
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2006 

Application Of The Empirical Likelihood Method In Proportional Application Of The Empirical Likelihood Method In Proportional 

Hazards Model Hazards Model 

Bin He 
University of Central Florida 

 Part of the Mathematics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
He, Bin, "Application Of The Empirical Likelihood Method In Proportional Hazards Model" (2006). 
Electronic Theses and Dissertations, 2004-2019. 874. 
https://stars.library.ucf.edu/etd/874 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/174?utm_source=stars.library.ucf.edu%2Fetd%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/874?utm_source=stars.library.ucf.edu%2Fetd%2F874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


APPLICATION OF THE EMPIRICAL LIKELIHOOD
METHOD IN PROPORTIONAL HAZARDS MODEL

by

Bin He
MS in Mathematics, University of Central Florida, 2004

A dissertation submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

in the Department of Mathematics
in the College of Sciences

at the University of Central Florida
Orlando, Florida

Summer Term
2006

Thesis Adviser:
Jian-Jian Ren



c© 2006 by Bin He

ii



Abstract

In survival analysis, proportional hazards model is the most commonly used and the

Cox model is the most popular. These models are developed to facilitate statistical analy-

sis frequently encountered in medical research or reliability studies. In analyzing real data

sets, checking the validity of the model assumptions is a key component. However, the

presence of complicated types of censoring such as double censoring and partly interval-

censoring in survival data makes model assessment difficult, and the existing tests for

goodness-of-fit do not have direct extension to these complicated types of censored data.

In this work, we use empirical likelihood (Owen, 1988) approach to construct goodness-

of-fit test and provide estimates for the Cox model with various types of censored data.

Specifically, the problems under consideration are the two-sample Cox model and stratified

Cox model with right censored data, doubly censored data and partly interval-censored

data. Related computational issues are discussed, and some simulation results are pre-

sented. The procedures developed in the work are applied to several real data sets with

some discussion.
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CHAPTER 1

INTRODUCTION

Empirical likelihood (Owen, 1988) is a nonparametric method which is developed to

construct interval estimates and tests for various statistical models without assuming

that the data come from a known distribution family. Its applications extend to biased

sampling problems and censored data problems. Studies have shown that the empirical

likelihood inference is of comparable accuracy to alternative methods. In particular, it

is shown that the empirical likelihood is Bartlett-correctable for smooth function models

(Diciccio, Hall and Romano, 1991). For more references, see Owen (1990, 1991), Qin and

Lawless (1994), Mykland (1995) among others.

In survival analysis, interest centers on a group or groups of individuals for each of

whom (or which) there is a defined point event called failure, occurring after a length

of time called the failure time. The statistical models in survival analysis are developed

mainly for applications in medical follow-up and reliability studies. A special source of

difficulty in survival data is censoring, and right censored data are commonly seen. The

most widely used model in survival analysis is proportional hazards model, and the most

popular is the Cox model due to its adaptability in data analysis. These models are

developed to facilitate statistical analysis frequently encountered in medical research or

reliability studies. In analyzing real data sets, checking the validity of the model assump-

tions is a key component. However, the presence of complicated types of censoring such as

double censoring and partly interval-censoring in survival data makes model assessment

difficult, and the existing tests for goodness-of-fit do not have direct extension to these

complicated types of censored data.
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Throughout this thesis, we let X1, X2, · · · , Xn be an independently and identically

distributed (i.i.d.) random sample from a continuous and nonnegative distribution func-

tion F0, but we consider the cases when such an i.i.d sample is not completely observable

due to censoring. Specifically, what we have in mind for this work includes the following

types of censored data:

Right Censored Sample: The observed data are Oi = (Vi, δi), i = 1, 2, · · · , n,

with

Vi =


Xi if Xi ≤ Ci, δi = 1,

Ci if Xi > Ci, δi = 0,

(1)

where Ci is the right censoring variable and is independent of Xi. This type of censoring

has been extensively studied in the literature in the past few decades.

Doubly Censored Sample: The observed data are Oi = (Vi, δi), i = 1, 2, · · · , n,

with

Vi =


Xi if Di < Xi ≤ Ci, δi = 1,

Ci if Xi > Ci, δi = 2,

Di if Xi ≤ Di, δi = 3,

(2)

where Ci and Di are the right and left censoring variables, respectively, and they are

independent of Xi with P{Di < Ci} = 1. This type of censoring has been considered by

Turnbull (1974), Chang and Yang (1987), Gu and Zhang (1993), Ren (1995), Mykland and

Ren (1996), among others. One recent example of doubly censored data was encountered

in a study of primary breast cancer (Ren and Peer, 2000).

Partly Interval-Censored Sample:

’Case 1’ Partly Interval-Censored Data: The observed data are

Oi =


Xi if 1 ≤ i ≤ n1,

(Ci, δi) if n1 + 1 ≤ i ≤ n,

(3)

where δi = I{Xi ≤ Ci} and Ci is independent of Xi;
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General Partly Interval-Censored Data: The observed data are

Oi =


Xi if 1 ≤ i ≤ n1,

(C, δi) if n1 + 1 ≤ i ≤ n,

(4)

where for N potential examination times C1 < · · · < CN , letting C0 = 0 and CN+1 = ∞,

we have C = (C1, · · · , CN) and δi = (δ
(1)
i , · · · , δ(N+1)

i ) with δ
(j)
i = 1, if Cj−1 < Xi ≤ Cj; 0,

elsewhere. This means that for intervals (0, C1], (C1, C2], · · · , (CN ,∞), we know which

one of them Xi falls into. These two types of partly interval-censoring were considered

by Huang (1999), among others. In practice, the general partly interval-censored data

were encountered in Framingham Heart Disease Study (Odell, Anderson and D’Agostino;

1992), and in the study on incidence of proteinuria in insulin-dependent diabetic patients

(Enevoldsen et al., 1987).

In this work, we use empirical likelihood (Owen, 1988) approach to construct goodness-

of-fit tests and provide estimates for the Cox model with various types of censored data.

Specifically, the problems under consideration are the two-sample Cox model and stratified

Cox model with right censored data, doubly censored data and partly interval-censored

data. Related computational issues are discussed, and some simulation results are pre-

sented. The problems developed in the work are applied to several real data sets with

some discussion.

This thesis is organized as follows: Chapter 2 gives a brief description of parametric

and nonparametric likelihood methods, and gives the nonparametric likelihood functions

for right censored data and doubly censored data; Chapter 3 briefly introduces bootstrap

method and its applications; Chapter 4 describes the proportional hazards model, the

Cox model and stratified Cox model; Chapter 5 presents a goodness-of-fit test for the

two-sample Cox model from Ren and He (2005), discusses related computation issues,

and includes some simulation results and applications to three real data sets; Chapter 6

presents an estimate for the baseline distribution function in stratified Cox model from
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Ren, Su and He (2006), discusses related computation issues and includes some simulation

results; and Chapter 7 gives some concluding remarks.
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CHAPTER 2

LIKELIHOOD INFERENCES

This chapter briefly describes the parametric and nonparametric likelihood methods,

presents the likelihood functions for right censored data and doubly censored data, respec-

tively, and reviews related asymptotic results for the nonparametric maximum likelihood

estimate (NPMLE) F̂n for the underlying lifetime distribution F0.

2.1 Introduction

As the most important concept for inference in parametric models, likelihood can

be used to derive efficient estimators and construct tests. Likelihood ratio tests can in

turn be used to construct confidence intervals. Even when the data are not completely

observed, or distorted, or sampled with bias, likelihood methods can be used to offset

or even correct for these problems. Knowledge arising from outside of the data can also

be incorporated as constraints that restricts the domain of the likelihood function, or it

may be in the form of a prior distribution to be multiplied by the likelihood function.

However, a problem with parametric likelihood inferences is that we might not know which

parametric families the data come from. Such misspecification can cause likelihood-based

estimates to be inefficient. What might be worse is that the corresponding confidence

intervals and tests can fail completely.

To deal with this problem, many statisticians have turned to nonparametric inferences

in order to avoid specifying a parametric family for the data. In 1988, Owen (1988) pro-

posed empirical likelihood for the univariate mean and some other statistics, extending
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earlier work of Thomas and Grunkemeier (1975) who employ a nonparametric likelihood

ratio idea to construct confidence intervals for the survival probabilities. Owen’s work

provides nonparametric maximum likelihood estimation which has a long history in sur-

vival analysis. Owen (1988) showed that the empirical likelihood ratio statistics have a

limiting chi-squared distribution in certain situations, and showed how to obtain tests and

confidence limits for parameters expressed as functionals θ(F0) of an unknown distribution

function F0.

Empirical likelihood combines the reliability of the nonparametric methods with the

flexibility and effectiveness of the likelihood approach. Like other nonparametric methods,

empirical likelihood inference does not require us to specify a family of distribution for

the data; like parametric likelihood methods, empirical likelihood makes an automatic

determination of the shape of confidence regions because it straightforwardly incorporates

side information expressed through constraints or prior distribution. Empirical likelihood

method easily extends to biased sampling problems and censored data problems, and it

has very favorable asymptotic properties.

Empirical likelihood, as described later, provides likelihood ratio statistics for param-

eters by profiling a nonparametric likelihood. This approach is analogous to that used for

parametric models, although it is computationally more complex. Owen (1988) showed

that for i.i.d. samples, the empirical likelihood approach is applicable to quite general

class of parameters θ(F0). Also, Owen (1991) extended the empirical likelihood method

to linear regression problems.

2.2 Parametric Likelihood Inference

In parametric inference, we may construct hypothesis tests and confidence regions

based on the parametric likelihood ratio. As follows, we outline the framework. Let

X1, X2, · · · , Xn be a random sample from a distribution with a p.d.f f(x | θ), and let
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X = (X1, X2, · · · , Xn). Then the likelihood function for parameter θ is defined by

L(θ | X) =
n∏

i=1

f(Xi | θ), (5)

and θ̂ is the maximum likelihood estimator (MLE) for θ if L(θ | X) attains its maximum

at θ = θ̂ over the whole parameter space Θ for θ.

For hypothesis test

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θc
0, (6)

the likelihood ratio test statistic is given by

R(X; θ) =

sup
θ∈Θ0

L(θ | X)

sup
θ∈Θ

L(θ | X)
=

sup
θ∈Θ0

L(θ | X)

L(θ̂ | X)
, (7)

where Θ0 is the subset of parameter space under null hypothesis.

If we consider a simpler hypothesis test

H0 : θ = θ0 vs. H1 : θ 6= θ0, (8)

the likelihood ratio test statistic (7) becomes:

R(X; θ) =
L(θ0 | X)

L(θ̂ | X)
. (9)

In (8), if H0 holds, i.e. θ = θ0, then R(X; θ) should be close to 1 since θ̂ is close to θ; if

H0 does not hold, R(X; θ) should be small as θ0 and θ̂ differ. Thus, we reject H0 when

R(X; θ) < c for some predetermined constant 0 ≤ c ≤ 1. In practice, c is determined as

7



follows: Let 0 < α < 1, then we have for R(X; θ) in (9),

α = P{Type I error} = P{reject H0 | H0}

= P{R(X; θ) ≤ c | θ = θ0} = P{R(X; θ0) ≤ c}

= P{−2 logR(X; θ0) ≥ −2 log c} (10)

≈ P{χ2
1 ≥ −2 log c},

because from Wilks’s theorem (Wilks, 1938), we know that −2 logR(X; θ0) has a limiting

chi-squared distribution. In practice, c is chosen via equation (10) for desired significance

level α.

From above (8) – (10), we know that the acceptance region of θ0 is

A(θ0) = {X | R(X; θ) ≥ c} =

{
X

∣∣∣∣∣ L(θ0 | X)

L(θ̂ | X)
≥ c

}
. (11)

This can be used to construct confidence interval of θ as follows: Let

λ(θ) =
L(θ | X)

L(θ̂ | X)
, (12)

then the confidence interval can be constructed as

C(X) = {θ : λ(θ) ≥ c}. (13)

To see this, we assume θ0 is the true parameter, then R(X; θ) = R(X; θ0) in (9), and

from (10) – (13), we have

P{θ0 ∈ C(X)} = P{λ(θ0) ≥ c} = P{X ∈ A(θ0)}

= P{R(X; θ0) ≥ c} ≈ 1 − α. (14)

Hence, C(X) is a (1− α)100% confidence interval for θ0.

