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ABSTRACT 

In underground oil reservoirs, Hydrogen sulfide is usually found coexisting with the oil 

due to bacteria reduction over a long period of time. The amount of H2S in the oil varies 

from place to place around the globe. When the oil extraction process begins, the 

presence of Hydrogen sulfide becomes noticeable as drilling tools, piping and other 

equipment suffer from sulfide stress cracking, electrochemical corrosion and corrosion 

fatigue. For this reason, the oil industry invests millions of dollars per year trying to find 

better ways to reduce the amount of H2S in oil.  

 

An important part of the current investigations deals with brine (sea water)/oil mixtures. 

The reasons are two-fold: 1) one way of extracting the petroleum from the reservoir is by 

injecting brine into it and since it has a higher density than oil, the latter will be ejected 

up to the surface. Taking into account the complex fluid flow occurring within the 

reservoir it is easy to understand that some brine will also be present as part of the ejected 

fluid; 2) brine is already present in the reservoir, so independent of the extraction method 

used, there will be a brine/oil mixture in the ejected flow. 

 

When brine and oil have absorbed H2S under pressure in the reservoir and then suffer a 

decompression during the extraction process, a certain amount of H2S is released from 

the liquid phase. In order to have a better prediction of how much Hydrogen sulfide can 

be liberated a good understanding of H2S absorption by these liquids is necessary.  
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The amount of gas a solvent absorbs is a function of pressure, original gas concentration 

and temperature as described by Henry’s Law. The purpose of this thesis is to 

experimentally analyze how much of the corrosive gas is absorbed into different brine/oil 

mixtures, and brine and oil, separately. In order to find sufficient data for a thorough 

analysis, different reservoir simulation scenarios were created. The liquids were mixed 

from pure brine to pure oil, resulting in 33% and 66% water cuts. Data were obtained at 2 

pressures of 20atm and 70atm at room temperature. H2S concentration was also a 

variable, changing the original gas concentration through different values: 50, 100, and 

300ppm. These experiments were conducted in an autoclave system and will better 

explain the hydrostatic process that occurs inside the reservoir.  

 

It was found that throughout all the water cuts, the role that total pressure plays in the 

absorption phenomena is of less importance as the original H2S concentration is 

increased. In the same manner it was observed that the highest mass-absorption ratios are 

always found between 50 and 100ppm and the lowest at 300ppm, this is observed for all 

water cuts and total pressures. Another important finding was that the ability to absorb 

the corrosive gas decreases as the original H2S concentration increases and this proves to 

be true for all water cuts and system pressures. 

 

After conducting these different reservoir scenarios, tests were conducted to simulate 

300m of the horizontal section of the pipe that connects the head of the well with the 

platform. This was done with a high pressure 300-meter long loop. It was found that the 
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corrosive gas is absorbed at a higher rate when there is a flow, opposite to a hydrostatic 

case.  

 

Henry’s Law constant was identified for each water cut and each pressure, however, the 

test procedure could not be validated since the gas being studied was not in its pure form.  

 

Understanding the absorption phenomena of Hydrogen sulfide in different water cuts will 

definitely be of great help to the oil industry to make better forecasts of H2S 

concentrations being ejected from each well. 
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INTRODUCTION 

Petroleum is a complicated mixture of chemical compounds based mostly on carbon and 

hydrogen. It can be found in places all around the world, usually near tectonic faults. It is 

generated after a lengthy process that starts with microscopic sea life digesting carbon-

based molecules (from algae and other plants). An abiogenic process follows it, and the 

crude oil acquires the hydrogen from either water or water vapor and oxygen from the 

atmosphere. The petroleum is “locked in” between strata (a stratus is a single layer of 

sedimentary material that presents homogeneous characteristics [1]). Some of these 

formations can be of epochs as ancient as the Cambrian, from the Paleozoic era (~540 

million years ago). Up to 45% of the discovered petroleum is in strata of the Mesozoic 

era or older, and 20% has been found in reservoirs in formations of the Pliocene or earlier 

(~12 million years ago) [2].  

 

The petroleum is encapsulated within distinct materials that allow different fluids to flow 

at diverse rates (modeled by Darcy’s Laws) up until a given distance after which no gases 

or liquids can flow. This material (that varies from place to place – limestone, sands, etc) 

then behaves as an impermeable wall that segregates these fluids from the rest of the 

world. In this case, this is called a closed reservoir [3]. An open reservoir, on the other 

hand, presents one main distinction: an (either water or brine) acquifer is connected to the 

reservoir.  

 



 2

In reservoirs there is connate (or innate) water. It is usually found in the interstices or 

pores along with the oil and gas. This water contains dissolved salts and is called brine 

[2]. 

 

Petroleum entrapments are categorized as anticlines, domes, synclines, monoclines, 

stratigraphic types, etc. Regardless of the shape of the reservoir, they all have something 

in common: water, oil and gas (Hydrogen sulfide included) are found in them [16-19]. 

 

In order to find these reservoirs a team of experts work together. Geologists suggest 

where oil may be entrapped based on topographical information, character of the surface 

rocks (e.g. having an impermeable layer on top of a permeable one), faults, etc. 

Geophysicists find changes in earth’s magnetic and gravitational fields and conduct tests 

with seismic (sound) waves. Geochemists analyze the chemicals on the surface, etc. [2]. 

To find an oil reservoir with small amounts of water or brine is desired. A detailed field 

study can guide into reducing the water cut while decreasing the required investment 

prior to oil extraction [4]. If all the data indicate that an acceptable reservoir has been 

found, ground samples are taken with special drills. Once it has been proven that 

exploiting that reservoir is a profitable venture, a well is drilled and pipeline to connect a 

platform with the reservoir is put in place.  

 

Pressure varies from reservoir to reservoir, and also depends on whether it is an open or 

closed system. In some cases, especially on open systems, the pressure in the reservoir 

can go up to the hydrostatic pressure at that depth. Two very common pressures found in 
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reservoirs are 20 and 70atm. This thesis simulates reservoirs at these two different 

pressures. It is known that the amount of H2S that will be absorbed into the liquids will 

vary with this pressure [5]. The pressure gradient between the inside of the reservoir and 

the one at the platform (atmospheric) drives the fluids upwards through the piping when 

the valves are opened. The energy that forces the fluids to go up the tubing is called 

reservoir energy or reservoir drive [6]. As the flow starts going up the well pressure 

decreases. This pressure decrease causes gases to come out of solution [2]. In order to be 

able to estimate how much of these gases (especially Hydrogen sulfide) will be liberated 

during this process, it is essential to understand the amount originally absorbed by the 

liquids while all the species were still at reservoir conditions. 

 

The importance of knowing how much H2S is to be expected up in the platform falls into 

the fact that this acid gas damages the pipes, valves, separators, etc. H2S partial pressures 

of 5% of the total pressure are considered corrosive. It is a catalyst in the absorption of H2 

in steel which leads to sulfide stress cracking [7]. The primary problem it presents is 

metal embrittlement due to H2S penetration but several other hindrances such as uniform 

corrosion, pitting corrosion, corrosion fatigue, sulfide stress cracking, hydrogen 

blistering, and stepwise cracking are also common [8]. Corrosion products include black 

or blue-black iron sulfides, pyrite, greigite, mackinwaite, kansite, iron oxide (Fe3O4), 

magnetite, sulfur (S), and sulfur dioxide (SO2). In order to avoid all these problems, 

Hydrogen sulfide scavengers are injected to the flow coming through the well.  The 

amount of injected scavenger depends on the H2S concentration, liquid and gas 

superficial velocities and water cut, among other parameters.  
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A horizontal section of the piping that connects the head of the well with the platform 

was recreated in the laboratory with a 1000ft long high pressure coil. In this system, a 

hydrogen absorption test was also conducted running the fluids in a slug flow regime. 

