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ABSTRACT 

The United States Air Force (USAF) has increasing needs for unmanned aerial vehicle 

(UAV) operators. Automation may enable a single operator to manage multiple UAVs at the 

same time. Multi-UAV operation may require a unique set of skills and the need for new opera-

tors calls for targeting new populations for recruitment. The objective of this research is to de-

velop a simulation environment for studying the role of individual differences in UAV operation 

under different task configurations and investigate predictors of performance and stress. Primar-

ily, the study examined the impact of levels of automation (LOAs), as well as task demands, on 

task performance, stress and operator reliance on automation. Two intermediate LOAs were em-

ployed for two surveillance tasks included in the simulation of UAV operation. Task demand 

was manipulated via the high and low frequency of events associated with additional tasks in-

cluded in the simulation. The task demand and LOA manipulations influenced task performance 

generally as expected. The task demand manipulations elicited higher subjective distress and 

workload. LOAs did not affect operator workload but affected reliance behavior. Also, this study 

examined the role of individual differences in simulated UAV operation. A variety of individual 

difference factors were associated with task performance and with subjective stress response. 

Video gaming experience was linked to lower distress and better performance, suggesting 

possible transfer of skills. Some gender differences were revealed in stress response, task perfor-

mance, but all the gender effects became insignificant with gaming experience controlled. Gener-

ally, the effects of personality were consistent with previous studies, except some novel findings 

with the performance metrics. Additionally, task demand was found to moderate the influence of 

personality factors on stress response and performance metrics. Specifically, conscientiousness 
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was associated with higher subjective engagement and performance when demands were higher. 

This study supports future research which aims to improve the dynamic interfaces in UAV oper-

ation, optimize operator reliance on automation, and identify individuals with the highest apti-

tude for multi-UAV control. 
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OVERVIEW 

Automation, Stress, and Trust in UAVs: Overview 

Unmanned aerial vehicles (UAVs) have been researched and employed by the United 

States military services since World War I (Gertler, 2012). The role of UAVs has been growing 

at an unprecedented rate in the military. UAV missions eliminate the threat to pilots’ lives (Ger-

tler, 2012; Stulberg, 2007), and augment combat and surveillance capabilities (Chappelle, 

McDonald, & King, 2010). Currently, UAVs are serving vital roles in intelligence, surveillance, 

reconnaissance (ISR) missions and precision strike operations (Chappelle et al., 2010). These 

roles could be possibly expanded to various “dull, dirty, and dangerous” missions such as air in-

terdiction and aeromedical evacuation (Deptula & Mathewson, 2009). As UAV technology de-

velops, the ability of human operators to manage increasingly automated and sophisticated sys-

tems is paramount. This study aimed to contribute to understanding the factors that may deter-

mine success or failure in future UAV operations. 

Human Factors Issues in UAV Automation 

The development of UAVs brings numerous benefits, but it also introduces many human 

factors issues. Currently, three to four operators are needed in controlling a single UAV. As com-

puters have become more sophisticated, the United States Air Force (USAF) is increasingly in-

terested in automating missions and expects that single operators will be able to manage multiple 

UAVs with support from automation aids. Working with autonomous systems would face vari-

ous human factors challenges. Multi-aircraft control (MAC) by a single operator is anticipated to 

be a particularly time-critical, and cognitively demanding, form of multi-tasking work (Calhoun, 

Ruff, Draper, & Wright, 2011; Guznov, Matthews, Funke, & Dukes, 2011). In order to under-
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stand and maximize the benefits of automation, such as improving task effectiveness and opera-

tor performance, an appropriate level of trust in automation must be established and maintained 

(Lee & See, 2004). Research is needed to better understand how reliance on automation is influ-

enced by potential task design factors, how operator performance interacts with autonomous sys-

tems, and which individual difference factors are associated with UAV operator performance. 

Modern technology offers automation which promises to increase operator efficiency, en-

hance the flexibility of operations, and lower workload (Cummings, Brzezinski, & Lee, 2007). 

However, these benefits require an appropriate level of reliance on automation by operators (Par-

asuraman & Manzey, 2010). Both over- or under-reliance on automation may compromise the 

benefits. Empirically, UAV operators show a tendency towards over-reliance on automation 

technologies, leading to complacency effects in a simulation study (Calhoun et al., 2011). On the 

contrary, if operators suspect the reliability or functioning of autonomous systems too much, un-

der-reliance may result, limiting the potential benefit and possibly leading to a concomitant in-

crease in operator workload. In prolonged UAV missions, high levels of automation may also in-

duce loss of situational or system awareness by operators (Endsley & Kiris, 1995; Parasuraman, 

Molloy, & Singh, 1993). This can result in delays or errors when intervention is needed from op-

erators (Wickens & Hollands, 2000).  

Additionally, UAV operation may involve considerable workload variation. On the one 

hand, operators may fail to maintain vigilance due to the inactivity characteristic of many UAV 

missions, as associated with low task load and lack of interaction with the system (Hancock, 

Desmond, & Matthews, 2012). On the other, when workload increases, operators are required to 

allocate their attention among multiple tasks effectively. Generally, automation tends to shift op-

erators from autonomous controllers of work activities to passive monitors of technologies 
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(Warm, Parasuraman, & Matthews, 2008). Such tasks may elicit passive fatigue on operators, 

implying a risk of task disengagement that may be exacerbated by fatigue. In some circum-

stances, high-workload UAV missions may produce active fatigue, which may induce a greater 

state of distress on operators. Although UAV operation may be exempt from some of the major 

stressors that afflict traditional pilots, such as fear of physical injury, it may be more psychologi-

cally intense and fatiguing. 

Individual Differences in UAV Operator Performance 

Individual difference factors, such as acquired skills, personality traits, and gender, may 

influence reliance on automation, fatigue and stress response. Recent research (Spence & Feng, 

2010) indicates that video game experience is positively associated with a range of relevant sen-

sory, perceptual, and attentional abilities. Experienced video gamers are found to collaborate 

with automation more effectively than non-gamers in a simulation environment (Cummings, 

Clare, & Hart, 2010) In another UAV simulation study, experienced video gamers also showed 

greater visuospatial attention skills, which may be transferred to the novel environment to im-

prove UAV operator performance (McKinley, McIntire, & Funke, 2011). 

Another factor associated with individual differences is personality traits, which may cor-

relate with basic information processing competencies. In a similar domain, all five traits in 

terms of the Five Factor Personality Model were associated with at least one measure of work-

load and stress in a simulation of Unmanned Ground Vehicle (UGV) operation (Szalma & Tay-

lor, 2011). In the UAV domain, individuals may interact with automation distinctively. For in-

stance, three groups are categorized as consenters, dissenters, and mixed consenters (Cummings 

et al., 2010). Generally, consenters tend to follow automation’s suggestion, whereas dissenters 
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usually ignore the automation. Higher degrees of consent are associated with better performance 

and video game experience (Cummings et al., 2010). 

A third relevant factor is gender. The preponderance of male pilots of manned aircraft in 

the Air Force may reflect both cultural factors and higher aptitude in men, especially for spatially 

demanding task components (Carretta, 1997; Halpern, 2013). Women are also stereotypically 

perceived as less resilient. However, how gender differences influence the response to stressors 

in UAV operation is still unknown. It is also important to disentangle gender differences and 

video gaming experience since men are more likely to self-identify as serious gamers (Terlecki et 

al., 2011). 

Overview of Study Aims 

This study investigated UAV operator performance under two different levels of task 

demand with the aid of automation at two different levels of automation (LOAs) in a simulation 

environment. LOA refers to the tradeoff between operator control and delegation of control to 

the machine. The ALOA (Adaptive Levels of Autonomy; version 3) multi-UAV automation re-

search test bed developed by OR Concepts Applied (Johnson, Leen, & Goldberg, 2007) was used 

in this study. This desktop-based simulation provided multi-UAV missions, which met the USAF 

future goal of a single operator managing multiple UAVs, with needed complexity and realism. 

The task demand was configured by manipulating demands of several secondary tasks. The 

ALOA test bed also permitted the experimenter to manipulate LOA for specific tasks so that the 

operator can work with the specific automation aids at different LOAs. Two surveillance tasks 

(Image Analysis and Weapon Release Authorization) were offered as primary tasks for obtaining 

performance measurements.  
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A major finding from automation research indicates that although automation has often 

improved work efficiency and reduced the burden of work on humans, it is not the case that hav-

ing more automation (i.e., a higher LOA) is always better (Parasuraman & Riley, 1997). In the 

UAV domain, how to best apply advanced automation technology to UAV operation remains ob-

scure. Operators are expected to maximize performance, and also minimize any negative conse-

quences of using automation. This study investigated the impact of automation and fatigue on 

UAV operator performance in a large sample of college students with no prior knowledge of 

UAV operation. Specifically, this effort looked at the impact of automation and task demand 

configurations on reliance, trust, and sustained performance, the effect of fatigue on operator re-

liance on automation, as well as the role of individual differences in reliance on automation and 

fatigue and stress responses. 
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INTRODUCTION 

Trust and Automation 

Automation is the mechanical or electrical accomplishment of work, which replaces func-

tions that are originally performed by humans (Wickens & Hollands, 2000). This replacement 

could be full or partial, suggesting that automation is not all or none, but can vary across a con-

tinuum of levels (Parasuraman, Sheridan, & Wickens, 2000). Levels of automation (LOA), 

which refer to the tradeoff between operator control and delegation of control to the machine, 

have been originally identified by Sheridan and Verplank (1978) and adapted and elaborated 

more recently (Miller & Parasuraman, 2003; Parasuraman et al., 2000). Table 1 shows the LOA 

model by Parasuraman et al. (2000). Automation, therefore, could vary from offering sugges-

tions, to making decisions, and to action execution. Higher LOA could reduce human workload, 

but may also cause vigilance decrements, loss of situation awareness, and complacency (Miller 

& Parasuraman, 2007). 

Table 1 
Levels of automation model by Parasuraman et al. (2000) 
Level Description 

10 The computer decides everything, acts autonomously, ignoring the human 
9 Informs the human only if it, the computer decides to 
8 Informs the human only if asked, or 
7 Executes automatically, then necessarily informs the human, and 
6 Allows the human a restricted time to veto before automatic execution, or 
5 Executes that suggestion if the human approves, or 
4 Suggests one alternative 
3 Narrows the selection down to a few, or 
2 The computer offers a complete set of decision/action alternatives, or 
1 The computer offers no assistance: human must take all decisions and actions 

Note. Level 1 is the lowest LOA, level 10 is the highest LOA. 
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Automation problems are largely due to people’s inappropriate level of reliance on auto-

mation. Trust plays a vital role on reliance. Many researchers have stated that trust is a mediator 

between reliability of automation and reliance on automation (Lee & See, 2004; Lee & Moray, 

1992; Parasuraman & Wickens, 2008). Generally, higher automation reliability would induce 

greater trust in automation, which may lead to greater reliance on automation. Although trust has 

been identified as a belief, attitude, intention, or behavior, in this context, trust is an attitude and 

reliance is a behavior. Lee and See (2004) defines trust as the attitude that an agent will help 

achieve an individual’s goals in a situation characterized by uncertainty and vulnerability.  

On the one hand, people may trust automation when they should not to, which refers to 

overtrust, or complacency. Complacency may not lead to a problem until automation malfunc-

tions. On the other hand, people may fail to put sufficient trust in automation when they should, 

which refers to undertrust, or distrust. Distrust of automation may be due to its complexity or its 

true low reliability.  

Parasuraman and Riley (1997) describe these phenomena in terms of misuse and disuse 

of automation. Misuse refers to overreliance on automation, which can result in failures of moni-

toring or decision biases. Disuse refers to the neglect or underutilization of automation, which is 

commonly caused by false alarm issues. Parasuraman and Riley (1997) also define a third cir-

cumstance, automation abuse, which can promote misuse and disuse of automation by human 

operators. Automation abuse refers to design or management of automation that ignores the con-

sequences for human and system performance and operator’s authority.  

To describe the relationship between trust and reliance, Lee and See (2004) have distin-

guished overtrust and distrust in terms of calibration, which refers to how well an individual’s 

trust matches true capabilities of an automation or its trustworthiness. Both over- and distrust are 
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results of poor calibration. Overtrust happens when trust exceeds automation capabilities, 

whereas distrust results in less trust in automation than its capabilities.  

Parasuraman and Manzey (2010) have proposed an integrated model of complacency and 

automation bias to represent different manifestations of similar automation-induced phenomena, 

in which attention plays an important role (Figure 1). Complacency potential, which refers to the 

tendency of a less attentive manner in using automation, is influenced by automation properties 

(e.g. LOA, reliability) and individual difference factors (e.g. personality traits, attitudes toward 

technology) (Parasuraman & Manzey, 2010). Furthermore, task context (e.g. workload), individ-

ual state (e.g. fatigue state), as well as system properties, may influence attentional bias in using 

automation due to high complacency potential (Parasuraman & Manzey, 2010). 

 

Figure 1. An integrated model of complacency and automation bias (Parasuraman & Man-
zey, 2010) 
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The impact of trust in automation reliance may be also affected by other factors, such as 

individual differences and workload (Hake & Schmid, 1981; Scott, 1980). Self-confidence may 

be a moderator in the influence of trust in reliance (Lee & Moray, 1992, 1994). Individuals with 

the perception of their ability beyond their trust in automation’s performance would rely on auto-

mation less and use more manual control. By contrast individuals with low self-confidence on 

their ability tend to rely on automation more. 

Applications to UAVs/Unmanned Vehicles 

Some early UAVs were no more sophisticated than simple radio controlled aircraft man-

aged by human pilots on the ground. In order to achieve the goal of a single operator managing 

multiple UAVs, automation technologies need to be applied in UAV development. Automated 

decision support tools, such as decision aids at multiple levels, are critical in facilitating opera-

tors in performance and situation awareness (Cummings et al., 2007). Situation awareness refers 

to the perception of the elements in the environment within a volume of time and space, the com-

prehension of their meaning, and the projection of their status in the near future (Endsley, 1995). 

Such automated decision support tools could improve operators’ situation awareness by enabling 

real-time decision-making without continuous human intervention (Hanson & Harper, 2000). 

Automated decision support tools can be applied to both low and high levels of decision-making 

tasks, such as target recognition and route planning (Cummings et al., 2007; Drury & Scott, 

2008). Decision aiding technology incorporating LOAs may help to reduce operator cognitive 

load (Parasuraman et al., 2000). Typically, LOAs vary from full manual control to full automa-

tion control with intermediate levels, such as management-by-consent, and management-by-ex-

ception studied in recent research (Liu, Wasson, & Vincenzi, 2009; Ruff, Narayanan, & Draper, 

2002). Management-by-consent, usually, offers a recommendation provided by the automated 
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decision support tool which needs to be either confirmed or changed. Differently, management-

by-exception executes the automated decision directly, unless the operator intervenes.  

Higher LOAs may enable a single operator to manage more UAVs at the same time, but 

it also tends to induce out-of-the-loop (OOTL) problems, and leads to poor performance, espe-

cially during automation failures (Endsley & Kiris, 1994; Kaber & Endsley, 1997). In addition, 

higher LOAs might bring vigilance and complacency issues and result in a loss of situation 

awareness (Endsley, 1996; Endsley & Kiris, 1995; Miller & Parasuraman, 2007). Operators may 

place excessive trust at higher LOAs and misuse the automation, leading to over-reliance and 

complacency (Parasuraman & Riley, 1997). An intermediate LOA can lower operator workload 

and improve performance while helping to maintain situation awareness, supporting consistent 

performance even as system complexity increases and automation fails (Kaber & Endsley, 1999; 

Parasuraman & Wickens, 2008; Rouse & Rouse, 1983). 

As automation becomes more sophisticated, errors in automation get more difficult to de-

tect, and humans’ trust may, consequently, decrease and create undertrust or distrust, leading to 

disuse of automation (Lee & Moray, 1992; Parasuraman & Riley, 1997; Riley, 1994). Wickens 

(2000) categorizes unreliable automation into three types: catastrophic, imperfect without aware-

ness, and imperfect with awareness. UAV operators are often aware of the imperfection of the 

automation. Human response to such imperfect automation depends on the human’s allocation of 

attention, usually visual attention between automation aid and raw information (Moray, Inagaki, 

& Itoh, 2000; Wickens, 2000). Similar findings indicate that imperfect reliability should not lead 

to the discarding of automation, but an attention balance strategy between the automation and 

other relevant information (Merlo, Wickens, & Yeh, 1999; Wickens, 2000; Wickens, Gempler, 

& Morphew, 2000; Yeh & Wickens, 2000). 
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Measurement of Trust in Automation 

Trust, which originally was used to describe interpersonal activities, is important to be 

understood and measured since trust may mediate the relationship between individuals and auto-

mation just like it mediates relationships between individuals (Sheridan & Hennessy, 1984). 

Trust in automation can be measured both subjectively, and objectively.  

Subjective measures. Although trust and reliance have been identified as two components 

of attitudes to automation (Singh, Molloy, & Parasuraman, 1993), trust in automation, more gen-

erally, may not result in reliance behavior (Parasuraman & Riley, 1997). The combination of atti-

tudes to automation, complacency potential, and particular contextual factors, such as fatigue, 

high workload, and unfamiliarity of the system, may lead to complacent behavior (Singh et al., 

1993). There is no existing scale to measure complacent behavior directly, possibly, due to the 

difficulty in measuring the behavior subjectively. However, the potential for complacency could 

be evaluated by attitude ratings towards everyday automation technology (Singh et al., 1993). 

Singh et al. (1993) have developed a multi-dimensional scale to assess complacency potential, 

the Complacency-Potential Rating Scale (CPRS). This dispositional scale reveals five factors re-

lated to complacency potential, including general attitude toward automation, confidence in auto-

mation, reliance on automation, trust in automation and safety in using automation. This study 

will use the CPRS to understand the impact of individual differences in complacency on human 

performance across different LOAs and levels of automation reliability in UAV operation.  

Subjective situational measures can also be used to assess trust as a consequence of inter-

acting with specific automation. Situational measures of rating trust on specific components or 

systems are used in a few studies (Bailey & Scerbo, 2007; Lee & Moray, 1992). Jian, Bisantz, 

and Drury (2000) have identified 12 potential factors of trust between people and automated sys-

tems using cluster analysis. They proposed a scale, the Checklist for Trust between People and 
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Automation, to measure trust in human-machine systems. Additionally, Madsen and Gregor 

(2000) have found that affect-based trust, including faith and personal attachment, predicts trust 

well, and developed a psychometric instrument - the Human-Computer Trust Scale (HCT) - to 

measure human-computer trust. The HCT is designed to measure dispositional trust and is 

adapted to measure situational trust in UAV missions in this study. 

General favorable or unfavorable reactions towards automation do not necessarily predict 

the actual usage of specific automation systems. Some studies have found that there is no rela-

tionship between attitudes to automation and reliance behavior in performance (Singh et al., 

1993). Therefore, it is difficult to assess trust in automation only via subjective measures. Objec-

tive measures based on operator performance and psychophysiological metrics are also needed. 

Objective measures. Although reliance is not completely determined by trust, it is still 

somewhat guided by trust (Lee & See, 2004). Therefore, trust can be inferred by objectively 

measuring human performance in terms of reliance. Dixon, Wickens, and McMcarley (2007) 

have distinguished reliance and compliance, and define reliance as the operator’s action when the 

automation diagnoses noise in the world, whereas compliance refers to the operator’s action 

when automation diagnoses a signal in the world. In a broader definition, reliance could refer to 

operators’ actual usage of automation. In other words, it represents to what extent an operator 

agrees with a specific automated system. Therefore, more reliant operators should agree with the 

automation’s recommendations more in using automated decision support systems. In this study, 

we took the broader definition of an overall agreement with the recommendation to measure reli-

ance on automation decision aids in UAV operations. 