8



2.3 Empirical Likelihood Inference

As mentioned in Chapter 1, we letX1, X2, · · · , Xn be a random sample from distribution

function F0. Now we introduce some definitions which will be used throughout this work.

Definition 2.3.1. The empirical distribution function of X1, X2, · · · , Xn is given by

Fn(x) =
1

n

n∑
i=1

I{Xi ≤ x}, for −∞ < x <∞. (15)

Definition 2.3.2. The empirical likelihood function (Owen, 1988) is given by

L(F ) =
n∏

i=1

{F (Xi)− F (Xi−)}, (16)

where F is any distribution function.

Note that Definition 2.3.2 reflects a very literal interpretation of the notion of likeli-

hood. The value L(F ) is the probability of getting exactly the observed sample values

X1, X2, · · · , Xn. One consequence is that L(F ) = 0 if F is a continuous distribution. Thus

to have a positive nonparametric likelihood, a distribution function F must place positive

probability mass on every one of the observed data point Xi’s. It has been shown that

the empirical d.f. Fn in (15) maximizes L(F ) over all distribution function F . Empiri-

cal likelihood method is analogical to the parametric likelihood method, which is briefly

reviewed as follows.

For a parameter θ0 of F0, we often can express it as θ0 = T (F0), where T (·) is a

statistical functional. For hypothesis test (6), its empirical likelihood ratio test statistic

is analog to (7) given by

R(X) =

sup
T (F )∈Θ0

L(F )

sup
T (F )∈Θ

L(F )
=

sup
T (F )∈Θ0

L(F )

L(Fn)
, (17)

where as aforementioned, Fn is the MLE of F0 over the whole distribution function space.

9



If we consider a simpler hypothesis test

H0 : θ = θ0 vs. H1 : θ 6= θ0, (18)

where θ = T (F ) and θ0 = T (F0), the empirical likelihood ratio test statistic is analog to

(9) given by :

R(X) =

sup
T (F )=θ0

L(F )

L(Fn)
. (19)

In (18), if H0 holds, i.e. T (F ) = T (F0) = θ0, then R(X) should be close to 1 since Fn

is close to F0, in turn, T (Fn) ≈ T (F0) = θ0; if H0 does not hold, R(X) should be small

because F0 and Fn differ, i.e. θ0 = T (F0) and T (Fn) differ. Thus, we reject H0 when

R(X) < c for some predetermined constant 0 ≤ c ≤ 1. In practice, analog to (10), c is

determined as follows: Let 0 < α < 1, then, denoting R0 as R(X) under H0, we have for

R(X) in (19),

α = P{Type I error} = P{reject H0 | H0}

= P{R(X) ≤ c | T (F ) = θ0} = P{R0 ≤ c}

= P{−2 logR0 ≥ −2 log c} (20)

≈ P{χ2
1 ≥ −2 log c},

because Owen (1988) showed that −2 logR0 has a limiting chi-squared distribution under

null hypothesis in certain situations. Thus, c can be chosen via equation (20) for desired

significance level α.

From above (18) – (20), we know that the acceptance region of θ0 is analog to equation

(11) given by:

A(θ0) = {X | R(X) ≥ c} =

X

∣∣∣∣∣∣∣
sup

T (F )=θ0

L(F )

L(Fn)
≥ c

 . (21)

10



This can be used to construct confidence interval of θ as follows. Let

λ(F ) =
L(F )

L(Fn)
, (22)

then the confidence interval can be constructed analog to equation (13) given by:

C(X) = {θ = T (F ) | λ(F ) ≥ c} . (23)

To see this, we note that for a rather general class of statistical functionals T (·), we can

show that

θ ∈ C(X) iff sup
T (F )=θ

λ(F ) ≥ c. (24)

Thus, if we assume θ0 = T (F0) is the true parameter, then R(X) = R0 in (19), and from

(20) – (24), we have

P{θ0 ∈ C(X)} = P{ sup
T (F )=θ0

λ(F ) ≥ c} = P{X ∈ A(θ0)}

= P{R0 ≥ c} ≈ 1 − α. (25)

Hence, C(X) is a (1− α)100% confidence interval for θ0.

In Owen (1988), he established (25) for the mean:

θ0 = T (F0) =

∫
xdF0(x). (26)

In fact, he showed the following theorem:

Theorem 2.3.1. Let X1, X2, · · · , Xn be independent variables with non-degenerate distri-

bution function F0 with
∫
|x|3dF0 <∞. For 0 < c <1, let Fc,n = {F |λ(F ) ≥ c, F � Fn}

and define Xu,n = sup
∫
xdF ,XL,n = inf

∫
xdF with both extrema taken over F ∈ Fc,n.

Then,

lim
n → ∞

P{XL,n ≤ E(X) ≤ XU,n} = P (χ2
(1) ≤ −2 log c). (27)
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Furthermore, Owen extended (27) to M-estimates and any Fréchet differentiable sta-

tistical functional T (·). Empirical likelihood ratio confidence intervals make weak distri-

butional assumptions and are justified by having asymptotically correct coverage.

2.4 Likelihood Function for Right Censored Data

Censoring occurs when we are unable to observe the response variable of interest. The

commonly encountered form of a censored observation is the one in which observation

begins from origin time and terminates before the outcome of interest is observed. Since

the incomplete nature of the observation occurs in the right tail of the time axis, such

observations are said to be right censored. For example, in a clinical trial, a patient may

move out of town or die in an auto accident before death from the disease of interest could

be observed.

Now we derive the likelihood function for F0 for the right censored data (1). Let F0

and FC denote the distribution functions of Xi and Ci, respectively, and let (vi, δi) be the

observed value of (Vi, δi), 1 ≤ i ≤ n. Then, we have

12



P{Observe what we observed}

= P (V1 = v1, δ1 =δ1,V2 = v2, · · · , Vn = vn, δn =δn)

=
n∏

i=1

P (Vi = vi, δi = δi)

=
∏
δi=1

P (Vi = vi, δi = 1)
∏
δi=0

P (Vi = vi, δi = 0)

=
∏
δi=1

P (Xi = vi, Xi ≤ Ci)
∏
δi=0

P (Ci = vi, Xi > Ci)

=
∏
δi=1

P (Xi = vi, Ci ≥ vi)
∏
δi=0

P (Ci = vi, Xi > vi)

=
∏
δi=1

P (Ci ≥ vi)P (Xi = vi)
∏
δi=0

P (Xi > vi)P (Ci = vi)

=
∏
δi=1

[1− FC(vi−)][F0(vi)− F0(vi−)]
∏
δi=0

[1− F0(vi)][FC(vi)− FC(vi−)] (28)

=

(
n∏

i=1

[F0(vi)− F0(vi−)]δi [1− F0(vi)]
1−δi

)(
n∏

i=1

[FC(vi)− FC(vi−)]1−δi [1− FC(vi−)]δi

)
.

Since the last term of (28) does not involve F0, we know that the likelihood function for

F0 with right censored data (1) is given by

L(F ) =
n∏

i=1

[F (Vi)− F (Vi−)]δi [1− F (Vi)]
1−δi , (29)

because L(F ) is proportional to the full likelihood function derived in (28). Thus, the

NPMLE for F0 is F̂n which maximizes the value of the likelihood function L(F ) given by

(29). It has been proven that the NPMLE F̂n for right-censored data is the product-limit

estimator derived by Kaplan and Meier (1958). It can be written as follows:

F̂n(t) = 1 −
∏

V(i)≤ t

(
1 − 1

n− (i) + 1

)δ(i)

= 1 −
∏

V(i)≤ t

(
1−

δ(i)
n− (i) + 1

)
, (30)
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where 0 ≤ V(1) ≤ V(2) · · · ≤ V(n) < ∞. Note if there are ties in the V(i)’s, the uncensored

V(i)’s (δ(i) = 1) are ranked ahead of the censored V(i)’s (δ(i) = 0).

It is shown that F̂n given by (30) is asymptotically close to F0 uniformly in almost

surely sense for right censored data (Stute and Wang, 1993), and that under certain

conditions,
√
n(F̂n − F0) weakly converges to a centered Gaussian process (Gill, 1983).

2.5 Likelihood Function for Doubly Censored Data

Due to sampling methods or other factors beyond experiment control, the measure-

ments of lifetime may be censored from above and below. Doubly censored data has been

encountered in important medical studies such as breast cancer research (Ren and Peer,

2000) and African infant precocity study (Leiderman et al., 1973).

Now we derive the likelihood function for F0 for doubly censored data (2). Let F0, FC

and FD denote the distribution functions of Xi, Ci and Di, respectively, and let (vi, δi)
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be the observed value of (Vi, δi), 1 ≤ i ≤ n. Then, we have

P{Observe what we observed}

= P (V1 = v1, δ1 =δ1,V2 = v2, · · · , Vn = vn, δn =δn)

=
n∏

i=1

P (Vi = vi, δi = δi)

=
∏
δi=1

P (Vi = vi, δi = 1)
∏
δi=2

P (Vi = vi, δi = 2)
∏
δi=3

P (Vi = vi, δi = 3)

=
∏
δi=1

P (Xi = vi, Di < Xi ≤ Ci)
∏
δi=2

P (Ci = vi, Xi > Ci)
∏
δi=3

P (Di = vi, Xi ≤ Di)

=
∏
δi=1

P (Xi = vi, Di < vi ≤ Ci)
∏
δi=2

P (Ci = vi, Xi > vi)
∏
δi=3

P (Di = vi, Xi ≤ vi)

=
∏
δi=1

P (Di < vi ≤ Ci)P (Xi = vi)
∏
δi=2

P (Xi > vi)P (Ci = vi)
∏
δi=3

P (Xi ≤ vi)P (Di = vi)

=
∏
δi=1

P (Di < vi ≤ Ci)[F0(vi)− F0(vi−)]
∏
δi=2

[1− F0(vi)]P (Ci = vi)
∏
δi=3

F0(vi)P (Di = vi)

=

{∏
δi=1

[F0(vi)− F0(vi−)]
∏
δi=2

[1− F0(vi)]
∏
δi=3

F0(vi)

}

×

{∏
δi=1

P (Di < vi ≤ Ci)
∏
δi=2

P (Ci = vi)
∏
δi=3

P (Di = vi)

}
. (31)

Since the last term of (31) does not involve F0, we know that the likelihood function for

F0 with doubly censored data (2) is given by

L(F ) =
∏
δi=1

[F (vi)− F (vi−)]
∏
δi=2

[1− F (vi)]
∏
δi=3

F (vi), (32)

because L(F ) is proportional to the full likelihood function derived in (31). Thus, the

MLE for F0 is F̂n which maximizes the value of the likelihood function L(F ) given by

(32).

For doubly censored samples, Turnbull (1974) and Chang, and Yang (1987) gave the

self-consistent estimators (SCE) for the survival function F̄0 = 1− F0 with grouped data

and ungrouped data, respectively. Mykland and Ren (1996) showed that the NPMLE F̂n
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uniquely exists for doubly censored data, and they established sufficient and necessary

conditions for an SCE to be the NPMLE F̂n. Moreover, they gave a simple algorithm to

compute the NPMLE F̂n.

It is shown that F̂n is asymptotically close to F0 uniformly in almost surely sense for

doubly censored data (Gu and Zhang, 1993), and that under certain conditions,
√
n(F̂n−

F0) weakly converges to a centered Gaussian process (Gu and Zhang, 1993). The estimate

of the covariance function of the Gaussian process was given by Ren (1995) which includes

right censored data as a special case.
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CHAPTER 3

BOOTSTRAP

In this chapter, we briefly describe bootstrap method and its applications.

3.1 Introduction

By studying and synthesizing a lot of resampling ideas that were around in the history,

Efron (1979) established the bootstrap method for simulation based statistical analysis.

The idea of the bootstrap is to generate more new datasets through resampling the original

dataset. So that we still have the information of the original data and true underlying

sample properties are reproduced as closely as possible and unknown model characteristics

are replaced by sample estimates.

Unlike theoretical research, bootstrap is a computer-intensive method which allows to

study the performance of statistical methods by applying them repeatedly to bootstrap

resampling data. Its greatest advantage lies on routinely solving problems which are far

too complicated for traditional statistical analysis. Even for relatively simple problems,

the bootstrap is an increasingly good data analytic tool as we are now living in a world

of tremendously declining computational costs.