 

The oil industry invests millions of dollars per year in order to find ways of reducing the 

amount of H2S that reaches the platform. It is also important to know what the ideal 

quantity of this chemical is needed for the flow received. In order to reduce costs and 

maximize platform efficiency in this regard a close estimate of how much H2S will be 

received is imperative and a major part of that is to understand how much of this gas is 

entrapped in the liquids before oil extraction begins. Finally, it is very important to 

understand how this gas dissolves in the liquids depending on the pressure, water cut and 

H2S concentration in gaseous state within the reservoir.  
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MATERIALS AND METHODS 

Autoclave System: Hardware 

In order to simulate an oil reservoir, an autoclave was utilized. This device is a vessel that 

can contain fluids at high pressures and temperatures. The autoclave used in the current 

equipment was built by St. Cloud Welding. It is made of 1010 Carbon Steel and designed 

for working with pressures up to 78atm and has a 4 Liters volume. It has five ½” female 

NPT ports, four on the top, and one on the bottom.   

 

Figure 1: Autoclave from above 

For security purposes, there is a sixth port, which is located in the middle of the top 

flange of the autoclave. This is a 1” female NPT that connects to a 78atm corrosive-fluid 

rated Pressure Relief valve which would activate in case the pressure reaches this limit. 

The four top ports can be separated in two groups of two ports each: In the first one, each 

port has an access tube that goes within the autoclave almost all the way to the bottom; 

each of the ports of the second group has an access tube that reaches to a quarter of the 

depth. As it can be seen in Figure 2, both ports of the latter group and one of the first 

ones were used during this set of experiments.  
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Figure 2: Autoclave Schematic 

Of the short-tube ports, one was used for delivering the brine and the crude oil, while the 

second one was used for taking gas samples. One of the ports with a long inner tube was 

utilized for bubbling the H2S in the liquids, thus temporarily increasing their contact 

surface with the purpose of simulating the reactions in the reservoir during a longer 

period of time (Hydrogen sulfide and other gases slowly flow out of the rocks into the 

reservoir) [6]. 

 

The bottom port is used for sample collecting purposes. This port is connected to a 0.5” 

O.D. 1010 Carbon Steel tube (rated for a maximum pressure of 132atm at 22°C) that 

connects to Swagelok® 316 Stainless Steel manually operated needle valves that go to 

the High Pressure Sample Collector (HPSC). 
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Figure 3: Autoclave System Schematic 

The HPSC is built from carbon steel scheduled 80 nipples, caps, valves and reducers, 

among other fittings. Every part of the HPSC is rated for at least 78atm and has a 1L 

volume (see Figure 4). The same kind of carbon steel tubing permits the fluids to come 

from the Autoclave to the HPSC through a ½” High Pressure ball valve. The sample 

collector possesses a second of these valves: it connects the HPSC to the Low Pressure 

Sample Collector (LPSC) through a pair of Camlock fittings.  
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Figure 4: High Pressure Sample Collector (HPSC) 

 

The Low Pressure Sample Collector (LPSC) entails a 1.15m long, 6.67cm inner diameter 

(4L) clear PVC pipe with two PVC caps at the ends. The top cap has two ports; the one 

on top (see Figure 5) has a ½” O.D. PVC pipe that connects it to a low pressure ½” ball 

valve. At the same time, this valve is connected through another nipple to a female 

Camlock that allows the LPSC to be linked to the HPSC. The volume of the LPSC was 

designed so that it could contain the same volume of liquids and gases of the HPSC but at 

atmospheric pressure. Based on fundamental hydrostatic relationships, conservation of 

mass and the law of ideal gas, it was assumed that the gas to liquid volume ratio in the 

HPSC would be 0.5. 

MPaatm 770 ≈  

Gas volume in HPSC: LV HPSCg 5.0)( =  

LPSCgLPSCHPSCgHPSC VPVP )()( =  

LL
MPa

MPaV
P
PV HPSCg

LPSC

HPSC
LPSCg 5.35.0

1.0
7

)()( =×==  

Also, treating oil and water as incompressible liquids: LVV LPSClHPSCl 5.0)()( ==  
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Then, 

LVVV LPSClLPSCgLPSC 4)()( =+=  

 

 

Figure 5: Low Pressure Sample Collector (LPSC) 

The pressure in the autoclave system is controlled with an intrinsically safe (for use in 

Class 1, Division 2, Groups A, B, C, and D locations) Digital Pressure Gauge. It can read 

pressures up to 136atm with an accuracy of ±0.05 of its scale. It connects to the loop 

through a 316 Stainless Steel NPT male and can work in temperatures between -10 to 

55°C. 

 

As it can be seen in Figure 3, the Autoclave System possesses 4 Hydrogen sulfide 

Monitors: Two are part of the experimental procedure and the other two are for leak 

detection and safety purposes. Depending on the set of experiments being run, sensors 

with capabilities for reading from 0 to 100ppm or from 0 to 500ppm are connected to the 

Autoclave System. These electrochemical cell sensors are Gas Alert Extreme H2S 

Monitors that read and display with 1ppm increments. They can operate in environments 
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between -40 to 50°C and 15% to 90% relative humidity. They are intrinsically safe for 

Class 1, Division 1, Group A, B, C and E locations.  

 

When measuring the H2S concentration, these monitors require being in contact with the 

gas at atmospheric pressure for approximately 30sec. When it is desired to read the H2S 

concentration in the autoclave at high pressure (70 atm) the gas must flow through a 

regulator before reaching the monitor. This regulator is a two-stage stainless steel Harris 

HP 742 designed for corrosive gas applications. It has a 316L stainless steel diaphragm 

and nozzle and PTFE Teflon® seats and seals. The same device is attached to the H2S 

tank for flowing the gas into the Autoclave. 

 

 

Figure 6: Autoclave System 
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Figure 7: Autoclave System - another View 

Vacuum Subsystem 

This subsystem is the main mechanism for assuring an appropriate management of any 

H2S there might be in the cabinet. The gas may come from a leak in the tank, an escape 

from a fitting (due to failures in the system) or from the gas products from the chemical 

reactions in the autoclave. This subsystem sucks all the air in the cabinet and bubbles in a 

bucket with 50%wt NaOH in water. The purpose of this procedure is to force any 

remaining Hydrogen sulfide react with the Sodium Hydroxide and thus convert it in a 

non-harmful compound. For security reasons, redundancy was built into the system by 

incorporating two vacuums (each with its NaOH bucket) instead of one. The first vacuum 

sucks the air at head-height where most of the tubing and fittings are located. It is then 

bubbled into the bucket. On this container, a metallic-mesh-filter was installed in order to 

assure the free flow of gases but not of the Sodium Hydroxide. In case of no-flow, H2S 
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would settle at the bottom since it has a higher molecular weight than air. Therefore a 

second vacuum was placed at the bottom. 

300-meter System 

The big loop is a high-pressure system capable of running experiments with corrosive 

gases and liquids at high pressures (approximately 78atm). Its core is 300 meters of 

2.5cm ID stainless steel tubing.  

