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ABSTRACT 

Modern aircraft, military and commercial, rely extensively on hydraulic systems. 

However, there is great interest in the avionics community to replace hydraulic systems with 

electric systems. There are physical challenges to replacing hydraulic actuators with 

electromechanical actuators (EMAs), especially for flight control surface actuation. These 

include dynamic heat generation and power management. 

Simulation is seen as a powerful tool in making the transition to all-electric aircraft by 

predicting the dynamic heat generated and the power flow in the EMA. Chapter 2 of this 

dissertation describes the nonlinear, lumped-element, integrated modeling of a permanent 

magnet (PM) motor used in an EMA. This model is capable of representing transient dynamics 

of an EMA, mechanically, electrically, and thermally. 

Inductance is a primary parameter that links the electrical and mechanical domains and, 

therefore, is of critical importance to the modeling of the whole EMA. In the dynamic mode of 

operation of an EMA, the inductances are quite nonlinear. Chapter 3 details the careful analysis 

of the inductances from finite element software and the mathematical modeling of these 

inductances for use in the overall EMA model. 

Chapter 4 covers the design and verification of a nonlinear, transient simulation model of 

a two-step synchronous generator with three-phase rectifiers. Simulation results are shown. 
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CHAPTER ONE: INTRODUCTION 

Objective 

The heat loads in an electromechanical actuator (EMA) and the electrical power demands 

of an EMA system are both highly transient; therefore, thermal and electrical modeling designed 

for time-averaged, steady-state behavior are inadequate. The heat loads and power demands of 

EMAs must be accurately known before EMAs can be trusted as replacements to current 

hydraulic actuators in controlling flight surfaces on aircraft. Therefore, a comprehensive, 

nonlinear, dynamic simulation model including electromagnetics with non-linearities, rotor 

dynamics, power electronics, control, and heat transfer thermodynamics are designed for an 

EMA. 

The second chapter details the comprehensive analysis of the EMA simulation model and 

includes experimental validation. The third chapter focuses on how the nonlinear inductances of 

the EMA’s electric motor are obtained from finite element method (FEM) and how a 

mathematical model is developed to fit the tables of inductance data. These inductance formulas 

can be used in the full EMA simulation model of the second chapter. The third chapter includes a 

comparison of running the full simulation using the nonlinear inductance formulas versus 

running the simulation using scalar values. 

Using [1] extensively, the rest of this chapter details the motivation for this research and 

an overview of the work done. 
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The All-Electric Aircraft (AEA) Concept 

System-level benefits 

Current airplanes use a combination of pneumatic, hydraulic, and electric systems. It is 

expected that future airplanes will just have an electric system. Such all-electric aircraft (AEA) 

would use electric power exclusively for onboard systems [2]. Some of the expected benefits are 

the following [1], [3]-[5]: 

• Improved aircraft maintainability 

o No hydraulic components 

o Faster aircraft turnaround 

o Fewer necessary tools and spares 

o Better fault-diagnosis through built-in testing (BIT) 

• Improved system availability and reliability 

o More easily reconfigurable – Electrical distribution is more practical and 

offers system reconfiguration flexibility (a capability previously difficult 

to achieve using hydraulics). 

o Improved mean time between failures (MTBF) 

• Improved flight safety – avoiding common-mode failures by using dissimilar 

power supplies 

• Reduced system weight – Electric actuators would replace not just the hydraulic 

actuators but their entire hydraulic system, including pumps, distribution 

networks (pipes and fluid), and valve blocks. 

• Reduction of aircraft operating costs – reduced fuel consumption from reduced 

weight; reduced maintenance costs 
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Unit-level benefits 

As seen above, the primary advantages of EMAs over current actuators are in the 

comparison of the entire systems, rather than the units themselves. However, the EMA unit itself 

does have a number of advantages: 

• EMAs are more energy efficient than hydraulic systems in that EMAs only 

require energy when force is required [6]. Hydraulic systems must keep running 

just to maintain line pressure. Hydraulic transmissions also incur energy losses 

from pumping [7]. 

• EMAs lack hydraulic fluid, which can leak, is corrosive, and is a fire hazard. 

Without hydraulic fluid, EMAs can be simpler to install and maintain. 

• EMAs tend to be stiffer than hydraulics. This happens because hydraulic 

transmissions have an elastic quality that EMAs lack. 

Predicted progress 

In spite of the benefits of an all-electric aircraft, there is no aircraft that fulfills this goal 

yet. However, when an AEA is realized, it will likely happen in the following order [5]: 

• Stage 1: Electro-hydrostatic actuators (EHAs) serve as auxiliary to standard 

hydraulic actuators. 

• Stage 2: EHAs operate as primary control actuators. 

• Stage 3: Electromechanical actuator (EMA) technology improves in the areas of 

thermal management, power density, and jam tolerance. Aircraft power 

generation systems advance to support the very high electrical demands. 

• Stage 4: EMAs serve as auxiliary to EHAs. 

• Stage 5: EMAs operate as both primary and auxiliary control actuators. 
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Given that the commercial aircraft Airbus A380 uses electro-hydrostatic backup actuators 

(EHBA) in its flight control system, it is safe to say that the first stage has been accomplished. 

The assumption is that with experience of EHAs in flight control systems, EHAs will naturally 

progress to being used as primary control actuators. Clearly, overcoming current deficiencies of 

EMA technology will require significant research during the third stage. Success at this stage 

would make it possible for EMAs to be introduced in commercial aircraft by the fourth stage, 

and subsequently to become the exclusive control actuators by the fifth stage. So, at this point, a 

primary focus must be overcoming the deficiencies of EMA technology. 

EMA Development Challenges 

EMAs have been shown to match the performance of hydraulic actuators by flight tests 

from several research programs [8]. However, whether the current EMAs are suitable as the 

primary flight control is still debated [4]. The development of EMAs has three remaining major 

challenges: increasing power density, increasing jam tolerance, and resolving thermal 

management. These issues must each be solved before EMAs can replace hydraulics as primary 

flight control actuators. 

First, as experience with actuators grows and designs of power electronics and electric 

motors are enhanced, the power density (power per unit mass) of EMAs will certainly increase. 

Though an EMA system already has the potential of being lighter than a hydraulic system, this 

power density increase will make the EMA actuators themselves more competitive with 

hydraulic actuators in weight. 

Typically, an EMA mechanical transmission has dozens of gear teeth, the failure of any 

one of which can cause critical jamming, the second major challenge. An EMA must be able to 

bypass this failure by some means, such as including several transmission paths, or by removing 
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the gearbox altogether and using a low-speed, high-torque “direct drive,” a currently investigated 

alternative [9]. 

The third major challenge to developing a high-power, flight worthy EMA system is 

thermal management. The heat generated by an EMA system can easily be enough to cause 

failure. Already, the environment for which the EMA system must be designed ranges from -40 

°C to 125 °C. Furthermore, the actuator and its electronics do not offer a convenient path for heat 

transfer. So, either new approaches to heat transfer must be developed or the actuator and its 

surrounding structure must be designed to operate properly at higher temperatures. 

EMAs can be used on the ailerons, elevators, spoilers, and rudder, the primary flight 

control surfaces of an aircraft. EMAs also can be used for the propulsion system actuation and 

secondary functions such as landing gear and high-lift devices. However, thermal management 

makes primary flight control surfaces, which are in continuous use, much more critical than 

secondary actuators, which required only intermittent use allowing plenty of time for heat to 

dissipate. Features important to the military for their strike aircraft, such as high acceleration 

maneuvering loads and inverted or supersonic flight, further increase the demands on thermal 

management system designs. If EMAs are to enter stage four and succeed EHAs as the primary 

actuators, heat generation must be well understood. Consequently, dynamic heat generation in 

EMAs is one of the most important research areas in the mission of all-electric aircraft. 

Heat Generation 

An EMA couples an electric motor to a load, such as a flight control surface, using 

mechanical gearing, such as a rotary gearbox, and may use a ball screw (Figure 1) or roller 

screw. 
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Figure 1. Guts of an electromechanical actuator [4] showing the motor (yellow) with its 

windings, the gears (gray) of the gear box, the screw (blue) of the ball screw, the ball 

housing (red) of the ball screw, and the rod (green) into which the screw slides. 

Figure 2 shows the block diagram of an EMA system (Iden, Lockheed Martin Company, 

2005). The EMA has three major sources of heat: the motor, the power electronics inside the 

electronic unit (EU), and the gearbox. In steady-state operation, the efficiency is typically 93% 

for the power electronics, 80% for the motor, and 80% for the gearbox. It should be noted that 

the actual heat generation is highly transient and localized in nature. Quantifying these transient 

power losses and the temperature distribution is a key objective of this research. 
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Figure 2. Block diagram of an EMA system 

Generally, gearboxes and ball screws are temperature insensitive [10]. The electric motor 

is probably the most temperature-sensitive component. The thermal resistance of the air gap 

between the stator and the rotor makes dissipating heat from the rotor difficult. However, 

switched-reluctance motors (SRM) and permanent magnet (PM) motors both lack rotor 

windings, thereby preventing heat-buildup from copper losses on the rotor altogether [10]. 

Motor losses mainly come from the copper winding losses and magnetic material losses 

(hysteresis and eddy current losses). Since ball screws are very efficient and have low friction, 

even when the EMA is not moving, current must still be supplied to the motor stator to provide a 

torque balance for the load and to keep the EMA from being back-driven. Therefore, heat will 

still be generated even when nothing is moving. FEM is done on the motor design to analyze the 

heat flow and determine thermal lumped-element parameters (Figure 3). 
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Figure 3. FEM diagram of a quarter of a PM motor showing the temperature distribution 

during a simulation. 

High operating temperatures lead to the following problems in motors [10]: 

• The insulation melts, leading to electrical shorts (a catastrophic failure) 

• The copper resistivity increases, generating more heat and further reducing 

efficiency (a reversible problem) 

• The magnetic permeability decreases (a gradual, but irreversible failure), further 

increasing magnetic losses and reducing efficiency. 

The power electronics in the EU, controlling the direction and speed of the motor [4], 

generate heat mostly in the semiconductors. Semiconductors generate heat in four major ways 

[11]: 
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• On or off switching losses. At high switching frequencies, as are necessary in 

motor control, this heat contribution becomes significant. 

• Resistive losses of forward conduction 

• Leakage losses in off mode. Some current from the blocked voltage gets through. 

• Control terminal contact losses of the semiconductor 

The combined heat from these effects is significant [4], often of the same order of 

magnitude as from the motor [12], [13], and, unless removed, could irreversibly damage the 

electronics [4]. Even though electronics can survive high transient temperatures, their mean time 

between failures (MTBF) is considerably reduced. 

Besides heat from semiconductor power devices, heat can also be generated from the 

copper traces and the magnetic components (winding and core losses) on the power electronics 

board. These losses are even greater during a transient current surge. 

Simulation 

Accurately modeling heat generation, including transients, is important in developing 

good thermal management of the whole EMA system. Transient heat-generation simulation of an 

EMA system involves comprehensive multi-physics, multi-scale, and multi-domain simulation 

efforts. The procedure can be divided into two steps. 

First, critical simulation parameters for the EMA are obtained. Some parameters are 

obtained through experimentation. For others, experimentation would be either very difficult or 

impractical. In such cases, FEM simulations of the PM motor can provide accurate information. 

FEM simulations of the magnetic field distribution of the motor are used to find the nonlinear 

self and mutual-inductances of the three-phase windings. Figure 4 shows an example PM motor 

in a 2D cross-sectional view with the magnetic flux density distribution. 
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Figure 4. Cross-sectional view of a PM (left) and magnetic flux density distribution (right) 

Because FEM simulations for inductances are very time-consuming, the simulations are 

done on 2D cross-sections of the motor. This is an accurate approach since for a motor with a 

small radius to length ratio the edge effects do not significantly influence the simulation results. 

In the system simulation, the motor is integrated in a complete system that consists of an 

input voltage source, various load conditions, a feedback control scheme, etc. Rotor dynamics 

are also included in the system dynamical equations. Instead of using empirical formula 

calculations, the flux linkage and inductances of the motor can be extracted from the FEM 

model, where EM field effects have been taken into account. Therefore, the motor dynamic 

model is very accurate. 

