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ABSTRACT

This dissertation undertakes theoretical and computational research to
characterize and understand in detail atomic configurations and electronic structural
properties of surfaces and interfaces at the nano-scale, with particular emphasis on
identifying the factors that control atomic-scale diffusion and transport properties. The
overarching goal is to outline, with examples, a predictive modeling procedure of stable
structures of novel materials that, on the one hand, facilitates a better understanding of
experimental results, and on the other hand, provide guidelines for future experimental
work. The results of this dissertation are useful in future miniaturization of electronic
devices, predicting and engineering functional novel nanostructures. A variety of
theoretical and computational tools with different degrees of accuracy is used to study
problems in different time and length scales. Interactions between the atoms are derived
using both ab-initio methods based on Density Functional Theory (DFT), as well as semi-
empirical approaches such as those embodied in the Embedded Atom Method (EAM),
depending on the scale of the problem at hand. The energetics for a variety of surface
phenomena (adsorption, desorption, diffusion, and reactions) are calculated using either
DFT or EAM, as feasible. For simulating dynamic processes such as diffusion of ad-
atoms on surfaces with dislocations the Molecular Dynamics (MD) method is applied.
To calculate vibrational mode frequencies, the infinitesimal displacement method is
employed. The combination of non-equilibrium Green’s function (NEGF) and DFT is
used to calculate electronic transport properties of molecular devices as well as interfaces

and junctions.
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a function of the number of layers, N, taken from [135]; (b) Calculated total
DOSEgr(N) of a Mg(0001) slab (taken from [136]); (c) Calculated LDOSgg(N) of the
surface atoms of Mg(0001). The dashed line is a guide for the eye to compare the

maxima/minima of the oxidation rate as a function of N with those of the calculation

Figure 5-7. (Calculated in-plane (pytpy+dxytdso.y2) PLDOS of the first- and second-layer
atoms of Mg(0001) for varying N (a) from 4 to 6; (b) from 6 to 8; (c¢) from 8 to10;
(d) from 10 to 13; (e) from 13 to 16; and (f) from 17 to19. The PLDOS scale in each
inset is the same. The arrows are a guide for the eye to identify the centroids of the
PLDOS peaks around Er and recognize how they shift as a function of number of
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Figure 5-8. Comparison between experiment and theories to explain the oxidation rate of
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Mg 2p spectrum (indicative of the oxidation rate) as a function of the number of
layers, N, taken from [135]; (b) Calculated in-plane (px+py+dyy+dx2-y2) PLDOSEgR(N)
of the first- and second-layer atoms of Mg(0001); (c) Mg electronic charge density
decay length into vacuum (calculated in analogy with the penetration depth of a
wave-function into the classically forbidden region of the three dimensional finite
square well) as a function of N, taken from [137]. The dashed line is a guide for the
eye to compare the maxima/minima of the oxidation rate as a function of N with
those of the calculation [106]........cc.eeeeiiiiiiiiiiieeeeeee e 125
Figure 5-9. Fig. 4 from [130] 2D Electron-density-difference distributions near the
relaxed Mg(0001) surface relative to the average electron density in the bulk
expressed as a percentage of the latter and cut along the (10-10) plane. The atomic
configuration commensurates with the optimized positions calculated in the LDA is
also shown. Darker grey is used to indicate regions with smaller charge density
while lighter shades represent regions with charge density above average.
[Copyright included in AppendixX A]......ccceeviieiienieeiieieee et 127
Figure 5-10. Change in the charge density profiles perpendicular to the surface for the
bulk-truncated surfaces of Mg(0001). The electron densities are normalized by the
average bulk value The figures are adopted from (a) Fig. 4 (Cho et al.), (b) Fig. 1
(Staikov et al.) and (c) Fig.1 (Wachowicz et al.) of references [129, 134, 141].
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XixX
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CHAPTER 1.INTRODUCTION

Construction and application of nanostructured surface and interface is an active multi-
interdisciplinary research area involving physics, chemistry, materials science, and biology.
Methods used for fabrication of nanostructured surfaces and interfaces are commonly catalogued
as “top-down” or “bottom-up”, or a combination of these. Examples are lithography (top-down),
soft-lithography  (combination), self-assembly (bottom-up), and chemical synthesis

(combination: synthesis of nano-entities with controlled surface and interface).

Understanding phenomena on surfaces has been one of the long-term goals of material
science for the sake of technological applications. For example, understanding of the underlying
electronic factors governing chemical activity can be the key to the engineering of surfaces with
such features. To understand the physical and chemical phenomena at nanometer scale on
structured surfaces and interfaces, we need to understand the interaction of functional small
molecules and of nano-entities with nanostructured surfaces and interfaces. Of particular interest
is the role of nanostructured surfaces and interfaces in unconventional chemical reactions. Such
roles be further associated with the local physical properties of these surfaces and interfaces,

thanks to scanning probe microscopy and other surface-sensitive methods for characterization.

The use of structured surfaces and interfaces as platforms offers the prospect of realizing
new types of functional materials and devices. High performances are expected, e.g. increased
conductivity with reduced size and structural ordering of sensing materials, and unconventional

physical properties of chemicals prepared by on-surface chemistry.

As noted when the U.S. national nanotechnology research agenda was first conceived,
“fundamental understanding and highly accurate predictive methods are critical to successful
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manufacturing of nanostructured materials, devices and systems” (Roco Williams, and P.
Alivisatos 1999, 25). Over the past ten years, the main focus in theory, modeling and simulation
research has been on explaining the properties of materials and devises in terms of the geometric
and electronic structures of matter at the nanoscale. Consequently, theory, modeling, and
simulation have played an essential role in developing a fundamental understanding of nano-

scale building blocks [1].

Computer experiments play a very significant role in science today. In the past, physical
sciences were distinguished by interplay between experiment and theory. In experiment, results
(in numeric form) are obtained from a set of systematic measurements. In theory, a model of the
system is constructed as a set of mathematical concepts and equations. The theoretical based
model is then validated by its capability to describe the system’s behavior in a few simple cases

in special circumstances that make it easy to solve [2].

Physical
Experiment

Predictive modeling

[Computer experiment]

Figure 1-1. Interplay between theory, experiment and simulation.

Unfortunately, many real physical problems of extreme interest is beyond the realm of
these special circumstances. Among different special circumstances, one could mention the
physics and chemistry of surfaces, defects, organic molecules and clusters of atoms — all of

which involves a large number of degrees of freedom. Nowadays, the advent of high speed



computers changed the picture by inserting a new element right in between experiment and
theory: the computer experiment. In this way, complexity can be introduced to investigate more

realistic systems, opening a road towards a better understanding of real experiments [2].

On one side, computer simulations raised the demand for accuracy of the models.
Therefore, simulation brings to life the theoretical models, disclosing critical areas and providing
suggestions to improve them. On the other side, simulation can often mimic experimental
conditions, to the extent that computer results can sometimes be compared directly with
experimental results. Therefore, simulation becomes an exceedingly powerful tool not only for
understanding and interpreting the experiments at the microscopic level, but also for studying
regions which are not accessible experimentally, or which would need very expensive
experiments. Simulation can even explore a set of possible possibilities in advance of experiment
with an eye to distinguishing more promising from less promising avenues for eventual

experimental and engineering investigation.

Design of novel nano-electronic devices is challenging because it requires one to take
into account not only the device-level quantum effects due to miniaturization, but also the
changes in properties of the material itself, which can once again be explained by quantum
mechanics. As an example consider the case of single-layer molybdenum disulfide, which is
considered a transistor material. While owing to challenges in fabrication and manufacture, such
a transistor is as yet far from production , the calculational demonstration of its properties is a
clear indicator of two characteristics of the future semiconductor devices in general: (a) because
the nature and properties of the material used for these devices will play an important role in the

behavior of the devices themselves, there will be a constant push to find new materials with



desired properties, and (b) the atomistic dimensions of the novel nano-devices will prompt an

atomistic analysis of their behavior unavoidable.

Molybdenum disulfide is an intriguing material. It is a prototypical semiconducting
material consists of stacked hexagonal S-Mo-S layers. These layers, conventionally referred to as
monolayers, are weakly bound by van der Waals forces. In a manner similar to that common in
the production of graphene, MoS, samples consisting of a single or a few monolayers can be
produced by micromechanical exfoliation. Owing to their atomic-scale thickness, two-
dimensional materials such as graphene and MoS, have significant potential for application in
the next generation of nano-electronics. Graphene [3, 4] is a famous 2D material with its high
mobility [5]. Yet pristine graphene does not have a bandgap, which is a very important property
for many applications, as in transistors. There are different ways to engineer a graphene with
bandgap, such as applying a high voltage [6, 7], but unfortunately increasing in the band gap
reduces the mobility or requires high voltages [8-10]. On the other hand, MoS, monolayers have
an intrinsic direct bandgap of 1.8 eV [11] (bulk band gap= 1.2 eV [12]). Mobility in single-layer
MoS; is comparable with that of silicon films. On/off ratio as well as ability to amplify signals
have been recently demonstrated. Because monolayer MoS; has a direct bandgap [11], it can be
used to construct inter-band tunnel FETs, which provide lower power consumption than classical
transistors [13]. Monolayer MoS; could also complement graphene in applications that require

thin transparent semiconductors, as do optoelectronics and energy harvesting.

One of the fundamental challenges in MoS, technology is the growth process, in as much
as any practical application requires the development of techniques that can produce large

quantities of single-layer MoS, in a controlled manner. Predictive modeling (in which theory and



computation work hand-in-hand with experiments) can play a helpful role in bringing to light the

fundamental processes that facilitate layer-by-layer growth of MoS,.

Monolayer MoS,

Top gate -,
Drain N, Source

HfO,
S0,

Si substrate~"

Figure 1-2. (a) Structure of monolayer MoS, (b) MoS, crystal (¢) Three-dimensional
schematic view of single-monolayer MoS, transistors. [Reprinted Figure with permission from
“B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nature Nanotechnology,
6(3), 147 (2011). Copyright (2011) by the American Physical Society.”]

To study growth process one requires a multi-scale approach owing to the fact that
growth proceeds in seconds and minutes in real observations, while the relevant atomistic
processes transpire in the time scale of nanoseconds. There has been great effort for the last two
decades towards a better understanding of the underlying principles governing the growth of thin
metal films because of their potential relevance in technological applications [23]. The Nobel
Prize in Chemistry 2013 awarded to Martin Karplus, Michel Levitt and Ariech Warshel for

“Development of Multiscale models for Complex Chemical Systems” is recognition of how the
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multiscale modeling has transformed modern research in Physics, chemistry, materials science

and the life sciences.

To study the growth and formation of nanostructures on surfaces, electronic structure
calculations play an important role on determining the height of diffusion energetics by
evaluating the binding energies of the adsorbates on surfaces [30, 31]. It is also shown that for
some surfaces mass transport at step edges is the crucial criterion for the resulting growth
morphology [24]. It was demonstrated that the height of the Ehrlich-Schoewebel (E-S) barrier --
the additional diffusion barrier encountered by a surface atom, when crossing a step --can be
correlated to the observed growth morphology [25, 26]. Systems with large E-S barrier are
expected to grow rough 3D films (Volmer—Weber and Stransky-Krastanov growth) as mass
transport is prohibitive. Contrarily, small E-S barrier allows growth of smooth films, and growth
mechanism is layer-by-layer (Frank—van der Merwe growth). It is also established that diffusion
of single atoms on surfaces can occur via two different diffusion mechanisms, namely hopping

and exchange [27].

Recently attention has also been directed toward understanding the growth on
heterostructure systems in which the atoms are deposited on a substrate of another element. Note
that hetero diffusion is dissimilar to homo because of the presence of the strain induced by the
misfit between the film and substrate elements. In general, growth of a thin-film on a dissimilar
substrate results in lattice-mismatch strain in the interface of the two different materials that at a
certain critical point is relieved through the formation of network of dislocations [6]. Each

dislocation line in the film generates a long-range inhomogeneous strain field, which alters



adatoms’ potential energy surface, resulting in anisotropy in atomic transportation on the thin

film and consequently formation of patterned nano-structures and self-assembly process.

In Chapter 1, I describe the problems undertaken in this dissertation towards the ultimate
goal of understanding the factors that control thin-film growth and lead to an understanding of
the physical properties of functional materials. I explain the importance of the prototypical
system chosen to extract the controlling parameters for building functionalized materials. I set
forth the relevant background for each problem, and summarize the current status of each.
Finally, I introduce the theoretical methods used in this study, and explain the reason(s) for their

selection.

In Chapter 2, I describe in detail each theoretical method employed in the studies that
comprise this dissertation. The first sections discuss the energy models by which the interactions
between the atoms in the systems are described. It then provides details of the calculation in the
molecular dynamics (MD) and molecular statics (MS) simulations and the finite displacement
method, adopted for calculating phonon density of states. The last section discusses the non-
equilibrium Green’s function (NEGF) method, employed to calculate electrons transport

properties.

In Chapter 3, in the light of recent experimental findings, I discuss my ab-initio density
functional theory (DFT) calculations in combination with the non-equilibrium Green’s function
method to examine the effect of Au contacts on the electronic transport properties of single layer
MoS;. Our results indicate that Au, the most common contact metal in this system [5], forms a
tunnel barrier at the interface, which causes electron injection into MoS;. The ultimate of this

systematic study is to calculate the Schottky barriers for different interfaces of MoS, and Au



contact, a fundamental understanding of which is critical to successful manufacturing of MoS,
transistors. Charge density analysis, transmission spectra, and I-V curves will be reported and

discussed as a function of MoS, and Au interfaces of varying geometry.
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Figure 1-3. Chapter 3: Effect of interfaces on electron transport properties of MoS;-Au
contacts.

In Chapter 4, I undertake to predict and reveal the novel MoSx structure on Cu(111)
surfaces using the predictive modeling procedure that is explained in detail in Chapter 4.
Examination of the structural, dynamical and thermodynamical properties is crucial in
understanding growth, catalysis and many other phenomena. We found a novel MoSx surface
structure on copper, which we propose to have the composition (Mo,S3 or M0,Ss), whose ability
to interact and activate adsorbates far exceeds that of MoS, while proving to be of similar
thermal stability and recoverable after adsorption through annealing. We also predict the

possibility of growing of MogSg nanowires grown on Cu(111) surfaces.



Figure 1-4. Chapter 4: Predictive modeling of functional materials. [Reprinted Figure
with permission from “D. Sun, W. Lu, D. Le, Q. Ma, M. Aminpour, M. Alcantara-Ortigoza, S.
Bobek, J. Mann, J. Wyrick, T. S. Rahman, and L. Bartels, Angew. Chem. Int. Ed. 51, 10284
(2012). Copy right (2012) by the Angewandte Chemie.”]

In Chapter 5, I discuss the diffusion of single metal Mg atoms on flat and stepped metal
surfaces of Mg(0001). The ultimate goal of the study is to derive insights into possible growth
mechanisms for Mg surface by means of calculating the diffusion barriers both at terraces and
near step edges, and hence determine the so-called E-S barriers. E-S [25, 26], which are the key
parameter for atomic mass transport at step-edges. I also report the stacking fault of Mg(0001)
that originates from the famous Fridel oscillations on Mg(0001) surface. The results contribute
towards an understanding of the role of these mechanisms in controlling the growth on these

surfaces.
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Figure 1-5. Chapter 5: Mg(0001): (a) Diffusion on step and terraces of Mg(0001) step. (b)
The thin-film limit and stacking fault of small Mg adislands.

In Chapter 6, I carry out a systematic study of the adatom diffusion on tensilely strained
dislocation (Ni/Cu) and compressively strained dislocation (Cu/Ni) surfaces with dislocations.
The results demonstrate that the dislocation network is as a promising template for steering
growth of adislands toward predetermined nucleation sites an efficient way for self-assembly.
Engineering of ordered self-assembled nano-patterns plays an increasingly important role in
design and development of functional nanometer-scale materials and devices, as an alternative to
conventional costly and time-consuming top-down approaches and to artificially drawing
nanostructures by atomic manipulation with a scanning tunneling microscopy tip or through

electron-beam lithography.
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Figure 1-6. Chapter 6: Anisotropy in surface diffusion due to proximity to misfit
dislocation.

In Chapter 7, I present the main conclusions of this dissertation and outline some

prospects for future studies.

11



CHAPTER 2. THEORETICAL METHODS

This chapter introduces the theoretical methods that are employed to study different
problems addressed in the course of this dissertation. In the next two sections, two energy
models for describing the interactions among the atom are presented. The first model belongs to
the class of models based upon semi-empirical interaction potentials, which are built by fitting
the potential parameters to a set of well-known material properties derived from experimental
observations. The Embedded Atom Method (EAM) is one of the semi-empirical methods which
will be described in Section (2.1). The second model belongs to the class of ab-initio models.
Ab-initio is a Latin term meaning "from the beginning." Ab-initio methods do not rely on any
experimental input. While they are considered to be the most accurate available ones to date,
they have significant limitations in realistically modeling of large systems (several hundred or
thousands of atoms). Yet realistic simulation of large systems is essential for properties that are
time- and temperature-dependent, like growth phenomena. Hence, in order to describe the total
energy of such systems, we need to introduce simplifications into certain parameterized
expressions, instead of resorting to the kinds of approximations typically used in ab-initio
methods for solving the Schrodinger equations. A realistic simulation of different properties of
low-symmetric metallic surfaces such as those with defects requires methods that can simulate
large numbers of atoms. Semi-empirical potentials are good alternatives to ab-initio methods

owing to their lower computational cost.

2.1 The Embedded Atom Model

A realistic simulation of different Semi-empirical properties of low-symmetric metallic
surfaces such as those with defects requires methods that can simulate large numbers of atoms.
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Semi-empirical potentials are good alternatives to ab-initio methods owing to their lower
computational cost. One of the early simple potentials is the two-body Lennard-Jones (LJ)
potential, which was successfully used in studying the properties of rare gases. However, the LJ
potential cannot provide sufficiently accurate description of such properties of metals as the bond
length. LJ potential is not a good candidate for transition metals like Cu and Ni since in the
relaxation process it predicts outward expansion of the surface atoms instead of inward
contraction, which is experimentally known to be the case for most of the transition metals. It
also fails to describe the Cauchy relation (equality of C;, and Ca4 elastic constants) for most of
the metals. The shortcoming of LJ potential originates from the absence of a volume-dependent
term. The inclusion, however, of many-body interactions as well as pair-wise interactions
ensures the realistic description of such metal surface properties as relaxations and
reconstructions. The first embedded-atom method (EAM) potential was proposed by Baskes and
Daw [2, 3] in 1984 on the basis of the concept of local density, which is considered as the key
variable in inter-atomic potentials. The idea behind the EAM potential model is based on the
Quasi-atom [4] and Effective-medium theories (EMT) [5]. In EAM, it is assumed that each atom
in the system is embedded in a host consisting of all the other atoms (See Figure 2-1). The
energy to embed an atom within the host (embedding energy) is described as being dependent on
the electron density. The density dependence of the embedding energy guarantees the volume
dependence of the potential. The main advantage of the volume dependence that it enables one to
describe the variation of the bond strength with coordination, for example, increase of the
coordination decreases the strength of each of the individual bonds and consequently increases

the bond length.
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Figure 2-1. Schematic representation of the Embedded Atom Method.

In EAM, the total energy of the system is written as the addition of the embedding energy

and that of the two-body terms, as in Eqn. (2.1),

1
Eror = XiFi(pni) + S2 ij Pij(Rij) (2.1
()]

In the former term of Eqn. (2.1), pp; is the sum of the individual atomic densities (p}l) as
given by Eqn. (2.2),

Pri = Xji) P (Rij) (2.2)

where p]‘-l is the contribution of the atom j of type a to the electron charge density at the location
of the atom /, and F;is an embedding functional that represents the energy required to place atom
i into the electron cloud when R;; is the distance between atoms i and j. Therefore, the total

energy of the system is a function of the atomic positions.

In the latter term of Eqn. (2.1), ¢;; is the short-range pair potential, where Z is the atomic

number of the atoms.

ij(r) =Z;(r)Z;(r)/r (2.3)
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The total energy of the system given in Eqn. (2.1) has an attractive and a repulsive part. The
attractive part (first term) describes the embedding of a positively charged core in to the electron
density formed by the surrounding atoms, while the repulsive part (second term) describes the
interactions between the ion cores. In Chapter 6, the EAM potential of Cu and Ni is used in

Molecular dynamics simulations.

2.2 Density Functional Theory

In the 20™ century, development of quantum mechanics along with numerous
experimental observations is one of the most significant scientific advances. Amazingly, this
theory of matter describes the universe we live in with a very high accuracy. In this section we
review the important key ideas (most basic equations) of quantum mechanics that underline
density functional theory. The key task in most approaches in solid-state physics and quantum
chemistry aimed at elucidating the electronic structure of matter is to discover solutions to the

time-independent, non-relativistic Schrodinger equation:
HY = EY 2.4)

“This equation is a nice form for putting on a t-shirt or a coffee mug, but to understand it

better we need to define the equations that appear in it [14].”
AY;(%,, %y, .., Xy, Ry, Ry, oo, Ryy) = EWi(#1, %4, .., Xy, Ry, Ry, o, Ryy) (2.5)

where H is the Hamiltonian for a system consisting of M nuclei and N electrons.

77 P oN v2_ MM 1oz N vM 21, vN N 1 M vM ZiZj
H = _EZL=1VL _%2121M_1VA - i:lZAzlr_iI-I_Zi=12j>ir_U+ZI=12]>AR_”(2‘6)
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Here I and J run over the M nuclei while i and j denote the N electrons in the system. m
and M are the mass of nucleus and electron. The first two terms in Eqn. (2.6) describe the kinetic
energy of the electrons and nuclei. The next three terms define the attractive electrostatic
interaction between the nuclei and the electrons, and the repulsive potential due to the electron-
electron and nucleus-nucleus interactions, respectively. Solving this many-body problem is an
impossible task, since the motion of N electrons and M ions are coupled (3N + 3M degrees of

freedom) -- unless a series of simplifications is employed.

2.2.1 The Born-Oppenheimer Approximation

In atoms, each proton or neutron in a nucleus has more than 1800 times the mass of an
individual electron. Roughly speaking, owing to this huge disproportion between their masses,
the nuclei move so much more slowly than the electrons that we can consider the electrons as
moving in the field of fixed nuclei. Consequently, nuclear kinetic energy is considered to be zero
and the potential energy of a given species of nucleus is merely a constant.

.Decoupling the degrees of freedom of electron and nuclei leads to decoupling of the

wave functions are the electronic and nuclear wave functions -- ¢(I7, ﬁ) and @(ﬁ), respectively.

The electronic Hamiltonian thus reduces to:

—

h? Za ~ ~
Hepee = _%Zlivzl Vi2 - ?Izl Zf\él/I:lri 1Z]>l_ =T+ Vye + Vee (2.7

H\eleclpelec = EctecWPetec (2.8)

The total energy E,, is then the sum of E, ;. and the constant nuclear repulsion termE,,,, ..

ZiZ
Etot = Eciec + Enuc  Where  Epy. ZI 1294>A 1;1 / (2.9)
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(a)
M, << My

V., >V

(b) (c)

Figure 2-2. Adiabatic or Born-Oppenheimer approximation decouples the electronic and
nuclear degrees of freedom. (a) A real system consists of electrons and nuclei, both in motion.
(b) Electronic equations can be solved assuming fixed positions for nuclei. (¢) Each nucleus is
then treated as moving as a classical particles affected by the potential generated by the
electrons.

This approach is known as the Born-Oppenheimer (BO) or adiabatic approximation [7].
In BO approximation, ions move on the potential of energy surface of electrons in the ground
state. After employing the BO approximation, the problem of solving the Schrédinger equation is
reduced to solving the electronic Eqn. (2.9). An exact solution of this problem is numerically
possible only single-electron systems (such as H, hydrogenoid atoms and Hy). At this point in
time, finding a suitable approximation for describing many electron-electron interactions is the

main difficulty to deal with.

2.2.2 The Hartree-Fock Approximation

In 1927, Hartree introduced a procedure that belongs to the class of wave function
methods to approximate wave functions and energies of different atoms. The expansion for the

wave function is approximated by the product of single-electron wave function () as:
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qj(?l,?z,Ffs, ""FN) = l'pl(?l) LIJZ (?2) l'pN(FN) (210)

This expansion is known as the Hartree product. In this method, electrons are supposed to
interact with each other through an effective potential, which is a function of the total density of

electrons.

Dorrr R) =V, R) + 23V 20 agr (@) = @) @.11)

J#L |77y

The first term in Eqn. (2.11) describes the contribution of the effective potential from the
ions, while the second term represents the electronic potential corresponding to the interaction of

the electron with the other electrons.

The Hartree method reduces the many-body problem to the problem of one-particle

equation in an effective potential (see Figure 2-3) as follows:
2924 9O (R, 7)) 0i(F) = e10i(P) 2.12)
o eff % Qir) = &@; .

where ¢; is the eigen energy of the i electron and @;(7) is the one-electron wave function

(orbital).

(b)

Figure 2-3. (a) Electrons moving about fixed nuclei. (b) The single- electron or
independent-particle model: each electron moves independently in a potential created by the
nuclei and the rest of the electrons.
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The drawback of this method is lies in ignoring the fact that the system does not consider
electrons as fermions (indistinguishable particles). According to the Pauli Exclusion Principle,
the wave function of the electron should change the sign under the label interchange. Some years
later Hartree’s students Fock and Slater individually proposed a method that treats the electrons
as Fermions with anti-symmetric wave functions. In this method, the total mult- electron wave
function can be represented by the Slater determinant of one-particle orbitals. In this way, if two
orbitals are equal (i =j), the Slater determinant will be zero, so that the Pauli Exclusion

Principle will be satisfied.

$1(F,00) P10, 05) o ¢1 (P, on)
¢1.(7_”)1; 01) ¢1 (P, 0p) =+ - @1 (P, (?-N)

1

O(F,0) = = (2.13)

dn (1, 01)  dy(p05) o dn Ty, on)
The calculation of Hartree-Fock methods is computationally very costly since the wave

function is a very complicated quantity that cannot be measured experimentally, and depends on

4N variables, where N is the number of electrons.

2.2.3 The Thomas-Fermi Model

In the same year (1927) as the Hartree product was proposed, Thomas and Fermi [15, 16]
proposed the first approximation based on a statistical model (eventually named the “uniform
electron gas model”) to solve the many-body problem with its large number of degrees of
freedom. In this model, the energy of atoms is computed by approximating the distribution of

electrons in an atom. They proposed the density function for kinetic energy is:
- 3 E E - -
Trslp@)] = 2 (3125 [ pr(P)d7 (2.14)
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The energy of the atom is finally obtained by adding two classic terms of nuclear-nuclear
and electron-electron interactions to kinetic energy, both of which can be given in terms of the

electron density.
> 3 2 5 SN g2 ") ;o
Erelp@®)] = 23123 [ s (7) dit — 2 [ 22 a7
+10 @ e gz (2.15)
2 T12

Initially, the Thomas-Fermi approximation did not contain the exchange energy of atom
which is a result of exclusion according to the Pauli Principle and is incorporated in the Hartree-
Fock theory. Within a year however, Dirac added an exchange energy functional term to
Thomas-Fermi Model. In order to determine the correct density in Eqn. (2.15), they assumed that
the ground state of system is related to the p(#) for which the energy is minimized under the
condition of [ p(7)d# = N, where N is the number of the atoms. The drawback of the doing so
was a crude approximation of kinetic energy and complete neglect of the electron-correlation

effect.

2.2.4 Hohenberg and Kohn (H-K) Theorems

In 1964, Hohenberg and Kohn published a paper entitled “Inhomogeneous Electron Gas,”
which established the foundations of the basics of the modern density functional theory. Two
notable theorems were proved showing that the electron density is the key quantity for describing
electronic interactions. The first H-K theorem points out that the ground-state energy uniquely
depends on the electron density, since E, = E[p(r)], where E; is the ground-state energy of the
system and p(r) is the particle’s density. The second H-K theorem states that the ground-state

energy can be obtained by minimizing the energy of the system.
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2.2.4.1 The First Hohenberg and Kohn Theorem

Let us consider the Hamiltonian of a system of N interacting electrons under the effect of

an external potential with ground state energy (Ej) as
Hel = Te + lZze + l’/\'ext (2.16)

where T, is the kinetic energy of the electrons, and V,, and V,,, are the electron-electron
interaction potential and external potential, respectively. If V,,, is known, the electron density
can be evaluated. In the first H-K theorem, the approach is the opposite. In this case, the ground-
state electron density is used to evaluate V,,,. To be precise, the external potential is a unique
functional of the electron density; since the external potential in turn fixes the Hamiltonian, we
can say that the electron density uniquely determines all properties of the system. To prove that
the full many-body ground state is a unique functional of electron density we employ the “proof

by contradiction” method as follows.

