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ABSTRACT 

The chemical, physical, and biological properties of bacteria developing resistance have 

been explored in animal based bacteria while plant bacteria have been largely neglected. Thus, the 

ability to probe changes in stiffness, adhesion, binding interactions and molecular traits of bacteria 

causing plant diseases is of great interest to develop a new generation of more potent, yet 

sustainable, pesticides. Our study aims to investigate the physical and chemical properties of 

bacterial systems, in particular their cell walls. Building upon this fundamental understanding of 

the cells, we also investigate the physicochemical responses associated to multivalent 

nanoparticle-based bactericide treatments on bacterial systems identified as pathogens in plant 

diseases.  

Here our efforts focus on developing a protocol for the fundamental understanding of 

Xanthomonas perforans, a strain known for causing bacterial spot in tomatoes and causing close 

to 50% losses in production. To support the design and accelerate the development of pesticides 

and treatments against this disease, we evaluate the changes bacteria undergo in the presence of 

the treatment. Using a silica nanoparticle-based treatment designed with a shell containing 

multivalent copper and quaternary ammonium, we compare bacteria pre- and post-treatment with 

infrared spectroscopy, atomic force microscopy (AFM)-based techniques, and TIRF microscopy. 

Statistical data analysis enables the identification of attributes that can potentially serve as markers 

to track the bacterial responses to the treatment in the future. Finally, we will discuss the exciting 

implications of this work, such as potential clues for the development of more potent treatments 

for resistant bacteria. 

Keywords: AFM, Raman spectroscopy, TIRF, bacteria, sustainable agriculture  
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction 

While scientists make their best attempts to keep up with Nature, Nature constantly remains 

two steps ahead. One quintessential example of this is bacteria and their ability to evolve and 

remain resilient. Even today, bacteria continue to provide a significant threat to health of humans, 

animals, and plants. Despite the discovery of antibiotics, bacteria have simply continued to evolve 

and remain pathogenic. Sadly, for humanity, the emergence of multi-drug resistant bacteria is 

already a reality and this resistant behavior of human-interacting bacteria is now seen in other 

biological systems such as agriculture-interacting bacteria. One example of this for humans is the 

extensively drug-resistant tuberculosis (XDR-TB), which accounts for individuals that are 

resistant to at least four of the main treatments for tuberculosis, which has been identified in no 

less than 105 out of 195 countries (Shah et al., 2017).  

A different example, relevant to plants, is the Huanglongbing disease caused by the 

bacterial family Liberibacter, which has caused significant infection to citrus trees in the state of 

Florida and is near impossible to culture or keep alive long enough to study. When coupled with 

the pressure already being felt by increasing levels to the population and the associated need for 

increased agriculture growth for food, the implications of understanding and fighting these bacteria 

becomes extremely apparent. Therefore, we explore the chemical and biomechanical processes, 

from the large population level to the single bacterium level, in order for scientists to understand 

and continue to develop more potent drugs, that are more harmless to humans, plants, and animals. 
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1.2 Bacterial Properties 

1.2.1 Bacteria cell structure and composition 

Bacteria come in all varieties of shapes and sizes. The first mode of differentiation 

generally stems from their morphological differences, which can include: bacilli (rod shaped), 

cocci (spherical shaped), and spirilla (spiral shaped), with further variations to those. The interior 

components are made up of a number of key players: ribosomes, actin filaments, mesosome, 

chromosome/DNA, inclusion bodies, and the cytoplasmic matrix, shown in Figure 1. Many of 

these structures have similar functions to that of cells in humans. As an example, the ribosomes 

for bacteria are responsible for the synthesis of proteins, the actin filaments are responsible for the 

structural shape of the bacteria, and the chromosomes/DNA contain the genetic material for 

replication. Similar to how humans have microvilli for increased surface area and increased 

absorption of necessary nutrients, bacteria have mesosomes which are invaginations within the 

cellular matrix that increase surface area for better cellular respiration. Lastly, bacterial inclusion 

bodies are present for the purpose of storing carbon, phosphate, and other substances that are 

necessary for single celled organisms. Some inclusion bodies are very useful for example, gas 

vacuoles are inclusion bodies that are necessary for maintaining buoyancy and floating in aqueous 

environments (Willey, Sherwood, & Woolverton, 2013). However, when found in humans, these 

bacterial and viral inclusion bodies are considered hot spots for points of viral replication or 

trademark location of genetic diseases.  
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Figure 1. Internal structures of single celled bacteria. Structures are visualized using model bacterium 

Escherichia coli (Willey et al., 2013). 

