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ABSTRACT 

In NiTi, a reversible thermoelastic martensitic transformation can be induced by 

temperature or stress between a cubic (B2) austenite phase and a monoclinic (B19’) martensite 

phase. Ni-rich compositions of the binary alloy have cubic structure at room temperature 

(requiring stress or cooling to transform to the monoclinic phase), while Ti-rich binary 

compositions are monoclinic at room temperature (requiring heating to transform to the cubic 

phase). The stress-induced transformation results in the superelastic effect, while the thermally 

induced transformation is associated with strain recovery that results in the shape memory effect. 

Ternary elemental additions such as Fe can additionally introduce an intermediate rhombohedral 

(R) phase between the cubic and monoclinic phase transformation. 

This work was initiated with the broad objective of connecting the macroscopic behavior in 

shape memory alloys with microstructural observations from transmission electron microscopy 

(TEM). Specifically, the goals were to examine (i) the effect of mechanical cycling and plastic 

deformation in superelastic NiTi; (ii) the effect of thermal cycling during loading in shape 

memory NiTi; (iii) the distribution of twins in martensitic NiTi-TiC composites; and (iv) the R-

phase in NiTiFe. 

Both in-situ and ex-situ lift out focused ion beam (FIB) and electropolishing techniques 

were employed to prepare samples of the shape memory alloy for TEM characterization. The Ni 

rich NiTi samples were fully austenitic in the undeformed state. The introduction of plastic 

deformation (8% and 14% in the samples investigated) resulted in the stabilization of martensite 

in the unloaded state. An interlaying morphology of the austenite and martensite was observed as 

the martensite needles tend to orient themselves in preferred orientations. The aforementioned 
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observations were more noticeable in mechanically cycled samples.  The observed dislocations 

in mechanically cycled samples appear to be shielded from the external applied stress via 

mismatch accommodation since they are not associated with unrecoverable strain after a load-

unload cycle. On application of stress, the austenite transforms to martensite and is expected to 

accommodate the stress and strain mismatch through preferential transformation, variant 

selection, reorientation and coalescence. The stabilized martensite (i.e., martensite that exists in 

the unloaded state) is expected to accommodate the mismatch through variant reorientation and 

coalescence. On thermally cycling a martensitic NiTi sample under load through the phase 

transformation, significant variant coalescence, variant reorientation and preferred variant 

selection was observed. This was attributed to the internal stresses generated as a result of the 

thermal cycling. A martensitic NiTi-TiC composite was also characterized and the interface 

between the matrix and the inclusion was free of twins while significant twins were observed at a 

distance away from the matrix-inclusion interface. Incorporating a cold stage, diffraction patterns 

from NiTiFe samples were obtained at temperatures as low as -160 ºC.  

Overall, this work provided insight into deformation phenomena in shape memory materials 

that have implications for engineering applications (e.g., cyclic performance of actuators, 

engineering life of superelastic components, stiffer shape memory composites and low-hysteresis 

R-phase based actuators).  This work was supported in part by an NSF CAREER award (DMR 

0239512).  
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CHAPTER ONE: INTRODUCTION 

1.1 Motivation 

 

The work aims to use transmission electron microscopy (TEM) for the study of selected 

phenomena in shape memory alloys. One of the objectives is to correlate the macroscopic 

behavior and properties of NiTi alloys with microstructural features observed by TEM. 

Specifically, the effect of mechanical cycling and cold work on superelasticity, and the effect of 

thermal cycling on the shape memory effect will be assessed. Furthermore, the distribution of 

twins in martensitic NiTi-TiC composites will be examined. Another aspect of this investigation 

will be the R-phase transformation in NiTiFe shape memory alloys. Overall, the goal is to 

provide insight into deformation phenomena in these materials that have implications for 

engineering applications (e.g., cyclic performance of actuators, engineering life of superelastic 

components and low-hysteresis R-phase based actuators).   

 

1.2 Introduction to Shape Memory Alloys 

 

Shape memory alloys have the interesting ability to “remember” their original size and 

shape, at a characteristic transformation temperature. Shape memory alloys are fascinating 

materials characterized by the shape memory effect and superelasticity, which ordinary metals 

and alloys do not posses. The shape memory effect was first observed in samples of gold-

cadmium in 1932 and 1951, and in brass (copper-zinc) in 1938. However, it was in 1962 that 

William J. Buehler and co-workers at the Naval Ordnance Laboratory (NOL) discovered that 
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NiTi showed the shape memory effect [Srinivasan & McFarland 2001]. They found that an alloy 

consisting of equal quantities of nickel and titanium atoms exhibited the transformation that 

leads to the shape memory effect. Buehler named it NiTiNOL to include the acronym of the 

name of his laboratory. 

 

Both the shape memory effect and superelasticity are closely related to the martensitic 

transformation. The martensitic transformation is a diffusionless phase transformation in solids, 

in which the atoms move cooperatively, and often by a shear-like mechanism. Usually in NiTi, 

the parent phase (high temperature phase) is cubic, and the martensite (low temperature phase) is 

monoclinic. Many variants of martensite can be formed from the parent phase. In NiTi, there are 

24 different ways of producing martensite from austenite as a result of the symmetric CsCl 

structure having 6 equivalent phase diagonal planes (6 {110} planes, which become basal planes 

for the martensite). Each of these planes can shift in one of two directions and can distort shear 

in one of two directions, 6 x 2 x 2 = 24 [Funakubo 1987]. 

 

1.2.1 Shape Memory Effect 

 

The shape memory effect (SME) is the ability of an alloy to remember its pre-deformation 

shape when it is heated from some relatively low temperature. All the accumulated strain is 

recovered during this phase transformation, and the recovery can take place against large forces 

[Funakubo 1987, Uchino 1998, Vaidyanathan 2002].  The shape memory effect is a phenomenon 

in which a material or specimen recovers its previous shape when heated above a certain 
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temperature. The specimen can be easily deformed below As (austenite start temperature) in the 

martensite phase (Figure 1). When it is heated, the martensite to austenite transformation begins 

at As (austenitic start temperature) and finishes at Af (austenitic finish temperature), where it is 

completely transformed to austenite. Upon cooling, the reverse transformation back to martensite 

takes place at Ms (martensitic start temperature) and at Mf (martensitic finish temperature), all the 

austenite is completely transformed back to martensite [Buehler 1967]. The principle of SME is 

shown in Figure 2. 

 

Figure 1: Transformation temperatures during the shape memory effect 
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Figure 2: Principle of the shape memory effect 

The shape memory effect can be of two types, namely, the one-way shape memory effect or 

the two-way shape memory effect. If the alloy remembers only its high-temperature shape, it is 

called the one-way shape memory effect. If in addition to the high-temperature shape the alloy 

remembers its low-temperature shape (deformed shape), it is called the two-way shape memory 

effect. The two way shape memory effect is achieved by “biasing” or “training” the shape 

memory alloy, wherein it is cycled several times between its high-temperature and low- 

temperature phases. 

One of the reasons for it to remember its shape is that upon heavy deformation, dislocations 

are introduced so as to stabilize the configuration of the martensite phase. These dislocations 

exist even in the parent phase after the reverse transformation upon heating and the stress field 

around them induces particular habit plane variants upon cooling [Otsuka & Wayman 1998]. 
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1.2.2 Pseudoelasticity, Superelasticity and Rubber-like behavior 

 

When elastic deformation recovers just by unloading at a constant temperature (i.e., the 

stress-strain curve is characterized by a closed loop) it is called pseudoelasticity. It is a generic 

term, which encompasses both superelastic and rubber-like behavior. When a closed loop 

originates from a stress-induced transformation upon loading and the reverse transformation 

upon unloading, it is called superelasticity. If it occurs by the reversible movement of twin 

boundaries in the martensite state, it is called rubber-like behavior. 

 

 

Figure 3: Principle of pseudoelasticity  

Pseudoelasticity occurs in shape memory alloys when the alloy is completely composed of 

austenite (temperature greater than Af and below Md, the martensite desist temperature). Unlike 

the shape memory effect, pseudoelasticity occurs without a change in temperature. The load on 

the shape memory alloy is increased until the austenite is transformed to martensite simply due 

to the loading. The loading is absorbed by the martensite, but as soon as the loading is decreased, 
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the martensite begins to transform back to austenite since the temperature of the specimen is still 

above Af and the specimen springs back to its original shape. This effect is outlined in Figure 3. 

 

1.3 Applications 

 

Shape memory alloys have unique properties, which lend themselves to a variety of 

applications. CuZnAl and NiTi are the two alloys that are mostly used for practical SMA 

applications. NiTi is used in applications where operations are repeated many times such as 

electric switches and actuators and in applications that require high reliability. 

 

Pipe Couplings   

The one-way shape memory phenomenon is being made use of in developing pipe 

couplings. A ternary NiTiFe alloy is used, since any binary alloy with low Ms is essentially Ni-

rich and unstable as stress relief heat treatments after machining can cause the Ms to shift. Fe is 

used to substitute Ni to depress Ms. This results in materials with relatively wide ranges of 

melting temperatures and processing windows [Funakubo 1987]. The couplings are established 

at room temperature and are in the austenite phase. Their inner diameter is slightly smaller than 

the outer diameter of the pipe. These couplings are expanded after putting them in liquid nitrogen 

when the austenite phase changes to the martensite phase. After putting the coupling in place to 

join the pipe, the coupling is heated to room temperature and an excellent joint is formed 

between the pipe and the coupling. These couplings are used in the plumbing of atomic 
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submarines and warships as well as maintenance and repair of pipes (with diameters as large as 

150 mm) laid on the ocean floor to transport oil inland from oil fields. 

 

Fasteners and Connectors 

Fasteners and connectors are used in place of rivets and bolts when the far side of the 

fastened objects cannot be accessed, like in mid-air structures. Here, the original fastener is in the 

austenite state. It is dipped in liquid nitrogen to straighten. It is then inserted into the hole and 

actuates as it gets back to room temperature and is installed tightly. Connectors in electrical 

appliances also follow the same principle. 

 

Actuators 

Shape memory actuators sense a change in temperature and under go a phase change at a 

particular temperature to deliver a corrective force and displacement [Otsuka & Wayman 1998]. 

Thermal actuators are used to protect filters, which are used for water filtration as they can get 

damaged if they are exposed to hot water. When hot water flows, the SMA spring is heated, 

overcoming the bias spring force and closing the valve for filter protection.   

The cooling system in diesel engines employs an electrically driven fan, which is turned off 

and on as required to maintain a specified system temperature. Thermally operated electrical 

switches must operate reliably while subjected to strong vibrations. The bimetal-operated 

switches used for this application suffer from chatter due to their low contact force and short 

stroke. These conditions have been completely corrected by the use of high contact force SMA 

switches.  
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Damping 

Shape memory alloys have good damping capacity both in the austenite state because of 

stress induced martensite transformation, and in the martensite state because of stress-induced 

martensite variant reorientation. Recently, attempts were being made to explore the feasibility of 

these materials for seismic protection [Liu et al. 1999]. 

 

Medical applications  

When SMAs are applied in the medical field, they must be capable of fulfilling 

requirements relating not only to mechanical reliability but also to chemical reliability (in-vivo 

degradation, decomposition, dissolution, corrosion, etc.) and biological reliability 

(biocompatibility, toxicity, carcinogenicity, antithrombogenicity, antigenicity, etc.) [Funakubo 

1987]. Since biochemical stability is an important factor when SMAs are applied in medical 

fields, all applications are currently limited to NiTi. 