Proof: suppose that there are two different external potentials as V,..(7) and V. (7),
each giving the same electron density of the system. A’ and H are two different Hamiltonians
whose ground state (E,) is same although the wave functions (W,W') are different. The
variational principle for two systems as (ﬁ ,Eo, ‘P) and (ﬁ " Ey, ‘P’) with the same ground state

charge density is as follows:
Ey <(W'|H|W) = (V'|H'|¥") +(¥'|H - H'|¥')

= E(’) + fp(?) [Vext(F) - Ve’xt(?)]d? (2-17)
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Ey <(P|H'|¥) = (P|H|®) + (¥Y|A' — H|WY)
= Eg + [ p() [Vexe () — Vere(D]d7 (2.18)
Combining these two in equalities, we will get a contradiction:
Ey+Ey < Ey+E, (2.19)

This indicates that the assumption of the existence of the second V,,, that gives the same
p(#) for its ground state is invalid. An immediate result of the Hohenberg-Kohn theorem is that
the ground-state electron density uniquely determines all the properties, including the energy and
wave function of the ground state. This result gives us a new avenue for solving the Schrodinger
equation by finding electron density with 3 degrees of freedom, rather than the wave function of
3N variables. For example, for a nanoparticle of 100 Pt atoms, this theorem reduces the problem

to a problem with just 3 dimensions from approximately more than 23,000 dimensions.

Since p(7) is sufficient to determine all the properties of the ground state like the kinetic
energy, the potential energy and the total energy, which all are functionals of the charge density,

the total energy can be written as:
E[p] = Ene [P] + T[P] + Ece [P]

= [ p(PDVye(P)dT + Fyklpl, Fuklpl = Tlp]l + E.e (2.20)

“The functional Fyg[p] is the holy grail of density functional theory. If it were known we
would have solved the Schrodinger equation exactly! [17].” Fyg[p] 1s a universal functional
totally independent of the system under study. For example, it can be applied equally well to
single atoms as to gigantic molecules such as DNA [17]. Although, the first theorem rigorously

proves that there exists a unique functional of the electron density that can be used to solve
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Schrédinger equation, the theorem proposes nothing about what the functional actually is. The
explicit form of T[p] and E,, functionals in Eqn. (2.20) are completely in dark and we can

rewrite the equation Eqn. (2.20) as classical (c/) and non-classical (nc/) parts.
_1 p(Fp(2) ;5 ;o5
Eee [P] = Ef derl drz + Enal [P] (2-21)

where E,,; is the contribution to the e-e interaction as self-interaction correction, exchange and
coulomb correlation. To put it in a nutshell, the explicit form of the T[p] and E,,.;[p] is the major

challenge of DFT.

2.2.4.2 The second Hohenberg-Kohn Theorem

The second H-K theorem states that Fyx[p], the functional that provides the ground state
energy of system, also provides the lowest energy, if and only if the input charge density is the
true ground-state density. Again, we will use “proof by contradiction” to show that ground state
energy results in the lowest total energy if and only if the exact ground density is inserted in

equation (2.23).

Proof: Let assume that py(7) and p(#) can be the electron density at the ground state
(with Ey[p] and E,[p] energies) and at a trial state (P and ¥, wave functions), respectively.
Since the variational method is valid for ground state energy, we cannot use this strategy for the

problem of excited states energies.

(PIH|P) > (P |H|P,) (2.22)
T(B] + Ecelp] + [ B (F)Vexed? = (Fo|H|Ty) (2.23)
E[p] = Eo[p] (2.24)
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The inequality above proves that the electron density at ground state Ey[p] gives the lowest total

energy of the system of interacting electrons.

2.3 Kohn-Sham (K-S) Method.:

H-K theorems simplified the many-body problem by demonstrating that there exists a
one-to-one mapping relation between the universal electron density functional and properties of
the system, but they do not show what exactly these equations are. In 1965, Kohn and Sham
published a paper entitled “Self-consistent equations including exchange and correlation effects”
[18]. Only one year after the publication of the significant H-K paper, Kohn and Sham suggested
an alternative way to implement it in the DFT. In this paper, they have replaced the interaction of
the multi-electron problem with the problem of non-interacting electrons as an effective
potential. In order to find the true electron density described by the H-K theorem, Kohn and
Sham propose a single-electron set of equations superficially similar to Schrédinger equations,
with the difference that K-S equations omit the summations over different electrons that appears
inside the full Schrodinger equation. To go beyond earlier methods that suppose a system of non-
interacting particles, further ansatz proposed in the K-S approach. The ground state electron
charge density of the virtual non-interacting system is the same as that of the non-interacting
(reference) system (see Figure 2-4). In the resulting independent particle equations, the energy

functional can be written as:

ET{¥i}] = Exnownl{ti}] + Exc[{¥:}] (2.25)

where we split the energy functional in to two terms. The first term in Eqn. (2.25) is the known
part, which contains the terms that can be written in a simple analytical form. The known terms
include four contributions:
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Eknown[{lpi}] = %Ziflp;vzlpidgr + fV(r)p(r)d3r + ez_zﬂ-%dsrdgr, + Eion (2-26)

|r

The four terms in Eqn. (2.26), in order, are the kinetic energy of electron, the coulomb
interactions between the electrons and the nuclei, the coulomb interactions between pairs of

electrons and the coulomb interactions between pairs of the nuclei.

Actual interacting system Non-interacting system

2

Lo = Tlo] + Veue o] + Uselp] HES v v ()
UH [P] + ch [P] V(T) is function of Vext [;O] > ,O(T) and ch [,0] (I')

Figure 2-4. The Kohn-Sham approach to DFT.

The second term in Eqn. (2.25) is the unknown part which contains everything else
related to many-body effects that are not included in “known” part. They are all the unknown
terms swept under a carpet named “the exchange correlation” (E,.) functional. The exchange
correlation functional accounts for: I) The exchange effects correction known as Pauli repulsion
as the Fock term appearing in the Hartree-Fock theory; I1) the self-interaction correction and III)
the correlation effect correction, that is the tendency for two electrons of unequal spin to choose

different orbitals to avoid each other while moving in the space.
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The Kohn-Sham equations have the form:

[_ % 2+ V() +Vy(r) + Vic (T)] Yi(r) = i (r) (2.27)

The solution of these equations are the single-electron wave functions (orbitals), W;(r),
that depend on only 3 spatial variables. The first term in Eqn. (2.27) is a “known” kind of
potential that defines the interaction between an electron and the collection of atomic nuclei. The

second term is called Hartree potential and is defined as:

Vi(r) = e? [ 20 g3, (2.28)

[r 7|

The Hartree potential describes the coulomb repulsion between the single electron of one
of the K-S equations and the total electron density defined by all electrons in the case under
consideration. The Hartree potential includes a “self-interaction” contribution, because the
electron we are describing in the Eqn. 2.28) is also a part of the total electron density. Therefore,
a part of Hartree potential involves a coulomb interaction between the electron and itself. The
self-interaction part is an unphysical term, and is a part of corrections incorporated in the
exchange and correlation potential exchange correlation potential is defined as a functional

derivative of the exchange correlation energy.

SExc(T)

VXC (7”) = 5p(r) (229)

A more detailed description of Exc[p] and the approximations related to it will be

described in Section 2.11.

There is something circular about the discussion of the K-S equations. To solve K-S

equations, the Hartree potential needs to be defined, and to define the Hartree potential, the
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electron density needs to be known. To find the electron density, we must know the single-
electron wave function, and to know these wave functions we must solve the K-S equations. The
prescription for breaking this circle takes an iterative form as outlined in the algorithm
summarized in Figure 2-5. The main issue in this approach is the knowledge of the explicit form
of exchange-correlation functional. For the moment, we assume that the exchange-correlational

is available in some approximated way.

Initial guess for the density
p(r)

v
Calculate effective potential
Veff (p(r) = V() + Vi (p(0) + Vxo(p(®)

Solve the K8 equations

A’ 5O =
Ciﬁﬁ+Vw@m)%@ﬁwwﬁ)

\
Calculae electron density

HOEDRAGING)

v

No ( Self-consistent? Yes Calculate energy,
l forces, ...

Figure 2-5. Self-consistent Kohn-Sham (K-S) algorithm.

2.4  The Exchange Correlation Functional

The beautiful solution provided by Kohn, Hohenberg, and Sham for the many-body
problem showed us that the ground-state energy that can be found by minimizing the energy of

an energy functional can be achieved by using a self-consistent method to solve a set of single-
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particle equations. The only intricacy remaining is to specify the exchange-correlation

functional. We can write the E,.[p] as a sum of pure exchange and correlation:

Exc[p] = Ex[p] + E¢[p] (2.30)

The exchange part can be written explicitly in terms of one-particle orbitals from the

Fock determinant:

¢; ;5 (r")di(r" ) ;)

[F=r]

Exl{¢}] = %ZZL-,;I d*r [ d3r' (2.31)

However the expression of the exchange energy as a functional of the electron density
known exactly in only a simple case: the homogeneous electron gas (HEG), for which the

electron density is constant in all points in space. (p(r) = constant):

p(r) = % (2.32)

In view of the fact that the exact form of exchange correlation functional is not known, the
problem of finding efficient and effective approximations for E,. is critical, as is indicated by the
number of publications that have discussed this issue. Strictly speaking since, it is the remainder
between the exact value of the total energy and the sum of the repulsive Hartree energy and the
kinetic energy of the non-interacting system. E,., whose existence is guaranteed by the H-K
theorem, is a functional of electron density. As such it is universal — i.e., should work for all

materials.

There are many ways to approximate E,.. In these theorems, we discuss merely the two
most widely used approximations: 1) the local density approximation and 2) the generalized-

gradient approximation functional.
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2.4.1 The Local Density Approximation (LDA)

The local density approximation (LDA) was introduced by Kohn and Sham in 1965[18].
In this approximation, the E,. per electron at a point # of the interacting-electron system

consisting of N electrons is the same as that of a homogeneous electron gas with the same

electron density. In this approximation the exchange energy (E, ) and the exchange potential can

be calculated as:

Ex (0) = [ p() V(P aF (2.33)

and

1
_ 3e2 (3 /3 _4 N _1
B () == (3) Tve'h = —c o't (239

4 \1

Another explicit expression in terms of g can be derived for the correlation part in several
ways as the extrapolation to the usual physical densities in the high density limit of HEG. In
other words, at high electron densities, where the kinetic contribution dominates, an expression
for the correlation energy can be derived from perturbation theory. The parameterized form of E
can be obtained from quantum Monte-Carlo simulations of the HEG at selected densities. All the

expressions for the correlation energy of HEG can be written as:
E. (p) = [ p() V.(F) dF (2.35)
where E. (p)) is the expression for the correlation energy per electron and can be evaluated.

The next step is to generalize the case for electron densities that are not uniform in space.

In order to obtain the
Ex24[p]l = [ d3r p(P) eflEC (p () (2.36)
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where the p is replaced by the local density at the point 7 and volume V, Volume is treated as a
summation of small cells in which the system is supposed to be homogenous. As a result, LDA is

a good approximation for systems in which the electron density varies little and slowly.
The drawbacks of LDA approximation can be summarized as follows:

1) The LDA tends to over-bind yielding computed cohesive energy that is too large by about
30%.

2) The long range Van der Waals effects are left out of account, owing to highly local nature
of the LDA. As a consequence it fails in calculating the adsorption energy of weakly
bound molecules on solid surfaces.

3) Lattice constants are reported to be under-estimated in comparison with experimental
values.

4) The hydrogen bond is poorly accounted for (leading to, for example, a misleading

characterization of the structure of liquid water).

2.4.2 The Generalized Gradient Approximation (GGA)

LDA is widely criticized because any real electron system is non-homogenous. A first
attempt to improve LDA consisted in including the gradient/or higher derivatives of the density
with respect to spatial coordinates. However, the approximations that contained the lowest-order
gradients such as the gradient expansion approximation (GEA) turned out to be unsuccessful.
Numerous alternative prescriptions for choosing the ES¢4[p(#), Vp(#)] exist, each of which
leads to distinct GEA’s. Typically, the exchange correlation functional in these kinds of

approximations can be written as following:
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Eitp, o) = ExXlp,o] + [ d°r ex?(p(7), Vp (7)) (2.37)

There are two different approaches for obtaining GGA functional: the ab-initio approach
and the empirical approach. In the former, one starts with the derivation of a theoretical
expression of the exchange-correlation functional that satisfies some or all known properties of
exchange and correlation energy. In the latter the value for the functional is fitted to the large set
of known experimental values for which accurate many-body calculations of the exchange-
correlation energy are available. There are many versions of the exchange correlation functional
derived from via the ab-initio method but the most important and widely used ones are PW86

[19], LYP [20], PW91 [21] and PBE [22].

In the present study, mostly PW91 and PBE have been employed. Some of the general
properties of solutions obtained by employing a GGA functional in comparison with those

produced by LDA are summarized as below:

1) GGA sometimes overcorrects LDA: Lattice constants are over-estimated, LDA results
are closer to those of experiments than those of GGA. Binding energies are 0-2% larger
than experiments (better compared to LDA), cohesive energy is 10-20% smaller.

2) GGA often predicts surface energies that are lower than those of experiments (and LDA).

3) GGA cannot describe long range effects properly.

4) GGA usually performs well in describing Hydrogen.

5) GGA is not suited for strongly correlated electron systems.
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2.5 Solving the Kohn-Sham Equations

So far, in the preceding sections, we have settled on the BO approximation to separate the
degrees of freedom of electrons from that of the nuclei [23] and then reduced the many-body
problem to N one-orbital K-S equations.[24], where N is the number of electrons. Additional
methods still need to be considered in order to make possible calculations that are
computationally efficient. Using Bloch’s theorem (considering a periodic system), employing
simple, efficient and complete basis sets, and wisely choosing among available pseudo potentials
for treating core and outer-shell valance electrons are among the ways that allow theorists to get
around the problem. Still since there are infinite number of electrons and nuclei in a realistic

system and the problem is still unsolvable in a fully realistic way.

2.6  Pseudo-Potential Approximation

With all the approximations discussed in previous section, the problem of solving Kohn-
Sham equations for systems with a huge number of atoms and electrons is still very expensive.
Nevertheless, in addressing many problems in chemistry and physics, a distinction between core

electrons (spectator electrons) and valance electrons (active electrons) can be made.

The core electrons are more atomic-like, with a strong bonding to the nuclei. Since they
do not participate in chemical interactions; they do not play a crucial role in chemical behavior of
the materials. In contrast, it is the valance electrons are the outermost electrons loosely bonded to
nuclei that are indeed responsible for chemical interactions between atoms. In the pseudo-
potential plane-wave approach, the action of core electrons and the potential within a cutoff
radius around the core is replaced by an effective smoother and weaker potential known as a
pseudo-potential.
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A pseudo-potential does not operate on a true electronic wave function but on a node less
pseudo-wave function. Since true wave functions are often oscillating in the space close to the
nuclei, a large number of plane waves need to be expanded. Consideration of soft pseudo
potentials, which need plane-wave basis sets with fewer members, is clearly advantageous from
computational point of view. The pseudo-potential and pseudo-wavefunctions constructed for a
given atom must match the real potential and wave functions at the boundary identified by the
cut-off radius. One of the important classes of pseudo potentials is that of norm-conserving
pseudo-potentials [25]. The condition for norm conservation is that the total charge generated by
the pseudo potential in the core area of the atom ne equivalent to that generated by real wave

functions.

In 1990, Vanderbilt proposed ultra-soft pseudo potentials (USPP) [26] produced by
relaxing so-called norm-conserving pseudo potentials, the result is that there is some charge loss
in the core region owing to the fact that a USPP does not satisfy the norm conserving condition.
This loss of charge, however, is compensated for by an augmentation charge calculated from the
difference between pseudo wave functions and the true wave functions of the atom. The USPP
works accurately for most of the systems except for magnetic systems. In 1994, Blochl proposed
the projector-augmented wave (PAW) method that is equivalent to an all-electron method [27].
But though, the PAW method is thus a good choice for high accuracy DFT simulations. It was
not widely used until 1999, when Cresse and Joubert introduced a modified version of PAW
[28]. They used transformation operator that can act on the true wave functions and map them

onto pseudo wave functions.
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Since pseudo-wave functions are computationally more favorable, they are used in K-S
equations. Once pseudo-wave functions are obtained, the transformation operator builds the real
wave functions. Since the evaluation of observables is based on true wave functions, the PAW

method can be as accurate and powerful as all-electron methods.

2.7 Bloch’s Theorem

Bloch’s theorem is based on the translational invariance of a periodic system [29]. In a
prefect crystal, nuclei are regularly placed on a periodic array defined by a set of Bravais lattice
vectors (R;). For such an ideal crystal, the electron density and the unperturbed external potential

keep the same periodicity of the crystal, as expressed in the following:
A(P) = A(F +R) (A=nV.) (2.38)
Let us write the K-S equation in the following form.
hz 2 - - -
(— V2 + Vo, (M) = £ (7) (2.39)
where the effective K-S potential (V,fy) is a periodic function.
Vo +R) = Vors (P) (2.40)

Let us assume that the translation operator of vector E) as T‘(R7) operates on any position-

dependent function, such as f(7):
T(R)f () = f(F+R) (2:41)

This equation implies that the function f(7) is periodic. Since Vs is periodic, the K-S

Hamiltonian is also periodic. Therefore the translation operator and K-S Hamiltonian commute.
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Moreover, the translation operators commute with each other. Consequently, the eigenfunctions

of translation also serve as eigenfunctions of the Hamiltonian as in the following equation:
TRY)® = (@ +R,) = AR)P() (2:42)

where A(ﬁ:) is the eigenfunction of the translation operator 'IA"(E)) By multiplying equation Eqn.

2.41) by the translation operator acting on R; given the commutation property of translation

operators (’IA‘(E{)T‘(E;) = ’IA‘(E + Rj)), one obtains the following equation:
T(R)T(R)®(# = T(R, + R)®(#) = A(R)A(R) @) = A(R, + R))®(#) (2.43)
— 12
[ AR =1 (2.44)

Where the eigenfunction A(E{) is normal (|A(R7)|2 = 1). Eqn. (2.43) can be satisfied if:

T(R,) ®(F) = e Rip(7) (2.45)
Finally:
T(R) ®(7) = ®(F +R,) = eFRid(P) (2.46)

Eqn. (2.46) indicates that ek are the eigenvalues of the T(ﬁ:).

To put it in a nutshell, Bloch’s theorem states that in a periodic potential, the wave

function of an electron can be expanded by
@,z (F) = ey (7) (2.47)

where @, 7 (7) is a product of a wave-like part (ei%f) and a part defining the periodicity of the

lattice:
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(P = up(F + R,) (2.48)

2.8 Calculation of the Kohn-Sham States

So far, we have not discussed a method for calculating the Kohn-Sham wavefunctions.
There are different approaches to this task. One of the potential lines of attack adopts a real-
space perspective [30]. In this approach, the wave function and Hamiltonian can be written over
some numerical grid. Another tactic is to expand Kohn-Sham wave functions (orbitals) as a
linear combination of a given basis set, reducing the problem to that of finding the expansion
coefficients that minimize Eqn. (2.39). One of the widely used choice of basis sets is the
combination of plane waves [31], in which one usually sums over as many as k wave vectors as

required for appropriately describing the wavefunction W; (7).

According to the Bloch’s theorem, the electronic wave function in a periodic system is as

follows:
e—i%.(?)cbn’% (7) = up (7:’) (2.49)

where the function u has the periodicity of the Bravais lattice and e~ ik represents a plane
wave function. u,, 7 (7) can be expanded using a basis set that includes plane waves whose wave

vectors are the reciprocals of the lattice vectors.
up(F) = T Ciigye' ™" (2.50)
Consequently, Eqn. (2.49) can be written as follows:

@, 2 (7) = %5 C @F])ei(kw,)f (2.51)
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Since u, (¥) has the periodicity of the lattice vector, u, (7 + R = u, z(7), one can

rewrite Eqn. (2.48) as follows:

Y, (@ + R) = e*Ry o) (2.52)

In principle, one needs to consider an infinite number of plane waves in order accurately

to expand a wave function, but as is shown in Eqn. (2.53), the coefficient C,, s decreases as
|I_c) + 5| increases, so that the expansion of plane waves can be truncated at a finite value of
|I_c) +G | that associates with a kinetic energy cutoff (E.,;) defined as in Eqn. (2.53).

2 -
| < Ecut» Eqe = h_z |Gmax|2 (2.53)

“|k+é
2 2m
For each system under study, the value of the cutoff energy needs to repeatedly tested

until it yields converged results. Substituting wave functions expanded by using a plane-wave

basis set in the K-S equation, one can get the following equation after integrating over the

vector 7;

1 b - 2 b

E|k+G| C(E+5) +ZGTV67,GTC(E+E;) :E(k)C(E+E]’) (2.54)
where

Veg =1, Vers (#)el (GG gr, (2.55)

By representing the integral as a sum over a finite number of k points, one performs the

integration numerically over the Brillouin zone (BZ), given by:

Jozy=dk = %y w;. (2.56)

ZVpz

Then the integral over the over the BZ can be expressed as:
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#IBZF(E)‘”c =2 ij(FJ) ‘ (2.57)

where F (E) is a function of momentum, V is the unit cell volume and w;’s are the weight
factors. Eqn. (2.57) can be solved by diagonalizing the corresponding matrix, whose number of

clements is determined by E,;. The solutions will provide the necessary coefficients (C; 3, z) of

Kohn-Sham eigenstates and their corresponding eigenvalues. Plane wave choice seems a natural
one since it is equivalent to the complex Fourier expansion of the real-space wave function.
Given this property, the problem of finding ¥; can be treated in the reciprocal space, taking
advantage of fast Fourier algorithms to make the calculations more efficient [32]. Furthermore,
the only parameter controlling the accuracy of ¥;’ is the maximum number of k wave-vectors
that are used. Obviously, the choice of maximum number depends on the system under study.
The larger the number of the wave-vectors , the more accurate the calculation is. The choice of
wave-vectors can also result in calculations that are computationally more expensive (more

memory and numerically intensive) calculations for large-scale systems.

A drawback of the plane-wave choice is the necessity of including a large number of
wave vectors (k) in order to describe localized states. In addition, plane wave expansion codes
treat the vacuum on the same footing as the molecules or the surface under study. A possible way
around this problem is to use localized basis sets instead of plane waves. The localized basis sets
can be considered as Gaussian or Slater type orbitals or they can even be made to look more like

atomic orbitals. Under this strategy, the Kohn-Sham orbitals can be expanded as:

¥i(#) = L Cl () (2.58)

where ¢ (7) is a set of functions with an atomic-like character.
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There are a number of advantages in using a localized basis set. First of all, because the
range of interaction is finite, Hamiltonian matrix elements vanish for orbitals that are far apart.
As a result, the Hamiltonian and overlap matrices (S;; =< @;|@; >) become relatively sparse,
saving computational cost. Another important virtue is that the Hamiltonian and other matrices
are represented in a tight-binding-like form, is a form similar to that needed in the non-
equilibrium Green’s function method (NEGF) that will be discussed in next chapter. In this

dissertation, both forms of the basis sets have been used.

2.9  K-point Sampling

In principle, solving the K-S equations requires calculations for an infinite number of K-
points. But considering the fact that the wave-functions do not change much over a small
distance in K-space will help reduce the number of K-point and simplify the problem. Since
many quantities (like charge density and total energy) require integration over the BZ, the
assumption of similarity of physical properties for two close values of K-point makes it possible
to perform such integrations as summations over a finite number of K-point lying within the first
BZ. The set of these certain k-points is known as K-point sampling. Sampling of K-point is
crucial for the accuracy of the integration. The most famous methods to sample K-point in the

BZ are tetrahedron [33] and the special-point method [34].

In 1976, Monkhorst and Pack proposed a simple method to sample BZ by imposing upon
it an equally-spaced mesh as a grid. In this method, one can determine those special K-points that
reflect the properties of the whole BZ by employing symmetry arguments. The integration is
then performed as the weighted summation over a grid of these special K-points. For metals,

since the bands cross the Fermi energy, there will be a discontinuity in the occupation, which
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leads to complication of the integration over the Fermi surface. Therefore, in the metal’s case it
is important to choose a sufficient number of K-points. In different studies comprised in this
thesis, a large number of calculations are performed by testing different number of K-points to

reach the convergence.

2.10 Molecular Dynamics (MD) Simulations

Molecular dynamics is one of the principal tools in the computer simulation, results of
which provide insights in to the physical movements of a set of interacting atoms through an
interacting potential (such as EAM) for a given time and temperature. The MD technique was
first introduced in 1950’s [35] , but the first paper reporting the application of a working
implementation of the process weren’t published until 1957 by Alder and Wainwright in 1957

[36].

The simple idea behind the MD method is illustrated in Figure 2-6. In MD simulation, the
classical mechanics (Newton’s second law) is employed to calculate the forces on each atom in
an iterative way. Thereby, the time and space evolution of the system is obtained. The force

acting on atom 7 (F}) is derived from the interatomic potential energy V(gx?)) as in Eqn. (2.59),
Fr = myi; = =V V(g1 (), ..., qn () i=1N (2.59)

where m; is the mass of the atom i and qy(t) = q1(¢t), ..., qn(t) represents the complete set of

3N atomic coordinates. Accordingly §; = d?q;/dt? is the acceleration of the i atom.
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Figure 2-6. A simplified algorithm of how a MD simulation is performed.

In the first step, the initial atomic positions (for example, a crystal or nano-cluster
structure) and velocities (obtained from a random number generator) is provided. In Step 2, the
forces acting on atoms are calculated explicitly from the interatomic potential by obtaining the
equation of motion. In Step 3, the new positions and velocities are generated employing time
integration algorithms like leap-frog or velocity-verlet. This cycle is repeated several times until

the time termination condition is met.

In order to collect enough statistics to reveal the true thermodynamical properties, an
ensemble average -- averaging over consecutive configurations of the system (or replicas) -- over

the time is required.

MD simulations start with a thermalization step (i.e., a cooling method) that usually
terminates in a few thousands of time steps, until the system reaches a desired thermodynamic

state using a temperature-scaling method. Thermostat methods are employed to control the
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temperature of the system during the simulation. The Nose-Hoover thermostat and Langevian

dynamics are the two most widely used thermostats to add or remove energy from the system.

Potentials that are used in MD calculations (i.e. EAM), have an infinite range. Therefore,
in practical applications it is common to define a cutoff radius R¢ and discard the interactions

between atoms separated by more than Re.

For realistic simulation of systems of N atoms, avoiding spurious surface at the edges (of
2D system) or surfaces (of 3D system) effects is necessary because atoms at the boundaries of
the system would have fewer neighbors than atoms inside. A periodic boundary condition (PBC)
helps to eliminate these effects of surface. Under a PBC, the atoms of the system are enclosed in
a box and this box is replicated to infinity in all 3 Cartesian directions. This permits each atom to
interact with its neighbor and its image, the result is that the number of atoms in the
representative system remains computationally manageable without introducing spurious edge or
surface effects. In order to reduce the number of interacting pairs, which increases enormously as
an effect of PBC, the minimum image criterion is used. Among all the possible images of a
particle in box, the closest one is chosen to for inclusion of interaction, and the remoter ones left
out of account. This operating criterion greatly simplifies the setup of a MD program. Of course,
to satisfy this criterion, the box size must be at least 2R, (R, = cut off radius) along all the PBC

directions.

2.11 Molecular Statics Simulations

Understanding transition processes like chemical reactions and diffusion of atoms on
surfaces of materials is a significant problem in condensed matter physics and chemistry. since at
a finite temperature, atoms move around equilibrium positions, and the system moves to the set
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of energy paths that corresponds to the lowest free-energy maximum. Although there are many
possible reaction paths from a local minimum (initial-state configuration) to another local
minimum (final-state configuration), the path that costs the lowest activation energy is
statistically the most probably the minimum energy path (MEP). The highest energy

configuration along the transition path is called the transition state or saddle point.

