
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2006 

Automated Adaptive Data Center Generation For Meshless Automated Adaptive Data Center Generation For Meshless 

Methods Methods 

Eric Mitteff 
University of Central Florida 

 Part of the Mechanical Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Mitteff, Eric, "Automated Adaptive Data Center Generation For Meshless Methods" (2006). Electronic 
Theses and Dissertations, 2004-2019. 761. 
https://stars.library.ucf.edu/etd/761 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236296559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/293?utm_source=stars.library.ucf.edu%2Fetd%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/761?utm_source=stars.library.ucf.edu%2Fetd%2F761&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


AUTOMATED ADAPTIVE DATA
CENTER GENERATION FOR

MESHLESS METHODS

by

ERIC ALAN MITTEFF
B. S. University of Central Florida, 2004

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Mechanical, Materials, and Aerospace Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2006



ii

ABSTRACT

Meshless methods have recently received much attention but are yet to reach their full potential

as the required problem setup (i.e. collocation point distribution) is still significant and far from

automated. The distribution of points still closely resembles the nodes of finite volume-type

meshes and the free parameter, , of the radial-basis expansion functions (RBF) still must bec

tailored specifically to a problem. The localized meshless collocation method investigated

requires a local influence region, or topology, used as the expansion medium to produce the

required field derivatives. Tests have shown a regular cartesian point distribution produces

optimal results, however, in order to maintain a locally cartesian point distribution a recursive

quadtree scheme is herein proposed. The quadtree method allows modeling of irregular

geometries and refinement of regions of interest and it lends itself for full automation, thus,

reducing problem setup efforts. Furthermore, the construction of the localized expansion regions

is closely tied up to the point distribution process and, hence, incorporated into the automated

sequence. This also allows for the optimization of the RBF free parameter on a local basis to

achieve a desired level of accuracy in the expansion. In addition, an optimized auto-

segmentation process is adopted to distribute and balance the problem loads throughout a

parallel computational environment while minimizing communication requirements.
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CHAPTER 1

INTRODUCTION

 Traditional computational techniques such as finite difference and finite volume methods

(FDM and FVM) [1,2], the finite element method (FEM) [3] and the boundary element method

(BEM) [4-6] have been efficiently and routinely applied to an assortment of science and

engineering field problems.  Despite the great success of these numerical methods they all have a

common drawback, for most cases the time consumed in mesh generation or preprocessing is

greater than that of the time consumed for the actual computation.  For example, the generation

of a typical 3D mesh over a film-cooled turbine blade may take several weeks, while the

computation itself may take only a few hours on a high performance computer.  Recently,

meshless or mesh-free methods have become a topic of much research in an attempt to mitigate

or reduce the effort and time needed for modeling of a solution domain.  The great benefit of the

meshless methods is that they do not require a nodal connectivity or mesh which is the source of

much burden in a mesh method such as FEM, FDM or FVM.  Without the need for a mesh nodal

points must still be generated in a somewhat uniform manner.  One such approach can be

obtained through quadtree subdivision.  Here, a fully autonomous procedure is developed to

employ quadtree subdivision to meshless models for the purpose modeling regular and irregular

geometries.

 Parallelizing computational solvers have made efficient use of multiple processors for

traditional mesh methods as well as global meshless methods.  The burden of parallelizing a

domain lies with the model preprocessing stage which requires manual decomposition

techniques.  Traditionally, decomposed meshless models required the use of artificial interior

boundaries, or interfaces, in order to iteratively solve independent well posed problems [7].
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With the introduction of a localized meshless collocation method, fully bounded sub domains are

not a necessity due the nature of the explicit solution schemes.  This allows the solution of a

partial domain for each individual iteration given that the information from the previous iteration

is made available.  An automated parallel segmentation will be developed through the use of

Voronoï cells, or Dirichlet tessellation to break up the domain into segments for distribution to

multiple processors.