SMAs are used in orthodontic treatments for malocclusions, impact canines and other 

problems where the superelastic characteristics of NiTi are exploited. NiTi is used for artificial 

joints for femoral heads and sockets. The SMAs are used as blood clot filters that when inserted 

into the body, open up at body temperature to arrest clots. They are used for bendable surgical 

tools and in implants such as stents, joints, clamps etc. Furthermore, they are used as eyeglass 

frames that recover their original shape when accidentally bent out of shape. 
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1.4 Introduction to Transmission Electron Microscopy 

 

The transmission electron microscope has become the premier tool for microstructural 

characterization of materials that use a beam of highly energetic electrons to examine objects on 

a very fine scale [Fultz & Howe 2001]. This examination can yield the following information:  

 

i) Topography: The surface features of the specimen, its texture; where there is relation  

             between these features and material properties (hardness, reflectivity, etc.) 

 

ii) Morphology: The shape and size of the particles and grains; direct relation between  

            the structure and material properties (ductility, strength, reactivity, etc.) 

 

iii) Composition: The elements and compounds that the specimen is composed of and  

            relative amounts of them; direct relation to materials properties (melting point,  

            reactivity, hardness, etc.) 

 

iv) Crystallographic information: The atomic arrangement in the specimen; which again  

            relates to the material properties (conductivity, electrical properties, strength, etc.) 
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1.4.1 History of TEM 

 

The resolution of light microscopes is limited by the physics of light to 0.2 micrometers. In 

the early 1930s, this theoretical limit had been reached and there was a scientific desire to study 

fine details of the interior structures of organic cells (nucleus, mitochondria, etc.). This required a 

resolution better than that of a light microscope. The transmission electron microscope was the 

first type of electron microscope to be developed. It is similar to the light transmission 

microscope except that a focused beam of electrons is used instead of light to "see through" the 

specimen.  

Ernst Ruska’s first scientific work (1928-1929) was concerned with the mathematical and 

experimental proof of Busch's theory on the effect of a magnetic field of a coil of wire through 

which an electric current is passed and which is then used as an electron lens. During the course 

of this work, he recognized that the focal length of the electrons could be shortened by use of an 

iron cap. From this discovery the polschuh lens was developed, a lens that has been used since 

then in all magnetic high-resolution electron microscopes. Further work, conducted together with 

Max Knoll, led to the first construction of an electron microscope in 1931 in Germany.  
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1.4.2 Parts of an Electron Microscope 

 

FEG gun 

Condenser lens 

Selected area aperture 

Objective lens 

Sample holder stage (goniometer) 

CCD camera

Figure 4: Parts of a typical TEM 

  

FEG (Field Emission Gun): The FEG gun has a very fine tungsten tip with a tip radius lower 

than 100 nm. A first anode is positively charged by several kV with respect to the tip. This is 

called the “extraction voltage” since it generates the intense electric field-extracting electrons by 

enabling them to tunnel out of the tip. Increasing the extraction voltage when you first switch on 

has to be done slowly, so the mechanical shock doesn’t fracture the tip. This is the only practical 

step you have to carry out to run an FEG, and it can easily be computer-controlled. (i) Anode 1 

provides the extraction voltage to pull electrons out of the tip. (ii) Anode 2 accelerates the 
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electrons to 100 kV or more. The electrons are accelerated though the applied potential by the 

second anode. The combined fields of the anodes and the Wehnelt cylinder between the anodes 

act like a more refined electrostatic lens to produce a crossover. This lens controls the effective 

source size and position, but it isn’t very flexible. FEGs can be, depending on the type, operated 

at 300 K to 1700 K. By the use of apertures and lens systems, these electrons are “channeled” so 

that they can be utilized in illuminating the specimen.  

 

Condenser Lens: The function of the condenser lens is to focus the electron beam emerging 

from the gun onto the specimen to permit optimal illuminating conditions for visualizing and 

recording the image. This depends upon the condenser’s focal length (i.e., the distance from the 

center of the lens or lens aperture to the point of convergence of the rays at cross-over, for a 

source at infinity). The condenser lens of the electron microscope is a relatively weak lens 

having a focal length of the order of a few centimeters that can be adjusted over a considerable 

range. The position of the condenser lens is outlined in Figure 4. The condenser aperture of the 

condenser diaphragm is in the front-focal plane conjugate to the diffraction plane of the 

specimen. 

 

Objective Aperture: The objective lens forms the initial enlarged image of the illuminated 

portion of the specimen in a plane that is suitable for further enlargement by the projector lens. 

The objective magnetic lens is the most critical component of the microscope. In the construction 

of the microscope one must consider the following criteria: 

i) To obtain a high magnification at the given image distance, which is fixed by the 

length of the column connecting the objective lens with the projector lens, the 
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specimen must be situated close to the focal plane of the objective. This is made 

possible by constructing a symmetrical lens so that the specimen can be positioned in 

the center of it. In most cases, the initial magnification provided by the objective lens 

is in the range of 100X. 

ii) The focal length should be as short as practical (1-5 mm) to ensure that the chromatic 

and spherical aberration is minimal. 

iii)  A minimum clearance must be provided for inserting the specimen and position a 

physical aperture close to the objective lens. 

iv) Provisions must usually be made for inserting electrical or magnetic deflection and 

stigmation devices in, or close to the objective for correcting minute asymmetries in 

the lens field.  

An objective aperture is used in the back focal plane (it is also called the diffraction plane 

 as a diffraction pattern is formed there) to select one or more Bragg reflections and to form 

magnified images of the sample only with contributions from Bragg reflections within this 

aperture. 
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Sample Holder (Goniometer):  

 

 

Figure 5: Double tilt sample holder 

 

A double tilt sample holder is shown in Figure 5. A goniometer can tilt the specimen with 

high precision in any desired direction to + 40°. Crystalline samples have to be tilted in the 

goniometer for: 

i) observation of lattice fringes and crystal structures 

ii) observation of diffraction contrast of lattice defects with distinct Bragg reflections or 

known orientations 
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iii) determination of the Burgers vector of lattice defects 

iv) determination of crystal orientation by electron diffraction 

 

Selected Area Diffraction: The diffraction pattern is always present in the column, and one 

needs to set the lenses properly to project the diffraction pattern onto the screen. Electrons that 

are diffracted by the crystalline planes of the sample satisfying the Bragg condition, as well as 

undiffracted (transmitted) electrons, are brought into focus by the objective lens in the plane of 

the objective aperture (known as the back focal plane). The diffraction pattern in the back focal 

plane arises because of the image formation on the image plane. In order to project the 

diffraction pattern on the TEM screen, the intermediate lens is focused on the back focal plane. 

 

CCD (Charged Couple Device) Camera: For digital image processing and for the electron 

microscope alignment, it is of interest to record two-dimensional arrays of pixels directly, 

avoiding the dark-room work required for photographic emulsions or the read-out for imaging 

plates. For the camera system a fluorescent material like ZnS is used on a viewing screen. For 

using a CCD camera in a TEM, light has to be generated by a scintillator material like Ce-doped 

yttrium-aluminum garnet (YAG). The photons are transferred by a fiber optics system on the 

pixels of the CCD array. A CCD imaging system used here consists of an array of 10242 silicon 

based photodiodes (pixels), each 24x24 µm2.   
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1.4.3 Techniques in TEM 

 

Electron microscopes use a focused beam of electrons instead of light (light microscopes) to 

"image" the specimen and gain information as to its structure and composition. Electrons are 

generated by a process known as thermionic or by field emission. They are then accelerated by 

an electric field and focused by electrical and magnetic fields on to the sample.   

A crystalline material interacts with the electron beam mostly by diffraction rather than 

absorption. If the planes of atoms in a crystal are aligned at certain angles to the electron beam, 

the beam is transmitted; while at other angles, the beam is diffracted, sending electrons in 

another direction. In the TEM, the specimen holder allows the user to tilt the specimen to certain 

angles in order to establish the desired diffraction conditions; while an aperture placed below the 

specimen allows the user to select electrons diffracted in a particular direction. The resulting 

image shows diffraction contrast, which highlights faults in the crystal structure clearly. Faults in 

crystals affect both the mechanical and electronic properties of materials, so understanding how 

they behave gives powerful insight. Some modes a TEM can be operated  in are discussed below. 

 

16 



1.4.3.1 Conventional Imaging (Bright Field and Dark Field TEM) 

                                      
(a) (b) 

                       

Figure 6: (a) The bright field imaging technique and (b) the dark field imaging technique 

When the aperture is positioned to pass only transmitted (undiffracted) electrons, a bright-

field (BF) image is formed, when the aperture is positioned to pass only some diffracted 

electrons, a dark-field (DF) image is formed [Fultz & Howe 2001]. In conventional studies of 

crystalline materials, most of the features of the image form from “diffraction contrast”. 

Diffraction contrast is the variation of the intensity of electron diffraction across the specimen, 

useful in making images of defects such as dislocations, interfaces and second phase particles. 

Diffraction contrast is observed by introducing an objective aperture in the beam. If the objective 

aperture is removed then the diffracted intensity recombines with the transmitted intensity at the 

viewing screen. This recombination suppresses the observed diffraction contrast. Regions that 

are diffracting through the objective aperture appear bright in DF, dark in BF. Regions that are 

not diffracting are dark in DF, bright in BF. The beam orientations in both BF and DF modes are 

shown in Figure 6. 
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1.4.3.2 Electron Diffraction (SAD) 

 

                                  

Figure 7: Position of the lenses for the SAD technique 

 

For taking an SAD pattern the intermediate lens is focused on the back focal plane of the 

objective lens. Here, the objective aperture is removed and the intermediate aperture passes only 

electrons from a selected region of the sample as shown in Figure 7. 
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1.4.3.3 Phase-Contrast Imaging (High Resolution TEM, HRTEM) 

 

An atomic resolution image is formed by the "phase contrast" technique, which exploits the 

differences in phase among the various electron beams scattered by the sample. A large objective 

lens aperture (or no aperture) allows the transmitted beam and at least four diffracted beams to 

form an image where the phase contrast is partially transformed to an amplitude contrast by 

defocusing. High-resolution images are most useful for identifying individual defects in crystals, 

and for studying atomic arrangements at interfaces. It is capable of determining the arrangement 

of atoms at solid-solid interfaces such as grain boundaries and inter-phase boundaries. 

 

1.4.3.4 Energy-Dispersive X-ray Spectroscopy (EDS) 

 

Highly energetic electrons that impact the sample yield a variety of by-products, one being 

X-rays. Some X-rays have element characteristic energies/wavelengths and can be detected using 

a solid-state energy dispersive spectrometer (EDS) detector [Fultz & Howe 2001]. An X-ray 

spectrum is acquired from small regions of the specimen illuminated with a focused electron 

beam. Characteristic X-rays from each element are used to determine the concentration of 

different elements in the specimen. 
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1.4.3.5 Electron Energy-Loss Spectroscopy (EELS) 

 

The electrons impinging on the sample can lose energy by a variety of mechanisms. These 

losses can reveal the composition of the sample in TEM. Plasmon losses are a frequent cause of 

energy loss. Plasmons are collective excitations of the electron gas in the material and are 

typically several eV in magnitude. Phonon losses can also occur, which are much smaller. 