2.12 Nudged Elastic Band (NEB) Method

This is an efficient method for finding the MEP for a given transition path when both
initial and final states are known a priori. The MEP is found by constructing a set of arbitrary
images with equal distance from each other between the initial and final states. In this method
[37], between adjacent images a spring like interaction potential is added to mimic an elastic
band. The total force acting on an image is the summation of the spring force along the local
tangent and the true force perpendicular to the local tangent. Linearly interpolating a set of
images between the known initial and final states, minimizes the energy of the each of the
images. Once each of the images is minimized, the MEP can be determined. At any point along
the transition path, the force acting on the images points along the path while the energy is
constant for any degree of freedom in the direction perpendicular to the transition path.
Consequently, the NEB method can provide both the transition state configuration of images and

insight in to the characteristics of the energy landscape.

2.13 The Small Displacement Method for Phonon Calculations

There are basically two types of methods in use in the first principle calculations of
phonon frequencies: One is based on linear response theory, the other one is one or another

direct approach. In the linear response approach, the dynamical matrix is evaluated through
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DFPT as linearly response of the ground-state electron charge density. The information required
for making this evaluation is obtained from comparison of a perturbed with the unperturbed
system. There are two avenues for a direct approach: frozen phonon and direct force-constant
method. In the frozen-phonon strategy, the changes in total energy are calculated by displacing
the atoms (within a Cartesian coordinate system) from their equilibrium positions. And from the
energy as a function of displacement amplitude the phonon frequency is obtained. This method is
restricted to wave-vectors for which the phonon displacement pattern is commensurable with the
supercell used in the calculations. Wave-lengths should fit to the supercell size (i.e., only for
short wave-length phonon for reasonable supercell size). Another point is that the frozen-phonon
method works for the models for which we already know the displacements or wave-vectors. In
the second type of direct supercell approach, the forces related to the displacements of atoms in
the supercell are considered instead of energies in the frozen phonon approach. After every atom
in the finite crystal is displaced, the resulting forces are obtained by use of the Hellmann-
Feynman theorem. From these in turn, the elements of force constant matrix are calculated, from
which the dynamical matrix is determined by a Fourier transformation, and the phonon
frequencies and wave-vectors evaluated by a diagonalization of this matrix. The small

displacement algorithm for phonon calculations is depicted in Figure 2-7.
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Figure 2-7. The small displacement method for phonon calculations.

2.14 Setting up the Transport Problem

There are three different perspectives on the transport problem in a nano device:
thermodynamics, quantum mechanics, electro-statistics. Figure 2-8 depicts these schematically.
From a thermo-dynamical point of view, the nanoscale system comprises of two bulk leads and a
central region. In other words, it consists of two charge reservoirs bridged by a nanoscale
molecule or a surface. The central region including some parts of the leads is called the external
molecule (EM). If a voltage is applied on two leads at both sides of the charge reservoirs, current
flows within the EM according to two different chemical potentials (ug # p;). When the bias is
zero, however, the system is in thermodynamic equilibrium (ug = ;) and can be regarded as

canonical ensemble [38].
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Figure 2-8. Three different perspectives on the transport problem in a nano device: (a)
Thermodynamics (b) Quantum mechanics (c) Electro-statistical points of view.

From an electrostatic point of view, the first assumption is that the current/voltage probes
have a regular periodic structure, so that a unit cell can be defined along the direction of
transport. For this perspective to apply, the problems must be made from high quality metals in
order to preserve local charge neutrality of the system. In this case, the effect of an external bias
voltage on leads at both sides will bring about a rigid shift of the whole energy spectrum. In
contrast, if a nontrivial potential profile develops over the extended molecule sandwiched
between two leads, it needs to be calculated self-consistently. The resulting self-consistent
electrostatic potential needs to be matched that of the leads at the boundaries between the
extended molecule and the leads. To avoid any discontinuity of the electrostatic potential at the
boundaries of the extended molecule, several layers of leads are usually embedded in the
extended molecule. The choice of the number of layers depends on the screening length of the

metal leads, but for most problems, a small numbers of atomic layers (between two and four) are
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adequate. Another reason to add a few layers of leads to the EM is to prevent the molecules from

attaching to reconstructed metallic surfaces through corrosive chemical groups.

In the studies reported in this dissertation, we formulate on the basis a linear combination
of atomic orbitals (LCAO). It is obvious that the choice of (LCAO) will lead to sparsity of the
Hamiltonian. Taking to account the sparsity of the Hamiltonian, it is convenient to introduce the
concept of principle layer (PL). A principle layer is the smallest all in the direction of the
transport (Z direction) that repeats periodically. It is constructed in such a way to interact only
with nearest neighbor PL’s. This implies that all the matrix elements between atoms belonging to

two non-adjacent PL’s go to zero.

At the Hamiltonian level, the system under study is described by an infinite Hermitian
matrix (H).
H, H,, 0
H=\H,, H,[n,] H, (2.60)
0 H,, H,
Different elements of the matrix (H,, H, Hy, Hyy, Hyp) can be defined in detail as

following.

1. H(N X N) matrix: describes all the interactions within a principle layer as a N X N
dimension matrix, where N is the total number of degrees of freedom (total number of
basis functions) in the PL:

2. H;y(N X N): describes interactions between two PL’s.

3. Hy(M X M): describes the extended molecule.
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4. Hpy(N X M): contains the interactions between the last PL of the left hand lead and the
extended molecule.
5. Hyp (M X N): describes the interactions between the first PL of the right hand side of the

lead and the extended molecule.

For a non-orthogonal basis set, the overlap matrix (S) has the same structure as the
Hamiltonian matrix (H). The relations of the various blocks of S are as Sy, S1, Spp, Srm and Sy —
similarly, respectively to their counterparts in Hamiltonian. In principle, in order to find the
electron wave function and consequently determine all quantum mechanical properties of the
system under investigation, one needs to diagonalize H. However, the Hamiltonian is neither
finite nor transnationally invariant because Hy;, Hyg, Hgy and Hy, matrices break the
translational symmetry of the system. In this case, Bloch’s theorem cannot be applied to the
entire system. Since, the diagonalization of an infinite matrix is a formidable task, this issue must
be treated with a different way. A possible approach is to assume that the states deep inside the
leads (electrodes) are associated to Bloch states of a finite system. These states are scattered by
the potential created by the central EM. Hence, one can employ an approach based on a Green’s
function [39, 40] or a wave function [41, 42] to calculate the electronic properties of the ground
state (including the wave function) of an open system. The resulting wave function can be
regarded as a combination of Bloch states for the region deep inside the electrodes and localized
atomic-like state for the central region of EM. Even if, one is able to calculate the Hamiltonian
and the corresponding wave function, the problem of transport still needs to be addressed

separately. We proceed now to explain how this is done.
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2.15 Landauer-Buttiker Method

Heralding a new era in electrical conduction formalism, in 1957, Rolf Landauer proposed
a simple ballistic 1D channel formula relating the conductance of a device (an elastic scatterer)
with the quantum mechanical transmission (T = 1 — R) properties of the one electron wave
function as it approaches a scattering potential. In many ways, the Landauer-Buttiker formula is
the Ohm’s Law for low-dimensional systems [43, 44]. It should be noted that Landauer
considered both the resistance of a quantum system (as) between the equilibrium contacts and the
local resistance of a system itself. In fact, the latter one is the zero temperature residual
resistance. As a result, the one-channel conductance can be calculated from what has come to be

called the “first Landauer formula” as follows

_e* T _ér
G=2 LT/ (2.61)

Let’s consider two limiting cases. At low transmission (T — 0), the conductance is also
small (G — 0). On the other hand, according to Eqn. (2.61), since when T — 1 there is no

scattering, the conductance will go to infinity (G —=«). If we want to consider the spin

degeneracy in these formulas, one has to multiply the conductance by a factor of 2.

However, the conductance through a quantum system (QS) between two equilibrium
contacts, calculated by the linear response method [45, 46] behaves in accordance with a quite

different equation.
G =— (2.62)

According to Eqn. (2.62), the conductance is finite in the case of perfect transmission

through the junction (T = 1). The inconsistency between the two formulas caused much
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confusion and controversy — until, eventually, it was shown that both are reasonable and yield
the same current, but correspond to the voltage differences between pairs of points. The key
difference between Eqn. 2.61) and Eqn. (2.62) is that the first is for the conductance between
either the leads or at the reservoirs, while the latter gives the conductance inside the scattering

region.

In Landauer-Buttiker method, the voltage probes are treated on an equal footing, as the
contacts and reservoirs, having well defined equal chemical potentials. The puzzle with the finite
resistance at (T = 1) Eqn. (2.61) is also understood. Since there is a finite number of
conductance channels, the corresponding conductance is also finite in the case of zero
temperature without scattering. In other words, the number of electrons going through the system
is limited, as well as the current related to one-electron state, consequently the average current

depends on the number of channels, their transmission and the level population.

We can consider the Landauer-Buttiker method as a scattering problem. In this

formulation free electrons with energy E are injected from the left side and are scattered by the

step potential formula.

vir)

A

3 teikzz

Figure 2-9. Schematic representation of scattered wave functions by a potential barrier
V().
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The total wave function of this problem is

|Protar) = |Pin) + |PoL) + [Pour)- (2.63)
with
(z|®iy) = eths? 4 re~tha? 0<z
(z|Prota) = (2| D) = Ae™?? + Be™™?* 0<z<L (2.64)
(z|Dgut) =tetkz? z>1L

K, (—K,) is the wave vector of partially back scattered (transmitted) of an incoming electron.

ke, = 2 (2.65)
Ky = LD (2.66)

Wave-vectors can be imaginary or real depending on whether V < E or V > E. The
coefficients 4, B, r and ¢ can be evaluated by imposing the continuity condition of the total wave

function and their derivatives at the boundaries of the potential.
Alternatively, the scattering problem can be explained in terms of the scattering matrix
($):

S = (r t’, ) (2.67)

where |®;,) and |®, ) are entering or leaving wave functions through the channel as,
|Din) = S[Poue) (2.68)

And t and r (t' and r") in the S matrix are the transmission and reflection coefficients for
incoming waves from the left (or outgoing waves to the right). Following the second Landauer
formula, Fisher-Lee defined the multi-channel conductance as
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[=S3,5T) =S5, Trltgth] = 23, Trlt,tt] (2.69)
where };;  summation is performed over all channels at the Fermi energy (the open channels)
and ), summation introduces the spin index o (¢ = up and down).

We can clearly see that the conductance in Eqn. (2.69) is written in the terms of

2e? . . . ..
conductance quantum (G, = T)' Moreover, the conductance is associated with the transmission

coefficients (coefficients of out scattered wave-functions) of our problem. Here, the energy

dependent transmission probability is
T(E) = Tr(t, (E)t5(E)] (2.70)
In multi-channel formalism the following general Landauer formula is called for.

1V) = 7 [ TEWNIfLE + V) = fa(E)dE 2.71)

where T(E,V) = Tr(f?t) is the effective transmission function for the particles with the energy
E. The most important advantage of this formula is that the transmission function can be
calculated from the quantum scattering theory. Thus, the kinetic problem is reduced to the pure
quantum mechanical problem of a single particle in a static potential. The formula Eqn. (2.71) is

the most general two-terminal formula.

An important contribution was made by Buttiker, who extended the Landauer formula to
a multi-terminal case [47, 48]. In particular, the four-terminal case is of great importance for

experiments. The current from the i contact to the system is

=1 [0 2 Ty EVf(E + eVy) — f;(ED]dE (2.72)
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where V;; is the voltage between contacts i and j.

2.16 Non-equilibrium Green’s Function (NEGF) for an Open System

As was pointed out in the previous preceding section (Section 2.15), we are dealing with
an infinite-dimensional non-periodic Hermitian problem. This problem can be treated by solving

the Green’s function equation.
[etS — H|GR(E) =1 (2.73)
et =limg_ o+ E +i6 (2.74)
where [ is an infinite-dimensional identity matrix, £*is equal to limg_oE + i§ and E is the
energy of the system. From now on, we will drop the symbol “R” indicating the retarded

quantities. Eqn. (2.73) can be written in terms of the block-diagonal matrices of Hamiltonian (H)

and overlap matrix (S).

etS,—H, e*Syy—Hyy 0 6. Gim  Gir
e* Sy — Hyy e*Sy — Hy e*Sur —Hur || 9. Gu  Gmr
0 e+SRM _HRM e+SR _HR gRL gRM gR

J 0 O
= (O Iy 0) (2.75)
0 0 7

where G (G}) are the left (right)-hand side leads, G, (Ggp) are the direct scattering between the
leads Gk and the block matrix of the extended molecule (GM), and H; , Hg , H; 5, , Hpy and their
corresponding overlap matrices, are respectively the Hamiltonian of the left (right) hand side

leads and the coupling matrix indicating the leads and the EM.
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To solve Eqn. (2.75), one needs to write down the Green’s function equation for EM and
the surface of the left and right hand side of the principle layer. Since there is no alternation in
the electronic structure of the left and right hand side reservoirs arising from neither the coupling
of molecule nor through appliance of external bias, one can merely focus on the EM and
eliminate the degrees of freedom of the electrodes one by one from deep inside the leads all the

way toward the interface with the EM.

Hy, Hy Hy H, H Hy Hy Hy Hy H

LD =T

Left lead Right lead

1l 11

H,

]

—

—

“— Extended molecule

“Extended molecule”

I
@ |
Il

Z “ Extended molecule™ | E
L R

Self energy of the left lead Self energy of the right lead

Figure 2-10. Self-energies of the leads as the effect of electrodes in terms of an effective
interaction.

In this way the effect of electrodes will be replaced by an effective interaction potential.

The final expression for the retarded Green’s function for the EM (GX) is as follows:
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G (E) = [e*Sy — Hy — XF(E) — XR(ED] ™! (2.76)
where YR(E) and YR(E) are the retarded self-energies of the left-and right hand-side.

YE(E) = (e* Sy — Hu)GLR(E)(e*Spy — Him) (2.77)

YR(E) = (e*Spm — Hyr) GR" (E) (e* Sgy — Hrm) (2.78)

GP® and G3R in the Equations (2.77) and (2.78) are the retarded surface Green’s function
of the leads, corresponding to the right lower (left higher) block of the retarded Green’s function

of the whole left (right) hand side semi-infinite lead.
GLR(E) = [e*S, — H,]™* (2.79)
RT(E) = [e*Sgp — Hg]™* (2.80)
It is worth to mention that GPR(GYR) are the Green’s functions of the isolated semi-
infinite leads, while GF (GR) are the Green’s function of the scattering region. The good news is
that there is no need to solve Eqn. (2.79) and Eqn. (2.80) in order to calculate the Green’s

function of the leads. Moreover, G& is the retarded Green’s function associated with the effective

Hamiltonian as,
Herp = Hy + X5 (E) + XR(E) (2.81)

where G2 contains all the electronic structure information of the extended molecule, and can be
used to construct the zero-bias conductance of the system through the Fisher-Lee [39, 45]

equation.
2 2
G = =% [[LG"™ TrGE] (2.82)

where
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[ (E) = i[£5(E) — X4(E)'] (2.83)
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Figure 2-11. Flow-chart of the Sméagol program, highlighting the interconnection
between SMEAGOL and FIREBALL. Adapted from [38].

In Figure 2-11, a general flow chart of Sméagol and how it interfaces with FIREBALL. It
can be seen that FIREBALL provides the KS Hamiltonian and Sméagol introduces the self-
energies turning the system from periodic to central scattering region attached to semi-infinite
electrodes. The codes exchange Hamiltonians and density matrices iteratively until self-
consistency is achieved. Then Sméagol is used to calculate the transport properties such as
transmission coefficients and the I-V characteristics.
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CHAPTER 3.EFFECT OF INTERFACES ON ELECTRON TRANSPORT PROPERTIES

OF MoS;-Au CONTACTS

3.1 Introduction

In nanoscopic conductors every atom counts and the transport properties are strongly
dependent on the detailed atomic arrangement. Hence, in order to make theoretical predictions
that can be compared with experimental results, it is important, to have a reliable description of,
the atomic structure of the conductor and of the electronic structure that accompanies it. This can

be achieved most conveniently with the aid of ab- initio electronic structure methods.

A related question partially addressed in this chapter is to what extent the interface of the
MoS, and the electrodes introduces variations in the conductance and how these depend on the

chemical nature of the atoms involved.

3.2 Methodology and Computational Details

We used the first principle code of the SMEAGOL package [49, 50] to calculate transport
properties. SMEAGOL is based on the combination of DFT with a local-orbital basis (as
implemented in the FIREBALL code [51]) with the non-equilibrium Green’s function (NEGF)

technique [52, 53].

Nanoscale devices consist of an atomic-scale system coupled with two semi-infinite
electrodes. The NEGF method splits up a two-terminal nano-device under investigation into
three distinct regions, a left (L) and a right electrodes (R) and a central scattering region,
consisting of an extended molecule (M). The scattering region actually includes a portion of the

semi-infinite electrodes. The Hamiltonian of the total system in the localized atomic basis is
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given by the sum of the Hamiltonians of each of the isolated parts plus the Hamiltonian of the

contact-molecule interactions for the left and right electrodes (Hy, and Hgys), respectively.
H=HL+HR+HM+HLM+HRM (31)

The orbitals are assumed to make up a complete set but are permitted to be non-
orthogonal. In order to deal with the problem posed by an infinite system without translation

invariance, it is convenient to use one-body Green’s functions as we describe in the following.

It worth mentioning that aside from its numerical efficiency [51], the great advantage of
using a local-orbital basis in DFT calculations is that beyond some distance the Hamiltonian
interactions are strictly zero beyond some distance. This circumstance allows us to partition the
system unambiguously, and thus to define regions where we will do different parts of the
calculation as described above. Moreover, because the Hamiltonian takes the same form as in
empirical tight-binding calculations, the techniques developed in this context (i. e., the NEGF

method) can be straightforwardly applied.

The main quantity of the NEGF method in our transport calculation is the retarded

Green’s function of the central scattering region.

~ _ lim e 7 s _ gt
G = 5, ol(E+i8)S — Hypy — 5, — 5] (3.2)

where E is the energy, H $[p] 18 the DFT Hamiltonian — which depends on the charge density

p(r) and X, and £y — are the self-energies for the left and right lead respectively. The self-
energy contains information about the electronic structure of both the semi-infinite electrode and
its coupling to the scattering region.A self-consistent procedure for the two-probe systems is

designed as follows. First the self-energies associated to the leads are calculated from the
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retarded Green’s function of the isolated semi-infinite leads. Then the scattering Hamiltonian

_—

Hgpp 1s constructed for an initial py(7) and the Green’s function using Eqn. (3.2) is calculated.

This allows us to evaluate the density matrix in the following manner
dE A o
p= IEG [T, f(E — uy) + T f(E— pp)lGT, (3.3)

where [ = i[f(x - ZAOCJF]. Since the DFT Hamiltonian Hg depends solely on the density matrix,

Eqgn. (3.1) and Eqn. (3.2) can be iterated until self-consistency is achieved.

The current through the nanoscale system can be calculated from the corresponding

Green’s function and self-energies using the Landauer-Buttiker formula as sollows [54]

2e

1) = 2 [*7dE [fi(E - w) — fo(E — pp)] T(E,V) (34)

where y; and pg are the electrochemical electron distribution of the two electrodes. T(E,V) is the
transmission coefficient at energy E, and V is the bias voltage, which can be calculated from the

converged Green’s function thus:
T(E,V) = Tr [Im Z,(E) GR(E) Im Zx(E) G:(E)] (3.5)

Finally, conductance is simply proportional to T(E) evaluated at the Fermi level (Er ) at

zero bias (V=0):
G= T(Ep) (3.6)

In the calculations for the studies discussed in this chapter, FIREBALL-SMEAGOL code
is used within the local density approximation (LDA) for the exchange—correlation functional. In
FIREBALL, the wave functions of valence electrons are expanded in the basis of the so-called

FIREBALL orbitals, i.e. a set of strictly localized pseudo-atomic orbitals, which are exactly zero
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for distances larger than the cutoff radius Rc. Several tests have been performed to optimize the
local-orbital basis set, yielding a good description of the structural and electronic properties of
the studied system. Pseudopotentials are used to treat the core electrons in the calculations. We
have used the following optimized basis set of numerical atomic orbitals: s,p,d for Mo atoms,
s,p,d for S atoms and s,p,d for Au atoms . The cutoff radii (in a.u.) of those orbitals are: (6.2, 6.2,
5.8), (4.5, 5.0, 5.0) and (5, 5.6, 4.7) for orbitals of Mo, S and Au, respectively. The set of k-
points used in our calculations consists of 16 k-points in the first 2D Brillouin zone of the Au
electrodes. The total-energy convergence with respect to the choice of k-points was checked by

repeating the calculation with a different set of k-points and comparing the results.

3.3 Construction of Model Sample Au-MoS>-Au

The geometry of the edges of MoS, is well understood [55-57] It is either the armchair or
the zigzag, as seen in Figure 3-1. As a result of the symmetry inherent in a layer of MoS,, there
are two types of zigzag edges: S zigzag edge (1010) and Mo zigzag edge (1010). Note that either
Mo or S atoms could terminate the zigzag edge. Thus, there are in total four types of zigzag
edges: S edge-S, Mo edge -Mo, S edge-Mo, and Mo edge-S, where Mo and in the second part
indicate the edge termination. The geometry of the first two zigzag edges is shown in Figure 3-1.
By removing the outermost atom-row of these edges, the geometry of the S edge-Mo and Mo

edge-S type of edges can be obtained [58].
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Figure 3-1. Ball-stick model of armchair and zigzag edges of MoS,. Dark (blue) and light
(yellow) balls represent Mo and S atoms, respectively.

To simplify indices of the edges in what follows, we replace [Mo edge — 00%S], [S edge
— 00%Mo], [Mo edge —1 00%S] and [S edge — 100%Mo] with Mo00, S00, Mo100 and S00,
respectively. (See Figure 3-2)

In our two probe model system, the extended molecule includes MoS; molecule coupled
with two layers of the Au. The Au electrodes have been modeled by 3 layers (111) oriented-Au

slabs with a 2x4 surface unit cell. The structural model for our theoretical analysis is illustrated

in Figure 3-3.
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Figure 3-2. Different samples with different interfaces of MoS,;-Au used for
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Mo00S500

Mo005100

Mo100500

Mo1005100

Figure 3-3. Atomic representation of the relaxed arrangement of single layer MoS, with
different edges coupled with Au contacts: (a) Mo00S00 (b) Mo00S100 (c) Mo100S00 and (d)
Mo100S100.

3.4  Charge Density Analysis

3.4.1 Projected Redistribution of Average Charge Density in the Z Direction

A measure of charge rearrangement at the interface of the Molecule and contacts can be
obtained by subtracting the density of the two isolated fragments (MoS, and Au, each with atoms
at final relaxed positions in the total molecule-slab system) from the density of the total system.
The result is the deformation or difference of the charge density due to the molecule-contact

interaction:

A p(r) = p(MoSy+Au)- p(MoS,)- p(Au) (3.7)
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Figure 3-4. Electronic structure at the interfaces of MoS, and the Au contacts: (a) Sample
models (b) planner (110) averaged charge density difference. The dashed lines represent the
position of the Au-slab and MoS, layers. Positive values indicate an accumulation of charge;
negative values indicate a depletion of charge with respect to the separated fragments. (c) 3D
charge density redistribution [A p(r) = p(MoS; +Au)- p(MoS;)- p(Au)]. Isosurfaces are drawn
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with isovalue of 0.01 unit. The blue and red surfaces represent, respectively, the charge
accumulation and deficit regions. (i.e. charge flows from red to blue regions) (d) Charge density
redistribution plotted along the vertical plane passing through two Mo atoms of MoS; molecule
(y-z plane). Contours are drawn in scale from 0.003 to 1 unit at interval of 0.05.

To enable a more quantitative analysis, it is useful to average the charge density
redistribution [A p(r)] on planes parallel to the slab, at various positions in the direction

perpendicular to the surface (z) resulting in a profile
P we(z) = [, Ap(r) dx dy (3.8)

where A represents the surface of the cell perpendicular to the z direction. As may be expected, p
ave(z) exhibits oscillations in the interface, but the broad features are as an accumulation of
electronic charge in the interface area, and a depletion in the region occupied by the MoS,. To
visualize the charge transfer between the MoS, and Au, we used both the code FIREBALL (with
local-orbital basis set) and the plane-wave ab-initio code VASP [59]. Since the trend of the
results with VASP did not differ from those obtained with FIREBALL; we regard the accuracy

of the local basis-set calculations with FIREBALL to be sufficient for our purposes.
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Figure 3-5. Averaged charge density difference along Z direction for fcc, hep and top

sites.
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Direction and Size of Charge Transfer

We used two different methods to find the direction and value of the charge transfer.

3.4.2.1 Barder Analysis

First, we performed Bader analysis to approximate total electronic charge of the separate

atoms MoS, and Au atoms in the total system.

Bader developed an intuitive way of dividing molecules into atoms. His definition of an

atom is based purely on the electronic charge density. He uses what are called zero-flux surfaces
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to divide atoms. A zero flux surface is a 2-D surface on which the charge density is a minimum
perpendicular to the surface. Since in molecular systems, the charge density typically reaches a

minimum between atoms, this is a natural place to separate atoms from each other (see Table

3-1).
Table 3-1. Charge transfer results with different methods
Sample n_atom Charge transfer (e) Charge flow Direction ~ Charge transfer ~ Charge flow Direction
(Mo+S) Fireball-CNL Fireball-CNL VASP-Bader VASP-Bader

Mo00S00 6+10 0.445 ¢ MoS; > Au 0.839 MoS; > Au
Mo00S100 6+12 0.277e MoS; > Au 0.144 MoS; > Au
Mo100S00 6+12 0.347¢ MoS; > Au 0.336 MoS; > Au
Mo100S100 6+14 0.270e MoS,; > Au -0.483 Au—~>MoS,

3.4.2.2 Charge-Neutrality Level (CNL)

Another way to calculate the value and direction of the charge transfer is using the
concept of the charge-neutrality level (CNL) located at a given position within the PDOS. As an
illustration, the CNL location is given in Figure 3-6. The charge transfer at the interface is
controlled by the difference between the Fermi level of the electrode and the MoS, charge-
neutrality level. The offset between the CNL of the MoS, molecule and the metal Fermi level
determines whether and in which direction charge is transferred between the metal and the MoS;
molecule. If Eris below the CNL (i.e. CNL is greater than Ef), the negative charge is transferred
from the molecule to the metal, if Eris above the CNL (i.e. CNL is smaller than Ef), the negative

charge is transferred from the metal to molecule.
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Figure 3-6. Partial density of states of total system, MoS, molecules and the Au
electrodes for 4 different Au-MoS;,-Au samples. The red line and green lines depict the Fermi
level and the charge neutrality level (CNL), respectively.

3.5 Electron Transport Properties

In this section, we study three different electron transport properties of four different Au-
MoS;-Au samples
3.5.1 Zero Bias Transmission

T(E) is the probability of an electron of a given energy to pass through the system (from
filled initial states of one electrode to empty final states of the other). It is elastic scattering, so it
is adiabatic - electron energy is conserved, so it must pass from initial states of one electrode to

final states of the other electrode, where both states has the same energy.
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Figure 3-7. The equilibrium transmission in zero bias versus energy curve of the various
sorts of Au-Mo-Au junctions. Right-hand side graphs show the logarithmic form of the
Transmission versus Bias = 0. Because of the exclusion principle, it is apparent that the electron
will pass from filled states to empty states.

69



Positive Bias

Voltage increases => Transmission peaks goes towards lower energies
1

E T T T T T - V: G
(a) [ — V=05
[ V=10
—— V=15
o1 V1.0 — V=20
H
5 s
- :
g} 1
= 001}
1E-3
L 1 1
-1.0 0.5 0.0 0.5 10
E(eV)

Megative Bias
Voltage decreases => Transmission peaks goes towards higher energies
1

. T T —vVv=0 |
(b) V203 ——V=-05
b —Vv=-10

i —Vv=-15

01 VST 4 v=20

i sl

Log [T(E)]
f=1
2
I

1E-3

1E-4 " I . i L 1 "
-1.0 0.5 0.0 05 1.0

E(eV)

Figure 3-8. Transmission peaks of the sample when (a) bias voltage increases (positive
bias) or (b) bias voltage decreases (negative bias).

Looking carefully at the peaks in the gap of the transmission curves, we observe two
complementary patterns. When bias is positive, transmission peaks go toward lower energies as
the voltage increases. Whereas for negative biases, they go toward higher energies as voltage

decreases.
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3.5.2 I-V Curves

The current that passes through the single-layer MoS, sandwiched between two gold
electrodes can be found from integration of the transmission curves for different ranges of

energy.
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Figure 3-9. Transmission curves in various biases versus energy curve of the various
types of Au-Mo-Au junctions.

