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ABSTRACT

High levels of random noise are a defining characteristic of neurological signals at all levels, from individ-

ual neurons up to electroencephalograms (EEG). These random signals degrade the performance of many

methods of neuroengineering and medical neuroscience. Understanding this noise also is essential for ap-

plications such as real-time brain-computer interfaces (BCIs), which must make accurate control decisions

from very short data epochs. The major type of neurological noise is of the so-called 1/f θ-type, whose

origins and statistical nature has remained unexplained for decades. This research provides the first simple

explanation of 1/f θ-type neurological noise based on biophysical fundamentals. In addition, noise models

derived from this theory provide validated algorithm performance improvements over alternatives.

Specifically, this research1 defines a new class of formal latent-variable stochastic processes called hid-

den quantum models (HQMs) which clarify the theoretical foundations of ion channel signal processing.

HQMs are based on quantum state processes which formalize time-dependent observation. They allow

the quantum-based calculation of channel conductance autocovariance functions, essential for frequency-

domain signal processing. HQMs based on a particular type of observation protocol called independent

activated measurements are shown to be distributionally equivalent to hidden Markov models yet without

an underlying physical Markov process. Since the formal Markov processes are non-physical, the theory of

activated measurement allows merging energy-based Eyring rate theories of ion channel behavior with the

more common phenomenological Markov kinetic schemes to form energy-modulated quantum channels.

These unique biophysical concepts developed to understand the mechanisms of ion channel kinetics have

the potential of revolutionizing our understanding of neurological computation.

To apply this theory, the simplest quantum channel model consistent with neuronal membrane voltage-

clamp experiments is used to derive the activation eigenenergies for the Hodgkin-Huxley K+ and Na+ ion

channels. It is shown that maximizing entropy under constrained activation energy yields noise spectral

densities approximating S (f) ∼ 1/fθ, thus offering a biophysical explanation for this ubiquitous noise

1Portions of this abstract have appeared in [1–3].
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component. These new channel-based noise processes are called generalized van der Ziel–McWhorter

(GVZM) power spectral densities (PSDs). This is the only known EEG noise model that has a small, fixed

number of parameters, matches recorded EEG PSDs with high accuracy from 0 Hz to over 30 Hz without

infinities, and has approximately 1/fθ behavior in the mid-frequencies.

In addition to the theoretical derivation of the noise statistics from ion channel stochastic processes, the

GVZM model is validated in two ways. First, a class of mixed autoregressive models is presented which

simulate brain background noise and whose periodograms are proven to be asymptotic to the GVZM PSD.

Second, it is shown that pairwise comparisons of GVZM-based algorithms, using real EEG data from a

publicly-available data set, exhibit statistically significant accuracy improvement over two well-known and

widely-used steady-state visual evoked potential (SSVEP) estimators.
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CHAPTER 1: INTRODUCTION
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Figure 1.1: Recorded EEG single-epoch periodogram from a 15-second, 8Hz SSVEP experiment showing
the stimulus frequency and two harmonics.

1.1 Research History: γ–band Steady State Visual Evoked Potentials

This research originated in meetings held in July, 2013 between the author and professors Azadeh Vosoughi

and George Atia of the University of Central Florida’s (UCF) department of Electrical and Computer Engi-

neering during which we discussed the possibility of real-time, steady-state visual evoked potential (SSVEP)

brain computer interfaces (BCI) [4–6] using stimulus frequencies above 30Hz. The great advantage of such

high frequency (γ–band) stimuli is that they dramatially reduce the discomfort, fatigue, and the potential for

seizures caused by the long-term viewing of low-frequency flashing. These problems are especially acute

for fully paralyzed patients [7] who cannot look away from the bright flashes. This is the central reason that

SSVEP BCIs have not been offered as a practical solution to the problem of control and communication in

the disabled population, even though the hardware and software technology is simple and reliable (Fig. 1.1;

1



see also [8]).

Super-30Hz stimuli are known to produce measurable brain responses [9] and can be utilized, to some extent,

for BCI control [10–13]. However, their overwhelming advantage is not only that high-frequency flashing is

less fatiguing but, as with animations and video, it actually becomes less and less noticable as the frequency

increases. At some (possibly subject-dependent) level, the stimuli frequency is so high that the subject has

no conscious awareness of any flashing even though there is indisputable evidence that the brain continues

to synchronize with signals at as high as 100Hz. [9].

Successful detection of γ–band stimuli opens a world of applications for SSVEP BCIs well beyond the

disabled population. For example, one can imagine brain-based gaming control [14] in which avatars,

weapons, and virtual locations are flashing at distinct, yet consciously invisible, frequencies so that a glance

at an object or place is sufficient to initiate activity. One can even envision a physical SSVEP-control home

or work environment where strobe lights invisibily illuminate objects and places and in which a disabled

person can navigate a wheelchair by merely looking at the desired location. There are numerous other

transformational, BCI-inspired applications which will be within reach once the γ–barrier is broken. For

these reasons, commercial BCI companies are actively investigating γ–band detection and estimation of

SSVEP signals [15].

The new approach proposed by the author in 2013 was a sensitive audio and image technique called homo-

morphic signal processing or ceptral analysis (pronounced “kepstral”) [16] which exploited the response

harmonics (see Fig. 1.1) resulting from brain non-linearity [8, 9]. The hope was this would prove effec-

tive in spite of the well-known response attentuation at high stimulus frequencies. However, we found that

cepstral analysis failed on the high-frequency SSVEP detection problem due to the level of noise inherent

in short-epoch neurological signals, even after many months of intense development. Fig. 1.2 is a typical

example of 28Hz SSVEP stimulus showing how the resulting spectral spike is nearly indiscernable from the

noise peaks. We found that the sophistication of the cepstral technique actually limited its usefulness in the

presence of strong noise.

The traditional method for reducing neurological noise is multi-epoch averaging [17, 18], usually over sev-
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Figure 1.2: Recorded EEG single-epoch periodogram from a 15-second, 28Hz SSVEP experiment showing
the 28Hz response nearly lost in brain background noise. The α–band power around 12Hz is also evident.

eral minutes, in the frequency domain (or time domain if precise phase-synchronization is posssible). How-

ever, a basic target for effective real-time control is to use the shortest sampling periods possible. For

example, a highly-cited SSVEP BCI paper [5] limited these periods to no more than 8 seconds (see Sec.

7.1). We allowed ourselves sampling periods up to 15 seconds (Chap. 7) for development purposes but these

were still too short for splitting into epochs while maintaining adequate frequency resolution.

Recognizing that the significance of background neurological noise is much larger than any particular BCI

application, we decided to confront this noise head-on by proceeding simultaneously in two, nearly opposite,

directions:

• Drilling down into electroencephalogram (EEG) cortical sources to understand the biophysical mech-

anisms which give rise to dominant noise components.

• Expanding outward using the knowledge gained about noise generation mechanisms in order to create

superior SSVEP detection and estimation algorithms.
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As will be seen (Chap. 4, Chap. 5, Chap. 7), we have achieved considerable success in both these directions.

This has brought the original γ–band BCI application finally within range of laboratory work [19, 20] .

1.2 On the Mathematical Modeling of Neurological Systems

Linearity seems elegant only when one has not seen an even more attractive, essentially non-linear gener-

alization. Roger Penrose

Sec. 1.4 sets out the objective scientific goals of this research but some general remarks concerning mathe-

matical modeling are necessary because they reveal the larger purpose of this work.

Great mathematical abstractions and algorithms do not derive from merely choosing a few ready-made

techniques from a standard toolbox and then applying them to new data, although this must certainly be

part of an initial exploration. One only needs to recall Newton who invented calculus not as an act of

pure mathematics (although he was also a brilliant pure mathematician) but because the one-dimensional,

constant acceleration models of Galileo were inadequate to account for planetary motion.

The mathematician Norbert Wiener was one of the founding geniuses of 20th signal processing who, as far

back as the early 1920’s, developed the first mathematically rigorous theory of random noise processes and

their use as signal sources [21], a profoundly original theory whose applications continue even into 21st

century quantum field theory [22]. However, his abstract mathematical model of random processes was

proposed after a deep prior study of the work of Einstein, Perrin and others [23] on the physical Brownian

motions which he was trying to explain. Similarly, it is not well-known that Wiener’s work on the causal

linear filtering, interpolation, and extrapolation of time series [24], which required the creative development

of abstract harmonic analysis in the complex plane and which continues to play a central role in signal

processing, was developed during World War II to solve the particular problem of aiming anti-aircraft guns

to shoot down rapidly-moving enemy aircraft.

Within neuroscience, Hodgkin and Huxley (HH) developed their famous non-linear, 2nd –order partial dif-
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ferential equation for action potentials as well as its first numerical solutions [25] only after they had

first learned everything that was possible to learn about nerve conduction using 1950’s laboratory tech-

nology [26]. As a result of this depth, and though continually modified and generalized over the years, the

HH conduction model continues to form a foundational paradigm of neuroscience over 60 years after it was

first proposed.

On the other hand, one only need consider the neuroscience proposals of Roger Penrose and his collab-

orators to see neuroscience modeling gone awry. During the 1980’s Penrose, published some fascinating

verbal speculations on the relation between quantum coherence, general relativity, and human conscious-

ness [27] (and see his very insightful quotation above). However, by the early 2000’s, these speculations had

untethered from neuroscience reality to form a vastly complex mathematical/physical dreamworld of “mi-

crotubules” as the seat of consciousness [28]. This is in spite of regular, and highly-public, expert refutations

by neuroscientists [29, 30] and physicists [31].

It is the author’s strongly-held opinion, to take just one example, that epilectic seizure identification, pre-

diction, and control will not be advanced by researchers who see neurology as merely another source for

abstract data on which to exercise their favorite, off-the-shelf, statistical algorithms. Rather, the signal pro-

cessing of epilectic seizure signals will be advanced by researchers who are passionately interested in curing

epilepsy. In this way, the mathematical techniques will grow naturally from epilepsy research itself.

With that philosophical background, it must be stated that the “hidden agenda” of this research is the demon-

stration by example that organic, mathematical growth based on ever-advancing neuroscience knowledge is

the most valid approach to modeling. The problem of γ–band SSVEP BCI affords a perfect test case for

this. Specifically, the author created the hidden activated quantum process theory of Chap. 3, the energy-

gated quantum ion channel model of Chap. 4, the noisy tissue and generalized van der Ziel – McWhorter

(GVZM) autocovariance formulas of Chap. 5, the SSVEP BCI applications of Chap. 7, and even the SSVEP

algorithm statistical comparison methodology of Chap. 6 to solve specific technical problems involved in

γ–band SSVEP BCI. It is the author’s strong belief that, although created with this single-minded, practical

focus, the methods subsequently will prove useful in many other areas of neurological signal processing.
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1.3 Brain Background Noise

Signals recorded from living neurological tissue are extremely noisy at all scales from individual ion chan-

nels [32] through collections of one or more neurons [33–35] up to scalp-recorded EEGs [36] (Fig. 1.2)

Data taken from [37]). As a result, the theory of neurological noise continues to be a thriving area for re-

search [38], with theoretical and practical implications for neurological signal processing, neuroscience, and

medical neurology.

Neuronal noise is a major factor limiting the success of neuroengineering applications such as brain-computer

interfaces (BCI) [4, 7] and automatic seizure detection and control [39, 40]. In particular, high-power 1/f -

type noise is omnipresent in all measurements of the electromagnetic properties of neurons [38,41,42] from

the compartment level [43–45] through axonal transmission [33, 46], up to EEG [36, 47].

Neurological noise cannot be eliminated from in vivo studies because it originates directly from the bio-

logical mechanisms themselves [35, 48, 49] and may even be an essential component of neuronal compu-

tation [50–52]. Moreover, unlike inorganic sources of data for signal processing, neuronal noise obviously

cannot be reduced through cooling or improved manufacture.

On the other hand, the statistics of neuronal noise also can provide useful indirect constraints on dynamic

neuron models and has led to major advances in pure neuroscience [53] and medicine [54, 55].

In fact, the traditional model of an information-carrying signal corrupted by interfering noise is problematic

for neurological sources since the conceptual classification into signal vs. noise remains a topic of contro-

versy [50]. Therefore understanding the definitions, mechanisms, and statistical properties of neuronal noise

is of critical importance for both theory and applications neurological signal processing [35, 38]. However,

there has been no completely satisfying abstract model of neurological 1/f -type noise.

For example, it is well-known (e.g., [35]) that a properly-weighted sum of noise spectra of the so-called

Lorentzian [41] form Sf0(f) ∝ 1/(1 + (f/f0)2), where f0 are appropriately-chosen “cut-off frequen-

cies”, can approximate 1/f noise spectrum in neuronal tissue . However no general procedures exist in the
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literature for selecting the number of Lorentzians, their weighting coefficients, or the cut-offs.

1.4 Goals of this Research

The main goal of this report is to present an abstract, biophysically-consistent model of neural tissue by

considering populations of quantum ion channels in thermal equilibrium (cf. Sec. 5.1) and use these

tissue models to better understand the statistics of the 1/f -type noise which they generate. In particular, we

will investigate a new class of stationary processes called generalized van der Ziel – McWhorter noise

(Sec. 5.2.7) which arise directly from the the new models by a generalization of the weighted Lorenztian

mechanism and which form a very flexible parametric model for 1/f -type noise in neurological applications.

In this paper we examine the statistical characteristics of EEG periodograms [16, 56]. Specifically, we

present a new model for the statistical properties of EEG background processes which, for the purpose of

many applications, may be regarded as “brain noise”. To the best of our knowledge, it is the first simple and

general noise model in the EEG literature which closely matches recorded EEG periodograms from near 0

Hz to over 30 Hz. We then validate this new model using three different and complementary approaches.

Our research on neurological noise is focused on three main goals:

• Improving the performance of real-time neurological algorithms: Certain neurological signal processing

tasks, such as extracting event-related potentials (ERPs), increase signal-to-noise ratios by averaging many

epochs of data recorded over long experimental periods [17]. However, time-frequency algorithms, which

assume high levels of nonstationarity [40], and BCIs [5, 6], which are meant to provide disabled patients

with a sense of real-time control, must work with much shorter, single-trial epochs.

Ordinary linear filtering of such short epochs is problematic, since there is evidence that the brain’s responses

are highly nonlinear [39], and because the target signals can be nearly indistinguishable from the background

(cf. Fig. 1.2). Such poorly-fitting models of the detailed statistical characteristics of brain processes reduces

the precision of detection/estimation procedures and makes model validity uncertain.

Our particular interest is developing real-time SSVEP BCI algorithms which are accurate into the γ-band,
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above 30 Hz, a region of the EEG spectrum which is dominated by noise.

• Creating statistically-realistic simulations of neurological signals: A common research practice is to add

artificial noise sources to neurological simulations in order to increase their realism and to measure the

performance of models and algorithms [35]. Good simulations of neurological signals are essential for

the development and testing of medical and BCI algorithms, especially for critical applications to human

neurology [39, 40] in which experimentation is highly restricted.

• Generating new insight into underlying neurological processes: Statistical models of neurological noise

have had remarkable success in providing indirect tests of neuroscience hypotheses. This was spectacularly

true for the elucidation of the acetycholine neurotransmission mechanisms in the 1970’s by Katz & Miledi

[53]. But noise models continue to enhance our understanding of neurological illness [54, 55], cognitive

processes [51], and may even explain brain nonlinearity [57].
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CHAPTER 2: LITERATURE REVIEW

2.1 Quantum Ion Channels

Abstract mesoscale models of neurological tissue and signals1 are a key bridge between the hyper-detailed

nanoscale structural and behavioral analyses of ion channels obtained by modern biochemical techniques

[58] and the overly-simplified macroscale (i.e., neuron-level) synthetic neuron models pioneered by Mc-

Colloch and Pitts [59] in the 1940’s which are the basis for current neural network technology. Improved

models in the mesoscale have significance for biological neuroscience and neurology, neurological signal

processing and engineering, as well as synthetic neural networks for massive computation.

There has been enormous progress made in terms of concrete or protein-structural models of neuronal

ion channels [58]. Such concrete understanding of the nanomechanical and biochemical behavior of these

channels is essential for pure neuroscience and its applications to neuropharmacology. However, there is

simultaneously an expanding need for abstract mathematical channel models because the detailed archi-

tecture of concrete models makes them inappropriate as the elementary units needed for signal processing,

biometic networks, neuroengineering, and whole-brain neurology.

A very successful direct abstraction of the activation-energy basis of structural channels was made through

the theory of Eyring rate channels [60] (cf. Sec. 2.2.4). Although subject to recent criticism [61] they still

form a dominant conceptual framework for understanding aggregate conductance properties of membranes

[34, 62]. However, the absence of a kinetic mechanism limits their usefulness for understanding dynamic

processes such as neuronal noise.

On the other hand, throughout the 60’s, 70’s, and 80’s, the ion channel kinetics discovered by Hodgkin

and Huxley [25, 63] were abstracted by Fitzhugh, Clay, Hill and Chen, DeFelice et al., and others [32, 64–

72] to form the core of the highly successful standard Markov process model of neuronal noise [34].

These models were purely phenomenological in the sense that the all-important transition probabilities

1Portions of this section have appeared in [1].
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between states were derived to match experimental conductance curves without an underlying biophysical

framework. Nevertheless, such models accounted for some of the spectral structure of membrane noise.

However, since that time, very few general classes of alternative abstract stochastic channel models have

been investigated even though the standard models are known to have difficulty explaining the ubiquitous

1/f–type noise in neurological tissue [32] (cf. Sec. 2.2.5).

(See also [73–76].)

2.1.1 Quantum Mechanics and Signal Processing

A subtle limitation of standard formulations of quantum mechanics is that it has difficulty with the concept

of sampling a physical system over time because of unsolved metaphysical problems concerning the role

of the observer and wavefunction collapse. (Refer to Appendix A for a summary of quantum mechanics.)

This is seen most clearly in the paradoxical “watched pot theorem” [77] which seems to imply that sampled

quantum systems are always frozen into their initial states.

As a consequence, while standard quantum mechanics has no trouble defining what is meant by the state

Ψ (t) of a system at a single time t, the ambiguities resulting from the Measurement Problem makes it

difficult to assign meaning to a state Ψ (t1, t2) which is supposed to represent the system at two distinct

times t1 < t2 (cf. Chap. 3 for a complete discussion).

This causes enormous practical problems for signal processing in quantum systems because the standard

autocovariance function

RA (t1, t2)
def
= E [(At1 − µA (t1)) · (At2 − µA (t2)) |Ψ (t1, t2)]

on which the entire theory of power spectra rests is thus ill-defined.

More generally, it is essential for ion channel signal processing to be able to calculate the higher moments

E [A1 (t1) · · ·An (tn) |Ψ ( · )] of observablesA1, · · ·An at distinct times t1 < · · · < tn for systems prepared
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in quantum state Ψ.

The calculation of E [A1 (t1)A2 (t2) |Ψ ( · )] requires knowledge of every measurement made by the ob-

server during the closed interval [t1, t2] because every such measurement caused the system to collapse

into a measurement state at the moment it was made (Appendix A Def. ??). Different observer behaviors

would lead to completely different average values of the product A1 (t1) · A2 (t2). So a concept of a state

which intuitively corresponds to Ψ (t1, t2) can only be defined in the context of the knowledge of the ob-

server’s actions through time and must implicitly encode that knowledge into some form of measurement

protocol.

This is in contrast to the calculation of E [A1 (t1) |Ψ] at time t1 for which the closed “interval” [t1, t1]

leaves room for, at most, a single measurement. For this reason, completely general observer-independent

statements such as Born’s Axiom (Appendix A Def. 32) are possible at a single time, but not over a non-

trivial time interval.

See Sec. 3.1: Remark 6 for a further discussion of this issue and our solution to it.

2.1.2 Classical Stochastic Processes

Several observations first need to be made concerning general stochastic processes. In particular, we need

to make conceptual distinctions between formal and concrete processes and also between physical and

simulated processes.

2.1.2.1 Process Classification

By an (absolutely continuous, real-valued, Borel [78]) formal stochastic process {Xt}T16t6T2 on the time

interval [T1, T2] we mean the specification of a family

{pt1,··· ,tn (x1, · · · , xn) | T1 6 t1 < · · · < tn 6 T2, 0 6 n <∞}
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of probability distributions on R satisfying the Kolmogoroff consistency or marginalization conditions:

p∅ ( ) = 1 for n = 0 and

pt1,··· ,t̂i,··· ,tn (x1, . . . , x̂i, . . . , xn) =

∞∫
−∞

pt1,··· ,ti,··· ,tn (x1, . . . , xi, . . . , xn) dxi (2.1)

for every n > 0, T1 6 t1 < · · · < tn 6 T2, and 1 6 i 6 n, where the caret ·̂ indicates a item deleted from

a list (cf. Appendix G). Thus the form of the probability distribution functions through time are given.

On the other hand, by a concrete stochastic process [56, 79] we mean the specification of an underlying

sample space Ω with probability measure Prob ( · ) [80] together with a collection {Xt (ω) |ω ∈ Ω}T16t6T2
of (Borel) random variables Xt on Ω. A concrete process (with absolutely continuous probability) always

generates a unique formal process given by

pt1,··· ,tn (x1, · · · , xn)
def
=

∂n

∂x1 · · · ∂xn
Prob {ω ∈ Ω|Xt1 (ω) 6 x1, · · · , Xtn (ω) 6 xn} .

However, the converse (i.e., that every formal process comes from at least one concrete process) requires a

strong theorem due to Kolmogoroff [79] which utilizes subtle topological properties of the real numbers.2

(There are, in fact, well-defined and consistent formal processes with non-real values which have no under-

lying sample space (Ω,Prob ( · )) [80] so are not concrete in the above sense.)

Moreover, Kolmogoroff’s Theorem has no uniqueness guarantee and this brings us to the second distinction.

By a physical process we mean an actual mechanism in nature which generates random values whose

frequency distributions we are studying. By a simulated process we mean an abstract or computer-based

concrete process which yields the same formal distribution functions as the physical process.

Because of the lack of uniqueness in Kolmogoroff’s Theorem, even if the formal distributions are known ex-

actly, there may be many distinct simulations none of which may actually represent the underlying physical

2E.g., that R is a locally compact metric space.
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process.

2.1.2.2 Latent Processes and Hidden Markov Models

A hidden stochastic model explains the dependencies in a manifest random process {Xt}T16t6T2 in terms

of an underlying, latent process {Yt}T16t6T2 with prior formal distribution functions

{πt1,··· ,tn (y1, . . . , yn)}T16t1<···<tn6T2

and a conditional distribution function f (x | y) chosen so that the posterior distribution functions of {Xt}

are

pt1,··· ,tn (x1, . . . , xn) =

∫
· · ·
∫
f (x1 | y1) · · · f (xn | yn)πt1,··· ,tn (y1, . . . , yn) dy1 · · · dyn. (2.2)

Intuitively, one can think of the Y process as dealing numbered cards from a finite pack (thus showing de-

pendent choices) while theX process consists of independent selections from numbered urns corresponding

to the Y cards dealt.

When the latent process is a formal discrete-state, continuous-time process I with prior distributions

{πt1,··· ,tn (i1, . . . , in)}a6t6b

and we are given conditional distributions fi (x)
def
= f (x | i) then the posterior distribution functions may

be written

pt1,··· ,tn (x1, . . . , xn)
def
=

∑
i1,··· ,in

fi1 (x1) · · · fin (xn)πt1,··· ,tn (i1, . . . , in). (2.3)

In the special case in which the latent process I is Markov, i.e., the ratios

πt1,··· ,tn (i1, . . . , in−1, in)

πt1,··· ,tn−1 (i1, . . . , in−1)

def
= πtn | tn−1

(in | in−1) (2.4)
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do not depend on t1, . . . , tn−2, then Eq. 2.4 constitutes a formal hidden Markov model (HMM) [81]. By

the discussion above, for every formal HMM there exists at least one concrete discrete-state Markov process

{It | t ∈ T} with distributions Eq. 2.4. However, in Sec. 3.3, we will show that formal HMM distributions

can also arise from systems with no latent physical or concrete Markov process.

2.1.2.3 Notes on Markov Matrices

There are two common methods for specifying continuous-time Markov transition probability matrices, both

of which we will use.

Probabilities themselves generally will be denoted by expressions such as Π (l, k), with entries Π (l, k)ji =

Prob [Il = j and Ik = i] and Π (l|k) with entries Π (l|k)ji = Prob [Il = j, given Ik = i]. Thus, for exam-

ple, Π (l|k) ·Π (k,m) = Π (l,m), while Π (l|k) ·Π (k|m) = Π (l|m), both for l > k > m. This notation

works for both discrete-time processes Π (l, k) and continuous-time processes Π (t, s).

However, continuous transition matrices are often specified by the rate matrix K from which the probabil-

ities are obtained by solving the differential equation

∂

∂t
Π (t, s) + K ·Π (t, s) = 0.

This is especially common in chemical kinetics [82]. For example, the classic Hodgkin-Huxley “α/β”

matrices of Sec. 4.4.2, Eq. 4.8 are rate matrices in this sense [34].

Given a fixed stochastic matrix P [79] (i.e., the conditional probability matrix P (1|0) of a discrete-time,

time-homogenous Markov process), the standard conversion to a rate matrix is given by

K = λ (I−P) , (2.5)

where λ > 0 is a Poisson rate. Note that K will have reduced rank because [1, . . . , 1] ·K = 0.
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Since 0 6 P 6 1, we will always generate a K with nonpositive off-diagonal entries while the diagonal

entries are nonnegative and 6 λ. Thus every P generates a valid K. However, not every K will generate a

valid P via the equation P = I− (1/λ) K because of the previous entry constraints.3

2.1.2.4 Classical Simplicial Processes

Eq. 2.4 can be given a suggestive form, useful subsequently for understanding the quantum generalization

in Sec. 3.3 of hidden layers.

Define4 a K–component simplicial process to be a real (continuous- or discrete-time) stochastic process

X (t), written as a (K × 1) column vector, which satisfies the following relations: for all times t, X (t) > 0

and
∑

kXk (t) = 1 with probability 1.

Remark 1. The condition
∑

kXk (t) = 1 implies the component random variables cannot be independent.

In particular, their covariance matrix must be singular.

For example, let S (t) ∈ {1, 2, . . . ,K} be a discrete-state process and define Xk (t) = 1 if S (t) = k and

Xk (t) = 0 otherwise, for k = 1, . . . ,K. Then X (t) is simplicial. We call X (t) the indicator process

associated with S (t).

Let f (g) = [f1 (g) , · · · , fK (g)] be a (1×K) row vector of probability distribution functions. Let X (t) be

a K–component simplicial process. We define a scalar stochastic process G (t) to be a hidden simplicial

process with conditionals f and hidden process X if, for all distinct times t1, . . . , tn, the joint probability

distribution pt1,...,tn (g1, . . . , gn) of G is given by the expression

pt1,...,tn (g1, . . . , gn) =

E[(f (g1) X (t1)) · · · (f (gn) X (tn))] , (2.6)

3But note that negative probabilities may have a rational interpretation in quantum mechanics [83].
4Portions of this section have appeared in [3].
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where E [ · ] is the expectation operator. (Note that every factor f (gi) ·X (ti) is a scalar so that the products

are well-defined.)

Remark 2. The intuition for Eq. 2.6 is that the value G (t) is determined by a two-layer procedure. First,

a random list of mixing coefficients x1 = X1 (t) , . . . , xK = XK (t) is generated. Then G (t) itself is

selected from the mixed distribution x1f1 (g) + · · ·+ xKfK (g). The simplicial conditions on X (t) assure

this procedure is well-defined.

When X (t) is the indicator process of a continuous- or discrete-time Markov process, it is easy to verify

that G (t) is precisely the same as an HMM defined by Eq. 2.4 above.

