
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2004 

Depth From Defocused Motion Depth From Defocused Motion 

Zarina Myles 
University of Central Florida 

 Part of the Computer Sciences Commons, and the Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Myles, Zarina, "Depth From Defocused Motion" (2004). Electronic Theses and Dissertations, 2004-2019. 
145. 
https://stars.library.ucf.edu/etd/145 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/145?utm_source=stars.library.ucf.edu%2Fetd%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


DEPTH FROM DEFOCUSED MOTION

by

ZARINA MYLES
B.Sc. Madras University, Madras 1977

M.Sc. Mathematics Madras University, Madras 1980
M.Tech. Computer Science Indian Institute of Technology N. Delhi 1984

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2004

Major Professor:
Niels da Vitoria Lobo



c© 2004 ZARINA MYLES



ABSTRACT

Motion in depth and/or zooming causes defocus blur. This work presents a solution to the

problem of using defocus blur and optical flow information to compute depth at points that

defocus when they move.

We first formulate a novel algorithm which recovers defocus blur and affine parameters si-

multaneously. Next we formulate a novel relationship (the blur-depth relationship) between

defocus blur, relative object depth and three parameters based on camera motion and in-

trinsic camera parameters.

We can handle the situation where a single image has points which have defocused, got

sharper or are focally unperturbed. Moreover, our formulation is valid regardless of whether

the defocus is due to the image plane being in front of or behind the point of sharp focus.

The blur-depth relationship requires a sequence of at least three images taken with the camera

moving either towards or away from the object. It can be used to obtain an initial estimate of

relative depth using one of several non-linear methods. We demonstrate a solution based on

the Extended Kalman filter in which the measurement equation is the blur-depth relationship.

The estimate of relative depth is then used to compute an initial estimate of camera motion

parameters. In order to refine depth values, the values of relative depth and camera motion

are then input into a second Extended Kalman Filter in which the measurement equations
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are the discrete motion equations. This set of cascaded Kalman filters can be employed

iteratively over a longer sequence of images in order to further refine depth.

We conduct several experiments on real scenery in order to demonstrate the range of object

shapes that the algorithm can handle. We show that fairly good estimates of depth can be

obtained with just three images.
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CHAPTER 1

INTRODUCTION

A machine vision system analyzes images and produces descriptions of what is imaged. These

descriptions must capture the aspects of the objects being imaged that are useful in carrying

out some task. Several tasks require the user to form a 3-D model of the object being imaged.

Alternately, a depth map can be obtained. This gives the depth corresponding to each point

imaged and is occasionally referred to as a 2.5-D model.

Several techniques have been employed to extract depth information from an image or a

sequence of images. These have included extracting information from the variation in shading

in a smooth object as well as the analysis of the deformation of texture of a uniformly textured

object. Others include the analysis of the displacement of points in the two images of a stereo

pair. Another technique is based on the following idea: when an object gets out of focus,

the level of defocus blur gives a cue to the depth of the corresponding object point.

Yet other techniques involve the extraction of useful information from time-varying images.

Brightness patterns in the image move as the objects that give rise to them move. Image flow

is the apparent motion of the brightness pattern. Image flow is often referred to as optical

flow when the motion of image points is assumed to be infinitesimal. Hereafter, the terms

image flow and optical flow will be used interchangeably. This flow depends both upon the

camera and/or object motion as well as the object shape. Hence image flow (2-D motion) has

been employed to extract both 3-D camera motion as well as depth. However, translation
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and depth can be recovered only up to a scale factor. This can be inferred from the fact that

a small translation of a small object close by would give rise to the same sequence of images

as a large translation of a magnified version of the same object further away. Image flow is

also observed when the zoom feature of the camera is employed and there is neither camera

nor object motion.

There are limitations to each technique listed above and the problem of recovering depth has

not been robustly solved. In particular, depth-from defocus and depth-from-motion/zooming

address complementary issues. When there is substantial image flow caused by motion or

zooming, the real or virtual motion along the optical axis causes the image to get out of

focus. The corresponding blur has traditionally been treated as noise. On the other side of

the coin, traditional depth from defocus techniques have not taken into consideration the

effects of image scaling and/or distortion when the blurring is due to a change in focal length

or a change in the distance from the lens to the image plane.

This thesis solves the problem of using defocus and motion information to compute depth at

points that defocus when they move. This provides a shape from defocus method for moving

points, a capability that previously did not exist. Traditional techniques to compute shape

(depth) from motion/zooming can be enhanced because previously unavailable estimates of

depth, are now available from the defocus information. We term this Depth from Defocused

Motion.
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The computation proceeds along the following main steps. It simultaneously recovers the

level of defocus blur as well as the image flow in a sequence of images.

The level of blur is then used to obtain an initial estimate of depth and the camera param-

eters. Those are then used in an iterative technique employing the Extended Kalman Filter

to recover both the depth of the imaged object as well as 3-D motion of the camera. The

main stages of the depth from defocused motion algorithm are listed below:

1. With the camera parameters (focal length f , aperture size D and zoom) being fixed,

obtain a set of 3 or more images with the camera positioned as shown in Figure 1.

2. Obtain blur and image flow information between an image and its two successive images

as shown in Chapter 3.

3. Compute an initial approximation for the relative depth Z for all points in the image

as shown in Chapter 4.

4. Given relative depth, compute an initial estimate of camera motion parameters by

solving the motion equations.

5. With these initial values of relative depth and camera motion, use the Extended

Kalman filter to refine the relative depth and 3-D motion parameters as elaborated

in Chapter 5.

6. Refine depth values by repeating the steps 2-5 for a larger sequence of images.
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The rest of this thesis is organized as follows. Chapter 2 provides an overview of background

work, Chapter 3 derives a novel algorithm to obtain optical flow and defocus blur simulta-

neously. This formulation is validated by conducting experiments on both artificial as well

as real images. Chapter 4 derives a novel relationship between defocus blur/sharpening and

relative depth as well as fixed camera-related parameters. This relationship is used in a

Kalman Filter in order to obtain an initial estimate of depth. Chapter 5 shows how this

estimate of depth can be refined by incorporating the optical flow values and initial estimates

of depth within a second Kalman filter. Chapter 6 summarizes up this work and enumerates

the major strengths and weaknesses of this research.

T Z(1,3)

T Z(1,2) T Z(2,3)
object

TZ(a,b) : component of translation along optical axis as

camera moves from position a to position b

Position 2 Position 3Position 1

Figure 1.1: Positions of Camera for Three Different Images of the Same Object
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CHAPTER 2

LITERATURE REVIEW

Substantial work has been done in the fields of depth-from-defocus, depth-from-zooming, and

depth-from-motion. Most techniques which compute depth from motion first require the

image flow (optical flow) information to be obtained. The next four sections (Sections 2.1

through 2.4) list some of the seminal works in these four areas.

Finally, inspired by our pioneering work to compute affine transformation and defocus blur

simultaneously [28], researchers have pursued this new approach to the recovery of depth

cues. The fifth section (Section 2.5) describes some of the work in this area.

2.1 Depth from Zooming

Depth from zooming corresponds to the situation in which both the scene as well as the

camera are stationary and optical flow is induced by zooming. Zooming is similar to a

translation of the camera along the optical axis and induces optical flow in images along

radial lines emanating from the optical center of the image (i.e., the point where the optical

axis pierces the image plane).

Advantages over binocular systems include the fact that it doesn’t suffer from the occlusion

problem and that accurate knowledge of stereo geometry is not required.
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2.1.1 Thin Lens Model

Ma and Olsen [23] have developed an algorithm based on the thin lens model. They first

derive a gradient-based model, which assumes an infinitesimal change in focal length and the

induced image displacement. The depth Z of an object is given by

Z =
f 2rt

frt − rft

where

f = the focal length

rt = the rate of change of the radial distance of an image point

ft = the rate of change of the focal length

In order to compute rt they derived the zooming-image-flow equation which is an enrichment

to Horn’s “constant brightness equation”.

The computation of the flow field rt is strongly affected if the irradiance function is not

smooth (eg. if the scene surface is sharply textured or if the images are noisy). Moreover,

small errors in the computation of flow field yield large errors in depth. Hence, the above

model, based on instantaneous changes in focal length and image radial distance is inherently

unstable.

They then derived a feature-based scheme where the model was derived assuming discrete

changes in focal length and the induced image motion. The model assumes two images taken

by a camera with two distinct focal lengths f1 and f2. Here the depth Z is given by

Z = f2
V

V − αr
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where

r = radial position of a point in the f1 image

V = image displacement magnitude

α = f2−f1

f1

The above equation is further modified such that lines in the images are matched instead of

points.

The algorithms above make the assumptions that there is a priori knowledge of the optical

center (the point where the optical axis cuts the image plane) as well as the two focal lengths.

It also assumes that the optical center does not move during zooming, although that has

been proved [20] to be an inaccurate assumption. It requires that the camera is precalibrated

and that there are known matches between image frames.

Moreover, they do not account for deformation due to zooming although in reality a pixel in

the first image would expand into a region within the second (zoomed in) image. Perhaps

their greatest weakness is that they assume a thin lens model which is not appropriate for

the set of lenses in a zoom camera. The validity of their model has been demonstrated only

on synthetic images only.

2.1.2 Thin Lens Model Handling Image Deformations

Mobasseri and Doraiswamy [26] address the problem of deformations of points and lines

caused by zooming by applying shape correspondence across focal lengths. The thin lens

model is employed. Object depths are described in terms of the ratio of feature translation
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on the image plane in response to changes in focal length. The algorithm then searches for

the focus of expansion (FOE) as well as the above ratio iteratively by studying the intensity

in corresponding patches of both images. In their experiment they looked for the FOE in

a 15×15 pixel uncertainty region. However, the underlying thin lens model is one of the

reasons for the suboptimal quality of their results.

2.1.3 Thick Lens Model

Lavast et al [20, 7, 19] address some of the limitations of the above paper and provide

solutions which are progressively more flexible and accurate. In their work, they use the

thick lens model, thus more accurately modeling the optical phenomena occurring during a

focal change.

[20] requires high zoom-lens quality but this restriction is lifted in [7]. [19] further extends

the work by using correlation techniques to handle deformation (expansion/contraction) of

image features. However, all their work requires a calibration step which involves the imaging

of high-precision grids with the help of a micrometric table and precise optical control and

assumes a simple model of image deformation. Results were shown on real images of a cube

and a pebble.

The computation of depth from zoom is more reliable when there are large flow vectors.

However, these make feature matching more difficult. Also, the large variation in focal
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length causes defocusing in the image, which has not been addressed in the depth-from-

zoom algorithms above.

2.2 Depth from Defocus

It has been noted that for any camera setting there is a limited depth of field within which

an object has to lie in order to be in perfect focus. As an object moves beyond that range it

gets in increasingly poorer focus. Hence the level of defocus is a cue for depth. This fact has

been exploited in many algorithms in order to obtain depth-from-defocus(DFD). In order to

be able to model blur one needs to know something about the point spread function (PSF)

i.e., the function which describes the blurred image of a point source of light. A blurred

image is thus considered to be the result of a convolution of the sharp image with the point

spread function. Like depth-from-stereo, DFD is easily implemented in parallel, but unlike

stereo, the problems of correspondence can be avoided.

An alternate approach for computing depth using focus information is referred to as depth-

from-focus. In this approach, the space of physical parameters of a camera is searched to

find a set of camera parameter values which focuses the object. The object distance is then

determined based on the values of the camera parameters. The search usually requires a large

number of images acquired at different camera parameter settings. Below are enumerated

different techniques for obtaining depth from defocus.
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2.2.1 Single Image

Earlier work has explored the possibility for obtaining depth using only one image. However,

the corresponding algorithms assumed strong texture in the scene and required that all edges

be step edges. Thus there was no need to distinguish between “soft” and blurred edges.

Pentland [32] approximated the PSF by a two-dimensional Gaussian and assumed dense

texture, all consisting of step edges. He then developed an algorithm to find the level of blur

in vertical edges. Lai et al [18] extended this algorithm to handle edges in any orientation.

With increasing levels of blur the results became more unreliable, indicating the limit of the

Gaussian blur model. Subbarao [38] extended the approach by allowing the PSF to be any

rotationally symmetric function, which is a reasonable assumption when the camera aperture

and lens are circular. He derived a relationship between the distance of an object and the

second central moment (variance) of the PSF. He then outlined a technique for obtaining the

line spread function and gave a closed form solution for computing depth from the spread

parameter.

The methods above are restricted to isolated step edges. The presence of other edges nearby

(within a distance of about twice the spread parameter) would affect the depth estimation.

One technique to ensure step edges at convenient distances has been to impose a known

texture on the scene; another has been to allow for any texture and to use more than one

image to measure the difference in texture amongst them.
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2.2.2 Two Images

Pentland [32] [33] [34] proposed a depth-from-defocus algorithm using two images. He shows

how the difference in localized Fourier power between two images at corresponding image

locations is a monotonic increasing function of the difference of blur. By using Parseval’s

theorem he describes a simple implementation based only on local convolutions. He obtains

quick and reliable but coarse estimates of range and suggests that they can be used for initial

target acquisition or obtaining the initial course estimates for stereo disparity in a coarse-to-

fine stereo algorithm. The algorithm is designed to handle two images, one of them taken by

a pinhole aperture to ensure perfect focus everywhere. However, a small aperture increases

diffraction effects, thus distorting the acquired image and necessitating an increase in the

exposure period, which therefore slows down the system.