 This thesis will begin by reviewing the fundamental developments of both the global

meshless methods and the local meshless methods and the controlling parameters that affect their

behavior.  This will introduce the problems encountered and set the stage for the motivation of

this thesis to address these issues.  Next, the automated data center distribution techniques will

be discussed along with an implementation of a dynamic adaptive algorithm as well.  Following

this, a method of gathering neighboring points, called a local expansion, will be described which

will is used by the local meshless methods to declare the scope of the influence of the domain

upon each data center in the field.  Once the local expansions are defined, the free parameter, or

the shape parameter , will be optimized by analyzing various aspects of the dependent-

functions.  Specifically, this section will address the issues corresponding to accuracy and

conditioning of the collocation matrices.  Then, a method will be developed to decrease the total

computation time through the use of parallel machines.  This will be achieved by segmenting the

problem into smaller pieces, as described earlier, by respecting the relative computing power of

each processor while minimizing total communication effort between processors.  Finally,

verification with examples will show that dynamic models can be made effortlessly and total

computation time can be significantly reduced with an automated segmentation routine.
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CHAPTER 2

MESHLESS METHODS

 Traditionally, solving engineering problems involved the use of a mesh method such as

finite elements, finite volume, finite differencing or boundary elements.  Each of these methods

all require some form of meshing or nodal connectivity during the preprocessing stage of any

analysis.  With the continuous advancement of affordable computing power analysts are solving

much larger and more complex problems which, in turn, leads to extended preprocessing time.  It

is this preprocessing, or meshing, that is quickly becoming the most time consuming part of

model development for a complex system.  The goal of the meshless methods is to completely

remove this preprocessing stage by removing the need for meshing all together, hence, the term

meshless methods.  The meshless methods are based on radial basis functions that interpolate

field data from neighboring data centers regardless of their spatial distribution.  It is this freedom

from structured node distribution that make this method so appealing to researchers.

 Two basic types of meshless methods were recently developed; global and local.  The

global meshless methods relied upon interpolating over an entire field domain for evaluation at

any given point in space, whereas the local meshless methods interpolated a field variable over

only a small region, or locally.

2.1 Global Meshless Methods

 Global meshless methods rely in the fact that a given domain, , can be interpolated byH

collocating about the data centers with some radial basis function, .  For the arbitrary region;ÐBÑ

shown in figure 0,
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Ω
 

Figure 1 - Arbitrary Global Domain

which can be described by some function , the global meshless collocation is given by0ÐBÑ

equation 1.

0ÐBÑ œ ÐBÑ Ð Ñ�
3œ"

R

3 3α ; 1

where  is the total number of points in the domain,  is the expansion coefficients for , andR 0α3

;3 is the basis functions.  If the field variable, , is known at the collocation points then the basis0

function , can be evaluated at the collocation points.  Given the values that are known, the only;

unknown in this equation is the expansion coefficient vector, .α

 The radial basis functions, , consist of algebraic expressions defined in terms of the;

Euclidian distance from an 'expansion point' or data center to a general field point.  Several

radial basis functions that have been investigated include:

 i) Polyharmonic Splines:

;4 44
#8ÐBÑ œ < ÐBÑ68Ð< ÐBÑÑ 38 #H ÐÑ

;4 4
#8"ÐBÑ œ < ÐBÑ 38 $H ÐÑ
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 ii) Multiquadrics:

;4
# # 8
4ÐBÑ œ Ò< ÐBÑ  - Ó ÐÑ

$
#

 iii) Gaussian:

;4
4
#

#
ÐBÑ œ /B:  ÐÑ

< ÐBÑ

-
” •

 where:

< ÐBÑ œ ÐB  B Ñ  ÐC  C Ñ 38 #H4 4 4
# #É       

In each of the proposed radial basis functions the parameter  is some positive integer and the8

free parameter , which is sometimes referred to as the shape parameter, governs the accuracy of-

the interpolation.  For example, figure 2 shows the response of the Hardy Multiquadric RBF,

where .8 œ "

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.2

0.4

0.6

0.8

1

Collocation Points
c = 0.001
c = 0.01
c = 1.0

 

Figure 2 - Example of dependency of the shape parameter for Multiquadric RBF's
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The resulting interpolation is heavily dependant upon the free parameter, , which is left for-

optimization later in this paper.