 

Figure 8.  Core of the loop: 300m of stainless steel tubing 

It also has two air-driven Haskel ¾ HP (0.56kW) pumps with a maximum rated output 

pressure of 100atm and a 2.5gal/min volumetric flow; two forced-air-cooled 4-stroke 

gasoline pumps with a 123cc displacement, approximately 140 gal/min volumetric flow 

and a 30mt head and a 15HP, 1740rpm max speed multiphase pump. This multiphase 

pump (MPP) is a 4-stage, gear type joint with a cast steel suction housing and an alloy 

steel drive shaft and rotor. It is controlled by a MOVITRAC® 07, 3-phase AC 400/500V 

Driver capable of delivering to a 20HP Pump up to 5500rpm with a 1rpm resolution. 
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Figure 9.  Yamaha Pump, 123cc, 4-stroke gasoline driven 

 

Figure 10.  Multi-Phase Pump 4-stage, 15HP 

 

It is also composed of 5 carbon steel tanks rated at 78atm, a 10,000gal double-walled 

above-surface tank for petroleum storage, a 350gal and two 550gal stainless steel tanks, 

more than 50 valves, two separators, multiple Good Year® FlexyWing Petroleum-rated 

hoses, two intrinsically safe pressure transducers and five J-type thermocouples 

connected to a Data Acquisition System linked to a PC utilizing LabView. The same kind 

of regulators and H2S monitors are used both systems. 
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Figure 11.  Double-walled 10,000gal isotank for Petroleum Storage 

 

Figure 12.  Big Loop 

 

Figure 13.  Stainless steel 550gal tanks with pretroleum-rated hoses 
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Chemicals used 

Brine 

Brine is a strong saline solution that contains sodium chloride or other salts, i.e. it is 

water with a high concentration of salt [1]. These experiments are conducted with brine 

and not plain water since it is brine what is usually found in petroleum reservoirs. In 

order to recreate brine in the laboratory, every 1L of water was mixed with 43g of salt. 

This mass of salt (NaCl) was calculated for a 2% volume of this salt in the solution and 

that salt density of 2170 3m
Kg as follows: 

                         L
g

Kg
g

m
Kg

cm
m

ml
cm

L
ml 43

1
1000

1
2170

100
1

1
1

1
100002.0 333

33

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛×                     (1)                      

De-Emulsifier 

A Xylene-based de-emulsifier was utilized in the HPSC. Before allowing the fluid 

sample flow towards the HPSC, 10ml of de-emulsifier can be injected into the high 

pressure vessel to ensure the liquids separation. Xylene is a flammable liquid with a 

( )2346 CHHC  formula. It is clear and colorless with a sweet, balsam-like odor [9].  

Hydrogen sulfide (H2S) 

A few breaths of air with levels of 500ppm can cause death. Hydrogen sulfide is a 

corrosive, colorless, flammable gas with a characteristic odor of rotten eggs. When it is 

released into the air, it reacts to form sulfur dioxide and sulfuric acid. When one is 

exposed to lower concentrations of H2S during a longer period of time, one can suffer 

nose, throat or eye irritation, headaches and fatigue [9].   



 16

Sodium Hydroxide (NaOH) 

Sodium hydroxide is a white, crystalline odorless solid. In the autoclave system NaOH is 

utilized in the liquid form in a 10%wt solution in water. When sodium hydroxide is 

dissolved in water, an exothermic reaction occurs. The amount of heat can be sufficient to 

ignite combustible materials. This heat releasing process occurs also when NaOH is made 

to react with acids (e.g. H2S). 

 

This chemical needs to be handled with extreme caution since contact with skin can cause 

severe and painful burns with ulcerations. If the eye gets in contact with it, clouding of 

the eye and blindness can occur. Inhaling this compound can translate into obstruction 

and loss of measurable pulse, lung inflammation and fluid accumulation in the lungs [9]. 

Nitrogen (N2) 

This inert gas presents no threat to human beings (it composes more than 78% of our 

atmosphere). It is colorless, odorless and tasteless [9].  

Petroleum 

Crude oil or petroleum is a viscous, dark and highly flammable liquid. If it produces 

vapors due to heating and these gases are inhaled it can cause throat irritation, headache, 

nausea and dizziness. In the long term it can cause dermatitis: if the liquid gets in contact 

with clothes or shoes, these must be taken off immediately and the person must shower 

for at least 20min. It has a 400°C boiling temperature (at 1atm) and a -7°C flash point 

[10]. 
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Testing Procedure and Calculations 

Every test must start by having a clean Autoclave System in order to avoid having 

memory from previous experiments. The autoclave, hoses and HPSC are cleaned by 

running 1L of Kerosene and 1L of water with a Haskel, air-driven single-piston pump 

that is connected to the system on a loop mode, i.e. it takes the liquids out from the 

bottom of the Autoclave and then returns them in from the top, using the fourth and yet 

unutilized ½” female NPT port (as seen on figure 14). After running the Kerosene for 5 

minutes the liquid is removed and 2L of water are run in the same mode, but this time 

with Nitrogen at 5atm. These liquids are taken away from the system (through the 

pressure gradient) through the HPSC. 

 

The first step to run a test is to input the liquids. It must be made sure that all valves are 

closed except those that need to remain open for the liquid introduction. The details of 

which valves are open and in which order etc., can be found in Appendix A. Autoclave 

System Operation Checklist.  Depending on the water cut of the experiment being 

conducted it is decided how much volume of brine and how much of petroleum is input, 

e.g. in the case of 33%WC, 0.66L of brine and 1.33L of petroleum are input: 

 

                                                                     LL 66.0233.0 =×                                                      (2)

                                        LLL 33.166.02 =−                                                      (3)
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Figure 14:  Images from Autoclave Loop’s Solidworks Model 

Once the liquids are in, Hydrogen sulfide must be injected. If, for example, the 

experiment being run has the H2S concentration parameter set at 100ppm at a total 

pressure of 70atm, a 100ppm of H2S-in-Nitrogen Tank will be used. It is connected to the 

system and the proper valves and regulator are open in order to let enough gas get in the 

autoclave until the pressure in the system has reached 70atm. In order to allow the 

absorption process to occur and equilibrium to be reached, 5 minutes are allowed to pass. 

Next, a H2S in gaseous form concentration reading is done. The valve that allows gas 

flow into the autoclave’s regulator is open and this allows the H2S monitor to get a 

constant flow for approximately 30sec and thus a reading. This gas flow translates into a 

30psi pressure drop in the autoclave. There is a concentration difference between the 

input value and the measured value at this point. This change in concentration is the 

amount of H2S absorbed by the liquids. 

 

The original planned procedure entailed taking a sample in order to learn how much of 

this change was due to oil and how much due to water. At this point, in the original plan, 

the HPSC is still at atmospheric pressure from the recently completed cleaning process. 

Before sending a fluid sample at high pressure from the autoclave into the collector, 10ml 



 19

of de-emulsifier were to be injected into the HPSC in order to guarantee a proper brine-

oil separation. Once the HPSC was ready, the appropriate valves would be opened to 

allow the fluids to travel to the HPSC (See Figure 3). 

 

In this first plan, all the valves were closed and one minute was allowed for the liquids 

and gases to settle in the HPSC, as well as for the de-emulsifier to increase the superficial 

tension of the water and oil phases. Next, the LPSC was connected to the HPSC through 

a 136atm petroleum-rated flexible hose with Camlock fittings. The bottom valve of the 

HPSC was then very slowly opened in order to let the water in the bottom drain out to the 

larger volume of the LPSC. The clear PVC pipe of the LPSC indicated the water level. 

