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ABSTRACT 
 

 

Traffic safety and mobility of roadway work zones have been considered to be one of the 

major concerns in highway traffic safety and operations in Florida. In intent to expose 

Florida‟s work zones crash characteristics, the Florida Traffic Crash Records Database 

for years 2002, 2003 and 2004 were explored. Statistical models were estimated and 

Florida‟s work zone crash traits for single vehicle crashes and two-vehicle crashes were 

drawn. For the single-vehicle crashes, trucks were found more likely to be involved in 

single vehicle crashes in freeway work zones compared to freeways without work zones. 

Straight level roadways are significantly affected by the presence of work zones. The 

lighting condition is also one of the risk factors associated with work zone single-vehicle 

crashes. In fact, at work areas with poor or no lighting during dark conditions, motor 

vehicles are more prone for crashes compared to non-work zone locations with poor or no 

lighting during dark. The weather condition is positively associated with single-vehicle 

work zone crashes. Results showed that during rainy weather, drivers are less likely to be 

involved in work zone crashes compared to the same weather conditions in non-work 

zone locations. This fact may be due to the vigilant driving pattern during rain at work 

zones.   For the two-vehicle work zone crashes, results showed that drivers younger than 

25 years of age and drivers older than 75 years old have the highest risk to be the at-fault 

driver in a work zone crash. Male drivers have significantly higher risk than female 

drivers to be the at-fault driver. The model conspicuously shows that drivers under the 

influence of narcotics/alcohol are more likely to cause crashes (i.e. at-fault driver) at 

work zones. Road geometry and the lighting condition were significant risk factors 
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associated with two-vehicle work zone crashes. Freeways straight segments are more 

susceptible to crashes in work zone areas.  Poor lighting or no lighting at all during dark 

can lead to significantly higher crash hazard at work zones. Foggy weather causes a 

significant mount in work zone crash risk compared to non-work zone locations. In 

addition to that, work zones located in rural areas have higher crash potential than work 

zones located in urban areas.  

 

After examining the current Florida work zone Maintenance of Traffic (MOT) plans, 

known as the Motorist Awareness System (MAS), it was realized that this system is static 

hence does not react to changing traffic conditions. An ITS-based dynamic lane 

management system, known as dynamic lane merging system, was explored to 

supplement the existing MAS plans. Two forms of dynamic lane management were 

recognized as dynamic lane merging namely the early merge and the late merge. These 

two systems were designed to advise drivers on definite merging locations. Previously 

deployed dynamic lane merging systems comprise several Portable Changeable Message 

Signs (PCMS) and traffic sensors. The addition of multiple PCMSs to the current MAS 

plans may encumber the latter and usually requires relatively extensive equipment 

installation and relocation which could be inefficient for short term movable work zones. 

Therefore, two Simplified Dynamic Lane Merging Systems (SDLMS) were designed, 

deployed, and tested on Florida‟s short term movables work zones. The first SDLMS was 

a simplified dynamic early merge system (early SDLMS) and the second SDLMS was a 

simplified dynamic late merge system (late SDLMS). Both SDLMS consisted of 
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supplementing the MAS plans used in Florida work zones with an ITS-based lane 

management system.  

 

From the two-to-one work zone configuration (first site), it was noted that the ratio of the 

work zone throughput at the onset of congestion over the demand volume was 

significantly the highest for the early SDLMS compared to the MAS and late SDLMS. 

Travel time through the work was the lowest for the early SDLMS, followed by the late 

SDLMS, and then MAS. However, the differences in mean travel times were not 

statistically significant. It was also concluded that the early SDLMS resulted in higher 

early merging compared to the MAS and that the late SDLMS in higher late merging 

compared to the MAS. The first site was used as a pilot for testing the system since data 

collection was limited to two days for each MOT type. Hence, operational measures of 

effectiveness (MOEs) could not be evaluated under different demand volumes.  It should 

also be noted that the RTMS was not available during the MAS data collection which 

disabled us from collecting speed data.  

 

From the three-to-two work zone configuration site, data was collected extensively 

relative to the first site. The RTMS was available for all three MOT types tested which 

enabled the collection of the speed data that are used as a safety surrogate measure. The 

mean speed fluctuation in the closed lane was the highest under the MAS system for all 

demand volumes and in all three lanes.  Comparing the dynamic early merge and the 

dynamic late merge mean speed fluctuations in the closed lane and the middle lane, 

results showed that the mean speed fluctuation for the early merge are lower than those of 
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the late merge under all demand volumes. However, the difference in the mean speed 

fluctuation is only statistically significant under demand volume ranging between 1 and 

500 veh/hr. As for the shoulder lane, it was noted that the speed mean speed fluctuation is 

significantly the lowest for demand volumes ranging between 1500 veh/hr and 2000 

veh/hr  under the late SDLMS compared to the early SDLMS and the MAS. The ratio of 

the throughput over demand volume was taken as the operational MOE. Results showed 

that the Dynamic early merge performs significantly better than the regular MAS under 

demand volume ranging between 500 veh/hr and 2000 veh/hr. Results also showed that 

the dynamic late merge perform better than the MAS under volumes ranging between 

1500 veh/hr and 2000 veh/hr and significantly poorer than the MAS under low volumes. 

Therefore, the late SDLMS is not recommended for implementation under low volumes. 

Results also showed that the late SDLMS performs better than the early SDLMS under 

higher volume (ranging between 1500 veh/hr to 2000 veh/hr). 

 

A simulated work zone with a two-to-one lane closure configuration was coded in 

VISSIM and operational and safety MOEs under MAS, early SDLMS, and late SDLMS 

were compared under different drivers‟ adherence rate to the merging instructions, truck 

percentage in the traffic composition, and traffic demand volumes. Results indicated that 

throughputs are higher in general under the early SDLMS, travel times are lower under 

the early SDLMS. However, overall, the early SDLMS resulted in the highest speed 

variance among MOT types. The MAS resulted in the lowest speed variances overall. 
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CHAPTER 1 INTRODUCTION 
 

 

1.1. Work Zone Issues 

 

Traffic safety and efficiency of roadway work zones have been considered to be one of 

the major concerns in highway traffic operations in Florida. Due to the capacity 

diminution resulting from the lane closure, congestion will occur with a high traffic 

demand. Moreover, the mandatory merging to the open lane increases number and 

severity of traffic conflicts which raises the potential for accidents. Consequently work 

zones became a challenge for traffic safety and operations engineers.   

 

1.2. Work Zone Lane Management Schemes 

 

To improve traffic safety and mobility in work zone areas, dynamic lane management 

systems also known as the dynamic lane merging (DLM) system, intelligent work zone 

traffic control system, have been introduced in several states of the U.S. The DLM can 

take two forms; dynamic early merge and dynamic late merge. The dynamic aspect of the 

DLM systems allow them to respond to real-time traffic changes via traffic sensors. The 

idea behind the dynamic early merge is to create a dynamic no-passing zone to encourage 

drivers to merge into the open lane before reaching the end of a queue and to prohibit 

them from using the closed lane to pass vehicles in the queue and merge into the open 

lane ahead of them (Tarko and Vegopal, 2001). A typical early merge DLM system 

consists of queue detectors and “DO NOT PASS WHEN FLASHING” signs that would 
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be triggered by the queue detectors. When a queue is detected next to a sign, the next 

closest sign‟s flashing strobes, upstream, are activated creating the no-passing zone 

(Tarko et al., 1998). 

 

The concept behind late merge is to make more efficient use of roadway storage space by 

allowing drivers to use all available traffic lanes to the merge point. Once the merge point 

is reached, the drivers in each lane take turns proceeding through the work zone (McCoy 

and Pesti, 2001). A typical dynamic late merge system consists of several PCMSs that 

would be activated under certain traffic conditions to display “USE BOTH LANES TO 

MERGE POINT” and a PCMS at the taper advising drivers to “TAKE TURNS / MERGE 

HERE”. In contrast to the static lane merging, the DLM systems respond to real-time 

traffic changes via traffic sensors. The real-time traffic data acquired by the sensors are 

communicated to a central controller in a time-stamped manner. Appropriate algorithms 

determine whether to activate real-time lane merging messages to drivers based on preset 

traffic characteristics thresholds. 

 

1.3. Research Motivation 

 

After investigating Fatality and Analysis Reporting System (FARS), it was found that 

Florida‟s work zones fatalities are rising significantly compared to other states. 

Subsequently a Florida freeway work zone crash data analysis was conducted and crash 

traits were exposed. Results indicated the majority of freeways work zone crashes 

resulted from merging conflicts leading to rear-end and sideswipe crashes. After 
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examining the current Florida work zone Maintenance of Traffic (MOT) plans, known as 

the Motorist Awareness System (MAS), it was realized that this system is static hence 

does not react to changing traffic conditions, and does not incorporate a lane management 

system. Therefore, an ITS-based lane management system, primarily designed to advise 

drivers on definite merging locations was explored to supplement the existing Florida 

MOT plans (i.e. MAS) for short term work zones. Previously deployed dynamic lane 

merging systems comprise several PCMS (or other forms of dynamic message signs) and 

traffic sensors. The addition of multiple PCMSs to the current FDOT MOT plans may 

encumber the latter. Moreover, previously deployed DLM systems (dynamic early merge 

systems and dynamic late merge systems) may require relatively extensive equipment 

installation and relocation which could be inefficient for short term movable work zones 

(moving on average every 7 to 10 hours). Therefore, two simplified dynamic lane 

merging systems (SDLMS) are suggested for deployment and testing on short term work 

zones. The first SDLMS is a simplified dynamic early merge system (early SDLMS) and 

the second SDLMS is a simplified dynamic late merge system (late SDLMS). The 

following chapters elaborate further on the two suggested forms of the SDLMS. This 

study aims at comparing the effectiveness of both forms of SDLMS to the conventional 

MAS plans.  
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1.4. Research Objectives  

 

The main objective of this research is to evaluate the safety and operational effectiveness 

of the two proposed SDLMS systems. The objectives of this research can be summarized 

as the following: 

 

1. Explore Florida‟s work zones crashes characteristics. 

2. Investigate current practices and countermeasures used in work zones. 

3. Propose a scheme for the field test including the simplified dynamic lane merging 

system configuration and the approach for data collection. 

4.  Compare safety and operational MOEs between with and without SDLMS (early 

and late) system in work zone areas for various traffic settings.  

5. Provide field observations and recommendations regarding the system 

implementation. 

6. Simulate a two-to-one work zone configuration in VISSIM and generalize the 

effectiveness of these recommendations to various traffic demands and motorists‟ 

adherence level. 

 

1.5 Organization of the Dissertation 

 

The dissertation is organized into eight chapters. The description of these chapters is 

given below: 

Chapter 1 provides the motivation, background and objectives of the research for this 

dissertation and the need for dynamic lane management in wok zone. Chapter 2 lists the 
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literature review in the field of work zone safety and operational concerns and the 

countermeasures and practices. Chapter 3 provides an insight on the Florida specific 

work zone crashes characteristics for single and two-vehicle accidents. Chapter 4 

provides a description of the designed modified MOT plans, the SLDMS system‟s 

equipment, the systems‟ requirements, the equipment installation and relocation, the 

system‟s operation, and the entities involved in the deployment. Chapter 5 provides 

results of a deployment on a two-to-one work zone lane closure configuration. Chapter 6 

provides results of a deployment on a three-to-two work zone lane closure configuration. 

Chapter 7 provides a simulation of a two-to-one work zone lane closure configuration 

and the resulting recommendation under various traffic settings and motorists‟ 

compliance rates. Chapter 8 summarizes the contribution of this dissertation and lists the 

conclusions and directions for future research. 
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CHAPTER 2 LITERATURE REVIEW 

 

The first section of the literature review presents a synopsis of work zones safety aspects 

including crash rates, crash severity, contributing factors, crash types, and traditional 

safety countermeasures deployed in work zones. This section also exposes the road 

geometry, environment, and vehicle factors affecting work zone capacity. The second 

section provides a summary on ITS applications in work zones known as “smart work 

zone”. The third section explores previous dynamic lane management in work zones. 

 

2.1 Safety Concerns at Work Zones 

 

2.1.1 Crash rates at work zones 
 

According to the Fatality and Analysis Reporting System (FARS), Florida fatal work 

zone crashes have risen over 300% since 1999 (See Figure 2.1.1), ranking Florida the 

second highest state in fatal work zone crashes after the state of Texas (Fatality Analysis 

Reporting System (FARS), 2006). Several studies were undertaken to assess the safety of 

highway construction zones in numerous states of the United States. These studies 

corroborate that work zones produce a significantly higher rate of crashes under certain 

conditions when compared to non-work zone locations. In particular, Hall et al. (1989) 

stated that work zones are responsible for a 26% increase in motor vehicle crashes during 

construction or roadway maintenance. Moreover, Rouphail et al. (1988), Garber and Woo 

(1990), Nemeth and Migletz (1978), Pigman and Agent (1990), Zhao (2001) Pal and 

Sinha (1996), Garber and Zhao (2002), Khattak et al. (2002) investigated crash rates  at 
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work zone and concluded that under certain conditions work zones generate significantly 

higher rates of crashes compared to non-work zone locations. Pratt et al. (2001) analyzed 

workers fatalities in American highway work zones between 1992 and 1998 and 

underlined the need to mitigate workers risk at work zones. Gundy (1998) presented a 

review of existing empirical studies and literature concerning work zone traffic accidents, 

and concluded that accident rates in work zones are higher than similar non-work zone 

locations. Table 2.1.1 summarizes the studies‟ results concerning crash rates. 

 

 

 

Figure 2.1.1: Top four States in Fatal Crashes in the U.S. 
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Table 2.1.1: Summary of studies’ results concerning crash rates 

 

SUBJECT STUDIES RESULTS 

Crash Rates 

Hall et al. (1989) 

Rouphail et al. (1988) 

Garber and Woo (1990) 

Nemeth and Migletz (1978) 

Pigman and Agent (1990) 

Gundy (1998) 

Pratt et al. (2001) 

Zhao (2001) 

Garber and Zhao (2002) 

Khattak et al. (2002) 

Work zones produce 

significantly more crashes 

than non-work zones 

 

 

2.1.2 Crash severity at work zones 
 

The severity of crashes at work zone locations was compared to the severity of crashes at 

non-work zone locations by several studies. However, the findings of these studies were 

inconsistent. For instance, Ha and Nemeth (1995), Nemeth and Migletz (1978), Nemeth 

and Rathi (1983), and Rouphail et al. (1988) stated that work zone crashes were “to some 

extent” less severe than non-work zone crashes. On the other hand, Pigman and Agent 

(1987) and “Summary Report on Work Zone Accidents” (1987) reported that work zone 

crashes are more severe than non-work zone crashes. Moreover, Hall and Lorenz (1989) 

and Garber and Woo (1990) stated that there is no significant statistical difference 

between the crash severity at work zone and non work zone locations.  Another study by 

Hargroves (1981) indicated that the average work zone crash was slightly more severe 

than non-work zone crashes in terms of the average property damage and the number 

vehicles involved in the crash. This study also concluded that the average work zone 

crash was slightly less severe than non-work zone crashes in terms of property damage 
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only (PDO) crashes and the number of people injured or killed in the accident. Zhao et al. 

(2001) specified that 1% of the work zone crashes are fatal, 38% result in injuries and 

61% in PDO (property damage only). Table 2.1.2 summarizes the studies‟ results 

concerning crash severity. 

 

Table 2.1.2: Summary of study results concerning crash severity 

 

SUBJECT STUDIES RESULTS 

 

Crash Severity 

Ha and Nemeth (1995) 

Nemeth and Migletz (1978) 

Hargroves (1981) 

Nemeth and Rathi (1983) 

Rouphail et al. (1988) 

Work zone crashes are 

slightly less severe than 

non-work zone crash. 

Pigman and Agent (1987) 

“Summary Report on Work 

Zone Accidents” (1987) 

Work zone crashes are more 

severe than non-work zone 

crash. 

Hall and Lorenz (1989) 

Garber and Woo (1990) 
No difference between 

work zone and non-work- 

zone crash severity. 
 

 

2.1.3 Crash types at work zones 
 

Several studies indicated that rear-end collisions are the predominant type of collision at 

work zones (Garber and Woo (1990), Goddin (1999), Ha and Nemeth (1995), Hall and 

Lorenz (1989), Hargroves (1981), Nemeth and Migletz (1978), Nemeth and Rathi (1983), 

Pigman and Agent (1987), Rouphail et al. (1988), “Summary Report on Work Zone 

Accidents” (1987)). Zhao (2001) determined that rear-end is the predominant crash type 

at work zones (See Figure 2.1.2).  Lervag and Fjerdingen (2003) indicated that in 

addition to rear-end collisions at work zones that sideswipe and same directions crashes 
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are over-represented compared to road sections without work zones. Khattak et al. (2002) 

also found that rear-end collisions and sideswipe accidents are overrepresented in work 

zone areas compared to non-work zone areas.  

 

 

 

Figure 2.1.2: Collision type distribution at work zones (Zhao, 2001) 

 

2.1.4 Contributing factors 
 

2.1.4.1 Vehicles and drivers characteristics of work zone crashes 

 

Several studies (Hall and Lorenz (1989), Rouphail et al. (1988), Garber and Woo (1990), 

Pigman and Agent (1987)) indicated that multi-vehicle crashes are over-represented at 

work zone areas. Moreover, some studies showed that heavy vehicles were 

overrepresented in work zone areas (Hall and Lorenz (1989), Pigman and Agent (1987), 
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Nemeth and Rathi (1983)). Furthermore, Pigman and Agent (1987) stated that work zone 

crashes involving heavy vehicles were more severe than work zone accident not 

involving heavy vehicles. Benekohal et al. (1995) found that 90 % of truck drivers in a 

survey conducted in Illinois felt that driving through work zones was more hazardous 

than driving in other areas. Chambless et al (2001) presented several drivers‟ behavior 

parameters that contribute work zone crashes: 

 Misjudging stopping distance  

 Following too closely 

 Improper lane change 

Garber and Zhao (2002
a
, 2002

b
) suggested that a major causal factor for work zone 

crashes is speed related. The accidents are mainly caused by speed differentials resulting 

in a speed variance. Raub et al. (2001) indicated that distraction from work in progress, 

failure to yield at the taper point, and excessive speed are over-represented causes for 

work zone crashes. 

 

2.1.4.2 Environment characteristics at work zone crashes 

 

Night time (or during darkness) crashes are more severe than day time crashes (Pigman 

and Agent, 1987). However, Nemeth and Migletz (1978) indicated that day light or day 

time crashes at work zones are more severe than night time work zone crashes. 

Chambless et al. (2001) indicated that road defects and vision obstruction are 

overrepresented parameters in work zone crashes. Raub et al. (2001) indicated that 

narrower lanes and concrete barriers make it hard for drivers to maneuver and avoid 

accidents. Several studies were carried out to study the crash location distribution within 
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work zones. Raub et al. (2001) studied the location of crashes within work zones in 

Illinois. They divided work zones into four areas; the approach area, the taper area 

(transition area), the construction area, and the exit area. They found that: 

 Almost 40% of the work zone accident occurred in the approach and transition 

area, and that more than 30% of this crashes involved injury and two vehicles. 

 Crashes in the working area usually involved more than two vehicles, most 

commonly resulting in property damage only. 

Garber and Zhao (2002) also studied the location of crashes within work zones in 

Virginia by splitting the work zone into five areas; advance warning area, transition area, 

longitudinal buffer area, activity area and buffer area. Their results indicate that the 

activity area was the predominant location for crashes both in total number of accidents 

and in number of fatal accidents. 

 

2.1.5 Traditional safety countermeasures at work zones 
 

 Warning lights: Ullman et al. (1998) stated that more colorful warning lights 

imply greater sense of urgency and they recommended the use of more colors, 

especially blue, for special flashing warning signs. A study conducted by Finley et 

al. (1999, 2001) suggested that sequential warning light systems improve traffic 

safety by encouraging drivers to exit the closure lane farther upstream.   

 

 Fluorescent signs: Fluorescent sheeting is different from ordinary sheeting 

because it absorbs short wavelength solar energy and then reemits the energy as 

longer wavelength visible lights. This increases the luminance of the sign. The 
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increased luminance in turn provides greater contrast to the surroundings and 

hence, a more conspicuous sign (Lervag et al., 2003).   Carlson et al. (2000) 

Fontaine et al. (2000), and Eccles and Hummer (2000) studied the benefits of 

fluorescent signs in work zones and concluded that the latter give some modest 

benefits.  

 

 Speed limit: Speed differential at work zones is one of the most significant 

contributing factors to crashes. Several studies were undertaken to assess speed 

related enhancement methods that would reduce traffic speed in work areas. 

Sakshaug (2002) and Maze et al. (2000) indicated that work zone speed limit 

should be combined with other regulatory signs. Hall and Wrage (1997) evaluated 

methods for enhancing motorist compliance with regulatory and advisory speeds 

in highway work zones and suggested that they might be improved by increasing 

the device‟s size and conspicuity. Several studies suggested the use of passive 

radars which are electronic radars that transmit in the microwave frequency band. 

Most studies concluded that passive radars have limited, if any, impacts on 

drivers‟ behavior in work zones (Hall and Wrage, 1997; Fontaine and Hawkins 

Jr., 2001; Carlson et al., 2000; Fontaine et al., 2000; Maze et al., 2000).Several 

studies examined the effect of speed monitoring displays on reducing speeds at 

work zones. Studies by Hall and Wrage (1997), Fontaine and Hawkins (2001), 

Pesti and McCoy (2001) and Maze et al. (2000) confirm that these SMDs reduce 

the average speeds and improve speed compliance.  Several Studies tested the 

effect of using speed cameras on speed reductions at work zones. Elvik et al. 
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(1997) and Bolling and Nilsson (2001) stated that the use of speed cameras can 

reduce speeds significantly at work zone. 

 

 Dynamic message signs: Dynamic Message Signs (DMS) also termed 

Changeable Message Signs (CMS) or Variable Message Signs (VMS) are 

commonly used in work zones. Fontaine et al. (2000), Fontaine and Hawkins 

(2001), Garber and Srinivasan (1998), Andrew and Bryden (2001), Dudek et al. 

(2000) conducted studies to explore the effectiveness of DMSs.  Their results are 

consistent in terms of the positive effectiveness of the signs both in giving 

guidance and information during lane closure and somewhat in reducing speeds.  

Walton et al. (2001) evaluated the Kentucky‟s DMS in an effort to draw 

recommendations for better effectiveness of these DMSs. Authors found that 

DMSs should not be used to: 

 Replacement of static signs, regulatory signs, pavement markings, 

standard traffic control devices, conventional warning or guide signs. 

 Replacement of lighted arrow board 

 Advertising 

 Generic messages (e.g. welcome to our state) 

 Test messages 

 Weather related activities 

 Describing recurrent congestions 

 Time and temperature 
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 Public service announcement (general traffic safety and non-traffic-

related announcements)    

 

 Pavement markings and rumble strips: According to several studies (Noel et 

al., 1989; Perrillo, 1998; Fontaine at al., 2000; Fontaine and Carlson, 2001; 

Fontaine and Hawkins, 2001) rumble strips can reduce work- zone accident rates 

significantly. Berndhardt et al. (2001) showed the importance of pavement 

markings at work zones especially in guiding the drivers through the work area.  

 

 Arrow panels: Arrow panels are commonly used in with work zones guiding the 

drivers to merge to the open lane (Noel et al., 1989). The Oregon department of 

transportation studied the effectiveness of a “sequentially flashing diamond” 

arrow panel display as an advance warning caution warning in temporary work 

zones and the results  show that the diamond display mitigated speeds 

significantly (Griffith and Reid, 2002).  

 

 

2.1.6 Factors Affecting Work Zone Capacity 
 

In addition to creating safety issues, work zones are responsible for almost 24% of the 

non recurring congestions on the United States highway system (Oak Ridge National 

Laboratory, 2002) and are ranked second to cause drivers dissatisfaction (Keever et al., 

2001). Maze and Bortle (2005) published a report titled “Synthesis and Procedures to 

Forecast and Monitor Work Zone Safety and Mobility Impacts” where they summarized 
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the variables known to affect work zone operations (i.e. capacity). Table 2.3 below is 

borrowed from the report and exposes these variables. According to Maze and Bortle 

(2005), work zone lane closure configuration (i.e. number of the lanes left open and the 

location of the closed lane) affects the work zone capacity significantly. Another factor is 

the intensity and location of work. For instance, the capacity of a lane closure decreases 

when work is more intense under the same work zone settings.  An increase in the 

percentage of heavy vehicles in the traffic composition was also found to reduce capacity. 

Also according to Maze and Bortle (2005), an increase in the drivers‟ familiarity with a 

certain work zone increases its capacity. Entrance ramps in the area of work zones 

diminish their capacity due to amplified turbulence in the traffic. Positive grades reduce 

the capacity of work zones especially with high proportions of heavy vehicles. Adverse 

weather conditions diminish the capacity of work zones. The time of work zone is also a 

significant factor negatively associated with work zone capacity. In fact, Maze and Bortle 

(2005) stated that during night time, work zone capacity is reduced due to the fact that 

drivers are often impaired by alcohol and/or fatigue and the fact that visibility may be 

limited. The location of the merge point is also significantly correlated with the work 

zone capacity. In fact, early merging increases the capacity of the work zone compared to 

the late merging, however, incompliance with the merge discipline increases the 

turbulence in traffic (Maze and Bortle, 2005).     
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Table 2.3: Variables affecting work zone capacity (Source: Maze and Bortle, 2005) 
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 2.2 ITS applications in work zones 

 

Several states in the U.S., in an effort to enhance safety and mobility at work zones, 

deployed ITS technologies in work areas commonly referred as Smart Work Zones. The 

Smart Work Zone usually provides advanced traveler information to drivers to advise of 

delay and assist them in deciding whether to use alternate routes. Other types of Smart 

Work Zone were designed to address concerns with speed management and lane merging 

conflicts in work zones (lane merging is discussed in section 2.3). Several factors are 

associated with the success of these systems such as age, gender, trip purpose, network 

familiarity, education, and trust in the messages content. According to Peeta et al. (2000) 

the responsiveness of the drivers to these messages increased when at least two pieces of 

information are provided together.  

 

 

 

2.2.1 Minnesota Smart Work Zone  
 

In 1996, the Minnesota Department of Transportation was one the first state departments 

of transportation to deploy and begin experimenting the smart work zone concept. Their 

system used several semi-portable field units that transmit traffic data to the Traffic 

Management Center (TMC). The data is reviewed by an operator at the TMC and 

messages were displayed on the permanent and portable message signs in the vicinity of 

the work zone accordingly (SRF Consulting Group, 1997). 
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2.2.3 Wisconsin Smart Work Zone  
 

A field study was conducted in Wisconsin to investigate the drivers‟ response to the 

messages displayed by the Smart Work Zone signs in a rural area. The messages 

displayed by the signs included the distance to the work zone taper and the travel time to 

the end of the work zone. Alternate route advisories were not provided to drivers on the 

dynamic message signs. However, alternate routes were marked on static signs should 

motorists choose to use alternate routes. The results indicated that alternate route 

selection increased by 7 to 10 per cent during peak hours (Horowitz et al., 2003). 

 

2.2.4 Nebraska Smart Work Zone  
 

A field study was conducted in Nebraska to explore the response of drivers to advanced 

advisory information approaching a work zone. In this application of the Smart Work 

Zone concept, when delay exceeded 5 minutes‟ delays advisories are provided. When 

delays exceed 30 minutes a message “CONSIDER ALT ROUTE” is displayed without 

specific alternate route advisory. Alternate route use increased from 7% when the signs 

were blank to 11% of freeway traffic when an alternate route advisory was provided 

(Fontaine, 2003).  

 

2.2.5 Arkansas Smart Work Zone  
 

A Smart Work System, similar to the Nebraska and Wisconsin system, was deployed in 

Arkansas. Tudor et al. (2003) conducted a study where they compared the crash rates of 

the Smart Work Zone to two other control sites with similar characteristics with no Smart 



20 

 

Work Zone. Using the number of crashes per million vehicle miles traveled as a measure 

of effectiveness, the fatality rate decreased from 3.2 and 3.4 at the sites without the Smart 

Work Zone system to 2.2 at the sites with the Smart Work System. The average overall 

crash rate reduction was 33%. The average rear-end crash reduction was 7%. Traffic 

counts also showed that the alternate route use increased when back-up advisory message 

without identifying alternate route was displayed.   