Besides performance measures, trust may also be assessed psychophysiologically. Met-

rics derived from electroencephalography (EEG) and event-related potentials (ERPs) have been 
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used as indices for adaptive automation (Mikulka, Scerbo, & Freeman, 2002; Pope, Bogart, & 

Bartolome, 1995; Prinzel, Freeman, Scerbo, Mikulka, & Pope, 2003). Another physiological in-

dex that could be used to infer trust in automation is eye gaze behavior since the eye gaze behav-

ior of an individual in a task with automation aid indicates the individual’s trust in automation 

indirectly (Flemisch & Onken, 2000; Parasuraman et al., 1993). It is assumed that frequency and 

duration of scanning may indirectly interpret trust in an automated system’s performance. In a 

UAV simulation study, operators are found to dwell on the automated tasking area more when 

working with less reliable automation (Wickens, Dixon, Goh, & Hammer, 2005). 

Stress and Fatigue 

Theories of Stress 

Stress, as a vague and complex concept, may refer to actual external stressors to the per-

son’s internal reactions, or to the transactional relationship between stressors and stress response 

(Matthews, 2001). Those stressors can be direct (e.g. noise) or indirect, such as perceived per-

sonal incompetence. Those internal reactions could be detrimental to the performance, but some-

times may also be beneficial. Stress can be explained at three levels (Matthews, Davies, Wester-

man, & Stammers, 2000). At the neural level, stress may be seen as a set of biological responses 

to challenging stimuli. At the cognitive level, stress may influence the efficiency of information 

processing. At the knowledge level, stress may be related to motivations and beliefs about the 

self that influence task strategy.  

UAV operators may suffer from multiple sources of stress, such as long hours, shift 

work, interface difficulties, inefficiencies in control procedures, and conflict between domestic 

life or personal demands and military operations (Ouma, Chappelle, & Salinas, 2011). The stress 

may result from the working environment such as exposure to loud background noise from the 
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cooling systems or individual health and sleep issues. However, primarily, the input stress for 

working operators derives from task demands (Hancock & Warm, 1989). Therefore, the pro-

longed task itself may also be a great stressor to UAV operators. A UAV operation working shift 

can last for several hours, so that such task-induced stress may overload and exert time pressure 

on operators. In addition, working with advanced technology and automation sometimes can be 

stressful as well. This effort will focus on the acute stress related to UAV operation which in-

volves managing attentional resources to cope with challenging task demands. Loss of attention 

may lead to vigilance decrement which can be detrimental to operator performance.  

Early psychobiological approaches explained stress in terms of the correlation between 

physiology and emotion. Centralists assert that both physiological and emotional reactions are 

expressions of central brain systems. Selye (1976) suggests that the “hypothalamic-pituitary 

axis” is the key brain system related to some long-term stress reactions. Alternatively, 

peripheralists argue that subjective emotion results from somatic and muscular responses to spe-

cific stimulation. Unlike the emphasis of autonomic arousal based on central brain system in cen-

tralist approach, peripheralists focus on the conscious awareness of peripheral bodily changes. 

Traditionally, the relationship between stress and performance has been explained using 

the arousal theory. Arousal, generally, refers to individual overall state or level of activities, such 

as behavioral states (e.g. wakefulness) and emotional states (e.g. tension). The arousal theory is 

developed from the Yerkes-Dodson Law (Yerkes & Dodson, 1908). Originally, Yerkes and Dod-

son (1908) draw an inverted-U curve to demonstrate the relationship between the strength of 

electric shock (a motivating factor) and the speed of learning. The Yerkes-Dodson Law argues 

that the relationship between arousal level and performance can be expressed as an inverted-U 

curve. Moderate levels of arousal are optimal for performance. In addition, the optimal level of 
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arousal for performance is inversely related to task difficulty. In other words, harder tasks may 

require lower arousal level than normal for better performance. Stress may influence arousal 

level and in turn influence performance. 

However, the Yerkes-Dodson Law has not proved entirely satisfactory. Matthews and 

Amelang (1993) criticize this theory from four aspects, including psychometric, methodological, 

conceptual, and empirical. Psychometrically, arousal may not be measured reliably and validly. 

From the methodological aspect, it is relatively easy to fit typical interaction data into such in-

verted-U curves (Hockey, 1984); therefore, the theory is difficult to falsify. Another difficulty is 

to decide whether a stressor is arousing or not (Matthews, 1985). Näätänen (1973) also suggests 

that some stressors may have a distracting effect, which may impair performance through mecha-

nisms other than arousal. The conceptual status of arousal is also criticized. There may be a vari-

ety of independent brain systems influencing individual arousal level. Which specific brain sys-

tems could be affected by which particular stressors remains unclear. Empirically, data from a 

variety of studies suggest that the impairment of performance in extreme arousal situations are 

often weaker than theory expected (Baddeley, 1983; Johnson, 1982; Matthews & Amelang, 

1993). 

Contemporary cognitive models of stress tend to reject traditional approaches to emotion 

as being over-simplistic (Matthews et al., 2000). Symptoms, including emotional disturbance, 

due to stress should be seen as the outcome of an interaction or transaction between individual 

and environment which develops over time (Cox & Ferguson, 1991; Lazarus, 1991; Lazarus & 

Folkman, 1984). Lazarus and Folkman (1984) assume that stress results from an imbalance be-

tween individual’s demands and resources. According to the transactional model of stress (Laza-

rus & Folkman, 1984), a stressor is only stressful to the individual when it is appraised as likely 
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to tax or exceed the person’s coping skills. The same stimuli may be appraised differently across 

individuals and contexts. Appraisal includes interpretations of the stressors and analyses of the 

available resources. Coping skills may involve active efforts to regulate the external situation 

(task-focused coping) or somewhat less effortful responses such as rethinking one’s attitude to 

the potential stressor (emotion-focused coping) or trying to avoid it totally (avoidance). There-

fore, whether an event is stressful or not is not solely a property of external stimuli. In the perfor-

mance context, a critical issue is whether the person appraises their coping abilities as adequate 

to maintain a personally-acceptable standard of performance, given prevailing task demands 

(Matthews, 2001). Lazarus and Folkman (1984) state that performance and stress are dynami-

cally interrelated. Potentially, stress can impair or improve performance, but the Lazarus and 

Folkman (1984) theory does not provide a detailed account of performance impacts. 

Hockey (1997) has proposed another cognitive-energetical framework, the Compensatory 

Control Model (CCM) of performance under stress, which accounts for the effects of stress on 

performance. Hockey (1986) argues that 1. performance is often maintained under stress; 2. the 

stress effects depend on the appraisal of stress and vary for different stressors and task demands; 

3. the relationship of stress and activation depends on the level of task engagement. The CCM 

assumes that performance is goal oriented; goal states are managed by self-regulatory; and regu-

latory activity is resource consuming. The model contains two feedback loops (see Figure 2). 

The lower loop A controls performance more or less automatically when only little effort or 

mental resources are required for the activity. The upper loop B may be engaged when the task 

becomes demanding. The effort monitor detects demands on regulatory activity. When a 

discrepancy is detected, the supervisory controller can either shift resources to maintain the task 

goal or change goals strategically for the task. Stress factors may elicit various changes to system 
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operation that impact performance. For example, some stressors produce “strain” as the person 

actively compensates for increased processing demands by increasing effort. By contrast, fatigu-

ing agents may lower task goals and lead to effort-reduction. 

 
Figure 2. Compensatory Control Model from Hockey (1997) 

Workload as a Stress Factor 

UAV operations involve considerable workload variation which may lead to stress, and 

in turn, influence operator performance. Hancock and Warm (1989) developed a theoretical dy-

namic model for stress and performance. Individuals can adapt effectively to some levels of 

stress without showing significant performance decrement. However, both extreme overload and 

underload could result in failures in such adaptation. These adaptations are illustrated as a series 

of extended inverted-U curves in the model. At the psychological level, the adaptability is related 

to individual’s attentional resource capacity. Stress can result in a reduction of available atten-

tional capacity, especially when the task environment is not configured to support compensatory 

or coping efforts (Hancock & Warm, 1989). UAV mission tasks vary in the levels of workload 

demands, including both high and low workload, from time to time. Chronically high workload 

may contribute to stress, whereas low workload and monotony may induce fatigue. If the stress 
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of operators exceeds their optimal adaptability due to either of these inappropriate work configu-

rations, the result may be catastrophic. From the perspective of the multiple resource theory  

(Wickens, 1984), UAV operations require attention from multiple resource pools, including vis-

ual, auditory, verbal, and spatial. This research focused on visually-demanding surveillance 

tasks. Operators in UAV missions often need to maintain a high level of vigilance, which re-

quires hard mental work and is stressful (Warm et al., 2008). Operators’ vigilance decrement 

may be primarily controlled by workload (Warm, 1993). Prolonged UAV missions may deplete 

the pool of attention resources as the operators get stressed and fatigued. Vigilance tasks, such as 

the detection tasks in UAV missions, may also reduce task engagement and increase distress 

level, especially in demanding workload scenarios (Miller, 2012). 

The relationship between UAV automation, workload and stress is potentially complex. 

In general, automation should alleviate workload and stress by keeping cognitive demands to a 

manageable level. Indeed, automation is seen as a key to future UAV operations in which a sin-

gle operator controls multiple vehicles (Mouloua, Gilson, & Hancock, 2003). However, despite 

automation support, the multi-UAV operation may still exacerbate the stress induced by work-

load-related factors (Cummings, Mastracchio, Thornburg, & Mkrtchyan, 2013).  Automation 

may fail to mitigate workload if it is not used appropriately. As discussed next, automation may 

also increase the operator’s vulnerability to fatigue and loss of situation awareness (De Winter, 

Happee, Martens, & Stanton, 2014). 

Cognitive Fatigue 

When managing highly automated UAVs, much of the operator’s workload derives from 

passively monitoring mission progression, system status, alert of malfunctions, and other param-

eters (Mouloua, Gilson, Kring, & Hancock, 2001; Tvaryanas, Thompson, & Constable, 2006). 
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Although UAV operation contains long periods of low workload (Cummings et al., 2013), it may 

also require intense activities for brief periods (Cummings et al., 2007). Such workload variation, 

according to Desmond and Hancock’s (2001) theory, may induce different forms of cognitive fa-

tigue. 

Desmond and Hancock (2001) distinguished two types of fatigue, active and passive fa-

tigue, associated with different cognitive workload levels. Specifically, active fatigue refers to 

the state change resulting from “continuous and prolonged, task-related psychomotor adjust-

ment”, whereas passive fatigue develops when performing system monitoring with either rare or 

even no overt perceptual motor requirements (Desmond & Hancock, 2001). The properties of 

some UAV operations, such as prolonged ISR missions, may trigger such cognitive fatigue.  

Different forms of cognitive fatigue may differ in their effects on UAV operators’ perfor-

mance. A recent study (Saxby, Matthews, Warm, Hitchcock, & Neubauer, 2013) suggests that 

active fatigue is associated with distress, overload, and heightened coping efforts, whereas pas-

sive fatigue links to the loss of task engagement, cognitive underload, and reduced challenge ap-

praisal. Passive fatigue may pose greater detrimental effects on performance than active fatigue. 

For instance, the recent simulated driving study (Saxby et al., 2013) reveals that drivers under 

passive fatigue show slowed responding, such as delayed brake and longer steering reaction 

time, to emergency events, whereas active fatigue has a little performance impact. Passive fa-

tigue may be more harmful to the individual’s alertness due to the loss of attentional resources 

(Warm et al., 2008) or strategic reduction in the allocation of effort (Hockey, 1997). 

Trust and Fatigue 

The impact of fatigue on trust in automation has been neglected in prior research and re-

mains unclear. Generally, automation is designed to be supportive to UAV operators, especially 
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in stressful and fatiguing circumstances. Potentially, automation might alleviate stress by reduc-

ing cognitive load. Conversely, passive fatigue might be relieved if the automation is able to han-

dle monotonous task requirements, such as maintaining vigilance for rare events. Thus, fatigue 

does not necessarily impact trust adversely, but some concerns remain. 

 One hypothesis is that operators under passive fatigue may show excessive trust on auto-

mation. Hockey’s (1997) CCM model, described previously, links fatigue to reduced perfor-

mance standards and a reduction in proactive effort to maintain standards. These processes may 

lead to increased reliance on automation as the person reduces effort directed towards maximiz-

ing performance. Consistent with this hypothesis, fatigued drivers are more likely to use optional 

automation than non-fatigued, even though it does not enhance performance, in a simulated sur-

face vehicle study (Neubauer, Matthews, Saxby, & Langheim, 2011). Probably, such over-reli-

ance on automation under fatigue is especially pronounced when the automation is highly relia-

ble.  

An alternate view derives from the observed impact of automation on passive fatigue and 

the loss of task engagement (Saxby et al., 2013). The impairment of attention may interfere with 

operator’s ability to monitor and manage automation effectively. In this case, the operator may 

be vulnerable to under-trust as well as to over-trust of automation. Especially if the automation is 

perceived as unreliable, fatigued operators may not apply sufficient effort to evaluate it further, 

so that under-reliance on automation or totally ignoring the automation may occur. 

In sum, although fatigue, especially passive fatigue, may encourage over-reliance on au-

tomation, in some other instances, fatigue might also lead to neglect of automation. This effort 

will examine the effect of fatigue on operator reliance on automation in UAV domain in a simu-

lated environment to provide further evidence on this issue. 
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Individual Differences in Stress 

A major challenge to understanding the impact of stress and fatigue on the UAV operator 

is that individuals differ considerably in their responses to complex task environments (Szalma, 

2009). Relevant individual difference factors include both stable traits that define personality and 

transient subjective states of stress and fatigue. Gender and task-relevant skills are also potential 

sources of variability. Stress is sometimes considered as a unitary construct: for example, the 

personality trait of neuroticism is associated with a general vulnerability to situational stress re-

sponse (Matthews, Deary, & Whiteman, 2009). However, in the human factors context, it is of-

ten productive to discriminate different components of stress and fatigue that may be differently 

related to performance outcomes (Matthews, 2016). This section reviews some of the multiple 

individual difference factors that may be relevant to the UAV operator. 

Three-Factor Model (DSSQ) 

The Dundee Stress State Questionnaire (Matthews et al., 2002) is developed for investi-

gating task-induced stress based on a three-factor model raised by Matthews and colleagues 

(Matthews, 2016; Matthews, Joyner, Gilliland, et al., 1999; Matthews et al., 2002). Factor analy-

sis reveals a two-level model. First-level factors distinguished 11 dimensions of subjective states. 

That is, there are a variety of ways in which “stress” may be experienced. By using factor analy-

sis of state scales to group the inter-correlated first-level or primary factors, three second-level 

factors are integrated across three different domains, including motivation, cognition, and affect. 

The three-factor model suggests that task stress may be experienced in three different transient 

states, labeled as task engagement, worry, and distress. Task engagement represents energy, 

motivation, and alertness, whereas low task engagement indicates tiredness, loss of interest in the 

task, and distractibility. Worry, as a cognitive factor, corresponds to self-focused attention, low 
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self-esteem, and high cognitive interference. Distress refers to high tension, unpleasant mood, 

and low confidence and perceived control. 

Stressful tasks can induce a variety of subjective state responses, such as increases in dis-

tress, increases in worry, and decreases in task engagement (Matthews, Szalma, Panganiban, 

Neubauer, & Warm, 2013). The multidimensional pattern of response varies according to task 

demands (Matthews, 2016). The UAV operation features considerable workload variation. The 

operator may monitor the system under conditions of low workload and monotony for a long pe-

riod, whereas high cognitive workload is imposed immediately when a target is detected or an 

emergency is declared. A large number of studies (Langner, Steinborn, Chatterjee, Sturm, & 

Willmes, 2010; Matthews, Warm, Reinerman-Jones, et al., 2010; Matthews & Campbell, 2010; 

Teo & Szalma, 2011; Warm et al., 2008) suggest that high workload tasks, even of short 

duration, can lead to increases in distress easily (Matthews et al., 2013). Although workload fac-

tors, such as multitasking in UAV operation, can elevate distress, distress may not be driven di-

rectly by workload. For example, lower maneuverability in UAV simulated control elevates op-

erator’s workload and impairs task performance, but has no effect on distress (Guznov et al., 

2011). Similarly, Szalma et al. (2006) observed increased distress after a stressful vigilance task, 

but knowledge of results format in feedback had no impact on distress. That is, it may be the ap-

praisal of the manageability of demands, rather than the objective level of demands that drives 

stress response. 

Generally, task engagement reflects effort committed to achieving task goals (Matthews 

et al., 2002). In the view of cognitive resource theory, task engagement may relate to the availa-

bility of a general attentional resource. In a vigilance study, the evidence of convergence be-

tween performance, task engagement, and psychophysiological indices, especially cerebral blood 
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flow velocity (CBFV), supports resource theory (Matthews, Warm, Reinerman-Jones, et al., 

2010). Declines in task engagement can occur in both short-duration vigilance tasks and pro-

longed monotonous tasks. In a simulated driving study, for instance, a large-magnitude decline in 

task engagement is observed after brief and more prolonged periods of automated driving (Saxby 

et al., 2013). Although stressful tasks usually impair task engagement, challenging tasks or 

game-like elements in complex tasks may elevate task engagement (Matthews et al., 2013). A 

good example is that Guznov et al. (2011) found elevated task engagement in a simulated UAV 

study.  

Worry usually declines during general tasks. DSSQ contains four scales for worry factor, 

including self-focus, self-esteem, task-irrelevant cognitive interference, and task-relevant cogni-

tive interference. Typically, self-focus decreases, self-esteem increases, and task-irrelevant cog-

nitive interference decreases in general tasks (Matthews, Joyner, Gilliland, et al., 1999). Excep-

tionally, worry tends to be maintained or even elevated in fatiguing driving tasks. For example, 

no significant change in worry was observed after a monotonous simulated driving task 

(Neubauer, Matthews, Langheim, & Saxby, 2012). Also, task-irrelevant cognitive interference 

was elevated among long-haul truck drivers during the approximate 12-hour shift (Desmond & 

Matthews, 2009). Automation, such as adaptive cruise control, may contribute to increased task-

irrelevant cognitive interference score in vehicle driving (Stanton & Young, 2005). In the UAV 

context, monotonous missions may be associated with the mind-wandering that appears to ac-

company worry (Cummings et al., 2013). 

The DSSQ offers two versions (full version & short version). The short version DSSQ 

with 21 items measures the three second-level factors only, including task engagement, distress, 
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and worry, while the full version provides additional details on first-level factors. There is evi-

dence supporting the validity of the DSSQ as an assessment instrument on profiling stress re-

sponse to task performance and profiling individual differences in response to a variety of human 

factors contexts (Matthews, 2016). As a subjective measure, DSSQ scores are still predictive for 

performance even when psychophysiological factors are controlled (Abich, Matthews, & 

Reinerman-Jones, 2015). 

Personality and Stress 

The Five Factor Model of personality is often used as a basis for the assessment of stable 

individual differences in stress response. The Five Factor Model contains five factors grouped by 

factor analysis to describe the individual’s personality. These five factors are Openness, Consci-

entiousness, Extraversion, Agreeableness, and Neuroticism. Considering human performance 

and stress response, most findings are focused on Extraversion and Neuroticism (Eysenck & Ey-

senck, 1985), but few studies have been done on the other three factors (Matthews, Deary, & 

Whiteman, 2003). 