2.2 Local Meshless Methods

 The local meshless technique is based on the global meshless method in that it still uses

the idea of solving for expansion coefficients to interpolate the field variable, however, instead

of building a single large set of expansion coefficients for the entire domain, a small set of

expansion coefficients are built for each data center.

Ω
Figure 3 - Arbitrary Local Domains

These small sets of expansion coefficients are based on the influence of neighboring points that

create smaller sub-domains, or local expansions, as shown in figure 0. This allows for an explicit

iterative solution process while the global meshless methods are implicit in nature which are

based on the direct solution of a large fully populated matrix.  The local meshless methods

involve many small vector multiplications similar to an explicit finite difference method which

helps to alleviate much of the computational burden imposed by solving large, ill-conditioned

matrices which leads to more consistent reliable solutions.
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CHAPTER 3

QUADTREE

 Although meshless methods do not require a mesh, they do,  however, require a point

distribution throughout the domain.  The point distribution can be accomplished through an array

of automated techniques such as Delaunay, advancing front or a recursive quadtree method.

 Past research[7] has shown that although a non-uniform point distribution can be used for

solving problems in meshless methods, uniform distributions have proven to produce superior

results for both linear and non-linear problems.  Also, distributing points in a uniform fashion is

a trivial task relative to other unstructured methods. It is for these reasons that a cartesian based

point distribution method was chosen as the method of choice.  Quadtree methods, based on the

cartesian coordinate system, lends itself for full automation to produce uniformly distributed data

centers as well as the intrinsic ability to recursively cluster areas of interest such as boundary

layers or vortices.  This frees the analyst from spending undue effort meshing a given geometry.

 A quadtree is a tree data structure whose construction is based on the recursive

decomposition of the cartesian plane [8].  Specifically, a region based quadtree is defined by the

recursive partitioning of the cartesian plane into four equally sized quadrants which lie parallel

to the coordinate axis.  This recursion can be repeated until a model resolution criterion or

partitioning limit is achieved.

 The quadtree method has the ability to model irregular geometries and refinement of

areas of interest and it lends itself the ability for complete automation.  Complete automation

leads to a reduced amount of effort and time by the user.  The use of a quadtree method has the

capability to trace the boundary by clustering quadtrees to gain resolution for good model

geometry approximation.  Figure 4 shows an example of the procedure that is undergone to bring
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an initial quadtree discretization to the final quadtree discretization followed by the boundary

and interior point insertion.  The corners of the quadtree squares that lie on the boundary become

a boundary point whereas any other quadtree corner that lies within the enclosed boundary

becomes an interior point.

Level 0

Level 1

Level 2

Level 0

Level 1

Level 2

Figure 4 - Application of quadtree to an arbitrary geometry; (a) initial quadtree distribution, (b)
quadtree blocks refined near boundaries, (c) boundary and interior nodes placed at quadtree
block corners, (d) final data center distribution
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 Due to the autonomous nature of the nodal point generation it is conceivable that the

generation of the data centers can be in response to a field variable, such as a large gradient,

during the solution process.  Areas that have a large gradient will generally require a higher

resolution than other areas to accurately capture any behavior such as a fluid boundary layer with

no-slip conditions imposed.
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CHAPTER 4

LOCAL EXPANSION

 The localized meshless collocation method investigated requires a local influence region,

or topology, used as the expansion medium to produce the required field derivatives.  The

creation of the local expansion regions is accomplished by incrementally inflating a circle to

encompass other data centers until some criteria has been met, typically a fixed number of points

of influence.  Although including only a small number of points in a local expansion will result

in less computational effort, they may not always produce an accurate interpolation of the field

variable or any differential of the field variable.  On the other hand, an excessive amount of

points may produce a smoother field interpolation or differential but radial basis functions are

notorious for their oscillative behavior between data centers.  Also, expansions with a large

number of points results in large expansion matrices which, in turn, leads to additional roundoff

errors and extended computation time requirements.  A balance between the two must be

achieved for a given governing equation through trial and error methods or other optimization

techniques.
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Figure 5 - Radial inflation about an interior, boundary and clustered data centers

 The inflating bubble around a data center is initially set to one and a half times the

distance to the nearest point, .  The initial bubble radius is sufficient enough to capture the<738

required points if they are distributed across a perfectly cartesian grid.  Otherwise, the bubble is

incrementally increased in size by a factor of  until all the necessary number of points are<738

captured by the local expansion as shown in Figure 5.  In the case of a local expansion about a

boundary point care is taken not to accidentally acquire points that exist on the outside of the

local area of interest, such as a point around the corner of a reentrant region.



