, we write the Faraday rotation angle as θF = (θx − θy) /2. The useful quantity, the total

transmittance>, which measures the energy of the electromagnetic field inside the material,

can be defined as > =
(
|Tx|2 + |Ty|2

)
/2.

147



Figure 4.9: Illustration of the diagonal, |D〉 and anti-diagonal, |A〉 polarization in a Poincare

sphere. 〈σ̂x〉, 〈σ̂y〉 and 〈σ̂z〉 are the expectation values of the Pauli matrices σx =

 0 1

1 0

,

σy =

 0 −i

i 0

 and σz =

 1 0

0 −1

, respectively. |σx〉 and |σy〉 represent the x- and

y-polarization states and |σ+〉 and |σ−〉 represent the left and right circular polarization

states of the photon .

From the bandstructure calculation we obtain that the Fermi level lies around 67 meV

below the Dirac point. Therefore, we choose a transparency energy gap of ~ωcv = 2 |EF |,
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which is 134 meV in our calculation. A linearly polarized probe pulse with detuning energy

of ~δ = 10 meV, pulse duration of 1 ps and bandwidth of ~γ = 4 meV can be used. In

Figs. 4.10 a and b we show the transmittance and the Faraday rotation angle for Tr = Tp.

In Figs. 4.10 c and d the transmittance and the Faraday rotation for Tr = Tp/10 are

shown. For the transmittance and the Faraday rotation angle as a function of thickness

t the wavelength is chosen to be λ = 9.97 µm. For the transmittance and the Faraday

rotation angle as a function of wavelength λ the thickness of PbTe layers is taken to be

t = 1.720 µm. It is seen from the figures that the Faraday rotation angle follows exactly the

transmittance. In particular, the maxima of the Faraday rotation angle occur at the maxima

of the transmittance, which corresponds the case of nearly reflectionless slab in optics. There

are two cases when reflection turns to zero. The first case is given by the half-wave condition

when w = mλ/2n, n is an integer and n1 = n2. The second case is given by the quarter-wave

condition when w = (2m+ 1)λ/4n, n = √n1n2, where w is the total length of the slab, m is

an integer, n, n1 and n2 are the indices of refraction of a slab of material and of the materials

on either side of the slab, respectively. In our case the half-wave condition is met. Therefore,

the resonances are seen (Figure 4.10b and d) inside the material at half-integer multiples of

the probe wavelength divided by the index of refraction of the material, which is n = 5.8.

Of course, Figure 4.10 exhibits a slight deviation from zero reflection at maxima due to the

presence of multiple interfaces. The Faraday rotation angle obtained using a wide-bandgap

semiconductor quantum dot is usually small compared to this result. [120]
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Figure 4.10: Transmittance and the Faraday rotation angle are plotted as a function of

thickness t and wavelength λ for the geometry shown in Figure 4.8. In a and b we choose

Tr = Tp = 1 ps, while in c and d we choose Tr = Tp/10 = 1 ps. For a and c the wavelength is

λ = 9.97 µm, which corresponds to a detuning energy of 10 meV. For b and d the thickness

is t = 1.72 µm. The width of the transparency region of the excitation of Weyl fermion is

134 meV, as calculated from the bandstructure as shown in Figure 4.7.
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4.7 Conclusion

We have calculated the optical transitions for the Weyl interface fermions in 3D TI at

the L point using the Dirac Hamiltonian. The spin selection rules for the optical transitions

are very strict. The interaction Hamiltonian that comes from the quadratic part of the k. p

is included in the calculation and is shown to have zero contribution to the transition dipole

moment.

We demonstrate the effect of the strict optical selection rules by considering the

Faraday effect due to Pauli exclusion principle in a pump-probe setup. Our calculations

show that the Faraday rotation angle exhibits oscillations as a function of probe wave-

length and thickness of the slab material on either side of the 3D TI double interface of a

PbTe/Pb0.31Sn0.69Te/PbTe heterostructure. The maxima in the Faraday rotation angle are

in the mrad regime.
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CHAPTER 5
TRANSMISSION FROM THE MULTILAYER OF THREE

DIMENSIONAL TOPOLOGICAL INSULATORS: A TRANSFER
MATRIX METHOD

5.1 Introduction

In chapter II we described the change in frequency dependent dielectric function

due to the Pauli exclusion principle. Depending on the density of the the excitation of

the free electron-hole pairs in the semiconductor, there was a gradual shift in the dielectric

function of the semiconductor that altered the dielectric environment of the plasmons excited

at the metal-dielectric interface. The consequence was that the plasmons resonance peak

shifted up to 125 nm at a density of the order of 1022/cm3. In this process, change in

the absorption can be understood from the dynamics of the photoexcited carriers. The

incident light creates electron-hole pairs in the semiconductor, some of which recombine

through various mechanisms such as Auger, radiative, and Shockley-Read-Hall processes.

The incident photons excite carriers in the picosecond regime. The Auger and radiative

recombination processes typically last from nanoseconds to microseconds.[1] Therefore, the

photoexcited electron-hole pairs accumulate in the conduction and valence bands, which

leads to a change in the absorption and/or refraction above and below the fundamental

bandgap.[148] In ref [3] the Q value of the nanocavity is dynamically controlled in the range
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from 30000 to 12000 within picoseconds. This is possible due to the free carrier plasma effect

that alters the index of refraction of the silicon-based photonic crystals. The change in the

absorption happens on the same timescale as the duration of the optical pump pulse in the

pump and probe technique.

The above-mentioned effects show that the photoexcited carriers in the bulk and

nanostructures of semiconductor lead to many interesting phenomena. In Ref. [149], the

transmissivity of electromagnetic waves through a stack of monolayer graphene sheets sep-

arated by dielectric slabs at low-terahertz frequencies has been reported. Such multilayer

structures possess a series of bandpass and band-stop regions. In a breakthrough work of

Nair et al.[6], it has been found that a single sheet of graphene absorbs 2.3% of incident

white light. This is precisely the value of πα, where α is the fine structure constant, showing

that the graphene’s optical properties are determined by α. This intriguing result is due to

the 2D nature and the gapless spectrum of the surface carriers. A single sheet of graphene

is atomically thin and thus does not carry as many carriers as bulk materials. When a beam

of laser light with energy ~ω ≥ 2EF hits a 2D sheet of graphene, it excites electron-hole

pairs. Here ω is the frequency of the laser light and EF is the Fermi energy at Dirac point.

Consequently, if the photon energy is kept constant, then the density of the excited carriers

in graphene is small compared to the excited carriers density in the semiconductor bulk

crystal. Therefore, a significant fraction of photons is transmitted through graphene.