Extraversion. Extraversion refers to the characteristics of social interaction, such as activ-

ity, assertiveness, warmth, gregariousness, and positive emotions. Matthews and colleagues 

(Matthews et al., 2003) have identified that extraversion has the advantages of greater working 

memory, divided attention, and resource capacities, but extraverts also tend to be poorer in sus-

tained attention and more lenient in choosing response criteria. Due to this general tendency, ex-

traversion should negatively correlate with workload and stress in missions requiring divided at-

tention to multiple displays or tasks such as UAV operations (Szalma & Taylor, 2011). Also, in 

terms of stress response, this trait is often related to lower post-task distress level (Matthews, 

Joyner, Gilliland, et al., 1999). 
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Neuroticism. Neuroticism refers to the individual’s tendency to experience unpleasant or 

negative emotions, such as anger, anxiety, depression, and sadness. Typically, this trait is associ-

ated with greater vulnerability to stress, such as higher distress and worry (Matthews, Joyner, 

Gilliland, et al., 1999). In terms of dealing with stressful tasks, Matthews and Campbell (1998) 

have found that neuroticism is correlated with emotion-focused and avoidance coping style. The 

complexity of UAV task components require appropriate working memory, and attentional re-

sources, but individuals high in neuroticism tend to be more vulnerable to impairment of work-

ing memory, attentional resources, and sustained attention (Matthews et al., 2003). 

Conscientiousness. Conscientiousness refers to the individual’s tendency to be organized 

and dependable. Conscientious individuals usually show self-discipline, act dutifully, and aim for 

achievement. Generally, this trait is positively related to performance, and individuals high in 

conscientiousness perform better to achieve goals and perceive lower levels of stress and work-

load when the environment supports the task goal (Szalma & Taylor, 2011). In terms of the stress 

response, conscientiousness often predicts greater task engagement and lower distress and worry 

(Matthews, Joyner, Gilliland, et al., 1999). Automation reliability may moderate the effect of 

conscientiousness on performance and stress response. When the automation aid is reliable, con-

scientiousness should predict better performance, and conscientious operators should be less vul-

nerable to complacency, and misuse or disuse of automation (Szalma & Taylor, 2011). 

Agreeableness. Agreeableness is a tendency to be compassionate and cooperative toward 

others. Individuals high in agreeableness usually perform better in tasks requiring interpersonal 

interaction and cooperation (Szalma & Taylor, 2011). In dealing with potentially stressful task 

demands, high agreeableness individuals often use less avoidance coping strategies (Matthews & 
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Campbell, 1998). Agreeable individuals also tend to experience lower distress (Matthews, 

Joyner, Gilliland, et al., 1999). 

Openness. Openness reflects individuals’ degree of intellectual curiosity, creativity, and 

preference for novelty. Generally, openness predicts better performance and lower perceived 

workload and stress, especially in tasks with novel situations or environments (Szalma & Taylor, 

2011). In terms of the stress response, openness usually is negatively associated with distress 

(Matthews, Joyner, Gilliland, et al., 1999). Automation properties, such as reliability, may mod-

erate the effects of openness on performance. Individuals high in openness may perceive higher 

workload and stress in highly reliable automated aided tasks due to insufficient cognitive stimu-

lation, but they may be less vulnerable to misuse of automation (Szalma & Taylor, 2011). 

Performance Correlates of Stress States 

Stress states can reflect both direct physical stressors, such as noise, and indirect stress-

ors, such as perceptions of task demands and physiological responses. Changes in those states 

may influence information processing factors, including basic cognitive parameters (e.g., work-

ing memory, attentional capacity) and strategic factors (e.g., understanding of the task, strategies 

to achieve task goals), and in turn influence performance (Matthews et al., 2013).  

Task engagement. A Large number of studies have demonstrated that the state of task en-

gagement is predictive for task performance requiring attentional resources. Matthews et al. 

(2013) have summarized that the task engagement – performance correlation is typically around 

0.3. Studies of tasks sharing similar components with UAV operations suggest that task engage-

ment is associated with better vehicle control in a moderately fatiguing simulated driving study 

(Funke, Matthews, Warm, & Emo, 2007), and predicts perceptual sensitivity in vigilance tasks 

(Matthews, Warm, Reinerman-Jones, et al., 2010; Matthews, Warm, Shaw, & Finomore, 2010). 
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In terms of the impact on vigilance, evidence from structural equation modeling (Helton, Mat-

thews, & Warm, 2009) has shown that task engagement mediates the effects of external stress-

ors, such as loud noise, on vigilance factors. Besides task-processing factors, stress states may 

also influence strategic factors, such as coping strategy. For example, in a simulated driving 

study (Neubauer et al., 2012), drivers with low task engagement appeared to be more likely to 

use automated driving voluntarily to reduce task load, which indicates that the fatigued per-

former may lower task goals (Hockey, 1997).  

Distress. Distress is expected to be detrimental to attention (Matthews & Campbell, 

2010). This detrimental effect on performance is found in a few vigilance studies (Shaw et al., 

2010), although task engagement is a more reliable predictor of vigilance (Matthews et al., 

2013). Distress may also impair an individual’s working memory and multi-tasking. Evidence 

has been found in a longitudinal study using the Turner and Engle (1989) task (Matthews & 

Campbell, 2010). In the unmanned vehicle context, Abich et al. (2015) found that distress was 

associated with poorer detection performance in task scenarios that required multi-tasking. Be-

sides attention and working memory, distress interferes with executive control as well. Matthews 

and Zeidner (2012)  have confirmed that distress is associated with poorer inhibition of task-ir-

relevant stimuli. On the contrary, the beneficial effect of distress is also seen is some real life 

contexts. For instance, distress was reported to be correlated with greater accuracy in a police 

handgun shooting exercise (Stafford, Oron-Gilad, Szalma, & Hancock, 2004). In Hockey’s 

(1997) model, distress may be associated with compensatory effort as the person attempts to 

cope with high task demands. 

Worry. Results from test anxiety research in the educational context suggests that worry 

generally impairs attention, working memory, and information retrieval from long-term memory 
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(Zeidner, 2010). Like the distress factor discussed above, worry also shows inconsistency in 

some associations. Matthews and colleagues (2012) have identified that worry correlates with 

perceptual sensitivity only in a cognitive vigilance task, not in a sensory vigilance task. Pre-task 

worry only reflects the impairment of arithmetic recall in a working memory task but does not 

predict the performance of verbal recall (Matthews & Campbell, 2010). In terms of executive 

control, worry may slow performers in switching tasks (Matthews et al., 2013). In a simulated 

driving study (Funke et al., 2007), worry was predictive of poor vehicle control, which may ap-

ply to UAV operation as well. 

Gender and Video Gaming 

Video gamers may be superior in aptitudes or skills for operating UAVs or other auto-

mated systems. Recent studies demonstrate that video game exposure is positively associated 

with a range of sensory, perceptual, and attentional abilities (Spence & Feng, 2010), which are 

identified as critical aptitudes for UAV operation (Chappelle et al., 2010). Spence and Feng 

(2010) also suggested that training on video games improves performance on other spatial tasks 

unrelated to the training game. This transfer effect is also seen in the UAV domain. For example, 

in a simulated UAV study, experienced video gamers showed greater visuospatial skills than 

actual UAV pilots (McKinley et al., 2011). Experienced gamers also show strengths in interact-

ing with automation. Findings from a recent study (Cummings et al., 2010) suggest that video 

gamers could collaborate more effectively with automation in simulated UAV missions. Spence 

and Feng (2010) have categorized video games into three types, including action, driving, and 

maze or puzzle games, based on cognitive demands. Among those, action games may especially 

share a variety of critical aptitudes for UAV operations, such as speeded information processing, 
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visual perception, and various forms of attention and spatial procession. Therefore, video gaming 

experience is potentially beneficial to UAV operations. 

Traditionally, military pilots are mostly male. This may reflect both cultural factors and 

higher aptitudes, such as spatial processing, in men (Carretta, 1997; Halpern, 2013). However, 

considering the differences between traditional piloting and UAV operations, the gender differ-

ences in piloting manned vehicles may not generalize to managing unmanned systems. In an oc-

cupational study using a real UAV operator sample, no gender differences in emotional exhaus-

tion were found (Chappelle, Salinas, & McDonald, 2011). Gender differences in stress response 

in UAV operations under various workload levels still need to be examined. Since men are more 

likely to self-identify as serious gamers (Terlecki et al., 2011), it is important to disentangle gen-

der differences and video gaming experience as well. Findings for individual differences in gen-

der and other factors may help to target potential UAV operators for future recruiting. 

Aims of Study 

Generally, this study aimed to develop a simulation environment for studying the role of 

individual differences in UAV operation under different task configurations. Specifically, the 

study aimed to determine the impact of workload and levels of automation (LOAs) on UAV op-

erator performance, stress response, and operator reliance on automation. It also aimed to exam-

ine the role of individual difference factors associated with gender, video gaming experience, 

personality, and trust in simulated UAV operation, and their dependency on task factors. 

Aim 1. Examine the Impact of Levels of Automation (LOAs) on Task Performance and Operator 

Reliance 

Higher LOAs reduce operator workload, but may impair vigilance and situation aware-

ness, and also lead to complacency (Miller & Parasuraman, 2007). In this study, high and low 
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LOAs with the same relatively high reliability were applied to examine the impact of LOAs on 

task performance and operator reliance. Specifically, the study contrasted management-by-ex-

ception (Level 6 in Parasuraman et al.’s LOA model) with management-by-consent (Level 4 in 

Parasuraman et al.’s LOA model). It was hypothesized that operators should show higher reli-

ance on automation and better performance when using the higher level of automation. 

Aim 2. Examine the Impact of Task Demand on Task Performance and Operator Reliance 

Higher task demand should elicit higher workload, and in turn induce distress poor per-

formance, whereas low task demand should elicit lower workload and may trigger loss of task 

engagement in operators (Desmond & Hancock, 2001; Saxby et al., 2013). In this study, the fre-

quency of secondary tasks was varied to manipulate task demand. It was hypothesized that high 

task demand should have detrimental effects on performance, and operators under low task de-

mand should show more reliance on automation. 

Aim 3. Examine the Role of Individual Differences in Simulated UAV Operation 

Previous research has suggested that individual differences may have impacts on operator 

response in terms of acute stress, performance, and reliance on automation. For example, video 

gamers are found to be more collaborative with automation in a simulated UAV task (Cummings 

et al., 2010). In a simulated ground vehicle task, all five personality traits show correlations with 

at least one measure of perceived workload and stress (Szalma & Taylor, 2011). Transient en-

gagement and distress are associated with performance in a UGV simulation (Abich et al., 2015). 

The aim of this study was to investigate relationships between video gaming experience, person-

ality, gender, trust, performance, subjective stress response, and reliance on automation. It was 
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hypothesized that gaming experience should correlate with performance and lower levels of fa-

tigue; personality and stress states should predict task performance and reliance on automation; 

task performance and reliance on automation should differ between men and women. 

Aim 4. Examine Moderators of Individual Differences 

Associations between individual difference factors and performance during unmanned 

vehicle operations may vary in different task configurations (Szalma & Taylor, 2011). Specifi-

cally, skills associated with video gaming, as well as adaptive stress states, may be most advanta-

geous under high task demand circumstances. Thus, the study aimed to test whether task demand 

moderates the associations between individual difference factors and performance. It was hy-

pothesized that task demand should moderate the associations between individual difference fac-

tors and performance. Individual difference factors, such as gaming experience and personality, 

may be more predictive under high task demand. The moderator effect of LOA was investigated 

on a more exploratory basis. 

Aim 5. Examine the Correlates of Subjective Trust 

Automation with high reliability is designed to reduce workload, alleviate stress, and op-

timize operator performance, but it may result in complacency and situation awareness problems 

(Miller & Parasuraman, 2007). Individual differences may have an impact on operator interact-

ing with automated systems. For example, gaming experience and personality factors have been 

shown to influence performance in tasks with automation (Cummings et al., 2010; Szalma & 

Taylor, 2011). This study examined the possible correlates of subjective trust, such as gaming 

experience, personality, and performance metrics. It was hypothesized that subjective trust 

should correlate with reliance on automation. 
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METHODS  

Study Design 

A 2 (task demand: high versus low) × 2 (LOA: management-by-consent versus manage-

ment-by-exception) between-subjects factorial design was adopted in this study. 

Participant Recruitment 

A total of 101 participants (59 women, 42 men, Mage = 18.95, SD = 1.80) were recruited 

from the University of Central Florida undergraduate psychology student pool via the SONA 

system. Student participants received course credits for participation. Participants were healthy 

individuals between 18 and 40 years old representing the age group and educational level of the 

enlisted military service core that may be recruited for future UAV operations. Participants who 

may be vulnerable to adverse reactions, such as excessive stress, resulting from the test environ-

ment were excluded. All participants reported having normal or corrected to normal vision, color 

vision, normal hearing, and English fluency. 

Lab Space and Equipment 

A desktop workstation was utilized for this study. The UAV simulation was run on a cus-

tom-built desktop with 4th generation Intel® Core™ i7 CPU, dual 24-inch LED-backlit wide-

screens (1920 × 1200 resolution), two stereo speakers, and standard mouse and keyboard. 

UAV Simulation 

The ALOA (Adaptive Levels of Autonomy) multi-UAV research test bed developed by 

OR Concepts Applied (Calhoun et al., 2011; Johnson et al., 2007) was used for the study. This 

simulation supports task manipulations representing UAV operations in needed complexity and 

realism. Nine tasks (Table 2) were designed to represent the task demands for a single operator 
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managing four UAVs with an automation aid at the same time. The LOAs were varied in two in-

termediate levels with high reliability (correct 80% of the time) for the primary tasks. Manage-

ment-by-consent required participants to accept or change the option recommended by the auto-

mation. Alternatively, with management-by-exception, the system was set to act on the option 

recommended by the automation automatically unless a different option was selected before the 

availability of operator response was timed out (30 or 20 seconds based on tasks). 

Table 2 
Task priorities, actions, LOAs, and measures 

Task Type Priority Operator Action LOA Measures 

Target  
Allocation 

1 
As new imaging tasks are 
added, allocate the new tasks 
within the existing tasks/UAVs 

Manual RT/accuracy 

UAV Rerouting 1 

Based on Allocation, select, 
confirm, acknowledge, or initi-
ate new plans based on cur-
rent rules of engagement 

Management- 
by-consent 

RT/accuracy 

Image Analysis 2 
Identify number of targets 
(and click to confirm) 

Management- 
by-consent / 
Management -
by-exception 

RT/accuracy 

Weapon 
Release 
Authorization 

2 
Identify if target is present or 
absent (and click for authoriza-
tion or not) 

Management- 
by-consent / 
Management -
by-exception 

RT/accuracy 

Unidentified  
Aircraft 

3 
Click red plane symbol when 
presented 

Manual RT/accuracy 

Compare 
Digit Pairs 

4 
Determine whether the digits 
meet certain criteria and re-
sponse 

Manual RT/accuracy 

Respond:  
Audio Chatter 

4 
Respond color number combi-
nation if certain call sigh is 
prompted 

Manual RT/accuracy 

Respond:  
Visual Status 

4 
Click on yellow or red colored 
light for health status 

Manual RT/accuracy 

Retrieve  
Information 

4 
Answer questions in chat win-
dow using vehicle status infor-
mation 

Manual Accuracy 

Management-by-consent: accept or change the option recommended by automation. 
Management-by-exception: the system automatically acts the option recommended by au-
tomation unless a different option is selected before timed out. 
RT: response time. 
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Table 3 
Tasks manipulated across low and high task demand conditions 
 Task Demand 
Task and Frequency in Trial Low High 
Retrieve Information 10 80 
Respond: Visual Status  30 240 
Respond: Audio Stream 32 240 
Compare Digit Pairs 10 80 
Monitor Chat Noise 20 180 
Note. Numbers refer to the number of tasks in one-hour session of 
experimental trial 

Task frequencies of the secondary tasks (Table 3) were manipulated to create task de-

mand variation across conditions in one hour long experimental scenarios whereas task frequen-

cies of two primary surveillance tasks were held constant. There were 6 tasks or 14 tasks per mi-

nute to induce low and high task demand respectively. Most secondary tasks required responses 

to visual or audio signals, searching and retrieving information, or comparing digit pairs. All 

tasks were displayed in the certain panel of the simulation window (Figure 3). Primary surveil-

lance tasks were signaled by adding a taskbar with a timer showing time remaining in the task 

window. Image Analysis and Weapon Release authorization tasks were timed for 30 and 20 sec-

onds respectively. The taskbar would be blanked and the task response would be recorded as a 

“miss” if there is no operator response before task availability was timed out. 

 

Figure 3. Task interface for multi-UAV operation in the ALOA simulation 
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In the Image Analysis task, images taken by a UAV with an overlay of 19-26 green sym-

bols varying in shapes, including diamonds, squares, circles, and triangles, were shown in the 

task panel. Participants were asked to identify the number of diamonds and select the number 

from eight options. The automated aid system recommended one from the eight options by high-

lighting it. The reliability of the automation was set to be 80% correct.  

In the Weapon Release authorization task, participants were asked to distinguish hostile 

tanks from allied tanks and detect whether the hostile tanks in given picture were correctly 

marked. The tanks differed in body width and barrel length subtly. The pictures were degraded in 

quality to increase the difficulty in discrimination. The automation aid system recommended one 

option from “authorize” or “do not authorize”. Also, reliability was set to be 80% correct. 

Subjective Measures 

Demographics Questionnaire (APPENDIX A) 

The demographics questionnaire contains 21 items. The questions ask about a range of 

biographical information, including age, gender, health status, education level, computer usage 

and expertise, and video gaming experience and expertise. 

40 Mini-Marker Personality Scale (APPENDIX B) 

The 40 Mini-Marker Personality Scale measures personality traits based on the Five Fac-

tor Model, in terms of openness, conscientiousness, agreeableness, extraversion, and neuroti-

cism. The scale consists of 40 common human traits. Participants were asked to rate how accu-

rately these 40 traits described themselves in general using a 9-point Likert scale ranging from “0 

= Extremely Inaccurate” to “9 = Extremely Accurate”. This 40-item scale is a brief version of 

Goldberg’s (1992) 100 adjective markers for personality. Compared to the original scale, it has 

less difficult items, lower inter-scale correlations, with no loss of validity. 
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Complacency Potential Rating Scale (CPRS; APPENDIX C) 

The Complacency Potential Rating Scale (Singh et al., 1993) is a multi-dimensional scale 

for assessing the individual’s dispositional propensity to grow complacent in using automation. 

This 20-item scale measures four components of complacency, including confidence-related, re-

liance-related, trust-related, and safety-related complacency. Every item has a statement about an 

attitude toward common systems with automation technology (e.g. “Even though the automatic 

cruise control in my car is set at a speed below the speed limit, I worry when I pass a police radar 

speed trap in case the automatic control is not working properly”). Participants were asked to in-

dicate how much they agreed with each statement using a 5-point Likert scale ranging from “0 = 

Extremely disagree” to “4 = Extremely agree”. 

Dundee Stress State Questionnaire (DSSQ: short version; APPENDIX D) 

The short version of the Dundee Stress State Questionnaire (DSSQ) measures three 

higher order dimensions of subjective states in terms of task engagement, distress, and worry. In 

this study, it was administered to gauge the stress response elicited by task load manipulation. 

This questionnaire was administered both before the task as a baseline measure, and after the 

task reflecting the state in the final 10 minutes of experimental task. The DSSQ contains 30 

items about feelings and thoughts. Participants were instructed to rate how accurately those state-

ments described their current emotional states using a 5-point Likert scale ranging from “0 = 

Definitely false” to “4 = Definitely true”. 