Transient heat transfer simulation using FEM is performed on the motor. Because 

thermal simulations do not require mesh resolutions nearly as detailed as those of electrical 

simulations, the thermal simulations run much faster. Therefore, the thermal simulations are 

performed on 3D segments of the motor. Once, simulation data is obtained, correlations between 

input heat and output nodal temperatures can be made to derive thermal resistances and 

capacitances. These values are then used in a lumped-element thermal network within the full 

EMA simulation model. 
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Second, a nonlinear, lumped-element model (NLEM) is built and the previously obtained 

parameters are used in the model. This approach provides the high accuracy of FEM with the 

simulation speed of lumped-element modeling. 

Chapter 2 details the overall simulation model. It explains how the model is designed, 

how many of its parameters are obtained, and how the various components, such as the thermal 

network, interact. It also shows how the model performs when a full simulation is run. 

Chapter 3 details the development of the nonlinear inductance formulas that are used in 

the overall simulation model of the EMA. This represents a large portion of the work and one of 

the most critical components of the model. This chapter explains in detail how FEM is used to 

get tables of inductances, how that data is correlated with currents, and how a formula is fitted to 

the data. 

Chapter 4 covers the design and verification of a nonlinear, transient simulation model of 

a two-step synchronous generator with three-phase, full-wave rectifiers. A new magnetics model 

is developed and compared to FEM data of a synchronous machine. Simulation results are 

included. 

Finally, Chapter 5 concludes the dissertation. This work covers the primary components 

involved in an all-electric aircraft system. 
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CHAPTER TWO: DYNAMIC HEAT GENERATION MODELING OF 
HIGH-PERFORMANCE ELECTROMECHANICAL ACTUATOR 

Introduction 

The development of all-electric aircraft is a high priority in the avionics community [1]. 

Current aircraft use a combination of hydraulic, pneumatic, and electric systems. However, 

future airplanes are expected to use a single, electric system, with electromechanical actuators 

(EMAs) replacing hydraulic pistons. Such a system would reduce the cost to build, operate, and 

maintain aircraft [15]. It would also make aircraft lighter, more reliable, safer, and more easily 

reconfigurable, improving the turnaround for new technology [1]. 

There are two major obstacles to replacing hydraulic actuators with EMAs: heat 

generation management and power management. Firstly, unlike hydraulic actuators, EMAs do 

not have the inherent advantage of recirculating fluid to cool their components [16]. Rather, 

windings in EMAs can overheat rapidly depending on the demands, at which point materials can 

degrade. Neodymium-iron-boron is one of the most powerful permanent magnets for electric 

motors, but it begins to demagnetize at relatively low temperatures [17], with an operating range 

upper limit of 120 °C to 180 °C. Although effective, liquid cooling reinstitutes one of the 

systems that are being eliminated. Primary flight control actuators are of particular relevance 

because they are continually engaged during flight, are required to accelerate rapidly, and are 

often faced with high wind loads. As the complexities of aircraft systems exponentially grow and 

the demand for lightweight composites increases, thermal concerns are increasingly significant. 

Heat generation in motor windings can be highly dynamic and localized. Predicting how much 

heat would be generated by an EMA is critical. 
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Secondly, EMAs have the advantage of only using power when active, whereas hydraulic 

systems require that a pump continuously maintain line pressure. This difference should help to 

make EMA systems more efficient than hydraulic systems. However, this advantage brings with 

it a major complication: the power draw from the electrical supply is also highly dynamic. 

Compounding this problem are the highly variable demands of all the electrical systems of an 

entire aircraft drawing power from one source. Predicting how much power will be drawn during 

operation is critical for sizing system components and choosing the power supply type (e.g. 

battery-supercapacitor hybrid). 

Given the need for predicting dynamically generated heat and power demand, an accurate 

simulation model is tremendously valuable in designing an EMA system. EMA systems are 

complex and testing them is an involved procedure. Such systems are also expensive which 

discourages testing them to their limits, and many different scenarios are needed to properly test 

an EMA. Furthermore, there are significant details which cannot be practically measured 

experimentally. Therefore, it is advantageous to simulate the entire EMA with all its dynamics 

having only measured its key parameters. 

The EMA simulation model presented in this chapter meets this goal. It includes a 

position field-oriented control (FOC), a pulse-width modulation (PWM) component, an electro-

mechanical dynamics component, and a thermal component. Model parameters are obtained by 

experimentation or finite element method (FEM). The full simulation model is a nonlinear, 

lumped-element model (NL-LEM). The model corresponds to a linear actuator with a permanent 

magnet (PM) rotational motor connected to a rotational-to-linear drive train (e.g. a ball screw or 

a roller screw). 
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The methodology presented here provides a means of predicting heat generation and the 

overall power demands of an EMA. Such tools will help in reaching the goal of an all-electric 

aircraft. 

Simulation results, including heat generation and power demand, for a commercially 

available, test EMA are shown in the latter part of the chapter. 

Model Layout 

The four main components of the NL-LEM are shown in Figure 5. 
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Figure 5. Model layout showing the connection of the four major components: field-oriented 

control, pulse-width modulation, electromechanical dynamics, and the thermal 

component. 

The model takes the EMA rod’s desired motion profile translated to an electrical 

reference frame of the motor’s rotor, θme
* (the rotor’s angle θm multiplied by the number of pole 

pairs, P/2), as an input to the field-oriented control (FOC). Based on the present state of the 

direct and quadrature (DQ0) currents, id and iq, and the actual position of the EMA rod, θme, the 

FOC algorithm calculates the reference voltages, ud
* and uq

*, in such a way that the torque angle, 

ϕ, (the angle formed by the id and iq current vectors) is kept at ±π/2. (The power-variant DQ0 
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transform is used for this work.) The PWM component takes these reference voltages as well as 

the present state of the DC supply voltage, uDC, and calculates the PWM voltages, ud and uq. 

These are the actual input voltages to the electromechanical dynamics. With these and the 

present load torque, τL, the electromechanical dynamical equations lead to the calculation of the 

currents, id and iq, EMA position, θme, and dynamically generated heat, Q. An output of the 

electromechanical component is the DC current of the EMA system, iDC. Together with the DC 

bus voltage, uDC, it represents the power demands of the EMA system at its terminals. The heat 

generated in the motor is the input to the thermal component. With the present value of the 

environmental temperature, Tenv, the thermal equations lead to the nodal temperatures, Ti, and the 

updated value of resistance, Rs, which is fed back into the electromechanical dynamics. The 

nodal temperatures represent the thermal behavior of the EMA system. Table 1 summarizes 

many of these terms. 
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Table 1. Simulation States 

Symbol Name Units 
t Time s 
ϕ Torque angle rad 
θm Rotor angle rad 
θm

* Desired rotor angle rad 
θme Rotor angle θm scaled by P/2 rad 
θme

* Desired rotor angle θm
* scaled by P/2 rad 

ωme First time-derivative of θme rad/s 
ωme

* First time-derivative of θme
* rad/s 

αme Second time-derivative of θme rad/s2 
τL Load torque N m 
τM Motor-generated torque N m 
τg Torque due to gravity N m 
τf Frictional torque N m 
ud Direct voltage V 
uq Quadrature voltage V 
id Direct current A 
iq Quadrature current A 

ud
* Desired direct voltage V 

uq
* Desired quadrature voltage V 

id
* Desired direct current A 

iq
* Desired quadrature current A 

uDC DC bus voltage V 
iDC DC bus current A 
Q Generated heat W 
Rs Phase resistance Ω 

Tenv Environmental temperature °C 
Ti Nodal temperature °C 

All the torques are in the mechanical, angular reference frame (i.e. they have not been scaled by 

P/2). 

Notice that the desired position, θme
*, the load torque, τL, the environmental temperature, 

Tenv, and the DC voltage, uDC, all can be variable inputs to the model. An EMA can be run 
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through a motion profile in the presence of a variable load profile while the bus voltage and 

environmental temperature change. 

Parameter Measurement and FEM Calculation 

Table 2 shows a summary of the key EMA parameters. Some of the parameters, such as 

the number of slots and number of poles, are easily obtained from the actuator’s documentation, 

but others must be measured or carefully calculated. Some of the measurements are performed 

while the actuator is coupled with a hydraulic press or some other active load. 

Table 2. EMA Parameters 

Symbol Name Units 
Ncr Gearing ratio rad/m 
S Number of slots ND 
P Number of poles ND 
τf,max Maximum power train friction torque N m 

m Rod mass kg 
I Rotor moment of inertia kg m2/rad2 

Rs,ref Phase resistance at Tref Ω 
Tref Reference temperature °C 
αR Temperature coefficient of resistance °C-1 

λPM PM flux linkage Wb 
Ld(id,iq) Direct inductance H 
Lq(id,iq) Quadrature inductance H 

 

Measurement 

Gearing ratio, Ncr 

The gearing ratio is carefully calculated by counting the teeth on each gear and measuring 

the linear displacement of the actuator rod for one full revolution of the rotor. 
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Power train friction, τf 

The hydraulic actuator is coupled to the unpowered EMA and drives the EMA’s rod up 

and down. The static friction of the EMA’s drive train is obtained by using the force and stroke 

data collected during this test, and the mean forces required to push or pull the EMA rod are 

calculated. The magnitudes of these forces are unequal due to a bias. This bias exists because of 

the weight of the rod itself, and the difference between this bias and the push and pull forces is 

the friction force. This force is then converted to a torque as seen by the motor’s rotor. 

Rod mass, m 

The mass of the EMA’s entire rod is derived from the friction test. The bias in the force 

required to move the EMA rod is due to the weight of the rod. This translates to a certain mass. 

Rotor moment of inertia, I 

The rotor moment of inertia is obtained by measuring the dimensions of the rotor and the 

material densities and calculating the moment of inertia. 

Phase resistance, Rs 

The phase resistance is measured by connecting leads to two of the three phase lines into 

the motor and measuring the open-circuit line-to-line resistance. This value is then divided by 

two if the motor is a wye-connected motor. 

FEM Calculation 

The material composition and geometry of the motor are used in designing an FEM 

model in ANSYS’s Maxwell 2D. Values of rotor angle, torque angle, and current amplitude are 

varied as multiple simulation runs are performed. 

Many of the motor modeling researchers in the past [18], [19] and even present [20], [21] 

use constant parameter values in simulations, although some use nonlinear inductances [22], 



20 

[23], [24]. For this chapter, FEM is used to obtain Ld and Lq as nonlinear functions of id and iq. 

The derivatives of inductance with respect to current are numerically calculated from these 

tables. The inductances and their derivatives with respect to DQ0 currents can be stored in tables 

which are then indexed during simulation. 

The FEM model is simulated with currents well above the motor’s normal operating 

range in order to capture the behavior during highly transient moments. The torque angle should 

be varied from 0 to π radians to capture the full character of the inductances. Even if the rotor of 

an EMA is round, the rotor angle has an effect on the DQ0 reference frame inductances. 

Therefore, the rotor angle should also be varied over one period of variation in the DQ0 

inductances. Such variation occurs mostly at relatively high current values (i.e. at saturation), so 

this variation is averaged out, but the calculation of inductance at a single rotor angle cannot be 

assumed to be representative of the average. 

Note that the peak inductance values do not necessarily occur at zero current, nor are the 

inductances mirrored about the quadrature axis. An example of this is in Figure 6. This should 

clarify the highly variable nature of inductances and the need to use nonlinear modeling instead 

of assuming constant values. 
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Figure 6. Direct-axis inductance along the id axis (blue) and the inductance value at zero 

current (green circle). The inductance is not mirrored about the quadrature axis (This axis 

goes into the page), so its values for positive id do not match those for negative id. 

Electromechanical Dynamics 

The motor dynamics are modeled by four primary dynamical equations in the DQ0 

reference frame [25]. The first two of these equations are 

(1) 
qddqqqdd

qdqdqqd

LLLL
GLGL

dt
di

−

−
=  (1) 

(2) 
qddqqqdd

dqdqddq

LLLL
GLGL

dt
di

−

−
= . (2) 

These come from the voltage equations (3) and (4): 
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(3) meqq
q
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dt
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(4) ( ) mePMdd
q

qq
d

qdqsq iL
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where 

(5) 
d

d
dddd di

dLiLL +=  (5) 

(6) 
q

d
ddq di

dLiL =  (6) 

(7) 
d

q
qqd di
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iL =  (7) 

(8) 
q

q
qqqq di

dL
iLL +=  (8) 

(9) ( ) meqqdsdd iLiRuG ω+−=  (9) 

(10) ( ) mePMddqsqq iLiRuG ωλ+−−= . (10) 

The full derivation can be found in Appendix A: Permanent Magnet Machine Dynamics. 