Now, it is interesting to investigate similar effects on 2D surfaces of 3D topological

insulators where the Weyl fermions are excited on the 2D surfaces/interfaces. Since the
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Weyl fermions live on the surface, as in graphene, here also we expect that a significant

number of photons passes through the sheet without absorption. Here we present our results

that solve the general problem of transmission and reflection coefficients for many layers

of 3D TI materials stacked on top of each other. Consider a 3D TI multilayer system with

ABABAB... stacking style as shown in Figure. 5.1. The structure can be carefully engineered

with PbTe/Pb0.31Sn0.69Te/PbTe interfaces grown perpendicular to the x y plane, i.e. along

the z-direction. In such a structure Weyl fermions are generated at each interface by means

of a laser pulse with energy ~ω ≥ 2 |EF |. It is possible to tune the Fermi level using a

gate voltage Vg as shown in Figure 5.2, so that a transparency regime can be reached in

a controlled way. When ~ω ≥ 2 |EF |, there is absorption. Transmission close to unity is

expected for ~ω < 2 |EF |, i.e. when the incoming photon energy is below the Fermi energy.
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Figure 5.1: a, 3D TI layers stacked on top of each other to make a multilayer heterostructure

consisting of PbTe/Pb0.31Sn0.69Te/PbTe. There are Weyl fermions at each interface that give

rise to the large value of the surface conductivity. b, The multilayer system can be solved

by using a transfer matrix method. In each layer there is a reflected and a transmitted

field. The interface conductivity is modeled to be proportional to a delta function, which

corresponds to the trapping of the Weyl fermions at each interface.

5.2 Transfer matrix method

Let z1, z2,.... zN be the positions of the interfaces along the z-axis and E1, E2 .........

EN−1 be the total electric fields in the layer regions with the corresponding wave vectors ko,

k1, k2.......kN−1 and kN as shown in Figure 5.1 a. Eo and EN are the incident and transmitted

fields in the system with wave vectors ko and kN , respectively. The width of each layer is

given by di = zi − zi−1. The polarization vector lies in the xy-plane. The component of the
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fields in the region just behind the (i− 1)th and the ith interfaces can be written as

Ei−1 =

 Ai−1, x

Ai−1, y

 eiki−1z +

 Bi−1, x

Bi−1, y

 e−iki−1z, (5.1)

Ei =

 Ai, x

Ai, y

 eikiz +

 Bi, x

Bi, y

 e−ikiz, (5.2)

where Ai, x and Ai, y are, respectively, the x and y amplitudes of the right moving ith field

and Bi, x and Bi, y are, respectively, the x and y amplitudes of the left moving ith field. The

conductivity at each interface can be modeled to be proportional to a delta function that

explicitly enters Maxwell’s equations, as given by the Eq. 3.18. The boundary conditions

are determined by the continuity of the tangential components of the electric field and their

derivatives at each interface. The continuity of the field at zi yields

aoai−1Ai−1, x + aoBi−1, x = aiAi, x +Bi, x, (5.3)

where ao = ei(ki−ki−1)zi , ai = e2ikizi and ai−1 = e2iki−1zi . The continuity of the derivatives of

the field at zi can be obtained by integrating the Eq. 3.18 and is given by

aoai−1Ai−1, xki−1 − aoBi−1, xki−1 = aik
′

iAi, x − k
′

iBi, x, (5.4)

where k′i = ki+ωµo

 σ1xx

σ1yy

 is the effective wave vector in the medium. µo is the permeability

of the free space. From Eq. 5.3 and 5.4 we obtain Ai−1

Bi−1

 = Ti−1, i

 Ai

Bi,

 (5.5)
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where Ti−1, i =

 T11 T12

T21 T22

 is the transfer matrix across the ith interface and its elements

are given by T11 =
ai

(
ki−1+k′i

)
2ai−1aoki−1

, T12 =
ai

(
ki−1−k

′
i

)
2ai−1aoki−1

, T21 =
ai

(
ki−1−k

′
i

)
2aoki−1

and T22 =

(
ki−1+k′i

)
2aoki−1

. The

matrix Ti−1, i takes us across the ith interface.

Figure 5.2: A gate voltage Vg can be applied to shift the Fermi level in a controlled way.

In the layer region, the transfer matrix is a diagonal matrix and is simply a propagator

that takes us from the (i− 1)th interface to the ith interface. The total transfer matrix across

all the N layers is equal to the product of all the transfer matrices from the layer regions

and across the interfaces, and is given by

T0, N = T0, 1T1T1, 2........TN−1TN−1, N =

 T 0, N
11 T 0, N

12

T 0, N
21 T 0, N

22

,

 (5.6)
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where Ti =

 eikidi 0

0 eikidi

 is the propagator from the (i− 1)th interface to the ith interface.

Using Eq. 5.6, we can write  Ao

Bo

 = To, N

 AN

BN

 . (5.7)

The reflection coefficient ro,N and the transmission coefficient to,N for the stack of N 3D TI

layers can be written in terms of the matrix elements of the transfer matrix as ro,N = T 0, N
21
T 0, N

11

and to,N = 1
T 0, N

11
. Transmittance and reflectance are given by Ttr = |ro,N |2 and Rref = |to,N |2,

respectively.

5.3 Transmission through 3D TI multilayers

As an example, consider the ABA... stacking consisting of PbTe/Pb0.31Sn0.69Te/PbTe.

Such heterostructures can be engineered with di ≈ 10 nm. The wave vector in the alternate

region is the same, i.e. ki = ki+2. We can define the unit cell of a AB stack, which has a

transfer matrix of the form of T1T12T2T23. It repeats itself N/2 times in a system with N

interface. To model such a system, it is essential to calculate the conductivity tensor that

accounts for the response of the carriers to the incoming photons at the interfaces. It is

important to note that there is no contribution to the conductivity tensor from the bulk

carriers in our model.
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If the incoming photon energy is larger than twice the Fermi energy, the photon is

absorbed and that leads to a decrease in the transmittance. The real part of σ accounts for

the absorption. Therefore, the absorption can be calculated by means of the equation

σ1 = πe2P 2

V m2
0ω

∑
I,f

|〈Φf | e · α |ΦI〉|2 × [nI(t)− nf (t)] δ (εf − εI − ~ω) . (5.8)

Using the matrix elements given in chapter 5 section 5.4, and transforming the summation

as ∑
fI
−→

[
1/Ωk (2π)2

] ´
k dk
´
dθ, 0 ≤ θ ≤ 2π, we obtain

σ1xx = 4e2

π~2ωfI

2πˆ

0

dθ sin2 θ

∞̂

2|EF |

εdεδ(Ef − EI − ~ω), (5.9)

σ1xx = σ1yy = 4 e
2

~2 θ (ω − 2ωF ) (5.10)

where the integration was performed above 2 |EF |.