Given current for each bias, we can summarize the I-V curves related to each sample as

shown in Figure 3-10.
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Figure 3-10. I-V curves for various sorts of Au-Mo-Au junctions with different interfaces
of Au-MoS,.

3.5.3 Schottky Barriers

Many modern electronic devices (most notably transistors) rely on a metal/semiconductor
contact. The electronic structure at the interface of semiconductor and metal plays a fundamental
role in the performance of atomic sized devices. One of the crucial parameters at the interfaces is
the height of the Schottky barrier (SBH). SBH is a measure of the voltage barrier to transport the
majority carriers at metal-semiconductor junctions.. The principle that leads to SBH is the
mismatch in equilibrium of energy between Fermi levels of the metal and the semiconductor

leads to bending of the majority carrier band.

When a semiconductor comes into contact with a metal, the wave functions of the two

sides interact and new wanefunctions are formed in the immediate neighborhood of the interface.
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For convenience, an interface specific region (ISR) can be imagined that serves as a transition
region between the metal and the semiconductor. There are two types of SBH, n type and p-type,

distinguished by whether the majority carrier is electrons or holes.

An n-type Schottky barrier occurs when the work function of the metal is larger than the
work function of the semiconductor (Pm > ®S). In this case the Schottky barrier is The
difference between the work function of the metal and the conduction band-edge of the

semiconductor which is also referred as electron affinity (y).

In p-type Schottky barrier, the work function of the metal is smaller than that of the
semiconductor (Pm <®s). The SBH of a p-type semiconductor is the minimum energy required
to sufficiently excite an electron from the semiconductor valance band and to place it across the
metal-semiconductor interface at the Fermi level of the metal. In other words, the barrier is the
offset of the work function of the metal and valance band edge of the semiconductor. In both
cases the extent of the band bending and formation of interface specific region depend on the

extent of the charge transfer across the interface.

To calculate the Schottky barriers we used the potential line up method [60] as discussed
in the previous section. The electron affinity for MoS, and work function of Au are calculated
from average Hartree potential of MoS, and Au (1x1x16) along Z direction. Band gap of the

MoS; is calculated from band structure MoS,. (see Figure 3-11)

Since the single layer MoS; is not transnationally invariant, there are four different edges
of MoS; with gold. In samples with different sorts of interfaces of MoS;-Au used to model and

approximate the Schottky barriers SO0, Mo00, S100 and Mo100 are respectively presenting.
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Schematic illustration of p-type and n-type Schottky barriers of Mo00 —Au, Mo100-Au,

S00-Au and S100-Au contacts are shown in the. @y, ,Erm, %s, Eg, Evac, Psgu, Ec and Ey are

metal work function, Fermi level energy of Au, electron affinity, bandgap energy, vacuum level

energy, conduction band energy and valance band energies, respectively.
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3.6 Conclusions

In summary, we studied the electronic structure of the four types of interface posiible
between single-layer MoS; and Au leads. Electrostatic potentials and the charge redistributions at
the interface between the metal and the MoS,, differ significantly among the four types, as do the
type (n or p) and strength of the calculated Schottky barriers. One type (Mo00S100) exhibits the
greatest current. The Schottky barriers related to p-type Mo00, p-type S100, P-type S00 and n-
type-Mo100 are equal to 2.364, 0.771, 2.352 and 0.153, respectively. The lowest Schottky

barrier belongs to n-type Mo100-Au contact.
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CHAPTER 4.PREDICTIVE MODELING OF FUNCTIONAL MATERIALS

4.1  Part I: MoSx Square-like Novel Material

4.1.1 Introduction

Recent experiments have successfully synthetized MoSx nanostructures in a controlled
manner by depositing Mo adatoms on the S-Cu monolayer that forms on Cu(111) upon sulfur
preloading [61]. STM observations have suggested three possible structures for MoSx on
Cu(111). All the experiments in this study have been done by our experimentalist collaborators

from UC-Riverside [62].

Figure 4-1. STM (Scanning Tunneling Microscope) image of MoSx structures (Imaging
parameters: bias: 0.93 V, current: 0.21 nA, scale bar: 5 nm).[Reprinted Figure with permission
from “D. Sun, W. Lu, D. Le, Q. Ma, M. Aminpour, M. Alcantara-Ortigoza, S. Bobek, J. Mann, J.
Wyrick, T. S. Rahman, and L. Bartels, Angew. Chem. Int. Ed. 51, 10284 (2012). Copy right
(2012) by the Angewandte Chemie.”]
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One of these three possible structures has been identified as MoS,. All MoS, films and
islands were found to align with the crystallographic axes of the substrate, and appear in STM

with a characteristic Moiré pattern formed by the epitaxial growth of (4x4) unit cells of MoS; on

(5%5) atoms of the Cu(111) substrate [61].
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Figure 4-2. Single layer MoS,/Cu(111) (a) geometrical structure and (b) simulated STM
image corresponding to it. [Reprinted Figure with permission from “D. Le, D. Sun, W. Lu, L.
Bartels, and T. S. Rahman, Phys. Rev. B 85, 075429 (2012). Copy right (2012) by the American
Physical Society .”]

A different pattern is a novel one that corresponds to well-ordered islands with unit cell
with v/7 long sides, but at angles of 82° and 98° - or [_22 é] in vector notation. It provides the

closest approximation to a square unit cell achievable with short unit vectors on an fcc(111)
surface. It is found that up the 20% of the sample surface covered by this structure. Scanning
Tunneling Spectroscopy (STS) performed on the MoS; and MoSx novel patterns resulted in
fundamentally different (I/V) spectra. MoS; has little variation of the tunneling current at

negative bias but large variation at positive bias, indicating the MoS, conduction band. MoSx,
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shows little variation of the current at either positive or negative biases, attesting, in agreement to

DFT simulations to the absence of band edges near the Fermi level [62].

In our first report [62], after a thorough computational screening of about 50 possible
MoSx structures on Cu(111), targeted to find the lowest-energy structure and the one whose
calculated STM image most resembled the observed one, we originally found good

correspondence of these nearly square patches with the properties of an Mo,S; layer [62].

Comparison of DFT-minimized structures cannot directly lead to identification of the
observed one, since the structures may have different numbers of atoms in the unit cell. Instead,
very precise comparisons need to be made of the subtle features in the calculated and measured
STM images. Yet even this latter comparison failed to eliminate all ambiguity: in our search for
the lowest-energy structure with the best resemblance to experimental STM observations, we
turned up not only MosS¢ (= Mo0,S;) but also Mo,Ss, both of which yielded calculated STM
images in good agreement with the observed one. Hence in the present study we turn to
calculation of the vibrational frequencies of these two candidate geometries. Observation of
vibrational modes is a powerful tool in material characterization. Vibrational spectroscopy is a
sensitive probe of the atomic structure and of the chemical bonding and thus of the electronic

structure.

Such calculations depend on what is taken to be the structure of the S-Cu monolayer on
which the Mo atoms are deposited. The effect of S poisoning of transition metal surfaces has

long been of special interest in studies of catalysis.

The earliest demonstration that deposition of S on Cu results is a compound V7 X v/7

R19° S-Cu monolayer emerged (1986) from Domange and Oudar’s [63] LEED (Low-Energy
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Electron Diffraction) experiments. Subsequently, a number of experimental techniques have
been brought to bear in an attempt to pin down precisely the exact number and location of the
two species of atoms in this monolayer: These range from surface extended X-ray absorption
fine structure (SEXAFS) and normal incidence X-ray standing waves (NIXSW) [64] , registered
through STM [65, 66], to XPS (X-ray Photoelectron Spectroscopy) and AES (Auger Electron
Spectroscopy) [67]. The most quantitatively precise proposal resulting from these studies was
that of Prince in 1990 [64]. Another model is proposed by Foss et al.(1997) [68]. In (1999),

Saidy et al. [69] rejected the Foss Model in favor of a modified version of Prince’s.

For reasons explained in section 4.1.3, we base our investigations of the vibrational
frequencies of the two models for of the novel MoSx pattern on the assumption that the S-Cu

film on which it forms accords with Prince’s model.

4.1.2 Computational Details

We use Density-functional-theory (DFT) in VASP (Vienna Ab-initio Simulation
Package) code to relax the structures [59]. We use the Projector-Augmented-Wave (PAW)
method [70-72] pseudo-potentials with the opB88-vdW version of the exchange functional and
the non-local correlation functional developed by Dion et al. [73, 74]. We use the Roman-Pérez
and Soler algorithm [75] to speed up the calculation of the non-local correlation energy. We
expand the electronic wave functions in a plane-wave basis set with the kinetic energy cut-off at
680 eV and the kinetic energy for augmentation of charges at 10000 eV. For the integrations
inside the BZ, we sample the space according to the Monkhorst—Pack scheme [76], with a
uniform grid of k-points of dimensions 6x6x1 for our 4x4 surface. The integrations over the zone

use the Gaussian broadening technique for the level occupation with a smearing parameter of
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0.15 eV. We converge the total energy of any ionic configuration to 3x10° eV, and relax the
systems by minimizing the forces on the atoms to 0.003 eV/A. In all calculations, we model the
Cu(111) substrate with a 6-layer slab separated from its periodic images by ~ 20 A. We perform
phonon calculations using the small displacement method [77] with a finite atomic displacement
of £0.01 A as implemented in the PHONOPY code [78]. In turn, these displacements induce
Hellmann-Feynman forces. From the forces as a function of displacement, we construct the
dynamical matrix. Eigenvectors and eigenvalues (frequencies of the modes) are evaluated by
diagonalization of this matrix. Our results provide the vibronic fingerprints that will enable
experiment to identify the structure. We deposit DFT-derived simulated topography as an
isosurface of energy-integrated (from —1.0 to 0 eV) local density of states of 10* eA

3 convoluted with a tip radius of 2.4 A.

4.1.3 An MoSx Structure with High Affinity for Adsorbate Interaction

To get insight into the interaction of the surface of the novel MoSx patterns with the adsorbates,
Anthraquinone (AQ) is exposed as a test adsorbate on the samples [62]. AQ is a large and rigid
molecule so the adsorption geometry of which can be imaged easily. We were expecting that the
AQ would adsorb on MoS, patterns because of the existence of their brim edges but ended up

observing that it adsorbs exclusively at the MoSx new patterns. Initially AQ forms molecular

rows at intermolecular distances of v/7, quite similar to AQ rows on Cu(111), for which the
presence of non-negligible intermolecular hydrogen bonds is found. Further increasing the
dosage of AQ molecules, first an exclusive increase in the coverage of MoSx is observed until a
dense layer of AQ molecules adsorbed parallel to the substrate (see Figure 4-3(a)). As coverage

further increases, the AQ molecules continue to avoid the sulfur-terminated substrate as well as
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MoS; structures. As a result, a denser packing of AQ layer on MoSx forms in the upright
configuration (see Figure 4-3 (b)). Using DFT calculation, we find the binding energy to be 3.36
eV and 1.92 eV in the planner and upright configurations, respectively. It is observed that AQ
molecules populate the MoS, structures (see Figure 4-3(d)) and their brim areas after they attach
to the sulfur—terminated copper surfaces (Figure 4-3(c)) [62]. Our calculations also show that the
binding energy of AQ on sulfur-terminated Cu (1.47 eV) is lower than that of the Mo,S5 structure
even in the upright configuration. AQ preferentially forms an array of molecular rows, which are
almost always in anti-phase with adjacent rows, though occasionally in-phase lateral stacking of
rows is also observed. The spacing of AQ molecules (at 6.75 A center to center) is very tight,
thus enabling intermolecular hydrogen bonding. Since the periodicity of the AQ layer on MoS; is
incommensurate with the Moiré pattern of the (4x4) MoS, layer on (5x5) Cu(111) layers, we
calculated the adsorption energy (1.32 eV) by modeling an isolated molecule on MoS, /Cu slab
(1.20 eV) and adding to that the lateral AQ-AQ interactions calculated on a MoS, monolayer
(0.12 eV). The sequence of the DFT adsorption energies is in agreement with the relative

preference for AQ adsorption on the three different surface structures that we report here.
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1.32 eV) adsorption configurations, respectively.

3.36 V),

4.1.4 Geometrical and Vibrational Properties of S-Cu/Cu(111) Models

Deposition of S on Cu(111) results in a compound of V7 x v/7 R19° S-Cu monolayer on

Cu(111) substrate. As discussed in 4.1.1 section, three different Models have been proposed as

Prince (1990), Foss (1997) and Saidy (1999) (See Figure 4-4(a)). In Prince Model [64], in each

unit cell, three S atoms bind directly to the substrate (one on an fcc, one on an hcp, and one on a

top site) and the three Cu atoms lie above the top-S atom in the three hollow sites surrounding it.

According to the Prince Model, the nearest neighbor S-Cu DFT calculated distances after
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relaxation shows that S-fcc, S-hcp and S-top atoms remains on their positions while the three Cu

atoms move slightly away from hollow sites around S-atom toward the bridge sites [79].

In the Foss Model [68] each unit cell contains 3 S and 4 Cu atoms: The first two S atoms
are located on fcc and hcp sites. The other S atom is on a square-like Cuy fragment centered in
turn on the top site of the substrate. In the original paper the exact locations of the four Cu atoms
in the CuyS fragment were not specified. In 2012, Alfonso [79] used DFT calculations to
demonstrate that an energetically minimum Cu4S in the Foss model comprises a pair of Cu atoms
on two opposite sites, and the other pair on the two second-nearest-neighbor sites, forming a

square-like Cuy fragment, atop of which the S atom sits.
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Figure 4-4. (a) Cu-S overlayer models of Domange and Oudar, Foss and Saidy. yellow:
sulfur, light brown: Cu atoms, dark brown: surface Cu atoms (b) STM images of Prince, Foss
and Saidy models. (Occupied states, LDOS: -1 to 0.0 eV, Isovalue: 10-5 e/A.)
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The DFT-based simulated STM (See (b)) of all three models are in good agreement with
experiment Saidy Model [69] posits the same number of S and Cu adsorbate atoms in the unit
cell as Prince Model. Both models contain 3 Cu and 3 S atoms, with two of the S atoms upon an
fce and an hep site, respectively. But Saidy places the remaining S atom not upon a Cu top atom
but upon a vacancy generated by removing that Cu-top atom from the substrate (which ends up

with fewer Cu atoms than the substrate in the Prince model).

Using DFT calculations, we relaxed three candidates for S-Cu/Cu(111) Models. Among
the three, Saidy turned out not to be stable. As a result, we leave it aside in our predictive
modeling process. Here, relying on the calculated phonon-frequencies and eigenvectors of the
remaining two models (Foss and Prince), we use the finite-displacement method to expose the
vibronic fingerprints that will enable experiment to decide between them. The phonon density-of
-states curve will provide the instability energy associated with a particular phonon mode. The
instabilities are manifested as phonons with negative ® Since we do not have any negative

frequencies in our phonon density of states, we can infer that both the models are stable.

Our DFT calculations of the vibrational spectra at the surface Brillouin zone center (G)
for some of the proposed hexagonal sulfur terminations of Cu(111) confirm that both the
structure reported by Prince [63] and the Cu4 -based structure studied by Foss et al. [68] are
dynamically stable. Although the phonon densities of states at G show structure-distinctive
frequencies, the differences between the two spectra are too subtle to determine an energetic

difference.
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Figure 4-5. Phonon density of state curves of the Foss and Prince models (a) all range (0
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In the following, since both all experimental and theoretical work so far supports so far
Prince’s model, we take the structure proposed by Prince as our initial base for depositing Mo

and S atoms.

4.1.5 Geometrical and Vibrational Properties of the Mo,S;/Cu(111) and Mo,Ss/Cu(111)

Models

After a thorough and careful computational screening of many possible MoSx structures
by adding Mo and S on the surface of the Prince structure, targeting to find the lowest-energy
structure and the one whose calculated STM image most resembles the observed one, we end up

with two candidate models as Mo,S; and Mo,Ss. The geometrical properties for Mo,S; and

Mo,Ss can be summarized as follows: V7 long sides, at angles of 82° and 98° - or _22 é] n

vector notation. The unit-cell for Mo,S; contains four molybdenum atoms and six sulfur atoms

and the unit cell for Mo,Ss contains two Molybdenum atoms and five sulfur atoms.
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Figure 4-6. Top and side view of (a) M0,Ss and (b) Mo,S3; models.

Theoretical calculation of vibrational mode frequencies and intensities from first
principles is very helpful in finding the stable structure and the fingerprint frequencies required
for identification by experiment. Since both of the model structures (Mo,S; and Mo,Ss) are
dynamically stable, each passes the first condition to be chosen as the model candidate for MoSx
Structure. Most frequently used experimental techniques to calculate phonon density of states
are: (1) neutron scattering, which though technically is difficult, can display the entire dispersion
is observable, (2) infrared (IR) spectroscopy which though in comparison to the first method,
makes only some modes observable. (3) Raman spectroscopy, though likewise comparatively
simple method, can reveal only a different subset of modes. Raman spectroscopy is often
considered to be complementary to IR spectroscopy. For symmetrical molecules with a center of
inversion, Raman and IR are mutually exclusive. In other words, bonds that are IR-active will
not be Raman-active and vice versa. Other molecules may have bonds that are either Raman-

active or IR-active, or neither or both. Raman scattering occurs in two ways. If the emitted
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radiation is of lower frequency than the incident radiation, then it is called Stokes scattering. If it
is of higher frequency, then it is called anti-Stokes scattering. In IR scattering, most often the
emitted radiation is of the same frequency as the incident light. Two features (v=45.460 meV, v=

56.821 meV) of Mo,Ss structure distinguishable with either Raman or IR spectroscopy to decide

which structure is the real one.
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Figure 4-7. Phonon density of states (meV) of Mo,Ss and Mo,S; samples (a) full
frequencies (b) high frequencies (c) low frequencies

4.1.6 Discussions and Conclusions

Recent experiments have successfully synthetized MoSx nanostructures in a controlled
manner by evaporating Mo adatoms on the copper sulfide monolayer that forms on Cu(111)
upon sulfur preloading. Based on STM observations and DFT total-energy calculations,
including ab-initio van-der-Waals interactions, several structures for MoSx/Cu(111) have been
proposed. In this study, we investigate the plausibility of those structures and provide elements

for further experimental substantiation or refutation. In particular, we perform density-
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functional-theory calculations of the total energy and the vibrational spectrum of the proposed
structure to (1) test their dynamical stability, (2) compare their thermodynamic stability as
obtained from their total free energy, and (3) provide the vibrational frequencies that uniquely
fingerprint the proposed structures. Since both of the model structures (Mo,S; and Mo,Ss) are
dynamically stable, at least at Gamma, the calculated dynamical stability cannot discern or favor
one structure or the other.Mo,S; has several high-frequency features while Mo,Ss quite clearly
distinguishable frequencies, well separated. The feature of Mo,S; structure could suffice to

clarify which is the real structure.

4.2  Part II: MogSs Nanowire

4.2.1 Introduction

Molybdenum-sulfide compounds have recently attracted considerable attention for a
broad range of applications as we discussed in Chapter 1. As is the case with carbon, compounds
of molybdenum and sulfur may assume a number of nanoscale forms such as nanotubes [80],
nanorods [81] and nanoparticles [82, 83]. Here we describe the formation of one-dimensional
(1D) MogSe nanowires, which may serve as a building block for nanoelectronic devices [84, 85].
The Mog¢Ss nanowires assembled by 60°-rotated AB stacking of Mo3S; building blocks that
consist of a triangle of Mo atoms decorated with three sulfur atoms at the outside sides (Figure

4-8a, b).

Recently, Kibsgaard and coworkers [86] have grown molybdenum-sulfur nanowire
bundles on highly ordered pyrolytic graphite (HOPG); they suggest that their bundles consist of
several MogS; units side by side. The wires were found to grow in a disordered fashion: substrate

interactions appear to be insufficiently strong to align them with the HOPG crystallographic
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directions. Here we show theoretically, with the support from our experimentalist collaborators,
that the use of a more interactive substrate, Cu(111), permits the growth of molybdenum sulfide
nanowires that consist of a single stack of Mo¢Se units only and that are aligned with the
substrate directions. Moreover, we find a preferred spacing between adjacent MogSs wires,
slightly larger than their van-der-Waals (vdW) separation in the gas phase, highlighting the
importance of substrate interactions and suggesting the latter’s ability to both align and space the

wires evenly.

4.2.2 Methods

Density functional theory (DFT) simulations are carried out using the projector-
augmented (PAW) method [87] and a plane-wave basis set which are implemented in the VASP
[59]. In order to take into account vdW interactions, which are expected to play an important role
in the attraction between MogSs nanowires, we use the optB88-vdW version [74] of the van der
Waals density functional (vdW-DF) [88, 89] to describe the exchange-correlation interaction of
the electrons, as implemented in the code of Ref. [90]. The Roman-Pérez and Soler algorithm
[75] is used for speeding up the evaluation of the non-local energy. The pseudo-potentials are
generated using the Perdew-Burke-Ernzerhof (PBE) functional [22] for which 11, 6, and 6
valence electrons are treated explicitly for Cu, Mo, and S, respectively. Tests show that
extending the pseudo-potentials to include semicore electrons does not affect the results

significantly. We set the cutoff energy for the plane-wave expansion at 500 eV.
For simulating MoeSe on Cu(111), we use supercells consisting of a 5-layer Cu(111) slab

ina [ nl TJ geometry based on the vectors a, and &, , as shown in Figure 4-8(c): the 1* and 2nd
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translational vectors are nd, +nd, and -a,+d,, respectively. Depending on the nanowire
property in question, the supercells contain one or two adjacent MosSe wires and a vacuum of 20
A. The Brillouin zone is sampled with a kx13x1 mesh, where k is 7, 5, and 1 for n equal to 3, 4,
and greater than 6, respectively. During structural relaxations the bottom two Cu layers are held
fixed and the calculation terminates when all force-components acting on each free ion are
smaller than 0.01 eV/A. The binding energy of a MosSe unit on Cu(111) is calculated as the
difference between the total energy of the MogSe¢/Cu(111) system and the sum of the total
energies of a Cu(111) slab and of a MogS¢ wire which is separated from its periodical images by
a distance of 15 A. We simulate STM topologies as the 10” e/A’ iso-surface of local density of
states integrated from -1.0 eV to the Fermi level. All experiments proceeded in a UHV (Ultra-
High Vacuum) chamber housing a variable temperature STM setup. The details for the

experiments are discussed in [91].

4.2.3 Results and Discussions

Figure 4-8(a) and (b) show the top and cross-sectional views of the minimal
molybdenum-sulfur nanowire that we found to be stable: it consists of Mo-trimers stacked on top
of each other at 60° rotation. Each trimer is decorated on the outside with 3 sulfur atoms for a
total stoichiometry of MogS¢ (for a pair of Mo3Ss subunits at 60° angle). Figure 4-8(c) shows a

Cu(111) surface with its basis vectors (a, and a,) indicated. Our DFT calculations result in an

optimal Cu interatomic spacing of (denote D) of 2.564 A, in excellent agreement with the
experimental lattice parameter of bulk Cu [92]. The direction vertical in Figure 4-8(c) has a

periodicity V3 D, very close to the axial periodicity of MosS¢ nanowires (at a calculated
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mismatch of ~2%), suggesting that MosSs nanowires may grow epitaxially along this direction

on Cu(111).

Figure 4-8. Atomic model of MosS¢ nanowires (a,b) and the Cu(111) surface (c). Panels
(d) and (e) show models of two potential configurations of MoeS¢ nanowires on Cu(111), a
symmetric one (d) and an asymmetric one (e). We superimpose simulated STM images, in which
we mark the maxima with black circles. While in (d) both maxima have the same height, in (e)
the ones on the right are more prominent than those on the left.

We modeled MogS¢ nanowires on a ( 61 ﬂ Cu(111) super cell. The distance between

the wires and their periodic images is 6D, which is sufficiently large to suppress direct lateral
interactions between them (vide infra). The results of structural relaxations indicate two
potentially viable configurations: (Figure 4-8(d)) a symmetric one in which the “S legs” adsorb
close to bridge sites and (Figure 4-8(¢e)) an asymmetric one in which half of the “S legs” adsorb
close to hollow sites, while the other half adsorb close to bridge sites. Binding energies per
MosSe unit in the two configurations are 2.61 and 2.59 eV, respectively, slightly favoring the

symmetric configuration. We use absolute values of binding energies throughout this text.
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We simulated the STM images expected from these two configurations as the 107 ¢/A’
iso-surface of local density of states integrated from -1.0 eV to the Fermi level: in each case, we
find a double row of apparent protrusions in anti-phase; the protrusions are centered adjacent to
the topmost S atoms (Figure 4-8(d) and (e)). In the symmetric configuration, the registries of the
topmost S atoms are close to bridge sites of the Cu(111) surface and the apparent protrusions are
very close to the hollow sites (Figure 4-8(d)). In the asymmetric configuration, half of the
topmost S atoms are nearly in registry with the substrate bridge sites whereas the other half are
closer to hollow sites and the apparent protrusions are close to bridge sites. Because of the
difference in adsorption sites of the two “S legs” in the asymmetric configuration, we predict a
small difference of the heights of the topmost S atoms (~0.1A difference) and, hence, of the

protrusions in the STM image.

Figure 4-9 shows the experimental results obtained by our collaborators [91]. The
nanowires were grown on a (V7xV7)R19° sulfur-terminated Cu(111) surface which at the same
time also produced MoS, and Mo,S; patches [62]. The nanowires are aligned each with one of
the three substrate atomic row directions. The nanowires show two rows of protrusion in
antiphase along their body, as predicted from our calculations, and additional protrusions at their
ends. Within the limits of the experimental observations, no difference in height between the
protrusions on one or the other side of the nanowire can be made out, suggesting the symmetric

adsorption configuration.
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Figure 4-9. STM images (current: 0.13 nA, bias: -0.82 V) of a) isolated MoeS¢ nanorod
on Cu(111) in good agreement with the simulated STM image Figure 4-8(d); b) overview of our
sample preparation showing the nanorods, the sulfur termination of Cu(111) as hexagonal pattern
of apparent protrusions, and MoS, islands with characteristic brim state (grey, smooth areas); c)
cluster of aligned and equally spaced MosSg nanorods at 4D separation. .[Reprinted Figure with
permission from “D. Le, D. Sun, W. Lu, M. Aminpour, C. Wang, Q. Ma, T. S. Rahman, and L.
Bartels, Surface Science, 611, 1-4 (2013).Copyright (2013) by the American Physical Society. ]

Since the growth procedure leaves the Cu(111) surface covered by either sulfur or
molybdenum sulfide (MoS;, M0,S3, or MosS¢), registry information of the nanowires with
regards to the bare substrate cannot be obtained. Moreover, the nature of the (V7x\7)R19° sulfur
termination is still under discussion [79]. Assuming the structure proposed by Foss ef al. [93] or
by Domange and Oudar [93], the apparent protrusions of the sulfur termination are in registry
with the top sites of the underlying substrate. Under this assumption, the protrusions in the STM
image are in registry either with the hollow or bridge sites of the substrate supporting both
models (symmetry and asymmetry configurations) suggested by our DFT simulations. Given the
very small separation between hollow and bridge sites, STM imagery was not able to distinguish

them.
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In the experiments, it is found that the nanowires are grown individually (Figure 4-9(a))
or in the form of a collinear array at regular spacing (Figure 4-9(c)). Nanowires of any other
atomic-scale setup or wider cross section are not found. The presence of homogeneous
populations (with regards to their cross section) of nanowires with a propensity for regular
spacing is exciting. The latter gives rise to the question: what determines the separation between
adjacent rows? In the absence of a substrate, the separation between MogS¢ nanowires is
determined by inter-wire interactions consisting mainly of vdW interactions. Using theoretical
modeling, the optimal distance can be determined straightforwardly by considering supercells
that place adjacent nanowires at different separation. We thus performed DFT modeling of
nanowires in vacuum and varied the spacing between them. Figure 4-10 shows the resulting
interaction potential per MosSe repeat unit. For arrangement of adjacent wires both in-phase and
anti-phase we find the presence of an optimal separation, i.e. a minimum in the interaction
potential. The interaction energy at 0.27 eV per MosSe unit is higher for the in-phase than for the
anti-phase arrangement (0.18 eV per MosSe unit), and the optimal distances is shorter (3.3D as
compared to 3.5D, respectively). Notably, we find that when the wires get as close as 3D, their
interaction starts to become very repulsive. This suggests that the wires found on HOPG in the
work of Kibsgaard and coworkers [86] need to form inter-wire bonds to achieve their close

packing.
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Figure 4-10. Interaction energy between two isolated MosS¢ nanowires per MogSe repeat
unit (left ordinate) as functions of their separation measured in Cu-Cu bond length D. Binding
energy of two MogS¢ nanowires to the Cu(111) substrate per MogSe repeat unit (right ordinate) as
a function of their separation. The values are taken for the adsorption configuration
(symmetric/asymmetric) that yields optimal binding energy at the indicated separations.