Subbarao and Wei [39] compute the first few coefficients of the 1-D Fourier transform of

an image and use them to compute depth. Working in the 1-D Fourier domain makes the

method more robust to noise, besides being computationally economical. They quote an

RMS error of 4% at 0.6 meter distance and this changed linearly to about 30% RMS error

at 5 meters.

The methods above, based on inverse filtering, have certain limitations. It is difficult to

accurately estimate the frequency spectra of local regions. As depth changes throughout

the scene, it is desirable for the regions to be as small as possible, yet accurate spectral

analysis benefits from larger local areas. Also, windowing introduces artifacts (spurious high
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frequency components generated by the discontinuity at the window boundary) which can

cause large errors if not addressed. Also, methods which depend upon studying a preselected

frequency band may cause a very large error if there is not enough energy of the image content

within the frequency band.

Xiong and Shafer [48] propose an elegant way to cope with this problem. A moment filter

set is introduced to compensate for the frequency distribution within the pass-band of each

of the narrow-band filters. This translates to five times as many convolutions as needed in

a typical filter bank, which renders their approach computationally more expensive.

Subbarao and Surya [40] developed a spatial domain convolution/deconvolution transform,

which they call the S-transform. The image is modeled with a third order polynomial and a

simple and elegant equation is derived as follows:

i2(x, y)− i1(x, y) =
1

4
(σ2

2 − σ2
1)∇2

(
i2(x, y) + i1(x, y)

2

)

Here i1 and i2 are the two images and the blur circle radii can be expressed in terms of the

second central moments σ2 and σ1 respectively. This method produces accurate averaged

depth estimates for a large planar object although it does not yield depth maps with high

spatial resolution.

Ens and Lawrence [9] proposed a method based on a spatial domain analysis of two blurred

images. It estimates the convolution matrix which is convolved with one of the images

to produce the second. They demonstrated their algorithm on a slanted planar scene and
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computed the depth map where a single depth value is computed using a 64×64 window. It

produces accurate depth maps, but the iterative nature of the convolution matrix estimation

makes it computationally expensive.

Mudenagudi and Choudhury [27] introduce a depth-from-defocused stereo technique which

fuses two depth cues to obtain a superior depth map. Depth estimates from defocus are

traditionally not as accurate as those obtained from a stereo pair of images. On the other

hand stereo has to address the correspondence problem and traditionally produces a sparse

depth map. Their method uses two pairs of images. The same camera parameters are

applied for a pair of left and right images. Their technique requires the camera parameters

to be known. They first compute the relative defocus blur in either the left pair of images

or the right pair of images. This value is then input into their model which relates it to the

disparity between a pair of left and right images. This two-step process yields a dense depth

map without the need for an separate feature matching step.

2.2.3 Active Rangers

One of the inherent weaknesses of the DFD algorithms listed above is that it requires that

the scene have high frequency texture. A texture-less surface appears the same focused or

defocused and the resulting images do not contain the information necessary for depth com-

putation. This problem has been addressed by active rangers which project dense structure

on the scene. Pentland [34] developed an active range camera consisting of a structured
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light source (implemented by a slide projector) and a sensor (video camera) to measure the

defocus of the structured light. Once again, he obtains quick but coarse depth maps.

Nayar et al. [30] refine the above approach by determining an illumination pattern which

optimizes both the accuracy as well as the robustness of depth measurements. The implemen-

tation yields good results in real-time but it requires a very precise hardware configuration.

Firstly, the camera is made telecentric by attaching an additional aperture at the front focal

plane of the camera. This ensures constant image size and avoids the correspondence-like

problem which occurs when defocus is caused by anything other than a change in aperture

size. Also, the illumination pattern is fabricated using micro-lithography and incorporated

into the sensor. This pattern is incorporated into the scene via the same optical path used to

image the scene. Errors due to lens distortions are not present since the light rays which are

projected out through the imaging optics are subjected to similar geometric distortions as

rays reflected back to the sensors. Lastly, light rays passing through the lens are split in two

directions using a beam-splitting prism. This produces two images that are simultaneously

detected using two cameras. Cross-polarized filters can be attached to the illumination and

imaging lens to filter out specularities.

2.3 Image Flow

Image flow refers to the study of 2-D motion of points on the image plane as a result of 3-D

motion in space. Research in the field of image flow has spawned many algorithms in the
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past few decades. It is often referred to as optical flow when the motion of image points is

assumed to be infinitesimal.

Algorithms to compute image flow differ in the image flow motion model employed and in

the technique used.

2.3.1 Image Flow Motion Models

These can be characterized as local, global or quasi-parametric models.

• Local Motion Model: These schemes were implemented by most earlier algorithms.

They assume a uniform translational motion, use simple filtering schemes and small

filter support. This assumption breaks down at depth discontinuities and at the center

of expansion/contraction.

• Global Motion Model: As the support of the filters was increased the motion within

it became more complicated. The model needed to take into consideration the diver-

gence, curl, deformation and translation caused by the perspective projection of fast

moving objects. This motivated a global motion scheme whereby the flow-field was

parameterized by a small number of unknown variables. Examples of global motion

models include affine and quadratic flow fields. Global methods are most useful when

the scene has a particularly simple form, eg. when the scene is planar.
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• Constrained (quasi-parametric) Motion Models: fall between local and global meth-

ods. Typically, these use a combination of global ego-motion parameters with local

shape(depth) parameters. Examples of this approach include the direct methods which

compute depth and 3-D motion from the normal component of image velocity and

bypass the computation of optical flow.

2.3.2 Solution Techniques

Techniques to compute image flow can be roughly characterized as belonging to one of the

following categories: differential methods, feature-based matching methods, region-based

matching methods, energy-based methods and phase-based methods.

• Differential Techniques: Differential techniques compute image velocity from spatio-

temporal derivatives of image intensity, or filtered versions of the image. These algo-

rithms employ the gradient constraint equation,

∇I(~r, t).~v + It(~r, t) = 0 (2.1)

which follows from the brightness constancy equation I(~r+ δ~r, t+ δt) = I(~r, t) where ~r

is an image point (x, y)T , I(~r, t) is the intensity of point ~r at time t, and ~v is the image

velocity. The latter assumption means that the intensity of an image point does not

vary over time. The gradient constraint equation yields an under-constrained system

and can only compute the component of image velocity along the normal to an edge

(vernier component). Various techniques have been proposed in order to introduce
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further constraints. These have included first and second order constraints, as well as

local and global methods of combining the local constraints. Since differentiation is an

ill-posed problem, the performance of differential methods is substantially improved

with both spatial and temporal smoothing which is either performed implicitly or

achieved in an explicit preprocessing step.

• Feature-based Matching Methods: These first select some features in the image frames

and then match these features and calculate the disparities between frames. The

issues here are what to match, how to select candidate matches, and how to determine

the goodness of a match. The main drawbacks of this approach are that they yield

velocity vectors at sparse points and that the problem of establishing correspondence

is potentially computationally explosive.

• Region-Based Matching Methods: These techniques avoid the instability of differential

methods by searching for a shift ~d which yields the best fit between image regions in

two images. This amounts to maximizing a similarity measure such as the normalized

cross-correlation (NCR) or minimizing a distance measure such as the sum-of-squared

difference (SSD), where

NCR(~d, x, y) =

∑n
j=−n

∑n
i=−n I1(x + i, y + j) I2(x + i+ dx, y + j + dy)∑n
j=−n

∑n
i=−n(I2(x+ i + dx, y + j + dy))2

SSD(~d, x, y)

=
n∑

j=−n

n∑

i=−n
W (i, j)[I1(x + i, y + j)− I2(x+ i + dx, y + j + dy)]

2
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where W denotes a 2-D window function, and ~d = [dx, dy]
t is usually restricted to a

small integer number of pixels.

• Energy-Based Methods: This refers to the study of the output energy of velocity-tuned

filters.

• Phase-Based Techniques: This refers to the study of phase behavior in band-pass filter

outputs. It refers to both Fourier transform-based techniques using phase information

as well as zero-crossing techniques.

2.3.3 Sample Approaches

Selected candidates of the different models and techniques described above are briefly de-

scribed below.

Horn and Schunk [16] combined the gradient constraint (Equation 2.1) with the constraint

that the velocity varies smoothly over the whole image. This does not handle motion dis-

continuities as the smoothness assumption is not then satisfied. Nagel [29] addressed this

by introducing the concept of oriented-smoothness, where smoothness is not imposed across

steep intensity gradients (edges) in an attempt to handle occlusion. His results are sparser

but more accurate.
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The methods above use a global smoothness constraint. A technique employing a local

smoothness constraint would yield results which are superior in both accuracy and reliability

besides being more computationally efficient.

Uras, Girosi, Verri and Torre [45] assume that the velocity is constant in a local spatial

and temporal neighborhood of a pixel. This produces good results for translational motion

but degrades rapidly with higher order geometric deformation such as rotation or dilation.

Lucas and Kanade [22] addressed this by offering a global motion model and parameterizing

the flow field in a small spatial neighborhood. Since the computation is local, the algorithm

is more efficient.

Barnard and Thompson [3] have a feature matching technique in which they use Moravec’s

interest operator (which produces a high measure at corner-like positions) to obtain candidate

image features for matching. An iterative technique is then employed to find possible matches

in a pair of images.

Weber and Malik [47] convolve the image sequence with a set of linear, separable, spatio-

temporal filters which consist of functions of the Gaussian and its derivatives. The brightness

constancy equation is then applied to each of the resulting images. Deficiencies in the

model due to stochastic errors (due to sensor noise) and systematic errors are identified and

addressed.

The brightness constancy assumption which has been made so far is violated when there is

illumination non-uniformity and shading, surface reflectance changes due to inter-reflection,
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the motion of the object, camera or light source, etc.. Negahdaripour and Yu [31] address

this shortcoming by allowing for a linear transformation of the brightness of an image point.

Liu, Hong, Herman and Chellapa [21] advocate a large filter support in order to alleviate

the aperture problem, smooth out noise, avoid aliasing and reduce the quantization and

truncation error of the filter. The image window sizes selected in their experiments were

as large as 21 x 21 and as many as 9 consecutive frames were required for the computa-

tion. They recognize the inadequacy of the simple translational model and introduce 3D

Hermite polynomial differential filters. These possess several advantages: the orthogonality

and Gaussian derivative properties of the filters insure numerical stability and the approach

is generalizable to any desired higher order derivatives. Confidence measures were identified

and a technique to integrate them was proposed.

Black [4] developed a robust algorithm to obtain the optical flow which accounts for mo-

tion discontinuities. Minimization is done for a non-convex objective composed of a data

conservation constraint, a spatial coherence constraint and a temporal continuity constraint.

A robust estimation framework was introduced and it handled the situation when any of

the above three assumptions was violated. The resulting algorithm uses a fixed amount of

computation per frame, incrementally improves the motion estimates over time and adapts

to scene changes.

Anandan [1] and Singh [35] use different coarse-to-fine SSD-based region matching strategies.

However they are computationally expensive and use a local model for optical flow. Hence
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they handle translational motion but degrade rapidly with motion which has a rotational or

dilational component.

Szeliski and Coughlan [41] introduce a constrained motion model which consists of an affine

patch-based feature tracker using splines. Both a two-frame as well as a multi-frame approach

are introduced. It is computationally more efficient than traditional correlation-based ap-

proaches since the bulk of the computation is done at sparsely placed spline-control vertices.

Heeger [46] introduced an energy-based method which employs a family of motion-sensitive

Gabor filters. A Gaussian pyramid scheme speeds up computation. The Gabor filters require

a large spatial extent which implies instability at motion boundaries. The approach involves

solving a non-linear system which is very sensitive to initial conditions. Fleet and Jepson [10]

employ a phase-based technique. This decomposes the input signal according to scale, speed

and orientation using a set of velocity-tuned filters. The optical flow is computed from the

outputs of these filters. It produces good results when applied to relatively simple image

sequences involving fairly small translation but it requires 46 3-D convolutions and 21 frames

per computation. Waxman, Wu and Bergholm [46] study the motion of edges using second

order derivatives of the edge map. All three techniques result in a bias in the component of

velocity estimates towards the filter tunings.

Tian and Shah [43] develop a technique based on the Markov random model to obtain optical

flow and motion segmentation from edge maps. Their technique can handle occlusion and

provides superior results even across motion boundaries.
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2.4 Depth from Motion

It has been observed that when a camera moves with respect to an object the corresponding

displacement of image points depends both upon the camera motion as well as upon the

shape of the object being imaged. Hence a study of the image displacement (optical flow)

has often been employed to recover both camera motion parameters as well as image shape

in the form of a depth map. If the image motion is considered as infinitesimal it is termed

as the 2-D instantaneous motion field or optical flow and if it is computed over discrete time

intervals it is referred to as a displacement map.