σ2 accounts the dispersion of the photons. Therefore, while calculating σ2 the above

integration can be performed below the Fermi level. Using the Kramers-Kronig transforma-

tion relation, σ2xx and σ2yy can be calculated as

σ2xx = σ2yy = 4 e
2

~2

[
i+ 2

π
arctan

(2ωF
ω

)]
. (5.11)

Let us take the Fermi energy to be 2~ωF = 350 meV. This is also the bandgap of PbTe.

We further assume that wavelength of incoming photon is in the telecommunication regime.

Taking λ = 10 µm, (123 meV) we obtain that σ2xx = σ2yy = 2.2784 × 10−4 S and σ1xx =

σ1yy = 9.752× 10−4 S. Using these values, we calculate the transmittance from 75 unit cells

(AB stacking). Each unit cell is repeated periodically.
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Figure 5.3: Transmittance plotted as a function of the number of unit cell (number of AB

stacking). Transmittance decreases as the number of interface layers increases. Each layer

has a width of d ≈ 10 nm along the growth direction.

Figure 5.3 shows the plot of transmittance as a function of the number of AB stacks

in the multilayer structure. The transmittance decreases as the number of layer increases.

It indicates that a large number of layers in the multilayer stacking are needed for the

complete absorption of the photon. This can be understood from the fact that the density

of the carriers available for absorbing photons at each interface is small. Therefore, the

photons travel through many layers before they are completely absorbed by the carriers at

the interfaces. This is also the case in graphene and is posing a challenge in making devices

where strong absorption is required.
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In conclusion, we calculated the conductivity for the Weyl fermions at the interface of

the heterostructure consisting of PbTe/Pb1−xSnxTe/PbTe. The result for the transmittance

through a single interface of PbTe/Pb1−xSnxTe/PbTe shows that each interface absorbs

photons only weakly. The transmittance through 75 interfaces shows that there is still a

transmission of about 30% of the total number of incident photons.
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CHAPTER 6
TWO DIMENSIONAL LAYERED MATERIALS

6.1 Introduction

One of the most recent focused topics in physics, chemistry, and engineering is the

understanding of material properties of a single layer of 2D materials such as MoS2 and

engineering them to design low power electronic and optoelectronic devices. One of the most

important questions is whether it would be possible to realize metallic, semiconducting,

and insulating phases of matter in a single 2D sheet of MoS2 without combining multiple

materials of each phase. The atomically thin MoS2 single sheet is sensitive to external

control. Theoretical studies predict that, owing to its lower symmetry, strain engineering

can be used to tune the MoS2 bandgap, which can in turn modulate the electrical and optical

properties. Application of strain in a single sheet of MoS2 leads to transition from direct to

indirect bandgap. The electronic structure modification of MoS2 in a recent experiment has

been found to be possible by strain engineering.[150]

In this chapter, we present an approach to continuously tune the electrical and optical

properties of single layer MoS2 FET from semiconducting regime to insulating regime using

an external control. Dr. Khondaker’s group performed experiments on MoS2 based on this
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novel approach and we provided the theoretical explanation of the experimental results.

The main idea of the approach is to treat a single sheet of MoS2 with oxygen plasma (O2:Ar

mixture of 20:80) for different exposure time. In the experiment, the mobility, current, and

resistance of a single layer MoS2 FET were found to vary exponentially by up to four orders

of magnitude. In addition, photoluminescence was changed from high intensity to complete

quenching as the plasma exposure time increases. Raman studies confirmed that there is a

formation of MoO3 peaks with the creation of Mo-O bonds. During the exposure to oxygen

plasma, the energetic oxygen molecules knock out the sulfur atoms from MoS2 and create

MoO3 rich defect regions, which are insulating. As the plasma exposure time increases, the

MoO3 defect regions increases inside MoS2. To confirm this, we performed density functional

theory (DFT) calculations and showed that MoO3 is stable inside MoS2.

6.2 Electrical property tuning of MoS2 single sheet

6.2.1 Results from the experiments

Figs. 6.1 (a) and 6.1 (b) show optical micrograph and atomic force microscopy (AFM)

topography images of a single layer flake on a Si/SiO2 substrate. The flake is 0.9 nm thick,

corresponding to a single layer.[151, 152] This was also confirmed by Raman spectroscopy,

as shown in Figure 6.1 (c). Two modes E1
2g and A1g corresponding to in plane and out of

plane vibrations of Mo and S atoms with difference of 19.28 / cm were observed. Figure 6.1
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(d) shows the mobility of the device after different plasma exposure time. The drain current

at all gate voltages was found to decrease with increasing oxygen plasma exposure time.

Figure 6.1: (a) and (b) Optical micrograph and AFM image of a single layer MoS2 flake

exfoliated on Si/SiO2 substrate. (c) Raman spectrum of the single layer MoS2. (d) Gate

dependence of the source drain current (ID) after different plasma exposure time. (e) Effect

of plasma exposure on the on-current (at VG = 40 V) and mobility of the single layer MoS2

device (These results were obtained by Dr. Khandaker’s group).

The current at a gate voltage of VG = 40 V is shown in Figure 6.1 (e) in a semi-log

scale. The drain current was 285 nA for the fabricated sample, which decreased exponentially

with time to a value of less than 20 pA after only a total of 6 s plasma exposure time. The
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mobility of the device after each plasma exposure is also calculated from the ID-VG curves

in Figure 6.1 (d), and is plotted in Figure 6.1 (e) in a semi-log scale. The mobility also

drops exponentially from 6 cm2 /Vs for the fabricated sample to 4x10−4 cm2 /Vs after the 6

s plasma exposure.

Figure 6.2: (a) ID vs VDS characteristics curve for the single layer MoS2 device after different

plasma exposure time. (b) Resistance of the device as a function of plasma exposure time.

The green line is the linear fit of the logarithmic resistance as a function of exposure duration.

(c) Raman spectra of pristine MoS2 (red) and plasma etched MoS2 (green) obtained with a

532 nm excitation wavelength.

Figure 6.2 (a) shows the ID vs VDS graph of the device at VG = 40 V for different

plasma exposure time. It is observed that at all exposure times, the ID vs VDS curves are

linear around the zero bias representing Ohmic behavior from which we can measure the

resistance. Figure6.2 (b) shows the dependence of resistance with respect to plasma expo-

sure time. The resistance increased up to five orders of magnitude with increasing plasma

exposure. The logarithmic plot in Figure 6.2 (b) demonstrates that the resistance increases

165



exponentially upon plasma exposure. Similar changes in resistance were also observed for

other gate voltages. This can be described by an effective medium model that shows the

exponential increase in the resistance as a function of plasma exposure time and leads to the

gradual increase of the tunnel barrier raised by the effective medium semiconductor (EMSC)

material made of MoS2 and strain-inducing MoO3 rich defect regions.