The weak 2nd –order properties of hidden simplicial models are easy characterized:

Theorem 1. Let G (t) be a K–component hidden simplicial model with conditionals f and hidden process

X. Define the (K × 1) vector PX (t) = E [X (t)] and the (K ×K) matrix PX (t, s) = E
[
X (t) ·X (s)T

]
.

Then the autocovariance CG (t, s) [56] of G is given by:

CG (t, s) = µf ·PX (t, s) · µf
T + δ (t− s)σ2

f ·PX (t) ,

where µf and σ2
f are column vectors of the means and standard deviations of the conditional distributions

and δ ( · ) is the Dirac delta function.

2.1.3 Latent Quantum Stochastic Processes in Ion Channels

This section distinguishes between theoretical statistical models of ion channels given by Kolmogoroff’s

Theorem [79] and the physical processes which gives rise to the observed behavior.

These distinctions are key to understanding the ion channel literature. It has been known since the 1960’s

[64] that the physical stochastic processes represented by channel permiabilities or conductances have the

formal structure of hidden Markov models. By Kolmogoroff’s Theorem, these conductance processes can

certainly be simulated by underlying concrete Markov processes.
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As a result, channel researchers have always assumed there are Markov processes controlling the successive

transitions of the physical conformations of channels. But this is actually an unwarranted step since we can-

not know if any particular simulated channel process is the actual physical process driving the distributional

evolution because there is no general uniqueness corollary of Kolmogoroff’s Theorem.

In fact, the physically-based quantum activated measurement processes which are defined in Sec. 3.4 will

be proven to give rise to formal hidden Markov models (i.e., HMM distribution functions) yet with no

underlying physical Markov process.

Therefore, if all we know about a channel is its formal permiability or conductance distribution, there is

no scientific way to choose between a hidden quantum model (HQM) and a hidden Markov model as the

physical process. However, when the results of this research are considered which prove HQM’s can give

rise to 1/f -type noise (Sec. 5.2.4) while HMM’s apparently cannot (Sec. 2.2.5), the evidence will clearly

favor the new HQM channel processes.

Thus, based on our research, the theoretical existence of simple concrete simulations may have completely

distorted the historical understanding of ion channel behavior.

2.2 Mathematical Models of Noisy Tissue

Because of its power and ubiquity in all neural recordings5, from the individual channel level up to cortical

electroencephalograms (EEG), the study of neuronal noise continues to be a major field of research [38, 42,

43].

Most of the noise created by the electrical activity in neural tissue can be characterized as 1/f -type noise;

that is, its power spectrum is of the general form 1/fθ over a significant range of frequencies f for some

constant θ . Data taken from [37]).

Ion channels are protein-based micromachines densely embedded in all neuron membranes, which create

5Portions of this section have appeared in [3].
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and control the transmission of information by regulating the passage of ions in response to neurotransmit-

ters, local voltages, or external stimuli such as temperature, pressure, or photon reception [34].

Soon after Hodgkin & Huxley explained the generation of action potentials by the K+/Na+ channel sys-

tem [25], researchers began to model membrane conductance fluctuations as resulting from simple Markov

processes governing the open/close kinetics of the embedded ion channels [32]. These conductance fluctu-

ations were recognized as a potential source of neurological noise, at least at the neuron level [34].

However, as will be discussed in detail in Sec. 2.2.5, since the 1970’s it has been thought that 1/f -type

neural noise must originate somewhere other than ion channels because hidden Markov models generate

autocovariance functions of the wrong form [32, 41, 65–67].

2.2.1 1/f -type Noises

The dominant form of noise in passive electrical circuits has power spectra of the form S (f) ≈ σ2
0T +

bP/fθ, where f is frequency, T is an equivalent temperature of the circuit, P is the net power drawn by

the circuit, and σ2
0, b, θ are circuit-defined constants [41]. In most analyses, the spectral exponent θ is taken

to be precisely equal to 1. Often the defining relation S (f) ≈ σ2
0T + bP/fθ holds only over a portion of

the spectrum large enough to cover the region of interest. We shall refer to the class of all such models as

1/f -type noises [84–88]. The flat, temperature-proportional noise floor term SJ (f) ∼ σ2
0T is the classic

Johnson noise and is explainable in terms of thermal motions of electric carriers [89]. However the power-

dependent 1/ fθ term, first studied by Bernamont [90], is less easily understood and has been a key topic

within noise research for nearly a century [85, 86].

2.2.2 Modeling EEG Noise and Noise PSDs

EEG noise has often been modeled using PSDs [16, 56] that are power law functions [57, 88] of the form

S(f) ∝ 1/fθ for some 0 6 θ < 2. Neurological noise PSDs at all scales have long been claimed [32,35,91]

to have the general characteristics of such “1/f–type noise” [88] even though such models include the
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obvious contradiction of a biological system with infinite low frequency power density and even infinite

total power if θ < 1.

Autoregressive (AR) [6] and autoregressive-moving average (ARMA) models of [56] of EEG recordings

are commonly used, in particular to simulate noise for the SSVEP detection algorithm in [92]. Such models

are useful approximations but yield PSDs which are rational functions and are more appropriate for linear

systems. However, as mentioned previously, brain responses are known to be non-linear [39, 57].

One useful approach has been modeling the random variations of noise periodograms around their mean

PSD. In many cases, the periodogram values Sx (k) of a discrete-time random process x (n) are independent,

scaled χ2 (2) random variables [93], whose expected value E [Sx (k)] is the mean spectral power at the

frequency index k [56]. This holds exactly for many important special cases, such as white Gaussian noise

and causal periodic ARMA processes. (cf. Appendix F for the definition and proof of this property.) In more

general situations, the χ2 (2) distribution is approached only asymptotically as the data length increases.

However the result still has very broad applicability [56].

The technique of detecting SSVEP responses for BCI applications by performing statistical testing of the

periodogram (often called the Spectral F-Test (SFT)) was developed by several research groups in the mid-

1990’s [94] and is based on “hidden periodicity” methods dating back to the 1940’s [56]. The idea has been

used regularly, notably in [37, 92] which enhanced the flexibility of the original SFT procedure.

2.2.3 The van der Ziel and McWhorter Mechanism

In the 1950s, McWhorter [95], van der Ziel [96], and Du Pre [97] began to consider general mechanisms

of 1/f -type noise generation in semiconductors based on a distribution of independent bound charges each

of which decays randomly from its activated to its inactivated state. The relation between a charge’s decay

time τ and its activation energy E was hypothesized on quantum mechanical grounds to be of the form

τ = τ0 e
E/ kBT , where τ0 is a time constant, T is the ambient absolute temperature, and kB is Boltzmann’s

constant. General thermodynamic arguments then imply a population distribution of decay times propor-
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tional to 1/τ over some finite range [τ1, τ2] [98]. As these researchers showed, such populations give rise to

noise spectra of the form

SVZM (f) ∝ 1

f
tan−1

[
2πf (τ2 − τ1)

1 + τ1τ2(2πf)2

]
(2.7)

which reach finite asymptotic values as f → 0, fall off like 1
/
f2 as f → ∞, but are very closely of the

form 1/f for 1/(2πτ2) < f < 1/(2πτ1).

The van der Ziel - McWhorter formalism is one of the most general and flexible mechanisms for explaining

the ubiquitous 1/f -type noises in nature. Subsequently (Sec. 5.1), we will present much more general

forms of van der Ziel - McWhorter (VZM) conductance noise in neural tissue which, in the simplest case,

results from a population of independent ion channel processes, each of which has autocovariance of the

form R (τ) ∝ e−|τ |/υ and which has time-constant population distribution p (υ) ∝ 1/f2−θ. Such neural

membrane noises yield conductance spectra SGVZM(θ) ≈ 1/fθ over a significant range of frequencies. We

will prove that the simple relation

υ = υ0 e
E/kBT (2.8)

is the formal bridge between our general quantum energy-modulated channel models and 1/f -type noises

in neural tissue.

2.2.4 The Eyring Rate Theory of Ion Channels

A highly-abstracted, non-kinetic form of structural channels which accounts for certain conductance prop-

erties is derived from Eyring rate theory [34,60,62] which is a steady-state model of a neuron ion channel

that posits a flux of ions moving along a “bumpy” energy profile from the channel’s entrance to its exit. The

bumps occur at linearly-arranged stations along the channel’s interior.

When an ion is in station i, it is at the bottom of a potential well of known energy level Ei . In order to move

onto station i + 1, it must acquire activation energy Ei,i+1 − Ei > 0 from the thermal environment, where

Ei,i+1 > Ei, Ei+1 is an energy barrier. Based on general thermodynamic considerations, the rate at which
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ions make this transition (or the probability that a single ion does so) is the Eyring rate,

ri = r0 e
−(Ei,i+1−Ei)/kBT , (2.9)

where T and kB are as above and r0 is a scaling factor. Since the energiesEi,i+1 (V ) , Ei (V ) , Ei+1 (V ) are

assumed to be functions of the control or gating variable V (e.g., the membrane voltage, chemical ligand

density, etc.), these Eyring rates will themselves be determined by V . As is well known [34,62], this model

along with simple linear functional relations for the barrier energies Ei,i+1 can account for steady-state flux

formulas such as the Goldman-Hodgkin-Katz Equation [60].

However, the standard theory does not have a kinetic mechanism [72]; i.e., a model of random channel

changes such as Markov kinetics which accounts for Hodgkin-Huxley [25] and similar transient behavior

caused by sudden changes in the gating variable. Moreover, the theory only predicts the mean flux at each

level of the gating parameter (from which the conductance may be infered), not deviations from the mean

which is what the noise signal is.

But if we rephrase the Eyring rate relation (2.9) in terms of time, we can say that the average waiting time

υi for an ion to pass from station i to station i + 1 is given by υi = υ0 e
(Ei,i+1−Ei)/kBT , an expression

obviously reminiscent of the McWhorter semiconductor relation υ = υ0 e
E/kBT (2.8) which led to VZM

noise. By incorporating energy levels into a generalized Markov kinetic model, we use this shared relation

to connect Eyring rates and channel noise. (cf. Sec. 4.4.2).

2.2.5 Markov Ion Channels and Neural Membranes as Sources of Noise

It has been known at least since the 1960’s that neuron membranes in vitro also give rise to 1/f -type noise

although the biochemical mechanism remains controversial [35].

In the early 1970’s, Terrell Hill and Yi-Der Chen published a classic series of articles [32, 65–70] which

investigated the statistics of various Markov process models of ion channel kinetics for neuron membranes.

In particular, they derived the autocorrelation formula Appendix E, Eq. E.4 for the conductance noise of
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a population of independent, identical, 4-subunit Hodgkin-Huxley [25] K+/Na+ neuron channels which

change their physical conformations randomly in accordance with the steady-state distribution of the Markov

process [62,72]. In their models, only when all 4 subunits are in a “permissive” conformation is the channel

open for the passage of ions through the neural membrane. Otherwise, it is considered closed or fully

blocking.

One of their stated goals was to exclude the possibility that such Markov kinetics could give rise to 1/f -type

spectra by considering various modifications of their basic model. These modifications included interaction

energies between Markov states as well as “leaky” channels (refinements we will later adopt for our models).

In addition, they considered a scheme closely related to the van der Ziel – McWhorter mechanism, as they

state,

“... not because we believe in it but because it is well known in semiconductor physics that a sufficiently

broad distribution ... in [υ] values of the form [1/υ], corresponding to a constant or flat distribution in

activation energies for the [υ] process, will give [S(f)] ∼ 1/f .” [95, 98, 99]. [Notation adjusted.]

According to Hill and Chen, analysis of these modified models

“... confirms the generally held view that the observed [S(f)] ∼ 1/f is associated primarily with K+ current

through open K+ channels and not with the open-close kinetics of these channels” [32];

i.e., the source of 1/f -type randomness in the K+ current is not the channels’ opening and closing behavior

but some still unexplained mechanism.

So far as the present authors are aware, this conclusion of Hill and Chen has not been seriously questioned

since their work appeared. At present, it is taken for granted that there must be an additional, unknown

random process at work in neural membranes governing the flow of ions which accounts for 1/f -type

noise (but cf. [35]). One common explanation is some mysterious scale-similarity property of neuronal

tissue [52, 100] which, in other contexts, is known to give rise to 1/f spectra [88]. However, there seems
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to be no evidence for such scale similarity and, as we will show, there are far more cogent explanations for

1/f -type neuronal noise.

We believe that general biophysical principles, such as thermodynamic equilibrium, can provide these

needed objective optimization principles. In particular, we will prove in Appendix E that entropy maxi-

mization in a population of quantum ion channels can give rise to approximate 1/f -type noise.

2.3 Steady-State Visual Evoked Potentials and Brain-Computer Interfaces

A sudden stimulus6 such as a touch, a sound, or a bright flash will elicit a detectable brain reaction called

an event-related potential [17] or evoked potential (EP). Such EPs typically last on the order of 500

ms before disappearing, and may be reinvoked after a short refractory period. However, if the stimuli are

repeated at a regular rate faster than about 2Hz, the EPs will not have time to decay and the brain’s reaction

will be a periodic signal called a steady-state evoked potential with fundamental frequency the same as the

stimulus’. In particular, a periodic visual stimulus will cause an SSVEP [101].

These stimulus-dependent brain frequencies can be used to control brain-computer interfaces (BCI) [6] by

flashing lights at various distinct frequencies simultaneously in different locations on a computer screen

or LED device. The strongest SSVEP response peak detected corresponds to the location on which the

subject’s attention is most focused and usually represents the selection.

Low frequency visual stimuli generally induce harmonics [9] (cf. Fig. 7.4) which also may be used for BCI

detection [8]. Thus the corresponding subject selections can be identified by simple algorithms. It is worth

remarking that such harmonic responses prove conclusively that the brain is a nonlinear system since pure

linear systems cannot generate harmonics. On the other hand, higher frequencies, especially those which

approach the γ-band, are much more difficult to detect because their response power is close to that of the

background, and all harmonics (if they exist at all) are lost in the γ-band noise. This is seen clearly in Fig.

7.4 which shows the 28 Hz brain response is almost indistinguishable from background noise. (However,

6Portions of this section have appeared in [2].
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note that our new GVZM-based algorithms in Chap. 7 detect the 28 Hz peak even in this difficult data set.)
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CHAPTER 3: HIDDEN ACTIVATED QUANTUM MEASUREMENT

MODELS

[I]t may well be that a fuller understanding of the brain will require ... more extensive theories going beyond

quantum mechanics.

David Bohm and Basil Hiley, The Undivided Universe [102]

In this chapter, the new approach to quantum stochastic processes will be outlined. The most important

result, presented in Sec. 3.4, Thm. 3, is a mechanism by which a hidden, quantum mechanical, layer can

give rise to a manifest process in our measuring instruments (such as current meters and so forth) that

appears to have been generated by a classical, discrete-state Markov process. This classical compatibility

is critical for the new ion channel model presented in Chap. 4 because of the overwhelming experimental

evidence, going all the way back to the pioneering work of Hodgkin, Huxley, Katz, and others [26, 64],

which demonstrates the applicability of such processes to ion channel electrochemistry.

The theory is presented in a sequence of theoretical sections.

• The foundational concept of formal quantum state processes, on which the entire theory rests, is

defined in Sec. 3.1, Def. 1. Several key examples of quantum state processes are presented.

• An abstract formalization, termed activated measurement, of the dissipative quantum process of

energy absorption followed by state collapse, is presented in Sec. 3.2. These activated measurements

will be posited later as the hidden engine of quantum ion channel kinetics.

• In Sec. 3.3, conditional quantum fields, which are are the connecting link between between the

manifest classical layer and the hidden quantum layer, are defined. This classical/quantum complex

forms a hidden quantum model.

• Finally, Sec. 3.4 encapsulates the previous sections in the concept hidden activated measurement

models whose attributes are summarized in Thm. 3.
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A summary of the quantum mechanical background necessary for understanding the concepts and notation is

presented in Appendix A. See Appendix B for a discussion of tensor products and the partial trace. Appendix

G contains all notational symbols and conventions. Note that, for simplicity of presentation, Hilbert spaces

are generally assumed to be separable. Thus, when H is non-trivial, 1 6 dim (H) 6 ℵ0.

3.1 Quantum State Processes

In this section, a type of quantum stochastic processes called formal quantum state processes are defined

(Def. 1). Examples are presented including a formulation of the Schrödinger equation as a state process

(Examp. 1). The other examples explore the concept of a coherent family of state operators which is

essential for defining the activated measurement processes of Sec. 3.4.

The theories of general quantum [77, 103, 104] and statistical mechanics [105, 106], as well as stochastic

processes [79, 82], have a vast and accessible literature. We use a minimalist quantum theory compatible

with any detailed quantum model of ion channels.1

Let H be a fixed separable complex Hilbert space with inner product 〈 · | · 〉 [109]. The space H is the

configuration space of the quantum system. Vectors ψ ∈ H (or, sometimes |ψ〉), are called wavefunctions,

pure states, or “kets” in Dirac’s terminology [110]. In order to simplify the presentation of quantum-based

reasoning, we fix a particular orthonormal basis for H so that all vectors are (possibly infinite) columns

of complex numbers, dual vectors (Dirac’s “bras” [110]) are rows, and continuous linear operators are

(possibly infinite) square matrices. In this way, operators act by matrix multiplication, the inner product

〈ψ|φ〉 is just ψH · φ, where ( · )H denotes the hermitian transpose (i.e., the adjoint [111]), and the projection

operator Pψ onto a unit vector |ψ〉 is the rank-1 matrix Pψ = |ψ〉〈ψ| = ψ · ψH. Moreover, we will

generally consider only bounded, normal operators which are compact [109,111] (so that orthonormal bases

1Since protein macromolecules are very large systems, it may be advantageous to base quantum ion channel models on Bohm
& Hiley’s alternative foundation for quantum mechanics which uses non-local quantum potentials [102]. In fact, David Bohm
and his colleagues have speculated for decades on the relation between non-locality, quantum potentials, and mind (e.g., [102]
and [107]). The highly controversial [29,31] theories of Penrose [27,108] and Penrose & Hameroff [28] must be mentioned in this
regard as well. We shall, however, avoid these fascinating excursions in favor of more standard quantum “metaphysics.”
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of eigenvectors and countable spectral decomposition exist) and even non-degenerate (so eigenspaces are

1-dimensional) when convenient. We will often treat H as finite-dimensional to simplify formulas. These

simplifications are replaceable by appropriate functional analysis generalizations [103, 109, 111, 112].

Definition 1. Let (T,6, t0) be a quasi-ordered2 set with least element t0. The elements t ∈ T will be

refered to as “times”. Let H be the configuration space of a quantum system. A formal quantum state

process Ψ ( · ) on T is a family

{Ψ (t1, . . . , tn) | t0 6 t1 < · · · < tn, t1, . . . , tn ∈ T, 0 6 n <∞}

of non-negative definite, self-adjoint, trace class operators [111] on H⊗n def
=

n︷ ︸︸ ︷
H⊗ · · · ⊗H satisfying the

marginalization conditions: Ψ (∅) = 1 for n = 0 and

Ψ
(
t1, . . . , t̂k, . . . , tn

)
= trk (Ψ (t1, . . . , tk, . . . , tn)) , (3.1)

for all t1 < · · · < tk < · · · tn, 1 6 k 6 n, where trk ( · ) is the partial trace along the kth dimension and, as

before, the caret ·̂ above a symbol indicates an item deleted from a list. (Cf. Appendix B for the definitions

of tensor products and partial trace.)

Remark 3. The n = 0 condition Ψ (∅) = 1 implies that every Ψ (t1, . . . , tn) is a state on H⊗n; i.e.,

tr(Ψ (t1, . . . , tn)) = 1.

Remark 4. Quantum marginalization is the quantum mechanical generalization of the Kolmogoroff consis-

tency conditions Eq. 2.1 for classical formal stochastic processes.

Remark 5. It is important to interpret Def. 1 correctly with respect to observers and measurements. The

process Ψ ( · ) must be interpreted as excluding any further disturbances to the system. It implicitly “codes”

every measurement or observation that has been or will be made on the system during the times T . Any ad-

ditional observation would change the process itself. However, probability and expectation calculations such

as Born’s Law [77] E [A |Ψ] = tr (A ·Ψ), where E [ · ] denotes the frequentist average (or expected) value,

2i.e.; t 6 t and r 6 s, s 6 t imply r 6 t.
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are allowed because they do not constitute measurements or observations in the strict quantum mechanical

sense.

Definition 2. Let Ψ ( · ) be a formal quantum state process on T . LetA be a ∗–algebra [103,112] of observ-

ables of the system. For every A ∈ A, let A denote the operator on H which corresponds to A. The algebra

A is a called correlatable by Ψ ( · ) if, for all times t1 < · · · < tn and every A1, . . . , An ∈ A, with associ-

ated operators A1, . . . ,An, the productA1 · · ·An has a frequentist average value E [A1 · · ·An |Ψ (t1, . . . , tn)]

in systems prepared in state Ψ (t1, . . . , tn) and which satisfies the Generalized Born Law

E [A1 · · ·An |Ψ (t1, . . . , tn)] = tr (A1 ⊗ · · · ⊗An · Ψ (t1, . . . , tn)) . (3.2)

Definition 3. A concrete quantum state process3 consists of a formal quantum state process Ψ ( · ), a

∗–algebra A of observables which are correlatable by Ψ ( · ), and a time-dependent observable function

A : [a, b]→ A. The moments of A are the values

E [A (t1) · · ·A (tn) |Ψ]

Remark 6. It must be noted that Eq. 3.2 is a non-trivial generalization of the standard axioms of quantum

mechanics. It cannot be derived from standard formulations since none of those assign a meaning to the

concept of statistical moments E [A (t1) · · ·A (tn) |Ψ] at distinct times. Interpreting this concept is certainly

challenging as we are not allowed to imagine performing actual measurements at times t1, . . . , tn to calculate

the product A (t1) · · ·A (tn) since every such measurement would cause wavefunction collapse and thus

invalidate the given state Ψ (t1, . . . , tn).

We do not minimize these foundational issues. Nevertheless, conventional quantum formulations were

created with a view to physical applications, for which the statistics and dynamics at a single time t are

sufficient. On the other hand, and bearing in mind the quote from Bohm & Hiley which began this section,

3The concept of a concrete quantum state process is related to the “totally symmetric quantum stochastic processes” of Accardi,
Frigerio, & Lewis [113]. In addition, there are numerous alternative definitions of the concept “quantum stochastic process’ in the
literature” (e.g. [114]) whose relation to one another is complex. For this reason, we coined the term “quantum state process” and
used the simplest definition which can be adapted to random quantum channel kinetics.
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neurological signal processing simply cannot do without the concept of correlated behavior at distinct times,

most importantly in order to calculate autocovariance functions. For this reason the notion of a correlatable

∗–algebra A of observables (Def. 2) was introduced: we regard the problem of identifying the algebra A of

appropriate observables for a particular quantum state process Ψ ( · ) as a key part of the formalization of

any application area.

Similar remarks apply to the definition of hidden quantum models Sec. 3.3, Def. 10, which is meant to bridge

the gulf separating underlying quantum-level processes from macroscopic classical instrument readings.

Such a concept is needed, at the minimum, to explain the excellent fit of classical Markov kinetics to the ion

channel noise measurements in which we were particularly interested.

Example 1. The Schrödinger Process: Let H be the time-independent Hamiltonian of a physical system

[77,103,104,110] and T be the real-valued time interval [0,∞). Then Schrödinger’s Equation for the state

Ψ can be written as
∂Ψ

∂t
+

2π
√
−1

h
[Ψ,H] = 0,

where h is Planck’s Constant and [ · , · ] denotes the commutator [A,B]
def
= AB − BA. Note that, since

Ψ is of trace class and H is bounded, then [Ψ,H] is also of trace class [111] and tr [Ψ,H] = 0. It then

follows that the operators

St [ · ] def
= e

−t
(

2π
√

(−1)/h
)

[ · ,H]
,

for t > 0, sends states to states. Moreover, for any initial state Ψ0, St [Ψ0] solves Schrödinger’s Equation.

Now define

Ψ (t1, . . . , tn)
def
= St1 [Ψ0]⊗ · · · ⊗ Stn [Ψ0] ,

for t1 < · · · < tn and n > 0. Then Ψ ( · ) is a formal quantum state process. We can take A to be all

possible obervables under the Schrödinger measurement protocol: never measure anything during the

interval [0,∞). Thus the system will never be disturbed away from its pure quantum evolution. We will
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then have, for any observable function A : [0,∞)→ A, moments

E [A (t1) · · ·A (tn) |Ψ] = tr (A Ψ (t1)) · · · tr (A Ψ (tn))

= E [A (t1) | St1 [Ψ0]] · · ·E [A (tn) | Stn [Ψ0]] ,

so the observable evolves dynamically and is uncorrelated at distinct times.

Example 2. Diagonalizable State Processeses: Let A (t) ≡ A, a constant observable at all times t ∈ T .

Assuming A is compact [109, 111], there is a countable set {Pi | i = 1, 2, . . .} of projection operators onto

the eigenspaces of A. Let {πt1,··· ,tn (i1, . . . , in)}a6t6b be any formal discrete-state random process (Sec.

2.1.2.1). Define

Ψ (t1, · · · , tn)
def
=

∑
i1,··· ,in

πt1,··· ,tn (i1, . . . , in) Ψ1 ⊗ · · · ⊗Ψn, (3.3)

where Ψi
def
= Pi/tr (Pi) is the ith eigenstate. Then Ψ (t1, · · · , tn) is a quantum state process.

Definition 4. A quantum state process Ψ is called diagonalizable if there is a compact observable A and

and a formal discrete-state random process {πt1,··· ,tn (i1, . . . , in)}a6t6b such that Ψ is of the form Eq. 3.3.

Diagonalizable state processes will be key for Sec. 3.4, Thm. 3. Critically, diagonalizable processes satisfy

tr (A⊗ · · · ⊗A · Ψ (t1, . . . , tn)) =
∑

i1,··· ,in

αi1 · · ·αin πt1,··· ,tn (i1, . . . , in), (3.4)

where αi is the ith eigenvalue of A. From this formula we can see that A has certain attributes in com-

mon with a classical process X (t) whose distribution function is Prob [X (t1) = αi1 , . . . , X (tn) = αin ] =

πt1,··· ,tn (i1, . . . , in); namely, they both share the same moments E [X (t1) · · ·X (tn)] as given by Eq. 3.4.

This is the first example which shows that a classical-looking process actually may derive from a hidden

layer governed by quantum, rather than classical, probability.

Definition 5. Coherence: A state Ψ is coherent with an observable A (or simply A–coherent) if it

commutes with the operator A associated with A: Ψ ·A = A ·Ψ. The A–coherent states form a closed,

convex subset S (A) ⊆ S (H) of the set of all states of the configuration Hilbert space H. The Measurement
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(or Observation or Projection or . . . ) Law [77] states, in the simplest cases, that a measurement of A,

while the system is in state Ψ, will leave the system in the A–coherent state

Ψ′ =
∑
i

Pi ·Ψ ·Pi,

where, as in Examp. 2, Pi is the projection onto the ith eigenspace of A.

We will use the term “coherent” if the operator A is clear from context.

Example 3. Coherent Families: An coherent transition is function P [ · ] : S (A) → S (A) which pre-

serves mixtures: P [
∑
aiΨi] =

∑
ai P [Ψi], for ai > 0,

∑
ai = 1.

A coherent family on T is a collection
{
Pt|s | t > s, t, s ∈ T

}
of coherent transitions satisfying:

 Pt|t = identity

Pt|s ◦ Ps|r = Pt|r, for t > s > r,
(3.5)

where ◦ denotes composition.

