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ABSTRACT

Content-based information retrieval (CBIR) has attracted significant interest in the past few years.

When given a search query, the search engine will compare the query with all the stored infor-

mation in the database through nearest neighbor search. Finally, the system will return the most

similar items. We contribute to the CBIR research the following: firstly, Distance Metric Learning

(DML) is studied to improve retrieval accuracy of nearest neighbor search. Additionally, Hash

Function Learning (HFL) is considered to accelerate the retrieval process.

On one hand, a new local metric learning framework is proposed - Reduced-Rank Local Metric

Learning (R2LML). By considering a conical combination of Mahalanobis metrics, the proposed

method is able to better capture information like data’s similarity and location. A regularization

to suppress the noise and avoid over-fitting is also incorporated into the formulation. Based on

the different methods to infer the weights for the local metric, we considered two frameworks:

Transductive Reduced-Rank Local Metric Learning (T-R2LML), which utilizes transductive learn-

ing, while Efficient Reduced-Rank Local Metric Learning (E-R2LML) employs a simpler and

faster approximated method. Besides, we study the convergence property of the proposed block

coordinate descent algorithms for both our frameworks. The extensive experiments show the su-

periority of our approaches.

On the other hand, *Supervised Hash Learning (*SHL), which could be used in supervised, semi-

supervised and unsupervised learning scenarios, was proposed in the dissertation. By considering

several codewords which could be learned from the data, the proposed method naturally derives to

several Support Vector Machine (SVM) problems. After providing an efficient training algorithm,

we also study the theoretical generalization bound of the new hashing framework. In the final

experiments, *SHL outperforms many other popular hash function learning methods. Additionally,
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in order to cope with large data sets, we also conducted experiments running on big data using a

parallel computing software package, namely LIBSKYLARK.
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CHAPTER 1: INTRODUCTION

With the explosive growth of the World Wide Web, information has become widely accessible to

the world. To efficiently browse and search for the useful knowledge among this large amount of

information, a user needs an Information Retrieval (IR) system [107]. Nowadays people engage

in IR every day. For instance, web search engines like the ones of Google 1, Yahoo 2 or Bing 3

are IR systems. Even the email client program employs an IR system, which enables the users to

search emails or texts by keywords. Additionally, there are plenty of applications related to IR. For

example, traders are able to retrieve stock prices and sales information from financial or marketing

databases. Doctors can search for similar X-rays, CT or MRI scans to help diagnose diseases.

Finally, law enforcement officers are able to search for likely suspects or check fingerprints in a

database.

The definition of IR, extracted from [74], is provided below:

Definition 1. Information Retrieval (IR) is finding material (usually documents) of an unstruc-

tured nature (usually texts) that satisfies an information need from within large collections (usually

stored on computers).

Therefore, an IR system is a computer system for retrieving information from a large digital

database. All the digital information is indexed and stored in the database. When a search query

is performed by a user, the search engine looks up the index to match the given query with the

stored information. Eventually, the retrieved results are provided in descending order according

to a similarity measure. Additionally, IR also supports users in browsing or filtering the stored

1https://www.google.com/

2https://search.yahoo.com/

3http://www.bing.com/

1

https://www.google.com/
https://search.yahoo.com/
http://www.bing.com/


information or even processing the retrieved information.

IR systems can be distinguished into three categories by the scale, at which they operate. In web

search, since it is necessary to search over billions of documents stored across millions of com-

puters, an IR system is designed to handle this enormous scale efficiently. Popular search engine

websites like Google and Bing fall into this category. At the other extreme is personal informa-

tion retrieval, which runs on personal computers to handle everyday tasks, such as searching for

files, filtering documents etc. For example, Apple’s Max OS X Spotlight 4 and Microsoft Win-

dows Search 5 are two typical personal information retrieval systems. This IR system needs to be

designed sufficiently lightweight in terms of processing and disk space usage that it can run on a

single computer without annoying its user. The third category is the enterprise/institutional and

domain-specific search, which provides information retrieval for collections, such as ones stored

in a corporation’s database. Generally, this type of IR system performs the search on a handful of

machines.

Given different approaches defining the similarity measure, IR systems can also be divided into

two categories - concept-based information retrieval and content-based information retrieval.

Concept-based information retrieval [61], a description-based information retrieval system, re-

trieves from text-based indexing of information. The text information includes keywords, captions

or annotations. However, there are several drawbacks of this IR system. First, the system may

highly depend on the keywords, which are the main source of defining the similarity measure,

without considering the semantic meaning of the word. Given an IR system building on keyword

lists, one could easily find a synonymous word so that the system will retrieve wrong results. Addi-

tionally, concept-based information retrieval systems perform poorly, when confronting erroneous

4https://support.apple.com/en-us/HT204014

5https://msdn.microsoft.com/en-us/library/windows/desktop/aa965362(v=vs.85)
.aspx

2

https://support.apple.com/en-us/HT204014
https://msdn.microsoft.com/en-us/library/windows/desktop/aa965362(v=vs.85).aspx
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or incomprehensive captions and annotations [49]. For example, when the captions or annotations

contain noise, the system may retrieve wrong results based on the query given by the user.

On the other hand, content-based information retrieval [58] analyzes the contents of the infor-

mation resources. Instead of text labels, keywords or annotations, this system utilizes various

low-level features to index information resources. Content-based methods are necessary when text

annotations, labels and keywords are nonexistent, incomplete or noisy. Furthermore, this method

can potentially improve retrieval performance and give additional insight about the media col-

lections by being combining with text information. Thus, since 2000, content-based information

retrieval literature has grown tremendously. Researchers and experts from various research areas

like machine learning, computer vision, human-computer interfaces and information retrieval are

contributing actively to the content-based information retrieval community.

One family of content-based system analyzes text content to generate features to eventually retrieve

the information. The system utilizes natural language processing techniques to analyze syntax and

semantics of the text to categorize the document. For example, Bags of Words (BoW) can be used

in cross-lingual information retrieval [41]. Other examples of such a systems are provided in [115].

Most content-based systems are designed to retrieve images. [108] clearly illustrated and sum-

marized at a high level about the procedures of image retrieval. Much research work in image

retrieval tries to extract the visual content from images. The earliest work of image indexing re-

lates to color histograms [111]. [30] considers light shape and reflection. They also studied color

consistency which tries to detect the same color when environmental color changes. [43] also

proposed color correlograms to enhance histograms. Gabor filters were also used in local shape

extraction for matching and retrieving of images, as shown in [73]. Additionally, there are many

real world applications in content-based image retrieval systems. For public use, there are Google

Image Search and Yahoo Image Search. For other uses, content-based IR systems are widely used

3



for family album management, astronomy and remote sensing [140] [126] [22] [87] [99]. Finally,

interested readers can find comprehensive surveys about content-based image retrieval in [1] [95]

[108] and [109].

Since data are, in most cases, stored and represented as numerical vectors, many content-based IR

systems employ k-nearest neighbors (KNN) search [72] [114] [32]. This approach sorts retrieved

items in terms of their distances/similarities to the query item. In most cases, the system utilizes the

Euclidean distance metric. Finally, fixed k-nearest items are retrieved by the system as an answer

to the user’s query. However, there are several drawbacks of this KNN search algorithm:

• The choice of Euclidean distance metric may not be appropriate for all information retrieval

tasks. Some features with large numeric range may dominate the distance value. Therefore,

an approach that automatically weights features is necessary.

• The computation of KNN search is expensive, especially when the system copes with a large

amount of data. What’s more, the storage of big data also poses a problem. A new method

is necessary to accelerate the retrieval process and reduce the storage cost.

This dissertation contributes to the content-based IR field in the following perspectives:

• To overcome the drawbacks of the simple usage of Euclidean distance metric, Distance Met-

ric Learning (DML) is studied.

• A new local DML model is proposed to improve the retrieval accuracy using KNN.

• The new DML method considers low rank regularization, which could suppress noise and

handle sparse data.
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• Two training algorithms, whose convergence analysis have been studied, are provided for

two scenarios of our DML formulations.

• In order to accelerate the retrieval process, Hash Function Learning (HFL) is utilized. The

binary codes from the learned hash functions represent the original data.

• A new HFL is proposed, which successfully incorporates supervised, semi-supervised and

unsupervised hash function learning.

• We also show the theoretical generalization bound for our HFL framework.

The rest of the dissertation is organized as follows:

• CHAPTER 2 introduces our motivation for content-based information retrieval. The moti-

vation contains two aspects:

– DML is utilized to improve KNN search accuracy.

– To accelerate the retrieval process, HFL is studied.

• CHAPTER 3 describes DML and proposes our method - Reduced-Rank Local Metric Learn-

ing (R2LML). In particular, there are two versions of R2LML: one utilizes transductive

learning, namely Transductive Reduced-Rank Local Metric Learning (T-R2LML); the other

one is a simpler and faster version, namely Efficient Reduced-Rank Local Metric Learn-

ing (E-R2LML). Two algorithms are provided for each of the frameworks along with their

convergence analysis. The experiments show that, when compared with other state-of-art

DML frameworks, both E-R2LML and T-R2LML show impressive results.

• CHAPTER 4 introduces HFL, which is used to accelerate the retrieval process in IR systems.

Recent HFL methods can be grouped into three learning scenarios: supervised, unsupervised

5



and semi-supervised learning. We propose a method, *Supervised Hash Learning (*SHL),

which can address all three learning scenarios in a single framework. Moreover, our frame-

work naturally derives to several Support Vector Machine (SVM) problems, which could be

trained efficiently by many off-the-shelf solvers that are on-line available. An theoretical

generalization analysis of *SHL’s superior performance is also studied. After experimenting

with our framework and other popular HFL methods on several benchmarks, we conclude

that *SHL yields very competitive and, occasionally impressive results.

• CHAPTER 5 concludes this dissertation. Additionally, there are also some future work or

potential research areas based on the work discussed in this chapter. For instance, the idea of

hashing could be extended in multi-label learning problems. Moreover, the proposed metric

learning framework could also be used in many applications.

• All the detailed proofs for various propositions, lemmas or theorems can be found in the

APPENDIX.

6



CHAPTER 2: MOTIVATION

Performance improvement via Distance Metric Learning (DML)

Similarity and distance judgments play a very important role in some human cognitive processes,

such as recognition and categorization. As human beings, we tend to provide similar responses

or take similar actions, when facing stimuli similar to what we have encountered before. Based

on this, many psychologists have developed many cognitive theories and mathematical models of

similarity in [2] [39] [75] and [77].

Given its studies, it is no surprise that the concept of similarity and distance computation play im-

portant roles in many machine learning, pattern recognition and data mining methods. For classifi-

cation, k-nearest neighbors (KNN) [21] utilizes a metric distance to identify the nearest neighbors.

For clustering, k-means [71] relies on distance measurement. For an Information Retrieval (IR)

system [74], results are often ranked according to similarity-based relevance to a given query.

How to appropriately measure the similarity or distance between objects is crucial to the perfor-

mance of all the above methods. When handling numerical data, the Euclidean metric can be used

in the model. However, a general-purpose distance metric (e.g., the Euclidean distance) may not

be appropriate for all data sets and may lead to suboptimal performance. Psychological studies

also support this hypothesis. For example, depending on the context, [36] and [85] indicate that

humans weight features differently. To illustrate this point, suppose we have a database of images.

If we plan to find matching faces based on identity, the similarity should be based on appropriate

features like hair color, face shape, etc. If we have another application to determine the pose of an

individual, which may require the other features in this scenario. Therefore, in real world appli-

cation, even for a domain expert, it is very difficult to define the optimal similarity measure for a

7



specific task.

In order to automatically learn similarity measures from data and improve performance, DML is

proposed. Since DML’s first appearance as a convex optimization probem in [131], it has be-

come an active research community with many papers published and numerous DML algorithms

proposed at highly regarded computer vision, data mining and machine learning venues.

Generally, the goal of DML is to adapt some pairwise metric function, for instance, the Maha-

lanobis distance dA(x,x′) =
√

(x− x′)TA(x− x′), to the problem of interest. Most methods

learn the metric (here, the positive semi-definite matrix A in dA) in a supervised way from pair

of instances. The pair of instances are categorized as similar and dissimilar sets of the following

forms:

S = {(xi,xj) : xi and xj are similar}

D = {(xi,xj) : xi and xj are dissimilar}

In order to learn a metric from a data set, a DML algorithm is basically formulated as an optimiza-

tion problem, which has the following general form:

min
A

l(A) + λR(A) (2.1)

where l is a loss function and R is the regularizer on the parameters A. λ ≥ 0 is the regulariza-

tion/penalty parameter. Different choices of loss function and regularizations will lead to various

8



DML algorithms.

The previous general form only defines one global metric matrix for all the distance computations

in the data set. However, one single, global metric for all distance computations may not be

well-suited for all problem settings. Therefore, in this dissertation, to improve nearest neighbor

search accuracy for IR system, a local distance metric learning framework is proposed. Here,

local information includes similarity characteristics and location of the data considered. The new

framework shows the following characteristics:

• The framework considers the local metric as a conical combination of Mahalanobis metrics.

Both the coefficients of the combination and the Mahalonobis weight matrices are learned

from data.

• When considering the nuclear norm on metric matrix, the proposed formulation successfully

controls the rank of Mahalanobis matrix.

• Two formulations are introduced: one involves transductive learning, while the other formu-

lation is a simpler and faster version.

• In order to solve the two formulations, we provide two Block Coordinate Descent (BCD)

algorithms respectively. Due to the closed form solution in some block minimization, the

proposed algorithms are very efficient.

• Theoretical results about the proposed algorithms’ convergence analysis is also showcased in

the dissertation. We show that the proposed algorithms contain Karush-Kuhn-Tucker (KKT)

points.

• In the experiments, not only we show the relationship between the number of local metrics

and the accuracies of the model, we also compare our framework with the other popular

DML models and achieve impressive results.
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Acceleration of retrieval process via Hash Function Learning (HFL)

With the thriving development of the World Wide Web (WWW), all the web-related data such

as documents, images and videos are growing explosively. Nowadays, the WWW contains over

366 millions websites, which include more than one trillion webpages 1. For instance, the eBook

subscription service, Scribd 2 hosts about 60 million documents on its platform. Social network

platform Twitter 3 receives more than 100 million tweets per day. Flicker 4, the photo sharing

website, has over 5 billion images. The images are still being uploaded at a rate of over 3000 per

minute in Flicker. Yahoo! 5 exchanges over 3 billion messages every day. The video sharing

website YouTube 6 receives more than 100 hours of uploaded videos per minute from different

users.

Modern information technology infrastructure needs to be designed to handle this huge amount

of data. Compared to the storage bottleneck, searching efficiently for relevant content in these

gigantic databases becomes an even more challenging task; searching for media data like audio,

videos and images remains a challenge in practical applications. In the past few years, content-

based information retrieval has attracted lots of interests to help alleviate this situation. Basically,

instead of just relying on textual keywords or annotations, content-based system tries to index

media content with the extracted features from the information, like color and shape from images

or frequency from audios.

Generally, content-based IR relates to nearest neighbor search [101] - a popular method in machine

1This number is estimated by Google Web Index 2008.
2https://www.scribd.com/

3https://www.twitter.com

4https://www.flickr.com/

5https://www.yahoo.com/

6https://www.youtube.com/
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learning. However, it is impractical if the system tries to compare the query with all the samples in

the database, when handling huge databases nowadays. Instead, we need a search algorithm faster

than nearest neighbor search’s linear complexity O(|X |), where X is the given database. Besides,

the curse of dimensionality [6] still poses a huge problem in most content-based IR applications,

since visual features normally contain hundreds or thousands of dimensions. Finally, storage also

becomes a critical bottleneck, since the system has to load all the original data into memory.

One acceleration technique is called Approximate Nearest Neighbors (ANN) search. The idea

of this method is, instead of returning an accurate nearest neighbor search, one can provide an

approximate result with sublinear search complexity. For instance, given query q, ε-ANN [48]

tries to find p ∈ X satisfying d(p, q) ≤ (1 + ε)d(p′, q), where ε > 0 and p′ is the exact nearest

neighbor of given query q.

One type of ANN methods is tree-based and has been popular during the past several decades.

Many tree-based algorithms, which are able to achieve O(log(|X |)) complexity, are proposed,

such as ball tree [86], KD tree [8], vantage point tree [133] and metric tree [119]. However, tree-

based methods still require huge storage for data. Additionally, when handling high-dimensional

data, the performance of these tree-based ANN methods deteriorates.

On the other hand, hashing-based ANN approaches have attracted much attention in the recent few

years. By mapping the input data to a discrete Hamming code, the approaches not only can achieve

efficient retrieval speed, but they can also substantially reduce storage cost, since the system only

needs to store the compact binary codes instead of the original data. Suppose we transform 80

million tiny images [117], which are 32× 32 pixels, into 64-bit compact binary codes. If they are

stored as double-floating points, one is able to reduce the storage from 600 GB to 600 MB.

Hashing approaches have been intensively studied in many different research areas like computer

graphics, computational geometry, computer vision and telecommunications for many years. Re-
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cently, many hashing methods have been developed to utilize machine learning techniques to gen-

erate more effective binary codes. The goal of learning-to-hash is to learn data-dependent hash

functions to generate hash codes to achieve good search or retrieval accuracy. A hashing method

is defined as follows: suppose we have N data samples X ∈ RD×N , the purpose of learning-to-

hashing is to learn a B-bit binary codes Y ∈ RB×N . To generate these binary codes, B hash

functions are designed. One example is the linear hash function, which is widely used in vari-

ous recent works [33], [91]. In linear hash function learning, the bth bit can be generated as the

following form:

hb(x) = sgn(f(wT
b x+ db)) (2.2)

where x is a data point,wb and db are hash function parameters. Different choices of these param-

eters lead to different learned hash functions. A good hashing approach should generate the binary

codes that preserve the similarity consistency, i.e., similar images should have similar codes.

In this work, a novel hash function learning approach - *Supervised Hash Learning (*SHL) is

proposed, which contains the following merits:

• *SHL utilizes several Hamming codewords to group data. When learned during training,

these Hamming codewords represent various classes in the Hamming space.

• The proposed model can incorporate all three learning scenarios since both unlabeled and

labeled data can contribute in the learning process.

• By adopting Multiple Kernel Learning (MKL) approach to infer a suitable kernel, we show

that the formulation of *SHL naturally derives to several Support Vector Machine (SVM)
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problems, which can be efficiently solved by some online software, namely LIBSVM.