 

2.2.6 Missouri Smart Work Zone  

 

Another Smart Work System was deployed and explored in Missouri. King et al. (2004) 

examined the use of this system that consisted of an automated system which advises 

drivers when delays and speed reductions were occurring at work zone sites. The analysis 

showed that this system had a positive effect on the safety  of work zone. In fact, there 

was a positive effect on the reduction of the mean speed and the speed variance as the 

traffic neared the work zone.   

 

2.2.7 Michigan Smart Work Zone  

 

A different type of Smart Work Zone was deployed in Michigan. A variable speed limit 

(VSL) system was deployed in Michigan to manage speeds through work zones under 

different traffic and environmental conditions. The system monitors traffic flow and the 

surface condition to detect the presence of water, ice, or snow. Based on these conditions 

speed limits are determined and posted for drivers. As a conclusion, Lyles et al. (2004) 

stated that “the VSL system can present far more credible information (realistic speed 
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limits) to the motorist , responding to both day-to-day changes in congestion as well as 

significant changes in congestion and geometry as motorists go through a given zone”. 

 

2.2.8 North Carolina Smart Work Zone  
 

The North Carolina Department of Transportation was concerned about the safety and 

mobility of drivers on I-95 since it was undergoing major rehabilitation and resurfacing. 

To address their concerns the NCDOT begun deploying advanced technology to enhance 

safety and mobility of their work zones. A system that consisted of portable changeable 

message signs located along the approach of the work zone site providing motorists with 

advisory information of delays and suggesting alternate routes when necessary. The 

results showed that alternate route use increased from 10 to 15 per cent. Moreover, a 

survey conducted showed that 80% of the drivers were pleased with the information 

given by the dynamic signs. As for the safety improvements the authors indicated that 

there were not enough data to draw conclusions concerning the safety of drivers in work 

zones with the deployment of the Smart Work Zone System (Bushman et al., 2004).  

 

2.3 Previous DYNAMIC LANE MERGING (DLM) Applications  

 

When traffic demand exceeds the capacity of a work zone, queues expand beyond the 

advance warning signs, often surprising the oncoming vehicles thus increasing the crash 

potential. The early and late merge routines are two strategies that were designed with the 

intent to resolve these problems. The early merge and late merge strategies take two 

forms: static and dynamic. The following sections elaborate on these systems.      
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2.3.1 Early Merge Strategy  
 

The early merge strategy encourages earlier merging in advance of work zone lane 

closures to lower the potential for merging friction at the merge point of a lane closure. A 

disadvantage of this strategy is that it requires additional signage and supplementary 

control measures further upstream of a lane closures which can make the maintenance of 

traffic control more difficult (Beacher et al., 2004). The early lane merge strategy can 

take two forms: static and dynamic. These two concepts will be further explained. 

 

2.3.1.1 Static Form 

 

The static form of lane merging does not change in real time in response to traffic 

conditions. The static form typically includes additional “LANES CLOSED” sings 

placed upstream of lane closure on average at 1-mile intervals (McCoy and Pesti, 2001). 

The static early merge strategy is intended to mitigate rear-end collisions by forewarning 

drivers of latent slowing traffic. Other static methods for promoting early merging 

comprise the use of supplementary control measures (Beacher et al., 2004). Bernhardt et 

al. (2001) studied numerous supplementary traffic control measures to encourage early 

merging at work zones. Bernhardt et al. (2001) evaluated several supplementary traffic 

control measures including the following: 

 White lane drop Arrows:  

This method led to a 4.2% increase in the number of vehicles in the open lane at the work 

zone taper. Mean speeds decreased by 6.1 mph under congested conditions. The number 

of vehicles below the speed limit under uncongested conditions increased by 14.8%. A 
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decrease of 10.3 mph in the mean speeds of the fastest 15 % of vehicles occurred under 

congested conditions. 

 The Wizard Work Zone Alert and Information by TAFCON: 

This method led to an increase in the number of vehicles in the open lane by 12.4% under 

congested conditions. The number of vehicles traveling below speed limit increased by 

11.7% under uncongested conditions. 

 Orange rumble strips as a supplement to the standard lane merge configuration: 

This method increased the number of vehicles in the open lane at the start of the work- 

zone taper during congested conditions by 10.2%. For uncongested conditions, the means 

speeds in the closed lane decreased by 16.1 mph. Uncongested 85
th

 percentile speeds 

decreased by 6.9 mph and the mean speed of the fastest 15% of vehicles decreased 

between 6.7 mph and 15.1 mph. 

 

According to Datta et al. (2004) the static lane merge system may confuse drivers, 

especially under uncongested conditions where the travel speed is high, and the volume is 

low. Nemeth and Rouphail (1982) found through a simulation study that the early merge 

strategy significantly reduced the frequency of forced merges, especially at higher traffic 

volumes. Another simulation study by Mousa et al. (1990) determined that the early 

merge strategy increased the travel times through the work zone because the vehicles are 

more likely to be delayed over greater distances by slower vehicles ahead of them in the 

open lane.     
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2.3.1.2 Dynamic Form 

 

The dynamic early merge system creates a NO-PASSING zone upstream of a work zone 

taper based on real-time measurements of traffic conditions (Tarko and Venugopal, 

2001). The system consists of queue detectors and “DO NOT PASS WHEN 

FLASHING” signs that would be triggered by the queue detectors. When a queue is 

detected next to a sign, the next closest sign‟s flashing strobes, upstream, are activated 

creating the NO-PASSING zone. This system makes queues jumping an illegal task. 

Figures 2.3.1.1 and 2.3.1.2 illustrate this system.  

 

The Indiana Lane Merge System (ILMS) was tested in the field in the 1997 construction 

season by the Indiana Department of Transportation. It was found that the system 

smoothes the merging operations in advance of the lane closures. Drivers merged when 

they were supposed to merge, the flow in the open lane was uniform, and rear-end 

accident rates decreased. However, this system did not increase the throughput and the 

results of a simulation study conducted by Purdue University indicated that travel times 

through work zones with ILMS are larger (Tarko, 1998). 

 

In 1999, the University of Nebraska conducted a study of the Indiana Lane Merge System 

(ILMS) on I-65 in the vicinity of Remington, Indiana. This study was limited to a four 

day data collection exclusively under uncongested conditions. In this project, the right 

lane was closed and the data collected (by video cameras and laser speed gun) and 

extracted included traffic volumes, speeds, conflicts, lane distributions, flows, and time 
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headways. Comparing the ILMS with the standard MUTCD merge control, the results 

showed that the ILMS increased the capacity to some extent (from 1,460 to 1,540 vphpl).  
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Figure 2.3.1.1: Indiana Lane Merge System (Source: Beacher et al., 2004) 
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Figure 2.3.1.2: Dynamic Early Lane Merge Traffic Control System Used in Michigan (Source: Datta et al., 2004) 
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As for the safety aspect of the ILMS, since the data collected was limited to uncongested 

conditions and to 16 hours of video data, it was not clear whether the ILMS improve 

safety in terms of number of forced merges (McCoy et al., 1999).       

    

The ILMS was also studied by Purdue University and the results were detailed in a report 

published in 2001. This system was studied on I-65 near West Lafayette, Indiana. This 

project entailed extensive data collection under both congestion and uncongested 

conditions for a duration of four months in 1999. Multiple loop detectors and two 

cameras were used for data collection. Purdue University studied both the safety effects 

of the ILMS by developing conflict frequency models as well as capacity effects of the 

ILMS.  The results of the analyses showed that the ILMS decreases the capacity by 5%. 

The Authors mentioned that the decline in the capacity may be due to the unfamiliarity of 

the drivers with the system (Tarko and Venugopal, 2001). 

 

The Wayne State University conducted a study to assess the ILMS commonly referred to 

as Michigan Lane Merge Traffic Control System (LMTCS). This study compared four 

sites where the system was installed to four control sites where traditional MUTCD 

merge was implemented. The “DO NOT PASS WHEN FLASHING” signs were 

activated manually by personnel on the four sites. The lane closure configuration and 

geometry of freeway sections were homogeneous in the test and control sites for 

consistency. The data collected included aggressive driver behavior, location of merging, 

presence of law enforcement. In addition to that, the floating car method was utilized to 

record travel times and delays. According to their results the ILMS (or LMTCS) 
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increased the average operating speed, decreased the delays (49 vehicle hours of delay 

per hour), decreased the number of aggressive driving maneuvers during peak hours 

(from 73 to 33) (Wayne State University, 2001).       

 

The results of the studies on dynamic early merging are mixed. The Wayne State study 

showed an increase in average operating speeds, a decrease in average delay, no 

difference in capacity, and a decrease in the number of aggressive driving maneuver 

during the peak hour (Wayne State University, 2001). The Nebraska study showed few 

forced merges with the ILMS, however, it was unclear whether this was a result of the 

ILMS or it was due to the lack of congested conditions during the study. The Nebraska 

study estimated that the ILMS increases the capacity from 1,460 to 1,540 vphpl (McCoy 

et al., 1999). The Purdue University study showed that the dynamic early merging 

decreased capacity by 5% (Tarko and Venugopal, 2001). Table 2.3.1 summarizes the 

advantages and disadvantages of the dynamic early merge strategy. It should be noted 

that Table 2.3.1 is not a cross-comparison between each study as each was implemented 

on different facilities and under different conditions. 
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  Table 2.3.1: Summary of Early Merge Strategy 

 

Static Early Merge Dynamic Early Merge 

Advantages Disadvantages Advantages Disadvantages 

Reduces the frequency of 

forced merges especially at 

higher traffic volume (Nemeth 

and Rouphail, 1982).  

Requires additional signage 

and supplementary control 

measures which makes 

maintenance more difficult 

(Beacher et al., 2004)   

Smoothes the merging 

operations in advance of a lane 

closure (Tarko, 1998) 

Travel times through work 

zones are larger (Tarko,1998) 

 May confuse drivers under 

uncongested condition (Datta 

et al., 2004) 

Rear-end Accident rates 

decreased (Tarko,1998) 
Decrease capacity by 5% 

(Tarko and Venugopal, 2001) 

 Increase travel time through 

the work zone (Mousa et al. 

1990) 

Increase the capacity of work 

zones under UNCONGESTED 

conditions (McCoy et al., 

1999) 

Unfamiliarity of confusion of 

the drivers with the systems 

(Tarko and Venugopal, 2001) 

  Decrease delays (Wayne State 

University, 2001)  

 

  Decrease in number of forced 

merges (Wayne State 

University, 2001) 
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2.3.2 Late Merge Strategy 
 

The concept behind late merge is to make more efficient use of roadway storage space by 

allowing drivers to use all available traffic lanes to the merge point. Once the merge point 

is reached, the drivers in each lane take turns proceeding through the work zone. The 

combined effect of maximized storage and orderly merging operations may have the 

potential to increase throughput, reduce queue lengths, shorten travel times, and 

discourage aggressive driving (Beacher et al., 2004). 

 

2.3.2.1 Static Form 

 

The Pennsylvania Department of Transportation (PennDOT) introduced the static form of 

the late merge to mitigate aggressive driving and road rage at merge points (McCoy and 

Pesti, 2001). The PennDOT‟s late merge strategy‟s traffic control plan comprises signs 

calling for “USE BOTH LANES TO MERGE POINT” 1.5 miles upstream of the work 

zone and “MERGE HERE TAKE YOUR TURN” near the beginning of the taper (See 

Figure 2.3.2.1). The static late merge strategy was examined by a study conducted in 

Nebraska and another study conducted by the Texas Transportation Institute (TTI). The 

Nebraska‟s research was limited to a 2-to-1 lane reduction scenario. Comparing this static 

late merge strategy to the standard MUTCD lane merge strategy, the results showed 75% 

fewer forced merges and an increase from 1,460 to 1,730 pcph in capacity. This study 

also suggested that an effective signing plan be made available to optimize the potential 

of the concept. This study also showed that trucks had more difficulty merging from left 

to right than right to left (McCoy et al., 1999).    
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Figure 2.3.2.1 PennDOT’s Late Merge Concept (Beacher et al., 2004) 

 

The (Texas Transportation Institute) TTI explored the late merge concept in a 3-to-2 lane 

closure scenario. The data collection was limited to 1 day under standard MUTCD lane 

closure and to 1 day under the static late merge strategy. The results of the comparison 

showed that the late merge strategy delayed the onset of the congestion by 14 minutes, 

reduced queue length from 7,800 to 6,000 feet. Moreover, an analysis of volumes by lane 

showed that a larger percentage of vehicles used the open lane with the late merge in 

place and that more vehicles were able to pass through the merge point (Walters et al., 

2001). On the other hand, the University of Nebraska conducted a survey in Pennsylvania 

to explore the opinion of the drivers regarding the late merge system application. Sixty 

percent of the truck drivers versus 22 percent of the passenger car drivers stated that they 

experienced or observed other drivers having difficulty merging. This could be related to 
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the fact that 73% of the truck drivers and 40% of the passenger car drivers did not believe 

that the signs worked (Byrd, 1999).  

 

2.3.2.2 Dynamic Form 

 

McCoy and Pesti (2001) expressed their concern about the confusion of drivers at the 

merge point with the late emerge in place. To resolve this issue, they proposed a dynamic 

late merge in which the late merge would be employed only at times of high congestion. 

McCoy and Pesti (2001) stated that the late merge can reduce congestions and delays, 

whereas the early merge increased congestions and delays. Beacher et al. (2004) applied 

the dynamic late merge system in Tappahannock, Virginia and conducted a before and 

after study to explore the benefits of the system. Figure 2.3.2.2.1 shows the site diagram 

with the dynamic late merge system. According to their results, the percentage of 

vehicles in the closed lane increased significantly from 33.7 to 38.8 percent when 

comparing the late merge to the MUTCD treatment. The throughput volumes showed no 

statistical difference between the MUTCD treatment and the late merge. Time in queue 

was not significantly different between the two types of traffic control. According to 

Beacher et al. (2004) the lack of improvement in throughput and time in queue may be 

attributable to the relatively low percentage of heavy vehicles.  Beacher et al. (2004) 

proposed some guidelines for the application of the dynamic late merge system: 

 Two-to-one lane closure: the late merge should be considered for 2-to-1 lane 

closure configurations to improve throughput when large numbers of heavy 

vehicles are present (>20%) for the majority of the time and congestion and 

queuing are often present. 
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Figure 2.3.2.2.1: Tappahannock, Virginia site diagram (Beacher et al., 2004) 

 

 Three-to-one lane closure: while the simulation results showed that the late 

merge significantly improved throughput for all situations, there are no 

documented evaluations of the deployment of the lat merge in this 

configuration. Further research is needed to determine how the late merge could 
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be deployed in this type of configuration to ensure driver understanding of the 

signs. 

 Three-to-two lane closure: The late merge should be considered in the 3-to-2 

configuration as a possible means to improve flow when heavy vehicles 

represent more than 20 percent of the traffic stream and congestion and queuing 

are frequent.  

 

In June 2003, the University of Kansas, in cooperation with the Kansas Department of 

Transportation and the Scientex Corporation deployed the Construction Area Late Merge 

(CALM) system in Kansas (Scientex; Meyer. 2002). This system is the dynamic version 

of the Late Merge Concept introduced by PennDOT (See Figure 2.3.2.2.2). This system 

employs traffic detectors to sense congestion upstream of a construction lane closure. The 

traffic data is communicated in real-time to a central controller where proprietary 

software algorithms determine the critical thresholds of traffic density and speed to 

activate real-time messages directing motorists to remain in their lanes until they 

approach the lane closure, where they merge alternately by taking turns. The CALM 

system provides real-time safety alerts to motorists. This system is configured to operate 

as an early merge system under light traffic loads and as a late merge system under 

heavier traffic loads (Meyer, 2002). Meyer (2002) reported that the compliance of the 

drivers with the system increased with time and recommended that drivers be 

familiarized and trained to the system to optimize the potential merit of the system. The 

average volume through the work zone was enhanced after the drivers were accustomed 

with the system.  
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Figure 2.3.2.2.2: CALM System Field Components (Source: Meyer, 2002) 

 

However, the net change in volume did not show a significant improvement over baseline 

values. Like others, this system also utilized wireless communication between RTMS 

detectors and portable CMS to display lane use instructions to drivers based on traffic 

conditions. This system was designed to operate in three distinct modes- Early merge, 

late merge, and incident. The incident category was a special case of the late merge 

strategy when traffic speeds were exceptionally low. Transitions between the modes 

occurred seamlessly based on the current traffic average operating speeds and transition 
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thresholds between the three modes. According to the results, the late merge systems 

have the potential to improve freeway operations around construction lane closures. The 

evaluations also highlighted the importance considering the location of entrance and exit 

ramps when placing the signs and sensors. 

 

Maryland‟s Dynamic Late Merge (DLM) System comprises a set of 4 portable CMS and 

3 RTMS detectors that are added to the standard static traffic control devices utilized at 

construction lane closures. The CMS furthest upstream (~1.5 miles) from the taper 

alternated between the messages “USE BOTH LANES” and “TRAFFIC BACKUP”. The 

next two CMS located at approximately ½ mile and ¼ mile from the taper itself, the final 

CMS alternated between messages “TAKE YOUR TURN” and “MERGE HERE”. The 

location of the CMS and RTMS are shown in Figure 2.3.2.2.3.  The University of 

Maryland, College Park conducted the evaluation of the system by utilizing one day of 

baseline (or control) data where the road closure utilized only the standard static traffic 

control signs. This was followed by 4 days with the DLM system activated. Four 

measures of effectiveness were evaluated; work zone throughput, lane volume 

distribution, maximum queue length, and simulation data analysis. According to the 

findings, the DLM increased the work zone throughputs when compared to the baseline 

conditions. Traffic volumes collected during 10-minute intervals during the 4 days of 

DLM system deployment were higher than under the baseline conditions. Another 

method of investigating traffic throughput utilized a calibrated computer simulation. Lane 

volume distribution was also compared under the baseline and DLM System conditions. 

The results showed that more vehicles were in the discontinuous lane. Many drivers were 
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observed merging before the designated merge location during the evaluation period. 

These early merges resulted in multiple merging points and appeared to result in some 

confusion on the proper place to merge. The queue lengths were observed to be reduced 

between 8% and 33% during the 4 days evaluation with the activation of the DLM 

System.  

 

 

 

Figure 2.3.2.2.3: Maryland’s DLM (An Applied Technology and Traffic Analysis 

Program) 
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Unfortunately, numerous traffic conflicts were observed between the two-lane traffic. 

Many vehicles were observed making forced merges at the taper point because they were 

not allowed to merge. These conflicts resulted in conditions of stop and go traffic. The 

authors finally stated that the advantages of the DLM system are increased throughput, 

shorter queue lengths, and more uniform distribution of lane use before the taper. The 

disadvantages were listed as increased stop and go conditions and multiple merging 

points. The authors recommended that future deployments could comprise variable speed 

limit signs, change the distance between the DLM system equipment based on 

perception/reaction time based on site-speed characteristics, and remove separate static 

merging signs for the DLM system to avoid confusion on the correct merging location 

(An Applied Technology and Traffic Analysis Program). 

 

The Minnesota Department of Transportation (MnDOT) evaluated the Dynamic Late 

Merge System (DLMS) which consists, in addition to the standard orange and black 

warning signs placed in advance of the lane closure, of three Changeable Message Signs 

(CMS) and a Remote Traffic Microwave Sensor (RTMS) detector. When congestion 

begins to form, the signs are activated to provide lane use instructions to drivers. The 

CMS farthest from the work zone displays the message “STOPPED TRAFFIC AHEAD-

USE BOTH LANES”. The next CMS sign reads “USE BOTH LANES-MERGES 

AHEAD”. The sign closest to the work zone will show alternating messages of “TAKE 

TURNS-MERGE HERE” (Figure 2.3.2.2.4). When traffic speeds increase as congestion 

dissipates, the signs will turn off and the system will return to the typical static work zone 

traffic control that encourages early merging (Tavoola et al., 2004)   
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Figure 2.3.2.2.4: Minnesota’s DLM (Dynamic Late Merge System Evaluation) 

 

 

The results of the Minnesota 2004 study showed: 

 

1) The use of the discontinuous lane increased dramatically when the CMS were 

activated. During the heaviest demand, the discontinuous lane use percentage 

increased to levels of almost 60% at locations approximately half-mile from the 

construction taper. 

2) The queue lengths were observed to be relatively minimal. It was also observed 

that some drivers refused to use both lanes and wait in a long single queue. 

3) The overall driving conditions were improved upstream of construction lane 

closures. 
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4) The maximum volume throughput within the single lane construction closure at 

deployment locations was nearly identical.  

 

Table 2.3.2.1 summarizes the advantages and the disadvantages of the Late Merge 

strategy. It should be noted that Table 2.3.1 is not a cross-comparison between each study 

as each was implemented on a different work zone and under different conditions. 

 

2.4 SUMMARY 

 

The literature review demonstrated that work zones indeed deteriorate safety and 

operations of roadways.  From the safety aspect, work zones produce significantly higher 

crash rates and result in higher crash severity under certain conditions. From the 

operations aspect, work zones reduce roadway capacity drastically. The magnitude of the 

capacity diminution varies under different drivers‟ characteristics, vehicles‟ 

characteristics, and environments‟ characteristics.  

 

The literature review summarized current practices and countermeasures used in work 

zones, particularly ITS technologies.  ITS technologies in work zone areas, commonly 

referred as “Smart Work Zones” were categorized in three groups: advanced traveler 

information systems advising on alternate routes; speed management systems; and lane 

management systems.   
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 Table 2.3.2.1: Summary of Late Merge Strategy 

 

Static Late Merge Dynamic Late Merge 

Advantages Disadvantages Advantages Disadvantages 

75% fewer forced merges 

(McCoy et al., 1999) 
Confusion of drivers at the 

merge point when the static form 

is employed during low 

congestions (McCoy and Pesti, 

2001) 

Work zone throughputs 

increased (An applied 

technology…) 

 

No difference in time in queue 

when truck percentage is lower 

than 20% (Beacher et al., 2004) 

Increase in capacity from 

1,460pcph to 1730pcph (McCoy 

et al., 1999) 

 Queue lengths were reduced 

between 8% and 33% (An 

applied technology…) 

No difference in the throughput 

volume when truck percentage is 

lower than 20%  (Beacher et al., 

2004) 

Delayed the onset of congestion 

by 14 minutes (Byrd, 1999) 
 Reduced queue length (Tavoola 

et al., 2004) 
Increased stop and go at the taper 

point (An applied technology…) 

Reduced queue length from 

7,800ft to 6,000ft (Byrd, 1999) 
 Enhance the overall driving 

condition upstream of the lane 

closure (Tavoola et al., 2004) 
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This chapter mainly addressed lane management systems in work zones usually referred 

to as dynamic lane merging. The two forms of dynamic lane merging (early merge and 

late merge) were explored separately by several studies and results showed some 

promising advantages and some disadvantages. Moreover, it was not clear from the 

literature which dynamic lane merging scheme (early merge or late merge) performs 

better since all studies compared one form of the dynamic lane merging to a conventional 

maintenance of traffic plans. Therefore, to determine which lane merging scheme 

perform better, one should deploy and compare the dynamic early merge and the dynamic 

late merge under the identical work zone lane closure configuration, similar vehicular 

traffic, and matching environments‟ and geometric characteristics.  
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CHAPTER 3 FREEWAY WORK ZONE CRASH ANALYSES 
 

 

3.1 Introduction 

 

As mentioned in Chapter 2 work zone safety continues to be a priority and a concern for 

the FHWA as well as most state departments of transportation (DOTs). The increase in 

Florida work zone crash fatalities and the significantly higher rate of crashes in work 

zone areas when compared to non-work zone locations underscore the urgent need to 

develop a substantive understanding about how Florida‟s work zone crashes occur and 

their corresponding risk factors. This task was essential prior to exploring and deploying 

potential countermeasures in Florida‟s work zones.  

 

Studies on work zone crashes have typically inspected a combination of injury, fatal, and 

property damage crashes to discover aspects that contribute to unsafe conditions within 

work zones. Daniel et al. (2000) focused only on the analysis of fatal crashes within work 

zones in Georgia since their database did not identify work zones unless there was a fatal 

injury. This study examined the difference between fatal crashes within work zones 

compared with fatal crashes in non-work zone locations. The overall findings of the study 

indicate that work zones influence the manner of collision, lighting conditions, truck 

involvement, and roadway functional classification under which fatal crashes occur. 

Ming and Garber (2001) conducted research to uncovera work zone crash attributes 

accounting for the location of each crash within the work zone and its surroundings in 

Virginia. However, their study strictly presented statistical summaries and basic 
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inferential statistics of these crashes and their attributes without relating to interactions 

and confounding effects. This study concluded that work zone crashes are predominant in 

the activity area and that there is a higher rate of multi-vehicle accident in work zone 

locations compared to non-work zone locations. Benekohal et al. (1995) considered 

exclusively the effect of trucks and their involvement in work zone crashes. Their study 

indicated that the accident experiences were significantly related to the experience of bad 

driving situations but not other driver/truck characteristics. However, other studies 

showed that heavy vehicles were overrepresented in work zone areas (Hall and Lorenz 

(1989), Pigman and Agent (1987), Nemeth and Rathi (1983)). Garber and Zhao (2002
a
, 

2002
b
) suggested that a major causal factor for work zone crashes is speed related. The 

accidents are mainly caused by speed differentials resulting in a speed variance. Raub et 

al. (2001) indicated that distraction from work in progress, failure to yield at the taper 

point, and excessive speed are over-represented causes for work zone crashes. 

 

The lack of literature concerns the overall aspect of the crash traits at work zones such as 

environment, vehicle, and driver characteristics and their interactions. Therefore, this 

study aims at evaluating freeway single-vehicle and two-vehicle crashes in work zones to 

identify their drivers/vehicles/environment traits accounting for interactions and 

confounding factors. For that purpose, the Florida Traffic Crash Records Database for 

years 2002, 2003, and 2004 is employed. The first section of this Chapter describes in 

details the methodology used in conducting the analysis. The second section elaborates 

on the statistical modeling for the single and the two-vehicle crashes at work zones. The 

third part summarizes the findings of this analysis. 
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3.2 Methodology 

 

3.2.1 Accident Database and Work Zone Risk Factors Identification  
 

The Florida Traffic Crash Records Database for years 2002, 2003 and 2004, were utilized 

in this study and were obtained from the Office of Management Research and 

Development in Florida. The database consists of seven main files: events file, drivers 

file, passengers file, pedestrians file, property file, vehicles file, violation file, and DOT 

file. The events (containing information about the characteristics and environment of the 

crash), vehicles (containing the information about the vehicles‟ characteristics and 

vehicles actions in the traffic crash), and drivers (containing information about drivers‟ 

characteristics) files were subject of interest in this study. It should be mentioned that the 

work zone classification variable was first incorporated in the Florida database in year 

2002. Table 3.2.1 lists the variables included in each model and the number of 

observations in each model in addition to the percentage of each level under each 

variable.    

 

 3.2.2 Comparison Methodology 

 

The purpose of this study is to identify the characteristics and risk factors (drivers, 

vehicles, and environment) that classify work zone crashes solely on freeways. The first 

part of this study (model #1) focuses on single-vehicle crashes at work zones and the 

second part (models #2 and #3) spotlights on two-vehicle crashes at work zones. The 

single-vehicle crashes are defined as any vehicle that crashes with a fixed object (or 



47 

 

pedestrian/worker) contained by the work zone or any vehicle that runs off the road 

within a work zone area.  