2.4.1 Motion Models: Instantaneous versus Displacement

Consider a camera-centered coordinate system in which the origin is the center of projection,

the Z-axis coincides with the optical axis and the image plane is located at Z = f , where f

is the focal length. Let an object point X, Y, Z be imaged at pixel location (x, y) and the

relative motion of the camera with respect to the scene be composed of a translational velocity

(Tx, Ty, Tz) and a rotational velocity (ωx, ωy, ωz). Techniques for computing egomotion can

be categorized either as instantaneous-time methods or as discrete-time methods depending

on whether input is image velocity (optical flow) or image displacement. The instantaneous

motion equations represent the optical flow (vx, vy)
T in terms of motion and depth as

vx =
−Txf + xTz

Z
+
ωxxy

f
− ωy(

x2

f
+ f) + ωzy

vy =
−Tyf + yTz

Z
+
ωyxy

f
− ωx(

y2

f
+ f)− ωzx (2.2)
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Alternately, the displacement motion equations represent discrete displacement (vx, vy)
T as

vx = f

(
r1x + r2y + r3f − Tx

Z
f

r7x+ r8y + r9f − Tz
Z
f

)
− x

vy = f


r4x + r5y + r6f − Ty

Z
f

r7x + r8y + r9f − Tz
Z
f


− y

where the rotation matrix R given by

R =




r1 r2 r3

r4 r5 r6

r7 r8 r9




=




cosωy cosωz − cosωy sinωz sinωy

sinωx sinωy cosωz + cosωx sinωz − sinωx sinωy sinωz + cosωx cosωz − sinωx cosωy

− cosωx sinωy cosωz + sinωx sinωz cosωx sinωy sinωz + sinωx cosωz cosωx cosωy




In the latter case the rotation R refers to a sequence of clockwise rotations about the axes

Z, Y and X in that order. There are two equations corresponding to every image point

and they have seven unknowns (Tx, Ty, Tz, ωx, ωy, ωz and Z). The addition of another

image point moving with the same 3-D motion would add two equations but increase the

number of unknowns by one, i.e., the depth Z of the new point. Not only are the equations

non-linear but the translations Tx, Ty and Tz are scaled by depth Z and hence both can only

be recovered up to a scale factor.

The real difference between instantaneous-time and discrete-time methods is that the in-

stantaneous formulation is an approximation that is valid only for short time steps. Since a

sequence of photographs are taken at discrete points in time, the displacement model is more

accurate. However, the instantaneous model has the attractive property that the rotational

and translational components can be separated.
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2.4.2 Feature-based versus Optical-Flow-based Solution

Techniques

The approaches used to solve the above problem can be classified according to whether

they are based upon features or optical flow. Feature-based methods first find corresponding

features between two images. Since the number of features obtained usually number in the

hundreds, the results from those systems yield very sparse shape results.

In an optical-flow-based technique, the motion of all pixels in an image is first computed.

There is a degree of uncertainty associated with these optical flow values and these un-

certainties are carried over to the subsequent motion and depth values. A feature-based

method can accumulate structural information for features because they are tracked across

many frames and hence the motion/depth information can be labeled as totally unreliable

(corresponding to those object points not tracked) or very reliable. However, due to the

uncertainty associated with optical flow based techniques, there is a spectrum of reliability

associated with the computed motion and depth values.

2.4.3 Representative Solution Techniques

Several techniques have been employed to obtain shape and camera motion from a sequence

of time-varying images. Below are outlined a handful of the more recent ones with special

emphasis to those which are similar to the technique employed in this research.
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Huang and Netraveli [17] present a review of techniques for determining motion and structure

of rigid bodies by knowing the locations of their corresponding features at different times or

when they are projected on two different cameras. Three major categories of problems are

considered:

• 3D to 3D: locations of corresponding features in 3D-space are known at 2 different

times;

• 2D to 3D: locations of features in 3D-space and their projection on the camera plane

are known;

• 2D to 2D: projections of features on the camera plane are known at two different times.

The features considered include points, lines, curves and corners. Since the problems are

essentially non-linear, appropriate formulation is extremely important in order to avoid dif-

ficulties in either the numerical computation of the solution or the determination of non-

uniqueness and multiple solutions. The paper identifies various problem formulations, effi-

cient algorithms for their solution, the existence and uniqueness of solutions and the sensi-

tivity of solutions to noise in the observed data.

Heeger and Jepson [14] show how the non-linear equation describing the optical flow field

can be split by an exact algebraic manipulation to form three sets of equations. The first

set relates the flow field to only the translational component of 3D motion. Thus, depth

and rotation need not be known or estimated prior to solving for translation. Once the
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translation has been recovered, the second set of equations can be used to solve for rotation.

Finally, depth can be estimated with the third set of equations. The algorithm is highly

parallel and does not require iteration or an initial estimate.

Tomasi and Kanade [44] develop a factorization method based on the orthographic projection

model. An image sequence is represented as a 2F × P measurement matrix W, which is

made up of the horizontal and vertical coordinates of P points tracked through F frames.

If image coordinates are measured with respect to their centroid, the measurement matrix

is of rank three. As a consequence it can be factored into the product of two matrices R

and S, which represent camera rotation and object shape (depth) respectively. The two

components of camera translation are computed as averages of the rows of the measurement

matrix. The method can also handle and obtain a full solution from a partially filled-in

measurement matrix that may result from occlusions or tracking failure. It employs many

points and frames, and for most sequences, a large amount of object rotation (usually 360o).

Szeliski and Sing Bing Kang [42] compute both shape and camera motion by performing

a batch analysis of image streams, the temporal tracks of distinguishable image features.

A least squares formulation allows for perspective or any arbitrary camera model, partial

and/or uncertain tracks and even to simultaneously use point and line correspondences.

The technique is simple, since a general purpose optimization technique, the Levenberg-

Marquardt method, is employed. This involves only an error computation and an error

propagation at each step.
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Points are tracked from frame to frame using a relatively simple algorithm based on the

monotonicity operator which computes the number of neighboring pixels whose intensity is

less than that of the central pixel. Computational costs are reduced by using a sparse matrix

technique. The algorithm converges to the correct solution (after typically 100 frames), even

with a poor initial estimate of the true shape (constant depth plane).

Broida and Chellapa [6] introduce the concept of the Extended Kalman filter to solve for both

motion and relative depth. A recursive procedure for parameter estimation is advantageous

over batch procedures for the following reasons:

• Much less computation is required for each new set of data;

• Optical flow values can be extrapolated ahead in time to aid in preprocessing the next

set of data;

• The authors claim that since both the plant and measurement equations are non-

linear, their linear approximation preferentially weights the computation towards the

more recent data. This ensures that minor deviations from the constant velocity model

are correctly tracked. On the other hand a batch method would have given the best

“straight line” (constant velocity) estimate for all the data.

Their algorithm assumes that the camera motion is smooth and hence it can be represented

by a Taylor’s series approximation. In addition, a set of point correspondences is assumed

to be available.
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An object-centered coordinate system is used. Rotation is represented by quarternions since

the differential equation describing its time-derivative is simpler than the one involving Euler

angles. The Kalman filter is initialized with the output of a batch algorithm run on the first

few frames.

The algorithm was successfully demonstrated on both synthetic and real data. However,

convergence of the algorithm depends upon good initial values for the parameters to be

determined. Further, the performance is very highly dependent upon the values selected

for the plant noise matrix. This was selected by trial and error for each experiment. Also,

the matrix inversion involved in the computation of Kalman gain is guaranteed to be well-

conditioned only if the measurement noise covariance is a sufficiently large multiple of the

identity matrix. This condition is not satisfied when there is no prior knowledge of the

motion and depth parameters.

Azarbayejani and Pentland [2] extended Broida and Chellapa’s algorithm to recover focal

length (as well as camera motion and object depth) from a set of point correspondences.

Representational changes allow for improved stability and accuracy. The unknown focal

length f is replaced by an unknown β = 1
f

that allows the model to handle both orthographic

(β = 0) as well as perspective projection. Moreover, an object-centered coordinate system

allows for each object point to be fully represented by a single parameter instead of three.

Xiong and Shafer [48] have developed a robust algorithm to compute camera motion param-

eters and depth from a dense optical flow field. They too use an Extended Kalman Filter
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(EKF) based technique which keeps track of the uncertainties associated with every value

computed. Traditional EKF techniques deal with N×N matrices where N is proportional to

the number of features tracked. In the case of dense optical flow measurements in a typical

image of size 640× 480, the value of N would be 307200.

However, the special properties of the specific problem are exploited in order to reduce the

computation to O(N).

A number of novel techniques were introduced. Key features are listed below:

• The uncertainty P of the state vector is decomposed into 4 manageable components

by making use of the fact that the uncertainty associated with the depth of N points

has a limited number of degrees of freedom.

• The Sherman-Morrison-Woodbury inversion formula is employed to reduce the problem

of inverting an N ×N matrix into one of inverting an m×m matrix where m� N .

• The dimension of the state uncertainty matrix is not allowed to increase over time.

This is ensured by taking a principle value decomposition of the matrix and using the

k (k fixed) largest principle values.

• Stability is improved by dynamically redefining the motion parameters so that they

are equally sensitive to state uncertainty.
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We employ the Xiong and Shafer ideas in the final step of this work. Further details are

covered in section 4.2.2.

The techniques listed above do not address the situation when motion is accompanied by

defocus blur. A small degree of blur is factored in as noise but large degrees of blur cause

the techniques to fail.

2.5 Recovery of Optical Flow and Defocus Blur

Inspired by our earlier work [28], the following list work that has been done to recover depth

cues when there is defocus blur in addition to optical flow, as in the case of defocused-motion

or defocused-zoom.

Zhang et al [49] [50] introduce a multi-step technique to compute affine motion and defocus

blur. They employ blur invariant moments defined by Flusser and Suk [11], [12] to normalize

an image to a standard form. Affine parameters are then computed on these normalized

images. The blur difference is then recovered by studying the difference between the second

image and the first image which has been artificially affine transformed with the recovered

parameters. They recommend the method for image restoration. However, experimental

results on real images were only shown for the case of planar objects.

Deschenes et al [8] have derived a homotopy based method to compute image displacement

and defocus blur simultaneously using a homotopy-based method. The unknowns are ex-

pressed in terms of partial derivatives of the two images in a non-linear relationship. They
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use the Levenburg-Marquardt method to solve the equations. Although their system of equa-

tions require a single scale as compared to [28], the complexity of computation is comparable.

Moreover, they model the point spread function (PSF) of defocus blur as a Gaussian, which

is not realistic for large degrees of blur. The experiments do not include real image pairs

with substantial defocus blur as well as affine transformation. Finally, the complete affine

transform is not recovered and hence the recovered parameters cannot be used for image

restoration.
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CHAPTER 3

COMPUTATION OF IMAGE FLOW AND DIFFERENCE IN

DEFOCUS BLUR

In this section, we compute affine parameters as well as blur simultaneously from a pair of

input images. We first introduce the theoretical model of blur and affine motion. Then we

propose an iterative solution method. We demonstrate the validity of our theory and the

proposed solution by reporting experimental results with real scenery. Note that in this work

we are not concerned with motion blur since the underlying model is that of a stop-and-shoot

sequence.

3.1 Theoretical Formulation

It has been shown[21] that in the case of negligible out-of-plane rotations and in the case of

planar patches, the optical flow can be expressed as an affine transformation A+ ~T given by

A + ~T =



a11 a12

a21 a22


+



Tx

Ty


 (3.1)

Our theoretical formulation has been developed to handle scenes consisting of large, planar

patches within which the affine transform model for optical flow is appropriate. Assume

we have two images I1 and I2 where the second image is obtained after a large camera

motion consisting of zooming in or out and rotation in the image plane. Even with improved

technology there is a mechanical limit to the speed with which a camera can refocus itself.
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Hence the large changes in depth cause the camera to get out of focus and it is appropriate

to include defocus blur in the model of transformation that describes the geometric changes

undergone between the two images. In the formulation below we develop a linear relationship

amongst the unknowns, namely the parameters of the affine transformation as well as the

change in the level of blur between the two images. The linear approximation is valid if

the unknowns take small values, and hence an iterative technique is developed to correctly

recover large unknown parameters.

For the sake of clarity in the development of the formulation we will first assume only a

four-parameter affine transformation A, where

A = I + B =




1 + b11 b12

b21 1 + b22




Here the matrix B is composed of small elements which indicate the difference of A from the

identity matrix. The formulation is then extended to the case of the general six-parameter

affine transform which includes image translation as well. In other words the optical flow

[u, v]T in that case can be expressed as



u

v


 =



b11 b12

b21 b22


~r +



Tx

Ty




where ~r = [x, y]T represents the underlying coordinate axes and ~T = [Tx, Ty]
T represents the

pure translation component of optical flow.
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3.1.1 Four-Parameter Affine Transformation

Let image Ia be an affinely transformed version of image I1 where the transformation can

be represented by the four-parameter matrix A. Since deforming an image is equivalent to

deforming the underlying coordinate axes, we can write

I1(~r) = Ia(A~r).