• To optimize the framework, a three-step Block Coordinate Descent algorithm based on an

efficient Majorization Minimization (MM) approach is introduced in this work.

• Theoretical analysis of *SHL’s superior performance is also provided based on Rademacher

complexity.

• Experiments show that the proposed approach could achieve very impressive results com-

pared to the other methods in content-based image retrieval applications. Additionally,

experiments on transductive learning and foreground/background image segmentation also

show the superiority of *SHL.

13



CHAPTER 3: METRIC LEARNING

Introduction

Distance computations underlie many machine learning approaches. For example, the KNN clas-

sification and the k-Means clustering algorithm are popular in machine learning and data mining.

Such computations are often, if not mainly, performed using the ordinary Euclidean metric or a

weighted one, namely the Mahalanobis distance. However, employing fixed, global metrics for

computing distances, such as the ones just mentioned, may not yield good results in all settings.

This fact motivated many researchers to develop data-driven frameworks, which could offer the

best metric for a specific problem (e.g. [131] and [103]). In successfully addressing this task, one

needs to take into account the data’s distributional characteristics and to take advantage of any side

information that may be available for the data. Generally, these methods are named as Distance

Metric Learning. An example of such a framework is to learn the weight matrix of the Maha-

lanobis metric, which, often, we will refer to it simply as the metric. Equivalently, this task could

be viewed as follows: a linear transformation is learned in the original space and Euclidean dis-

tances are computed in the feature space. Eventually, when coping with a classification problem, a

KNN search rule based on the learned metric is employed to classify data points.

Our work tries to learn the Mahalanobis metric for a classification problem with the help of pair-

wise sample similarities. By definition of similarities, if two samples are from the same class, they

will be labeled as similar. Metric learning aims to map similar samples close and to map dissimilar

samples far apart in the feature space. After learning this metric, a KNN classification exhibits

improved accuracy over a direct application of the same search rule using the Euclidean metric.

Many metric learning algorithms have been proposed to show significant improvements over the
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Euclidean KNN rule. [131] is the first Mahalanobis distance metric learning framework. Based on

two sets of similar or dissimilar pairs, the authors tried to solve a clustering problem. The proposed

framework is formulated as a convex problem, trying to minimize the distances between similar

samples and maximize the distances between dissimilar samples. In their work, a projected gradi-

ent ascent algorithm is employed. At each iteration, a gradient ascent step is taken, followed by a

projection onto the positive semidefinite cone, which is done by setting the negative eigenvalues of

the metric matrix to zero. Finally, experiments on several data sets show that the proposed frame-

work improves k-Means clustering performance. Some recent work like [14] and [135] revisited

this framework by forming the same problem as an eigenvalue optimization, which can be solved

faster by their algorithm.

The authors of [103] introduced the first on-line Mahalanobis distance learning framework, which

learns both the metric and a threshold b. At each step, the framework will receive a pair of points

and the algorithm will perform the projections. [103] also provides an error bound for this frame-

work. The method was further improved by [50], which utilizes LogDet divergence regularization

and provides tighter error bound. They also provide a more efficient algorithm to optimize the

framework. Moreover, their experiments show that the framework offers impressive performance.

In [35], the authors introduced Neighborhood Component Analysis (NCA), which optimizes the

leave-one-out error of a stochastic nearest neighbor classifier. Since NCA’s formulation is non-

convex, gradient descent may get stuck in local minima. However, the experiments show that NCA

outperforms the Euclidean based KNN. Note that NCA can also be used to reduce dimensionality

of the input data sets. Some additional related recent works include [34] and [113]. The former

work, based on KL divergence, proposed an alternative formulation of NCA. This new framework

is convex, however, it requires expensive optimization. The latter, instead, generalized NCA to

KNN with k > 1.
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In [20], a system is put forward that maps images to points in a lower dimensional space so that

these points lie closer, if the original images are similar. This model consists of two convolutional

neural networks to address geometric distortions. This framework was used in face recognition.

The experiments on Purdue and AR face databases show impressive results, although the face im-

ages from these databases have a high degree of variability in the lighting, position or expressions.

Large Margin Nearest Neighbor (LMNN) [127] is the most widely known metric learning frame-

work. This algorithm constructs the constraints in the following rules: for every training sample,

the k nearest neighbors of the same class should lie closer than the samples of the other classes.

Here, the k nearest neighbors is determined by Euclidean distance. After defining the constraints

based on these k nearest neighbors, an optimization problem is formulated to pull target neighbors

closer, which is optimized by a subgradient descent algorithm. LMNN achieves impressive practi-

cal performance compared to the other DML frameworks. Additionally, [27] also pointed out that

LMNN can be derived from Support Vector Machines. Finally, one can find many papers working

on algorithms to optimize LMNN framework faster like in [82], [90] and [118].

The authors of [134] proposed Sparse Metric Learning (SML), which utilizes a mixed L2,1 norm to

regularize the metric matrix. This norm tends to set the entire column as zero and performs feature

selection. Finally, the authors reformulated SML as a min-max problem and solved it using the

algorithm proposed in [81]. Because of SML’s feature selection, its performance is slightly better

than LMNN in some data sets.
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Figure 3.1: Toy data set to exhibit the potential advantages of local metric learning. (a) Original
data. (b) After learning a global metic, data in the feature space. (c) After learning several local
metrics, data in the feature space.
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Information-Theoretic Metric Learning (ITML), proposed in [24], utilizes the LogDet regulariza-

tion for metric learning. The framework tries to regularize the metric matrix to be as close as

possible to a prior matrix. For example, this prior matrix can be the identity or the inverse co-

variance matrix. This problem is optimized by repeatedly performing Bregman projections onto a

single constraint. Experiments show that ITML could achieve very impressive results. However,

one drawback of ITML is that the choice of the prior matrix may vary in different problem settings;

a wrong choice may lead to poor performance.

The aforementioned metric learning approaches share one common feature: they employ a global

metric, which is used to compute all distances. However, this global metric learning framework

may not be well-suited to multi-modal distributions or non-linear scenarios. Figure 3.1 illustrates

this point via a toy data set containing 4 samples from two classes. Note that this toy problem is

merely a conceptual device that shows the comparison of what a global metric and local metrics

will do in a non-linear scenarios. Figure 3.1(a) illustrates the samples in the original space. After

learning a global metric, Figure 3.1(b) shows data samples in the feature space. Figure 3.1(c) shows

the feature space after learning two local metrics, which take into considerations the similarity and

location of the data. Such metrics are referred as local metrics. In contrast to the result obtained

using a global metric, local metrics can map similar samples closer, as shown in Figure 3.1(c).

Thus, local metric learning may potentially improve 1-NN classification performance.

Many local metric learning algorithms have been proposed. Firstly, [40] introduced a locally adap-

tive form of KNN to alleviate the curse of dimensionality. In their method, neighborhoods are

defined by a metric estimated from local linear discriminant analysis. By defining local metrics

using centroid information, the neighbors, in directions parallel to the boundaries, are elongated,

while in directions that are orthogonal to the boundaries, are shrank. Their framework could also

be used to reduce the dimensionality of the data sets. Finally, the experiments show a substantial

improvement of their framework over the KNN decision rule.
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Derived from k-Means, [9] proposed MPCK-Means which combines both metric learning and the

use of pairwise constraints. MPCK-means utilizes both unlabeled data and similar or dissimilar

pairwise constraints and performs distance metric learning for each cluster. Since the approach

defines individual metric for each cluster, MPCK-Means generates clusters of different shapes.

Experimental results on semi-supervised data sets show that their approach outperforms the other

cluster methods.

A local metric learning model introduced in [132] brings pairs from the same mode of a class closer

and separates nearby pairs from different classes. In order to solve the framework, the authors

propose a probabilistic formulation and an EM-like algorithm is used to solve it. In specific,

the algorithm involves eigenvector analysis and bound optimization. Their approach on image

classification and text categorization shows to be quite competitive.

LMNN-Multiple Metric (LMNN-MM) [128] is an extension of LMNN to learn several Maha-

lanobis metrics from the data set. LMNN-MM requires a preprocessing step to partition the data

into several clusters. The method defines a local metric for each cluster individually. The problem

remains convex and LMNN-MM generates significant improvements over LMNN. However, this

framework requires expensive computational cost and it tends to overfit the training data set.

The authors of [83] proposed Generative Local Metric Learning (GLML), which relates to reduce

the bias of the nearest neighbor classifier by learning local metrics. By suppressing this bias at

each point, the classification error is significantly reduced compared to the global metric learning

approaches. The authors also show that optimization on the problem results in a semi-definite

programming optimization, whose solutions will generate locally optimal metrics. Eventually,

GLML has a strong assumption that the data points are sampled from a Gaussian mixture.

Parametric Local Metric Learning (PLML) [123] tries to learn a Mahalanobis metric for each

training instance. The metric is linearly combined with a few matrices which are associated with
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an anchor point. PLML deals with the over-fitting problem by considering a Frobenius norm and

manifold regularization. However, since PLML requires eigenvalue decompositions at each step,

high-dimensional data sets are intractable for PLML. Additionally, PLML considers many hyper-

parameters, although the authors fix most of them to empirical values. Finally, the experiments

show that PLML outperforms LMNN-MM on many data sets considered.

In [105], the authors introduced Sparse Compositional Metric Learning (SCML), which learns

Mahalanobis metrics as sparse combinations of a set of bases. These bases consist of rank-one

matrices that are locally discriminative. Their framework utilizes L2,1 norms to achieve sparsity

and stochastic gradient is employed to optimize this non-convex framework. In practice, it is shown

that SCML outperforms LMNN-MM in terms of classification accuracies.

Multi-granularity neighborhood distance metric learning (MGML) introduced in [143] learns mul-

tiple distance metrics under different scales of granularity. Here, granularity refers to the level of

a hierarchy of information. The authors first evaluate a distance metric based on neighborhood

margin. The approach is then formulated as a SVM model, which can be efficiently solved by

many SVM solvers. Finally, the various decisions from different granularity are combined with

the learned weights to compute the results. The experiments show that the proposed approach is

really competitive, when considering many popular data sets.

In this work, a new local metric learning framework is proposed, namely Reduced-Rank Local

Metric Learning (R2LML). As elaborated in subsection Problem Formulation, in our approach,

the local Mahalanobis metric (in specific, its weight matrix) is modeled as a conical combination

of positive semi-definite weight matrices. With the assistance of pair-wise similarities, both the

weight matrices and their coefficients are learned from the data. The weight matrices themselves

correspond to local linear transformations of the original data from their native space into a locality-

dependent feature space. These transformations are learned such that similar (dissimilar) samples
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map close to (far from) each other, so that they exhibit small (large) pair-wise Euclidean distances

in these locally-defined feature spaces. Note that, in our case, we will consider samples to be

similar, if they share the same label. Moreover, we will consider two variants of R2LML. The first

one, namely Transductive Reduced-Rank Local Metric Learning (T-R2LML), uses transductive

learning [120] to infer the test sample coefficients necessary for defining the local metrics. The

second one, which is referred to as Efficient Reduced-Rank Local Metric Learning (E-R2LML),

aims to address the computationally intensive nature of the first variant. As discussed in subsection

Problem Formulation, it employs a technique first used in [123]. The coefficients of a test sample

are set equal to the ones of its nearest training sample. Here, nearest samples are defined using

Euclidean distances. Finally, it is worth mentioning that both variants employ a sum-of-nuclear-

norms regularizer to avoid over-fitting, when warranted.

In order to optimize the aforementioned formulations, two efficient BCD algorithms are presented

in subsection Algorithm. In specific, as delineated in subsection Algorithm for E-R2LML, a two-

block minimization algorithm is able to solve the E-R2LML learning problem. The first block min-

imization with respect to the weight matrices constitutes a Proximal Subgradient Descent (PSD)

step, which is able to cope with the non-smooth nature of the formulation’s regularizer. The second

block minimization, which attempts to optimize the metric coefficients, constitutes a straightfor-

ward MM step. On the other hand, the algorithm intended for solving the T-R2LML formulation

differs from the first one in that it includes an additional block minimization with respect to the

test samples’ similarities. As shown in subsection Algorithm, for T-R2LML, the relevant opti-

mization, while addressing a binary integer programming problem, can be efficiently performed.

The convergence analysis for both methods is showcased in subsection Analysis.

Finally, in subsection Experiments, the first experiment studies the importance of regularization in

the proposed frameworks based on the synthetic data sets. Additionally, the relationship between

the number of local metrics and the accuracies is highlighted in the second experiment. Eventually,
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we demonstrate the capabilities of T-R2LML and E-R2LML w.r.t classification problems. After

compared with other popular global or local metric learning frameworks, T-R2LML and E-R2LML

achieve the highest classification accuracy in 9 and 14 out of 18 data sets respectively.

Problem Formulation

For any positive integer M , define NM , {1, 2, . . . ,M}. Suppose there are n input training set

{xn ∈ RD}n∈NN and an similarity matrix S ∈ {0, 1}N×N . In this matrix, which is served as side

information, each entry represents a corresponding pair-wise sample similarity. If xm and xn are

dissimilar, then smn = 0; otherwise, then smn = 1. In a classification context, two samples from

the same class can be defined as similar.

The Mahalanobis distance between two samples is dA(xm,xn) ,
√

(xm − xn)TA(xm − xn).

The positive semi-definite (PSD) matrix, A ∈ RD×D, will be referred as the weight matrix of

the metric. When A = I , the previous metric becomes the Euclidean metric. Since any PSD

weight matrix can be decomposed asA = LTL, where L ∈ RP×D with P ≤ D, the Mahalanobis

distance can be reformulated as dA(xm,xn) = ‖L(xm − xn)‖2. This expression indicates that

the Mahalanobis distance based on A between two points in the original space, can be viewed as

the Euclidean distance between the points transformed by L in the feature space.

Metric learning aims to learnA so that the distances between pairs of similar points are minimized.

Meanwhile, the distances between dissimilar points should maintain above a certain threshold. We

can formulate the problem as follows:
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min
A�0

∑
m,n

smndA(xm,xn) (3.1)

s.t.
∑
m,n

(1− smn)dA(xm,xn) ≥ 1.

Based on A, Problem (3.1) is a semi-definite programming problem. Several approaches like

LMNN, ITML and NCA are learning a single global metric. However, as argued earlier via Fig-

ure 3.1, a global metric may not offer best performances under any circumstance.

In this dissertation, R2LML, a new local metric approach, is proposed. We assume that the metric

in our problem is expressed as a conical combination of K ≥ 1 Mahalanobis metrics. The metric

between xn and xm is defined as dMA(xm,xm) ,
∑

kA
kgkmg

k
n. The vector gk ∈ RN is defined for

each local metric k, of which the nth element gkn may be considered as a measure of how pertinent

the kth metric is, when calculating distances considering the nth sample. Not only do these metrics

change throughout the input space along the data’s underlying manifold, but are also affected by

the similarity of nearby samples. Note that these coefficient vectors will be also unknown for

test samples and, hence, need to be inferred as well. A natural avenue to achieve this is via a

transductive learning scheme.

The metric
∑

kA
kgkmg

k
n is actually defined as a semi-metric [100], since it violates the triangle

inequality; for some choices of g, there exist triplets of samples that do not satisfy the triangle

inequality in the feature space. However, in our experiments, it seems that a proper metric is

almost always learned. For example, when considering the Pendigits data set (containing about

200 samples), the triangle inequalities that we examined (over one million) were all satisfied. In

the rest of our work, we still refer to this semi-metric as a metric for simplicity.
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Transductive learning trains both labeled and unlabeled data to yield improved performance. Ac-

cording to [120], when solving a problem, one should avoid inferring a function as an intermediate

step. There are many transductive learning approaches proposed for various algorithms. In [7],

[18], [31] and [52], the authors developed a transductive learning framework for Support Vector

Machine. [51] and [54] introduced a transductive algorithm for KNN classifiers and general clas-

sifiers respectively. There are also transductive learning approaches for graph-based models in

[112], [65] and [142].

In T-R2LML, the input training set {xn ∈ RD}n∈NN and test set {xn ∈ RD}n∈NM are combined.

The entries of the similarity matrix S ∈ {0, 1}(N+M)×(N+M) that involve test data are randomly

initialized. The vectors gk ∈ Ω
′
g ,

{
{gk}k∈NK ∈ [0, 1]N+M : gk � 0,

∑
k g

k = 1
}

. Note that

’�’ is component-wise ordering. The constraint that the gks’ need to sum up to the all-ones

vector 1 means that, when computing distances from each sample, one metric is relevant at least.

Apparently, when K = 1, g1 = 1, which leads to learn a single global metric.

The weight matrix for each pair (m,n) can be defined as
∑

kA
kgkmg

k
n based on the previous de-

scription. Note that, for every pair of points, when computing distances, a different weight matrix

is employed. We now consider the following formulation motivated by Problem (3.1), which varies

over k ∈ K:
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min
Lk,S,gk∈Ω′g ,ξ

k
m,n≥0

∑
k

∑
m,n

smn
∥∥Lk∆xmn∥∥2

2
gkng

k
m+ (3.2)

+ C
∑
k

∑
m,n

(1− smn)ξkmn + λ
∑
k

rank(Lk)

s.t.
∥∥Lk∆xmn∥∥2

2
≥ 1− ξkmn, m, n ∈ NN+M , k ∈ NK

smn ∈ {0, 1}, m, n ∈ NM

smm = 1, smn = snm, m, n ∈ NM∑
smn

n∈NN+M

≥ 2, m ∈ NM ,

where ∆xmn , xm − xn and the matrix Lk’s rank is denoted as rank(Lk). In the objective func-

tion, the distance between similar samples is minimized by the first term. For pairs of dissimilar

samples, with the slack variables ξkmn, the second term encourages distances to be larger than 1.

Here, C > 0 controls the penalty of violating the previous prerequisite. Eventually, the last term

penalizes large ranks of Lk. Thus, the dimensionality of the feature space is actually controlled

by λ ≥ 0, the regularization parameter. As is typical for identifying good values for regularization

parameters, both C and λ are chosen via a validation procedure. Also, note that the diagonal ele-

ments are all set to 1 in the similarity matrix. Finally, the last constraint guarantees that the testing

samples include all the labels of the training set, since one test sample at least shares the same label

as the training data.