These equations carry the assumption that the variations in inductances over rotor angle 

can be reasonably averaged out, that the flux linkage from the permanent magnets appears only 

in the direct axis, and that the motor is balanced. 

The voltages are provided by the PWM component; the current rates are calculated using 

(1) and (2); and the currents are found by integration. 

In [26], there is a detailed analysis of the motor-generated torque equation. Given the 

assumptions made for (1)-(10), the motor-generated torque equation is 

(11) ( )[ ]dqdPMqM iLLiP
−+= λτ

4
3 . (11) 
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The third dynamical equation is the torque-acceleration equation that links the motor-

generated torque to the acceleration it produces: 

(12) ( )fgLM
net

me
me

I
P

dt
d τττταω

+++==
1

2
, (12) 

where Inet is the combined effect of all inertias from all moving parts in the EMA translated to 

the mechanical, angular reference frame of the rotor. The value Inet is calculated from the mass of 

the rod, m, and the angular moment of inertia of the rotor, I, by 

(13) I
N
mI
cr

net += 2 . (13) 

As long as velocity is zero, the frictional torque is defined to be equal and opposite to the 

sum of the other component torques up to a maximum friction value. This keeps the net torque 

and, therefore, velocity at zero. However, when the sum of the other component torques exceeds 

this maximum friction, the magnitude of the friction holds at this maximum value and its sign 

always opposes the direction of motion (14). 
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Note that air friction is not included because EMAs use position controlled motors, which 

do not reach excessive speeds where air friction is a practical consideration. 

Finally, the forth dynamical equation is 

(15) me
me

dt
d

ω
θ

= . (15) 

This is simply the definition of angular velocity and is integrated to get angular position. 
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Thermal Component 

The motor losses are related to the motor parameters. Since losses affect temperature 

which affects motor parameters which in turn affect losses, the losses should be modeled through 

the motor parameters, and not in post-processing. Copper winding loss is a primary power loss. 

The winding loss can be calculated as 

(16) ( ) scba RiiiQ 222 ++= , (16) 

or equivalently 

(17) ( ) sqd RiiQ 22

2
3

+=  (17) 

in the DQ0 reference frame. This heat is then fed into the lumped-element thermal model. 

Some thermal models, such as in [27], use only one temperature node. The model shown 

here uses multiple nodes. The temperatures at multiple locations in the motor are calculated 

using a lumped-element thermal model (Figure 7) of the form shown in (18): 

(18) i

K

k
ikki

i TQ
dt
dT

σρ 







+= ∑ , (18) 

where Ti and Tk are nodal temperatures, Qi is a heat source corresponding to that node, K is the 

number of nodes in the network, ρik is a sum of reciprocals of thermal resistances linking the 

node to nearby nodes, and σi is a reciprocal of thermal capacitance linking the node to the 

thermal sink. This model is similar to the one developed in [28] for another PM motor. 

The source of heat for the temperature calculations is the copper power loss in the 

windings. The temperature distribution of the motor is modeled using a lumped-element network 

shown in Figure 7. The values of the thermal resistances and capacitances are developed using an 

FEM model of the motor. 
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Figure 7. Thermal lumped element model. The motor is defined to have a front and a back. 

The space between the rotor and stator is the air gap. The rotor is composed of magnets 

on a shaft. The body of the shaft is the central region about which the magnets are fixed. 

The bearings hold the shaft in place at both of its ends. The front and back of the motor 

have an aluminum cover and the sides of the motor are surrounded by an aluminum case. 

The copper windings loop around the stator teeth concentrically and are completely 

embedded in epoxy. The epoxy in iron is the epoxy surrounding the windings and located 

in the main body of the iron stator. The end turns are the points on either end where the 

windings loop around the stator teeth passing from one stator slot to another. And, the 

environment is the surrounding atmosphere. 



26 

This model is generic with multiple heat sources. Here, however, the copper loss is 

considered to be the predominant heat source in the motor. 

Given updated nodal temperatures, the electrical phase resistance can be updated. The 

relationship between copper resistance and temperature [29] is as follows: 

(19) Rs = Rs,ref [1 + αR (T – Tref)], (19) 

where Rs,ref is the resistance of the copper winding at the reference temperature Tref, and αR is the 

temperature coefficient of resistance for the copper. 

Field-oriented Control 

A thorough analysis of dynamic motor heat generation should include motor drive 

dynamics. This model’s field-oriented control (FOC) translates the desired motion profile into 

simulation drive voltages. The control is an adaptive closed-loop control, which is a type of 

feedback linearization of the speed and position errors. 

In the following derivation, the star superscript is used to indicate desired values. Starting 

with angular velocity and angular position errors, a desired angular acceleration, αme
*, is 

developed: 

(20) ( ) ( )
c

meme

c

meme
me t

k
t

k
∆
−

+
∆
−

=
θθωωα θω

**
* , (20) 

where Δtc is the time step of the control loop and kω and kθ are control coefficients. This equation 

tends toward changing the present angular velocity and position to match the desired angular 

velocity and position. 

The desired velocity must be redefined based on this newly calculated desired 

acceleration: 

(21) cmememe t∆+= ** αωω . (21) 
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If the load torque is predicted by estimating the load torque from the previous step and if 

the frictional and gravitational torques are neglected, then (12) becomes (22). 

(22) 
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Using (11) as a control equation and setting id
* to zero yields 

(23) PMqM
Pi λτ
4

3** = . (23) 

Substituting (23) into (22) and solving for iq
* results in (24). 
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The desired currents and current rates are then limited. 

Lastly, the desired voltages are calculated: 

(25) **
0

*

0
**

meqq
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ddsd iL
dt
diLiRu ω−+=  (25) 

(26) ( ) **
0
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0
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mePMdd
q
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dt
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LiRu ωλ+++= , (26) 

where Ld0 and Lq0 are the direct and quadrature inductances at zero current, respectively. These 

constants are used instead of the nonlinear parameters for the sake of simplicity. 

PWM Component 

The PWM component of the simulation model uses a trailing edge modulation carrier, as 

demonstrated in Figure 8. The voltages are translated into the ABC reference frame. The PWM 

algorithm is performed on those voltages. Then, these pulsed voltages are translated back into the 

DQ0 reference frame. 
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(a) 
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(b) 

Figure 8. The general concept of the PWM. A trailing edge carrier wave (a) is compared to a 

normalized sinusoidal phase voltage. When the normalized wave is greater than the 

carrier wave, the output PWM voltage (b) is turned on. Otherwise, it is off. 

Inputs 

Scaling 

The stroke and load force data are recorded from actual flight profiles. However, these 

profiles correspond to an actuator with performance characteristics that might not match those of 

a test actuator. Therefore, the stroke and force profiles are scaled for a range which is compatible 

with the test actuator. The stroke profile is also adjusted to match the acceleration limits of the 
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actuator by stretching the profile over time. This scaling is appropriate for testing the general 

capability of the simulation model as is done in this chapter. 

Force-stroke equation 

In the absence of actual flight profiles, a force-stroke relationship can be useful in 

simulating the force, given a theoretical stroke profile. This force-stroke equation comes from 

analyzing actual flight data. The equation is 

(27) 
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where ρ is the air density which can be derived from the altitude of the aircraft, Cd1, Cd2, Cd0, C2, 

and C3 are coefficients, s is the aircraft speed, F0 is the force bias due to the weight of the 

aileron, c is the net friction coefficient, M is the effective mass of the aileron, x is the stroke 

position, x0 is a stroke bias, v is the first derivative of x, and a is the second derivative of x. The 

effect of air density depends on whether the flap is down or up (x < x0 or x ≥ x0). The effect of 

aircraft speed is modeled by a Taylor series function of the stroke. 

The result of fitting this function to the available data is shown in Figure 9. 
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Figure 9. Actual force profile (blue) and calculated force profile (green). 

The value of having this function is that it gives the freedom to run mission profiles that 

were never done before. 

An EMA Example and Results 

A commercially available EMA was measured, modeled, simulated, and experimentally 

tested. Following are the results. 

Parameters 

The key parameters for the test EMA are shown in Table 3. 
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Table 3. EMA Parameters 

Symbol Name Value 
Ncr Gearing ratio 1963 rad/m 
S Number of slots 12 
P Number of poles 10 
τf,max Maximum power train friction 0.174 N m 

m Rod mass 8.5 kg 
I Rotor moment of inertia 113.2 kg mm2/rad2 

Rs,ref Phase resistance at Tref 1.4 Ω 
Tref Reference temperature 20 °C 
αR Temperature coefficient of resistance 0.004041 °C-1 [29] 
λPM PM flux linkage 0.149 Wb 

Ld(id,iq) Direct inductance 0.01735 H 
Lq(id,iq) Quadrature inductance 0.01727 H 

 

Figure 10 shows the force-stroke data for the friction analysis. 
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(a) 
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(b) 

Figure 10. Static friction analysis showing (a) stroke and (b) load force. The green lines on the 

force plot represent the mean forces to pull (-258 N) or push (425 N) the EMA rod, 

overcoming the friction of the drive train (342 N). The bias force is the weight of the 

EMA rod (84 N). 

The direct and quadrature inductances are obtained as shown in Figure 11 and Figure 12. 

The FEM model is simulated with a range of currents (0 to 50 A), a range of torque angles (0 to 

π radians), and a range of rotor angles (0 to π/3 radians). For this motor, a range of π/3 radians 

captures one full cycle of variation in inductance values due to rotor angle. 
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Figure 11. Direct-axis inductance as a function of direct current, id, and quadrature current, iq. 

These inductance values are averaged over rotor angle. 
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Figure 12. Quadrature-axis inductance as a function of direct current, id, and quadrature 

current, iq. These inductance values are averaged over rotor angle. 

A computer rendering of the motor geometry is shown in Figure 13. This geometry is 

used for FEM modeling. 



37 

 

Figure 13. Motor geometry (left) and slot measurements (right). 

Table 4 shows some of the material properties of the EMA motor. 

Table 4. EMA Parameters 

Part Name Cp [J/kg∙K]a k [W/m∙K]b ρ [kg/m3]c 
Casing AL-384 963 96.2 2820 
Lamination Steel 1010 448 51.9 7872 
Windings Copper 385 401 8940 
Epoxy (unknown) 1050 0.85 1200 
Axle Steel 480 15 7750 
Magnets NdFeB-30 5e4 8.95 7400 

aCp is the specific heat capacity. 

bk is the thermal conductivity. 

cρ is the density. 
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Table 5 shows the thermal resistances and capacitances of the thermal network for the 

EMA motor. 

Table 5. EMA Thermal Parameters 

Resistances Value [K/W] Capacitances Value [J/K] 
R1,2 0.83 C1 14.981 
R1,5 0.005 C2 56.024 
R2,3 0.0087 C3 6.717 
R2,6 0.5022 C4 0 
R3,4 0.004 C5 12.07 
R4,13 20.633 C6 7.078 
R5,17 0.5678 C7 7.7 
R6,7 0.004 C8 63.675 
R7,8 4.056 C9 2.526 
R8,10 0.09 C10 8.991 
R8,14 0.124 C11 38.84 
R8,18 11.1487 C12 10.479 
R9,10 1.255 C13 82.296 
R9,11 0.896 C14 86.471 
R10,13 1.045 C15 2.526 
R10,14 2.615 C16 8.991 
R11,12 0.0054 C17 63.675 
R11,15 0.896   
R12,13 0.0063   
R13,14 0.1385   
R13,16 1.045   
R14,16 1.015   
R14,17 0.124   
R14,18 1.1405   
R15,16 0.525   
R17,18 11.1487   

The thermal resistances are labeled according to the nodes they link. The thermal capacitances 

are labeled according to the nodes they are connected to. 



39 

Results 

The following kinematic results are all in the linear domain. The desired stroke profile 

and the motor's actual stroke profile are shown in Figure 14. The motor followed the desired 

stroke profile very well. 

 

Figure 14. Desired (blue) and actual (green) stroke profiles 

The load force profile and the motor-generated force are shown in Figure 15. 
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Figure 15. Input load force profile (blue) and motor-generated force (green). The load force 

was a sustained 0.45 kN. 

The DQ0 voltages and currents are shown in Figure 16 and Figure 17, respectively. 
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Figure 16. DQ0 voltages with pulse form due to PWM. 
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Figure 17. DQ0 currents with pulse form due to PWM. 