When the brine pressure is reduced from 70atm to atmospheric pressure, it releases the 

previously absorbed gases. These gases were entrapped in the LPSC. The lateral valve in 

the LPSC was then opened to allow those gases to come in contact with the H2S monitor 

and thus a second concentration reading was acquired.  

 

Once this measurement was recorded, the LPSC was disconnected from its high pressure 

counterpart. The H2S monitor was then unplugged from the LPSC and the hose was 

directed into the vacuum system. Thus, the Hydrogen sulfide was scrubbed in the NaOH 

canister.  

 

When brine is let out of the HPSC (only petroleum and H2S are withheld) there is a 

pressure drop inside the collector (it decreases from 70atm to an unknown Px); now gases 

would be allowed to occupy the volume recently vacated by the brine. This pressure 
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decrease translated into gas release by the petroleum. When the HPSC-LPSC connection 

procedure was repeated with the crude oil, the linking valve was closed when all the oil 

had been released and gases started to flow. In order to discover how much of the gas was 

absorbed by the petroleum, a third H2S concentration reading was taken. Lastly, after 

removing the petroleum and its liberated gas from the LPSC, the remaining gases in the 

HPSC were allowed to fill the LPSC and a fourth  (and last) concentration measurement 

was taken. This last measurement would differ from the one taken on the first reading. 

This difference was what was liberated by the crude oil when its pressure was decreased 

from 70atm to Px. Knowing these concentrations and volumes, it was then calculated how 

much H2S was released inside the HPSC and this was added to the third concentration 

reading then having the real data of how much Hydrogen sulfide was absorbed by the 

crude oil. Finally, at this point it would be known how much Hydrogen sulfide was 

absorbed by the brine, and how much by the petroleum. 

 

This original procedure could not be implemented in practice: the H2S monitors require 

approximately 30sec flow in order to give a concentration reading, and the gases that 

came out of the LPSC lasted for 2 or 3 seconds. This meant that the LPSC could not be 

used for the purpose it was designed and built.  

 

In order to solve this problem a new approach was adopted. The liquids were to be input 

into the system followed by the H2S and the desired concentration and pressure. A 

concentration reading would then be acquired and this concentration would differ from 

what was input by 
2H Sc∆  (H2S concentration difference). This difference is what was 
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absorbed by the mixture. Instead of trying to identify how much was absorbed by each of 

the liquids, the Hydrogen sulfide absorption ratio by the mixture is obtained, which is a 

more useful information for the oil industry. According to Henry’s Law of dilute 

solutions or gas absorption in liquids, the solubility depends on both the solute and the 

solvent [13]. In this case the solute remains the same (H2S) whereas the solvent (mixture) 

will change its properties as the water cut varies. Then, with this new approach these 

absorption ratios are found experimentally and analytically (utilizing chemistry and gas 

equilibrium knowledge).  

 

From the operational perspective, this new procedure meant skipping phases D, E and F 

of the Checklist (Appendix A). The rest of the process would remain the same.  

 

As previously mentioned, after 5min of the beginning of the gas-liquids interaction a 

Hydrogen sulfide concentration is acquired ( newSHc ,2
). This concentration is compared 

with the original one ( oSHc ,2
) thus finding the amount that was absorbed by the liquids: 

                                                     newSHoSHSH ccc ,, 222
−=∆                                                 (4) 

This value is in molar ppm, i.e. it shows how many moles of H2S there are in the mixture 

per every million moles of Nitrogen. Knowing that the volume the gases will be 

contained in the autoclave is 2L, it can be found how many moles of Hydrogen sulfide 

there are within the system. 

 

In order to state the physical and chemical relationships that are used in the calculations, 

it is necessary to declare the basic equations based on the assumption of an ideal gas: 
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Mole fraction is defined as  

                                                            
tot

i

tot

i
i P

P
n
nx ==                                                        (5) 

Then, for Hydrogen sulfide:  

                                                            totSHSH PxP
22

=                                                         (6) 

where Ptot is the total pressure. 

From the ideal gas equation of state:  

                                                                RTPv =                                                          (7) 

The gas constant R is defined as  

                                                                  
m
RR u=                                                             (8) 

where KKmol
KJ

uR ⋅= 314.8   and  m  is the species’ molecular mass. 

This value is found for Hydrogen sulfide as: 

            SHkmol
kg

kmol
kg

kmol
kg mSHSH

2
081.34)065.32()008.1(222 ==+⇔+→              (9) 

then  

                                              KKg
KJ

kmol
kg

KKmol
KJ

R ⋅
⋅ == 244.0

08.34
314.8                                        (10) 

Since all tests are run at room temperature (298K) and from equations (6) and (7) 

                                     
( )( )

totSH

KKg
KJ

totSHSH
SH Px

K
Px

RT
P
RTv

222

2
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                                                          ( )kg
m

totSH

Kg
KJ

SH Px
v 3

2

2

71.72
=                                           (12) 

In order for this equation to make dimensional sense SHx
2

 must be given in mol
mol  while 

totP  in KPa. 
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The number of moles of a species in a system can be found as 

                                                                  
m
mN =                                                           (13) 

where N is the number of moles. 

 

In order to find the mass of Hydrogen sulfide that is originally input in each experiment, 

the system’s volume is required to be known. This is visible from the following equation: 

                                                              
SH

gas
SH v

V
m

2

2
=                                                        (14) 

                              3
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===                       (15) 

Then,  

                                                    

totSH

Kg
KJSH

Px

mm

2

2 71.72
002.0 3

=                                             (16) 

                                              ( ) totSHKJ
Kgm

SH Pxm
2

3

2

51075.2 −×=                                       (17) 

After taking a concentration reading, a new SHx
2

 is found: newSHx ,2
. By the time this 

reading has finished taking place the pressure in the system has changed, this new 

pressure is called newP . When, 

                                         ( ) newnewSHKJ
Kgm

newSH Pxm ,
5

, 2

3

2
1075.2 −×=                               (18) 

Based on equation (4) it can now be stated that the mass of Hydrogen sulfide that has 

been absorbed by the oil/brine mixture is 

                                         newSHSHSHabsorbedSH mmmm ,, 2222
−=∆=                                    (19) 
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In order to give a dimensionless value that will help relate one result with the other, a 

percentage will be quantified in the following manner: 

                                                % absorbed mass = 
originalSH

absorbedSH

m
m

,

,

2

2                                      (20) 

Following equation (13) the amount of moles that have been absorbed is given by 
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Finally, keeping in mind that the volume the liquids occupy is 3002.0 mVliq = the molar 

solubility M (parameter used for describing dilute solutions) is 
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SHM
2

 is a function of absorbedSHm ,2
, the latter is a function of SHv

2
 which at the same time 

is a function of SHP
2

, thus  

                                                           ( )SHSH PfM
22

=                                                     (24) 

Propagation of error analysis 
 

From equations 17, 18, 19 and 20 it can be said that 
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Where 

xσ = 3% = 0.03  (uncertainty from gas tank manufacturer)                                            (26) 

Pσ = 0.1psi ≈ 0.0068atm ≈ 0.03% (for 20atm tests) or 0.01% (for 70atm tests) 

(uncertainty from digital pressure gauge)                                                                       (27) 

 