Metrics for Trust in Automation (APPENDIX E) 

The Metrics for Trust in Automation is a 22-item survey developed by the Air Force Re-

search Laboratory (AFRL) for studies using the ALOA simulation. The first seven items ad-
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dressed the general feedback on the simulated UAV operation in aspects of task difficulty, confi-

dence in performance, trust in automation, workload, and training adequacy. The following 15 

items focused on the automated aid in three primary tasks, including rerouting and two surveil-

lance tasks. Questions covered competence of the automation, accuracy of the automation, trust 

on the automation, consistency of the automation, and confidence for the automation. Five-point 

Likert scales (descriptions varied by questions) were used for answering the questions. 

Human - Computer Trust Scale (APPENDIX F) 

The Human - Computer Trust Scale for this study was adapted from the Human - Com-

puter Trust Scale (Madsen & Gregor, 2000). This 9-item scale measures trust in automation from 

affective and cognitive aspects. Participants were asked to evaluate their perceived reliability, 

perceived technical competence, perceived understandability, faith and personal attachment in 

automation, as well as global trust in automation using a 5-point Likert rating scale ranging from 

“0 = Extremely disagree” to “4 = Extremely agree”. 

NASA - Task Load Index (NASA-TLX; APPENDIX G) 

The NASA - Task Load Index (Hart & Staveland, 1988) is a widely used multi-dimen-

sional measurement of subjective workload. It consists of six rating scales for workload-relevant 

factors, including mental demand, physical demand, temporal demand, performance, effort, and 

frustration. All factors, except performance, are rated on a 0 - 100 scale from “Low” to “High”. 

Performance is rated on a 0 - 100 scale from “Good” to “Poor”. 
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Procedure 

Pre-Task Activities 

Before the experiment sessions, an informed consent agreement was received by re-

searchers. Then, participants were asked to turn off cell phones and remove watches. Next, par-

ticipants were instructed to complete the pre-task survey set, including the Demographic Ques-

tionnaire, the 40 Mini-Marker Personality Scale, the Complacency Potential Scale, and the pre-

task DSSQ. The total time for pre-task activities was approximately 20 - 30 minutes. 

Training 

After completing pre-task surveys, training started with an introduction using PowerPoint 

slides, followed by a live simulation demonstration and hands-on practice. In the training slides, 

the interface of the simulation, task priority, and every task operation in the simulation were 

briefly illustrated. In the live simulation demonstration, every function of control and task was 

explained in detail. Finally, participants needed to practice with the live simulation under 

supervision. They had a “cheat sheet” about all the tasks for quick reference and were able to ask 

any questions during the training. Researchers monitored the practice process to ensure that par-

ticipants understood all the tasks and were qualified for the experimental task. A second hands-

on practice could be run if needed. But this was never performed. Participants were allowed to 

take a break after the training session. Training took approximately 60 minutes. 

Experimental Task 

Participants were randomly assigned to one of the four conditions. Before the experi-

mental task, researcher repeated instructions for simulation controls briefly and emphasized task 
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priorities. Participants were not allowed to interact with researchers during the 1-hour experi-

mental task. Researchers confirmed with participants that nothing remained unclear before pro-

ceeding to the experimental task. The experimental task ran for 60 minutes. 

Post-Task Activities 

After the experimental task, participants were instructed to complete the post-task survey 

set immediately. Post-task survey set consisted of the post-task DSSQ, the Metrics for Trust in 

Automation, the Human - Computer Trust Scale, and the NASA - Task Load Index. Finally, be-

fore dismissing participants, researchers answered any concerns, asked for verbal feedback, and 

provided the research study evaluation survey from the psychology department. Post-task activi-

ties took approximately 15 minutes. All the sessions in total were completed within three hours. 
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RESULTS 

The Impact of LOAs and Task Demand on Subjective States 

Workload 

Bonferroni-corrected t-tests were run to test the effects of experimental manipulations. It 

was confirmed that workload (NASA-TLX global workload) was significantly higher in high 

task demand conditions (M = 57.1) than in low task demand conditions (M = 46.2), t (99) = -

3.52, p = .001. According to NASA-TLX, the manipulation of task demand successfully elicited 

higher workload in all aspects, including mental demand, t (99) = -1.78, p = .079; physical de-

mand, t (75.9) = -3.77, p < .01; temporal demand, t (99) = -2.43, p < .05; effort, t (99) = -2.47, p 

< .05, and frustration, t (99) = -2.73, p < .01, in high task demand conditions (Figure 4). How-

ever, there was no difference in self-reported performance, t (99) = -.21, p = .835. 

 

Figure 4. NASA-TLX workload factor ratings in low/high task demand conditions. 
Error bars represent standard errors. 

 

Bonferroni-corrected t-tests were also computed to check the impact of LOA manipula-

tions. Mean differences are shown in Figure 5. No significant self-rated workload differences 
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were found between different LOA conditions. Therefore, the following analyses will focus on 

the impact of task demand manipulations. 

 

Figure 5. NASA-TLX workload factor ratings in low/high LOA conditions.  
Error bars represent standard errors. 

Stress State 

A series of 2 × 2 × 2 (LOA × task demand × pre- vs. post-task) mixed-model ANOVAs 

were run for each stress state factors, including task engagement, distress, and worry, to test the 

effects of experimental manipulations on subjective states. The results from ANOVA for task en-

gagement showed a near significant interaction between pre-/post-task and task demand, F(1, 97) 

= 3.65, p = .059, η2
p = .04 (Figure 6). In the low task demand condition, participants were less 

engaged after tasks, compared to the pre-task baseline. There was another significant interaction 

between pre-/post-task and task demand for distress, F(1, 97) = 7.81, p < .01, η2
p = .07 (Figure 

7). In the high task demand condition, participants reported greater distress after task exposure, 

compared to the pre-task baseline. Regarding worry, a significant main effect for pre-/post-task 

was found, F(1, 97) = 46.14, p < .01, η2
p = .32 (Figure 8). Worry decreased in all conditions, and 

worry was lower in low task demand than in high task demand conditions. 
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Figure 6. Pre- to post-task change in task engagement for different task demand 
conditions. 
Error bars represent standard errors. 

 

 
Figure 7. Pre- to post-task change in distress for different task demand conditions. 
Error bars represent standard errors. 

 

 
Figure 8. Pre- to post-task change in worry for different task demand conditions. 
Error bars represent standard errors. 

 

The Impact of LOAs and Task Demand on Task Performance 

Three performance metrics for the two high priority surveillance tasks, Image Analysis 

and Weapon Release authorization, were analyzed. Accuracy was defined as the percentage of 
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correct responses. Reliance was defined as the percentage of trials on which the participant fol-

lowed the recommendation from the automation. Neglect was defined as the frequency of items 

that appeared in the task window but were not opened by the participant. Detailed performance 

metric formulas for Image Analysis and Weapon Release authorization tasks are listed in Table 5 

and Table 6. The possible types of response are categorized as shown in Table 4. 

Table 4 
The possible types of response in two surveillance tasks 

 Correct Answer Incorrect Answer 

Agree with Automation Hit 
Near Miss 
Far Miss 

Disagree with Automation Correct Rejection False Alarm 

Near Miss: within one of the correct answer 
Far Miss: greater than one of the correct answer, only in Image Analysis task 
True Miss: task timed-out, only in low LOA condition 

 
Table 5 
Performance metrics in the Image Analysis task 
   Formula 

Low LOA   
 

Accuracy 100%
Hit CorrectRejection

Hit CorrectRejection NearMiss FarMiss FalseAlarm TrueMiss




    
 

 
Reliance 100%

Hit NearMiss FarMiss

Hit CorrectRejection NearMiss FarMiss FalseAlarm TrueMiss

 


    
 

 
 Neglect Number of tasks which the participant never opened 

High LOA   
 

Accuracy 100%
Hit CorrectRejection

Hit CorrectRejection NearMiss FarMiss FalseAlarm




   
 

 
Reliance 100%

Hit NearMiss

Hit CorrectRejection NearMiss FarMiss FalseAlarm




   
 

 
 Neglect Number of tasks which the participant never opened 
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Table 6 
Performance metrics in the Weapon Release authorization task 
   Formula 

Low LOA   
 

Accuracy 100%
Hit CorrectRejection

Hit CorrectRejection NearMiss FalseAlarm TrueMiss




   
 

 
Reliance 100%

Hit NearMiss

Hit CorrectRejection NearMiss FalseAlarm TrueMiss




   
 

 
 Neglect Number of tasks which the participant never opened 

High LOA   
 

Accuracy 100%
Hit CorrectRejection

Hit CorrectRejection NearMiss FalseAlarm




  
 

 
Reliance 100%

Hit NearMiss

Hit CorrectRejection NearMiss FalseAlarm




  
 

 
 Neglect Number of tasks which the participant never opened 

 

A series of 2 × 2 × 2 (LOA × task demand × task type) mixed-model ANOVAs were 

computed to test the impact of automation and workload on UAV operation performance. 

Accuracy 

For accuracy, participants performed less accurately in Weapon Release authorization 

task (M = 75.7) than Image Analysis task (M = 82.3), F(1, 91) = 23.91, p < .01, η2
p = .21 (Figure 

9). Another main effect of task demand was also significant for accuracy, F(1, 91) = 5.87, p 

< .05, η2
p = .06. Participants in low task demand groups (M = 80.9) achieved greater accuracy 

than those in high task demand groups (M = 77.1) in the surveillance tasks. Accuracy in Weapon 

Release authorization task seemed to be more vulnerable to high task demand than Image Analy-

sis task, even though the interaction between task type and task demand was not significant.  
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Figure 9. Task performance (accuracy) in the Image Analysis and the 
Weapon Release authorization tasks for different task demand conditions. 
Error bars represent standard errors. 

Reliance on Automation 

Reliance on automation was greater in the Image Analysis task (M = 75.6) than in the 

Weapon Release authorization task (M = 72.9), F(1, 91) = 5.91, p < .05, η2
p = .06. A near signifi-

cant main effect of task demand for reliance on automation was found, F(1, 91) = 3.92, p = .051, 

η2
p = .04. Participants showed greater reliance on automation in low task demand conditions (M 

= 75.54) than in high task demand conditions (M = 72.98). Result also revealed a significant 

main effect of LOA for reliance, F(1, 91) = 5.11, p < .05, η2
p = .05 (Figure 10). High LOA 

groups (M = 75.64) were more reliant on automation than low LOA groups (M = 72.76). In addi-

tion, the interaction between task type and task demand was also significant, F(1, 91) = 4.76, p 

< .05, η2
p = .05 (Figure 11). In Weapon Release authorization task, task demand had a stronger 

effect on reliance on automation. Specifically, in Weapon Release authorization task, participants 

were less reliant on automation in high task demand conditions (M = 70.47) than in low task de-

mand conditions (M = 75.38). 
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Figure 10. Task performance (reliance on automation) in the Image Analysis and the 
Weapon Release authorization tasks for different task demand and LOA conditions. 
Error bars represent standard errors. 

 

 
Figure 11. Task performance (reliance on automation) in the Image Analysis and 
the Weapon Release authorization tasks for different task demand conditions. 
Error bars represent standard errors. 

Neglect 

Regarding neglect, there was significantly more item neglects in Weapon Release author-

ization task (M = 8.9) than in Image Analysis task (M = 3.4), F(1, 91) = 94.08, p < .01, η2
p = .51 . 

The main effects for task demand and LOA were also significant for neglect (Figure 12). First, 

neglect was higher in high task demand groups (M = 8.4) than in low task demand groups (M = 

3.9), F(1, 91) = 19.18, p < .01, η2
p = .17. Second, neglect was higher in high LOA conditions (M 

= 7.1) than in low LOA conditions (M = 5.1), F(1, 91) = 4.20, p < .05, η2
p = .04. In addition, the 

interaction between task type and task demand was significant, F(1, 91) = 9.68, p < .01, η2
p = .10 
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(Figure 13). The effect of task demand had a stronger impact on the Weapon Release authoriza-

tion task. Participants in the high task demand conditions neglected the most number of items (M 

= 12.01) in the Weapon Release authorization task. 

 
Figure 12. Task performance (neglect) in the Image Analysis and the Weapon 
Release authorization tasks for different task demand and LOA conditions. 
Error bars represent standard errors. 

 

 
Figure 13. Task performance (neglect) in the Image Analysis and the Weapon 
Release authorization tasks for different task demand conditions. 
Error bars represent standard errors. 

Individual Differences 

Computer/Gaming Experience and Task Performance 

Table 7 illustrates correlations between gaming experience and performance metrics in 

two surveillance tasks. Only one significant correlation was found for the Image Analysis task. 

Self-rated general computer expertise positively correlated with task accuracy (r = .246, p < .05). 
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For the Weapon Release authorization task, expertise in video games, first person shooter games, 

and other action games tended to be associated with higher accuracy, greater reliance on automa-

tion, and less neglect. Video game exposure time also showed the same trend of association with 

performance as the expertise factors. But the results were only significant for general video game 

exposure time and Weapon Release authorization task performance as well as between other ac-

tion game exposure time and neglect in the Weapon Release authorization task. 

Generally speaking, gaming experience, especially gaming expertise, was only predictive 

for the Weapon Release authorization task. The Weapon Release authorization task was rated 

more demanding than the Image Analysis task. In order to test whether task demand had a mod-

erator effect, standardized gaming experience and task demand variables, as well as the interac-

tion terms were added to the hierarchical regression models. The hierarchical regression results 

revealed that none of the tested interaction terms were significant. Therefore, task demand did 

not moderate the association between gaming experience and task performance. 

Table 7 
Correlations between gaming experience and performance metrics in the Image/Weapon 
Release tasks 
  Image Analysis   Weapon Release  

 Accuracy Reliance Neglect Accuracy Reliance Neglect 

Computer daily hrs -.074 -.025 .032 -.076 -.062 -.018 

Computer expertise .246* .200 -.082 .166 .008 -.183 

Game weekly hrs .030 -.001 -.067 .235* .249* -.218* 

Game expertise .042 .070 .030 .293** .270** -.181 

FPS weekly hrs -.047 -.106 .049 .163 .129 -.112 

FPS expertise .043 -.016 -.032 .316** .257* -.252* 

Action weekly hrs -.024 -.068 -.090 .177 .191 -.228* 

Action expertise .061 .013 -.070 .369** .331** -.285** 

**p < .01, *p < .05 

Computer/Gaming Experience and Stress State 

Computer and gaming experience correlated fairly consistently with more positive pre-

task states (Table 8). Among those computer and gaming experience factors, computer expertise 



49 

and action game expertise significantly correlated with all three pre-task state factors. Computer 

expertise significantly correlated with distress (r = -.334), task engagement (r = .329), worry (r = 

-.202). Action game expertise significantly correlated with distress (r = -.294), task engagement 

(r = .335), worry (r = -.216). Time spent on using computers or playing only showed positive re-

lationships to pre-task task engagement, but no significant correlations with the other two state 

factors. Regarding the post-task state factors, only task engagement was positively related to 

time spent on using computers, playing video games, and first person shooter game expertise.  

Table 8 
Correlations between gaming experience and pre-/post-task stress state factors 
  Pre-task   Post-task  

 Distress Engagement Worry Distress Engagement Worry 

Computer daily hrs -.118 .282** .012 -.111 .237* .076 

Computer expertise -.334** .329** -.202* -.167 .149 -.108 

Game weekly hrs -.164 .342** -.148 -.167 .217* -.125 

Game expertise -.293** .296** -.129 -.139 .078 -.100 

FPS weekly hrs -.158 .287** -.158 -.079 .230* -.019 

FPS expertise -.201* .269** -.160 -.120 .226* -.132 

Action weekly hrs -.123 .199* -.089 -.103 .078 -.086 

Action expertise -.294** .335** -.216* -.167 .119 -.191 

**p < .01, *p < .05 

Gender Differences 

Bonferroni-corrected t-tests were conducted to test gender differences in subjective stress 

state factors (Table 9) and objective performance metrics (Table 10). Women were significantly 

less engaged than men both before and after the tasks. Initially, women (M = 20.03, SD = 5.12) 

were less engaged than men (M = 23.64, SD = 4.15), t(97) = 3.91, p < .01. Levene’s test indi-

cated unequal variances, therefore the degrees of freedom were adjusted to 97.25. During the last 

10 minutes of the experimental tasks, women (M = 20.10, SD = 6.14) were less engaged than 

men (M = 22.79, SD = 5.13), t(99) = 2.31, p < .05. In addition, women (M = 9.75, SD = 5.14) re-
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ported greater distress than men (M = 7.55, SD = 4.87) after the tasks, t(99) = -2.17, p < .05. Re-

garding the performance metrics, only one gender difference was found in terms of accuracy on 

the Weapon Release authorization task. Men (M = 79.52, SD = 7.64) performed more accurately 

than women (M = 73.13, SD = 11.44), t(93) = 3.02, p < .01.  

Table 9 
t-tests for gender differences in pre-/post-task stress state factors 

 Male  Female 95% CI for Mean 
Difference 

  

 M SD n  M SD n t df 

Pre-task            
 Distress 7.79 5.74 42  9.31 4.62 59 [-3.57, 0.53] -1.47 99 
 Engagement 23.64 4.15 42  20.03 5.12 59 [1.78, 5.44] 3.91** 97.25 
 Worry 12.69 6.18 42  14.15 5.91 59 [-3.88, 0.95] -1.20 99 
Post-task            
 Distress 7.55 4.87 42  9.75 5.14 59 [-4.21, -0.19] -2.17* 99 
 Engagement 22.79 5.13 42  20.10 6.14 59 [0.38, 4.99] 2.31* 99 
 Worry 9.98 5.90 42  10.47 5.74 59 [-2.82, 1.83] -.43 99 

**p < .01, *p < .05 

 
Table 10 
t-tests for gender differences in performance metrics in the Image/Weapon Release tasks 

 Male  Female 95% CI for Mean 
Difference 

  

 M SD n  M SD n t df 

Image            
 Accuracy 83.54 8.32 38  81.45 10.53 57 [-1.96, 6.12] 1.02 93 
 Reliance 76.36 6.87 38  75.06 9.09 57 [-2.14, 4.74] .75 93 
 Neglect 3.23 4.18 38  3.48 5.29 57 [-2.29, 1.77] -.25 93 
WR            
 Accuracy 79.52 7.64 38  73.13 11.44 57 [2.18, 10.59] 3.02** 93 
 Reliance 74.48 7.31 38  71.84 8.72 57 [-0.76, 6.05] 1.54 93 
 Neglect 7.32 6.66 38  9.94 7.89 57 [-5.70, 0.47] -1.68 93 

**p < .01, *p < .05 

 

In order to understand the gender differences better, gender differences in computer and 

gaming experience were tested using Bonferroni-corrected t-tests (Table 11). Although there was 

no gender difference in daily hours in using computers, women reported not only less time spent 

on playing video games, but less expertise in computer and video games. Specifically, comparing 

to men, women reported less general computer expertise, t(66.95) = 3.48, p <.01; less video 

game expertise, t(98.74) = 8.10, p <.01; less first person shooter game expertise, t(99) = 9.25, p 
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<.01; less other action game expertise, t(99) = 7.84, p <.01; less weekly game hours, t(69.14) = 

5.38, p <.01; less weekly first person shooter game hours, t(59.41) = 4.5, p <.01; and less weekly 

other action game hours, t(70.98) = 4.01, p <.01. The degrees of freedom were adjusted because 

Levene’s test results indicated the assumption of homogeneity of variances was violated. 