3.2 The Bootstrap Estimate

Let X1, X2, · · · , Xn be a random sample from unknown distribution function F0, and

let Fn be the empirical distribution function based on the sample X = (X1, X2, · · · , Xn).

We want to estimate a parameter of interest θ = T (X; F0) on sample X. Having observed
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X1 = x1, X2 = x2, · · · , Xn = xn, we can estimate θ = T (X; F0) on X by θ̂ = T (X; Fn)

based on plug-in principle. A bootstrap sample X∗ = (X∗
1 , X

∗
2 , · · · , X∗

n) is defined to be a

random sample of size n drawn from observed sample X with replacement. A bootstrap

replication of θ̂ is θ̂∗ = T (X∗; F ∗n) based solely on bootstrap sample X∗, where F ∗n is the

empirical distribution function based on bootstrap sample X∗.

3.2.1 The Bootstrap Estimate of Standard Error

The bootstrap estimate of standard error of θ̂ is a plug-in estimate. Specifically, we

denote the standard error of θ̂ as SEF0(θ̂). Then the bootstrap estimate of standard error

of θ̂ is defined by ŜEB, which is computed as follows.

(a) Select B independent bootstrap samples X∗1,X∗2, · · · ,X∗B, each consisting of n

data values randomly drawn from X with replacement.

(b) Evaluate the bootstrap replication corresponding to each bootstrap sample,

θ̂∗(b) = T (X∗b ; F ∗bn ), b = 1, 2, · · · , B, (33)

where F ∗bn is the empirical d.f. based on bootstrap sample X∗b, b = 1, 2, · · · , B.

(c) Estimate the standard error SEF0(θ̂) by the sample standard deviation of the B

replications

ŜEB =


B∑

b=1

[θ̂∗(b)− ¯̂
θ∗]2

(B − 1)


1/2

, (34)

where

¯̂
θ∗ =

B∑
b=1

θ̂∗(b)/B. (35)

The reason why the bootstrap can work is that for large enough n, Fn becomes close

to F0. The approximation in (34) converges to SEF0(θ̂) as B → ∞ by the law of large
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numbers and some mild assumptions. In practice, we might take B large enough so that

errors in (34) are negligible.

To get the confidence interval estimate of statistics through bootstrap, let’s assume we

are interested in the parameter θ = T (X; F0), and θ̂ = T (X; Fn) is its plug-in estimator.

One type of bootstrap confidence interval is percentile confidence interval. Suppose

the bootstrap data set X∗’s are randomly generated, and bootstrap replications θ̂∗ are

computed. Let Ĝ be the cumulative distribution function of θ̂∗. The 1 − 2α percentile

interval is defined by the α and 1 − α percentile of Ĝ : [Ĝ−1(α), Ĝ−1(1 − α)]. Since

Ĝ−1(α) = θ̂∗(α) is the αth quantile of the bootstrap distribution, we can also write the

percentile interval as

[θ̂∗(α), θ̂∗(1−α)]. (36)

The above expression refers to the ideal bootstrap situation in which the number

of bootstrap replications is infinite. In practice, we must use some finite number B of

replications, therefore, the approximate 1− 2α percentile interval is

[θ̂
∗(α)
B , θ̂

∗(1−α)
B ]. (37)

To proceed, we generate B independent bootstrap datasets X∗1, · · · ,XB

and compute

the bootstrap replications θ̂∗(b), b = 1, · · · , B, then θ̂
∗(α)
B would be the αth empirical

quantile of the θ̂∗(b) values. That is, the (B · α)th value in the ordered list of the B

replications of θ̂∗.

3.2.2 Bootstrap Central Limit Theorem

Let X1, X2, · · · , Xn be a random sample from distribution function F0, and let Fn be

the empirical distribution function based on X = (X1, X2, · · · , Xn). For approximating

the distribution functions of statistics θ(X; F0), since the empirical distribution function

Fn is close to F0 for large enough n, it is reasonable for us to hope that the distribution of

θ̂∗(X∗; F ∗n) is weakly asymptotically close to that of θ(X; F0). Therefore, the distribution
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of the bootstrapped statistic θ̂∗ can be approximated by Monte Carlo simulation. This

suggestive method has been validated with limit theorems for many particular θ by Efron

(1979), Bickel and Freedman (1981), among others.

Giné and Zinn (1990) offered a justification of the bootstrap for functions θ of con-

tinuous functions of the empirical measures, including the Kolmogorov-Smirnov and the

Cramér-von Mises statistics (in any number of dimensions). Their work is briefly described

as follows.

Let (S, `, P ) be a probability space, and let Xi : (SN, `N, PN) → (S, `, P ) be the

coordinate functions [i.i.d.(P)]. Denote the empirical measure as

Pn(w) = n−1

n∑
i=1

δXi(w), (38)

for w ∈ SN, where δx denotes the measure with mass 1 at x. Let X̂w
nj, j = 1, 2, · · · , n, be

i.i.d. [Pn(w)], and denote the empirical measure based on {X̂w
nj}n

j=1 as

P̂n(w) = n−1

n∑
j=1

δX̂w
nj
. (39)

If F is a class of measurable functions on (S, `) such that

F = sup
f∈F

|f | <∞, (40)

for all s ∈ S, then under some measurability on F , the conditions∫
F2dP <∞, (41)

and
√
n(Pn − P ) → Gp weakly in l∞(F), (42)

are necessary and sufficient for

√
n(P̂n(w) − Pn(w)) → G weakly in l∞(F), w − a.s. (43)
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for a centered Gaussian process G independent of w. Here, G coincides with Gp, the

Gaussian limit in (42).

The simple version of Giné and Zinn’s theorem in our notation is:

√
n(F ∗n − Fn)

w⇒ G, a.s. (44)

provided
√
n(Fn − F0)

w⇒ G.

3.2.3 Bootstrap for Censored Data

Bickel and Ren (1996) extended the central limit theorem for the bootstrapped empir-

ical process of Giné and Zinn (1990) to censored data. Specifically, for doubly censored

data (2) or right censored data (1), Bickel and Ren (1996) showed that

√
n(F̂ ∗n − F̂n)

w⇒ G, a.s. (45)

provided
√
n(F̂n−F0)

w⇒ G, where F̂n is the NPMLE based on censored data (Vi, δi), 1 ≤

i ≤ n, in (1) or (2), and F̂ ∗n is the NPMLE based on the bootstrap sample (V ∗
i , δ

∗
i ), 1 ≤

i ≤ n.

In Huang (1999), (45) was also established for partly interval-censored data (3) - (4).
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CHAPTER 4

PROPORTIONAL HAZARDS MODEL

This chapter describes the proportional hazards model, the Cox model and stratified

Cox model.

4.1 Introduction

There is a long history for studying events and time in statistical research and practice

which can be dated back to the 1700’s. First, we would like to introduce the definitions

of the survival variable, survival function and hazard function as follows.

Definition 4.1.1. A random variable T is a survival random variable if an observed

outcome t of T lies in the interval [0,∞). The survival function is defined as

F̄T (t) = P{T ≥ t} = 1− FT (t). (46)

where FT (t) is the distribution function of T .

Definition 4.1.2. The hazard function of T is defined by

hT (t) = lim
4→0+

P{ t ≤ T ≤ t+4 | T ≥ t }
4

. (47)

The study of survival functions is at the heart of survival analysis, and the hazard

function is the instantaneous mortality rate by its definition.
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By applying the definition of conditional probability, we have

hT (t) = lim
4→0+

P{ t ≤ T ≤ t+4 }
4 · P{ T ≥ t }

= lim
4→0+

FT (t+4)− FT (t)

4 · F̄T (t)

=
F ′T (t)

F̄T (t)
=
fT (t)

F̄T (t)
, (48)

where fT (t) is the p.d.f of T . For continuous distributions, we notice that

hT (t) =
F ′T (t)

F̄T (t)
= − d

dt

{
log F̄T (t)

}
, (49)

and F̄T (0) = 1. Thus,

F̄T (t) = exp

(
−
∫ t

0

hT (u)du

)
= exp {−HT (t)}, (50)

where H(·) is called the integrated hazard function. Furthermore, we have from (48) and

(50),

fT (t) = hT (t) exp {−HT (t)}. (51)

Therefore, once we get the hazard function, we can specify both the density and survival

function, and fully determine the distribution of T .

Other reasons for studying hazard function are:

(a) It has physically meanings as immediate risk given the objective survives to time t;

(b) Hazard-based models are often convenient when there is the censoring or other

incomplete observations;

(c) Sometimes it is the best way to compare two models.
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The hazard function has been widely used in the survival models. For a constant

vector Z of explanatory variables, the proportional hazards model is expressed as follows:

h(t; z,β) = ψ(z; β)h0(t). (52)

Here, h0(·) is the hazard under the standard conditions, also called baseline hazard func-

tion, and h(t; z,β) is a hazard function which is associated with h0(t) through covariate Z

and parameter β. The proportional hazards model (52) assumes that the hazard function

h(t; z,β) is proportional to h0(t) in that their ratio is constant over survival time which

is ψ(z; β). The function ψ(z; β) characterizes how the hazard function changes as a func-

tion of subject covariates Z. In the Cox model, which is discussed in the next section,

β reflects how the covariates change on the hazard function. In (52), function ψ(z,β)

must be chosen such that h(t; z,β) > 0, and when Z = 0, we require ψ(0; β) = 1, so that

h(t;0,β) = h0(t).
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4.2 Cox Model

One of the most popular proportional hazards model is Cox Model as described in

this section. The foundation work in this area was done by Cox (1972). This work has

become a platform for building the methodology of the last 30 years. The Cox model is

the most important distribution-free regression model used in survival analysis.

As a special case of proportional hazards model (52), the Cox model assumes:

ψ(z; β) = eβT z. (53)

Thus, the Cox model is expressed as

h(t; β, z) = eβT zh0(t). (54)

One appealing part of the Cox model is its interpretation as relative risk ratio. For

example, when a covariate is dichotomous, like gender with z1 = 1 for males and z0 = 0

for females, the hazard ratio of Cox model becomes

eβT z1h0(t)

eβT z0h0(t)
= eβ(z1−z0) = eβ. (55)

Intuitively, hazard is a measure of imminent risk, and it is reasonable to model this

effectively. The reasons for considering the Cox model (54) are that:

(a) There is a simple easily understood interpretation to the idea that the effect of

treatment is to multiply the hazard by a constant factor;

(b) In some fields empirical evidence support the assumption of proportionality of haz-

ards in distinct treatment groups;
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(c) Censoring and the occurrence of several types of failure are easily to be accommo-

dated within this formulation and in particular the technical problems of statistical

inference have a simple solution when h0(t) is arbitrary.

The usual estimator β̂ for β is computed by the Newton-Raphson method and is

described as follows. To make our notation simpler, we consider the scalar parameter β

and a single covariate Z.

Assume we have n independent observations, let τ1 < · · · < τm be m uncensored

failure times, and the remaining n−m observations are right censored. Let i denote the

individual failing at τi, and zi is the covariate value of i−th individual. We can obtain

the partial likelihood function L(β), and the MLE β̂ of β is a solution of the equation

U(β) =
∂ logL(β)

∂β
=

m∑
i=1

{zi −Ai(β)} = 0, (56)

where Ai(β) =

( ∑
k∈ Ri

zke
zkβ

)
/

( ∑
k∈ Ri

ezkβ

)
, and Ri = {j : tj ≥ τi} denotes the corre-

sponding risk sets at time τi. The Newton-Raphson method is usually used to solve (56)

for β̂.

4.3 Two-Sample Cox Model

This is one of the specific models we are interested in this work. Comparing survival

distributions often occurs in biomedical study. For example, a researcher may want to

compare the survival times of two or more groups of patients exposed to different treat-

ments. A clinical oncologist may be interested in comparing the ability of two or more

treatments to prolong life or maintain health. Usually the survival time would be different

for different groups. Of course, we can draw the graphs of estimated survival curves, but

that is only a rough way to show the difference. It does not show whether the difference
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is significant or just random variations. Thus, we need to use statistical test to compare

them. As follows, we describe the two sample problems for Cox model.