Given an A–coherent family Pt|s, let Ψi be the ith eigenstate of A and let Ψ0 be any coherent state. Define

P (tn, · · · , t1)
def
=

∑
in−1,··· ,i1

Ptn|tn−1

[
Ψin−1

]
⊗ · · · ⊗ Pt2|t1 [Ψi1 ]⊗ Pt1|a [Ψ0]. (3.6)

(Note that time sequence tn, · · · , t1 has been written in reverse order for clarity.)

As will be seen in the proof of Sec. 3.3, Thm. 2, P ( · ) is a quantum state process that can generate Markov-

like behavior at the classical level.4

Example 4. Discrete-time Coherent Generators: Let T be the discrete-time points T = {0, 1, 2, . . .}. Let

4But see [115, 116] and [117] for alternative approaches to quantum Markov processes.
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Π [ · ] be a coherent transition. For time points l > k, define

Πl | k [ · ] def
= Πl−k [ · ] def

=

l−k︷ ︸︸ ︷
Π [· · ·Π [ · ]],

the (l − k)–fold composition of Π. The simple relation (m− l) + (l − k) = (m− k) shows that Πl | k [ · ]

forms a coherent family. The induced Π (ln, . . . , l1) is called the discrete-time quantum state process

generated by Π.

Example 5. Continuous-time Coherent Generators: Let T be the real-valued time interval [0,∞). Let

Π [ · ] be a coherent transition and let λ > 0 be a constant. For t > s, define, by expanding in a Taylor series,

the operator

Πλ
t|s [ · ] def

= eλ(t−s)(Π[ · ]−I), (3.7)

where I denotes the identity transition. From the expansion

Πλ
t|s [ · ] =

∞∑
k=0

e−λ(t−s)λ
k (t− s)k

k!
Πk [ · ], (3.8)

where, as before, Πk [ · ] denotes k successive applications of Π [ · ], it is easy to show that Πλ
t|s [ · ] is also

a coherent transition. The composition conditions Eq. 3.5 follow from the properties of the exponential and

the simple equation (t− s) + (s− r) = (t− r). Therefore Πλ
t|s, for t > s, defines a coherent family.

(Equation 3.8) clearly shows that, from a classical perspective, Πλ (tn, . . . , t1) can be thought of as the result

of applying the generator Π [ · ] according to a Poisson process with rate constant λ; that is, the probability

of precisely k applications of Π [ · ] during the time interval [s, t] is e−λ(t−s)λk (t− s)k /k!. Of course, as

with Examp. 3, this classical conception does not represent the actual quantum behavior inside the hidden

layer. Nevertheless, it may appear to be a valid description at the manifest, classical level. The induced

Πλ (tn, . . . , t1) is called the continuous-time quantum state process, with Poisson rate λ, generated by

Π.
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3.2 Activated Measurement Processes

In this section we present an important type of quantum operation called activated measurement which is

meant to abstract the double procedure of absorption of energy while in a coherent state of an observable

A followed by the measurement of A itself. This collapses the system into a new coherent state and may

also return energy back to the environment. As will be seen, activated measurement affords an example of a

generator for a coherent family (Sec. 3.1, Examp. 4).

Definition 6. An activator for an observable A is a bounded linear operator Q such that, for every coherent

state Ψ of A, the operator QΨQH is a state ; that is, tr
(
QΨQH

)
= 1. (Recall ( · )H denotes the hermitian

transpose. Note that the operation Q ( · ) QH preserves non-negative definiteness.) We call QΨQH an

activated state of A.

Example 6. Unitary operators U are activators for every observable since

tr
(
QΨQH

)
= tr

(
ΨQHQ

)
= tr (ΨI) = 1.

As a result, if Q is an activator for A and U is unitary then UQ is also an activator for A. In particular, the

dynamic operator U (t) = e−
2π
h

√
−1Ht, with H the system’s time-independent Hamiltonian, is an activator

for every observable.

Remark 7. A good image of activation is shaking dice in a cup before they are rolled. A biophysical

example is an ion channel absorbing thermal energy from the membrane environment, causing it to become

excited.

Lemma 1. Let A be an observable. If the linear operator Q is an activator for A then ‖Qψ‖ = ‖ψ‖ for

every eigenvector of A. If A is compact [111] (in particular if H is finite), the converse holds.

Proof. Let Q be an activator and ψ be an eigevector of A. Then Ψ
def
= ψψH/ ‖ψ‖2 is a coherent state of A.

By hypothesis

1 = tr
(
QΨQH

)
=

1

‖ψ‖2
tr
(

(Qψ) (Qψ)H
)

=
1

‖ψ‖2
‖Qψ‖2 .
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Conversely letA be compact and let Q preserve the norms of eigenvectors ofA. SinceA is compact, it has a

discrete spectrum {αi | 1 6 i 6 dim (H)} and every eigenspace for αi 6= 0 is finite-dimensional [109]. Let

ψ1, . . . , ψdi be an orthonormal basis for each finite-dimensional eigenspace. Then the projection operator

onto such an eigenspace is

Pi =

di∑
i=1

ψiψ
H
i

and every term ψiψ
H
i is a coherent state. From this we see that tr (Pi) = di and

tr
(
QPiQ

H
)

=

di∑
i=1

(Qψi) (Qψi)
H =

di∑
i=1

‖Qψi‖2 =

di∑
i=1

1 = di = tr (Pi)

since ‖Qψi‖ = ‖ψi‖ = 1 by hypothesis. So Q ( · ) QH preserves the trace of every finite-dimensional pro-

jection Pi. A generalA-measurement state is a mixture Ψ =
∑
i
aiPi, for which ai > 0 and

∑
i
ai tr (Pi) =

1. All projections in the sum for which ai 6= 0 must be finite dimenensional or else the sum would not be of

trace class. Thus

tr
(
QΨQH

)
=
∑
i

ai tr
(
QPiQ

H
)

=
∑
i

ai tr (Pi) = 1

and so QΨQH is a state. Therefore Q is an activator for A. �

Remark 8. Thus Q is an activator for a compact observable A if and only every column of the matrix of Q

in the orthonormal basis for A has norm 1. This is a useful criterion.

Activated states for A are quantum states but generally not A–coherent states. In a coherent state we can

regard A as having some particular but unobserved value but activation causes quantum interference and so

the possible A–eigenstates superpose. This motivates the following:

Definition 7. Let Q be an activator for observable A and let Ψ be a coherent state of A. An activated

measurement ofA consists of activating Ψ by Q followed by measuring (but not observing)A. This yields

a new coherent state of A denoted Ψ′ =MQ
A [Ψ].

Remark 9. Continuing the simile of Remark 7, the measurement subsequent to activation corresponds to

turning the cup upside down on the table without lifting it to see the result. (If the cup were lifted, this
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would constitute an “observation” and the system would collapse further to the particular wavefunction of

A corresponding the value observed.)

The activated measurement operator may be written explicitly as

MQ
A [Ψ] =

∫
Sp(A)

ΨαQΨQHΨα dα, (3.9)

where Sp (A) is the spectrum of A and where Ψα
def
= Pα/tr (Pα) is the α eigenstate.

Since MQ
A [ · ] is an A–coherent transition (Examp. 3), we can apply the theory developed in Sec. 3.1 to

define a continuous quantum state process (Examp. 5) generated by the activator Q:

Definition 8. The coherent family generated by the activator Q, with rate constant λ > 0, is

MQ
t|s [ · ] def

= eλ(t−s)(MQ
A [ · ]−1), (3.10)

for t > s.

The activated measurement process generated by the activator Q is defined, as in Eq. 3.6 by

MQ (tn, · · · , t1)
def
=

∑
in−1,··· ,i1

MQ
tn|tn−1

[
Ψin−1

]
⊗ · · · ⊗MQ

t2|t1 [Ψi1 ]⊗MQ
t1|a [Ψ0], (3.11)

where Ψi, i = 1, 2, . . . is a basis of eigenstates of A.

3.3 Hidden Quantum Models

In this section, we show how a hidden quantum layer can control a manifest classical process at the obser-

vational level.

Definition 9. Let X be a measure space thought of as the possible observational values of a manifest process

X . A conditional quantum field [118,119] on H, where H is a Hilbert space, is an integrable function f ( · )
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from X into the non-negative definite, compact, self-adjoint operators on H such that
∫
X

f (x) dx = I, where

the convergence is in the operator norm.

Remark 10. When H is separable and a fixed basis is chosen, the coefficients of each f (x) form a non-

negative definite, compact, and hermitian matrix [fij (x)]16i,j6dim(H) of integrable complex-valued func-

tions. Moreover, these functions satisfy
∫
X
fij (x) dx = δij , the Kronecker delta.

Definition 10. Hidden Quantum Models: Let f ( · ) be a conditional quantum field on the measure space

X and let Ψ ( · ) be a quantum state process on configuration space H. Then the formal hidden quantum

model (HQM) generated by prior Ψ ( · ) and conditional f ( · ) is the formal stochastic process with posterior

distribution functions

pt1,··· ,tn (x1, . . . , xn) = tr (f (x1)⊗ · · · ⊗ f (xn) · Ψ (t1, · · · , tn)) . (3.12)

Remark 11. Using the generalized Born relation Eq. 3.2 this can be informally interpreted as stating there

is some observable X whose measured values are contained in the space X and for which

ProbΨ [X (t1) = x1, . . . , X (tn) = xn] = E [Ix1 (X (t1)) · · · Ixn (X (tn)) |Ψ ( · )] ,

where Ix ( · ) denotes the indicator functions on X: Ix (y)
def
= δx,y.

An important feature of HQM’s is that, according to Def. 10, measurements of the manifest X process are

entirely classical5: they do not disturb the hidden quantum stochastic process in any way. One can view

them as macroscopic “readings” such as the global voltage through a patch of neuronal membrane [71,120].

Example 7. Diagonalizable HQMs: When the state process Ψ (t1, · · · , tn) is diagonalizable (Sec. 3.1,

Def. 4), the posterior distribution Eq. 3.12 reduces to

pt1,··· ,tn (x1, . . . , xn) =
∑

i1,··· ,in

fi1 (x1) · · · fin (xn) Ψi1,...,in (t1, · · · , tn), (3.13)

5Note, however, we have not formally excluded the non-classical situation pt1,··· ,tn (x1, . . . , xn) < 0, for certain values. There
are reasonable interpretations of negative probabilities in quantum mechanics [83].
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where Ψi1,...,in (t1, · · · , tn) is the (i1, . . . , in)th main diagonal coefficient of the prior state Ψ (t1, · · · , tn)

in the basis {|φ〉i | 1 6 i 6 dim (H)}.

Remark 12. It is clear that, except for notation, the posterior distribution Eq. 3.13 of a hidden quantum

model has precisely the same form as a classical discrete-state, continuous-time formal hidden model (Sec.

2.1.2.1, Eq. 2.3). Moreover, there are concrete hidden stochastic processes which simulate this posterior.

However, there is a vast conceptual difference in terms of physical models.

Specifically, the latent process I of a classical discrete-state hidden model takes one and only one of the

possible outcomes i = 1, 2, . . . at every instant t of time. In the usual language, the latent process I (Markov

or not) is “in state i at time t”. However, this is far from the case with a hidden quantum model. For an

HQM, the latent quantum process is almost never “in” one of the basic pure states Ψi = |φi〉 · 〈φi|. The

underlying state always should be regarded as a simultaneous superposition of all its latent possibilities,

just like Schrödinger’s famous cat.

Of course, if all we are studying is the posterior distribution pt1,··· ,tn (x1, . . . , xn) then these subtleties are

irrelevant. However, as will be seen, if we provisionally accept latent quantum explanations for well-known

classical hidden models such as Hodgkin-Huxley ion channels, we may sometimes extract new information

(such as the structural-energy operators Sec. 4.4.2) not readily available from the posteriors alone. Moreover,

hidden quantum layers allow canonical population models through the formalism of tensor products of

configuration spaces which suggest new explanations for phenomena such as 1/f–type noise).

Definition 11. A hidden quantum model is A–coherent if the hidden quantum prior is generated by an

A–coherent family for some observable A (Sec. 3.1, Examp. 3).

Theorem 2. The HQM-HMM Theorem

(i.) The posterior distribution of a coherent HQM is a classical, formal HMM (Sec. 2.1.2.1).

(ii.) Conversely, every discrete-time, formal HMM has at least one representation as a coherent, discrete-

time HQM for an appropriate configuration space and observable.

(iii.) Every continuous time HMM with Poisson rate λ > 0 has at least one representation as a coherent,

continuous-time HQM, with Poisson rate λ > 0, for an appropriate configuration space and observable.
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Proof. (i.) Let Pt|s be an A–coherent family on a set T of times and let Ψ0 ∈ S (A) be an initial coherent

state. Let {Ψj | j ∈ J} be a basis for S (A). Since every Pt|s is coherent and {Ψj} is a basis for coherent

states, we have, for every i, unique mixing coefficients πt|s (j|i) > 0 such that

Pt|s [Ψi] =
∑
j

πt|s (j|i) Ψj .

Also, Ψ0 is coherent by assumption so there are unique coefficients π0 (i) > 0 such that

Ψ0 =
∑
i

π0 (i) Ψi.

These functions satisfy



πt|t (j|i) = δ(j − i)∑
j
πt|s (k|j)πs|r (j|i) = πt|r (k|i) , for t > s > r∑

j
πt|s (j|i) = 1∑

i
π0 (i) = 1.

(3.14)

by using uniqueness and the composition rules Eq. 3.5. Moreover, by expanding the definition Def. 3.6 of

the state process P (tn, · · · , t1), the functions πt|s (j|i) and π0 (i) are seen to satisfy

P (tn, · · · , t1) =∑
in,··· ,i0

πtn|tn−1
(in|in−1) · · ·πt2|t1 (i2|i1) · πt1|t0 (i1|i0) · π0 (i0) Ψn ⊗ · · · ⊗Ψ1.

(3.15)

Let f (x) be a conditional quantum field (Def. 9) on a measure space X. For j ∈ J , define

fi (x)
def
= tr (f (x) ·Ψi) .
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The posterior HQM distribution is then, by definition and using Eq. 3.14 and Eq. 3.15,

ptn,··· ,t1 (xn, . . . , x1) = tr (f (xn)⊗ · · · ⊗ f (x1) · Ψ (tn, · · · , t1))

=
∑

in,··· ,i1

fin (xn) · · · fi1 (xn) πtn,··· ,t1 (in, . . . , i1),

where πtn,··· ,t1 (in, . . . , i1)
def
= πtn|tn−1

(in|in−1) · · ·πt2|t1 (i2|i1) · π0 (i1).

The Markov independence property (Sec. 2.1.2.1, Eq. 2.4) follows from the definition of πtn,··· ,t1 (in, . . . , i1)

above.

(ii.) Let ptn,··· ,t1 (xn, . . . , x1) be a formal HMM with hidden M–state Markov matrix Π and condtional

distributions fi (x). Define the configuration space to be H def
= CM and the observable A def

= IM . For

1 6 i 6 M , define the basic state Ψi
def
= |ei〉 · 〈ei|, where ei

def
= [0, · · · , 0, 1, 0, · · · , 0]T, with 1 in the ith

place. Define the initial state Ψ0
def
=
∑

i π0 (i) Ψi. Define the coherent transition P on basic states Ψi by

P (Ψi)
def
=
∑

j Π (j, i) and then extend to all mixtures by linearity. Then the discrete-time state process

P (in, . . . , i1) generated by P (Examp. 4) together with the quantum field f (x) given by the (M ×M)

matrix whose diagonal entries are fi (x) yield an HQM with posterior ptn,··· ,t1 (xn, . . . , x1).

(iii.) The same as (ii.) above except Pλ (tn, . . . , t1) is the continuous-time HQM with Poisson rate λ

(Examp. 5) . �

Remark 13. Note that the rules Eq. 3.14 and the expansion Eq. 3.15 imply the marginalization property of

P (tn, · · · , t1), showing that this is a quantum state process as claimed in Sec. 3.1, Examp. 3.

Remark 14. The similarity to classical Markov processes is evident from Eq. 3.15. However, it must be

constantly born in mind that the physical system is almost never in one of the Markov “states” labeled

i. The actual quantum state P (tn, · · · , t1) is a superposed mixture of the Markov states i; it is best to

think of the physical system as being in all the i–states simultaneously, at every moment t. The quantum

nature of this superposition of Markov states can, at any time, manifest itself by making a measurement of

an observable B which is incoherent with the original A. Individual A–labels i will become completely

meaningless in the resulting B–coherent state, revealing the non-classical behavior of HQMs.

39



3.4 Hidden Activated Measurement Models and Formal Markov Processes

In this section, hidden activated measurement models are defined and shown to generate hidden Markov

models as posterior distributions.

Definition 12. A hidden activated measurement model (HAMM) is a hidden quantum model (Def. 10)

whose prior quantum state process (Def. 1) is from an activated family (Def. 8). A hidden activated mea-

surement model is called diagonalizable the state process is diagonalizable (Def. 4).

The results of the previous sections now show:

Theorem 3. Every HAMM has posterior distribution which is a formal hidden Markov model (Sec. 2.1.2.1).

This theorem demonstrates there are formal hidden Markov models which derive from latent physical pro-

cesses which are not Markov. There are no Markov states through which the activated measurement process

is cycling, not even the eigenstates in the diagonal basis for the observable A. The system is generally in

mixed quantum states before activation and incoherent quantum states while activated, almost never in an

eigenstate.

Definition 13. Nondegenerate Markov transitions: A square matrix Π is a nondegenerate Markov

transition matrix if

• Π is nonnegative definite.

• All entries of Π are real and nonnegative: Π > 0.

• 1 ·Π = 1, where 1 = [1, . . . , 1].

• The eigenvalue 1 has multiplicity 1.

• There is a column vector π∞ (the equilibrium distribution) such that Π · π∞ = π∞ and all coef-

ficients of π∞ are real and strictly positive: π∞ > 0. Without loss of generality, choose the unique

π∞ such that 1 · π∞ = 1.
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• Π is reversible: The matrix Π ·D∞ is symmetric, where D∞ is the diagonal matrix with diagonal

π∞.

A Markov process is called nondegenerate if its Markov transition matrix is nondegerate.

Note that a nondegenerate Markov transition matrix is diagonalizable, with nonnegative eigenvalues in

which the eigenvalue 1 occurs precisely once.

For any matrix or vector B, let B|2| denote the matrix whose entries are the squared absolute values |bij |2

of the entries bij of B. The following is the key result linking classical Markov processes with activated

measurement HQMs:

Theorem 4. Let R be an nonnegative definite, hermitian operator with eigenvalue 1 of multiplicity 1. Let

A be a compact observable and let R be the matrix of R in a coherence basis for A. Suppose there is an

invertible matrix J and column vector κ such that

‖κ‖2 = 1

1 · J = κH

J · κ = κ|2|

J ·R · J−1 > 0.

Then: (i.) Π
def
= J · R · J−1 is a nondegenerate Markov transition matrix with equilibrium distribution

π
def
= κ|2|.

(ii.) There is an activator Q for A such that the HAMM generated by Q has posterior distribution identical

to a classical HMM with Markov transition matrix Π.

Proof. Choose any matrix Q for which Q|2| = J ·R · J−1. Since 1 · J ·R · J−1 = 1, the columns of Q are

unit vectors in a coherence basis for A so, by Sec. 3.2, Lem. 1, Q is an activator for A. Simple calculations

prove the remaining results. �

Thm. 3 and Thm. 4 show that, if the only distribution available concerning a physical process is a posterior
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formal hidden Markov model (as occurs with Hodgkin-Huxley type ion channels Sec. 4.4.2), then there is

no method to distinguish the situation of an hidden classical Markov process from an underlying hidden

quantum process. They are scientifically indistiguishable and the decision between them therefore must be

made on other grounds.
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CHAPTER 4: AN ENERGY-MODULATED QUANTUM ION CHANNEL

MODEL

In this section1 we define a new abstract ion channel model to begin to fill the conceptual and technical

gaps discussed in Chap. 1. The design and modeling philosophy is briefly outlined in Sec. 4.1. In Sec. 4.2,

the four mathematical components of the model are presented. Applications of the model to ion channel

analysis and synthesis are outlined in Sec. 4.4. Finally, in Sec. 4.4, the equations defining the models, in

both the discrete- and continuous-time forms, are presented and proven to satisfy the design specifications.

In addition, Appendix C contains details of scaling functions needed for the model.

4.1 Modeling Philosophy

While evolving the model, we were guided by four overarching principles:

1. The number of distinct noise mechanisms should be as small as possible.

2. Ion/channel kinetics are governed by probabilities derived from quantum operators.

3. Channels statistics are modulated by energy barriers.

4. Neural noise should be explained in terms of thermodynamic categories.

Principle 1 is a kind of “Ockham’s Razor”, advocating the use, if at all possible, of known channel mecha-

nisms to explain neural noise generation. In particular, as discussed in Sec. 2.2.5, we believe that researchers

starting with Hill & Chen [32] have not used sufficiently sophisticated models as the basis for their rejection

of ion channel kinetics as a possible source of 1/f noise.

1Portions of this chapter have appeared in [1, 2, 121].
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Principle 2 was discussed briefly in the introduction. Its interpretation is best explained in context (cf. Sec.

4.4).

Principle 3 embodies the important insight from concrete ion channel models [34, 61] and abstract Eyring

rate channels (Sec. 2.2.4) that gating (i.e., the modulation of the ion permiability characteristics of the

channel) is effected by changes in certain activation energies governing internal channel structure. These

changes are made in response to external controls such as membrane voltage, ligand density, pressure, light,

and so forth.

Principle 4 is meant to restrict attention to biophysical principles rather than meta-physical ones such as

“scale-similarity” [88, 122] which, although occasionally explaining the formal mathematical structure of

noise, adds nothing to our scientific comprehension.

These principles lead us to define four independent, physically-based components of our quantum ion

channel model whose numerical parameters must be measured from experimental data:

1. The conformation space (Sec. 4.2.1).

2. The ion mobility process (Sec. 4.2.2).

3. The structural-energy operator (Sec. 4.2.3).

4. The Poisson transition rate (Sec. 4.2.4).

Finally, these components were linked by three sets of axioms and equations to form the final models:

1. Dissipative quantum Markov processes (Sec. 4.4.1: Eq. 4.2).

2. The energy-modulated discrete-time channel (Sec. 4.4.2: Def. 17).

3. The energy-modulated continuous-time channel (Sec. 4.4.3: Def. 18).
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4.2 Model Components

4.2.1 Conformations and States

As alluded to previously, we propose to model a single type or species of neuronal ion channel as a finite-

dimensional quantum system [73–75, 77, 103, 104] whose physical shapes, states, or as we call them, con-

formations determine the flow of ionic charges through the channel.

A channel c with M elementary conformations is associated with an an M -dimensional Hilbert space Hc

[103] as well as a fixed orthonormal basis of elementary wavefunctions ψi ∈ Hc, i = 1, 2, . . . ,M .

For example, the standard Hodgkin-Huxley Na+ channel with three open/closed “m” subunits and one

open/closed “h” subunit is classically modeled as an 8-state Markov process (cf. Sec. 2.2.5 and Sec. 4.4.2),

each state i corresponding to 0, 1, 2, or 3 m–subunits and 0 or 1 h–subunits open in a particular physical

channel conformation. However, we base our Na+ model on an 8-dimensional Hilbert space HNa+ with

fixed basis ψ1, . . . ,ψ8 in order to reflect microscopic non-observability.

Remark 15. Our approach is in radical contrast to the classical model [34, 41] in which the channel was

necessarily in one and only one of the elementary conformations i = 1 or i = 2 or . . . or i = M when

the ion passed through, although which one may be unknown. Instead, since we do not actually observe

an abstract conformation, we must regard the channel as existing in all conformations simultaneously,

consistent with quantum mechanics [77, 103, 110].

The statistics of the channel at time t is determined by a conformation, which is just a state Ψ (t) [77,123].

As previously discussed, the Measurement Axiom of quantum mechanics is the physical principle that any

measurement of an observable A at time tmeas will discontinuously drive a mixed channel conformation

Ψ (t−meas) before the measurement to a pure channel conformation Ψ (t+meas) = |ψ (t+meas)〉 · 〈ψ (t+meas)|

after the measurement. This is also refered to as the collapse of the wavefunction. Unless the measurement

was a direct observation of an elementary conformation, the resulting collapsed ψ (t+meas) will be a non-

trivial superposition ψ (t+meas) =
∑

i aiψi in which each |ai|2 is the probability that a subsequent channel
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conformation observation will yield elementary conformation i. As mentioned in Remark 15, our model

is meant to capture indirect conformation measurements by means of net conductance properties. Thus we

expect such measurements to leave the channel in non-trivial superposed conformations.

The conformation space of a population of multiple channels in neural membranes will be modeled as

a direct sum
⊕
c
Hc with appropriately-dimensioned conformation matrices Ψc (t), where c runs over all

channels in the tissue, possibly of distinct species.

Remark 16. The direct sum formulation models the observer’s inability to determine not only the channel

through which a single charge passed or the elementary conformation of that channel but even the ion species

to which the charge was associated. This makes good sense for large-scale conductance noise models which

are meant to aggregate total current variations across membranes rather than account for species-specific

noise components.

4.2.2 The Ion Mobility Process

We further assume that the channel in elementary conformation i determines an ion’s mobility [41] Ui > 0

through the channel. This is a random variable with known distribution function fi (u), u > 0,
∫∞

0 fi (u) du =

1.

In general, mobility is a local attribute with physical dimension velocity/force which measures the velocity

of an ion as a result of a given driving force at a particular location [41]. However, we will regard the

mobility variable Ui as an aggregate characteristic of the entire channel in elementary conformation i which

gives the terminal velocity of an ion when it experiences a constant external electric force along the channel.

Thus an ion species with valence z will emerge from the channel with velocity vout = −Ui · qz ·∆V , where

q > 0 is the unit of charge and ∆V is the voltage across the channel. This represents a current increment

∆I = qz · vout = −Ui · q2z2 ·∆V and incremental conductance g = Ui · q2z2.

For example, when fi (u) ≡ δ (u), the ion mobility Ui is almost surely 0, so i represents a closed confor-

mation. Similarly, fi (u) ≡ δ (u− umax) represents an (almost surely) open conformation with maximum
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mobility umax while fi (u) ≡ δ (u− u0), 0 < u0 < umax, is a conformation which passes a fixed interme-

diate fraction u0/umax of ions from the ensemble, perhaps by means of a tunneling mechanism. This latter

corresponds to a leaky conformation (cf. Sec. 2.2.5) with a constant rate of drip.

We will often explore mobilities U (t) of the channel in mixed conformation Ψ (t) at time t which are

random processes with distribution functions

fU (t, u) = Ψ11 (t)f1 (u) + · · ·+ ΨMM (t)fM (u) , (4.1)

where Ψii (t) are the diagonal entries of Ψ (t).

Hence in our model, the dynamics of the conformation matrix Ψ (t) determines the statistics of the ionic

mobility process U (t) and, ultimately, the net membrane conductance noise characteristics.

Remark 17. When some fi (u) has non-zero variance, the channel may be termed sputtering: even in the

presence of a smooth spatial distribution of ions at the channel entrance, the fraction which pass through

the channel varies randomly. We will show in Appendix E that sputtering gives rise to a delta component,

R0 (t, s) = σ̄2
g (t) δ (t− s), in the non-stationary autocorrelation of channel conductance, where σ̄2

g (t)
def
=

σ2
g1 ·Ψ11 (t) + · · ·+ σ2

gM ·ΨMM (t) and σ2
gi

def
= q4z4 · Var [Ui].

Remark 18. There is nothing in the formalism that would prevent negative mobilities Ui < 0; i.e., certain

conformations for which there is a non-zero probability of an ion passing backwards through the channel

against a membrane voltage in the opposite direction. This is physically possible because the ion is exposed

to many non-membrane fields inside the channel. However, for the purpose of this article, we will not

investigate this situation which could even give rise to negative conductances.