On a Cu(111) substrate, the inter-wire distances are limited by substrate registry and
cannot be probed continuously in a meaningful manner. On the substrate, the direct vdW
interaction of the wires is only one component of the inter-wire interaction: the presence of the
MosSe nanowires also causes a significant perturbation of the substrate, which can cause
substrate-induced preference for particular inter-wire distances. At the same time, the presence of
the substrate can conceivably screen dispersion interactions. In order to understand whether

MosSe nanowires have a substrate-controlled preferred separation, we modeled wires on Cu(111)
4 4
or

[81 ﬂ Cu(111) super cell, respectively. We considered both nanowires with symmetric and

at three different separation, 3D, 3.5 D and 4D using a (31 Tj, (71 D and
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asymmetric adsorption configurations and arranged them in-phase and in anti-phase
configurations, i.e. shifted by 0.5V3D along the wire axis, except for the case of 3D separation,

for which the antiphase wires clearly interpenetrate.

Similar substrate-mediated effects have been found for a great number of atomic and
molecular adsorbates on Cu(111) and were ascribed largely to the Shockley surface state [94-99].
We note that its theoretical modeling typically requires very thick substrate slabs (8 and more
layers) to effectively decouple the surface states on top and on the bottom of the slab [100]. The
lateral size of the unit cell required to model nanowire interactions would render such
calculations exceedingly time-consuming. Our use of 5 layer slabs limits the quantitative
accuracy of our results, yet it reveals the presence of a preferred inter-wire separation on the
substrate, in-line with our experimental findings: for a separation of 3.5D we find a binding
energy per MogSe unit to the substrate of 2.69eV, ~80 meV stronger than for isolated chains.
Separation of the wires by 3D and 4D leads to binding energies of ~2.54 eV, which is weaker

than the binding of 3.5D separated wires.

Experimentally, the growth of MosSs nanowires was not sufficiently optimized to
quantify statistically the interaction energy between adjacent wires. Such measurements have
been carried out for interatomic and intermolecular separation distributions [95, 96, 98] and
permitted mapping of an inter-wire interaction potential similar to Figure 4-10. In the
experimental measurements, however, both the growth of isolated MosS¢ nanowire as shown in
Figure 4-9(a) and a propensity for their growth in parallel arrays at 4D separation (Figure 4-9(c))
are observed. In contrast, if the nanowires start to grow so that their separation is smaller than 4D

they terminate to avoid running in parallel (see, for instance, the MoeS¢ nanowires at 3D on the
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left of Figure 4-9(b)). In combination these findings attest to the presence of inter-wire

interactions that favor a specific separation between adjacent nanowires even on a surface.

4.2.4 Conclusions

The growth of molybdenum-sulfur nanowires on a Cu(l11l) surface is observed
experimentally and we identified them as MosSs nanowires. We find that the substrate
interactions are considerable, leading to the alignment of the nanowires with the substrate atomic
rows. The nanowire growth favors a 4D separation on Cu(111), sufficiently far to separate them
completely and slightly wider than expected from DFT simulation. In combination, our results
suggest that Cu(111) may be a viable candidate for the aligned and regularly-spaced growth of

MogSe nanowires.
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CHAPTER 5. ELECTRONIC STRUCTURE AND GROWTH OF Mg(0001) FILM

MORPHOLOGIES

5.1 Part I: Electronic Structure Features Controlling the Limit of and Reactivity in the Thin-

Film Regime, Stacking Fault of Mg Adislands and Adatom Self-Diffusion

5.1.1 Introduction

The structural, electronic, and magnetic properties of low-dimensional structures
generally strongly differ from those of the corresponding bulk materials. Ultrathin metal films
have been a subject of intense research during the last few years [101-103] since they provide a
laboratory for basic quantum-mechanical concepts, and because they find applications in the
microelectronic industry, especially in magnetic data storage technology. Magnesium is of
interest to many atomistic processes especially as a component in hydrogen storage materials

[106].

Mg is considered a simple, free-electron-like material but nonetheless a reactive metal
with various interesting properties owing to its particular location in the periodic table of
elements. It has a closed subshell ground-state atomic configuration ([Ne]'® 3S2). Its chemical
bonding is mainly through the two outer electrons. Since a Mg atom has a low excitation energy
for electron transmission to states with 3p occupation, the two outer electrons in bulk (hcp) may
also occupy 3p states ([core] 2p°® 3s*™ 3p¥). Since the 2p shell is closed and strongly bound, it
barely participates in the bond and, at the same time, screens the ion's charge so that the 3s*™ 3p*

electrons are relatively loose bound [106].
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Giant surface energy and work function oscillations have been predicted in the past as a
function of the number of layers, as well as oxidation-rate, conductance, and H-binding [104-

106].

For most of the metals the spacing tends to contract. Also the compact (0001) surfaces of
most hcp metals exhibit a contraction of the interlayer spacing between the topmost layers,
whereas for Be and Mg the opposite, i.e. a small expansion is observed [107, 108]. In accordance
with the Smoluchowski smoothing effect [109], after the surface forms the charge density
redistributes itself as the electrons lower their kinetic energy by moving into the regions between
the ion cores, consequently creating a positively charged surface layer. Hence there will be an
attractive electrostatic force between top layer ion cores to relax inward. In the chemical
picture”, Fiebleman [110] proposed on the basis of Pauling’s hypothesis [111] there is a
correlation between bond order and bond length. In this picture surface will relax inward if the
bond length of the dimer is smaller than that of the bulk, and outward if it is large. The first inter-
planner distance of Mg(0001) tends to expand instead of — a various groups have determined to

be the case with other metals — to contrast [106] and [112-114].

In this section, we undertake a thorough examination of the electronic structure of bulk
and think-film magnesium to investigate and revise predictions reported previously, regarding
(1) the surface energy, oxidation rate and interlayer relaxation oscillations of the of Mg(0001)
films as a function of thickness, (2) the well-known Friedel oscillations in Mg slabs (3) the weak
binding of adatoms on Mg(0001) surface. We calculate undertake an thorough examination of
electronic structure of bulk and thin-film Magnesium to investigate and revise predictions

reported previously, such as (1) surface energy, oxidation rate of Mg film and the interlayer
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relaxation oscillations of the of Mg(0001) films as a function of thickness, (2) the well-known
Friedel oscillations in Mg slabs (3) the adatom weak binding. We calculate the energy barrier of
the Mg adatom on Mg(0001) Terrace and consequently stacking fault of the magnesium layers.
The energy barrier for the Mg adatom on Mg(0001) terrace and, through it, the stacking fault of
the magnesium layers. To our knowledge, the stacking fault of magnesium layers has not been
reported before. We show that the mechanism behind the stacking fault of the adatom and
adislands on the magnesium surface can be explained by Friedel oscillations. Previous studies
have shown that the Friedel oscillations are responsible for the expansion in first inter-planner
distance of Mg(0001). We also reproduced longer-ranged Friedel oscillations. We show that the
3D Friedel charge-density oscillations of Mg(0001) are more complex than what has been

depicted previously by 1D and 2D plots [106].

5.1.2  General Computational Details

We perform periodic super-cell density-functional-theory calculations of the total energy
and the electronic structure of the systems of interest as implemented in the computational code
QUANTUM ESPRESSO [115]. The interaction between ions and electrons is described by ultra-
soft Vanderbilt pseudo-potentials with p-semicore states [26]. Namely, for atomic Mg, the
valence electrons are as follows: [core]® 2p® 3s>™ 3p*. For the electron exchange-correlation
functional, we have used the parameterization of Perdew and Wang 91 (PW91) [116, 117] based
on the generalized gradient approximation (GGA). The electronic wave functions were expanded
in a plane-wave basis set with a kinetic energy cut-off of 35 Ryd. The charge density Fourier
expansion was truncated at 400 Ry. The positions of all atoms in the slab were optimized until

the force on each atom and each direction was smaller than 1.0x10™ Ryd Bohr ! [106]
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We employed computational VASP code [59] for supporting calculations using a PBE
[22] exchange-correlation functional based on the generalized gradient approximation (GGA)and
the projected-augmented-wave-method (PAW) with p semi -core states ([core]4 2p6 3g%* 3pY).
We expanded the electronic wave functions in a plane-wave basis set with a kinetic energy cut-
off of 265.6 eV. Minimization of the total energy of the slab as a function of atomic positions is
achieved by reducing the Hellmann—Feynman forces [118] on the atoms below 4x107 eV/ A via

the conjugated gradient algorithm [106].

The Mg(0001) surface was modeled by slabs of thickness from 2 to 30 layers with a 1x1
in plane periodicity. For modeling Mg adatoms on Mg(0001), the number of layers for the
supercell was fixed at 7 and the in-plane periodicity at 3x3. For integrations inside the Brillouin
zone, we sampled it according to the Monkhorst—Pack scheme [76] with a uniform grid of k-
points of dimensions 16x16x8, 16x16x1, and 5x5x1 for the bulk, the 1x1 surface, and the 3x3

surface, respectively.

In order to simulate the adatom diffusion on (0001) terraces - away from steps, we have
used a 3x3 super-cell and 7-layer atomic layers. For simulating the diffusion barriers near step
edges, we have used a super-cell containing a 3x8-slab of 7 atomic layers and a 3x4 step.. The
integrations over the surface Brillouin zone were performed by using a 5x5x1 and 2x5x1
Monkhorst-Pack [76] mesh for the 3x3 super-cell and the 3x8 super-cell, respectively. In all
calculations involving a surface, we separated the periodic images of the slab with a vacuum

space of 20 A to avoid interaction between them.

The diffusion barriers of the adatom have been determined by the dragging method: one

obtains the total energy of the system at each point along the chosen diffusion path by fixing the
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coordinate of the Mg adatom along that path and allowing its other coordinates and those of all

other atoms in the system to relax.

The surface energy is calculated as one half of the total energy difference between the n-
layer slab and the bulk with the same number of atoms. The factorl/2 accounts for the two

surfaces of the slab.

Charge densities differences are evaluated as op= p[Mg,/Mg(0001)] - p[Mg(0001)] -
p[Mg,], where p[Mg,/Mg(0001)] is the CHD of the entire system relaxed (n-mer plus the
surface), p[Mg(0001)] is the CHD of the clean surface, and p[Mg,] is the charge of the isolated
n-mer, Mg,. Nevertheless, the positions of the atoms used to compute p[Mg(0001)] and p[Mg,]

are extracted from those in the relaxed full systems and not from the actual relaxed coordinates

of Mg(0001) and Mg,

5.1.3 Results and Discussion

5.1.3.1 Bulk

The primitive unit cell of hep crystals is a hexagonal supercell containing two atoms. Our
corresponding calculations for bulk Mg yield lattice parameters (a= 3.213 A and c/a =1.607 A)
and cohesive energy values (1.45 eV) in very good agreement with the experimental values
(a=3.21 A and c/a=1.624, E.4=1.46 eV) [119] and with the previous calculations, as shown in
Table 5-1. Our preliminary calculations for bulk Mg using VASP code, render the lattice
parameters to be a= 0.31980 nm and c/a =1.625 in good agreement with the experiment and

previous calculations [22-24].
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Since the c/a-ratio of Mg is approximately constant for varying pressure [18], we have
calculated its bulk modulus based on the equilibrium c/a-ratio. Our result, 35.48 GPa, is in
excellent agreement with early measurements (35.4 GPa) [120, 121] but slightly underestimates
the value according obtained in more recent measurements (36.8+3 GPa) [122]. In our
preliminary calculations for bulk Mg using PBE exchange-correlation functional and the
projected-augmented-wave-method similar values of lattice parameter were obtained. The lattice
parameters is rendered to be a= 3.195 A and c/a =1.62 A in good agreement with experiment,

and with the present and previous calculations [106] .

Table 5-1. Calculated (at 0 K) and measured lattice parameters (a and c/a), cohesive
energy, and bulk modulus of Mg [106].

Lattice parameters Cohesive Energy ~ Bulk modulus
Reference a(A) c/a (eV) (GP,)
This work, PW91 3.213 1.607 1.45 35.48
This work, PBE 3.198 1.625 1.50
PWO91 [105] 3.201 1.62 --- ---
PW [123] 3.20 1.66 1.42 30.0
PW[124] 3.18 1.615 1.50 35.5
LDAJ[123] 3.16 1.59 1.76 39.0
LDA [113] 3.13 1.616 1.78 40.2
LDA[114] 5.88 1.62 --- ---
LDA[125] 3.12 1.616 --- 38.4
LDAJ[126] 3.18 1.623 --- 37.7
Experiment[119] 3.21 1.624 1.51 354
Experiment[127] - 36.843

5.1.3.1.1 Mg(0001): Structure, Energetics and Electronic Structure

In the following we will analyze how the properties of Mg(0001) films vary as a function
of the film thickness and find convergent values characterizing such properties. Specifically, we

look at (1) the thickness at which the interlayer distance among central layers recovers the bulk
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value, (2) the formation energy of the film, (3) the surface energy, (4) the interlayer
contraction/expansion of topmost layers, and (5) the surface electronic density of states. As we
shall see, in this section it will be important to distinguish between the film thickness at which
the properties of the surface (the topmost layer) are reliably obtained and the film thickness at
which central layers recover the bulk properties: the thin-film limit. The two concepts are often
equivalent but the long-range charge density Friedel oscillations inside the Mg films will prove

that they are not necessarily the same.

5.1.3.1.2 The Thin-film Limit, Formation Energy, Surface Energy, Interlayer Relaxation

First, we determined the thickness at which the central layers of the film recover the bulk
properties, the thin-film limit. For example, we find that, in order that the interlayer relaxation at
central layers falls below +0.1% (a value taken as a convergence parameter because it
corresponds to the resolution of available LEED experiments [128]), the film must be at least 23
layers thick, despite the fact that Ad34 has been found to be vanishingly small in previous
calculations [129, 130]. For the sake of brevity, we report here only the interlayer relaxation
spectrum of the 23-layer film in Table 5-2. We compare these results are compared with those
produced by calculations using a PBE exchange-correlation functional and the projected-

augmented-wave-method [106].

We have then recalculated the properties that Li ef al. reported [131] via first-principles
calculations to explicitly test the striking thickness dependence found in their work. We have
extracted well-converged values of (a) the formation energy per atom, (b) the surface energy, o,

and (c) the relaxation of the first interlayer spacing of Mg(0001), Ad;,. These quantities are
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plotted in Figure 5-1(a)-(c) for N=2,...,30, together with the corresponding results of Li et al.

[131] for comparison [106].

Table 5-2. Calculated changes (%) in the interlayer distances between the surface layers
of Mg(0001) with respect to the bulk value (2.582 A), Adi,j+1, for a 23-layer slab using both the
ultra-soft PW91 within the Quantum espresso code (QE) and the PAW PBE pseudopotentials
within the VASP code [106].

N 23-QE  23-VASP
Ad12 2.17 1.76

Ad23 1.12 0.74
Ad34 0.08 -0.41
Ad45 -0.03 -0.37
Ad56 -0.07 -0.15
Ad67 0.13 0.17
Ad78 0.09 0.08
Ad89 0.14 0.10
Ad9,10  -0.00 0.04
Ad10,11  0.05 0.02
Ad11,12  -0.05 -0.21

Ad 12,13 -0.05 -0.21

Regarding the formation energy per atom Figure 5-1 (a)), which is also an indicator of the
thin-film limit, in agreement with the results in [131], we find that it slowly and monotonically

converges to the cohesive energy of bulk Mg, E.o, = 1.45 eV/atom. For example, for a film of 17
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layers the formation energy is 75 meV/atom lower than E..,, while for a film of 23 layers it is

only 15 meV/atom lower than E., [106].
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Figure 5-1. Calculated energetic and structural properties of Mg(0001) as a function of
the number of layers forming the slab, N: (a) Formation energy per atom, E(N)/N; the dashed
line indicates the cohesive energy of bulk Mg, (b) surface energy and (c) the change (%) in the
first interlayer distance with respect to the bulk value, Ad12. In (b) and (c), the dashed line is a
guide for the reader indicating the convergent value of surface energy ¢ and Ad12, respectively.
Grey (red) circles and black squares are data from Ref. [105] and this work, respectively.
[Reprinted black squares in Figure with permission from “Li, X. G.; Zhang, P.; Chan, C. K.,
PHYSICA B; 390, 1-2; 225 (2007) . Copy right (2013) Elsevier”] [106]

Once we obtained the above indicator of the thin-film limit (around or more than 23
layers), we proceed to determine the thickness at which surface properties converge (the surface

energy and the topmost interlayer relaxation). One might think that since a large number of
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layers is needed to recover the bulk interlayer distance, the conclusions of Li et al. that the
surface properties may need more than 30 layers to converge are further confirmed. As, we shall

see, however, that this turns out not to bet the case [106].

Figure 5-1(b) shows that the behavior of the surface energy o as a function of thickness is
indeed not monotonic — it may vary by as much as 7 meV/atom, but only for films of 3 -- 7
layers. However, o is not at all periodically oscillatory. It actually converges to a value of 0.286
eV/atom, which is in excellent agreement with the experimental value, 0.28 eV/atom [132],
within an accuracy of 2 meV/atom for films composed of only 18 layers (corresponding to films
thicker than 4.1 nm). This result thus opposes that of Li et al., who reported that the surface
energy of thin films oscillates with a relatively long period of AN~8 but actually does not but
converge even at 30 layers (0.322 eV/atom). Specifically, in their calculations the surface energy
has increments of more than 10 meV for films of less than 10 layers and almost steadily
increases from 0.307 eV/atom to 0.334 eV/atom as the number of layers increases from 14 to 24
[131], a value 50% larger than the experimental one. Note, too, that while the formation energy,
which is an indicator of the thin-film limit, varies by several meV beyond 24 layers, the
corresponding variation of ¢ — a surface property -- is almost 10 times smaller; suggesting that

the properties of the surface converge more rapidly than the properties of the bulk [106].
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Figure 5-2. Calculated changes in the first (Ad;;), second (Ad;), and third (Adss)
interlayer distances of Mg(0001) with respect to the bulk value. The (orange) bar represents the
experimental value as measured by LEED [20]. The number inside the round parenthesis
corresponds to the number of layers in the slab used in previous calculation and, in the case of
the present PWO91 calculation, the convergent value obtained from analyzing slabs formed by 2
to 30 layers. The numbers inside the squared parenthesis correspond to the references of previous
works [106].

In addition, Figure 5-1(c) shows that the dependence of the outward interlayer relaxation
Ad;, on the thickness of the film is not dramatic as suggested by the calculations of Li et al.
[131]. Namely, although Ad;, varies from +3.23% to +1.70% when increasing the number of
layers N from 3 to 8 layers, it is already reasonably well described by 11 layers, and totally
converged at 17 layers. The converged value of Ad;; is 2.20%, which is in good agreement with
the experimental value [128], +1.9+0.3%. The results for the outward relaxation of Mg(0001) are
thus again in contrast with those of Li et al.: They found a surprisingly large interlayer
expansion of +7% for 3 layers and a converged value of ~0.7%, which is an extremely small

compared to the experimental value cited above. They found also that 20 layers are necessary to
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converge this surface property because of a strong periodic oscillation of period AN~8 for films
of thickness ranging from 3 to 19 layers. Regarding the oscillations in Ad;, of period AN~8, our
calculations barely indicate that Ad;, has local minima at 14-15, 23-24 layer and local maxima at
11, 19 and 27 that might be interpreted as the reported oscillations, however, not only are the
deviations of these “extremes” negligible but also films of intermediate thickness fall out from
any oscillatory pattern. Moreover, maxima of Ad, in Li et al. calculations correspond to minima

in our calculations and vice versa [106].

There are also experimental measurements of the relaxation of deeper layers. In Figure
5-2 we compare our converged values of the first, second and third interlayer relaxations (Ad;z,
Ady3 and Adsg, respectively) with those attained from LEED measurements [108] and also with

results obtained in previous calculations [128, 129, 131, 133].

Table 5-3. Changes in the first (Ad);), second (Ad,3), and third (Ads4) interlayer distances
of 23 layers of Mg(0001) with respect to the bulk value as rendered by our PAW-PBE-VASP
calculations, our US-PW91-QE calculations, previous calculations and experiment [106].

PBE-23L. PWO91-23L LDA-11L  PW-13L  LDA-11L  PWO9I1-15L  Experiment

[134] [130] [129] [131] [128]
dpp 1.758 2.102 1.13 2.04 1.8 1.723 +1.9+0.3%
dys 0.744 1.053 0.31 1.13 0.2 -0.93 +0.8+£0.4%
ds4 -0.412 0.011 0.21 0.72 -0.3 -0.264 -0.4+0.5%
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relaxations, Ad,, Ady3 and Ads4 [106].

It is worth highlighting that the convergence of Ad,; and Ads4 is slower than that of Ad;,
(see Figure 5-3). This result may seem surprising because previous calculations indicate that Ads4
approaches to zero, a feature ordinarily taken as indicative that the bulk properties have been
recovered. The slow convergence of Ad,s, Ads4, etc. can be explained by the fact that Friedel
oscillations are long-ranged and their wavelength is not perfectly commensurable with the
interlayer distance. Therefore, varying the thickness of the film causes readjustments of the
charge Friedel oscillations throughout the film which modulate atomic positions accordingly.
Hence, we conclude that the slower convergence of subsurface interlayer distances speaks for the

thin-film limit and thus confirms that properties associated with the thin-film limit are harder to

converge than the properties exclusive to the surface [106].
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In summary, our results indicate that although overcoming the thin-film limit requires
more than 23 layers, the surface properties are well converged if the film is ~18 layers thick,
contrary to the results of Li et al., which have outputted that a film of 20 layers is needed to
converge Ad,,, and films of more than 30 layers are needed to converge the surface energy. We
do not know what caused the dramatic thickness dependence of the properties of Mg(0001) the
DFT calculations by in Li et al. [131]. As of now, the discrepancies of our results with those Li
et al. and, more importantly, the poor agreement of their results with available measurements
may be provisionally ascribed to the fact that they used an ultrasoft pseudo-potential and without

semicore p-electrons [106].

5.1.3.1.3 The Electronic Density of States of Mg(0001) and Its Thickness Dependence in the

Thin-Film Regime

We have already shown that the surface energy and the topmost interlayer distance are
convergent for films of 18 layers or more. It remains to investigate the thickness dependence of
the electronic structure of the surface atoms of Mg(0001), an issue that is important in

understanding the initial stage of the oxidation rate of Mg thin films [135, 136], as we shall see.

The local density of states (LDOS) for the valence states of the Mg(0001) surface layer
(as well as of bulk Mg) is nearly free-electron-like, as shown in Figure 5-4. Namely, the
LDOS(E) of the surface atom in a 30-layer film increases roughly as VE up to the Fermi level,

making Mg a very reactive metal [106].
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Figure 5-4. Normalized nearly free-electron like LDOS of the 3s>™ 3p* valence electrons
of Mg(0001) surfaceatoms for a 30-layer slab [106].

A closer look at the curve, however, shows that the potential of the Mg ions over that of
the valence electrons, while weak, produces oscillations of significant amplitude in the LDOS(E)
of the surface atom, particularly around the Fermi level (Ef) -- the energy region that dominates
chemical properties. In fact, we shall see that this region corresponds mainly to p-states rather
than to s-states -- despite the fact that p-states comprise only a small fraction of the valence band.
The LDOS(E) 1 eV below Er is more wiggled but the variations have much smaller amplitude.
This energy region could be involved in the hybridization with adsorbates bonded covalently;

yet, the bonds with oxygen are essentially ionic [106].

The above description is for the surface layer of the thickest film (30 layers), for which
both (1) the bulk Mg properties are recovered in the central layers and (2) the properties of the
surface layer analyzed in the previous section are converged. So, let us now turn to analyzing the

evolution of the surface LDOS as a function of film thickness. We find that the strongest
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thickness-dependence occurs precisely close to the Fermi level. In Figure 5-5(a)-(d) we present
the evolution of the LDOS of the surface layer of Mg(0001) as a function film thickness but only

close to Ep for selected films ranging from 2 to 30 layers [106].

(b)

e
o
L 1

S

o

(@)
1

e
w
1

o
o

e
o

o
w

e
N

0.6

Local density of electronic states (E) [arb. units]

Figure 5-5. Calculated LDOS around the Fermi level for the surface atom of Mg(0001) as
a function of the number of layers of the slab, which are indicated by the numbers labeling the
curves. The LDOS is normalized and the scale in each inset is the same.

One can see from Figure 5-5(a) and (b) that films of 18 layers are thick enough to obtain
a well converged electronic LDOS(E) — just as for other properties exclusive to the surface that

we have discussed earlier. This result does not contradict to the current experimental evidence on
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the thickness-dependence of the oxidation rate because the latter has been reported only for films
of less than 16 layers [135]. Furthermore, our results do not oppose those of previous theoretical
studies, since Hellman and Binggeli [136-138] have reported thickness dependence of the DOS
for films of less than 17 layers only the calculations of Li ef al. [131] have rendered oscillations
in the reactivity of Mg(0001) for thicker films. In particular, they found variations in the binding
energy of hydrogen (H) on Mg(0001). These are not of consequence but are rather unexpected
for films thicker than 18 layers. For example, the binding energy of H decreases by up to 30 meV
from N=25 to N=30. We have not reproduced their results because such calculations are beyond
the scope of this work. However, the fact that the potential they used overestimates the
dependence of surface properties on slab thickness calls for revising the binding energy of H as

well [106].

5.1.3.1.4 On the Oxidation Rate of Mg(0001) Thin Films

That the electronic structure around the Fermi level converges and is thus well described
by 18 layers is only part of the problem we want to discuss here. The next question is whether
the variations in the LDOS(E) for thinner layers correlate with those observed experimentally for

the oxidation rate (Figure 5-6(a), data from [135]) [106].
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Figure 5-6. Comparison between experiment and electronic density of states calculations
to explain the oxidation rate of Mg films (a) The relative weight of the intensity of the oxygen-
induced peak in the Mg 2p spectrum (indicative of the oxidation rate) as a function of the
number of layers, N, taken from [135]; (b) Calculated total DOSgr(N) of a Mg(0001) slab (taken
from [136]); (c) Calculated LDOSgr(N) of the surface atoms of Mg(0001). The dashed line is a
guide for the eye to compare the maxima/minima of the oxidation rate as a function of N with
those of the calculation [106].

Since the specific correlation between the two properties has actually been debated
during the last decade [135-138], it is worth reanalyzing it here. Hellman [136] calculated the
total DOS(E) at Er as a function of the film thickness, DOSgr(N) (see Figure 5-6(b), data from
[136]). Hellman et al. found that the thickness dependence of DOSgr(N) — expected for thin

films in general -- may be associated to that of the oxidation rate. Binggeli et al. [137, 138§],
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however, contested this correlation on the basis (1) that the actual variations in the total
DOSEgr(N) are too small to account for the dramatic oscillations in the reactivity and (2) that the
DOSgr(N) necessarily increases monotonically with film thickness because it is normalized.
Moreover, Hellman acknowledged that the position of each maxima and/or minima is shifted by
two layers [136] (see Figure 5-6(b), data from [136]) from the dependence experiment report of
oxcidation rate on thickness since one expects that the larger the DOSgr the larger the oxidation
rate. They suggested, however, that it could be an effect from the interaction with the W
substrate and Binggeli et al. subsequently demonstrated that such is the case: hybridization of the
Mg states with those of the W substrate may slightly shift the position of the peaks at the Fermi
level [137]. Such shift, however, is not a minor issue. The mismatch between the two curves is
almost to the extent that maxima of the DOSgr(N) correspond to minima of the oxidation-rate
thickness dependence (see Figure 5-6). Still, another main drawback in explaining the thickness
dependence via the total density of states is that the latter includes not only the topmost two
layers -- which are the ones oxidized according to the O, dose in experiment [135] -- but also all
other layers that do not participate in this initial stage of oxidation. Naturally, the changes in the
(normalized) total DOSgr(N) as a function of the number of layers are negligible for the same

reason [106].