[24] has shown that convolution of the first image I1 with a Gaussian (G) is equivalent to

the convolution of the second image Ia with a Gaussian which has been deformed by the

same transformation A. That is,

I1(~r)⊗G(~r, σ2) = Ia(A~r)⊗G(A~r, σ2AAT )

where σ is any arbitrarily chosen value for standard deviation, ⊗ denotes convolution, the

ordinary Gaussian G(~r, σ2) is

G(~r, σ2) =
1

2πσ2
exp

(
− ~r2

2σ2

)

and the generalized Gaussian G(A~r, σ2AAT ) (i.e., the Gaussian deformed by an affine trans-

formation A) is

G(A~r, σ2AAT ) =
1

2πdet(A)σ2
exp

(
−~r

T (AAT )−1~r

2σ2

)
(3.2)

In order to solve for the affine parameters in A an over-determined system can be obtained

by convolving at several points ~li in both images [24] to get

∫
I1(~r)G(~r − ~li, σ2I)d~r ≈

∫
Ia(A~r)G(A~r − ~li, σ2AAT ) d(A~r)

+[(A− I)~li]
T
∫
Ia(A~r)G

′(A~r − ~li, σ2AAT ) d(A~r) (3.3)
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where li is any point on the image plane and G′ is the derivative of G with respect to the

image coordinates. Equation (3.3) is Taylor’s first order expansion of G(A(~r − ~li), σ2AAT )

about the point (A~r − ~li).

Equation (3.3) cannot be used to solve for the unknown A since G on the right hand side

cannot be evaluated. Hence we rewrite the above in a linear form of the unknown B. To

achieve this we express the generalized Gaussian in terms of the ordinary Gaussian and

its derivatives using Taylor’s expansion of Equation (3.3) about the matrix B = 0 (which

corresponds to no affine transformation) where

B = A− I =



b11 b12

b21 b22




The symbolic processing language Macsyma [5] was used to expand Equation (3.2) up to

first order terms in B about the point B=0 to yield

G(., σ2AAT ) ≈ G(., σ2) + σ2b11Gxx(., σ
2) + σ2b12Gxy(., σ

2)

+σ2b21Gyx(., σ
2) + σ2b22Gyy(., σ

2)

I1 I2Ia

Pill−box (large blur)+

Transform by

b

y

T

b

x

T

111+ b

21

12

22

x

y1+b

Gaussian (small blur) or
Convolve with

First Image Transform
After Affine

After Blur

Figure 3.1: Model Incorporating Affine Transformation and Defocus Blur
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When the affine transformation is small, this is a reasonable approximation. Hence Equa-

tion (3.3) can be revised as

I1(~r)⊗G(~r − ~li, σ2) ≈

Ia(~r1)⊗G(~r1 − ~li, σ2) + (B~li)
T Ia(~r1)⊗G′(~r1 − ~li, σ2)

+σ2b11 Ia(~r1)⊗Gxx(~r1 − ~li, σ2) + σ2b12 Ia(~r1)⊗Gxy(~r1 − ~li, σ2)

+σ2b21 Ia(~r1)⊗Gyx(~r1 − ~li, σ2) + σ2b22 Ia(~r1)⊗Gyy(~r1 − ~li, σ2) (3.4)

where ~r1 = A~r. Second and higher order terms in the components of B are ignored since

they are assumed to be small.

The derivation obtained earlier in [24], and our Equation (3.4) are now extended to include

defocus blur. Denote the left hand side of Equation (3.4) by I1(~r) and the right hand side

by Ia(A~r). Then

I1(~r) ≈ Ia(A~r) (3.5)

Now let us assume that image Ia is further transformed by a blur to yield another image I2(see

Fig. 3.1.1). The actual point spread function is given by the convolution of the diffraction

limited point spread function (Airy disc) with the geometrically aberrated (defocused) blur

function (circle) ([36] pages 147-150). At lower levels of blur, diffraction effects dominate

and the blur can be approximated by the Gaussian, which is an approximation of the Airy

disc. At higher levels of blur, the defocus effects dominate and the blur can be approximated

by a convolution with a pill-box function. Hence our model assumes the Gaussian model

for small levels of blur and the pill-box model for larger levels. The pill-box function (see
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Fig. 3.1.1) has also been employed by [15] [37] [30].

Pillbox(~r, R) =





1
πR2 for |~r| ≤ R

0 otherwise

where increasing values of the radius R imply increasing levels of blur.

x R

π 2
1

y

R

Figure 3.2: Pill-box Function

We define the generalized Pill-box function P (~r, R,A) as

P (~r, R,A) =





1

πR2|A| for
∣∣∣A−1~r

∣∣∣ ≤ R

0 otherwise

where |A| denotes the determinant of A. The above is a Pill-box deformed by an affine

transformation A. Using a simple mathematical substitution we see that

P (~r − ~li, R,A−1) = |A| P (A(~r − ~li), R, I) (3.6)

In order to convolve the right hand side of Equation (3.5) with the appropriate Pill-box

function, we first multiply Equation (3.5) by Equation (3.6) to yield

I1(~r) P (~r − ~li, R,A−1) ≈ Ia(A~r) |A| P (A(~r − ~li), R, I)
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Integrating both sides with respect to ~r,we get

∫
I1(~r) P (~r − ~li, R,A−1) d(~r)

≈
∫
Ia(A~r) |A| P (A(~r − ~li), R, I) d(~r)

=
∫
Ia(A~r) P (A(~r − ~li), R, I) d(A~r) (3.7)

The last step follows from the fact that
∫
d~r =

∫ ∫
dxdy = 1

|A|
∫ ∫

d(x1)d(y1), where

[x1, y1]T = ~r1 = A~r. The left hand side of Equation (3.7) represents a convolution at

point ~r. If this is repeated at every point in the image, we have

LHS = I1(~r)⊗G(~r − ~li, σ2)⊗ P (~r − ~li, R,A−1)

We will assume that the unknowns B and R are very small. The function P (~r, R,A−1) can

then be approximated by the Gaussian G(~r, R
2

2
), to give

LHS = I1(~r)⊗G(~r − ~li, σ2)⊗G(~r, R2/2)

= I1(~r)⊗G(~r − ~li, σ2 +R2/2) (3.8)

The last step uses the result that the convolution of two Gaussians yields another Gaussian.

The right side of Equation (3.7) can be expressed as

RHS = P (A(~r − ~li), R, I)⊗
[
Ia(~r1)⊗G(~r1 − ~li, σ2)

+(B~li)
T Ia(~r1)⊗G′(~r1 − ~li, σ2)

+σ2b11 Ia(~r1)⊗Gxx(~r1 − ~li, σ2)

+σ2b12 Ia(~r1)⊗Gxy(~r1 − ~li, σ2)
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+σ2b21 Ia(~r1)⊗Gyx(~r1 − ~li, σ2)

+σ2b22 Ia(~r1)⊗Gyy(~r1 − ~li, σ2)
]

= I2(~r1)⊗G(~r1 − ~li, σ2) + (B~li)
T I2(~r1)⊗G′(~r1 − ~li, σ2)

+σ2b11 I2(~r1)⊗Gxx(~r1 − ~li, σ2)

+σ2b12 I2(~r1)⊗Gxy(~r1 − ~li, σ2)

+σ2b21 I2(~r1)⊗Gyx(~r1 − ~li, σ2)

+σ2b22 I2(~r1)⊗Gyy(~r1 − ~li, σ2) (3.9)

The last step follows because convolution is commutative, and because I2 is obtained from Ia

as a result of a convolution with a Pill-box function. Finally, equating eqns. (3.8) and (3.9)

we get a relationship which is linear in the unknown B, albeit still non-linear in R.

3.1.2 General Affine Transform Including Image Translation

We now consider the case when there is an arbitrary image translation δ ~T along with the

above affine transformation and blurring.

We see that convolution about a point ~r+δ ~T by a Gaussian G(~r, .) is equivalent to convolving

about the point ~r by the Gaussian G(~r − δ ~T , .). Hence, once a rough estimate of the image

translation ~T0 is known, the residual translation δ ~T is computed by using the result

I1(~r + ~T0 + δ ~T )⊗G(~r − ~li, σ2 +R2/2) = I1(~r + ~T0)⊗G(~r − ~li − δ ~T , σ2 +R2/2)
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Substituting the above in Equations (3.8) and (3.9) we get

I1(~r + ~T0)⊗G(~r − ~li − δ ~T , σ2 +R2/2) ≈ I2(~r1)⊗G(~r1 − ~li, σ2)

+(B~li)
T I2(~r1)⊗G′(~r1 − ~li, σ2)

+σ2b11 I2(~r1)⊗Gxx(~r1 − ~li, σ2)

+σ2b12 I2(~r1)⊗Gxy(~r1 − ~li, σ2)

+σ2b21 I2(~r1)⊗Gyx(~r1 − ~li, σ2)

+σ2b22 I2(~r1)⊗Gyy(~r1 − ~li, σ2) (3.10)

Thus Equation (3.10) relates the affine unknowns, B and δ ~T and the level of blur R. To

solve this equation, we linearize in δ ~T and subsequently in R.

Using the relation that

G1(~r − ~li − δ ~T , .) ≈ G1(~r − ~li, .)− δ ~T TG′(~r − ~li, .)

(which is a Taylor’s series approximation about the point (~r−~li) ) we obtain Equation (3.10)

in a linear form of the unknowns B and δ ~T .

Finally, below, we linearize it further in the unknown radius of blur, R. We first set σ2 = η

and define

G1(~r, η) =
1

2πη
exp

(
−~rT~r

2η

)

Let σ2 + R2

2
= η2 = η1 + β where η1 is the current best estimate of η and β is the residual

error in the estimation. G1(~r, η2) can be evaluated by expanding by Taylor’s series about
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the point η1, to give

G1(~r, η2) = G1(~r, η1) + β
∂G1

∂η

∣∣∣∣∣
η=η1

Expanding the left hand side of Equation (3.10) about η1,

I1(~r)⊗G(~r, R2 + σ2)

≈ I1(~r)⊗G1(~r, η1) + βI1(~r)⊗ ∂G1

∂η

∣∣∣∣∣
η=η1

= I1(~r)⊗G1(~r, η1) + 2β I1(~r)⊗∇2G1|η=η1

The last step follows from ∂G1

∂η
= 2∇2G1.

The overall computation is embedded in a 2-level pyramid scheme. All parameters are

estimated using the higher level first, and then are propagated as initial estimates for the

detailed level. A translational component of (T sx , T
s
y )T in an image shrunk by a factor of s

corresponds to (sT sx , sT
s
y )T in the original image. The pyramid is constructed by performing

bilinear interpolation to shrink overlapping patches of the original images.

3.2 Solution Method

Using one or more values of σ (in our experiments, values of σ were chosen as 1.75, 2.5, 3.0,

3.5, 4.5) as well as different values of ~li an over-determined system is obtained to solve for

the unknowns, the affine parameters B, the residual translation δ ~T and the radius of blur

R.

41



Second

Image

synthesize

to re−

parameters

formation

the trans−

estimate of

current 

Use the 

the second

image

First

Image

Image

synthesized

Re−

Use the error between the

re−synthesized and the 

actual second image to 

refine the estimate of the 

transformation parameters

Figure 3.3: Overview of the Iterative Parameter Estimation Process

In practice even if the initial estimate of the translation is three to four pixels in error, the

above method is able to rightly identify the exact image translation to sub-pixel accuracy.

Since the linearization is an approximation which holds true for only small values of the

unknowns, an iterative scheme was developed to handle large deformations (see Fig. 3.2).

At the first iteration approximate values of the unknowns are obtained. An intermediate

synthetic image is then obtained by transforming (via bilinear interpolation) the first image

using the computed affine parameters and then blurring the latter using the Pill-box model

of blur.

At the next iteration the difference between this intermediate image and the second image

is computed and the overall affine parameters and degree of blur are calculated. The first

42



image is then transformed using these new parameters to form the next intermediate image.

This process is repeated until the residual of the linear system is below a predetermined

threshold.

Since the linearization approximation is valid when the deformations are small and the

method has to iteratively recover smaller and smaller values of the unknowns, the above

method converges.

The parameters B and η1 are initialized to 0 and some σ2 respectively, corresponding to no

affine transformation or blurring. At every iteration, B is updated as

Anew ← Aresidual ·Aprevious

(matrix multiplication) and R is updated as

R←
√

2
√
η1 + β − σ2 (3.11)

and a new value of η1 is generated as η1 = σ2 + R2

2
.

A negative value for η1 +β−σ2 indicates that the second image has been sharpened instead

of blurred. In this situation, we compute the level of blur between the second image and first

image. This offers the capability of automatically segmenting an image into areas which are

blurred, sharpened or focally unperturbed (i.e., R = 0).
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3.3 Implementation and Results

We first describe results obtained when a real image was artificially deformed using large

affine parameters and substantial levels of blur. The method was then implemented on

several real image pairs, i.e., the second image in a pair was obtained by camera motion or

zoom rather than artificially generated.

At every point a texture measure was computed. In a small patch (typically 20 × 20)

around the pixel the difference between each pixel and its nth neighbor (at its right and

below it) was summed. When the average difference was less than 10 (grey-levels) the

pixel was not considered to have enough texture and the recovery of affine parameters was

not attempted there. The over-determined system was solved using a least mean squares

algorithm. We used gradient descent. The residual of the least squares system is interpreted

as a measure of confidence in the observed parameters. It was experimentally determined

that the number and organization of the points li (see Equation 3.3) at which convolutions

are performed depend upon both the level of affine deformation as well as the level of blur.