For a simpler form of Cox model:

h(t; z) = h0(t) e
zβ0 , z = 0, 1, (57)

where β0 is a regression parameter, h0(t) is an arbitrary unspecified baseline hazard func-

tion, and h(t; z) is the hazard function with z as the covariate, perhaps representing control

and treatment groups, in which case the parameter β0 measures the effect of treatment.

Denote F (t; z) as the distribution function corresponding to h(t; z). We let

X1, X2, · · · , Xn0 be a random sample from a distribution F (t; 0) ≡ G0(t),

Y1, Y2, · · · , Yn1 be a random sample from a distribution F (t; 1) ≡ H0(t), (58)

where the two samples are independent and both nonnegative. From (50) we know that

Xi’s satisfy

Ḡ0(t) = exp

(
−
∫ t

0

h0(u)du

)
, (59)

while under model (57), Yi’s satisfy

H̄0(t) = exp

(
−
∫ t

0

eβh0(u)du

)
=
[
Ḡ0(t)

]eβ

. (60)

Then the two-sample Cox model (57) is equivalent to

H̄0(t) = [Ḡ0(t)]
γ0 , (61)

where γ0 = exp(β0) > 0, and Ḡ0(t) = 1−G0(t), which is a continuous survival function.
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4.4 Stratified Cox Model

Up to this point, we made the proportional hazards assumptions for the Cox model,

i.e., the hazard ratio comparing any two specifications of covariates is constant. We also

used a proportional hazards model with a common unspecified baseline hazard function.

But this may not be true for all covariates in the real world. For example, we may have

data from a study in which subjects were randomized among sites. If we account for site

by including it as a covariate, the model forces the baseline hazards to be proportional

across study sites. This may not be justified, and if it isn’t, one possible solution is to use

site as a stratification variable, whereby each site would have a separate baseline hazard

function. Thus, we introduce the stratified Cox model.

The stratified Cox model is a modification of the Cox proportional hazards model

that allows for control by stratification of a covariate that may not satisfy the propor-

tional hazards (PH) assumption. By using the covariate which may not satisfy the PH

assumption as stratified variable, like Sites, and keeping the covariates that satisfy the

PH assumptions in the model, the stratified Cox model extends the Cox model.

The general stratified Cox model can be described as follows:

hk(t | z) = hk0(t) exp(zT β), k = 1, 2, · · · , N, (62)

where hk(t | z) is the conditional hazard function of r.v. Xki given Zki = z, and hk0(t)

is the baseline hazard function for the k−th stratum. Here, (Xk1,Zk1), · · · , (Xknk
,Zknk

)

are i.i.d. for each k = 1, 2, · · · , N, and Zkj’s are i.i.d. random vectors cross strata. Here,

hk0(t) is allowed to be different for each stratum, but the coefficients β are the same for

each stratum. Specifically, in Chapter 6 we will consider two strata problem, i.e. k=1, 2.

The estimate β̂ of β obtained from usual estimator by Newton-Raphson method is

mentioned in Section 4.2, but this method only works for i.i.d. non-censored data and right

censored data. It does not apply to doubly censored data and partly interval-censored

data. In Chapter 6, we propose a new approach to estimate β which is not only applicable
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to non-censored data and right censored data, but also to doubly censored data and partly

interval-censored data.
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CHAPTER 5

TWO-SAMPLE COX MODEL

This chapter presents a goodness-of-fit test for the two-sample Cox model from Ren

and He (2005), discusses related computation issues, and includes some simulation results

and applications to three real data sets.

5.1 Semi-parametric Likelihood Estimation

First, we consider the two sample Cox model expressed in (61) for noncensored data,

then extend our methods to censored data later.

Following the notations in Section 4.3, we, without loss of generality, let Z1 < Z2 <

· · · < Zn be the ordered observations of X1, X2, · · · , Xn0 , Y1, Y2, · · · , Yn1 in (58), where

n = n0 + n1. In order to test the validity of the Cox model (61), a semi-parametric

maximum likelihood estimator (SPMLE) (γ̃, G̃) for (γ0, G0) based on two samples has

been derived as follows.

The likelihood function for two-sample problem (61) is given by

L(γ,G) =

{
n0∏
i=1

[G(Xi)−G(Xi−)]

}{
n1∏

j=1

[H(Yj)−H(Yj−)]

}

=

{
n0∏
i=1

[G(Xi)−G(Xi−)]

}{
n1∏

j=1

γ[Ḡ(Yj)]
γ−1[G(Yj)−G(Yj−)]

}

= γn1

n∏
i=1

pi[1−G(Zi)]
δi(γ−1) = γn1

n∏
i=1

pi

(
n+1∑

j=i+1

pj

)δi(γ−1)

, (63)
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where pi = G(Zi)−G(Zi−), δi = I{Zi ∈ {Y1, Y2, · · · , Yn1}} for 1 ≤ i ≤ n and
n+1∑
i=1

pi = 1.

If (γ̃, G̃) is the solution of the following optimization problem:


maxL(γ,p) = γn1

n∏
i=1

pi

(
n+1∑

j=i+1

pj

)δi(γ−1)

,

subject to: 0 ≤ pi ≤ 1,
n+1∑
i=1

pi = 1,

(64)

then γ̃ and G̃ are the SPMLE for γ0 and G0, respectively.

From Ren and He (2005), the solution of (γ̃, G̃) in (64) is derived, and is presented

as follows. Let

Gn0(x) = n−1
0

n0∑
i=1

I{Xi ≤ x}, Hn1(x) = n−1
1

n1∑
i=1

I{Yi ≤ x},

Fn(x) = n−1

n∑
i=1

I{Zi ≤ x} = ρ0Gn0(x) + ρ1Hn1(x), (65)

where ρ0 = n0/n and ρ1 = n1/n are assumed to remain fixed. It is shown (Ren and He,

2005) that if γ̃ ≥ 1 is a solution of

0 = ψ(γ) ≡ n1

γ
+ n1n

∫ ∞

0

H̄n1(x−) log

{
F̄n(x) + ρ1(γ − 1)H̄n1(x−)

F̄n(x) + ρ1(γ − 1)H̄n1(x−) + n−1

}
dFn(x),

(66)

then G̃ is explicitly given through (Gn0 , Hn1) by

¯̃G(t) =
∏
Zi≤t

F̄n(Zi) + ρ1(γ̃ − 1)H̄n1(Zi−)

F̄n(Zi) + ρ1(γ̃ − 1)H̄n1(Zi−) + n−1

= exp

{
n

∫ t

0

log

(
F̄n(x) + ρ1(γ̃ − 1)H̄n1(x−)

F̄n(x) + ρ1(γ̃ − 1)H̄n1(x−) + n−1

)
dFn(x)

}
. (67)

It should be noted that the expression of the last term of (67) allows ties among Zi’s.

However, it is difficult to find the solution of ψ(γ) = 0 in practice, because ψ(γ) is

not monotone. Using Taylor’s expansion of log function in (66), under some regularity
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conditions, it is shown that ψ(γ) = (n1/γ)[−ρ0ϕn(γ) + Op(n
−1 log n)] for γ ≥ 1 and

√
n(γ̃ − γ̃1) = op(1) for ϕn(γ̃1) = 0, where

ϕn(γ) =

∫ ∞

0

−Ḡn0(x)dHn1(x) + γH̄n1(x)dGn0(x)

F̄n(x) + ρ1(γ − 1)H̄n1(x−)
, γ ≥ 1. (68)

Therefore for the rest of this chapter, γ̃ is calculated as the solution of ϕn(γ) = 0.

The advantage of using ϕn(γ) = 0 instead of ψ(γ) = 0 to find γ̃ is because if

δ = ϕn(1) =

∫ ∞

0

−Ḡn0(x)dHn1(x) + H̄n1(x)dGn0(x)

ρ0Ḡn0(x) + ρ1H̄n1(x)
≤ 0, (69)

then ϕn(γ) = 0 has a unique solution on interval [1,∞) because ϕn(∞) = 1/ρ1 > 0 and

ϕn(γ) is a strictly increasing function for γ ≥ 1. Thus, it is much easier to calculate γ̃

through ϕn(γ) in practice. If δ > 0 in (69), we can just switch the positions of G0 and

H0 in (58) - (61), then function ϕn(γ) in (68) with (ρ0, Gn0) and (ρ1, Hn1) switched has a

unique solution in [1,∞) for ϕn(γ) = 0.

On the other hand, if γ0 = 1 in (61), we have the usual two-sample goodness-of-fit

problem, for which there are various testing methods ready to be used. Therefore, here

we only focus on the case γ0 6= 1 in (61). To see the relation between (61) and (69), we

consider:

ϕ(γ) =

∫ ∞

0

−Ḡ0(x)dH0(x) + γH̄0(x)dG0(x)

ρ0Ḡ0(x) + ρ1γH̄0(x)
, γ > 0. (70)

Under (61), γ0 is the unique solution of ϕ(γ) = 0 on interval (0,∞) because ϕ′(γ) > 0

for γ > 0, and based on the strong uniform convergence of Gn0 and Hn1 , it can be shown

that δ = ϕ(1)+oa.s.(1) . This means that if γ0 > 1 in (61), we have ϕ(1) < 0, thus in (69)

we have δ < 0 all but finitely often with probability 1. Hence, without loss of generality,

we assume (69) and γ0 > 1 in (61) throughout this chapter.

32



Asymptotic Results:

To state some related asymptotic results from Ren and He (2005), we let ζ > 0 be any

constant inside the support of G0 and let γ̃ζ be the solution of function ϕn,ζ(γ) = 0 for

ϕn,ζ(γ) =

∫ ζ

0

−Ḡn0(x)dHn1(x) + γH̄n1(x)dGn0(x)

F̄n(x) + ρ1(γ − 1)H̄n1(x−)
, γ ≥ 1. (71)

In practice, if ζ is greater than Zn, the largest observation of two samples, then we have

γ̃ = γ̃ζ and G̃ = G̃ζ . Then,

Theorem 5.1.1. Under model (61) and the strong consistency and weakly convergence

of Gn0 and Hn1,

(i) γ̃
a.s.→ γ0 , as n→∞;

(ii)
√
n(γ̃ζ − γ0)

D→ N(0, σ2
ζ ), as n → ∞;

(iii)
√
n(G̃ζ − Gn0) weakly converges to a centered Gaussian process on [0, ζ], where G̃ζ

is given by (67) with γ̃ replaced by γ̃ζ.

Censored Data Case:

Our proofs for Theorem 5.1.1 only rely on the following asymptotic results: ‖ Gn0 −

G0 ‖
a.s.→ 0, ‖ Hn1−H0 ‖

a.s.→ 0, and
√
n0 (Gn0 − G0) and

√
n1 (Hn1 − H0) weakly converge

to centered Gaussian processes, respectively. Thus, above SPMLE can be extended to the

censored data as follows.

If one of the two samples or both in (58) are subject to censoring, then based on

censored data, the nonparametric maximum likelihood estimators (NPMLE) for G0 and

H0 can be calculated and expressed as:

Ĝ(x) =

m0∑
i=1

p̂X
i I{WX

i ≤ x} and Ĥ(x) =

m1∑
i=1

p̂Y
i I{W Y

i ≤ x}, (72)
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respectively, where WX
1 < WX

2 < · · · < WX
m0

with p̂X
i > 0, 1 ≤ i ≤ m0 and W Y

1 < W Y
2 <

· · · < W Y
m1

with p̂Y
i > 0, 1 ≤ i ≤ m1; see Kaplan and Meier (1958) for right censored

data, Mykland and Ren (1996) for doubly censored data, and Huang (1999) for partly

interval-censored data. As reviewed in Chapter 2, under suitable conditions, we know that

‖ Ĝ−G0 ‖
a.s.→ 0, ‖ Ĥ −H0 ‖

a.s.→ 0, and
√
n0 (Ĝ−G0) and

√
n1 (Ĥ −H0) weakly converge

to centered Gaussian processes, respectively, for right censored data (Gill, 1983; Stute and

Wang, 1993), doubly censored data (Gu and Zhang, 1993) and partly interval-censored

data (Huang, 1999). Therefore, the asymptotic results in Theorem 5.1.1 also apply for

these censored data.

For computation, we just need to calculate (66) - (69) with (Gn0 , Hn1) replaced by

(Ĝ, Ĥ) in (72), then the SPMLE for (γ0, G0) with censored data under model (61) can

be calculated accordingly denoted as (γ̂, G̃c).