 

For the single-vehicle crash analysis, freeway work zone single-vehicle crashes were 

compared to freeway non-work zone (exposure) single-vehicle crashes as shown in 

Figure 3.2.2.1. As for two-vehicle crashes and as shown in Figure 3.2.2.2, first (model 

#2) a comparison between at-fault drivers and not-at-fault drivers (quasi-induced 

exposure analysis) was conducted which exposed drivers/vehicles attributes using 

multiple logistic regression. Second (model #3), similarly to single vehicle analysis, a 

conditional multiple logistic regression revealed the two-vehicle work zone crash 

environments‟ characteristics. It should be mentioned that comparing freeway work zone 

and non-work zone crashes (exposure) could be problematic due to the non- homogeneity 

with the exposures distributions. To illustrate that, Figure 3.2.2.3 shows that the highest 

frequency for crashes in work zone occur at speed limit varying between 55 and 65 mph 

and non-work zone at speed limit varying between 65 and 70 mph. This is due to the 

reduced speed limit for the duration of the work zone. Therefore, a comparison between 

crashes with different speed distributions is erroneous and misleading. To overcome this 

issue, the within-stratum analysis (or stratified sampling) was implemented.  
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Figure 3.2.2.1: Single vehicle work zone crashes comparison methodology  
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Table 3.2.1: Variables description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Work Zone Non-Work-Zone W.Z. At-Fault W.Z. Not At-Fault W.Z. At-Fault N.W.Z. At-Fault

% of each level % of each level % of each level % of each level % of each level % of each level

<25   years old 32.35 36.41 29.72 19.51 29.72 32.11

26-35 years old 23.02 23.21 24.35 23.60 24.35 25.37

36-45 years old 20.97 18.45 19.71 24.44 19.71 16.20

46-55 years old 12.66 11.43 13.06 17.65 13.06 5.21

56-65 years old 6.27 6.11 7.15 9.68 7.15 11.10

66-75 years old 3.20 3.00 4.81 3.72 4.81 1.33

>75 years old 1.53 1.39 1.20 1.40 1.20 8.68

Male 68.09 65.89 50.03 64.32 50.03 62.71

Female 31.91 34.11 49.97 35.67 49.97 37.29

Not Under the Influence 84.11 87.29 91.34 98.80 91.34 74.58

Alcohol/Drugs/Both 15.89 12.71 3.57 1.20 3.57 25.42

Live in the State of the Accident 86.84 88.67 88.26 86.33 88.26 86.30

Live outside the State of the Accident 13.16 11.33 11.74 13.67 11.74 13.70

<25 mph 2.22 2.75 3.22 4.21 3.22 3.14

26-35 mph 0.14 2.25 2.10 1.99 2.10 1.90

36-45 mph 3.83 5.20 4.26 5.20 4.26 3.40

46-55 mph 15.20 9.60 31.01 27.88 31.01 31.22

56-65 mph 50.31 20.93 40.23 42.04 40.23 39.89

66-75 mph 22.50 49.42 18.20 17.89 18.20 16.50

>75 mph 5.80 9.85 0.98 0.79 0.98 3.95

Passenger Car/ Light Trucks (SUV) 86.21 93.11 82.85 84.57 82.85 86.32

Trucks/Large Truck 13.79 6.89 17.15 15.43 17.15 13.68

<35 mph 1.20 2.50 2.00 2.00 2.00 1.90

45 mph 3.56 9.56 10.31 10.31 10.31 7.89

55 mph 51.62 14.84 60.05 60.05 60.05 65.22

65 mph 36.43 17.24 22.72 22.72 22.72 21.10

70 mph 7.19 45.57 4.91 4.91 4.91 3.89

Normal Surface Condition 72.74 66.41 65.37 65.37 65.37 71.20

Wet/Slippery Surface Condition 27.26 33.59 34.63 34.63 34.63 28.80

Rural Area 50.70 62.12 37.36 37.36 37.36 44.48

Urban Area 49.30 37.88 62.64 62.64 62.64 55.52

Straight-Level    69.95 63.25 75.36 75.36 75.36 74.97

Straight- Upgrade/Downgrade        14.62 15.73 14.89 14.89 14.89 16.81

Curve-Level                                       7.08 10.48 5.38 5.38 5.38 4.50

Curve-Upgrade/Downgrade               8.35 10.53 4.37 4.37 4.37 3.72

Bridge 83.65 79.41 88.79 88.79 88.79 86.39

Entrance Ramp 5.97 4.70 3.11 3.11 3.11 3.08

Exit Ramp 3.46 6.45 3.88 3.88 3.88 4.28

Straight Segment 6.92 9.44 4.22 4.22 4.22 6.26

Clear 53.49 55.27 62.53 62.53 62.53 65.30

Cloudy/Rainy/Foggy 46.51 44.73 37.47 37.47 37.47 34.70

Dark with Lighting 50.76 56.60 63.61 63.61 63.61 66.45

Dark without Lighting 3.85 3.97 3.39 3.39 3.39 3.90

Dusk/Dawn 23.22 21.56 19.99 19.99 19.99 19.59

Day Light 22.17 17.87 13.00 13.00 13.00 10.06

1 Lane- 2 Lanes- 3Lanes 7.23 15.41 43.14 43.14 43.14 35.40

4 Lanes- > 4Lanes 92.77 84.60 56.86 56.86 56.86 64.60

950.00 7100.00 3353.00 3353.00 8300.00 28500.00

Number of lanes

Vehicle 

Characteristics

Environment 

Characteristics

Speed 

Lighting Condition

Event Location

Vehicle Type

Weather

Speed Limit

Road Surface Condition

Rural/Urban

Road Characteristics

Driver 

Characteristics

Driving Under the Influence

Residence Code

Number of Observations

Model 1 (Single Vehicle) Model 3 (2 vehicle)

Age

Model 2 (2-vehicle)

Variables CategoriesType

Gender
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Figure 3.2.2.2: Two-vehicle work zone crashes comparison methodology  

Two-Vehicle Work zone Crashes 

MODEL #2:Driver and Vehicle Info. MODEL#3:Environment and Location Info. 
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Figure 3.2.2.3: Speed limit comparison work zone versus non-work zone 

 

As mentioned previously and as shown in Figure 3.2.2.1 (model #1) and Figure 3.2.2.2 

(model #3), the stratification criteria for these models were speed limit, number of lanes 

and time of day (AM or PM). For example, a within stratum analysis characterized by 

55mph speed limit, 3 lanes, and AM time, will be performed to classify the risk factors 

associated with work zone crashes. 

 

3.2.3 Quasi-Induced Exposure Technique 
 

The quasi-induced exposure technique (Carr, 1970; Haight, 1973; Stamatiadis and 

Deacon, 1997) is used in traffic safety research to explore traffic crash databases by 

comparing at-fault drivers‟ characteristics to not-at-fault drivers (exposure) traits. The at-
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fault drivers are those who are blamed by the police officer for the crash occurrence and 

the not-at-fault drivers are those found not responsible for the crash occurrence. The 

fundamental conjecture of this method is that the distribution of the not-at-fault drivers 

characterizes (or pseudo-duplicates) the distribution of all drivers (drivers‟ population) 

exposed to crash hazards. Several studies (Stamatiadis and Deacon, 1997; Albridge et al., 

1999) applied the quasi-induced exposure technique where the determination of at-fault 

drivers strictly depended upon whether the driver was issued a citation. According to 

Jiang and Lyles (2007), this could be problematic. Jiang and Lyles (2007) stated that a 

police officer may be likely to assign responsibility and issue a ticket to a driver once he 

determines an indication of another violation (e.g. drinking and driving, revoked license, 

etc.) regardless of the hazardous driving related to the accident itself. According to De 

Young et al. (1997) this would inflate the involvement ratio of these groups and result in 

biased data and results. To overcome this issue in our analysis, the at-fault driers were 

selected if they match two criteria; they were issued a citation, and they contributed (e.g. 

careless driving, speeding, etc.) to the crash occurrence.  

 

Yan et al. (2005) focused on the investigation of non-driver/vehicle-related (road 

environment) factors as exclusive main effects on the traffic safety. To introduce the road 

environment factors into the statistical model and test their exclusive main effects on 

crashes, Yan et al. extended the application of the quasi-induced exposure technique. In 

their study, they modeled rear-end collisions at signalized intersections. First, two-vehicle 

crashes occurring at signalized intersections were identified. Then, they were categorized 

into two groups: rear-end crashes and non-rear-end crashes (exposure) instead of at-fault 
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and not-at-fault (exposure) drivers. By doing so, Yan et al. were able to compare the 

environment distributions in the rear-end group and the non-rear-end group to investigate 

crash propensities, which indicate whether specific traffic conditions increase rear-end 

crashes likelihoods at signalized intersections. Similarly to Yan et al.‟s approach, this 

research extends the quasi-induced exposure technique to examine work zone traffic 

crash susceptibility. For the single-vehicle crash analysis, a comparison between work 

zone single-vehicle crashes and non-work zone (exposure) single vehicle crashes is 

conducted. This comparison is explained in detail in the next section. As for two-vehicle 

work zone freeway crashes, first, we categorize vehicles/drivers into at-fault and not-at-

fault drivers. Second, comparing at-fault and not-at-fault drivers exposes drivers/ vehicles 

attributes. To extend the quasi-induced exposure technique into exploring the 

environment characteristics for work zone two-vehicle crashes, we compare at-fault work 

zone drivers and at-fault non-work zone drivers. This comparison is further explained in 

the next section.   

 

Based on the above categorization, three types of Relative Accident Involvement Ratios 

(RAIRs) are calculated to test the main effect of driver, vehicle, and environment factors 

related to work zone crashes for each of the three models. Using the RAIR formula 

developed by Stamatiadis and Deacon (1997), the relative crash involvement ratio is 

defined as Equation 3.1: 
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RAIRi is the relative accident involvement ratio for type i drivers/ vehicles/ environments. 

For instance, in the comparison of work zone at fault drivers and non-work zone at fault 

drivers, D1i is the number of at-fault drivers of type i in work zone crashes, D2i the 

number of at-fault drivers in non-work zone crashes, V1i the number of at-fault vehicles 

of type i in work zone crashes, V2i the number of at-fault vehicles of type i in non-work 

zone crashes, E1i the number of work zone crashes involving environment type i, and E2i 

is the number of non-work zone crashes involving environment type i. Furthermore, to 

test the interaction between type i drivers/vehicles/environments and type j 

drivers/vehicles/environments, the RAIR can be defined as Equation (3.2) 
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The RAIRi, j is the relative accident involvement ratio types i and j drivers/vehicles/ 

environments. For example, in the comparison of work zone at fault drivers and non-

work zone at fault drivers, N1i, j  is the number of work zone crash drivers, vehicles, or the 

related environments of type i and j in work zone collisions, and N2i, j  is the number of 

at-fault drivers, vehicles, or the related environments of type i and j in non-work zone 

crashes. 

 

3.2.4 Multiple Logistic Regression Modeling  

 

 Previous studies had properly applied logistic regression analysis to test the significance 

of traffic crash risk factors based on the technique of induced exposure (Hing, 2003; 

Stamatiadis and Deacon, 1995). Logistic regression belongs to the group of regression 
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methods for describing the relationship between explanatory variables and a discrete 

response variable. It is a powerful alternative to classical discrimination and regression 

methods and it applies to a large family of parametric distributions, involving both 

discrete and continuous variables (Cox, 1966; Day and Kerridge, 1967; Anderson, 1972).  

A binary logistic regression is proper to use when the dependent variable is dichotomous 

(i.e. the dependent variable is binary) and can be applied to test association between a 

dependent variable and the related potential risk factors. Binary logistic regression is used 

to model at-fault and not-at-fault drivers at work zone. The dependent variable Y (crash 

classification) can only take two values: Y=1 for at-fault drivers, and Y=0 for not-at-fault 

drivers. The probability that a driver is at-fault or not is modeled as logistic distribution in 

Equation 3.3: 

  

)(

)(

1
)(

xg

xg

e

e
x           (3.3) 

 

The logit of the multiple logistic regression model (Link Function) is given by Equation 

3.4: 
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Where π(x) is conditional probability of at-fault work zone drivers, which is equal to the 

number of at-fault drivers divided by the total number of drivers. xn are the independent 

variables (driver/vehicle/environment factors). The independent variables can be either 

categorical or continuous, or a mixture of both. Both main effects and interactions can be 

accommodated. βn is model coefficient, which directly determines the odds ratio involved 



56 

 

in the at-fault drivers. The odds of an event are defined as the probability of the outcome 

event occurring divided by the probability of the event not occurring. The odds ratio is 

equal to exp (βn) and tells the relative amount by which the odds of the outcome increase 

(OR greater than 1.0) or decrease (OR less than 1.0) when the value of the predictor is 

increased by 1.0 units (David and Lemeshow, 1989). Previous studies (Stamatiadis and 

Deacon, 1995; Hing et al. 2000) clearly expressed the relationship between logistic 

regression and RAIR in the quasi-induced exposure analysis. In fact, for a specific type of 

drivers/vehicles/environments, the odds generated from the logistic regression model are 

analogous to the corresponding RAIRs, and the odds ratio from the model are equivalent 

to the comparisons among those RAIRs. In this study, the RAIRs were based on the 

univariate analysis rather than the network analysis which clarifies the small differences 

between the models‟ odds ratios and the RAIRs. Furthermore, a significant p-value (e.g. 

P≤0.05) for a Wald χ
2
 statistic is evidence that a regression coefficient in the model is 

nonzero, which also indicates the statistical importance of those RAIRs‟ comparisons 

between different types of drivers/vehicles/environments. The SAS program procedure, 

LOGISTIC, was used for the model development and the hypothesis testing was based on 

0.05 significance level.  

 

3.2.5 Conditional Logistic Regression Modeling (Matched Work zone 

Non-Work zone Crashes) 

 

For modeling at-fault work zone drivers and at-fault non-work zone drivers, a matched 

work zone non-work zone analysis was implemented. The purpose of the proposed 

matched work zone non-work zone analysis was to explore the effects of traffic 

characteristics variables while controlling for the effects of other confounding variables 
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through the design of the study. This modeling is called conditional logistic regression. It 

was used in this study to model single-vehicle work zone crashes against single vehicle 

non-work-work zone crashes and two-vehicle work zone at-fault-drivers versus two-

vehicle non-work zone at-fault drivers.  

 

In a matched work zone non-work zone crash study, first crashes were selected. For each 

selected crash, some non-environment variables such as number of lanes, time of day, 

speed limit etc., associated with each crash were selected as matching factors.  A 

subpopulation of work zone crashes was then identified using these matching factors.  

For example, for freeways work zone crashes, with specific number of lanes, speed limit, 

and time of day, a subpopulation of work zone crashes was identified based on the 

matching criteria. A total of m non-work zone crashes were then selected at random from 

each subpopulation of work zone crashes. Within stratum differences between work zone 

and non-work zone characteristics were utilized in the development of statistical model.   

This was done under the conditional likelihood principle of statistical theory.   

 

Abdel-Aty et al. (2004) employed this modeling technique to predict freeway crashes 

based on loop detector data. Similarly to them, we assumed that there were N strata with 

n work zone crashes and m non-work zone crashes in stratum j, j = 1, 2,……N.  We also 

assumed that pj(xij) was the probability that the i
th

  observation in the j
th

 stratum  is a crash 

where xij = (x1ij, x2ij,……xkij) was the vector of k traffic characteristics variables x1, 

x2,……xk; i = 0,  1, 2,…..m+n-1; and j = 1, 2,……N. This crash probability pj(xij) may 

be modeled using a linear logistic model as follows: 
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logit (pj(xij)) = αj + β1 x1ij+ β2 x2ij+………+ βk xkij         (3.5) 

 

The intercept term α is different for different strata. It summarizes the effect of variables 

used to form strata on the probability of crash. In order to take account of the 

stratification in the analysis of the observed data, one constructs a conditional likelihood. 

This conditional likelihood function is the product of N terms, each of which is the 

conditional probability that the crash in a particular stratum says the j
th

 strata, is the one 

with explanatory variables x0j, conditional on x0j, x1j,… xmj being the vectors of 

explanatory variables in the j
th

 stratum.  The mathematical derivation of the relevant 

likelihood function is quite complex and is neglected here. The reader may consult 

Collett (1991) for full derivation of the conditional likelihood function that can be 

expressed as (Abdel-Aty et al. (2004)): 

 

 0

1 1 1

1( ) [1 exp{ ( )}]
N m k

uij u j

j i u

L x x
u

         (3.6) 

 

Where, β‟s are the same as in Equation 3.5. The likelihood function )(L  is independent 

of the intercept terms α1, α2,…….. αN. So the effects of matching variables cannot be 

estimated and hence Equation 5 cannot be used to estimate crash probabilities. However, 

the values of the β parameters that maximize the likelihood function given by Equation 

3.6 are also estimates of β coefficients in Equation 3.6. These estimates are log odds 

ratios and can be used to approximate the relative risk of a crash.   
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SAS procedure PHREG gives these relative risks (termed as hazard ratio under PHREG). 

The log odds ratios can also be used to develop a prediction model under this matched 

crash-non-crash analysis.  

 

3.3 Data Analysis 

 

3.3.1 Statistical modeling for single-vehicle work zone crashes. 
 

Based on the model for single-vehicle work zone crash analysis, the conditional logistic 

regression identified the risk factors associated with work zone crashes. As shown in 

Table 3.2.1, the numbers of observations for work zone and non-work zone crashes were 

950 and 7100 respectively.  The reader should be cautious that the identified risk factors 

imply that these factors have higher sensitivity to work zones than to non-work zones 

locations. The Hazard ratio is analogous to the odds ratio. A hazard ratio (odds ratio) of 

one implies that the event is equally likely in both groups. A Hazard ratio (odds ratio) 

greater than one implies that the event is more likely in the first group. A hazard ratio 

(odds ratio) less than one implies that the event is less likely in the first group. Figure 

3.3.1.1 illustrates the univariate comparisons of relative crash involvement ratios between 

different conditions for drivers/vehicles/environment characteristics prior to the 

application of the stratified sampling. The listed graphs in Figure 3.3.1.1 stand for the 

variables found significant at 0.05 significance level in the univariate analysis. The 

RAIRs show a trend for each of the drivers/ vehicles/ environment factors. For instance, 

the RAIR of trucks is clearly higher than the RAIR of passenger cars / SUVs / Vans. The 

weather graph shows that the RAIR of cloudy weather is higher than RAIR of clear 
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weather and the RAIR of rainy weather is undoubtedly lower than the RAIR of clear 

weather. 

 

The conditional logistic regression aforementioned compares drivers/vehicles/ 

environment characteristics associated with work zone versus non-work zone crashes. 

The final model‟s results shown in Table 3.3.1 illustrate the model‟s significant variables 

and goodness of fit. The Log likelihood, AIC, and SBC criteria show that the final model 

has a good fit.  This statistical modeling accounts for the confounding effects and 

interactions between the factors from the univariate analysis. The model shows that large 

trucks have additional risk at work- zone locations compared to non-work zone locations 

(p-value=0.0005). Trucks and large trucks are 44.6% more likely to be involved in a 

work zone single-vehicle crash compared non-work zone locations. According to the 

model, roadway geometry including vertical and horizontal alignment is a significant risk 

factor. 
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Figure 3.3.1.1: Relative accident involvement ratios by road environment factors for 

single vehicle crashes  
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Within a work zone straight-level segments have increased likelihood of single-vehicle 

crashes compared to straight-upgrade/downgrade, curve-level, and curve-upgrade/ 

downgrade. The hazard ratios (or odds ratios) are 0.749, 0.728, and 0.718 respectively 

when compared to straight-level. The corresponding p-values are 0.0037, 0.0239, and 

0.017 in that order (See Table 3.3.1). An explanation of this is that drivers are more likely 

to drive cautiously on vertical and horizontal curves. The lighting condition is also one of 

the risk factors associated with work zone single-vehicle crashes. The model shows that 

with  poor or no lighting during dark at work zones, motor vehicles are more prone 

(23.5%) for crashes compared to non-work zone locations (p-value=0.0151). The weather 

condition is also one of the statistically significant risk factors. In fact, the model results 

illustrate that during rainy weather, drivers are less likely to be involved in work zone 

single vehicle crashes (p-value= 0.0476). This fact may be due to the vigilant driving 

pattern during rain especially at work zones. Finally it should be mentioned that the work 

zone presence was found to have no statistically significant effect on the gender and age 

factors.   
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Table 3.3.1: Single-Vehicle Conditional Logistic Regression Model Estimation 

 
Variable Parameter 

Estimate 
Standard 

Error 
Chi-

Square 
P-Value Hazard 

Ratio 

 Large Truck                                              
Vs.                                                   

Passenger Car/ SUV/ Vans 

0.36895 0.10573 12.17610 0.00050 1.44600 

Straight- Upgrade/Downgrade          
Vs.                                             

Straight-Level 

-0.28886 0.09955 8.41940 0.00370 0.74900 

Curve-Level                                        
Vs.                                              

Straight-Level 

-0.31689 0.14034 5.09850 0.02390 0.72800 

Curve-Upgrade/Downgrade               
Vs.                                              

Straight-Level 

-0.33089 0.13865 5.69590 0.01700 0.71800 

Dark with Poor or no Lighting                               
Vs.                                                      

Day Light 

0.21098 0.08683 5.90440 0.01510 1.23500 

Rainy Weather                                    
Vs.                                                    

Clear Weather 

-0.17571 0.08869 3.92500 0.04760 0.83900 

 
Model Fit Statistics 

 

Criterion Without Covariates                                With Covariates 

Log Likelihood -4650.88000 -4640.58000 

AIC 9301.77500 9293.60000 

SBC 9301.77500 9298.22800 

 

 

3.3.2 Statistical modeling for two-vehicle work zone crashes 
 

3.3.2.1 Drivers and vehicles characteristics 

 

For two-vehicle crash analysis, the first multiple logistic regression model compares 

work zone at-fault drivers versus work zone not-at-fault drivers and exposes drivers/ 

vehicles attributes. Table 3.2.1 shows the number of observations in this model (3353 
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observation for at-fault drivers and 3353 observations for not-at-fault drivers). Figure 

3.3.2.1 illustrates the univariate comparisons of relative crash involvement ratios 

(RAIRs) between different conditions for each drivers/vehicles characteristics. The listed 

graphs in  Figure 3.2.2.1 show the variables found significant at 0.05 significance level in 

the univariate analysis. The driving under influence (DUI) graph clearly shows that 

drivers under the influence of narcotics are more prone to accidents. The age graph 

illustrates that drivers at age 25 or less and 75 or more are the most sensitive to crashes at 

work zones. The graph also confirms that males are more at risk than females to be at-

fault in a work zone crash and that trucks are more sensitive to crashes than regular 

passenger cars at work zones. The last two graphs in Figure 3.2.2.1 illustrate that local 

drivers have a higher relative crash involvement ratio than out-of-state drivers and that 

speeding (at > 65 mph) in work zone produces a high crash hazard at work zones. 
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Figure 3.3.2.1: Relative accident involvement ratios by drivers/vehicles factors for 

two-vehicle crashes 

 

Figure 3.3.2.2 shows the interaction between age and gender. As illustrated by the graph 

males of 25 years old and younger and females older than 75 years old have the highest 

relative crash involvement ratio.   
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Figure 3.3.2.2: Relative accident involvement ratios: drivers’ age and gender 

interaction for two-vehicle crashes 

 

The multiple logistic regression model accounting for interactions between terms and 

confounding effects is summarized in Table 3.3.2.1. The Log likelihood, AIC, and SC 

criteria show that the model has a good fit.  According to the model, age constitute a risk 

factor for work zone crashes. Comparing 56-65, 46-55, 36-45, and 26-35 years old 

drivers groups to <25 years old drivers group shows that drivers of 25 years old or 

younger comprise the highest risk factor for work zone crashes (Wald chi-square p-

values: <0.0001). The odds ratios are 0.477, 0.444, 0.526, and 0.669 respectively. The 

model also shows that the crash likelihood for male drivers is significantly higher than 

female drivers (p-value < 0.0001). The odds ratio for females to be involved in a two-

vehicle crash at work zone is 0.714 compared to male drivers. This can be explained by 

the fact that male drivers are usually more aggressive in driving. The Driving under 

influence (DUI) factor is significant in the final model. The model clearly shows that 

drivers under the influence of narcotics are more 10.526 time more likely to cause 

crashes (p-value<0.0001).  The Rescode variable defines whether the driver lives in the 

state of where he was involved in the crash or not. The Final model shows that out-of-
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state drivers are less likely to be involved in work zone crash compared to local drivers 

(p-value = 0.0283). The model also illustrates that the odds ratio for foreign drivers to be 

involved in work zone crashes is 0.979 compared to local drivers. This can be explained 

by the fact that foreign drivers are usually more careful on unfamiliar roads.   

 

Table 3.3.2.1: Two-Vehicle Logistic Regression Model Estimation 

 

Parameter Estimate 
Standard 

Error 

Wald 
Chi-

Square 

P-
Value 

Odds 
Ratio 

95% Wald 
Confidence 

Limits 

Intercept  -1.1544 0.2554 20.4345 <.0001    

Age 75 vs. 25 -0.1744 0.1381 1.5952 0.2066 0.8400 0.6410 1.1010 

65 vs. 25 -0.7405 0.1210 37.4426 <.0001 0.4770 0.3760 0.6050 

55 vs. 25 -0.8123 0.1005 65.3300 <.0001 0.4440 0.3640 0.5400 

45 vs. 25 -0.6420 0.0892 51.7665 <.0001 0.5260 0.4420 0.6270 

35 vs. 25 -0.4020 0.0860 21.8696 <.0001 0.6690 0.5650 0.7920 

Sex 
Female vs. 

Male 
-0.3384 0.0662 26.1291 <.0001 0.7130 0.6260 0.8120 

DUI Yes vs. No 1.9723 0.1947 102.6544 <.0001 7.1870 4.9070 10.5260 

Rescode 
Foreign vs. 

Local 
-0.2011 0.0917 4.8118 0.0283 0.8180 0.6830 0.9790 

Interactions 

Sex*Age 75 vs. 25 0.5472 0.3144 3.0301 0.0817   

65 vs. 25 0.6324 0.2591 5.9552 0.0147 

55 vs. 25 0.0316 0.2187 0.0209 0.8852 

45 vs. 25 0.0111 0.1917 0.0033 0.9540 

Model Fit Statistics 

Criterion Intercept Only 

 
Intercept and Covariates 

 

Log Likelihood -3346.5800 -3198.3130 

AIC 6695.1610 6430.6260 

SC 6701.6630 6541.1540 
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3.3.2.2 Environment characteristics 

 

The second model (model #3) conditional logistic regression aforementioned compares 

the environments‟ characteristics associated with work zone. In this model the strata had 

number of lanes, speed limit, and time of day (AM or PM), and driver gender and age as 

matching criteria. Table 3.2.1 shows that the numbers of observations for work zone and 

non-work zone are 8,300 and 285,000 respectively.  Figure 3.3.2.2 demonstrates the 

univariate comparisons conducted prior to the statistical modeling of relative crash 

involvement ratios between different conditions for each drivers/vehicles/environment 

characteristics before applying the stratified sampling technique. The listed graphs in 

Figure 3.3.2.2 display the variables found significant at 0.05 significance level in the 

univariate analysis for two-vehicle crashes. The weather graph in Figure 3.3.2.2 clearly 

shows that the RAIR for cloudy weather is higher than the RAIR for clear weather. The 

Rural-Urban graph confirms that the relative crash involvement ratio is higher for urban 

locations compared to rural locations. The lighting condition graph demonstrates that at 

night with poor or no lights could be a serious crash threat at work zones compared to 

non-work zone locations. The Roadway characteristics graph shows that straight- 

upgrades and straight downgrades have lower likelihood for crash at work zones 

compared to non-work zone settings.  

 

A conditional logistic regression model identified the environmental factors associated 

with work zone crashes. Table 4 recapitulates the final model parameter estimates. The 

Log Likelihood, AIC, and SBC criteria show that the model has a good fit (See Table 4). 

Similarly to the single-vehicle model, the road geometry (upgrade/downgrade) had a 
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negative effect on the crash likelihood on work zones compared to non-work zone 

locations. Similarly to the preceding model (single-vehicle crash), this fact can be 

clarified by the alertness of drivers on upgrades/downgrades compared to straight-level 

sections. The lighting condition factor is analogous to the previous model. Poor lighting 

or no lighting at all can cause significantly (p-value <0.0001) higher crash hazard (35.2% 

increase, hazard ratio 1.352) on work zones compared to non-work zones. The weather 

condition affects positively the work zone crash likelihood. This model shows that foggy 

weather causes a significant (p-value=0.0017) rise in work zone crash risk (hazard ratio 

=1.161) compared to non-work zone locations. In addition to that, work zones located in 

rural areas have higher crashes potential than work zones located in urban areas.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2.2: Relative accident involvement ratios by environment factors for two-

vehicle crashes 
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Table 3.3.2.2: Two-Vehicle Logistic Conditional Regression Model Estimation 

 

Variable Parameter Estimate 
Standard 
Error  

Chi-Square P-value 
Hazard 
Ratio 

Straight-
Upgrade/Downgrade    

vs.                         
Straight-Level 

 
-0.26589 

 
0.05725 

 
21.56750 

 
<.00010 

 
0.76700 

Poor or No Street Light                       
vs.                                 