Therefore the energy spread of the monoenergetic beam must be particularly small to detect such 

losses. Phonons are quantized sound waves within the solid. In TEM, the losses predominantly 

occur in the bulk of the sample, as the beam travels through the thin specimen to the EELS 

detector on the other side. 

1.5 Introduction to the Focused Ion Beam Microscope (FIB) 

 

Figure 8: Focused ion beam microscope 
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The working principle of a FIB is much like the SEM (Scanning Electron Microscope). The 

FIB is shown in Figure 8. The only difference being FIB uses a focused beam of gallium ions 

while SEM uses a beam of electrons. The FIB has a Liquid Metal Ion Source (LMIS) and a  

reservoir of gallium that is in contact with a sharp tungsten needle [Giannuzzi & Stevie 1999]. 

The Ga wets the needle and flows to the W tip. A high extraction field (> 108 V/cm) is used to 

pull the liquid Ga into a sharp cone whose radius is 5-10 nm. Ions are emitted because of field 

ionization and post ionization and are accelerated down the FIB column. 

        The two advantages of using Ga are: 

i) Ga has a low melting point and hence is liquid at room temperature 

ii) Ga ions can be focused to a very fine probe size (<10 nm in diameter) [Giannuzzi & 

Stevie 1999] 

By controlling the strength of the electrostatic lenses and by adjusting the aperture sizes, the 

probe current density can be altered from tens of pA to several nA, corresponding to a beam 

diameter of 5 nm to 0.5 µm. 

 

1.5.1 FIB Technique 

 

In this technique, a bulk sample is inserted directly into the FIB chamber and a specimen is 

prepared from the sample surface. A protective Pt layer is deposited and trenches are milled on 

either side of the deposited Pt layer. The sputtering mechanism may also implant some Ga ions 

in the sample. Following this, the specimen is thinned down to the extent that it is electron beam 
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transparent. It is lifted out with the help of a needle that utilizes electrostatic force. The final 

sample is placed on a carbon film grid for TEM studies. 

 

1.6 Organization   

 

The work in this thesis is organized as follows. Chapter 2 presents a literature review. 

Chapter 3 discusses the samples used and sample preparation techniques. Chapter 4 discusses the 

influence of cycling and plastic deformation in NiTi. It presents discussion on both, superelastic 

and shapememory NiTi. Chapter 5 presents results and discussion on NiTi-TiC composites. 

Chapter 6 discusses the R-Phase in NiTi, including results and discussion. Finally, Chapter 7 

presents the conclusions. 
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CHAPTER TWO: LITERATURE REVIEW 

             

2.1 Cycling of NiTi alloys  

 

It is known that NiTi SMAs undergo a thermoelastic martensitic transformation from cubic 

B2, the austenite, to monoclinic B19’, the martensite, upon cooling. The martensite plates are 

self-accommodated forming a triangular morphology. The internal defects of the B19’ martensite 

reported so far are <011> type ΙΙ, {11-1} type Ι, {111} type Ι, (011) type Ι, (100) compound and 

(001) compound twins [Xie et al. 1998]. The details are listed in Table 1. Following the formal 

crystallographic theory of twinning the nomenclature that we follow for twinning is  

K1 is the twinning plane, or the first undistorted plane 

K2 is the second undistorted plane 

η1 is the shear direction 

η2 is the direction defined by the intersection of the plane of shear with K2

i) A twin is of the first kind when K1 is a rational plane and η2 a rational direction.  

ii) A twin is of the second kind when K2 is a rational plane and η1 a rational direction. 

iii) A compound twin is formed when all four elements K1, K2, η1 and η2 are rational. 
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Table 1: Twinning modes observed in NiTi B19’ martensite 

 

Twinning Mode K1 η1 K2 η2 Twinning 

shear strain 

Theoretical 

solution 

Twinning mechanism 

{11-1} typeΙ (11-1) [0.5404 0.45957 1] (0.24695 0.5061 1) [-2-21] 0.3096 Yes Lattice invariant shear. 

Variant accommodation or 

deformation twinning 

{111} type I (111) [-1.5117 0.5117 1] (-0.66875 0.3375 1) [211] 0.1422 No Reported in martensite after 

tension. Not observed in 

undeformed martensite 

(011) type I (011) [1.5727 1 -1] (0.7205 1 -1) [011] 0.2804 Yes Lattice invariant shear 

<011> type II (0.7205 1 -1) [011] (011) [1.5727 1 1] 0.2804 Yes Lattice invariant shear 

(100) compound (100) [001] (001) [100] 0.2385 No Deformation or variant 

accommodation twinning 

(001) compound (001) [100] (100) [001]    

 

 

Under monotonic tension, within the stress plateau of the stress-strain curve, the 

deformation of martensite in NiTi SMAs may occur by  

i) Stress-induced growth of the most favorably oriented martensite variants 

ii) Stress-induced reorientation of martensite 

iii) Stress-induced twin boundary migration within a martensite variant 

 

Under tension, a stress plateau occurs at about 1% strain extending to about 6% strain. 

While under compression, the specimen quickly strain hardens and no stress-plateau is observed. 
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It indicates that the martensite reorientation process takes place easily under tension than under 

compression [Xie et al. 1998]. This phenomenon is seen in the stress-strain curve in Figure 9. 

 

Figure 9: Stress strain curves of NiTi SMA under monotonic tension and compression 

Work on cyclic deformation and fatigue of polycrystalline NiTi shape memory alloys where 

both low-cycle and high-cycle fatigue was studied shows that in the low-cycle regime the 

transformation stress-strain response evolves as a function of the first 15-20 applied loading 

cycles. This work postulated that the evolution of the stress-strain response in NiTi could be 

attributed to dislocation activity. Years later, it was postulated that the cyclic response of NiTi 

depends on heat treatment, material composition and testing temperature. From extensive studies 

of the cyclic pseudoelastic response of NiTi it was concluded that degradation of the 

pseudoelastic effect occurs as a result of mechanisms operating during the stress-induced 

transformation rather than during elastic loading. Dislocation activity was not explicitly observed 
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by electron microscopy, but rather inferred from experimental results and optical microscopy 

[Xie et al. 1998]. 

 

2.1.1 Influence of Precipitates and Texture on Cycling               

   

Ti3Ni4 precipitates in NiTi alloys give superior fatigue resistance. Some mechanical cycling 

experiments revealed that compressive cyclic degradation resistance is strongly dependent on 

crystallographic orientation. Under compression, orientations approaching the [100] pole of the 

stereographic triangle possess the highest fatigue resistance. Orientations approaching the [111] 

pole of the stereographic triangle demonstrate the lowest fatigue resistance. Orientations near the 

[110] pole possess intermediate resistance to cyclic degradation [Gall & Maier 2002].  

It was found that aging generally produces coherent 10 nm Ti3Ni4 precipitates, which 

improves the fatigue resistance of NiTi compared to other heat treatments (solutionized or 

overaged) for nearly all orientations. Heat treatments and the subsequent Ti3Ni4 precipitate size 

affect the cyclic degradation resistance of NiTi. NiTi with 10 nm Ti3Ni4 precipitates consistently 

showed stabilized martensite due to mechanical cycling, and an absence of dislocation activity. 

The stabilized or ‘pinned’ martensite existed in the samples even though it was heated to 75°C 

above Af after pseudoelastic cycling. Incoherent Ti3Ni4 precipitates (500 nm) consistently show 

significant dislocation activity due to mechanical cycling in addition to stabilized martensite 

colonies [Gall & Maier 2002].  

Though small precipitate sizes prevent dislocation motion, martensite interfaces can still be 

pinned by the small precipitates and cause permanent strain accumulation. Materials with large 

26 



precipitate sizes do not exhibit permanent pinning of the martensite as a dominant mode, but 

rather plastic flow is more dominating. Owing to these competing microstructural mechanisms, a 

heat treatment [Miyazaki & Otsuka 1986] is not always the most effective means to improve the 

cyclic degradation resistance of NiTi.  

 

2.1.2 TEM Study on Cycling of NiTi alloys 

 

TEM studies carried out on undeformed and deformed samples consisting of B19’ 

martensite at room temperature showed that the martensite reorientation process takes place 

more easily under tension than under compression [Xie et al. 1998]. Martensite plates in the 

deformed samples are smaller than compared to those in the undeformed samples. The 

microstructural details in both cyclically deformed and undeformed materials are discussed in the 

following. Three types of martensite twins, i.e., {011} type ΙΙ, {11-1} type Ι and {001} 

compound twins, were found in the undeformed samples. Among them, the {011} type ΙΙ 

twinning is the most frequently observed one. From TEM studies it was noted that the {011} 

type ΙΙ twin bands were undeformed and the junction plane was generally straight with a 

comparatively small strain contrast area. The martensite variants were self-accommodated with 

each other. In each martensite variant, parallel plates extend through the whole martensite plates 

with a rather straight junction plane. Compared to (011) type ΙΙ and (11-1) type Ι twin platelets 

observed, the (001) twin platelets are much narrower [Xie et al. 1998]. 

In deformed samples the martensite variants are still self-accommodating and (11-1) type Ι 

twinning is more frequently observed. In addition, (011) type ΙΙ, (111) type Ι and (001) 
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compound twins are also present, and various types of lattice defects developed as a result of 

mechanical cycling. The junction plane between the variants was close to (001). A high density 

of dislocations appears inside the twin plates and in the junction plane area. In addition to the 

dislocations, shear bands along the (110) plane were also seen in the twins. Dislocation arrays 

along the (11-1) plane were found inside the twin bands and a high density of dislocations were 

formed along the (11-1) and (110) planes. Shear bands along the (110) plane appeared regularly 

in the twin bands [Xie et al. 1998]. 

TEM observations suggest that the most favorably oriented twinning system under a 

tension-compression cyclic load would be the (11-1) type Ι twinning. This is because the value of 

twinning shear strain for the (11-1) type Ι twin, is 0.3096, is the largest one for all the twinning 

systems observed so far in B19’ martensite. (111) type Ι twinning can be found only in materials 

under tension [Xie et al. 1998], which has been seen by X-ray diffraction analysis. It has not 

been observed in TEM because (111) type Ι twins do not have solutions in phenomenological 

crystallographic theory [Xie et al. 1998]. The twin band thickness in the deformed martensite is 

seen to be higher than in undeformed martensite indicating that in addition to stress-induced re-

orientation of martensite plates, stress-induced twin boundary migration also occurs under 

tension-compression cycling. Dislocations annihilate on twin boundaries and cluster in junction 

plane areas. New lattice defects can explain the martensite cyclic strain hardening process during 

tension-compression cycling [Xie et al. 1998]. 
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2.2 Introduction to NiTi Composites 

 

Extensive knowledge exists concerning the deformation of metal matrix composite systems 

with stiff ceramic reinforcing phases (such as Al-SiC) where the matrix deforms by slip after 

initial elastic deformation. However, little is known about composites with matrices exhibiting 

alternative deformation mechanisms (e.g., twinning or stress induced transformations). The 

thermoelastic phase transformation and/or twinning deformation in NiTi can be expected to be 

affected by the presence of stiff ceramic particles which not only produce residual internal 

stresses (due to thermal mismatch) but also add to externally applied stresses. Consequently, the 

mechanical deformation behavior of such composites is both of theoretical interest (to better 

understand such deformation mechanisms) and practical interest (as superelastic composites) 

[Vaidyanathan et al. 1999a]. 