Raman spectroscopy can be used to confirm the formation of different phases of the

material during the plasma treatment in the experiment. In Figure 6.2 Raman spectra of

a same single layer MoS2 flake before (red curve) and after 6 s of oxygen plasma treatment

(green curve) is shown. The pristine MoS2 flake has two Raman modes at E1
2g (~385 cm−1)

and A1g (~410 cm−1) which diminish in amplitude after exposure of the flake to plasma. The

appearance of other peaks in the range of 150-400 cm−1 indicates the formation of Mo-O

bonds in the system.

6.2.2 Theoretical calculation

In order to understand the above experimental results, we present our calculations

based on density functional theory (DFT) as implemented in the atomistic tool kit (ATK)

program. A 2D layer of MoS2 has Mo atoms sandwiched by the S atoms with honeycomb

lattice structure as shown in Figure 6(a). Two (0001) MoS2 layers bind weakly through

van der Waals interaction, making mechanical exfoliation along the c direction possible. In

contrast, MoO3 has orthorhombic layered structure with separate layers stacked along the
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b direction. A single sheet of MoO3 consists of bilayers with both sides terminated with

O atoms, as shown in Figure 6(b). The interlayer is bridged by O atoms along the [100]

direction. Due to the O atom termination of the single sheet of MoO3 on both sides, there

is a weak van der Waals bond that connects two sheets, as in the case of MoO3, but along

the [010] direction.
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Figure 6.3: A single sheet of (a) MoS2 and (b) MoO3. (c) Side and (d) top view of the

optimized structure of MoS2 with a single O atom (red) replaced by a single S atom (yellow)

in the unit cell. (e) Top and (e) side view of the optimized structure of MoS2 with three S

atoms replaced by three O atoms in a 2x2 supercell, where it is evident that the covalent

bonds form between one of the Molybdenum atoms (cyan) and the three O atoms forming

a stable MoO3 defect .

The introduction of MoO3 defects in a single layer of MoS2 results in significant lattice

distortions. Our results show that MoO3 rich defect regions can be created when oxygen is

introduced and that MoO3 defects are stable inside MoS2, which is in line with the Raman
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spectra shown in Figure 6.2. Figs. 6.3 (c), (d), (e) and (f) show the change in lattice

structures in the MoS2 2D sheet when few oxygen O (red) atoms replace the covalently

bonded S (yellow online) atoms. First we replace one S atom by an O atom in the 2D

unit cell and optimize the structure (Figure 6c). We find that the original plane of MoS2

is distorted and the O atom is shifted by a distance of 0.32 Å along the c direction after

optimization. In addition, the O atom covalently bonds with the Mo (grey online) atom

by forming a molybdenum oxysulphide (MoOS). We then replace three S atoms by three

O atoms within a 2x2 supercell (doubling the lattice constant of the unit cell along the a

and b directions). Figs. 6 (e) and (f) show the configuration from the side and top view,

respectively. As O atoms form bonds with the Mo atom, the original plane of the S atoms is

distorted. After optimization, it is evident that the covalent bonds form between one of the

Mo atoms and the three O atoms, providing evidence for the stable configuration containing

a MoO3 defect. The formation of MoO3 is in agreement with the experimental data from

the Raman spectroscopy. This structural deformation leads to an increase of resistance and

decrease of mobility. Thus, the DFT analysis shows an evidence about the presence of MoO3

defects along with their surrounding lattice distortions due to oxygen plasma.

The DFT analysis presented in Figure 6.3 shows conclusive evidence about the pres-

ence of MoO3 defects along with their surrounding lattice distortions due to oxygen plasma.

It is clear that the effect of the plasma treatment on the structure of the MoS2 layer is

not homogeneous, it forms regions with variable concentration of MoO3 defect regions in

MoS2 and forms a complex network of heterojunctions that affect the electron transport.
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For a qualitative description of the effect of such complex network on resistance, we adopt

the approximation of an effective medium, which regards the plasma-treated material as an

EMSC (see Appendix C). For simplicity, we assume the EMSC has a homogeneous struc-

ture whose work function depends on plasma exposure time (τ). Thus we effectively have

a heterostructure of EMSC-MoS2. The electron transport through EMSC-MoS2 interface is

determined by the respective band bending and the built-in potential 4φ, which depends

on the concentration of defects and, therefore, depends on the plasma exposure time. It

is natural to assume that with an increasing concentration of defects the built-in potential

evolves towards its limiting value characterizing MoS2-MoO3 interface (τ→∞). Thus the

maximal value of 4φ can be estimated using Anderson’s rule:

4φmax = φMoO3 − φMoS2 ≈ 2 eV (6.1)

where φMoO3 ≈ 4.9 eV and φMoS2 ≈ 6.9 eV are respective work functions. The values of

φMoO3 and φMoS2 reported in the literature vary noticeably but in any case 4φmax > 1

eV can be expected. Such strong built-in potential results in great increase of resistance

Rmax/R (0) = exp{4φmax/kBT} ∼ 1012 , kB where is the Boltzmann constant and T is

temperature (see Appendix C for details). This is well above the values of ∼ 104 measured

in the experiment and suggests that our final EMSC is not a crystalline MoO3 sheet, in

agreement with physical characterization. Rather, our experiment suggests that 4φ varies

with plasma exposure time and should have values: 0 ≤ 4φ (τ) � 4φmax. Taking this

circumstance into account we can expand 4φ (τ) in series with respect to τ and keeping
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only the linear term we present 4φ (τ) = ατ , where α is the rate at which the barrier

increases. Thus we obtain

ln (R (τ) /R (0)) ∼ ατ

kBT
(6.2)

for the dependence of resistance on the plasma exposure time. It is interesting to note

that the result obtained from this rather simple model is in excellent agreement with our

experimental results shown in Figure 6.2 (b), with α = 6×10−2eV/s−1. This calculation also

suggests that with longer oxygen plasma exposure the work function of the exposed region

increases. For the same reason the mobility and on-current decreases with plasma exposure

time.