As an initial step, we have also analyzed the (normalized) LDOS(E) but that of the
surface atoms only. Figure 5-5(d), shows that there is indeed a dramatic thickness-dependence of
the LDOS(E) for films thinner than 7 layers, just as one would expect from the observed
oxidation rate. For example, one sees that the LDOS(E) of films of two and four layers have a
conspicuous peak around the Fermi level that is not present at all in the converged surface

LDOS(E) -- the converged surface has in fact a dip at Er (see Figure 5-5(a)). In striking contrast,
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the surface LDOS(E) for the film with 6 layers has a pronounced dip around Er. In short, while
the LDOS(E=EF) of films with two and four layer is much higher than that of the converged
value (Figure 5-5(a) and (b)), the LDOS(E=EF) for the film with six layers is significantly lower.
One expects that variations of the LDOS of such magnitude as a function of thickness must

definitely affect the oxidation rate of Mg-thin films on W(110) [106, 135].

In order to characterize the reactivity of the Mg films we proceed as Hellman [136] did
by plot the LDOS of surface atoms at Er as a function of the number of layers, LDOSgr(N). We
shall stress here that although, in general, a single number such as the LDOS at Er does not
characterize reactivity, in this particular case, this number is a good indicator because it tells us
how the centroid of the LDOS peaks nearest to Er shift as a function of thickness. For example,
if LDOSEgp(N) is high that means that one of the maxima of the LDOS is very close to Ep,
making more states available for oxygen. Conversely, if LDOSgr(N) is low that means that Ep

falls close to a dip of the DOS [106].

Therefore, in Figure 5-6(c), we plot the LDOS of surface atoms at Er as a function of N,
LDOSgr(N). This inset shows that (1) LDOSgg(N) varies quite significantly for N<8, oscillates
moderately for thicker films, but converges well at 18 layers, except for some oscillations in the
range from N=18 to 26 of negligible amplitude Figure 5-6(c)); (2) LDOSgr(N) does not exhibit a
monotonic staircase-like increase with film thickness (as expected by Binggeli for the normalized
total DOS [138]; (3) the thickness dependence of the surface LDOSgr(N) differs significantly
from the total DOSgr(N) (Figure 5-6(b), data taken from [136]); (4) although the data for the
LDOSgr(N) and the total DOSgr(N) are both normalized, the relative changes of LDOSgp(N) as a

function of thickness are about one order of magnitude larger that the relative changes of total
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DOSEgr(N). The reason is that the former corresponds to one atom (at the surface) and the latter
corresponds to as many atoms as the slab has (including buried layers that do not affect
reactivity). Despite all the above, comparison between our LDOSgr(N) and the experimental
thickness dependence of the oxidation rate (Figure 5-6(a) from [135]) does not indicate a clear
correlation. In particular, our LDOSgr(N) does not display any sharp dip around N=10 layers;
thickness at which the oxidation rate is smallest. Furthermore, variations in the LDOSgp(N) for
8<N<I5 are not large enough to explain the thickness dependence of the oxidation rate (Figure
5-6(c)). Neither do the peaks of the LDOS(E) (Figure 5-5) shift monotonically as those observed

in the valence band spectra for films of N=5-12 [106, 135].

Binggeli et al. [137] have addressed the problem of the oxidation-rate thickness
dependence in a different manner. They searched for a correlation between the oxidation rate and
how much the electron density spreads beyond the surface over the vacuum (1) as well as how
large the I'-point DOS at Er is. By analyzing their results, one sees that A has a behavior exactly
opposite to that of the oxidation rate (see Figure 5-8(c)). In other words, they found that large
decaying lengths, corresponding to high I'-point DOS at Er [137], cause low oxidation rates. It is
not clear, however, why films with charge density tails that extend the most into the vacuum and
correspond to high I'-point DOS at Er would effectively hinder the oxidation of Mg(0001) and
vice versa? In fact, one would expect exactly the opposite behavior. Moreover, in this work, the
peak shift caused the substrate cannot account for the discrepancies since the influence of the W

substrate was included [106, 137].

We have, therefore, reconsidered the electronic DOS(E) from another perspective. A recent work

has shown that in order to understand the reactivity of a surface via its electronic density of
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states, it is necessary to identify and analyze the projections of the DOS(E) that predominantly
participate in the bonding of the reactants. The reason is that the sum of all of them may hide
essential features even if only the surface atoms are taken into consideration [139] Such analysis
may shed some light on the thickness dependence of the oxidation-rate if the LDOS(E) of the Mg
films around Ep is the sum of directionally distinct parts and only some of them contribute to the
bonding of a given adsorbate. In the case of Mg, although the valence electrons of isolated
magnesium have s-character, 3s, in the extended systems, the 3p states can be partially occupied.
In fact, we find that around the Fermi level, the electronic states have mostly p-character and,
more unexpectedly, d-projections are not that negligible as one may think. Around the Fermi
level, the contribution of 3d states of Mg is larger or comparable to that of s-states. In general, p-
and d-states states, unlike s-states, have directional contributions (px, py, Pz dxy, dx2-y2,d2,dxz,dy7).
Because overlapping between states in also important in ionic bonds, these states may contribute
less or more to the bonding of oxygen depending on the position it takes. For example, since O
sits at hollow sites [136] and, in MgO, Mg atoms make planar bonds with O, then we postulate
that in-plane states (oriented parallel to the surface: py, py, dxy, dx2-y2) should be those mainly
responsible for the bonding with oxygen. Furthermore, since the oxidation experiments estimate
that only the first two layers are oxidized, we consider the second layer too. We have thus
analyzed the sum of px-, py-, dxy-, dxo-y2-states of the first- and second-layer atoms (the in-plane-
projected LDOS integrated over the entire Brillouin zone and not only the I'-point), expecting
that variations in it should correlate with those in the oxidation rate. Indeed, Figure 5-5 shows
that the position of the peaks around Ep of the in-plane-projected LDOS (PLDOS) shifts

significantly as a function of film thickness in an orderly manner for N =4 — 16 [106].
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Projected (pX+py) density of electronic states (E) (arb. units)
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Figure 5-7. (Calculated in-plane (pxtpytdyytdyo-y2) PLDOS of the first- and second-layer
atoms of Mg(0001) for varying N (a) from 4 to 6; (b) from 6 to 8; (c) from 8 to10; (d) from 10 to
13; (e) from 13 to 16; and (f) from 17 to19. The PLDOS scale in each inset is the same. The
arrows are a guide for the eye to identify the centroids of the PLDOS peaks around Ep and
recognize how they shift as a function of number of layers [106].
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Figure 5-8. Comparison between experiment and theories to explain the oxidation rate of
Mg films (a) The relative weight of the intensity of the oxygen-induced peak in the Mg 2p
spectrum (indicative of the oxidation rate) as a function of the number of layers, N, taken from
[135]; (b) Calculated in-plane (pxtpytdsytdiy2) PLDOSEgr(N) of the first- and second-layer
atoms of Mg(0001); (c) Mg electronic charge density decay length into vacuum (calculated in
analogy with the penetration depth of a wave-function into the classically forbidden region of the
three dimensional finite square well) as a function of N, taken from [137]. The dashed line is a
guide for the eye to compare the maxima/minima of the oxidation rate as a function of N with
those of the calculation [106].

As a consequence, the in-plane-PLDOS(E) around Ep varies dramatic and oscillatory.
Figure 5-8(b) shows more clearly that the in-plane-PLDOS at Eg as a function of the number of
layers N, the in-plane-PLDOSgr(N), has three conspicuous minima at N=6, 10, 16 and three
maxima at N=4, 8, 13, to be compared with the observed oxidation rate that has two pronounced

minima --- at N=5 and 10 --- and two maxima ---at N=7 and 15. The two steep minima of in-
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plane-PLDOSgr(N) at 6 and 10 layers may be associated to those in the oxidation rate at 5 and 10
layers (Figure 5-8(b)). Also, our calculated in-plane-PLDOSgr(N) increases as N increases from
10 to 13, just as the oxidation rate does. The oxidation rate and the in-plane-PLDOSE(N) only
differ in that the former keeps increasing until the thickness reaches 15 layers, while the latter
decreases from N=13 to 15. The in-plane-PLDOSgr(N) continues oscillating for N ranging from
17 to 26 layers but the amplitude is marginal, as seen from Figure 5-7(f). We thus conclude that
the thickness dependence of the oxidation rate of Mg thin films (N<17) is directly related to the
in-plane-PLDOS(E) of the first- and second-layer atoms around the Fermi level, as integrated

over the entire Brillouin zone [106].

5.1.3.1.5 New Insights into the Charge density Friedel Oscillations

In this subsection, we revisit the charge density Friedel oscillations occurring inside a Mg
slab to discover how exactly they affect the charge distribution around the surface. As mentioned
in the introduction, the charge density Friedel oscillations present inside a Mg slab have been
corroborated more than one decade ago in [129, 134, 140]. Cho et al. [141] and later Staikov and
Rahman [129] and Wachowicz and Kiejna [134] obtained the one-dimensional enhancement of
the valence charge density (parallel to the surface) as a function of the position perpendicular to
the surface, the z-axis, and localized the maxima and minima of the Friedel oscillations in
Mg(0001) slabs. In order to do that, they all calculated the difference between the xy-average
valence charge density profile of bulk Mg and that of a bulk-terminated slab. This result was
then normalized it over the charge density profile of the bulk. Later on, Wachowicz and Kiejna
[130] presented a more detailed view of the charge redistribution in Mg(0001) by using 2D cross

sectional charge-density difference contours (see Figure 5-9) [106].
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Figure 5-9. Fig. 4 from [130] 2D Electron-density-difference distributions near the
relaxed Mg(0001) surface relative to the average electron density in the bulk expressed as a
percentage of the latter and cut along the (10-10) plane. The atomic configuration
commensurates with the optimized positions calculated in the LDA is also shown. Darker grey is
used to indicate regions with smaller charge density while lighter shades represent regions with
charge density above average. [Copyright included in Appendix A]

Although not mentioned in their work, the 2D plots of Wachowicz and Kiejna clearly
show that the charge density Friedel oscillation peaks depicted in the 1D view [129] correspond
to the interstitial space between the atoms at the surface. Yet, as we shall see in the following
section, a three dimensional (3D) inspection of the Friedel oscillations is still lacking in order to
locate exactly which region of the interstitial space is holding that “extra” charge and thus

understand its effect on the binding of adatoms and their diffusion [106].

Before turning to new insights into Friedel oscillations through a 3D inspection, we must
make some remarks about the current understanding of why the Friedel oscillations cause the

interlayer expansion (5.3.2.1(a)). Based on these charge density profiles for Mg(1010) [141] and
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Mg(0001) [129] and Be(0001) [130], it has been concluded that atoms at the first, second and
third layers are effectively negatively charged. Hence, according to this interpretation, these
ionic layers repel, causing the well-known interlayer expansion. However, some observations
about this interpretation are in order. Namely, among atoms of the same species charge transfer
is not possible as the atoms have the same electronic affinity and thus ionicity cannot be
considered to describe their bonding. Moreover, were the atoms effectively negatively charged,
we should find positively charged atoms somewhere else for the system to be neutral, just as in
any ionic bonding. Say, if the first four Mg layers were effectively negatively charged, one
would need other Mg layers positively charged (by the same magnitude). In reality, Fig. 4 (Cho
et al.), Fig. 1 (Staikov et al.) and Fig.1 (Wachowicz et al.) of references [129, 134, 141] do not
imply that the atoms are effectively charged; they only indicate that, since the first largest charge
density peaks of the Friedel oscillations coincide with the position of the atomic layers, upon
surface formation the bonding charge abandons the interlayer space and becomes more localized

around the atomic layers [106].

Thus, from the one-dimensional average density, one could only say that the layer might
be approaching to a free-standing monolayer condition. In summary, the layers are not
effectively charged and all what the Friedel oscillations do is to reduce the interlayer charge.
Naturally, this weakens the metallic bond and causes the first three layers to separate from each
other. The latter will be further evidenced when we turn to the binding of a full Mg layer, whose

binding energy per atom is only ~1.1 eV [106].
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Figure 5-10. Change in the charge density profiles perpendicular to the surface for the
bulk-truncated surfaces of Mg(0001). The electron densities are normalized by the average bulk
value The figures are adopted from (a) Fig. 4 (Cho et al.), (b) Fig. 1 (Staikov ef al.) and (c) Fig.1
(Wachowicz et al.) of references [129, 134, 141]. [Reprinted Figure with permission from “J.
Cho, Ismail, Z. Zhang and E.W. Plummer, Phys. Rev. B 59, 1677-1680 (1999). Copy right
(1999) by the American Physical Society ” and “Reprinted Figure with permission from “P.
Staikov, Talat. S. Rahman, Phys. Rev. B 60, 15613-15616 (1999). Copy right (1999) by the
American Physical Society.” and see Appendix A]

Once we have clarified that previous calculation have actually revealed that the Friedel
oscillations reduce the interlayer bonding charge and send that charge around the layer, we turn

to find where exactly that charge is localized.
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Figure 5-11. (higher insets) Difference between the charge density of bulk Mg and that of
a non-relaxed bulk-terminated Mg(0001) surface (a) Isosurfaces. The z-axis is perpendicular to
the surface. The blue balls represent the first four layers of the slab. The red color indicates the
region of Mg(0001) that displays more charge density than the corresponding one in bulk Mg.
(b) [0001] Cross section of the isosurface in (a). (Lower insets) [0001] Cross sectional planes of
the total charge density around (c) the fully relaxed Mg(0001) and (d) bulk Mg. Darker (brown)
regions in (c) and (d) indicate less charge. In (b)-(d), the plane is located at the height of the
surface or bulk atoms under consideration in order to highlight the charge accumulation around
the fcc hollow site of Mg(0001) [106].

To this end, we plot in Figure 5-11(a) the difference between the charge of bulk Mg
minus that of a 18-layer slab -- as in previous calculation -- but this time in three dimensions.
First of all, in agreement with [129, 134], we find that the displaced charge in Mg(0001) slabs is
indeed located mainly around the position of the first layer and, as shown in [130], it is localized

around the interstitial space between the atoms at the surface [106].
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But more importantly, the present sight through 3D difference isosurfaces reveals in addition that
the displaced charge lies at the fcc infinite-hollow site of Mg(0001) (red pocket). Figure 5-11(b)
shows the [0001] cross section of the charge-density-difference isosurfaces in part(a). The latter
two-dimensional view allows us to see that the charge excess extends up to the bridge, whereas
the charge around at the hcp site is slightly reduced. We shall see that the latter features have
implications on the Mg adatom binding energy and its diffusion. Yet, a word of caution has to be
given before turning to these matters. Note that, in order to capture the Friedel oscillations,
previous calculations and our Figure 5-11(a) and (b) display differences between the charge
density of bulk Mg and that of a bulk-terminated slab. However, nothing guarantees that upon
relaxing the forces on the atoms of a bulk-terminated slab the charge density enhancement
remains as depicted in Figure 5-11(a) and (b). This uncertainty is particularly undesirable if we
want to understand the effect on adatom binding and diffusion barriers. Therefore, in Figure
5-11(c) and (d) we contrast the [0001] cross section of the total charge density of a totally
relaxed Mg slab at the surface layer (Figure 5-11(c)) and at a layer deep in the bulk (Figure
5-11(d)). Contrasting these two figures demonstrates that the charge density around the surface
(totally relaxed) is enhanced around the fcc site with respect to the charge density of bulk layers

even after force relaxation [106].

5.1.3.2 Binding and Stacking Fault of an Mg Adatom and of Adislands on Mg(0001)

In this section, we shall see that the charge accumulation around the fcc site caused by
the Friedel oscillations is of consequence for the binding and stacking of small Mg adatom

islands on Mg(0001) [106].
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5.1.3.2.1 Adatom Binding Energy

First of all, we shall test the convergence of the binding energy. Table 2 displays the
binding energy of a Mg adatom on Mg(0001) at the fcc and hcp sites for slabs of four thicknesses
(N=3,5,7 and 9). As expected from the electronic DOS of the surface atoms, the binding energy
of the adatom converges slowly. From N=5 to N=7, the binding energy drops by as much as 50
meV and from N=7 to N=9 increases by almost 30 meV. These variations are significant and
measurable, but the fact that the surface properties analyzed in Section 2(a) and (b) for 9-layer
slabs do not vary dramatically from the converged values, we can safely conclude that the

convergent adatom binding energy is about 0.6 eV [106].

The binding of Mg adatoms on Mg(0001) has already been categorized as weak. Earlier
effective medium calculations yielded that the adatom binding energy (0.85 eV [142]) is only
about 57% Mg cohesive energy. Clearly, our calculations indicate that the binding is

significantly weaker than that [106].

5.1.3.2.2 Stacking Fault Preference for monomer on an fcc site

The same effective-medium calculations mentioned above reported that the binding
energy of Mg adatoms on Mg(0001) is the same at the hcp site as that at the fcc site (site
unspecificity). However, in this work we shall show that the the fcc site (fault site) is

energetically more favorable for the adatom than the hep site (See Table 5-4) [106].
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Table 5-4. Slab thickness dependence of the adatom binding energy at the fcc and hep
sites, Eg(fcc) and Eg(hep), respectively, and of the stacking fault energy, AEg = Ep(fcc) - Eg(hcp)
[106].

N Eg(fcc) (eV) Eg(hcp) (eV) AEg (meV)
3 -0.727 -0.700 -27
5 -0.644 -0.627 -17
7 -0.597 -0.581 -16
9 -0.633 -0.618 -15

First, we notice that while convergence of the adatom binding energy down to few meV
may require also up to 18 layers, the stacking fault energy is well described by 7-layer thick
films. This is because the stacking fault energy involves energy differences and these are less
sensitive than the energies themselves. Second, we notice that the stacking fault energy favors
the fcc site by an unexpectedly large energy: 15 meV. This stacking fault energy is as large as
that found for Ir/Ir(111) (16 meV [143]). Naturally, the origin of these apparently similar
phenomena is completely different and it is worth to clarify it. Ir atoms are held together by
particularly strong covalent bonds and thus the favored stacking fault in Ir(111) compensates the
low-coordination of the adatom by sitting at the hollow site (hcp) that is directly above another Ir
atom instead of sitting at the “correct” hollow site (fcc) in which the next Ir atom is one more
layer away. In diametral contrast, Mg(0001) is a nearly free-electron metal in which the adatom
prefers to sit at the fcc infinitely hollow site (no other atom is directly below) rather than at the
site that is directly above another Mg atom! In other words, the stacking fault preference in Mg
and Ir have opposite effect: Ir adatoms on Ir(111) prefer to be over coordinated while Mg adatom

prefer to be low coordinated [106].
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5.1.3.2.3 Stacking Fault Energy of Adislands

The preference for the fcc stacking fault is not exclusive to the monomer. We have
calculated the binding energy per atom (Eg) of several Mg adislands — from monomer to octamer
— and of a full overlayer placed at both the fcc and the hcp sites. For the dimer and trimer, several
configurations and orientations were tested. Table 5-5 shows the energetics of the adislands of at

fce and hep sites (the data for the most stable dimer and trimer) [106].

Table 5-5. Binding energy, EB, and stacking fault, AEB, per atom of Mg adislands on
Mg(0001) — from a monomer to an octamer — and of a full overlayer placed at both the fcc and
the hep sites for a structure in which (a) the whole system is totally relaxed (b) only the Mg
adisland atoms are allowed to relax but the Mg(0001) substrate is kept frozen [106].

Totally relaxed Frozen substrate
N Eg(fcc) Eg(hcp) AEg (meV)  Eg(fce) (eV) Eg(hcp)
Monomer -0.60 -0.58 -15 -0.58 -0.57
Dimer -0.75 -0.74 -4 -0.73 -0.75
Trimer -0.75 -0.74 -10 -0.74 -0.73
Tetramer -0.78 -0.78 1 -0.77 -0.77
Hexamer -0.92 -0.92 4
Heptamer -0.93 -0.95 11
Octamer -1.02 -1.03 12
Full -1.09 -1.11 15

Our calculations exhibit that the preference for the fcc stacking fault persists at least up to
the trimer. Furthermore, it shows that the behavior of these small adislands is not qualitatively

dependent on whether the position of substrate atoms is kept frozen or not [106].

134



We cannot rule out that bigger islands also display a preference for the stacking fault
because in our calculation, as the adislands grow larger (tetramer, hexamer, heptamer and

octamer), they necessarily interact with each other and favor again hcp [106].

In fact, a full layer prefers the hcp site over the fcc stacking fault by 15 meV per atom
(See Table 5-5). So what our calculations actually suggest that as the islands get closer to each
other the preferred site is again the hcp one. In our particular supercell setup, the turning point
between fcc and hep preferred binding corresponds to a coverage between one-third and one-half

monolayer [106].

5.1.3.2.4 Structural Characterization of the Mg, Adislands on Mg(0001)

We now turn to investigate the origin of the preference of the fcc stacking fault. In
pursuing this aim, we shall examine the adislands that display this preference (from monomer to
trimer) and the turning-point adisland to the hcp preference, the tetramer. As a preliminary step
we analyze the bond-length of the Mg adatom/adislands adsorbed on Mg(0001) when the whole
system is allowed to relax and when the substrate is kept frozen. The structural characterization

is presented in Table 5-6 and Table 5-7, respectively [106].

However, upon analyzing the data, we find that neither, the distances among the adisland
atoms, the height of the adisland with respect to its substrate nearest neighbors (NN) or the
distances among the adisland NNs provide a hint about the mechanism behind the stacking fault
preference or establish a consistent bond-order trend. For example, the data for the monomer
could in principle indicate a slight tendency of the adatom to stay farther from its substrate
neighbors (weaker bond) when sitting at the hcp site than when sitting at the fcc site. However,

the opposite trend is displayed by the trimer whether the substrate is relaxed or not. The structure
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of the dimer on Mg(0001) does not provide much insight either. The dimer in the totally relaxed
system (Table 5-6) actually reflects that the hcp-hcp configuration is not stable: the dimer
spontaneously slides toward the bridge, almost reaching the fcc sites. As a result, it displays two
relatively short bonds and two bonds that are significantly longer than the lattice parameter, a.
One could think that such instability of the hcp site could “cause” to the stacking fault
preference. However, it is the reverse. The stacking fault preference causes the instability of the
hep site: Allowing both the dimer and the substrate to relax toward the bridge-like configuration
minimizes the fcc stacking fault preference, whereas if the substrate is frozen, the hcp
configuration of the dimer is stabilized but the hcp site becomes even less favorable than the fcc
site. Furthermore, the bonds related to the tetramer are so spread out that it is not possibly to

draw any conclusion. Clearly, no argument can be built upon the bond lengths [106].

Table 5-6. Structural characterization of the Mg adislands -- dimer, trimer and tetramer —
on the Mg(0001) surface. These values correspond to the case in which all atoms are allowed to
relax. The distance among atoms forming the adislands are denoted by dIA; ZAS stands for the
height (vertical distance) of the atoms forming the adisland with respect to their non-equivalent
substrate neighbors, dNN-S stands for distance between the atoms forming the island and their
substrate non-equivalent nearest neighbors [106].

adisland dia ZAs dnncs
Monomer-fcc 2.47 3.12
Monomer-hcp 2.48 3.12
Dimer-fcc 2.97 2.46,2.64,2.34 3.08, 3.09, 3.24
Dimer-hcp 2.96 2.46,2.65,2.36 3.04, 3.06, 3.42,3.72
Trimer-fcc 3.06 2.43,2.51,2.51 3.10, 3.10, 3.13
Trimer-hcp 3.06 2.50, 2.50, 2.40 3.10, 3.10, 3.10
Tetramer-fcc 3.07,3.08,3.09 2.54,2.42.2.62 3.08,3.14,3.20
3.10,3.11, 3.11 2.60,2.38,2.38 3.10,3.11,3.11
Tetramer-hcp 3.09, 3.09, 3.13 2.44.2.55,2.36 3.09, 3.13, 3.19
3.09, 3.09 2.60, 2.36, 2.36 3.08, 3.10, 3.10
3.07, 3.07 2.40,2.47,2.47 3.06, 3.10, 3.10
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Table 5-7. Structural characterization of the Mg adislands -- dimer, trimer and tetramer —
on the Mg(0001) surface. These values correspond to the case in which only the atoms of the
adisland are allowed to relax while the atoms of the substrate are kept frozen. The distance
among atoms forming the adislands are denoted by dja; Zas stands for the height (vertical
distance) of the atoms forming the adisland with respect to their non-equivalent substrate
neighbors, dyn.s stands for distance between the atoms forming the island and their non-
equivalent substrate nearest neighbors [106].

adisland dia Zas dnns
Monomer-fcc 2.53 3.13
Monomer-hcp 2.53 3.14
Dimer-fcc 3.01 2.53,2.53,2.53 3.08,3.18,3.16
Dimer-hcp 3.02 2.52,2.52,2.52 3.06,3.16,3.17
Trimer-fcc 3.06 2.50,2.50,2.50 3.09,3.09,3.16
Trimer-hcp 3.07 2.49,2.49,2.49 3.08,3.08,3.15
Tetramer-fcc 3.08,3.08 2.49,2.49,2.49 3.13,3.14,3.20
3.14,3.14 2.49,2.49,2.49 3.05,3.14, 3.14
3.08, 3.08 2.50, 2.50, 2.50 3.10, 3.10,3.15
Tetramer-hcp 3.09,3.09,3.13 2.53,2.53,2.53 3.09,3.11,3.12
3.13,3.13 2.48,2.48,2.48 3.03,3.13,3.13
3.09, 3.09 2.48,2.482.48 3.08, 3.08, 3.13

5.1.3.2.5 Friedel Oscillations and Stacking Fault with Adislands

Let us now turn to a charge density analysis. We know by the Hohenberg-Kohn theorems
that if small Mg adislands prefer the fcc site over the hep site, that must necessarily be reflected
in the charge density distribution. In this subsection, we thus scrutinize the charge density (CHD)
distribution to locate the features responsible for such preference. In fact, that the enhanced
charge density around the first layer -- derived from the Friedel oscillations -- lies precisely at the
fcc site may suggest that the “extra” CHD pocket (Figure 5-11(a)) contributes to bind the
adatom. Still, such explanation begs the question: why would those factors promoting the
stacking fault stop operating as the adisland reaches the size of a tetramer or as the adislands

approach each other? We shall see that although the “extra” CHD pocket does causes the
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stacking fault preference, its role is not as simple as that of strengthening the adatom bonds. In
fact, Figure 5-11 shows that for both the totally relaxed and the bulk-terminated Mg(0001), the
fce site render less charge density than the hep site despite the “extra” CHD pocket. Still, Fig.10
also indicates that both the totally relaxed and the bulk-terminated Mg(0001) display
qualitatively the same landscape to the adatom and we shall use that qualitative similitude in the

following [106].

Figure 5-12. [0001] Cross section of the total charge density of (a) non-relaxed bulk-
terminated Mg(0001) and (b) fully relaxed Mg(0001). Darker (brown) regions indicate less
charge. The plane is located at ~1.2 A above the position of the surface atoms [106].

The goal of understanding the CHD distribution responsible for the preference of small
islands to sit at fcc sites rather than at hcp sites is not an easy task. Actually, it would not be
reasonable trying to trace the answer via CHD differences (as those shown for the clean surface
in Figure 5-11(a) and (b)). The reason is that we are after CHD variation causing a stacking-fault
energy of only few meV, energy values that are likely to be smaller than those caused by the

inherent errors in the CHD differences analysis. Namely, in order to obtain a CHD difference, it
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is necessary to evaluate Op= p[Mg,/Mg(0001)] - p[Mg(0001)] - p[Mg,], where
p[Mg,/Mg(0001)] is the CHD of the entire system relaxed (n-mer plus the surface), p[Mg(0001)]
is the CHD of the clean surface and p[Mg,] is the charge of the isolated n-mer, Mg,. Yet, the
positions of the atoms used to compute p[Mg(0001)] and p[Mg,] are extracted from those in the
relaxed full systems and not the actual relaxed coordinates of Mg(0001) and Mg,. Therefore, one
can expect that the errors introduced by the unphysical CHD of the non-relaxed Mg(0001) and
the non-relaxed Mg, are much larger that the stacking fault energies we are trying to trace. In

fact, such analysis does not provide rational for the stacking fault [106].

The only option is to investigate the total CHD of the composite system,
p[Mg,/Mg(0001)]. The approach of visualizing the total valence charge involved in the bonds is
not free of challenges. On the one hand, three dimensional plots do not reveal a CHD profile
within a charge interval but isosurfaces for a fixed charge density value. On the other hand,
turning to analyze two-dimensional cross-sectional CHD profiles (e.g. planes parallel to the
surface) is not straightforward because comparisons ought to be made between the monomer at
fcc and the monomer at hcp, between the monomer cases and the dimer cases and so on, but in
each of these cases the height of the adisland (A) with respect of the surface atoms (S), Zas,

varies significantly, as shown in Table 4, and a fair comparison could be compromised [106].