4.2.3 The Structural Energy Operator

As mentioned in Sec. 2.2.4, we will adopt a modified form of Eyring rate theory based on energy barriers.

However, we generalize the theory in several ways:
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• The energy barriers are not associated with geometric stations along the ion channel but, instead, with

the channel conformations discussed above.

• To account for non-steady-state kinetics, we associate the energy barriers with an activated measure-

ment process (Sec. 3.4, Def. 12). This is discussed in detail in Sec. 4.4.2.

Our model thus assumes the existence of a nonnegative-definite hermitian [103, 111] structural-energy

operator E = E (V ) on H which is a function of the gating variable V .

We further require there to be a wavefunction φE (V ) ∈ H of norm 1, associated with the resting confor-

mation at gating value V , such that 〈φE |EφE〉 is minimized over the sphere ‖φ‖ = 1. The interpretation

is that, when the channel is in the mixed distribution associated with some conformation matrix Φ, the

value tr (E (V ) ·Φ) > 0, is the expected structural energy stored the channel. This expected energy is thus

minimized in the resting conformation ΦE (V )
def
= |φE (V )〉 · 〈φE (V )|.

Remark 19. Appropriate restrictions on structural energy operators E are presented in Sec. 4.4.2, Def. 15.

The form of typical functional dependence E (V ) will be derived from standard ion channel kinetic equations

in Sec. 4.4.1.

4.2.4 The Poisson Rate Function

Any discrete-time, time-homogeneous Markov processX (n) with transition matrix ΠX can be transformed

into a continuous-time process Xλ (t) with the same steady-state distribution by executing the discrete

Markov transitions according to a Poisson process with mean rate λ > 0 per unit time [79]; that is, the

probability of executing precisely k state transitions of the X process during the time interval [s, t] is

e−λ(t−s) · (λ (t− s))k
/
k!.

For neuronal channels, we expect that the mean transition rate λ (T ) to depend mainly on the available

thermal energy as measured by the absolute temperature T . Requirements for λ (T ) are presented in Sec.

4.4.3 and sample λ (T ) functions are presented in Appendix C.
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4.3 Model Axioms and Equations

In Sec. 4.4.1 – Sec. 4.4.3, the components of Sec. 4.2 are assembled to form the new model using appropriate

axioms, definitions, and lemmas.

4.3.1 Dissipative Quantum Processes

As pointed out in Sec. 2.2.4, the standard Eyring rate approach [34,60] does not provide mechanisms which

account for random deviations from its predicted mean flux values or the transition from transient to steady-

state behavior [105, 106] required to fit Hodgkin-Huxley-type conductance curves [25]. Even a channel

model based on quantum conformations (Sec. 4.2) cannot, by itself, explain the transition to steady-state

since Schrödinger’s Equation conserves energy ( [77]).

To account for dissipative behavior, we posit that the channel’s processing of single ions at discrete times

t = 0, 1, 2, · · · constitute measurements of the channel but not of its conformations. For instance, we

may register a voltage spike in our recording equipment because an ion has passed from one side of the

membrane to the other but we have no way of determining the particular elementary conformation of the

channel which allowed it to pass.

In such a situation, the channel’s time-dependent wave function (cf. Sec. 4.2.1) ψ (t) will collapse succes-

sively at t = n ∈ N to a sequence

ψ (0) = a1 (0)ψ1 + a2 (0)ψ2 + · · ·

ψ (1) = a1 (1)ψ1 + a2 (1)ψ2 + · · ·

· · ·

of pure superposed conformations. At intermediate times n < t < n + 1, the channel will generally be

characterized by a mixed conformation Ψ (t) of which nothing will be known.

Recalling that the amplitudes |ai (n)|2 of a pure conformation distribution represent the probabilities of
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finding the channel in the various elementary conformations when an observation is made, we require the

probability amplitude vectors [
|a1 (n)|2 , |a2 (n)|2 , · · ·

]T
,

n = 0, 1, . . . , of a channel’s pure conformations are also the distributions of a discrete-time, time-homogeneous

Markov process governed by some transition matrix Π (E , T ) which depends on the structural-energy oper-

ator E and the ambient temperature T . That is, Π (E , T ) satisfies the conditions for a stochastic matrix [82]

and, for all discrete times n > 0,

[
|a1 (n)|2 , |a2 (n)|2 , · · ·

]T
= Π (E , T )n ·

[
|a1 (0)|2 , |a2 (0)|2 , · · ·

]T
, (4.2)

which is consistent with all known kinetic behavior of ion channels

Remark 20. Recall that a Markov process X (n) is time-homogeneous if the transition probability matrices

ΠX (n|m), where ΠXji (n|m)
def
= Prob (X (n) = j | X (m) = i) form 6 n, depend only on the difference

(n−m). This holds just in case ΠX (n|m) = Π
(n−m)
X for some matrix ΠX > 0 for which [1, . . . , 1] is a

left eigenvector of eigenvalue 1.

In the next section we examine the functional dependence of the matrix Π (E , T ) on the structural-energy

operator E and temperature T .

4.3.2 The Energy-Modulated Discrete-Time Channel

There are several reasonable constraints on the functional dependence of the discrete Markov transition

matrix Π (E , T ) on the structural-energy operator E and ambient temperature T :

1. For sufficiently large temperatures T , Π (E , T ) must be a valid Markov transition matrix [79]; that is,

Π (E , T ) has real, non-negative entries and left eigenvector 1
def
= [1, . . . , 1] of eigenvalue 1.

2. If φE = φE1 · ψ1 + φE2 · ψ1 + · · · is the decomposition of the resting conformation in the elementary

basis (the resting coefficients of E) then φE
def
=
[
|φE1|2 , |φE2|2 , . . .

]T
must be an equilibrium distribution
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of Π (E , T ) ; that is, φE must be a right eigenvector of Π (E , T ) of eigenvalue 1.

3. Detailed balance [82] must hold at the resting distribution. In terms of the transition matrix Π (E , T ) this

is reversibility or the Kolmogoroff condition for Markov processes which requires the product of transition

probabilities over any closed cycle of conformations be the same in both directions [34].

The following irreducibility constraint ( [123], Chap. 8) is not strictly necessary but it is technically useful

because it excludes certain degenerate situations:

4. For all i, we require 〈φE |ψi〉 6= 0; that is, the resting conformation φE has a non-trivial projection onto

every elementary conformation ψ1,ψ2, · · · . If this were to fail, then certain channel conformations would

be inaccessible at equilibrium.

With these constraints in mind, we define structural energy operators in the simplest manner consistent with

them:

Definition 14. Let E be an nonnegative-definite hermitian operator [103] H E−→ H, where H is the M -

dimensional channel conformation space (Sec. 4.2.1). The operator E will be called irreducible if it is of

rank (M − 1) and has an eigenvector φE ∈ H, of minimum eigenvalue, such that 〈φE |ψi〉 6= 0 for all basic

conformations ψ1, . . . ,ψM .

Definition 15. An operator E is a structural-energy operator if it is irreducible and, further, E and φE

satisfy the energy detailed balance requirement:

Eij ·
(
φEi
φ∗Ei

)
= Eji ·

(
φEj
φ∗Ej

)
(4.3)

for 1 6 i, j 6 M , where the coefficients Eij
def
= 〈ψi|Eψj〉 and φEi

def
= 〈φE |ψi〉 are calculated with respect

to the elementary conformations.

Remark 21. Since E is of rank (M − 1), if the conditions of irreducibility and detailed balance hold for any

minimum-value eigenstate φ then they hold for all such. So, without loss of generality, we can fix one such

resting conformation φE of norm 1.
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Definition 16. Let E be a fixed structural-energy operator. For any absolute temperature T > 0, define the

transition observable

RE (T )
def
= I + ΦE − e−(E−E0I)/kBT ,

where E0 is the minimum eigenvalue of E , kB is Boltzman’s constant, and ΨE
def
= |φE〉 · 〈φE | is the

projection onto the E0 eigenspace (which is independent of the phase of φE ).

Definition 17. Discrete-time, Energy-Modulated Channels: A discrete-time energy-modulated ion

channel model is the discrete-time HAMM with transition matrix

Π (E , T )
def
= JE ·RE (T ) · J−1

E (4.4)

where E (T ) is the matrix of the transition observable RE (T ) in a coherence basis for E and JE is any

invertible matrix such that the equations


1 · JE = φH

E

JE · φE = φ
|2|
E

(4.5)

hold in that basis.

Remark 22. The irreducibility requirement 4 insures that such JE ’s exist; e.g., the diagonal matrix with

diagonal φH
E

The existence of the underlying activated measurement model mentioned in Def. 17 is the following:

Theorem 5. Let E be a structural energy operator (Def. 15) and let Π (E , T ) be the matrix defined in Def.

17 for some appropriate JE .

Then there exists a constant TE > 0 such that, for all T > TE , Π (E , T ) satisfies constraints 1– 4 and,

moreover, is the Markov transition matrix of an HAMM generated by some activator Q (T ) of E .
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Proof. Since φE is an eigenvector of E of eigenvalue 1, we can choose a coherence basis for E such that

Π (E , T ) = I + φE · 1− JE ·D (T ) · J−1
E ,

where φE
def
= φ

|2|
E and D (T ) is the diagonal matrix with diagonal

[
e−(E1−E0)/kBT , · · · , e−(EM−1−E0)/kBT , 1

]
.

So Π (E , T )→ φE · 1 as T →∞. But every entry of φE · 1 is strictly positive by definition of a structural

energy operator hence

lim inf
T→∞

min
i,j

{
Π (E , T )i,j

}
> 0.

As a result, there is a TE > 0 such that, for all T > TE , Π (E , T ) > 0, which implies constraint 1. The other

constraints are straightforward.

The equivalence to a HAMM then follows from Thm. 4. �

4.3.3 The Energy-Modulated Continuous-Time Channel

Recall the discussion in Sec. 4.2.4 of the temperature-dependent Poisson rate function λ (T ). As with the

discrete-time channel (Sec. 4.4.2), there are reasonable constraints which may be placed on the temperature

dependence of the evolution rate function λ (T ):

1. The actual transition rate λ (T ) should be a small fraction of some maximum possible transition rate λ,

itself determined by the thermal energy available to the channel.

2. For small variations T ≈ T0 around a standard temperature, the rate change should follow the well-

known “Q10” dependence for biological kinetics; that is λ (T ) ≈ λ (T0) ·Q(T−T0)/10◦K
10 , for some constant

Q10. Note that Hodgkin and Huxley used Q10 ≈ 3 in their original papers [25, 26] which seems typical for

neurological tissue.
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3. As T → 0, we require Π (E , T ) → I, the identity, which is the transition matrix which never leaves its

initial distribution π (0). The channel is frozen into its initial distribution.

4. As T → ∞, we require Π (E , T ) → [1, . . . , 1] · φE , which makes a transition from any initial distri-

bution π (0) to the equilibrium φE in precisely one step. This means there is sufficient thermal energy to

immediately jump over any finite energy barrier.

To make a crude estimate of λ, we reason as follows: At the standard temperature T0, each degree of freedom

of the channel should have roughly kBT0 Joules of thermal energy available which, for the M -dimensional

configuration space of a channel, corresponds to a total MkBT0 Joules. In quantum mechanical terms,

this corresponds to a maximum “phonon” frequency λ def
= MkBT0/h, where h is Planck’s constant. By

the Uncertainty Principle [104], this seems to be a rational absolute upper bound on the rate at which a

quantum channel could change its conformation. For example, at the Hodgkin-Huxley base temperature of

T0 = 6◦C [25] and the standard 5-state Markov model [33, 41] of the K+ channel, this yields λ ≈ 30 THz,

by no means unreasonable for a nanoscale process.

Remark 23. The condition Π (E , T )→ I as T → 0 may require Π (E , T ) to pass through regions for which

it is not a valid Markov matrix (cf. Thm. 5). Obviously we cannot expect any biological model to remain

valid down to absolute zero or above the boiling point of water. Nevertheless, these asymptotic conditions

are important for determining the mathematical behavior at all temperatures.

See Appendix C for various forms of Poisson rate functions λ (T ) which satisfy constraints 1 – 4.

Definition 18. Continuous-time, Energy-Modulated Channels: A continuous-time energy-modulated

ion channel model is the continuous-time HAMM derived from the discrete-time Π (E , T ) (Def. 17) via

the one of the Poisson rate functions λ (T ) defined in Appendix C.

4.4 The Synthesis and Analysis of Quantum Ion Channel Models

In this section, we present several applications of the ion channel concepts developed in the previous sec-

tions. Sec. 4.4.1 and Sec. 4.4.2 show how structural-energy operators can be extracted from Hodgkin-Huxley
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rate matrices. This may lead to important new insights in neuroscience. Finally, Sec. 4.4.3 introduces tech-

niques for the design of virtual ion channels which could have an impact on biomimetic computation.

The key to these applications is exploiting the relationship between the structural-energy operator and the

gating variable. Since the operator E (V ) depends on the gating variable V , Eq. 4.4 shows how the transition

matrix Π (E (V ) , T ) is indirectly gated by V . Since Π (E (V ) , T ) determines the dynamic probability am-

plitude vectors through Eq. 4.2 which, in turn, determines the state matrix Ψ and the mobility distributions

fi (u) through Eq. 4.1, we can explore the dynamics of this interlinked system which is ultimately controlled

by the gating variable and the ambient temperature.

4.4.1 Activation Energy from Reaction Rate Matrices

As we have discussed several times, ion channel kinetics are typically well-modeled as continuous-time,

1st-order Markov processes [33, 41] i.e., the conformation distribution vector φ (t) = [π1(t), . . . , πM (t)]T

satisfies a kinetic equation
dπ

dt
+ K · π = 0, (4.6)

where K is a real, constant (M ×M) matrix of reaction rates which has rank at most (M − 1).

If the reaction rate matrix K and ambient temperature T are known then, using Def. 16 and Def. 18, we

could solve the structural-energy channel Eq. 4.4 for the structural-energy matrix E:

E (K, T ) = −kBT log

[
|φ〉 · 〈φ|+ 1

λ (T )
J−1KJ

]
, (4.7)

where φ is a vector such that
[
|φ1|2 , . . . , |φM |2

]T
= π∞, with π∞ a left 0-eigenvector of K, and J is some

choice of matrix defined by Eq. 4.5. (E.g., J is a diagonal matrix with diagonal φ.)

Remark 24. Note that Eq. 4.7 generalizes [60], Eq. (4).
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4.4.2 Hodgkin-Huxley Activation Energies

The most important use of the formula Eq. 4.7 of the previous section is to derive structural-energy operators

for the standard Hodgkin-Huxley K+/Na+ channels.

Voltage-gated Hodgkin-Huxley K+ channels [25,34,62] are composed of four identical independent 2-state

subunits (refered to as “n-subunits”), all of which must be in the “permissive” conformation for the channel

to be open.

Letting i = 0, 1, 2, 3, 4 be the number of permissive subunits, the standard continuous 5-state Markov model

of this channel [33, 41, 70] uses rate matrix

KK+ (V ) =



4αn −βn 0 0 0

−4αn 3αn + βn −2βn 0 0

0 −3αn 2αn + 2βn −3βn 0

0 0 −2αn αn + 3βn −4βn

0 0 0 −αn 4βn


(4.8)

where V def
= Emem − Erest is the voltage across the membrane in excess of its resting potential and

αn (V ) , βn (V ) are the Hodgkin-Huxley n–subunit gating functions (at the standard ambient temperature

T0 = 6◦C) 
αn (V ) = 0.01 (V + 10) /

(
e(V+10)/10 − 1

)
βn (V ) = 0.125 e(V/80),

(4.9)

with V measured in mV, which were fitted to the conductance data empirically [25].

Letting pn (V, T )
def
= αn/(αn+βn) and qn (V, T )

def
= βn/(αn+βn), the equilibrium distribution is the right

0-eigenvector pK+
def
=
[
q4
n, 4q3

npn, 6q2
np

2
n, 4qnp

3
n, p

4
n

]T given by the binomial probabilities.

Using pK+ as the last vector of a basis of eigenvectors of KK+ , Eq. 4.7 shows the activation-energy matrix
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diagonalizes to

EK+ (V, T ) ∝ kBT · (log (τn (V, T )) · I5 + diag [0, log 1, log 1/2, log 1/3, log 1/4]) , (4.10)

where I5 is the (5× 5) identity matrix and, τn (V, T )
def
= (αn (V, T ) + βn (V, T ))−1 is the mean time for an

n-subunit to switch between permissive and non-permissive configurations [41].

A similar analysis can be performed to find the activation energy matrix ENa+ of the standard 8–state Markov

model [33] of Hodgkin-Huxley Na+ channels. It is one of the most important features of our new ion channel

model that important, additional biophysical information can be extracted from the classic 1952 Hodgkin-

Huxley research [25].

4.4.3 Examples of Synthetic Channels

The simplest way to engineer energy-modulated channels is to observe that when the resting conformation

vector πE has real components then the detailed balanced constraint Eq. 4.3 implies the energy matrix E

also has real components; i.e., E is a real symmetric matrix. The converse also holds :

Definition 19. An (M ×M) matrix G is an structural metric if it is a nonnegative-definite real symmetric

matrix of rank (M − 1) whose 0-eigenvector uG has non-zero components. It is called standard if G has

strictly positive components.

Lemma 2. Let E be a square matrix. Then E is the matrix of a structural energy matrix (Def. 15) if and

only if there is a structural metric G and a complex vector u whose components satisfy |ui| = 1 such that

E = DuG DH
u , where Du is the matrix whose diagonal is u. If G is required to be a standard structural

metric then both G and u are unique.

Remark 25. The standard structural metric GE and its associated vector uE are thus comparable to the

magnitude and phase of the energy matrix E.

Lem. 2 shows that gated structural-energy operators E (V ) can be designed by specifying their eigenvector
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π (V ) in a real space of dimensionM together with the singular metric ellipsoid G (V ) of dimensionM−1

which is perpendicular to π (V ). The metric specifies the squared structural “distance” from an arbitrary

vector ξ in the space to π (V ) and can be designed to achieve particular goals. Although the function E ( · )

is not required to be continuous, it is a physically plausible extra condition. In that case, the graph of π ( · )

should be contained in a single orthant so that the direction cosines with the ψi axes never vanish.

Fig. 4.1 depicts the arrangement for distinct values V1, V2 of the gating variable in which the metric ellipsoids

have been translated from the origin to the ends of the vectors for clarity.

Figure 4.1: Metric ellipses for the synthesis of quantum ion channels.
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CHAPTER 5: NOISY TISSUE AND THE VAN DER ZIEL -

MCWHORTER PARADIGM

We have been investigating more plausible models of neurological noise specifically for real-time EEG

applications but potentially useful all the way down to the channel level. In previous works [121, 124] we

focused on the spectral structure of our noise models. In this chapter1, we present new noise modeling

concepts and methods we developed for the time domain. We also present initial findings concerning time

domain optimal causal filtering of this noise.

5.1 Noise from Ion Channel Populations in Thermal Equilibrium

In this section we will discuss how constained entropy maximization applied to populations of energy-

modulated quantum channels provides the missing optimization principle alluded to in Sec. 2.2 and can

explain the ubiquitous 1/f -type noise present in neurological measurements. The detailed proofs are pre-

sented in Appendix E.

We have isolated an important class of random processes we call multiple-species generalized van der

Ziel - McWhorter noise (or multi-GVZM noise).

Definition 20. A multiple-species GVZM process is any stationary random process {ν (t)}∞t=−∞ whose

autocovariance function is of the form

Rν (τ) ∝
∫
X

1

υ1(x)2−θ1 · · ·
1

υC(x)2−θC

(
σ2

1e
−|τ |/υ1(x)υ1(x) + · · ·+ σ2

Ce
−|τ |/υ1(x)υ1(x)

)
dµ (x), (5.1)

where υ1 (x) > 0, · · ·, υC (x) > 0 are time-constant functions, one for each of C species of chan-

1Portions of this chapter have appeared in [1–3, 121, 124].
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nel, θ1, · · ·, θC are the constant spectral exponents, σ2
1, · · ·, σ2

C are weighting constants, and (X,µ) is

a “neurologically relevant” measure space [78].

The simplest examples of GVZM noise uses our generalization of van der Ziel and McWhorter’s original

autocorrelation [95, 96],

RGVZM(θ) (τ) ∝
υ2∫
υ1

1

υθ
e−|τ |/υdυ, (5.2)

which has power spectra

SGVZM(θ) (f) ≈ 1

fθ
for

1

2πυ2
< f <

1

2πυ1
. (5.3)

In these cases, the neurological measure space is the closed intervalX = [υ1, υ2] with the ordinary Riemann-

Lebesgue measure [78] and the time constant function is the identity υ (x) ≡ x.

Fig. 5.1 shows a simple example of a fit of a GVZM (θ) spectrum which is seen to approximate closely the

experimental EEG data Fig. 1.2. However, all GVZM noises have family similarities.

The connection of GVZM to ion channel noise is most easily seen by analyzing Hill and Chen’s well-known

formula [33, 70] for the conductance autocorrelation of the Hodgkin-Huxley K+channel with a single open

conformation:

RK+ (t) ∝
(
pn + qne

−|t|/υn
)4
− p4

n =
4∑

k=1

(
4

k

)
p4−k
n qkne

−k|t|/υn , (5.4)

where pn, qn, υn are defined in Sec. 4.4.2.

Note that the expressions e−k|t|/υn are reminiscent of McWhorter’s decay rates 1/υ = e−E/kBT (Eq. 2.8)

and that the coefficients υn/k are precisely the reciprocal eigenvalues of the Hodgkin-Huxley reaction rate

matrix (e.g.; see Eq. 4.8 below). In turn, this matrix is directly related to the activation-energy operator by

Eq. 2.8.
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Figure 5.1: GVZM (θ) power spectral density θ = 1.1219 fitted to 28 Hz stimulus raw EEG periodogram.

These links form the basis of Thm. 6 below.

Theorem 6. Let X ⊆ {0, 1, . . .} ×X be a “neurological measure space” with probability ρ, interpreted as

the population density of ion channel conformations i ∈ {0, 1, . . .} for channels x ∈ X . Let E (x), x ∈ X ,

be structural-energy operators with minimum energies E0 (x) as discussed in Sec. 4.4.3, derived from C

distinct ion channel species. Let g
(
∆E, i, x

)
be the maximum entropy probability distribution [105, 106]

under the energy constraints

∫
X

(Ei (x)− E0 (x)) g
(
∆E, i, x

)
dρ (i, x) = ∆E,

Then there are unique spectral exponent functions

θ1

(
∆E

)
, · · · , θC

(
∆E

)
and activators (Def. 6) Q (x) for E (x), x ∈ X , for which the population conductance noise is of the

multi-GVZM form Eq. 5.1.
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Proof of Thm. 6. See Appendix E.

5.2 A Model of Noisy Tissue

This section2 presents our model of noisy biological tissue.

In Sec. 5.2.1, we describe the stochastic process background theory we developed for our noise models. In

Section 5.2.2 we review our schematic models of noisy neurological tissue. In the following Sec. 5.2.7 and

Sec. 5.2.4, we specialize to the simplest case, yielding the GVZM noise process. Sec. 5.2.5 presents some

preliminary results towards developing real-time detection algorithms based on optimal filtering of GVZM

noise.

5.2.1 Hidden Autoregressive Processes

Example 8. Define a pth–order autoregressive (AR) simplicial process [56] to be a continuous-time,

stationary, K–component simplicial process X (t) for which there are p − 1 constant (K ×K) matrices

A1, . . . ,Ap−1 such that the stochastic differential equation [125]

dpX

dtp
+ A1

dp−1X

dtp−1
+ · · ·+ Ap−1X = ν

holds for all t, where ν (t) is an independent and identically distributed K–component, 0–mean Gaussian

process (the innovation process). (The existence of such processes is a consequence of Thm. 7 below.)

Remark 26. As with X (t) itself, the components of ν (t) cannot be independent Gaussians; i.e., the co-

variance matrix Σν is singular. Thus we could simultaneously rotate X (t) and ν (t) to have at least one

component equal to the constant 0. (Transients are excluded by stationarity.) We define the dimension of

an AR simplicial process with innovation ν to be the rank of ΣX.

Example 9. By analogy, when G (t) is an AR process, we say that G (t) is hidden autoregressive model

2Portions of this section have appeared in [3].
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(HARM).

Finally, we define a a mixed HARM to be a (finite or infinite) summation G (t) =
∫
GE (t) dE of an

indexed family {GE (t)}E∈E of hidden AR models.

5.2.2 Noisy Biological Tissue

Our abstraction of noisy tissue consists of a large collection of schematic “channels”, of various “energies”

E1, E2, . . ., embedded in a membrane. (See Fig. 5.2.) The spatial density of channels with energy E is

given by a function ρ (E).

Figure 5.2: Hidden simplicial noisy tissue

Each channel is characterized by an abstract stochastic conductance process GE (t) which determines the

flow of current IE (t) through the channel via a common membrane voltage. The accumulated current

Imem (t) through the membrane at time t is the model noise signal.

Abstract channels could be Hodgkin-Huxley-type K+ and Na+ channels [34] if we are at the level of individ-

ual neuron membranes in which case conductances and currents correspond to the actual physical entities.

However, channels could be as large as cortical microcolumns [36] for EEG applications in which case

conductances and currents represent abstractions. But we always make three critical modeling assumptions:

• All channels in the membrane are statistically independent at equilibrium.

• Channels with the same energy E have identically-distributed conductance processes GE (t).

• Every GE (t) is a hidden simplicial model.
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Thus noisy tissue is a mixed hidden simplicial model and so we immediately infer:

Corollary 1. the autocovariance CI (t, s) of the membrane noise current is determined by

CI (t, s) ∝
∫
ρ (E)CGE (t, s) dE, (5.5)

where CGE (t, s) is given by (2.7) and ∝ denotes “is proportional to.”

Example 10. It is well-known [34] that the dynamic behavior of Hodgkin-Huxley-type channels can be

accurately modeled by continuous-time HMMs with forward equation

∂Π (t, s)

∂t
+

1

τ
A ·Π (t, s)

for t > s, where Π (t, s) is the state probability matrix at times t, s, the parameter τ is the mean waiting

time between Poisson jumps from state-to-state, and A is an ion channel rate matrix. Thus if the waiting

time τ (E) depends in some fashion on the available energy E, then neuron membranes containing a large

number of such ion channels are hidden simplicial membranes.

Example 11. An example of such energy-dependence is the classic Eyring rate model [34] of ion channel

equilbrium in which

τ (E) ∝ e−(E−Emin)/kT , (5.6)

where E is an activation energy, Emin is some baseline energy, T is the ambient temperature, and k is

Boltzmann’s constant. We shall return to the Eyring rate formula in the next section.

A rate matrix A is called reversible or satisfies the detailed balance condition [34] if the equation A·P∞ =

P∞ · AT holds, where P∞ is the diagonal matrix whose diagonal is the equilibrium probability of the

Markov process. For instance, it can be checked that the standard Hodgkin-Huxley rate matrices AK+ and

ANa+ [34] are reversible. We have proved the following important result:

Theorem 7. Let a noisy tissue be made of identically distributed, K–state, reversible HMMs. Then as the
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number of channels becomes large, the conductance processG (t) becomes asymptotic to a single 1st –order

HARM of dimension K − 1.

Corollary 2. Noisy reversible mixed HMM tissue is asymptotic to mixed HARM tissue.

Remark 27. Note that the innovations of all AR processes (simplicial or not) are Gaussian by definition.

The significance of Thm. 7 is that it implies the hidden X (t) process of noisy tissue is itself asymptotically

Gaussian. For example, the 1st –order AR process dX/dt+ AX = ν has formal solutions

X (t) = e−At

∫ t

−∞
eAsν (s) ds+ P0, (5.7)

where P0 is any (non-random) vector satisfying AP0 = 0, showing how X (t) can be expressed as a linear

combination of Gaussians.