Also, from equation 17 
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Kgm P

x
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⎛
∂
∂                                                                                        (29) 

The uncertainty for water cut measurements was measured in the lab as 

WC%σ  = 40ml = 2%=0.02                                                                                                (30) 

 
 

300-meter horizontal pipe simulation test 

When the liquids leave the reservoir they are usually transported through either vertical 

or highly-tilted tubing until it reaches the surface. Especially for platforms in the sea, the 

vertical section leads to a horizontal section. It connects again to a vertical or highly-

tilted tube that finally reached the platform. As a part of this thesis, a larger system was 

utilized to simulate this section of horizontal tubing and analyze the absorption 

phenomena when there is a slug regime flow in the piping.  
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An 80%WC mixture was prepared in a stainless steel, 350gal tank. This mixture was 

stirred for 10 minutes to assure a good blend. Next, a Haskel, air-driven pump was 

utilized to introduce 19gal of this solvent into the system. This is a 45gal system so a 

approximately 40% volume of liquids was input. The liquids were allowed to settle 

within the system for proper species separation, with the petroleum on top. Following this 

step, H2S at 353ppm was input until a 20atm pressure was reached within the system. 

 

At this time, the multi-phase pump was turned on at 680rpm which yields a total 

superficial velocity of 6m/sec according to previously done calibrations. With this value, 

and the liquid volume percentage the corresponding liquid and gas superficial velocities 

can be calculated: 

Liquid volume percentage = 40% 

Total superficial velocity = 6m/sec 

                            Liquid Superficial Velocity: secsec 4.2)6)(4.0( mm
SLV ==                    (31) 

                              Gas Superficial Velocity: secsec 6.3)6)(6.0( mm
SGV ==                      (32) 

These superficial velocities pertain to a slug regime flow. The flow continued for 5 

minutes before an H2S concentration reading was conducted. 
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RESULTS 
 

Tests were run to determine several mass-absorption ratios. Four different solvents were 

utilized as given in Figure 15: 

 

Figure 15: Four different solvents 

 

For each solvent six different mass-absorption ratios are found, three at 20atm and three 

at 70atm. The 3 H2S concentrations used in this study are: 50ppm, 100ppm and 300ppm. 

  

As previously mentioned, the experimental analysis entailed 60 tests with three different 

parameters:  

• Total Pressure (20, 70atm) 

• H2S Concentration (50, 100, 300ppm) 

• Water Cut (0, 33, 66, 100%WC) 

as can be seen in the following table: 
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Table 1: Test Matrix 

 

 

The first set of columns describes the water cut. For example, a test with a 0%WC 

requires the Autoclave system to be filled with 0L of brine and 2L of crude oil. The 

second set of columns states the pressures in atmospheres: first, the initial pressure of the 

experiment; second, the partial pressure of Hydrogen sulfide as described by Equation 6 

and the third one the pressure after the concentration reading took place: Pnew. 
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The third set of columns lists the original amount of Hydrogen sulfide that was input. 

Here, the first column is the concentration in ppm in Nitrogen. This concentration is 

acquired from the documentation that corresponds to that gas tank. The second column is 

the mass of Hydrogen sulfide. This value is obtained from Equation 17 and takes into 

account the volume where the gases are contained and the molecular mass of the species.    

 

The fourth set represents the amount of H2S after the 5 minutes of interaction between the 

fluids. The ppm column is filled by the experiment operator based on the results from the 

H2S concentration monitor. The mass column is filled utilizing Equation 18. 

 

The last column set entails all the calculations of how much Hydrogen sulfide was 

absorbed. The first column is the concentration difference as stated in Equation 4. The 

second one is how much was absorbed in Kg using Equation 19. The third one is the 

mass-absorption ratio calculated using Equation 20. The molar solubility is also 

calculated using Equation 23 and can be found as the last column of the table. 

 

Inspecting the table, it is easy to see that there are four divisions with two sub-divisions 

each. Each division is a different water cut and each sub-division is a group of tests with 

the same original pressure.  

 

Each one of these sub-divisions has three original H2S concentration which yield a 

different mass-absorption ratio individually. This is the value that is being looked for and 

the one that is plotted.   
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Table 2:  Mass-absorbance ratios  

 

 

In the same manner, each subdivision yielded a particular value for Molar Solubility as 

can be seen in Table 3: 

Table 3:  Molar Solubility 

 

 

The calculated x and y variances are presented in Table 4: 
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Table 4:  Variances in the x and y axis 

 

 

In the 300-meter system, after 5 minutes of slug regime flow through the 300m coil at 

20atm and an original amount of 353 ppm an H2S concentration reading was taken. The 

result was that 0 ppm was left in the gaseous state, i.e. a 100% absorption ratio was 

achieved for this flow condition. 

 

The main source of error with regards to the volume measurements is the petroleum input 

into the autoclave. Due to the high viscosity of the fluid, a certain amount tends to stay on 

the transport vessel walls. The uncertainty was determined to be 40ml. In order to 

improve the uncertainty, it is recommended that the oil is input first and then brine so the 

latter will wash the oil down into the autoclave.  
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0%WC 
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Figure 16:  Results from all tests with 0%WC at both pressures 
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Figure 17:  Averages of all results with 0%WC at both pressures 
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33%WC 
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Figure 18:  Results from all tests with 33%WC at both pressures 
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Figure 19:  Averages of all results with 33%WC at both pressures 
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66%WC 
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Figure 20:  Results from all tests with 66%WC at both pressures 
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Figure 21:  Averages of all results with 66%WC at both pressures 
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100%WC 
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Figure 22:  Results from all tests with 100%WC at both pressures 
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Figure 23:  Averages of all results with 100%WC at both pressures 
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DISCUSSION 

Role of System (or total) Pressure in H2S mass-absorption phenomena 
Figures 16 to 23 show plots of the results of the test matrix of Table 1 with uncertainties 

marked as calculated by Equations 25 to 30. Each water cut has two graphs, the second 

one has the same data as the first one but only the average values are being plotted, and 

these points are connected by smooth lines. Tests at 0%WC, i.e. with pure petroleum 

show that for lower original H2S concentration (50ppm) having a lower pressure 

increases the mass absorption ratio by a 6%. As the original H2S concentration is 

increased to 100ppm and above, total pressure seems to have little role on the absorption 

phenomenon, having differences of only 2% (between 20 an 70atm), higher pressures 

demonstrating higher absorption ratios.  

 

Analyzing the results of the 33%WC experiments it is easy to observe the same trend as 

the tests at 0%WC: a maximum absorption ratio is reached near the 100ppm H2S 

concentration and the difference in absorption ratio for the two different pressures 

decreases as the H2S concentration increases. The greatest difference occurs at 50ppm 

(9%). In the 33%WC case, the absorption is higher at 70atm throughout the whole region.  

 

The results for the 66%WC solvent are quite similar to the previous two, and the curve 

seems to flatten as the pressure increases. Again, higher pressure results in a higher mass 

absorption ratio and the difference in absorption decreases with an original H2S 

concentration decrease. The smallest difference is at 300ppm (1%) and the largest is at 

50ppm (14%). The data for the 50ppm, 70atm tests was not repeated due to time 
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constraints while most other tests were done up to five times each. The curve again 

flattens in the 100%WC solvent (pure brine). Here, the lower pressure shows a flatter 

profile whereas the higher pressure still shows the same trend as the lower water cuts.  