6.3 Photoluminescence tuning of MoS2 single sheet

The result from the experimental observation using Raman spectroscopy (Figure 6.2)

provided a clue for the formation of MoO3 rich defect regions in a single sheet of MoS2. When

an energetic oxygen plasma reacts with the MoS2 molecule, due to high kinetic energy, plasma

knocks out sulfur atoms bonded with molybdenum atom and replaces them with oxygen

atoms. The reaction follows 2MoS2+7O2 −→ MoO3+4SO2.[153] The oxidation state of Mo

in MoO3 is Mo6+, which has been confirmed in X-ray photoelectron microscopy (XPS).[154]

The oxygen plasma oxidizes the surface of MoS2, thereby forming a metal trioxide bonding

in the 2D sheet. The excessive supply of the energetic oxygen plasma can oxidizes both Mo

and S, leading to a complete structural distortion of the lattice in all direction. Here we
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show theoretical and experimental evidence of quenching of the PL after the single-layer of

MoS2 is treated for few seconds with oxygen plasma. The results presented here underline

the importance of studying the effect of external control on MoS2 monolayers and the great

impact of oxygen plasma treatment on the material properties of the monolayers.

Figure 6.4: Single-layer MoS2 characterization. (a) Optical, (b) AFM image and height

profile, (c) Raman spectrum, (d) photoluminescence (PL) spectrum of exfoliated single-layer

MoS2 on Si/SiO2 substrate.

The measurements were performed on a single-layer MoS2 which was mechanically

exfoliated onto a Si/SiO2 (250nm) substrate from bulk MoS2. The optical and atomic force

microscopy (AFM) images of the single-layer MoS2 are presented in Figs. 6.4 (a) and (b),
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respectively. The height of the single-layer MoS2 is estimated at 0.9 nm [Figure 1(b)]. Raman

spectroscopy (performed on the flake at room temperature using an excitation wavelength

at 532 nm) was used to further confirm the number of layers in the MoS2 flake [Figure

1(c)]. The resulting spectrum presents two prominent peaks corresponding to the in-plane

E1
2g and out-of-plane A1g vibration of MoS2 [Figure 6.4(c) inset], and the position difference

of these two dominant Raman peaks (D) was found to be 19.3 cm−1. This corresponds to

the response of a single-layer of MoS2. Figure 6.4 (d) shows the PL profile of single-layer

MoS2 with the strong PL peak (peak A1) at 1.84 eV arising from the direct recombination

of photo-generated electron-hole pairs with higher luminescence quantum efficiency in the

single-layer MoS2, while the weak shoulder peak (peak B1) at 2.02 eV is attributed to the

energy split of the valence band spin-orbital coupling of MoS2 occurring in presence of the

Si/SiO2 substrate.
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Figure 6.5: (a) PL spectrum of single-layer MoS2 as function of plasma-treated time. PL

spectra of pristine flake shows strong response of the monolayer (red) and gradual PL quench-

ing appears after treatment (t1 to t8). (b) PL intensity ratio (peak A1/peak B1) is plotted

with respect to exposure time.

Figure 6.5 shows the effect of oxygen plasma exposure time on the PL of single-layer

MoS2. For the pristine MoS2, the intensity of A1 and B1 peak is 31.3 CCD cts and 8.5 CCD

cts, respectively as seen in Figure 6.5 (a). The intensity of the PL significantly weakens after

t1 exposure and is fully quenched after t3 [Figure 6.5(a)]. Hence by comparing the intensity

ratio A1/B1 in the PL spectra as a function of plasma exposure time, we show in Figure 6.5

(b) that the highest PL ratio, with a value of 3.7, was observed in pristine single-layer MoS2,
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and gradually decreased to 2.3 and 2.1, at t1 and t2, respectively. After t3, we observed the

full quenching of PL. Emitted radiation in PL is caused by the radiative recombination in the

sample upon photo-excitation. Radiative recombination is most effective in direct bandgap

semiconductors, such as MoS2, as it only requires the electron to recombine with the hole

to transition back to its equilibrium level. We postulate that lattice distortions forming as

a result of oxygen plasma treatment strongly impede the electron-hole recombination rate

in the defected MoS2 flake due to a conversion to an indirect bandgap material, leading to

total quenching at t3.

Figure 6.6: Band structure of (a) pristine single-layer MoS2, (b) single-layer MoS2 with one

S atom replaced by one O atom, (c) single-layer MoS2 with three S atoms replaced by three

O atoms, and (d) a single-layer of MoO3. Single layer of MoS2 has direct bandgap at K point

(a). The replacement of an S atom by an O atom changes the positions of the band extrema

(b,c). The d-bands of MoS2 at the band extrema are more hole type at the K point (a). The

red arrows indicate the direct bandgap and blue arrows indicate the indirect bandgap .
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In order to understand the quenching of the photoluminescence peak of the MoS2 sheet

after the plasma treatment, we performed density functional theory (DFT) calculations to

determine the bandstructure of pristine monolayer MoS2, monolayer MoS2 with O defects,

and a monolayer MoS2 with a MoO3 defect and MoO3 along the high symmetry lines in

the first Brillouin zone Figure 6.6. Note that bulk MoO3 and a single-layer of MoO3 have

similar bandstructures. In a pristine single-layer of MoS2, when one S atom is replaced by

an O atom, the conduction band minimum (CBM) remains at the K point (as in pristine

MoS2 single-layer) but the the valence band maximum (VBM) shifts to the Γ point from

the K point, which leads to the indirect bandgap of metal oxysulphide (MoOxSy). Indirect

bandgap is also obtained when three S atoms are replaced by three O atoms. From the

calculated bandstructures of MoO3, it is seen that MoO3 is a wide bandgap semiconductor

with an indirect bandgap. It is to be noted that DFT underestimates the bandgap, sometimes

substantially. The single sheet of pristine MoS2 has a direct bandgap of 1.8 eV and pristine

MoO3 has an indirect bandgap of 3.2 eV.[154] It is plausible to assume that the bandgap of

MoS2 single sheet increases with defects from 1.8 eV for 0% MoO3 defect concentration to

3.2 eV for 100 % MoO3 concentration.[155] Note that Kohn-Sham eigenstates resulting from

the DFT calculation are accurate in the sense that they provide the accurate distribution of

electron density and provide accurate results for the type of bandgap.[156] Our results for

the bandstructures show that pristine MoS2 has direct bandgap and all other configurations

have indirect bandgap, which explains the quenching of the photoluminescence after oxygen

plasma treatment. Therefore, the radiative recombination must be assisted by electron-
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phonon scattering inside the first Brillouin zone, which leads to a substantial reduction in

the photoluminescence intensity.
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CHAPTER 7
CONCLUSIONS

The free electron-hole pairs generation in semiconductor and topological insulator

materials is interesting from both the scientific and the engineering point of view. A variety

of applications in semiconductor technology rely on electron-hole pair generation and their

recombination. In devices based on electronics, optoelectronics, and spintronics, excited

electron-hole pairs are generated using controlled electrical and light signal. Generated

carriers can be properly engineered to be utilized for semiclassical computation, quantum

information processing, and quantum memory. The electron-hole pair polarization can be

more interesting for the scientific and engineering aspects in 3D TIs as there are exotic

states living on the surfaces which are protected from backscattering. Using nanostructures

of such materials, one can amplify the effect coming from the surfaces that may lead to

opportunities in engineering electron-hole pair polarization selection rules for applications in

nanotechnology.