Table 11 
t-tests for gender differences in computer/gaming experience 

 Male  Female 95% CI for Mean 
Difference 

  

 M SD n  M SD n t df 

Computer daily hrs 4.76 3.03 42  4.32 2.36 59 [-0.63, 1.50] .81 99 
Computer expertise 2.79 .75 42  2.32 .51 59 [0.20, 0.73] 3.48** 66.95 
Game weekly hrs 3.90 2.18 42  1.85 1.39 59 [1.29, 2.82] 5.38** 64.19 
Game expertise 5.07 1.20 42  2.81 1.60 59 [1.71, 2.81] 8.10** 98.74 
FPS weekly hrs 2.81 1.89 42  1.36 1.06 59 [0.81, 2.10] 4.50** 59.41 
FPS expertise 3.74 1.55 42  1.15 1.23 59 [2.03, 3.14] 9.25** 99 
Action weekly hrs 2.98 1.88 42  1.61 1.38 59 [0.69, 2.05] 4.01** 70.98 
Action expertise 4.69 1.65 42  2.20 1.52 59 [1.86, 3.12] 7.84** 99 

**p < .01, *p < .05 

 

In addition, in order to test if there was an association between gender and performance 

as well as subjective states with gaming experience controlled, multiple regressions were con-

ducted, with Weapon Release accuracy as the dependent measure. The results indicated that, 

with relevant gaming experience factors, especially gaming expertise factors, controlled at the 

first step of the regression, gender predicted neither the subjective stress state factors nor objec-

tive performance accuracy. However, with gender entered at the first step, gaming experience 

factors remained predictive. 

Task Performance and Stress State 

Correlational analyses were computed to assess the relationship between task perfor-

mance and pre-/post-task stress state factors. Pre-task worry was found to be the only factor that 

was negatively associated with task accuracy in both tasks (Image Analysis, r = -.231, p < .05; 

Weapon Release, r = -.216, p < .05) and reliance on automation in the Image Analysis task (r = 

-.222, p < .05). The correlational results were shown in Table 12. 
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Table 12 
Correlations between performance metrics and pre-task stress state factors 
  Pre-Distress   Pre-Engagement   Pre-Worry  

 Overall Low High Overall Low High Overall Low High 

Image Analysis          

 Accuracy -.072 .034 -.140 .001 -.122 .111 -.231* -.184 -.254 

 Reliance -.065 .012 -.142 .073 -.008 .149 -.222* -.212 -.232 

 Neglect .129 -.012 .147 -.065 .182 -.164 .061 -.105 .091 

Weapon Release          

 Accuracy -.171 -.158 -.129 .162 .279 .076 -.216* -.165 -.224 

 Reliance -.145 -.047 -.156 .048 .083 .017 -.165 -.123 -.153 

 Neglect .191 .078 .189 -.189 -.179 -.220 .113 -.111 .180 

**p < .01, *p < .05; Low: low task demand; High: high task demand 

 

Significant correlations were found between all three post-task stress state factors and 

specific performance metrics (Table 13). Distress was associated with accuracy and neglect in 

both tasks, especially in high task demand conditions. Task engagement was negatively corre-

lated with neglect in both tasks (Image Analysis, r = -.411, p < .05; Weapon Release, r = -.314, p 

< .05) in high task demand conditions. Worry showed a negative association with task accuracy, 

but this trend was only significant in the Image Analysis task when task demand was high (r = 

-.286, p < .05). 

Table 13 
Correlations between performance metrics and post-task stress state factors 
  Post-Distress   Post-Engagement   Post-Worry  

 Overall Low High Overall Low High Overall Low High 

Image Analysis          

 Accuracy -.268** -.106 -.334* .056 .028 .142 -.157 -.027 -.286* 

 Reliance -.128 -.103 -.158 -.040 -.120 .037 -.142 -.050 -.235 

 Neglect .303** -.121 .334* -.193 .045 -.411* .138 -.088 .250 

Weapon Release          

 Accuracy -.392** -.211 -.408** .049 -.032 .203 -.143 -.110 -.169 

 Reliance -.207* -.134 -.086 -.103 -.096 -.006 -.096 .037 -.201 

 Neglect .382** -.082 .408** -.155 -.216 -.314* .113 .018 .175 

**p < .01, *p < .05; Low: low task demand; High: high task demand 
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Personality and Stress State 

Table 14 shows the correlations between personality and stress state factors. Pre-task dis-

tress was correlated with all five personality factors. Among those, conscientiousness and neurot-

icism were significantly associated with pre-task distress in both low and high task demand con-

ditions. Conscientiousness and neuroticism also were associated with pre-task engagement in 

high task demand group and in data pooled across task demand conditions (shown in “overall” 

columns).  

Compared with the correlations in the pre-task states, the correlations between personal-

ity and post-task states showed the similar trend, but were generally weaker (Table 15). Among 

the five personality factors, conscientiousness seemed to be the most predictive one. Conscien-

tiousness was significantly negatively associated with post-task distress in the low task demand 

condition and across conditions, and positively associated with post-task engagement in the high 

task demand condition.  

Table 14 
Correlations between personality factors and pre-task stress state factors 
  Pre-Distress   Pre-Engagement   Pre-Worry  

 Overall Low High Overall Low High Overall Low High 

Extraversion -.263** -.374** -.159 -.026 .059 -.103 .092 .139 .027 

Agreeableness -.250* -.357* -.143 .120 .246 .019 .024 .007 .066 

Conscientiousness -.373** -.432** -.304* .259** .198 .308* .007 -.057 .080 

Neuroticism .491** .364** .599** -.229* -.049 -.356* .283** .268 .279 

Openness -.266** -.235 -.347* .202* .191 .237 .076 .205 -.117 

**p < .01, *p < .05; Low: low task demand; High: high task demand  
Table 15 
Correlations between personality factors and post-task stress state factors 
  Post-Distress   Post-Engagement   Post-Worry  

 Overall Low High Overall Low High Overall Low High 

Extraversion -.129 -.234 -.133 -.045 .071 -.184 .100 .023 .183 

Agreeableness -.242* -.310* -.130 -.005 -.003 .036 -.009 -.083 .053 

Conscientiousness -.269** -.331* -.205 .190 -.065 .430** -.023 -.066 .020 

Neuroticism .213* .126 .206 .156 .216 .082 .176 .317* .066 

Openness -.110 -.096 -.223 .074 .020 .125 .016 .023 .004 

**p < .01, *p < .05; Low: low task demand; High: high task demand 
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Task Demand as a Moderator between Personality and Stress State 

Hierarchical regression analyses were conducted to test the potential moderator effect of 

task demand between personality and stress state. Relevant personality factors and task demand 

were standardized and regressed onto stress state in the first step, followed by the interaction 

term of personality and task demand in the second step. Variance inflation factor (VIF) values 

did not imply any multicollinearity issue in the tested regression models. 

A single moderator effect of task demand was found between conscientiousness and post-

task engagement, β = .25, t(97) = 2.64, p = .01. The positive association between conscientious-

ness and post-task engagement was stronger when task demand was higher. Simple slopes analy-

sis indicated that although there was a positive association between conscientiousness and post-

task engagement when task demand was high (1 standard deviation above mean), β = 2.58, t(97) 

= 3.16, p < .01, this association was not present when task demand was low (1 standard deviation 

below mean), β = -.36, t(97) = -.48, p = .64 (Figure 14). 

 
Figure 14. Association between conscientiousness (C) and post-
task engagement moderated by task demand. 

Personality and performance 

Table 16 shows the correlations between personality and Image Analysis task perfor-

mance in different task demand conditions. Personality did not predict performance on the Image 
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Analysis task very well. Only conscientiousness was found to be negatively associated with reli-

ance on automation in the high task demand condition (r = -.353, p < .05), and across conditions 

(r = -.219, p < .05). 

Table 16 
Correlations between personality factors and performance metrics in the Image Analysis task 
  Accuracy   Reliance   Neglect  

 Overall Low High Overall Low High Overall Low High 

Extraversion .095 .156 .056 .095 .089 .102 -.087 -.201 -.088 

Agreeableness .102 -.083 .192 -.055 -.057 -.062 -.138 .169 -.166 

Conscientiousness -.176 -.226 -.155 -.219* -.079 -.353* -.186 -.084 -.220 

Neuroticism .004 -.092 .125 .032 -.118 .156 -.018 .117 -.138 

Openness .009 -.039 .082 -.159 -.260 -.024 -.028 -.124 .003 

**p < .01, *p < .05; Low: low task demand; High: high task demand 

 

Table 17 shows the correlation between personality and Weapon Release authorization 

task performance in different task demand conditions. Personality factors showed an opposite 

tendency in predicting reliance on automation and neglect in different task demand conditions. 

Conscientiousness was negatively associated with reliance on automation in high task demand 

condition (r = -.372, p < .01), but tended to be positively associated with reliance on automation 

in low task demand condition (r = .064, p = .67). Additionally, conscientiousness was negatively 

correlated with neglect in high task demand condition (r = -.285, p < .05), but tended to be posi-

tive correlated with neglect when task demand was low (r = .112, p = .46). Also, a negative cor-

relation was found between agreeableness and neglect in the high task demand condition (r = 

-.298, p < .05), but the correlation tended to be positive, though nonsignificant, in the low task 

demand condition (r = .172, p = .25). Besides these, agreeableness was also associated with reli-

ance on automation in high task demand condition (r = -.345, p < .05). Extraversion was nega-

tively correlated with reliance on automation in the high task demand condition (r = -.339, p 

< .05) and across conditions (r = -.225, p < .05). 
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Table 17 
Correlations between personality factors and performance metrics in the Weapon Release 
task 
  Accuracy   Reliance   Neglect  

 Overall Low High Overall Low High Overall Low High 

Extraversion -.079 .027 -.136 -.225* -.056 -.339* -.044 .017 -.146 

Agreeableness -.093 .019 -.246 -.166 -.065 -.345* -.229* .172 -.298* 

Conscientiousness -.038 .147 -.210 -.156 .064 -.372** -.165 .112 -.285* 

Neuroticism -.022 -.238 .183 -.058 -.159 .090 .021 -.083 -.052 

Openness .032 -.078 .170 -.009 -.193 .204 -.117 -.253 -.080 

**p < .01, *p < .05; Low: low task demand; High: high task demand 

Task Demand as a Moderator between Personality and Performance 

Hierarchical regression analyses were conducted to test the potential moderator effect of 

task demand between personality and performance. Relevant personality factors and task demand 

were standardized and regressed onto performance metrics in the first step, followed by the inter-

action term of personality and task demand in the second step. Variance inflation factor (VIF) 

values did not imply any multicollinearity issue in the tested regression models. 

Results confirmed that task demand moderated the association between conscientiousness 

and reliance on automation, β = -.22, t(91) = -2.25, p < .05. The negative association between 

conscientiousness and reliance on automation was stronger when task demand was higher. Sim-

ple slopes analysis indicated that although there was a negative association between conscien-

tiousness and reliance on automation in high task demand condition (1 standard deviation above 

mean), β = -3.11, t(91) = -2.67, p < .01, this association was not present in low task demand con-

dition (1 standard deviation below mean), β = .46, t(91) = .43, p = .67 (Figure 15). 
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Figure 15. Association between conscientiousness (C) and reliance on auto-
mation in the Weapon Release authorization task moderated by task demand. 

 

Results confirmed that task demand moderated the association between conscientiousness 

and neglect in the Weapon Release authorization task, β = -.19, t(91) = -2.05, p < .05. The nega-

tive association between conscientiousness and neglect was stronger in high task demand condi-

tion. Simple slopes analysis indicated that although there was a negative association between 

conscientiousness and neglect in the high task demand condition (1 standard deviation above 

mean), β = -2.29, t(91) = -2.45, p < .05, there was no such association in the low task demand 

condition (1 standard deviation below mean), β = .55, t(91) = .54, p = .59 (Figure 16). 

 
Figure 16. Association between conscientiousness (C) and neglect in 
the Weapon Release authorization task moderated by task demand. 

 

Multiple regression analyses also indicated that task demand moderated the association 

between agreeableness and neglect in the Weapon Release authorization task, β = -.21, t(91) = -

2.18, p < .05. The negative association between agreeableness and neglect was stronger in the 
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high task demand condition. Simple slopes analysis indicated that there was a near significant 

negative association between agreeableness and neglect in high task demand condition (1 stand-

ard deviation above mean), β = -2.21, t(91) = -1.97, p = .05; such an association was not ob-

served in low task demand condition (1 standard deviation below mean), β = 1.00, t(91) = 1.14, p 

= .27 (Figure 17). 

 
Figure 17. Association between agreeableness and neglect in the 
Weapon Release authorization task moderated by task demand. 

Trust and Reliance on Automation 

Subjective Trust on Surveillance Tasks 

Participants’ feedback after the experiments suggested that the reliability of the two sur-

veillance tasks may be perceived as being at different levels, although the two tasks were set 

with same reliability (correct 80% of the time). A paired-samples t-test was run to compare sub-

jective trust on the two tasks. Results indicated that there was no statistical difference between 

the subjective trust on Image Analysis task (M = 3.12, SD = .76) and Weapon Release authoriza-

tion task (M = 3.08, SD = .77), t(100) = .45, p = .66. 

A further 2 × 2 × 2 (LOA × task demand ×task type) mixed-model ANOVA was com-

puted to determine if there were group differences between LOA and task demand manipula-
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tions. Results confirmed that there was no difference in subjective trust between LOA condi-

tions, F(1, 97) = .95, p = .33, η2
p = .01; or between task demand conditions, F(1, 97) = .08, p 

= .77, η2
p = .00. 

Subjective Trust and Performance 

Table 18 shows correlations between subjective trust and performance on the two surveil-

lance tasks. Results suggested that there was no association between subjective trust and task 

performance. 

Table 18 
Correlations between subjective trust and performance metrics in the Image 
Analysis/Weapon Release tasks 
  Image Analysis   Weapon Release  

 Accuracy Reliance Neglect Accuracy Reliance Neglect 

HC trust -.135 -.052 .000 -.069 -.110 -.014 

IM trust .024 .123 -.118 .074 .050 -.173 

WR trust -.176 -.157 .064 .037 .089 -.033 

HC: Human-computer; IM: Image Analysis task; WR: Weapon Release authorization task 
**p < .01, *p < .05 

Subjective trust and personality 

Table 19 displays correlations between subjective trust and personality factors. Results 

suggested that there was no association between subjective trust and personality. 

Table 19 
Correlations between subjective trust and personality 
 Extraversion Agreeableness Conscientiousness Neuroticism Openness 

HC trust -.015 .043 .190 .071 -.106 
IM trust .010 .062 .121 .010 -.029 
WR trust .159 .063 .179 .080 .004 

HC: Human-computer; IM: Image Analysis task; WR: Weapon Release authorization task 
**p < .01, *p < .05 

Subjective Trust and Gaming Experience 

Table 20 illustrates correlations between subjective trust and gaming experience factors. 

Generally, the correlations were weak. Only two associations were statistically significant. Trust 

in the Image Analysis task and weekly time spent on playing other action games were positively 
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correlated (r = .213, p < .05). Trust in the Weapon Release authorization task automation and 

general game expertise were positively correlated (r = .229, p < .05). 

Table 20 
Correlations between subjective trust and gaming experience 

 Game 
Daily Hrs 

Game 
Expertise 

FPS 
Wkly Hrs 

FPS 
Expertise 

Action 
Wkly Hrs 

Action 
Expertise 

HC trust -.028 .043 -.131 -.136 -.006 -.049 

IM trust .097 .153 -.040 -.075 .213* .090 

WR trust .088 .229* -.012 .048 .157 .154 

HC: Human-computer; IM: Image Analysis task; WR: Weapon Release authorization task 
**p < .01, *p < .05 
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DISCUSSION 

A main objective of this study was to demonstrate that a multi-UAV simulation environ-

ment could be used to induce high workload and stress in participants. Supporting this objective, 

the task demand and LOA manipulations influenced task performance generally as expected. The 

task demand manipulations elicited higher subjective distress and workload. LOAs did not affect 

operator workload, but affected reliance behavior.  

Another aim was to identify individual difference factors associated with performance 

and stress, in higher and lower task demand conditions. A variety of factors were associated with 

task performance and with subjective stress response. Video gaming experience was linked to 

lower distress and better performance, suggesting possible transfer of skills. Some gender differ-

ences were revealed in stress response and task performance, but all the gender effects became 

insignificant with gaming experience controlled. Generally, the effects of personality were con-

sistent with previous studies, except for some novel findings with the performance metrics. 

Performance was negatively correlated with distress, consistent with previous research showing 

that distress impairs multi-tasking. 

Personality may become more important for outcomes when the operator is challenged by 

high demands. The study confirmed that task demand seemed to moderate the influence of per-

sonality factors on stress response and performance metrics. Individuals high in conscientious-

ness and agreeableness tended to be more resistant to overload under high task demand circum-

stances. However, conscientiousness was associated with suboptimal use of automation under 

high demands. 

Previous research has assumed that subjective trust mediates the impact of system relia-

bility on reliance behavior. However, no significant correlation was found between subjective 
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trust and reliance on automation. In addition, personality did not predict trust on automation in 

the UAV context either, suggesting that assessment of subjective trust is of limited utility in this 

context. 

Overall, study findings have several implications for the human factors of UAV opera-

tions. Automation allowed even novices to perform quite well in a sensor operator role, but par-

ticipants were challenged by the more difficult ISR task (Weapon Release). Under high task de-

mands, detection performance was impaired, reliance on the automation declined, and partici-

pants were prone to neglect the task. Given that the automation was quite reliable, the decline in 

reliance is concerning, and shows disuse of automation when it is most needed. Analyses of indi-

vidual differences suggested benefits to recruiting action video gamers, as well as individuals 

able to maintain states of task engagement and low distress during operations. Personality im-

pacted reliance more strongly than performance accuracy. In particular, highly conscientious in-

dividuals were especially prone to show under-reliance under the most demanding conditions, 

suggesting a misplaced motivation to take control personally. Training solutions to performance 

vulnerabilities might focus on high-demand task configurations, taking into account the individ-

ual’s dispositions. 

Thus, this research effort provides a better understanding of the impact of automation and 

workload on human performance and stress in the UAV context. Study findings show that both 

objective performance and subjective stress responses are influenced by multiple tasks and per-

sonal factors in the multi-UAV environment. Providing appropriate support for the operator, in-

cluding optimizing the use of automation, requires an understanding of how individual differ-
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ences interact with task demands. The remainder of this discussion reviews theoretical and prac-

tical implications of the results, and suggests how limitations of this study might be addressed in 

future research. 

The Impact of Task Demand on Subjective States and Performance 

In this study, the level of task demand was successfully manipulated to simulate the task 

demand variation in UAV operations by configuring the frequency of secondary task events in 

the ALOA simulation. High task demand produced higher subjective workload and greater dis-

tress, confirming the task was stressful. This trend of elevated workload and distress is consistent 

with the finding in a previous UAV simulation study (Panganiban & Matthews, 2014). Worry 

was reduced relative to baseline in both task demand conditions. Typically, demanding tasks can 

induce decreases in worry, as attention is refocused from internal concerns to external demands 

(Matthews et al., 2013), as appears to be the case here. By contrast, low workload, monotonous 

UAV tasks may lead to mind-wandering, which may, in turn, contribute to the decreases in 

worry (Cummings et al., 2013). Also, the present result was consistent with the trend of greater 

declines in worry in high event rate vigilance tasks (Shaw et al., 2010).  