Via the use of the hinge function, [u]+ , max{u, 0} for all u ∈ R, by eliminating the slack

variables, Problem (3.2) could be reformulated. Notice that rank(Lk) is difficult to be directly

optimize over, since it is a non-convex function with respect to Lk. As illustrated in [13] and [12],

we can replace rank(Lk) with its convex envelope, which is actually Lk’s nuclear norm. The new
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problem is now formulated as:

min
Lk,S,gk∈Ω′g

∑
k

∑
m,n

smn
∥∥Lk∆xmn∥∥2

2
gkng

k
m+ (3.3)

+ C(1− smn)
[
1−

∥∥Lk∆xmn∥∥2

2

]
+

+ λ
∑
k

∥∥Lk∥∥∗
s.t. smn ∈ {0, 1}, m, n ∈ NM

smm = 1, smn = snm, m, n ∈ NM∑
smn

n∈NN+M

≥ 2, m ∈ NM ,

where ‖·‖∗ denotes the nuclear norm, in specific,
∥∥Lk∥∥∗ , ∑P

s=1 σs(L
k), where σs is a singular

value of Lk.

A shortcoming of T-R2LML is that, it is computationally intensive, since the computation of the

gradient in each step requires O(K(M +N)2) operations and, typically, M >> N . Hence, we are

also inclined to consider a faster, albeit approximate, approach to address our local metric learning

problem. In specific, as done in [123] and [45], for each test sample x, its g vector will be assigned

the value of x’s nearest training sample’s g. Here, nearest samples are searched using Euclidean

distances. We refer to this model as E-R2LML and its training only requires O(KN2) operations

per step.

For E-R2LML, gk ∈ Ωg ,
{
{gk}k∈NK ∈ [0, 1]N : gk � 0,

∑
k g

k = 1
}

when considering only

the training set. Finally, the problem becomes:
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min
Lk,gk∈Ωg

∑
k

∑
m,n

smn
∥∥Lk∆xmn∥∥2

2
gkng

k
m+ (3.4)

+ C(1− smn)
[
1−

∥∥Lk∆xmn∥∥2

2

]
+

+ λ
∑
k

∥∥Lk∥∥∗ .
All the other parameters like λ and C in Problem (3.4) are defined as in Problem (3.3).

Algorithm

Problem (3.4) and Problem (3.3) reflect minimizations over two and three sets of variables respec-

tively. In E-R2LML, for fixed gk, with respect to Lk, the problem is non-convex, since the second

term in Eq. (3.4) combines a non-monotone function w.r.t Lk, namely 1 −
∥∥Lk∆xmn∥∥2

2
and a

convex function (hinge function). Moreover, for fixed Lk, the problem is also non-convex w.r.t gk,

since the similarity matrix S is indefinite, which will be showcased in the following section. Thus,

there may exist several minima in the objective function. Therefore, we may need to initialize

an iterative algorithm many times with different values in order to find a good solution. The same

observations apply to T-R2LML as well. Finally, notice that, for T-R2LML, when optimizing Prob-

lem (3.3) w.r.t S, while holding gk and Lk fixed, the problem under consideration is convex. In

what follows next, we discuss two training algorithms: a two-block BCD algorithm for E-R2LML

and a very similar BCD algorithm for T-R2LML that can perform the optimizations in question.

Algorithm for E-R2LML

We first start off with a discussion of the BCD that trains the E-R2LML framework. For the first

block, we try to solve for everyLk by holding the gk’s fixed. In this case, Problem (3.4) becomes a
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minimization problem without constraints, which can be expressed in the form f(w)+r(w). Here

w is the parameter we are trying to optimize over (in our case, all Lk’s). The non-differentiable

hinge loss function is f(w), while r(w) is a non-smooth, convex regularization term. Hence, we

employ a Proximal Subgradient Descent method as in [93] and [17]. It might be worth noting that

the particular approach is a special case of the one presented in [28]. It is this relationship that we

leverage to develop the convergence analysis of our PSD steps in subsection Analysis.

Next, in the second block, we minimize with respect to each gk vector, while the Lk’s are assumed

to be fixed. Consider a matrix S̄k associated to the kth metric. The (m,n) element in this matrix

is defined as:

s̄kmn , smn
∥∥Lk∆xmn∥∥2

2
, m, n ∈ NN . (3.5)

Then, if concatenating all individual gk vectors into a single vector g ∈ RKN and by defining the

block-diagonal matrix S̃ as:

S̃ ,



S̄
1

0 ... 0

0 S̄
2

... 0

...
... . . . ...

0 ... 0 S̄
K


∈ RKN×KN . (3.6)

Problem (3.4) can be expressed as:
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min
g∈Ωg

gT S̃g, (3.7)

Problem (3.7) needs to satisfy the constraint Bg = 1, where B , 1T ⊗ IN and ⊗ denotes the

Kronecker product. Since S̃ is indefinite, Problem (3.7) is non-convex. This is because S̃ is a block

diagonal matrix with Euclidean Distance Matrices (EDMs) as its blocks. EDMs contain only one

positive eigenvalue (unless all of them equal to 0). Since EDM matrix is hollow, its trace is 0.

Thus, the remaining eigenvalues of EDM matrix must be negative, as illustrated in [3]. Therefore,

S̃ contains negative eigenvalues.

In order to minimize Problem (3.7), a Majorization Minimization approach [47] is utilized. To

do so, a function of g, which majorizes the objective function, needs to be defined. Let µ ,

−λmax(S̃), where λmax(S̃) is the largest eigenvalue of S̃. Since S̃ is indefinite, λmax(S̃) > 0.

Thus, H , S̃ + µI will be negative semi-definite. Suppose q(g) , gT S̃g is defined as the cost

function of Eq. (3.7). Note that (g − g′)TH(g − g′) ≤ 0 for any g and g′ and we have that

q(g) < −g′THg′ + 2g′THg − µ ‖g‖2
2 for all g 6= g′ and equality, only if g = g′. The right

hand side of the aforementioned inequality constitutes q’s majorizing function, denoted as q(g|g′).

g is iteratively optimized by majorizing function based on the current estimate g′. Therefore, the

convex problem w.r.t g is presented as follows:

min
g∈Ωg

2g′THg − µ ‖g‖2
2 . (3.8)

As the next theorem implies, Problem (3.8) can be readily solved.
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Theorem 1. Let g,d ∈ RKN ,B , 1T ⊗ IN ∈ RN×KN and c > 0. The unique minimizer g∗ of

min
g

c

2
‖g‖2

2 + dTg (3.9)

s.t. Bg = 1, g � 0,

has the form

g∗i =
1

c

[
(BTα)i − di

]
+
, i ∈ NKN , (3.10)

where gi is the ith element of g and α ∈ RN is the Lagrange multiplier vector associated to the

equality constraint.

Proof. For Problem (3.9), the Lagrangian is:

L(g,α,β) =
c

2
gTg + dTg +αT (1−Bg)− βTg, (3.11)

where both α ∈ RN and β ∈ RKN are Lagrange multiplier vectors. Note that we have β � 0. If

we set the partial derivative of L(g,α,β) w.r.t g to 0, we have

gi =
1

c

(
(BTα)i + βi − di

)
, i ∈ NKN . (3.12)

Let γi , (BTα)i − di. If we combine the complementary slackness condition βigi = 0 with

Eq. (3.12), one obtains that, if γi ≤ 0, then βi = −γi and gi = 0, while, when γi > 0, then βi = 0
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and, evidently, gi = 1
c
γi. These two observations can be summarized as gi = 1

c
[γi]+.

From Theorem 1, in order to obtain a concrete solution to Problem (3.8), we utilize a binary search

to find the optimal values of αi, so that the equality constraintBg = 1 is satisfied.

In conclusion, as depicted Algorithm 1, to solve Problem (3.4), the entire algorithm can be de-

scribed as follows: for the first block, when the gk are fixed, we utilize a PSD algorithm to min-

imize Eq. (3.4) with respect to each matrix Lk. In the second block, all Lk’s are held fixed. The

solution provided in Theorem 1 along with binary search solutions for the αi’s are utilized to

compute the optimal gk’s by iteratively solving Problem (3.8) via a Majorization Minimization

algorithm. These two blocks will be repeated until the convergence is established.

Algorithm for T-R2LML

The first two BCD steps of T-R2LML are identical to the ones of E-R2LML. However, since

T-R2LML embodies a trasductive learning approach, a third BCD step is required, in order to

predict the similarities between all samples, including the ones used for testing. In specific, for the

third block optimization, Problem (3.3) is minimized over S for fixed Lk’s and gk’s. By defining

ψmn ,
∑
k

(∥∥Lk∆xmn∥∥2

2
gkng

k
m − C[1−

∥∥Lk∆xmn∥∥2

2
]+

)
, (3.13)

Problem (3.3) becomes:

31



min
S

trace {SΨ} (3.14)

s.t. smn ∈ {0, 1}, m, n ∈ NM

smm = 1, smn = snm, m, n ∈ NM∑
smn

n∈NN+M

≥ 2, m ∈ NM .

where Ψ ∈ RM×N is the matrix with elements ψmn. This is a 0− 1 integer programming problem.

By scanning the matrix Ψ row by row, Problem (3.14) will be optimally solved using the following

rules:

• For rows of Ψ containing at least one negative element, set the corresponding smn element(s)

to 1; the remaining elements are set to 0.

• For rows of Ψ with no negative element, the smn element, which corresponds to the smallest

ψmn, is set to 1; the remaining elements are set to 0.

• Note that snm must equal smn, since the matrix S is symmetric.

For the sake of completeness, in Algorithm 1, we summarize the relevant algorithm. Note that

these three main blocks are repeated until a preset maximum number of steps is reached.

Analysis

In this subsection, the convergence analysis of Algorithm 1 is investigated. This is a local analysis,

since our framework is non-convex. As mentioned in previous sections, the function f(w) + r(w)
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Algorithm 1 Minimization of Problem (3.3) and Problem (3.4)
Input: Data X ∈ RD×(N+M) for Problem (3.3) and X ∈ RD×N for Problem (3.4), number of
metrics K
Output: Lk, gk,S (here, S is only for Problem (3.3) )
01. Initialize Lk, gk,S for all k ∈ NK

02. While not converged Do
03. Block 1: For each Lk, a PSD method to solve Problem (3.3) is employed
04. Block 2:
05. S̃ ← Eq. (3.6)
06. µ← −λmax(S̃)
07. H ← S̃ + µI
08. While not converged Do
09. Using Eq. (3.10), binary search is applied to obtain each gk

10. End While
11. Block 3 (this block only for Problem (3.3)): Optimal Algorithm for Problem (3.14)
11. End While

is minimized using a Proximal Subgradient Descent approach, where both r ,
∑

k

∥∥Lk∥∥∗ and

f ,
∑

k

∑
m,n smn

∥∥Lk∆xmn∥∥2

2
gkng

k
m + C(1− smn)

[
1−

∥∥Lk∆xmn∥∥2

2

]
+

are non-differentiable.

∂f is defined as the subgradient of f and let’s define ‖∂f(w)‖ , supg∈∂f(w) ‖g‖2; Like in [57]

and [104], the subgradients are assumed to be bounded:

‖∂f(w)‖2 ≤ Af(w) +G2, ‖∂r(w)‖2 ≤ Ar(w) +G2, (3.15)

where A and G are positive scalars. Let w∗ be the minimizer of f(w) + r(w). Then we have the

following theorem for the problem under consideration.

Theorem 2. Suppose that a PSD method is employed to solve minw{f(w) + r(w)}. Assume that

1) f and r are lower-bounded; 2) the norms of any subgradients ∂f and ∂r are bounded as in

Eq. (3.15); 3) ‖w∗‖ ≤ D for some D > 0; 4) r(0) = 0. Let ηt , D√
8TG

, where T is the number

of iterations of the PSD algorithm. Then, for a constant c ≤ 4, such that (1− cA D√
8TD

) > 0, and

initial estimate of the solution w1 = 0, we have:
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min
t∈NT

[f(wt) + r(wt)] ≤
1

T

T∑
t=1

f(wt) + r(wt) ≤

≤ 2
√

2DG√
T (1− cAD

G
√

8T
)

+
f(w∗) + r(w∗)

1− cAD
G
√

8T

. (3.16)

The detailed proof of Theorem 2 is given in APPENDIX A. Theorem 2 indicates that the PSD

iterates approach w∗ as T grows, .

Theorem 3. Algorithm 1 yields a convergent, non-increasing sequence of cost function values

relevant to Problem (3.4) and Problem (3.3). Furthermore, the set of fixed points of the iterative

map embodied by Algorithm 1 include the KKT points of Problem (3.4) and Problem (3.3).

The proof is showcased in APPENDIX B. Theorem 3 implies the convergence of the two proposed

algorithms.

Experiments

Effects of our nuclear norm-based regularization

Since T-R2LML involves (M − 1)M/2 +MN + (D2 +M +N)K parameters, while E-R2LML

employs (D2 + N)K, both frameworks may benefit from regularization, when confronted with

scarce, high-dimensional, noisy data. Two synthetic data sets were created to study nuclear norm.

The first set consisted of 30-dimensional samples, while the second one consisted of 60-dimensional

features. In both cases, samples were drawn from a mixture of two highly overlapping Gaussian

distributions, whose covariance matrices had a spectral radius of 0.3. Moreover, in the second data
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set, features randomly selected with probability 0.5 were set to 0 to emulate sparsity. For both data

sets, 80 samples were used for training via E-R2LML and 320 samples for testing. Also, 3 local

metrics were employed, while the remaining parameters were set as follows: the step length of

PSD was set to 10−6 and the algorithm was allowed to run for 5 epochs of 500 iterations each. The

classification accuracy using a 5-nearest neighbor search is reported in Table 3.1 and Table 3.2 for

various values of the regularization parameters.

The two aforementioned tables reflect, as expected, that the regularization proves to be very im-

portant for E-R2LML, and, by extension, to T-R2LML as well, since the latter one deals with

additional parameters to be learned. More specifically, it is shown that cross-validation over λ is

essential in improving classification accuracy for noisy, potentially sparse, highly overlapping data.

This is especially more pronounced for the second data set, where not employing regularization is

clearly inferior to the performance attained by fine-tuning λ. Also, for the same data set, Table 3.2

illustrates the sparsity-inducing properties of the nuclear norm regularizer. It is worth noting that,

although not specifically shown here, the metrics’ all-0 columns obtained for λ = 103 and λ = 104

followed exactly the sparsity pattern of the relevant features.

Real data sets

In order to assess the utility of the proposed models, extensive experiments on 18 data sets were

performed, namely, Robot Navigation, Wine Quality, Ionosphere, Letter Recognition, Gamma

Telescope, Pendigits, Breast Tissue, Glass, Heart, Sonar, WPBC, Optdigits and Isolet data sets

from the University of California, Irvine (UCI) machine learning repository1, and Image Segmen-

tation, Two Norm, Ring Norm data sets from the Delve Dataset Collection2. We also considered

1http://archive.ics.uci.edu/ml/datasets.html

2http://www.cs.toronto.edu/˜delve/data/datasets.html
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Table 3.1: Classification accuracy versus λ for highly overlapping data set.

λ 0 0.1 1 10 100 1000

ACCURACY 0.544 0.528 0.553 0.563 0.563 0.534

Table 3.2: Classification accuracy versus λ for highly overlapping data set with sparse features.
The number of columns with all 0 entries for each metric is also reported.

λ 0 0.1 1 10 102 103 104 105

ACCURACY 0.725 0.813 0.747 0.713 0.725 0.975 0.916 0.488

# OF ZERO COLUMNS IN METRIC 1 0 0 0 0 0 13 13 0
# OF ZERO COLUMNS IN METRIC 2 0 0 0 0 0 13 13 60
# OF ZERO COLUMNS IN METRIC 3 0 0 0 0 0 13 14 60

the Columbia University Image Library (COIL20)3 and USPS4 data sets. Table 3.3 summarizes the

major characteristics of these data sets. Following experimental settings similar to the ones used in

[123] and [143], PCA was used on the data of COIL20, Isolet, Optdigits and USPS to reduce their

number of features to 30, as shown in Table 3.3.

We first explored how the performance of T-R2LML5 and E-R2LML6 varies w.r.t the number of

local metrics. After this, T-R2LML and E-R2LML are compared to other state-of-the-art global and

local metric learning algorithms, namely, ITML [24], LMNN [127], LMNN-MM [128], GLML

[83] and PLML [122]. These methods are widely used as baseline approaches in the other metric

learning works since they achieve impressive results.

3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

4http://www.gaussianprocess.org/gpml/data/

5https://github.com/yinjiehuang/R2LMTL/archive/master.zip

6https://github.com/yinjiehuang/R2LML/archive/master.zip
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Table 3.3: Benchmark data sets. The columns indicate number of features (#D), classes (#classes),
number of validation (#validation) and test (#test) samples.

#D #CLASSES #TRAIN #VALIDATION #TEST

A. ROBOT 4 4 240 240 4976
B. LETTER 16 26 520 2600 2600
C. PENDIGITS 16 10 400 2000 2000
D. WINE QUALITY 12 2 150 150 2898
E. TELESCOPE 10 2 300 300 5400
F. IMAGE SEGMENTATION 18 7 210 210 1890
G. TWO NORM 20 2 250 250 3900
H. RING NORM 20 2 250 250 3900
I. IONOSPHERE 34 2 80 50 221
J. BREAST TISSUE 9 6 18 18 70
K. COIL20 30 20 400 400 640
L. GLASS 9 6 18 18 178
M. HEART 13 2 40 40 190
N. ISOLET 30 26 520 3640 3637
O. OPTDIGITS 32 10 400 2400 2820
P. SONAR 60 2 40 40 180
Q. USPS 30 10 400 4500 4398
R. WPBC 33 2 20 20 158

Number of local metrics for T-R2LML and E-R2LML

One aspect that was investigated is how the performances of T-R2LML and E-R2LML vary when

different number of local metrics K is considered. The authors of [128] fix K equal to the number

of classes for all data sets. This heuristic choice might not necessarily be the optimal. An abun-

dance of data may imply that more local metrics may be necessary for improved performance;

this is an aspect we examined for T-R2LML and E-R2LML. For all data sets, the range of K we

considered was 1−7, which, aside from COIL20, USPS and Isolet, included the number of classes

represented in the data. As we will argue in the sequel, the optimal K does not coincide with

the number of classes of the corresponding classification problem. Actually, it coincides only in
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roughly one quarter of the cases.