In this thesis we focused on the generation of electron-hole pairs and their utilization

for a variety of the applications. We presented plasmon resonance peak shifts due to the

change in dielectric environment in a silver core TiO2 nanoshell. By calculating electronic

and optical properties, we showed that it is possible to dynamically control the shift by
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varying the dielectric function of TiO2. Generation of electron-hole pairs leads to a change

in absorption due to Pauli blocking and lack of carriers for certain transitions. The magnitude

of the change depends on the densities of excited electron-hole pairs. Using the mechanism

of the dynamic control over the plasmon resonances, we proposed the concept of a light

controlled plasmon switch that can be much faster than conventional electronic switches.

We developed nice applications of electron-hole pair polarization selection rules in

3D TIs for quantum memory and quantum information processing. Our approach is based

on solutions of the low energy Dirac Hamiltonian around the Dirac point in 3D TI mate-

rial Pb1−xSnxTe. We presented a model of spherically shaped 3D TI QD from two narrow-

bandgap semiconductor alloys. The interface was modeled using a simple delta potential.This

model provided the number of bound states which can be tuned using the strength of delta

potential. A unique feature of 3D TI is that there is a particle-hole symmetry in the energy

spectrum, which provided us the opportunity to utilize efficiently the 3D TI QD for quantum

memory and quantum information processing. 3D TI QD has strict optical selection rules.

We found that the 3D TI QD is a good candidate for quantum memory, quantum telepor-

tation, and quantum computing with single spins in 3D TI QDs using infrared light. In

particular, a single e-h pair, a single electron, or a single hole can be used as a qubit for the

implementation of optically mediated quantum computing with 3D TI QDs. Interestingly,

we found that due to the symmetry between positive- and negative-energy solutions, in a 3D

TI QD it is possible to define an electron spin qubit in terms of an s-like or a p-like state. At

the same time it is possible to define a hole spin qubit in terms of an s-like or a p-like state.

179



This cannot be done in a zincblende wide direct-bandgap semiconductor QDs, where the

electron is associated with an s-like state and the hole is associated with a p-like state. Our

calculations predict that the semiclassical Faraday effect can be observed in a slab of 3D TI

material. We consider the Faraday effect due to Pauli exclusion principle in a pump-probe

setup using a 3D TI double interface of a PbTe/Pb0.31Sn0.69/PbTe heterostructure. For that

we calculate the optical conductivity tensor of this heterostructure, which we use to solve

Maxwell’s equations. The Faraday rotation angle exhibits oscillations as a function of probe

wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle

are of the order of milirads.

In addition, we also presented theoretical and experimental evidences of electrical

and optical properties tuning in 2D layered materials such as MoS2 via oxygen plasma

treatment. When a single sheet of MoS2 was treated with energetic oxygen plasma, due

to surface oxidation, MoO3 rich defect regions are formed inside MoS2 sheet. This leads

to an exponential decrease in mobility, current, and resistance. We provided theoretical

explanations of this mechanism using DFT calculations.
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APPENDIX A
FERMION DOUBLING THEOREM IN 3D TI QD
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A.1 Calculation of the Wronskian

The Wronskian of the functions Iκ (z) and Kκ (z) is defined as [157]

Wκ [Iκ (z) ,Kκ (z)] = Iκ (z)K′κ (z)− I ′κ (z)Kκ (z) , (A.1)

where the prime denotes the derivative of the function. For independent solutions, it is

to be noted that Wronskian is proportional to 1/p (x) in a Sturm-Liouville type equation

d
dx

[
p (x) dy

dx

]
+ g (x) y = 0. Therefore, Wronskians in the text are calculated to be

Wκ [Iκ (z) ,Kκ (z)] = − 1
z2 , (A.2)

Wκ−1 [Iκ−1 (z) ,Kκ−1 (z)] = − 1
z2 . (A.3)

A.2 Limiting form of Bessel functions

The limiting forms of modified Bessel functions for z → 0 are given by

Iκ (z) = 1
Γ(κ+1)

(
z
2

)κ
Kκ (z) = Γ(κ)

2

(
2
z

)κ
 as z → 0 (A.4)

The modified spherical Bessel functions can be written in terms of modified Bessel functions

as

Iκ (z) =
(√

π

2z

)
Iκ+ 1

2
(z) , Kκ (z) =

√ 2
πz

Kκ+ 1
2

(z) (A.5)

Therefore, the function

F (z) = [zIκ (z)Kκ (z)] [zIκ−1 (z)Kκ−1 (z)] (A.6)
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has the limiting form F (z) = 1
4κ2−1 as z → 0.

The asymptotic expansion (z →∞) of the modified Bessel functions are given by

Iκ (z) = ez√
2πz

{
1− 4κ2−1

8z + (4κ2−1)(4κ2−9)
2!(8z2) − ...

}
Kκ (z) =

√
π
2ze
−z
{

1 + 4κ2−1
8z + (4κ2−1)(4κ2−9)

2!(8z2) − ...
} . (A.7)

A.3 The fermion doubling theorem

Nielsen and Ninomiya investigated Weyl fermions on a crystal.[112, 113, 114] They

formulated a no-go theorem, called the fermion doubling theorem, requiring that Weyl nodes

in a crystal always exist in pairs of opposite chirality. The reason for this theorem is that the

number of Weyl fermions in the first Brillouin zone must be conserved. This conservation

law can be checked by calculating the Berry flux in the first Brillouin zone.

It is important to note that the fermion doubling theorem is only valid for continuum

states. Therefore it does not apply to the bound eigenstates of the 3D TI QD, which have

a discrete eigenspectrum. Below we give arguments for the validity of the fermion doubling

theorem in the continuum limit, which corresponds to the asymptotic limit when the 3D TI

QD radius ro becomes infinite.