5.2 Goodness of Fit Test

We construct the test statistic for checking the validity of model (61) based on the

following idea. There are two ways to estimate G0: one is to use the empirical d.f. Gn0 of

the first sample, and the other is to use both samples under model assumption (61). We

use the Kolmogorov-Smirnov type statistic to measure the difference between these two

estimators, which gives the goodness-of-fit test statistic. Thus, once the SPMLE (γ̃, G̃)

for (γ0, G0) based on two samples is calculated, the following Kolmogorov-Smirnov type

statistic may be used as test statistic for checking the validity of model (61).

For noncensored data, if δ ≤ 0, then the test statistic is

Tn =
√
n ‖ G̃−Gn0 ‖ . (73)
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If δ > 0, the test statistic is

Tn =
√
n ‖ H̃ −Hn1 ‖ . (74)

For censored data, the SPMLE is denoted as (γ̂, G̃c), and Ĝ and Ĥ are given in (72).

If δ ≤ 0, the test statistic for censored data is

T̂n =
√
n ‖ G̃c − Ĝ ‖ . (75)

If δ > 0, the test statistic for censored data is

T̂n =
√
n ‖ H̃c − Ĥ ‖ . (76)

In order to compute the critical value or the p−value for test statistic Tn or T̂n, we

suggest the following bootstrap procedure.

Bootstrap Procedure

Noncensored Data:

LetX∗
1 , X

∗
2 , · · · , X∗

n0
and Y ∗

1 , Y
∗
2 , · · · , Y ∗

n1
be bootstrap samples with replacement drawn

from X1, X2, · · · , Xn0 and Y1, Y2, · · · , Yn1 , respectively, and compute G∗n0
and H∗

n1
as fol-

lows:

G∗n0
(x) = n0

−1

n0∑
i=1

I{X∗
i ≤ x}, H∗

n1
(x) = n1

−1

n1∑
i=1

I{Y ∗
i ≤ x},

F ∗n(x) = ρ0G
∗
n0

(x) + ρ1H
∗
n1

(x). (77)

Following the same procedure as aforementioned, we get

1− G̃∗(t) = exp

{
n

∫ t

0

log

(
F̄ ∗n(x) + ρ1(γ̃

∗ − 1)H̄∗
n1

(x−)

F̄ ∗n(x) + ρ1(γ̃∗ − 1)H̄∗
n1

(x−) + n−1

)
dF ∗n(x)

}
, (78)

where γ̃∗ is the solution of ϕn(γ) = 0 in (68) with (Gn0 , Hn1) replaced by (G∗n0
, H∗

n1
) in

(77).
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Censored Data:

The bootstrap method described above for noncensored data also works for cen-

sored data. Let (V X∗
1 , δX∗

1 ) , · · · , (V X∗
n0
, δX∗

n0
) and (V Y ∗

1 , δY ∗
1 ) , · · · , (V Y ∗

n1
, δY ∗

n1
) be bootstrap

samples with replacement drawn from censored samples (V X
1 , δX

1 ) , · · · , (V X
n0
, δX

n0
) and

(V Y
1 , δ

Y
1 ) , · · · , (V Y

n1
, δY

n1
), respectively, and compute Ĝ∗ and Ĥ∗ using (72) with the boot-

strap samples (V X∗
i , δX∗

i ), 1 ≤ i ≤ n0 and (V Y ∗
i , δY ∗

i ), 1 ≤ i ≤ n1, respectively. Following

the same procedure as aforementioned, we get

1− G̃∗c(t) = exp

{
n

∫ t

0

log

(
¯̂
F ∗n(x) + ρ1(γ̃

∗ − 1)
¯̂
H∗(x−)

¯̂
F ∗n(x) + ρ1(γ̃∗ − 1)

¯̂
H∗(x−) + n−1

)
dF̂ ∗n(x)

}
, (79)

where γ̃∗ is the solution of ϕn(γ) = 0 in (68) with (Gn0 , Hn1) replaced by (Ĝ∗, Ĥ∗).

Compute p−value:

Noncensored Data:

If δ∗ ≤ 0, the critical value or the p−value can be estimated by the distribution of

T ∗n =
√
n ‖ (G̃∗ −G∗n0

) − (G̃−Gn0) ‖ . (80)

If δ∗ > 0 , the critical value or the p−value can be estimated by the distribution of

T ∗n =
√
n ‖ (H̃∗ −H∗

n1
) − (H̃ −Hn1) ‖ . (81)

Based on the theorem of Giné and Zinn (1990) described in Section 3.2.2, the bootstrap

consistency holds here.

Censored Data:

If δ∗ ≤ 0, the critical value or the p−value can be estimated by the distribution of

T̂ ∗n =
√
n ‖ (G̃∗c − Ĝ∗) − (G̃c − Ĝ) ‖ . (82)
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If δ∗ > 0, the critical value or the p−value can be estimated by the distribution of

T̂ ∗n =
√
n ‖ (H̃∗

c − Ĥ∗) − (H̃c − Ĥ) ‖ . (83)

Based on the theorems of Bickel and Ren (1996) and Huang (1999), the bootstrap con-

sistency also holds here.

We note that when model assumption (61) does not hold, a minor modification of the

proofs for Theorem 5.1.1 shows that: Tn
P→∞, as n→∞, but

√
n ‖ (G̃∗−G∗n0

) − (G̃−

Gn0) ‖ is still asymptotically centered Gaussian. Hence, the power of our proposed test

is very good, which has been shown later in our simulation studies and analysis of real

datasets.

5.3 Computation Issues

This section discusses the detailed computation procedures to calculate the test statis-

tic.

First, calculate the NPMLE of two samples.

Case 1 : Noncensored Data

Let X1, X2, · · · , Xn0 be a random sample from G0(x), and Y1, Y2, · · · , Yn1 a random

sample from H0(x), where Yi’s are independent from Xi’s. Compute the empirical d.f.’s

Gn0 and Hn1 , respectively, as in (65).

Case 2 : Right Censored Data

Let (V X
1 , δX

1 ) , · · · , (V X
n0
, δX

n0
) and (V Y

1 , δ
Y
1 ) , · · · , (V Y

n1
, δY

n1
) be right censored data (1)

for the first and second samples in (58), respectively. Compute Ĝ(x) and Ĥ(x) using (30).

Let WX
1 < WX

2 < · · · < WX
m0

be distinct values of V X
1 , · · · , V X

n0
. By rearranging the

data, we get
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Ĝ(x) =

m0∑
i=1

p̂X
i I{WX

i ≤ x}, i = 1, 2, · · · ,m0. (84)

with all p̂X
i > 0, in which p̂X

1 = Ĝ(WX
1 ), p̂X

i = Ĝ(WX
i )− Ĝ(WX

i−1), for i = 2, 3, · · · ,m0.

Ĥ is calculated similarly using sample (V Y
i , δ

Y
i ), 1 ≤ i ≤ n1.

Case 3 : Doubly Censored Data

Let (V X
1 , δX

1 ) , · · · , (V X
n0
, δX

n0
) and (V Y

1 , δ
Y
1 ) , · · · , (V Y

n1
, δY

n1
) be doubly censored data (2)

for the first and second samples in (58), respectively. Using the algorithm proposed by

Maykland and Ren (1996), compute

Ĝ(x) =

m0∑
i=1

p̂X
i I{WX

i ≤ x} and Ĥ(x) =

m1∑
i=1

p̂Y
i I{W Y

i ≤ x}, (85)

where WX
1 < · · · < WX

m0
and W Y

1 < · · · < W Y
m1

be distinct values of V X
i , 1 ≤ i ≤ n0 and

V Y
i , 1 ≤ i ≤ n1, respectively.

It should be noted that the NPMLE Ĝ and Ĥ may not be a proper distribution

function. A common convention (Efron, 1967) is to adjust probability mass on the largest

observation to make Ĝ(WX
m0

) = 1 or Ĥ(W Y
m1

) = 1. This kind of adjustment of NPMLE

applies to all NPMLEs in this work unless otherwise mentioned.

Now we use censored data as the example to demonstrate the detailed steps for com-

puting test statistic T̂n given in (75) - (76). Note that noncensored data follow the same

steps with (Ĝ, Ĥ) replaced by (Gn0 , Hn1).

Let

• n = n0 + n1

• ρ0 = n0/n and ρ1 = n1/n

• Z1 < Z2 < · · · < Zm are all the jump points of Ĝ and Ĥ

• F̂n(x) = ρ0Ĝ(x) + ρ1Ĥ(x)

38



To test the hypothesis (61):

H0 : H̄0(x) = [Ḡ0(x)]
γ0 vs. H1 : H0 not true,

where γ0 > 0, the test statistic is calcualted by the following steps:

Step 1: Compute

δ =

∫ ∞

0

¯̂
G(x)d

¯̂
H(x)− ¯̂

H(x)d
¯̂
G(x)

ρ0
¯̂
G(x) + ρ1

¯̂
H(x)

. (86)

Step 2: If δ ≤ 0:

(a) Compute function:

ϕn(γ) =

∫ ∞

0

− ¯̂
G(x)dĤ(x) + γ

¯̂
H(x)dĜ(x)

¯̂
Fn(x) + ρ1

¯̂
H(x−)(γ − 1)

. (87)

(b) Compute γ̂:

Find a solution of ϕn(γ) = 0, and denote the solution as γ̂. Note that ϕn is increasing

on [1, ∞) with ϕn(1) ≤ 0 and ϕn(∞) > 0. We use bisection method to get γ̂, and the

stopping rule is when |ϕn(γ̂)| < 0.001.

(c) Compute G̃c: G̃c is a SPMLE which puts probability mass on each distinct obser-

vation, therefore for j = 1, 2, · · · ,m,

1− G̃c(Zj) = exp

{
n

∫ Zj

0

log

(
¯̂
Fn(x) + ρ1

¯̂
H(x−)(γ̂ − 1)

¯̂
Fn(x) + ρ1

¯̂
H(x−)(γ̂ − 1) + n−1

)
dF̂n(x)

}
, (88)

which can be written as:

G̃c(x) =
m∑

i=1

p̃X
i I {Zi ≤ x}. (89)

(d) Compute test statistic T̂n:

T̂n =
√
n ‖ G̃c − Ĝ ‖=

√
n sup

0≤x<∞
| G̃c(x)− Ĝ(x)|. (90)
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This can be calculated by
√
n max

1≤i≤m
| G̃c(Zi)− Ĝ(Zi)|, (91)

where Ĝ(Zj) =
∑m0

i=1 p̂
X
i I{WX

i ≤ Zj}, j = 1, 2, · · · ,m.

Step 3: If δ > 0:

(a) Compute function:

ϕn(γ) =

∫ ∞

0

− ¯̂
H(x)dĜ(x) + γ

¯̂
G(x)dĤ(x)

¯̂
Fn(x) + ρ0

¯̂
G(x−)(γ − 1)

. (92)

(b) Compute ξ̂:

Find a solution of ϕn(γ) = 0, and denote the solution as ξ̂. Note that ϕn is increasing

on [1, ∞) with ϕn(1) ≤ 0 and ϕn(∞) > 0. We use bisection method to find the solution,

and the stopping rule is when |ϕn(ξ̂)| < 0.001.

(c) Compute H̃c: H̃c is a SPMLE which puts probability mass on each distinct obser-

vation, therefore for j = 1, 2, · · · ,m,

1− H̃c(Zj) = exp

{
n

∫ Zj

0

log

(
¯̂
Fn(x) + ρ0

¯̂
G(x−)(ξ̂ − 1)

¯̂
Fn(x) + ρ0

¯̂
G(x−)(ξ̂ − 1) + n−1

)
dF̂n(x)

}
, (93)

which can be written as:

H̃c(x) =
m∑

i=1

p̃Y
i I {Zi ≤ x}. (94)

(d) Compute test statistic T̂n:

T̂n =
√
n ‖ H̃c − Ĥ ‖=

√
n sup

0≤x<∞
| H̃c(x)− Ĥ(x) | =

√
n max

1≤i≤m
| H̃c(Zi)− Ĥ(Zi) |,

(95)

where Ĥ(Zj) =
∑m1

i=1 p̂
Y
i I{W Y

i ≤ Zj}, j = 1, 2, · · · ,m.
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For bootstrap sample:

As follows, we state the bootstrap procedure for censored data since noncensored

sample is just a special case of censored samples.