 

It was consistently observed in all experiments that total pressure played a lesser role in 

the absorption phenomena is as the H2S concentration is increased. In addition, the 

highest mass-absorption ratios are always found between 50 and 100ppm and the lowest 

at 300ppm, this is observed for all water cuts and total pressures. It was also observed 

that from 0 to 66%WC, having a higher total pressure translated into having higher mass-

absorption ratios. Nevertheless, this order is reversed when the solvent is pure brine. 

 

The lowest absorption ratios were found when the solvent is pure petroleum and the 

original H2S concentration is the highest. These results are strongly independent of the 

total pressure, as the percentages were 36% and 38% for 20 and 70atm, respectively. This 

means that when a reservoir with a petroleum-rich water cut (low amount of brine) and 

high concentration of H2S in gaseous state is found, it can be expected that the amount of 

Hydrogen sulfide that will be liberated by the liquids during the decompression process 

will be lower. This also translates into less necessity of H2S scavenger injection at the 

beginning of the piping. 
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Role of Original H2S concentration and Water Cut % in the phenomena 
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Figure 24:  Mass-absorption as a function of the Water Cut - 20atm 
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Figure 25:  Mass-absorption as a function of Water Cut  -  70atm 

Figures 24 and 25 illustrate all the results at each total pressure. Each figure has three 

curves – each one representing H2S concentration. They show how the absorption ratio 

changes as the solvent varies from pure petroleum (0%WC) to pure brine (100%WC).  

All six curves present the exact same behavior where the minimum mass-absorption rate 

is found at 0%WC and the maximum at 100%WC going through an inflexion point in 

between. This inflexion point usually found at approximately 50%WC. Five out of six of 
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the curves have a positive slope at this inflexion point, while the curve for 50ppm at 

20atm has a negative value at this point. This seems to be a real behavior since the 

experiments represented by 50 ppm were conducted from three to five times each.  

 

The 300ppm original H2S concentration curve always yields the lowest mass-absorption 

ratios at all water cuts and all system (or total) pressures. In the same manner, the 

100ppm curve always presents the highest mass-absorption ratios except for the 66%WC, 

70atm scenario. In this environment in particular, the 50ppm result showed a higher 

mass-absorption ratio.  This test needs to be repeated. 

 

In these figures, the results on the x axis correspond to a 2% (or 40ml) error. This is due 

to the viscous liquid film (especially petroleum) on the wall of the flasks. Comparing the 

20atm and 70atm curves of the 300ppm experiments it can be seen that the uncertainty in 

the y axis is greater for the 20atm condition. In the same manner, the Pσ for the lower 

pressure is 0.03 whereas the one for the higher pressure is 0.01. This value is squared to 

get the final sigma, and thus the uncertainty for the lower pressure is greater. 
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Importance of each parameter in the phenomena 
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Figure 26:  Total Mass-absorption results at 20atm 

At low system pressure (20atm), the mass-absorption ratio is the highest for pure solvents 

and decreases when there is a mixture of brine and crude. The overall highest values for 

this system pressure are found when the solvent is pure petroleum (for all original H2S 

concentrations). The largest value is 75% for the 50ppm original H2S concentration, 

100%WC scenario.  

 

The ability to absorb the corrosive gas decreases as the H2S concentration increases and 

this proves to be true for all water cuts. As mentioned before, the best absorptivity is 

observed at the lower original H2S concentrations. 
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Figure 27:  Total Mass-absorption results at 70atm 

For the 70atm system pressure condition, some changes in absorption are observed. It is 

seen that the role of the water cut is opposite from to the one at lower pressure. In this 

case, the pure solvents (brine or crude oil) usually present the lowest mass-absorption 

ratios: now the mixed solvents absorb the best. The 66%WC yields the highest ratios for 

lower original H2S concentrations. When the original H2S concentration is 300ppm, there 

is an increasing linear behavior of mass-absorption ratios from 0%WC to 100%WC. The 

highest percentage is found on the 50ppm original H2S concentration and 66%WC 

(78%). 

 

For both system pressures, the poorest absorption ratio is always found when the solvent 

is pure petroleum and the original H2S concentration is the highest. 
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As for the 300 m flow loop, the system was filled with a 80%WC mixture. Only one test 

was conducted in this loop to check the difference between the autoclave results and the 

flowing loop results. Since any test at 70atm would require at least 3 tanks of H2S. the 

test was conducted at low pressure and 80%WC. 

 

The 300-meter system yielded a 100% absorption result for the 20atm, 353ppm, 80%WC 

test. This results is plotted in figure 21 thus creating figure 28: 

 

Figure 28:  Result of the 300-meter system 

The 66%WC plot was utilized since it is the closest one to the 80%WC utilized in the 

300-meter loop. It can be seen that having a flow increases the gas absorption ratio since 

the gas is fully entrapped within the liquid. This is definitely the case for slug regime, and 

it is suggested for future studies to investigate how this phenomenon changes at different 

points of the regime flow map. 
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CONCLUSIONS 

• In order to be able to scavenge H2S along the reservoir-platform piping, it is 

important to know how much Hydrogen sulfide will be liberated from the aqueous 

phase as pressure decreases.  

                                    

• The Molar Solubility of H2S in the Autoclave System is given by:      

mol
mKg

absorbedSH
SH

m
M 3

2

2 5
,

108.6 ⋅−×
=  

• When dealing with petroleum, Molar Solubility is used due to the fact that 

petroleum’s molecular mass can only be acquired as an estimate and this can 

affect the reliability of the results. In the same manner, maintaining all 

calculations in molar solubility units ( )3m
mol  permits the results of this 

investigation to be utilized on a broader range of types of crude oil.  

• In all experiments and for all water cuts, the total pressure does not play a strong 

role in the absorption phenomena as the original H2S concentration is increased. 

• The highest mass-absorption ratios are always found between 50 and 100ppm and 

the lowest at 300ppm, this is observed for all water cuts and total pressures. 

• It was also observed that from 0 to 66%WC, having a higher total pressure 

translated into having higher mass-absorption ratios. This order is reversed when 

the solvent is pure brine. 

• At low system pressure (20atm), the mass-absorption ratio is the highest for pure 

solvents and decreases when there is a mixture of brine and crude. The opposite is 

true at a high system pressure (70atm). 
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• The ability to absorb the corrosive gas decreases as the original H2S concentration 

increases and this proves to be true for all water cuts and system pressures. 

• For both system pressures, the poorest absorption ratio is always found when the 

solvent is pure petroleum and the original H2S concentration is the highest. 