Generally, in terms of accuracy and neglect, participants’ performance was better in low 

task demand conditions. In high task demand conditions, less accuracy and more neglect were 

observed. The findings confirmed the hypothesis of the detrimental effects of high task demand 

on performance. Reliance on automation in the Image Analysis task was consistent across task 

demand conditions, while significantly less reliance on automation in the Weapon Release task 

was observed in the high task demand condition. Weapon Release was generally more difficult 

than Image Analysis. The lowest level of accuracy, reliance on automation, and the most in-



64 

stances of neglect in the Weapon Release task in the high task demand condition indicate the vul-

nerability of this task configuration to impairment in performance. High task demand was as-

sumed to contribute to stress. The elevation of distress and workload suggested that the high task 

demand mission was indeed stressful as expected. Participants under such high task demand, es-

pecially when working on the demanding tasks, may become overloaded and fail to maintain 

their performance. In the view of CCM (Hockey, 1997), the high neglect under high task demand 

circumstances may suggest strategy changes, such as using avoidance coping and deliberately 

setting a lower task goal. The maintenance of task engagement across time may indicate that alt-

hough the task was stressful, there was no loss of attentional resources associated with cognitive 

fatigue. The lower task demand condition was assumed to be potentially monotonous and fatigu-

ing. It is hypothesized that participants under low task demand would show more reliance on au-

tomation. However, this main effect was only marginal. Additionally, no significant loss of task 

engagement was observed, suggesting fatigue was generally minimal. Although the simulated 

UAV tasks require attentional resources, their somewhat challenging and interesting task compo-

nents may help to motivate operators to maintain engagement. Such features make the tasks dif-

fer from typical vigilance tasks, which are usually more monotonous.    

The Impact of LOAs on Subjective States and Performance 

Utilizing automation can reduce workload and enable single operators to manage multi-

ple UAVs at the same time, but it may also introduce human factors issues, such as a loss of situ-

ation awareness and complacency issues (Endsley, 1996; Miller & Parasuraman, 2007). Two in-

termediate levels of automation were employed in the experimental manipulations. Some impact 

of the two LOAs was found.  
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The LOA manipulations did not affect subjective workload nor stress response. Higher 

LOA should have helped to reduce operator workload. A possible explanation is that two inter-

mediate levels, management-by-consent and management-by-exception, were selected from the 

LOAs model (Parasuraman et al., 2000) in the study. These two levels were possibly too close to 

make a profound difference in the effect of LOA on workload and stress response. Alternatively, 

at the higher LOA, the operator may have reallocated attention to additional activities, such as 

secondary tasks, so that workload remained constant. 

Even though no effect of LOA on subjective workload and stress states was found, the 

two LOA configurations succeeded in producing differences in task performance. Greater reli-

ance on automation and more neglect were observed in higher LOA conditions (management-by-

exception). Higher LOA may lead to a loss of situation awareness associated with vigilance dec-

rement and complacency issues (Endsley, 1996; Endsley & Kiris, 1995; Miller & Parasuraman, 

2007) and may, in turn, result in the observed greater reliance on automation and more neglect. 

No significant difference in task accuracy was found between LOA conditions. This may suggest 

that considering the automation is relatively reliable, LOAs only have a subtle effect on the over-

all accuracy even though higher LOAs encourage operators to rely on the automation more. 

Also, the two LOAs were at intermediate levels close to each other in Parasuraman’s model 

(2000). Future study may test the trend in other LOAs. In summary, the hypothesis is partially 

confirmed, with higher operator reliance on automation when using higher LOAs, but not better 

performance, in terms of task accuracy. 
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Individual Differences 

It is important to identify individual differences in performance and stress in order to de-

termine which operators have the highest aptitude for multi-UAV control and to support opera-

tors that have specific vulnerabilities to suboptimal performance or stress. Different types of in-

dividual differences had an impact on operator performance in different ways. Multiple individ-

ual differences factors, including gaming experience, personality traits, gender, and subjective 

stress states were involved in the present study. It is likely that these different factors overlap and 

interact with one another. For example, there are gender differences in personality, such as 

higher neuroticism in women (Costa, Terracciano, & McCrae, 2001; McCrae & Terracciano, 

2005), that may be associated with greater stress vulnerability. Personality might also influence 

interest in video gaming (Mehroof & Griffiths, 2010; Walther, Morgenstern, & Hanewinkel, 

2012). A full investigation of such interdependencies was beyond the scope of this dissertation, 

but the dependence of gender differences in video gaming experiences was specifically investi-

gated. Men are known to have greater exposure to gaming (Desai, Krishnan-Sarin, Cavallo, & 

Potenza, 2010), and increasing recruitment of women is a significant issue for the USAF. Other-

wise, the key inter-relationships between individual difference factors, stress states, and perfor-

mance are discussed separately, in the sections that follow. 

Gaming and Performance 

Gaming experience was predictive of both lower subjective stress state and higher perfor-

mance in Weapon Release task. Gaming experience, especially self-rated expertise on general 

video games, first person shooter games, or other action games, was associated with superior 

task performance in the more demanding Weapon Release task. Participants reporting more ex-



67 

pertise on video gaming showed greater accuracy, more reliance on automation, and less task ne-

glect in the demanding task. It seemed that gaming expertise factors were more reliable predic-

tors of performance than game exposure factors. The results were consistent with the advantages 

of experienced video gamers shown in previous simulated UAV studies (Cummings et al., 2010; 

McKinley et al., 2011). Besides gaming expertise, weekly hours spent on playing video games 

was also associated with performance in the Weapon Release task. Considering video game ex-

posure is positively associated with sensory, perceptual, and attentional abilities (Spence & Feng, 

2010), this finding may suggest that practice in video gaming may improve such abilities and 

skills, which may transfer to and benefit UAV operations. Notably, video games often require 

particular skills and techniques for allocating attention across multiple subtasks, which may also 

be necessary for UAV operations. A game such as Call of Duty requires the player to monitor 

other units placed in multiple locations in the screen display, requiring spatial attention, and to 

determine which possible action is of highest priority at any given time, requiring executive pro-

cessing. Plausibly, such attentional skills generalize to ALOA, which also requires scanning mul-

tiple windows and prioritizing different subtasks. 

However, individuals with aptitudes for acquiring attentional skills and may be more 

likely to be self-selected to play action video games. Perhaps, the positive associations of gaming 

experience and UAV task performance are due to the self-selection for attentional abilities. Fur-

ther work is necessary to confirm that that gaming skills transfer directly to the multi-UAV con-

text. 

Gaming and Stress State 

Gaming experience was positively associated with task engagement and negatively asso-

ciated with both distress and worry before the task exposure. Experienced video gamers may be 
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more confident about performing the complex UAV tasks. Therefore, participants with more 

gaming experience tended to feel less stress and more enjoyment prior to the task. Only a few 

gaming experience factors, such as time spent on using computers, playing video games, and 

playing first person shooter games, were positively correlated with post-task engagement. In 

terms of post-task distress and worry, the same trends as pre-task were reported, but were not sta-

tistically significant. The associations between gaming experience and positive subjective states 

indicated that experienced video gamers may experience higher self-efficacy, which keeps them 

engaged in the tasks. Contrary to the negative stereotype described by Chappelle et al. (2014), 

gamers were no more stress-prone than those lacking gaming experience, and actually sustained 

task engagement more effectively over time. Similar to the associations with task performance, 

gaming expertise factors were more predictive of operator stress state than was gaming experi-

ence. 

Stress State and Performance 

Performance was associated with both pre-task and post-task stress state measures from 

the DSSQ. Performance correlates of pre-task measures indicate that states can predict future 

performance, which may be important for application. However, measures taken post-task, that 

ask how the person felt during the task, may be more representative of the states actually experi-

enced during performance. 

Pre-task worry was predictive of poor performance in terms of accuracy on both surveil-

lance tasks. Evidence from previous studies indicated that worry may slow switching tasks 

(Johnson, 2009) and predict poor vehicle control (Funke et al., 2007). Consistent with the detri-

mental effects on performance, worry impaired UAV operation as well, suggesting that worry 
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may impair the temporary resource availability for information processing, as attention is di-

verted from the task to processing personal concerns. Pre-task worry also predicted less reliance 

on automation, with a stronger effect in the Image Analysis task. Worry may impair attention, 

working memory, and executive control of multi-tasking (Matthews & Campbell, 2010; Mat-

thews et al., 2013; Zeidner, 2010), and in turn, impair operator performance in the UAV context. 

The association between worry and performance became weaker after task exposure. Accuracy 

in the Image Analysis task remained significantly correlated with worry under high task demand. 

High post-task distress correlated with poorer performance on both tasks in terms of ac-

curacy and neglect. These associations were much stronger under high task demand. Distress re-

sponse is primarily driven by subjective workload. High task demand manipulation can produce 

large amounts of workload. Similar negative associations between distress and performance were 

also seen in previous vigilance studies (Matthews, Hancock, & Desmond, 2012; Shaw et al., 

2010), and on a dual-tasking working memory task (Matthews & Campbell, 2010). Attention 

Control Theory (ACT) argues that anxiety may interfere with executive control, and specifically 

the inhibition of task-irrelevant stimuli (Eysenck & Derakshan, 2011). Distress was also found to 

be associated with poor inhibition of task-irrelevant stimuli (Matthews & Zeidner, 2012). Thus, 

while distress may produce some general impairment in focused attention, its further association 

with impaired executive control may be especially damaging to performance in multi-tasking en-

vironments such as ALOA, where strategic deployment of attention across the different task win-

dows is critical. 

Post-task engagement was found to be positively associated with task performance in 

terms of neglect, but higher engagement was unrelated to accuracy. Task engagement is typically 

associated with superior executive control and reflects effort committed to achieving task goals, 
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as well as higher overall resource availability (Matthews & Zeidner, 2012; Matthews et al., 

2002). Higher engagement is also associated with performance in some applied settings, such as 

superior vehicle control in a moderately fatiguing simulated driving context (Funke et al., 2007). 

In the present data, remarkably, the association between task engagement and performance dif-

fers from the typical association in vigilance tasks. The task engagement-performance correlation 

is typically around 0.3 (Matthews et al., 2013), whereas no significant correlation was found be-

tween task engagement and task accuracy in both ISR tasks. This suggested that UAV operations 

may require different information processing mechanisms to vigilance. Overall resource availa-

bility may not be critical for ISR accuracy, although resource shortfalls may become more im-

portant when operators are fatigued and lose task engagement. Task engagement effects may 

have reflected motivation rather than resource availability. Under high task demands, it is diffi-

cult to maintain attention to all the various subtasks. Consistent with Hockey’s (1997) theory that 

fatigue lowers task goals, low-engagement participants may reduce effort and neglect more ISR 

missions, while high-engagement participants may be better able to maintain effort and have less 

neglect. The present study did not assess stress process such as appraisal and coping, but previ-

ous studies suggest that appraising the task as challenging is critical for maintaining task engage-

ment (Matthews et al., 2013; Saxby et al., 2013), and the high engagement operators here may 

have appraised maintaining high performance on all task elements as a motivating challenge. 

Personality and Performance 

Generally, there was no association between personality and task accuracy. Previous re-

search (e.g., Finomore, Matthews, Shaw, & Warm, 2009) has found that correlations between at-

tentional tasks and major personality factors such as the Big Five tend to be rather task-specific 

and relatively small in magnitude. The configurations of ALOA used here may not be conducive 
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to demonstrating personality effects, although personality might be more predictive of accuracy 

under other circumstances. 

Some correlations between personality and reliance on automation and neglect were 

found on both surveillance tasks. Specifically, extraversion was predictive of less reliance on au-

tomation in the Weapon Release task, especially under high task demand. Agreeableness and 

conscientiousness were also related to less reliance on automation in the Weapon Release task 

under high task demand. Because Weapon Release is more demanding than Image Analysis, 

these findings suggest that personality becomes increasingly predictive of reliance as demands 

increase. In addition, conscientiousness was negatively associated with reliance on automation in 

the Image Analysis task, especially under high task demand. These correlations between person-

ality traits and reliance on automation were contrary to Szalma and Taylor’s findings (2011), 

which identified no significant correlations between these personality traits and agreement with 

automation. Again, personality-performance associations may be somewhat task-specific. Be-

cause these associations depended on task demands, further discussion is reserved for the section 

on task moderator effects below. 

Personality and Stress State 

Neuroticism was predictive of less positive subjective states in advance of task perfor-

mance. All the other four traits (extraversion, agreeableness, conscientiousness, and openness) 

were associated with less distress before the tasks. This trend was consistent but generally weak-

ened after task exposure. These findings were consistent with the general trend in previous stud-

ies (Matthews, Joyner, Gilliland, et al., 1999; Matthews, Warm, Shaw, et al., 2010; Matthews et 

al., 2006; Shaw et al., 2010), for personality-stress correlations to attenuate over time, suggesting 

that personality may influence anticipation of stress more strongly than the actual experience of 
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the task.  Neurotic individuals tend to experience negative affective states such as anxiety, anger, 

and sadness due to perceived uncertainty of the task or to a tendency to appraise tasks as more 

threatening (Matthews et al., 2009). Therefore, they are more vulnerable to stress. In addition, 

individuals high in neuroticism may have more negative anticipation prior to the mission. On the 

contrary, other traits may promote a more pleasant mood, higher confidence, and lower tension, 

due to various biases in appraisal and coping (Matthews et al., 2013). 

Gender 

Similar to the previous findings of negative state (higher distress) and poorer perfor-

mance in women in a simulated driving study (Matthews, Joyner, & Newman, 1999), some gen-

der differences were found in stress response, and task performance in UAV operation. Initially, 

women were less engaged than men, but this effect attenuated toward the end of the task. Also, 

women reported greater distress after task exposure. In terms of task performance, women were 

less accurate in the more demanding Weapon Release task. No gender difference in reliance on 

automation was found on both tasks.  

No gender difference was noticed in daily hours of using computers. However, women 

reported significantly less general computer expertise and gaming experience, including exper-

tise and time spent on playing different kinds of video games, consistent with the trend of more 

gaming experience in men reported in previous surveys (Terlecki et al., 2011). All the gender 

differences in stress response and task performance became nonsignificant after gaming experi-

ence was controlled in the multiple regression models. This finding suggested that gender differ-

ences in stress response and performance may be side effects of the greater interest in gaming ex-

hibited by men. Although men may have some high aptitudes in traditional military piloting, 
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such as spatial processing (Carretta, 1997; Halpern, 2013), this may not generalize to UAV oper-

ations. The demands on spatial attention of the ISR tasks may differ from those of conventional 

flying. ALOA has a spatial component in that attention must be focused and refocused across 

multiple screen windows. However, there is little spatial uncertainty involved, and hence little 

need for visual search across the display for critical signals. The two primary surveillance tasks 

are demanding because of the similarity of the target and nontarget stimuli, not because of any 

difficulty in localizing stimuli in space.  Video gaming may contribute to acquiring relevant 

skills, but gender does not seem to be, once gaming experience is controlled. 

Task Demand as a Moderator 

Associations between individual factors and performance during unmanned vehicle oper-

ations may vary in different task configurations (Szalma & Taylor, 2011). In the operational con-

text, the operator’s ability to deal with increases in task demand and overload may be critical for 

mission success, so moderator analyses here focused on the task demand manipulation. Task de-

mand was found to moderate the impact of personality on stress response and task performance, 

as anticipated.  

Individuals high in conscientiousness were more engaged under high task demand. Such 

an advantage was not observed when task demand was low. Also, high conscientiousness indi-

viduals tended to rely less on automation and show less neglect of ISR tasks under high task de-

mand, whereas conscientiousness did not influence reliance behavior or neglect under low task 

demand. By successfully performing moderately challenging tasks, conscientious individuals 

may demonstrate self-efficacy and thrive in the tasks (Szalma & Taylor, 2011). High conscien-

tiousness individuals may tend to take charge of controlling the task personally, instead of rely-

ing on automation, especially when the task is demanding and stressful. Such a strategy of taking 
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control personally may lead to the observed high task engagement, low reliance on automation, 

and less neglect under high task demand. The elevation of task engagement experienced by more 

conscientious operators might confer both greater resource availability and stronger task motiva-

tion. However, motivation may be more important than resources for the observed impacts of 

conscientiousness, given the lack of association between task engagement and accuracy of task 

performance. 

A moderator effect of task demands was also found for agreeableness and neglect in the 

Weapon Release task. High agreeableness individuals tended to have less neglect of tasks under 

high task demand, but more neglect of tasks under low task demand. As an interpersonal trait, 

agreeableness includes the propensity to trust others. To the extent that trust generalizes to auto-

mated systems, agreeable individuals may be less likely to misuse or disuse the automation. 

Also, agreeableness was found to correlate with less avoidant coping (Matthews & Campbell, 

1998), which may discourage neglect in demanding conditions. High agreeableness individuals 

appeared to be more resistant to overload in challenging tasks. Again, motivational effects may 

be the predominant factor for less neglect in high task demand condition. In this case, motiva-

tions may be social in nature, such as complying with the experimenter’s instructions, rather than 

linked to individual achievement as may be the case for conscientiousness.  

Trust in Automation 

Analyses of subjective trust confirmed no perceived difference in reliability between the 

two surveillance tasks, corresponding to the lack of objective difference. It is argued that trust is 

a mediator between reliability of automation and reliance on automation (Lee & See, 2004; Lee 

& Moray, 1992; Parasuraman & Wickens, 2008). Higher reliability of automation should induce 
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greater trust, and in turn, elicit greater reliance on automation. Hence, it was expected that sub-

ject trust should correlate with reliance on automation. However, no significant correlation was 

found between subjective trust and reliance on automation or other performance metrics. In addi-

tion, there were no correlations between subjective trust and personality traits. Although agreea-

bleness as an interpersonal trait is characterized by a propensity to trust others, it did not predict 

trust in automation, which was consistent with a previous simulated UGV study (Szalma & Tay-

lor, 2011). By contrast, trust in the Weapon Release task automation was positively correlated 

with general video game expertise, and trust in the Image Analysis task was positively correlated 

with weekly hours in playing other action video games. But these associations were not con-

sistent among other gaming experience factors. The mostly nonsignificant findings on the possi-

ble correlates of subjective trust suggested that subject trust does not necessarily directly affect 

the reliance behavior or operator performance. Personality traits may not play a critical role in 

sensitivity to the trustworthiness of the automation, but exposure to video games or other possi-

ble systems with automated components may have an impact on trust on automation. Video gam-

ers may have some acquired insight into trust in computer systems. Generally, though, subjective 

trust does not seem to guide behavioral reliance. One possibility is that with an unfamiliar sys-

tem, participants do not attend to their own subjective trust in making reliance decisions. Also, 

given that the time-pressured nature of the task gives little opportunity for reflecting on the be-

havior or the automation, “trust” in this context may be an unconscious process. Subjective trust 

may be a more meaningful metric in contexts where operators are familiar with the automation, 

but current findings suggest that researchers should be cautious about using subjective trust 

measures in laboratory studies of automated systems.  
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Limitations and Future Work 

Firstly, the LOAs selected in this study were two intermediate levels in Parasuraman’s 

10-level LOA model (2000). These two selected LOAs did not make a profound difference in the 

impact of workload and stress response, although there was an effect on reliance, as anticipated. 

Higher LOA should be instrumental in reducing operator workload (Miller & Parasuraman, 

2007), but no workload reduction was observed here. Future research may employ a wider range 

of LOAs and also test performance without automation support to investigate the impact of 

LOAs. However, human factors research may be most important with configurations such as the 

present one where both the automation and the human are fallible and optimization of reliance is 

critical.  

Additionally, the reliability of the automation may influence operator’s reliance behavior. 

Also, a previous study indicated that automation reliability may moderate the effect of personal-

ity traits, such as conscientiousness and openness, on operator performance and stress response 

in a simulated UGV task (Szalma & Taylor, 2011). Future research may utilize automation with 

different reliabilities to test its impact in UAV context, at intermediate LOAs.  