For T-R2LML, the regularization parameter λ is set to 10 and the penalty parameter C to 1. In the

case of E-R2LML, λ was chosen smaller, since it employs less parameters compared to T-R2LML

and, therefore, is less prone to over-fitting. Note that all aforementioned parameter values were

selected via cross-validation and subsequently held fixed. Moreover, the algorithm will be termi-

nated in two cases: firstly, it reaches 5 epochs; secondly, between two consecutive iterations, the

difference of cost function values is less than 10−4. In each epoch, we ran 500 iterations of PSD

with step length 10−5 for the Sonar data set, 10−6 for the Ionosphere and Glass data sets, 10−8

for the Ring Norm data set, 10−9 for the Robert, Letter, Two Norm and Heart data sets, 10−10 for

the COIL20, Isolet, Optdigits and USPS data sets, 10−11 for the Pendigits, Image Segmentation,

Telescope, Wine Quality and Wpbc data sets and 10−13 for the Breast Tissue data set. The algo-

rithm terminates the MM loop in two cases: firstly, the algorithm reaches 3000 iterations; secondly,

between two iterations, the difference in cost function was less than 10−3.

For E-R2LML, the parameters like C, the number of epochs and the number of iterations were

set the same as T-R2LML. The step length of PSD was set to 10−3 for the Glass and Sonar data

sets, to 10−5 for the Ionosphere and Robot data sets, to 10−6 for the Two Norm, Letter, Optdigits

and Ring Norm data sets, to 10−7 for the Isolet and USPS data sets, to 10−8 for the Heart, Image

Segmentations, COIL20 and Wine Quality data sets, to 10−9 for the Pendigits, Gamma Telescope

and Wpbc data sets and to 10−11 for the Breast Tissue data set.
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E−R2LML

T−R2LML

(a) Robot, #C=4 (b) Letter, #C=4 (c) Pendigits, #C=5

(d) Winequality, #C=2 (e) Telescope, #C=2 (f) Image Seg, #C=7

(g) Twonorm, #C=2 (h) Ringnorm, #C=2 (i) Ionosphere, #C=2

Figure 3.2: When varying number of local metrics, T-R2LML and E-R2LML classification perfor-
mances on the first 9 benchmark data sets. Here, C denotes the class number.
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The classification results when setting different number of local metrics for each data set is reported

in Figure 3.2 and Figure 3.3. Several observations can be made based on these results. First, the

results indicate that training with more data does not necessarily imply that an increased value

of K is needed for improved performance results. For example, in the case of T-R2LML, for the

Pendigits, Wine Qulity, Two Norm, Ring Norm, Glass, Isolet and Optdigits data sets, 2 local metrics

are enough to yield the best results among other choices of K. Additionally, when E-R2LML is

trained with the Telescope and USPS data sets, superior results are obtained using only 2 metrics.

Secondly, between the number of local metrics and the accuracy, one can not observe deterministic

relationship. The classification accuracy of Ring Norm data set is monotonically decreasing w.r.t

K. However, with respect to their number of classes for the other data sets, the optimal K changes

in a non-obvious manner. All these observations recommend that, in order to achieve the best

performing model, validation over K is necessary. Also, one discerns that, although T-R2LML is

trained with more data, E-R2LML outperforms it on all data sets except the Telescope, Ionosphere,

Breast Tissue, Heart and Wpbc data sets. T-R2LML does not show much improvement compared

to E-R2LML, which will also be illustrated in the next section. Finally, from the obtained results

results, it becomes apparent that, using both R2LML variants as local metric learning methods

(when K > 1) is, more often than not, advantageous compared to the case, when they are used

with a global metric; this is most prominently exhibited in the case of the Heart, Wpbc, Ionosphere

and Telescope data sets.
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E−R2LML

T−R2LML

(l) Glass,  #C=5

(m) Heart,  #C=2 (n) Isolet,  #C=26 (o) Optdigits,  #C=7

(p) Sonar,  #C=2 (q) USPS,  #C=10 (r) Wpbc,  #C=2

(k) COIL 20,  #C=20(j) Breast Tissue,  #C=6

Figure 3.3: When varying number of local metrics, T-R2LML and E-R2LML classification perfor-
mances on the remaining 9 benchmark data sets. Here, C denotes the class number.
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Performance Comparisons

We compared T-R2LML and E-R2LML to several popular state-of-art metric learning algorithms,

including LMNN [127], ITML [24], GLML [83], PLML [123] and LMNN-MM [128]. We also

consider Euclidean metric KNN as baseline method. As introduced, LMNN and ITML are both

global metric learning frameworks, while for GLML, LMNN-MM and PLML, several local met-

rics are learned. After the metrics are learned for each method, a 5-nearest neighbor decision rule

was employed to classify unlabeled samples.

In our experiments, LMNN, LMNN-MM7, ITML8 and PLML9 implementations that are online

accessible are used. To be specific, for ITML, we cross-validated over γ to find a good value.

Also, the number of attracting neighbors during training for LMNN and LMNN-MM was fixed to

1, as suggested by the authors in the paper. Moreover, at most 500 iterations were performed by

LMNN and 30% of training data were used to do cross-validation. For LMNN-MM, the maximum

number of iterations was set to 50 and a step size was fixed to 10−7. For GLML, optimal γ was

also achieved via cross-validation. Eventually, the PLML hyper-parameter values were chosen as

suggested by [123]. Additionally, α1 was chosen via cross-validation. For T-R2LML, the value

of the regularization parameter λ was cross-validated over {10−1, 1, 101, ..., 106, 107}. The other

parameters values used were set as described in the previous subsection. With respect to E-R2LML,

the validation procedure over the set {10−2, 10−1, 1, 101, 102} helped choose the regularization

parameter λ. We set the other parameter settings as the same ones used in the previous experiments.

Finally, for both methods, K, the number of metrics, was cross-validated over {1, 2, ..., 7}.

To compare if two methods differ statistically, we employed McNemar’s test [76]. Also, note that

7http://www.cse.wustl.edu/˜kilian/code/code.html

8http://www.cs.utexas.edu/˜pjain/itml/

9http://cui.unige.ch/˜wangjun/papers/PLML.zip
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Table 3.4: When considering 8 algorithms and 18 datat sets, these are the classification accuracy
results. By setting family-wise significance level as 0.05, all the algorithms are ranked from the
best to the worst via McNemar’s test. If two algorithms do not show statistical difference, they will
share the same rank.

Euclidean ITML LMNN LMNN-MM GLML PLML T-R2LML E-R2LML

A 65.312nd 65.862nd 66.102nd 66.102nd 62.283rd 61.033rd 58.724th 74.161st

B 51.423dr 63.921st 64.731st 64.731st 57.152nd 64.621st 57.192nd 66.961st

C 93.152nd 92.802nd 93.552nd 93.702nd 93.102nd 95.551st 93.102nd 94.751st

D 87.654th 91.443rd 90.133rd 90.443rd 91.303rd 97.481st 95.032nd 96.861st

E 70.023rd 71.042nd 70.042nd 66.802nd 70.003rd 77.441st 76.891st 77.611st

F 80.054th 90.212nd 90.742nd 89.422nd 87.303rd 90.482nd 90.162nd 92.591st

G 96.512nd 96.821st 96.312nd 96.282nd 96.492nd 97.491st 97.511st 97.151st

H 55.955th 73.723rd 59.284th 59.284th 97.281st 75.443rd 80.392nd 73.513rd

I 75.573rd 86.431st 82.352nd 82.352nd 71.953rd 78.733rd 91.861st 90.501st

J 37.144th 44.293rd 55.711st 47.143rd 40.004th 50.003rd 54.291st 58.571st

K 85.944th 89.702nd 88.133rd 89.532nd 87.343rd 82.815th 88.912nd 91.561st

L 10.674th 26.402nd 15.733rd 15.733rd 11.804th 26.972nd 32.581st 33.341st

M 56.845th 79.472nd 77.892nd 74.213rd 62.114th 78.952nd 81.051st 81.051st

N 71.192nd 74.101st 76.081st 75.781st 70.912nd 70.252nd 70.662nd 72.122nd

O 89.792nd 89.332nd 93.401st 93.401st 89.612nd 88.302nd 91.521st 92.161st

P 44.534th 44.534th 51.362nd 51.362nd 39.066th 42.975th 55.471st 48.443rd

Q 88.093rd 90.791st 89.222nd 89.433rd 88.453rd 90.951st 89.902nd 90.791st

R 36.084th 44.943rd 39.243rd 32.914th 53.172nd 41.773rd 67.721st 55.062nd

there were 8 algorithms involved in the comparison, we used Holm’s step-down procedure. This

multiple hypothesis testing method helped control the Family-Wise Error Rate (FWER) [42]. The

significance level was set to 0.05. Finally, the experimental results are reported in Table 3.4.

Despite employing a simplistic strategy to infer the weight vector of testing data, E-R2LML

achieves the best performance for 14 out of the 18 data sets and outperforms its transductive ver-

sion, while the other methods outperform E-R2LML on the Ring Norm, Isolet, Sonar and Wpbc

data sets. GLML’s surprisingly good result for the Ring Norm data set is probably because GLML

assumes the data generates from a Gaussian mixture and the Ring Norm is this kind data set.

T-R2LML produced best results for 9 out of the 18 data sets. We also notice that T-R2LML achieves

almost second best results for the remaining data sets except for Robot. For the Ring Norm, Sonar
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and Wpbc data sets, T-R2LML even outperforms E-R2LML.

Next, PLML exhibits competitive results, more specifically, best in 6 out of the 18 cases, but

performs poorly on some data sets like COIL20 and Sonar, even worse than KNN. For Glass,

Heart, Isolet and Optdigits, PLML’s performance is also quite impressive; it is ranked 2nd among

the other methods.

Regarding ITML, although using a global metric, it is ranked first for 5 data sets. Moreover,

ITML ranks at least 2nd and performs well especially when dealing with low-dimensional data

sets. Finally, GLML performs poorly; Table 3.4 indicates that GLML only achieves 3rd or 4th for

9 out of the 18 data sets.

We can make another observation: metric learning almost always helps improve performance,

since Euclidean metric KNN almost always ranked last among all 8 methods considered in Ta-

ble 3.4. Note that, interestingly, the local metric learning framework, LMNN-MM does not show

any significant performance improvement over LMNN which is the global version of the algorithm;

As indicated in Table 3.4, LMNN-MM even obtained pooper performance compared to LMNN for

some data sets. This might be because that LMNN-MM’s performance is degraded by setting the

number of classes and the number of local metrics equal. Eventually, according to the obtained

results, both T-R2LML and E-R2LML yield much better results for all data sets than LMNN-MM.

Conclusion

In the chapter, in order to improve k-nearest neighbors (KNN) retrieval performance for content-

based information retrieval system, a new local metric learning framework is proposed, namely

Reduced-Rank Local Metric Learning (R2LML). R2LML learns K Mahalanobis-based local met-

rics which are combined conically, so that pairs of similar points are measured as being located
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close to each other, in contrast to pairs of dissimilar points, for which the opposite is desired.

Two variants of the framework were considered: Transductive Reduced-Rank Local Metric Learn-

ing (T-R2LML) employs transductive learning to infer the conic combination of metrics to be used

for assessing distances between test and training data, while Efficient Reduced-Rank Local Metric

Learning (E-R2LML) employs a simpler technique to accelerate the learning process. If T repre-

sents the number of iterations, a local analysis of the block-minimization training procedure of both

variants has been shown to be convergent at a rate of O(1/
√
T ), which is typical for sub-gradient

related algorithms.

In order to show the merits of T-R2LML and E-R2LML, extensive experiments involving 18 bench-

mark classification problems were performed. First, we studied the effect of regularization in

R2LML and showed the importance of the nuclear norm-based regularizer in providing low-rank

solutions that avoid over-fitting. Second, the number of local metrics K was varied and its influ-

ence on classification accuracy for both T-R2LML and E-R2LML were discussed. We concluded

that the number of classes of the data set does not necessarily equal the obtained optimal K. Also,

our results indicate that larger data sets do not necessarily require employing a large number of

local metrics. Finally, we compared T-R2LML and E-R2LML to several other popular global or

local metric learning approaches and demonstrated the superiority of our proposed frameworks.
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CHAPTER 4: HASH FUNCTION LEARNING

Introduction

Nowadays, due to the exponentially growth of data, as illustrated in [23], content-based image

retrieval (CBIR) has become very popular in the past few years. A CBIR system retrieves similar

samples from a large database based on a query sample from a user. By pre-specifying a distance

metric, the similarity is evaluated and the nearest neighbors of the query sample are retrieved

with respect to this metric. However, in some practical settings, especially when dealing with a

large data set, comparing exhaustively with all the samples in the database requires very expensive

computations. Moreover, sheer size of each sample may obstruct most CBIR frameworks; for

instance, the features from a video or an image may contain more than thousands of dimensions.

Moreover, to store all these high-dimensional huge data set also poses a challenge.

If compact binary codes are generated from the original data, the retrieval process can achieve fast

similarity search. For example, when binary codes are used, approximate nearest neighbors (ANN)

[116] search could achieve sub-liner complexity searching time. Additionally, it is also much more

efficient just to store the binary codes. Furthermore, hash functions need to be designed in this

criteria: between the data samples in the Hamming space, certain similarity qualities need to be

preserved.

Existing popular hashing approaches can be categorized into two families: data-independent and

data-dependent. While the former family designs the hash function based on a non data-driven

approach, the latter category, by inferring from data, can be further clustered into supervised,

semi-supervised and unsupervised learning tasks.

In this work, we propose a novel hash function learning approach, dubbed *Supervised Hash
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Learning (*SHL) (Here, * stands for all three learning scenarios), which exhibits the following

advantages: first, in the method, a set of Hamming space codewords is utilized. These learned

codewords are used to capture the similarities between the hash codes and group the data. Our

framework could also utilize unlabeled data to contribute in the optimization. Additionally, a reg-

ularization term is utilized in our framework to move the codewords which represent the same

class closer to each other. When some codewords collapse to one single codeword, our framework

achieves automatic selection of the codewords. Because of these characteristics, under a single

formulation, *SHL is able to engage supervised, unsupervised and semi-supervised hash learning

tasks. The latter ability obviously allows the framework to perform transductive hash learning.

Note that our framework can be viewed as an Error-Correction Codes (ECOC) method, since both

methods consider codewords in their frameworks. Readers can refer to [26] and [79] for more

details of ECOC.

In the Formulation subsection, we provide *SHL’s formulation. In the code space, *SHL attempts

to minimize the within-group Hamming distances between data’s hash codes and a group’s code-

word. A kernel-based approach with respect to the hash functions is utilized in *SHL. A new

regularization term over codewords is also introduced for *SHL in its formulation. Eventually,

the proposed formulation leads to a minimization problem over the Reproducing Kernel Hilbert

Space (RKHS) vectors which defines the hash functions and the codewords. Note that, the min-

imizations over the RKHS vectors derives to several Support Vector Machine (SVM) problems.

Thus, each single bit of a sample’s hash code is generated by a SVM. Eventually, Multiple Kernel

Learning (MKL) method [53] is employed to infer a good kernel.

Next, in Learning Algorithm, Majorization Minimization (MM) algorithm is utilized, so that

Block Coordinate Descent (BCD) approach can be used to optimize *SHL’s framework. To train

*SHL, the first block optimization is about training several SVM. The famous sequential solver

LIBSVM [15] can be utilized here. The MKL parameters are updated in the second block. The
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third block involves solving a problem with the non-smooth regularization over codewords, which

is optimized by a Proximal Subgradient Descent (PSD). The second and third blocks are computa-

tionally fast thanks to closed-form solutions. When confronted with a huge data set, kernel-based

methods have a significant computational cost. In this work, a version of our algorithm for big

data, which is based on the software LIBSKYLARK [106], is also presented.

Finally, in Experiments, a series of comparative experiments are conducted. The section empha-

sizes on supervised CBIR problems. Additionally, we also apply the semi-supervised version of

our framework on the foreground/background interactive image segmentation problems. On su-

pervised learning scenarios, when compared with other state-of-art hashing algorithms, the best

retrieval accuracy is achieved by *SHL in all the data sets. Theoretical analysis of the method’s

superior performance are presented in subsection Generalization.

In the following work, [·] denotes the Iverson bracket, i.e., [predicate] = 0, if the predicate is false,

and [predicate] = 1, if otherwise. Moveover, matrices and vectors are denoted in boldface. All

vectors are column vectors and ·T denotes transposition. Also, we define NK , {1, . . . , K} for

any positive integer K.

Related Work

As mentioned in the previous section, there are two families in hashing methods: data-independent

and data-dependent.

Data-independent hashing designs the hashing approaches without the necessity to infer from the

data. For instance, in [33], data are projected and thresholded into the Hamming space, by Locality

Sensitive Hashing (LSH) randomly to generate compact binary codes. The data is projected onto

various hyper-planes, so that similar binary codes may be generated from the closer (in terms of
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Euclidean distances) data points. One drawback of LSH is that, normally, it requires a very long

bit length to encode enough information for retrieval.

In [55], in order to achieve sublinear time similarity search, the authors combined the metric learn-

ing approach with LSH to generate random hash codes. They also formulate a solution for high

dimensional data. The final experiments show that their approach performs significantly better

than LSH.

In order to address the problem of constructing binary codes for high dimensional data, the authors

in [91] proposed a distribution-free encoding approach, which is based on random projections.

Data samples are projected, so that the expected Hamming distance between two samples’ binary

codes is related to a Gaussian Kernel’s value. The authors also provide a theoretical analysis

of the convergence for the introduced approach. The experiments report their method’s superior

performance than LSH and some other hashing algorithms.

Data-dependent methods can, in turn, be categorized into supervised, semi-supervised and unsu-

pervised learning paradigms.

The majority of data-dependent hashing approaches has been conducted in the supervised learning

scenario. For example, Semantic Hashing [96] is designed to map similar documents to similar

binary codes. The framework, which is much faster than LSH, is based on the Restricted Boltz-

mann Machine (RBM). RBM helps to generate the binary codes. Their experiments of filtering

documents show that their approach achieves higher accuracy in retrieval applications than LSH.

Binary Reconstructive Embedding (BRE) was proposed in [56]. In BRE, a cost function, which

measures the difference between the distances in the Hamming space and the distances in the orig-

inal space, is minimized. An efficient coordinate descent algorithm for BRE was also introduced.