For instance, when recovering relatively large values, such as a radius of blur of 3.5 pixels

and a scaling factor of 1.2 as well as in-the-plane translation of [2, 2]T , one needed 121 evenly

spaced points within a 41×41 grid. However for smaller deformations such as a radius of

blur of one pixel, a scale factor of 1.04, an in-the-plane rotation of 2o, and an in-the-plane

translation of [1.0, 0.5]T pixels, 25 evenly-placed points li were chosen within a 17 × 17 grid.

If the approximate level of deformation is known a priori, the number and configuration of
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points li can be judiciously selected. For output purposes, optical flow is the translational

component of the computed affine transformation.

3.3.1 Artificially Deformed Images : Experiments 1 and 2

We ran several experiments on a wide range of test images. We artificially deformed them by

performing an affine transform using bilinear interpolation (expansion factors ranging from

0.7 to 1.4, rotations up to 30 degrees and image translations within 4 pixels) followed by a

blurring operation. The program correctly recovered all parameters. The first image was

then transformed according to the parameters recovered with the effect of blurring removed.

Results for two sets of images are shown in Figures 3.3.1.1 and 3.3.1.2.

3.3.1.1 Experiment 1: Brain

(a) Original Image (b) Artificially Deformed (c) Regenerated Image

Figure 3.4: Experiment 1 : Artificially Transformed Real Image (Brain)
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An image of a brain (Fig. 3.3.1.1(a)) was transformed by




1.2216 −0.4446

0.4446 1.2216


 +



−1.0

0.7




(scaling of 1.3, rotation of 20o, translation of [−1, .7]T ) and Pill-box blurred with radius

R=3.5 pixels.

The artificially transformed image is shown in (Fig. 3.3.1.1(b)). The affine transformation

recovered were




1.2215 −0.4446

0.4446 1.2218


 +



−1.0

0.7


 and the radius of the blur was computed to

be 3.5 pixels. Fig. 3.3.1.1(c) has been generated from the first image using the recovered

affine parameters at the center of the image.

3.3.1.2 Experiment 2: Pineapple

(a) Original Image (b) Artificially Deformed (c) Regenerated Image

Figure 3.5: Experiment 2 : Artificially Transformed Real Image (Pineapple)
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Figures 3.3.1.2(a), (b) and (c) describe an experiment done with a photograph of a pineapple.

The affine transformation involved is




0.7250 −0.3381

0.3381 0.7250


 and the blur radius is 4.5 pixels.

The affine parameters were accurately recovered as




0.7251 −0.3380

0.3381 0.7252


 and the recovered

radius of blur was 4.47 pixels.

3.3.2 Pairs of Real Images : Experiments 3 through 9

Experiments were then conducted on pairs of images of real scenery. In order to study the

limits of the above theory, a series of experiments of increasing complexity was performed.

In later chapters we run this algorithm on experiments of still further complexity.

In all these experiments the camera’s aperture was deliberately set so that motion induced a

large level of blur. This was done to demonstrate that the algorithm is able to handle large

deformations. Also, in a depth-from-defocused-motion system it may be useful to set up a

stop-and-shoot sequence which facilitates large blur.

In certain cases the blur level was uniformly large. We show that the flowfield can be

recovered in spite of considerable blur. This flowfield can be used as input to any depth-

from-motion algorithm.

However, in other cases, the camera parameters and size of translation resulted in varying

degrees of blur. We show in the next chapter how the variation in blur information can be

taken advantage of in order to obtain an initial estimate of depth.
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3.3.2.1 Experiment 3: Flat Image of Bird

In the first experiment a photograph of a bird was imaged. The object was hence flat. The

camera was moved closer to the object and to a slight angle to obtain a second image as can

be seen in Figures 3.6 and 3.7.

For the sake of visual clarity, the flowfield and radius of blur/sharpening are highly subsam-

pled in all the images that follow.

The flowfield is shown in Figures 3.8. The degree of blur is displayed in Figure 3.9 where

the radius of the circle is proportional to the radius of blur. The average radius of blur 3.48

and the standard deviation is 0.43.

It can be seen that large displacements were accurately retrieved in spite of substantial

defocus blur.
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Figure 3.6: Experiment 3: Flat Bird (Image 1)

Figure 3.7: Experiment 3: Flat Bird (Image 2)

49



Figure 3.8: Experiment 3: Flat Bird (Subsampled Radius Map)

Figure 3.9: Experiment 3: Flat Bird (Subsampled Flow Field)
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3.3.2.2 Experiment 4: Photograph of Garden (Zoom In)

In the next experiment the camera was held stationary and the zoom feature of the lens was

employed. We first captured a photograph of a picture of a beautiful garden. Keeping the

aperture fixed, we zoomed in to the picture and took another photograph. The second pho-

tograph was considerably blurred and enlarged. The results of the experiment are displayed

in Figures 3.10 through 3.13.

The average radius of blur 3.70 and the standard deviation is 0.51.

We see that the optical flow was recoverable in spite of considerable blurring and change in

size.

Figure 3.10: Experiment 4: Flat Garden (Image 1)
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Figure 3.11: Experiment 4: Flat Garden (Image 2)

Figure 3.12: Experiment 4: Flat Garden (Radius Map)
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Figure 3.13: Experiment 4: Flat Garden (Flow Field)

3.3.2.3 Experiment 5: Slanted Geometric Pattern

In order to facilitate computing the correct affine parameters using point correspondences,

geometric patterns were photographed with a Pulnix camera.

Results of the experiment are shown in Figures 3.14 through 3.17.

Figure 3.14 shows the first image of a slanted geometrical pattern and Fig. 3.15 shows the

second image, which is obtained by keeping the camera stationary and using the zoom

mechanism.

53



The affine parameters obtained at the center were




0.9400 0.0146

0.0149 0.9327


 along with an image

translation of



−0.12

−0.05


 and the radius of pill-box blur of 4.4 pixels.

Since the degree of blur varies as one traverses the image of the slanted object from left to

right, the affine parameters and the blur were obtained for a thin horizontal strip. Fig. 3.16(a)

shows a strip from the first image and Fig. 3.16(b) shows the strip from the same position

of the second. A map of the radii of blur in the above strip is shown in Fig. 3.16(c). The

radius varied from 0.5 pixels obtained near the right edge to 7.0 pixels obtained near the left

edge of the strip. Black patches in the bottom left corner represent points of no convergence.

The flow field in a 41×41 pixel window centered on the image is shown in Fig. 3.16(d).

Figure 3.14: Experiment 5: Slanted Geometric Pattern (Image 1)
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Figure 3.15: Experiment 5: Slanted Geometric Pattern (Image 2)

(a) Strip from first image

(b) Corr. strip of 2nd image

(c) Radius map of above strip

Figure 3.16: Experiment 5: Strips from Both Images
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Figure 3.17: Experiment 5: Geometric Pattern (Flow Field in 41×41 Patch)

3.3.2.4 Experiment 6: Two Objects At Different Depths

Figures 3.18 through 3.22 demonstrate the result of the next experiment. In this experiment

we imaged two objects. One was a box with an irregular design, the other was a slanted box

with a picture of a woman. The translation component of camera motion caused the left

object to get blurred and the right to get sharpened. The program correctly recognized the

two situations.

Figures 3.20 and 3.21 show the sub-sampled radius map and flowfield respectively. The

radii corresponding to points which got sharper/blurred are shown as open/filled-in circles.

Since the flow is large, the flow image is highly sub-sampled. In areas corresponding to the

woman’s dress there is insufficient texture to compute the optical flow and the blur.
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In order to assess the accuracy of the blur parameter, we considered a 60×60 patch (Fig-

ure 3.22(a)) centered on the position (205, 320). This patch was affine transformed and

blurred using the recovered parameters. The modified patch (Figure 3.22(c)) was compared

with the equivalent patch in the second image (Figure 3.22(b)). A difference image (Fig-

ure 3.22(d)) was computed. The average absolute error of the difference was 12 grey values

and the maximum error was 67.

Once again, in this experiment the camera’s aperture was deliberately set so that motion

induced a large level of blur. This was done to demonstrate that the algorithm is able to

handle large deformations.

Figure 3.18: Experiment 6: Two Objects (Image 1)
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Figure 3.19: Experiment 6: Two Objects (Image 2)

Figure 3.20: Experiment 6: Two Objects (Radius Map)
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Figure 3.21: Experiment 6: Two Objects (Flow Field)

(a) Patch from (b) Corres.Patch (c) Regenerated (d) Difference
1st Image in 2nd Image Image Image

Figure 3.22: Experiment 6 (Analysis)
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3.3.2.5 Experiment 7: Frontoparallel and Slanted Boxes

Figures 3.23 through 3.28 demonstrate the result of another experiment in which the object

consisted of a scene containing two objects, a box with a grid design with one side placed

fronto-parallel with respect to the camera and a printed box above it placed at a very steep

angle. The first image (Figure 3.23) was taken from above. The box with the grid design

was then rotated and the camera was moved downwards towards the objects and the second

image (Figure 3.24) obtained. The box with the grid design is uniformly blurred (due to

it being fronto-parallel). The printed box on the other hand, is in sharper focus in certain

areas. An estimate of the translation for a point on the grid box was obtained and the resid-

ual transformation at a 31x31 patch centered at that point was computed. Figures 3.25(a)

and (b) show the original patches in the two images. The affine transformation and blur

were computed in a 31x31 area. The original patch was regenerated using computed affine

parameters and this image is displayed in Figure 3.25(c) for visual comparison with Fig-

ure 3.25(b). Figures 3.26(a) and (b) show respectively the corresponding flow map (for the

residual component) and the radius map computed within the patch.

The affine transformation at the center of the patch was computed to be




1.0633 −0.1337

0.1375 1.0598




and the radius of the blur was 2.7 pixels. The computed radius values in the map varied

very slightly from 2.6 pixels to 2.8 pixels, as can be expected for a fronto-parallel plane.
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While Figures 3.25 and Figures 3.26 describe results for the frontoparallel grid box, results

for the slanted printed box part of the scene are shown in Figures 3.27 and Figures 3.28.

For the slanted box, corresponding patches were extracted. For this box object, the second

image is in sharper focus than the first.

Results of the inverse transformation for this printed box are shown in Figure 3.27. On close

examination of the two original images it was seen that the level of blur in the upper part of

the printed box is the same. However, in the lower part of the printed box, the second image

is in sharper focus. This relative change in blur level can be noted in Figure 3.28. White

regions in the radius map represent points of non-convergence. In the above experiment,

since we do not have ground truth, we can only note qualitatively that the blur radius maps

and the affine transformations appear correct.
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Figure 3.23: Experiment 7: Frontoparallel and Slanted Boxes (Image 1)

Figure 3.24: Experiment 7: Frontoparallel and Slanted Boxes (Image 2)

62



(a) Patch of first image (b) Corresponding patch (c) First regenerated using
of second all recovered parameters

Figure 3.25: Experiment 7: Frontoparallel Box (Patches)

(a) Flow Field(31 x 31 pixel window) (b) Radius Map(31 x 31 pixel window)

Figure 3.26: Experiment 7: Frontoparallel Box (Flow Field and Radius Map)
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(a) Patch of second image (b) Corresponding patch (c) Second regenerated using
of first image all recovered parameters

Figure 3.27: Experiment 7: Slanted Box (Patches)

(a) Flow Field(31 x 31 pixel window) (b) Radius Map(31 x 31 pixel window) (White
region represents points of no convergence)

Figure 3.28: Experiment 7: Slanted Box (Flow Field and Radius Map)
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3.3.2.6 Experiment 8: Slanted Stretch of Cloth

In the next experiment two photographs were taken of a textured piece of cloth which was

slanted so that the left bottom of the cloth was closest to the camera. In the first image

the points closest to the camera were about to get blurred. The camera was moved slightly

towards the cloth, so that in the second image the bottom left hand side of the cloth was

blurred although the top right hand side was still within depth of field and remained fairly

sharp. The images are shown in Figures 3.29 and 3.30.

The recovered degree of blur difference (subsampled every twentieth pixel) is displayed in

Figure 3.31. One can observe the gradual increase in the radius of blur while moving from

bottom left to the top right of the image.

The recovered flowfield (subsampled) is shown in Figure 3.32.
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Figure 3.29: Experiment 8: Slanted Cloth (Image 1)

Figure 3.30: Experiment 8: Slanted Cloth (Image 2)
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Figure 3.31: Experiment 8: Slanted Cloth (Radius Map)

Figure 3.32: Experiment 8: Slanted Cloth (Flow Field)
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3.3.2.7 Experiment 9: Cylindrical Object

In this next experiment two photographs were taken of a cylindrical box as shown in Fig-

ures 3.33 and 3.34. The recovered degree of blur is displayed in Figure 3.35. It can be seen

that at depth discontinuities (left and right edges of the cylinder) the recovered degree of

blur is slightly larger. The average radius of blur is 2.76 and the standard deviation is 0.50.

The flowfield is correctly recovered as shown in Figure 3.36. No values were recoverable in

areas of the cylinder with low texture.