Secondly, it was thought that the low task demand manipulation might induce passive fa-

tigue in the form of large-magnitude declines in task engagement, as seen in automated vehicle 

driving studies (Saxby et al., 2013), and plausibly also during real-world monotonous UAV mis-

sions (Cummings et al., 2013). The one-hour duration of the task is sufficient to cause strong fa-

tigue symptoms in vigilance studies (e.g., Shaw et al., 2010), but the loss of engagement in the 

low task demand condition here was minor. Possibly, the game-like task components in the UAV 

simulation helped to keep the participants engaged in the task and maintain their attention. Task 

duration was also considerably shorter than the missions often undertaken by operators. Future 
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research may need to extend the mission durations and lower the task load to induce passive fa-

tigue on operators.  

Thirdly, participants in this study were of course much less trained than actual UAV op-

erators. Adequate training may enable the operators to become more resistant to stress, although 

it might also reduce the sense of challenge which may have helped to sustain task engagement in 

the naïve student participants here. Future work should consider using more extensive compre-

hensive practice to ensure high levels of competence. 

Finally, college students were recruited as participants in this study. The sample of col-

lege students may not represent the population of real military UAV operators, although USAF 

seeks to recruit from this potential pool of applicants. Thus, findings from this study may need to 

be confirmed by utilizing a sample of military personnel. Due to the limitation of the participant 

pool, more women were recruited than men in the study. The gaming experience was also not 

balanced with respect to gender. Future studies may balance the gender and gaming experience 

to disentangle the individual differences in these factors. Future research may also consider in-

cluding psychophysiology measures, such as EEG, ERP, CBFV and eye tracking metrics, as of 

fatigue and trust in UAV operations. Psychophysiological assessments may be particularly useful 

if linked to reliance on automation, given that subjective trust measures were not predictive of 

reliance and individual differences may reflect unconscious processes. 
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PRACTICAL IMPLICATIONS 

The demand for automated UAV support has been growing at an unprecedented rate in 

the military (Schanz, 2010). Although it can help to reduce physical threats to the aircraft (Ger-

tler, 2012), augment surveillance and combat capabilities (Chappelle et al., 2010), and bring 

plenty of other benefits, there still remains some human factors issues. First, single operator con-

trol of multiple UAVs is anticipated to be a particularly time-critical, cognitively demanding 

multi-task work environment (Calhoun et al., 2011; Guznov et al., 2011). In response, develop-

ments are underway to extensively automate UAV functions with the goal of enhancing the oper-

ator’s ability to manage task demands. However, rather than attempting to automate everything, 

and leave functions that cannot be reliably automated to the human, automation should be de-

signed to support continual human engagement and maintained situation awareness (Eggers & 

Draper, 2006). Second, the current training pipeline for UAV operators cannot meet the growing 

demand (Paullin, Ingerick, Trippe, & Wasko, 2011). The growing demand may require extend-

ing the current recruitment population and improving current training effectiveness. Third, UAV 

operations involve considerable task demand variation which may be stressful and fatiguing. In 

control of multiple UAVs, the cost of task interruption and task switching may be particularly 

critical (Eggers & Draper, 2006). Therefore, it is important to monitor fatigue for testing fitness 

for duty prior to the task and checking capacity for continuing duty during a mission. 

Design of Automated Systems 

It is a significant priority for the USAF to effectively apply automation to future systems 

(Dahm, 2010). There remains a critical need for human involvement to facilitate successful UAV 

missions, especially in ISR missions which are often time critical and involve complex target, 

friendly, and non-combatant identification and discrimination (Eggers & Draper, 2006). Future 
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missions may require one operator to control multiple UAVs. This study implies that an interme-

diate level of automation may be adequate for supporting operator performance of the task with-

out excessive stress or fatigue. Performance deteriorated in the higher demand condition, but not 

catastrophically so, but additional operator supporter under high workload may be needed. 

An Intermediate Level of Automation Can Aid Operator Performance 

Performance on the ISR tasks was fairly good at both LOAs, with accuracy levels rang-

ing from 75.7% - 80.9%. Higher accuracy would be required in an operational setting, but per-

formance was adequate for a naïve sample given limited training. Performance data suggested 

that although LOA did not affect task accuracy directly, it had impacts on reliance on automation 

and neglect. Management-by-exception, the higher LOA, induced greater reliance on automation 

and more neglect in the surveillance tasks. Previously, variation in neglect was attributed to mo-

tivational factors, and the higher LOA may have had a demotivating effect on participants. Alter-

natively, the increased neglect may have resulted in a loss of situation awareness (Kaber & Ends-

ley, 2004). The greater reliance on automation may indicate a misuse of automation, such as 

complacency issues. High reliability of the automation may contribute to the maintenance of task 

accuracy with increased neglect in the tasks. Neglect would be a concern in the operational envi-

ronment because the automation cannot function until the operator initiates the mission. Manage-

ment-by-consent may be the preferable intermediate LOA for aiding operator performance as 

well as helping to maintain situation awareness.  

Demanding Tasks Need More Automation Aid 

Generally, the more demanding task (Weapon Release authorization task) showed lower 

accuracy, less reliance on automation, and more neglect. Additionally, the Weapon Release task 
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was particularly vulnerable to high task demand, in which condition it showed the lowest accu-

racy, least reliance on automation, and most neglect. Therefore, demanding tasks may call for 

more automation aid to optimize the performance. However, the tendency found here for increas-

ing task demand to lower reliance on automation tends to negate the benefits of automation when 

it is most needed. As previously discussed, this effect may reflect the tendency of the operator to 

take charge personally when the task is perceived as maximally training. Also, the automation 

should be highly reliable. High reliability can enable the system to achieve the task goal, and if 

reliability is high enough operators may be more willing to trust the automation under the most 

demanding conditions.  

Adaptive LOA May Mitigate Operator Fatigue 

Diagnostic monitoring of operator state, discussed below, may support adaptive automa-

tion that allows the automation to compensate for performance vulnerabilities associated with ex-

cessive workload, stress, and fatigue (Kaber & Endsley, 2004). One form of compensation is to 

adjust the LOA upwards or downwards, depending on the specific vulnerability. 

UAV operations usually feature considerable task demand variation. Decreased task en-

gagement in the low task demand condition and increased distress in the high task demand con-

dition were observed in this simulated UAV study. Decreased task engagement may be an indi-

cator of the beginning of a passive fatigue state, although the effect was small in magnitude. 

Continuous monitoring of the operator’s state using psychophysiological sensors might be able 

to detect the onset of both overload/distress and loss of task engagement. Adaptive automation 

helps to enhance human-machine interaction and is necessary for effective performance and fault 

management in complex systems (Parasuraman, Mouloua, & Hilburn, 1999; Moray, Inagaki, & 
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Itoh, 2000). Typically, increased distress is primarily driven by excessive task demands. Auto-

mation that responds to signs of distress by elevating LOA may help to alleviate perceived 

workload and avoid excessive stress. However, the present results suggest that a switch from 

management-by-consent to management-by-exception may not be sufficient to mitigate distress 

and workload. A better approach might be to switch some task components to full automation so 

that the human operator can focus intensively on tasks beyond the capability of automated sys-

tems.  

Conversely, passive fatigue might be countered by shifting to a lower LOA that enables 

the operator to gain more manual control of the system, and in turn, to reengage to the mission. 

Therefore, adaptive LOA may be beneficial to mitigate operator fatigue and optimize operator 

performance. As fatigue was minor in this study, it does not support detailed recommendations, 

but further research could explore whether management-by-consent is a low enough LOA to 

maintain task engagement, or whether the operator might need to take full control of some task 

components. 

Personnel Selection and Training 

The USAF has increasing needs for UAV operators. Currently, the majority of the UAV 

operators are recruited from officers with little flying experience who have completed a UAV 

training course (Paullin et al., 2011). This study may have some implications for extending the 

recruitment population and for designing more effective training methods. 

Personnel Selection 

No gender differences in task performance or stress response were found when gaming 

experience was controlled. In other words, although traditionally military pilots are mostly male, 
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women did not show any basic disadvantage relative to men in this study. The USAF might thus 

make greater efforts to recruit female operators.  

Even though gender did not play a vital role in task performance and stress response in 

UAV operation, men reported more experience and expertise in video gaming, and are more 

likely to self-identify as serious gamers (Terlecki et al., 2011). The role of gaming experience in 

the prediction of performance and stress response has some implications for selection of UAV 

operator. Experienced video gamers seemed to have better performance (greater accuracy and 

less neglect) and be less stress-prone in UAV operations (higher task engagement, lower distress, 

and worry). These advantages suggest that video gamers may have high level of specialized apti-

tudes, such as sensory, perceptual, and attentional abilities, for success in UAV operations. Di-

recting recruitment towards gamers may thus be an effective strategy. 

Given manpower shortages and increasing needs for UAV operators, recruitment of oper-

ators needs to be expanded from traditional groups to some new populations, such as women and 

video gamers. By contrast, personality data did not show any general performance deficits linked 

to the Big Five traits, which may limit their utility in selection. In terms of subjective outcomes, 

the association between neuroticism and post-task distress might suggest that, as in other poten-

tially stressful work contexts (Matthews et al., 2009), highly neurotic individuals may not well 

be suited to UAV operation. Similarly, the high task engagement of conscientious individuals 

under high task demands suggests a possible benefit to recruiting these persons; high conscien-

tiousness is beneficial to a variety of aspects of work behavior (Matthews et al., 2009). 

Personnel Training 

 Understanding how the various individual difference factors relate to specific perfor-

mance vulnerabilities may help to design personalized training directed towards the individual’s 
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weaknesses. For example, although video gamers showed better task performance in terms of ac-

curacy and neglect, they seemed to place more trust in the automation in demanding tasks. Train-

ing may emphasize detrimental effects of misuse of automation to avoid over-reliance and com-

placency issues. 

Based on the correlational analysis of personality and performance, extraversion, agreea-

bleness, and conscientiousness predicted less reliance on automation in demanding tasks, espe-

cially under high task demand. Particularly, individuals high in conscientiousness seemed to be 

more engaged but were more reluctant to use automation aids in high task demand conditions. 

The negative association trend between conscientiousness and task accuracy in high task demand 

conditions suggested that managing the tasks manually under some circumstances may result in 

poor performance. An appropriate level of trust in the automation should be established and 

maintained in UAV operations (Lee & See, 2004).Therefore, training on how to calibrate trust to 

match the capabilities of the system is critical. Training operators to calibrate trust and use auto-

mation appropriately in demanding and stressful tasks is especially needed. Conscientious opera-

tors may need to learn to trust the automation under high demands, contrary to their inclination 

to take charge personally. 

Additionally, individuals high in neuroticism seemed to have more negative anticipations 

prior to the mission and were more vulnerable to distress. Adequate training and practice prior to 

the real mission may help to eliminate negative expectancies and build confidence in personal 

proficiency.  

Diagnostic Monitoring 

As reported in surveys of UAV operators, fatigue overlaps with stress, which is complex 

and multifaceted (Ouma et al., 2011). Usually, fatigue and stress both may impair the capability 
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of performing UAV missions. Diagnostic fatigue monitoring is vital for testing fitness for duty 

prior to the task and checking capacity for continuing of duty during a mission. Although some 

psychophysiological measures may be more applicable for real-time monitoring than subjective 

scales, this study using subjective measures provide a theoretical basis for future efforts at diag-

nostic monitoring. 

Fitness for Duty 

 During protracted military operations, UAV operators may carry an increasing burden of 

stress and fatigue, especially when sleep must be curtailed. Fitness of duty testing may be per-

formed to determine if the operator is ready to begin a work shift, or if they should rest. The sub-

jective stress correlates of performance in this study suggest some strategies for assessment of 

fitness for duty. 

Task engagement reflects effort committed to achieving task goals and a state of readi-

ness for resource mobilization in task performance (Matthews et al., 2002; Matthews, Warm, 

Reinerman-Jones, et al., 2010).  Distress is expected to be detrimental to the individual’s atten-

tion, working memory, and multi-tasking (Matthews & Campbell, 2010). From the perspective 

of resource theory, task engagement represents the availability of a general attentional resource. 

Both task engagement and distress predict vigilance decrement (Shaw et al., 2010; Matthews et 

al., 2013). Findings of this study also support that the states of task engagement and distress are 

related to performance competence in the simulated UAV operations, especially when task de-

mand is high. The stress response in training tasks such as the present simulated UAV operation 

may be diagnostic for the fitness for duty in real UAV missions.  

Task engagement was correlated with superior performance on both surveillance tasks in 

terms of less neglect. The finding is consistent with the previous literature of task engagement 
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predicting demanding task performance requiring attentional resources. For instance, high task 

engagement was predictive for superior control of the vehicle in a simulated driving study 

(Funke et al., 2007). Previously, the association between task engagement and lower neglect was 

attributed to motivational processes, but in more fatiguing task conditions, task engagement may 

be more generally predictive of attentional efficiency. Task engagement was found to be corre-

lated with perceptual sensitivity and predict vigilance in multiple studies (Matthews, Davies, & 

Holley, 1990; Matthews et al., 1999; Langheim et al., 2007; Helton, Matthews, & Warm, 2009). 

Psychophysiological evidence also shows correlations between the state of task engagement, 

task-focused coping and right-hemisphere cerebral blood flow velocity (CBFV) measured by 

transcranial Doppler sonography (TCD) in predicting vigilance decrement in a vigilance task 

(Reinerman et al., 2006). In terms of coping processes, task engagement is most reliably associ-

ated with task-focused coping and less use of avoidance (Matthews et al., 2013). CBFV and EEG 

indices such as increased slow wave activity may be able to detect loss of task engagement (Mat-

thews, Warm, Reinerman-Jones, et al., 2010), and so could be used to determine fitness for duty. 

 Distress was negatively correlated with performance on both surveillance tasks in terms 

of lower accuracy and more neglect. Usually, distress is primarily driven by workload on com-

plex tasks (Matthews et al., 2013). Similar negative associations between distress and perfor-

mance were also seen in previous vigilance studies (Matthews et al., 2012; Shaw et al., 2010). 

By contrast with task engagement predicting task performance requiring attentional resources, 

Matthews and Campbell (2010) found that distress was more predictive of the performance im-

pairment on tasks requiring fewer demands on sustaining attention. Findings of associations be-

tween distress and poor inhibition of task-irrelevant stimuli (Matthews & Zeidner, 2012) support 

the suggestion that distress may interfere with executive control. In addition, distress is reliably 
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associated with the use of emotion-focused coping in terms of coping strategy (Matthews et al., 

2013). While stress is typically linked to autonomic arousal, further research is necessary to de-

termine psychophysiological correlates of these psychological aspects of distress, which could 

then be used to determine if the operator was too distressed to perform effectively. 

Ideally, subjective states of task engagement and distress could be employed as indices of 

fitness for duty. Task engagement may predict operator’s attentional resource availability, an 

effort committed to achieving task goals, and use of positive coping strategies. Distress may re-

flect operator’s vulnerability to workload in stressful tasks, and interference with executive con-

trol. However, operators may be motivated to conceal stress and fatigue in the real setting, limit-

ing the ability of organizations to utilize the subjective states of task engagement and distress in 

training or simulated missions as an element of personnel fitness for duty checking procedures. 

Psychophysiological correlates of these states might serve instead to identify unfit operators, but 

further research is necessary to implement such a strategy. 

Continuing Duty 

UAV operations often feature long shift durations (Chappelle et al., 2011). Such pro-

longed UAV missions may deplete the pool of attentional resources due to operator stress and 

fatigue. Temporal performance decrement accompanied by increased subjective fatigue has been 

observed in previous studies (Harris, Hancock, & Harris, 2005; Lieberman et al., 2006). Moni-

toring changes in task engagement and distress – or rather their psychophysiological equivalents 

– may be diagnostic of harmful stress and fatigue states, and therefore, be helpful for diagnostic 

monitoring for fitness for continuing operator duties. 

Prolonged UAV operations involve considerable workload variation, such as long periods 

of low workload and intense activities for brief periods (Cummings et al., 2007, 2013). Such 
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workload variation may induce active or passive fatigue which are both detrimental to operator 

performance. Active fatigue is typically characterized by increased distress, whereas passive fa-

tigue usually links to a loss of task engagement (Saxby et al., 2013; Matthews et al., 2013). 

Large-magnitude declines, typically greater than 1 standard deviation, in task engagement are of-

ten seen in passive fatigue manipulations (Saxby et al., 2008, 2013). Empirically, high workload 

can elevate distress easily. Increases in distress, sometimes exceeding 1 standard deviation, are 

commonly observed in high workload tasks (Matthews et al., 2013). However, instead of being 

driven directly by workload, the personal interpretations of workload and the coping strategies 

the person adopts may be more critical factors for driving distress. 

According to the Compensatory Control Model (CCM; Hockey, 1997), active fatigue due 

to the stressor of high workload may produce “strain”, which may encourage operators to com-

pensate for the impact of stress by increasing effort. Passive fatigue may be more detrimental to 

operator performance due to the loss of attentional resources (Warm et al., 2008) or strategic re-

duction in the allocation of effort (Hockey, 1997), such as less task-focused coping and lowering 

of performance goals. The onset of passive fatigue signaled by significantly increased distress 

may imply a possible deterioration of continuous duty before an actual performance decrement.  

In sum, monitoring the state changes during missions may help to detect operator fatigue 

allowing for intervention prior to the actual performance decrement. Intervention might take the 

form of adaptive automation, as previously described, or actually pulling the operator from the 

work shift. However, measurement of subjective state changes during operations may be difficult 

and have other limitations, such as operators’ motivations to conceal stress. Psychophysiological 

indices, such as eye movement and cerebral blood flow velocity, may be tested in for their capac-

ity to detect fatigue state and predict performance.  
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CONCLUSION 

Operators were able to manage multiple UAVs and accomplish the simulated mission 

with the aid of automation at a fairly good though imperfect level of competence, even under 

high task demands. Although there were individual differences in stress response, reliance on au-

tomation, and task performance, this present work demonstrated the feasibility of a single opera-

tor managing multiple UAVs using different LOAs under different task demands. Future re-

search and development on how to improve dynamic interfaces in UAV operation and optimize 

operator reliance on automation must be driven by a deeper understanding of how individuals in-

teract with automated systems and task demand, as well as the nature of the workload operators 

experience during the task. In addition, the findings may provide implications for future person-

nel selection, such as recruitment of UAV operators from nontraditional populations including 

video gamers and women, and for training operators to optimize reliance and performance based 

on individual differences in personality. The findings also provide a means for diagnosis of read-

iness for duty and monitoring operator fatigue for interventions, although implementation may 

require a better understanding of physiological correlates of stress states. 
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APPENDIX A: DEMOGRAPHICS QUESTIONNAIRE 
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Demographics Questionnaire 

Gender ______      Age ______ Major ___________________ 

1. Do you have normal/corrected vision? 

YES         NO 

2. Are you in your usual state of health physically? 

YES         NO 

3. If NO, please briefly explain: 

____________________________________ 

4. How many hours of sleep did you get last night?  

______ hours 

5. Have you had any caffeine in the last 12 hours? 

YES         NO 

6. What is your occupation? 

____________________________________ 

7. What is the highest level of education you have had? 

Less than 4 yrs of college     Completed 4 yrs of college     Other 

8. When did you use computers in your education? (Circle all that apply) 

Grade School           Jr. High        High School 

Technical School     College         Did Not Use 

9. Where do you currently use a computer? (Circle all that apply) 

Home     Work     Library     Other________     Do Not Use 

10. How many hours per day do you use a computer?  

______ hours 

11. Which of the following best describes your expertise with computers?  

Novice     Average     Proficient     Expert 
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12. Estimate the average number of hours per week you have spent playing all video games 

within the past two years (e.g., PlayStation, Xbox, computer games) 
 

0-1 2-4 5-7 8-10 11-13 14-16 17-19 20+ 

        

13. Estimate your level of expertise playing video games, in general 

  (0 = no expertise, 1=novice, 3 = intermediate, 6 = expert) 

0 1 2 3 4 5 6 

       

14. Estimate average number of hours per week you have spent playing ‘First Person 

Shooter’ video games within the past two years (e.g., Call of Duty) 

0-1 2-4 5-7 8-10 11-13 14-16 17-19 20+ 

        
 

15. Estimate your level of expertise in playing First Person Shooter games 

  (0 = no expertise, 1=novice, 3 = intermediate, 6 = expert) 

0 1 2 3 4 5 6 

       

16. Which First Person Shooter game have you played the most? (You may enter ‘None’) 

____________________________________ 

17. Estimate average number of hours per week you have spent playing other action video 

games within the past two years (i.e, not First Person Shooter - e.g., Grand Theft Auto) 

0-1 2-4 5-7 8-10 11-13 14-16 17-19 20+ 

        
 

18. Estimate your level of expertise in playing other action video games 

  (0 = no expertise, 1=novice, 3 = intermediate, 6 = expert) 

0 1 2 3 4 5 6 

       

19. Which action video game have you played the most? (You may enter ‘None’) 

____________________________________ 
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APPENDIX B: 40 MINI-MARKER PERSONALITY SCALE 
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40 Mini-Marker Personality Scale 

Please use this list of common human traits to describe yourself as accurately as possible. 