Unlike the other methods, BRE is easily kernelized and distribution-free. The final experiments
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show that BRE outperforms LSH.

In [84], through learning the hash functions from pair-wise side information, Minimal Loss Hash-

ing (MLH) formulates the hashing problems based on a bound from structural Support Vector

Machines [136]. They also introduce a type of loss function specifically designed for hashing.

Although suffering from a higher computational cost, MLH performs better than BRE and SPH.

In [80], the authors introduced the Label-regularized Max-margin Partition (LAMP) algorithm,

which addresses the scenario, where the data set is partially labeled as similar or dissimilar. They

formulate the problem as a Constrained Convex-Concave Procedure (CCCP) [138], which is re-

laxed into a series of convex sub-problems. LAMP can be easily kernelized. Empirical evaluations

also validate the superiority of LAMP.

Self-Taught Hashing (STH) [139] first utilizes unsupervised learning to identify binary codes for

the documents; Classifiers are trained, in the next step, to generate codes for given queries. In their

experiments, Binarized Laplacian Eigenmap (LapEig) and Linear Support Vector Machine (SVM)

are utilized. The results show that STH outperforms many other approaches significantly.

LAD, proposed in [110], employs a projection matrix to minimize the in-class covariance and max-

imize the covariance across classes. Next, the optimal thresholds are computed to transform the

projections into binary codes to maximize recognition rates. In essence, their approach performs

Linear Discriminant Analysis on the data before binarization. LDAHash achieves exceptional per-

formance compared with the other state-of-art methods.

Boosting-based Hashing were also introduced in [102] and [4]. Parameter-Sensitive Hashing in

[102] learns several hash functions, which index examples relating to a particular problem. Their

approach actually extends LSH. The experiments on human pose detection show that the intro-

duced method is competitive. Besides, [4] utilizes the weakly labeled positive data to formulate
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Adaboost learning framework. Their approach, which was tested on the task of audio retrieval,

provides impressive results.

In [60], the authors utilized the triplets of side information to design the hash functions; The rela-

tive comparison relationship from the triplets is preserved in their method. The learning algorithm

utilizes column generation and, hence, the approach is named CGHash. CGHash generalizes to

new data points naturally and provides a convex formulation. The final retrieval performances of

CGHash outperform other methods like BRE, STH, MLH, when tested on several popular bench-

mark data sets.

Kernel Supervised Hashing (KSH) [68] utilizes the equivalence between optimizing the Hamming

distances and the binary code inner products. This equivalence helps KSH maximize the Ham-

ming distances on dissimilar pairs and minimize the distances on similar data pairs. Additionally,

this equivalence also enables KSH to generate the hash code sequentially and efficiently. The

experiments on several popular benchmarks demonstrate KSH’s superior performance.

In [62], instead of utilizing kernel functions to achieve non-linearity in hashing, the authors em-

ployed boosted decision trees, which are fast to train and evaluate. Their sub-modular formulation

is optimized by an efficient GraphCut-based block search. Experiments show that their method

outperforms KSH, BRE, STH, both in retrieval accuracy and training time.

The authors of [130] developed a supervised hashing framework for image retrieval, which learns

a good image representation. The approach is divided into two stages. In the first stage, in order

to optimize over similarity matrix, a coordinate descent method is proposed. In the second stage,

the authors employed a deep convolutional network to learn a good feature representation for the

images and a set of hash functions. The experiments show that the introduced approach achieves

superior performance.
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Latent Factor Hashing (LFH) [141] utilizes a latent factor model to learn binary codes which

preserve similarity. The authors utilize an algorithm with convergence guarantees to train LFH.

Additionally, when dealing with large-scale data set, a stochastic learning framework for the opti-

mization is also proposed.

A framework is presented in [63], which could directly optimize multivariate performance mea-

sures such as Area Under Curve (AUC). The authors employed an algorithm which combines

cutting plane and column generation algorithms. The framework is so general that it can apply

to learning-to-rank and image retrieval. The final results show that it outperforms a few current

popular hashing methods such as BRE, STH and CGHash.

There also also many unsupervised hashing approaches proposed: Spectral Hashing (SPH) [129]

assumes a uniform data distribution. The hash functions are designed using spectral graph analysis.

After relaxing the original problem, the authors formulate a spectral problem which is efficiently

solved by graph Laplacian eigenvectors. The authors also show impressive experimental results.

Spectral Embedded Hashing (SEH) in [16] combines SPH with a new regularizer obtained by using

a linear regression function. This regularizer is used to control the mismatch between the Ham-

ming codes and the data representation. The authors also proposed Kernel SEH (KSEH) to cope

with high-dimensional data. KSEH employs a non-linear regression function to generate the low

dimensional data representation. An algorithm to efficiently solve the eigenvalue decomposition

problem in both methods is also introduced. Their comprehensive experiments demonstrate the

superiority of SEH and KSEH.

Anchor Graph Hashing (AGH) [69] generates compact binary codes by discovering the neighbor-

hood structure in the data. Here, low-rank adjacency matrices are obtained by Anchor Graphs. The

authors also describe a hierarchical threshold learning procedure to solve the problem. Finally, the

experimental results on two large data sets demonstrate the efficacy of the proposed AGH.
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The method in [124] sequentially learns hash functions by correcting the errors from the previous

hash function. From the errors in the previous bit, several pseudo-labels are generated by this

method. This error is minimized by each new hash function. The superiority of the proposed

method is demonstrated by conducting experiments on large data sets.

Iterative Quantization (IQ) was introduced in [37]. By learning an orthogonal matrix, IQ minimizes

the quantization error of mapping the data to the binary hypercube’s vertices. This method is

related to multi-class spectral clustering. The experiments show their approach outperforms LSH

and SPH.

The approach in [70] attempts to obtain a subspace shared by the hash functions by dividing the fea-

ture space. On one hand, the hash function learning process suppresses the irrelevant information.

On the other hand, the final form also takes the complementary subspace into consideration. Fi-

nally, the authors designed an objective function combining shared subspace contribution, binary

quantization loss and spectral embedding loss. To learn both the hash functions and the shared

structure, the authors proposed an efficient alternating optimization method.

The authors of [67] introduced an unsupervised hashing model based on Anchor Graphs [66].

Their method tries to preserve the neighborhood structure in a discrete code space. The authors

cast the graph hashing problem into a discrete optimization problem. An alternating maximization

algorithm is introduced to cope with the constraints and optimize the framework. The experimental

results show that the proposed approach achieves superior results, especially for longer binary

codes.

As for semi-supervised hashing, a few approaches were also proposed: Semi-Supervised Hashing

(SSH) in [121] and [123] attempts to utilize labeled information to minimize an empirical error.

An information theoretic regularizer, which is based on both labeled and unlabeled data, is also

considered in SSH to avoid over-fitting.
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Another method, semi-supervised tag hashing [125], incorporates tag information into learning

hash functions by considering the correlation between hash bits and tags. By ensuring the tag con-

sistency and preserving the image similarities, the hash functions are learned in a unified manner.

An iterative coordinate descent algorithm is proposed to optimize the relevant problem. The effec-

tiveness of hashing is also improved by orthogonal transformation by minimizing the quantization

error.

[19] proposed Multi-Graph Hashing (MGH), which can effectively combine the multiple modal-

ities with optimized weights in a multi-graph learning scenario. A sequential learning scheme is

utilized to learn compact binary codes. The binary codes generated by MGH enables fast similarity

search, because the approach enables direct and fast handling for the query examples. Eventually,

the experiments show the superiority of the proposed approach.

Finally, note that SVM is also utilized in Self-Taught Hashing (STH) [139] to generate hash codes.

However, *SHL and STH are totally different; STH treats the unsupervised and supervised learning

tasks as two separate stages. On the other hand, both of the learning paradigms are combined

simultaneously in one single cost function of *SHL. Different from STH, *SHL’s formulation

naturally derives to SVM problems.

Formulation

Hash function learning aims to infer functions generating compact binary codes in a Hamming

space from original data samples. Suppose we have the Hamming space HB , {−1, 1}B, which

means B-bit hash codes. With an arbitrary set X as sample space, *SHL actually addresses multi-

class classification tasks. *SHL learns a hash function h : X → HB and a set of C × S labeled

codewords µc,s, c ∈ NC and s ∈ NS (Each class is represented by S codewords). The learning
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tries to minimize the distances between the hash code of a labeled sample and the codeword cor-

responding to the sample’s class label. Here distances are measured using the Hamming distance.

*SHL also utilizes unlabeled samples to contribute in learning process. Eventually, *SHL classifies

a test sample based on the label of the codeword closest to the data sample’s hash code.

In our framework, the hash code for a sample x ∈ X is finally computed as h(x) , sgn f(x) ∈ HB.

Here, the signum function is defined component-wisely. Additionally, f(x) , [f1(x) . . . fB(x)]T ,

where fb(x) , 〈wb, φ(x)〉Hb+βb withwb ∈ Ωwb , {wb ∈ Hb : ‖wb‖Hb ≤ Rb, Rb > 0} and βb ∈ R

for all b ∈ NB. Hb is a RKHS with inner product 〈·, ·〉Hb , induced norm ‖wb‖Hb ,
√
〈wb, wb〉Hb

for all wb ∈ Hb. We also have a associated feature mapping φb : X → Hb and reproducing kernel

kb : X × X → R, such that kb(x, x′) = 〈φb(x), φb(x
′)〉Hb for all x, x′ ∈ X .

The aforementioned kernel is a symmetric function, k(x,x′) = φ(x)Tφ(x′), which is defined

based on a non-linear mapping φ(x). By [11], kernel, which is used in large-margin classifiers,

was introduced into machine learning. The simplest kernel function can be defined as φ(x) =

x, which has k(x,x′) = xTx′. The fact that kernel is formulated as an inner product allows

researchers to extend many famous machine learning algorithms using kernel trick. The idea is

that, if one algorithm is formulated as inner products of input vectors, this product can be replaced

with kernels. For example, non-linear PCA [98] can be developed by considering kernel trick in

principal component analysis. Other examples include kernelized KNN and Fisher discriminant

[94] [78] [5].

Instead of heuristically selecting the kernel functions kb, MKL, which is introduced in [53], is

utilized to infer the feature mapping. Specially, we assume that each RKHS Hb is formed as the

direct sum of M common, pre-specified RKHSs Hm, i.e., Hb =
⊕

m

√
θb,mHm, where θb ,

[θb,1 . . . θb,M ]T ∈ Ωθ ,
{
θ ∈ RM : θ � 0, ‖θ‖p ≤ 1, p ≥ 1

}
, � denotes the component-wised

relation, ‖·‖p is the usual lp norm in RM and m ranges over NM . Let us note that, it holds that

55



kb(x, x
′) =

∑
m θb,mkm(x, x′) for all x, x′ ∈ X , if each preselected RKHS Hm has associated

kernel function km.

Now, suppose we have a training set containing both labeled and unlabeled samples with size N .

Respectively, let NL and NU denote the index sets for these two subsets. Let also ln for n ∈ NL

be the class label of the nth labeled sample. By adjusting the parameters ω, *SHL tries to reduce

the following distortion measure

E(ω) ,
∑
n∈NL

min
s
d
(
h(xn),µln,s

)
+
∑
n∈NU

min
c,s

d
(
h(xn),µc,s

)
(4.1)

d(h,h′) ,
∑

b [hb 6= h′b], is the Hamming distance. Here, one best codeword of each class will

be selected to represent each sample. Note that it is very difficult to directly optimize over the

distortion E. Instead, an upper bound Ē of E can be optimized.

Particularly, for a hash code generated by *SHL, we have that d (h(x),µ) =
∑

b

[
µbfb(x) < 0

]
.

If one considers d̄ (f ,µ) ,
∑

b

[
1− µbfb

]
+

, where [u]+ , max {0, u} is the hinge function, we

have that d (sgn f ,µ) ≤ d̄ (f ,µ) holds for every f ∈ RB and any µ ∈ HB. It then holds that

E(ω) ≤ Ē(ω) ,
∑
c

∑
s

∑
n

γc,n,sd̄
(
f(xn),µc,s

)
(4.2)

where
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γc,n,s ,


[c = ln]

[
s = arg mins′ d̄

(
f(xn),µln,s′

)]
n ∈ NL[

(c, s) = arg minc′,s′ d̄
(
f(xn),µc′,s′

)]
n ∈ NU

(4.3)

Apparently, Ē can be optimized by a three-step Block Coordinate Descent algorithm, which will

be described in the next section.

Learning Algorithm

Algorithm for *SHL

Via a MM approach [47] and [46], Ē as defined in Eq. (4.2) can be optimized using the next

proposition.

Proposition 1. For any *SHL parameter values ω and ω′, it holds that

Ē(ω) ≤ Ē(ω|ω′) ,
∑
c

∑
s

∑
n

γ′c,n,sd̄
(
f(xn),µc,s

)
(4.4)

where the primed quantities are evaluated on ω′ and

γ′c,n,s ,


[c = ln]

[
s = arg mins′ d̄

(
f ′(xn),µ′ln,s′

)]
n ∈ NL[

(c, s) = arg minc′,s′ d̄
(
f ′(xn),µ′c′,s′

)]
n ∈ NU

(4.5)
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Additionally, it holds that Ē(ω|ω) = Ē(ω) for any ω. In summa, Ē(·|·) majorizes Ē(·).

Prop. 1 can be proved based on the following fact: for any value of γ′c,n,s ∈ {0, 1} other than γc,n,s

as defined in Eq. (4.3), the value of Ē(ω|ω′) is always more than Ē(ω|ω) = Ē(ω).

With the help of the aforementioned proposition, a MM approach is utilized here. Here, the current

estimates of model’s parameter are defined as ω′. Note that, by minimizing Ē(ω|ω′) with respect

to ω, improved parameter ω∗ satisfying Ē(ω∗) ≤ Ē(ω′) can be yielded. We could employ BCD

to minimize this framework, as will be shown based on the next proposition.

Proposition 2. Minimizing Ē(·|ω′) with respect to the Hilbert space vectors, the offsets βp and the

MKL weights θb, while regarding the codeword parameters as constant, one obtains the following

B independent, equivalent problems:

inf
wb,m∈Hm,m∈NM
βb∈R,θb∈Ωθ,µ

b
c,s∈H

λ1

∑
c

∑
s

∑
n

γ′c,n,s
[
1− µbc,sfb(xn)

]
+

+
1

2

∑
m

‖wb,m‖2
Hm

θb,m

+ λ2

∑
c

∑
i,j∈S

∥∥µc,i − µc,j∥∥2
b ∈ NB (4.6)

where fb(x) =
∑

m 〈wb,m, φm(x)〉Hm + βb and λ1 > 0 is a regularization constant.

By replacing the constraints with regularizations, one can prove this proposition. Eventually, the

substitution wb,m ←
√
θb,mwb,m, as illustrated in [53], is also preformed. The third term in Prob-

lem (4.6) pushes codewords representing the same class closer to each other. With an appropriate

value of λ2, this regularization helps *SHL automatically select the codewords.

Problem (4.6) is jointly convex with respect to all variables under consideration. Addtionally,
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one may recognize it as a binary MKL SVM training problem, which will be showcased in the

following proposition.

First block minimization: By consideringwb,m and βb for each b as a single block, one can instead

maximize the following problem, instead of optimizing Problem (4.6):

Proposition 3. The dual form of Problem (4.6) takes the form of

sup
αb∈Ωab

αTb 1NCS −
1

2
αTb Db[(1CS1TCS)⊗Kb]Dbαb b ∈ NB (4.7)

where 1K stands for the all ones vector of K elements (K ∈ N), µb , [µ1,b . . . µC,b]
T , Db ,

diag (µb ⊗ 1N), Kb ,
∑

m θb,mKm, where Km is the data’s mth kernel matrix, Ωab ,{
α ∈ RNC : αTb (µb ⊗ 1N) = 0,0 � αb � λ1γ

′} and γ ′ ,[
γ′1,1,1, . . . , γ

′
1,N,1, γ

′
1,N,2, . . . , γ

′
1,N,S, γ

′
2,N,S, . . . , γ

′
C,N,S

]T .

The detailed proof is provided in APPENDIX C. Given that γ′c,n,s ∈ {0, 1}, Problem (4.7) is

actually a SVM training problem. Many online software packages, for example, LIBSVM, can be

used to solve this problem. After SVM training, the quantities 〈wb,m, φm(x)〉Hm , βb and ‖wb,m‖2
Hm ,

which are necessary in the following steps, can be computed.

When dealing with large scale data sets, the sequential solver LIBSVM may encounter a memory

bottleneck, because of the kernel matrix computations. Therefore a parallel software package,

which distributes the kernel matrix computation to various nodes, is necessary for big data prob-

lems. LIBSKYLARK [106], which utilizes random features [92] to approximate kernel matrix and

Alternating Direction Method of Multipliers (ADMM) [88] to parallelize the algorithm, proves to

be an efficient solver for large scale SVM problem. LIBSKYLARK achieves impressive acceler-
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ation, when solving SVM problems compared to LIBSVM in [106]. Experiments over large data

sets are also conducted.

Second block minimization: We need to optimize MKL parameters θb. Fortunately, as illustrated

in Prop. 2 of [53] for p > 1, the closed-form solution can be utilized here. The closed-form

solution is given as

θb,m =
‖wb,m‖

2
p+1

Hm(∑
m′ ‖wb,m′‖

2p
p+1

Hm′

) 1
p

, m ∈ NM , b ∈ NB. (4.8)

Third block minimization: we need to optimize this problem due to the new regularization intro-

duced:

inf
µbc,s∈H

∑
n

∑
c

∑
s

γ′c,n,s
[
1− µbc,sfb(xn)

]
+

+ λ2

∑
c

∑
i,j∈S

∥∥µc,i − µc,j∥∥2
(4.9)

Here, c ∈ NC , b ∈ NB, s ∈ NS .

First of all, we relax µ to continuous values, similar to relaxing the hashcode as continuous when

computing the hinge loss. Eq. (4.9) follows the formulation l(x) + h(x), which can be solved

by proximal methods [89]. Since both the terms (hinge loss and regularization) are convex and

non-smooth, we employ PSD method in a similar fashion as in [45], [17] and [93].