If the motor is treated as a system, the powers into (positive) and out of (negative) this 

system are shown in Figure 18. 
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(a) 
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(b) 
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(c) 
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(d) 

Figure 18. Motor powers showing (a) the total electrical power at the terminals of the motor, 

(b) the power loss in the windings, (c) the power stored in the magnetic fields, (d) and the 

mechanical power on the rotor. 

The electrical power at the terminals is the power on the DC bus line. Note that 

sometimes this power is negative, meaning that the motor is actually sending power back to the 

source. The reason for this is that the wind load is actually driving the flight control surface, 

pushing against it as it yields to the wind pressure. 

If the drive train is treated as a system, the powers into (positive) and out of (negative) 

this system are shown in Figure 19. 
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(a) 
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(b) 



49 

 

(c) 
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(d) 
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(e) 

Figure 19. Drive train powers showing (a) the mechanical power on the rotor, (b) the load 

power, (c) the frictional power, (d) the gravitational power, (e) and the net kinetic power. 

The comparison of the recorded temperatures and the simulated temperature of the stator 

is shown in Figure 20. 
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(a) 
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(b) 

Figure 20. (a) Temperature comparison and (b) again zoomed in. These plots have 

environmental temperature (blue), experimentally measured temperature of stator (green), 

simulated temperature of stator (red), and the simulated temperature of the windings 

(cyan). 

The difference here between simulated and measured stator temperatures is actually quite 

small, only about 0.34 °C, much less than the 1 °C sensitivity of the thermocouples used. 

The accuracy of the temperature prediction is more readily observed for longer 

simulation profiles. Another test is shown in Figure 21 lasting a half-hour. The simulation of this 

test matches the stator temperature very well with a maximum error of 0.17 °C. 
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It is important to note that the power demand, power loss, and, therefore, temperatures 

are heavily dependent on the efficiency of control. Control tuning can significantly affect the 

results of the simulation even if the stroke following is practically identical. 

 

Figure 21. Temperature comparison for a half-hour run showing environmental temperature 

(blue), experimentally measured temperature of stator (green), simulated temperature of 

stator (red), and the simulated temperature of the windings (cyan). Note that the 

simulated temperatures of the windings and stator are about the same, indicating the low 

thermal resistance in the motor. 
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Conclusion 

There is a strong motivation to move towards all-electric aircraft. However, the 

significant obstacles to full realization of all-electric aircraft are the thermal management of heat 

loads and power management. This paper shows the successful implementation of an EMA 

model with a control algorithm, a PWM component, an electromechanical component with 

nonlinear parameters, and a thermal component. The model takes a desired position profile, a 

load force profile, and an environmental temperature profile as inputs and predicts the thermal 

behavior of the motor and the transient power demands of the EMA. It is shown that control 

plays a powerful role in how much excess heat is generated and how much the power demand 

spikes. It is also shown that the temperatures within the motor of the EMA are all within a fairly 

narrow band. This approach of using finite element method and nonlinear, lumped-element, 

integrated modeling gives a complete picture of the dynamic behavior of an EMA, thereby 

helping to make all-electric aircraft a reality. 
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CHAPTER THREE: NOVEL NONLINEAR INDUCTANCE MODELING 
OF PERMANENT MAGNET MOTOR 

Introduction 

An all-electric aircraft is an ambitious, high-priority goal in the avionics community [14]. 

A typical mission profile for a flight control surface electromechanical actuator (EMA) can be 

highly dynamic, especially in military aircraft. Both increased reliability and efficiency are its 

promised implications [1]. EMAs are primary candidates for substitution of non-electric 

components on aircraft. However, there are thermal [16] and power management challenges due 

to dynamic mission profiles and the nonlinear behavior of the internal magnetics of such an 

actuator. These challenges, coupled with the highly flight-critical nature of EMAs, necessitate 

careful simulations run over a wide range of scenarios before EMAs can be heavily relied upon. 

The typical permanent magnet (PM) electric motors in EMAs have fairly nonlinear 

magnetic behavior, especially as they are operated over non-steady-state mission profiles. If the 

duty cycle were steady-state or if the air gap between the rotor and stator were large, then linear 

inductance modeling would be adequate because the magnetic circuits would never get saturated. 

But, the duty cycle is highly variable and, for the sake of high power density, the air gap is small; 

therefore, dynamic, nonlinear modeling is necessary. 

Finite element method (FEM) assists in developing the nonlinear inductance lookup 

tables that are important for fast and accurate lumped-element simulation of EMAs. Often, these 

tables are directly used in simulating an electric machine ([22], [23], and [24]). However, such 

lookup tables are rough, bounded, and slow. During simulation, it is important that the states of 

the model transition smoothly. Any roughness in a lookup table can cause perturbations with 

rippling effects throughout the model leading to reduced numerical stability. Derivatives of such 
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surfaces are especially sensitive to sudden transitions. Furthermore, no matter how large a 

lookup table is, it has limits, and simply bounding the indices to the lookup table can lead to 

errors due to discontinuous gradient behavior. Finally, as the tables are made larger to 

accommodate higher bounds and provide smoother interpolation, the lookup routine becomes 

slower. 

Formulas which can accurately fit the nonlinear surfaces of such lookup tables have the 

potential to be very smooth, to require far less data to define them, and to compute quickly. It is 

also desirable that they extrapolate well. 

This paper demonstrates a nonlinear inductance formula that is a function of both direct 

and quadrature (DQ) currents, allowing cross-coupling effects to be included. The process of 

developing the formula and fitting it to the reference FEM inductance values as well as the 

results of the fitting and several comparisons to other methods are included. Finally, a 

comparison of a lumped element simulation using nonlinear inductance is compared with one 

using linear inductance. 

Background 

Table I lists several of the variables used in this paper. 
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Table 6. Simulation States 

Symbol Name Units 
t Time s 
P Number of magnetic poles ND 
ϕ Torque angle rad 
θm Rotor angle rad 
θme Rotor angle θm times P/2 rad 
ud Direct voltage V 
uq Quadrature voltage V 
id Direct current A 
iq Quadrature current A 
Rs Phase resistance Ω 
λPM PM flux linkage Wb 

Ld(id,iq) Direct inductance H 
Lq(id,iq) Quadrature inductance H 

 

The dynamics of a PM electric motor, typical in an EMA, are modeled by four primary 

dynamical equations in the DQ0-reference frame [25]. Two of these equations model the 

electrical behavior of the motor: 

(28) 
qddqqqdd

qdqdqqd

LLLL
GLGL

dt
di

−

−
=  (28) 

(29) 
qddqqqdd

dqdqddq

LLLL
GLGL

dt
di

−

−
= , (29) 

where 

(30) 
d

d
dddd di

dLiLL +=  (30) 

(31) 
q

d
ddq di

dLiL =  (31) 
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(32) 
d

q
qqd di
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(33) 
q

q
qqqq di
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(34) ( )
dt

diLiRuG me
qqdsdd

θ
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(35) ( )
dt

diLiRuG me
PMddqsqq

θλ+−−= . (35) 

The full derivation can be found in Appendix A: Permanent Magnet Machine Dynamics. The 

other two dynamical equations model the mechanical behavior of the motor. Equations (28) and 

(29) come from the voltage equations (36) and (37): 

(36) 
dt

diL
dt
di

L
dt
diLiRu me

qq
q

dq
d
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−++=  (36) 

(37) ( )
dt
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diLiRu me

PMdd
q

qq
d

qdqsq
θλ++++= . (37) 

These equations carry the assumption that the variations in inductances over rotor angle 

can be reasonably averaged out, that the flux linkage from the permanent magnets appears only 

in the direct axis, and that the motor is balanced. 

Though phase resistance and PM flux linkage do vary with current magnitude, 

temperature, and frequency, the focus of this paper is the six inductance properties: Ld and Lq and 

their current derivatives dLd/did, dLd/diq, dLq/did, and dLq/diq. 

Method of Analysis 

Collecting the data 

The process of creating a formula to fit inductance values begins with getting the 

inductance values. Using ANSYS Maxwell 2D, an FEM software package, a PM motor is 
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simulated in high detail and the ABC-reference inductance values for each phase are stored as 

current magnitude, torque angle, and rotor angle are varied. The torque angle is the angle 

produced by the direct and quadrature current vectors. The rotor angle (θm) is the angle of the 

rotor with respect to the phase A axis. The inductance values are then translated to the DQ0-

reference frame using the Park and Clarke transforms [30]. Averaging the inductances over rotor 

angle, the direct and quadrature inductances (Ld and Lq, respectively) are shown as functions of 

direct and quadrature currents in Figure 22 and Figure 23. 

 

Figure 22. Direct inductance Ld as a function of id and iq. 
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Figure 23. Quadrature inductance Lq as a function of id and iq. 

Depending on the maximum current of interest, averaging inductance over rotor angle 

can be considered reasonable. The variation in inductance magnitude over rotor angle increases 

with current magnitude. An example of this behavior is shown in Figure 24 and Figure 25. In this 

case, for a current magnitude less than 16 A, averaging over this variation is reasonable. 
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Figure 24. Direct inductance Ld as a function of rotor angle for a particular torque angle and 

for various values of current magnitude. 
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Figure 25. Quadrature inductance Lq as a function of rotor angle for a particular torque angle 

and for various values of current magnitude. 

The inductances vary smoothly over currents and angles, but the resolution of the data 

shown is somewhat low because running FEM simulations is time-consuming. In order to make 

good fits to the data, it helps if the resolution is higher. Therefore, the data is smoothly 

interpolated. 

Interpolating the data 

The inductances are spline interpolated to help reduce the Runge effect during fitting 

later on. This also helps in analyzing the derivatives of the inductance tables with respect to 

current. The direct and quadrature inductances after interpolation are shown in Figure 26 and 

Figure 27, respectively. 
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Figure 26. Direct inductance Ld after being interpolated. 
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Figure 27. Quadrature inductance Lq after being interpolated. 

With smoothly interpolated inductances, their derivatives with respect to current can be 

numerically calculated using very small steps in current. So, from the two inductance tables, Ld 

and Lq, four more tables are developed: dLd/did, dLd/diq, dLq/did, and dLq/diq. These are shown in 

Figure 28. 
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(a) 
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(b) 
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(c) 
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(d) 

Figure 28. Inductance derivatives: (a) dLd/did, (b) dLd/diq, (c) dLq/did, and (d) dLq/diq. 

These derivatives are made part of the verification of good fitting since they are used in 

the motor equations (28) and (29). 

Shifting the data 

It is interesting to note that the peaks of the inductances are not naturally at the origin. 

Direct inductance Ld versus direct current id is shown in Figure 29. The peak of this curve is at a 

somewhat negative current. 
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Figure 29. Ld as a function of direct current where quadrature current is zero. The peak is 

circled in red at -3.77 A. 

Because of the nature of the particular fitting function demonstrated in this paper, the 

peaks of the inductance surfaces must be at the origin. Therefore, the inductance surfaces are 

shifted prior to fitting. A shift can be added later to get the correct values from the formula. 

Figure 30 shows the before and after of dLd/did (from Figure 28 (a)). 
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(a) 
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(b) 

Figure 30. Inductance derivative dLd/did (a) before being shifted and (b) after being shifted. 

Note that between the two versions, the red and blue regions are shifted to the right in (b). 

Also, note that the domain of the surface is cropped slightly to maintain symmetry. 

Fitting along current 

As seen in Figure 29, inductance generally decreases with current magnitude. And, this is 

definitely the case after the inductance surfaces have been shifted so that their peaks are at the 

origin. A rational function is used to fit inductance versus current using either 5 coefficients (38) 

or 7 coefficients (39): 

(38) ( )
( ) ( )

( )1
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where i is current magnitude, the k variables are the tuning coefficients, and Lpeak is a constant. 

The reason for using a rational function is that it extrapolates well. Whereas polynomial 

functions tend to suffer from Runge’s phenomenon [31], diverging wildly beyond the region of 

fitting, rational functions tend to demonstrate asymptotic behavior along the abscissa, which is 

very appropriate for saturating phenomena. Although a primary concern in using rational 

functions is the occurrence of singularities, as long as the k coefficients are positive all the poles 

will be in the negative. Since i is always positive, these poles will never be seen and no 

singularities will occur. 

Both the (38) and (39) functions are fit to the inductance surfaces for each value of torque 

angle using an optimization algorithm. Upon testing, the Nelder-Mead algorithm fminsearch 

(from MATLAB) produces very erratic results. Though it tunes an individual case very well, it 

tends to over-tune, leading to k values which differ greatly from one torque angle to the next. 