Figure 3.33: Experiment 9: Cylindrical Box (Image 1)
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Figure 3.34: Experiment 9: Cylindrical Box (Image 2)

Figure 3.35: Experiment 9: Cylindrical Box (Radius Map)
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Figure 3.36: Experiment 9: Cylindrical Box (Flow Field)

3.4 Additional Tests and Discussion

We conducted additional experiments to study the stability of the blur estimates with respect

to noise. To achieve this, a series of experiments was performed where the second image was

deformed with increasing levels of affine deformation. In each experiment both images were

subjected to increasing levels of Gaussian noise. In all the experiments the radius of blur in

the second image was set to 3 pixels. The percentage error of the computed radius is plotted

in Figure 3.4.

An artificially generated image of a sine pattern was employed. In Experiment 1 (represented

in Figure 3.4 by a dotted line) the second image was rotated by 15o, scaled by a factor of 1.2

and translated by [1,0] pixels. In Experiment 2 (represented by a dot-dash line) the second
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image was rotated by 20o, scaled by a factor of 1.4 and translated by [2,2] pixels. In the

third experiment (represented by a line and circles), the image was rotated 25o, scaled by a

factor of 1.5 and translated [3,3] pixels.

In all the experiments zero-mean Gaussian noise was added to each pixel of both images.

The standard deviation of the Gaussian was varied from 0 to 225 in steps of 25.

An error of 100% in the figure implies that convergence did not take place. It was seen that

the performance deteriorated gradually as the level of additive noise was increased and as

the degree of deformation of the second image was increased. Thus we conclude that the

computation is robust to noise.
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Figure 3.37: Percentage of Error in Blur Radius versus Gaussian Noise Level
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This chapter introduced a novel method to measure affine motion and the defocus blur

simultaneously. We have experimentally demonstrated the validity of our model using real

image pairs. In the next chapter we use the recovered blur to get initial estimates of depth

in an iterative computation of shape from defocused-motion.

Recent work [30] handles the displacement of image points due to blur using a telecentric

lens. Our method obviates the need for an additional lens by including the deformation in

a more comprehensive computational model. In addition, we have shown how the method

can be used to segment an image into regions which have blurred, sharpened or remained

focally unperturbed during the affine motion.

Our method’s primary drawback is that it requires the existence of fairly large planar patches.
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CHAPTER 4

COMPUTATION OF INITIAL ESTIMATE OF DEPTH

In this chapter we first derive the theory which relates the radius of blur, camera parameters

and depth. We then show how the relationships described above are used as input to an

Extended Kalman Filter in order to obtain the relative depth at every point. The theory

assumes that the camera motion has no out-of-plane rotational component. However, we

were not able to guarantee that in our experiments because we did not have the required

precision hardware. In all our experiments, camera motion was performed manually. We

show that we are still able to achieve reliable results, thus demonstrating the stability of our

formulation.

The rest of this chapter is organized as follows. Section 4.1 develops a novel theory. Sec-

tion 4.2 proposes a solution method. Section 4.3 demonstrates the validity of the theory by

showing the results of experiments conducted on real images. Finally Section 4.4 concludes

the chapter with a discussion.

The algorithm is summarized below.

1. With the camera parameters (focal length f , aperture size D and zoom) being fixed,

obtain a set of 3 or more images with the camera positioned as shown in Figure 1.

2. Compute blur and image flow information between the first and second images and

again between the first and third images using the method elaborated in Chapter 3.
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3. For the pair consisting of the first and second images, identify whether the camera

motion was towards the object or away from it by computing the average determinant

of the matrix of affine transforms and checking whether this average is greater or less

than 1.0.

4. Repeat this step for the pair consisting of the first and third images and identify the

direction of camera motion between them.

5. For each point pi in the first image consult section 4.1.3 to select two equations (one

equation per image pair) which relate the two radii of blur/sharpening obtained with

the unknowns C, E1, E2 and Zi. Here Zi is the depth at point pi with respect to the

first image. Note that we replace E in section 4.1.3 with E1 if referring to the image

pair consisting of the first and second image and with E2 if referring to the image pair

consisting of the first and third images.

6. If there are N points we get a system of 2N equations. This over-determined system

of equations can be used to obtain relative depths Zi’s at all the points under consider-

ation. Several non-linear techniques can be employed to achieve a solution. We select

the Extended Kalman filter in which the 2N equations are input as the measurement

equations.
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4.1 Theoretical Formulation

We now proceed to derive the relationship between the radius of blur, camera parameters

and depth. Consider a camera-centered coordinate system. Let Pa be the coordinate of an

object point in the first frame. Now let either the object or the camera be moved. Let Pb

be the position of the same object in the next frame. We consider two situations. In the

first situation the object is blurred when it is closer as in Figure 4.1 and in the second case

the object is sharper when it is closer as in Figure 4.2. We further subdivide these two

cases to distinguish between the cases when the camera is moving towards the object and

when the camera is moving away from the object. Hence there are four distinct situations.

In the following two sections we discuss these four situations and derive four corresponding

equations relating the relative depth at a point with the radius of blur, camera translation

and fixed camera parameters. In each case we are interested in deriving the depth of the

object with respect to the first image.

We first note that since the camera focal length is fixed in all the images, the thin lens law

as applied to positions Pa and Pb yields the equations:

1

f
=

1

Ua
+

1

Va
(4.1)

1

f
=

1

Ub
+

1

Vb
(4.2)

where

Ua, Ub : distance from the object to camera lens

Va, Vb : corresponding distance from focused image to camera lens, and

f : focal length of camera.
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4.1.1 Object Blurred When Closer To Camera

Let us first consider the case where an object point is sharp at position Pa and blurred at

position Pb as in Figure 4.1.

We see that blurring is caused by the image plane being in between the lens and the position

of perfect focus. By observing similar triangles, we can derive the relationship between the

camera aperture and the radius of blur as

D

Vb
=

2R

Vb − S
(4.3)

where

S : the distance between lens and image plane

D : the diameter of the aperture, and

R : the radius of the blur circle.

Vb depends upon Ub and hence the Equation (4.3) relates the radius of blur at a point with

fixed camera parameters and the depth of that point.

4.1.1.1 Camera Motion Towards Object

Let us first assume that the camera has moved towards the object. Hence Pa is the position

of the object with respect to the first image and Ua is the depth that we are interested in

studying. Let the component of translation along the Z axis be Tz(a,b). We observe that the

image point has been blurred as a result of the translation. Thus, Ua, the depth of the object
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Figure 4.1: Camera Model - Object Blurred When Closer To Camera
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from the camera with respect to the first image is given by

Ub = Ua + Tz(a,b) (4.4)

This step assumes no out-of-plane rotation. In our experiments we moved the camera by

hand and hence there was unavoidably some out-of-plane rotation. Yet we were able to attain

satisfactory results, thus proving the robustness of our formulation. We note that in-plane

rotations and image magnification/contraction can be accommodated in the computation of

affine parameters at the first step.

We first eliminate Vb from Equations (4.2), (4.3) to yield

fUb
Ub − f

=
DS

D − 2R
(4.5)

and this can be rewritten as

Ub =
fDS

DS − fD + 2fR
(4.6)

Finally, using Equations (4.4) and (4.6) we express the depth Ua as

Ua = Ub − Tz

=
fSD

(DS − fD) + 2fR
− Tz(a,b) (4.7)

Equation (4.7) is important because it relates (a) real world depth to (b) a measured variable

that is dependent upon depth and (c) intrinsic and extrinsic camera parameters. If the

intrinsic camera parameters (f , S and D) and camera translation (Tz(a,b)) are known, the

computation of absolute depth is trivial. Alternately one could estimate all these parameters

along with depth Ua in a complicated formulation. Here we show that is unnecessary if all
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we need to obtain is relative depth. We achieve this in the following way. Equation (4.7) is

rewritten as

Z =
1

(C +R)
− E (4.8)

where

Z =
(

2

SD

)
Ua

E =
(

2

SD

)
Tz(a,b)

C =
D

2f
(S − f)

Here Z is not the true depth but a scaled depth, E is a scaled version of the component of

translation along the Z axis and C depends solely on the fixed intrinsic camera parameters

D, f and S.

The advantage of Equation (4.8) over Equation (4.7) is that there are fewer unknowns and

they are related in a less tightly coupled fashion, thus facilitating an easier solution process.

Equation (4.8) is now rewritten to express the radius of blur R as

R =
1

(Z + E)
− C (4.9)

A significant advantage of this equation is that it is linear in C and hence the solution of

this unknown is often obtained in the first iteration of any non-linear solution method.

Equation (4.9) expresses the relative radius of blur R in terms on the unknowns in the case

when the camera is moving towards the object and the closer object is more blurred.
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4.1.1.2 Camera Motion Away From Object

Let us now consider the situation where the camera is moving away from the object. In this

case the image point has been sharpened as a result of camera translation. The depth of the

object from the camera with respect to the first image is Ub and Equation (4.6) represents

the relationship between absolute depth and the unknowns f , S and D. In this case, there

is no dependence upon Tz, the component of translation along the Z axis. We define R as

the radius of sharpening of the second image with respect to the first. We compute it by

finding the radius of blur of the first image with respect to the second. This time we rewrite

Equation (4.6) to express the relative depth in terms of the R and the unknowns Z and C

as

Z =
1

C +R
(4.10)

where Z is now related to depth Ub as

Z =
(

2

SD

)
Ub

We rewrite Equation (4.10) to express the radius of sharpening as

R =
1

Z
− C (4.11)

We will later show how Equations (4.9) and (4.11) can be used as measurement equations

in an Extended Kalman filter to yield the relative depth Z.
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4.1.2 Object Sharper When Closer To Camera

Let us now consider the situation when the object yields a sharper image when it is closer

to the camera as in Figure 4.2. From the diagram it can be observed that the position of

perfect focus is between the lens and the image plane.

Once again, by observing similar triangles we see that

D

Va
=

2R

S − Va
(4.12)

where D, Va and R are defined as before. We derive two separate equations relating relative

blur R with relative depth and unknowns dependent upon camera intrinsic and extrinsic

parameters. One equation corresponds to the situation when the camera moves towards the

object and the other equation corresponds to the situation when the camera moves away

from the object.

4.1.2.1 Camera Motion Towards Object

Let us first assume that the camera is moving towards the object. Hence the depth of the

object with respect to the first image is Ua and the object point has been sharpened as a

result of camera translation. By eliminating Va from Equations (4.1) and (4.12) we get the

relation between absolute depth, radius of sharpening R and intrinsic camera parameters as

fUa
Ua − f

=
DS

2R +D
(4.13)
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Figure 4.2: Camera Model - Object Sharper When Closer To Camera
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We rewrite Equation (4.13) to get an equation expressing absolute depth Ua as

Ua =
DSf

DS − fD − 2fR
(4.14)

Once again, we express the complex equation above in terms of simpler unknowns Z and C

as below:

Z =
1

C −R (4.15)

where the relative depth Z is related to the absolute depth Ua as

Z =
(

2

SD

)
Ua

and C is as defined earlier. Rewriting Equation (4.15), the radius of sharpening R is expressed

as

R = C − 1

Z
(4.16)

4.1.2.2 Camera Motion Away From Object

Finally, we derive an equation for R when for the situation where the camera is moving

away from the object. In this case the object point has been blurred as a result of camera

translation. The required depth (with respect to the first image) is Ub. Ub can be expressed

in terms of camera translation Tz(b,a) along the Z axis as

Ua = Ub + Tz(b,a) (4.17)

From Equations (4.14) and (4.17) we express absolute depth Ub as

Ub = Ua + Tz(b,a)
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=
DSf

DS − fD − 2fR
+ Tz(b,a) (4.18)

As before, we rewrite Equation (4.18) in terms of the simpler unknowns Z, C and E as

Z =
1

(C −R)
− E (4.19)

where the relative depth Z is defined as

Z =
(

2

DS

)
Ub

and C and E are as defined earlier. Equation (4.19) can be rewritten to express the radius

of blur as

R = C − 1

(Z + E)
(4.20)

4.1.3 Summary: The Blur-Depth Relationship

Thus we have derived four different equations (Equations (4.9), (4.11), (4.16) and (4.20)) to

express R in terms of unknowns C, E and Z. We summarize the results as follows.

1. Camera Motion Towards Object:

R =
1

(Z + E)
− C image point is blurred (4.21)

R = C − 1

Z
image point is sharpened (4.22)

2. Camera Motion Away From Object:

R =
1

Z
− C image point is sharpened (4.23)

R = C − 1

(Z + E)
image point is blurred (4.24)
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where C, E and Z are functions of D (camera aperture diameter), f (focal length), S

(distance between lens and image plane), Tz (translation along the optical axis) and U

(depth of object point) as defined below:

C =
D

2f
(S − f)

E =
(

2

SD

)
Tz

Z =
(

2

DS

)
U

We now show how these results can be used in a further formulation in order to facilitate a

solution process.

4.1.4 Sequence of Three Images

Let pi be an image point and let Ri be the radius of blur/sharpening for point pi between

frames one and two. Let Zi be the depth of pi with respect to the first frame.

We first compute the affine transformation and defocus blur between frames one and two

as elaborated in Chapter 3. As shown earlier, at each point we can automatically recognize

whether blur or sharpening has taken place. We can also automatically deduce whether

between frames one and two the camera has moved towards or away from the object. This

is done by examining the matrix A of the affine transform described in Equation (3.1). A =
[
a11 a12

a21 a22

]
encodes the enlargement/contraction, rotation and shearing component of this
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affine transform. In particular, the determinant of A reveals whether the image has been

diminished or enlarged. If the camera moves towards the object, the image is magnified and

the determinant of A is greater than one. If the camera moves away from the object, the

corresponding image is diminished and the determinant of A is less than one. By taking the

average value of the determinants of the affine transforms at all the points in the first image,

a computer program can recognize the direction of motion.