The proximal subgradient descent step is
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xk+1 := proxηh(x
k − η∂l(xk)) (4.10)

where η is the step length and ∂l is the subgradient of the function. Here the proximal operator

prox is defined as:

proxηh(v) , arg min
x

(
h(x) +

1

2η
‖x− v‖2

2

)
(4.11)

To obtain the proximal operator, one needs to solve Problem (4.11). In our setting, the regular-

ization term is the sum of many non smooth L2 norms, whose closed-form proximal operator

is not straightforward to derive. Based on the conclusion from [137], the proximal operator of

sums of the functions can be approximated by sums of the proximal operator of the individual

function, i.e. prox∑
h ≈

∑
proxh. Thus, all we need is the closed-form proximal operator for

one individual norm in Eq. (4.9), i.e.
∑

i,j∈S

∥∥µi − µj∥∥2
. Let us concatenate all codewords as

µ =
[
µT1 , · · ·,µTS

]T ∈ RBS . Moreover, let us define a vector: o , [0, · · ·, 1, · · ·,−1, · · ·, 0] ∈ RS ,

where the value for index i is set to 1 and −1 for index j. With the definition of a matrix

U , o ⊗ IB ∈ RB×BS , the regularization can be reformulated as h (µ) = ‖Uµ‖2, whose

proximal operator will be given in the following proposition:

Proposition 4. Given the norm as: h (µ) = ‖Uµ‖2. Following the definition in Eq. (4.11), the

proximal operator of this norm:
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Algorithm 2 Algorithm for Problem (4.6)
Input: Training Samples X , Bit Length B.
Output: ω.
1. Initialize ω.
2. While Not Converged
3. For each bit
4. γ′g,n,s ← Eq. (4.5).
5. Step 1: Update wb,m and βb.
6. Step 2: Compute ‖wb,m‖2

Hm .
7. Update θb,m.
8. Step 3: For k = 1, 2, · · · do
9. zk = µk − η∂l(µk).
10. yk =

∑
proxηh(zk).

11. µk+1 = yk + k−1
k+2

(yk − yk−1).
12. End For
13. End For
14. End While
15. Output ω.

proxηh(v) =



µ1 = v1

...

µi = α1vi + α2vj

...

µj = α2vi + α1vj

...

µS = vS

(4.12)

where α1 , 1− α2 and α2 , min{ η
‖vi−vj‖2

, 1
2
}, v ,

[
vT1 , · · ·,vTS

]T , which is the input vector for

proximal operators in Eq. (4.11).
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The detailed proof of Prop. 4 is showcased in APPENDIX D.

Note that, if we consider only one codeword for each class, Problem (4.9) can be simplified without

the regularization:

inf
µbc∈H

∑
n

∑
c

γ′c,n
[
1− µbcfb(xn)

]
+

(4.13)

Problem (4.13) can be optimized by mere substitution like in [44].

In conclusion, as depicted in Algorithm 2, *SHL’s algorithm contains one MKL update and one

SVM optimization for each bit. For the third step, we evaluate the proximal operator for each

regularization and compute the summation. After this, the algorithm optimizes codewords using

PSD. γ′c,n,s is then updated according to the current estimate of the parameters. This algorithm,

as shown in Algorithm 2, continues running until reaching the convergence. Per iteration, our

algorithm achieves a complexity of O(BN3), since LIBSVM features a O(N3) complexity [64].

Note that N is the number of instances and B is the code length.

Insights to Generalization Performance

In the next section, the comparison experiments with other state-of-the-art hash function learning

approaches demonstrate the superiority of *SHL. By noticing that *SHL tries to minimize the

Hamming distance between the correct codeword and a labeled sample, this impressive perfor-

mance can be explained to some extent. For reasons of convenience, we only consider the training

set with only labeled samples (i.e., N = NL, NU = 0). Additionally, we only consider one single

codeword *SHL. The definitions of the MKL hypothesis space for *SHL can be found in Formu-
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lation subsection. Before we provide the generalization results, the following two definitions are

necessary.

Definition 2. A Random Variable (RV) σ that is Bernoulli distributed such that Pr{σ = ±1} = 1
2

will be called a Rademacher RV.

Definition 3. Let G , {g : Z 7→ R} be a set of functions of an arbitrary domain Z and

Q = {zn}Nn=1 a set of iid samples from Z according to a distribution D. Then, the Empirical

Rademacher Complexity (ERG) of G w.r.t Q is defined as:

<̂Q(G) , Eσ

{
sup
g∈G

1

N

N∑
n=1

σno(zn)

∣∣∣∣Q
}

(4.14)

where Eσ {·} , Eσ1 {Eσ2 {· · ·EσN {·} · ··}} and {σn}Nn=1 are iid Rademacher RV. In the rest of the

section, the condition onQwill be omitted for simplicity. Additionally, the Rademacher Complexity

(RC) of G for a sample size N is defined as:

<N(G) , EQ∼DN
{
<̂Q(G)

}
(4.15)

We also need the following two lemmas before showing our final concentration results.

Lemma 1. Let Z be an arbitrary set, F̃ , {f : z 7→ f(z) ∈ RB, z ∈ Z}, Ψ : RB → R be

L-Lipschitz continuous w.r.t ‖·‖1. Also, define Ψ◦ F̃ , {g : z 7→ Ψ(f(z))} and
∥∥∥F̃∥∥∥

1
, {h : z 7→

‖f(z)‖1 , f ∈ F̃} then
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<̂Q
(

Ψ ◦ F̃
)
≤ L<̂Q

(∥∥∥F̃∥∥∥
1

)
(4.16)

where Q is a set of N samples drawn from Z .

Lemma 2. Let Z be an arbitrary set. Define: F̃ , {f : z 7→ f(z) ∈ RB, z ∈ Z},
∥∥∥F̃∥∥∥

1
,

{h : z 7→ ‖f(z)‖1 , f ∈ F̃} and 1T F̃ , {g : z 7→ 1Tf(z), f ∈ F̃}. Let’s further assume

that if f(z) , [f1(z), ..., fB(z)]T ∈ F̃ for z ∈ Z , then also [±f1(z), ...,±fB(z)] ∈ F̃ for any

combination of signs. Then:

<̂Q
(∥∥∥F̃∥∥∥

1

)
≤ <̂Q

(
1T F̃

)
(4.17)

where Q is a set of N samples drawn from Z .

The detailed proof is provided in APPENDIX E for Lemma 1 and in APPENDIX F for Lemma 2.

The following sets of functions are necessary to show the main theoretical analysis

F̄ ,{f : x 7→ [f1(x), ..., fB(x)]T , fb ∈ F , b ∈ NB} (4.18)

F ,{f : x 7→ 〈w, φθ(x)〉Hθ + β, β ∈ R, w ∈ Ωw(θ), θ ∈ Ωθ} (4.19)

where Ωw(θ) , {w ∈ Hθ : ‖w‖Hθ ≤ R} for some R ≥ 0 and Ωθ , {θ ∈ RM : θ � 0, ‖θ‖p ≤

1} for some p ≥ 1.
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Theorem 4. Assume reproducing kernels of {Hm}Mm=1 s.t. km(x, x′) ≤ r2, ∀x, x′ ∈ X and a set

Q of iid samples Q = {(x1, l1), ..., (xN , lN)}. Then for ρ > 0 independent of Q, for any f ∈ F̄ ,

any µ ∈ M, whereM , {µ : NC → HB} and any 0 < δ < 1, with probability 1 − δ, it holds

that:

er (f ,µ) ≤ êr (f ,µ) +
2R

ρ

√
rM

1
p′

√
p′

N3
+

√
log
(

1
δ

)
2N

(4.20)

where er (f ,µ) , 1
B
E{d (sgn f(x),µ(l))}, l ∈ NC is the true label of x ∈ X , êr (f ,µl) ,

1
NB

∑
n,b Φρ (fb(xn)µln,b), where Φρ(u) , min

{
1,max

{
0, 1− u

ρ

}}
and p′ , p

p−1
.

The detailed proof for Theorem 4 can be found in APPENDIX G.

Experiments

Results of Supervised Hash Learning

In this section, *SHL is compared with other state-of-the-art hashing algorithms: namely Spec-

tral Hashing (SPH)1 [129], Locality-Sensitive Hashing (LSH) [33], single-layer Anchor Graph

Hashing (1-AGH) (2-AGH)2, Binary Reconstructive Embedding (BRE)3 [56] and [69]Kernel Su-

pervised Learning (KSH)4 [68]. These methods are widely used as baseline algorithms in the other

1http://www.cs.huji.ac.il/˜yweiss/SpectralHashing/sh.zip

2http://www.ee.columbia.edu/ln/dvmm/downloads/WeiGraphConstructCode2011/
dlform.htm

3http://web.cse.ohio-state.edu/˜kulis/bre/bre.tar.gz

4http://www.ee.columbia.edu/ln/dvmm/downloads/WeiKSHCode/dlform.htm
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hash function learning papers.

Five data sets, which are widely utilized in other hashing papers as benchmarks, were considered:

• Pendigits: a digit data set (10 classes, 256 features and 10, 992 samples) of 44 writers from

the UCI Repository5. In our experiment, 3, 000 for training are randomly chosen and the rest

for testing.

• USPS: a digit data set also from the UCI Repository, is numeric data from the scanning

handwritten digits on the envelops provided by the United States Postal Service. Among the

data set (10 classes, 256 features and 9, 298 samples), again, we chose 3000 for training and

others for testing.

• Mnist6: a hand written digit data set which contains 70, 000 samples, 784 features and 10

classes. The digits have been centered and size-normalized. In our experiment, we employ

6, 000 samples for training.

• CIFAR-107: a labeled image data set collected from 80 million tiny images 8. The data set

consists of 60, 000 samples, 10 classes, 1, 024 features. Again, 6, 000 samples are used for

training and the rest for testing.

• PASCAL079 [29]: a data set contains annotated consumer photographs collected from the

flickr photo sharing website. The data set has 10 classes and 6878 samples. Each sample

contains 1, 024 features. Here, we utilize 3, 000 samples for training.

5http://archive.ics.uci.edu/ml/

6http://yann.lecun.com/exdb/mnist/

7http://www.cs.toronto.edu/˜kriz/cifar.html

8http://groups.csail.mit.edu/vision/TinyImages/

9http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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We run all the algorithms for 5 times and report the average performances. Two measurements are

considered: (i) k-closest retrieval precisions; we used k = {10, 15, . . . , 50}. (ii) Precision-Recall

(PR) curves. Within a Hamming radius of r ∈ NB, both retrieval recall and precision are computed

for hash codes.

For *SHL, parameters are set as follows: the regularization parameter for SVM, λ1 was set to

1000 since this gives best results when considering these data sets; For MKL, we utilized 11

kernels: 1 polynomial kernel, 1 linear kernel and 9 Gaussian kernels. Both the polynomial kernel

and linear kernel were normalized. We also set the bias to 1.0 for the polynomial kernel and its

degree was fixed to 2. For the 9 Gaussian kernels, we used the following bandwidth σ values:

[2−7, 2−5, 2−3, 2−1, 1, 21, 23, 25, 27]. All these kernels’ parameters are set following the other MKL

papers. p = 2 for the MKL constraint set. λ2 was set to 2000 for Pendigits, USPS and PASCAL07

and λ2 = 6000 for the rest of the data sets.
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Figure 4.1: For Pendigits, the top k retrieval results and Precision-Recall curve for all the methods
considered.

For the other state-of-art hashing algorithms, namely SPH, BRE, AGH and KSH, parameters were

used as suggested by the authors. We report all the results in Figure 4.1, Figure 4.2, Figure 4.3,

Figure 4.4 and Figure 4.5.

68



0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Bits

T
os

 k
 R

et
rie

va
l P

re
ci

si
on

 (
k 

=
 1

0)

USPS

 

 

*SHL
KSH
LSH
SPH
BRE
1−AGH
2−AGH

10 15 20 25 30 35 40 45 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Top k

T
os

 k
 R

et
rie

va
l P

re
ci

si
on

USPS

 

 

*SHL
KSH
LSH
SPH
BRE
1−AGH
2−AGH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

USPS

 

 

*SHL
KSH
LSH
SPH
BRE
1−AGH
2−AGH

Figure 4.2: For USPS, the top k retrieval results and Precision-Recall curve for all the methods
considered.
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Figure 4.3: For Mnist, the top k retrieval results and Precision-Recall curve for all the methods
considered.

Apparently, our proposed framework, *SHL, achieves the best performance among the algorithms

KSH, LSH, SPH, BRE and AGH. For all the data sets, *SHL offers the best top-10 retrieval pre-

cision results. *SHL achieves significant results especially for non-digits data sets (CIFAR-10,

PASCAL07). When utilizing PR-curve as performance metric, the largest areas under the curve are

also achieved by *SHL. Although, as reported in [68], KSH achieves impressive results, in our ex-
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Figure 4.4: For CIFAR-10, the top k retrieval results and Precision-Recall curve for all the methods
considered.
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Figure 4.5: For PASCAL07, the top k retrieval results and Precision-Recall curve for all the meth-
ods considered.

periments, *SHL outperforms KSH across all data sets. Additionally, except BRE, we notice that

supervised hashing outperforms unsupervised hashing frameworks. When considering a longer bit

length, BRE may achieve better performance like in Figure 4.1 and Figure 4.3. Moreover, it is

worth mentioning that *SHL performs impressively with short bit length, since we can observe an

obvious gap between the curves. When considering longer bits, *SHL’s superiority fades away.
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Compared with other unsupervised hashing algorithms, AGH also yields good results, because it

utilizes anchor points as side information to produce hash codes. When dealing with the non-digits

data sets we considered (CIFAR-10 and PSACAL07), except KSH adn *SHL, the other algorithms

perform poorly.

In terms of top-k retrieval precision, the other methods’ performance degraded when the top-k

number is varied from 10 to 50, except *SHL and KSH. For the other approaches, when retrieving

more items, the method may generate poorer performance. For KSH and *SHL, the kernel methods

help better capture the similarities between data samples, which gives robust retrieval performance.

We observe that KSH performs slightly worse for CIFAR-10 and PSACAL07, when k increases,

while the performance of *SHL still remains robust. Note that, in image of digits data sets, the

robustness of the two-layer AGH is better than its single-layer version. Eventually, in Figure 4.7

and Figure 4.6, the qualitative results for the Mnist and CIFAR-10 data sets are showcased. In

conclusion, for every code length we considered, it seems that *SHL’s performances are superior.

Transductive Hash Learning Results

This subsection compares *SHL’s inductive version’s performance with its transductive [120]

learning version. To the best of our knowledge, *SHL is the only hash learning approach to date

that can incorporate transductive learning. In this experiment, the Letter and Vowel from UCI

Machine Learning Repository are used. For the Vowel, 330 samples were randomly chosen for

training and 220 for testing. As for the Letter data set, 300 training samples are randomly chosen.

We run 20 times for each learning scenario and we vary the code length (B) from 4 to 15 bits.

Figure 4.8 reports the results, revealing the transductive *SHL learning’s potential advantages.
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Figure 4.6: For CIFAR-10, retrieval results on ”Plane”. For each algorithm, we use 45-bit binary
codes to retrieve 15 images. Red box indicates wrong retrieval results.

Image Segmentation

Besides content-based image retrieval, the proposed *SHL can also be utilized in other scenarios,

for example, the foreground/background interactive image segmentation [10], where the images

are partially labeled as foreground and background by users. In *SHL, while foreground and back-

ground are represented by two codewords, the rest of the pixels can be labeled in semi-supervised

learning scenario. This subsection shows the interactive image segmentation results using *SHL

on the data set introduced in [38]. The hash code length is 5 and the rest of the parameters set-

tings follow the previous section. For each pixel, the RGB values are used as features. The results

are shown in Figure 4.9. We notice that, provided with partially labeled information, *SHL suc-

cessfully segments the foreground object from the background. Especially in (e), although all the

72



���������	��
��

���

��

��

��

���

�������

�������

Figure 4.7: For Mnist, retrieval results on ”4”. For each algorithm, we use 45-bit binary codes to
retrieve 15 images. Red box indicates wrong retrieval results.

flower pots share the same color, *SHL only highlight the labeled one and its plant. Additionally,

for some images, like (c) and (f), shaded areas fail to be segmented. In these cases, *SHL may

need more image features to generate better segmentation results.

*SHL for Large Data Set

Suppose *SHL is used to cope with a huge date set, whose kernel matrix might be so large that can

not be fit into the memory of one single machine. Therefore, instead of using the sequential solver

LIBSVM, we need the parallel solver LIBSKYLARK 10 for *SHL. LIBSKYLARK decomposes the

huge data set into smaller data chunks, which will be processed in each node of a large cluster.

10http://xdata-skylark.github.io/libskylark/
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Figure 4.8: Comparison results between Inductive learning and Transductive Learning.

In order to show *SHL’s capability of solving big data set, we created clusters in Amazon Web

Service11. Two clusters were created with one containing 2 nodes while the other includes 10

nodes. Each node has Xeon E5-2666 CPU and 3.75 GB memory.

Three data sets are considered here:

• USPS: with 256 features, 7291 samples are used for training, while 2007 samples are for

testing.

• Mnist: 60K are for training and 10K are for testing. This data set contains 784 features.

• Mnist1M: 784 features. Here, we train the model using 1 million samples. For testing, 100K

samples are used.

11https://aws.amazon.com/
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Original Image Labels Segmentation

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.9: Foreground/Background interactive image segmentation. The left column contains the
original images. The middle column includes labeled pixels. The right column shows the results
of the segmentati on.
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We run the experiments using 5 bits, 25 bits and 45 bits of the codeword for the three data sets.

*SHL’s parameters are set as the previous sections. The results of running time and top-10 retrieval

accuracies are reported in Table 4.1:

Several observations can be made here: firstly, LIBSKYLARK provides *SHL a faster training pro-

cess. As reported in Table 4.1, *SHL only needs about 7 minutes to train USPS when considering

45-bits binary codes. Moreover, although LIBSKYLARK utilizes random features to approximate

kernel matrix, the retrieval accuracy is still competitive. Secondly, larger cluster is obviously more

powerful. Here, Mnist run on the 10-node cluster needs almost 25% running time compared with

the same data set on a 2-node cluster. Both clusters provide similar and competitive retrieval accu-

racies. Finally, when given a large data set like Mnist1M, *SHL with LIBSKYLARK could achieve

reasonable results using about 14 hours training time. Therefore, *SHL is able to solve big data

problems utilizing LIBSKYLARK.