• The 300-meter loop tests demonstrated that having a flow increases the gas 

absorption ratio since the gas is fully entrapped within the liquid. A 100% 

absorption ratio was achieved when the liquids were in a slug regime flow. 
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APPENDIX A. AUTOCLAVE SYSTEM OPERATION CHECKLIST 
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A. Safety Revision 
1. Make sure there is no pressure in System 
2. Make sure all valves are closed 

B. Fluids Input 
1. Open valve 4 
2. Open Regulator 3 
3. Open valve 1 
4. Input Liquids 
5. Close valve 1 
6. Close valve 4 
7. Close Regulator 3 
8. Make sure Regulator 1 is closed 
9. Open valve 2 
10. Open H2S Tank 
11. Open Regulator 1 
12. Input H2S until desired pressure has being reached in the Autoclave 
13. Close Regulator 1 
14. Close H2S Tank 
15. Close valve 2 

C. H2S Concentration Reading 
1. Allow five minutes to pass 
2. Make sure Regulator 3 is closed 
3. Open valve 4 
4. Open Regulator 3 until 2 PSI is being delivered to H2S monitor 1 
5. Acquire Concentration reading from monitor 
6. Close valve 4 
7. Close Regulator 3 
8. Attach outlet hose from Regulator 3 to Vacuum Subsystem 
9. Vent H2S Monitor 1 

D. De-Emulsifier Injection 
1. Make sure valve 6 and 8 are closed 
2. Open valve 7 
3. Inject the de-emulsifier 
4. Close valve 7 
5. Make sure valve 9 is closed 
6. Open valve 8 
7. Make sure valve 7 is closed 

E. HPSC Filling 
1. Open valve 5  
2. Open valve 6 
3. Allow Fluids to go to HPSC 
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4. Close valve 8 
5. Close valve 5 
6. Close valve 6 
7. Allow the de-emulsifier to take effect 

F. LPSC Fluids Filling 
1. Connect LPSC to Autoclave system 
2. Make sure valve 11 is closed 
3. Open valve 10 
4. Very Slowly open 9 (keep in mind 70atm difference between sample collectors) 
5. Allow water to go to the LPSC 
6. Close valve 9 as soon as Oil flows into LPSC 
7. Close valve 10 
8. Connect H2S monitor 2 to LPSC 
9. Open valve 11 
10. Acquire H2S concentration reading 
11. Close valve 11 
12. Unhook LPSC from Autoclave system 
13. Connect LPSC to vacuum sub-system 
14. Open valve 10 
15. Allow gases to be sucked by vacuum sub-system 
16. Discharge water from LPSC 
17. Close valve 10 
18. Connect LPSC to Autoclave system 
19. Make sure valve 11 is closed 
20. Open valve 10 
21. Very Slowly open 9 (keep in mind 70atm difference between sample collectors) 
22. Allow oil to go to the LPSC 
23. Close valve 9 as soon as gases flow into LPSC 
24. Close valve 10 
25. Open valve 11 
26. Acquire H2S concentration reading 
27. Close valve 11 
28. Unhook LPSC from Autoclave system 
29. Connect LPSC to vacuum sub-system 
30. Open valve 10 
31. Allow gases to be sucked by vacuum sub-system 
32. Discharge oil from LPSC 
33. Close valve 10 
34. Connect LPSC to Autoclave system 
35. Make sure valve 11 is closed 
36. Open valve 10 
37. Very Slowly open 9 (keep in mind 70atm difference between sample collectors) 
38. Allow gases to go to the LPSC 
39. Close valve 9 when pressure becomes homogeneous 
40. Close valve 10 



 48

41. Open valve 11 
42. Acquire H2S concentration reading 
43. Close valve 11 
44. Unhook LPSC from Autoclave system 
45. Connect LPSC to vacuum sub-system 
46. Open valve 10 
47. Allow gases to be sucked by vacuum sub-system 

G. System Bleeding 
1. Disconnect H2S monitor 1 from Autoclave system 
2. Connect recently disconnected hose from H2S monitor 1 to Vacuum Subsystem 
3. Make sure Regulator 3 is closed 
4. Open valve 4 
5. Open Regulator 3 until delivering 15 PSI 
6. When the pressure in the Autoclave system has reached zero 
7. Close Regulator 3 
8. Close valve 4 
9. Open Valve 3 
10. Make sure Regulator 2 is closed 
11. Open N2 Tank 
12. Deliver N2 until 50~60psi has been reached within the System 
13. Close Regulator 2 
14. Close N2 Tank 
15. Close Valve 3 
16. Make sure valve 9 is closed 
17. Place disposal container underneath valve 9 
18. Make sure valve 7 is closed 
19. Open valve 1 
20. Open valve 5 
21. Open valve 6 
22. Open valve 8 
23. Open valve 9 
24. When all liquids are out of Autoclave system 
25. Close valve 1 
26. Close valve 5 
27. Close valve 6 
28. Close valve 8 
29. Close valve 9 

H. System Cleaning 
1. Make sure all valves are closed 
2. Open valve 4 
3. Open Regulator 3 
4. Open valve 1 
5. Input 1L of Kerosene and 1L of Water 
6. Close valve 1 
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7. Close valve 4 
8. Close Regulator 3 
9. Open valve 5 
10. Open valve 12 
11. Open valve 13 
12. Turn on Haskel pump at 40psi for 2 minutes 
13. Turn Haskel Pump off 
14. Close valve 12 
15. Close valve 13 
16. Close valve 5 
17. Make sure Regulator 2 is closed 
18. Open valve 3 
19. Open N2 Tank 
20. Deliver 3atm 
21. Close N2 Tank 
22. Close Regulator 2 
23. Close valve 3 
24. Make sure valve 7 is closed 
25. Make sure disposal container is under valve 9 
26. Open valve 5 
27. Open valve 6 
28. Open valve 8 
29. Open valve 9 
30. After all Kerosene and N2 is out 
31. Close valve 5 
32. Close valve 6 
33. Close valve 8 
34. Close valve 9 
35. Open valve 1 
36. Allow pressure in Autoclave to reach zero 
37. Close valve 1 
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APPENDIX B. SAFETY, HEALTH AND ENVIRONMENT 
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For safety purposes the whole Autoclave system was put inside a cabinet. Every junction 

of this cabinet was doubly sealed with vinyl sealant and duct tape. The cabinet has an 

explosion-proof polymer window that can be opened and closed at will in order to 

manipulate the valves and set the experiments before running them. It also has four ports 

that are used by the vacuum subsystem. 

 

This subsystem is the main mechanism for assuring an appropriate management of any 

H2S there might be in the cabinet due to a leak. The gas may come from an improper tank 

connection or an escape from a fitting (due to failures in the system). This vacuum sucks 

all the air in the cabinet twice per minute and then directs it towards a 10%W NaOH 

solution, through where the gas is bubbled.  

 

The purpose of this procedure is to obligate any remaining Hydrogen sulfide react with 

the Sodium Hydroxide and thus convert it in a non-harmful compound. With the 

objective of having full redundancy, two vacuums (each with its NaOH canister) are 

used. The first one vacuums the air at head-height since this is the location where most of 

the tubing and fittings are located. The second vacuum sucks the air from a lower level, 

near where the Hydrogen sulfide tank is. The position where the second vacuum is placed 

is ground level due to the fact that H2S is heavier than air, then in case a leak exists 

Hydrogen sulfide will tend to go down to the bottom. Sodium Hydroxide is used for 

scrubbing H2S out of air but cannot be used to remove this compound from oil since that 
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reaction is highly reversible: if the waterflood’s pH changes Hydrogen sulfide reappears 

[13].  

 

The Autoclave System’s operators wear ©3M 6100 series Respirator masks. They have 

©3M 6002 Gas mask cartridges, designed for escaping from environments with 

Hydrogen sulfide concentrations up to 200ppm. 