Day Light 

 
0.30193 

 
0.06567 

 
21.14040 

 
<.00010 

 
1.35200 

Foggy Weather              
vs.                              

Clear Weather 

 
0.14943 

 
0.04765 

 
9.83450 

 
0.00170 

 
1.16100 

Rural vs. Urban 0.25776 0.05014 26.42730 <.00010 1.29400 

Model Fit Statistics 

Criterion Without Covariates With Covariates 

Log Likelihood -2524.04700 -2519.67500 

AIC 5048.09400 5040.53500 

SBC 5048.09400 5047.36300 

 

 

3.4 Conclusions and Discussions  

 

The main objective of this study was to conduct a statistical analysis to expose work zone 

crash characteristics while accounting for confounding parameters. The Florida Traffic 

Crash Records Database for years 2002, 2003 and 2004 were employed and statistical 

models were assembled to draw drivers/vehicles/ environment traits of work zone 
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crashes. Three models were developed to analyze single-vehicle and two-vehicle freeway 

work zone crashes. The first model (conditional logistic regression model) compared 

work zone versus non-work zone single-vehicle crashes and exposed the vehicles/drivers/ 

environment attributes. The second model (multiple logistic regression model) compared 

two-vehicle work zone at-fault versus not-at-fault drivers. This model revealed the 

drivers/vehicles characteristics. The third model (conditional logistic regression) 

compared at-fault work zone versus at-fault non-work zone drivers for two-vehicle 

crashes and retrieved work zone environment attributes. The hypotheses of models #1 

and #3 investigate whether the attributes (parameters included in the models) are 

significantly affected by the presence of work zones. The hypothesis of model #2 

assesses whether at-fault drivers‟ attribute is significantly different from the not-at-fault 

drivers‟ attributes at work zones.    

 

For the single-vehicle crashes, results showed that trucks are 44.6% more likely to be 

involved in a work zone single-vehicle crash compared to trucks in non-work zone 

locations. This fact may be due to narrower lanes during maintenance or construction. 

Several studies agree that heavy vehicles are overrepresented in work zone areas (Hall 

and Lorenz, 1989; Pigman and Agent, 1990; Nemeth and Rathi 1983). However, the 

main reason behind this issue is still obscure and subject for future investigations. Results 

also showed that roadway geometry is also a significant risk factor associated with 

freeway single-vehicle work zone crashes. Straight-level has increased likelihood 

compared to straight-upgrade /downgrade, curve-level, and curve-upgrade/ downgrade. 

In other words, straight level roadways are significantly affected by the presence of work 
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zones compared to non-work zone locations. An explanation of this could be related to 

the fact that drivers may be more likely to drive cautiously on vertical and horizontal 

curves. In this context, Daniel et al. (2000) stated that fatal work zone crashes are less 

influenced by horizontal and vertical alignment compared to non-work zone locations. 

The lighting condition is also one of the risk factors associated with work zone single-

vehicle crashes. The model shows that in work areas with poor or no lighting during dark, 

motor vehicles are more prone (23.5%) for crashes compared to non-work zone locations 

with poor or no lighting during dark. This fact may be due to the invisibility of the work 

zone equipment during poor or no lighting which may lead to single-vehicle crashes. The 

weather condition is also associated with single-vehicle work zone crashes. In fact, the 

first model shows that during rainy weather, drivers are less likely to be involved in work 

zone crashes compared to the same weather conditions in non-work zone locations. This 

fact may be due to the vigilant driving pattern during rain at work zones.   

  

For the two-vehicle crashes, the second model‟s results illustrate that drivers younger 

than 25 years old and drivers older than 75 years old have the highest risk to be the at-

fault driver in a work zone crash. Male drivers have significantly higher risk 

(approximately 40% higher) than female drivers to be the at-fault driver. The interaction 

between age and gender confirmed that younger (≤ 25 years old) male drivers and older 

(≥ 75 years old) female drivers are prone to be the at-fault driver in a work zone crash. 

The age and gender trends in work zone crashes are consistent with the general trend of 

age and gender in the overall crashes (National Highway Traffic Safety Administration, 

2000). This can be explained by the fact that young male drivers are usually more 
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aggressive in driving and older females‟ alertness and reaction time decreases with age. 

The model noticeably shows that drivers under the influence of narcotics/alcohol are 

10.526 times more likely to cause crashes (i.e. at-fault driver) at work zones. The second 

model finally shows that out-of-state drivers are slightly less likely to be the source (i.e. 

at-fault driver) of a work zone crash compared to local drivers. This can be explained by 

the fact that foreign drivers are usually more careful on unfamiliar roads. The third model 

revealed the environment characteristics for two-vehicle work zone crashes. Similarly to 

the single-vehicle model (first model), the road geometry and the lighting condition were 

significant risk factors for two-vehicle work zone crashes. Freeways straight segments are 

more susceptible to crashes in work zone areas. As explained before, this fact may be due 

to the alertness of drivers on non-straight segment. This finding is consistent with 

previous studies (Milton and Mannering, 1998; Chang, 2005).  Poor lighting or no 

lighting at all during dark can lead to significantly higher crash hazard (35.2% increase, 

hazard ratio 1.352) on work zones compared to non-work zones. Analogously to this 

finding, Daniel et al. (2000) also concluded that poor or no lighting at night affects 

increase the likelihood of a fatal crash in work zone compared to non-work zones.  This 

third model shows that for two-vehicle crashes, foggy weather causes a significant mount 

in work zone crash risk compared to non-work zone locations. In addition to that, work 

zones located in rural areas have higher crashes potential than work zones located in 

urban areas.  

 

It should be noted that there exist some consistency in the environment factors associated 

with single-vehicle and two-vehicle crashes at work zones. For instance, Straight-level 
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segments in which work zones are located are more prone to single-vehicle and two-

vehicle crashes than “curves-upgrades” segment compared to non-work-zone locations. 

Poor lighting during dark results in higher single-vehicle and two-vehicle crash risk in 

work zone locations compared to non-work-zone locations.  

  

Some recommendations can be drawn based on the findings of the work zone crash 

analysis. First, for both single-vehicle and two-vehicle crashes, good lighting should be 

provided in the work areas and around them so drivers can be alerted ahead of time and 

to facilitate the driving maneuver during work zone hazards at night. Trucks should be 

granted extra care in the work zones especially with lane closures and narrowing. A 

reduced speed limit could help the trucks better maneuver in work zones. The drivers‟ 

inattentiveness and hostile driving are overrepresented in work zones. This fact was 

illustrated by the age and gender factor, the road geometry factors, residence, and 

inclement weather. For that purpose, additional enforcement is recommended such as 

police cars and/or flashing signs for double fining in work-areas.  

 

ITS lane management systems could also be potential countermeasures worthy of 

implementation and testing on Florida‟s work zones. For instance, previous studies 

showed that dynamic early merging can smoothen the merging operation in advance of a 

lane closure (Tarko, 1998), decrease the rear-end accident rate (Tarko, 1998), and reduce 

the number of forced merges (Wayne State University, 2001). The dynamic late merging 

can reduce conflict points (or locations) to one single location at the taper of the work 

zone which enhances overall driving conditions upstream of work zone (Tavoola et al., 
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2004). Therefore, the early and late merging systems have the potential of improving the 

merging maneuvers in Florida‟s work zones especially for trucks. These systems can also 

reduce hostile driving by reducing random merging (at random locations) to definite 

merging.          

 

As a typical study based on traffic crash databases, some limitations may exist since 

some variables (or information) may not be available in these crash databases. For 

instance, the Florida Crash Records Database did not provide information about the work 

zone duration and the work zone design or configuration. These variables may be 

confounded or may interact with other variables in our models. Such data can be obtained 

and analyzed using driving simulation studies or field data collection. 
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CHAPTER 4 SIMPLIFIED DYNAMIC LANE MERGING 

SYSTEM (SDLMS) 
 

This Chapter entails details on the design of the modified Maintenance of Traffic (MOT) 

plan that includes the dynamic lane merging component. Two modified MOTs were 

designed; the Early Simplified Dynamic Lane Merging and the Late Simplified Dynamic 

Early Merging. This chapter also includes details about the ITS system components, 

deployment, and communication between the entities involved in deploying the system.    

 

4.1 Current Florida MOT Plans  

 

Currently the Florida Department of Transportation deploys an MOT plan known as the 

Motorist Awareness System (MAS). According to the Florida Plans Preparation Manual 

(FPPM), the MAS aims at increasing the motorist awareness of the presence of active 

work and at providing emphasis on reduced speed limits in the active work area. The 

Florida manual states that the MAS shall be used on multilane facilities where the posted 

speed limit is 55mph or greater and where work activity requires a lane closure for more 

than five days only when workers are present. The MAS, as shown in Figure 4.1, consists 

of Portable Regulatory Signs (PRS) highlighting the regulatory speed for the work zone 

and a Radar Speed Display Unit (RSDU) displaying the motorist‟s work zone speed. The 

MAS also comprises a PCMS, a lane drop warning sign, a speeding fines doubled 

warning sign, in addition to road work ahead warning signs. 
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4.2 Modified MOT Plans 

 

The modified MAS plans consist of the addition of an ITS-based lane management 

system to the conventional MAS. Two modified MAS plans (early SDLMS and late 

SDLMS) are suggested. The first modified MAS plan is a simplified dynamic early 

merge system and the second modified MAS plan is a simplified dynamic late merge 

system. Therefore the conventional MAS plans are supplemented with one PCMS and a 

non-intrusive RTMS trailer as shown in Figure 4.2. The modified MAS plan is referred to 

in this paper as SDLMS. The additional PCMS and sensor trailer are placed at the same 

location in both modified MAS plans. The messages displayed by the PCMS will differ 

as elaborated on in the next section. The modified MOT plans were signed and sealed by 

a Florida licensed consultant. 
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Figure 4.1: Motorist Awareness System in Florida (Index 670 FDOT-Standards) 
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Figure 4.2: Modified Motorist Awareness System (SDLMS) 
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4.4. SDLMS System‟s Specifications  

 

4.4.1 SDLMS System Components 
 

The SDLMS consisted of one set of the following equipment.  The equipment was 

relocated as needed upon relocation of the work zone. 

 

 Traffic detection station wirelessly linked to central computer base station.  

Traffic detection station was mounted to the sensor trailer which was equipped 

with solar panel, deep cycle batteries and associated circuitry. The RTMS sensors 

capture speed, volume, and occupancy. 

 One central computer base station environmentally hardened and equipped with 

appropriate software and dedicated wireless communications to “link” with the 

traffic sensor station and PCMS.  The computer base station was housed in a 

standard weather proof traffic-signal control cabinet, or other appropriate means, 

with provision for installation of the central communication antenna. One base 

station may be used for multiple directions of travel. 

 Wireless communication links consisting of a road-side remote station, duly 

equipped with radio modems (for transmitting and receiving licensed UHF radio 

frequencies), micro- processors and antennae. 

  PCMS remotely controlled via a central computer base station or central system 

controller.  
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The detection zones were located on the highway, distanced suitably to both gather traffic 

data and to cover the entire length of the desired stretch of the highway.. 

 

4.4.2 SDLMS Features 
 

The SDLMS features are as following: 

 

 The software provided is modular with open architecture providing for future 

integration with other similar traffic monitoring systems and allowing detailed 

real-time monitoring of the status including communications-link operational 

status, current delay predicted for the roadway and current messages displayed on 

the PCMS.  The software also provides options for various types of traffic data to 

meet the real-time speed control system needs. 

 The SDLMS utilized DOT compliant PCMS to convey real-time traffic condition 

information to motorists. 

 The SDLMS can operate continuously (24 hours, 7 days a week) for the duration 

of the project. 

 Critical system operator control functions were password protected. 

 The SDLMS is capable of acquiring traffic data and selecting motorist 

information messages automatically without operator intervention after system 

initialization. 

 SDLMS is an independent standalone unit with provision(s) for future integration 

with other traffic control / maintenance systems. 



82 

 

 The SDLMS traffic sensor‟s accuracy is not degraded by inclement weather of 

degraded visibility conditions including precipitation, fog, darkness, excessive 

dust, and road debris. 

 All traffic data acquired by the DLMS are archived in a log file with time and date 

stamps. 

 

4.4.3 SDLMS Traffic Data Acquisition 
 

The SDLMS operation is based on real-time speed data acquired from the traffic 

detection zones with each data sample „Time Stamped‟ to indicate currency of the 

message displayed. Software provided with the SDLMS system allows the operator to 

have options of various categories of traffic information to suit the needs of the speed 

control system as follows. 

 

4.4.4 SDLMS Motorist Information Messages 
 

The SDLMS message information characteristics are as following: 

 

 Records of all motorist information messages displayed by the SDLMS are 

recorded in log files with time and date stamps. 

 The SDLMS is capable of displaying default messages when traffic conditions, 

system algorithms, and user parameters do not dictate that an advisory message 

should be displayed. 

 The SDLMS is capable of displaying separate, independent default messages, as 

well as separate, independent advisory messages on each PCMS. 
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 The SDLMS‟ default and advisory messages are capable of being automatically 

selected based on traffic conditions at a single traffic sensor point or at multiple 

traffic sensor points in combination. 

 Default and advisory message content shall be programmable from the central 

base station. 

 The SDLMS is capable of adjusting the thresholds for advisory message selection 

on an individual traffic sensor station basis from the central computer base 

station. 

 For later use, the SDLMS is capable of storing messages created by an authorized 

user in overriding any default or automatic advisory message. 

 

4.4.5 SDLMS Communications 
 

The SDLMS communications characteristics are as following 

 

 The SDLMS‟s communications system incorporates an error detection / 

correction mechanism to ensure the integrity of all traffic conditions data, 

motorist information messages. 

 Any required configuration of the SDLMS‟s communications system is 

performed automatically during system initialization. 

 Communications between central computer base station and any individual PCMS 

or traffic sensor station is independent through the full range of deployed 

locations and not rely upon communications with any other system. 
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4.4.6 SDLMS’ Other Requirements 
 

The SDLMS‟ other requirements are as following 

 

 Remote sign operation via central computer base station using wireless licensed   

UHF radio frequencies in the range of 464 MHZ to 470 MHZ and provision(s) to 

install antenna  

 National Transportation Communications for ITS Protocol (NTCIP) version 2 

conformant and proprietary communications protocol, if any, shall be provided to 

the DLMS provider in proper format. 

 Licenses / permissions to legally operate a wireless system must be owned by the 

DLMS system provider, where required. 

 The central computer base station shall be housed at a suitable location, to 

facilitate wireless communications, and in a suitable enclosure with AC power, 

internet access or a minimum of a reliable, dedicated telephone line. 

 

4.4.7 Remote Traffic Microwave Sensor 
 

RTMS are radar-based, non-intrusive, advanced sensors for the detection and 

measurement of traffic on roadways. They are known to be easy to install, remove, and 

maintain without traffic disruption. As shown in Figure 4.3, the RTMS are pole-mounted 

on the side of the road. They can collect the per-lane presence, volume, vehicle 

classification, occupancy, and speed in up to 8 user-defined detection zones. 
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Figure 4.3: Remote Traffic Microwave Sensors  

 

4.5 SDLMS field setup 

 

4.5.1 SDLMS Preparation 
 

The SDLMS preparation is shown in Figures 4.4, 4.5, and 4.6 . The University of Central 

Florida (UCF) team setup the SDLMS at the site and the details are as following: 

 

 UCF took the sensor trailer to the first site Feb 7, 2008. 

 The new chip received from VERMAC was installed in the VERMAC PCMS. 

 The communication system including antennas and processing unit  was installed 

 The RTMSs were mounted on the PCMS and the sensor trailer  

 

4.5.2. SDLMS Testing 
 



86 

 

The UCF team tested the SDLMS at the site and the details are as following:  

 

 The communication between the sensor trailer and the PCMS was tested (Feb 16, 

2008) 

 The RTMS was tested including the proper leveling of the sensor and the 

calibration. 

 The UCF team was trained on the calibration of the RTMS. 

 The UCF team was trained on the daily setup of the SDLM system including the 

proper leveling of the sensor trailer and the instantaneous testing of the 

communication system. 

 UCF was also trained on extracting the data from the RTMS. 

 

It should be noted that the communication system on the additional PCMS relies on the 

proper power supply from the latter. The communication between the PCMS and the 

sensor trailer may fail if the batteries of the PCMS are not properly charged. It should 

also be noted that on average it takes about one hour to level the sensor trailer and to 

calibrate the RTMS upon every relocation. 
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Figure 4.4: PCMS Chip Modification 
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Figure 4.5: Antenna Installation and Sensor Trailer Setup 

RTMS 

Antenna 
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Figure 4.6: SDLMS Controller 

 

4.5.3 RTMS Calibration 
 

The RTMS was calibrated on a daily basis upon reinstallation. The sensor trailer was 

leveled in a way that the pole on which the RTMS is mounted is perpendicular to the 

road. The first step in the calibration consisted of creating the capturing or sensing zones 

as shown in Figure 4.7. In our case, for the first site with two-to-one lane closure, there 

were two lanes therefore two sensing zones were created. Sequentially, the calibration of 

the speeds is implemented. It should be noted that the calibration time of the RTMS takes 

about 30 to 45 minutes to be completed. After completing the calibration process the 

system was set to operate. 
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Figure 4.7: RTMS Calibration 

 

4.5.4 System Check-up 
 

The SDLMS provided by IRD, Inc. contains an application that allows us to check on the 

performance of the system. The system contains an “Adaptir” map (shown in Figure 4.8) 

that displays the location of the sensor trailer and the PCMS on the map and shows a 

green light for the correct wireless communication between the sensor (RTMS) and the 

PCMS. In case there is a miscommunication (wireless defect) the Adaptir map displays a 

red light and display an error message. 
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Figure 4.8: Adaptir Map  

 

4.6 SDLMS Operation 

 

The SDLMS operation is based on real-time speed data acquired from the traffic 

detection zones with each data sample (time-stamped over 2 minutes) to indicate 

currency of the message displayed. The RTMS collects the average speed of the vehicles 

passing through the detection zones over 2-minute time intervals. The SDLMS operates 

under two modes; the passive mode (not activated) and the active mode (activated). 

Under the passive mode the additional PCMS was set to display a flashing 

“CAUTION/CAUTION” message for both the early and late SDLMS. Under the active 

mode, the PCMS displays “DO NOT PASS” followed by “MERGE HERE” alternately 

for the early SDLMS and “STAY IN YOUR LANE‟ followed by “MERGE AHEAD” 

alternately for the late SDLMS (as shown in Table 4.1). The early and late SDLMS were 
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activated once the average speed over any 2-minute time interval drops below 50mph. 

The SDLMS was deactivated (passive mode) once the average speed over the next time 

stamp goes over 55 mph. It should also be noted that the minimum activation time of the 

PCMS was set for 5 minutes. 

 

4.7 Additional PCMS Messages 

 

When the RTMS‟ average collected speed over two minutes drops below 50 mph, the 

PCMS displays “DO NOT PASS” followed by “MERGE HERE” in the early merge 

setup and “STAY IN YOUR LANE” followed by “MERGE AHEAD” in the late merge 

setup. When the average speed goes above 55 mph the PCMS will display a blinking 

“CAUTION/CAUTION” message. 

 

Table 4.1: SDLMS’ Active and Passive Messages 

Early Merge 

                      Activated                  NOT Activated 

DO  MERGE    

NOT  HERE CAUTION CAUTION 

PASS    

 

Late Merge 

                      Activated       NOT Activated 

STAY MERGE    

IN YOUR AHEAD CAUTION CAUTION 

LANE    

 

 

4.8 Project communication 
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The UCF research team communicated with multiple parties to conduct this project (see 

Figure 4.9): 

 

1. IRD Inc. provided the SDLMS system components 

2. Smart Technologies provided the communication system and system training.  

3. Highway technologies provided the PCMS through FDOT. 

4. VERMAC provided the updated PCMS chip to match the system‟s protocol.  

5. A Florida licensed professional engineer (consultant) signed and sealed the 

modified MOT plans. 

6. FDOT project manager from the central office along with FDOT district 5 and 

UCF team selected sites for data collection. 

7. UCF team, local operation office, and road rangers were constantly in touch 

during the data collection. 
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Figure 4.9: Project Communication Flowchart 
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CHAPTER 5 APPLICATION OF THE SDLMS ON A TWO-

TO-ONE LANE CLOSURE 
 

 

5.1 Data Collection 

 

Data was collected on the first selected site to secure volume and travel time data for the 

evaluation of the tested system. It should be noted that data collection was not intrusive to 

the freeway therefore not creating distraction or disruption to traffic.    

 

5.1.1 Site Location 
 

The selected site was located on Interstate-95 in Malabar, Florida as shown in Figure 5.1. 

I- 95 is two-lane per direction limited access rural freeway with 70 mph speed limit 

(reduced to 60 mph during work). The work zone consisted of a resurfacing and milling 

job on the south bound of I-95 on a 13 mile stretch. A two to one lane closure 

configuration was adopted and the work zone moved on a daily basis covering a length of 

approximately three miles per day. Data was collected on homogenous basic freeway 

segment of I-95 with no on/off ramps. 

 

5.2.1 Data Collection Methodology 
 

Four Digital Camcorders were set in the field labeled C-1, C-2, C-3, and C-4 as shown in 

Figure 5.2. To synchronize the camcorders spatially (i.e. upon daily relocation), C-1 was 

always located behind the first PCMS, C-2 was always located behind the radar speed 
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display unit (RSDU), C-3 was always located behind the arrow panel, and C-4 was 

always located at the end of the lane closure. All four camcorders were started at the 

same time to synchronize the temporal events and flow of vehicles. Data was collected on 

the same site for the MAS, early SDLMS, and late SDLMS for two days each. From C-1, 

C-2, C-3, and C-4, per-lane vehicle counts including vehicle classification were extracted 

in five minutes intervals in the laboratory. The zone between C-1 and C-2 is identified as 

zone 1 and the zone between C-2 and C-3 is identified as zone 2. The difference between 

the vehicle counts (including vehicle classification) in the closed lane between C-1 and 

C-2 is the number of lane changes made in zone 1. The remaining vehicle counts 

(including vehicle classification) remaining in the closed lane at C-2 is the number of 

lane changes in zone2. 

 

The RTMS was temporally synchronized with C-1, C-2, C-3, and C-4 and the PCMS 

activation time (recorded by the RTMS) was extracted and concatenated temporally to 

the vehicle count data. From C-1 the demand volume for the work zone was determined. 

From C-4 the throughput of the work zone was determined. Under the standard MAS 

configuration, data was collected on February 11th and 12th 2008, under the early 

SDLMS data was collected on March 17th and 18th 2008, and under the late SDLMS 

data was collected on March 27th and 28th, 2008. There were several difficulties engaged 

in the data collection process. In fact, for short term moving work zones, there exist 

inherent logistic and operational difficulties. For instance, the work, hence data collection 

was cancelled and/or interrupted unexpectedly multiple times due to adverse weather 

conditions. 
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Figure 5.1: Data Collection Site, Malabar, Florida 
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Figure 5.2: Camcorders Location 

 

 

 

ZONE 1  ZONE 2 
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Work was also unexpectedly cancelled on several occasions without prior notice due to 

contractor-related logistic issues. Moreover, the freeway shoulders were narrower at 

some locations which made the installation of the SDLMS equipment almost impossible. 

It is recommended that a good communication/planning protocol be established between 

the researcher team and the work zone crew (construction manager) for future data 

collection on short term moving work zones. 

 

5.2 DATA Analyses 

 

Roadway capacity in which a work zone is located is lower than the normal operating 

conditions. The impact of the early and late SDLMS on the work zone capacity is studied 

by comparing the capacity of the work zone under the MAS traffic (control) to the 

capacity of the work zone under the early SDLMS (test1) and late SDLMS (test2). It 

should be noted that different researchers, as mentioned by Heaslip et al. (2007) , have 

different definitions of work zone capacity. “Some researchers (Dudek and Richards, 

1981; Kermode and Myra, 1970; Maze et al., 2000) measured the mean queue discharge 

flow rate as work zone capacity when the upstream of work zones was in sustained 

congested traffic flow, while other researchers (Dixon et al., 1999; Jiang, 1999) defined 

the work zone capacity as the traffic flow at the onset of congested traffic conditions” 

(Ping and Zhu, 2006).  

 

In this study, the work zone capacity under the three different scenarios is determined as 

the queue discharge flow rate or throughput volume under queuing/congested conditions. 
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The onset of congestion is detected visually by C-2 shown in Figure 5.2. Since only two 

days of data collection under each MOT type were available for this site, and to control 

for the demand volume, the ratio of throughput at the onset of congestion over the 

demand volume is taken as the operational measure of effectiveness (MOE). 

 

5.2.1 Statistical Summary 
 

Table 5.1 summarizes the data extracted from C-1, C-2, C-3, and C-4. As shown by Table 

5.1, the mean and maximum throughputs at the onset of congestion of the early SDLMS 

are the highest among the three MOT treatments. The mean and maximum capacities of 

the conventional MAS system are 881 veh/hr and 1092 veh/hr, respectively. The mean 

and maximum capacities of the early SDLMS are 970 veh/hr and 1272 veh/hr, 

correspondingly. The mean and maximum capacities of the late SDLMS are 896 veh/hr 

and 1093 veh/hr in that order. The mean ratio of throughput over the demand volume is 

also the highest for the early SDLMS taking a value of 0.84 followed by the late SDLMS 

taking a value of 0.79 the MAS system taking a value of 0.79. This indicates that 

normalizing for the demand volumes, the early SDLMS resulted in the highest 

throughput.  Also from Table 5.1, the mean number and mean percentage of lane changes 

in zone 1 for cars and trucks are the highest for the early SDLMS and the lowest for the 

late SDLMS. These average numbers of lane changes are taken for all times including 

when the additional PCMS is not activated for the early and late SDLMS. The mean 

number and percentage of passenger cars changing lanes in zone 1 for the early SDLMS 

are 293pc/hr and 67.5% respectively (92Trk/hr, 76.9% for trucks). The mean and 

percentage of passenger cars changing lanes in zone 1 for the late SDLMS are 274 pc/hr 
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and 51.9% respectively (33 Trk/hr, 74.1% for trucks). The mean and percentage of 

passenger cars changing lanes in zone 1 for the conventional MAS are 143 pc/hr and 

66.3% in that order (57Trk/hr, 79.6% for trucks). These results indicate that some drivers 

are complying with the messages displayed by the additional PCMS in the early and late 

SDLMS. 

 

Table 5.1: Data Summary Statistics 

MOT 

Type
Variable Unit Mean Std. Dev. Min Max

Throughput* Veh/hr 881 120 624 1092

Ratio N/A 0.79 0.23 0.55 1

Car lane changes in zone 1 PC/hr 143 118 84 324

TRK lane changes in zone 1 TRK/hr 57 46 84 120

Car lane changes in zone 2 PC/hr 51 53 48 168

TRK lane changes in zone 2 TRK/hr 16.8 30 12 132

% TRK N/A 15.1 6 2.4 25.8

% Car lane changes in zone 1 N/A 66.3 24.7 12.5 95.7

% TRK lane changes in zone 1 N/A 79.6 19.2 38.9 100

Throughput* Veh/hr 970 135 696 1272

Ratio N/A 0.84 0.24 0.66 1

Car lane changes in zone 1 PC/hr 293 102 96 516

TRK lane changes in zone 1 TRK/hr 92 81 24 312

Car lane changes in zone 2 PC/hr 108 62 21 312

TRK lane changes in zone 2 TRK/hr 23 26 24 96

% TRK N/A 5.5 13.6 13.6 35.7

% Car lane changes in zone 1 N/A 67.5 7.1 7.1 100

% TRK lane changes in zone 1 N/A 76.9 10.2 0 100

Throughput* Veh/hr 896 111 696 1092

Ratio N/A 0.81 0.19 0.69 1

Car lane changes in zone 1 PC/hr 274 95 60 516

TRK lane changes in zone 1 TRK/hr 33 24 24 312

Car lane changes in zone 2 PC/hr 100 51 12 312

TRK lane changes in zone 2 TRK/hr 12 13 24 96

% TRK N/A 24.6 5.4 23.6 35.7

% Car lane changes in zone 1 N/A 51.9 15.7 7.1 100

% TRK lane changes in zone 1 N/A 74.1 23 0 100
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During the early and late SDLMS, the additional PCMS may not be activated when the 

average detected speed does not fall below the preset threshold speed (50 mph). 
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Therefore, a comparison between the throughputs of the early and late SDLMS with the 

conventional MAS only when the additional PCMS is activated, hence displaying the 

lane merging advisory messages is conducted. Therefore, a new variable (labeled ACT) is 

derived to reflect this issue. This variable (ACT) consists of four levels; early and late 

SDLMS not activated, early SDLMS activated, late SDLMS activated, and conventional 

MAS.   