5.2.3 Tissue and GVZM Noise

In order to explore the results of the previous sections, we considered a highly simplified version of hidden

simplicial tissue which is adapted to EEG applications.

Define a hidden Markov channel with rate matrix (1/τ) A to be secular if the conductance value G (t)

returned from the mixed distribution x1f1 (g) + · · · + xKfK (g), where x1 = X1 (t) , . . . , xK = XK (t),

is actually the average value of a large random sample taken at a rate much faster than the state transition

rate 1/τ . For secular hidden Markov channels, we can reasonably replace the processes G (t) and G (t)2 by

Ĝ (t) = µf ·X (t) and Ĝ2 (t) = µ2,f ·X (t) respectively, where µ2,f is the vector of second moments of

the conditionals f . We then investigated noisy membranes of the following highly restricted form:

• All channels are 2-state, secular HMMs which are identical except for the time constants τ (E) of their

rate matrices (1/τ (E)) A.

• The number of channels is large.

• The time constant function τ (E) is given by the Eyring rate formula (5.6).
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• The channel density function ρ (E) is such that entropy is maximized under an energy constraint

∫ E2

E1

Eρ (E) dE = Ê,

where Ê is some fixed value, Ê > Emin.

We can readily establish the following result:

Theorem 8. (i) The noise process G (t) is stationary and asymptotically Gaussian.

(ii) The autocovariance of G (t) can be written in the GVZM form [124]

CG (t) = P0

∫ τ2

τ1

τ θ−2e−|t|/τdτ + P1 δ (t) , (5.8)

where P0, P1 > 0 have units of power, τ2 > τ1 > 0 have units of time, and θ > 0 is a dimensionless

constant (the spectral exponent).

(iii) The process G (t) is uniquely defined by (i) and (ii).

(iv) G (t) can be realized as a 1-dimensional mixed AR process.

As discussed in [124], when θ 6 2, the frequency spectrum of GVZM noise falls off as 1/f0 near f = 0, as

1/fθ for middle frequencies, and as 1/f2 for large frequencies. Thus it is a 1/fθ–type noise which avoids

the singularity at low frequency and the infinite total power which plagues less sophisticated neurological

1/fθ noise models.

Not only do the real and synthetic spectra have the same shape and general variability, we showed in [2]

that the statistical match is sufficient to improve the performance of standard periodogram-based SSVEP

estimation algorithms.
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5.2.4 Properties of GVZM Noise

.

Definition 21. The GVZM PSD SGVZM (f) is the family of functions3 with five parameters 0 < θ < 2,

0 < υ1 < υ2, P0 > 0, Ps > 0 and defined by

SGVZM (f)
def
= P0 |f |−θ

(
tan−1

θ (2πυ2 |f |)

−tan−1
θ (2πυ1 |f |)

)
+ Ps, (5.9)

where

tan−1
θ (x)

def
= sgn (x)

|x|∫
0

uθ−1

1 + u2
du. (5.10)

Note that for θ = 1, Eq. (5.10) is the ordinary arctan (x). The dimension of υ1, υ2 is time while that of P0,

Ps is amplitude2/frequency (i.e., noise power). The spectral exponent θ is dimensionless.

The importance of this definition is that, so far as the author is aware, this is the first simple model of

the average EEG background noise spectrum proposed in the literature which can match recorded EEG

periodograms from near 0 Hz to over 30 Hz, with a fixed number of parameters. Moreover, the GVZM PSD

function approximates a power law 1/fθ in the mid-frequencies without requiring infinite power. In fact,

SGVZM (f) always has finite amplitude and finite total power.

The properties of tan−1
θ (x) show that, once the noise floor Ps is subtracted, we have the approximate pro-

portionalities SGVZM (f) ∝ 1/f0 (i.e., a constant) for f < 1/ (2πυ2), SGVZM (f) ∝ 1/fθ for 1/ (2πυ2) <

f < 1/ (2πυ1), and SGVZM (f) ∝ 1/f2 for f > 1/ (2πυ1). Thus its roll-off transitions smoothly through

the 1/fθ regime, without any of the so-called “catastrophes” [88] of apparent infinite power density when

f → 0 and infinite integrals as f → ∞ which plague true 1/f–type noises. In particular, SGVZM (f)

approaches the finite limiting value P0

(
(2πυ2)θ − (2πυ1)θ

)
/θ + Ps as f → 0.

3Portions of this section have appeared in [2]
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GVZM PSD function fitted to the periodogram of recorded EEG data from an SSVEP session. The GVZM

curve follows the periodogram closely except for the α-band power [36] and the SSVEP response spike.

Eq. (5.9) has it origin in investigations dating to the 1930’s [90] on apparent 1/f -type noise in vacuum

tubes and semiconductors. In 1957, A.L. McWhorter proposed [95] a simple explanation for 1/f–type

semiconductor noise at thermal equilibrium, based on the assumption that the logarithm of the rate at which

electrons drop from an activated state was proportional to the energy of that state. Subsequently A. van der

Ziel and others [126] abstracted the McWhorter mechanism to general noise processes. Our formula (5.9)

reduces to the original van der Ziel-McWhorter PSD function for θ = 1.

5.2.5 Causal Filtering of GVZM Noise

.

The Gaussian conclusion4 of Thm. 7 allows the application of standard detection and estimation procedures

[127] to hidden simplicial noisy tissue.

Specifically we can find a least-squares-optimal causal filter a (t), t > 0, which transforms a GVZM noise

signal νGVZM (t) with known or estimated parameters into an independent and identically distributed Gaus-

sian noise process νGauss (t) by means of a running time-domain convolution on past values

νGauss (t) =

∫ ∞
0

a (s) νGVZM (t− s) ds.

Fig. 5.3 shows such a procedure applied to an SSVEP dataset. As we demonstrated in [2], a standard SSVEP

detection procedure was unable to separate the 28Hz response peak from the noise peaks surrounding it.

But, as the lower graph shows, after optimal causal filtering, not only does the spectrum flatten (i.e., become

“whiter”), the SSVEP peak is enhanced and stands out clearly above the residual background noise.

4Portions of this section have appeared in [3]
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Figure 5.3: A 28Hz SSVEP response nearly lost in background noise compared to the enhanced response
optained by causal filtering based on GVZM noise.

5.2.6 Autoregressive Approximations to GVZM Noise

.

Let 0 < υ1 < υ2 be fixed parameters with the dimension of time, 0 < θ < 2 be dimensionless, and P0, Ps >

0 have dimension amplitude2/frequency. Let K > 0 be an integer and define ∆υ = (υ2 − υ1) / (K − 1).

Let ∆t > 0 be a time step.

For 0 6 k 6 K − 1, define the AR coefficients ak, bk and weights wk by


ak

def
= e−∆t/(υ1+k∆υ), bk

def
=
√

1− a2
k,

wk
def
=

√
1

(υ1 + k∆υ)2−θ ∆υ∆t.
(5.11)
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Let xk (n) be the 1st–order, stationary AR process [56]

xk (n) = ak xk (n− 1) + bk
√
P0 εk (n) ,

where the error processes εk (n) are iid standard normal (N (0, 1)) random variables.

Then EEG background processes can be modeled by the discrete-time, mixed AR simulations

xK (n)
def
=

K−1∑
k=0

wk·xk (n) +
√
Ps · ςs (n) , (5.12)

where the error process ςs (n) is an N (0, 1) random variable which is independent of all the εk (n)’s. We

call such processes AR-GVZM, simulations of EEG noise.
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Figure 5.4: Periodogram of AR-GVZM simulation of EEG noise, with K = 300, using the Fig. 5.1 param-
eters.

Fig. 5.4 shows the periodogram of such a simulation xK (n), with K = 300 AR subprocesses xk (n), using

the GVZM parameters that optimally fit the data. It can be seen how accurately the periodogram of xK (n)

matches the characteristics of the recorded data, except for the SSVEP response spike and the excess α-band

power. Note that Fig. 5.4 is the periodogram of a simulated EEG time series, in contrast to Fig. 5.5 which
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shows the direct simulation of an EEG periodogram, with no underlying time series.
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Figure 5.5: GVZM (θ) · (1/2)χ2 (2) simulated EEG periodogram using the parameters derived from the
Fig. 5.1 data.

We choose some 0 6 k 6 K − 1 and let υ = υ1 + k∆υ in (5.11). For small ∆t, we find ak = 1 −∆t/υ

and bk =
√

2∆t/υ, where we have ignored terms of order higher than ∆t. Defining ∆xk (n)
def
= xk (n) −

xk (n− 1), we easily calculate

∆xk (n)

∆t
+

1

υ
· xk (n− 1) =

√
2P0

υ∆t
· εk (n) . (5.13)

Let yk (n)
def
= wk · xk (n). Using the definition of wk in (5.11), (5.13) becomes

∆yk (n)

∆t
+

1

υ
· yk (n− 1) =

√
2P0

υ · υ2−θ∆υ · εk (n) .

Now suppose the values εk (n) are samples εk (n∆t) of a continuous-time, iidN (0, 1) process εk (t). Then,

as ∆t → 0, yk (n) will approach a continuous-time, stationary, Gaussian AR process yk (t) satisfying the

stochastic differential equation

dyk
dt

+
1

υ
· yk (t) =

√
2P0

υ · υ2−θ∆υ · εk (t) . (5.14)
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It is well-known [38] that the autocovariance function of yk (t) satisfying (5.14) is

Rk (τ) = P0
1

υ2−θ e
−|τ |/υ∆υ.

Using (5.12), suppose the values ςs (n) are also samples ςs (n∆t) of a continuous-time, iid N (0, 1) process

ςs (t) which is independent of all the εk (t)’s. Then the AR-GVZM, processes xK (n) in (5.12) will approach

a continuous-time, stationary, Gaussian, mixed AR process with autocovariance function

RK (τ) = P0

K−1∑
k=0

1

υ2−θ e
−|τ |/υ∆υ + Ps · δ (t) .

Therefore, asK →∞, the xK (t)’s themselves will approach a Gaussian process x∗ (t) with autocovariance

R∗ (τ) = P0

υ2∫
υ1

1

υ2−θ e
−|τ |/υdυ + Ps · δ (τ) . (5.15)

It is now easy to check that the PSD function of x∗ (t), which is the Fourier transform of R∗ (τ) [16], is

given precisely by the formula of Eq. (5.9); i.e., the GVZM PSD function.

This is a significant result since zero-mean, Gaussian processes are uniquely defined by their autocovariance

[56]. Noting that the GVZM periodogram model implies the autocovariance must be given by (5.15), if we

make the additional assumption that a particular EEG noise time series xEEG (t) is zero-mean and Gaussian,

then we must have xEEG (t) ∼ x∗ (t). Hence AR-GVZM, simulations can be made to approximate EEG

background noise with arbitrary precision by means of the double limiting process ∆t,∆υ → 0 described

above.

Note also that the converse can be proven using methods of [56]; i.e., if the EEG noise process xEEG (t) is

given by limits of AR-GVZM processes, then xEEG (t) is zero-mean, Gaussian, and the GVZM periodogram

model must apply to it. This is important for practical applications because it defines the correct statistical

model of the periodogram when AR-GVZM approximations are used to simulate EEG noise.
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5.2.7 Hypothesis testing of GVZM Peridograms

.

Definition 22. Let x (n), 0 6 n 6 N − 1 be samples5, at sample rate fsamp, of an actual or virtual EEG

electrode of a naturally-occuring ensemble of brain background noise processes, of a single subject, over

a time interval short enough for x (n) to be considered stationary. Then the GVZM noise model of the

periodogram values Sx (k), 0 6 k 6 N − 1 is the random process

Sx (k) = SGVZM (k∆f) · (1/2) Ξ (k) , (5.16)

where Ξ (k) is a sequence of χ2 (2) distributed [93] random variables, such that Ξ (k) ,Ξ (l) are independent

for 0 6 k, l < N/2 when k 6= l, ∆f
def
= fsamp/N , and SGVZM (f) is an appropriate GVZM PSD defined

by (5.9).

Note that the reason for the restriction of independence to 0 6 k, l < N/2 is that Sx (N − k) = Sx (k)

since x ( · ) is real. Also note that the half-interval definition 0 6 k, l < N/2 applies whether N is even or

odd.

We can write (5.16) informally as

Sx (k) ∼ SGVZM (k∆f) · (1/2) χ2 (2) ,

where ∼ denotes “is distributed as.”

The (1/2) χ2 (2) periodogram distribution holds exactly for special processes such as N -periodic ARMA

defined in Appendix F. When conditions for the Central Limit Theorem hold, the (1/2) χ2 (2) distribution

holds asymptotically as the data length N → ∞ [56]. Both N -periodic ARMA and the large-N approxi-

mations are appropriate for EEG noise.

5Portions of this section have appeared in [2]
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Note that Eq. (5.16) implies that the expected value E [Sx (k)] is equal to SGVZM (k∆f). The previous

paragraph implies that the converse holds asymptotically; i.e., if E [Sx (k)] = SGVZM (k∆f), then Sx (k)

converges uniformly in distribution to SGVZM (k∆f) · (1/2) Ξ (k) as N → ∞ (cf. [56], Chapter 10 for

details).

Def. 22 is consistent with the single-epoch approach of [56, 92] but multi-epoch averages of such single-

epoch spectra can be used as well. Our methods will apply to such general periodograms merely by replacing

“χ2 (2)” with “1/M χ2 (2M),” where M is the number of (statistically independent) epochs.

Fig. 5.1 should be compared to Fig. 5.5 which shows a simulated periodogram based on the fitted GVZM

PSD function and (5.16); that is, samples of an independent and identically distributed (iid) χ2 (2) pseudo–

random process Ξ (k), for 0 6 k < N/2, were generated and each sample was multiplied by the factor

(1/2) · SGVZM (k∆f). The results were then plotted against frequency on a log-linear scale. Clearly the

simulated periodogram has the same general visual characterstics as the recorded periodogram.
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CHAPTER 6: METRICS FOR SSVEP ALGORITHM COMPARISONS

Figure 6.1: Flow chart for the calculation of CT (α,∆f ;S): the minimum variance, unbiased, single-trial
estimator of the 3× 3 contingency table of the input periodogram S, with ROC control parameters α, ∆f .

This chapter1 presents an innovative, statististically sound, and extremely flexible methodology developed

specifically for the comparison and validation of SSVEP algorithms. It forms the foundation for the single-

trial receiver operating characteristics (ROC) graphs of Fig. 7.3 and Fig. 7.6 and the summary statistics

of Table 7.1 and Table 7.2.

See Fig. 6.1 for a flow chart of the protocol.

6.1 SSVEP Estimation Protocol

Let S (τ) be the signal from a randomly-selected instance τ of an SSVEP experiment. We refer to τ as a

“trial.” The signal may be the actual raw EEG time series, a processed EEG spectrum, or even an arbitrary

index into a table of signal exemplars. What is important is that S (τ) must be an observable random

variable of the unobservable trial instance τ which ranges over the underlying probability space (T,Prob)

of the experiment. That is, each trial τ ∈ T, whose occurrences governed by the probability measure [128]

Prob [ · ], encapsulates all the uncertainties of the SSVEP experiment:

1Portions of this chapter have appeared in [2].
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• Variations between subjects chosen at random.

• Variations within the same subject on different days, different times of the same day, or different

moods.

• Impedence variations caused by non-uniform application of electrode gel.

• Artifacts.

• Stray electromagnetic fields.

• The particular stimulus frequencies used for this trial.

• The stimulus frequency to which the subject attends as well as the time interval of attention.

• The dice-rolls or coin-tosses we may use for randomized decision rules.

• The vast number of other unnamed lurking variables in any SSVEP/EEG experiment.

Let Fssvep (τ) be the (random) set of stimulus frequencies we are trying to estimate from S (τ) during trial

τ . Note that Fssvep (τ) should include all possible fundamental stimulus frequencies which were flashing

when S (τ) was observed. It may also include some harmonics and subharmonics [9] of these fundamental

SSVEP frequencies.

Let Ftest? be an initial set of test frequencies. When given any single-trial signal S, our estimation protocol

is to succesively test every f ∈ Ftest? for its presence or absence in Fssvep (τ). Thus we are performing

frequency estimation by m-ary testing [127], where m is the size of Ftest?. A given testing procedure may

or may not have access to Fssvep (τ); that is, it may or may not be blind.

An essential aspect of SSVEP estimation, especially for BCI applications, is that every trial partitions Ftest?

into three subsets:

1. Those f satisfying f ∈ Ftest? ∩ Fssvep (τ).

76



2. Those f ∈ Ftest? \ Fssvep (τ) which thus were not present during this trial but might have been.

These could be, for example, frequencies of non-selected fields during a BCI test.

3. All other f ∈ Ftest?.

In typical blind SSVEP frequency estimation, case (3) vastly outnumbers (1) and (2). For example, the data

used in Chap. 7 contained 614 initial test frequencies while there were only 19 possible distinct stimulus fre-

quencies and harmonics. In such a situation, simple m-ary control procedures such as Bonferroni correction

(see [129] for a survey) are out of the question because they yield impractically small corrected significance

levels. Even less conservative procedures such as those used to control the false discovery rate (FDR) [130]

yield overall significance levels which often produce no discoveries at all. This because the signal-to-noise

ratio of SSVEP signals is usually too low for estimation statistics to yield sufficiently small P-values even

at fundamental stimulus frequencies.

Moreover, non-stimulus frequencies that we particularly want to reject may slip into the signal, the most

important example being the frequencies of non-selected but still visible fields during BCI experiments.

The assessment of any algorithm must test its ability to positively exclude these potential contaminants even

when blind.

It is therefore essential to develop estimation and validation procedures which can distinguish the combined

situation (1) ∪ (2) from (3).

A solution to all the problems of the preceeding paragraphs is to assume a second randomly-varying set

Fnull (τ) of null frequencies such that Fnull (τ) ∩ Fssvep (τ) = ∅. Once the signal S (τ) is observed, the

hypotheses we decide at each test frequency f ∈ Ftest? are

H0 (f): f ∈ Fnull (τ)

Halt (f): f ∈ Fssvep (τ)

but we do not assume that the testing procedure always makes a decision between H0 (f) and Halt (f); that
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is, we must allow undetermined as a possibility.

We require a ground truth frequency estimation algorithm for SSVEP experiments as a baseline. This

may be:

• A look-up table from a laboratory notebook.

• An electronic spectral analyzer or oscilloscope.

• Gold-standard spectral estimation software.

• A synthetic ground truth algorithm which simulates real SSVEP results. This can be used for validat-

ing a new algorithm. It is the ground truth used to produce the tables and figures of Chap. 7.

The ground truth may or may not be blind. We want to measure the performance of a comparison algorithm

(which is usually assumed to be blind) against this ground truth.

Both the ground truth and comparison algorithms may involve randomized decision rules [127]. However

we make the assumption that the randomization procedures of the two algorithms are independent given S.

That is, once the signal outcome S = S (τ) is known, whatever τ -dependent dice-rolls or coin-tosses each

uses to make its decisions about H0 (f) and Halt (f) are statistically independent of one another. We also

assume that any randomized rules of each individual algorithm are independent at distinct test frequencies,

given S. (This latter assumption actually excludes some interesting potential algorithms but is required for

the calculation of the parametrized contingency tables discussed below. However it is sufficiently general to

hold for most practical algorithms including those from Chap. 7.)
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6.2 Example: Synthetic SSVEP Algorithms


Pssvep [f | S] = pssvep (f) · s (f)

Pnull [f | S] = pnull (f) · s (f) ,

where, for all f , 

pssvep (f) > 0

pnull (f) > 0

pssvep (f) + pnull (f) 6 1

s (f)
def
= S (f) / max

g
S (g) .

6.3 The Contingency Table Statistic

Since we do not assume that the algorithm always determines the truth values of the two hypotheses, there

are 9 possible outcomes for a test at f ∈ Ftest?. The full 3 × 3 contingency table at f is defined by Table

6.1:

Table 6.1
The 3× 3 contingency table at each test frequency f showing the primary indicator terms and the null

hypothesis bias b0. ( c©2016 IEEE)

Ground Truth

H? (undetermined)

Halt True H0 True 1− b0 b0

Comparison
Algorithm

Accept Halt
(Positive)

TP? (f) FP? (f) tP (f) fP (f) P? (f)

Accept H0

(Negative)
FN? (f) TN? (f) fN (f) tN (f) N? (f)

Accept ?
(Neither)

Fn (f) Fp (f)

malt? (f) m0? (f) m (f)
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The 4 core cells are 0, 1-valued indicator functions given by:



TP? (f) = IP (f) · Ialt (f)

FP? (f) = IP (f) · I0 (f)

FN? (f) = IN (f) · Ialt (f)

TN? (f) = IN (f) · I0 (f) ,

(6.1)

where IP (f), IN (f) are the indicators for accepting Halt (f), H0 (f) and Ialt (f), I0 (f) are the indicators

for ground truth.

The remaining labeled cells are fractional indicators whose values are in the interval [0, 1]. They are used to

compress the 3× 3 table into a 2× 2 table by allocating the indeterminate cells as described below:

If no decision was reached by the comparison algorithm on a test frequency but its ground truth was deter-

minable then we should regard that test as false. The logic is that sufficient information was available to the

ground truth procedure but the comparison algorithm failed to extract it. These are the cells labeled Fn (f)

and Fp (f) in Table 6.1.

If both the comparison and the ground truth algorithms were unable to determine the status of a frequency,

then it should be excluded from both the initial set Ftest? of test frequencies and any further analysis since

neither algorithm is able to make any definitive statement about it. This is the blank cell in Table 6.1. The

resulting set of frequencies, at which at least one algorithm was determined, is denoted Ftest. In practice,

Ftest is usually much smaller than than Ftest?. For example, in Sec. 7.3, the 614 initial test frequencies

are usually reduced to a few 10’s. This balances the contingency counts, eliminating most of the problems

discussed above in regards to Bonferroni and the FDR.

The ambiguous situation is that in which the comparison algorithm arrived at a decision but no ground truth

was available. We resolve this ambiguity by selecting a null hypothesis bias b0, 0 6 b0 6 1, which

specifies how much the protocol favors H0 when ground truth is unknown. Using a legal metaphor, b0 = 1

means that uncertain evidence always favors the defendant while b0 = 0 means evidence of uncertain merit
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is nevertheless considered incriminating. This allows the unambigous assigment of the H? cells as follows:



tP (f) = (1− b0) · H?P (f)

fP (f) = b0 · H?P (f)

tN (f) = (1− b0) · H?N (f)

fN (f) = b0 · H?N (f) ,

(6.2)

where H?P (f), H?N (f) are the indicators for positive and negative decisions respectively under the condi-

tion that the ground truth for the test frequency f is undetermined:


H?P (f) = IP (f) · IH? (f)

H?N (f) = IP (f) · IH? (f) .

(6.3)

Note that these are typically fractional indicators.

The marginal cells P? (f), N? (f), malt? (f), m0? (f), and m (f) are the sums of the associated columns

and rows.

The derived 2× 2 table now is given by Table 6.2 with cells



TP (f) = TP? (f) + tP (f)

FP (f) = FP? (f) + fP (f) + Fp (f)

FN (f) = FN? (f) + Fn (f) + fN (f)

TN (f) = TN? (f) + tN (f)

(6.4)

and marginals as shown.

Definition 23. The (unparameterized) contingency table statistic is defined to be

CT (τ)
def
=

∑
f∈Ftest

CT (τ, f),

81



Table 6.2
The derived 2× 2 minimum variance, unbiased, single-trial contingency table. ( c©2016 IEEE)

Ground Truth

Halt True H0 True

Comparison
Algorithm

Accept Halt
(Positive)

TP FP P

Accept H0

(Negative)
FN TN N

ma m0 m

where CT (τ, f) denotes the derived 2× 2 table at f given by Table 6.2 when processing signal S (τ) .

Note that because we have allowed randomized decision rules, CT (τ) is actually a multi-dimensional

random variable, not merely a function of S (τ). It is this statistic which we use to make inferences about

the the relative performance of a comparison algorithm to ground truth.

The algorithms we consider are usually parameterized by a significance level α as the basis for comparison

to the P-value, computed at each f ∈ Ftest, of some spectral statistic (but see the following section which

analyzes this process in detail). Examples include the SNR (Sec. 7.3) or the Liavas, et al. spectral F-ratio

(Sec. 7.4), with or without the GVZM baseline.

It is also extremely helpful to be able to parameterize the frequency precision of each algorithm’s decisions.

Let ∆F > 0 be a frequency radius in Hz. Define the parameterized hypotheses at f ∈ Ftest to be

H0 (α,∆F ; f): (∀g) [|g − f | < ∆F implies g ∈ Fnull (τ)]

Halt (α,∆F ; f): (∃g) [|g − f | < ∆F and g ∈ Fstim (τ)],

where the membership of g is determined at significance level α.
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Definition 24. The (parameterized) contingency table statistic is defined to be

CT (α,∆F ; τ)
def
=

∑
f∈Ftest

CT (α,∆F ; τ, f),

where the table at f is determined by testing H0 (α,∆F ; f) against Halt (α,∆F ; f).

Again, CT (α,∆F ; τ) is a multi-dimensional random variable. The parameters α,∆F can be systematically

varied to examine the relative performance of the comparison algorithm at various operating points [131].

6.4 Whitening by (β, α)-Urn Testing

Let X (S, τ, f) be whatever numerical measure is extracted by the comparison algorithm from the signal

S = S (τ) at frequency f ∈ Ftest during trial τ ∈ T whose P-values determine the truth of the hypotheses.

For example, X (S, τ, f) could be the SNR of Sec. 7.3 or the F-test ratio of Sec. 7.4. Regard X as a

sequence {X (S ( · ) , · , f) | f ∈ Ftest} of random variables on the trial space (T, P ). We consider the

issues of independence and identical distribution (iid).

It often makes sense to assume X (f) and X (g) are independent for f 6= g. For example, the GVZM model

of the background EEG periodogram (Sec. 5.2.7) includes this as an hypothesis. In other cases, it may

make more sense to assume some dependency among distinct test frequencies such as frequencies which are

harmonically related.

However, the typical spectral measures used by estimators are almost never identically distributed between

distinct frequencies unless special processing takes place. Even the GVZM model, which assumes a (1/2) ·

χ2 (2)-shaped distribution at each f , nevertheless requires frequency-dependent means. This makes good

sense for the human brain: we cannot expect naive spectral-based measures of EEG power to be the same in

the α-band, for instance, as in the γ-band.

Yet there is considerable conceptual, algorithmic, and even graphical advantage to “whitening” X (f) across
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the test frequencies; that is, deriving a new process {UX (f) | f ∈ Ftest}which contains the same statistical

information as X but for which all UX (f) have identical, or at least very similar, distributions.

This section presents a whitening methodology which our empirical work has shown is very appropriate for

SSVEP data.

For every f ∈ Ftest, let QX (x, f) be the cumulative distribution function (cdf) of X (f); that is

QX (x, f) = Prob [τ ∈ T | X (S (τ) , τ, f) 6 x]

def
= Prob [X (f) 6 x] .

and let PX (x, f)
def
= 1−QX (x, f) be the complementary cdf; i.e., the P-value function of X;

Definition 25. The likelihood function derived from X, with significance 0 6 β 6 α 6 1, is the condi-

tional probability

LX (β, α;x, f)
def
=

Prob [X (f) 6 x | β < PX (X, f) 6 α] .

(6.5)

For any P-value-based algorithm, one can think of LX (β, α;x, f) as the likelihood that the alternative

hypothesis Halt (f) is true, given that X (f) = x and that P-value of X (f) lies in the interval (β, α].

Supressing the argument f we can prove:

Lemma 3.