Instead, the resilient backpropagation heuristic [32] is used. It is a gradient sign optimization. 

This results in very good fits with excellent continuity of k values over torque angle. 

Using (38), the 5-k inductance fits for Ld and Lq are shown in Figure 31, and using (39), 

the 7-k inductance fits for Ld and Lq are shown in Figure 32. The 7-k function tends to fit the 

individual inductance curves better than the 5-k function. However, as is shown later, the 5-k 

function gives a better overall fit. 
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(a) 
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(b) 
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(c) 

Figure 31. Fits with 5-k values for (a) Ld, (b) Ld zoomed in, and (c) Lq. The original data is 

shown with solid curves, and the fitted data is shown with dashed curves, where each 

color corresponds to a unique torque angle. Note the slight disparity near the peak of Ld 

as seen in (b). 
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(a) 
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(b) 
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(c) 

Figure 32. Fits with 7-k values for (a) Ld, (b) Ld zoomed in, and (c) Lq. The original data is 

shown with solid curves, and the fitted data is shown with dashed curves, where each 

color corresponds to a unique torque angle. Note that the slight disparity seen in Figure 

31 near the peak of Ld is far less here. 

Fitting along torque angle 

With the direct and quadrature inductance curves along current fitted by both 5-k and 7-k 

rational functions, the varying k values must be correlated to the torque angle, ϕ. Because of the 

widely differing shapes of these k value curves over torque angle, polynomial functions are used: 

(40) ∑
−

=

=
1

0
,

P

p

p
npn gk φ , (40) 
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where n is the enumeration of the k value from 1 to N (5 or 7), gp,n is a polynomial coefficient, p 

is the degree of a monomial term, and P is the number of polynomials. It is appropriate to use 

polynomials here because ϕ is bounded by 0 and π (from π to 2π is a mirror image), so we need 

not be concerned about divergence beyond the region of fitting. In matrix form, (40) is  

(41) [ ] [ ] gkkk P
N ×= −1

21 1 φφ  (41) 

where g  is a matrix of gp,n values, P by N. Figure 33 and Figure 34 show two examples of the 

variation of k values over torque angle and their 12th-order polynomial fits. 

 

Figure 33. Original k1 values over torque angle (blue) for 5-k rational function fit to Ld with 

12th-order polynomial fit (red). 
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Figure 34. Original k1 values over torque angle (blue) for 5-k rational function fit to Lq with 

12th-order polynomial fit (red). 

So, first, the k variables are fit to the inductance curves over current magnitude, for each 

torque angle. Then, each k variable is fitted by a polynomial function of torque angle. For this 

fitting, torque angle is bounded by 0 and π radians. In the polynomial fits, the bounds are marked 

by vertical black lines. Yet, there are k values and corresponding polynomial fit values extending 

beyond these bounds as seen in Figure 33 and Figure 34. Since inductance surfaces should be 

symmetrical about the direct axis, all fitting coefficients should be symmetrical about the direct 

axis, which corresponds to torque angles of 0 and π radians. This requires that the k curves as 

functions of torque angle have zero slopes at these bounds (a Neumann boundary). One method 

of encouraging this behavior in polynomial fitting is to mirror the tail ends of the curves. Hence, 
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the curves shown above extend slightly beyond the stated bounds by using this mirroring 

technique. 

A range of polynomial fitting is done for the k values of both 5-k and 7-k rational 

functions using from 6 to 22 polynomial terms (5 to 21 degree polynomials). For each k value fit, 

the normalized mean absolute difference (NMAD) is used as the error metric. The NMAD metric 

is here defined as 

(42) 
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= , (42) 

where M is the number of points, m is the index of each point, ym is the mth point reference value, 

ŷm is the mth point fitted value, and Ry is the range of the y and ŷ sets. The net and maximum 

NMAD values for each set of k fits is calculated (Figure 35). The net NMAD is the mean of the 

NMADs for all the k values. 
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(a) 
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(b) 

Figure 35. The (a) net and (b) max NMAD values for whole sets of k value fits (e.g. k1 through 

k5 for 5-k rational function). The 5-k results are shown in blue and the 7-k results are 

shown in red. 

As expected, the more polynomial terms that are used the better the fit to the k values. 

This is true up to a point, past which the functions become over-defined. From Figure 35, the 

optimum number of g coefficients for the polynomial fits seems to be around 10 to 16 (9 to 15 

degree polynomials) for both 5-k and 7-k rational functions. 

At this point, the inductance fitting as a whole must be compared to the real inductance 

surfaces and their current derivatives. 
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Evaluating the fitting 

In applying a fitting formula, not only do the inductances need to match, but so do the 

current derivatives. This means the inductance surfaces must match very well. To test the fitting, 

current magnitudes and torque angles are randomly chosen. At each corresponding point (id,iq), 

the smoothed inductance tables are linearly interpolated to provide the reference values. This is 

an accurate but slow table lookup method. On a particular machine running MATLAB 2012a, 

this takes about 1.1721 s to process a large matrix of arbitrarily chosen points. A simplified 

lookup is also tested whereby the nearest neighbor is used and no interpolation is done. This 

rounding method takes about 0.776 s for the whole matrix of points. The optimum fitting (12th-

degree polynomials for the 5-k rational function) with the technique demonstrated in this paper 

takes only 0.467 s. This is 66% faster than the nearest-neighbor table lookup method and 2.5 

times faster than the linear interpolation method (Figure 36). 
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Figure 36. The time required for the three methods to calculate inductances and their current 

derivatives. The formula method is faster. 

Besides being fast, the formula is quite accurate. In some cases the average error from the 

formula is less than the error induced by rounding a 0.5 A variation in current during nearest-

neighbor table lookup. A comparison of the NMADs of the overall formula fits versus the 

rounding lookup is shown in Figure 37. The inductances Ld and Lq match the original profiles 

quite well. Their derivatives differ a bit more but their errors are still quite small. 
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Figure 37. Comparison of NMADs for rounding lookup (blue) and formula fit (red). The 

percentages were obtained by simply multiplying the NMAD values by 100%. Note the 

lower error for the formula fit to Lq. 

These results are for a 12th-order polynomial fit for the 5-k rational function. This uses 

(40) to get the k values and (38) to get the inductance values from the k values. A comparison of 

some of the results is shown in Figure 38 and Figure 39. 
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(a) 
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(b) 

Figure 38. Inductance Lq by (a) rounding lookup and by (b) formula fit. 
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(a) 
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(b) 

Figure 39. Inductance derivative dLq/diq by (a) rounding lookup and by (b) formula fit. 

But to show the inherent smoothness from using a formula rather than a lookup table, a 

comparison is shown in Figure 40 of the absolute differences relative to interpolation lookup of 

rounding lookup and formula fitting. 
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(a) 
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(b) 

Figure 40. Absolute difference relative to interpolation lookup of (a) rounding lookup and (b) 

formula fitting for Lq. 

A consequence of using a formula rather than a lookup table is the smoothness of the 

results, which can be of concern in numerical stability. 

To choose the 12th-degree polynomial fit and 5-k rational function, a suite of tests is run 

for various degrees of polynomials for both the 5-k and the 7-k rational functions. In each case, 

the mean of the NMADs (Figure 37) of all six properties together is calculated (the net NMAD). 

Figure 41 shows the results. 

Clearly, the 13-coefficient (12th-degree polynomial), 5-k fit is a very reasonable choice. 

Past 22 coefficients, the errors for both fits begin to skyrocket or become numerically unstable. 
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The 7-k fit does not ever show better overall performance; and past 13 coefficients, the 5-k fit 

does not show much improvement. The validity of weighting the six properties equally in 

calculating the net NMADs could be argued, but it is difficult to say whether the inductance or 

its derivatives have a greater effect on the behavior of an electric motor since this depends on 

how the motor is run. 

 

Figure 41. The mean over the six properties of the six normalized mean absolute differences 

for the 5-k fit (blue) and the 7-k fit (red). 

The simulation times for these tests are also shown (Figure 42). Using a 7-k fit takes 

about as long as a 5-k fit with two additional polynomial coefficients. 
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Figure 42. Simulation time for 5-k (blue) and 7-k (red) tests. These results are for single test 

runs at each setting. Averaging over many test runs, these curves would straighten.  

Comparison with Other Methods 

The formula used in this paper is similar to a rational function used in [33]; however, 

there the degree is lower and the coefficients are not parameterized. Also, that formula is a 

function of only one current and, therefore, cannot include cross-coupling effects. Some 

modeling, such as in [34], focuses purely on the rotor angle effects on inductance. In [35], a 

model is proposed where the stator phase inductances are modeled as functions of only the 

corresponding phase current and a Fourier series of the rotor angle. The paper does suggest 

measurements being taken to get inductances as functions of current magnitude, rotor angle, and 

torque angle; however, no model for this is presented. In [36], a similar model is developed. It 
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uses a single cosine function with current polynomials for the coefficient and bias. The 

polynomials are functions of only the corresponding phase current. In [37], a model that focuses 

on modeling the inductances in their ABC-reference frame is shown. The downsides to this 

approach are that control code is often already in the DQ0 reference frame and that this type of 

formula is based on Fourier series compositions, which are computationally slow. 

These models may be especially helpful where the rotor angle is of interest, such as in 

rotor angle estimation. However, the cross-coupling effects of the phase currents are of much 

greater relevance to full, PM motor simulation models, such as found in [38]. The model shown 

in (38) and (39) captures these cross-coupling effects. 

In [39], another formula is proposed to model the DQ flux linkages, λd and λq, as 

functions of the DQ currents, thereby including cross-coupling effects. For both λd and λq, the 

formula has the form 
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where the C and A coefficients are tuning parameters. Though the flux linkages used for the 

research in our paper are undoubtedly different than those used in [39], the characteristic shapes 

should be the same. That paper demonstrates fits over current magnitudes up to 2 amperes; and 

for that range, the fits to the inductances presented here are indeed very good with NMAD values 

less than 0.5%. However, at higher current values, (43) does not seem to be able to capture the 

saturation of the flux linkages as well as (38) does when used to calculate flux linkages. In 

Figure 43 the reference λd is shown; and, in Figure 44, a comparison of these two methods is 

shown. 
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No other published work has been found to use a technique similar to the one presented 

in this paper. 

 

Figure 43. For current magnitudes up to 55 A, the reference λd flux linkage. 
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(a) 
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(b) 

Figure 44. For current magnitudes up to 55 A, the direct flux linkage λd (top) using (43) and 

(bottom) using (38). 

Simplified Model 

It is possible to significantly simplify the model presented in this work, at a slight cost to 

accuracy. The same form of rational function shown in (38) can be used but with the current 

magnitude replaced by the D and Q currents. The formula for both Ld and Lq becomes 
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where these k values are scalars. The k3 value provides the id current shift. So, to completely 

describe the inductances for a PM machine, only 14 coefficients would be required. The NMAD 
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values for Ld and Lq using this formula are 2.3% and 2.8%, respectively. Figure 45 shows the 

inductances from using this formula, and Figure 46 shows the absolute differences from the 

reference inductances. 

 

(a) 
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(b) 

Figure 45. The (a) D and (b) Q inductances using the simplified rational function (44). 

As before, as long as the coefficients are positive, singularities will never be observed. 

The k3 value is excluded from this restriction. It should also be noted that the power coefficients 

k4 and k6 should be greater than 1. This will ensure that the peaks of the inductances are flat and 

do not show saturation even at infinitesimal currents. 

This model forces the inductances to be symmetrical about the peak, so there is not as 

much flexibility with (44) as with (38) and (39). However, depending on the need, the greatly 

reduced complexity and increased computational speed may be worthwhile. For embedded 

systems, the real number exponents might be highly undesirable, but each real number power can 
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be replaced with multiple whole number powers to achieve nearly the same effect at a reduced 

computational burden. 

 

(a) 
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(b) 

Figure 46. Absolute differences between reference and formula inductances for (a) Ld and (b) 

Lq. 

Experimental Application and Comparison with Linear Modeling 

In [38], the inductances discussed in this paper are used in the simulation of a full EMA 

model which was evaluated using physical experiments on an EMA under active loading. This 

model was also used to compare linear (constant-valued) inductances and nonlinear (formula-

based) inductances. 

Because of the simulated control algorithm used, the desired stroke is followed the same 

regardless of which type of inductances are used (Figure 47). 
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Figure 47. Desired stroke profile (blue) and simulated stroke profile (green). Note that the 

desired stroke profile was followed fairly well by the control algorithm. The desired 

stroke profile was taken from a physical experiment with an EMA under active loading. 