A typical calculation of the Berry curvature Bn(k) = ∇k ×An(k) considers a single

band Bloch state unk(r)eik·r, which gives rise to the Berry connectionAn(k) = i
´

Ω d
3r u∗nk(r)

∇kunk(r).[158] As long as the nth band does not touch or cross any other band, the Berry
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flux is zero, i.e. ∇k · Bn(k) = 0 . However, if there is a band crossing, this situation

changes drastically due to the monopole at the crossing point. Using k · p approximation,

around the crossing point in the first Brillouin zone the Berry connection becomes A±(k) =

i 〈χ±| ∇k |χ±〉, where χ± is the four-spinor of the solution Φ± = χ±F (r) of Eq. (4.1).[109]

Assuming a very large QD, where quantum confinement can be neglected, the four-spinor

reads

χ± =



±e−i
(ϕ±π/2)

2

±ei
(ϕ±π/2)

2

e−i
(ϕ∓π/2)

2

ei
(ϕ∓π/2)

2


(A.8)

where e∓iϕ = kx∓iky
k⊥

and the position-dependent function is given by F (r) = Ce
− 1

~v‖

ź

0
∆(z′ )dz′

eik⊥·r, where C is the normalization constant. In order to capture the Berry curvature apart

from the azimuthal angle ϕ we need to add the dependence on the polar angle θ. At the

same time, we perform the gauge transformations e±iϕ to shift the singularity of the Berry

curvature to the south pole. This means we calculate the Berry curvature with respect to
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the normalized 4-spinors

χC,+ = 1√
2



e−i
π
4 cos θ

2

ei(ϕ+π
4 ) sin θ

2

ei
π
4 cos θ

2

ei(ϕ−
π
4 ) sin θ

2


,

χC,− = 1√
2



−e−i(ϕ−
π
4 ) sin θ

2

e−i
π
4 cos θ

2

e−i(ϕ+π
4 ) sin θ

2

−eiπ4 cos θ
2


(A.9)

The Berry connection is then given by

A±(k) = i 〈χC,±| ∇k |χC,±〉 = ∓(1− cos θ)
2k sin θ eϕ (A.10)

where eϕ is the unit vector pointing in ϕ-direction. Thus, we obtain the Berry phase

γ± =
˛
A±(k) · dk = ∓π(1− cos θ) (A.11)

and the Berry curvature

B±(k) = ∓ 1
2k2 ek (A.12)

Note that the Berry curvature for the 4-spinor is the same as the Berry curvature of a 2-

spinor (see Refs. Shankar). For a loop on the 2D surface where θ = π/2, we get γ± = ∓π,

which gives rise to the topological phase shift seen in Shubnikov-de Haas oscillations for the

surface of 3D topological insulators.[159] From 4(1/k) = ∓4πδ(3)(k) and ∇(1/k) = ∓ 1
k2 ek
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it follows that the Berry curvature is the solution of the equation

∇k · B±(k) = ∓4πgδ(3)(k) (A.13)

where g = ∓1/2 is the strength of the Dirac monopole for positive and negative helicity of

the 4-spinor, which is identical to the result for 2-spinors (see Refs. Shankar and Nakahara).

In order to understand the helicity of the Weyl fermions at the interface, we have

shown in Ref. Paudel&Leuenberger that the helicity operator is given by

ĥTI = (1/ |p⊥|)

 (σ⊥ × p⊥) · ẑ 0

0 − (σ⊥ × p⊥) · ẑ

 (A.14)

which commutes with the Hamiltonian in Eq. (4.1) and yields ĥTIΦ± = (±1/2) Φ±, where

the + sign denotes the positive helicity of positive-energy solutions and the - sign denotes

the negative helicity of negative-energy solutions. This provides the possibility to write an

effective 2D Hamiltonian for the Weyl fermions on the surface of 3D topological insulators,

i.e.

H2D = ~v

 (σ⊥ × k⊥) · ẑ 0

0 − (σ⊥ × k⊥) · ẑ

 (A.15)

This effective 2D Hamiltonian can be reduced to two Weyl Hamiltonians of the form H2x2
2D =

±~v (σ⊥ × k⊥) · ẑ. It is important to note that both 2-spinors of χ±, the 2-spinor χL−± of

the L− band and the 2-spinor χL+
± of the L+ band have the same helicity, in contrast to

the commonly used Weyl Hamiltonians HW (k) = ±~vσ·k. The reason for this is that the

two 2-spinors are coupled through the mass term ∆(z) in z-direction, as given in the 3D

Hamiltonian in Eq. (4.1).
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In order to satisfy the fermion doubling theorem,[112, 113, 114] usually the Dirac

cones on the opposite side of the slab of a 3D topological insulator are identified as the

fermion doublers. In the case of the 3D IT QD, for ro → ∞, i.e. in the continuum limit,

the Berry curvature in k-space for a 2D interface, given by Eq. (A.12), determines the Weyl

nodes that need to satisfy the fermion doubling theorem. Hence, according to Ref. [160], we

can adopt the mapping of the two opposite surfaces of a 3D slab of TI onto the northern and

southern hemispheres of a sphere. We then identify the pairs of Dirac cones with opposite

helicity as the ones located on the antipodal points on the surface of the sphere defined by

the QD, as shown in Figure A.1. Note that in both cases, the slab and the QD, the pairs

of Dirac cones map into each other through the parity transformation, which in general

reverses the helicity. We can identify a current on the surface of the sphere flowing along

a latitude. The parity transformation then maps one latitude on the northern hemisphere

with one type of helicity to its partner latitude on the southern hemisphere with the opposite

helicity. These arguments show that the fermion doubling theorem is satisfied for a 3D TI

QD in the continuum limit.
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Figure A.1: Two antipodal points on the surface of the sphere defined by the QD are identified

as the Dirac cones of opposite helicity. One point lies on the northern hemisphere, while its

antipodal point lies on the southern hemisphere. The currents flowing along the latitudes

can be imagined as angular momentum states of a 3D TI QD in the continuum limit. At

the antipodal points momenta (red arrows) point in opposite ϕ̂ direction to each other while

spins (blue arrows) point in the same θ̂ direction, where θ̂ and ϕ̂ are the spherical angular unit

vectors. Hence, they have opposite chirality. This satisfies the fermion doubling theorem.
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APPENDIX B
BOUNDARY CONDITIONS IN 3D TI SLAB
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B.1 Solutions of the Maxwell Equations and the Boundary

Conditions

The continuity of the tangential components of the electric field at z = 0, z = t,

z = t+ d and z = 2t+ d leads to Ea

Ea

+

 Ebx

Eby

 =

 Ecx

Ecy

+

 Edx

Edy

 , (B.1)

 Ecx

Ecy

 eikII t +

 Edx

Edy

 e−ikII t =

 Eex

Eey

 eikII t

+

 Eex

Eey

 e−ikII t, (B.2)