LX (β, α;x) =


0 if x < P−1

X (α)

1 if x > P−1
X (β)

α+−PX(x)
α+−β+ otherwise,

where, for any 0 6 γ 6 1, 
P−1

X (γ)
def
= inf {x | PX (x) 6 γ}

γ+
def
= inf {PX (x) | PX (x) > γ} .
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This formula is very easy to calculate or estimate, even for cdf’s found empirically.

Remark 28. Note that we have not excluded the possibility that β = α in (6.5), in which case the restricted

probability space is empty. This is necessary to insure LX (β, α;x, f)→ 1 as α→ 1, thus guaranteeing the

almost-surely-truth of Halt (f) in this boundary case (see Def. 27 below). By choosing a fixed functional

relation such as β = αp, for some p > 1, the boundary conditions are attained smoothly. Our empirical

work has shown p ≈ 3 to be a reasonable choice for SSVEP BCIs.

Definition 26. The uniformizing statistic derived from X, with parameters 0 6 β 6 α 6 1, is the random

variable

UX (β, α; f)
def
= LX (β, α; X (f) , f) , (6.6)

where the dependence on the random trial τ ∈ T is implicit.

Clearly every UX (β, α; f) satisfies 0 6 UX 6 1. It somewhat surprising that, in fact, UX (β, α; f)

is “almost” uniformly distributed at every f ∈ Ftest for which we know 0 < UX (β, α; f) < 1. The

divergence from UX ∼ unif (0, 1) occur at the jump discontinuities ofQX (x, f) since UX (β, α; f) cannot

take on the probability values over which QX jumps. The cdf of UX (β, α; f) is flat over these intervals.

But if X (f) has a continuous cdf, then UX ∼ unif (0, 1) precisely (given that UX 6= 0, 1); in particular this

holds for the GVZM model Sec. 5.2.7 and asymptotically for periodograms of white Gaussian noise [56].

In practice, we have found it an excellent approximation even for empirically-estimated cdf’s which are

necessarily discontinous.

UX is our whitened statistic. Not least of its merits is that its values at the test frequencies can be plotted on

the same axes so that direct comparisons of frequency-to-frequency variations in X (f) are easily detected

by eye.
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Definition 27. The (β, α)-Urn Test are the decision rules:


Accept H0 if UX (β, α; f) = 0

Accept Halt if UX (β, α; f) = 1

Undetermined otherwise.

All of the SSVEP procedures of Chap. 7, including models of ground truth, can be recast in this uniformized,

whitened form. Furthermore, such procedures can be parameterized by frequency resolution ∆F as defined

by Def. 28.

When β is a function of α as discussed in Remark 28, we can vary α,∆F independently over some intervals

to obtain random, single-trial contingency tables CT (α,∆F ) at different operating points. As will be seen,

each such pair (α,∆F ) will yield one point on our optimal, single-trial ROC graphs.

Remark 29. The terminology “(β, α)-urn test” derives from the following randomized decision procedure

which can be shown to yield the same overall statistics as the UX-test Def. 27 (although individual outcomes

may differ):

A (β, α)-urn for X (f) consists of a conceptual jar containing slips of paper, on each of which is written

a pair (x0, xalt) of values from the range of X (f). Specifically, the pairs must satisfy x0 6 xalt and both

β < PX (x0) 6 α and β < PX (xalt) 6 α.

Moreover, the slips must be distributed precisely as would be pairs of actual X (f)’s. Specifically,

Prob [(x0, xalt) | y 6 x0 and xalt < x] =

PX (y, f)+ − PX (x, f)+

α+ − β+

and must be statistically independent of X (f).

Letting X (f) be an actual value of the test statistic the decision rule is:
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Randomly choose a slip (x0, xalt) from the (β, α)-urn and then


Accept H0 if X (f) < x0

Accept Halt if X (f) > xalt

Undetermined otherwise.

6.5 The Optimal Estimator Metric

The contingency table statistic CT (τ) is a function of the unobservable value τ ∈ T and is thus a purely

theoretical construct. By assumption, all we are able to observe is the signal S (τ) which contains far less

information than the actual trial τ . The best we can do is estimate CT (τ) based on knowledge of S (τ).

This problem has a well-known solution; namely the regression of CT (τ) onto S (τ):

Definition 28. Define the function CT (s) on the set of all possible signals by the conditional expected

value

CT (s)
def
= E [CT | S = s] .

Then CT (s) is known to be the minimum mean-squared-error (MSE), unbiased estimator of CT (τ) from

S (τ) [93]; that is, the composite random variable CT (S (τ)) satisfies E
[
CT (S (τ))

]
= E [CT (τ)] and

has the smallest MSE of any unbiased estimate of the form K (S (τ)), for functions K (s) over the space of

signals.

For this reason, we regard the estimated contingency table CT (S) as the best metric of performance of a

comparison algorithm against ground truth when we know the input signal S.

To calculate the estimate CT (S) we note that all the formulas in (6.4) reduce to sums of products of pairs

of indicator functions. Using the independence assumptions of the protocol, this will allow the optimal

estimator function E [CT | S = s] to push through all formulas of (6.4), turning indicators into probabil-

ities. We will do a typical calculation where we supress most occurences of the signal portion “ | S” for
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simplicity:

E [FP (f)] = E [FP? (f)] + E [fP (f)] + E [Fp (f)] .

E [FP? (f)] = E [IP (f) · I0 (f) | S]

= E [IP (f) | S] · E [I0 (f) | S] .

This critical step is the result of the assumption that the comparison algorithm and the ground truth algorithm

are independent, given the signal S.

We next note that the expected value of any indicator function is the probability of the underlying event [80]

so that

E [IP (f) | S] = Prob [P (f) | S]

E [I0 (f) | S] = Prob [H0 (f) | S]

so that

E [FP? (f)] = Prob [P (f) | S] · Prob [H0 (f) | S] .

In a similar way

E [fP (f)] = b0 · E [H?P (f)]

= b0 · E [IP (f) · (1− I0 (f)− Ialt (f))]

= b0 · Prob [P (f) | S] ·

(1− Prob [H0 (f) | S]− Prob [Halt (f) | S]) ,

E [Fp (f)] = E [H0 ? (f)]

= E [I0 (f) · (1− IP (f)− IN (f))]

= Prob [H0 (f) | S] ·

(1− Prob [P (f) | S]− Prob [N (f) | S]) .

Therefore, from knowledge of the condtional probabilities we can obtain the optimal estimator CT (f,S)
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at each test frequency f ∈ Ftest and then the full estimator by simply adding these results

CT (S)
def
=

∑
f∈Ftest

CT (S, f).

These same formulas may be combined, using standard probability arguments [80], to form the parameter-

ized (Def. 28) estimator

CT (α,∆F ; S)
def
= E [CT (α,∆F ) | S]

from which ROC graphs can be created.

The conditional probabilities involving the comparison algorithm such as Prob [P (f) | S] are known through

an analysis of the behavior of the X (f) statistic on the signal on S and the (β, α)-urn test. This requires

knowledge of cdf’s which are found either from distributions given by formulas, such as with F ratio (7.3),

or empirically derived by bootstrap resampling [132] or other procedure.

On the other hand, the ground truth probabilites such as Prob [Halt (f) | S] are really laboratory issues and

should be approached via the Bayesian formula

Prob [Halt (f) | S] =
Prob [S | Halt (f)] · Prob [Halt (f)]

Prob [S]
;

that is, we need to know, based on our experimental protocol, the probability of a subject’s being shown

stimulus frequency f . More importantly, we need to estimate, based on our equipment, experience, stimulus

methodology, and many other factors, what is the probability that the signal S will be generated when a

subject is stimulated by frequency f . This latter is difficult yet interesting question [5].

For synthetic ground truth algorithms, these conditional probabilities must be modeled based on reason-

able assumptions about the dependence of certain signal characteristics, such as spectral spikes in the pe-

riodogram, on SSVEP stimuli. Synthetic spectra which are sums of Gaussians translated to the stimulus

frequencies work quite well.
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6.6 Single-trial ROC Graphs and Derived Metrics

Let S be a fixed signal. Every pair (α,∆F ) over some range of values αmin 6 α 6 αmax and ∆F ,min 6

∆F 6 ∆F ,max will yield an estimated contigency table CT (α,∆F ; S) as defined by Def. 28.

From this we can derive the single-trial rate metrics (the operating point):

Definition 29. The true positive rate (TPR) and false positive rate (FPR) at (α,∆F ) are given by [131]


TPR (α,∆F ; S)

def
=

TP (α,∆F ; S)

malt (α,∆F ; S)

FPR (α,∆F ; S)
def
=

FP (α,∆F ; S)

m0 (α,∆F ; S)
,

where the right-hand side factors are taken from CT (α,∆F ; S) according to the scheme in Table 6.2.

For example, every one of the 256 solid circles shows the TPR (α,∆F ; S) and FPR (α,∆F ; S) for 16

values .005 6 α 6 .25 and 16 values 0 6 ∆F 6 .25 of the GZVM-based algorithms compared to a

synthetic ground truth for a particular 28 Hz stimulus signal S. Similarly, the open circles show the standard,

non-GVZM algorithms.

The fact that almost all operating points of the GVZM algorithms are closer to the ideal operating point

(0, 1) is clear evidence [131] that the GVZM-based algorithms outperform their rivals.

There are numerous possible measures of optimality that can be applied to a single-trial ROC graph. One

is the previously-mentioned relationship to the ideal point (0, 1). We refer to the relative distance from this

point the confusion of an operating point:

confusion
def
=

1√
2

√
(1− TPR)2 + FPR2,

with smaller confusion indicating better performance. In the figures, a line segment is drawn from (0, 1) to

least confused operating points of the two rivals.
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A measure closer to the usual concept of accuracy is what we define to be the truth rate

truth rate
def
= (1− p0) · TPR + p0 · (1− FPR) ,

where 0 6 p0 6 1. In a Bayesian formulation with binary hypotheses, if p0 = Prob [H0] then the truth rate

would be the probability of a correct decision by the algorithm.

Similar to cost functions [131], points in the TPR-FPR plane which have the same truth rates lie on parallel

lines. The optimal operating point of an algorithm is where these lines are tangent to its convex hull.

In the figures, the value p0 = 1/2 is used and the optimal parallels are drawn in solid (GVZM) and broken

(rivals) lines tangent to the optimal points. It is obvious from the figures that the GVZM-based algorithms

have substantially higher optimal truth rates, once again clearly demonstrating the superiority of the GVZM-

based algorithms.

Remark 30. In most cases we have analyzed, when the algorithm has a good operating point in the confusion

measure, it also has a good optimal in truth rate. Moreover, more often than not, these optimal operating

points are the same as it true for the GVZM graphs in the figures.

For multiple-trial summary statistics, we have found it best to separate into groups consisting of all trials

of a single subject and a single stimulus condition because the variation between subjects and stimuli is too

extreme for a single pool.

We have also found it valuable, when comparing rival algorithms, to exclude trials in which both rivals are

confused above some maximum level. The logic is that when both rivals are very confused, comparing them

for performance can reveal nothing useful and will actually contaminate the summary statistics. In practice,

we have found that 35% is a reasonable maximum confusion for both rivals.

A paired t-test for the difference of means can then be performed on both confusion and truth rate, with the

number of pairs equal to the number of subject-stimulus groups.

Table 7.1 and Table 7.2 show the results of such t-tests. The dataset contained SSVEP EEG signals for 4
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subjects with 5 trials each of 3 different stimulus conditions yielding a total of 60 trials.

For Table 7.1, the rivals were mutually confused on 26 of the trials leaving 34 unconfused trials. However,

there were still enough trials remaining to get 4 × 3 = 12 subject-stimulus groups and thus 12 - 1 = 11

degrees of freedom for the t-tests.

The standard error (SE) for each test was the pooled value

SE =

√
1

12

(
s2

GVZM + s2
SNR

)
,

where sGVZM and sSNR are the sample standard deviations of the 12 groups.

From this information, the two differences of means could be tested for significance. Table 7.1 shows that

the GVZM-based algorithm outperformed its SNR rival in both confusion and truth rate with significance

6 .005.

Table 7.2 is the comparable test for GVZM against a smoothed periodogram rival. The only difference in

calculation is that just 4 confused trials needed to be excluded due to the stability of the F-ratio statistic (7.3).

Once again, the GVZM-based algorithm outperformed its rival in both measures with excellent significance.
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CHAPTER 7: GVZM-BASED SSVEP ALGORITHMS

In this section1, we explore two new SSVEP frequency estimation algorithms we have designed, based on

the GVZM noise model, which we refer to as GVZM-χ2 and GVZM-F . We evaluate the performance

of the new algorithms by comparing each with an existing, commonly-used procedure (to be be described

later). Our statistical analysis demonstates that the GVZM-based algorithms outperform both their rivals.

In Sec. 7.2 we examine the GVZM-χ2 algorithm, which is based on GVZM-χ2-critical levels for the EEG

periodogram. These critical levels are curves drawn on the graph of the periodogram, which are parallel

to the GVZM spectrum SGVZM (f) defined in Sec. 5.2.7. Each represents the PSD level beneath which a

random SGVZM (f) · (1/2)χ2 (2) variable should remain, with specified probability(see Fig. 7.1 and Fig.

7.2 for examples of GVZM-χ2-critical levels).

In Sec. 7.3, we perform a statistical performance comparison of GVZM-χ2 against a commonly-used BCI

algorithm [5, 133, 134] we refer to as BCI-SNR. Note that BCI-SNR is based on forming certain ratios of

periodogram values around the frequencies that are being tested as SSVEP stimuli (see Sec. 7.3 Def. 30).

Sec. 7.4 examines two versions of the well-known periodogram F -test frequency estimation method used

in [37, 92]. The first version, which we call the smoothed-F algorithm, implements [92] directly. The

second version, which we call the GVZM-F algorithm, replaces a key data-estimated periodogram with

the optimally-fitting GVZM PSD while making no other alterations. We compare the performance of the

GVZM-F and the smoothed-F algorithms statistically.

All four algorithms are used as SSVEP frequency estimators according to the protocol described in Chap.

6. This chapter also describes the procedures we used to create the summary data statistics in Table 7.1 and

Table 7.2.

1Portions of this chapter have appeared in [2].
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7.1 Set-up and Preprocessing

As our data, we used the publicly-available EEG recordings [37] of four subjects undergoing a series of

SSVEP experiments, using a 128-channel Biosemi active-electrode EEG system (http://www.biosemi.

com) sampled at 256 Hz. Each subject experienced 15 25-second trials divided into five trials each of ap-

proximately 8 Hz, 16 Hz, and 28 Hz stimulation frequencies. Each 25-second trial consisted of a 5-second

pre-stimulation epoch, a 15-second visual stimulation epoch, and a 5-second post-stimulation epoch. Further

experimental conditions are presented in [37].

Using recommended treatments for Biosemi recordings [37], the central Cz channel (in 10/20-nomenclature)

was subtracted from all other electrodes. For each epoch, quadratic trends in each channel were removed

and a virtual electrode over the visual cortex was created by averaging the Biosemi-nomenclature electrodes

A14, A15, A16, A21, A22, A23, A25, A27, A28, and A29. A virtual electrode close to the eye muscles

was created by averaging the frontal 10/20 Fp2, Fpz, and Fp1 electrodes. The visual electrode was linearly

regressed onto the eye electrode and the residual was used as the SSVEP response signal. This simple

method of removing eyeblink artifacts worked well for our subjects.

We excluded the mid-α (9.5 Hz–13.5 Hz) and high β (23.5 Hz–26.5 Hz) bands, the main sources of non-

stationarity, [92] from all PSD functions, as well as frequencies below 6 Hz and above 50 Hz. This left 614

frequencies per periodogram for testing against the known stimuli.

The cumulative distribution functions (CDFs) of the BCI-SNR statistic, required in Sec. 7.3, were calculated

by bootstrap resampling [132]. For every one of the four subjects, each of their 15 pre-stimulation epochs

was independently concatenated to their 15 post-stimulation epochs, yielding 225 sample baseline datasets

which were then multiplied by a Tukey window with parameter 0.1 (to match [134]). For each baseline, the

BCI-SNR statistic was computed using equation Eq. (7.1) at each of the 614 test frequencies resulting in 614

“urns”, each urn containing the approximately 225 distinct SNR values which occured at that frequency. For

each test frequency, 1000 samples (with replacement) of size 225 were then selected from its urn. Each of

these 1000 samples generated its own CDF. Then these 1000 CDFs were averaged to obtain a representative

94

http://www.biosemi.com
http://www.biosemi.com


CDF at that frequency. Repeating this procedure at every one of the 614 test frequencies yielded 614

empirical CDFs for each of the four subjects.

The smoothed-F algorithm [92] of Sec. 7.4 estimated the expected PSD of the pre-stimulation epoch xpre (n)

by the smoothed periodogram approach of [135]. The circular autocorrelation [16]Rpre (m) of xpre (n) was

computed and then the DFT Spre (k) of the windowed autocorrelation h (m) ·Rpre (m) was regarded as the

expected PSD. The window h (m) was a symmetric Hamming window of length 2M + 1, where M is

approximately 10% of the data length of xpre (n). In [92], the pre-stimulation data length was specifically

chosen to be same as the stimulated epoch xstim (n) so that their respective DFTs Spre (k) and Sstim (k)

could be compared easily at equal frequency indices k. Since our pre-stimulation epochs are shorter than the

stimulation epochs, spline interperpolation of Spre (k) was performed to resample it to the larger length. We

found that the 10% smoothed periodogram was sufficiently smooth that such resampling was very accurate.

The authors of [92] time-averaged multiple epochs to improve the signal-to-noise ratio prior to detection.

This required about 2 minutes of trial data, a very long duration for practical real-time BCIs. For example,

the longest epoch used by the well-known and successful SSVEP BCI of [5] was only 8 seconds, which

was then continuously processed to yield average inter-selection intervals between 3.40 and 5.68 seconds.

We tested the GVZM-F and smoothed-F algorithms on the generous, single-trial, unaveraged epochs of 15

seconds.

We performed the paired algorithm comparisons of GVZM-χ2 vs. BCI-SNR in Sec. 7.3 and GVZM-F vs.

smoothed-F in Sec. 7.4 by procedures detailed in Chap. 6. (See Fig. 7.3, Fig. 7.6, Table 7.1, and Table 7.2.)

All fits of GVZM PSDs in Def. 21 to actual EEG periodograms, used by both the GVZM-χ2 and GVZM-

F algorithms, were obtained by weighted least-squares optimization using weights proportional to fκ, for

κ ≈ 1.5, where the f are the frequencies over which we are optimizing (which must exclude non-stationary

bands). This weighting increased the accuracy in the higher frequencies where the signal power is inherently

small.

Figures displaying spectra and the results of spectral tests show power density S in dB relative to 1; that
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is 10 log10 (S/1). However, all actual critical values have been determined and hypothesis tests were per-

formed in the original units of (amplitude unit)2/Hz.

7.2 Real-time Estimation of SSVEP Responses using the GVZM-χ2 Algorithm

The most direct way to utilize the GVZM noise model in an estimation algorithm is by optimally fitting a

GVZM PSD to a recorded periodogram and calculating (1/2) χ2 (2) critical levels parallel to it. A GVZM-

χ2-critical level at particular P -value is a curve, parallel to SGVZM(f), showing the power below which

periodogram values are confined with probability 1 − P , assuming the GVZM noise model to be correct.

Then the frequencies of any spikes extending above the level associated to a pre-assigned P -value are

regarded as positives; i.e., frequencies at which the GVZM-χ2 algorithm will report the EEG as having

true power, not merely random noise. All others are reported as negatives. In this way, stimulus frequency

estimation is implemented by a collection of hypothesis tests [93, 130], one at every frequency we intend to

examine.
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Figure 7.1: 8 Hz stimulus: GVZM (θ) · (1/2) χ2 (2) critical levels corresponding to P = 0.005, 0.05, 0.25,
0.5, 0.75, 0.95, 0.995 (top to bottom).
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Figure 7.2: 28 Hz stimulus: GVZM (θ) · (1/2) χ2 (2) critical levels corresponding to P = 0.005, 0.05, 0.25,
0.5, 0.75, 0.95, 0.995 (top to bottom).

Fig. 7.1 and Fig. 7.2 show the results of the GVZM-χ2 algorithm for SSVEP experiments at 8 Hz and 28 Hz

respectively (subject 3, trial 2). In particular, according to the GVZM noise model, it is 99.5% probable that

a spectral spike will lie below the upper dashed critical level. These critical levels also display how closely

the GVZM noise model fits the distribution of recorded EEG background processes.

It is clear from Fig. 7.1 that the GVZM-χ2 algorithm accurately estimated the 8Hz fundamental SSVEP

response and its two harmonics at significance level P = 0.005, thus generating no false negatives (also

called) Type II errors [93]). Moreover, it has correctly excluded all other spikes as simply random noise and

thus avoided all false positives. (Also called Type I errors [93] or false discoveries [130]).

In Fig. 7.2 the 28 Hz response was estimated accurately also. However there are several false positives

arising because of non-stationary power in the α-band. As discussed in Sec. 7.1, non-stationary bands need

to be pre-excluded from all procedures.
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7.3 SSVEP Frequency Estimation Using the GVZM-χ2 and BCI-SNR Algorithms

In this section, we describe the BCI-SNR algorithm and compare it to the GVZM-χ2 algorithm.

The BCI-SNR statistic for SSVEP procedures was first defined in [5], where it was used as a simple measure

of signal strength for determining optimal stimulus frequencies. It subsequently became a popular frequency

estimator for SSVEP BCIs [134] and more general applications [101]. The phrase “power spectral density

analysis” (PSDA) also has been used [133] for methods based on the BCI-SNR.

Definition 30. The BCI-SNR statistic [5] of a signal x at the kth test frequency fk is the ratio

SNRx (fk) =
n · Ŝx (fk)

n/2∑
j=−n/2
j 6=0

Ŝx (fk + j ·∆f)

, (7.1)

where Ŝx is an estimator of the sample spectrum, ∆f is the spectral resolution of the estimated frequency

domain, and n is a small integer. To be consistent with [134], we use n = 6.

The BCI-SNR statistic is sometimes used as a non-blind detector for a short list f1, . . . , fK of known SSVEP

BCI selection frequencies. The subject’s selection is considered to be that frequency fk which has the largest

SNRx value; i.e., fselected = argmaxfk SNRx (fk). (For example, [133, 134].)

To use the BCI-SNR algorithm as a blind SSVEP frequency estimator, as described in Chap. 6, we require

each individual probability distribution function of SNRx (fk) for every test frequency fk. These were

estimated by bootstrap resampling as described in Sec. 7.1.

Fig. 7.3 shows an example of a minimum-variance, unbiased, single-trial estimate of the comparison re-

ceiver operating characteristics (ROC) graph [131] as described in Sec. 6.6. The dataset is that of Fig. 7.4

(subject 3, trial 1, 28 Hz stimulus).

In Fig. 7.3, TPR and FPR denote the true and false positive rates, calculated at 256 operating points as
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GVZM−χ2:

     Optimal confusion = 10.97%

     Optimal truth rate = 89.41%

BCI−SNR:

     Optimal confusion = 48.74%

     Optimal truth rate = 52.87%

Figure 7.3: GVZM-χ2 vs. BCI-SNR example: the minimum-variance, unbiased, single-trial ROC estimator,
showing optimal operating points, using the 28 Hz data of Fig. 1. ( c©2016 IEEE)

detailed in the Appendix. Confusion measures the relative distance of an operating point from the ideal

(TPR, FPR) = (1, 0), while the truth rate is a weighted average of the TPR and the true negative rate TNR =

(1 - FPR): 
Confusion =

√
(1− TPR)2 + FPR2/

√
2

Truth Rate = (1− p0) · TPR + p0 · (1− FPR) ,

where 0 6 p0 6 1. Both are intended as measures of accuracy. In a Bayesian situation, with p0 the

probability of the null hypothesis [93], the truth rate is the probability of a true decision. We use p0 = 1/2.

We observe that the GVZM-χ2 algorithm outperforms the BCI-SNR algorithm at nearly every operating

point. Moreover, even on this very difficult 28 Hz stimulus, the optimal operating point for GVZM-χ2

identifies the true stimulus frequency with probability above 90% and FPR below 20%.
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Table 7.1
Performance improvement of GVZM-χ2 over BCI-SNR. ( c©2016 IEEE)

Combined Optimal Results % Unconfused
Trials

Pooled SE t-score df P-value

Confusion Decrease 29.77 34 0.0371 3.253 11 0.004

TruthRate Increase 17.92 34 0.0356 3.133 11 0.005

Table 7.1 summarizes the pooled ROC results for the N = 34 trials in which at least one of the algorithms

had confusion below 35% (“unconfused” trials by definition). Pooled SE denotes the standard error

Pooled SE =
√(

σ2
GVZM + σ2

SNR

)
/N

appropriate to the t-test for the difference of means.

Table 7.1 shows that the GVZM-χ2 algorithm outperforms the BCI-SNR algorithm on both the confusion

and truth rate measures with statistical significance above 99%.

7.4 SSVEP Frequency Estimation Using the GVZM-F and Smoothed-F Algorithms

In [92], the authors assume, based on the theory of periodograms developed in detail in [56], that the

periodogram random process Sx (k), 0 6 k 6 N − 1 of the EEG background time series x (n) is given

asymptotically by

Sx (k) = E [Sx (k)] · (1/2) Ξ (k) , (7.2)

where Ξ (k), 0 6 k 6 N−1 is a process with Ξ (k) ∼ χ2 (2) and which are independent for 0 6 k, l < N/2

with k 6= l.

When the function E [Sx (k)] is known, (7.2) implies that the test statistics

sx (k)
def
= 2 · Sx (k) /E [Sx (k)] ,

100



for 0 6 k < N/2, are iid χ2 (2) random variables.

A fixed set of indices Ω ⊆ {0, 1, · · · , N − 1} is selected to represent what we regard as stationary frequen-

cies; e.g., α-band frequencies are excluded (cf. Sec. 7.1). Then, under the null hypothesis that there is no

SSVEP spike at frequency index ktest, we must have

∑
k∈Ωtest

sx (k) / Ntest∑
k′∈Ω\Ωtest

sx (k′) / (NΩ −Ntest)
(7.3)

∼ F (Ntest, NΩ −Ntest) ,

where Ωtest is the set of indices ktest and its harmonics in Ω, Ntest is the size of Ωtest, NΩ the size of Ω, and

F (d1, d2) is the F–distribution with degrees of freedom d1, d2 [93].

The key issue then is how to obtain the function E [Sx (k)]. In [92], the authors estimated this function by

computing a “smoothed periodogram” Ssmooth (k) of a pre-stimulation epoch as described in Sec. 7.1 and

used Ssmooth (k) as a substitute for E [Sx (k)]. This was their smoothed-F algorithm.
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Figure 7.4: Recorded EEG periodogram from a 15-second, SSVEP experiment showing α-band power. The
target 28 Hz response peak is nearly lost in the background noise. ( c©2016 IEEE)
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However, according to the GVZM noise model, we expect to obtain a more accurate baseline estimate by

using the GVZM PSD which optimally fits the same pre-stimulus epoch as a substitute for E [Sx (k)]. This

is our GZVM-F algorithm. Fig. 7.5 shows the periodogram from the pre-stimulus epoch of the data of

Fig. 7.4 (subject 3, trial 1, 28Hz stimulus) with both the smoothed periodogram and the fitted GVZM PSD

displayed. The two algorithms are compared as described in Chap. 6. Fig. 7.6 shows an example of a

minimum-variance, unbiased, single-trial estimate of the comparison ROC graph.
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Figure 7.5: Baseline (non-stimulus) PSDs used as the 28 Hz, χ2 references for the smoothed-F and GVZM-
F algorithms. ( c©2016 IEEE)

The dataset is that of Fig. 7.4 (subject 3, trial 1, 28 Hz stimulus). As in Sec. 7.3, the GVZM-F algorithm

outperforms the smoothed-F algorithm at nearly every operating point, achieving an optimal performance

of over 95% probability of true identification with FPR just above 20%.