Let (V X∗
1 , δX∗

1 ) , · · · , (V X∗
n0
, δX∗

n0
) and (V Y ∗

1 , δY ∗
1 ) , · · · , (V Y ∗

n1
, δY ∗

n1
) be bootstrap samples

of censored samples (V X
1 , δX

1 ) , · · · , (V X
n0
, δX

n0
) and (V Y

1 , δ
Y
1 ) , · · · , (V Y

n1
, δY

n1
), respectively,

and compute Ĝ∗ and Ĥ∗ using the similar way as aforementioned in Case 2 and Case 3 with

the bootstrap samples (V X∗
i , δX∗

i ), 1 ≤ i ≤ n0 and (V Y ∗
i , δY ∗

i ), 1 ≤ i ≤ n1, respectively.

Let F̂ ∗n(x) = ρ0Ĝ
∗(x) + ρ1Ĥ

∗(x), and let Z∗1 < Z∗2 < · · · < Z∗m∗ be all the jump

points of Ĝ∗ and Ĥ∗, then the statistic T̂ ∗n for the bootstrap sample is calculated following

the same procedure as mentioned before: Calculate

δ∗ =

∫ ∞

0

¯̂
G∗(x)d

¯̂
H∗(x)− ¯̂

H∗(x)d
¯̂
G∗(x)

ρ0
¯̂
G∗(x) + ρ1

¯̂
H∗(x)

. (96)

If δ∗ ≤ 0: find the solution γ̂∗ of

0 = ϕn(γ) =

∫ ∞

0

− ¯̂
G∗(x)dĤ∗(x) + γ

¯̂
H∗(x)dĜ∗(x)

¯̂
F ∗n(x) + ρ1

¯̂
H∗(x−)(γ − 1)

. (97)

Then, compute

1− G̃∗c(Z
∗
j ) = exp

{
n

∫ Z∗
j

0

log

(
¯̂
F ∗n(x) + ρ1

¯̂
H∗(x−)(γ̂∗ − 1)

¯̂
F ∗n(x) + ρ1

¯̂
H∗(x−)(γ̂∗ − 1) + n−1

)
dF̂ ∗n(x)

}
, (98)

and T̂ ∗n is calculated by

T̂ ∗n =
√
n ‖ (G̃∗c − Ĝ∗) − (G̃− Ĝ) ‖

=
√
n sup

0≤x<∞
| (G̃∗c(x)− Ĝ∗(x)) − (G̃(x)− Ĝ(x)) |

=
√
n max

1≤i≤m
| (G̃∗c(Zi)− Ĝ∗(Zi)) − (G̃(Zi)− Ĝ(Zi)) |. (99)
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If δ∗ > 0: calculate H̃∗
c similarly by switching (ρ0, Ĝ

∗) and (ρ1, Ĥ
∗) in (97) and (98),

and T̂ ∗n is calculated by

T̂ ∗n =
√
n ‖ (H̃∗

c − Ĥ∗) − (H̃ − Ĥ) ‖

=
√
n sup

0≤x<∞
| (H̃∗

c (x)− Ĥ∗(x)) − (H̃(x)− Ĥ(x)) |

=
√
n max

1≤i≤m
| (H̃c(Zi)− Ĥ∗(Zi)) − (H̃(Zi)− Ĥ(Zi)) |. (100)

5.4 Simulation Results

In this section, we present some simulation results.

Simulation on Estimations: Let Exp(µ) represent the exponential distribution with

mean µ. In our simulation studies, we consider G0 = Exp(1) and H0 = Exp(0.5) with γ0 =

2, and generate 20,000 samples with n0 = 150 and n1 = 100, respectively. The simulation

average of γ̃ is 2.031 with standard deviation (s.d.) 0.282, while the uniform distance

between Tn and T ∗n is 0.017. The same study is repeated for n0 = 100 and n1 = 150,

which gives the simulation average of γ̃ as 2.026 with s.d. 0.285, and ‖ Tn−T ∗n ‖ = 0.025.

The simulation distributions of Tn and T ∗n are shown in Figure A and Figure A, which

are presented in the Appendix. All these results indicate that our proposed procedures

perform very well.

Simulation on Powers: To study the power of the goodness-of-fit test, we generate

1,000 samples from G0 = Exp(1) and H0 = Exp(0.5) + κU with n0 = 150 and n1 = 100,

respectively, where U represents a uniform random variable from (0, 1) and κ is a constant.

For each sample, 400 bootstrap samples are used to estimate the 95th percentile of T ∗n ,

which is used as the critical value for Tn. The powers of the test with different values of κ

are included in Table 5.1. The same studies for test with right censored data and doubly

censored data are conducted, respectively, and the results are also included in Table 5.1.

In Table 5.1, for right censored sample (1), CG = Exp(2) is the right censoring variable for
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the first sample, and CH = Exp(1) is the right censoring variable for the second sample;

for doubly censored sample (2), CG = Exp(3) and DG = (2/3)CG − 2.5 are the right

and left censoring variable for the first sample, respectively, and CH = Exp(1) and DH =

(2/3)CH−2.5 are the right and left censoring variable for the second sample, respectively.

Table 5.1: Powers of Tests with 95% Significance Level

κ
Samples (% of censoring with κ = 0) -1/2 -1/4 -1/8 -1/16 0 1/16 1/8 1/4 1/2

No censoring 0.999 0.805 0.204 0.094 0.056 0.115 0.255 0.708 0.969
Right Censoring:

CG = Exp(2) (33.13%) 0.958 0.368 0.093 0.082 0.075 0.119 0.193 0.465 0.768
CH = Exp(1) (33.14%)

Double Censoring:
CG = Exp(3) (24.93%)
DG = (2/3)CG - 2.5 (19.01%) 0.976 0.411 0.116 0.088 0.084 0.117 0.216 0.467 0.796
CH = Exp(1) (33.14%)
DH = (2/3)CH - 2.5 (1.47 %)

From Table 5.1, the powers behave as expected according to Theorem 5.1.1 when

there is no censoring. For right censored data and doubly censored data, the powers also

behave as they should, though the efficiency of the powers is less than that when there

is no censoring. But this is expected because the samples considered here are rather

heavily censored with moderate sample sizes. Though not included here, our extensive

simulation studies show that when sample sizes n0 and n1 increase, the power under

the null hypothesis (i.e., κ = 0) for censored data approaches 0.05, which is the correct

theoretical power. The powers test curves are shown in Figure A given in the Appendix.
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5.5 Examples

In this section, we apply the proposed goodness-of-fit test to three real datasets.

Example 1. In a recent study of the age-dependent growth rate of primary breast

cancer (Peer et al., 1993; Ren and Peer, 2000), the age X, at which a tumor volume was

developed, was observed among 236 women through biennial mammographic screening

from 1981 to 1990 in Nijmegen, The Netherlands. This dataset is doubly censored; see

Ren and Gu (1997) for a brief description. Among these 236 women, n0 = 187 began

their screening mammograms after age of 50, while n1 = 49 of them began before 50.

These two samples contain 56 and 23 right censored observations, and 37 and 8 left

censored observations, respectively. To study the effects of the starting age of the screening

mammogram in detection of breast cancer, we fit the Cox model (57) for these two doubly

censored samples, and conduct the goodness-of-fit test proposed. Our calculation yields:

γ̃ = 29.955, T̂n = 0.457 and p−value = 0.606, which is based on 10,000 bootstrap samples.

Thus, we can not reject the Cox model for these two doubly censored samples.

Example 2. In Cox (1972), two samples of leukemia patients are presented with

estimator β̂ = 1.65 for β0. Using the proposed methods, our calculation yields: β̃ = log γ̃ =

1.667, T̂n= 0.507 and p−value = 0.722. For the same goodness-of-fit test, Gill-Schumacher

test gives a p−value 0.72 for the Peto-Prentice weight function (Gill and Schumacher,

1987), and the Lin test gives 0.85 and 0.32 as the p−values for the same weight function

and its modified version, respectively (Lin, 1991). In practice, there is always a problem

of which weight function to choose. Unlike these tests, our proposed test in this work

does not need to choose any weight functions in its implementation.

Example 3. The Gastrointestinal Tumor Study Group (1982) reported the results

of a trial that compared chemotherapy with n1 = 45 patients to combined chemotherapy

and radiation therapy with n0 = 45 patients. These two samples are right censored with

2 and 6 right censored observations, respectively. To fit these two right censored samples

with the Cox model (57), our proposed test procedure here yields: γ̃ = 1.001, T̂n = 1.698

and p−value = 0.003. Thus, we reject the model assumption in (57) for this two-sample
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dataset, which is consistent with Yang and Prentice’s observation that the two estimated

survival curves cross (Yang and Prentice, 2005). It should be mentioned that when using

the two-sample Kolmogorov-Smirnov statistic
√
n ‖ Ĝ− Ĥ ‖ to test G0 = H0, we obtain

a p−value 0.0025 based on 10,000 bootstrap samples.
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CHAPTER 6

STRATIFIED COX MODEL

This chapter presents an estimate for the baseline distribution function in stratified

Cox model from Ren, Su and He (2006), discusses related computation issues and includes

some simulation results.

6.1 Estimates and Tests

As mentioned in Chapter 4, here we specifically consider stratified Cox model with

two strata:

hk(t | z) = hk0(t) exp(zβ), k = 1, 2, (101)

where hk(t|z) is the conditional hazard function of r.v. Xki given Zki = z, and hk0(t)

is the baseline hazard function for the k−th stratum. Here, (Xk1, Zk1), · · · , (Xknk
, Zknk

)

are i.i.d. for each k = 1,2 and Zkj’s are i.i.d. random variables cross strata. We want to

construct goodness-of-fit test for the following null hypothesis test:

H0 : h10(t) = h20(t). (102)

The idea of our test is that we find SPMLE F̂1 and F̂2 for the distribution function F1

and F2 which have h10(t) and h20(t) as the corresponding hazard functions, respectively.
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Then, the test statistic is given by

Tn =
√
n ‖ F̂1 − F̂2 ‖, where n = n1 + n2. (103)

For notation simplicity, we consider X1, X2, · · · , Xn are i.i.d. with d.f. G0 and

(X1, Z1), · · · , (Xn, Zn) are i.i.d. (104)

satisfying:

h(t | z) = h0(t) exp(zβ), (105)

where h(t | z) is the conditional hazard function of Xi given Zi = z, and h0(t) is the

baseline hazard function with d.f. F0. In (105), we assume the baseline d.f. to be

F̄0(t) = exp(−H0(t)). Then, (105) gives H(x | z) = H0(x) exp(zβ), in turn, we have

F̄X(t | z) = exp(−H0(t) exp(zβ)) = [exp(−H0(t))]
ezβ

= [F̄0(t)]
ezβ

, (106)

where FX(· | z) is the conditional d.f. of X given Z = z. For data in (104), we con-

sider (X1, z1), · · · , (Xn, zn), where zi’s are the realizations of Zi’s. Then, under model

assumption (105), for each Xi, (106) gives

F̄ (t | zi) = [F̄0(t)]
ci ⇔ f(t | zi) = ci f0(t) [F̄0(t)]

ci−1, (107)

where ci = exp(ziβ), F (· | zi) is the conditional d.f. of Xi given Zi = zi, f(· | zi) is the

density function of F (· | zi), and f0(·) is the density function of F0(·). Then, under (107),

the likelihood function of Xi given Zi = zi is given by

n∏
i=1

[F (Xi | zi)− F (Xi − | zi)] =
n∏

i=1

ci[F0(Xi)− F0(Xi−)][F̄0(Xi)]
ci−1. (108)
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Hence, the likelihood function of F0 is proportional to

L(F ) =
n∏

i=1

pi

(
n+1∑

j=i+1

pj

)ci−1

, (109)

where we assume ci ≥ 1, 1 ≤ i ≤ n, and assume X1 < X2 < · · · < Xn with pi =

F (Xi) − F (Xi−), 1 ≤ i ≤ n, and 0 ≤ pn+1 ≤ 1 and F (x) =
n∑

i=1

pi I{Xi ≤ x}. The MLE

for F0 is F̂n which maximizes L(F ) in (109).

Now we describe the procedures to calculate F̂n for right censored data, which also

applies for noncensored data.