 Eex

Eey

 eikII(t+d) +

 Efx

Efy

 e−ikII(t+d)

=

 Egx

Egy

 eikII(t+d) +

 Ehx

Ehy

 e−ikII(t+d), (B.3)

 Egx

Egy

 eikII(2t+d) +

 Ehx

Ehy

 e−ikII(2t+d)

=

 Eix

Eiy

 eikI(2t+d). (B.4)
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Similarly the continuity of derivative of the electric fields at z = 0, z = t, z = t + d and

z = 2t+ d yields

ikI

 Ea

Ea

− ikI
 Ebx

Eby

 = ikII

 Ecx

Ecy

− ikII
 Edx

Edy

 , (B.5)

ikII

 Ecx

Ecy

 eikII t − ikII
 Edx

Edy

 e−ikII t = ikII

 Eex

Eey

 eikII t − ikII
 Efx

Efy

 e−ikII t

+iωµo

 σxx(EexeikII t − Efxe−ikII t) + σxy(EeyeikII t − Efye−ikII t)

σyx(EexeikII t − Efxe−ikII t) + σyy(EeyeikII t − Efye−ikII t)

 , (B.6)

ikII

 Eex

Eey

 eikII(t+d) − ikII

 Efx

Efy

 e−ikII(t+d) = ikII

 Egx

Egy

 eikII(t+d) − ikII

 Ehx

Ehy

 e−ikII(t+d)

+iωµo

 σxx(EgxeikII(t+d) − Ehxe−ikII(t+d)) + σxy(EgyeikII(t+d) − Ehye−ikII(t+d))

σyx(EgxeikII(t+d) − Ehxe−ikII(t+d)) + σyy(EgyeikII(t+d) − Egye−ikII(t+d))

 ,(B.7)

ikII

 Egx

Egy

 eikII(2t+d) − ikII

 Ehx

Ehy

 e−ikII(2t+d) = ikI

 Eix

Eiy

 eikI(2t+d). (B.8)

The response of the top and bottom surfaces of the Pb1−xSnxTe slab to the field depends on

the transition matrix elements on the corresponding surfaces. Since, the transition matrix

elemets for both of the surfaces are same, we have σt,ij = σt+L,ij. The off diagonal elements

σxy and σxy of the magneto-optical tensors σij are calculated to be zero. The algebric Eqs.

B.1 to B.8 can be solved for each of the amplitude of component field in each region interm
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of the incident filed. The solutions for the transmitted field are given by Eix

Eiy

 = 4kIkIIe−ikI(2t+d)

X [α(kIIA+ C) + β(kIIB +D)] + Y [α(kIIA− C) + β(kIIB −D)]

 Ea

Ea

 ,

where α = kII+kI
4kII , β = kII−kI

4kII , X = (kI + kII)e−ikII t, Y = (kI − kII)eikII t,

A = 2e−ikII(t+d) − 2iωµo sin kIId
kII

 σxx

σyy

 e−ikII t, (B.10)

B = 2eikII(t+d) + 2iωµo sin kIId
kII

 σxx

σyy

 eikII t, (B.11)

C = e−ikII(t+d)

kII + ωµo

 σxx

σyy



2 + ωµo

kII

 σxx

σyy




−ωµo
kII

e−ikII(t+d)

 σxx

σyy


−kII − ωµo

 σxx

σyy


 , (B.12)

D = −ωµo
kII

eikII(t−d)

 σxx

σyy


kII + ωµo

 σxx

σyy




−e−ikII(t+d)

−kII − ωµo
 σxx

σyy



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 σxx
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 . (B.13)
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C.1 Experimental method

The electron transport measurements of the MoS2 device were performed in a probe

station at ambient condition using a Keithley 2400 source meter and a DL instruments 1211

current preamplifier interfaced with LabView program. The measurements were performed

for the pristine flake before and after each oxygen plasma treatment. The plasma treatment

on the MoS2 devices was carried out using a commercial (Plasma Etch, PE-50) plasma

chamber at a power of 100 W operating at 50 kHz. During plasma exposure, the pressure

within the plasma chamber was held at 250 – 350 mTorr and a gas mixture of Oxygen (20%)

and Argon (80%) flow at a constant rate of 15 sccm (sccm - standard cubic centimeters per

minute). For the first exposure, the samples were exposed for 2 s and subsequently they

were exposed at 1 s interval and the electron transport measurements were repeated.

C.2 Theoretical method

Theoretical calculation: Density functional theory calculations (DFT) were performed

to investigate the stability of MoOS and MoO3 defects inside a single layer of MoO3. For that

we performed DFT calculations for a single layer of MoS2, a single layer of MoO3, a single

layer of MoS2 with MoOS defects, and a single layer of MoS2 with MoO3 defects. In each

of the cases we considered a mesh of 9x9x1 k-points in the Brillouin zone. For MoO3 sheet,

we considered 9x1x9 k-points. The ion-electron interaction is described by the projected
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augmented wave (PAW) method and the exchange-correlation energy is calculated using the

Perdew, Burke and Ernzerhof (PBE) approximation within the framework of the generalized

gradient approximation (GGA). The grid point cutoff of 415 eV is used and a maximum force

of 0.1 eV/Åon each atom is reached during the optimization process in all cases.

C.3 Theoretical calculation of resistance

We considered the plasma-treated material as an effective-medium semiconductor

(EMSC). This is shown in Figure C.1, where the right side Figure shows that the intact MoS2

underneath the gold electrode formed a heterojunction with EMSC. The current through a

heterojunction with a relatively high built-in potential has a form similar to the Shockley

diode equation

I = IS
(
eeV/nkBT − 1

)
≈ IS

eV

nkBT
, (C.1)

where V is the applied voltage, kB is the Boltzmann constant, T is the temperature, and n

is the ideality factor (n accounts the imperfection of the junctions). The dependence on the

band mismatch at the heterojunction enters this equation through the saturation current

IS (∆φ) ≈ AT 2 exp
(
− ∆φ
kBT

)
, (C.2)

where A = em∗k2
B/2π2~3 is the Richardson constant. In order to define an effective re-

sistance of the heterojunction, we consider the limit of small applied voltage, V ≪ VT =

nkBT/e ≈ 0.2 V (for T = 400 KT and n = 1) and we obtain as I = V/R (∆φ), where
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R (∆φ) = VT/IS (∆φ). Thus we find ln[R (∆φ)] = C + ∆φ
kBT

. This formula provides the

dependence of total resistance in the case when the junction under consideration gives the

main contribution.

Figure C.1: Schematic of MoS2–EMSC heterojunction when treated with oxygen plasma.
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