Table 7.2 summarizes the pooled ROC results as described in Sec. 6.6 for the 56 trials in which at least one

of the algorithms had confusion below 35%. The large number of unconfused trials of these algorithms is a

result of the inherent stability of the carefully-designed underlying statistic (7.3).

Table 7.2 shows that GVZM-F algorithm outperforms the smoothed-F algorithm on both the confusion and

accuracy measures with statistical significance above 99%.
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Table 7.2
Performance improvement of GVZM-F over Smoothed-F. ( c©2016 IEEE)

Combined Optimal Results % Unconfused
Trials

Pooled SE t-score df P-value

Confusion Decrease 30.57 56 0.0322 2.901 11 0.007

TruthRate Increase 12.67 56 0.0278 3.234 11 0.004
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GVZM−F:

     Optimal confusion = 16.69%

     Optimal truth rate = 87.21%

Smoothed−F:

     Optimal confusion = 39.72%

     Optimal truth rate = 68.18%

Figure 7.6: GVZM-F vs. Smoothed-F example: the minimum-variance, unbiased, single-trial ROC estima-
tor, showing optimal operating points, using the 28 Hz data of Fig. 7.4. ( c©2016 IEEE)
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APPENDIX A: A PRECIS OF NON-RELATIVISTIC QUANTUM

MECHANICS
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A.1 Conventions and Definitions

The theories of general quantum [77, 103, 104] and statistical mechanics [105, 106], as well as stochastic

processes [79, 82], have a vast and accessible literature. The following is a minimalist quantum theory

compatible with any detailed quantum model of ion channels.1

Let H be a fixed separable complex Hilbert space with inner product 〈 · | · 〉 [109]. The space H is the

configuration space of the quantum system. Vectors |ψ〉 ∈ H are sometimes called wavefunctions, pure

states, or “kets” in Dirac’s terminology [110].

In order to simplify the presentation of quantum-based reasoning, in this Appendix we fix a particular

orthonormal basis for H so that all vectors are (possibly infinite) columns of complex numbers, dual vectors

(Dirac’s “bras” [110]) are rows, and continuous linear operators are (possibly infinite) square matrices. In

this way, operators act by matrix multiplication, the inner product 〈ψ|φ〉 is just ψH ·φ where ( · )H denotes

the hermitian transpose (i.e., the adjoint [111]), and the projection operator Pψ onto a unit vector ψ is the

rank-1 matrix Pψ = |ψ〉 · 〈ψ|. Moreover, we will generally consider only bounded, normal operators which

are compact [109, 111] (so that orthonormal bases of eigenvectors and countable spectral decomposition

exist) and even non-degenerate (so eigenspaces are 1-dimensional) when convenient. We will often treat H

as finite-dimensional to simplify formulas. These simplifications are replaceable by appropriate functional

analysis generalizations [103, 109, 111, 112].

An operator A is a linear function A : H → H which is normal: A · AH = AH · A. Real-valued

observables A of the system are associated in a 1-1 manner with (not necessarily bounded) self-adjoint

operators A whose spectrum

Sp (A)
def
= {α ∈ R | (α · IH −A) has no inverse} ,

1Since protein macromolecules are very large systems, it may be advantageous to base quantum ion channel models on Bohm
& Hiley’s alternative foundation for quantum mechanics which uses non-local quantum potentials [102]. In fact, David Bohm
and his colleagues have speculated for decades on the relation between non-locality, quantum potentials, and mind (e.g.; [102], pg.
381 and [107]). The highly controversial [29,31] theories of Penrose [27,108] and Penrose & Hameroff [28] must be mentioned in
this regard as well. We shall, however, avoid these fascinating excursions in favor of more standard quantum “metaphysics.”
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where IH is the identity operator [103, 109, 112], is precisely the set of possible measured values of A.

An operator A is of trace class [111] if

∑
i

〈φi|
(
AHA

)1/2
φi〉 <∞

for some orthonormal basis φ1,φ2, · · · . Trace class operators are always compact [111], hence continuous.

The trace of a trace class operator A is the (absolutely convergent) series

tr(A)
def
=
∑
i

〈φi|Aφi〉.

This value is independent of the orthonormal basis chosen [111]. With our fixed-basis simplifications,

the trace becomes just the sum of the diagonal entries of the matrix A. Note that the set T (H) of trace

class operators is closed under convergence in the operator norm and also left- and right-multiplication by

bounded operators B (H) [111]. Thus, for A ∈ T (H) and B ∈ B (H), we have both AB,BA ∈ T (H)

and tr(AB) = tr(BA). (In Appendix B, the definition of trace is generalized. See Def. 36.)

A state2 of the system [77, 103] is then a non-negative definite, self-adjoint operator Ψ on H of trace class

such that tr (Ψ) = 1. The set S (H) of all states is a convex subset of the set of bounded operators;

that is, if Ψx ∈ S (H), for x ∈ X , where X is an index set, and p (x) is a probability measure on X ,

then
∫

Ψx dp (x) ∈ S (H). The state
∫

Ψx dp (x) is called a mixture of the states Ψx, with mixture

coefficients p (x). The boundary ∂S (H) of S (H) consists of the pure states: those which cannot be

expressed as a non-trivial mixture of other states [103]. The state Ψ is pure if and only if it is a projection

onto a 1-dimensional subspace [112]; i.e., Ψ = Pψ = |ψ〉 · 〈ψ| for some unit vector ψ, which is unique up

to multiplication by a complex number of modulus 1. The pure states form a compact Hausdorff space in

2An equivalent and more useful definition of a state is a positive linear functional Ψ on the ∗–algebra B (H) of bounded linear
operators for which Ψ (IH) = 1 [77, 103].
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the weak–∗ topology3 [112] and every state Ψ can be expressed as a weak–∗ mixture

Ψ =

∫
ψ∈∂S(H)

Pψ dp (ψ)

of pure states, for some set of mixture coefficients p (ψ) on ∂S (H).

Definition 31. IfA is an observable with associated operator A, then a state Ψ is coherent withA (or, more

simply, A–coherent) if A ·Ψ = Ψ ·A.

A state is coherent with A if and only it diagonalizes in any basis in which A diagonalizes [111, 112]. If

{Pα | α ∈ Sp (A)} are the projections onto the eigenspace of A then Ψ is A–coherent just in case4 it is

a mixture of the eigenstates Ψα
def
= Pα/dim (Pα), where dim (Pα) = tr (Pα) is the dimension of the

α eigenspace. In this case, and in this case only, it is consistent to interpret Ψ by saying that, for all

α ∈ Sp (A), the observable A has probability p (α) of having the value α, where {p (α) | α ∈ Sp (A)}

are the mixture coefficients of Ψ. However it is critical to interpret these probabilities in a frequentist5

[136] sense because the absence of so-called “hidden variables” excludes the possibility of an underlying

Kolmogoroff probability space [80].

The following is easily proved but very significant:

Lemma 4. Let Ψ be any state and Pα be a projection operator onto an eigenstate of observable A. Then

Pα ·Ψ ·Pα/tr (Pα ·Ψ) is a state which is coherent with A.

The term “measurable” always means “Borel measurable” [78] unless otherwise stated.

3i.e.; as linear functionals on B (H). See the previous footnote.
4Shown using an appropriate form of the Gel’fand-Neumark Theorem [112].
5or Bohmian [102]
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A.2 Born’s Axiom

Let g (α) be a bounded measurable function [78] whose domain includes the possible values α ∈ R of the

real observable A. It can be shown6 that if the associated self-adjoint operator is A then there must be an

operator g (A) corresponding to the composite observable g (A). We have [103]:

Theorem 9. Let Ψ ∈ H be a state and A a real observable associated with the self-adjoint operator A.

Then there is a unique Borel probability measure πΨ,A on Sp (A) such that, for all bounded measurable

functions g (α) whose domain includes the possible values α of A,

tr (g (A) ·Ψ) =

∫
α∈Sp(A)

g (α) dπΨ,A (α).

The central postulate of quantum theory may now be expressed as:

Definition 32. Born’s Law (probability form) Let Ψ, A, A, and πΨ,A be as in Thm. 9. Let Prob [ · |Ψ]

denote relative frequencies for an ensemble [136] of identical systems in prepared in state Ψ. Then, for

every measurable set E ⊆ Sp (A),

Prob [A ∈ E |Ψ] = πΨ,A (E) .

(But cf. Sec. A.3 below for the quantum mechanical interpretation of the expression “A ∈ E”.)

Born’s Law, in probability form, combined with Thm. 9 immediately implies

Corollary 3. Born’s Law (expectation form)

Let Ψ ∈ H be a state, let A be a real observable associated with the self-adjoint operator A, and let g (α)

be a bounded measurable function whose domain includes the possible values of A. Then an ensemble of

6Using the GNS representaion [112] and an appropriate form of the Reisz Representation Theorem [78].
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identical systems prepared in state Ψ will produce a frequency average value for g (A) given by

E [g (A) |Ψ] = tr (g (A) ·Ψ) .

A.3 Measurements and the Wavefunction Collapse

Terminology concerning the interaction of measuring apparatus (including human observers) with quantum

systems is not standardized but we will adopt the following conventions:

Definition 33. (Experiments, Measurements, and Observations)

• An experiment specifies an observable A with its associated operator A together with a measurable

function g : Sp (A) → C on the space of possible values of A. The experiment itself consists of the

determination of one and only one value of g (A). It is conceptually important that no information

other than this value be produced by the experiment. It is also important, however, that some value for

g (A) be obtained even though the experiment disregards all information about the particular outcome

α ∈ Sp (A) which lead to the determination of g (α). An standard example of an experiment is

g (α)
def
=
∑
i
i · χEi (α), where Sp (A) =

⋃
i
Ei, Ei ∩ Ej = ∅ for i 6= j is a measurable partition

and χ( · ) denotes characteristic (or indicator) functions. The determination g (A) = i indicates that

A ∈ Ei, with no other information about the value of A available. (Of course, additonal experiments

may extract some of this missing information.)

• An experiment is reductive (or of the first kind [77]) if, after a determination g (A) = γ is made,

then future repetitions of the experiment on the system will always produce the same result. The

experiment reduces all states to the subset of S (H) for which g (A) is certain to take the value γ.

• An experiment is nonreductive (or of the second kind [77]) if is it not reductive. An example of a

nonreductive experiment is the determination of a particle’s momentum by bombarding it with other

particles.

• A measurement is an experiment in which g (α)
def
= 1 identically; i.e., some value for A is obtained
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but no information about its particular value is available. A measurement is trivially reductive. Note

that measurement is not a meaningless experiment: because of the Measurement Law Def. 34 dis-

cussed subsequently, the act of obtaining some value for A, observed or not, may change the state.

• An observation is an experiment using the identity function g (α)
def
= α; i.e., the value of the observ-

able A is determined precisely. A reductive observation of a non-degenerate observable reduces (or

collapses) any state Ψ to a wavefunction (pure state, ket, eigenstate, etc.) of A; i.e., Ψ 7→ |ψα〉·〈ψα|,

with Aψα = αψα.

Recall Def. 31 of A–coherent states. It is only in A–coherent states that we can regard A as having some

definite but unknown value. Otherwise there is “quantum interference” between the possible values for A

and we have to regard the observable as having all values simultaneously. The classic example of quantum

interference is the two-slit photon experiment in which the wavefunction ψ (x, y) describing the probability

of a photon hitting a point (x, y) on the target screen is not coherent with the observable corresponding to

the slit though which a photon passed. As a result, each photon particle must be regarded as passing through

both slits simultaneously.

Every reductive experiment on A collapses the prior state to a coherent state. In fact, we have the following

Definition 34. Measurement (or Observation or Projection or . . . ) Law

Let (A, g) be a reductive experiment and g−1 [γ]
def
= {α ∈ Sp (A) | g (α) = γ}. If the experiment produces

the result g (A) = γ in the prior state Ψ, then the posterior Ψγ is the A-coherent state (cf. Lem. 4)

Ψγ
def
=

1

πΨ,A (g−1 [γ])

∫
α∈g−1[γ]

(Pα ·Ψ ·Pα) dπΨ,A (α). (A.1)

Corollary 4. (i.) If a measurement is made of the observableA in state Ψ (so that the value of A is unknown

after the experiment), the state will reduce to the A–coherent state

ΨA
def
=

∫
α∈Sp(A)

(Pα ·Ψ ·Pα) dπΨ,A (α).
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(ii.) If A is non-degenerate and the experiment is reductive, the observation A = α made in state Ψ will

reduce the system to the pure A–coherent state

Ψα =
1

‖ψα‖
2 |ψα〉 · 〈ψα|

The latter example is referred to as wavefunction collapse. The Measurement Law and its consequences

cause enormous philosophical difficulties for the foundation of quantum mechanics because of the apparent

physical role of the observer: the final physical state of the system seems to depend upon what the observer

“knows”. We can ask what observer? How does he know? How does the system “know” he knows? [27]

The famous Schrödinger’s Cat paradox [77] in which a cat inside a closed box seems neither alive nor dead

until we look at it is the classic example of the still unresolved issues of this Measurement Problem.

A.4 Quantum Dynamics

Dynamics is modeled as a unitary representation U (t) of the additive group of R. In the typical case,

U (t) = e−
2π
h

√
−1Ht, where H is the time-independent Hamiltonian of the system [77, 103, 104, 110].

If no disturbance by an experiment is made on the system between its initial state Ψ0 and time t, the system

then will be in state Ψ (t) = U (t) ·Ψ0 ·U (t)H, which is the integrated form of Schrödinger’s Equation.

The function Ψ ( · ) characterizes all stochastic properties of the system as long as there is no disturbance.

Thus, in some sense, every observable A defines a physical stochastic process {A (t)}−∞<t<∞ for which

we have

µA (t)
def
= E [A (t) |Ψ] = tr (A ·Ψ (t)) .

However, even if Ψ0 is an A–coherent state, generally U (t) ·Ψ0 · U (t)H will not be one (unless A is a

conserved quantity which means it commutes with every U (t)). So we have the paradoxical situation that

the undisturbed process A (t) always has an average value but may not exhibit any particular values.
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APPENDIX B: A REVIEW OF TENSOR PRODUCTS AND TRACES
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The tensor product H1 ⊗ · · · ⊗ Hn of separable Hilbert spaces H1, H2, · · · , Hn can be defined1 [111] as

the complex Hilbert space with basis consisting of the formal expressions φ1
i1
⊗ φ2

i2
⊗ · · · ⊗ φnin , where

1 6 i1 6 dim (H1), . . ., 1 6 in 6 dim (Hn), and every
{
φki
}

16i6dim(Hk)
is a fixed basis for Hk. Thus

dim (H1 ⊗ · · · ⊗Hn) = dim (H1)× · · · × dim (Hn).

The inner product on H1 ⊗ · · · ⊗Hn is defined on basis elements by

〈
φ1
i1 ⊗ · · · ⊗ φ

n
in , φ

1
j1 ⊗ · · · ⊗ φ

n
jn

〉 def
=
〈
φ1
i1 , φ

1
j1

〉
· · ·
〈
φnin , φ

n
jn

〉
and then extended to the whole space by linearity.

It follows that this definition is basis-independent and, if every
{
φki
}

16i6dim(Hk)
is orthonormal, then so is

{
φ1
i1 ⊗ φ

2
i2 ⊗ · · · ⊗ φ

n
in

}
16i16dim(H1),··· ,16in6dim(Hn)

.

For a single Hilbert space H and for n > 0 then we define H⊗n def
=

n︷ ︸︸ ︷
H⊗ · · · ⊗H. We can also consistently

define H⊗0 def
= C, the complex scalar field.

The tensor product H1 ⊗ · · · ⊗ Hn satisfies an important universal mapping property [138]. Let K be a

complex vector space and f : H1 × · · · ×Hn → K be a function which is linear in each variable separately.

Then there is a unique linear operator ⊗f : H1 ⊗ · · · ⊗Hn → K such that

(⊗f) (ψ1 ⊗ · · · ⊗ ψn) = f (ψ1, · · · , ψn)

for all ψ1 ∈ H1, . . . , ψn ∈ Hn.

In particular, linear operators A1, . . ., An on H1, . . ., Hn define a unique linear operator A1 ⊗ · · · ⊗An on

1Defining tensor constructs on products of C∗–algebras such as the bounded linear operators on Hilbert spaces is actually much
more significant and subtle [137]. For simplicity of presentation, we purposely avoided this construction.
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H1 ⊗ · · · ⊗Hn satisfying

(A1 ⊗ · · · ⊗An) (ψ1 ⊗ · · · ⊗ ψn)
def
= (A1ψ1)⊗ · · · ⊗ (Anψn) ,

for all ψ1 ∈ H1, . . . , ψn ∈ Hn. If A1, . . ., An are bounded then clearly A1 ⊗ · · · ⊗ An is as well with

‖A1 ⊗ · · · ⊗An‖ = ‖A1‖ · · · ‖An‖.

Example 12. Suppose
{
φki | 1 6 i 6 dk

}
is a basis for Hk in which Ak has coefficient matrix

[
akij | 1 6 i, j 6 dk

]
,

for k = 1, . . . , n. Then, in basis {φi1 ⊗ · · · ⊗ φin | 1 6 i1 6 d1, · · · , 1 6 in 6 dn}, the operator A1⊗· · ·⊗

An has coefficient matrix

[
a(i1···in)(j1···jn) | 1 6 i1, j1 6 d1, · · · , 1 6 in, jn 6 dn

]
where

a(i1···in)(j1···jn) = a1
i1j1 · · · a

n
injn . (B.1)

This follows from uniqueness by verifying the universal property on basis elements then extending to the

whole space.

Definition 35. Let A be a bounded linear operator on H1 ⊗ · · · ⊗ Hn. Let 1 6 k 6 n and φ ∈ Hk be

fixed. By the Reisz Representation Theorem [111] there is a unique bounded linear operator A �k φ on

H1 ⊗ · · · ⊗ Ĥk ⊗ · · · ⊗ Hn such that for all ψ1, χ1 ∈ H1, . . . , ψk−1, χk−1 ∈ Hk−1, ψk+1, χk+1 ∈ Hk+1,

. . . , ψn, χn ∈ Hn we have

〈ψ1 ⊗ · · · ⊗ ψk−1 ⊗ ψk+1 ⊗ · · · ⊗ ψn| (A �k φ) (χ1 ⊗ · · · ⊗ χk−1 ⊗ χk+1 ⊗ · · · ⊗ χn)〉

= ψ1 ⊗ · · · ⊗ ψk−1 ⊗ φ⊗ ψk+1 ⊗ · · · ⊗ ψn

A (χ1 ⊗ · · · ⊗ χk−1 ⊗ φ⊗ χk+1 ⊗ · · · ⊗ χn) ,

where the caret ·̂ above a symbol indicates an item missing from a list; that is, φ is inserted into both kth

places prior to the application of A and the inner product. We call A �k φ a restriction of A along the kth
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dimension.

Definition 36. Let A be a trace class operator [111] on H1⊗· · ·⊗Hn and let φ1, φ2, · · · be an orthonormal

basis for Hk with 1 6 k 6 n. Then the partial trace of A along the kth dimension is

trk (A)
def
=

dim(Hk)∑
i=1

(A �k φi),

where the convergence is in the operator norm. Note that trk (A) is a bounded linear operator on H1⊗· · ·⊗

Ĥk ⊗ · · · ⊗Hn.

Remark 31. Since A is a trace class operator it can be shown that trk (A) exists and is independent of the

orthonormal basis chosen.

Example 13. For trace class operators, A1, . . . ,An, it is easy to check that

trk (A1 ⊗ · · · ⊗An) = tr (Ak) ·A1 ⊗ · · · ⊗ Âk ⊗ · · · ⊗An
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APPENDIX C: POISSON RATE FUNCTIONS
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This appendix describes various forms of functional data needed for the continous time channel model of

Sec. 4.4.3. Note that we use the Markov rate matrix / Poisson rate formulation discussed in Sec. 2.1.2.3.

As input data in the “analysis” direction Sec. 4.4.1, we are given the voltage-gated Markov rate matrix at a

fixed temperature K (V, T0), from which we need to derive both the Poisson rate function λ (V, T ) and the

structural-energy operator E (V ). This is done in Sec. C.1 for the non-voltage-gated situation. Then Sec.

C.2 adjusts the definitions to handle voltage-gating.

In the “synthesis” direction Sec. 4.4.3, we are given the structural-energy operator E (V ) from which

λ (V, T ) and the Markov rate matrix K (V, T ) must be obtained. This is done in Sec. C.3.

Finally, Sec. C.4 shows that these definitions satisfy the model constraints in Sec. 4.4.3.

For any vector µ, let D [µ] denote the diagonal matrix whose diagonal is µ and for any matrix A, diag [A]

is the column vector consisting of the diagonal entries of A.

C.1 λ (T ) and E from K (T0)

Let K (T0) be a given standard real kinetic rate matrix at a base temperature T0. Let κi (T0), i = 1, . . . ,M

denote the eigenvalues of K (T0). By this is meant that

• All κi (T0) > 0.

• Precisely one κi (T0) = 0.

• 1M ·K (T0) = 0, where 1M
def
=

M︷ ︸︸ ︷
[1, 1, · · · , 1].

• There is a unique vector π∞ (the equilibrium distribution) whose entries are all positive, which

sums to 1, and for which K (T0) · π∞ = 0.

• The detailed balance (also called reversibility) condition K (T0) · D [π∞] = D [π∞] · K (T0)T

holds.
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Fix d > 0 with dimension temperature and dimensionless Qd > 0 such that

Q
1/d
d >

(
κmax (T0)

κavg (T0)

)1/T0

,

where κmax (T0) is the largest eigenvalue and κavg (T0) is the geometric average of the non-zero eigenvalues:

κavg (T0) = det (K (T0) + π∞ · 1). Note that Hodgkin-Huxley use


T0 = 279.15◦K

d = 10◦K

Qd = 3

so that QT0/dd ≈ 2.1× 1013.

Then κmax (T0) < κavg (T0) ·QT0/dd . Choose λ0 such that

κmax (T0) < λ0 < κavg (T0) ·QT0/dd . (C.1)

Definition 37. Define a∞ to be the positive vector such that a∞ (i)2 = π∞ (i), for i = 1, . . . ,M (which

might be written informally as a∞ =
√
π∞). The energy operator is then

E
def
= D [a∞]−1

(
1

λ0
K (T0) + π∞ · 1

)
D [a∞] . (C.2)

We have

−log

(
κavg (T0)

λ0

)
<
T0

d
logQd

so that

Eavg
def
= −kBT0 log

(
κavg (T0)

λ0

)
<
kB T

2
0

d
logQd.

Since λ0 > κmax (T0) > κavg (T0), we can also define

Ei
def
= −kBT0 log

(
κi (T0)

λ0

)
,
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for i = 1, . . . ,M . Note that Eavg is the arithmetic average of the Ei. Thus

0 < Eavg <
kB T

2
0

d
logQd

and we can choose E0 > 0 such that

Eavg + E0 <
kB T

2
0

d
logQd.

Since
Eavg + E0

kB T 2
0 logQd

<
1

d

define d∗ > 0 by
1

d∗
+

Eavg + E0

kB T 2
0 logQd

=
1

d
. (C.3)

Now, for any T > 0, define the Poisson rate and eigenvalues to be

Definition 38.  λ (T )
def
= λ0Q

(T−T0)/d∗

d e−E0/kB ·(1/T−1/T0)

κi (T )
def
= λ (T ) e−Ei/kBT , for i = 1 . . . ,M.

(C.4)

C.2 λ (V, T ) and E (V ) from K (V, T0)

When the kinetic rate matrix K (V, T0) depends on a gating variable V , fix constants 0 < ρ0, ε0 < 1 and

modify Eq. C.1 and Eq. C.2 to make uniform choices as follows:

 λ0 (V ) = (1− ρ0) · κmax (V, T0) + ρ0 · κavg (V, T0) ·QT0/dd

E (V )
def
= D [a∞ (V )]−1 (K (V, T0) /λ0 + π∞ (V ) · 1) D [a∞ (V )] ,

(C.5)

where π∞ (V ) is the equilibrium distribution K (V, T0) · π∞ (V ) = 0 at gating level V and a∞ (V )
def
=√

a∞ (V ).
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Define the number

E0 (V )
def
= ε0 ·

(
kB T

2
0

d
logQd − Eavg (V )

)
,

where Eavg (V )
def
= −kBT0 log (κavg (V, T0) /λ0 (V )).

Then replace the definition Eq. C.3 by

1

d∗(V )
+
Eavg (V ) + E0 (V )

kB T 2
0 logQd

=
1

d

and those in Eq. C.4 by

 λ (V, T )
def
= λ0 (V ) Q

(T−T0)/d∗(V )
d e−E0(V )/kB ·(1/T−1/T0)

κi (V, T )
def
= λ (V, T ) e−Ei(V )/kBT , for i = 1 . . . ,M.

C.3 λ (V, T ) and K (V, T ) from E (V )

Suppose we are given the gated energy matrix E (V ) and function E0 (V ) > 0 such that

Eavg (V ) + E0 (V )

kB T 2
0 logQd

<
1

d

for every V , whereEavg (V ) is the arithmetic average of the non-zero eigenvalues of E (V ); i.e.,Eavg (V ) =

tr (E (V )) / (M − 1).

Let a∞ (V ) > 0 be the unique positive equilibrium distribution E (V ) · a∞ (V ) = 0.

Define d∗(V ) > 0 by
1

d∗(V )
+
Eavg (V ) + E0 (V )

kB T 2
0 logQd

=
1

d
.

In addition, suppose we are given λ0 (V ) > 0. Then define
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Definition 39. λ (V, T )
def
= λ0 (V ) Q

(T−T0)/d∗(V )
d e−E0(V )/kB ·(1/T−1/T0)

K (V, T )
def
= λ (V, T ) D [a∞ (V )] e−E(V )/kBT (I− π∞ (V ) · 1) D [a∞ (V )]−1 .

We now need to verify the K (V, T0) eigenvalue inequalities

κmax (V, T0) < λ0 (V ) < κavg (V, T0) ·QT0/dd . (C.6)

By diagonalizing we have κi (V, T0) = λ0 (V ) e−Ei(V )/kBT0 so

 κmax (V, T0) = λ0 (V ) e−Emin(V )/kBT0

κavg (V, T0) = λ0 (V ) e−Eavg(V )/kBT0 .

Since Emin (V ) > 0, we have e−Emin(V )/kBT0 < 1 so

κmax (V, T0) = λ0 (V ) e−Emin(V )/kBT0 < λ0 (V )

which is the first part of Eq. C.6.

Since
Eavg (V )

kB T 2
0 logQd

<
Eavg (V ) + E0 (V )

kB T 2
0 logQd

<
1

d
,

we have eEavg(V )/kB T0 < Q
T0/d
d and so

1 < e−Eavg(V )/kB T0Q
T0/d
d = κavg (V, T0)Q

T0/d
d .

Multiplying through by λ0 (V ) yields

λ0 (V ) < λ0 (V ) e−Eavg(V )/kB T0Q
T0/d
d ,
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which is the second part of Eq. C.6.

C.4 Properties of λ (T ) and κi (T )

• For temperatures T1 < T2 we have

κi (T2)

κi (T1)
= Q

(T2−T1)/d∗

d e−(Ei+E0)/kB ·(1/T2−1/T1)

= Q
(1/d∗+(Ei+E0)/(kBT1T2))·(T2−T1)
d .

When T1, T2 ≈ T0, the expression (Ei + E0) / (kBT1T2) cannot differ by much from (Eavg + E0) /
(
kBT

2
0

)
which, by definition, is 1/d− 1/d∗. Thus

κavg (T2)

κavg (T1)
≈ Q(T2−T1)/d

d

which is the well-known Qd rule-of-thumb for reaction rates [26].