Dunand and co-workers [1996] have systematically characterized such NiTi-based shape-

memory composites (a martensitic NiTi matrix reinforced with TiC). Mechanical strain in 

martensitic NiTi can be separated in three components: (i) strain by twinning which is 

recoverable; (ii) plastic strain by slip, which is unrecoverable; and (iii)  residual elastic strains, 

which do not on average contribute to the total macroscopic prestrain, but may be recovered by 

relaxation during phase transformation. These three types of strains affect the kinetics and 

thermodynamics of the transformation as follows: (i) twinning reduces the number of martensitic 

variants, thus facilitating their subsequent transformation to austenite, and may also induce 

residual elastic stresses, due to residual mismatch strains between twinned variants; (ii) 

dislocations introduced by slip both stabilize the deformed martensite and induce the two way 

shape memory effect (TWSME) by their elastic stress field; and (iii) elastic stresses stabilize the 
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martensite, as described by the Clausius-Clapeyron equation, and can also induce the TWSME 

[Dunand et al. 1996]. 

Relaxation of the elastic and plastic mismatches between two phases (or between composite 

and matrix) may occur by twinning or slip of the matrix. The thermal transformation of 

mismatch twins formed during mechanical deformation to accommodate the elastic particles is 

similar to thermal transformation of twins responsible for the overall shape change of the 

specimen when twinning accommodates the mismatch. Then, the overall shape memory recovery 

of the composite is going to differ from the unreinforced matrix. In the second case, where 

matrix slip relaxes the mismatch with the reinforcement, dislocations are expected to stabilize the 

deformed martensite and enhance the TWSME. Further if relaxation by slip or twinning is 

incomplete after deformation, the resulting residual elastic stresses are also expected to affect the 

macroscopic recovery behavior by stabilizing the martensite and by inducing the TWSME. 

 

2.2.1 Mechanical Behavior of NiTi-TiC composites 

 

Dunand et al. [1996] have systematically studied NiTi-based shape-memory composites 

where a martensitic NiTi matrix deforms by twinning in the presence of TiC particles. The first 

studies on the mechanical behavior of NiTi-based composites where an austenitic matrix deforms 

by forming stress-induced martensite in the presence of a reinforcing ceramic phase was carried 

out by Vaidyanathan et al. [1999b] by neutron diffraction of mechanically-loaded NiTi samples. 

They investigated the evolution of martensite fractions and discrete phase strains in superelastic 

NiTi and NiTi–TiC composites under compression loading. No reaction was observed by 
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microscopy and microprobe analyses between the NiTi matrix and the TiC particles, which were 

almost perfectly stoichiometric with a composition of 49.8±0.1 at.% C (as determined by 

combustion analysis with infrared detection). Because of the inert nature of TiC the matrix 

chemical composition was assumed to be constant and the mechanical behavior observed was 

not attributed to chemical effects [Vaidyanathan et al. 1999b]. 

The difference in macroscopic stress-strain curves observed for different volume fraction 

additions of TiC particles has been attributed to the differences in volume fractions of stress-

induced martensite formed during loading due to the presence of the reinforcing particles. The 

volume fraction of martensite formed at any given applied stress decreases with increasing TiC 

content. The modulus of the austenite phase measured by the Rietveld method was expected to 

change at higher load levels due to: (i) load transfer to the stress-induced martensite which 

exhibits different elastic constants; (ii) transformation mismatch stresses between the two phases; 

and (iii) the evolving texture in the austenite [Vaidyanathan et al. 1999a]. 

For low loads, on NiTi–20TiC little martensite is formed, so the composite deforms mostly 

elastically. On the other hand, NiTi–10TiC showed significant amounts of stress-induced 

martensite at high applied stresses which could lead to additional mismatch with the TiC 

particles and thus deviation from the elastic response, as observed in plastically deforming 

aluminum composites. The lack of such plastic load-transfer suggests that the 

austenite/martensite matrix effectively accommodates the mismatch arising due to the large 

transformation strains in superelastic deformation. This may be attributed to the self-

accommodating nature of the transformation, wherein certain variants can preferentially form to 

minimize the mismatch between matrix and reinforcement, as observed in shape-memory NiTi–

TiC composites deforming by martensite twinning [Vaidyanathan et al. 1999b]. 
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The studies by Fukami-Ushiro et al. [1996] at room temperature, show that the martensitic 

matrix deforms plastically by slip and/or twinning. At elevated temperature, plastic deformation 

of the austenitic matrix takes place by slip and/or formation of stress-induced martensite. The 

effect of TiC particles on the stress-strain curves of the composites depended upon which of 

these deformation mechanisms is dominant. First, in the low-strain elastic region, the mismatch 

between the stiff, elastic particles and the elastic-plastic matrix is relaxed in the composites: (i) 

by twinning of the martensitic matrix, resulting in a macroscopic twinning yield stress and 

apparent elastic modulus lower than those predicted by the Eshelby elastic load-transfer theory; 

and (ii) by dislocation slip of the austenitic matrix, thus increasing the transformation yield 

stress, as compared to a simple load-transfer prediction, because the austenite phase is stabilized 

by dislocations. Second, in the moderate-strain plastic region where nonslip deformation 

mechanisms are dominant, mismatch dislocations stabilize the matrix for all samples, thus (i) 

reducing the extent of twinning in the martensitic samples or (ii) reducing the formation of 

stress-induced martensite in the austenitic samples. This leads to a strengthening of the 

composites, similar to the strain-hardening effect observed in metal matrix composites deforming 

solely by slip. Third, in the high-strain region controlled by dislocation slip, weakening of the 

NiTi composites results, because the matrix contains (i) untwinned martensite or (ii) retained 

austenite, which exhibits a lower slip yield stress than twinned or stress-induced martensite, 

respectively [Fukami-Ushiro et al. 1996]. 
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2.3 R-Phase Transformations  

 

The transformation sequence of certain NiTi alloys is as follows: B2 parent phase  

incommensurate (IC)  commensurate (R-phase) B19’ martensite. The R-phase 

transformation with a tiny temperature hysteresis as small as 1 K and superior thermal cycling 

characteristics in NiTi alloys have attracted considerable attention, since it is useful in cryogenic 

applications. The associated shape-memory effect and superelasticity are useful for actuator 

applications. The R-phase transformation was first found by Dautovich and Purdy (1965) and 

then characterized by Sandrock and Hehemann (1971), from the sharp increase in resistivity and 

the appearance of superlattice reflections at 1/3 1/3 0 and equivalent positions in electron 

diffraction patterns. The structure of the R-phase has been a controversy for a long time. The 

crystal structure was established recently with powder X-ray diffraction. According to them the 

trigonal structure of the R phase is produced as a result of the association of three [110] [1-10]-

type transverse displacement waves in the cubic parent phase [Murakami & Shindo 2001]. X-ray 

studies show that the incommensurability is neither regular nor periodic and it depends on the 

Brillouin zone [Stroz 2003]. 

 

NiTi SMAs can exhibit the R-phase at room temperature under the following conditions: 

i) Introduction of rearranged dislocations which are produced by thermal cycling or cold 

working and then annealing at low temperatures, 

ii) Introduction of precipitates by heat treatment at temperatures between 300°C and 500°C 

for Ni-rich alloys, 

33 



iii) Addition of certain third elements like Fe, Al, etc., that reduce the martensitic 

transformation temperatures [Wu et al. 2000]. 

Recently, a rapid solidification method was reported to induce the B2 R 

transformation in NiTi alloys. This was attributed to an introduction of crystallographic 

defects such as dislocations by rapid solidification [Nam e a  2002]. All these factors 

are effective in revealing the R-phase transition because they depress the M

t l.

s point 

lower than the TR (critical temperature) [Miyazaki & Otsuka 1986]. 

Some of the phenomena associated with the formation of the R-phase are extra 

diffraction spots at 1/3 positions of the B2 reciprocal lattice, an increase in electrical 

resistance prior to the martensite transformation, and a splitting in the {011} and {211} 

B2 reflections [Miyazaki  & Otsuka 1986].  

The R-phase transformation is a martensitic transformation of the first order [Otsuka & 

Wayman 1998], as a prominent change in crystal structure takes place below a definite 

transformation temperature Rs. However, it has been pointed out that some structural modulation 

occurs even above Rs, as detected by abnormal phonon softening and the presence of 

incommensurate diffuse scattering. Peak positions of diffuse scattering close to superlattice 

reflections below Rs have been believed to be closely related to the formation of the R-phase. It 
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is claimed that specific defects such as dislocations and precipitates could be favorable 

nucleation sites for the R-phase [Murakami & Shindo 2001].  

Recent studies revealed that the R-phase transformation can occur in two stages. Kim et al. 

[2004] reported this behavior for a nickel-rich alloy subjected to low temperature ageing. The 

authors explained the two stages of the R-phase transformation as caused by a non-homogeneous 

distribution of nickel in the matrix following the heat treatment. They also show the influence of 

internal stress fields on the time evolution of the two stages of the R-phase transformation 

components. The R-phase transformation is caused by a non-homogeneous distribution of 

dislocations in a near-equiatomic NiTi alloy [Chrobak & Stroz 2005]. The two main factors 

influencing the multi-stage transformation behavior are inhomogeneities in chemical 

composition and internal stresses. Depending on the mutual interaction of these two, the course 

of the transformation can be different [Chrobak & Stroz 2005]. A new explanation is proposed 

based on in situ TEM observation that the second DSC peak in the cooling direction may include 

two transformations: R-phase to B19’ in the grain boundary regions with precipitates, and B2 

directly to B19’ in the precipitate-free grain interiors. The R-phase nucleates at Ti11Ni14 

precipitates because they have the same rhombohedral structure with a=0.738 nm and c=0.532 

nm for the R-phase and a=1.124 nm and c=0.5077 nm for Ti11Ni14. The compatible crystal 

structure and close lattice parameters makes the formation of R-phase at the boundary of Ti11Ni14 

easier than the formation of the monoclinic martensite phase [Tan & Crone 2004]. 

 

2.3.1 TEM studies in the R-Phase 
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TEM studies of the R-phase conducted by Stroz [2003] lead to the following conclusions. 

The TEM images of the sample at room temperature do not reveal the presence of the R-phase; 

the only visible details are some tweed like structures and a number of dislocations. The 

corresponding diffraction patterns show only spots of the matrix in the [111] orientation. 

However, if this pattern is acquired and the background is subtracted, it reveals very weak super- 

lattice reflections situated at 1/3 of 110 spots. It was proposed that electrical resistance starts to 

rise at the temperature when the incommensurate phase is formed in the sample. Recent studies 

by Cai et al. [1999] believe that the electrical resistance starts to increase with the start of the 

commensurate phase. Electron diffraction patterns from the regions and FFT (Fast Fourier 

Transform) images show that the positions of the superlattice reflections deviate from the exact 

1/3 position of <110> spots. At room temperature, up to 308 K the specimen is mostly in an 

incommensurate state. So, it is believed that the observed high-resolution micrographs image a 

modulated phase rather than the R-phase. This is confirmed by diffraction patterns that show the 

positions of the extra spots being shifted from the exact positions of the R-phase [Stroz 2003]. 