12

CHAPTER 5

FREE PARAMETER

 Increasing the free parameter , which is commonly referred to as the shape parameter,-

controls the flattening characteristic of the expansion functions, such as Equation (3).  The flat

character of the expansion functions is favorable in the sense that a smoother and more accurate

representation of the field variable can be achieved [9,10].  However, as the expansion functions

are flattened by an increase in the free parameter , the simultaneous system of linear equations-

becomes more ill-conditioned.

 As an example of the influence that the free parameter imposes a sample problem was

studied.  Figure 6 shows a domain the size of the unit square containing 25 points for an RBF

collocation.

Figure 6 - Sample domain of influence
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 A simple function was applied in order to give each point in the domain a field value.

This particular function was chosen  to have a Laplacian of  and a non-zero cross derivative as!

shown in equations 2.

XÐBß CÑ œ B C  BC$ $ (2)

`X

`B
œ $B C  C# $

` X

`B
œ 'BC

#

#

` X

`B`C
œ $B  $C

#
# #

f X œ !#

 The collocation matrix, , can be built using the inverse multiquadric radial basisG

function as demonstrated in equations 3 and 4.

<4

4
# #

ÐBÑ œ
"

< ÐBÑ  -É (3)

G <34 4 3Ð-Ñ œ ÐB Ñ (4)

 Figure 7 shows the exact field variable, , and resulting RBF interpolation for variousX

values for the free parameter, .  For small values of  the field is not approximated very well,- -

but as  increases the field behaves better.-
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Figure 7 - Field variable, , over sample domain (a) exact, (b) with , (c)  and (d)X - œ !Þ" - œ "Þ#
- œ #!

 The first derivative of the field variable, , shown in figure 8 is again well behaved for`X
`B

larger values of .-

Figure 8 - First derivative, , over sample domain (a) exact, (b) with , (c)  and`X
`B - œ !Þ" - œ "Þ#

(d) - œ #!

 The behavior of the second derivative, , produces unacceptable results for small` X
`B

#

#

values of  and once again appears to be stable for larger  values as shown in figure 9.- -
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Figure 9 - Second derivative, , over sample domain (a) exact, (b) with , (c) ` X
`B

#

# - œ !Þ" - œ "Þ#

and (d) - œ #!

 Once again, the cross derivative of the field variable, , is ill-behaved for small  valuesX -

and produces seemingly well behaved results for larger  values.-

Figure 10 - Cross derivative, , over sample domain (a) exact, (b) with , (c) ` X
`B`

#

y - œ !Þ" - œ "Þ#

and (d) - œ #!
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 The question could be asked of which value of  should be chosen.  A graph was-

produced to show the relationship between the free parameter, , and the relative error of the-

field derivatives at the collocation points which can be seen in figure 11.  The error clearly

decreases as  increases, however, a point is reached in which the error sharply increases.  The-

goal is to find the optimum  that yields the most accurate results.-

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0.1 1 10 100

free parameter, c

%
 E

rr
or

dF/dx
d2T/dxdy
d2T/dx^2

Figure 11 - Percent error vs. free parameter, .-
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 The reason for the sharp increase in the error as the free parameter, , increases is due to-

the fact that the collocation matrix, , becomes linearly dependent.  The linear dependency, orG

level of singularity, can be quantified by finding the conditioning number of the collocation

matrix itself.  The conditioning number is found by dividing the largest element by the smallest

element in the resulting matrix produced by singular value decomposition of the collocation

matrix which is shown below in equation 5.