• As T → 0,

λ (T )→ λ0Q
T0/d∗

d eE0/kBT0e−E0/kBT → 0

since E0 > 0. So every non-zero eigenvalue

κi (T ) = λ (T ) e−Ei/kbT → 0

hence K (T )→ 0 as T → 0. The channel is frozen into its initial state.

• As T →∞, every κi (T )→ λ (T ) · e0 = λ (T ) so K (T )→ λ (T ) (I− π∞ · 1). The conformation

distributions π (t) associated with these reaction rate matrices thus satisfy

π (t)→ π (0) · e−λ(T ) + π∞ ·
(

1− e−λ(T )
)

for large T . Since λ (T ) → ∞ as T → ∞, π (t) very rapidly transitions from its initial value π (0)
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to the equilibrium value π∞. For very large T , we thus have

π (t) ≈ π (0) · δ (t) + π∞ · (1− δ (t)) ;

that is, there is so much available thermal energy that the channel transitions from its structural energy

minimum almost instantaneously.
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APPENDIX D: PROOFS FOR THE CHANNEL MODELS
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Before proving Thm. 5, we prove a lemma which is also used in Sec. 4.4.2. Recall that, for any vector µ,

D [µ] is the diagonal matrix whose diagonal is µ and, for any matrix A, diag [A] is the column vector

consisting of the diagonal entries of A. Also, if A is a complex matrix of any order, then A|2| denotes the

real matrix of the same order whose entries are the squared moduli |a|2 of the entries a of A.

Definition 40. A transition generator P is a real (M ×M) matrix with nonnegative eigenvalues, a right

0-eigenvector [1, . . . , 1]T, and a left 0-eigenvector [φ1, . . . , φM ] for which all φi > 0.

A transition generator is irreducible if it is of rank (M − 1) and all φi > 0. It is reversible if it satisfies the

Kolmogoroff condition Pij · φi = Pji · φj , for all 1 6 i, j 6M .

For an irreducible P, the vector [φ1, . . . , φM ], normalized to satisfy φ1 + · · · + φM = 1, is unique and is

called the equilibrium (or steady-state) probability vector.

Lemma 5. Let P, E be (M ×M) matrices and φ, a be M -dimensional row vectors such that ai 6= 0 for

1 6 i 6M .

Suppose the matrices and vectors are related as


P = D

[
aH
]−1 ·E ·D

[
aH
]

φ = a|2|.

Then P is an irreducible and reversible transition generator with steady-state probability vector φ if and

only E is the matrix of an activation energy operator with resting coefficient vector a.

Proof. Note that, by the assumptions on φ and a, we have D [φ] = D
[
aH
]
·D [a] = D [a] ·D

[
aH
]
.

Also note that the Kolmogoroff condition on P can be written as D [φ] ·P = PT ·D [φ] while the detailed

balance condition on E is D [s] ·E = ET ·D [s], where si
def
= ai/a

∗
i , 1 6 i 6M .

Finally, when ai 6= 0 for 1 6 i 6 K, it is clear that P and E have the same eigenvalues since the eigenvectors

are mapped onto each other by the invertible matrix D
[
aH
]
.
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So if P is irreducible and reversible with steady-state probability vector φ then

D [a] ·D
[
aH
]
·P = PT ·D [a] ·D

[
aH
]

⇒ E = D [a]−1 ·PT ·D [a] .

By applying the hermitian transpose operator and noting that P is real by assumption, we obtain

EH = D
[
aH
]
·P ·D

[
aH
]−1

= E

and thus E is hermitian. Also, since P has positive eigenvalues except for the single eigenvalue 0 of multi-

plicity 1, the same is true of E. Moreover,

D [a] ·E = D [a] ·D
[
aH
]
·P ·D

[
aH
]−1

= φ ·P ·D
[
aH
]−1

= 0 ·D
[
aH
]−1

= 0

so a is a 0-eigenvector of E.

Finally, since we have shown E = D
[
aH
]−1 ·PT ·D

[
aH
]
, we thus have

E = D [a]−1 ·
(
D
[
aH
]−1 ·E ·D

[
aH
])T
·D [a] = D [s]−1 ·ET ·D [s]

since D [s] = D
[
aH
]−1 · D [a] from which detailed balance follows. Therefore E is the matrix of an

activation energy operator with resting coefficient vector a as claimed.

The converse is proved in similar fashion. �

Corollary 5. Let P be an irreducible and reversible (M ×M) transition generator with steady-state prob-

ability vector φ. Then there exist rank-1 matrices P1, . . . ,PM and positive real numbers µ1, . . . , µM−1
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satisfying 

P =

M−1∑
i=1

µiPi

I =

M∑
i=1

Pi

P2
i = Pi, 1 6 i 6M

Pi ·Pj = 0, 1 6 i, j 6M, i 6= j.

Moreover, PM = [1, . . . , 1]T · φ.

Proof. Define aMi
def
=
√
φi, for 1 6 i 6M . By Lem. 5, E

def
= D [aM ] ·P ·D [aM ]−1 is a real non-negative-

definite symmetric matrix of rank (M − 1). Moreover, aM is a norm-1 row eigenvector of eigenvalue 0.

Therefore, we can extend aM to an orthonormal basis a1, . . . ,aM−1,aM of row eigenvectors such that ai

has eigenvalue µi > 0 for i 6 (M − 1). Defining the rank-1 matrices Ei
def
= aT

i · ai for 1 6 i 6 M , we

have 

E =

M−1∑
i=1

µiEi

I =
M∑
i=1

Ei

E2
i = Ei, 1 6 i 6M

Ei ·Ej = 0, 1 6 i, j 6M, i 6= j.

from which the corollary follows by applying the operator D [aM ]−1 ( · ) D [aM ]. �

Proof of Thm. 5. First note that, because E is irreducible, every aEi = 〈φE |ψi〉 6= 0 so Constraint 6. holds

by definition. Also D
[
aH
E
]−1 exists and thus Π (E , T ) is well-defined.

By definition, φE satisfies φE · E = 0 so that aE · E = [0, . . . , 0] and E · aH
E = [0, . . . , 0]T. Hence

aE · e−E/kBT = aE and e−E/kBT · aH
E = aH

E . Recalling the definition φE
def
=
[
|aE1|2 , . . . , |aEM |2

]
, we

have

D
[
aH
E
]−1 · aH

E · aE ·D [aE ] = [1, . . . , 1]T · φE (D.1)
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and therefore

Π (E , T ) = I−
(
I− [1, . . . , 1]T · φE

)
· e−PE/kBT , (D.2)

where PE
def
= D

[
aH
E
]−1 ·E ·D

[
aH
E
]
.

By Lem. 5, PE is an irreducible and reversible transition generator with steady-state probabilities πEi =

|aEi|2. Since φE ·PE = 0, (D.2) reduces to

Π (E , T ) = [1, . . . , 1]T · φE + I− e−PE/kBT

= [1, . . . , 1]T · φE +

M−1∑
i=1

(
1− e−µEi/kBT

)
PEi

(D.3)

where all µEi > 0 using Cor. 5.

From the first form, we have φE ·Π (E , T ) = φE · [1, . . . , 1]T ·φE +φE −φE = φE which is Constraint 2.

From the second form, as T → 0, we have

[1, . . . , 1]T · φE +

M−1∑
i=1

(
1− e−µEi/kBT

)
PEi → PE0 +

M−1∑
i=1

PEi = I

which is Constraint 3 while as T →∞

[1, . . . , 1]T · φE +

M−1∑
i=1

(
1− e−µEi/kBT

)
PEi → [1, . . . , 1]T · φE

which is Constraint 4.

The Kolmogoroff condition holds for Π (E , T ) because, by Lem. 5, it holds for PE and obviously holds as

well for the terms [1, . . . , 1]T · φE + I. Thus Constraint 5. is satisfied.

Since [1, . . . , 1]T is a right eigenvector of PE of eigenvalue 0, the first equality in (D.3) shows [1, . . . , 1]T is

a right eigenvector of Π (E , T ) of eigenvalue 1. Let Πij (E , T ) denote the entries of Π (E , T ). Constraint 3.

implies lim inf
T→∞

Πij (E , T ) = πEi > 0 so there is a Tij such that Πij (E , T ) > 0 for all T > Tij . Defining

TE
def
= max

16i,j6M
Tij we conclude that Π (E , T ) is a valid discrete Markov transition matrix for T > TE .

Therefore Constraint 1. is satisfied. �
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APPENDIX E: PROOF OF THE MAXIMUM ENTROPY NOISE

PROPERTY FOR POPULATIONS OF QUANTUM ION CHANNELS
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E.1 The Autocovariance of a Hidden Markov Model

This section presents the general form of the results first derived (incorrectly1) by Hill & Chen [32] and

widely reproduced thereafter [33, 72].

Let

pGt1,...,tn (g1, . . . , gn) =
∑

j1,...,jn

fj1 (g1) · · · fjn (gn) πt1,...,tn (j1, . . . , jn) (E.1)

be the distribution function of a hidden Markov model G (t) with hidden Markov process I (t).

Clearly the mean µG (t) is given by

µG (t)
def
= E [G (t)] =

∑
j

µf,j πt (j),

where µf,j
def
=
∫
g fj (g) dg. We write this as

µG (t) = µf · π (t) , (E.2)

for row vector µf and column vector π (t).

Because of the Markov property, for t 6= s, we easily calculate the moments

E [G (t) G (s)] =
∑
j,i

E [G (t) G (s) | I (t) = j, I (s) = i] πt,s (j, i)

=
∑
j,i

µf,j µf,i πt,s (j, i)

which we write as

E [G (t) G (s)] = µf ·Π (t, s) · µT
f , (E.3)

where Π (t, s) is the matrix with components Πj,i (t, s)
def
= πt,s (j, i).

1Note: Hill & Chen assumed the ergodic property for Markov processes rather than proving it.
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When t = s, we have

E
[
G (t)2

]
=
∑
j

E
[
G (t)2 | I (t) = j

]
πt (j) = µ

(2)
f · π (t) , (E.4)

where µ(2)
f,j

def
=
∫
g2 fj (g) dg.

Using Eq. E.3 and Eq. E.4, we can derive the autocovariance function

RG (t, s) =


µf ·RI (t, s) · µT

f t 6= s

µ
(2)
f · π (t)−

(
µf · π (t)

)2
t = s,

where RI (t, s)
def
= Π (t, s) − π (t) · π (t)T. By calculating the discontinuity in these cases as t → s, we

can write this as

RG (t, s) = µf ·RI (t, s) · µT
f + σ2

f · π (s) δ (t− s) ,

where σ2
f is the row vector of standard deviations calculated from all the fj (g) condtional distributions.

Letting K be the Markov rate matrix, the Chapman-Kolmogoroff Equations imply, for t > s,

RG (t, s) = µf · e−(t−s)K ·RI (s) · µT
f + σ2

f · π (s) δ (t− s) , (E.5)

where RI (s)
def
= Π (s, s)− π (s) · π (s)T.

Now, when the the system is initiated in the equilibrium distribution π (0) = π∞, then RI (s) = R∞
def
=

Π∞−π∞ ·πT
∞ independent of s, where Π∞ is the diagonal matrix with diagonal π∞. SoG (t) is 2nd–order

stationary with autocovariance function

RG (t) = µf · e−|t|K ·R∞ · µT
f + σ2

f · π∞ δ (t) . (E.6)

Remark 32. The term σ2
f · π∞ δ (t) adds a white noise floor to the spectrum of G (t) caused by “sputter”

σ2
f in the conductances. That is, some channel conformations may be neither fully open nor fully closed to
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the passage of ions.

E.2 Proof of Thm. 6

We prove the single-species form of the GVZM formula Eq. 5.1. A slightly more sophisticated argument

will yield the multi-channel. Let the species have M conformations. Fix a gating level V . Let D [ψ] denote

the diagonal matrix with diagonal ψ.

LetX be a population of statistically independent ion channels in contact with a thermal bath at temperature

T and let ρ be a probability measure on X [80] representing the channel density. Extend ρ to the “neurolog-

ical measure space” X def
= {1, . . . ,M − 1} ×X by using the counting measure [78] on the first factor. Let

the suffix “(x)” indicate parameterization by x ∈ X .

Let the eigenvalues of E (x) be E0 (x) , . . . , EM−1 (x), where E0 (x) is the minimum energy value corre-

sponding to the eigenvector φE(x). From Sec. 4.4.2, Def. 17 and Sec. 4.4.3, Def. 18, we can extract the rate

matrix K (x) (cf. Sec. 2.1.2.3), in a coherence basis for E (x) in which φE(x) is the first basis element:

K (x) = λ (T ) (I−Π (E (x) , T ))

= λ (T ) J (x) ·
(
e−(E(x)−E0(x)I)/kBT −ΦE(x)

)
· J (x)−1

= λ (T ) J (x) ·U (x) · J (x)−1 ,

(E.7)

where

U (x)
def
= D

[
0, e−(E1(x)−E0(x))/kBT , . . . , e−(EM−1(x)−E0(x))/kBT

]
and ΦE(x) = |φE(x)〉 · 〈φE(x)|. We leave J (x) unspecified for now except for the defining conditions from

Sec. 4.4.2, Eq. 4.5.

Define

τi (x)
def
=

1

λ (T )


e(Ei(x)−E0(x))/kBT , i = 1, . . . ,M − 1

∞, i = 0

(E.8)
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so we can write λ (T ) U (x) = D [1/τ0 (x) , . . . , 1/τM−1 (x)].

Using Eq. E.6 (without the white noise term due to sputter), we have autocovariance

RG (x, t) = µf · e−|t|K(x) ·R∞ (x) · µT
f , (E.9)

where R∞ (x)
def
= Π∞ (x) − π∞ (x) · π∞ (x)T with Π∞ (x)

def
= D [π∞ (x)]. (Note that the conductance

means µf do not depend on x since we are assuming a single channel species.) Using Eq. E.7 and the

equation K (x) · π∞ (x) = 0, after some simplification this becomes

RG (x, t) =
(
µf · J (x)

)
·V (x) ·

(
J (x)−1 · µT

f

)
−
(
µf · π∞ (x)

)2
, (E.10)

where V (x)
def
= D

[
e−|t|/τ0(x), . . . e−|t|/τM−1(x)

]
. (Note e−|t|/τ0(x) = 1 for every t.) Since the channels are

independent with population density ρ, the total autocovariance is

RG (t) =

∫
X

RG (x, t) dρ (x). (E.11)

Now, define the partition function [105]

Z (θ)
def
=

∫
X

1

τi (x)2−θ dρ (i, x), (E.12)

where τi (x) was defined by Eq. E.8. Let θ
(
∆E

)
∈ R solve the rate equation

∫
X

log (τi (x))

τi (x)2−θ dρ (i, x) = Z (θ)

(
∆E

kBT
− log (λ (T ))

)
(E.13)

for energy parameter ∆E. It is well-known [106] that the parameterized distribution function

g
(
∆E, i, x

) def
=

1

Z (θ)

1

τi (x)2−θ =
1

Z (θ)
e−(2−θ)log(τi(x)) (E.14)
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with θ = θ
(
∆E

)
is the maximum entropy distribution function under the constraint Eq. E.15. But this

constraint is easily seen to be equivalent to the energy equation

∫
X

(Ei (x)− E0 (x)) g
(
∆E, i, x

)
dρ (i, x) = ∆E. (E.15)

Therefore: g
(
∆E, i, x

)
, as defined by Eq. E.14, is the maximum entropy distribution solving the required

energy constraint.

Now, for each x ∈ X , choose the matrix J (x) not only to satisfy defining conditions


1 · J (x) = φH

E

J (x) · φE = φ
|2|
E

from Sec. 4.4.2, Eq. 4.5 but, in addition,


µf · J (x) =

[
µf · π∞ (x) ,

√
g
(
∆E, 1, x

)
, . . .

√
g
(
∆E,M − 1, x

)]
J (x) ·

[
µf · π∞ (x) ,

√
g
(
∆E, 1, x

)
, . . .

√
g
(
∆E,M − 1, x

)]T

= µT
f .

(E.16)

Substituting Eq. E.16 into Eq. E.10 and Eq. E.11 then yields

RG (t) =

∫
X

e−|t|/τi(x)g
(
∆E, i, x

)
dρ (i, x)

∝
∫
X

e−|t|/τi(x) 1

τi (x)2−θ dρ (i, x),

(E.17)

the GVZM autocovariance function with spectral exponent θ = θ
(
∆E

)
. �

Remark 33. Equations Eq. E.8, Eq. E.14, and Eq. E.15 show the precise mechanism by which the spectral

exponent θ is determined. It is seen to arise from entropy equilibrium rather than any purported self–

similarity or dynamical system structure (Sec. 2.2.1). Its temperature– and energy–dependence also suggests

various experimental procedues to test the theory. Moreover, Thm. 6 reveals Hill & Chen (Sec. 2.2.5) to have
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been mistaken in their assertion that ion channel kinetics could not account for 1/f–type noise. We have

shown that, if channels are controlled by hidden quantum layers, then such noises may be generated by

simple mechanisms.

Remark 34. It is interesting to observe that the entire theory of energy–gated, quantum–controlled ion chan-

nels was developed simply to create sufficiently–many degrees of freedom to obtain Eq. E.16 and thus make

Hill & Chen’s classic channel autocovariance function Sec. 5.1, Eq. 5.4 look like Eq. E.17. However, having

solved the technical problem of generating 1/fθ–type noise, we expect the quantum channel model to have

applications in many areas of theoretical and applied neuroscience.
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APPENDIX F: THE PERIODOGRAM DISTRIBUTION OF PERIODIC

ARMA PROCESSES
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This appendix1 presents the background for a useful class of random processes we call ARMA(P,Q,N)

processes.

Definition 41. For this article, the single-epoch periodogram of a discrete-time signal x (n), 0 6 n 6

N − 1, is defined by

Sx (k)
def
=

2π

N
|X (k)|2 , 0 6 k 6 N − 1,

where

X (k)
def
=

N−1∑
n=0

x (n) e−i(2π/N)kn

is the DFT of x (n) [16]. The factor 2π converts the frequency unit from radians/sec to Hz.

Definition 42. A real Gaussian ARMA (P,Q,N) process is a zero-mean, stationary random process

{x (n)}∞n=−∞ satisfying
P∑
p=0

ap x (n− p) =

Q∑
q=0

bq ν (n− q), (F.1)

where a0 = b0 = 1 and {ν (n)}∞n=−∞ is an iid zero-mean, Gaussian process which is N -periodic:

ν (n+N) = ν (n), for all n. The equality in the periodicity condition is meant to be exact; i.e., there

are really only N distinct random processes ν (0) , . . . , ν (N − 1).

We note that the stationarity condition excludes transient solutions. Any stationary solution x (n) of (F.1)

must then be N–periodic as well. (The issue of existence and uniqueness of these solutions will not be

discussed here. See [56] for a discussion of the N = ∞ case). For simplicity, we always assume the

polynomials A (z) =
∑P

p=0 apz
p and B (z) =

∑Q
q=0 bqz

q have no common zeros.

Definition 43. An ARMA (P,Q,N) system is causal [56] if the polynomial A (z) defined above has no

zeros on or inside the unit circle.

Definition 44. The single-epoch periodogram of a discrete-time signal x (n), 0 6 n 6 N − 1, is defined

as

1Portions of this appendix have appeared in [2].
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Sx (k)
def
=

2π

N
|X (k)|2 , 0 6 k 6 N − 1,

where

X (k)
def
=

N−1∑
n=0

x (n) e−i(2π/N)kn

is the discrete Fourier transform (DFT) of x [16].

Theorem 10. Let x (0) , . . . , x (N − 1) be one period of a causal Gaussian ARMA (P,Q,N) process and

let Sx (k), 0 6 k 6 N − 1 be its periodogram. Then

Sx (k) = 2πσ2
ν ·
∣∣B (e−i(2πk/N)

)∣∣2∣∣A (e−i(2πk/N)
)∣∣2 · (1/2) Ξ (k) ,

where Ξ (k), 0 6 k 6 N − 1, is a sequence of χ2 (2) distributed [93] random variables which are indepen-

dent for 0 6 k, l < N/2 when k 6= l and σ2
ν is the variance of ν (n) .

Proof. By N–periodicity, the summations in (F.1) are circular convolutions [16] of length N . Standard

results on the discrete Fourier transform then imply

Sx (k) =

∣∣B (e−i(2πk/N)
)∣∣2∣∣A (e−i(2πk/N)
)∣∣2 · Sν (k) ,

where Sν (k) is the periodogram of the random period ν (0) , . . . , ν (N − 1). It is therefore sufficient to

prove

Sν (k) = πσ2
ν · Ξ (k) ,

where Ξ (k), k = 0, . . . , N − 1 is as in the theorem.
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Since ν ( · ) is real we have


Re [Sν (k)] =

N−1∑
n=0

ν (n) cos (2πk/N)

Im [Sν (k)] = −
N−1∑
n=0

ν (n) sin (2πk/N).

(F.2)

The equations 

N−1∑
n=0

cos (2πl/N) cos (2πk/N) =
N

2
(δ (k − l) + δ (k + l))

N−1∑
n=0

sin (2πl/N) sin (2πk/N) =
N

2
(δ (k − l)− δ (k + l))

N−1∑
n=0

sin (2πl/N) cos (2πk/N) = 0,

(F.3)

where k − l and k + l are computed modN , follow from the inverse DFT equations.

Since ν (0) , . . . , ν (N − 1) are independent, zero-mean Gaussians with variance σ2
ν , we have E [ν (n) ν (m)] =

σ2
νδ (n−m). Together with (F.2) and (F.3), this implies Re [Sν (k)] and Im [Sν (k)] are uncorrelated, hence

independent, Gaussians with variance Nσ2
ν/2. Moreover, the same reasoning shows that all Re [Sν (k)] are

independent of all Im [Sν (l)] and that the pairs Re [Sν (k)], Re [Sν (l)] and Im [Sν (k)], Im [Sν (l)] are

independent for 0 6 k, l < N/2 when k 6= l.

Then, by definition of the χ2 (2) distribution [93],

Sν (k) =
2π

N

(
Re [Sν (k)]2 + Im [Sν (k)]2

)
∼ πσ2

ν · χ2 (2)

with the independence results following from the previous paragraph.

�
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APPENDIX G: SYMBOLS AND CONVENTIONS
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• “def
= ” means “equal by definition” and “ def⇐⇒” means “logically equivalent by definition.”

• The symbol “⊆” will be used for subset containment (rather than “⊂”). The symbol “\” will denote

set difference.

• For a function f : X → Y and E ⊆ Y , f−1 [E]
def
= {x ∈ X | f (x) ∈ E}.

• χE (x) denotes the characterstic or indicator function of the set E: χE (x) = 1, if x ∈ E, while

χE (x) = 0 otherwise.

• The 7→ arrow abbreviates “maps to.”

• Function composition may be made explicit using the symbol ◦.

• Non-italic superscript ( · )T denotes the matrix transpose without complex conjugation.

• Unless otherwise indicated, the scalar field is the complex numbers C.

• N are the non-negative integers.

• ℵ0 is the smallest infinite cardinal; i.e., cardinality of N.

• H denotes a general Hilbert space and H⊗n def
=

n︷ ︸︸ ︷
H⊗ · · · ⊗H.

• B (H) are the bounded linear operators on H, T (H) ⊆ B (H) are the trace class operators, and

S (H) ⊆ T (H) are the states. IH is the identity operator on H.

• ( · )∗ is complex conjugation applied to scalars, vectors, or matrices, |z| =
√
z · z∗ is absolute value,

and sgn (z)
def
= z∗/|z| is the complex sign function.

• ( · )H is the hermitian transpose (( · )∗)T.

• If A is a complex matrix of any order, then A|2| denotes the real matrix of the same order whose

entries are the squared moduli |a|2 of the entries a of A. (cf. Thm. 3 for the use of this operation.)

• IM is the (M ×M) identity matrix or operator with the subscript omitted if it is clear from context.

• det( · ) is the determinant.
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• D [µ] is the diagonal matrix whose diagonal is the (row or column) vector µ. For any square matrix

A, diag [A] is the column vector of the diagonal elements of A. Thus diag [D [µ]] = µ.

• tr ( · ) is the trace operator on square matrices or trace class operators.

• For any M > 1, 1M is the row vector 1M
def
=

M︷ ︸︸ ︷
[1, 1, · · · , 1].

• Sp (A) is the spectrum of the normal operatorA: Sp (A)
def
= {α ∈ C | (α · IH −A) has no inverse}.

• Unless otherwise indicated, “vector” means “column vector.” Note this is the dual of the most com-

mon convention for Markov processes so certain expressions such as the Chapman-Kolmogoroff

Equations ( [79]) may appear transposed.

• δ (t) is the delta function.

• E [ · ] is the expected-value operator, Var [ · ] is variance, and Prob ( · ) will be used informally for “the

probability of”.

• The caret ·̂ above a symbol indicates a item removed from a list. Thus w, x, ŷ, z is the list w, x, z.

The empty-set symbol ∅ also denotes an empty list.

• The symbols “i, j” will always be used as integer indices and never to denote the imaginary unit
√
−1.

• When required, Hilbert spaces will be assumed to be separable and all bounded normal operators will

be assumed to be compact [109] so that an orthonormal basis of eigenvectors and a countable spectral

decomposition exist.

• h is Planck’s constant with units Joule-sec.

• kB is Boltzmann’s constant with units Joule/◦K.

• η is a dimensionless Markov transition efficiency.

• Italic “T ” denotes absolute temperature with units ◦K.
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[80] A. Rényi, Foundations of Probability. San Francisco: Holden-Day, 1970.

[81] R. J. Elliot, L. Aggoun, and J. B. Moore, Hidden Markov Models: Estimation and Control. New

York: Springer-Verlag, 1995.

[82] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, Rev. and enl. ed. Amsterdam ;

New York: North-Holland, 1992.

[83] R. Feynman, Negative probabilities. London: Routledge & Kegan Paul, 1987, pp. 235–248.

[84] B. Mandelbrot, “Some noises with 1/f spectrum: A bridge between direct current and white noise,”

IEEE Trans. Information Th., no. 2, pp. 289–298, April 1967.

[85] D. A. Bell, “A survey of 1/f noise in electrical conductors,” J. Phys. C.: Solid State Phys., vol. 13, pp.

4425–4437, 1980.

[86] P. Dutta and P. M. Horn, “Low-frequency fluctations in solids: 1/f noise,” Rev. Modern Phys., vol. 53,

no. 3, pp. 497–516, July 1981.

[87] M. S. Keshner, “1/f noise,” Proc. IEEE, vol. 70, no. 3, pp. 212–218, March 1982.

[88] B. Mandelbrot, Multifractals and 1/f Noise. New York: Springer-Verlag, 1999.

150



[89] D. T. Gillepsie, “The mathematics of Brownian motion and Johnson noise,” Am. J. of Phys., vol. 64,

no. 3, pp. 225–240, March 1996.

[90] J. Bernamont, “Fluctuations in the resistance of thin films,” Proc. Phys. Soc. Lond., vol. 49, p. 138,

1937.

[91] K. Linkenhaer-Hansen, V. V. Nikouline, J. M. Palva, and R. Ilmoniemi, “Long-range temporal corre-

lations and scaling behavior in human brain oscillations,” J. of Neuroscience, no. 4, pp. 1370–1377,

February 2001.

[92] A. P. Liavas, G. V. Moustakides, G. Henning, E. Psarakis, and P. Husar, “A periodogram-based

method for the detection of steady-state visually evoked potentials,” IEEE Trans. Biomed. Eng.,

vol. 45, no. 2, pp. 242–248, Feb. 1998.

[93] A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory of Statistics, 3rd ed. New

York: McGraw-Hill, 1974.
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