For the right censored data (Vi, δi, Zi), i = 1, · · · , n, where (Vi, δi) are as (1), we denote

the following:

Q(1)
n (x, z) =

1

n

n∑
i=1

I{Vi ≤ x, δi = 1, Zi ≤ z}, (110)

Q(0)
n (x, z) =

1

n

n∑
i=1

I{Vi ≤ x, δi = 0, Zi ≤ z}, (111)

Qn(x, z) =
1

n

n∑
i=1

I{Vi ≤ x, Zi ≤ z}, (112)

Gn(z) =
1

n

n∑
i=1

I{Zi ≤ z}, (113)

Q
(1)
n,Z(x) = Q(1)

n (x, z)/Gn(z), (114)

Q
(0)
n,Z(x) = Q(0)

n (x, z)/Gn(z), (115)

Qn,Z(x) = Qn(x, z)/Gn(z), (116)

where V1 < V2 < · · · < Vn. Then, we compute the conditional NPMLE by

¯̂
FX | z(x) =

∏
Vi≤x

(
1− Q

(1)
n,z(Vi)−Q

(1)
n,z(Vi−)

1−Qn,z(Vi−)

)

=
∏
Vi≤x

(
1− Q

(1)
n (Vi, z)−Q

(1)
n (Vi−, z)

Gn(z)−Qn(Vi−, z)

)
, (117)
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which gives

¯̂
FX | Zj

(x) =
∏
Vi≤x

(
1− Q

(1)
n (Vi, Zj)−Q

(1)
n (Vi−1, Zj)

Gn(Zj)−Qn(Vi−1, Zj)

)

=
∏
Vi≤x

(
1− n−1δiI{Zi ≤ Zj}

Gn(Zj)−Qn(Vi−, Zj)

)
. (118)

Let Z(1) < Z(2) < · · · < Z(n) be sorted Zj’s. Hence, for each Z(j), we have by (118),

F̂X | Z(j)
(x) =

n∑
i=1

p̂ij I{Vi ≤ x}, (119)

which gives

Ĝ(x, Z(j)) = F̂X | Z(j)
(x)Gn(Z(j)) =

j

n

n∑
i=1

p̂ij I{Vi ≤ x}. (120)

Note that for any Z(j) ≤ z ≤ Z(j+1), we have Ĝ(x, z) = Ĝ(x, Z(j)). Finally, we will get

Ĝ(x, z) =
n∑

j=1

n∑
i=1

q̂ij I{Vi ≤ x, Z(j) ≤ z}, (121)

where p̂i0 = 0, Z(n+1) = ∞, q̂ij = [jp̂ij − (j − 1)p̂i,j−1]/n, and p̂ij’s are calculated for Z(j),

1 ≤ j ≤ n.

Then we can calculate F̂n(t) based on Ĝ(x, z) and β as follows:

log
¯̂
Fn(t) = n

∫ t

0

log

∫ ∫
I{x ≤ u} exp(zβ)dĜ(u, z)− n−1∫ ∫

I{x ≤ u} exp(zβ)dĜ(u, z)
Ĝ(dx,∞)

= n

n∑
k=1

(
n∑

l=1

q̂kl

)log

n∑
i=1

n∑
j=1

I{Vk ≤ Vi} exp(Z(j)θ)q̂ij − n−1

n∑
i=1

n∑
j=1

I{Vk ≤ Vi} exp(Z(j)θ)q̂ij

 I{Vk ≤ t},

(122)
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which can be expressed as

log(
¯̂
Fn(t)) =

n∑
k=1

q̂k I{Vk ≤ t}, (123)

where

q̂k = n (
n∑

l=1

q̂kl)

log

n∑
i=1

n∑
j=1

I{Vk ≤ Vi} exp(Z(j)θ)q̂ij − n−1

n∑
i=1

n∑
j=1

I{Vk ≤ Vi} exp(Z(j)θ)q̂ij

 . (124)

Hence, F̂n can be written as

F̂n(t) =
n∑

j=1

p̂j I{Vj ≤ t}. (125)

NOTE: To compute F̂n, we need to estimate parameter β in (105). There are three

ways to do it. One is β̂ from usual estimator by Newton-Raphson method for the Cox

model described in Section 4.2. By our likelihood method, there are two consequent new

estimators θ̂ and η̂ for β, which are described as follows. It should be noted that β̂ only

applied to noncensored data or right censored data, while our estimators are applicable

to these types of data as well as doubly censored data and partly interval-censored data.

(a) Use θ̂ as the solution of φ(θ) = 0. Let

φ(θ) = Z̄ −
n∑

k=1

b̂k


n∑

j=1

n∑
i=k

q̂ijZ(j) exp(Z(j)θ)

n∑
j=1

n∑
i=k

q̂ij exp(Z(j)θ)

 , (126)

in which b̂k =
n∑

j=1

q̂kj, and Z̄ =
1

n

n∑
i=1

Zi. It is shown that if Ĝ(x, z) in (121) is a proper

bivariate d.f., φ(θ) is strictly increasing function. Thus, θ̂ uniquely exits. To compute θ̂,

we use bisection algorithm to find the θ̂ as a solution of φ(θ) = 0, and the stopping rule

is when |φ(θ̂)| < 0.001.
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(b) Use η̂ as the solution of τn(η) = 0. Let

τn(η) = Z̄ + n
n∑

k=1

q̂k

(
n∑

i=k

n∑
j=1

q̂ijZ(j) exp(Z(j)η)

)
log


n∑

i=k

n∑
j=1

q̂ijZ(j) exp(Z(j)η)− n−1

n∑
i=k

n∑
j=1

q̂ijZ(j) exp(Z(j)η)

 ,

(127)

in which q̂k =
n∑

j=1

q̂kj, and Z̄ =
1

n

n∑
i=1

Zi. To compute η̂, we use Newton-Raphson method

to find the η̂ as a solution of τn(η) = 0. Let η̂0 denote the starting value, and η̂m denote

the mth iteration value, and the stopping rule is when |η̂m+1 − η̂m| < 0.001.

It is shown (Ren, Su and He, 2006) that for noncensored, right censored and doubly

censored data,
√
n(F̂n − F0)

w⇒ G0, (128)

where F̂n is given by (125), and G0 is a centered Gaussian process. Thus, under H0 in

(102), we have
√
n(F̂n1 − F̂n2)

w⇒ G12, (129)

where G12 is a centered Gaussian process. Hence, the test statistic for goodness-of-fit test

(102) is given by

Tn =
√
n ‖ F̂n1 − F̂n2 ‖ . (130)

The distribution of Tn can be estimated by that of

T ∗n =
√
n ‖ F̂ ∗n1

− F̂ ∗n2
‖, (131)

where F̂ ∗n1
and F̂ ∗n2

are based on bootstrap samples. Thus, the p−value can be estimated

by the percentiles of T ∗n .
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6.2 Computation Issues

Our studies show that it is difficult to compute η̂ given by (127). Thus, the followings

are detailed simulation procedures to calculate the estimator θ̂ given by (126) and statistic

Tn =
√
n ‖ F̂n − F0 ‖, where F̂n is given by (125).

Step 1:

Generate n observations (V1, δ1, Z1), · · · , (Vn, δn, Zn) for k = 1 in (101).

• Generate one uniform observation U1 from U(0, 1);

• From U1 get one observation Zi from Exp(1);

• Generate second uniform observation U2 from U(0, 1);

• Let µ = Exp(−Zi), from U2 get one observation of Xi from Exp(µ);

• Generate third uniform observation U3 from U(0, 1);

• From U3 get one observation Ci from Exp(2);

• Get right censored observation (Vi, δi):

Vi =


Xi if Xi ≤ Ci δi = 1

Ci if Xi > Ci δi = 0, i = 1, 2, · · · , n;

(132)

Step 2: Compute Qn and Gn in (110)-(116) based on sample (Vi, δi, Zi), 1 ≤ i ≤ n.

Sort Sample (Vi, δi, Zi) to make V1 < V2 < · · · < Vn, and let Y1 < Y2 < · · · < Yn be

sorted Zi’s, then calculate
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Qn(Vk, Yj) =
1

n

n∑
i=1

I{Vi ≤ Vk, Zi ≤ Yj}, (133)

Q(1)
n (Vk, Yj) =

1

n

n∑
i=1

I{Vi ≤ Vk, δi = 1, Zi ≤ Yj}, (134)

Gn(Yj) =
1

n

n∑
i=1

I{Zi ≤ Yj}, j = 1, 2, · · · , n. (135)

Step 3: Compute Ĝ in (121) based on sample (Vi, δi, Zi), 1 ≤ i ≤ n.

Calculate

¯̂
FX|Yj

(Vk) =
∏

Vi≤Vk

(
1 − Q

(1)
n (Vi, Yj)−Q

(1)
n (Vi−, Yj)

Gn(Yj) − Qn(Vi−, Yj)

)

=
∏

Vi≤Vk

(
1 − Q

(1)
n (Vi, Yj)−Q

(1)
n (Vi−1, Yj)

Gn(Yj) − Qn(Vi−1, Yj)

)
.

(136)

If Gn(Yj) − Qn(Vi−1, Yj) = 0, then let
Q

(1)
n (Vi, Yj)−Q

(1)
n (Vi−1, Yj)

Gn(Yj) − Qn(Vi−1, Yj)
= 0. Hence, for each

Yj, compute

F̂X|Yj
(x) =

n∑
k=1

p̂kj I{Vk ≤ x}, j = 1, 2, · · · , n, (137)

where p̂kj = F̂X|Yj
(Vk)− F̂X|Yj

(Vk−1) for j = 2, 3, · · · , n, and p̂1j = F̂X|Yj
(V1).

Adjustment for p̂kj:

• For fixed Yj, find Vl = max{Vi | Zi ≤ Yj}.

• Then recalculate this p̂lj to make
l∑

k=1

p̂kj = 1.

Calculate

Ĝ(x, z) =
n∑

i=1

n∑
j=1

q̂ij I{Vi ≤ x, Yj ≤ z}, (138)

where q̂ij =
j

n
p̂ij −

j − 1

n
p̂i(j−1), i = 1, 2, · · · , n; j = 1, 2, · · · , n; p̂i0 = 0.
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Note: Some q̂ij may be negative in the calculation. The following adjustment is made

on q̂ij so that Ĝ(x, z) in (138) is a proper bivariate d.f..

Adjustment for q̂ij:

• Let ∆= sum of all negative q̂ij’s;

• Let ∆t = 1−∆ = sum of all positive q̂ij’s;

• Rewrite

Ĝ(x, z) =
n∑

i=1

n∑
j=1

q̂′ij I{Vi ≤ x, Yj ≤ z},

where

q̂′ij =


0 if q̂ij ≤ 0,

q̂ij(1− |∆|
∆t

) if q̂ij > 0.

(139)

For the rest of this section, we still use q̂ij to represent q̂′ij.

Step 4: Compute F̂n(x) based on Ĝ and θ̂.

First calculate θ̂: Let

φ(θ) = Z̄ −
n∑

k=1

b̂k


n∑

j=1

n∑
i=k

q̂ijYj exp(Yjθ)

n∑
j=1

n∑
i=k

q̂ij exp(Yjθ)

 , (140)

in which b̂k =
n∑

j=1

q̂kj, and Z̄ =
1

n

n∑
i=1

Zi. Note that φ(θ) is a strictly increasing function

when Ĝ is a proper bivariate d.f., therefore we can use bisection algorithm to find the θ̂

as a solution of φ(θ) = 0. The stopping rule used is when |φ(θ̂)| < 0.001.

Then calculate q̂k:

q̂k = n (
n∑

l=1

q̂kl)

log

n∑
i=1

n∑
j=1

I{Vk ≤ Vi} exp(Yj θ̂)q̂ij − n−1

n∑
i=1

n∑
j=1

I{Vk ≤ Vi} exp(Yj θ̂)q̂ij

 . (141)
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If
n∑

l=1

q̂kl = 0, then let q̂k = 0.

If
n∑

i=1

n∑
j=1

I{Vk ≤ Vi} exp(Yj θ̂)q̂ij = 0, then let q̂k = 0.