 

5.2.2 Correlation Analysis  
 

To examine the correlation between a categorical variable with more than two levels and 

a continuous variable, one can compute a Friedman‟s test with no assumption on the 

homogeneity of variances. Table 5.2 shows that the ratio (throughput over demand) is 

significantly correlated with MOT type (p-value=0.01). Table 5.2 below also shows that 

the percent trucks in the traffic, percent car changing lane in zone 1, and percent trucks 

changing lane in zone 1 are not correlated with MOT type.  Although it seems intuitive 

for a correlation between MOT type and percentage of lane changing in zone 1 for 

passenger cars and trucks to exist, the results show no significant correlation. This may 

be due the compliance rate variance. For example during early merge instructions the 

compliance rate may be low therefore drivers may still merge late. On the other hand, 

during late merge compliance rate may be low therefore drivers may still merge early. 

The result of the compliance rate variance in early and late merge may have caused no 

significant difference in the correlation between MOT type and percentage lane changing 

in zone 1 for passenger cars and trucks.  
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Table 5.2: Correlation between MOT type and continuous variables 

 

Variable Unit Pr > F 

Throughput/Demand N / A 0.01 

% Car Lane Changes in Zone 1 N / A 0.2371 

% Truck Lane Changes in Zone 1 N / A 0.844 

% TRK In Traffic N / A 0.622 

 

 

A correlation analysis between truck percentages in the traffic composition, percent truck 

lane changing in zone 1, percent car lane changing in zone 1 is conducted. For these 

continuous variables Spearman‟s rank-order correlation and Pearson‟s correlation are 

used. Pearson‟s correlation is a parametric measure of association which measures both 

the strength and the direction of the linear relationship. Spearman‟s correlation is 

nonparametric measure of association based on the ranks of the data values.  From Tables 

5.3 and 5.4 one can assume no correlation between all continuous variables in question 

since all p-values are greater than 0.05. 

 
 

Table 5.3: Pearson’s Correlations 

  % PC changing 
lane 

In zone 1 

% TRK 
changing lane 

In zone 1 
%TRK 

% PC changing lane 
In zone 1 

Pearson Correlation 1 -.012 .049 

Sig. (2-tailed)  .907 .620 

N 105 105 105 

% TRK changing lane 
In zone 1 

Pearson Correlation -.012 1 -.030 

Sig. (2-tailed) .907  .761 

N 105 105 105 

%TRK Pearson Correlation .049 -.030 1 

Sig. (2-tailed) .620 .761  

N 105 105 105 

 

Table 5.4: Spearman’s Correlations 
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% PC changing 

lane

% TRK 

changing lane

In zone 1 In zone 1

% PC changing 

lane

Correlation 

Coefficient

1 0.048 0.026

In zone 1 Sig. (2-tailed) . 0.623 0.788

N 105 105 105

% TRK changing 

lane

Correlation 

Coefficient

0.048 1 -0.12

In zone 1 Sig. (2-tailed) 0.623 . 0.221

N 105 105 105

Correlation 

Coefficient

0.026 -0.12 1

Sig. (2-tailed) 0.788 0.221 .

N 105 105 105

Spearman's rho

%TRK

%TRK

 
 

 

5.2.3 Ratio of throughput over demand volume analysis  
 

 

A multiple linear regression model is estimated to explore the effect of the MOT plan 

type, truck percentage in the traffic composition, percentage of trucks changing lane in 

zone 1, and percentage of passenger cars changing lanes in zone 1 on the ratio of 

throughput over demand volume. As mentioned earlier a new variable is ACT reflecting 

whether the PCMS is activated is added to replace MOT type. The ACT variable has four 

categories. Early SDLMS activated, late SDLMS activated, SDLMS deactivated, and 

MAS. Table 5.5 shows the results of the regression model. From Table 5.5, the ACT 

shows significant effect on the work zone throughput over demand volume ratio. In 

particular, the early SDLMS treatment affects positively (parameter estimate= 0.103, P-

value=0.004) and significantly the throughput of the work zone compared to the 

conventional MAS maintenance of traffic plan. The other variables included in the model  
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Table 5.5: Multiple Linear Regression Results 

Parameter Categories Estimate
Standard 

Error
t Value Pr > |t|

Intercept 0.784 0.062 12.710 <.0001

% PC lane changing in zone1 -0.095 0.055 -1.720 0.089

% TRKlane changing in zone1 0.020 0.040 0.490 0.628

%TRK -0.020 0.193 -0.100 0.917

Late SDLMS 0.045 0.049 0.920 0.359

Early SDLMS 0.103 0.035 2.930 0.004

NOT ACTIVATED 0.043 0.034 1.260 0.209

CONVENTIONAL MAS 0.000 . . .

Sum of 

Squares

Mean 

Square
F Value Pr > F

29.561 2.760 2.45 0.0291

109.684 1.126

139.245

Error

Corrected Total

R-square=0.2123

ACT

N/A

Overall ANOVA

ANOVA and Parameter Estimates

Source

Model

 

 

do not have a statistical significant effect on the work zone throughput at 0.05 

significance level. The R-square of the model was 0.2123 indicating that the 21.23% of 

the variance in the ratio (throughput over demand volume) can be explained by the 

explanatory variables in the model. 

 

5.2.4  Travel Time 
 

Camcorders C-1 and C-4 were used to observe the travel time through the work zone. 

Past literature (Oppenlander, 1976; Quiroga and Bullock, 1998) documented methods to 

determine the minimum required sample size for travel time runs to achieve reliable and 

accurate results. The following Equation is used to determine the number of runs required 

(May, 1990): 
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Where, 

N = Estimated sample size for number of runs at the desired precision and level of  

       confidence 

σ = Preliminary estimate of the population standard deviation for average travel speed 

       among the sample runs 

Z = Two-tailed value of the standardized normal deviate associated with the desired level 

       of confidence (at a 95% confidence interval, Z=1.96) 

ε = Acceptable Error (±3 mph) 

 

According to Oppenlander (1976), the allowable errors range between ±1 mph to ±3 mph 

for „before and after‟ entailing operational improvement of roadways. In this study the 

allowable error is assumed to be ±3 mph. During the MAS only (before period) 45 travel 

time runs were determined. The resulting mean and standard deviation for the average 

travel speed through the work zone were determined to be 37.5 mph and 8.74 mph 

respectively. The resulting minimum required sample size of travel time runs is 

determined by the above Equation to be: 
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The actual number of travel time runs for the MAS, early SDLMS, and late SDLMS 

exceeded the minimum required number of runs (nMAS=63; nearly=67; nlate= 69). A 

Levene‟s test was conducted to test the homogeneity of travel time variances for the 

MAS, early SDMLS, and late SDLMS. Levene‟s test indicated the variances significantly 

different (P-value= 0.024). Therefore, the unequal variance t-test was performed to 

determine whether there exists a significant difference in the travel times between the 

three treatments. The average travel time for the MAS, early and late SDMLS are 

3.97minutes, 3.87 minutes, and 3.78 min respectively and the resulting p-values are 0.302 

(comparing early SDLMS to MAS), 0.532 (comparing late SDLMS to MAS), and 0.539 

(comparing early and late SDMLS) indicating no statistical significant difference 

between the travel times of MAS, early and late SDLMS. Table 5.3 summarizes the 

travel time comparison between the three treatments. 

 

Table 5.3: Travel Time Comparison 

 

 

5.3 Conclusions 

 

The throughput over demand volume of the work zone under the control and test MOT 

plans was used as a measure of effectiveness to explore the impact of the early and late 
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SDLMS on work zones. Results showed that the early SDLMS enhances work zone mean 

throughput over demand volume significantly. The late form of SDLMS increased the 

mean throughput over demand volume, however this increase was not statistically 

significant. 

 

The travel time through the work zone under the control and test MOT plans were 

examined. The average travel time for the MAS, early and late SDMLS are 3.97 minutes, 

3.87 minutes, and 3.78 min respectively and did not result in statistically significant 

difference. This indicates that the simplified dynamic early and late merge did not affect 

the travel time through the work zone. It should be noted that the travel time under each 

MOT type was taken as the average travel time under all demand volumes and trucks 

percentages in the traffic composition which may be related to the statistical 

insignificance among the differences in the travel time means. A disaggregation of the 

travel time data for different volume levels and trucks percentage level was not possible 

due to the limitation in the data sample size.  

 

The number and percentage of lane changes in zone 1 were the highest for the early 

SDLMS and the lowest for the late SDLMS. This indicates that drivers are complying 

with the messages displayed by the additional PCMS. It was noted during data collection, 

for the early SDLMS, that drivers usually comply with the messages displayed by the 

PCMS. However, it was also observed that when a vehicle uses the closed lane to pass 

vehicles in the queue and merge into the open lane ahead of them, a platoon of vehicles 

follows this vehicle which defeats the purpose of the early SDLMS. 
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This first site was used as a pilot for testing the SDLMS system. It should be noted that 

the sample size of data points was not large enough to conduct thorough analyses of 

travel times and throughput under different demand volumes and truck percentages. It 

should also be noted that the delivery of the SLMDS was delayed by the vendor which 

disabled us from using the RTMS to collect speed data that was intended for use as a 

safety surrogate measure. Since data sample size was a limited the scope of the results a 

simulated two-to-one lane closure configuration work zone is coded in VISSIM. The 

simulation model is calibrated and validated with the available data (See Chapter 7).  
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CHAPTER 6  APPLICATION OF THE SDLMS ON A 

THREE-TO-TWO LANE CLOSURE  
 

 

6.1 Site Location 

 

The selected site was located on Interstate-95 in Palm Beach, Florida as shown in Figure 

6.1. At that location I- 95 consisted of three -lane per direction urban freeway with 60 

mph speed limit (reduced to 50 mph during work). The work zone consisted of a 

resurfacing and milling job on the south bound of I-95 on an 8 mile stretch. A three-to-

two lane closure configuration was adopted and the work zone moved on a daily basis 

covering a length of approximately three miles per day. Data was collected on 

homogenous basic freeway segment of I-95.  

 
6.2 DATA Collection  

 

Four digital camcorders were set in the field labeled C-1, C-2, C-3, and C-4 as shown in 

Figure 6.2. To synchronize the camcorders spatially (i.e. upon daily relocation), C-1 was 

always located behind the first PCMS, C-2 was always located behind the additional 

PCMS, C-3 was always located by the beginning of the lane closure, and C-4 was always 

located at the end of the lane closure. All four camcorders were started at the same time 

to synchronize the temporal events and flow of vehicles. Data was collected on the same 

site for the MAS, early SDLMS, and late SDLMS for two days each. From C-1, C-2, C-3, 

and C-4, per-lane vehicle counts including vehicle classification were extracted in 5 

minutes intervals in the laboratory. The zone between C-1 and C-2 is identified as zone 1 
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and the zone between C-2 and C-3 is identified as zone 2. The difference between the 

vehicle counts (including vehicle classification) in the closed lane between C-1 and C-2 

is the number of lane changes made in zone 1. The remaining vehicle counts (including 

vehicle classification) remaining in the closed lane at C-2 is the number of lane changes 

in zone 2. 

 

Since the TRMS was available during the MAS, early SDLMS, and late SDLMS, speed 

data is extracted and used as a safety surrogate measure. Recall, from the previous site 

this was not possible due to delay in the system‟s delivery. The RTMS was temporally 

synchronized with C-1, C-2, C-3, and C-4 and the PCMS activation time (recorded by the 

RTMS) was extracted and concatenated temporally to the vehicle count data. From C-1 

the demand volume for the work zone was determined. From C-4 the throughput of the 

work zone was determined. 
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Figure 6.1: Data Collection Site, Palm Beach, Florida
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Figure 6.2: Cameras Location 

 

6.2 Safety MOE  

 

The speed fluctuation at the location of the RTMS is taken as the safety measure of 

effectiveness (MOE). The speed fluctuation is the difference in average speed over two-

minute consecutive time intervals. If the speed fluctuation is high one can conclude that 

the risk of accident is higher. Figure 6.3 shows the distribution of the speed fluctuations 

under the MAS, early SDLMS, and late SDLMS treatments in that order. Lane 1 is the 

closed lane, lane 2 is the middle lane and lane 3 is the outer lane. A negative speed 

fluctuation means a speed drop between two consecutive time intervals and a positive 

speed fluctuation means a speed increase between two consecutive time intervals. 

Examining Figure 6.3, one can conclude that work zone under the MAS regime 

undergoes the highest speed fluctuations. The range of speed fluctuation for the closed 

lane (lane 1) under the MAS MOT plans varies between -48mph to 47mph, compared to 

Zone 2 Zone1 

Zone1 
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a range of -9 mph to 7 mph for the dynamic early merge and a range of -5 mph to 3 mph 

to the dynamic late merge. The range of speed fluctuation for the middle lane (lane 2) 

varies from -12.5 mph to 17.5 mph for the MAS MOT plans compared to -8 mph to 5 

mph for the dynamic early merge and -6 mph to 5 mph for the dynamic late merge. As 

for the outer lane (lane 3) the speed fluctuation varies from -66 mph to 68 mph for the 

MAS system compared to a range of -13 mph to 10 mph for the dynamic early merge and 

a range of -5 mph to 7 mph for the dynamic late merge (See Figure 6.3). Figure 6.4 

compares the speed fluctuations for lanes 1, 2, and 3 under different demand volumes for 

the three different MOT types. Looking at MAS, the speed fluctuation for lane 1 (closed 

lane) and lane 3 (the outer lane) are the highest for demand volumes below 1,500 veh/hr. 

Figure 6.4 shows that the speed fluctuation for lane 2 is fairly stable under different 

demand volumes. Looking at early and late charts from Figure 6.4, one can conclude that 

the speed fluctuation is fairly similar under all demand volumes.  

 

The next step was to examine the speed fluctuations in each lane under different demand 

volumes. To complete this task, the demand volumes were split into 5 categories. The 

first demand volume labeled v1 varies between 1 and 500 veh/hr. The second demand 

volume labeled v2 varies between 501 and 1000 veh/hr. The third demand volume v3 

category varies between 1001 and 1500 veh/hr. The fourth demand volume v4 category 

ranges from 1501 and 2000 veh/hr and the fifth demand v5 is greater than 2001 veh/hr.  
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Figure 6.3: Speed Fluctuation per lane  
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Figure 6.4: Speed Fluctuation for MAS/Early/Late Under Different Volumes 

MAS 

MAS Early Merge 

Late Merge 
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Table 6.1 displays the means of speed fluctuations under different volumes. Levene‟s 

tests revealed inhomogeneous variances of the speed fluctuations distributions. 

Therefore, unequal variance t-test comparing fluctuation means in each lane under 

different volumes were conducted and results are shown in Table 2. In table 6.2 the 

statistically significant differences between the speed fluctuation means (p-value<0.05) 

are highlighted in grey. As shown by Table 6.1, the mean speed fluctuation in lane 1 

(closed lane) was the highest under the MAS system for all demand volumes. The p-

values of the differences in those means are statistically significant (highlighted in grey in 

Table 6.2). This means that the dynamic late merge and the dynamic early merge have 

lower speed fluctuations in the closed lane under all demand volumes compared to the 

MAS system. Comparing the dynamic early merge and the dynamic late merge mean 

speed fluctuations in the closed lane, Table 6.1 shows that the mean speed fluctuation for 

the early merge are lower than those of the late merge under demand all demand 

volumes.  

 

Looking at the speed fluctuations in the middle lane (lane 2), Table 6.1 shows that the 

mean speed fluctuations are the highest for the MAS system compared to dynamic early 

merge and dynamic late merge under all demand volumes. However, Table 6.2 shows 

that the mean speed fluctuations under the MAS are significantly higher than the mean 

speed fluctuations under the dynamic late merge only for volumes for volumes greater 

than 1500 veh/hr (and marginally at volumes between 1000 and 1500 veh/hr). Table 6.2 

also shows that the mean speed fluctuations under the MAS are significantly higher than 

the mean speed fluctuations under the dynamic early merge system for volumes ranging 
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between 500 and 1500 veh/hr. Comparing the mean speed fluctuations under the dynamic 

early merge and the dynamic late merge Table 6.1 shows that the mean speed fluctuations 

are lower for the dynamic early merge. However, there is no significant difference 

between the speed fluctuations in the middle lane (Lane 2).  

 

Looking at the speed fluctuations in lane 3 (outer lane), Table 6.2 shows that the mean 

speed fluctuations are the highest under the MAS system compared to the dynamic early 

merge and  the dynamic late merge under all volumes. However, Table 6.1 and 6.2 show 

that the mean speed fluctuations for the MAS system is significantly higher than the 

mean speed fluctuation for dynamic early and dynamic late merge for volumes under 

1000 veh/hr. Moreover, Table 6.1 and 6.2 show a marginal significance indicating that 

the mean speed fluctuation for the late merge is lower than the mean speed fluctuation for 

the MAS system for volumes ranging 1000veh/hr to 2000 veh/hr.  

 

Table 6.1 Mean Speed Fluctuations 

Late Merge Early Merge MAS

Lane1 v1 1.50 0.32 16.94

Lane1 v2 0.74 0.63 5.75

Lane1 v3 0.72 0.62 4.78

Lane1 v4 0.98 0.00 2.63

Lane1 v5 1.56 N/A 2.20

Lane2 v1 1.50 1.24 1.22

Lane2 v2 1.69 1.63 2.39

Lane2 v3 1.72 1.43 3.49

Lane2 v4 1.95 2.50 4.32

Lane2 v5 1.50 N/A 3.40

Lane3 v1 2.00 1.56 16.17

Lane3 v2 1.51 1.93 9.27

Lane3 v3 1.79 2.52 5.88

Lane3 v4 1.52 4.75 5.32

Lane3 v5 1.38 N/A 1.40

Mean Speed Fluctuation (mph)
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Table 6.2 Unequal variance t-test p-values 

Late Merge Vs. MAS Early Merge Vs. MAS Early Merge Vs. Late Merge

lane1 v1 0.2188 0.0000 0.0153

lane1 v2 0.0277 0.0052 0.5597

lane1 v3 0.0054 0.0850 0.6927

lane1 v4 0.0005 0.0384 0.0733

lane1 v5 0.4236 N/A N/A

lane2 v1 0.3267 0.9766 0.3257

lane2 v2 0.0715 0.0260 0.9221

lane2 v3 0.0006 0.0157 0.4330

lane2 v4 0.0012 0.4247 0.1242

lane2 v5 0.0286 N/A N/A

lane3 v1 0.0099 0.0000 0.9162

lane3 v2 0.0275 0.0111 0.0572

lane3 v3 0.0633 0.3343 0.1705

lane3 v4 0.0831 0.9388 0.0202

lane3 v5 0.9849 N/A N/A

P-value

 

 

Comparing the mean speed fluctuations between the dynamic early and dynamic late 

merge, Table 6.1 shows that the means speed fluctuations are lower for the dynamic late 

merge under volumes higher than 500 veh/hr. However, Table 6.2 shows that the mean 

speed fluctuation for the dynamic late merge is significantly lower than the mean speed 

fluctuation for the dynamic early merge for demand volumes ranging between 

1500veh/hr and 2000veh/hr.    

 

Table 6.3 summarizes the safety MOE for each lane under different MOT plans. The 

colors compare the dynamic early and late merge to the MAS. The green color means that 

the dynamic early or late merge is better than the MAS. The yellow color means that the 

difference is not significant, and the blue color means that difference is unknown (small 

sample size). To compare dynamic early and late merge we used the letters E and L. As 
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shown by the Table 6.3, the early SDLMS was better than the late SDLMS for Lane1 V1 

and the late SDLMS was better than the early SDLMS for Lane3 V4.  

 

Table 6.3: Comparison of Early SDLMS, Late SDLMS and MAS for Safety 

 

 

 

 

6.3 Operational MOE 

 

The ratio of throughput over demand volume is taken as an operational measure of 

effectiveness to test the impact of the early and late SDLMS on the work zone. The ratio 

of throughput over demand volume of the work zone under the MAS (control) to the 

capacity of the work zone under the early SDLMS (test1) and late SDLMS (test2) were 

compared. The onset of congestion is determined by C-3 shown in Figure 6.2. 

 

Table 6.4 summarizes the variables taken into account to analyze the operational aspects 

of the work zone under three different regimes (MAS, early and late SDLMS). The 

maximum throughput for the work zone under the MAS system is 2,730 veh/hr. The 

maximum throughput under the dynamic early merge is 1890 veh/hr, and the maximum 

throughput under the late merge is 2940 veh/hr. The mean throughputs were 

1064.87veh/hr, 763.96 veh/hr, and 1152.81 veh/hr for the MAS, early SDLMS, and late 

SDLMS respectively. It should noted here that the demand volumes for the MAS and late 

Lane 1 Lane2 Lane3 Lane1 Lane2 Lane3 Lane1 Lane2 Lane3 Lane1 Lane2 Lane3 Lane1 Lane2 Lane3

Dynamic Ealry Merge E

Dynamic Late Merge L

V5

Late and Early Compared to MAS

V4V1 V2 V3
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SDLMS were higher than the demand volumes for the under the early SDLMS (See 

Table 6.4). The differences in demand volumes resulted in the difference in the mean and 

maximum throughputs. To overcome this issue in the analyses the demand volume was 

categorized into 5 categories as will be elaborated on later in this chapter. Looking at 

Table 6.4, one can notice that the mean percent car lane changing in zone one is the 

highest for the dynamic early merge and the lowest for the dynamic late merge. Also 

looking at the percent truck lane changing in zone 1, the highest mean percent lane 

changes is for the dynamic early merge  and the lowest is for the dynamic late merge. 

This means that some drivers are obeying the message displayed by the dynamic message 

boards. 

 

Table 6.4: Descriptive Statistics 

MOT 

Type
Variable Unit Mean Std. Dev. Min Max

Demand Volume Veh/hr 911.92 467.4 120 2580

Throughput Veh/hr 1064.87 488.58 270 2730

% TRK N/A 11.3 10.78 0 50

% Car lane changes in zone 1 N/A 52.08 28.39 0 100

% TRK lane changes in zone 1 N/A 60.68 41.59 0 100

Demand Volume Veh/hr 713.17 406.63 120 1530

Throughput Veh/hr 763.96 377.49 230 1890

% TRK N/A 17.84 19.09 0 74

% Car lane changes in zone 1 N/A 59.55 30.98 0 100

% TRK lane changes in zone 1 N/A 66.34 35.43 0 100

Demand Volume Veh/hr 1209.06 577.11 180 3120

Throughput Veh/hr 1152.81 596.11 60 2940

% TRK N/A 13.84 11.29 0 54

% Car lane changes in zone 1 N/A 46.35 34.24 0 100

% TRK lane changes in zone 1 N/A 38.21 37.38 0 100L
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Unit Minimum Maximum Mean Std. Deviation

Demand Volume Veh/hr 0 2580 911.92 467.4

Throughput Veh/hr 270 2730 1064.87 488.58

Truck % N/A 0 50 11.3 10.78

% Car Lane Change Z1 N/A 0 100 52.08 28.39

% TRK Lane Change Z1 N/A 0 100 60.68 41.59

Ratio (Throughput/Demand) N/A 0 1 0.839 0.202

Demand Volume Veh/hr 120 1530 713.17 406.63

Throughput Veh/hr 0 1890 763.96 377.49

Truck % N/A 0 74 17.84 19.09

% Car Lane Change Z1 N/A 0 100 59.55 30.98

% TRK Lane Change Z1 N/A 0 100 66.34 35.43

Ratio (Throughput/Demand) N/A 0 1 0.8734 0.2071

Demand Volume Veh/hr 180 3120 1209.06 577.11

Throughput Veh/hr 60 2940 1152.81 596.01

Truck % N/A 0 54 13.84 11.29

% Car Lane Change Z1 N/A 0 100 46.35 34.24

% TRK Lane Change Z1 N/A 0 100 38.21 37.38

Ratio (Throughput/Demand) N/A 0.15 1 0.855 0.1766
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6.3.1 Correlation Analysis 
 

A correlation analysis between truck percentage, percent truck lane changing in zone1, 

percent car lane changing in zone 1, and MOT type (MAS, early SDLMS, and late 

SDLMS) is conducted. For the continuous variables including truck percentage, truck 

percentage lane changing in zone 1, and passenger car lane changing in zone one, 

Spearman‟s rank-order correlation and Pearson‟s correlation are used. Pearson‟s 

correlation is a parametric measure of association which measures both the strength and 

the direction of the linear relationship. Spearman correlation is nonparametric measure of 

association based on the ranks of the data values.  From Tables 6.5 and 6.6 one can 

assume no correlation between all continuous variables in question since all correlation 

coefficient are below 0.2. The correlations are statistically significant with very low 

coefficient therefore, they are ignored. 

 

Table 6.5: Spearman’s Correlation 

 

   
TRK % 

TRK % Lane 
Changing in 

Zone 1 

PC % Lane 
Changing  in 

Zone1 

Spearman's rho TRK % Correlation 
Coefficient 

1.000 -.188
**
 -.191

**
 

Sig. (2-tailed) . .000 .000 

N 517 517 517 

TRK % Lane 
Changing in 
Zone 1 

Correlation 
Coefficient 

-.188
**
 1.000 .138

**
 

Sig. (2-tailed) .000 . .002 

N 517 517 517 

PC % Lane 
Change in 
Zone1 

Correlation 
Coefficient 

-.191
**
 .138

**
 1.000 

Sig. (2-tailed) .000 .002 . 

N 517 517 517 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 6.6: Pearson’s Correlation 

 

  
TRK % 

TRK % 
Lane 

Changing 
in Zone 1 

PC % Lane 
Changing  in 

Zone1 

TRK % Pearson Correlation 1 -.100
*
 -.166

**
 

Sig. (2-tailed)  .023 .000 

N 517 517 517 

TRK % Lane 
Changing in 
Zone 1 

Pearson Correlation -.100
*
 1 .146

**
 

Sig. (2-tailed) .023  .001 

N 517 517 517 

PC % Lane 
Changing  in 
Zone1 

Pearson Correlation -.166
**
 .146

**
 1 

Sig. (2-tailed) .000 .001  

N 517 517 517 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

To examine the correlation between a categorical variable with more than two levels and 

a continuous variable, one can compute Friedman‟s test. Table 6.7 shows that the 

resulting p-values of all three Friedman‟s tests are greater than 0.05 indicating no 

significant correlation between MOT type and the percentage of trucks, the percentage of 

trucks changing lanes in zone 1, and the percentage of passenger car changing lanes in 

zone 1.  

 

Table 6.7: Friedman’s tests for correlation between MOT type and continuous 

variables  

 

Test# Variable Vs. MOT type Pr>F

Test 1 TRk% Vs. MOT type 0.63

Test 2 TRK % lane changing in zone 1 Vs. MOT type 0.11

Test 3 PC  % lane changing in zone 1 Vs. MOT type 0.35  
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Although it seems intuitive for a correlation between MOT type and percentage of lane 

changing in zone 1 to exist, the results show no significant correlation. This may be due 

the compliance rate variance. For example during early merge instructions the 

compliance rate may be low therefore drivers may still merge late. On the other hand, 

during late merge compliance rate may be low therefore drivers may still merge early. 

The result of the compliance rate variance in early and late merge may have resulted in 

no significant difference in the correlation between MOT type and percentage lane 

changing in zone 1 for passenger cars and trucks. This same trend was encountered in the 

analysis of the two-to-one work zone lane closure data analyses in Chapter 5. 