Once we know the direction of camera motion and whether blurring or sharpening has taken

place we can identify the equation from section (4.1.3) which represents the relationship

between R and unknowns C, E and Zi.

We note that for any pair of images the equations points in the first image either satisfy

Equations (4.21, 4.22) or Equations (4.23, 4.24) depending upon the direction of camera

motion.

The equation selected has two or three unknowns (C, E, Zi), depending upon whether or

not E is included in the equation.

On studying the unknowns more closely, we note that C remains fixed if the camera intrinsic

parameters of (1) D, the diameter of aperture, (2) f , the focal length, and (3) S, the

distance between lens and sensor do not change. Moreover, the value of E depends upon

the component of translation along the Z axis and hence is fixed for every point in a specific

image pair. However, every additional point pi in the image introduces one more unknown

depth zi.
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Hence the equations corresponding to all N points in a single image pair always has (N + 2)

or (N +3) unknowns and is under-determined. In order to solve for the unknowns we need a

sequence of three images. This would produce two image pairs, the first image pair consists

of frame 1 and frame 2 and the second image pair consists of frame 1 and frame 3. We note

that both pairs have a common first image.

A sample configuration of the three images is shown in Figure 1. It can be easily seen that

the sequence could have been reversed, i.e., the images could have been captured by moving

the camera away from the object instead of towards it.

With three consecutive images, two values of radii are computed for every point pi. One

is the radius of blur/sharpening between frame one and two and the other is the radius of

blur/sharpening between frame one and three. Hence each point generates two equations.

Since E is unique for every pair of images, we now have the unknowns E1 and E2, which

depend upon the appropriate translation values as follows:

E1 =
(

2

SD

)
Tz(1,2)

E2 =
(

2

SD

)
Tz(1,3)

In order to solve for the unknowns C, E1, E2 and Zi we need at least three points and a

sequence of three images. By computing the radii of blur at all the points in the image an

overdetermined set of equations is generated.
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4.2 Solution Method

The overdetermined set of equations described above can be solved using a variety of math-

ematical techniques. We employ the Extended Kalman Filter since it is optimal in the sense

that it factors in the uncertainties associated with the model as well as the uncertainties

associated with the measurements in such a way that the solution ensures that the error is

minimized statistically.

We implemented the Kalman Filter in a manner similar to [48] since it affords an efficient

way to handle a large number of points.

For the sake of completeness the Extended Kalman Filter is defined in section 4.2.1 and its

variation as derived in [48] is elaborated in section 4.2.2 below.

4.2.1 Extended Kalman Filter

Let the parameters in a physical system be modeled as

~w = h(~x)

where ~w represents a vector of measurements and the vector ~x represents the state of the

system at any given instant. In our system, ~w consists of the radii of blur and ~x consists of

the depths zi of object points and the values C, E1 and E2.

However, this model is not complete because of the following factors [25]:
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• A mathematical model cannot completely define a system

In our case, the effect on blurring due to factors such as irregularities in the lens,

imperfections in the sensor, etc. have not been included in the model.

• The measurements are not precise

The values of radii computed earlier are imprecise because of several factors which

include discretization and the establishment of convergence criteria to ensure compu-

tation in a finite amount of time.

Hence Kalman introduced the more precise measurement equation

~w = h(~x) + ~n

where ~n represents zero-mean measurement error with covariance R.

Kalman then derived an iterative technique to refine the estimate of the state in an iterative

manner.

If ~x− and P− be the a priori estimates of the state vector and its covariance, then the a

posteriori estimates of the state vector ~x+ and its covariance P+ are given by

~x+ = ~x− + K (~w − h(~x−))

P+ = (I−KH) P−

where K is the Kalman gain matrix, defined as

K = P−HT(HP−HT + R)−1 (4.25)
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and H is the Jacobian matrix of the measurement equations. That is,

H =
∂h(~x)

∂~x

∣∣∣∣∣
~x=~x−

(4.26)

4.2.2 Xiong and Shaefer

Traditional EKF techniques deal with N×N matrices where N is proportional to the number

of features tracked. In the case of dense optical flow measurements in a typical image of

size 640 × 480 the value of N would be 307200. This would make a solution based on the

traditional Kalman filter infeasible in both time and space.

In [48] the Kalman filter equations were enhanced to take advantage of the special properties

inherent in the uncertainty matrices P and R and the Jacobian H of the measurement

equations to develop a robust and efficient solution process where the computation is O(N).

In [48] the measurement equations were the instantaneous motion equations, viz. Equa-

tions (2.2). We have applied the same efficiency steps introduced [48] but replaced the mea-

surement equation/s selected from (4.21), (4.22), (4.23) or (4.24) as shown in section (4.1.3).

Our measurements ~w are the blur/sharpening values and our state vector ~x is of size N + 3,

where N is the number of image points. For the sake of convenience, we decompose ~x into

2 vectors, viz. ~M and ~Z where

~M = [C, E1, E2]T
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and

~Z = [z1, z2, ... , zN ]T

That is, ~Z consists of the depth value at every point under consideration and ~M consists of

all the other unknowns.

The uncertainty of measurement is represented by the 2N × 2N matrix R

R =




u1

u2

. . .

u2N




(4.27)

where ui is a measure of the degree of confidence in the value of the radius ri computed in

the corresponding equation.

In addition, the Jacobian matrix H of the measurement equations defined as

H =




∂r1

∂
~M

| ∂r1
∂z1

∂r2

∂
~M

| ∂r2
∂z2

... | . . .

∂rN

∂
~M

| ∂rN
∂zN




(4.28)

is of the form (A S) where A is a 2N × 3 matrix and S is an N ×N block diagonal matrix

with each block a 2 × 1 matrix.
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Moreover, the correlated uncertainty of the depth values caused by a single uncertain motion

is an N ×N matrix with rank of only k, (k a constant, typically 3) corresponding to the 3

additional unknown parameters.

Hence the covariance matrix P can be decomposed as follows:

P =




Cm CT
p

Cp (Cs + UVT )


 (4.29)

Here Cm is a 3× 3 matrix which represents the covariance of the parameters ~M = [C, E1, E2]T .

Cp is an N×3 matrix which represents the correlation between ~M and structure. The covari-

ance of depth parameters is a matrix of rank k and hence can be expressed as (Cs + UVT )

where Cs is an N × N diagonal matrix representing the independent uncertainty of depth

value at each pixel, and U and V are N × k matrices representing the correlated uncertainty

of the depth values.

Due to the special properties of the matrix P, its memory requirement is of O(N) instead of

O(N2). We will see later that since R and H are special matrices, the format of P remains

the same at every iteration. Hence P never needs to be represented as an (N + 3)× (N + 3)

matrix.

The steps in the solution of the Kalman equations given a sequence of three image are listed

below. These steps can be iterated through additional frames.

1. Change Coordinates Corresponding to Parameters in ~M
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The parameters in ~M can have varying uncertainty. In order to ensure stability in

future calculations we first redefine these parameters to ensure that their uncertainty

values are equal.

If ~Morig are the original estimates of ~M and Cm(orig) is the original covariance, we

reparameterize the unknowns so that their covariance is I.

Since Cm(orig) is the covariance ~Morig, we have

( ~Morig − ~̄Morig) ( ~Morig − ~̄M orig)
T = Cm(orig)

where ~̄Morig represents the mean of ~M .

Let the singular value decomposition of the positive symmetric matrix Cm be

Cm(orig) = U W UT

Then it can be seen that the new variables ~Mnew given by

~Mnew = (U W
1
2 )−1 ~Morig

has variance I.

For the sake of convenience let us define

Cx = (UW)
1
2

The above change requires the component A of the matrix H to be redefined as

Anew = Aorig(UW
1
2 ) = AorigCx
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2. Compute HP−HT + R

Making the assumption that motion is discontinuous, we set CT
p = 0.

Hence

HP−HT + R = C1 + U1V
T
1 (4.30)

where

C1 : N × N block diagonal = (SCsS
T + U)

U1 : 2 N × (3 + k) = (ACm SU)

V1 : 2 N × (3 + k) = (A SV)

3. Compute (HP−HT + R)−1

We apply the Sherman-Morrison-Woodbury formula [13] (page 50) to obtain the inverse

of the matrix (HP−HT + R). This formula reduces the problem of inverting the N×N

matrix to one of inverting a k × k matrix where k << N .

Hence

(HP−HT + R)−1 = C2 + U2V2

where

C2 = C−1

U2 = −C−1U(Ik + VTC−1U)−1

V2 = CTV

4. Compute Kalman Gain

The Kalman gain can now be expressed as
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K =




Km

C3 + U3V3




where

Km = CmATC2 + CmATU2V
T
2

C3 = CsS
TC2

U3 =

(

U CsS
TU2 U

)

V3 =

(

C2SV V2 V2(UT
2 SV)

)

5. Compute the Updated State Covariance Matrix P+

The updated matrix representing the covariance of the state vector P+ is of the form

P+ =




Cmp CT
pp

Cpp (C4 + U4V4
T )


 (4.31)

where

• The posteriori covariance matrix of the vector ~M is a 3× 3 matrix Cmp given by

Cmp = Cm − KmACm

• The posteriori uncertainty correlation between the ~Z and ~M is an N × 3 matrix

Cpp given by

Cpp = −(Cs + UVT )STKT
m
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• The independent uncertainty in structure estimation C4 is an N × N diagonal

matrix given by

C4 = Cs −C3SCs

• The correlated uncertainty in structure is represented as the outer product of U4

and V4, each of size l = N × (3k + 3), where

U4 =

(

U −U3 −C3SU U3V
T
3 SU

)

V4 =

(

V −CsS
TV3 V V

)

It was seen that convergence was speeded up when a weight was added to the diag-

onal elements of P+. This weight was set proportional to the difference between two

successive values of the corresponding unknown.

6. Reduce the Dimension of U4 and V4

Since k can increase linearly after each frame, the above algorithm is converted to

O(MN) where M is the number of frames. In order to maintain an O(N) algorithm,

a weighted principle component technique is employed. Let

U4V
T

4 = (~e1 ~e2 . . . ~el)




λ1

λ2

. . .

λl







~e1

~e2

...

~el




(4.32)

where the λ are the eigenvalues of the matrix U2V2 and ei are their corresponding

eigenvectors representing eigenimages.
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An eigen image represents a pattern of the depth uncertainty and its eigenvalue repre-

sents the corresponding magnitude of the uncertainty. Since the eigenvalues of Equa-

tion (4.32) are in decreasing sequence, the first k (k = 3) eigenimages store the bulk

of the (uncertainty) information. i.e.,

U4V
T
4 ≈ (~e1 ~e2 . . . ~ek)




λ1

λ2

. . .

λk







~e1

~e2

...

~ek




(4.33)

However, since the independent uncertainty (represented by C2) is not uniform the

truncation of the eigenvalues of U2V2 may not be appropriate. The independent

uncertainty may be large and small in different areas of the image and it is useful to

have a measure which shows the combined effect of both independent and correlated

uncertainties. Hence a technique is proposed based on weighted principle component

analysis. Since the independent uncertainty C2 is positive and diagonal, it can be

decomposed as

C4 =




c1

c2

. . .

cN



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=




√
c1

√
c2

. . .

√
cN







√
c1

√
c2

. . .

√
cN




= QQT

Hence the overall uncertainties can be represented by

C4 + U4V
T
4 = Q(I + Q−1U4(Q−1V4)T )QT (4.34)

In other words, the correlated uncertainty represented by U4 and V4 is weighted by

the independent uncertainty Q−1. Hence the k largest eigenvalues of

Q−1U4(Q−1V4)T

are used to regenerate the uncertainty of the depth information.

7. Update The State Vector X

The state vector X (comprised of M and Z) is now updated as

M = M + CxKm (~w− h(~x))

Z = Z + (C3 + U3VT
3 ) (~w− h(~x))

Steps 1 through 7 above are iterated until the difference in values of the unknowns between

two successive iterations is less than a predefined threshold.
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4.3 Implementation and Results

We ran several experiments on real data captured using a Sony DCR-VX2000 camera. We

fixed the camera parameters f , D and S and took a set of 3 images as shown in Figure 1.

We computed the optical flow and defocus blur using the technique described in chapter 3.

The radius map was smoothed and this was used to compute depth using the method elab-

orated in this chapter.

We assumed that the depth was initially planar and were able to demonstrate that we could

get a good depth estimates with only three images. This can be used in an iterative technique

where the depth estimates are refined over a sequence of several images.

When computing the a posteriori covariance P we found that better convergence was ob-

tained if a weight was added to the diagonal elements. This weight was proportional to the

change of value of the corresponding unknowns in 2 successive iterations.

In conclusion, our measurement Equations (4.9), (4.11), (4.16) or (4.20) have fewer un-

knowns and are less complex than the motion/optical flow equations which were employed

in [48]. Hence we found that our solution converges faster, is more stable and is more

forgiving if the initial state estimates are far from the actual values.