The power loss, PCu, in the windings due to the electrical resistance of the copper is 

calculated for both cases, linear and nonlinear (Figure 48). This power is integrated to get the 

cumulative energy, ECu, dissipated as heat in the windings (Figure 49). And, this heat manifested 

itself as temperature rises in the machine Figure 21. 
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Figure 48. Simulated power losses in copper windings using linear inductances (blue) and 

nonlinear inductances (green). 
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Figure 49. Simulated energy losses in copper windings using linear inductances (blue) and 

nonlinear inductances (green). 
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Figure 50. Temperature comparison for a half-hour run showing environmental temperature 

(blue), experimentally measured temperature of stator (green), simulated temperature of 

stator (red), and the simulated temperature of the windings (cyan). The nodal 

temperatures in the EMA’s electric motor are simulated using the nonlinear inductances. 

These temperatures, which are functions of the energy losses, match very well. 

Looking at the final values of cumulative energy losses, there is a 19% difference after 

only 6 seconds. So, by using linear inductances, the energy dissipation is significantly 

overestimated. Note that these cumulative energy loss curves diverge somewhat unpredictably 

over time. Though their reasons for differing are hidden in the complexities of motor control and 
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other dynamics, it is likely that their difference will grow with time. This comparison highlights 

the dramatically significant difference that using nonlinear inductances can make. 

Conclusion 

Nonlinear, lumped-element modeling of PM motors in EMAs has value in moving 

towards all-electric aircraft. At the core of this modeling are the nonlinear inductances. This 

paper shows an approach to fitting the nonlinear inductances with a rational function because it 

extrapolates well and captures the overall characteristics of the inductances. The variations in the 

coefficients of the rational function are modeled by polynomial functions because of their 

flexibility and computational efficiency. 

Depending on the machine, the formula performs faster than even simple nearest-

neighbor table lookup and gives fairly accurate results. And this formula includes the cross-

coupling effects that many other methods do not. 

Finally, using nonlinear inductances instead of linear inductances can result in a 

noticeable difference in energy dissipation in the motor. So, while nonlinear inductances are 

somewhat more complex to use, they can give dramatically different results. 



109 

CHAPTER FOUR: NONLINEAR, TRANSIENT MODEL OF 
SYNCHRONOUS GENERATOR 

Introduction 

Up to this point, the nonlinear inductances of the PM motor have been carefully modeled 

and the EMA as a whole has also been modeled. The seminal concern is the successful 

integration of the EMA into the aircraft electrical system and its thermal performance. In this 

chapter, a generator is modeled by itself, which is the other major component in the total system. 

The operation of the generator is similar in basic concept to the motor. However, some 

key features distinguish it. First, the generator is not a permanent magnet machine. The field flux 

is supplied by a field current. The primary purpose of the field current is simply to create a link 

for the mechanical power flowing into the generator to create electrical power on the armature 

windings. Second, the generator is multi-stage: it is multiple synchronous machine (SM) 

generators in series. The generator presented here has two stages: a 6-pole exciter and a 10-pole 

main. Its basic layout is shown in Figure 51. 

 

Figure 51. Overall layout of generator. The exciter is a 6-pole SM without dampers and the 

main is a 10-pole SM with dampers. 

This work details the methods used in modeling the flux linkages of the generator, the 

modeling of the rectifiers, the method taking the full derivative of flux linkages, and the results 

of the simulation. Because speed of simulation is so important, circuit models such as Simulink’s 
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SimPower Systems were avoided in favor of explicit mathematical models, which do tend to run 

significantly faster. The symbols used throughout this work are listed in Table 7. 

Table 7. Simulation States and Parameters 

Symbol Name Units 
t Time s 
θm Rotor angle rad 
ωm Rotor speed rad/s 
θs Synchronous flux angle rad 
ωs Synchronous flux speed rad/s 
τ Torque N m 
u Voltage V 
i Current A 
λ Flux linkage Wb 
L Inductance H 

uDC Inverter DC bus voltage V 
inet Rectifier net current A 
pe Electrical power W 
pm Mechanical power W 
pQ Thermal power W 
pH Magnetic field power W 
pC Electric field power W 
P Magnetic poles ND 

Nsr Stator-to-rotor turns ratio ND 
R Resistance Ω 

Ufw Diode forward voltage V 
[]d D-axis quantity  
[]q Q-axis quantity  
[]f Field quantity  
[]kd D-axis damper quantity  
[]kq Q-axis damper quantity  
[]l Leakage quantity  
[]m Magnetizing quantity  
[]N Quantity scaled by Nsr  
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DQ0 Transform 

Because there are several versions of the direct-quadrature-zero (DQ0) transform [25] 

and the choice of transform can affect the form of some of the equations discussed, it is pertinent 

to describe the particular form of DQ0 transform used in this work. The power-invariant, right-

handed, ABC-sequenced DQ0-transform matrix has the form 

(45) 
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where sθ  is the angle of the flux field (the rotor angle scaled by the pole pairs, P/2). The power-

invariant DQ0 transform does not scale the vector magnitude, so the rotor values do not need to 

be scaled to be properly referenced to the DQ0 values. By contrast, using the power-variant 

transform, the rotor values must be scaled by a factor of 3/2  to correctly reference them to the 

stator side. The form shown in (45) was chosen, among other reasons, because it is simply an 

axial rotation and incurs no scaling of any kind. It is also convenient that its inverse equals its 

transpose. 

Using the power-invariant transform, the electromagnetically generated torque of a 

synchronous machine is 

(46) ( )qddq iiP
⋅−⋅⋅= λλτ

2
. (46) 

The sign of this torque is such that the product of positive torque and positive shaft speed is 

positive mechanical power into the machine. If the power-variant DQ0 transform were used, then 

torque would be 
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(47) ( )qddq iiP
⋅−⋅⋅= λλτ

22
3 . (47) 

Clearly, the form of the DQ0 transform has an effect on the form of other equations. 

Dynamical Equations 

To provide context and to clarify the choice of signs, the dynamical equations for a 

synchronous machine with damper windings and no exposed neutral are 

(48) 
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where the variables subscripted with N have been multiplied by Nsr, the effective stator-to-rotor 

turns ratio. Although this form is often used in the context of motors, it is consistent with the 

choice of defining all powers as being pointed into the system. The full derivation for the 

dynamical equations can be found in Appendix B: Synchronous Machine Dynamics. 

Inductance Modeling 

In [38], the design of a permanent magnet (PM) motor is detailed and the use of nonlinear 

modeling of its inductances is mentioned. In [40], this nonlinear modeling method is explained. 

The fitting is very good with normalized mean absolute differences (NMADs [40]) below 0.5%. 

It uses a rational function to fit the direct (D) and quadrature (Q) inductances over the D and Q 

currents: 2 states. The technique is somewhat complicated, yet this modeling task is relatively 

simple compared to that of modeling the magnetics of a synchronous machine (SM) generator 

with damper windings: at least 5 states. 
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Collecting the data 

The main generator is modeled in Maxwell 2D, a finite element method (FEM) software. 

The established relationship between flux linkage and inductance [41] in an SM is 

(49) 
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Note that the inductance matrix is sparse. Yet, the inductance matrix that the FEM software 

develops is full. This is partly numerical error and perhaps partly a reality of cross-saturation. 

However, it would be immensely simplifying to force the matrix to be sparse and to do so 

without too much loss of data. To accomplish this, the FEM inductance values are neglected in 

favor of the flux linkages, which are then used to build the sparse inductance matrix. 

The flux linkages are functions of each of the five currents (id, iq, if, ikd, and ikq) and of the 

rotor angle, θm. At first glance, it would appear that all of these parameters should be varied 

during FEM sweeps, which would take a very long time. However, some simplifying steps can 

be taken. The basis of (49) is that the effects of all the currents can be grouped into just two axes: 

D and Q. (For the unbalanced case, the zero axis can be treated separately.) This leads to the 

development of the magnetizing currents: 

(51) 
kqNqmq

kdNfNdmd

iii
iiii

+=

++=
. (51) 



114 

The magnetizing inductances (Lmd and Lmq) are functions of just these magnetizing currents. At 

this point, the problem is reduced to fitting over just two currents and the rotor angle. 

In many cases, the effects of rotor angle can be neglected. Rather than run many FEM 

simulations varying rotor angle in order to get good average values, rotor angles can be found 

where the flux linkage values pass through their own averages. This means that for a given set of 

current values, only one simulation needs to be run. The variation in flux linkage is most evident 

at high saturation. Figure 52 shows an example of flux linkage variation over rotor angle with the 

points where it crosses its own average marked. These points do not vary with current since they 

are determined mostly by the machine’s geometry. Therefore, by locking the rotor at one of these 

points, the FEM simulation sweeps can be made without any concern for variations in rotor 

angle. This can significantly reduce the number of simulations required to properly analyze a 

machine’s magnetics. 
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Figure 52. D-axis flux linkage values over rotor angle for the PM motor of [38]. The flux 

linkages are normalized per unit length. The points where the flux linkage crosses 

through its average are marked with circles. 

In determining the magnetizing inductances, it would be superfluous to vary the damper 

currents in addition to varying the rotor’s field current. So, the FEM simulations are run, varying 

only id, iq, and if. Figure 53 shows a side view of some of the rotor flux linkages. Each layer 

corresponds to a specific value of if. Finally, three sets of flux linkage values are used to 

determine the inductances: λd, λq, and λf. 
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Figure 53. Side view of the rotor’s field flux linkage in mWb with three currents varied: id, iq, 

and if. This shape was characteristic of the direct and field flux linkages on both the 

exciter and the main. 

Modeling with polynomials 

One approach to fitting the flux linkages of the generator involves polynomials. Although 

(51) indicates that the currents can be combined into just two magnetizing currents, the effective 

stator-to-rotor turns ratio, Nsr, is necessary but not obvious. Without knowing this, a model of the 

flux linkages or inductances would need to include all currents, without combination. So, the 

following polynomial model is used for each of the three primary flux linkages (λd, λq, and λf): 
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where n, m, N, and M are integers, G is a matrix of constants, and a, b, and c are arrays of integer 

exponents. The complexity of the polynomial equation is determined primarily by the size of the 

G matrix. In the case of the generator modeled in this work, some flux linkages require a G 

matrix as large as 7 by 14. While these are fairly large matrices, they do lead to very low flux 

linkage fitting NMADs: all less than 0.6%. 

Figure 54 shows smooth flux linkage values calculated for the main’s field. Up to the 

current values shown the fit is very good and well behaved. However, moving beyond the limits 

of the original tables by just 20%, the formula quickly deviates from reasonable (Figure 55). 

 

Figure 54. The field flux linkage for the main generator as calculated by formula. The points 

chosen include points in between those used to tune the formula. 
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Figure 55. The field flux linkage for the main generator as calculated by formula with all three 

currents extended 20% beyond the original tables. 

These excursions cause the generator simulation to become unstable. Therefore, it is 

necessary to make sure that the fitting is done for values far beyond what would ever be used 

during simulation. This requires getting much more FEM simulation results, which is a very 

time-consuming process. 

Modeling with rational functions 

In [40], a simple version of the rational function inductance model was developed for Lmd 

and Lmq and is repeated here slightly altered: 
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where the k values are scalars to be tuned for the particular inductance (Lmd or Lmq). The last 

coefficient, k6, is not used for Lmd. In addition to these k values, the effective stator-to-rotor turns 

ratio Nsr and the leakage inductances Lsl and LflN are the coefficients tuned in order to fit the three 

flux linkage data sets: λd, λq, and λf. Altogether there are 14 coefficients. Maxwell 2D with 

RMxpert has a feature to automatically calculate the damper leakage inductances which are 

scalars and are far less critical. 

The D-axis magnetizing flux linkage of the main as a rational function of currents is 

shown in Figure 56. The derived D-axis magnetizing inductance of the main is shown in Figure 

57. The fit is fairly good; and, as discussed in [40], the rational function has the benefit of 

avoiding Runge’s phenomenon [31]. The primary disadvantage of the rational function is that it 

saturates too quickly, an effect which only becomes apparent in very deep saturation. Figure 58 

repeats the flux linkages of Figure 56 but up to a much higher current. In reality, flux linkage 

monotonically increases with current, but the behavior of the rational function approach as 

shown in Figure 58 does not follow that pattern. If going into deep saturation is a likely 

possibility during simulation, then this deviation becomes more than just an error in flux linkage. 