The incommensurate state exists in a wide temperature range above the Rs temperature. As the 

intensities of the extra spots are not very strong, the observed modulations are also weak [Cai et 

al. 1999].  

Observations of the ½<110> reflections have been reported infrequently in the past. Tamiya 

et al. concluded that this is due to the thin foil effect as ½<110> reflections are not visible on the 

X-ray patterns. A plate like morphology was formed in the whole specimen volume at much 

lower temperatures, than the R-phase transition. This proves that an additional transformation 

takes place prior to the martensite formation [Stroz 2003]. 

36 



 

CHAPTER THREE: SAMPLES AND SAMPLE PREPARATION 

 

The samples used for these studies are NiTi shape memory alloys that have different 

processing histories. The TEM specimens must be very thin and able to withstand the high 

vacuum present inside the instrument. In general, these materials are naturally resistant to 

vacuum, but they must be prepared as a thin foil, or etched so that some portion of the specimen 

is thin enough for the electron beam to penetrate. 

 

3.1 Sample A 

 

These samples are a NiTi alloy with 51 at.% Ni and were produced from commercially 

available NiTi bars, which were supplied by Special Metal Corporation, New Hartford, NY. 

These bars were cold drawn from cast ingots that were produced via vacuum induction melting 

followed by vacuum arc remelting. The bars were subsequently used to fabricate cylindrical 

compression NiTi specimens. These specimens (10 mm in diameter and 24 mm in length) were 

fabricated by electro discharge machining, solutionized at 1000°C for 1 hour in argon and 

quenched in an oil bath at room temperature. Following this, annealing was done at 400°C in air 

for 1hr followed by quenching in ice water. From the starting composition, this material is 

expected to be austenite at room temperature. It is hereafter designated NiTi_A_CD to represent 

that it is austenitic (A) and cold drawn (CD). 
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3.2 Sample B 

 

These samples were obtained from pre-alloyed NiTi powders (99.9% pure, 49.4 at.% Ni, 

size between 44 and 177µm, from Special Metals Corp., NY) blended with Ni powders (99.9% 

pure particles, size between 44 and 177µm, from Special Metals Corp., NY). The powders were 

then packed in a cylindrical low carbon steel container (thickness 0.318 cm, internal diameter 

2.5 cm, length 12 cm, lined with a boron nitride coated nickel foil to prevent carbon 

contamination) and were subjected to Hot Isostatic Pressing (HIP) at 1065°C and 100 MPa for 

3 h. The NiTi billet had a nominal composition of 51.0 at.% Ni. 

The billets were electro-discharge-machined into cylindrical specimens 10 mm in diameter 

and 24 mm in length. These specimens were solutionized at 1000°C for 1 h and oil-quenched to 

room temperature in titanium-gettered flowing argon, annealed at 400°C for 1 h in air and 

quenched in ice-water [Vaidyanathan et al. 2001]. From the starting composition this material is 

expected to be austenitic at room temperature. It is hereafter designated NiTi_A_HIP to represent 

that it is austenitic (A) and subjected to hot isostatic pressing (HIP). 

 

3.3 Sample C 

 

These samples were processed in the same way as the alloy mentioned in Section 3.1 above. 

In addition the alloy was strained 8% plastically and 15 load-unload cycles were applied to a 

stress of 1500 MPa. From the starting composition, this material is expected to be austenitic at 
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room temperature prior to deformation. It is hereafter designated NiTi_A_8% to represent that it 

is austenitic (A)  and has 8% plastic strain (8%). 

 

3.4 Sample D 

 

The samples were processed in the same way as the alloy mentioned in Section 3.1 

described above. After the processing, 14% plastic strain was applied to the specimen. From the 

starting composition this material is expected to be austenitic at room temperature prior to 

deformation. It is hereafter designated NiTi_A_14% to represent that it is austenitic (A) and has 

14% plastic strain (14%). 

3.5 Sample E 

 

These samples are a NiTi alloy with 50.31at.% Ni and comprised of commercially available 

wires of diameter 0.03” from NDC Corporation, Freemont, CA. The wires were heat treated at 

550°C for 15 minutes and water quenched for shape setting in spring form. From the starting 

composition, this material is expected to be martensitic at room temperature. Three sets of 

samples were prepared for analysis: 

i) The shape set wire. It is designated as NiTi_M_0 to represent that it is in the martensitic 

state at room temperature and there was no cycling on this sample. 

ii) 1214 cycles applied on the wire by putting a weight of 100 grams and heating/cooling 

through the martensitic transformation. It is designated as NiTi_M_1214 to represent that 
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it is in the martensitic state at room temperature and there were 1214 cycles applied on 

this sample. 

 

The DSC (differential scanning calorimetry) conducted on NiTi_M_0 sample showed that 

the As is 47.34°C and Af is 51.72°C. The Ms for NiTi_M_0 sample is 2.59°C and Mf is –2.23°C. 

The DSC results of NiTi_M_1214 sample showed that As is 45.85°C and Af is 51.55°C.The Ms 

and Mf for NiTi_M_1214 sample are 4.73°C and –0.92°C. Both the samples were dipped in 

liquid nitrogen to ensure that they are in the martensite state prior to doing the sample 

preparation for the TEM. 

3.6 Sample F 

 

The samples were processed the same way as described in Section 3.2. However they were 

reinforced with 10 vol.% TiC in a NiTi (51.0 at.% Ni) matrix [Vaidyanathan et al. 2000]. The 

TiC powders (99.9% pure) were supplied by Atlantic Equipment Engineers, NJ, and the average 

size of the particles was 44 µm [Vaidyanathan et al. 2000]. From the starting composition, this 

material is expected to be martensitic at room temperature. It is hereafter designated 

NiTi_10TiC_M to represent that it is martenitic and has 10 vol. % TiC particles in the NiTi 

matrix. 

3.7 Sample G 

 

The samples were from a NiTiFe billet that was prepared by vacuum induction melting 

(VIM) and vacuum arc remelting (VAR). The billet was obtained from Special Metals 
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Corporation, NY with 46.8 at.% Ni and 3.2 at.% Fe. The samples were taken from the billet, 

which was electro-discharge-machined to form strips. These strips were solutionized at 850°C 

for 30 minutes and subsequently vacuum cooled. The strips were then cut with a pair of heavy-

gauge clippers. From the starting composition this material is expected to be in the R-phase when 

cooled. It is hereafter designated as NiTiFe. 

 

3.8 Focused Ion Beam (FIB) Technique 

 

The samples for the TEM studies were prepared by FIB by either the ex-situ process or the 

in-situ process. Both the processes are described in detail, the aims of which are to prepare a 

sample that is electron beam transparent. 

 

3.8.1 Ex situ Lift Out Technique  

 

The FIB chamber was vented and the sample was loaded in the FIB chamber. The sample 

was set at the proper height using the marker so that it would not hit any of the needles, lenses or 

detectors. The chamber was pumped down to a reading of 5x10-5 mbar. The high voltage was 

switched on after the vacuum was achieved. A platinum layer was deposited on the specimen 

surface. Two trenches were milled on either side of the deposited platinum layer. The milling 

was done with higher currents of 20000 pA when away from the deposited platinum and was 

done with lower currents of 7000 pA when closer to the deposited Pt layer. Once the sample was 

thinned down to around 0.5 µm, the sample was tilted to 45° and the bottom portion was cut. The 
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sample was again tilted by 1° on either side and further thinning was done. The final thinning 

was done at a 30 pA current by tilting the specimen in either direction by 2-3°. This thinning was 

done till the specimen was seen to be bending. Following this, the sample was tilted back to zero 

degrees and was finally cut away. It was then taken out from the FIB chamber and the sample 

was lifted out with the help of a needle with electrostatic force. It was subsequently placed on a 

copper grid with carbon film. Figure 10 explains the ex situ process of lifting out the TEM 

samples. 

 

                       

a b 

a. Pt deposited on sample                                        b. One trench milled 

                      

c d 

c. Trenched milled on both sides                            d. Thinning down before the bottom cut        
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e f 

e. Tilted at 45° for bottom cut                              f. Further thinned and shown at 45° angle 

      

                       

h g 

g. Sample cut-off viewed at 45°                             h. Sample cut-away viewed at 0° 

Figure 10: The ex situ technique of FIB used for TEM sample prepartion 

 

3.8.2 In situ Lift Out Technique  

 

This technique is similar to the ex situ process except for that the sample is lifted out inside 

the FIB chamber with the help of an omni probe needle. Similarly, in this technique the sample 
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was loaded in the chamber and the height of the sample adjusted. A line of Pt layer was 

deposited and two trenches were milled on either side of the deposited Pt layer using the silicon 

file. The trenches were milled with higher currents (20000 pA) when away from the deposited 

platinum and were made with lower currents (7000 pA) close to the Pt layer. Following this, a 

bottom cut was made by tilting the specimen by 45°. After the bottom cut was made, the sample 

was rotated by -45° and the Pt needle and omni probe were introduced. The sample was lifted 

from the pit by attaching the sample to the omni probe, after depositing Pt to attach it to the omni 

probe. The omni probe and Pt needle were then taken out, and a half cut copper grid was 

introduced. A trench was milled on the copper grid into which the sample was placed. The Pt 

needle and the omni probe were introduced and the sample was placed on the copper grid. After 

placing the sample on the grid, the thinning of the sample was done to make it electron beam 

transparent. The advantage of this technique over the ex situ technique is that if the sample was 

found to be thick for electron beam transparency, it could be taken back into the FIB chamber 

and thinned again. Whereas in case of the ex situ technique, once the sample was cut out and put 

on the copper grid with carbon film, it could not be thinned further. Figure 11 outlines the in situ 

technique of preparing the TEM samples.  
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b a 

a. Pt deposited on the surface of the sample               b. Trench in front of the deposited Pt 

                               

c d 

c. Trench on both sides of the deposited Pt                   d. Thinning before the bottom cut 

                                

e f 

e.Tilting  45° for bottom cut                                              f. Rotated by -45° 
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g h 

g. Lifting sample with the help of the omni probe        h. Trench milled on half cut Cu grid 

                         

j i 

i. The sample about to be placed in the trench         j. Pt deposited when the sample is in the           
   on the copper grid.                                                    trench. 
 

                       

l k 

k. The omni probe cut from the sample                       l. The sample placed on the grid 

46 



                         

m n 

m. Half way through the thinning process                  n. Final thinning  

Figure 11: The FIB in situ technique used for TEM sample preparation 

 

3.9 Electropolishing  

 

3 mm diameter discs were cut from the bulk specimen with the help of a low speed diamond 

saw into 0.1-0.3 mm thick plates. The discs were electrochemically thinned using a twin-jet 

electro polisher (Tenupol 2, Sturers, Denmark). The electrolyte used was 1: 3 (volume) nitric 

acid (HNO3) and methanol (CH3OH) at a voltage of 15 V. The flow rate was adjusted according 

to need. The samples were rinsed in distilled water after they are removed from the electrolyte. 
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3.10 Mechanical Polishing using a Tripod 

 

For preparing TEM sample using a tripod, a sample, cyano-acrelate based super glue, 

diamond lapping film, colloidal silica, a copper washer, wax and M-bond 610 adhesive are 

needed. Samples were cut to fit a tripod using a low speed diamond saw and were mounted using 

cyano-acrelate based super glue. They were polished using diamond paper and colloidal silica to 

form a wedge. This was achieved with one tripod on which the sample was placed, 1 mm lower 

than the other two pods. Once it was sufficiently thin, the samples were mounted on either 

titanium or copper washers, with M-bond 610 adhesive and heated for 15 minutes around 100°C 

to cure the adhesive. 
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CHAPTER FOUR: EFFECT OF PLASTIC DEFORMATION AND 

CYCLING 

 

4.1 Undeformed Austenitic NiTi 

4.1.1 Results 

 

The samples were prepared by using the ex situ FIB technique as stated in Section 3.8.1. 