Nevertheless, since both the totally relaxed and the bulk-terminated Mg(0001) display
qualitatively the same landscape to the adatom and the stacking fault energy trend is also
qualitatively the same, we can grasp the essentials of the charge density distribution responsible
for the stacking fault preference in small adislands by first considering the frozen bulk-

terminated Mg(0001). We have thus relaxed only the n-mers (n=1,..,4) at the fcc and hcp sites on
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a bulk-terminated Mg(0001). Since in this case, the adislands heights do not vary as much as for
the totally relaxed system (See Zas in Table 5-6 and Table 5-7), this allows us to make a
meaningful comparison: We compare two-dimensional CHD profiles of all the adislands for
planes at exactly the same height with respect to the substrate. The two-dimensional CHD
profiles of p[Mg,/Mg(0001)] described above are displayed in Table 6. The height of the CHD
plane (1.2 A above the surface) lies between the adatom/adisland and the surface atoms. It was
easily chosen because the charge profiles at other heights for a given n-mer are very similar at

fcc and hep site except around the plane shown in Table 5-8 [106].

Most importantly, the two-dimensional profiles of p[Mg,/Mg(0001)] in Table 6 reveal
that when the monomer sits on the fcc site, the bonds among its NN substrate atoms are
strengthened, rather than those between the monomer and its substrate NN atoms. Table 6 also
demonstrates that while the same effect is displayed by the fcc dimer, it does not occur for the
hcp monomer or the hep dimer. In the case of the trimer, the CHD profiles at hep and fcc are
more complex and less distinct. However, by analyzing each of its bonds to neighboring atoms in
the substrate, one see they are furnished with more CHD that when the trimer sits at hcp sites.
For the tetramer, when the adislands start to strongly interact, only subtle features might indicate
a more energetically favorable configuration at the fcc site. Not surprisingly, the stacking fault

energy becomes very small [106].
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Table 5-8. Two-dimensional plots of the total charge density of the n-mers (n=1,...,4) at
the fce and hep sites of a bulk-like Mg(0001) substrate. The plots correspond to a plane parallel
to the substrate at ~1.2 A above it (see Sec.3d). The scale is such that dark regions denote less
charge. The left-most column displays the stacking-fault energy per atom, AEg. [106]
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Table 5-9. Two-dimensional plots of the total charge density of the totally relaxed n-mers
(n=1,...,4) at the fcc and hcp sites of Mg(0001). The plots correspond to a plane parallel to the
substrate at ~1.2 A above it (see Sec.3d). The scale is such that dark regions denote less charge.
The left-most column displays the stacking-fault energy per atom, AEB. (*) Note that, strictly
speaking, the dimer does not sit at hcp sites but rather at the bridge [106].
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The insight provided by p[Mg,/Mg(0001)] when the substrate is kept frozen can now be
used to make a step forward. Once we have identified the feature of the charge density
redistribution that could account for the preference of the fcc stacking fault, we can proceed to
trace the same features in the two-dimensional profiles of p[Mg,/Mg(0001)] when the entire
system is allowed to relax. To our surprise, the similar features appear for the totally relaxed

system and at practically the same distance from the substrate atoms (~1.2 A) [106].

Specifically, having the monomer at fcc site also induces a charge density enrichment in
the bonds between its NNs and other neighboring atoms that does not appears when the
monomer sits at the hcp site. In the case of the dimer, one sees that the dimer at the fcc site also
induces a charge density enrichment in the bonds between its NNs and other neighboring atoms,
yet, the same happens when the dimer is at the bridge (rather than hcp) position and at a larger
extent. So, the fact that it is unstable at the hcp site ruins any possible comparison. Nevertheless,
the features in the charge density when the dimer sits at the hcp, although not adding to the
supporting evidence, are not enough to rule out our argument because the strong enrichment of
the bonds between its NNs and other neighboring atoms occurs also at the expense of or
accompanied by a bond breakage its bonds with two neighbors (See Table 5-7 and Table 5-8).
Overall, the energy associated to the fcc stacking fault preference is reduced significantly to 4
meV per atom. The trimer at fcc, in contrast, is favored by as much as 10 meV per atom and
induces a charge density enrichment in the bonds between its NNs and other neighboring atoms
that does not appears when the monomer sits at the hep site. As we turn to the tetramer, one sees

that the bonds between its NNs and other neighboring atoms are furnished by extra charge
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density at both sites. However, at the hcp site, which becomes more favorable, the charge

enrichment is slightly larger [106].

Based on the above analysis, we propose that the role of the charge-density pocket and is
that of strengthening the substrate bonds and that is the reason for which the fcc site is preferred
over the hep. In other words, the extra charge density pocket at the fce site tends to be distributed
among the surface atoms enhancing their mutual binding and possibly reducing the electronic
kinetic energy. A similar behavior happens for the hep adislands but only when they approach
each other. The plots in Tables 6 and 7 also provide a rationale for the decline in the preference
for the fcc stacking fault as the adisland grow larger and/or coalesce. For example, by comparing
the CHD profile between the clean surface (Figure 5-12(b)) and monomer (at fcc in Table 5-8),
one sees that the charge density at neighboring fcc sites from the monomer is reduced. That
indicates that the enhanced bonding among substrate atoms does not withdraw charge
exclusively from the site where the monomer sits but also does it from neighboring fcc sites. The
same trend we find by comparing the effect on neighboring fcc sites of the monomer
environment and those of the dimer: Again, the neighboring fcc sites of the dimer become more
depleted, and so on. For the trimer and tetramer at fcc, one clearly sees that neighboring fcc sites

are significantly more charge-depleted than in the clean surface [106].

Up to now, we have shown the features of the charge density distribution responsible for
the preference of small islands to sit at fcc sites rather than at hcp sites. However, this is only
indirect evidence that the stacking fault is caused by the Friedel oscillations. We thus find
necessary and opportune to strengthen our argument by testing another material. We shall thus

consider Be(0001), another hep sp- and nearly-free-electron metal that is also strongly influenced
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by Friedel oscillations [130]. The question is three-folded: (1) whether the maxima of the FO are
also around the first layer; (2) whether they also induce a charge accumulation precisely at the
fcc site and (3) whether Be monomer at least does also prefer the fcc stacking fault. The Ref.
[130] answer the first question: Be(0001) also display the maxima of the Friedel oscillations at
the first layer. Notice that the maxima of the Friedel oscillations appear to be less conspicuous
than those of Mg(0001) (See Fig.? of [130]). The reason is that they divide the charge density
differences by the charge density of the bulk in order to present a normalized value. However, in
that way it is not highlighted that since Be holds much smaller bonds than those of Mg,
therefore, the charge density around Be atoms is in general much larger than that in Mg. As a
result, Fig.? of [130] does not anticipate that the Friedel oscillation maxima are, in absolute
value, more larger than those of Mg. In Figure 5-13, we compare the Friedel oscillations in

Mg(0001) and Be(0001) by three dimensional charge-density difference [106].
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Figure 5-13. Three dimensional charge-density difference isosurfaces showing the Friedel
oscillations in (a) Mg(0001) and (b) Be(0001). The charge density isovalue is the same for both
surfaces. The difference is taken between the charge density of bulk Mg and that of a non-
relaxed bulk-terminated Mg(0001) surface. The z-axis is perpendicular to the surface. The light
blue and green balls represent the three layers of the slab. The red surfaces indicate the regions in
the surface displaying more charge density than the corresponding one in bulk [106].

Mg(0001) Be(0001)
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Clearly, the charge density enhancement at the fcc for Be(0001) is dramatically larger
than that found for Mg(0001). Most importantly, the Be monomer on Be(0001) indeed prefers
the fcc stacking fault site than the hcp site. And, further evidencing that the stacking fault
preference is driven by the charge-density pocket, the latter, which is so big for Be(0001), causes
a strikingly large stacking fault energy of 44 meV favoring the fcc site. To our knowledge this is
the first time, the stacking fault of Be on Be0001 is reported as well as the mechanism

responsible for it [106].

In summary, we have shown that the fcc stacking fault preference of the Mg adatom on
Mg(0001) --- and of the Be adatom on Be(0001) --- is a result of the extra charge density at the

fcc site derived from their Friedel oscillations [106].

5.1.3.3 Self-Diffusion of Mg Adatom on Terraces

Finally, we shall turn to the diffusion barrier of the Mg adatom on Mg(0001). Table 5-10
shows that just as in the case of the stacking fault energy, the diffusion barriers from fcc to hep

and from hcp to fcc are also well described by 7-layer thick films [106].

Table 5-10. Slab thickness dependence of the adatom diffusion energy barrier from fcc
to hep, AEp(fcc=>hep), and from hep to fce, AEp(hep—=>fec) [106].

N AEp(fcc 2 hep)  AEp(hep = fee)

(meV) (meV)
3 23 6
5 23 6
7 25 9
9 25 9

Again, the reason is that energy differences cancel out the errors in the minuend and

subtrahend derived from the fact that these quantities are not converged. The energy barriers (25
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and 9 meV) are very small compared to those of any transition metal. The order of magnitude of
the barrier is in very good agreement with effective-medium calculations [142], which yielded

the two energy barriers to be ~20 meV [106].

Something that calls our attention, however, is that our barrier is quite asymmetric, in
contrast to what effective-medium calculations [142] indicate. Thus, our calculations predict that
at sufficiently low temperatures (few Kelvin) the adatom should very rarely be found at the hcp
site. The barriers are equal according to effective-medium calculations because they did not
render neither the fcc stacking fault preference nor a preference for the hcp site (site
unspecificity), indicating that they do not grasp the Friedel oscillations. Then, the site
unspecificity can be understood from the CHD profiles in Figure 5-11(b). Specifically, if not for
the Friedel oscillations, the binding energy of the fcc site would be higher than that of the hep
site and the latter would be lower than it actually is (since the hcp site is slightly depleted from
charge with respect to the bulk). So, we can expect that if somehow we could artificially freeze
the charge density to the bulk value, the fcc — hep and the hcp — fee energy barriers would
more symmetric. In this sense, concerning the position of the two local minima, while the Friedel

oscillations tend to lower the hcp —fcc energy barrier, they increase the fcc — hep one [106].

The fact that the barriers are so low is of course related to the fact that Mg bonds are
rather weak compared to most metals. We shall see, however, that the Friedel oscillations also
tune the barrier. They do not act only to modulate the binding energy of the two local minima
(hep and fec), as described above, but also those along the diffusion path. Namely, although the
extra charge-density pocket caused by the Friedel oscillations is strongly localized at the fcc site,

Figure 5-11(b) and comparison of Figure 5-11(c) and (d) clearly show that the charge

147



enhancement at the surface extends well up to the bridge. Since furnishing charge at the bridge
smoothens the potential energy surface for the adatom by increasing the binding energy around
the transition state, we conclude that the Friedel oscillations actually further lower the energy
barrier. In summary, we have shown that the Friedel oscillations in Mg(0001) lower the adatom
self-diffusion barriers and make the barrier asymmetric. The Friedel oscillations thus promote

adatom diffusion with very short transit time at hcp sites [106].

5.1.4 Conclusions

We perform first-principles calculations of the properties of Mg(0001) surface to
undertake an thorough examination and correlate diverse features of Mg(0001) reported
previously, such as (1) the giant oscillations of the surface energy and the interlayer relaxation of
Mg(0001) films as a function of thickness, (2) the thickness-dependent oscillations in the early-
stage oxidation rate of Mg films, (3) the well-known Friedel oscillations in Mg slabs, (4) the
adatom weak binding and (5) the adatom site unspecificity. We find that, although overcoming
the thin-film limit requires up to 25 layers, properties exclusive to the surface layer are well
converged for 18-layer thick films (~4.1 nm). Regarding the thickness-dependent oxidation rate
for Mg films of less than 16 layers, we discuss previous explanations and provide evidence that it
is in fact related to the in-plane-projected density of states of the first- and second-layer atoms
around the Fermi level. With respect to the charge density profile of Mg(0001), we clarify that
Friedel oscillations in Mg(0001) are not inducing interlayer electrostatic repulsion but rather a
withdrawal of bonding charge that simply weakens the interlayer bonding. Three dimensional
charge density difference plots demonstrate that the Friedel oscillations have maxima spatially

more localized than one-dimensional average density or two-dimensional cross sectional plots
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could possibly inform: The charge-density enhancement at the surface layer of Mg(0001) is
strongly localized at the fcc hollow site of Mg(0001). The charge accumulation at this site makes
the stacking fault of Mg monomers energetically favorable by an unexpectedly large energy (~15
meV), a feature that escaped previous effective-medium calculations. To strengthen this
argument, we analyzed the adatom stacking fault for Be(0001) -- a surface also largely
influenced by Friedel oscillations and discovered a striking stronger effect. The trend of favoring
the stacking fault persists for Mg adislands of at least 3 atoms. We also find that the binding
energy of the Mg adatom (~0.6 eV) is significantly weaker than the value reported by previous
calculations. Finally, the charge accumulation at the fcc, which spreads to the bridge, and charge
depletion at hcp account for the remarkably small diffusion barriers for the monomer (9 and 25

meV) [106].

5.2 Part II: Mg film Morphologies: A multi-scale Study of Mg(0001) Growth

5.2.1 Introduction

One of the challenges in recent studies of materials at the nanoscale is the development of
an understanding of microscopic processes that control thin film growth. This is a necessary task
if we are to build materials of choice by design. A realistic study of film morphologies demands
continuous integration of information obtained at the microscopic level into formulations which
predict and characterize behavior of systems at the macroscopic scale. Phenomena at the atomic
level extend themselves over nanometers with characteristic time scales of femto or picoseconds,
while thin films for industrial applications are of mesoscopic or macroscopic dimensions and

typically take milli-seconds or more to grow and evolve morphologically [144].
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In the multi-scale modeling of thin films, fundamental studies are being carried out at the
atomistic level using as accurate a technique as feasible. In combination with techniques like
kinetic Monte Carlo (KMC) these microscopic models are also expected to facilitate simulation
of thin-film growth at realistic length and time scales. These microscopic studies are critical
because of the experimentally demonstrated impact that structural and vibrational properties at
the atomic level have on the eventual properties (including quality) of thin films. For example,
whether a film grows layer-by-layer, or through the formation of 3D islands, depends on the
details of the motion of adatoms on the potential energy surface provided by the substrate. Three
types of growth modes are often discussed in the literature. The Frank-van der Merwe or layer-
by-layer growth, and the Volmer-Weber or 3D island growth, appear to be accompanied by the
more complex Stranski-Krastanov mode, which incorporates a competition between the other

two types exists [144].

The simple explanation of the first two types was provided by Schwoebel and Ehrlich
who proposed that the existence (or lack thereof) of an additional activation energy barrier as an
atom tries to decend a step edge, could be deciding factor for a 3D or layer-by-layer evolution of
the film under growth conditions. This is the so-called “Schwoebel/Ehrlich” barrier whose
determination from theory and experiments has led to substantial clarity in understanding thin
film growth. The existence of the Stranski-Krastonov mode, however, implies that thin film
growth patterns may be far more complex in general, and may require consideration of the role

of quantities like surface strain and local perturbations [ 144].

Experimentally, nearly perfect Mg(0001) films can be grown on Si(111) substrate by

low-temperature deposition and annealing [145] and on W(110) substrate [ 146-148]. . In addition
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QSE have been observed for the growth of Mg on Si(111) although in this case the large lattice
mismatch between Si and Mg (20%) needs to be accommodated thus excluding the possibility of
building films layer by layer. Owing to its sharp interface, with high reflectivity in the energy
region of the Mg s-p band, the Mg/W(110) system has proven an excellent test system for
studying the influence of confinement on the electronic structure [149-151] and on such metal
properties as surface reactivity [152, 153]. With this goal in mind we focus on way the growth of
Mg films on W(110) affects their morphology. Within this context, it is necessary to determine
the energetics of the various diffusion mechanisms for adatoms, on terraces and step edges, in

order to determine whether growth proceeds three-dimensionally or layer by layer.

5.2.2 Results and Discussion

We have studied the initial stages of Mg/W(110) epitaxy, starting from the initial adatom
adsorption and growth of films. The results of Scanning Tunneling Microscopy (STM)
experiments are done by our experimentalist collaborators [154] and the results of the
experiments were analyzed by combination of DFT and using Kinetic Monte Carlo simulations
(KMC) undertaken by our theorist collaborators [154]. As input for the KMC simulations we
employed DFT to calculate activation energy barriers for a number of relevant processes for
adatom diffusion via hopping on terraces and near step edges of Mg(0001). KMC Simulations
are used to obtain measures the values of critical terrace widths corresponding to switching of

the growth mode from step flow to terrace nucleation.
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Figure 5-14. (a) Model system with thickness of 7 atomic layers as substrate and one
atomic layer as step (b) Side view of 3 top layers of the model system. The darkest gray is the
(3x4) step layer. The gray color get lighter as it goes toward the inner layers. (c) Top view of the
model system The white and the light gray triangles represent the fcc and hcp sites of the
Mg(0001) step Model. The arrows point to the actual sites where it initializes (fcc) and ends up
(hcp). The number corresponding to each arrow shows the energy barrier of the i diffusion path
illustrated by arrows. The Ehrlich-Schwoebel barrier energy of steps A and B are depicted as
ESA and ESB correspondingly.

We find that the energy barrier for adatom diffusion on the “semi-infinite” Mg(0001)
terraces(at a 0.1 ML coverage and away from the steps) is 0.032 eV, with atom hopping from fcc
to hep site, and even smaller 0.009 eV, from hcp to fcc. This value is in agreement with the one
obtained from effective-medium theory [28], although the latter method does not show the

propensity for forming stacking faults that shows up in DFT calculations. The energy barriers
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for the stepped Mg(0001) surface are displayed in . The adatom terrace diffusion barriers (0.020
eV and 0.006 eV from fcc to hep and from hep to fee sites, respectively) on the stress free 1-nm

step are similar to the ones for the “semi-infinite” terrace.

The Mg steps are strongly attractive for Mg adatoms on the lower terrace (and repulsive
for adatoms on the higher side). While the detachment barrier from step A is 0.647 eV, the
attachment barrier is only 0.022 eV and its next local minimum position not one but three sites
away from the step (i.e., ~0.5nm away from the attachment site). Similarly, the barrier for
detachment from and attachment to step B are 0.573 eV and 0.008 eV, respectively. The AE;
barriers for an adatom to descend from the step terrace to the lower one are 0.094 eV (at step A)
and 0.145 eV (at step B). Since the AE, barriers are relatively large they indicate a 3D growth for
annealing temperatures below 200 K; In contrast, the strong attraction of the steps suggests

instability towards mound formation [29].

5.2.3 Conclusions

One interesting conclusion from the current study is that regions on the W(110) of
different morphology can be prepared (large flat 100nm terraces where growth is layer by layer
and only two layers are exposed vs step bunched regions of regular step arrays with average
terrace width 10nm). Using the calculated and simulated results we conclude that the diffusion
barrier is substantially higher on the bunched regions than that on flat regions. This is a very
promising result for the hydrogen adsorption studies since it shows that the fraction of atoms
with low coordination is considerably larger in such reasons because many small islands can
nucleate on films in the step bunched regions, thus offering potential sites with higher probability

for H; sticking The details of KMC and experimental results can be found in reference [154].
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CHAPTER 6. ANISOTROPY IN SURFACE DIFFUSION DUE TO PROXIMITY TO

MISFIT DISLOCATION

Engineering of ordered self-assembled nano-patterns plays an increasingly important role
in design and development of functional nanometer-scale materials and devices, as an alternative
to conventional costly and time-consuming top-down approaches or to artificially drawing
nanostructures by atomic manipulation with a scanning tunneling microscopy tip or through
electron-beam lithography. There are many ways to induce self-assembly processes through
inhomogeneities introduced on the surface at atomic scale. Examples are reconstruction (e.g. Ni,
Co, Mo and Ru [155-157] growth on herringbone reconstructed Au(111)), atomic steps [158]
and implanted ions [159]. But the main challenge in exploiting self-assembly processes lies in
controlling the size, symmetry and spatial ordering of nano-islands. Introduction of a dislocation
network as a template is one of the promising methods for steering growth of adislands toward

predetermined nucleation sites.

In general, growth of a thin-film on a dissimilar substrate results in lattice-mismatch
strain that at a certain critical point is relieved through the formation of network of dislocations
[160]. Each dislocation line in the film generates a long-range inhomogeneous strain field, which
alters adatoms’s potential energy surface, resulting in anisotropy in atomic transportation on the
thin film and consequently formation of patterned nano-structures. The possibility of producing
such ordered arrays in this fashion has already been observed experimentally. Heteroepitaxial
systems are good candidate for generating these well-ordered arrays, since the size and symmetry
of their dislocation networks can be tuned by adjusting the misfit between the thin film and the

substrate, whether by changing the species that make up the thin-film/substrate system, by
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varying the temperature, or by altering the adlayer coverage (i.e., varying the thickness of the

film).

The trigonal network of dislocations in metal-on-metal heteroepitaxial films has been
exploited as a template for growing well-ordered arrays of triangular nanostructures [161]. This
phenomenon has been explained as the result of strong repulsion of adatoms from the dislocation
line. Similar effects had previously been demonstrated in Ge/SixGel-x/Si(100) family of systems
[162]. Furthermore, dislocations in Ag/Ru(0001) and Cu/Ru(0001) as templates for two-
dimensional sulfur nano-cluster arrays have been studied through scanning tunneling microscopy
[155]. Also, the Ag/Pt(111) dislocation network has been used for templating the growth of
molecular nano structure assemblies on account of its laterally strongly inhomogeneous

adsorption properties [163].

Up to now, studies of dislocation-steered self-assembly of nanostructures have been
mostly confined to systems under compressive strain. There have been several theoretical studies
of adatom diffusion on systems strained by negative misfit [164, 165], but to our knowledge,
none has taken up the effect on adatom transport dislocation induced by such strain. And in
tensile strain the sole experimental observation of self-assembled structures (quantum dots) in a
heteroepitaxial metallic system (PbSe/PbTe) likewise did not reach the critical point that results
in dislocation [166]. This relative disinterest in tensile-strained systems, initially under
examination were of semiconductors, of interest for electro-optical applications, and the
reduction in band gap that accompanies the increase in lattice parameter of semiconductor for

this films is unsuitable for such applications.
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In this context, we have undertaken two complementary studies. The first study deals
with the diffusion of a Cu adatom on Cu/Ni(111) whereas we investigate a Ni adatom on

Ni/Cu(111) in the second study.

6.1 Part I: Cu/Ni(111)

6.1.1 Introduction

Modern microelectronic technology depends on the ability to control the growth of thin
films. Because a key factor in thin-film growth is surface diffusion [167], a great deal of effort
has been devoted to devising realistic models of this process. Many studies have focused on the
effects of surface strain on diffusivity, a few on inhomogeneous [168, 169] but most on
homogenous stress fields [170-173], and all considering only surfaces free of dislocations. Any
realistic material, however, is found to be characterized by certain density of dislocations and
related defects when serving as a substrate for film growth. In heteroepitaxial growth, for
example, the first few deposited layers grow pseudomorphically (following the substrate
geometry) until the strain due to the lattice mismatch is relieved at a certain critical thickness,
leading to the formation of misfit dislocations [174, 175]. In several works [176-178] the
formation of such misfit dislocations for heteroepitaxial Lennard-Jones systems was documented
using molecular static calculations of system energetics and activation energy barriers coupled
with either off-lattice kinetic Monte Carlo simulations [176, 177, 179] or application of spherical
repulsive potentials [13] to activate the nucleation process. More recently, Trushin ez al. [180]
applied semiempirical interaction potentials arrived at by the embedded atom method (EAM)
[181] to generate misfit dislocation in heteroepitaxial growth of Pd/Cu(100) and Cu/Pd(100). As
expected, the presence of misfit dislocations was found to have consequences for growth patterns
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through the transformation of the potential energy surface for the diffusion of the deposited
atoms and their clusters [168, 178]. To our knowledge, a systematic study that documents the
effect of inhomogeneous strain in modifying the diffusion dynamics of adatoms, via hopping, on
heteroepitaxial systems with well-defined misfit dislocations, has not yet been carried out. In
such a system, the lattice mismatch generates stress that is eventually released through a defect,
— a misfit dislocation network. We opted to study, as a first prototype system, Cu layers on
Ni(111). Our first task was to create a misfit dislocation in this system for several thicknesses of
the Cu film. We then study the effects of isolated defects upon the diffusion of a Cu adatom on

the Cu layers on Ni(111).

6.1.2 Construction of the Cu/Ni(111) Model Sample

Our system consists of several layers (3-7) of Cu placed on top of a Ni(111) substrate.
The misfit dislocations are created with the core located at the interface between the Cu film and
the Ni substrate, using repulsive biased potential (RBP) method [182]. To the original potential
energy surface, we add an exponentially decaying spherically symmetric potential sufficiently
localized around the initial harmonic basin to ensure that final state energy depends not upon an
artificial repulsive bias but solely upon the true potential of the system. The main idea here is to
modify the local energy surface to make the initial epitaxial state unstable. The procedure of

sample construction consists of four stages as described in Figure 6-1.
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Figure 6-1. Summary (2D) of the procedure for preparing of a sample illustrated here
with a 5-layer film to study the diffusion: (a) Relaxation of the sample using standard MD
cooling energy minimization; (b) Formation of an extended Cu island, resulting from application
of RBP, followed by a second phase of MD cooling; (c) Removal of the island; (d) Addition of a

single Cu adatom atop the film. (In this study, we vary the position of this adatom with respect to

the defect).
6.1.3 Computational Details

To study the effect of misfit dislocations on adatom diffusion in close proximity to the

dislocation core in heteroepitaxial systems, we apply molecular dynamics and molecular static
the case of 7-layer of Cu film. We also calculate the potential surface energy available to the
adatom and compare the energy barriers for adatom diffusion in the core region and on the defect

methods using many-body interaction potentials. We find that presence of the defect under the
surface strongly affects the adatom’s trajectory, creating anisotropy in atomic diffusion, even for

free sample.
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Figure 6-2. A Cu adatom on the dislocated surface of a 5-layer Cu film on a Ni(111)
substrate.

6.1.4 Mapping the Potential Energy Surface of Cu Adatom on Ni(111)
To see how the presence of the defect under the substrate surface modifies the potential

energy experienced by the adatom at different locations on the film, we compared the energy

maps of the potential energy surface of our sample with and without dislocation.
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Figure 6-3. Potential Energy Surface for (a) the defect-free surface and (b) for the
dislocated surface.

Clearly, the presence of the defect beneath the film surface alters the binding-energy map

of the adatoms to the surface in two striking respects. The isotropy of the surface vanishes in
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favor of an axis of asymmetry along the dislocation line, and trap zones (very deep minima)
emerge along the dislocation line, any of which can immobilize any adatom that strays into its

vicinity during a random walk across the surface.

6.1.5 MD Simulations of Adatom Diffusion on the Cu Film on Ni(111)

Another way to probe the effect of the defect on surface diffusion is direct MD
simulation of adatom motion on the surface. Diffusion at one or more rows away from the
dislocation border is anistropic, and symmetrical on both sides of the dislocation, in contrast to
the isotropic trajectory that emerges on a defect-free surface. If we place the adatom directly on
the dislocation line, it almost always exhibits a severely confined (spot-bound) trajectory.
Although escapes do occur, they are extremely rare; usually when an adatom wanders from its

initial position, it shortly returns, and continues to hover around it.
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Figure 6-4. (a) A typical isotropic trajectory of the adatom on a defect-free surface. The
arrow shows the starting point of the simulation. (b) A typical anisotropic trajectory of the
adatom on a defective surface when its initial position is one row distant from the dislocation
line, which runs parallel to the edge of the slab 26 A° from it. The arrow shows the starting point
of the simulation.
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Figure 6-5. Trajectory from MD simulations of attachment and detachment of adatom
along the dislocation line (starting point is 21 A° away from the edge of the slab). The white dot
is the starting point of the simulation.