OÐ-Ñ œ
Q+BÒWZ HÐ ÑÓ

Q38ÒWZ HÐ ÑÓ

G

G
(5)

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
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1.E+14
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1.E+19
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m

be
r (
Ψ

)

Figure 12 - Conditioning number of the collocation matrix,  vs. free parameter, G -



18

 Now, viewing the error as a function of the conditioning number of the collocation matrix

in figure 13, instead of as a function of the free parameter as in figure 11, gives a range of

acceptable conditioning numbers to target.  The free parameter, , can be backed out given a-

conditioning number through a series of iterations such as the procedure proposed in figure 15.

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10 1.E+12 1.E+14 1.E+16 1.E+18 1.E+20

conditioning number (Ψ)

%
 E

rr
or

dF/dx
d2T/dxdy
d2T/dx^2

Figure 13 - Percent error vs. conditioning number of the collocation matrix, G
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 In an effort to maximize accuracy, the free parameter , will be selected such that the-

conditioning number of the resulting collocation matrix will be forced to a value of  through"!"#

a series of linear searches with an initial guess of about forty times the average distance between

nodes of a given topology where:

< œ <
"

R
+@1 3

3œ

R�
1

(6)

Figure 14 - Typical topology nodal distribution

 Once an initial  value is selected the collocation matrix is built and the conditioning-

number then found.  If the conditioning number is too low then  is increases by a factor of .- "Þ"

If the conditioning number is too high then  is multiplied by a factor of .  This procedure is- !Þ*&

repeated until the target conditioning number is produced.
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no

yes

yes

no

Done

nono

yesyes

yesyes

nono

DoneDone
Figure 15 - Iterative procedure for finding the free parameter, -
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CHAPTER 6

PARALLEL SEGMENTATION

 One of the easiest ways to minimize the computational time necessary to solve a given

problem is to implement a parallel approach.  In order to maintain autonomy a procedure must be

devised to methodically decompose, or segment, a model of interest.  Dirichlet [11] first

proposed a method whereby given a set of points P , in arbitrary space, could be systematicallyi

decomposed into a set of convex regions R  such that the region R  is the space closer to point Pi i i

than any other point.  This geometrical construction, known as Dirichlet tessellation, results in a

set of non overlapping convex regions called Voronoï regions.  Each Voronoï region is then

assigned to a processor and each node within that region is assigned to that processor.  With the

nodes grouped into regions only the nodes that require information from nodes in other regions

need to be communicated thereby creating a need to minimize the amount of nodes that need

their data passed between processors.  Also, the number of nodes in each Voronoï region needs

to be optimized to fit the processor in a given cluster.  The geometric placement of the processor

points, P , governs both the size of each region and the communication effort betweeni

processors.  Therefore, the geometric placement of the processor nodes can be optimized by

employing a discrete genetic algorithm.
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Figure 16 - Auto-segmentation through Voronoï cells; (a) Point distribution, (b) Delaney
triangulation, (c) triangulation and Voronoï diagram, (d) Voronoï cells

J3>8/== œ RT RT  † RG
"

RË �c d3ß9:>37+6 3ß+->?+6 +->?+6
# " (7)

 Here, N is the number of Voronoï processor regions, NP  is the number of nodes withini

R , NC is the number of nodes that are required to be communicated between processors and  isi "

a tuning parameter dependent upon the performance and communication abilities of a given

cluster.  The objective is to minimize the fitness function such that the nodes are distributed
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proportionally based on individual machine performance and communication of nodal data is

minimized.

Figure 17 - Sample segmentation individuals; (a) node distribution is optimal but communication
is not (b) communication is optimal but node distribution is not (c) both node distribution and
communication are optimal

 Figure 17 shows an example of three potential cases produced by the genetic algorithm.

The first case is proportionally well distributed but communication may be prohibitively slow.

On the other hand, the second case shows a good example of optimal communication

requirements however, they are not proportionally well fit for similar processors.  The third case
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represents the optimal configuration; minimal communication and proportionally well

distributed.
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CHAPTER 7

RESULTS

 The quadtree nodal distribution routine was employed for several cases to test the

capabilities over an irregularly shaped geometry.  Also, the ability to repetitively generate nodal

distributions for moving geometries was tested for a moving wave.  The local expansion method,

which is used to define local topologies, was tested on a discretized artery with a bypass graft.