In the next few experiments we show the result of implementing the above algorithms on

several image sequences. We first show the result on an object consisting of a fairly planar
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patch (upholstery on the back of a chair). We then run the experiment on a sequence of

images of a toy hat. Finally we run the experiment on two different sequences of a toy bird.

4.3.1 Experiment 10: Plain Upholstery

The first experiment was performed on three images of the upholstery at the back of a chair.

The results are displayed in Figures 4.3 through 4.10. The surface of the chair was slightly

convex and the chair was slanted so that the left end was closer than the right end. The

camera was positioned so that the right bottom was farthest from it.

The first image was taken with the center in perfect focus. Subsequent images were taken

by moving the camera closer to the object so that the level of blur in the left and center

increases with time while the level of blur in the right end decreases with time since it gets

closer to the depth of field. In all the images we follow the convention of displaying blur as a

filled circle and sharpening as a plain circle where the radius of the circle indicates the level

blurring/sharpening.

We display the radius of blur/sharpening and optical flow between the first and second

images in Figures 4.5 and 4.6 respectively. The maximum radius of sharpening is 2.89 and

the maximum radius of blur is 3.83. The average radius is 2.28 and the standard deviation

is 1.94.
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Figures 4.8 and 4.9 display the radius of blur and optical flow respectively between the first

and third images. This time the maximum radius of sharpening is 3.03 and the maximum

radius of blur is 5.00. The average radius is 3.02 and the standard deviation is 2.31.

Figure 4.10 displays the computed relative depth. It can be seen that the top left of the

chair is closest while the bottom right of the chair is farthest from the camera.

Figure 4.3: Experiment 10: Plain Upholstery (Image 1)
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Figure 4.4: Experiment 10: Plain Upholstery (Image 2)

Figure 4.5: Experiment 10: Plain Upholstery (Radius Map From Image 1 to 2)
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Figure 4.6: Experiment 10: Plain Upholstery (Flow Field From Image 1 to 2)

Figure 4.7: Experiment 10: Plain Upholstery (Image 3)
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Figure 4.8: Experiment 10: Plain Upholstery (Radius Map From Image 1 to 3)

Figure 4.9: Experiment 10: Plain Upholstery (Flow Field From Image 1 to 3)
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Figure 4.10: Experiment 10: Plain Upholstery (Depth Map Stage 1)

4.3.2 Experiment 11: Toy Hat

In the next experiment, three images of a toy hat were captured. The first image was taken

with most points in perfect focus. Subsequent images were taken by moving the camera

closer to the object so that the level of blur increased with time. The object was slanted so

that the bottom left of the object was closer to the camera than the top right. Figures 4.11

through 4.18 display the results of this experiment. It can be seen that the radius of blur

(Figures 4.13 and 4.16) is largest at points on the top of the hat since they are closest to

the camera. On the other hand, points at the top right are sharpened in Figure 4.13 as they

move closer to the depth of field of the camera. The radius of blur computed from image

1 to image 3 is greater than the radius of blur computed from image 1 to image 2. Once
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again, we follow the convention of displaying blur as a filled circle and sharpening as a plain

circle with the radius of the circle indicating the level of blurring/sharpening.

Between the first and second images the maximum radius of sharpening is 1.75 and the

maximum radius of blur is 2.92. The average radius is 0.95 and the standard deviation is

0.82.

Between the first and third images the maximum radius of sharpening is 1.83 and the max-

imum radius of blur is 4.09. The average radius is 1.98 and the standard deviation is 0.88.

Figure 4.18 displays the computed depth map after running the Kalman filter. It can be

seen that the top of the hat is closest to the camera and the top right portion of the rim is

farthest from the camera.
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Figure 4.11: Experiment 11: Toy Hat (Image 1)

Figure 4.12: Experiment 11: Toy Hat (Image 2)
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Figure 4.13: Experiment 11: Toy Hat (Radius Map From Image 1 to 2)

Figure 4.14: Experiment 11: Toy Hat (Flow Field From Image 1 to 2)
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Figure 4.15: Experiment 11: Toy Hat (Image 3)

Figure 4.16: Experiment 11: Toy Hat (Radius Map From Image 1 to 3)
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Figure 4.17: Experiment 11: Toy Hat (Flow Field From Image 1 to 3)

Figure 4.18: Experiment 11: Toy Hat (Depth Map Stage 1)

111



4.3.3 Experiment 12: Toy Bird 1 in 3-D

A toy bird was mounted on a stand and an image was captured of a side view such that the

head was closer to the camera than the tail. Two more images were subsequently captured

with the camera moving closer to the object so that the level of blur increased with time.

Figures 4.19 through 4.26 display the results of this experiment.

It can be seen that the radius of blur (Figures 4.21 and 4.24) is largest in that section of the

body of the bird which is closest to the camera. The tail portion of the bird slopes away

from the camera and there is increasing level of sharpening as one moves towards the stand

on which the bird is mounted. There is also a level of sharpening at the left edge of the bird

and near the beak since they are farther from the camera than the rest of the bird.

Between the first and second images the maximum radius of sharpening is 2.34 and the

maximum radius of blur is 3.99. The average radius is 1.82 and the standard deviation is

1.09.

Between the first and third images the maximum radius of sharpening is 2.48 and the max-

imum radius of blur is 4.47. The average radius is 2.54 and the standard deviation is 1.19.

The depthmap in Figure 4.26 displays relative depth.
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Figure 4.19: Experiment 12: Toy Bird 1 in 3-D (Image 1)

Figure 4.20: Experiment 12: Toy Bird 1 in 3-D (Image 2)
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Figure 4.21: Experiment 12: Toy Bird 1 (Radius Map From Image 1 to 2)

Figure 4.22: Experiment 12: Toy Bird 1 (Flow Field From Image 1 to 2)
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Figure 4.23: Experiment 12: Toy Bird 1 in 3-D (Image 3)

Figure 4.24: Experiment 12: Toy Bird 1 (Radius Map From Image 1 to 3)
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Figure 4.25: Experiment 12: Toy Bird 1 (Flow Field From Image 1 to 3)

Figure 4.26: Experiment 12: Toy Bird 1 (Depth Map)
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4.3.4 Experiment 13: Toy Bird 2 In 3-D

We then captured a three-quarters pose of the same toy bird. The results are displayed in

Figures 4.27 through 4.34.

We display the radius of blur/sharpening and optical flow between the first and second

images in Figures 4.29 and 4.30 respectively. The maximum radius of sharpening is 3.68 and

the maximum radius of blur is 3.77. The average radius is 1.52 and the standard deviation

is 1.14.

Figures 4.32 and 4.33 display the radius of blur and optical flow respectively between the first

and third images. This time the maximum radius of sharpening is 3.99 and the maximum

radius of blur is 4.48. The average radius is 2.61 and the standard deviation is 1.55.

The depth map generated (Figure 4.34 demonstrates that the tail of the bird and the stand

it is mounted on are farthest away from the camera. The head of the bird and the edges of

the object are also farther away than the central portion of the object.
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Figure 4.27: Experiment 13: Toy Bird 2 in 3-D (Image 1)

Figure 4.28: Experiment 13: Toy Bird 2 in 3-D (Image 2)
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Figure 4.29: Experiment 13: Toy Bird 2 (Radius Map From Image 1 to 2)

Figure 4.30: Experiment 13: Toy Bird 2 (Flow Field From Image 1 to 2)
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Figure 4.31: Experiment 13: Toy Bird 2 in 3-D (Image 3)

Figure 4.32: Experiment 13: Toy Bird 2 (Radius Map From Image 1 to 3)
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Figure 4.33: Experiment 13: Toy Bird 2 (Flow Field From Image 1 to 3)

Figure 4.34: Experiment 13: Toy Bird 2 (Depth Map)
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4.4 Discussion

The above method can be extended over a sequence of images in order to refine depth.

However, the approach in this chapter is only feasible if the following two conditions exist:

• The camera parameters and camera motion ensure that there is a variation in the level

of blur. This variation reflects the change in depth and can hence be used to compute

relative depth.

• The motion of the camera has very little out-of-plane rotation.

In cases where the blur level is so high (such as in the experiments in sections 3.3.2.1 and

3.3.2.2) that the blur is fairly uniform, the blur values do not provide information which

can be used to compute depth. We studied the ratio between the standard deviation and

average values of the radius of blur/sharpening on the results of our experiments. For all

the experiments in which the initial estimate of depth was computed, the ratio was at least

0.4:1. The experiments in which we did not compute the initial value of depth the ratio was

less than 0.15:1.

However, since our algorithm in chapter 3 can compute the optical flow in spite of con-

siderable blur, we can still compute depth by using the optical flow values in the motion

equations. In the following chapter we show how the optical flow values can be incorporated

in an algorithm which computes relative depth in a depth-from-defocused-motion algorithm.
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If relative depth can be inferred from blur values as shown in this chapter, these depth values

can be incorporated to form a good initial estimate and thus ensure speedier convergence.

Even if the radius values obtained through the algorithm in chapter 3 do not have sufficient

variance to allow us to compute a reliable initial estimate of depth, the fact that the algorithm

can recover large values of optical flow make it superior over other optical flow algorithms.

Large values of optical flow and translation along the z axis are useful as they disambiguate

camera motion and yield more reliable depth values.
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CHAPTER 5

REFINEMENT OF DEPTH AND 3-D MOTION

Once an initial estimation of depth is obtained these values were input into the instantaneous

motion Equations (2.2) in order to compute an initial estimate of the motion parameters.

These parameters (depth values, camera motion parameters) and their uncertainties are

now input into another Kalman filter as described in chapter 4.2.2. However, this time the

measurement equations are the discrete motion Equations 2.2. Hence Cm is a 6× 6 matrix

and the number of eigen values of the matrices U4 and V4 is six instead of three.

We show below, the results of some experiments. In these experiments we first computed

an initial estimate of relative depth using the technique elaborated in Chapter 4. We then

input these initial values of depth to a Kalman filter incorporating the motion equations to

obtain better depth estimates. The depth values computed at both the phases are displayed.

It can be seen that fairly good depth values are obtained even with only three frames in a

sequence of images. This technique can be iterated over several frames in order to refine

depth.
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5.1 Implementation and Results

5.1.1 Experiment 14: Plain Upholstery

We ran the second Extended Kalman Filter on the upholstery sequence described earlier in

Section (4.3.1).

Figure 5.1(d) displays the computed depth map at the end of the first stage (Chapter 4)

and Figure 5.1(e) displays the computed depth map obtained after the second Kalman filter

computation which incorporates the motion equations. It can be seen that the depth map

is smoother and hence more accurate.
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(a) Image 1 (b) Image 2

(c) Image 3

(d) Depth Map (Stage 1) (e) Depth Map (Stage 2)

Figure 5.1: Experiment 14: Plain Upholstery - Refined Depth Map

126



5.1.2 Experiment 15: Toy Hat

Next we ran the second Extended Kalman Filter on the toy hat sequence described earlier in

Section (4.3.2). Figure 5.2(d) displays the computed depth map after the running the first

Kalman filter and Figure 5.2(e) displays the computed depth map obtained after the second

Kalman filter computation which incorporates the motion equations. Once again it can be

seen that the depth map is smoother and hence more accurate.
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(a) Image 1 (b) Image 2

(c) Image 3

(d) Depth Map (Stage 1) (e) Depth Map (Stage 2)

Figure 5.2: Experiment 15: Toy Hat - Refined Depth Map
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CHAPTER 6

CONCLUSION

We have developed a novel technique which computes depth from defocused motion. This

consists of several self-contained components each of which can be incorporated indepen-

dently within other algorithms.

The first novel component involves the simultaneous computation of optical flow and defocus

blur. It has been seen to be stable even for large optical flow and defocus blur values and

on a variety of object shapes. The recovered values can be used as input in several different

depth-from-motion or depth-from-blur algorithms.

The next component then uses the blur values obtained in a sequence of three images to

derive a relationship between the radius of blur, object depth and parameters based on

intrinsic camera parameters and camera motion.

Our formulation also handles the case when there is sharpening instead of blurring as well

as the case when there is no blurring. More significantly, it is able to disambiguate the

two situations corresponding to when the point of perfect focus is in front of the camera

sensor and when it is behind the camera sensor. Our equations are superior to the motion

equations in that there are fewer unknowns. Moreover the unknowns are related in a less

complex fashion and one of them is linear, thus facilitating a more dependable solution

process.
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The blur-depth relationship is used as the measurement equation to an Extended Kalman

Filter in order to obtain relative depth from the blur values. The depth values can be refined

by being input into a second Kalman filter whose measurement equations are the discrete

motion equations. This set of cascaded Kalman filters can be repeated over a longer sequence

of images to obtain depth from defocused motion.

We have demonstrated the result of inputting our blur and optical flow values into two

cascaded Kalman Filters. The results are shown for a sequence of three images and it can

be easily extended over a longer sequence of images.

The algorithm which computes blur and optical flow (Chapter 3) assumes that there are

large planar patches. However, our blur-depth relationship derived in Chapter 4 does not

require large planar patches and can be used with blur values obtained through any other

technique.

We have demonstrated how well our algorithms works for a sequence of just three images.

The depth values can be further refined by using the Extended Kalman Filter to iterate over

a longer sequence of images.
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