It can cause a positive feedback to saturation and instability of the simulation. 
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Figure 56. The D-axis magnetizing flux linkage (Lmd imd) of the main as a rational function of 

D and Q magnetizing currents. 



121 

 

Figure 57. The D-axis magnetizing inductance, Lmd, of the main as a rational function of D and 

Q magnetizing currents. 
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Figure 58. The D-axis magnetizing flux linkage (Lmd imd) of the main as a rational function of 

D and Q magnetizing currents. 

Modeling with logistic functions 

A few papers were found that use exponentials to model the magnetics of machines. In 

[42], the following equation is used: 

(54) ( ) ( ) ( )[ ][ ] ( )iaiaai θθθθλ 321 exp1, +−= , (54) 

where the subscripted a variables are coefficients of the mechanical rotor position θ and i is the 

phase current magnitude. The same idea shows up in [43]: 

(55) ( )( )phif
sph e θψψ −−= 1 , (55) 

where ψph is the phase flux linkage, ψs is a constant, θ is the phase angle, f is a trigonometric 

function, and iph is the phase current magnitude. 
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The magnetics modeling method used in this work depends on a logistic function [44] as 

shown here: 

(56) ( ) 
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Here, f is the logistic function, Lm is the magnetizing inductance, and r is the magnitude of scaled 

currents. Altogether, to model the three flux linkages, only 10 coefficients are needed. Figure 59 

shows the difference between the logistic function of (56) and exponential functions like (55). 

The exponential function causes the inductance to be in saturation even at zero current, but the 

logistic function allows the inductance to remain fairly constant about the origin. An additional 

benefit is that deep saturation using a logistic function is always monotonically increasing 

(Figure 60). No other work has been found to use this method. 
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Figure 59. Generalized inductances developed using an exponential function (blue) and a 

logistic function (green). 
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Figure 60. The D-axis magnetizing flux linkage (Lmd imd) of the main as a logistic function of 

D and Q magnetizing currents. 

Modeling comparison 

Figure 61 shows a comparison of the NMADs for fitting λd, λq, and λf using the 

polynomial, rational, and logistic methods. The number of coefficients required for each method 

are 347 for polynomial, 14 for rational, and 10 for logistic. The rational and logistic methods 

have nearly the same error of fitting; and while the polynomial method does fit better than the 

other two, it requires far more coefficients. For this reason and for its ability to properly model 

deep-saturation effects, the logistic method was chosen to model the magnetics in this work. 
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Figure 61. Comparison of the NMADs of for the polynomial, rational, and logistic methods for 

the main machine. 

Full Flux Linkage Derivative 

The relationship among flux linkage, inductance, and current is defined in (49) and (50). 

Taking the full derivative and solving for the current derivative gives the explicit solution 

(59) λ
dt
dMi

dt
d

×= −1  (59) 

(60) LiL
id

dM +×= , (60) 
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where the time-derivatives of flux linkage are defined in (48). This M matrix is full and its 

analytical inverse is prohibitively complicated. To simplify matters, the first term in M is often 

neglected. So, while the inductance is allowed to be nonlinear, it is assumed that its derivative 

over current is relatively small. Yet, this can be a gross over-simplification. Using the logistic 

method for the D-axis magnetizing flux linkage, the percent difference is shown in Figure 62. 

This shows LLM /−  converted to a percentage. Figure 63 shows a comparison of M and L. The 

derivative of inductance has the effect of weakening the inductance, and this effect is not 

negligible. 

 

Figure 62. Percent difference of M relative to L. 
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Figure 63. D-axis magnetizing inductance (blue) and M (green). 

Rather than using the explicit solution to get the full derivative, the derivative of 

inductance is numerically calculated during simulation. The basis of this approximate solution is 

the use of the last time-step’s change in inductance in place of this time-step’s change in 

inductance: 

(61) 
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If the time step is very small, then this approximation is quite reasonable [45]. This means that 

only the sparse L matrix needs to be inverted, which is relatively easy. 
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Full-bridge Rectifier with Freewheeling 

The full generator model uses a full-wave rectifier. When using a full-wave rectifier, it is 

critical to recognize that the freewheeling condition can and does occur easily. In this condition, 

both diodes in a leg are conducting and the DC current freely flows independent of the phase 

current. To properly model the rectifier, the problem is simplified by using a piecewise model of 

a diode where only the forward voltage drop, Ufw, and on resistance, Ron, are considered. To 

build a model of the full-wave rectifier, each leg can be considered individually (Figure 64). 

 

Figure 64. One leg of a full-wave rectifier showing voltage drops across both top (1) and 

bottom (2) diodes. 

The phase current ia is oriented into the rectifier and the phase voltage ua has the same 

reference as the DC voltage, uDC. For this derivation, it is given that ia and uDC are known and i1 

and ua are not. 

In the non-freewheeling condition, only one of the two diodes on the leg is conducting: 

diode 1 or 2. If ia is positive, then ua will be slightly higher than uDC due to the voltage drop of 

diode 1, and i1 will equal ia. If ia is negative, then the ua will be slightly less than 0 due to the 
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voltage drop of diode 2, and i1 will be 0. These non-freewheeling relationships can be 

summarized in (62) and (63). 
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If, however, the rectifier is in freewheeling mode, it means that both diodes in a leg are 

conducting. If we define the critical voltage of a diode as the voltage across the diode such that it 

only just barely conducts, then freewheeling occurs when the DC voltage uDC has dropped far 

enough below zero so as to exceed the critical voltages of both diodes. However, the phase 

current ia can disrupt this condition by increasing the total voltage drop across one diode such 

that the headroom for the voltage drop across the other diode is too small for it to conduct. This 

means there is a critical current icrit that the magnitude of ia must not exceed for the freewheeling 

condition to exist. Using Figure 64 as a reference, we begin with the following voltage 

relationships which are true during the freewheeling condition: 
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If the freewheeling condition just barely exists, then either i1 or (i1 – ia) equals zero. Either 

situation will lead to the same conclusion. Supposing then that it is the current through diode 2 

which is zero, we can rewrite the voltage relationships of (64) taking into account that ia now 

equals icrit as 
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where icrit must equal i1. We can then solve for icrit: 
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This is the critical current, and the magnitude of ia must be less than or equal to it for the 

freewheeling condition to exist in that leg: 
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The current through diode 1, i1, can be found by starting with (64) and rearranging: 
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We can now solve for the phase voltage ua during the freewheeling condition: 

(69) 
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Therefore, in freewheeling mode, the following are true: 

(70) ( )aondca iRuu +=
2
1  (70) 
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(71) ( )acrit iii +=
2
1

1  (71) 

So, given the phase current ia and the DC voltage uDC, the first step to evaluating the full-

wave rectifier is to evaluate the critical current (67) and check if the magnitude of ia is less than 

or equal to it. If it is not then that leg is not in freewheeling mode and (62) and (63) apply. If the 

magnitude of ia is less than icrit, then the leg is freewheeling, and (70) and (71) apply. 

This logic must be applied to each leg of the rectifier and the total current from the 

rectifier would be the sum of the currents coming out of each top diode. In this model, a 

capacitor exists on the DC side of the rotating rectifier in order to pair the current source main 

machine with the current source DC side of the rectifier. 

Power Analysis 

In this work, power has been defined such that it is positive when flowing into the 

machine. Multiplying (48) by the respective currents results in the following power equations: 

(72) 
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The terms on the left represent electrical power flowing into the system. The resistive terms 

represent the power losses. The second terms on the right of the first two equations represent the 

mechanical power flowing out of the system. The last terms in each equation represent the power 

stored in the magnetic field. So, the electrical, mechanical, thermal, and magnetic powers 

flowing into the system are respectively 
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The total power balance equation is 

(77) HmQe pppp +++=0 . (77) 

Note that the above power equations might differ from some other publications, but this depends 

on the form of the DQ0 transform used and the orientation of power vectors. 

Simulation Results 

The generator is designed with a DC-DC inverter controlling a synchronous exciter 

which feeds a full-wave rotating rectifier connected to a synchronous main which is then 

rectified by a full-wave rectifier, as seen in Figure 51. 

The efficiency of the exciter is about 55%, suggesting it is undersized for the task. The 

efficiency of the main is about 95%. The powers of the exciter and main are shown in Figure 65 

and Figure 66, respectively. Note, that core losses and friction have are not included here. 

The ABC and DC voltages on the rotating rectifier are shown in Figure 67. 

The control for the generator is a simple PI loop closing on the load voltage with a 

sampling frequency of 10 kHz and a switching frequency of 20 kHz. The reference is 270 V. The 

load voltage is shown in Figure 68. 

The simulation is quite fast at less than 9 real-world seconds per simulated second on a 

3.3 GHz Intel Core i5. This is a tremendous advantage. The tuning of the PI loop is automated, 
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running through one simulation after another while varying the control coefficients procedurally. 

The speed of the simulation becomes very significant when trying to run so many simulations in 

a row. And, the speed of this code made the process take only a few minutes. 

 

Figure 65. Powers into the exciter. 
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Figure 66. Powers into the main. 
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Figure 67. Voltages on the rotating rectifier. The DC voltage is slightly less than the peaks of 

the ABC voltages because of the forward voltage drop and on resistance of the diodes. 
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Figure 68. Load voltage controlled to 270 V. 

Conclusion 

In this work, much emphasis is placed on the magnetics modeling. There are potential 

risks of positive feedback, instability, poor saturation modeling even at low currents, and the 

requirement for excessive coefficients to model the magnetics. The logistic function method 

presented here solves all these problems. 

Using nonlinear inductances suggests that the inductances can change over time. A full 

derivative of flux linkage should include derivatives of inductances. The work shows a practical 

method for doing so. 

Choosing to model a generator using explicit mathematical models means that 

components such as full-wave rectifiers need careful consideration. Especially with rotating 

rectifiers, the freewheeling condition can occur. The model presented here treats that condition. 
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Finally, this generator model is able to quickly control the output voltage to 270 V while 

fully loaded at 100 kW. Tuning the control is a quick, automated process given each simulation 

runs at 9 s/s. 
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CHAPTER FIVE: CONCLUSION 

The work described in this dissertation details the design of nonlinear, transient models of 

a permanent magnet electromechanical actuator (EMA) and a synchronous generator. Chapter 2 

covers all the details of a full EMA simulation model, including electromagnetic dynamics, 

thermal networks, mechanical dynamics (such as friction and inertia), and control. Chapter 3 

covers the methodology of building rational function fits of inductances for the EMA. Given the 

constant rotor flux linkage, an inductance model is simple enough and makes good sense. In 

Chapter 4, the development of a synchronous generator with field windings introduces a new 

layer of complexity. The methodology developed in Chapter 3 is extended to a synchronous 

generator, and a new method using logistic functions is developed. 

The work of Chapters 2 and 3 was, to some degree, validated by experimentation. This 

was the culmination of about three years of work with the Air Force Research Laboratory. The 

magnetics modeling work of Chapter 4 in purely analytical in nature and is validated by fitting 

the given tables of data. 

Altogether, this work represents the primary components of an electrically powered EMA 

system for an aircraft. These tools can be used to test new designs of EMAs or generators, test 

the interaction of a particular EMA with a particular generator, analyze the power demands of 

the system as a whole, evaluate the heating of a component during a specific mission profile, or 

test a new generator or motor control scheme. All of this leads to supporting the journey towards 

a more electric aircraft. 
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APPENDIX A: PERMANENT MAGNET MACHINE DYNAMICS 
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Voltage Equations 

To begin the derivation of the dynamical equations of a permanent magnet (PM) 

machine, we start with the voltage equations: 

(78) meqddsd dt
diRu ωλλ −+= *  (78) 

(79) medqqsq dt
diRu ωλλ *++= , (79) 

where λd
* and λq are defined as 

(80) PMddd iL λλ +=*  (80) 

(81) qqq iL=λ  (81) 

and λPM is the flux linkage from the permanent magnets, which is constant. 