Figure 12(a)-(e) show the TEM images of NiTi_A_CD. Figure 13(a) shows an additional TEM 

image of NiTi_A_CD while Figure 13(b) shows the corresponding selected area diffraction 

pattern (SADP). The sample is in the [111] orientation with respect to the beam. Two grains 

overlap in the diffraction pattern in Figure 13(b), since there is no single spot in the diffraction 

pattern.  Additionally, there are substantial bending contours seen in the sample. 

The NiTi_A_HIP sample was prepared for TEM studies using both FIB and 

electropolishing methods. Figure 14(a) shows the FIB prepared sample, and the corresponding 

diffraction pattern is shown in Figure 14(b). The electropolished sample was prepared in the 

manner described in Section 3.9 where liquid nitrogen was poured into the electrolyte during 

electropolishing until the electrolyte had reached a temperature of approximately –400C as 

shown in Figure 15. Figure 15(a) shows large grains while Figure 15(b) shows the corresponding 

diffraction pattern for the beam orientation [110]. Figure 16 shows the grains in [111] orientation 

where the 1/3 reflections are seen clearly between the 110 diffraction spots. 
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b 
a 

                 

c d 
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e f 

 

Figure 12: (a-f) TEM images of NiTi_A_CD 

 

    

a b 

 

Figure 13: (a) TEM image of NiTi_A_CD and the corresponding SADP is shown in (b) 
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b a 

Figure 14: (a) TEM image of NiTi_A_HIP (prepared using FIB) and the corresponding SADP is 

shown in (b) 

 

          

b a 

Figure 15: TEM image of NiTi_A_HIP (electropolished sample) and the corresponding SADP is 

shown in (b) 
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a 

Figure 16: SADP of  NiTi_A_HIP (electropolished sample) 

4.1.2 Discussion 

 

The images of NiTi_A_CD in Figure 12 indicate that there is texture in the sample as seen 

from grains in the Bragg condition lining up (especially in Figure 12(a) and Figure 12(b)). As 

this sample was cold drawn it is expected to have texture. The diffraction pattern analysis in 

Figure 13 confirms that the sample is in the austenitic state, as expected for this starting 

composition. 

The NiTi_A_HIP sample was processed in a way described in Section 3.2. From 

Vaidyanathan  et al. [1999b] the average size of the grains was estimated to be 20 µm. These 

large grains are very large in comparison to the grains seen in the NiTi_A_CD sample. These 

grains are randomly distributed in the sample. They are expected to be randomly distributed as  
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HIP was used for fabrication. The sample which was prepared by the FIB technique shows that 

only austenite is present in the sample as seen in Figure 14.  On the other hand, the SADP of the 

electropolished sample in Figure 15(b) presents some extra super lattice reflections other than the 

reflections belonging to the austenite phase. From Figure 16, where the beam is in [111] 

orientation, it can be seen that the reflections occur at 1/3 positions from the <110> spots 

This phenomenon occurs with the formation of R-phase [Stroz 2003]. But the formation of 

the R-phase was seen to be strange in this sample as it was supposed to be an austenitic sample. 

The reasons for seeing the R-phase in this sample can be due to the presence of some Ni-rich 

precipitates or due to the liquid nitrogen cooling used in the electrolyte, which could have 

transformed the material and induced R-phase in the material. It could also be from chemical 

reactions with the electrolyte, for e.g., Ti can oxidize making the sample more Ni-rich and thus 

stabilizing the R-phase. 

 

4.2 Deformed Austenitic NiTi 

4.2.1 Results 

 

The NiTi_A_8% sample was prepared as described in Section 3.3. The sample for TEM 

was prepared by using the ex situ FIB technique. For HRTEM images, the sample was prepared 

by electropolishing. Figure 17(a) presents the martensite lenticular structure interwoven in the 

austenite matrix. Figure 17(b) is the SADP of the area shown in Figure 17(a). Figure 18 also 

shows the lenticular structure in the sample. Figure 18(b) is a SADP of the area in Figure 18(a). 

Figure 19 shows the HRTEM/FFT images of the NiTi lattice with dislocations.  Figure 20 
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presents the lenticular shaped twins. A lenticular structure of martensite interwoven with the 

austenite phase is visible in Figure 18 and Figure 18(b) gives the corresponding SADP. It tells us 

that the sample has a interwoven austenite martensite structure. The lenticular structures appear 

to be oriented in a particular direction (Figure 22). Figure 23 shows the Burgers vector around 

the edge component of the dislocation line. Figure 24 gives a line profile of the top and the 

bottom parts of the lattice lines seen in Figure 23. These images indicate the presence of 

dislocations at the interface of the martensite needles 

The NiTi_A_14% sample was prepared for TEM observations by the ex situ FIB technique. 

It was processed as described in Section 3.4. Figure 25 shows the distribution of the dislocations 

in the grains in the 14% strained sample. Figure 25 (a) and (c) are the bright field micrographs of 

the NiTi_A_14% sample while Figure 25(b) is the dark field image of the NiTi_A_14% sample. 

Figure 26 shows a micrograph of an austenite grain and the corresponding SADP. The beam 

orientation was [111]. The martensite lenticular structures in Figure 27 are interwoven in the 

austenite matrix. The SADP of Figure 27(b) shows evidence of the presence of martensite. 
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a b 

 

Figure 17: (a) TEM image of NiTi_A_8% and the corresponding SADP is shown in (b)  

           

a 
b 

 

Figure 18: (a) TEM image of NiTi_A_8% and the corresponding SADP is shown in (b) 
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a b 

 

c 

Figure 19: (a) HRTEM image of the lattice in NiTi_A_8% (b) Fourier filtered HRTEM image of 

NiTi_A_8%. (c) Reduced fourier filter image of 19(a) showing the reflections 
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Figure 20: TEM image of NiTi_A_8% 

          

a b 

Figure 21: (a) TEM image of NiTi_A_8% and the corresponding SADP is shown in (b).  
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Figure 22: TEM image of NiTi_A_8% 
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Top

Bottom

Figure 23:  (a) HRTEM image of NiTi_A_8% (b) Fourier filtered HRTEM image of NiTi_A_8%         
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a 

 

 

b 

Figure 24: Profile around the dislocation lines shown in Figure 24; (a) is the top profile while (b) 

is the bottom profile of the lattice of NiTi_A_8% 
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c 

Figure 25: TEM images of NiTi_A_14%  
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a b 

Figure 26: (a) TEM image of NiTi_A_14% and the corresponding SADP is shown in (b)  

       

a b 

Figure 27: (a) TEM image of NiTi_A_14% and the corresponding SADP is shown in (b) 
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4.2.2 Discussion 
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Figure 28: Stress-strain response of the undeformed (NiTi_A_CD), 8% plastically strained and 

8% plastically strained and 15 times cycled (NiTi_A_8%) samples 

The stress-strain curves in Figure 28 show that the curve of undeformed NiTi (NiTi_A_CD) 

exhibits a large hysteresis and has some unrecoverable strain associated with it. The 8% 

plastically strained sample also has unrecoverable strain but a smaller hysteresis. The stress 

strain curve of the 8% plastically strained sample that undergoes cycling (NiTi_A_8%) does not 

exhibit any unrecoverable strain and additionally the hysteresis collapses in comparison to the 

8% strained sample. 

In the present investigation we are trying to study the effect of cycling on the 8% plastically 

strained sample that has under gone 15 load-unload cycles. The material is in the austenite phase 
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and with the application of load, stress induced martensite is formed in the material, i.e., it 

exhibits superelasticity. In the austenite state the material exists in the cubic form. It is known 

that the martensite has 24 variants and it can change from the cubic structure to the monoclinic 

structure in 24 different crystallographic ways during the phase transformation. These 24 

different ways are the different variants. Cycling is expected to result in the stress- induced 

growth of the most favorably oriented martensite variants, stress induced reorientation of 

martensite and also stress induced twin boundary migration within the martensite variants. 

Even though the Ni-rich composition implies that the sample exists in the austenite state, the 

8% plastic deformation results in the stabilization of martensite in the unloaded state. This is 

evident in the TEM images presented earlier. Figure 17 and Figure 18 shows interwoven 

austenite and martensite together, as observed in the SADP. The martensite needles tend to orient 

themselves in one particular orientation, which is evident in Figure 22. This implies that the 

martensite variants tend to reorient themselves in one of the favorable martensitic variants, either 

through variant coalescence or through variant reorientation. Thus, these variants reorient or 

grow at the expense of less-favorably oriented ones because of the cycling. In addition to these 

aforementioned observations dislocations were seen at the interfaces between adjoining 

martensitic needles. These dislocations are evident when observed in the HRTEM images in 

Figure 23 where the Burgers vector is identified. Line profiles of the image in Figure 23 are 

shown in Figure 24 where 31 lattice lines can be counted in the top section while only 30 lattice 

lines can be counted in the bottom section of the burgers circuit. This is indicative of an edge 

dislocation at that interface.  

It is interesting to consider the role of these dislocations. Clearly, the applied plastic strain 

results in the generation of these dislocations. Even though there is no doubt that these 

66 



dislocations exist (from the fact that the sample has 8% plastic strain and from the 

aforementioned TEM images), the 15 times cycled NiTi_A_8% sample shows no unrecoverable 

strain during loading and unloading. This implies that the dislocations are either (i) in a stable or 

locked configuration or (ii) are being shielded from the external applied stress. On application of 

stress, the austenite transforms to martensite and, in doing so, accommodates the stress and strain 

mismatch through variant selection, reorientation and coalescence. The stabilized martensite 

(i.e., the martensite that exists in the unloaded state) also can accommodate the mismatch 

through variant reorientation and coalescence. It appears that both of these mechanisms, i.e., 

accommodation through transforming the austenite or accommodation through stabilized 

martensite, are viable. The exact reason for the dislocation existing at the interface of the 

martensite needles is not clear. It could serve to accommodate the mismatch between variants of 

stabilized martensite or it could just be that the dislocations pin the martensite needles and hence 

appear at the interfaces. It is also possible that the martensite is stabilized around the dislocations 

due to the stress field resulting from the dislocations. 

To separate the effect of cycling from the effect of only plastic deformation, the 14% 

plastically strained or NiTi_A_14% sample was studied. Qualitative examination suggests that 

there are smaller quantities of martensite in the NiTi_A_14% sample than in the NiTi_A_8% 

sample. Furthermore, while an interwoven austenite and martensite structure was identified (e.g., 

Figure 27), dislocations were found in the austenite grains (e.g., Figure 25 and Figure 26) rather 

than at the interfaces. Comparing results between NiTi_A_8% and NiTi_A_14% suggests that 

the load-unload cycling results in a stress field due to the dislocations stabilizing the additional 

martensite. This martensite serves to accommodate the stress and strain mismatch between the 
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dislocations and the transforming material resulting in reduced unrecoverable strain. This is seen 

in the macroscopic stress-strain curve.   