Describe yourself as you see yourself at the present time, not as you wish to be in the future. De-

scribe yourself as you are generally or typically, as compared with other persons you know of the 

same sex and of roughly your same age. Before each trait, please write a number indicating how 

accurately that trait describes you, using the following rating scale: 

1 2 3 4 5 6 7 8 9 

Extremely Very Moderately Slightly Neither Inaccurate Slightly Moderately Very Extremely 

Inaccurate Inaccurate Inaccurate Inaccurate Nor Accurate Accurate Accurate Accurate Accurate 

 

 Bashful   Energetic   Moody   Systematic 

 Bold   Envious   Organized   Talkative 

 Careless   Extraverted   Philosophical   Tempermental 

 Cold   Fretful   Practical   Touchy 

 Complex   Harsh   Quiet   Uncreative 

 Cooperative   Imaginative   Relaxed   Unenvious 

 Creative   Inefficient   Rude   Unintellectual 

 Deep   Intellectual   Shy   Unsympathetic 

 Disorganized   Jealous   Sloppy   Warm 

 Efficient   Kind   Sympathetic   Withdrawn 
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APPENDIX C: COMPLACENCY POTENTIAL RATING SCALE 
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Complacency Potential Rating Scale 

For each statement, circle an answer from 0 to 4, so as to indicate how accurately it describes your 

feelings AT THE MOMENT. 

 

Extremely disagree = 0, Somewhat disagree = 1, 

Neither disagree nor agree = 2, Somewhat agree = 3, Extremely agree = 4 

 

1. I think automated medical devices like CT and MRI scans provide very reliable images for 

doctors to interpret. 

0 1 2 3 4 

2. Automated devices used in medicine save time and money in the diagnosis and treatment of 

disease. 

0 1 2 3 4 

3. If I need to have a tumor in my body removed, I would choose to undergo computer-aided 

surgery using laser technology because it is more reliable and safer than manual surgery. 

0 1 2 3 4 

4. Automated devices used in modern aircraft, such as the automatic landing system, have 

made air journeys safer. 

0 1 2 3 4 

5. ATMs provide a safeguard against the inappropriate use of an individual’s bank account by 

dishonest people. 

0 1 2 3 4 
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6. Automated devices used in aviation and banking have made work easier for both employees 

and customers. 

0 1 2 3 4 

7. Even though the automatic cruise control in my car is set at a speed below the speed limit, I 

worry when I pass a police radar speed trap in case the automatic control is not working 

properly. 

0 1 2 3 4 

8. Manually sorting through card catalogues is more reliable than computer-aided searches for 

finding items in a library. 

0 1 2 3 4 

9. I would rather purchase an item using a computer than have to deal with a sales representa-

tive on the phone because my order is more likely to be correct using the computer. 

0 1 2 3 4 

10. Bank transactions have become safer with the introduction of computer technology for the 

transfer of funds. 

0 1 2 3 4 

11. I feel safer depositing my money at an ATM than with a human teller. 

0 1 2 3 4 
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APPENDIX D: DSSQ — 3 STATE QUESTIONNAIRE 
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DSSQ — 3 State Questionnaire 

Pre-Task Questionnaire 

Instructions. This questionnaire is concerned with your feelings and thoughts at the moment. 

Please answer every question, even if you find it difficult. Answer, as honestly as you can, what is true of 

you. Please do not choose a reply just because it seems like the 'right thing to say'. Your answers will be 

kept entirely confidential. Also, be sure to answer according to how you feel AT THE MOMENT. Don't 

just put down how you usually feel. You should try and work quite quickly: there is no need to think very 

hard about the answers. The first answer you think of is usually the best. 

Date today.....................                                Time of day now..................... 

For each statement, circle an answer from 0 to 4, so as to indicate how accurately it 

describes your feelings AT THE MOMENT. 

Definitely false = 0, Somewhat false = 1,  

Neither true nor false = 2, Somewhat true = 3, Definitely true  = 4  

 

1 I felt concerned about the impression I am making.  0  1  2  3  4 

2 I felt relaxed.  0  1  2  3  4 

3 The content of the task was dull.  0  1  2  3  4 

4 I thought about how other people might judge my performance  0  1  2  3  4 

5 I was determined to succeed on the task.  0  1  2  3  4 

6 I felt tense.  0  1  2  3  4 

7 I was worried about what other people think of me.  0  1  2  3  4 

8 I thought about how I would felt if I were told how I performed  0  1  2  3  4 

9 Generally, I felt in control of things.  0  1  2  3  4 

10 I reflected about myself.  0  1  2  3  4 

11 My attention was directed towards the task.  0  1  2  3  4 

12 I thought deeply about myself.  0  1  2  3  4 

13 I felt energetic.  0  1  2  3  4 

14 I thought about things that happened to me in the past  0  1  2  3  4 

15 I thought about how other people might perform on this task.  0  1  2  3  4 

16 I thought about something that happened earlier today.  0  1  2  3  4 

17 I found the task was too difficult for me.  0  1  2  3  4 

18 I found it hard to keep my concentration on the task.  0  1  2  3  4 

19 I thought about personal concerns and interests.   0  1  2  3  4 

20 I felt confident about my performance.  0  1  2  3  4 

21 I examined my motives.  0  1  2  3  4 

22 I felt like I could handle any difficulties I encountered  0  1  2  3  4 

23 I thought about how I have dealt with similar tasks in the past  0  1  2  3  4 

24 I reflected on my reasons for doing the task  0  1  2  3  4 

25 I was motivated to try hard at the task.  0  1  2  3  4 

26 I thought about things important to me.  0  1  2  3  4 

27 I felt uneasy.  0  1  2  3  4 

28 I felt tired.  0  1  2  3  4 

29 I felt that I could not deal with the situation effectively.  0  1  2  3  4 

30 I felt bored.  0  1  2  3  4 
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POST-Task Questionnaire 

Instructions. This questionnaire is concerned with your feelings and thoughts while you were 

performing the task. Please answer every question, even if you find it difficult. Answer, as honestly as 

you can, what is true of you. Please do not choose a reply just because it seems like the 'right thing to 

say'. Your answers will be kept entirely confidential. Also, be sure to answer according to how you felt 

WHILE PERFORMING THE TASK. Don't just put down how you usually feel. You should try and 

work quite quickly: there is no need to think very hard about the answers. The first answer you think of is 

usually the best. 

Date today.....................                                Time of day now..................... 
For each statement, circle an answer from 0 to 4, so as to indicate how accurately it describes 

your feelings WHILE PERFORMING THE TASK.  

Definitely false = 0, Somewhat false = 1,  

Neither true nor false = 2, Somewhat true = 3, Definitely true  = 4  

 

1 I felt concerned about the impression I am making.  0  1  2  3  4 

2 I felt relaxed.  0  1  2  3  4 

3 The content of the task was dull.  0  1  2  3  4 

4 I thought about how other people might judge my performance  0  1  2  3  4 

5 I was determined to succeed on the task.  0  1  2  3  4 

6 I felt tense.  0  1  2  3  4 

7 I was worried about what other people think of me.  0  1  2  3  4 

8 I thought about how I would felt if I were told how I performed  0  1  2  3  4 

9 Generally, I felt in control of things.  0  1  2  3  4 

10 I reflected about myself.  0  1  2  3  4 

11 My attention was directed towards the task.  0  1  2  3  4 

12 I thought deeply about myself.  0  1  2  3  4 

13 I felt energetic.  0  1  2  3  4 

14 I thought about things that happened to me in the past  0  1  2  3  4 

15 I thought about how other people might perform on this task.  0  1  2  3  4 

16 I thought about something that happened earlier today.  0  1  2  3  4 

17 I found the task was too difficult for me.  0  1  2  3  4 

18 I found it hard to keep my concentration on the task.  0  1  2  3  4 

19 I thought about personal concerns and interests.   0  1  2  3  4 

20 I felt confident about my performance.  0  1  2  3  4 

21 I examined my motives.  0  1  2  3  4 

22 I felt like I could handle any difficulties I encountered  0  1  2  3  4 

23 I thought about how I have dealt with similar tasks in the past  0  1  2  3  4 

24 I reflected on my reasons for doing the task  0  1  2  3  4 

25 I was motivated to try hard at the task.  0  1  2  3  4 

26 I thought about things important to me.  0  1  2  3  4 

27 I felt uneasy.  0  1  2  3  4 

28 I felt tired.  0  1  2  3  4 

29 I felt that I could not deal with the situation effectively.  0  1  2  3  4 

30 I felt bored.  0  1  2  3  4 
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APPENDIX E: METRICS FOR TRUST IN AUTOMATION 
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Metrics For Trust In Automation 

1 
Completion of all tasks 
was: 

Very 

Difficult 
Difficult 

Moderately 

Easy 
Easy Very Easy 

2 
The interfaces to complete 
the tasks were:   

Unac-

ceptable 
Bad Satisfactory Good Optimum 

3 
To what extent was using 
the interfaces frustrating?   

Not At All A Little Sometimes Frequently 
All the 

Time 

4 
My performance (all tasks) 
was: 

Very Low  Low  Average  High  Very High  

5 
To what extent did you trust 
the automation? 

No Trust Low Trust Some Trust High Trust 
Very High 

Trust 

6 Rate your level of workload. Bored 
Somewhat 

Busy 
Busy Very Busy Overloaded 

7 
To what extent was the 
training & instructions ad-
equate?   

Not At All Somewhat No Opinion Pretty Much Completely 

8 
To what extent is the Router 
competent in suggesting 
routes? 

Not At All A Little Sometimes Frequently 
All the 

Time 

9 
To what extent can the 
Router’s routes be pre-
dicted? 

Not At All A Little Sometimes Frequently 
All the 

Time 

10 
To what extent can you rely 
on the Router to plan the 
routes? 

Not At All A Little Sometimes Frequently 
All the 

Time 

11 
To what extent is the Router 
consistent in planning the 
routes? 

Not At All A Little Sometimes Frequently 
All the 

Time 

12 
To what extent are you confi-
dent in the Router’s perfor-
mance? 

Not At All A Little Sometimes Frequently 
All the 

Time 

13 
To what extent is the Auto-
mation competent Counting 
Shapes? 

Not At All A Little Sometimes Frequently 
All the 

Time 

14 
To what extent is Automation 
predictable in Counting 
Shapes? 

Not At All A Little Sometimes Frequently 
All the 

Time 

15 
To what extent can you rely 
on Automation in Counting 
Shapes? 

Not At All A Little Sometimes Frequently 
All the 

Time 

16 
To what extent is the Auto-
mation consistent in Count-
ing Shapes? 

Not At All A Little Sometimes Frequently 
All the 

Time 

17 

To what extent are you confi-
dent in the Automation’s per-
formance Counting 
Shapes?   

Not At All A Little Sometimes Frequently 
All the 

Time 
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18 
To what extent is the Auto-
mation competent Detecting 
Targets? 

Not At All A Little Sometimes Frequently 
All the 

Time 

19 
To what extent is Automation 
predictable in Detecting 
Targets? 

Not At All A Little Sometimes Frequently 
All the 

Time 

20 
To what extent can you rely 
on Automation in Detecting 
Targets? 

Not At All A Little Sometimes Frequently 
All the 

Time 

21 
To what extent is the Auto-
mation consistent in Detect-
ing Targets? 

Not At All A Little Sometimes Frequently 
All the 

Time 

22 

To what extent are you confi-
dent in the Automation’s per-
formance Detecting Tar-
gets?   

Not At All A Little Sometimes Frequently 
All the 

Time 
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APPENDIX F: HUMAN-COMPUTER TRUST SCALE 
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Human-Computer Trust Scale 

For each statement, circle an answer from 0 to 4, so as to indicate how accurately it de-

scribes your feelings.  

CONSIDER ONLY THE TRIAL YOU JUST COMPLETED! 

Extremely disagree = 0, Somewhat disagree = 1, 

Neither disagree nor agree = 2, Somewhat agree = 3, Extremely agree = 4 

1. The automation responds the same way under the same conditions at different times. 

 0 1 2 3 4 

2. If I am not sure about a decision, I have faith that the automation will provide the best solu-

tion. 

 0 1 2 3 4 

3. The advice the automation produces is as good as that which a highly competent person 

could produce 

 0 1 2 3 4 

4. I understand how the automation will assist me with a decision I have to make.  

 0 1 2 3 4 

5. I can rely on the automation to function properly.  

 0 1 2 3 4 

6. I believe advice from the automation even when I don’t know for certain that it is correct. 

 0 1 2 3 4 

7. I like using the automation for decision making. 

 0 1 2 3 4 

8. Although I may not know exactly how the automation works, I know how to use it to make 

decisions. 

 0 1 2 3 4 

9. Overall, I trust the automation. 

 0 1 2 3 4 
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INSTRUCTIONS: TLX RATINGS 

We are interested in evaluating the experiences you had during the task. In the most 

general sense, we are examining the “workload” you experienced. The factors that influence 

workload may come from the task itself, your feelings about your own performance, how much 

effort you put in, or the stress and frustration you felt. The workload contributed by different task 

elements may change as you get more familiar with a task, perform easier or harder versions of 

it, or move from one task to another. 

The following set of six rating scales was developed for you to use in evaluating your 

experiences during different tasks. Please read the descriptions of the scales carefully. If you 

have a question about any of the scales in the table, please ask the experimenter about it. It is 

extremely important that they be clear to you. You may keep the descriptions with you for 

reference during the experiment. 

After performing the task, you will be presented with six rating scales. You are asked to 

evaluate the task by marking each scale at the point which matches your experience. Each line 

has two endpoint descriptors that describe the scale. You can place a cross on the line anywhere 

between the two endpoints. Note that “Performance” goes from “good” on the left to “bad” on 

the right. This order has been confusing for some people. 

Please consider your responses carefully in distinguishing among different task con-

ditions and consider each scale individually. 
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RATING SCALE DEFINITIONS 

Title Endpoints Descriptions 

MENTAL 
DEMAND 

Low/High 

 

How much mental and perceptual activity was 
required (e.g., thinking, deciding, calculating, 
remembering, looking, searching, etc.)?  Was the 
task easy or demanding, simple or complex, exacting 
or forgiving? 

 

PHYSICAL  
DEMAND 

Low/High 

 
How much physical activity was required (e.g., 
pushing, pulling, turning, controlling, activating, etc.)?  
Was the task easy or demanding, slow or brisk, slack 
or strenuous, restful or laborious? 
 

TEMPORAL  
DEMAND 

Low/High 

 
How much time pressure did you feel due to the rate 
or pace at which the tasks or task elements 
occurred?  Was the pace slow and leisurely or rapid 
and frantic? 
 

PERFORMANCE Good/Poor 

 
How successful do you think you were in 
accomplishing the goals of the task set by the 
experimenter (or yourself)?  How satisfied were you 
with your performance in accomplishing these goals? 
 

EFFORT Low/High 

 
How hard did you have to work (mentally and 
physically) to accomplish your level of performance? 
 

FRUSTRATION  Low/High 

 
How insecure, discouraged, irritated, stressed and 
annoyed versus secure, gratified, content, relaxed 
and complacent did you feel during the task? 
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High Low  

High Low  

High Low  

Poor Good 

High Low  

High Low  

MENTAL DEMAND  

PHYSICAL DEMAND  

TEMPORAL DEMAND  

PERFORMANCE  

EFFORT 

FRUSTRATION  
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University of Central Florida Institutional Review Board 

Office of Research & Commercialization 

12201 Research Parkway, Suite 501 

Orlando, Florida 32826-3246 

Telephone: 407-823-2901 or 407-882-2276 

www.research.ucf.edu/compliance/irb.html 

 

Approval of Human Research 
 

From: UCF Institutional Review Board #1 

FWA00000351, IRB00001138 

 
To: Gerald Matthews and Co-PIs: Lauren Reinerman, Rebecca Leis, Ryan Wohleber 

 
Date: April 01, 2015 

 
Dear Researcher: 

On 4/1/2015, the IRB approved the following human participant research until 03/31/2016 inclusive: 

Type of Review: IRB Continuing Review Application Form 

Expedited Review 

Project Title: Sustaining Performance in Simulation UAV Operation: Pilot 

Study 

Investigator: Gerald Matthews 

IRB Number: SBE-13-09562 

Funding Agency: AFOSR, University of Cincinnati 

Grant Title: 

Research ID: 1055976 

 
The scientific merit of the research was considered during the IRB review. The Continuing Review Applica-

tion must be submitted 30 days prior to the expiration date for studies that were previously expedited, and 60 

days prior to the expiration date for research that was previously reviewed at a convened meeting. Do not 

make changes to the study (i.e., protocol, methodology, consent form, personnel, site, etc.) before obtaining 

IRB approval. A Modification Form cannot be used to extend the approval period of a study. All forms may 

be completed and submitted online at https://iris.research.ucf.edu. 
 

If continuing review approval is not granted before the expiration date of 03/31/2016, approval of this re-

search expires on that date. When you have completed your research, please submit a Study Closure request 

in iRIS so that IRB records will be accurate. 

 

Use of the approved, stamped consent document(s) is required. The new form supersedes all previous ver-

sions, which are now invalid for further use. Only approved investigators (or other approved key study per-

sonnel) may solicit consent for research participation. Participants or their representatives must receive a 

copy of the consent form(s). 

 

All data, including signed consent forms if applicable, must be retained and secured per protocol for a minimum 

of five years (six if HIPAA applies) past the completion of this research. Any links to the identification of partic-

ipants should be maintained and secured per protocol. Additional requirements may be imposed by your funding 
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agency, your department, or other entities. Access to data is limited to authorized individuals listed as key study 

personnel. 

 

In the conduct of this research, you are responsible to follow the requirements of the Investigator Manual. 

 

On behalf of Sophia Dziegielewski, Ph.D., L.C.S.W., UCF IRB Chair, this letter is signed by: 

 

 

 
Signature applied by Joanne Muratori on 04/03/2015 05:08:47 PM EDT 

IRB manager 
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