Calculate F̂n:

log(
¯̂
Fn(Vj)) =

n∑
k=1

q̂kI{Vk ≤ Vj}, j = 1, 2, · · · , n. (142)

Therefore,

F̂n(Vj) = 1 − exp

(
j∑

k=1

q̂k

)
, j = 1, 2, · · · , n, (143)

which can also be written as

F̂n(t) =
n∑

j=1

p̂j I{Vj ≤ t}. (144)

Step 5: Compute statistic Tn =
√
n ‖ F̂n − F0 ‖:

Calculate

F0(Vi) = 1 − exp(−Vi), i = 1, 2, · · · , n. (145)

Then, compute

Tn =
√
n ‖ F̂n(Vi)− F0(Vi) ‖

=
√
n max | F̂n(Vi)− F0(Vi)|, i = 1, 2, · · · , n. (146)

For bootstrap sample:

Step 6: Generate bootstrap sample (V ∗
i , δ

∗
i , Z

∗
i ), i = 1, · · · , n, from sample (Vi, δi, Zi), 1 ≤

i ≤ n.

Step 7: Compute Q∗n and G∗n based on sample (V ∗
i , δ

∗
i , Z

∗
i ), i = 1, · · · , n.
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Let W ∗
1 < W ∗

2 < · · · < W ∗
m∗ be distinct values of V ∗

i ’s, and Y ∗
1 < Y ∗

2 < · · · < Y ∗
m∗

0
be

distinct values of Z∗i ’s. Calculate

Q∗n(W ∗
k , Y

∗
j ) =

1

n

n∑
i=1

I{V ∗
i ≤ W ∗

k , Z
∗
i ≤ Y ∗

j }, k = 1, · · · ,m∗, j = 1, · · · ,m∗
0, (147)

and calculate

Q∗(1)
n (W ∗

k , Y
∗
j ) =

1

n

n∑
i=1

I{V ∗
i ≤ W ∗

k , δ
∗
i = 1, Z∗i ≤ Y ∗

j }, k = 1, · · · ,m∗, j = 1, · · · ,m∗
0.

(148)

Then, calculate

G∗n(Y ∗
j ) =

1

n

n∑
i=1

I{Z∗i ≤ Y ∗
j }, j = 1, 2, · · · ,m∗

0. (149)

Step 8: Compute Ĝ∗ based on sample (V ∗
i , δ

∗
i , Z

∗
i ), i = 1, · · · , n.

Calculate

¯̂
F ∗X|Y ∗

j
(W ∗

k ) =
∏

W ∗
i ≤W ∗

k

(
1 −

Q
∗(1)
n (W ∗

i , Y
∗
j )−Q

∗(1)
n (W ∗

i −, Y ∗
j )

G∗n(Y ∗
j ) − Q∗n(W ∗

i −, Y ∗
j )

)

=
∏

W ∗
i ≤W ∗

k

(
1 −

Q
∗(1)
n (W ∗

i , Y
∗
j )−Q

∗(1)
n (W ∗

i−1, Y
∗
j )

G∗n(Y ∗
j ) − Q∗n(W ∗

i−1, Y
∗
j )

)
. (150)

where k = 1, 2, · · · ,m∗, j = 1, 2, · · · ,m∗
0. If G∗n(Y ∗

j ) − Q∗n(W ∗
i−1, Y

∗
j ) = 0, then let

Q
∗(1)
n (W ∗

i , Y
∗
j )−Q

∗(1)
n (W ∗

i−1, Y
∗
j )

G∗n(Y ∗
j ) − Q∗n(W ∗

i−1, Y
∗
j )

= 0. Thus, for each distinct Y ∗
j we have

F̂ ∗X|Y ∗
j
(x) =

m∗∑
i=1

p̂∗ij I{W ∗
i ≤ x}, j = 1, 2, · · · ,m∗

0, (151)

where p̂∗kj = F̂ ∗X|Y ∗
j
(V ∗

k )− F̂ ∗X|Y ∗
j
(V ∗

k−1) for j = 2, 3, · · · ,m∗
0, and p̂∗1j = F̂ ∗X|Y ∗

j
(V ∗

1 ).
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In turn, for each distinct W ∗
k given Y ∗

j we have

F̂ ∗X|Y ∗
j
(W ∗

k ) =
m∗∑
i=1

p̂∗ij I{W ∗
i ≤ W ∗

k }, j = 1, 2, · · · ,m∗
0. (152)

Adjustment for p̂∗kj:

• For fixed Y ∗
j , find W ∗

l = max{W ∗
i | Z∗i ≤ Y ∗

j }.

• Then recalculate this p̂∗lj to make
l∑

k=1

p̂∗kj = 1.

Let bj = G∗n(Y ∗
j ), for j = 1, 2, · · · ,m∗

0. Then,

q̂∗ij = bj p̂
∗
ij − bj−1 p̂

∗
i(j−1), p̂

∗
j0 = 0, i = 1, 2, · · · ,m∗, j = 1, 2, · · · ,m∗

0, (153)

and

Ĝ∗(x, z) =

m∗
0∑

j=1

m∗∑
i=1

q̂∗ij I{W ∗
i ≤ x, Y ∗

j ≤ z}. (154)

Adjustment for q̂∗ij:

• Let ∆= sum of all negative q̂∗ij’s;

• Let ∆t = 1−∆ = sum of all positive q̂∗ij’s;

• Rewrite

Ĝ∗(x, z) =

m∗
0∑

j=1

m∗∑
i=1

q̂
′∗
ij I{W ∗

i ≤ x, Y ∗
j ≤ z},

where

q̂
′∗
ij =


0 if q̂∗ij ≤ 0,

q̂∗ij(1−
|∆|
∆t

) if q̂∗ij > 0,

(155)

Note we still use q̂∗ij to represent q̂
′∗
ij for the rest of this section.

Step 9: Compute F̂ ∗n(x) based on Ĝ∗ and θ̂∗.
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First calculate θ̂∗: Let

φ(θ∗) = (Z̄∗)−
m∗∑
k=1

b̂k


m∗

0∑
j=1

m∗∑
i=k

q̂∗ijY
∗
j exp(Y ∗

j θ
∗)

m∗
0∑

j=1

m∗∑
i=k

q̂∗ij exp(Yjθ
∗)

 , (156)

in which b̂k =

m∗
0∑

j=1

q̂∗kj, and Z̄∗ =
1

n

n∑
i=1

Z∗i . We use bisection algorithm to find the θ̂∗ as a

solution of φ(θ∗) = 0, and the stopping rule is |φ(θ̂∗)| < 0.001.

Then, we calculate q̂∗k:

q̂∗k = n (

m∗
0∑

l=1

q̂∗kl)


log

m∗∑
i=1

m∗
0∑

j=1

I{W ∗
k ≤ W ∗

i } exp(Y ∗
j θ̂

∗)q̂∗ij − n−1

m∗∑
i=1

m∗
0∑

j=1

I{W ∗
k ≤ W ∗

i } exp(Y ∗
j θ̂

∗)q̂∗ij


. (157)

If

m∗
0∑

l=1

q̂∗kl = 0, then let q̂∗k = 0.

If
m∗∑
i=1

m∗
0∑

j=1

I{W ∗
k ≤ W ∗

i } exp(Y ∗
j θ̂

∗)q̂∗ij = 0, then let q̂∗k = 0.

Calculate F̂ ∗n :

log(
¯̂
F ∗n(t)) =

m∗∑
k=1

q̂∗kI{W ∗
k ≤ t}. (158)

Therefore,

F̂ ∗n(t) = 1 − exp

{
m∗∑
k=1

q̂∗kI{W ∗
k ≤ t}

}
. (159)

which can be written as

F̂ ∗n(t) =
m∗∑
k=1

r̂k I{W ∗
k ≤ t}. (160)
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Step 10: Calculate T ∗n :

First, calculate

F̂ ∗n(Vi) =
m∗∑
k=1

r̂k I{W ∗
k ≤ Vi}, i = 1, 2, · · · , n, (161)

then compute

T ∗n =
√
n ‖ F̂ ∗n(Vi)− F̂n(Vi) ‖=

√
n max

1≤i≤n
|F̂ ∗n(Vi)− F̂n(Vi)|, (162)

whose distribution estimates that of Tn =
√
n ‖ F̂n − F0 ‖.

6.3 Simulation Results

In this section, we present some simulation results. All the figures mentioned below

are listed in the Appendix. The simulation samples described in Section 6.2 have true

β = 1 in (101). Here, we generate 1000 such samples.

Estimation for β: In Table 6.1, we compare the performance of β̂ and θ̂, where the

simulation s.d.’s are given in the parenthesis next to the simulation averages. Here, to

compare β̂, we use S-plus. The results in Table 6.1 show that β̂ and θ̂ have very similar

performance. However, β̂ does not apply to complicated types of censored data, such as

doubly censored data and partly interval-censored data, while our method does.

Table 6.1: Comparison of β̂ and θ̂

Avg. of β̂ Avg. of θ̂ Censoring Rate

n=50 1.038 (0.232) 1.078 (0.289) 18.8%

n=100 1.010 (0.140) 1.063 (0.197) 18.9%

n=200 1.008 (0.099) 1.064 (0.145) 18.8%
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Estimation of distribution function F0: Let Exp(µ) represent the exponential distri-

bution with mean µ, and F̂n represent the estimated d.f. calculated by (144), while F0

represent the true d.f. calculated by (145) for the sample. We generate one noncensored

sample with sample size n = 100 from Z = Exp(1) and X = Exp(Exp(-Z)), Figure A

compares F̂n with F0, where β̂ is used to compute F̂n. Figure A.4 compares F̂n with F0,

where θ̂ is used to compute F̂n. From Figures A and A.4, it is evident that two methods

have little difference, and both F̂n’s are very good estimates for F0.

Also, we generate one right censored sample with sample size n = 100 as described

in Section 6.2. Figure A compares F̂n with F0, where β̂ is used to compute F̂n, while

Figure A compares F̂n with F0, where θ̂ is used to compute F̂n. These figures show that

two methods differ little. Moreover, we generate one right censored sample of the same

type with sample size n = 200. Figure A compares F̂n with F0, where β̂ is used to compute

F̂n, while Figure A compares F̂n with F0, where θ̂ is used to compute F̂n. Figures A and A

show that the discrepancy of the F̂n from the true d.f. F0 is getting smaller as the sample

size gets larger. Again, there is very little difference between using β̂ or θ̂ to compute F̂n.

However, our method is easy to compute and applicable to complicated type of censored

data, such as doubly censored data and partly interval-censored data.

Simulation distributions of statistics Tn and T ∗n : Here we have Tn =
√
n ‖ F̂n − F0 ‖

and T ∗n =
√
n ‖ F̂ ∗n − F̂n ‖. For 1000 generated samples with sample size n = 100, we

generate one bootstrap sample for each sample. Then, statistics Tn =
√
n ‖ F̂n − F0 ‖

and T ∗n =
√
n ‖ F̂ ∗n − F̂n ‖ are calculated for each sample and each bootstrap sample as

in (146) and (162), respectively. F̂n is calculated using θ̂ by our method as in (144), F0

is calculated as in (145), and F̂ ∗n using θ̂∗ by our method as in (160). Figure A in the

Appendix displays the simulate distributions of Tn and T ∗n , which shows that T ∗n provides

good estimate for Tn. It should be noted that it is not practical to use β̂ for computing F̂n

when bootstrap method is used for T ∗n . Thus, in our simulation studies we only considered

the use of θ̂ here.
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CHAPTER 7

CONCLUDING REMARKS

From our simulation results, it is shown that semi-parametric empirical likelihood

method is powerful in hypothesis tests for two sample problems on Cox model and strat-

ified Cox model, and especially useful for complicated types of censored data, like right

censored, doubly censored and partly interval-censored data.

Our proposed approach is computationally simple. Along with the construction of the

test, we provide a consistent semi-parametric maximum likelihood estimator for β0 under

model assumption (61) for two sample Cox model. It should be noted that all results

here actually hold for any censored data whose NPMLE for the distribution function

is asymptotically Gaussian, and our method presented here can be easily extended to

k−sample Cox model.

For stratified Cox model, we proposed a new approach to estimate the parameter β

under model assumption (102) which applies for complicated types of censored data. We

also constructed the goodness-of-fit test. Our simulation results show that our method

is as good as the usual Newton-Rahpson method, but our method also applies for the

complicated types of censored data while the usual Newton-Rahpson method can not.

For stratified Cox model, our simulation results for different sample sizes are not stable.

Further studies on the computation issues related to this problem are to be conducted.
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APPENDIX A

FIGURES
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