Conclusions

In this part, a novel hash learning framework was proposed, namely *SHL. The method has the

following main advantages: first, the training algorithm is simple and efficient to implement. Sec-

ondly, the framework can address supervised, semi-supervised and unsupervised learning scenar-

ios. Additionally, after introducing a regularization over the multiple codewords, we also provide

the PSD method to solve this regularization.

Eventually, experiments on 5 benchmark data sets were conducted. A comparison between our

methods with the other 6 popular hashing approaches shows *SHL to be very impressive and

highly competitive. Moreover, we also give results on transductive learning scenario. Additionally,

another application based on our framework, interactive image segmentation, is also showcased in
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Table 4.1: Top-10 retrieval results and running time for *SHL for various data sets. Here, running
time secs means seconds, mins means minutes and hours means hours.

DATA NODES TRAINING TESTING BITS ACCURACY TIME

USPS 2 7291 2007
5 0.916 45.82 secs
25 0.936 227.17 secs / 3.78 mins
45 0.941 408.66 secs / 6.90 mins

Mnist 2 60K 10K
5 0.826 1690.46 secs / 28.17 mins
25 0.960 8406.04 secs / 140.08 mins
45 0.969 4253.28 secs / 251.85 mins

Mnist 10 60K 10K
5 0.839 487.88 secs / 8.13 mins
25 0.962 2361.07 secs / 39.35 mins
45 0.964 4253.28 secs / 70.89 mins

Mnist1M 10 1M 100K
5 0.824 7918.38 secs / 131.97 mins
25 0.927 28066.37 secs / 467.77 mins
45 0.935 48574.96 secs / 809.58 mins

the experimental section. Finally, we show that *SHL can also cope with huge data sets.
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CHAPTER 5: CONCLUSION AND FUTURE WORKS

This dissertation focuses on information retrieval system. Content-based information retrieval,

which retrieves the similar items based on the features extracted from the information, has become

our main research focus. The most popular and important algorithm utilized in information re-

trieval system is k-nearest neighbors (KNN) and our research aims to improve KNN’s retrieval

accuracy and its retrieval speed.

Firstly, Distance Metric Learning (DML) has been studied to improve KNN search accuracy, which

is based on the Euclidean distance. After many researchers proposed various DML approaches,

we contributed to this research field a new local metric learning framework, dubbed Reduced-

Rank Local Metric Learning (R2LML). R2LML considers a conic combination of several local

metrics. A regularization term is also incorporated to suppress the noise and avoid over-fitting.

Two formulations of DML are introduced in the dissertation. Transductive Reduced-Rank Local

Metric Learning (T-R2LML) employs transductive learning and has heavy computation burden.

Efficient Reduced-Rank Local Metric Learning (E-R2LML), on the other hand, has a faster training

procedure. A theoretical convergence analysis of the proposed block coordinate algorithms for

both the frameworks is also provided. Finally, we conducted extensive experiments. The first

experiment validates the effectiveness and usefulness of the regularization, which is used to avoid

over-fitting and achieve sparse solutions. The second experiment shows that there is no obvious

relationship between R2LML’s performance and the number of local metrics. Eventually, the

comparison between both our approaches and the other popular metric learning algorithms shows

the superiority of T-R2LML and E-R2LML.

On the other hand, in order to accelerate the retrieval process via KNN in content-based infor-

mation retrieval system, Hash Function Learning (HFL) was also studied. The model attempts to
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learn several hash functions, which generate compact binary codes from the original data samples.

If, in the original space, two points are similar, the binary code of them should also lie closer

to each other in the Hamming space. We proposed a new HFL framework, *Supervised Hash

Learning (*SHL), which could successfully incorporate supervised, semi-supervised and unsuper-

vised learning scenarios. A block coordinate descent algorithm based on Majorization Minimiza-

tion (MM) technique is also introduced to optimize the framework. We also provide a theoretical

concentration bound on our proposed algorithm. Finally, in the experimental comparisons, *SHL

outperforms other popular hash function learning algorithms. Additionally, in order to tackle large

data sets, *SHL was also shown to solve big data problems utilizing parallel computing technique.

In the experiments, we also showed that our framework is capable of dealing with large data sets

with the help of an on-line software, LIBSKYLARK.

The idea of codewords in HFL can be further extended. For instance, codewords can be employed

in multi-label learning [25], in which class labels are vectors. Each bit of class label represents one

object in data sets. For example, in image annotation, each bit of class label represents one object

in the image. One image can be labeled containing sky, ocean and cloud at the same time. Suppose

we define a pair of codewords µ+ and µ− for one bit. The previous codeword represents the bit

exists and the other represents missing. By defining a Hamming loss between the predicted labels

and true labels, the formulation could be derived into a set of Structured Support Vector Machine

problems, which can be solved using efficient on-line softwares, namely SSVM-MATLAB 1. It will

be beneficial to contribute a new approach to the multi-label learning research field.

1http://www.robots.ox.ac.uk/˜vedaldi/svmstruct.html
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In order to solve Problem (3.3) and Problem (3.4), the following Proximal Subgradient Descent

(PSD) update scheme is used:

wt+ 1
2

= wt − ηgft , (A.1)

wt+1 = argmin
w

{
1

2

∥∥∥w −wt+ 1
2

∥∥∥2

+ ηr(w)

}
. (A.2)

Above, gft ∈ ∂f(wt) and η is a fixed step length. PSD first computes the unconstrained subgradient

with respect to f .

In the second step, we find a newwt from the intermediate resultwt+ 1
2
. By the first order optimal-

ity condition, with the minimizer w, it holds that:

0 ∈ ∂

{
1

2

∥∥∥w −wt+ 1
2

∥∥∥2

+ ηr(w)

}∣∣∣∣∣
w=wt+1

.

In light of Eq. (A.1), the above property amounts to:

0 ∈ wt+1 −wt + ηgft + η∂r(wt+1). (A.3)

Since wt+1 is the minimizer of Eq. (A.2), there is a vector grt+1 ∈ ∂r(wt+1) such that Eq. (A.3)

holds, i.e.

0 = wt+1 −wt + ηgft + ηgrt+1.
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Finally, we have the following PSD update rule:

wt+1 = wt − ηgft − ηgrt+1. (A.4)

With the definitions of ‖∂f(w)‖ and ‖∂r(w)‖ in Section 3, we provide Lemma 3 as follows. Note

that, unless specified otherwise, ‖·‖ will stand for the L2 norm.

Lemma 3. Assume that the subgradients of f and r are bounded as in Eq. (3.15) for some positive

scalars A and G. Let η ≥ 0 be a fixed step length andw∗ be the minimizer of f(w) + r(w). Then,

for a constant c ≤ 4 we have:

2η(1− cAη)f(wt) + 2η(1− cAη)r(wt+1) ≤ 2ηf(w∗) + 2ηr(w∗) + ‖wt −w∗‖2

− ‖wt+1 −w∗‖2 + 8η2G2. (A.5)

Proof. By the definition of the subgradient, grt+1 ∈ ∂r(w + 1) and r’s convexity:

r(w∗) ≥ r(wt+1) +
〈
grt+1,w

∗ −wt+1

〉
⇒ −

〈
grt+1,wt+1 −w∗

〉
≤ r(w∗)− r(wt+1), (A.6)

Additionally, the following relations hold:
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〈
grt+1,wt+1 −wt

〉
=
〈
grt+1,−ηg

f
t − ηgrt+1

〉
≤

Eq. (A.4)

≤
∥∥grt+1

∥∥∥∥∥ηgft + ηgrt+1

∥∥∥ ≤
≤ η

∥∥grt+1

∥∥2
+ η

∥∥∥gft ∥∥∥∥∥grt+1

∥∥ ≤
Eq. (3.15)

≤ η(Ar(wt+1) +G2) + η(A max{f(wt), r(wt+1)}+G2), (A.7)

where the second step is due to Cauchy-Schwarz inequality.

Now we relate ‖wt+1 −w∗‖ to ‖wt −w∗‖ as follows:

‖wt+1 −w∗‖2 =
∥∥∥wt − ηgft − ηgrt+1 −w∗

∥∥∥2

=

= ‖wt −w∗‖2 − 2(η
〈
gft ,wt −w∗

〉
+ η

〈
grt+1,wt −w∗

〉
) +

∥∥∥ηgft + ηgrt+1

∥∥∥2

=

= ‖wt −w∗‖2 − 2η
〈
gft ,wt −w∗

〉
+ η2

∥∥∥gft + grt+1

∥∥∥2

− 2η(
〈
grt+1,wt+1 −w∗

〉
−
〈
grt+1,wt+1 −wt

〉
). (A.8)

In Eq. (A.8), η2
∥∥∥gft + grt+1

∥∥∥2

can be bounded as follows:
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η2
∥∥∥gft + grt+1

∥∥∥2

=

= η2
∥∥∥gft ∥∥∥2

+ 2η2
〈
gft , g

r
t+1

〉
+ η2

∥∥grt+1

∥∥2 ≤

≤ η2(Af(wt) +G2) + 2η2A max{f(wt), r(wt+1)}+ η2(Ar(wt+1) +G2) =

= η2Af(wt) + 2η2A max{f(wt), r(wt+1)}+ η2Ar(wt+1) + 4η2G2. (A.9)

When Eq. (A.7) and Eq. (A.9) are substituted into Eq. (A.8), which obtain:

‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 − 2η
〈
gft ,wt −w∗

〉
− 2η

〈
grt+1,wt+1 −w∗

〉
+

+ η2Af(wt) + 3η2Ar(wt+1)+

+ 4η2A max{f(wt), r(wt+1)}+ 8η2G2. (A.10)

The convexities of both of f(w) and r(w) imply that:

−
〈
gft ,wt −w∗

〉
≤ f(w∗)− f(wt), (A.11)

−
〈
grt+1,wt+1 −w∗

〉
≤ r(w∗)− r(wt+1). (A.12)

The following also holds:

max{f(wt), r(wt+1)} ≤ f(wt) + r(wt+1). (A.13)
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By substituting Eq. (A.11), Eq. (A.12) and Eq. (A.13) into Eq. (A.10), we obtain

‖wt+1 −w∗‖2 ≤‖wt −w∗‖+ 8η2G2 + 2η[f(w∗)− (1− 5

2
ηA)f(wt)]

+ 2η[r(w∗)− (1− 7

2
ηA)r(wt+1)] ≤

≤‖wt −w∗‖+ 8η2G2 + 2η[f(w∗)− (1− cηA)f(wt)]

+ 2η[r(w∗)− (1− cηA)r(wt+1)]. (A.14)

By choosing c ≤ 4, the second inequality holds. After some algebra, one can derive Eq. (A.5)

from Eq. (A.14).

The following is the detailed proof of Theorem 2:

Proof. By Lemma 3, we have:

2η[(1− cAη)f(wT )− f(w∗)]+2η[(1− cAη)r(wt+1)− r(w∗)]

≤‖wt −w∗‖2 − ‖wt+1 −w∗‖2 + 8η2G2. (A.15)

Summing Eq. (A.15) over t = 1, . . . , T we get
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T∑
t=1

2η[(1− cAη)f(wT )− f(w∗)]+2η[(1− cAη)r(wt+1)− r(w∗)] ≤

≤‖w1 −w∗‖2 − ‖wT+1 −w∗‖2 + 8Tη2G2 ≤

≤‖w1 −w∗‖2 + 8Tη2G2 ≤

≤D2 + 8Tη2G2. (A.16)

The last inequality holds because ‖w∗‖2 ≤ D and w1 = 0 as described in Theorem 2. For part of

Eq. (A.16), it holds:

T∑
t=1

η[(1− cAη)r(wt+1)− r(w∗)] =

=
T∑
t=1

η[(1− cAη)r(wt)−w∗]− η[(1− cAη)r(w1)− r(w∗)]

+ η[(1− cAη)r(wT+1)− r(w∗)] =

=
T∑
t=1

η[(1− cAη)r(wt)−w∗] + η(1− cAη)r(wT+1) ≥

≥
T∑
t=1

η[(1− cAη)r(wt)−w∗]. (A.17)

The second equality holds due to the assumptions that w1 = 0 and r(0) = 0. Besides, given the

step length η, this term η(1 − cAη)r(wT+1) is larger than 0, which establishes the last inequality.

Now, when substituting Eq. (A.17) back into Eq. (A.16), we get
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T∑
t=1

2η[(1− cAη)r(wt)−w∗] + 2η[(1− cAη)r(wt)− r(w∗)] ≤ D2 + 8Tη2G2

⇒ 2η(1− cAη)
T∑
t=1

[f(wt) + r(wt)]− 2ηT (f(w∗) + r(w∗)) ≤ D2 + 8Tη2G2

⇒
T∑
t=1

f(wt) + r(wt) ≤
8Tη2G2

2η(1− cAη)
+
T (f(w∗) + r(w∗))

1− cAη
. (A.18)

Additionally, the following holds:

min
t∈{1...T}

f(wt) + r(wt) ≤
1

T

T∑
t=1

f(wt) + r(wt). (A.19)

Based on Eq. (A.18), Eq. (A.19) and choosing η = D√
8TG

, we obtain the main result shown by

Theorem 2.
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Here, we provide the detailed proof of Theorem 3 in subsection Analysis in Section 3.

Proof. Firstly, we need to prove that each of the two or three block minimizations in our algorithms

decrease the objective function value under consideration. For the first block minimization, this is

true, implied by Theorem 2. For the second block, beausee of the Majorization Minimization (MM)

algorithm, we have the following inequalities:

q(g∗) = q(g∗|g∗) ≤ q(g∗|g′) ≤ q(g′|g′) = q(g′). (B.1)

Eq. (B.1) implies that the second block minimization does not increase the objective function value.

The optimal algorithm for the third block also guarantees the non-increasing nature of the cost

function. Additionally, note that the objective function is lower-bounded. Therefore, Algorithm 1

converges.

In the next step, we prove that the set of fixed points of the Algorithm 1 includes the Karush-

Kuhn-Tucker (KKT) points of Problem (3.4). Suppose the algorithm converges to a KKT point{
Lk∗, gk∗

}
k∈NK

; then, we prove that this point is also a fixed point of the algorithm’s iterative

map. Denote f1(gk), h1(gk) and f0(Lk, gk) as the inequality constraint, equality constraint and

the cost function of Problem (3.4). A KKT point will satisfy the following by definition:

0 ∈ ∂Lkf0(Lk∗, gk∗) +5gkf0(Lk∗, gk∗) (B.2)

− (βk)T 5gk f1(gk∗) +αT 5gk h1(gk∗), k ∈ NK .

In relation to Problem (3.7), which is solved by the second block, by setting the gradient of the
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problem’s Lagrangian to 0, the KKT point satisfies the following equality:

2S̃g∗ − β −BTα = 0. (B.3)

Problem (3.8) can be solved by Theorem 1; We obtain that

g = − 1

2µ
(BTα+ β − 2Hg∗). (B.4)

Substituting Eq. (B.3) andH = S̃ + µI into Eq. (B.4), we obtain

g = − 1

2µ
(BTα+ β − 2Hg∗) = − 1

2µ
(2S̃g∗ − 2S̃g∗ − 2µg∗) = g∗. (B.5)

The aforementioned equation indicates that the second block of Algorithm 1 does not update the

solution. If Eq. (B.2) is substituted by Eq. (B.3), we have 0 ∈ ∂Lkf0(Lk∗, gk∗) for all k. This is

the optimality condition for the subgradient algorithm; the first block does not update the solution

either. Therefore, a Problem (3.4)’s KKT point is a fixed point of Algorithm 1.

Finally, we prove that, for Problem (3.3), the KKT points are also included in the set of fixed points

of Algorithm 1. Assume Algorithm 1 has converged to a KKT point
{
Lk∗, gk∗

}
k∈NK

and S∗ is the

true similarity matrix. Similar to the previous proof, we start from the second block. Following the

same procedure, we find the second block will not update the solution of vector g∗. Now, during

the third block minimization, the ψmn quantities remain unchanged, since g∗ does not change. The

minimization procedure we proposed for the third block will leave the similarity matrix unchanged,

since the coefficient matrix with elements ψmn is fixed. Now, if Eq. (B.3) is substituted back into
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Eq. (B.2), we obtain the optimality condition of the first block optimization. Thus, the solution is

not updated in the first block. Thus, a Problem (3.3)’s KKT point is a fixed point of Algorithm 1.
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Proof. By replacing hinge function in Problem (4.6), for the first block minimization, we got the

following problem:

min
wb,m,βb

ξbc,n,s

λ1

∑
c

∑
s

∑
n

γ′c,n,sξ
b
c,n,s +

1

2

∑
m

‖wb,m‖2
Hm

θb,m

s.t. ξbc,n,s ≥ 0

ξbc,n,s ≥ 1− (
∑
m

〈wb,m, φm(x)〉Hm + βb)µ
b
c,s (C.1)

First of all, after considering Representer Theorem [97], we have:

wb,m = θb,m
∑
n

ηb,nφm(xn) (C.2)

Here, n is defined as the training samples’ index. By defining ξb ∈ RNCS to be the vecotr contain-

ing all ξbc,n,s’s, ηb , [ηb,1, ηb,2, ..., ηb,N ]T ∈ RN and µb , [µb1,1, . . . , µ
b
1,S, µ

b
2,1, . . . , µ

b
C,S]T ∈ RCS ,

the vectorized version of Problem (C.1) with Eq. (C.2):

min
ηb,ξb,βb

λ1γ
′ξb +

1

2
ηTb Kbηb

s.t. ξb � 0

ξb � 1NCS − (µb ⊗Kb)ηb − (µb ⊗ 1N)βb (C.3)
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Here, Prop. 3 has already defined γ ′ and Kb. Take the Lagrangian L and its derivatives, we have

the following relations, here αb and ζb are Lagrangian multipliers for the two constraints:

∂L
∂ξb

= 0⇒


ζb = λ1γ

′ −αb

0 � αb � λ1γ
′

(C.4)

∂L
∂βb

= 0⇒ αTb (µb ⊗ 1N) = 0 (C.5)

∂L
∂ηb

= 0
∃K−1

b⇒ ηb = K−1
b (µb ⊗Kb)

Tαb (C.6)

Substitute Eq. (C.4), Eq. (C.5) and Eq. (C.6) back into L, meanwhile, we notice the quatric term

becomes:

(µb ⊗Kb)K
−1
b (µTb ⊗Kb) =

=(µb ⊗Kb)(1⊗K−1
b )(µTb ⊗Kb) =

=(µb ⊗ IN×N)(µTb ⊗Kb) =

=(µbµ
T
b )⊗Kb (C.7)

Eq. (C.7) can be further derived:
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(µbµ
T
b )⊗Kb =

= [(diag (µb) 1C)(diag (µb) 1C)T ]⊗Kb =

= [diag (µb) (1C1TC) diag (µb)]⊗ [INKbIN ] =

= [diag (µb)⊗ IN ][(1C1TC)⊗Kb][diag (µb)⊗ IN ] =

= [diag (µb ⊗ 1N)][(1C1TC)⊗Kb][diag (µb ⊗ 1N)] =

= Db[(1C1TC)⊗Kb]Db (C.8)

The first equality comes from diag (u) 1 = u for some vector u. The mixed-product property of

Kronecker product derives the third equality. This relation diag (u⊗ 1) = diag (u)⊗ I gives the

fourth equality. Db is defined in Prop. 3.