 

6.3.2 Evaluating the ratio of throughputs over demand volumes under 

different volume levels 
 

As mentioned earlier the distributions of the demand volumes were different under all 

three MOT types. Therefore, comparing mean throughputs without controlling for 

demand volumes is erroneous. Moreover, comparing the ratios of throughputs over 

demand volumes without controlling for demand volumes is also incorrect. For instance, 

demand volumes for the early SDLMS (mean=713.17 veh/hr) were lower than the 

demand volumes of the late SDLMS (mean=1209.06veh/hr) and if we compare the mean 

ratios of the early SDLMS (763.96/713.17=1.07) to the mean ratios of the late SDLMS 

(1152.81/1209.06=0.95) regardless of the demand volume, results would be erroneous. 

To resolve this issue, demand volumes were split into five categories. Demand volume 

V1 ranges between 1-500 veh/hr, demand volume V2 ranges between 501-1000veh/hr, 

demand volume V3 ranges between 1001-1500veh/hr, demand volume V4 ranges 
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between 1501-2000 veh/hr, and demand volume V5 >2000 veh/hr. After splitting demand 

volumes into five categories the ratios of throughputs over demand volumes were 

determined.  

 

Five linear regression models (one for each demand volume level) were estimated to 

determine the effect of the truck percentages in the traffic composition, percent trucks 

lane changing in zone1, percent cars lane changing in zone 1, and MOT type on the 

throughput over demand volume of the work zone. Table 6.9 summarizes the parameter 

estimates and their significance on the ration of throughputs over demand volume under 

each demand volume level. Looking at the first estimated model in Table 6.9 where the 

demand volume ranges between 1 and 500 veh/hr., it was found the dynamic late merge 

displays a significant (p-value=0.006) negative effect (parameter estimate= -0.234) on the  

compared to the  MAS system. This indicates that under this range of demand volume (1-

500 veh/hr), the MAS resulted in higher throughputs compared to the dynamic late merge 

system.  

 

Looking at the second estimated model for demand volumes ranging between 501veh/hr 

and 1000 veh/hr, results showed that the percentage trucks changing lanes in zone one 

has a significant positive effect on the ratios (parameter estimate = 0.141; p-

value=0.0001). This indicates that the higher the percentage of trucks changing lane in 

zone 1 the higher the ratio (i.e. the throughput of the work zone).  The same model shows 

that the dynamic early merge resulted in significantly higher throughputs (parameter 

estimate = 0.133; p-value=0.014) compared to the MAS system.   
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For demand volume ranging between 1001veh/hr and 1500 veh/hr, the third estimated 

main effect model showed that the percentage trucks changing lanes in zone 1 (parameter 

estimate = 0.104; p-value=0.018)  and the percentage passenger car changing lanes in 

zone 1 (parameter estimate = 0.141; p-value=0.038) have significant positive effect on 

throughputs.  This means that when the truck and passenger cars lane changing in zone 1 

increased, the ratio of throughputs over demand volume increased. The same model 

shows that the dynamic early merge resulted in significantly higher ratios (throughputs 

over demand volume) compared to the MAS system (parameter estimate = 0.029; p-

value=0.059). The truck percentage in the traffic composition displays a marginal 

significance with the ration. In facts, the models shows that the lower the truck 

percentage in the traffic composition, the higher the ratios of throughputs over demand 

volume (parameter estimate = -.288; p-value=0.09).  

 

For demand volume ranging between 1501veh/hr and 2000 veh/hr, the fourth estimated 

main effect model (see Table 6.8) showed that the percentage passenger car changing 

lanes in zone 1 (parameter estimate = 0.166; p-value=0.044) have significant positive 

effect on throughputs.  This means that when the passenger cars lane changing in zone 1 

increased, the throughput increased. The same model shows that the dynamic early merge 

(parameter estimate = 0.156; p-value=0.002) as well as the dynamic late merge 

(parameter estimate = 0.204; p-value=0.031) resulted in significantly higher ratios 

compared to the MAS system. This means the dynamic early merge and dynamic late 

merge resulted in higher throughputs compared to the MAS system under demand 

volumes ranging between 1501 and 2000 veh/hr. 
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Table 6.8 Parameter Estimates Under Different demand volumes (dependent 

variable ratio of throughput over demand volume 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.7: Five Regression Models‟ Results for Each Volume 

 

 

 

 

 

 

 

Parameter Estimate
Standard 

Error
Pr > |t|

Intercept 0.880 0.083 <.0001
% Trucks -0.088 0.149 0.558
% PC Lane Changing in Zone 1 -0.008 0.089 0.925

%TRK Lane Changing in Zone 1 0.032 0.070 0.653

Dynamic Late Merge -0.234 0.083 0.006

Dynamic Early Merge 0.058 0.055 0.291

MAS 0 . .
R-Square=0.19

Parameter Estimate
Standard 

Error
Pr > |t|

Intercept 0.627 0.056 <.0001
% Trucks -0.222 0.161 0.170
% PC Lane Changing in Zone 1 0.071 0.064 0.269
%TRK Lane Changing in Zone 1 0.187 0.048 0.0001
Dynamic Late Merge 0.082 0.050 0.102
Dynamic Early Merge 0.133 0.054 0.014
MAS 0 . .
R-Square=0.22

Parameter Estimate
Standard 

Error
Pr > |t|

Intercept 0.652 0.054 <.0001
% Trucks -0.288 0.168 0.090
% PC Lane Changing in Zone 1 0.141 0.067 0.038
%TRK Lane Changing in Zone 1 0.104 0.044 0.018
Dynamic Late Merge 0.099 0.042 0.187
Dynamic Early Merge 0.029 0.053 0.059
MAS 0.000 . .
R-Square=0.203

Parameter Estimate
Standard 

Error
Pr > |t|

Intercept 0.523 0.074 <.0001
% Trucks 0.004 0.292 0.988
% PC Lane Changing in Zone 1 0.166 0.081 0.044
%TRK Lane Changing in Zone 1 0.122 0.072 0.097
Dynamic Late Merge 0.204 0.063 0.002
Dynamic Early Merge 0.156 0.152 0.031
MAS 0.000 . .
R-Square=0.19

Parameter Estimate
Standard 

Error
Pr > |t|

Intercept 0.760 0.176 0.001
% Trucks -3.068 1.020 0.010
% PC Lane Changing in Zone 1 0.043 0.152 0.782
%TRK Lane Changing in Zone 1 0.569 0.315 0.094
Dynamic Late Merge 0.203 0.176 0.271
Dynamic Early Merge 0.000 . .
MAS 0.000 . .
R-Square=0.23
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For volumes greater than 2000 veh/hr. , the fifth estimated model shows that the dynamic 

late merge has no significant effect on the throughput over demand volume compared to 

the MAS system. The data sample size for the dynamic early merge was not large enough 

therefore; the parameter could not be estimated. This model shows that when the 

percentage trucks in the traffic increases, the ratio of throughputs over demand volume 

decreases significantly (parameter estimate = 3.068; p-value=0.01). 

 

Table 6.9 summarizes the results from the regression analyses. The red color means 

lower ratio than MAS, the color yellow means higher but not significant, the color green 

means higher and significant, the blue color means unknown. To compare dynamic early 

and late merge we used the letters E and L. As shown by the Table 6.10, the late SDLMS 

was better than the early SDLMS for V4. 

 

Table 6.9: Comparison of Early SDLMS, Late SDLMS and MAS  

 

 

 

 

 

6.4 Conclusions  

 

The temporal speed fluctuation at the location of the RTMS of the work zone under the 

control (MAS) and test MOT plans (early and late SDLMS) were compared. The mean 

Dynamic Ealry Merge

Dynamic Late Merge L

V5V2 V3 V4

Late and Early Compared to MAS

V1
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speed fluctuation in the closed lane was the highest under the MAS system for all 

demand volumes. The dynamic late merge and the dynamic early merge have lower 

speed fluctuations in the closed lane under all demand volumes compared to the MAS 

system. Comparing the dynamic early merge and the dynamic late merge mean speed 

fluctuations in the closed lane, results showed that the mean speed fluctuation for the 

early merge are lower than those of the late merge under demand all demand volumes. 

However, the difference in the mean speed fluctuation is only statistically significant 

under demand volume ranging between 1 and 500 veh/hr.  Results showed that the speed 

fluctuations in the middle lane are the highest for the MAS system compared to dynamic 

early merge and dynamic late merge under all demand volumes. However, results showed 

that the mean speed fluctuations under the MAS are significantly higher than the mean 

speed fluctuations under the dynamic late merge only for volumes for volumes greater 

than 1500 veh/hr (and marginally at volumes between 1001 and 1500 veh/hr). The mean 

speed fluctuations under the MAS are significantly higher than the mean speed 

fluctuations under the dynamic early merge system for volumes ranging between 501 and 

1500 veh/hr. Comparing the mean speed fluctuations under the dynamic early merge and 

the dynamic late merge, it was found that the mean speed fluctuations are lower for the 

dynamic early merge. However, there was no significant difference between the speed 

fluctuations in the middle lane.  

 

Looking at the speed fluctuations in the shoulder lane, the mean speed fluctuations are 

the highest under the MAS system compared to the dynamic early merge and the 

dynamic late merge under all volumes. The mean speed fluctuations for the MAS system 
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is significantly higher than the mean speed fluctuation for dynamic early and dynamic 

late merge for volumes under 1000 veh/hr. Moreover, there exist a marginal significance 

indicating that the mean speed fluctuation for the late merge is lower than the mean speed 

fluctuation for the MAS system for volumes ranging 1001veh/hr to 2000 veh/hr. 

Comparing the mean speed fluctuations between the dynamic early and dynamic late 

merge, it was noted that the means speed fluctuations are lower for the dynamic late 

merge under volumes higher than 500 veh/hr. However, it was shown that the mean 

speed fluctuation for the dynamic late merge is significantly lower than the mean speed 

fluctuation for the dynamic early merge for demand volumes ranging between 1500 

veh/hr and 2000 veh/hr. 

 

The ratio of the throughput over demand volume was taken as the operational MOE. 

Results showed that the Dynamic early merge performs significantly better than the 

regular MAS under demand volume ranging between 500 veh/hr and 2000 veh/hr. 

Results also showed that the dynamic late merge perform better than the MAS under 

volumes ranging between 1500 veh/hr and 2000 veh/hr and significantly poorer than the 

MAS under low volumes. Therefore, the late SDLMS is not recommended for 

implementation under low volumes. Results also showed that the late SDLMS performs 

better than the early SDLMS under higher volume (ranging between 1501 veh/hr to 2000 

veh/hr). 

 

Combining safety and operational measures discussed above, some recommendations can 

be drawn regarding the implementation of the early SDLMS and late SDLMS:  
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 For volumes ranging between 0 and 500 veh/hr, it was found that the dynamic 

lane merge performs better than the dynamic late merge and MAS. The dynamic 

late merge shows the poorest performance under this range of volume. 

 

 For volumes ranging between 501 veh/hr and 1000 veh/hr the dynamic early 

merge exhibits the best performance compared to the dynamic late merge and the 

MAS system. 

 

 For volumes ranging between 1001 veh/hr and 1500 veh/hr the dynamic late 

merge exhibits the highest performance compared to the dynamic early merge and 

the MAS system. 

 

 

 For volumes larger than 1501 veh/hr and 2000 veh/hr, dynamic early merging 

data was not available. However, the dynamic lat emerging showed better 

performance than the MAS system. 
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CHAPTER 7  TWO-TO-ONE WORK ZONE LANE 

CLOSURE SIMULATION IN VISSIM 
 

 

As mentioned earlier, one of the objectives of this research is to provide guidelines on the 

implementation of the early and late SDLMS. The data sample size from the first site, 

consisting of a two-to-one lane closure configuration, was limited to certain traffic 

demand level and to a certain motorists‟ adherence level to lane management 

instructions. Therefore, a VISSIM simulation study is conducted to determine the safety 

and operational effectiveness of the early SDLMS and late SDLMS under different traffic 

demand volumes and different drivers‟ compliance rates to the messages displayed by the 

systems.   

 

 

7.1 Available tools to evaluate safety and mobility of drivers at work zones 

 

There exist a wide range of tools to evaluate the safety and mobility of drivers at work 

zone lane closures. The HCM 2000 presents a methodology for estimating the capacity of 

work zones. This methodology suggests using a base capacity value and applying 

adjustment factors for intensity of work activity, effect of heavy vehicles, and presence of 

ramps in the vicinity of the work area. The proposed base capacity is 1,600 pcphpl which 

is obtained from Texas work zone studies. HCM 2000 does not provide any approach for 

estimating queue lengths. 

 

QUEWZ, Queue and User Cost Evaluation of Work Zones (QUEWZ) is a DOS-based 

tool developed by the Texas Transportation Institute. QUEWZ uses the HCM 2000 
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equations to calculate the capacity of the work zone. For Calculation of queue length it 

uses the methodology from HCM 1994 (Krammes et al, 1993). 

 

QuickZone is an analytical tool that can be used for estimating the traffic impacts of work 

zones. It was developed by Mitretek Systems for the FHWA that allows flexible and fast 

estimation of work zone traffic impacts. QuickZone is an open-source that enables DOT 

to customize the latter to be applicable in their specific work zones. For instance, MD-

QuickZone is the QuickZone customized for Maryland‟s work zones (MD-QuickZone). 

QuickZone requires more time and efforts compared to QUEWZ and compares expected 

travel demand with proposed capacity by facility on an hourly basis to estimate delay and 

mainline queue length (Quickzone, 2001). 

 

DELAY Enhanced 1.2 is an application developed by Martin Knopp from FHWA to 

quickly estimate the traffic impacts of incidents. This model could be applied to short 

term work zone lane closures. The program has a good graphical user interface, which 

makes it easier for the user to input the data and visualize the queue length (FHWA).   

 

Microscopic Simulation models such as VISSIM, CORSIM, SimTraffic, etc. can be 

utilized to assess traffic impacts at work zones. Heaslip et al., (2009) used CORSIM to 

estimate work zone freeway capacity. Chatterjee et al. (2009) replicated work zones in 

VISSIM and recommended driving behavior parameter values for use in VISSIM.  

Beacher et al. (2004), evaluated the late merge work zone traffic control strategy using 
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VISSIM. Park (2002) developed and studied variable speed limit logic in work zones 

using VISSIM.   

 

The above listed tools have the capability to assess the capacity of work zones but most 

do not offer the flexibility of adjusting for the lane management strategy suggested in this 

study. VISSIM is microscopic stochastic simulation software that enables us of creating 

specific scenarios via vehicle actuated programming (VAP). A program reflecting our 

algorithm (of dynamic lane merging) can be written in Visual Basic to communicate with 

VISSIM in real-time. The next sections of this chapter introduce VISSIM and elaborate 

on the methodology followed in simulating the dynamic lane merging in VISSIM.   

 

7.2 Simulation in VISSIM 

 

VISSIM is a microscopic, time step and behavior based simulation model. VISSIM is a 

commercially available traffic simulation package developed by PTV AG, Karlsruhe, 

Germany, and distributed in the United States by PTV America, Inc. The software can 

analyze traffic and transit operations under user defined conditions, such as lane 

configuration, traffic composition, traffic signals, transit stops, etc., thus making it a 

useful tool for the evaluation of various alternatives based on transportation engineering 

and planning measures of effectiveness (VISSIM User manual, 2007). 

 

According to the VISSIM User Manual the accuracy of a traffic simulation model is 

mainly dependent on the quality of the vehicle modeling, e.g. the methodology of moving 

vehicles through the network (VISSIM User manual, 2007).  In contrast to less complex 
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models using constant speeds and deterministic car following logic, VISSIM uses the 

psycho-physical driver behavior model developed by Wiedemann in 1974. The basic 

concept of this model is that the driver of a faster moving vehicle starts to decelerate as 

he reaches his individual perception threshold to a slower moving vehicle.  Since this 

driver cannot exactly determine the speed of that adjacent vehicle, his speed will fall 

below that vehicle‟s speed until he starts to slightly accelerate again after reaching 

another perception threshold. This results in an iterative process of each vehicle‟s 

acceleration and deceleration. 

 

VISSIM simulates the traffic flow by moving “driver-vehicle-units” through a network. 

Every driver has a specific behavior characteristics assigned to their specific vehicle type. 

As a consequence, the driving behavior corresponds to the technical capabilities of his 

vehicle. Attributes characterizing each driver-vehicle-unit can be categorized into three 

categories, they are: technical specifications of the vehicle, behavior of driver-vehicle-

unit, and independence of driver-vehicle-units. More specifically each category includes 

parameters such as:  

 Technical specifications of the vehicle 

o Length 

o Maximum speed 

o Potential acceleration 

o Actual position in the network 

o Actual speed and acceleration 

 Behavior of driver-vehicle-unit 
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o Psycho-physical sensitivity thresholds of the driver (also known as their 

ability to estimate thresholds and level of aggressiveness) 

o Memory of driver 

o Acceleration based on current speed and driver‟s desired speed 

 Interdependence of driver-vehicle-units 

o Reference to leading and following vehicles on own and adjacent travel 

lanes 

o Reference to current link and next intersection 

 

Not every technical specification that VISSIM employs are applicable in work zone lane 

closures operations, therefore to reduce model setup and calibration efforts it is important 

that key specifications be identified as either those that have an impact, or those that do 

not have an impact on toll plaza modeling.  The modeling elements that have a direct 

effect on toll plaza operations will receive special attention in both the setup and 

calibration process, while others may not.   

 

7.3 Development of the VISSIM model 

 

The process of coding VISSIM consists of a systematic series of programming processes 

that must be addressed to duplicate an actual traffic situation.  Development of a 

successful model was broken down into three categories; physical design of the work 

zone, vehicle characteristics, and driver behaviors.  The methodology and process for 

developing the first two categories is that model characteristics are to remain fixed for all 
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designs while the driver behavior characteristics are reserved as the parameters used for 

model calibration.  

 

7.3.1 System Layout 
 

 

To build roadways in VISSIM a series of links and connectors were used to represent the 

actual geometry of the work zone. The figure below shows the MOT plans for the 2-to-1 

lane closure and the corresponding resulting nodes and roadway segments in VISSIM.  It 

should be noted that the MOT plan used in the field was first scaled to match the 

dimensions embedded into the VISSIM elements. The roadway is traced on top of the 

image with links and connectors. Figure 7.3.1 shows 5 links and 4 nodes.  The first node 

of the Figure represents the first work zone PCMS. The second node represents the 

location of the additional PCMS where merging information is provided to drivers. Node 

3 represents the lane closure start (1 lane open). Node 4 represents the lane closure end 

(two lanes open). 

 

 
 

Figure 7.3.1: MOT plan Replication in VISSIM 
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7.3.2 Dynamic Lane Merging in VISSIM 
 

Recalling the SDLMS algorithm applied in the field, first the RTMS captures the average 

speed of vehicles over two-minute time intervals and the built-in algorithm checks if the 

speed threshold is reached. If the speed threshold is reached, the additional PCMS 

displays the necessary messages. The PCMS keeps displaying the messages until another 

speed threshold is reached. When the early SDLMS message is displayed, drivers merge 

to the open lane. When the late SDLMS message is displayed, drivers stay in their lane 

until the taper. To mimic the early SDLMS in VISSIM, dynamic decision routing were 

designated. Drivers either follow a decision routing designated to merge early (when 

speed drops below threshold) or follow a random merging (when speed remains above 

speed threshold). To imitate the late SDLMS, dynamic decision routing was also 

designated. Drivers either follow a decision routing designated to stay in their lane until 

the taper (when speed drops below threshold) or follow a random merging (when speed 

above speed threshold).    

 

As mentioned above, the routing decision is dynamic since it reacts based on average 

speeds over two time intervals. Two loop detectors are placed (in VISSIM) at the same 

location of the RTMS. The loop detectors in VISSIM capture individual vehicles speed. 

These loop detectors can communicate with signal controllers and can only interact with 

traffic signals. Since loop detectors cannot directly communicate with the routing 

decision, Vehicle Actuated Programming (VAP) is used. VAP “is an optional add-on to 

VISSIM for the simulation of programmable, phase or stage based, traffic actuated signal 

controls. The control logic is coded in a txt file format and the VAP interpret the control 
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logic commands and creates commands for the VISSIM network. At the same time 

various detectors variables reflecting the current traffic situation are retrieved from the 

simulation and processed in the logic” (VISSIM manual). The algorithm shown in Figure 

7.3.2 is coded in VAP and the control logic alternate between partial routes 1 and 2 (i.e. 

MAS or dynamic early merging).  The following sections will elaborate on the details of 

the routing decisions. 

 
Figure 7.3.2: VAP Logic in VISSIM 

 

 

7.3.2.1 Static routing decisions 

 

As defined in the VISSIM user manual a static route “routes vehicles from a start point to 

an end point using a static percentage for each destination”. Therefore, static routing 

decisions are created to ensure that all vehicles entering the work zone (from node 1) exit 

the work zone (from node 4) (See Figure 7.3.2.1).  
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Figure 7.3.2.1: Static Routing Decision 

 

7.3.2.2 Partial routing decisions 

 

The partial route is defined by the VISSIM user manual “defines a section of one or more 

static routes where vehicles should be redistributed according to the routes and 

percentages defined by the partial routes. After leaving the partial route, vehicles 

continue to travel on their original route”. Partial routes are used to create the early and 

late merge at the work zone. For the dynamic early merge, one partial routing decision 

with two routes; route 1 and route 2 are created. In routes 1 and 2 fraction of vehicles 

going on each route can be selected. For instance, as shown by the VISSIM input in 

Figure 7.3.2.2, route 1 is used by 100% of the vehicles and route 2 by none (0%). Since 

route 1 means that the vehicles are using the open lane (See illustration in Figure 7.3.2.2), 

this means that early merging is activated and vehicles are merging at the location of the 

additional PCMS. Therefore, when the early merge is deactivated the fractions of 

vehicles on route 1 and 2 change from 1 to 0 and 0 to 1 in that order. The alternation 

between route 1 and 2 is based on the speed threshold (50mph as selected in the field).   
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Figure 7.3.2.2: Early SDLMS Partial Routing Decision  

 

 

The same concept was followed for the late SDLMS. However, in this case one partial 

routing decision includes three partial routes. Route 1 is designated for drivers in the 

open lane, route 2 is designated for drivers in the closed lane and route 3 is designated for 

all drivers (in both lanes). For instance, as shown by the VISSIM input in Figure 7.3.2.3, 

route 1 and route 2 have fractions of vehicles of 1 and 1. This means that 100% of the 

vehicles entering the routing decision in the open lane and the closed lane stay in their 
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lane and follow the routing decision without making lane changes until the taper. Route 3 

has a fraction of 0 which means that there are no drivers that are using this route. Figure 

7.3.2.3 shows the routes when the late SDLMS is activated. When the late SDLMS is 

deactivated based on the speed threshold, routes 1 and 2 will have fractions of 0 and 0 

and route 3 will have a fraction of 1 (controlled by the VAP). The illustration in Figure 

7.3.2.3 shows the three different routes. 

 

 
 

 

Figure 7.3.2.3: Late SDLMS Partial Routing Decision 
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7.3.2.3 Vehicle Classification and Drivers’ Compliance  

 

 

An important factor in the SDLMS is the driver‟s compliance rate to the messages 

displayed by the PCMS. Therefore, it is necessary for this simulation model to control for 

drivers compliance rate. For instance, in the early SDLMS, the average speed collected 

by the loop detectors may be less than 50mph (PCMS activated) and the routing decision 

designates route 2 (early merging) then all vehicles follow route 2. In this case 

compliance rate is ignored. The partial routing decision can control specific vehicle 

classes. One can create different vehicle classes, some controlled by the partial routing 

decision and some not controlled by the partial routing decision. Four vehicle classes are 

created; Obey_car, Obey_TRK, Disobey_Car, Disobey TRK. Obey_car and Obey_TRK 

vehicle classes represent the vehicles that are controlled by the partial routing decision 

therefore complying with the PCMS messages. The Disobey_car and Disobey_TRK are 

not controlled by partial routing decision constituting the non complying vehicles.  The 

traffic composition (entering from node 1in Figure 7.3.1) is set to contain all 4 vehicle 

classes. The traffic composition was changed manually to reflect different levels of 

compliance. For instance, Figure 7.3.2.4 shows an example of a traffic composition of 

30% trucks and 70% passenger cars. The compliance rate of passenger cars is 50% and 

the compliance rate for trucks is 30%. 
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Figure 7.3.2.4: Late and Early SDLMS Traffic Composition 

 

 

7.4 Calibration and validation of the VISSIM model 

 

Calibration and validation of the work zone simulated model are needed to assure that 

this model generates representative numerical results that replicate traffic operations in 

the actual work zone in the field. Simulation models calibration is an iterative procedure 

to fine tune the simulated model‟s parameters and settings to achieve acceptable 

numerical results. The validation part is an analytical process that verifies whether the 

simulated model parameter fine tuning process truly represents actual traffic operations.    

 

 

7.4.1 Driving behavior 
 

After completing the original work zone model in VISSIM, this model undergoes an 

initial evaluation to determine its performance level. If the model can simulate the 
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observed conditions within acceptable errors, the model is considered calibrated. 

Otherwise, driving behavior parameter sets are to be adjusted. The driving behavior 

presides over the range of parameters and rules of the car following and lane changing 

models. VISSIM is based on Weidemann‟s “psycho-physical” car-following model and 

lane changing model.   

The Wiedemann 99 car following model (W-99), has 10 user defined driving 

behavior parameters. Each parameter is briefly explained below (VISSIM User Manual): 

 

 CC0 (Standstill distance) defines the desired distance between stopped cars. It has  

       no variation. 

 CC1 (Headway time) is the time (in s) that a driver wants to keep. The higher the   

      value,  the more cautious the driver is. Thus, at a given speed the safety distance    

      dx_safe is    computed to: dx_safe = CC0 + CC1 * v.  The safety distance is   

      defined in the model as the minimum distance a driver will keep while following  

      another car.  In the case of high volumes this distance becomes the value with the   

      strongest influence on capacity. 

 CC2 („Following‟ variation) restricts the longitudinal oscillation or how much   

      more distance than the desired safety distance a driver allows before he  

      intentionally moves closer to the car in front. If this value is set to e.g. 10 ft, the  

      following process results in distances between dx_safe and dx_safe + 10ft.  

 CC3 (Threshold for entering „Following‟) controls the start of the deceleration  

       process or when a driver recognizes a preceding slower vehicle. It defines how  

       many seconds before reaching the safety distance the driver starts to decelerate. 
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 CC4 and CC5 („Following‟ thresholds) control the speed differences during the „ 

Following‟ state. Smaller values result in a more sensitive reaction of drivers to 

accelerations or decelerations of the preceding car, i.e. the vehicles are more 

tightly coupled. CC4 is used for negative and CC5 for positive speed differences.  

 CC6 (Speed dependency of oscillation): Influence of distance on speed oscillation  

       while in following process.  

 CC7 (Oscillation acceleration): Actual acceleration during the oscillation process. 

 CC8 (Standstill acceleration): Desired acceleration when starting from standstill  

 CC9 (Acceleration at 50 mph): Desired acceleration at 50mph 

 

The lane changing model in VISSIM is based on the driver response to the perception of 

the surrounding traffic. The lane changing model is based on the fact the drivers will only 

change lanes if the available gap is smaller than the critical gap. Lane changing has two 

categories based on this model: discretionary lane change; and necessary lane change 

(e.g. work zone lane closure). Readers may refer to Widemann and Reiter (1992) for 

detailed information about the lane changing model. In case of necessary lane change, the 

driving behavior parameters contain the maximum acceptable deceleration for the vehicle 

and the trailing vehicle on the new lane, depending on the distance to the emergency stop 

position of the next connector of the route (VISSIM manual). 

 

As shown in Figure 7.4.1 below, necessary lane changing in VISSIM is governed by 

parameters such as accepted and maximum deceleration rates, safety distance reduction 
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factor (SRF) etc. These parameters explain drivers‟ aggressiveness in accepting/rejecting 

gaps in the adjacent lane.  

 The waiting time before diffusion defines the maximum amount of time a vehicle 

can wait at the emergency stop position waiting for a gap to change lanes in order 

to stay on its route. When this time is reached the vehicle will be taken out of the 

network (diffusion). 

 Min. Headway (front/rear) defines the minimum distance to the vehicle in the 

front that must be available for a lane change in standstill position. 