 

4.3 Martensitic NiTi  

4.3.1 Results 

 

The NiTi_M_0 sample was prepared with the help of the ex situ FIB technique for 

observation under the TEM. The wire was dipped in liquid nitrogen before preparing the sample 

by FIB to ensure that the sample was in the fully martensite state. Figure 29 shows the 

NiTi_M_0 sample wire with martensite variants distributed at a fine scale. The corresponding 

SADP in Figure 30 confirms a fully martensitic sample.  

The NiTi_M_1214 sample for TEM was also prepared by the ex situ FIB technique. The 

wire was dipped in liquid nitrogen before preparing the sample by FIB to ensure that the sample 

was in the fully martensite state. Figure 31 is the TEM image of NiTi_M_1214 that shows larger 

martensite variants. Figure 32 is the corresponding SADP.  
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Figure 29: TEM images of NiTi_M_0  
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Figure 30: SADP corresponding to Figure 30(a) 
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Figure 31: TEM images of NiTi_M_1214  
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Figure 32: SADP corresponding to Figure 31(a) and Figure 31(b)  

 4.3.2 Discussion 

NiTi shape memory elements for actuator applications generally require the setting of a 

shape for the NiTi element. Shape setting of the NiTi element is accomplished by constraining it 

in a fixture of desired shape and applying an appropriate heat treatment. The heat treatment used 

for the NiTi element investigated, a wire in this case, is discussed in Section 3.5. The wire was 

dipped in liquid nitrogen to ensure that the sample was in the martensite state.  
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Figure 33: Schematic illustration of the shape memory effect in  a single crystal 

Figure 33 explains the phenomenon associated with the shape memory mechanism whereby 

cooling the sample from the parent austenite phase results in martensite forming in a self 

accommodating process. Subsequent deformation of that martensite results in the coalescence of 

the different variants because of which one of the favorable variant grows at the expense of the 

other variants. In Figure 29, small grain like structures corresponding to the different variants of 

the martensite are seen. These variants are mostly randomly arranged and are very fine in scale. 

Martensite needle like structures are not seen in the images. The diffraction pattern in Figure 30 

gives evidence of the presence of martensite in the sample.  

 

Figure 31 shows the effect of cycling in the sample after applying 1214 heat-cool cycles 

while loading. This simulates a NiTi element in cyclic actuator applications. Clearly twins and 
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martensite lenticular structures are observed in the images. Again, the presence of martensite is 

confirmed by the SADP in Figure 32. It can also be observed from these images that the grains 

tend to orient themselves in one particular orientation. The aforementioned effects are a result of 

the internal stresses induced by the cycling. These stresses are biasing the formation of 

martensite during cooling through a combination of one or more of these processes: (i) variant 

selection; (ii) variant reorientation; and (iii) variant coalescence.  
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CHAPTER FIVE: NiTi-TiC 

5.1 Results 

 

NiTi_10TiC_M samples for TEM were prepared by the ex situ FIB technique. The material 

was processed as described in Section 3.6. The sample was heated to 100 °C and then cooled to 

room temperature to ensure that it was in a fully martensitic state. Figure 34 shows TiC particles 

in the NiTi matrix. Lenticular twins are found a distance away from the matrix-TiC interface. 
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Figure 34: TEM images of NiTi_10TiC_M. 
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5.2 Discussion 

 

Microprobe and microscopy analyses was conducted by Vaidyanathan [Vaidyanathan 1998] 

on NiTi-10TiC to conclude that the TiC particles behave as an inert reinforcement.  The 

micrograph in Figure 34 shows the presence of twins in the material. NiTi in martensitic form is 

expected to possess twins when cooled from the austenite state. However, in the case of the 

composite, additional stresses due to the coefficient of thermal expansion mismatch between the 

matrix and the inclusion can further enhance twinning in NiTi. To assess the magnitude of these 

stresses, is Eshelby equivalent homogeneous inclusion method was used and is described in the 

following. 

5.2.1 Eshelby Equivalent Inclusion Method 

Internal stresses are common in almost any material, which is mechanically 

inhomogeneous. For a cubic polycrystalline metal, which is loaded externally, differently 

oriented crystallites will be stressed to different extents, but these differences are quite small. For 

a composite, consisting of two distinct constituents with different stiffnesses, these disparities in 

stress are generally found to be much larger. Internal stresses arise as a result of some kind of 

misfit between the shapes of the constituents (matrix and reinforcement, i.e., fiber, whisker or 

particle). Such a misfit could arise from a temperature change, but a closely related situation is 

created during mechanical loading-when a stiff inclusion tends to deform less than the 

surrounding matrix. Analysis of the stresses required to mate up the inclusion and matrix across 

the interface allows the prediction of properties such as thermal expansivity and stiffness. For a 
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spherical inclusion case of an ellipsoid, an analytical technique set on the pioneering work of 

1950s by J.D.Eshelby can be employed [Clyne & Withers 1993]. 

The elastic strain field is very complicated, both inside and outside the constrained 

transformed region, and for this reason an analytic solution is not usually possible. If the 

transformed region is ellipsoidal in shape and the shape change is a uniform one (i.e., ellipsoidal 

to ellipsoidal), however, the mathematics become tractable as the stress and strain within the 

enclosed phase are uniform under these conditions [Clyne & Withers 1993]. 

5.2.2 Determination of Internal Mismatch Stresses  

 

Following Dunand et al. [1996], we apply the equivalent homogeneous inclusion model 

developed by Eshelby, who considered a random distribution of ellipsoidal inclusions in an 

isotropic matrix, both phases exhibiting different elastic constants. We use the solutions for 

nondilute systems.  

Thermal and transformation mismatch stresses: 

E100 = 125 GPa        elastic modulus of matrix 

ν = 0.35            Poisson’s ratio of matrix 

µ
−−

 = 28.199 GPa      shear modulus of matrix 

αm = 11x 10-6           average coefficient of thermal expansion for inclusion in K-1
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αm' = 8.5x 10-6        average coefficient of thermal expansion for martensitic matrix 

αi = 7.3x10-6             average coefficient of thermal expansion of matrix in K-1 

f = 0.1                      volume fraction of inclusions 

T0 = 756                  lowest temperature at which mismatch is zero in °C 

TR = 25                    room temperature °C 

Ms =70°C                martensite start temperature 

Mf =47°C                martensite finish temperature 

The equivalent transformation strain tensor εT is a function of the mismatch strain tensor ε* 

between matrix m and inclusion i. 

 εT = - {(Cm-Ci). [S-f (S-I)]-Cm}-1Ci ε*   (1) 

where f is the volume fraction of inclusions, I is the identity matrix, C is the stiffness tensor, 

and S is the Eshelby tensor. 

Here 
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=  Stiffness tensor of matrix 
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  Identity Matrix 

 

where f is the volume fraction, I is the identity matrix, C is the stiffness tensor, and S the 

Eshelby tensor for spherical particles, is only a function of the matrix Poisson’s ratio ν. The 

matrix mean internal stress tensor <σ>M and inclusion mean internal stress tensor <σ>I can then 

be calculated from equation (6) as 

< σ >m = - f Cm (S-I) εT        (2) 

< σ >i = (1 - f) Cm (S-I) εT    (3) 

The corresponding mean internal strain tensors <ε> for the matrix and inclusion are 

<ε>m= Cm
-1 < σ >m               (4)  

<ε>i   = Ci
-1 < σ >i                 (5) 
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and correspond to the average strains measured by neutron diffraction when no external load is 

applied on the composite. 

Dunand et al. [1996] assume that the total mismatch resulting from cooling of the composite 

from annealing temperature to room temperature TR is the sum of a thermal strain – resulting 

from the mismatch of coefficients of thermal expansion of matrix and inclusion- and a 

transformation strain-resulting from the phase transformation of the matrix in the presence of the 

nontransforming inclusions. 

First, the linear thermal mismatch strain resulting from cooling from the annealing 

temperature to Ms is  

εthA* = (αm - αi) (T0 - Ms)     (6) 

εthA* = 0.03526 

where αm is the austenitic matrix coefficient of thermal expansion, αi is the inclusion 

coefficient of thermal expansion, and T0 is the temperature at which the mismatch between the 

two phases is zero, corresponding to the annealing temperature if no relaxation takes place 

during cooling from the annealing temperature. Because diffusion and creep processes are rapid 

above a homologous temperature of 0.65, we assume that all thermal mismatch stresses are 

relaxed at this temperature, corresponding to T0=756°C for equiatomic NiTi. 

Second, the matrix allotropic transformation results in a linear expansion strain upon 

cooling from Ms to Mf. 

     εA-M*= 1
3

V
V
∆        (7) 
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εA-M* = 0.00354 

where ∆V/V is the fractional constrained volume change upon phase transformation and 

assuming that the phase transformation is purely hydrostatic in nature, i.e., that all shear strains 

are zero on average. This is expected for a textureless polycrystal, where the shear strains 

resulting from the transformation of individual variants are canceled by self-accommodation. 

Third, the linear thermal mismatch strain resulting from cooling the martensitic composite from 

cooling the martensitic composite from Mf to TR is 

εthM* = (αm' - αi) (Mf -TR)       (8)   

εthM* = 0.3 

where αm' is the martensitic matrix coefficient of thermal expansion. 

The total mismatch strain tensor ε* is found by adding the contributions of Eqs. [6] through 

[8] written in the simplified matrix notation of Nye [1985] as 

ε* = (εthA*+ εA-M*+ εthM*)[1, 1, 1, 0, 0, 0]                (9) 

ε* = 0.34 [1, 1, 1, 0, 0, 0] 

and neglecting higher order terms. 

The final matrix mean internal stress could be calculated as 

< σ >m = - f Cm (S-I) εT         

 

 

85 



6

30
30
30
010
0
0

mσ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

   Matrix mean internal stress in MPa 

 

Recently [Rajagopalan et al. 2005], have shown that stresses as low as 30 MPa can cause 

twinning in martensitic NiTi. This was confirmed by neutron diffraction experiments. Hence, 

based on an Eshelby approach we expect the coefficient of thermal mismatch stresses between 

the matrix and the inclusion to result in additional twinning. Thus, some of the twins observed in 

the images in Figure 34 could include those due to this coefficient of thermal mismatch stresses. 

 

5.2.3 Comparison with Spherical Indenter 

 

Repeated attempts were made to examine the matrix-inclusion interface for twins, but they 

proved unsuccessful. On the other hand, twins were clearly observed in the matrix, away from 

the matrix-inclusion interface. For an explanation for why the twins are not found at the 

interface, the analogy of an indenter was considered, where the maximum stress under the 

indenter is not at the point of contact but at some distance below the point of contact. 
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Figure 35: Diagram showing the maximum stress under the indenter 

Maximum stress under indenter is shown in Figure 35 [Rajagopalan et al. 2005]. The 

maximum stress under the indenter is at a distance of 0.48R, where R is the contact radius. 