Dynamical Equations 

Rearranging (78) and (79) in terms of derivatives of flux linkage and reformatting into 

matrices, we get 

(82) 







−−
+−

=












medqsq

meqdsd

q

d

iRu
iRu

dt
d

ωλ
ωλ

λ
λ

*

*

 (82) 

where 

(83) 





















⋅⋅+⋅⋅+⋅

⋅⋅+⋅⋅+⋅
=













q
q

q

q
q

d

d

qq
q

d
q

q

d
d

d

d

dd
d

q

d

i
dt
di

di
dL

i
dt
di

di
dL

dt
di

L

i
dt
di

di
dL

i
dt
di

di
dL

dt
di

L

dt
d

λ
λ *

. (83) 

For simplification, the following substitutions are made: 

(84) 
d

d
dddd di

dL
iLL +=  (84) 

(85) 
q

d
ddq di

dL
iL =  (85) 
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(86) 
d

q
qqd di

dL
iL =  (86) 

(87) 
q

q
qqqq di

dL
iLL += . (87) 

This turns (83) into 

(88) 







⋅








=













q

d

qqqd

dqdd

q

d

i
i

dt
d

LL
LL

dt
d

λ
λ *

. (88) 

Setting (88) equal to (82) and making two more substitutions, we get 

(89) 







=








⋅









q

d

q

d

qqqd

dqdd

G
G

i
i

dt
d

LL
LL

, (89) 

where 

(90) meqdsdd iRuG ωλ+−=  (90) 

(91) medqsqq iRuG ωλ *−−= . (91) 

Finally, by taking the inverse of the inductance matrix on the left, the dynamical 

equations with respect to current can be found to be 

(92) 
qddqqqdd

qdqdqqd

LLLL
GLGL

dt
di

−

−
=  (92) 

(93) 
qddqqqdd

dqdqddq

LLLL
GLGL

dt
di

−

−
= . (93) 
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APPENDIX B: SYNCHRONOUS MACHINE DYNAMICS 
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Introduction 

As a first step, the dynamical equations for synchronous machines (SM) are developed 

with a simplifying assumption. Much of the analysis involves the inversion of the inductance 

matrix. After this analysis is complete, further analysis is done to remove the simplifying 

assumption and show the full derivation. Throughout, the derivations are divided into sections 

for the various types of synchronous machines: with a nontrivial zero axis and dampers (SMZk), 

with only a nontrivial zero axis (SMZ), with only dampers (SMk), or without either (SM). 

Dynamical Equations without Inductances Derivatives 

Premise 

The following derivations assume that the inductances, though nonlinear, have negligible 

time derivatives. So, in taking the derivative of flux linkage, we get the derivative of current with 

an inductance factor. To solve for the time derivatives of currents, the inverse of the inductances 

are used as shown in (94). 

(94) 

λ

λ

λ

dt
dLi

dt
d

i
dt
dL

dt
d

iL

⋅=

⋅=

⋅=

−

↓

↓

1

 (94) 

The inductance matrix inverse 1−L  is the main focus throughout these derivations. 

Six Dynamics (SMZk) 

Beginning with the governing voltage equations of a synchronous machine with damper 

windings and a nontrivial zero axis, we have (95) through (100), where variables subscripted 

with N have been referenced to the stator through the stator-to-rotor turns ratio, Nsr. 

(95) sqddsd dt
diRu ωλλ −+=  (95) 
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(96) sdqqsq dt
diRu ωλλ ++=  (96) 

(97) zzsz dt
diRu λ+=  (97) 

(98) fNfNfNfN dt
diRu λ+=  (98) 

(99) kdNkdNkdN dt
diR λ+=0  (99) 

(100) kqNkqNkqN dt
diR λ+=0  (100) 

These six equations can be rearranged in terms of time derivatives of flux linkages and 

then combined into a single matrix equation. The zero axis does not need to be included in the 

matrix equation because it is not coupled with any other axis and would, therefore, not benefit 

from the matrix format. So, (95) through (100) become (101) and (102). 

(101) 
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=
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kdNkdN
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kqN
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fN

q
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iRu
iRu
iRu

dt
d

ωλ
ωλ

λ
λ
λ
λ
λ

 (101) 

(102) zszz iRu
dt
d

−=λ  (102) 

The flux linkages can be defined in terms of stator-referenced leakage (l) and mutual (m) 

inductances as shown in (103) and (104). 

(103) 
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+

+
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kqN
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fN

q
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mqklqNmq
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kdN

fN

q

d

i
i
i
i
i

LLL
LLLL

LLLL
LLL

LLLL

  
000

00
00

000
00

λ
λ
λ
λ
λ

 (103) 

(104) zslz iL ⋅=λ  (104) 
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This relationship comes from the orthogonal nature of the D and Q axes, the symmetrical nature 

of the materials, and the use of the stator-to-rotor turns ratio, Nsr. To simplify the derivation, 

some symbolic substitutions are made and the inductance matrix in (103) becomes 

(105) 

( )
( )

( )
( )

( )








==
==
==























+
+

+
+

+

=

klqNsl

kldNmq

flNmd

LfLc
LeLb
LdLa

bfb
aeaa

aada
bbc

aaac

L :
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00
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000
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. (105) 

The inverse of this matrix is 

(106) 
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( )( )
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r
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r
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s
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s
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r
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r
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r
edade

L

:
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00

00

000

00

1

. (106) 

We can further simplify this matrix with another set of substitutions: 

(107) 

( ) ( )

( )

( ) ( )
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+⋅+
=−=

+⋅+
=−=−=
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+
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+⋅+
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r
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s
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GFB

ED
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L :
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00
00

000
00

1 . (107) 

So, the dynamical equations for a synchronous machine with dampers can be written as 

(108) 
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−
−

−−
+−
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kqNkqN

kdNkdN

fNfNfN
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sqdsd
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fN

q

d

iR
iR

iRu
iRu
iRu

L
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i
i
i

dt
d

ωλ
ωλ

1  (108) 
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(109) ( )zsz
sl

z iRu
L

i
dt
d

−=
1 , (109) 

where 1−L  is as defined in (105) through (107). 

Without Zero Axis (SMk) 

If the zero axis is always null (the machine is balanced, there is no access to the neutral 

line, or simply no current ever flows on the zero axis), then there is no reason to carry that 

dynamic through the simulation and the number of dynamics can be reduced to five. Because the 

zero axis is completely uncoupled with all other axes, we can simply remove (109). Therefore, 

the full set of dynamical equations for this machine is 

(110) 
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L

i
i
i
i
i

dt
d

ωλ
ωλ

1 , (110) 

where 1−L  is as defined in (105) through (107). 

Without Dampers (SMZ) 

If there are no damper bars but there is a zero axis, then the number of dynamics can be 

reduced to four. This will reduce the inductance matrix in (105) to 

(111) 
( )

( )
( ) 










=
=
=
=

















+
+

+
=

flN

sl

mq

md

Ld
Lc
Lb
La

ada
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L :

0
00

0
 (111) 

which inverted becomes 
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(112) 
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p
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p
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p
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L +⋅+=
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This can be further simplified by substitution: 

(113) 
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Note that the variables A, B, C, and D are not defined the same as in (107). The dynamic 

equations are then 

(114) 
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. (114) 

Without Zero Axis or Dampers (SM) 

If there is no zero axis and there are no damper bars, then the dynamics reduce to three: 

(115) 
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fN

q
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iRu
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L
i
i
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dt
d ωλ

ωλ
1 , (115) 

where 1−L  is as defined in (111) through (113). 

Simulation Speeds 

There is value to using the appropriate model. Saving on states does significantly reduce 

the time to process. A test was run wherein each of the above four models was run for 10 s of 

simulation time, three times each. The results are shown in Figure 69. 
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Figure 69. Normalized mean simulation times for four machine types. 

Dynamical Equations with Inductance Derivatives 

Premise of Exact Solution 

If the assumption of negligible time derivatives of inductances were no longer made, then 

the derivation in (94) would change to 

(116) 

λ

λ

λ

λ

dt
dLiL

id
di

dt
d

i
dt
dLii

dt
dL

id
d

dt
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i
dt
dLiL

dt
d

dt
d

iL

⋅







+⋅=

⋅+⋅⋅=

⋅+⋅=

⋅=

−

↓

↓

↓

1

 (116) 

This is the explicit derivation of the time derivative of current. (Note that not including the 

effects of time-changing inductance can cause significant error, depending on the current 

magnitude.) This derivation has the same conclusion as (94) except that the apparent inductance 

matrix has been replaced by the incremental inductance matrix: 

(117) LiL
id

dLinc +⋅= . (117) 
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Full, Six-dynamics Derivation of Exact Solution 

To develop the dynamical equations, we begin by rewriting (103) in a systems of 

equations format, as in (118), and then rearranging it, as in (119). 

(118) 

















⋅+⋅+⋅=
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(119) 
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Then, we begin to take the derivative of the equations, as in (120). 
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Given that the magnetizing inductances mdL  and mqL  can be defined in terms of the magnetizing 

currents mdi  and mqi  alone, the derivatives of inductance with respect to the components of the 

magnetizing currents are equivalent. This allows us to group the current derivatives of 

inductance: 

(121) 
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Substituting (121) into the first line of (120), we get 
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which can be rearranged to  
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and then 
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Applying this same process to all of the lines in (120), we get (125). 
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This can now be turned back into a matrix format: 
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where 

(127) 
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. (127) 

Before moving further, it is noteworthy that wherever there is a magnetizing inductance 

in (103), the current derivative of that inductance times the current is added to it in (126). Given 

the general bell-curve shape of inductance surfaces over D and Q currents, these derivatives are 
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normally negative. Therefore, including the time derivatives has the effect of weakening the 

inductances. So, if a voltage were applied to the field winding of a synchronous machine, the 

field current would rise more quickly if these derivative terms are included. 

In solving for the time derivatives of current, the inverse of the M  matrix must be taken, 

instead of the inverse of L . The M  matrix is a full matrix and, therefore, much more difficult to 

invert. However, because the Z axis is independent of all other states, at least it can be removed 

from the matrix equation for simplification. 
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The matrix M  can then be expressed as 

(129) 
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where a, b, c, d, e, and f are as defined in (105). By substitution, the matrix of (129) can be 

simplified to 
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where the capitalized variables are newly defined and not the same as in (107). The analytical 

inverse of this matrix is exceedingly complicated, even with the simplifying substitutions made 

thus far. This is due in large part to the non-sparse nature of the matrix. So, this method of 

including the time-derivatives of inductances is not recommended. 

Premise of Approximate Solution 

Because the exact solution is prohibitively complicated, there is good reason to look for a 

close approximation. The basis of the approximate solution is the use of the observed time-

derivative of inductance, as shown in (131). If the time step is very small, then this 

approximation is quite reasonable: 

(131) 
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Here, the time derivative of inductance must be approximated. Note that (131) is a modified 

version of (116). 

Full, Six-dynamics Derivation of Approximate Solution 

Starting with (120) and rearranging, we have 
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(132) 
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This leads us to a solution that is very similar to (108) but includes these derivatives of 

inductances: 

(133) 
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where 1−L  is as defined in (105) through (107). Because the L  matrix is not affected by this 

method, all of the solutions already found for the various dynamics are still valid, given the 

inclusion of these time derivatives of inductances. Note that (109) still applies for the zero axis. 

A close approximation to the derivative can be made using the Laplace gain 

(134) 
Ts

s
+1

, (134) 
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where T is very small. As T approaches zero, the gain approaches s, which is the Laplace form of 

the derivative. The limiting factor here is that making T very small forces the simulation to take 

smaller time steps or suffer instability. 

Power Analysis 

The dynamic equations for six states as seen in (101) and (102) are restated here in terms 

of voltage: 

(135) 
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Power is the product of voltage and current. So, (135) becomes (72) when multiplied by the 

respective currents. 

(136) 
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This set of equations is now a set of power balance equations. The terms on the left represent 

electrical power flowing into the system. The resistive terms represent the power losses. The 

second terms on the right of the first two equations represent the mechanical power flowing out 
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of the system. The last terms in each equation represent the power stored in the system. So, the 

electrical, thermal, magnetic, and mechanical powers flowing into the system are respectively 

(137) fNfNzzqqdde iuiuiuiup +++=  (73) 

(138) ( )222222
kqNkqNkdNkdNfNfNzsqsdsQ iRiRiRiRiRiRp +++++−=  (75)  
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The mechanical power stored in the system comes from the moment of inertia, J, and is found by 

(141) ωω
⋅






 ⋅−=

dt
dJpJ . (141) 

The machine is treated as a node, and all stored energy is external to the system. So, the minus in 

(141) signifies that the power is leaving the node and being stored in the inertia of the machine. 

The power balance equation is 

(142) JmHQe ppppp ++++=0 . (77) 

Given a shaft speed, ω, the torque extraction (oriented into the machine) would be the sum of all 

the component torques: 

(143) ( ) 
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