 Safety distance reduction factor: During lane changes the reduction factor is 

regarded, which takes effect for (1) the safety distance of the trailing vehicle in 

the new lane for the decision whether to change lane or not (2) the safety distance 

during a lane change (3) the distance to the leading (slower) lane changing 

vehicle. During any lane change, the resulting shorter safety distance is calculated 

as follows: original safety distance x reduction factor. The default factor of 0.6 

reduces the safety distance by 40%. After the lane change, the original safety 

distance is regarded again. 
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Figure7.4.1: Lane Changing Model Driving behavior parameter Set 

 

 

 

 Maximum deceleration for cooperative braking: defines the maximum 

deceleration the vehicle would use in case of cooperative braking thus allowing a 

lane changing vehicle to change into its own lane. Cooperative braking uses (1) 

up to 50% of the desired deceleration (cf. section 5.1) until the leading vehicle 

starts changing lane (2) between 50% of the desired deceleration and this user-

defined Maximum deceleration, since a lane changing leading vehicle will not 

expect an extremely high deceleration of the trailing vehicle.      

 

7.4.2 VISSIM Calibration Steps 
 

The calibration process in VISSIM was divided into several steps. First, travel time 

through the work zone was selected as the index of comparison. Second, the required 
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number of simulation runs was determined. Third, an initial evaluation was conducted 

with the VISSIM‟s driving behavior‟s default parameters. If the selected measure of 

effectiveness is different in simulated and real conditions, the following step would be 

necessary. Fourth, an examination of the key parameters was conducted and calibration 

parameters were determined. Multiple runs with different values of the key parameters 

were run by trial and error until the calibration is completed. Fifth, for the model 

validation, the work zone throughput (different dataset) was used to verify the 

homogeneity between the real and simulated environment. 

 

7.4.2.1 Number of Required Simulation Runs 

 

VISSIM is stochastic simulation model; therefore one should determine the required 

simulation repetitions to prove statistical significance. The random individual vehicle 

properties are assigned based on the random seed number used for each simulation run.  

Due to each run‟s variance, multiple repetitions of the same model with different seed 

numbers were required to estimate the mean value with a certain level of confidence that 

the true mean falls within a target interval (Traffic analysis toolbox).  Since prior 

simulation variation data was not available, preliminary simulations were run and the 

following equation was used to determine the minimum required number of runs. 

 

 

Where: 

CI(1-α)%   = (1-α)% confidence interval for the true mean, where alpha 

equals   

N

S
tCI N 1,1%1 2
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  the probability of the true mean not lying within the 

confidence interval 

t(1-α/2),N-1 = Student‟s t-statistic for the probability of a two-sided error      

     summing to alpha with N-1 degrees of freedom, where N 

equals the number of repetitions.  

S       = Standard deviation of the model results 

 

 

 

Table 7.4.2.1: Preliminary Simulation Runs and the Resulting Travel Time 

 

Run Seed# Travel Time 

(sec) 

1 1 305.3 

2 201 308.7 

3 401 305.9 

4 601 305.8 

5 801 305.4 

6 1001 304.9 

7 1201 306.3 

8 1401 306.1 

9 1601 306.4 

10 1801 308.9 

11 2001 305.4 

12 2201 305.9 

13 2401 308.4 

14 2601 307.7 

15 2801 304.3 

16 3001 305.8 

17 3201 307.7 

18 3401 306.6 

19 3601 306.2 

20 3801 309.6 

Average T.T.: 306.57 
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The Table above shows the preliminary simulation runs and the resulting travel time in 

each run.  The following information is now available to determine the required number 

of runs: 

 

Initial number of runs = 20 

Level of confidence = 95% 

α   = 1-0.95 = 0.05 

t(1-α/2),N-1 = t(1-0.05/2),20-1 = 2.093 

X‟ =306.57 

S=1.449 

To determine the number of runs that satisfies the desired confidence interval, the target 

interval was calculated to be 5% of the mean value. Therefore, a confidence interval of 

5% of average which is 15.33 seconds was the target range to obtain from the above 

equation. 

 

Table 7.4.2.2: Number of Runs Required 

 

Number of Runs T-statistics Confidence Interval 

2 12.706 26.04 

3 4.303 7.20 

4 3.182 4.61 

5 2.776 3.60 

6 2.571 3.04 
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From the above Table, it was determined that a minimum of 3 runs (C.I. N=3 <15.33) is 

required with the 95% confidence interval. It was decided that 10 runs (called replications 

later on) are to be conducted.    

 

7.4.2.2 Initial Evaluation of the Network 

 

In this step of the calibration process, the simulation model is run with VISSIM‟s driving 

behavior default values shown in Tables 7.4.2.2 and 7.4.2.3. In order to determine 

whether the default driving behavior parameter set provides acceptable travel time values, 

ten runs with different seed number were executed. Average travel time through the work 

zone was recorded in VISSIM and compared to the field observed travel time.     

 

 

Table7.4.2.2: Default Car Following Driving Behavior Set 

 

CC0 Standstill distance 4.92 ft 

CC1 Headway Time 1.20 s 

CC2 Following Variation 13.12 ft 

CC3 Threshold for Entering 

„Following‟ 

-8 

CC4 Negative „Following 

Threshold‟ 

-0.35 

CC5 Positive „Following Threshold‟ 0.35 

CC6 Speed Dependency of 

Oscillation 

11.44 

CC7 Oscillation Acceleration 0.82 ft/sec2 

CC8 Standstill Acceleration 11.48 ft/sec2 

CC9 Acceleration at 50mph 4.92 ft/sec2 
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Table7.4.2.3: Default Lane Changing Driving Behavior Parameter Set 

 

 Own  Trailing 

Maximum deceleration -13.12 ft/s
2
  -9.48 ft/s

2
 

(-1 ft/sec2) per distance 100 ft  100ft 

Accepted Deceleration -3.28 ft/s
2
  -1.64 ft/s

2
 

 

Waiting Time Before Diffusion 60 s 

Min. Headway (front/rear) 1.64 ft 

To Slower Lane if Collision Time Above 11.00 s  

Safety Reduction Factor 0.1 

Maximum Deceleration for Cooperative Braking -29 ft/s
2
 

 

 

Ten simulation runs with different seed numbers were conducted. The Table below 

shows the average simulated and average field observed travel times. As shown by Table 

7.4.2.5, the mean relative percent error is about 4.04% which is lower than the 5% 

threshold. A t-test was conducted to compare those means and the resulting p-value 

(0.350) demonstrated no significant difference between the simulated and field observed 

travel times. Although the initial evaluation run shows no need for calibration, a 

calibration process was conducted to enhance the errors.    

 

7.4.2.3 Driver Behavior Parameter Selection and Calibration  

 

Before tackling the calibration process, a literature review was conducted to evaluate 

previous freeway and work zone simulation calibration and validation methods. Park et 

al. (2000) developed a calibration tool for stochastic simulation models (VISSIM and 

CORSIM) and conducted a case study on a work zone model calibration. In their case 
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study, Park et al. calibrated all parameters of the car following model ignoring the driving 

behavior parameters of the lane changing model. The optimal calibration parameter set 

was determined using Genetic Algorithms. At each generation of parameter sets, these 

parameters were set in VISSIM (and CORSIM) and the resulting MOE was evaluated. 

This process was repeated until the algorithm converged.  Gomes at al. (2004) calibrated 

a 15 mile freeway section in the VISSIM model. Three driving behavior parameters CC0, 

CC1, and CC4/CC5 pair were manually selected based on visual interpretation of the 

results.  Lownes and Machemehl (2006) evaluated the Weidmann 99 car following 

parameters‟ effect on Freeway simulated capacity in the VISSIM model. Results showed 

that CC0, CC1, CC2, and lane change distance had a statistically significant impact on 

the capacity values. Chitturi and Benekohal (2008) state that CC0 and CC1 are the only 

parameters that impact freeway simulated capacities.  Chatterjee et al. (2009) calibrated a 

simulated freeway work zone in VISSIM. The selected parameters were CC1, CC2 from 

the car following model. Moreover, Chatterjee at al. were the first to select the Safety 

distance Reduction Factor (SRF) from the lane changing model as a calibration 

parameter. SRF as defined earlier reflects the aggressiveness of the drivers when 

changing lanes. 

 

Previous literature showed that CC0, CC1, CC2, CC4/CC5, and SRF are candidate 

parameters for the work zone model calibration. Chatterjee et al. (2009) argued that 

between parameters CC0 and CC1 determining the safety distance dxsafe=CC0+CC1*v 

(that in turn determines capacity) only CC1 affects the safety distance significantly. 

According to the same study, it was concluded from visual interpretation that CC4/CC5 
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pair less than 3 resulted in unstable car following process and values higher than 3.0 did 

not result in variation of the MOE. After examining previous driving behavior calibration 

parameter selection, it was decided that CC0 and C4/C5 pair be dropped. The selected 

parameters for this calibration process are CC1, CC2, and SRF. Table 7.4.2.4 shows the 

ranges of these parameters. 

 

Table 7.4.2.4: Ranges of Driving Behavior Parameters 

 

Parameters Minimum Maximum 

CC1 0.9s 1.8s 

CC2 10ft 55ft 

SRF 0.1 0.55 

 

 

Different combinations of these parameters were created. CC1 was incremented by 0.1 

seconds, CC2 by 5 ft, and SRF by 0.05. CC1, CC2, and SRF resulted in 10 intervals each. 

Therefore 10
3
= 1,000 combinations of these parameters are possible.  To minimize the 

1,000 possible combinations, a trial and error procedure was followed in this calibration 

process. For each run in VISSIM, 10 iterations with different seed numbers were 

completed. The Table 7.4.2.5 summarizes significant runs completed in VISSIM. In run, 

2 the headway time (CC1) was increased to 1.5 seconds, the following variation (CC2) 

was increased to 50ft, and the safety reduction factor (SRF) was increased to 0.5. The 

resulting simulated mean travel time (253.63 seconds) was significantly larger than the 

field measured travel time (P-value=0.001; error~10%). In this case VISSIM was 

overestimating travel time. For run 3, CC1 was kept constant, the following variation 

(CC2) was decreased to 40ft, and the SRF was decreased to 0.45.  
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Table 7.4.2.5: Dynamic Early Merging Calibration Process 

Car Following Model Default Parameter Values Default Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Run11 Run 12

CC0 Standstill distance 4.92 ft 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92

CC1 Headway Time 1.20 s 1.2 1.50 1.50 1.50 1.50 1.25 1.10 1.10 1.00 0.50 0.50 0.50

CC2 Following Variation 13.12 ft 13.12 50.00 40.00 35.00 35.00 35.00 20.00 10.00 10.00 10.00 10.00 10.00

CC3 Threshold for Entering 'Following' -8 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00

CC4 Negative 'Following Threshold' -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35

CC5 Positive 'Following Threshold' 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

CC6 Speed Dependency of Oscillation 11.44 11.44 11.44 11.44 11.44 11.44 11.44 11.44 11.44 11.44 11.44 11.44 11.44

CC7 Oscillation Acceleration 0.82 ft/sec2 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

CC8 Standstill Acceleration 11.48 ft/sec2 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48 11.48

CC9 Acceleration at 50mph 4.92 ft/sec2 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92

Lane Changing Model Default Parameter Values

Own Trailing

Maximum deceleration -13.12 ft/s
2

-9.48 ft/s
2

-9.48 -9.48 -9.48 -9.48 -9.48 -9.48 -9.48 -9.48 -9.48 -9.48 -9.48 -9.48

(-1 ft/sec2) per distance 100 ft 100ft 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Accepted Deceleration -3.28 ft/s2 -1.64 ft/s2
-1.64 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64 -1.64

60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00

1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64

11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00

0.1 0.50 0.45 0.45 0.35 0.35 0.20 0.20 0.25 0.25 0.50 0.40

-29.00 -29.00 -29.00 -29.00 -29.00 -29.00 -29.00 -29.00 -29.00 -29.00 -29.00 -29.00

240.1 253.63 250.27 244.03 243.11 241.60 239.50 239.26 238.60 236.49 222.10 234.60

230.77 230.77 230.77 230.77 230.77 230.77 230.77 230.77 230.77 230.77 230.77 230.77

4.04% 9.91% 8.45% 5.75% 5.35% 4.69% 3.78% 3.68% 3.39% 2.48% -3.76% 1.66%

0.350 0.001 0.006 0.157 0.1873 0.27 0.365 0.361 0.38 0.54 0.35 0.53

*10 Iterations with different seed number were computed for each run 

*Run Number

Average Simulated Travel Time (sec)

Average Observed Travel time (sec)

% Error

T-TEST

Safety Reduction Factor 0.1

Maximum Deceleration for Cooperative Braking -29 ft/s2

Base Driving Behavior Paramter Set

Travel Time Evaluation

Waiting Time Before Diffusion 60 s

Min. Headway (front/rear) 1.64 ft

To Slower Lane if Collision Time Above 11.00 s 
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The resulting simulated mean travel time (250.27 seconds) was significantly larger than 

the field measured travel time (P-value=0.006; error~8.45%). In run 4, CC1 and SRF 

were kept constant while CC2 was decreased to 35ft. The resulting simulated mean travel 

time (244.03 seconds) was not statistically significantly different than the field measured 

travel time (P-value=0.157; error~5.75%). Since the default parameter values provided 

lower errors, the calibration process was continued. In run 6, CC1 was decreased to 1.25 

second, CC2 maintained at 35ft, and the SRF reduced to 0.35. The resulting simulated 

mean travel time (241.60 seconds) was not statistically significantly different than the 

field measured travel time (P-value=0.27; error~4.69%). Note that the resulting error 

from this simulation is acceptable (<5%). In run 7, CC1 was further decreased to 1.10 

second, CC2 was decreased to 20ft, and the SRF reduced to 0.2. The resulting simulated 

mean travel time (239.50 seconds) was not statistically significantly different than the 

field measured travel time (P-value=0.365; error~3.78%). It should be noted that the 

error in run 7 was enhanced compared to the error resulting from the initial evaluation 

run. In run 8, CC1 and SRF were kept constant while CC2 was decreased to 10ft. The 

resulting mean simulated travel time (239.26sec) did not vary significantly compared to 

run 7. In run 9, CC1 was decreased to 1 second, SRF increased to 0.25 while CC2 

maintained at 10ft. The resulting mean simulated travel time decreased slightly to 238.60 

seconds and the error decreased to 3.39%. In run 10, CC1 was further decreased to 0.5 

seconds while SRF and CC2 remained constant. The resulting simulated travel time 

decreased to 236.49 seconds decreasing the error to 2.48%. In run 11, CC1 and CC2 were 

kept constant and SRF was increased to 0.50. The simulated travel time decreased 

significantly to 222.10 seconds making this simulation model underestimate travel time 
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by 3.76%. In run 12, CC1 and CC2 were kept constant and SRF was decreased to 0.4, the 

resulting mean simulated travel time increased to 234.60 seconds and the error to 1.66%. 

During this calibration process, it was shown that the error was reduced from 4.04% in 

the initial evaluation (with the default parameter set for the driving behavior) to 1.66% in 

run 12.  

 

7.4.2.5 SDLMS and MAS Validation 

 

 

The validation of the VISSIM work zone model consisted of several parts. First, the early 

SDLMS is validated using throughput at the onset of congestion as the MOE. A different 

field dataset is used for that purpose.   Second, the late SDLMS was validated with the 

same driving behavior parameter sets using travel time and throughput at the onset of 

congestion as MOEs. Third, the MAS was validated with the same driving behavior 

parameter sets using throughput at the onset of congestion as a MOE.   

 

Table 7.4.2.6 shows the early SDLMS validation runs. From the calibration process, runs 

7 through 12 resulted in acceptable p-values (>0.05) and acceptable errors (<5%) that 

were also improved compared to the initial evaluation run. The driving behavior 

parameters sets corresponding to these runs are used for the validation process. For each 

validation run 10 iterations with different seed numbers are completed and the resulting 

throughputs were collected.  Looking at the Table below, Run 12 results in the best error 

(error=-0.75%, p-value =0.47). The next step of the validation process was to validate the 

model for the late SDLMS.  
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Table 7.4.2.6:  Early SDLMS Validation 

Car Following Model Default Parameter Values Run 7 Run 8 Run 9 Run 11 Run 12

CC0 Standstill distance 4.92 ft 4.92 4.92 4.92 4.92 4.92

CC1 Headway Time 1.20 s 1.10 1.10 1.00 0.50 0.50

CC2 Following Variation 13.12 ft 20.00 10.00 10.00 10.00 10.00

CC3 Threshold for Entering 'Following' -8 -8.00 -8.00 -8.00 -8.00 -8.00

CC4 Negative 'Following Threshold' -0.35 -0.35 -0.35 -0.35 -0.35 -0.35

CC5 Positive 'Following Threshold' 0.35 0.35 0.35 0.35 0.35 0.35

CC6 Speed Dependency of Oscillation 11.44 11.44 11.44 11.44 11.44 11.44

CC7 Oscillation Acceleration 0.82 ft/sec2 0.82 0.82 0.82 0.82 0.82

CC8 Standstill Acceleration 11.48 ft/sec2 11.48 11.48 11.48 11.48 11.48

CC9 Acceleration at 50mph 4.92 ft/sec2 4.92 4.92 4.92 4.92 4.92

Lane Changing Model Default Parameter Values

Own Trailing

Maximum deceleration -13.12 ft/s
2

-9.48 ft/s
2

-9.48 -9.48 -9.48 -9.48 -9.48

(-1 ft/sec2) per distance 100 ft 100ft 100.00 100.00 100.00 100.00 100.00

Accepted Deceleration -3.28 ft/s
2

-1.64 ft/s
2

-1.64 -1.64 -1.64 -1.64 -1.64

60.00 60.00 60.00 60.00 60.00

1.64 1.64 1.64 1.64 1.64

11.00 11.00 11.00 11.00 11.00

0.20 0.20 0.25 0.50 0.40

-29.00 -29.00 -29.00 -29.00 -29.00

1207.00 1216.00 1220.00 1260.80 1262.00

1271.60 1271.60 1271.60 1271.60 1271.60

-5.08% -4.37% -4.06% -0.85% -0.75%

0.1 0.17 0.18 0.41 0.47

*10 Iterations with different seed number were computed for each run 

Average Observed Throughput (Veh/hr)

% Error

T-TEST

*Run NumberBase Driving Behavior Paramter Set

Waiting Time Before Diffusion 60 s

Min. Headway (front/rear) 1.64 ft

To Slower Lane if Collision Time Above 11.00 s 

Safety Reduction Factor 0.1

Maximum Deceleration for Cooperative Braking -29 ft/s2

Throughput Evaluation

Average Simulated Simulated Throughput (veh/hr)
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The driving behavior parameters sets corresponding to runs 7 through 12 from the early 

SDLMS calibration process are used for the validation process of the late SDLMS. Ten 

iterations were completed for each run and the resulting throughputs and travel times are 

recorded (See Tables 7.4.2.7 and 7.4.2.8).  Table 7.4.2.7 shows the validation of the late 

SDLMS using travel time. According to the results, Run 11 (error = 0.18%, p-

value=0.85) and Run 12 (error = -0.33%, p-value=0.83) resulted in the best error 

percentages. Table 7.3.3.2.8 shows the validation of the late SDLMS using throughputs.  

According to the results, Run 11 (error = 3.85%, p-value=0.16) and Run 12 (error = 

3.56%, p-value=0.18) resulted in the best error percentages. The next step of the 

validation process was to validate the work zone simulation model with the MAS system. 

The driving behavior parameters sets corresponding to runs 7 through 12 from the early 

and late SDLMS calibration process are used for the validation process of the MAS 

simulation model. Table 7.4.2.9 shows the calibration of the MAS using throughputs. 

Runs 9 (error=4.19%, p-value=0.31) and run 12 (error=4.54%, p-value=0.34) resulted in 

the best error compared to the other runs. 

 

Looking at the overall calibration and validation process of the early SDLMS, late 

SDLMS, and MAS, the driving behavior parameters of run 12 were selected since they 

resulted in the most acceptable errors. The final headway time (CC1) value is 0.5 

seconds, the following variation (CC2) value is 10 ft, and the safety reduction factor 

(SRF) is 0.40.   
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Table 7.4.2.7: Late SDLMS Validation Process (Travel Time) 

Car Following Model Default Parameter Values Default Run 7 Run 8 Run 9 Run11 Run 12

CC0 Standstill distance 4.92 ft 4.92 4.92 4.92 4.92 4.92 4.92

CC1 Headway Time 1.20 s 1.2 1.10 1.10 1.00 0.50 0.50

CC2 Following Variation 13.12 ft 13.12 20.00 10.00 10.00 10.00 10.00

CC3 Threshold for Entering 'Following' -8 -8.00 -8.00 -8.00 -8.00 -8.00 -8.00

CC4 Negative 'Following Threshold' -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35

CC5 Positive 'Following Threshold' 0.35 0.35 0.35 0.35 0.35 0.35 0.35

CC6 Speed Dependency of Oscillation 11.44 11.44 11.44 11.44 11.44 11.44 11.44

CC7 Oscillation Acceleration 0.82 ft/sec2 0.82 0.82 0.82 0.82 0.82 0.82

CC8 Standstill Acceleration 11.48 ft/sec2 11.48 11.48 11.48 11.48 11.48 11.48

CC9 Acceleration at 50mph 4.92 ft/sec2 4.92 4.92 4.92 4.92 4.92 4.92

Lane Changing Model Default Parameter Values

Own Trailing

Maximum deceleration-13.12 ft/s
2

-9.48 ft/s
2

-9.48 -9.48 -9.48 -9.48 -9.48 -9.48

(-1 ft/sec2) per distance100 ft 100ft 100.00 100.00 100.00 100.00 100.00 100.00

Accepted Deceleration-3.28 ft/s
2

-1.64 ft/s
2

-1.64 -1.64 -1.64 -1.64 -1.64 -1.64

60.00 60.00 60.00 60.00 60.00 60.00

1.64 1.64 1.64 1.64 1.64 1.64

11.00 11.00 11.00 11.00 11.00 11.00

0.1 0.20 0.20 0.25 0.50 0.40

-29.00 -29.00 -29.00 -29.00 -29.00 -29.00

249.1 237.81 238.02 238.60 235.80 234.60

235.38 235.38 235.38 235.38 235.38 235.38

5.83% 1.03% 1.12% 1.37% 0.18% -0.33%

0.060 0.69 0.6 0.46 0.85 0.83

*10 Iterations with different seed number were computed for each run 

Travel Time Evaluation

Average Simulated Travel Time (sec)

Average Observed Travel time (sec)

% Error

T-TEST

To Slower Lane if Collision Time Above 11.00 s 

Safety Reduction Factor 0.1

Maximum Deceleration for Cooperative Braking -29 ft/s2

Base Driving Behavior Paramter Set *Run Number

Waiting Time Before Diffusion 60 s

Min. Headway (front/rear) 1.64 ft
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Table 7.4.2.8: Late SDLMS Validation Process (Throughputs) 

Car Following Model Default Parameter Values Run 7 Run 8 Run 9 Run 11 Run 12

CC0 Standstill distance 4.92 ft 4.92 4.92 4.92 4.92 4.92

CC1 Headway Time 1.20 s 1.10 1.10 1.00 0.50 0.50

CC2 Following Variation 13.12 ft 20.00 10.00 10.00 10.00 10.00

CC3 Threshold for Entering 'Following' -8 -8.00 -8.00 -8.00 -8.00 -8.00

CC4 Negative 'Following Threshold' -0.35 -0.35 -0.35 -0.35 -0.35 -0.35

CC5 Positive 'Following Threshold' 0.35 0.35 0.35 0.35 0.35 0.35

CC6 Speed Dependency of Oscillation 11.44 11.44 11.44 11.44 11.44 11.44

CC7 Oscillation Acceleration 0.82 ft/sec2 0.82 0.82 0.82 0.82 0.82

CC8 Standstill Acceleration 11.48 ft/sec2 11.48 11.48 11.48 11.48 11.48

CC9 Acceleration at 50mph 4.92 ft/sec2 4.92 4.92 4.92 4.92 4.92

Lane Changing Model Default Parameter Values

Own Trailing

Maximum deceleration -13.12 ft/s2 -9.48 ft/s2
-9.48 -9.48 -9.48 -9.48 -9.48

(-1 ft/sec2) per distance 100 ft 100ft 100.00 100.00 100.00 100.00 100.00

Accepted Deceleration -3.28 ft/s2 -1.64 ft/s2
-1.64 -1.64 -1.64 -1.64 -1.64

Waiting Time Before Diffusion 60 s 60.00 60.00 60.00 60.00 60.00

Min. Headway (front/rear) 1.64 ft 1.64 1.64 1.64 1.64 1.64

To Slower Lane if Collision Time Above 11.00 s 11.00 11.00 11.00 11.00 11.00

Safety Reduction Factor 0.1 0.20 0.20 0.25 0.50 0.40

Maximum Deceleration for Cooperative Braking -29 ft/s2
-29.00 -29.00 -29.00 -29.00 -29.00

Throughput Evaluation

Average Simulated Simulated Throughput (veh/hr) 1099.20 1104.10 1105.30 1103.20 1100.20

Average Observed Throughput (Veh/hr) 1062.33 1062.33 1062.33 1062.33 1062.33

% Error 3.47% 3.93% 4.04% 3.85% 3.56%

T-TEST 0.21 0.15 0.12 0.16 0.18

*10 Iterations with different seed number were computed for each run 

*Run NumberBase Driving Behavior Paramter Set
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Table 7.4.2.9: Validation of MAS  

Car Following Model Default Parameter Values Run 7 Run 8 Run 9 Run 11 Run 12

CC0 Standstill distance 4.92 ft 4.92 4.92 4.92 4.92 4.92

CC1 Headway Time 1.20 s 1.10 1.10 1.00 0.50 0.50

CC2 Following Variation 13.12 ft 20.00 10.00 10.00 10.00 10.00

CC3 Threshold for Entering 'Following' -8 -8.00 -8.00 -8.00 -8.00 -8.00

CC4 Negative 'Following Threshold' -0.35 -0.35 -0.35 -0.35 -0.35 -0.35

CC5 Positive 'Following Threshold' 0.35 0.35 0.35 0.35 0.35 0.35

CC6 Speed Dependency of Oscillation 11.44 11.44 11.44 11.44 11.44 11.44

CC7 Oscillation Acceleration 0.82 ft/sec2 0.82 0.82 0.82 0.82 0.82

CC8 Standstill Acceleration 11.48 ft/sec2 11.48 11.48 11.48 11.48 11.48

CC9 Acceleration at 50mph 4.92 ft/sec2 4.92 4.92 4.92 4.92 4.92

Lane Changing Model Default Parameter Values

Own Trailing

Maximum deceleration -13.12 ft/s
2

-9.48 ft/s
2

-9.48 -9.48 -9.48 -9.48 -9.48

(-1 ft/sec2) per distance 100 ft 100ft 100.00 100.00 100.00 100.00 100.00

Accepted Deceleration -3.28 ft/s
2

-1.64 ft/s
2

-1.64 -1.64 -1.64 -1.64 -1.64

60.00 60.00 60.00 60.00 60.00

1.64 1.64 1.64 1.64 1.64

11.00 11.00 11.00 11.00 11.00

0.20 0.20 0.25 0.50 0.40

-29.00 -29.00 -29.00 -29.00 -29.00

1026.60 1014.30 1011.20 1016.81 1014.60

970.50 970.50 970.50 970.50 970.50

5.78% 4.51% 4.19% 4.77% 4.54%

0.28 0.31 0.33 0.29 0.34

*10 Iterations with different seed number were computed for each run 

% Error

T-TEST

Maximum Deceleration for Cooperative Braking -29 ft/s2

Throughput Evaluation

Average Simulated Simulated Throughput (veh/hr)

Average Observed Throughput (Veh/hr)

*Run Number

Waiting Time Before Diffusion 60 s

Min. Headway (front/rear) 1.64 ft

Base Driving Behavior Paramter Set

To Slower Lane if Collision Time Above 11.00 s 

Safety Reduction Factor 0.1
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7.5 Data Collection and Analyses  

 

 

7.5.1 MOE and data collection 
 

Work zone throughputs and travel times are the selected as operational measures of 

effectiveness. To collect travel time data collection points are located at the beginning of 

the work zone (node 1 where the first PCMS in the MOT plans is located) and the end of 

the lane closure. To collect throughputs, data collection points were selected at the end of 

the lane closure just before both lanes are open again. For the safety evaluation speed 

variance is selected as the surrogate measure of effectiveness. To collect speeds, two data 

collection points are located at the location of the RTMS in the open and closed lane. In 

all three simulation models (early SDLMS, late SDLMS, and MAS) data collection 

points were located exactly at the same locations. 