Considering a spherical particle in the martensitic NiTi matrix, and fitting a curvature to the 

particle, a distance from the interface where the stress is maximal can be estimated. For the 

particle shown in Figure 36 this distance is of the order of 250 nm. This distance appears to agree 

with the distance of some of the observed twins from the matrix-inclusion interface. 
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a 

 

 

b 

Figure 36: The contact radius of the TiC particle for the spherical indenter analogy  
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CHAPTER SIX: R-Phase in NiTiFe 

6.1 Results 

 

NiTiFe samples for TEM were prepared by the in situ FIB technique and also by 

electropolishing. The processing of this material is described in Section 3.7. Figure 37 shows 

diffraction patterns at (a) room temperature, (b) -20ºC, (c) -60ºC and (d) -160ºC in the [111] 

beam direction. Figure 38 is the corresponding figure for the [110] beam direction and Figure 39 

is the corresponding figure for the [100] beam direction.  
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a b 

 

                

c d 

Figure 37: SADP of NiTiFe at (a) room temperature, (b) -20ºC, (c) -60ºC and (d) -160ºC for the 

[111] beam direction 
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a b 

             

d c 

Figure 38: SADP of NiTiFe at (a) room temperature, (b) -20ºC, (c) -60ºC and (d) -160ºC for the 

[110] beam direction 
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a b 

 

          

c d 

Figure 39: SADP of NiTiFe at (a) room temperature, (b) -20ºC, (c) -60ºC and (d) -160ºC for the 

[100]-beam direction 
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6.2 Discussion 

 

For the formation of R-phase, the composition of the alloy and heat treatment play a major 

role. From the literature, it is found that the R-phase transformation is characterized by a sharp 

increase in resistivity and appearance of super lattice reflections. In order to find the R-phase, the 

sample was prepared by electropolishing as well as by FIB techniques. For TEM, a cold stage 

was used where a special sample holder that can take the sample to the desired temperature was 

employed. The sample was taken from room temperature to –160 ºC using the cold stage. 

Differential Scanning Calorimetry and neutron diffraction measurements on identical samples 

have shown that the R-phase transformation occurs at -46 ºC [Lemanski 2005, Shmalo 2006]. 

Even though temperatures as low as -160 ºC were reached, it was surprising that the sample did 

not show any signs of R-phase such as appearance of superlattice reflections. The reason for the 

absence of R-phase is being investigated here under. 

The TEM images did not show any grain boundaries and thus it was possible that the 

sample was a single grain. Furthermore, any inhomogeneities such as precipitates were absent.  

Tan & Crone [2004], reported the formation of the R-phase near inhomogeneities like 

precipitates and dislocations. According to them, the R-phase nucleates at Ti11Ni14 precipitates as 

they have very similar crystal structures. Miyazaki & Wayman [1987], reported the formation of 

R-phase in single crystals during TEM, however they used an external straining mechanism to 

induce internal stresses.  We thus hypothesize that the stress-free nature of the NiTiFe sample 

investigated resulted in the failure to observe the R-phase.  
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CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK 

 

This work was initiated with the objective of connecting the macroscopic behavior in shape 

memory alloys with microstructural observations from TEM. Based on the work presented in the 

preceding chapters, the following conclusions can be drawn: 

1. Both in situ and ex situ versions of the FIB technique can be successfully used to fabricate 

shape memory alloy samples for TEM characterization. 

2. Less success was achieved using electropolishing and possible reasons include a temperature 

induced phase transformation while cooling with electrolyte with liquid nitrogen or oxidation of 

Ti that shifts the composition of the sample being prepared. 

3. As expected from conventional metallurgy principles, cold drawn samples qualitatively 

exhibited more texture compared to samples prepared by hot isostatic pressing (HIP). 

4. The Ni-rich NiTi samples were fully austenitic in the undeformed state. The introduction of 

plastic deformation (8% and 14% in the samples investigated) resulted in the stabilization of 

martensite in the unloaded state. An interlaying morphology of the austenite and martensite was 

observed and the martensite needles tended to orient themselves in preferred orientations. The 

aforementioned observations were more pronounced in mechanically cycled samples. 

Additionally, dislocations were seen at the interface between adjoining martensitic needles. E.g., 

the Burgers vector of such an edge dislocation was identified and confirmed using line profiles. 

5. The observed dislocations (especially in the cycled samples) are either (i) in a stable or locked 

configuration or (ii) are being shielded from the external applied stress since they are not 

associated with unrecoverable strain after a load-unload cycle. On application of stress, the 
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austenite transforms to martensite and in doing so can be expected to accommodate the stress 

and strain mismatch through preferential transformation, variant selection, reorientation and 

coalescence. The stabilized martensite (i.e., martensite that exists in the unloaded state) also can 

be expected to accommodate the mismatch through variant reorientation and coalescence.  The 

exact reason for the dislocation existing at the interface between adjoining martensitic needles is 

not clear. The following reasons were proposed: (i) It could serve to accommodate the mismatch 

between various variants in the stabilized martensite; (ii) it could be that the dislocations pin the 

martensite needles; (iii) it is also possible that the martensite is stabilized around the dislocations 

due to the stress field resulting from the dislocations. 

6. A martensitic NiTi sample was also thermally cycled through its transformation while loaded. 

Such a sample simulates a NiTi actuator in an engineering application. Significant variant 

coalescence, variant reorientation and preferred variant selection was observed as a result of the 

internal stresses generated because of the thermal cycling.  

7. A martensitic NiTi-TiC composite was also characterized. The interface between the matrix 

and the inclusion was free of twins while significant twins were observed at a distance away 

from the matrix-inclusion interface. A spherical indenter analogy was presented to explain this 

observation. An Eshelby homogenous equivalent inclusion approach was used to assess the 

magnitude of the thermal mismatch stresses between the matrix and the inclusion to determine if 

the stresses were high enough to cause additional twinning. 

8. Incorporating a cold stage, diffraction patterns were obtained at temperatures as low as -160ºC 

in order to observe the R-phase in NiTiFe. However, the R-phase was not observed and reasons 

for this were presented. 

 

95 



Thus the above conclusion provides insight in to deformation phenomena in shape memory 

materials that have implications for engineering applications (e.g., cyclic performance of 

actuators, engineering life of superelastic components and low-hysteresis R-phase based 

actuators).  In terms of future work, the following is proposed: 

1. Further investigation to examine the reason for being unable to obtain the R-phase at -160ºC 

when differential scanning calorimetry and neutron diffraction measurements confirm such a 

transformation. 

2. Further investigation to prepare shape memory samples for TEM using electropolishing and to 

avoid the R-phase transformation. 

3. To examine the NiTi-TiC interface more carefully for possible stress and strain 

accommodation mechanisms. 
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APPENDIX: LATTICE PARAMETERS 
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Austenite lattice parameter used was a=0.3007 nm [Villars and Calvert, 1991] 

 

Table 2 : Properties of reflections in “kinematic diffraction” patterns of the austenite 

h k l 1
dhkl

 [nm-1] 
Multiplicity  Relative Intensity 

0 0 1 3.3256 6 1.0489 

1 0 1 4.7031 12 1000.00 

1 1 1 5.7601 8 0.2123 

0 0 2 6.6511 6 167.5578 

1 0 2 7.4362 24 1.1614 

1 1 2 8.1460 24 325.5342 

2 0 2 9.4061 12 94.0165 

2 1 2 9.9767 24 0.8228 

0 0 3 9.9767 6 0.2057 

1 0 3 10.5164 24 119.6295 

1 1 3 11.0297 24 0.6951 

2 2 2 11.5201 8 26.8965 

2 0 3 11.9905 24 0.6013 

2 1 3 12.4432 48 113.1572 

0 0 4 13.3023 6 10.2042 

2 2 3 13.7117 24 0.4490 

1 0 4 13.7117 24 0.4490 

1 1 4 14.1092 36 45.1819 
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Martensite lattice parameter used was a=0.2898 nm, b= 0.4108, c=0.4646, β=97.8° [Villars and 

Calvert, 1991] 

 

Table 3: Properties of reflections in “kinematic diffraction” patterns of the martensite 

h k l 1
dhkl

 [nm-1] 
Multiplicity Relative Intensity 

-1 0 0 2.1789 2 17.8868 

1 1 0 3.2231 4 7.3902 

0 0 1 3.4908 2 1.6103 

-1 0 1 3.8900 2 102.6104 

0 1 1 4.2221 4 97.4969 

1 0 1 4.3283 2 25.6646 

2 0 0 4.3578 2 516.0199 

-1 1 1 4.5577 4 1000.00 

0 2 0 4.7500 2 567.6440 

1 1 1 4.9371 4 954.0109 

-2 1 0 4.9630 4 260.1963 

1 2 0 5.2259 4 7.4207 

-2 0 1 5.2510 2 19.8671 

-2 1 1 5.7632 4 83.1274 

0 2 1 5.8948 4 0.4411 

2 0 1 5.8973 2 1.7480 

-1 2 1 6.1396 4 60.2997 

2 1 1 6.3576 4 0.7658 

1 2 1 6.4263 4 14.2711 

2 2 0 6.4462 4 314.4082 

99 



-3 0 0 6.5367 2 10.7990 

-3 1 0 6.9548 4 6.7790 

0 0 2 6.9815 2 127.0658 

-3 0 1 7.0363 2 81.8974 

-1 0 2 7.0631 2 46.8761 

-2 2 1 7.0807 4 10.9842 

0 1 2 7.3744 4 8.9882 

-3 1 1 7.4264 4 74.1513 

1 3 0 7.4517 8 15.2474 

1 0 2 7.5559 2 20.0580 

2 2 1 7.5724 4 3.2624 

3 0 1 7.7664 2 53.4499 

-2 0 2 7.7799 2 37.1677 

1 1 2 7.9204 4 3.8649 

0 3 1 7.9342 4 14.4075 

-3 2 0 8.0803 4 12.8454 

-1 3 1 8.1178 4 156.7085 

3 1 1 8.1214 4 112.8638 

-2 1 2 8.1344 4 61.1022 

1 3 1 8.3367 4 176.0234 

2 3 0 8.3520 4 50.4544 

0 2 2 8.4442 4 131.0103 

-3 2 1 8.4896 4 87.8053 

-1 2 2 8.5117 4 51.0326 

2 0 2 8.6566 2 64.8159 

-4 0 0 8.7156 2 13.2508 

-2 3 1 8.8510 4 23.7247 

1 2 2 8.9249 4 21.9813 

2 1 2 8.9765 4 14.5788 

100 



-3 0 2 8.9812 2 15.2112 

-4 0 1 8.9968 2 16.4411 

4 1 0 9.0334 4 100.3174 

3 2 1 9.1038 4 60.8491 

-2 2 2 9.1154 4 40.7509 

2 3 1 9.2490 4 0.0230 

-3 2 1 9.2900 4 34.2974 

-4 1 1 9.3050 4 12.7630 

0 4 0 9.5001 2 58.1216 

-3 3 0 9.6693 4 1.1514 

-1 4 0 9.7467 4 1.5102 

4 0 1 9.7648 2 0.0108 

2 2 2 9.8742 4 80.6196 

-4 2 0 9.9259 4 15.8662 

0 3 2 9.9754 4 3.9641 

-3 3 1 10.0138 4 23.4929 

-1 3 2 10.0326 4 1.5351 
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