6.1.6 Energy Barriers for Adatom Diffusion

To further pin down the effect of the submerged defect on surface diffusion we calculated
— using the Nudged Elastic Method [20] — the energy barriers for the adatom to diffuse along all
possible paths both on the defect-free substrate and on the defective one. The barrier to go in
either direction within the dislocation core is 0.42 eV (a=2>c¢ & a—=>b), which is considerably
higher than the barriers for diffusion from any locations outside the dislocation core. We thus
expect that the atom will only very rarely move along the dislocation line. Instead it will stay for
some time in the trap zone. The barriers for moving out of the trap zone towards the dislocation
border are strikingly different for movement towards the higher and lower planes. While the
barrier for diffusion towards the higher border (a=>d: 0.5 eV) is even slightly greater than that for

movement along the dislocation line, that for movement towards the lower border (a=>e: 0.23
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eV) is approximately 1/2 as great. On the other hand, the barrier for return from the lower border
directly to the original location in the core is negligible (e=>a: 0 ¢V). Hence we would expect to
see from time to time - as we did in our MD simulations — a detachment towards the lower plane
followed by either a return to the original zone of entrapment or a fall into a neighboring
entrapment zone. Our calculations thus show that energy barriers are affected by the dislocation
depending the adatoms’ distance from the dislocation core. To make this clear in spatial and
quantitative terms, we present the diagram in Figure 6-6. The entrapment zones at the dislocation
core, the asymmetry between the lower and upper borders along the core, and the symmetry of
anisotropic behavior at one or more rows beyond the core will determine the morphology of the
thin-film growth. In future, the results concerning tensile dislocation and its effect on the
subsequent growth of the film will be compared with those concerning the compressive case.
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Figure 6-6. Locations of the adatom on the dislocated surface

162



one row away

-

border of dislocation
— = dislocation core

border of dislocation

X One row away

Figure 6-7. Energy barriers (a) on a defect-free and (b) on a defective surface for any
diffusion path from an fcc to an fcc site (by way of an hcp site). The highest barrier corresponds
to the motion in the direction perpendicular to dislocation line.

6.1.7 Conclusions

We compared the diffusion of a Cu adatom on the dislocation surface of a heteroepitaxial
Cu/Ni(111) substrate with its diffusion on the same substrate in which dislocation is left out of
account. Mapping of the potential energy surface, MD simulations of adatom trajectories, and
calculation of activation energies for single adatom diffusion paths indicate that the presence of a
defect within the substrate profoundly affects surface diffusion. The strain field produced by
isolated edge dislocation extends a long way (at least six rows, i.e., to the end of the unit cell
under study) from the dislocation core, on both sides. Diffusion at one or more rows away from
the dislocation border is anisotropic and symmetrical on both sides of the dislocation, in contrast
to the isotropic trajectory that emerges on a defect-free surface. At the dislocation core,
entrapment zones appear, from which an adatom is highly unlikely to escape. On the other hand,
if adatoms appear a row or so away from the border of dislocation, they stay repelled from it. We

thus expect adatoms to nucleate either at the dislocation core (which functions as a trap) or in

163



regions farther away from it. In either case, the growth pattern on surfaces such as the ones
considered here will be reflective of a dislocation network. We note that such surface
nanostructuring induced by a dislocation network has already been observed experimentally
[183, 184]. We hope that our work will motivate more experimental research in the area. Of
course, additional diffusion processes have to be considered if one aims at the study of multilayer

growth on dislocation networks.

6.2 PartII: Ni/Cu(111)

6.2.1 Introduction

In order to achieve precise control of ordered self-assembled nanoparticles through
manipulation of inhomogeneous field, we need a better understanding of how the presence of
dislocations — tensile as well as compressive affect the transport of adatoms on hetero epitaxial
metallic systems. Previously [185] and in the preceding section (Section 6.1), we reported the
effect of dislocation in compressively strained system on diffusion of an adatom. In this section,
we address diffusion of adatom on a system of the same prototype and materials but one that is

under tensile strain.

The remainder of this section is organized as follows: Sections 6.2.2 and 6.2.3 discuss
computational details and the construction of model system, respectively. Section 6.2.4 reports
and analyses the results of our MD simulation of the Ni adatom diffusion on the Ni/Cu(111) and
Cu adatom on Cu/Ni(111) surfaces. Calculated energy barriers for adatom diffusion are

summarized in Section 6.2.4 and our conclusions are presented in Section 6.2.5.
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6.2.2 Computational Details

Our simulations were performed with LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator), a parallel MD code [186], at 300 K, using the canonical ensemble.
We used the Verlet algorithm with the Nose-Hoover thermostat to solve classical equations of
motion for atoms interacting through interatomic potentials given by the embedded atom method
(EAM) [181, 187]. To prevent the motion of the system as a whole, we fixed the two bottom
layers of the substrate. To compute minimum energy configurations we chose the Conjugate
Gradient (CG) method [188]. To monitor the overall trajectory of the adatom diffusing from a
given initial position, we ran each simulation for 10 ns, recording configurations every 10 time
steps. To calculate all activation energy barriers we used the nudged elastic band (NEB) method
[189], modeling the path in configuration space by 20 discrete images and minimization until

forces on the images converged to better than 10—6 eV/A.

6.2.3 Construction of the Model Systems

Diffusion of a Cu adatom on a Cu/Ni(111) slab has been described before [185] — and in
the preceding section (Section 6.1). In that study we prepared the sample was prepared by the
Repulsive Biased Potential (RBP) method [178]. Here we reiterate those simulations, but on a
sample prepared, for the sake of strict comparison, by the bicrystal method [190] we have
adopted for preparing the Ni on Ni/Cu(111) slab, prompted by well-established general facts

about heteroepitaxial growth.

Nucleation of a dislocation is the mechanism by which the strain governed by lattice
mismatch is relieved. Two distinct sources of strain, and hence two kinds of dislocation, are
possible, depending on the nature of the misfit between film and substrate. When the lattice
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parameter of the film is smaller than that of the substrate (negative misfit), the result is tensile
strain. When tensile strain is relieved through relaxation, more atoms can eventually be
accommodated within a given length of film than in the substrate, therefore the atoms in the film
get closer to one another. That is, while the misfit parameter in a compressively strained system
is positive, the strain tensor (the magnitude of deformation upon relief of the strain) is negative
while in a tensilely strained system the misfit parameter is negative, and the strain tensor is

positive.

Accordingly we set about constructing the Ni/Cu(111) and Cu/Ni(111) slabs in the
following way (see Figure 6-8). Both parts of both slabs were made of fcc crystal layers in which
the Ni lattice constant = 3.53 A and the Cu lattice constant = 3.62 A. To construct both samples,
we first set the dimensions of the film and substrate. We settled upon 7 layers of film on 7 layers
of substrate because in both the energy barrier for diffusion of an adatom converges at 7 layer
(NZ =7); that is, the barrier increases for each layer added (starting with a single layer) until it
remains constant). We keep the number of atoms at X direction the same for films and substrates
of both samples (NX = 10). The only direction that we alter to get dislocation to occur is the Y
direction of the film. In each sample we construct the substrate by setting NY = 40 and fixing
two layers. For dislocation in a tensilely strained system, we set NY = 41 and for dislocation in a
compressively strained system, we set NY = 39. Joining the film and substrate crystals along
their x—y faces produces a mismatching bi-crystal, relaxation of which introduces a misfit
dislocation — a decrease in interatomic distances between Ni atoms in the tensile case, increase
the interatomic distances between the Cu atoms in the compressive case. The closed lines in

Figure 6-8(a) and Figure 6-8(b) are Burgers circuits around the dislocations.
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Figure 6-8. Schematic cross-section of slab containing a dislocation: (a) in a tensilely
strained system (b) in a compressively strained system. The numbers of atoms in the Z and X
directions is the same for both samples, as are the numbers of atoms in the Y direction of the two
substrates: NZ = 7; NX= 10; NY (Cu-substrate) = 40 = NY (Ni-substrate). But in the tensilely
strained system (a), the number of atoms in the Y dimension of the (Ni) film is one more (41)
than in the substrate, while in the compressively strained system the number of atoms in the Y
direction of the (Cu) film is one less (39). The closed line in Fig 2a and Fig.2b are the Burgers
circuits around the dislocation misfits (f = [(afl-lm — Qgupstrate)/ afilm] x 100) — negative

when the dislocation results from tensile strain, positive when it results from compressive strain.
Note that the X direction is in to the sheet.

6.2.4 MD Simulation of Adatom Diffusion in the Presence of Tensile and Compressive

Dislocations

To see how the presence and nature of the defect under the substrate surface affects
surface diffusion, we used direct MD simulation of adatom motion on the surface. We compare a
typical trajectory of adatom motion on ideal surfaces with that on a dislocated surface for both

compressive and tensile cases. Since we find the same anisotropy all the way to the slab edge, we
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infer that the strain field due to isolated edge dislocation extends far beyond the dislocation core.
In Figure 6-9 we confront the effects of both kinds of dislocations. Figure 6-9(b) and Figure
6-9(d), show a typical anisotropic trajectory in the presence of dislocation in a tensilely and in a
compressively strained system, respectively, while a typical random trajectory of adatom on
corresponding non-defective surfaces is shown in Figure 6-9(a) and Figure 6-9(c). There is a
difference between the effect of tensile (Figure 6-9(b)) and effect of compressive (Figure 6-9(d))

dislocation on the trajectory of an adatom.

For dislocation in a tensilely strained system, adatom diffusion is preferentially faster
toward to the dislocation (perpendicular to it) but for compressive dislocation the adatom avoids
diffusing toward the dislocation line (along it). In both Figure 6-9(b) and Figure 6-9(d), the
approximate borders of the dislocation area have been indicated by red lines, while the starting
point of the simulation is marked by dashed green lines. We repeated the calculations many
times: in all of them dislocation in a tensilely strained system functions as an attractor, while in a
compressively strained system dislocation works to repel diffusion. The results here, with our
Cu/Ni sample here prepared with new method, confirm the results we obtained [13] with the

sample built by RBP.Energy Barriers for Adatom Diffusion Processes
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Figure 6-9. (a), (c) Typical isotropic trajectories of an adatom on defect-free surfaces (b),
(d) Typical anisotropic trajectories of an adatom on dislocated surfaces generated by different
types of strain.
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calculated the energy barriers for the adatom to diffuse via hopping along possible paths both on
the defect-free substrate and on the defective ones. In Figure 6-10(a) and Figure 6-10(b) we
graph the energy profile along transition path for an adatom’s diffusion from one fcc to another
fcc site by way of an hcp site on both the defect-free surfaces and on each of the defective

surfaces. On all the surfaces the path consists of two steps: the first from the initial fcc site to an



hep site, and the second from there to the other fcc site. On the defective surface (see Figure
6-10(d)), for an adatom away from the border of the dislocation, the first step (fcc—hcp) is
“parallel” to the dislocation line (actually at an acute angle to it), while the second (hcp—fcc) is
perpendicular to that border. Figure 6-10(a) and Figure 6-10(b) dramatize how the saddle points
of the energy barriers for diffusion steps on the defect-free surface are symmetrical, while those
for the equivalent steps on the defective surface are highly asymmetrical: On the defect-free
surface, the energy barriers for the two steps (fcc—hcp and hcp—fec) are 0.04 and 0.06 eV for
Ni on Ni/Cu(111) and 0.01 and 0.02 eV for Cu on Cu/Ni(111) surface, respectively. In the
compressively dislocated surface the barrier for the step perpendicular to the dislocation border
(hcp>fcc: 0.06 eV) is three times higher (fcc=>hcep: 0.02 eV) than that for the step parallel to it,
while on a surface dislocated by tensile strain the barrier for the step parallel to the dislocation
border (fcc>hcp: 0.08 eV) is 4 times higher (hcp—=>fcc: 0.02 eV) than that for the step
perpendicular to it. The difference explains the contrast between anisotropic diffusion trajectories
typical on the defective surfaces and the isotropic trajectories typical on the defect-free surfaces.
As it is shown in Figure 6-10(c) and Figure 6-10(e), in the tensile case, the adatom has a low
barrier for diffusion perpendicular to the dislocation, while in compressive case, the adatom has a
tendency to diffuse parallel to the dislocation because of the lower barrier in that direction. In
other words, in a compressively strained system, introducing dislocations leads to partial strain
relief and increase of activation energy for surface diffusion towards the dislocation line. The

effect manifests itself as an effective repulsion from dislocation.
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Figure 6-10. Energy barriers for diffusion of (a) Ni on non-defective and (tensilely
generated) defective Ni/Cu(111) and of (b) Cu on non-defective and compressively generated
defective Cu/Ni(111) — in each case from an fcc to an fcc site by way of an hcp site, as
schematized in (d). The contrast between the relative strengths of barriers to diffusion along
paths parallel and perpendicular to the dislocation line is schematized in the juxtaposition of (d)
and (f), for tensilely and compressively generated dislocations, respectively.

6.2.5 Conclusions

We compared the diffusion of the Ni adatom on Ni/Cu(111) on a surface dislocated by
tensile strain with diffusion of Cu adatom on Cu/Ni(111) surface dislocated by compressive

strain and with diffusion of adatoms on the corresponding defect-free surfaces. Our simulations
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show that presence of a defect under a substrate surface effectively changes the energy barriers

for adatom diffusion and consequently the kinetics of thin-film growth.

We predict that in general one will observe a clear correlation between the sign of misfit
dislocations and the positions of the mounds grown on the surface: Negative misfit has an
attractive effect on deposited adatoms (mounds prefer to form directly above the tensile
dislocation), while positive misfit has a repulsive effect on the adatom diffusion (mounds grow
away from the dislocations). This effect of change in energy barrier due to the presence of defect
has a very simple interpretation. An atomic lattice with large interatomic distances is
characterized by deep minima at binding sites and consequently high energy barriers for surface
diffusion, while a dense lattice has shallow minima and low energy barriers. Thus any change in
interatomic distances should lead to change in energy barriers. It is known that introducing a
defect in misfit-strained systems causes different effects depending on the misfit sign.
Compressive strain relief results in increase in interlayer distance, while relief of tensile strain
reduces these. Since this effect is based on the geometry of lattice packing, it should prove
universal — that is independent of any particular choice of interatomic potential. Of course
additional diffusion processes have to be considered if one aims at the study of multilayer growth

on dislocation networks. Meanwhile, we await experimental verification of these predictions.
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CHAPTER 7.CONCLUSIONS

In summary, we studied the electronic structure of four different model structures
involving different possibilities of interfaces of single layer MoS, with Au contact. The features
of the electrostatic potentials and the charge redistributions at the interface between the metal
and the MoS, are different between the four interfaces and one of the samples shows the most
current passing through the MoS,. Schottky barriers calculated between interface of MoS, and

Au contact shows both p-type and n-type MoS,—Au contact.

We find a novel MoSx surface structure on copper whose ability to interact and activate
adsorbates far exceeds that of MoS;, while proving to be of similar thermal stability and also
recoverable post adsorption via annealing. We propose two models. Both of the model structures
(Mo,S; and Mo,Ss) are dynamically stable, at least at Gamma, and therefore the calculated
dynamical stability cannot discern or favor one structure or the other. Mo,S; has several high-
frequency features while Mo0,Ss has very-clearly distinguishable, well separated frequencies.
Two features in Mo,S; structure could very well lend themselves to being distinguished through
Raman spectroscopy, enabling researchers to understand which the real structure is. Some
catalyst compositions of MoSy for the formation of products from syngas contain copperl; thus,
our finding of a high affinity MoSx composition specifically on copper may point toward an
alternative origin of the actual working of such catalysts, if further corroborated by studies at

high pressure.

Our experimentalist collaborators observe the growth of molybdenum-sulfur nanowires
on a Cu(l111) surface. We identify them as MogSs nanowires. We find that the substrate

interactions are considerable, leading to the alignment of the nanowires with the substrate atomic
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rows. The nanowire growth favors a 4D separation on Cu(111), sufficiently far to separate them
completely and slightly wider than expected from DFT simulation. In combination, our results
suggest that Cu(111) may be a viable candidate for the aligned and regularly-spaced growth of

MogSe nanowires.

We have performed DFT first-principles calculations to reanalyze the surface relaxation
and electronic structure of Mg(0001), in order to determine the binding site and energy of Mg,
islets (n=1-4) on Mg(0001), to understand the low-diffusion barrier of the Mg monomer, and to
perform a full analysis of the dimer diffusion on this surface. We have not found strong
variations of the first-layer expansion and surface energy as a function of film thickness, as
reported previously [105]. We found, instead, that these properties as well as the DOS at the
Fermi level are well converged for films thicker than 24 nm (18 layers). We found, however, that
distinct electronic properties of Mg(0001) films could be observed for some very narrow film
thicknesses. For example, one could obtain dramatic changes in the DOS at the Fermi level (and
thus in reactivity) for films ranging from tetralayer to hexalayer. Charge-density plots show that
the long-known charge-density enhancement at the surface of Mg(0001), as a result of Friedel
oscillations, happens to be strongly localized in the fcc hollow site of Mg(0001). Our analysis
indicates that the charge accumulation at this “infinite” hollow site causes an energetically
favorable and unexpectedly large stacking fault for the Mg monomer (15 meV), which eluded
previous effective-medium calculations [191]. This trend decreases but persists all the way up to
the tetramer. Our calculations also suggest that this FO-driven charge accumulation may also be
responsible for the relatively small diffusion barriers for the monomer (fcc = hcp: 25 meV and

hep—> fee : 9 meV).
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We compared the diffusion of the Ni adatom on Ni/Cu(111) on a surface dislocated by
tensile strain and diffusion of Cu adatom on Cu/Ni(111) surface dislocated by compressive strain
with each other and with diffusion of adatoms on the corresponding defect-free surfaces. Our
simulations showed that presence of a defect under a substrate surface effectively changes the
energy barriers for adatom diffusion and consequently the kinetics of thin-film growth. We
predict that in general one will observe a clear correlation between the sign of misfit dislocations
and the positions of the mounds grown on the surface: Negative misfit has an attractive effect on
deposited adatoms (mounds prefer to form directly above the tensile dislocation), while positive
misfit has a repulsive effect on the adatom diffusion (mounds grow away from the dislocations).
This effect of change in energy barriers due to the presence of defect has a very simple
interpretation. An atomic lattice with large interatomic distances is characterized by deep minima
at binding sites and consequently high energy barriers for surface diffusion, while a dense lattice
has shallow minima and low energy barriers. Thus any change in interatomic distances should
lead to change in energy barriers. It is known that introducing a defect in misfit strained systems
causes different effects depending on the misfit sign. Compressive strain relief results in increase
in interlayer distance, while relief of tensile strain reduces these. Since this effect is based on the
geometry of lattice packing, it should prove universal — that is, independent of any particular
choice of interatomic potential. Of course additional diffusion processes have to be considered if
one aims at the study of multilayer growth on dislocation networks. Meanwhile, we await

experimental verification of these predictions.
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your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written
authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)
6. Ifthe permission fee for the requested use of our material is waived in this instance, please be advised that your future
requests for Elsevier materials may attract a fee.
7. Resenvation of Rights: Publisher resenves all rights not specifically granted in the combination of (i) the license details
provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's
Billing and Paymentterms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the
license at the end ofthe licensing process for the transaction, provided that you have disclosed complete and accurate
details of your proposed use, no license is finally effective unless and until full paymentis received from you (either by
publisher or by CCC) as provided in CCC's Billing and Paymentterms and conditions. Iffull paymentis not received on a
timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never
granted. Further, inthe eventthat you breach anyofthese terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as
described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may
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9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.
10. Indemnity. You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers,
directors, employees and agents, from and againstanyand all claims arising out of your use of the licensed material
other than as specifically authorized pursuant to this license.
11. No Transfer of License: This license is personal to you and maynot be sublicensed, assigned, or transferred by you
to any other person without publisher's written permission.
12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in
the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to anyterms contained in any purchase order,
acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms
and conditions or CCC's Billing and Paymentterms and conditions. These terms and conditions, together with CCC's
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and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations
established bythese terms and conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall control.
14. Revocation: Elsevier or Copyright Clearance Center may denythe permissions described in this License at their sole
discretion, forany reason or no reason, with a full refund payable to you. Notice of such denial will be made using the
contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will
Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses ordamage incurred byyou as a
result of a denial of your permission request, otherthan a refund of the amount(s) paid by you to Elsevier and/or Copyright
Clearance Center for denied permissions.
LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world Endlish rights only unless your license was granted
for translation rights. If you licensed translation rights you may onlytranslate this content into the languages you
requested. A professional translator must perform all franslations and reproduce the content word for word preserving
the integrity of the article. If this license is to re-use 1 or 2 figures then permission is granted for non-exclusive world
rights in all languages.

16. Website: The following terms and conditions applyto electronic resenve and author websites:
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This license was made in connection with a course,

This permission is granted for 1 year only. You mayobtain a license for future website posting,
All content posted to the web site must maintain the copyright information line on the bottom of each image,
Ahyper -text must be included to the Homepage of the journal from which you are licensing at
hitp/ =/journalheoox or the Elsevier homepage for books at hifr rcom , and
Central Storage: This license does not include permission fora scanned version of the material to be stored ina central
repository such as that provided by Heron/XanEdu.

17. Author website for journals with the following additional clauses:
All content posted to the web site must maintain the copyright information line on the bottom of each image, and the
permission granted is limited to the personal version of your paper. You are not allowed to download and postthe
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edition to create an electronic ver3|on Ahyper-text must be included to the Homepage of the journal from which you are
licensing at ti cedirect com/scie flourne . As part of our normal production process, you will receive
an e-mail notloe When your amcle appears on Elsevlers onllne senice ScienceDirect (www . sciencedirect.com). That e-
mail will include the article’s Digital Object Identifier (DOI). This number provides the electronic link to the published
article and should be included in the posting of your personal version. Ve ask that you wait until you receive this e-mail
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Central Storage: This license does not include permission for a scanned version of the material to be stored in a central
repository such as that provided by Heron/XanEdu.

18. Author website for books with the following additional clauses:
Authors are permitted to place a brief summary of theirwork online only.
Ahyper-text must be included to the Elsevier homepage at hittp /A com . All content posted to the web site
must maintain the copyright information line on the bottom of each image. You are not allowed to download and postthe
published electronic version of your chapter, nor may you scan the printed edition to create an electronic version.

Central Storage: This license does not include permission for a scanned version of the material to be stored in a central
repository such as that provided by Heron/XanEdu.
19. Website (regular and forauthor) A hyper-text must be included to the Homepage of the journal from which you are
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If you would like to pay for this license now, please remit this license along with your payment made payable to
"COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 hours of the license date. Payment should
be in the form of a check or money order referencing your account number and this invoice number RLNK501156998.
Once you receive your invoice for this order, you may pay your invoice by credit card. Please follow instructions
provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001

P.O. Box 843006

Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer Support:
customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license for your reference. No
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provided by Nature Publishing Group, and the paymentterms and conditions.
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2. Permission granted free of charge for material in printis also usually granted for any electronic version of that
work, provided that the material is incidental to the work as a whole and that the electronic version is essentially
equivalentto, or substitutes for, the print version Where print permission has been granted for a fee, separate
permission must be obtained for any additional, electronic re-use (unless, as in the case of a full paper, this has
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Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL NAME]
(reference citation), copyright (year of publication)For AOP papers, the credit line should read:
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transaction, you agree thatthe following terms and conditions applyto this transaction (along with the billing and paym entterms and conditions established bythe Copyright Clearance Center Inc., ("Ct

Terms and Conditions

1. The materials you have requested permission to reproduce (the "Materials") are protected by copyight.
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Elsevier VAT number GB 494 6272 12
Permissions price 0.00USD

VAT/Local Sales Tax 0.00USD/0.00 GBP
Total 0.00 USD

Terms and Conditions
INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. Byclicking "accept'in connection with completing this licensing
transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and
Paymentterms and conditions established by Copyright Clearance Center, Inc. ("CCC"), atthe time that you opened your
Rightslink account and that are available atanytime at hitp /mvaccount copyright com).

GENERAL TERMS
2. Elsevier herebygrants you permission to reproduce the aforementioned material subject to the terms and conditions
indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with
credit or acknowledgement to another source, permission must also be sought from that source. If such permissionis
not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source
must be made, either as a footnote or in a reference listat the end of your publication, as follows:
“Reprinted from Publication title, Vol fedition number, Author(s), Title of article / title of chapter, Pages No., Copyright
(Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]” Also Lancet special credit -
“Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from
Elsever.”
4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimallyto serve
your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written
authorization of Elsevier Ltd. (Please contact Elsevier at permissions @elsevier.com)
8. Ifthe permission fee for the requested use of our material is waived in this instance, please be advised that your future
requests for Elsevier materials may aftract a fee.
7. Resenvation of Rights: Publisher resenves all rights not specifically granted in the combination of (i) the license details
provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's
Billing and Paymentterms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the
license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate
details of your proposed use, no license is finally effective unless and until full paymentis received from you (either by
publisher or by CCC) as provided in CCC's Billing and Paymentterms and conditions. Iffull paymentis notreceived on a
timely basis, then anylicense preliminarily granted shall be deemed automatically revoked and shall be void as if never
granted. Further, in the event that you breach anyofthese terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as
described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may
constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the
materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.
10. Indemnity. You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers,
directors, employees and agents, from and againstanyand all claims arising out of your use of the licensed material
other than as specifically authorized pursuant to this license.
11. No Transfer of License: This license is personal to you and maynot be sublicensed, assigned, ortransferred by you
to any other person without publisher's written permission.
12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in
the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to anyterms contained in any purchase order,
acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms
and conditions or CCC's Billing and Paymentterms and conditions. These terms and conditions, together with CCC's
Billing and Paymentterms and conditions (which are incorporated herein), comprise the entire agreement between you
and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations
established bythese terms and conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall control.
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14. Revocation: Elsevier or Copyright Clearance Center may denythe permissions described in this License at their sole
discretion, foranyreason or no reason, with a full refund payable to you. Notice of such denial will be made using the
contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no eventwill
Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses ordamage incurred by you as a
result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright
Clearance Center for denied permissions.

LIMITED LICENSE
The following terms and conditions apply onlyto specific license types:
15. Translation: This permission is granted for non-exclusive world English rights only unless your license was granted
for translation rights. If you licensed translation rights you may onlytranslate this contentinto the languages you
requested. A professional translator must perform all franslations and reproduce the content word for word presenving
the integrity of the aricle. fthis license is to re-use 1 or 2 figures then permission is granted for non-exclusive world
rights in all languages.
16. Website: The following terms and conditions applyto electronic reserve and author websites:
Electronic reserve: If licensed material is to be posted to website, the web site is to be password-protected and made
available onlyto bona fide students registered on a relevant course if:
This license was made in connection with a course,
This permission is granted for 1 year only. You may cbtain a license for future website posting,
All content posted to the web site must maintain the copyright information line on the bottom of each image,
Ahyper-text must be included to the Homepage of the journal from which you are licensing at
hitp:/Aww e/journalisoex or the Elsevier homepage for books at hit Wy iercom , and
Central Storage Thls Ilcense does not include permission for a scanned version of the material to be stored ina central
repository such as that provided by Heron/XanEdu.
17. Author website for journals with the following additional clauses:
All content posted to the web site must maintain the copyright information line on the bottom of each image, and the
permission granted is limited to the personal version of your paper. You are not allowed to download and post the
published electronic version of your article (whether PDF or HTML, proof or final version), nor may you scan the printed
edition to create an electronic version. Ahyper text must be included to the Homepage of the journal from which you are
licensing at htf oot . As part of our normal production process, you will receive
an e-mail notlce when your article appears on Elsevier's online senice ScienceDirect (www.sciencedirect.com). That e-
mail will include the article’s Digital Cbject Identifier (DOI). This number provides the electronic link to the published
article and should be included in the posting of your personal version. We ask that you wait until you receive this e-mail
and have the DOI to do any posting.
Central Storage: This license does not include permission for a scanned version of the material to be stored in a central
repository such as that provided by Heron/XanEdu.
18. Author website for books with the following additional clauses:
Authors are permitted to place a brief summary of their work onllne onIy
Ahyper-text must be included to the Elsevier homepage at | VY ercom . All content posted to the web site
must maintain the copyright information line on the bottom of each image. You are not allowed to download and postthe
published electronic version of your chapter, nor may you scan the printed edition to create an electronic version.
Central Storage: This license does not include permission for a scanned version of the material to be stored in a central
repository such as that provided by Heron/XanEdu.
19. Website (regular and forauthor) A hyper -text must be |nc|uded to the Homepage of the journal from which you are
licensing at hit I ) « or for books to the Elsevier homepage at
hitp/Avww.elsevier.com
20. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution
in either print or electronic form. Should your thesis be published commercially, please reapplyfor permission. These
requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the
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