Table 5: Hazards and Security Measures 
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APPENDIX C. HENRY’S CONSTANT FOR H2S IN DIFFERENT 
WATER CUTS 
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Henry’s Law states that 

 

At a constant temperature, the amount of a given gas dissolved in a given type and 

volume of liquid is directly proportional to the partial pressure of that gas in equilibrium 

with that liquid. [12] 

 

This can be written as 

                                                                  kcp ee =                                                           (23) 

where e is Euler’s number, p is the partial pressure of the solute above the solution, k is 

Henry’s Law constant and c is the concentration of the solute in the solution in any of its 

units.  This can also be written as 

kcp =  

Henry’s Law’s constants are defined in the limit  

                                                        
absorbedSH

SH

cc c
P

k
,

0
2

2lim
→

=                                                   (24) 

In the case of this investigation the concentration of the solution in the solute c will be 

given in mass units (per two liters of solvent volume), when 

                                                        
absorbedSH

SH

mm m
P

k
,

0
2

2lim
→

=                                                (25) 

This is done due to the fact that petroleum’s molecular mass can only be acquired as a 

guesstimate (it is a highly complex mixture of chemical compounds that can entail 

hundreds of different species) and this can affect the reliability of the results. In the same 
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manner, maintaining all calculations in molar solubility units ( )3m
mol  permits the results of 

this investigation to be utilized on a broader range of types of crude oil.  

 

Henry’s law is in reality only an approximate law [11]. Solutions that obey Henry’s Law 

are called ideal dilute solutions. It is the intention of this thesis to find the Henry’s Law’s 

constant for Hydrogen sulfide as the solvent changes from a 0%WC to a 100%WC 

mixture. Based on the results of the tests and the previously mentioned equations the real 

km is obtained. In the following graphs mk  is indicated on the vertical axis as k. Also, on 

the bottom right of each graph an equation is found, this is the mathematical expression 

of mk .  

 

0% Water Cut 
After extrapolating as previously mentioned the real mk values were found. For each 

water cut two values were identified, one for each pressure. It was found that pressure has 

indeed an important role in this phenomenon. At 20atm ≈mk 660 Kg
KPa  where as at a 

higher pressure (70atm) ≈mk 840 Kg
KPa . 
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Figure 29:  Petroleum - 20atm 
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Figure 30:  Petroleum - 70atm 

33% Water Cut 
The same trend as the one found for the 0%WC is observed when the solvent is changed 

to 33%.  Moving from an original H2S concentration of 50ppm to 100ppm there is a 

decrease. After that, a stronger sloped increase is noticeable. At 20atm ≈mk 725 Kg
KPa  

where as at a higher pressure (70atm) ≈mk 620 Kg
KPa . 
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y = 0.0085x 2 - 2.0104x + 724.61
R 2 = 1
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Figure 31:  Results at 33%WC - 20atm 

y = 0.0078x 2 - 1.6459x + 620.86
R 2 = 1

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
900.0

1000.0

0 50 100 150 200 250 300 350

Original H2S conc (ppm)

k

33%WC - 70atm Poly. (33%WC - 70atm)

  

Figure 32: Results at 33%WC - 70atm 

66% Water Cut 
 

The polynomial to the second order regression can be seen as the dotted gray line. 

Identifying the intercept between this line and the y axis permits to find the value of k for 

this state in particular. At 20atm ≈mk 840 Kg
KPa  where as at a higher pressure (70atm) 

≈mk 445 Kg
KPa . 
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y = 0.0128x 2  - 4.3698x + 842.1
R 2  = 1
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Figure 33:  Results at 66%WC - 20atm 

y = 0.0022x 2  + 0.1578x + 446.6
R 2 = 1
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Figure 34:  Results at 66%WC - 70atm 

100% Water Cut 
 

As water cut increases the curve tends to flatten out. The effect of this phenomenon on 

the value of k is to decrease it. At 20atm ≈mk 480 Kg
KPa  where as at a higher pressure 

(70atm) ≈mk 600 Kg
KPa . 
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y = 0.0014x 2  - 0.0216x + 477.56
R 2  = 1
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Figure 35:  Results at 100%WC – 20atm 

y = 0.0042x 2 - 1.1956x + 601.85
R 2 = 1
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Figure 36:  Results at 100%WC - 70atm 

 

When segregating all the data by the original pressure (20atm or 70atm) the following 

figures can be plotted: 
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Figure 37:  Results at 20atm - Comparison of k as a function of H2S concentration 

In Figure 24 it can be seen that as the original H2S concentration increases, the separation 

between each solvent becomes clearer. The highest value pertains to the lowest water cut 

(i.e. pure petroleum – light blue curve) whereas the lowest value is that of the highest 

water cut (pure brine – brown curve). All of the curves have a minimum approximately 

100ppm. 
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Figure 38:  Results at 70atm - Comparison of k as a function of H2S concentration 
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The same kind of comparison plot is repeated for the results of the tests at 70atm. Again, 

as the original H2S concentration increases, the separation between each solvent becomes 

clearer. The highest value pertains to the lowest water cut (i.e. pure petroleum – light blue 

curve) whereas the lowest value is that of the highest water cut (pure brine – brown 

curve). Nevertheless, all of these curves per se have little importance, what is of utter 

significance is the value that can be found from them which is their intercept with the y 

axis. Table 2 summarizes the encountered values. 

Table 6:  Values of km 

%WC P(atm) k(KPa/kg)
0 20 664 
0 70 841 

33 20 725 
33 70 621 
66 20 842 
66 70 447 
100 20 478 
100 70 602 

 

The oil industry can take advantage of these values when they are exploring a new well: 

when the first fluid samples are taken, the water cut and reservoir pressure can be easily 

identified; with that information the corresponding k can be chosen and the expected 

amount of H2S to be liberated by the liquids during the fluid decompression can then be 

estimated. Obtaining a reading of the H2S concentration when the fluids reach the 

platform would not give the explorers enough data for them to predict how much of the 

gas to expect at different points of the piping. The reason is that the H2S that reaches the 

platform is mainly in the gaseous state, but in the reservoir part of it was in the aqueous 

phase and was liberated during the decompression process of flowing up through the 

pipe. Since H2S is a corrosive gas, a Hydrogen sulfide scavenger is injected at different 
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points of the pipe to attack the unwanted gas. For doing this in an appropriate manner the 

best would be to know exactly what the concentration is at the distinct locations of the 

pipe (in order to inject exactly the required quantity of scavenger at each of these points). 

It is for this reason that knowing the values of k is of immense consequence. 

 

Analyzing the values of k (from table 2) at different total pressures permitted to observe 

different behaviors. During the simulation of the reservoir at low pressure, an increasing 

and almost linear conduct between 0 and 66%WC is notorious followed by a drop 

between 66 and 100%WC.    
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Figure 39:  Results of k as a function of %WC at 20atm 

 

An almost mirror image is found when plotting the data for the 70atm tests. An almost 

linear trend is found between 0 and 66%WC, but this time it is a negative slope. As the 

brine/petroleum ratio increases above 66% an increase is found on the k curve. Then, 

66%WC is a minimum for the low pressure scenario and a maximum for the high 

pressure.  



 63

k - 70atm

0

100

200

300

400

500

600

700

800

900

0 33 66 100

%WC

k

  

Figure 40: Results of k as a function of %WC at 70atm 

Finally, in order to appreciate the role of the pressure in the reservoir on the value of k the 

following chart was plotted:  
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Figure 41:  Role of Total Pressure on k for the distinct solvents 

Here, it is noticeable that the pure fluids (petroleum-light blue and brine-brown) have a 

positive slope, meaning that its value of k increases with pressure, while the mixtures 

have a negative slope. It is seen that the most pressure-sensible solvent is 66%WC: in the 

conducted tests it yielded both, the highest (842kPa/kg) and lowest (447KPa/Kg) values 

of k (low pressure and high pressure, respectively). 
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