After considering Eq. (C.7) and Eq. (C.8), we get the final dual form as shown in Prop. 3.
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Proof. With the definitions of proximal operator Eq. (4.11), we have the following problem to

minimize over:

P (µ) = η ‖Uµ‖2 +
1

2
‖v − µ‖2

2 =

= η ‖Uµ‖2 +
1

2
‖v1 − µ1‖

2
2 + · · ·+ 1

2
‖vS − µS‖

2
2 (D.1)

The definitions of the vectors µ and v generate the second equality. Since L2 norm is non differ-

entiable at point 0, we optimize Eq. (D.1) in two cases.

Case 1: when µi 6= µj , we take the gradients for each individual µ1 to µS:



∂P (µ)
∂µ1

= µ1 − v1 = 0

...

∂P (µ)
∂µi

= η
µi−µj
‖µi−µj‖2

+ µi − vi = 0

...

∂P (µ)
∂µj

= η
µj−µi
‖µi−µj‖2

+ µj − vj = 0

...

∂P (µ)
∂µS

= µS − vS = 0

(D.2)

Solve the linear equations with µi and µj:
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µi = 1

2τ+1
[(1 + τ)vi + τvj]

µj = 1
2τ+1

[τvi + (1 + τ)vj]

(D.3)

where τ , η/δ and δ ,
∥∥µi − µj∥∥2

. Now we have the following derivations:

µi − µj =
1

2τ + 1
(vi − vj)

⇒
∥∥µi − µj∥∥2

=
1

2τ + 1
‖vi − vj‖2

⇒ δ =
‖vi − vj‖2

2η
δ

+ 1

⇒ δ =
∥∥µi − µj∥∥2

= ‖vi − vj‖2 − 2η (D.4)

Plug τ and Eq. (D.4) into Eq. (D.3), we achieve the results for µi and µj:


µi = α1vi + α2vj

µj = α2vi + α1vj

(D.5)

Here α1 = 1 − α2 and α2 = η
‖vi−vj‖2

. Additionally, Eq. (D.4) is larger than 0 which gives the

following condition for Case 1: 0 < η ≤ ‖vi−vj‖2
2

.

Case 2: when µi = µj , µi and µj are represented as:
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µi = 1

2
vi + 1

2
vj

µj = 1
2
vi + 1

2
vj

(D.6)

Note that this case satisfies when η > ‖vi−vj‖2
2

.

Combining two cases, the results provided in Prop. 4 are achieved.
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APPENDIX E: PROOF OF LEMMA 1
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Proof. From Definition 3, we have:

<̂Q
(

Ψ ◦ F̃
)

=
1

N
Eσ

{
sup
f∈F̃

∑
n

σnΨ(f(zn))

}
=

=
1

N
EσN−1

{
EσN

{
sup
f∈F̃

[u(f) + σNΨ(f(zN))]

}}

=
1

N
EσN−1

{A(σN−1)} (E.1)

where u(f) ,
∑N−1

n=1 σnΨ(f(zn)) and A(σN−1) , EσN
{

supf∈F̃ [u(f) + σNΨ(f(zN))]
}

.

Expanding the expectation , we get:

A(σN−1) =
1

2
[ sup
f∈F̃

[u(f) + Ψ(f(zn))] + sup
f∈F̃

[u(f)−Ψ(f(zn))]] (E.2)

Additionally, we define the following: B̂(f) , u(f) + Ψ(f(zn)) and B̃(f) , u(f)−Ψ(f(zn)).

From the superium’s definition, we have that ∀ε > 0, there are f̂ amd f̃ in F̃ such that:

sup
f∈F̃

B̂(f) ≥ B̂(f̂) ≥ (1− ε) sup
f∈F̃

B̂(f) (E.3)

sup
f∈F̃

B̃(f) ≥ B̃(f̂) ≥ (1− ε) sup
f∈F̃

B̃(f) (E.4)

From Eq. (E.3) and Eq. (E.4), for any ε > 0, we have:
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(1− ε)A(σN−1) ≤ 1

2

[
B̂(f̂) + B̃(f̃)

]
=

1

2

[
u(f̂) + u(f̃) + Ψ(f̂(zn))−Ψ(f̃(zn))

]
(E.5)

Since Ψ is L-Lipschitz continuous w.r.t the ‖·‖1 norm, it holds that:

Ψ(f̂(zn))−Ψ(f̃(zn)) ≤ L
∥∥∥f̂(zn)− f̃(zn)

∥∥∥
1

=

= L
B∑
b=1

|f̂b(zn)− f̃b(zn)| =

= L
B∑
b=1

qb

(
f̂b(zn)− f̃b(zn)

)
(E.6)

where qb , sgn
(
f̂b(zn)− f̃b(zn)

)
. From Eq. (E.5) and Eq. (E.6), we obtain:

(1− ε)A(σN−1)

≤ 1

2

[
u(f̂) + u(f̃) + L

B∑
b=1

qb

(
f̂b(zn)− f̃b(zn)

)]
=

=
1

2

[[
u(f̂) + L

B∑
b=1

qbf̂b(zN)

]
+

[
u(f̃)− L

B∑
b=1

qbf̃b(zN)

]]

(E.7)

By the definition of superium, Eq. (E.7) is bounded by:
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(E.7) ≤ sup
q∈HB

1

2

[[
u(f̂) + L

B∑
b

qbf̂b(zN)

]
+

[
u(f̃)− L

B∑
b

qbf̃(zN)

]]
≤

≤ 1

2

[
sup
q∈HB

[
u(f̂) + L

B∑
b

qbf̂(zN)

]]
+ sup
q∈HB

[
u(f̃)− L

B∑
b

qbf̃b(zN)

]]
(E.8)

With the help of Eq. (E.3) and Eq. (E.4), Eq. (E.8) is bounded:

(E.8) ≤ 1

2

[
sup
q∈HB

sup
f∈F̃

[
u(f) + L

B∑
b

qbfb(zN)

]
+ sup
q∈HB

sup
f∈F̃

[
u(f)− L

B∑
b

qbfb(zN)

]]
=

= EσN

{
sup
q∈HB

sup
f∈F̃

[
u(f) + σNL

B∑
b

qbfb(zN)

]}
=

= EσN

{
sup
f∈F̃

[
u(f) + σNL sup

q∈HB

B∑
b

qbfb(zN)

]}
=

= EσN

{
sup
f∈F̃

[
u(f) + σNL

B∑
b

sup
qb∈{±1}

qbfb(zN)

]}
=

= EσN

{
sup
f∈F̃

[
u(f) + σNL

B∑
b

sgn(fb(zN))fb(zN)

]}
=

= EσN

{
sup
f∈F̃

[u(f) + σNL ‖f(zN)‖1]

}
(E.9)

Since Eq. (E.9) holds for every ε > 0, we have that :

A(σN−1) ≤ EσN

{
sup
f∈F̃

[u(f) + σNL ‖f(zN)‖1]

}
(E.10)

103



Repeating this process for the remaining σ eventually yields the result of this lemma.
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APPENDIX F: PROOF OF LEMMA 2
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Proof. Let Ψ(·) , ‖·‖1. Utilizing the similar technique in Lemma 1, by defining

u(f) ,
∑N−1

n=1 σNΨ(f(zN)), we have:

<̂Q(
∥∥∥F̃∥∥∥

1
) =

1

N
EσN−1

{A(σN−1)} (F.1)

Here A(σN−1) = EσN
{

supf∈F̃ [u(f) + σNΨ(f(zN))]
}

. Similarly, by defining B̂(f) , u(f) +

Ψ(f(zN)) and B̃(f) , u(f)−Ψ(f(zN)), we have for any ε > 0:

(1− ε)A(σN−1) ≤ 1

2

[
B̂(f̂) + B̃(f̃)

]
=

=
1

2

[
u(f̂) + u(f̃) + Ψ(f̂(zN))−Ψ(f̃(zN))

]
(F.2)

By the reverse triangle inequality and | · |’s 1 - Lipschitz property:

Ψ(f̂(zN))−Ψ(f̃(zN)) =
B∑
b=1

[
|f̂b(zN)| − |f̃b(zN)|

]
≤

≤
B∑
b=1

sgn(f̂b(zN)− f̃b(zN))(f̂b(zN)− f̃b(zN)) (F.3)

With the definition of qb , sgn(f̂b(zN)− f̃b(zN)), we combine Eq. (F.2) and Eq. (F.3):
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(1− ε)A(σN−1)

≤ 1

2

[
u(f̂) + u(f̃) +

B∑
b=1

qb(f̂b(zN)− f̃b(zN))

]
=

=
1

2

[[
u(f̂) +

B∑
b=1

qbf̂b(zN)

]
+

[
u(f̃)−

B∑
b=1

qbf̃b(zN)

]]
(F.4)

For b ∈ HB, define q′b , qb if qb 6= 0 and q′b , 1 otherwise. Also, define f̂ ′(·) , q′bf̂(·), then we

have f̂(·) = q′bf̂
′(·) and :

u(f̂) +
B∑
b=1

qbf̂b(zN) =

= u
(
q′1f̂

′
1(·), ..., q′B f̂ ′B(·)

)
+

B∑
b=1

f̂ ′b(zN) =

=
N−1∑
n=1

σn

B∑
b=1

|q′bf̂ ′b(zn)|+
B∑
b=1

f̂ ′b(zN) =

= u(f̂
′
) +

B∑
b=1

f̂ ′b(zN) ≤ sup
f∈F̃

[
u(f) +

B∑
b=1

fb(zN)

]
(F.5)

The above derivation is based on the fact that if [f1(z), ..., fB(z)]T ∈ F̃ , then we also have

[±f1(z), ..., fB(z)]T ∈ F̃ for z ∈ Z .

Using a similar rationale, we can show that:
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u(f̃)−
B∑
b=1

qbf̃b(zn) ≤ sup
f∈F̃

[
u(f)−

B∑
b=1

fb(zN)

]
(F.6)

Combine Eq. (F.4), Eq. (F.5) and Eq. (F.6):

(1− ε)A(σN−1)

≤ 1

2

[
sup
f∈F̃

[
u(f) +

B∑
b=1

fb(zN)

]
+ sup
f∈F̃

[
u(f)−

B∑
b=1

fb(zN)

]]

= EσN

{
sup
f∈F̃

[
u(f) + σN

B∑
b=1

fb(zN)

]}
(F.7)

Since Eq. (F.7) holds for every ε > 0, we have that:

A(σN−1) ≤ EσN

{
sup
f∈F̃

[
u(f) + σN1Tf(zN)

]}
(F.8)

Repeating this process for the remaining σs will eventually yield the result of this lemma.
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APPENDIX G: PROOF OF THEOREM 4
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Proof. Consider the function spaces:

G , {g : (x, l) 7→ [µ1(l)f1(x), ..., µB(l)fB(x)]T , µ ∈M, f : X 7→ RB}

Ψ ◦ G ,

{
Ψ(g(·)) : (x, l) 7→ 1

B

B∑
b=1

Φρ(gb(x, l)), g ∈ G

}

Notice that, since Φρ(u) ∈ [0, 1] for ∀u ∈ R, also Ψ(g(x, l)) ∈ [0, 1] for ∀g ∈ G, x ∈ § and

l ∈ NG. Hence, from Theorem 3.1 of [79], for fixed (independent of Q) ρ > 0 and for any δ > 0

and any g ∈ G, with probability at least 1− δ, it holds that:

E {Ψ(g(x, l))} ≤ ÊQ {Ψ(g(x, l))}+ 2<N(Ψ ◦ G) +

√
ln1

δ

2N
(G.1)

Where we define ∀h : X×NC 7→ R and ÊQ {h(x, l)} , 1
N

∑N
n=1 h(xn, ln). Since [u < 0] ≤ Φρ(u)

for ∀u ∈ R, ρ > 0, it holds that:

1

B
d (sgnf(x),µ(l)) =

1

B

B∑
b=1

[µb(l)fb(x) < 0] ≤ 1

B

B∑
b=1

Φρ (µb(l)fb(x)) = Ψ(g(x, l))

Thus, we have the following:
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er(f ,µ) , E
{

1

B
d(sgnf(x),µ(l))

}
≤ E {Ψ(g(x, l))} (G.2)

Due to Eq. (G.2), with probability at least 1− δ, Eq. (G.1) becomes now:

er(f ,µ) ≤ ÊQ {Ψ(g(x, l))}+ 2<N(Ψ ◦ G) +

√
ln1

δ

2N
(G.3)

Now due to the fact that Ψ(·) is 1
Bρ

- Lipschitz continuous w.r.t ‖·‖1 and Lemma 1, we have:

<̂Q (Ψ ◦ G) ≤ 1

Bρ
<̂Q (‖G‖1)

Also, since µ : NG 7→ HB, we have <̂Q (‖G‖1) = <̂Q
(∥∥F̄∥∥

1

)
, where F̄ is defined in Eq. (4.18),

we get:

<̂Q (Ψ ◦ G) ≤ 1

Bρ
<̂Q
(∥∥F̄∥∥

1

)

Now due to Lemma 2, we have <̂Q
(∥∥F̄∥∥

1

)
≤ <̂Q

(
1T F̄

)
, by taking expectations on both sides

w.r.t Q, the above inequality becomes:
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<N (Ψ ◦ G) ≤ 1

Bρ
<N
(
1T F̄

)
(G.4)

Substitute Eq. (G.4) into Eq. (G.3):

er(f ,µ) ≤ ÊQ{Ψ(g(x, l))}+
2

Bρ
<N(1T F̄) +

√
ln1

δ

2N
(G.5)

From the optimization problem in Eq. (4.6), we note that *Supervised Hash Learning (*SHL) is

utilizing the hypothesis spaces defined in Eq. (4.18) and Eq. (4.19). Note the fact that each hash

function of *SHL is determined by the data independent of the others.

By considering the Representer Theorem [97], we have w =
∑

n=1 αnΦθ(xn), α ∈ RN . The

aforementioned equation implies: f(x) =
∑

n αnkθ(x, xn) + β and ‖w‖2
Hθ = αTKθα. HereKθ

is the training data’s kernel matrix.

Hence, F can be re-expressed as:

F =

{
f : x 7→

∑
n

αnkθ(x, xn) + β, β ∈ R, α ∈ Ωα(θ), θ ∈ Ωθ

}

where Ωα(θ) , {α ∈ RN : αTKθα ≤ R2}.

First of all, let’s upper bound the Rademacher Complexity of *SHL’s hypothesis space:
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<̂Q(1T F̄) =
1

N
Eσ

{
sup
f∈F̄

∑
n

σn

B∑
b=1

fb(xn)

}
=

=
1

N
Eσ

{
sup

fb∈F ,b∈NB

∑
b

∑
n

σnfb(xn)

}
=

=
∑
b

1

N
Eσ

{
sup
fb∈F

∑
n

σnfb(xn)

}
= B<̂Q(F) (G.6)

Next, we will upper bound <̂Q(F):

<̂Q(F) =
1

N
Eσ

{
sup
f∈F

∑
n

σnf(xn)

}
=

= Eσ

{
sup

α∈Ωα(θ),θ∈Ωθ

αTKθα+ sup
β∈R

∑
n

σnβ

}
≤

≤ R

N
Eσ
{

sup
θ∈Ωθ

√
αTKθα

}
=
R

N
Eσ

{√
sup
θ∈Ωθ

θTu

}
(G.7)

where u ∈ RM such that um , σTKmα. The above inequality holds because of Cauchy-Schwarz

inequality. Additionally, Eσ
{

supβ∈R
∑

n σnβ
}

= 0 since β is bounded.

By the definition of the dual norm, if p′ , p
p−1

, we have:

sup
θ∈Ωθ

θTu = ‖u‖p′ (G.8)

Thus, Eq. (G.7) becomes:
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<̂Q(F) ≤ R

N
Eσ
{√
‖u‖p′

}
=

=
R

N
Eσ


[

M∑
m=1

(σTKmσ)p
′

] 1
2p′
 ≤

≤ R

N

[∑
m

Eσ
{

(σTKmσ)p
′
}] 1

2p′

The above inequality holds because of Jensen’s Inequality. By the Lemma 5 from [59], the above

expression is upper bounded by:

R

N

[∑
m

(p′)
p′
2 (trace {Km})

p′
2

] 1
2p′

=

=
R

N
(p′)

1
4

[∑
m

[trace {Km}]
p′
2

] 1
2p′

(G.9)

Since km(x, x′) ≤ r2, ∀m ∈ NM , x ∈ X :

trace {Km} ≤ Nr2 ⇒ [trace {Km}]
p′
2 ≤ N

p′
2 rp

′ ⇒

⇒

[∑
m

[trace {Km}]
p′
2

] 1
2p′

≤M
1
p′N

1
4 r

1
2 (G.10)

Thus, combine Eq. (G.9) and Eq. (G.10), we have:

114



<̂Q(F) ≤ R

N
q

1
4M

1
2p′N

1
4 r

1
2 = R

(
p′

N3

) 1
4
√
rM

1
p′ (G.11)

Combine Eq. (G.6) and Eq. (G.11):

<̂Q(1T F̄) ≤ BR

(
p′

N3

) 1
4
√
rM

1
p′ ⇒

⇒ <N(1T F̄) ≤ BR

√
rM

1
p′

√
p′

N3
(G.12)

Finally, combine Eq. (G.5) and Eq. (G.12), one can generate the bound provided in Theorem 4.
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