 

As mentioned earlier the objective of the simulation study is to determine the 

effectiveness of each MOT type (early SDLMS, late SDLMS, and MAS) under different 

driver‟s compliance rate, different truck percentage in the traffic composition, and 

different traffic demand volumes. For that purpose, different levels of each of these 

variables are considered. Four different level of drivers‟ compliance rate, C20 (20% of 

drivers comply to the merging instruction), C40 (40% of drivers comply to the merging 

instruction), C60 (60% of drivers comply to the merging instruction), C80 (80% of 

drivers comply to the merging instruction) are created. Three different level of truck 

percentage in the traffic composition are created, T10 (trucks constitute 10% of the 

demand volume), T20 (trucks constitute 20% of the demand volume),  T30 (trucks 
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constitute 30% of the demand volume). Five different traffic demand volume levels are 

created. V0500 means the traffic demand volume is 500 veh/hr. V1000 means the traffic 

demand volume is 1000 veh/hr. V1500 means the traffic demand volume is 1500 veh/hr. 

V2000 means the traffic demand volume is 2000 veh/hr. V2500 means the traffic demand 

volume is 2500 veh/hr. Having 4 compliance rate levels, 3 truck percentage level, and 5 

traffic demand volume levels resulted in 60 combinations for the early and late SDLMS. 

For the MAS there is no compliance rate since there is no merging instructions, therefore 

the MAS has a total of 15 combinations. Sixty combinations (runs) were completed for 

the early SDLMS and the late SDLMS, and 15 combinations for the MAS resulting in a 

total of 135 runs (combinations). For each run or combination, 10 iterations with different 

seed number were executed.         

 

7.5.2 Work Zone Throughputs  
 

 

Figures 7.5.2-a and 7.5.2-b show the trend of the mean throughputs under different 

combinations of compliance rate, percent trucks, demand volumes, and MOT type.  

Examining these two figures one can notice that the mean throughputs seem similar 

within each combination under demand volume levels of V500, V1000, V1500 for all 

MOT types. However, the mean throughputs seem dissimilar within each combinations 

under volume levels V2000 and V2500. Particularly, the early SDLMS seem to have the 

highest mean throughputs, followed by the MAS, then the late SDLMS. Looking at charts 

and Tables 7.5.2-a and 7.5.2-b with the percentage of trucks of 10% and different 

compliance rate, one can see the early SDLMS mean throughputs increase slightly as the 

compliance rate increases.  



166 

 

 

 

Figure 7.5.2-a: Throughputs under different combinations (C20, C40) 
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Figure 7.5.2-b: Throughputs under different combinations (C60, C80) 
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For the exact values of these means the reader may consult Tables 7.5.2-a and 7.5.2-b. 

However, it is noticed that when the percent trucks increases to 20%, if we compare 

C20T20, C40T20, C60T20, and C80T20 for the early SDLMS, one can notice that as the 

compliance rate increases the mean throughout decreases. The same trend is shown under 

percent trucks 30%.  Even though the trends show a decreasing mean throughput for the 

early SDLMS as the truck percentage and compliance rate increase, these mean 

throughputs are the highest among all MOT types.  Looking at charts with the percentage 

of trucks of 10% and different compliance rate, one can see the late SDLMS mean 

throughputs does not vary considerably when the compliance rate increases. For the exact 

values of these means the reader may consult Tables 7.5.2-a and 7.5.2-b. Moreover, it is 

noticed that when the percent trucks increases to 20%, if we compare C20T20, C40T20, 

C60T20, and C80T20 for the late SDLMS, one can notice that as the compliance rate 

increases the mean throughout does not differ noticeably. The same trend is shown under 

percent trucks 30%. 

 

The objective of this simulation study is to determine the MOT with the best performance 

under different combinations. Tables 7.5.2-a and 7.5.2-b provide a summary statistics of 

the work zone throughputs under each combination. Ideally, we would like to know 

under each demand volume level, each compliance rate level, and truck percentage level, 

which MOT type results in the highest throughout. Therefore, for each combination an 

overall F-test was conducted with a null hypothesis that mean throughputs under all three 

MOT types are the same. If the null hypothesis is rejected, pair wise Tukey‟s 

comparisons are completed to determine the difference between each pair of throughput 
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means. In Tables 7.5.2-a and 7.5.2-b, under last three columns, the shaded areas mean 

that there was no need for pairwise comparison of means since the F-test null hypothesis 

was not rejected. In the same column all mean differences superscripted with stars are 

significant at 0.05 significance level. From these tables one can notice that under demand 

volumes V500, V1000, V1500, there were no significant differences in the mean 

throughputs for all compliance rates and trucks percentage in the traffic.  
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Table 7.5.2-a: Throughputs Comparisons (C20, C40) 
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Table 7.5.2-b: Throughputs Comparisons (C60, C80) 
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However, for traffic demand volume levels V2000 and V2500 the early SDLMS results 

in the significantly highest mean throughputs compared to the late SDLMS under all 

combinations.  Tables 7.5.2-a and 7.5.2-b show the early SDLMS compared to the MAS 

has significantly higher mean throughputs under all combinations except when the 

compliance rate is 20% and the truck percentage is 30%. Comparing the MAS to the late 

SDLMS, the mean throughputs were the highest for the MAS under all combinations. 

Moreover, the differences were statistically significant   except for three instances 

(combinations) C20T30 and V2500, C80T20, and V2500, C80 T30 and V2500.   

 

 

7.5.3 Work Zone Travel Times  
 

 

The second selected operational MOE is the travel time through the work zone. Figures 

7.5.3-a and 7.5.3-b show the trends of the mean travel times through the work zones 

under different combinations of compliance rate, percent trucks, demand volumes, and 

MOT type.  Examining these two figures one can notice that the mean travel times seem 

similar within each combination under demand volume levels of V500, V1000, and 

V1500 for all MOT types. However, the mean travel times seem disparate within each 

combination under volume levels V2000 and V2500.  Particularly, the early SDLMS 

seem to have the lowest mean travel time, followed by the MAS, then the late SDLMS. 

Looking at charts with the percentage of trucks of 10% and different compliance rate, one 

can see the early SDLMS mean travel times decrease slightly as the compliance rate 

increases. Specifically when the compliance rate is 80% and the truck percentage is 10% 

the mean travel time drops significantly at demand volume level V2500 (599.16 sec) 

compared to the same combinations under lower compliance rates.  
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Figure 7.5.3-a: Travel Times under different combinations (C20, C40) 
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Figure 7.5.3-b: Travel Times under different combinations (C60, C80) 
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For the exact values of these means the reader may consult Tables 7.5.3-a and 7.5.3-b. It 

is also noticed that when the percent trucks increases to 20%, if we compare C20T20, 

C40T20, C60T20, and C80T20 for the early SDLMS, one can notice that as the 

compliance rate increases the mean travel time decreases slightly to the exception of 

C40T20 where the mean travel time increases to 852.90sec. The same trend is shown 

under percent trucks 30% with the same exception of C40T20 where the mean travel time 

increases to 889.02 sec. For the late SDLMS no clear trend is noticed that when we 

compare the effect of increasing compliance rate at the same truck percentage levels.  

 

Tables 7.5.3-a and 7.5.3-b provide a summary statistics of the work zone travel times for 

each combination of compliance rate level, percentage trucks level in the traffic, traffic 

demand volume level under each MOT type (early SDLMS, late SDLMS, MAS). Since 

preliminary analyses indicated inhomogeneous variances between travel times for each 

combination for the early SDLMS, late SDLMS, and MAS, a Levene‟s test is conducted 

for each combination with the null hypothesis that travel times under the early SDLMS, 

late SDLMS, and MAS are homogenous (See Tables 7.5.3-a and 7.5.3-b). If the null 

hypothesis is rejected, Friedman‟s nonparametric test is conducted for each combination 

with the null hypothesis that travel times means (early SDLMS, late SDLMS, and MAS) 

are equal. If the null hypothesis is rejected meaning at least one travel time mean is 

different than the others, then unequal variance pairewise t-tests are conducted. In Tables 

7.5.3-a and 7.5.3-b, under last three columns, the shaded areas mean that there was no 

need for pair wise comparison of means since the F-test or Friedman‟s test null 

hypothesis was not rejected.  
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In Tables 7.5.3-a, for compliance rate of 20% and truck percentage 10%, one can see that 

the early  SDLMS has significantly lower travel then the late SDLMS and MAS under 

demand volume levels V2000 and V2500. However, comparing the late SDLMS to the 

MAS, MAS has a significantly lower travel time mean under demand volume level 

V2000 and a significantly higher travel time under demand volume V2500.  

 

For a compliance rate of 20% and truck percentage of 20% and 30%, the early SDLMS 

resulted in statistically significant lower travel times compared to the late SDLMS under 

demand volume levels V1500, V2000, and V2500 and statistically significant lower 

travel times compared MAS under demand volume levels of V2000 and V2500. The 

MAS has a significantly lower travel compared to the late SDLMS at demand volume 

levels V1500 and V2000 for 20% and V1500 for 30% trucks. 

 

 For compliance rate of 40% and truck percentage of 10%, the early SDLMS resulted in 

statistically significant lower travel times compared to the late SDLMS and the MAS 

under demand volume level V1500, V2000, and V2500. The MAS has a significantly 

lower travel compared to the late SDLMS at demand volume levels V1500 and V2000.  

 

For compliance rate of 40% and truck percentages of 20% and 30%, the late SDLMS has 

s significantly lower travel times compared to the early SDLMS and MAS under demand 

volume level V0500. The early SDLMS has a significantly lower travel times compared 

to the late SDLMS and MAS under demand volume levels of V1000, V1500, V2000, and 

V2500. The MAS has significantly lower travel times compare to the late SDLMS under 
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demand volume levels of V1000, V1500, V2000 and significantly higher travel times 

compared to the late SDLMS at demand volume level V2500. 

 

For compliance rates of 60% and 80% and trucks percentage of 10%, 20%, and 30% the 

early SDLMS resulted in lower travel times compared to the MAS and late SDLMS 

under all demand volume levels to the exception of C60T30 under level demand volume 

V0500 where results show that there was no significant difference between the mean 

travel times for the early SDLMS and late SDLMS. For compliance rates of 60% and 

80% and trucks percentage of 10%, 20%, and 30% the late SDLMS resulted in 

significantly lower travel times compared to the MAS under demand volume level of 

V0500 and V1000. Under compliance rate of 60% and trucks percentage of 10%, the late 

SDLMS resulted in significantly lower travel times compared to the MAS only under 

demand volume level of V2000. For compliance rate of 60% and trucks percentage 20% 

and 30%, the late SDLMS resulted in significantly higher travel time compared to the 

MAS under demand volume levels of V1500, and V2000. For compliance rate 80% and 

truck percentage of 10%, the late SDLMS resulted in significantly higher travel times 

under demand volume level of V2000 and significantly lower travel times under demand 

volume level V1500 compared to the MAS. For compliance rate 80% and truck 

percentage of 20%, the late SDLMS resulted in significantly higher travel times under 

demand volume level of V2000 and significantly lower travel times under demand 

volume level V2500 compared to the MAS. For compliance rate 80% and truck 

percentage of 30%, the late SDLMS resulted in significantly higher travel times under 
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demand volume level of V1500 and V2000, and significantly lower travel time under 

demand volume level V2500 compared to the MAS. 
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Table 7.5.3-a: Travel times Comparisons (C20, C40) 
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Table 7.5.3-b: Travel times Comparisons (C60, C80) 
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7.5.4 Speed Variance  
 

Spot Speed studies confirmed that higher speed variances have been correlated with 

higher crash rates (Garber and Gadiraju, 1989), and higher crash frequency (Taylor et al., 

2000). In this section, the speed variance is used as a safety surrogate measure to evaluate 

the safety of the MOT types (early SDLMS, late SDLMS, and MAS) for each 

combination. Figure 7.5.4-a and 7.5.4-b show box plot of the speed distributions. For 

example the first chart of Figure 7.5.4-a shows the speed distributions for a compliance 

rate of 20% and a truck percentage of 10% under demand volume level V0500, V1000, 

V15000, V2000, V2500 for all three MOT types (early SDLMS, late SDLMS, and 

MAS). Box plots have the ability to graphically show obvious differences in variances 

among groups. For example, looking at the same chart of Figure 7.5.4-a, one can tell that 

there is a clear difference in speed variances under the MAS, early SDLMS, and late 

SDLMS, for the demand volume level of V2000. Under different demand volume levels 

it is not clear whether there is a difference or not.  

 

The objective of this section is to determine for each combination of demand volume 

level, truck percentage, and compliance rate level, the MOT type that results in the lowest 

speed variance. Tables 7.5.4-a and 7.5.4-b provide the speed standard deviation values 

for each combination of compliance rate level, percentage trucks level in the traffic, 

traffic demand volume level under each MOT type (early SDLMS, late SDLMS, MAS). 

A Levene‟s test is conducted for each combination with the null hypothesis that speed 

variances under the early SDLMS, late SDLMS, and MAS are homogenous (See Tables 

7.5.4-a and 7.5.4-b).  
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Figure 7.5.4-a: Speed distributions (C20, C40) 
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Figure 7.5.4-b: Speed distributions (C60, C80) 
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If the null hypothesis is rejected meaning at least one of the speed variances is different 

than the other two, pair wise F-tests are conducted to determine which speed variances 

are significantly different (early SDLMS Vs. late SDLMS; early SDLMS Vs. MAS; late 

SDLMS Vs. MAS). From Table 7.5.4-a it is shown that for compliance rates of 20% and 

trucks percentages of 10%, 20% and 30%, the speed variance under the late SDLMS is 

significantly higher than the speed variance under the early SDLMS and the MAS and 

that the speed variance under the early SDLMS is significantly higher than the speed 

variance under the MAS for demand volume levels of V0500, V1000, and V1500. For 

compliance rate of 20% and truck percentage of 10% it was found that the speed variance 

under the early SDLMS is significantly lower than the speed variance of the late SDLMS 

and the MAS and that the speed variance under the late SDLMS is significantly lower 

than MAS at demand volume level V2000. For compliance rate of 20% and truck 

percentage of 10% and demand volume level V2500, it was found the early SDLMS 

resulted in significantly the highest speed variance compared to the late SDLMS and the 

MAS and the late SDLMS resulted in the significantly lowest speed variance. 

 

From Table 7.5.4-a, it is shown that for compliance rate of 40% and trucks percentages of 

10%, 20%, and 30%, the speed variance under the MAS is significantly lower than the 

speed variance under the early SLDMS and late SDLMS for demand volume levels of 

V0500, V1000, and V1500. For a compliance rate of 40% and trucks percentages of 10% 

and 20%, it was shown the speed variance was significantly the highest for the MAS 

compared to the late SDLMS and early SDLMS for demand volume level of V2000.  
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Table 7.5.4-a: Speed Variance Comparisons (C20, C40) 
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Table 7.5.4-b: Speed Variance Comparisons (C60, C80) 
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Table 7.5.4-b: Speed Variance Comparisons (C60, C80) 
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However, for a demand volume level of V2500 the early SDLMs resulted in the highest 

speed variance compared to the MAS and late SDLMS. From Table 7.5.4-b, it is shown 

that for a compliance rate of 60% and trucks percentages of 10%, 20%, and 30% the 

MAS resulted in the lowest speed variances for demand volume levels V0500, V1000, 

and V1500. For a compliance rate of 60% and trucks percentages of 10%, 20%, and 30% 

the late SDLMS resulted in the lowest speed variances at demand volume levels of 

V2000, and V2500.    

 

From Table 7.5.4-b, at compliance rate of 80% and trucks percentages of 10%, 20%, and 

30%, the MAS seems to have the lowest speed variances at demand volume levels 

V0500, V1000, V1500, and V2500 compared to the early SDLMS and the late SDLMS. 

At the same compliance rate and trucks percentages of 10% and 20% the late SDLMS 

resulted in the lowest speed variances under demand volume level of V2000. For the 

trucks percentage of 30%, compliance rate of 80%, and demand volume level of V2000, 

the MAS resulted in the lowest speed variance. 

 

7.6 Conclusions  

 

The field study conducted on a two-to-one work zone lane closure configuration was 

limited to certain traffic demand level and to a certain motorists‟ adherence level to lane 

management instructions. Therefore, a simulated work zone model was created in 

VISSIM, calibrated and validated with the field data. The objective of this simulation 

study was to provide guidelines on the implementation of the early and late SDLMS on a 
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two-to-one work zone lane closure configuration under different traffic demand volumes 

and different drivers‟ compliance rates to the messages displayed by the systems.   

 

Safety and operational evaluation of the three MOT types tested, namely the MAS, the 

early SDLMS, and the late SDLMS was conducted. Table 6.6 below summarizes the 

safety and operational effectiveness of the three MOT types. In Table 6.6, the first three 

columns under operations summarize the throughputs for each combination of 

compliance rate, truck percentage in the traffic composition, and demand volume level. 

Only statistically significant results are presented in this table. For each combination the 

results were numbered 1, 2, and 3. One meaning that it is the best to use, 2 meaning 

second best to use, and 3 meaning the third best to use. The best MOT types to use, 

numbered 1, are highlighted in this table. For instance, one may want to know which 

MOT type is best for a work zone at a demand volume level of 1500 veh/hr, truck 

percentage of 20%, and compliance rate of 60%. The cells left blank in table 6.6 reflect 

no significant difference between the combinations. By looking at Table 6.6, one can tell 

that in terms of throughputs, there is no difference in the three MOT types. In terms of 

travel times through the work zone the early SDLMS would be the best choice. In terms 

of safety the MAS is the best choice.  
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Table 7.6: Summary of Operational and Safety MOEs 

 
Key Code: 

Blank: No Significant difference 

1: Best (highlighted), 3: Worst 
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The results obtained by this simulation study show that overall; the early SDLMS 

outperforms the MAS and late SDLMS to the exceptions of very few cases in terms of 

operations (i.e. throughputs and travel times). However, in terms of safety the early 

SDLMS performs poorly compared to the late SDLMS and the MAS. This fact, 

underlines the compromise between safety and operations of a two-to-one work zone lane 

closure. From the safety point of view, the late SDLMS performed well under higher 

volumes (2,000 veh/hr to 2,500 veh/hr) to the exception of higher compliance rates of 

80% compared to the early SDLMS and MAS.  
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CHAPTER 8 CONCLUSIONS AND DISCUSSIONS 
 

After investigating Fatality and Analysis Reporting System (FARS), it was found that 

Florida‟s work zones fatalities are rising significantly compared to other states. 

Subsequently a Florida freeway work zone crash data analysis was conducted and crash 

traits were exposed. Results indicated the majority of freeways work zone crashes 

resulted from merging conflicts leading to rear-end and sideswipe crashes. The Florida 

Traffic Crash Records Database for years 2002, 2003 and 2004 were employed and 

statistical models were assembled to draw drivers/vehicles/ environment traits of work 

zone crashes. Results indicated that for the single-vehicle crashes, trucks are more likely 

to be involved in a work zone single-vehicle crash compared to trucks and large trucks in 

non-work zone locations. Straight-level has increased likelihood compared to straight-

upgrade /downgrade, curve-level, and curve-upgrade/ downgrade. Lighting condition is 

also one of the risk factors associated with work zone single-vehicle crashes.  In fact, 

results showed that work areas with poor or no lighting during dark, motor vehicles are 

more prone for crashes compared to non-work zone locations with poor or no lighting 

during dark. The weather condition is also associated with single-vehicle work zone 

crashes. In fact, during rainy weather, drivers are less likely to be involved in work zone 

crashes compared to the same weather conditions in non-work zone locations.  

 

For the two-vehicle crashes, the second model‟s results illustrate that drivers younger 

than 25 years old and drivers older than 75 years old have the highest risk to be the at-

fault driver in a work zone crash. Male drivers have significantly higher risk than female 

drivers to be the at-fault driver. Results noticeably show that drivers under the influence 
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of narcotics/alcohol are drastically more likely to cause crashes (i.e. at-fault driver) at 

work zones. Out-of-state drivers are slightly less likely to be the source (i.e. at-fault 

driver) of a work zone crash compared to local drivers. Road geometry and the lighting 

condition were significant risk factors for two-vehicle work zone crashes. Freeways 

straight segments are more susceptible to crashes in work zone areas. Poor lighting or no 

lighting at all during dark can lead to significantly higher crash hazard on work zones 

compared to non-work zones. Results also showed that foggy weather causes a 

significant mount in work zone crash risk compared to non-work zone locations. In 

addition to that, work zones located in rural areas have higher crashes potential than work 

zones located in urban areas.  

 

After conducting the Florida work zone crash analyses and consulting with work zone 

practices in other States of the U.S., it was concluded that ITS lane management systems 

could be potential countermeasures worthy of implementation and testing on Florida‟s 

work zones. For instance, previous studies showed that dynamic early merging can 

smoothen the merging operation in advance of a lane closure (Tarko, 1998), decrease the 

rear-end accident rate (Tarko, 1998), and reduce the number of forced merges (Wayne 

State University, 2001). The dynamic late merging can reduce conflict points (or 

locations) to one single location at the taper of the work zone which enhances overall 

driving conditions upstream of work zone (Tavoola et al., 2004). Therefore, the early and 

late merging systems have the potential of improving the merging maneuvers in Florida‟s 

work zones especially for trucks. These systems can also reduce hostile driving that is 
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overrepresented in Florida‟s work zones by reducing random merging locations (at 

random locations) to a definite merging location.          

 

An examination of the current Florida work zone Maintenance of Traffic (MOT) plans, 

known as the Motorist Awareness System (MAS) was conducted. It was realized that this 

system is static hence does not react to changing traffic conditions, and does not 

incorporate a lane management system. Therefore, an ITS-based lane management 

system, primarily designed to advise drivers on definite merging locations is suggested to 

supplement the existing Florida MOT plans (i.e. MAS) for short term work zones. Since, 

previously deployed dynamic lane merging systems comprise several PCMSs and traffic 

sensors and since the addition of multiple PCMSs to the current MAS plans may 

encumber the latter and require extensive time for installation on a daily basis, two 

SDLMS were designed and tested at two sites. The first SDLMS is a simplified dynamic 

early merging system and the second SDLSM is a simplified dynamic late merging 

system.  

 

The first work zone configuration was a freeway two-to-one lane closure. The throughput 

over the demand volume of the work zone was used as a measure of effectiveness to 

explore the impact of the early and late SDLMS on work zones. Results showed that the 

early SDLMS enhances work zone mean throughput over demand volume significantly. 

However, the late form of SDLMS increased the mean throughput over demand volume 

slightly compared to the MAS, and this increase was not statistically significant. The 

average travel time for the MAS, early and late SDMLS did not result in statistically 
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significant differences between the mean travel times. It was also noted that the sample 

size of the data was limited which warranted a simulation study. Results from the first 

site also indicated that the number and percentage of lane changes in zone 1 were the 

highest for the early SDLMS and the lowest for the late SDLMS. This indicates that some 

drivers were complying with the messages displayed by the additional PCMS.  

 

The second work zone configuration was a freeway three-to-two lane closure. The 

temporal speed fluctuation at the location of the RTMS of the work zone under the 

control (MAS) and test MOT plans (early and late SDLMS) were compared. The mean 

speed fluctuation in the closed lane was the highest under the MAS system for all 

demand volumes. The dynamic late merge and the dynamic early merge have lower 

speed fluctuations in the closed lane under all demand volumes compared to the MAS 

system. Comparing the dynamic early merge and the dynamic late merge mean speed 

fluctuations in the closed lane, results showed that the mean speed fluctuation for the 

early merge are lower than those of the late merge under all demand volumes. However, 

the difference in the mean speed fluctuation is only statistically significant under demand 

volume ranging between 1 and 500 veh/hr.  Results showed that the speed fluctuations in 

the middle lane are the highest for the MAS system compared to dynamic early merge 

and dynamic late merge under all demand volumes. However, results showed that the 

mean speed fluctuations under the MAS are significantly higher than the mean speed 

fluctuations under the dynamic late merge only for volumes greater than 1500 veh/hr 

(and marginally at volumes between 1001 and 1500 veh/hr). The mean speed fluctuations 

under the MAS are significantly higher than the mean speed fluctuations under the 
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dynamic early merge system for volumes ranging between 501 and 1500 veh/hr. 

Comparing the mean speed fluctuations under the dynamic early merge and the dynamic 

late merge, it was found that the mean speed fluctuations are lower for the dynamic early 

merge. However, there was no significant difference between the speed fluctuations in 

the middle lane. Looking at the speed fluctuations in the shoulder lane, the mean speed 

fluctuations are the highest under the MAS system compared to the dynamic early merge 

and the dynamic late merge under all volumes. The mean speed fluctuations for the MAS 

system is significantly higher than the mean speed fluctuation for dynamic early and 

dynamic late merge for volumes under 1000 veh/hr. Moreover, there exist a marginal 

significance indicating that the mean speed fluctuation for the late merge is lower than 

the mean speed fluctuation for the MAS system for volumes ranging 1001 veh/hr to 2000 

veh/hr. Comparing the mean speed fluctuations between the dynamic early and dynamic 

late merge, it was noted that the means speed fluctuations are lower for the dynamic late 

merge under volumes higher than 500 veh/hr. However, it was shown that the mean 

speed fluctuation for the dynamic late merge is significantly lower than the mean speed 

fluctuation for the dynamic early merge for demand volumes ranging between 1501 

veh/hr and 2000 veh/hr. 

 

The ratio of the throughput over demand volume was taken as the operational MOE. 

Results showed that the Dynamic early merge performs significantly better than the 

regular MAS under demand volume ranging between 500 veh/hr and 2000 veh/hr. 

Results also showed that the dynamic late merge perform better than the MAS under 

volumes ranging between 1500 veh/hr and 2000 veh/hr and significantly poorer than the 
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MAS under low volumes. Therefore, the late SDLMS is not recommended for 

implementation under low volumes. Results also showed that the late SDLMS performs 

better than the early SDLMS under higher volume (ranging between 1500 veh/hr to 2000 

veh/hr). 

 

The field study conducted on a two-to-one work zone lane closure configuration was 

limited to certain traffic demand level and to a certain motorists‟ adherence level to lane 

management instructions. Therefore, a simulated work zone model was created in 

VISSIM, calibrated and validated with the field data. The objective of this simulation 

study was to provide guidelines on the implementation of the early and late SDLMS on a 

two-to-one work zone lane closure configuration under different traffic demand volumes 

and different drivers‟ compliance rates to the messages displayed by the systems.   

 

Safety and operational evaluation of the three MOT types tested, namely the MAS, the 

early SDLMS, and the late SDLMS was conducted. A table that summarizes the safety 

and operational effectiveness of the three MOT types was developed. In this table, the 

first three columns under operations summarize the throughputs for each combination of 

compliance rate, truck percentage in the traffic composition, and demand volume level. 

Only statistically significant results are presented in this table. For each combination the 

results were numbered 1, 2, and 3. One meaning that it is the best to use, 2 meaning 

second best to use, and 3 meaning the third best to use. The best MOT types to use, 

numbered 1, are highlighted in this table.  
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The results obtained by this simulation study show that overall; the early SDLMS 

outperforms the MAS and late SDLMS to the exceptions of very few cases in terms of 

operations (i.e. throughputs and travel times). However, in terms of safety the early 

SDLMS performs poorly compared to the late SDLMS and the MAS. This fact, 

underlines the trade-off between safety and operations of a two-to-one work zone lane 

closure. From the safety point of view, the late SDLMS performed well under higher 

volumes (2,000 veh/hr to 2,500 veh/hr) to the exception of higher compliance rates of 

80% compared to the early SDLMS and MAS.  

 

Future research may on simulating the three-to-two work zone lane closure and 

determining the safety and operational effectiveness of the early SDLMS, late SDLMS 

and MAS under different traffic demand volume levels, different motorists‟ adherence 

level to lane management instructions, and different trucks percentages in the traffic 

composition.  

 

Future research may also focus on studying the safety of the different MOT types using 

different safety surrogate measure such as deceleration rates and time to collision at 

different locations in the work zone.  
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