Finally, the auto-segmentation routine was employed to test the ability to break domains into

smaller groups for efficient parallel computation.
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7.1 Quadtree

    

    
Figure 18 - Point generation over a cavity.  Green cells represent regions within the domain,
white cells are outside the domain and blue cells lie on the geometric boundary; (a) Initial
quadtree distribution, (b) close up to edge, (c) final quadtree distribution, (d) final nodal
distribution
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 A cavity is subjected to a quadtree discretization as shown in Fig. 18.  As the cavity

boundary is discretized the desired level of model resolution is achieved.  After five levels of

discretization beyond the initial quadtree distribution the cavity boundary is well approximated

while maintaining a perfect Cartesian nodal distribution.

  

  
Figure 19 - Adaptive data center insertion for a moving wave

 A liquid-gas interface is remodeled at every time step to capture the behavior of a moving

wave in figure 19.  The clustering of the points near the interface assure accurate modeling for

high resolution computations.
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Figure 20 - Adaptive data center insertion for heat conduction

 Another example involving the adaptive data center insertion capabilities is that of

reacting to a field gradient to cluster in areas of high activity.  Figure 20 shows the initial point

distribution followed by later time steps.  Even early on during the solution the adaptive data

center insertion algorithm was called upon to examine the field for large gradients for

modification to the current nodal point distribution. This was effectively carried out and

maintained an appropriate point distribution for maximum accuracy while still minimizing

solution time.  Also, due to the autonomous nature of the algorithm, absolutely no user

interaction was required to make modifications to the data center distribution during the solution

process, only requiring a few governing parameters to control the behavior and limits.
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Figure 21 - Solution times for dynamic nodal point generation

 Looking at the solution times required for the different geometries, the time was nearly

cut in half while still maintaining good accuracy.
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7.2 Local expansion

Figure 22 - Collocation topology for internal, boundary, and corner data centers

 The re-entrant region of an artery with a bypass graft was studied for the sake of

verifying the ability of the local expansion to properly select nodal neighbors and exclude nodes

that lie on or within an opposing boundary, such as near the re-entrant region.
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7.3 Auto segmentation

 Below is an example of the resulting quadtree point distribution with automated auto-

segmentation produced for the artery bypass graft problem as generated by the adaptive genetic

algorithm described in chapter 5. Each region to be assigned to a specific processor is color-

coded, here we illustrate the use of 5 equally capable processors in a parallel computation.

Clearly, the objectives of proportional node distribution based on individual processor

performance and minimization of nodal data communication are achieved.

Figure 23 - Auto-segmentation evolution for a bypass graft
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 Although trivial in nature, the square in figure 24 effectively demonstrated the ability of

the automated segmentation algorithm to choose between using two processors and three

processors.  Ultimately, the additional communication cost of adding the third processor was

outweighed by the reduced computational time.

Figure 24 - Auto-segmentation evolution for a square
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 All of the automated segmentation examples up to this point did not involve clustering of

any kind.  Figure 25 is a model of flow over a cylinder with clustering downstream from the

cylinder to the exit.  Having allowed the model to be spread across seven or more processors, the

auto segmentation found that using more than five processors would introduce unnecessary

communication effort, and thus, reduced the number of processors to only five.

   

   

   
Figure 25 - Auto-segmentation evolution for flow over a cylinder
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Figure 26 - Evolution of the objective function of the genetic algorithm
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CHAPTER 8

CONCLUSIONS

 In this paper, a recursive quadtree scheme was developed for the point distribution of a

localized meshless collocation method in order to maintain a locally cartesian grid at each of the

regions of influence or topologies. The quadtree method allows modeling of irregular geometries

and refinement of regions of interest and it lends itself for full automation, thus, reducing

problem setup efforts. Furthermore, the construction of the localized expansion regions is closely

tied up to the point distribution process and, hence, incorporated into the automated sequence.

This also allows for the optimization of the RBF free parameter on a local basis to achieve a

desired level of accuracy in the expansion. In addition, an optimized auto-segmentation process

is adopted to distribute and balance the problem loads throughout a parallel computational

environment while minimizing communication requirements.
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