Externally, bacteria have cell walls that primarily serve as the outline for cell shape, 

protection against osmotic lysis, and for protection against toxic materials such as antibiotics. 

Beyond these functions, the commonalities begin to differentiate depending on if the bacteria are 

gram positive or gram negative. For both gram-positive and gram-negative bacteria, 

peptidoglycans (peptido – short peptides, glycan – sugar) are present, however, their thickness 

varies. Gram-positive bacteria are characterized by their thick peptidoglycans, as well as, a single 

membrane. Meanwhile, gram-negative bacteria are characterized by their thin peptidoglycans, 

double membrane, and the presence of porins (Willey et al., 2013), shown in Figure 2. 

Interestingly, the overall relative percentages of which bacterial cell wall type is more prevalent is 

still unclear (Hugon et al., 2013). 
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Figure 2. Gram negative bacterial cell wall. Gram negative bacterial cell walls are typically categorized by having 

a thinner structure than gram positive, the presence of a double membrane, as well as, uniquely having porins. 

Lastly, the mechanisms bacteria use to interact with their environments and ultimately with 

each other depends on their external structures such as flagella, pili, and fimbriae. These structures 

serve for protection, adhesion, reproduction, and movement (Willey et al., 2013). Of these three, 

the smallest structures are the fimbriae. Fimbriae exist along the outer cell membrane in large 

amounts, approximately 1000 per cell, and are predominately necessary for adhesion and motility 

along surfaces (Willey et al., 2013). Pili are fewer in number, typically larger than fimbriae, exist 

as few as 10 per cell, and are primarily responsible for conjugation (Willey et al., 2013). Flagella, 

the largest of the three, are chiefly accountable for motility and adhesion (Moens & Vanderleyden, 

1996). However, when these external structure’s jobs are viewed in terms of a biofilm phenotype 

instead of just for individual bacterium, their features begin to play much more significant roles 

for virulence and pathogenicity. 

1.3 Bacterial black spot disease 

Discovered just over a century ago, bacterial black spot (BBS) disease and other diseases 

with similar symptoms, were originally described as being caused by Bacterium vesicatorium. 



 

5 

 

However, several years later, scientists discovered that these were actually all caused by different 

bacteria. Characterized by differences in fatty acid compositions, carbon utilization, and DNA 

materials, the bacteria began being separated by much more specific genus and species. As a result, 

the bacteria that had been responsible for the bacterial spot disease in the first place was in reality 

caused by various members of the Xanthomonas genus, more specifically Xanthomonas perforans, 

or X. perforans. Bacterial black spot disease affects various parts of the tomato plant such as the 

leaves, stems, and tomato skin.  

BBS is typically characterized by the presence of necrotic dark brown spots on both the 

leaves and skin of the tomatoes. The relative rate of infection can thus be determined by the relative 

size and depth of infection. This disease usually intensifies immediately following heavy rain or 

during seasons with heavy dew (Potnis et al., 2015). In particularly advanced cases, the bacterial 

spots have been described as shot holes from the fall-out of the bacterial spot becoming too dense. 

For a series of decades, BBS has been treated by bulk copper and copper bactericides. However, 

these copper bactericides have become less and less effective over time as bacteria have developed 

mechanisms to overcome effects of free copper ions. As a result, the urgency for discovering other 

types of treatments to overcome this tolerance has served as motivation for many researchers and 

projects. Some of the other solutions that have come out of this have included bacteriophages and 

photocatalytic materials (Paret, Vallad, Averett, Jones, & Olson, 2013). However, both were 

plagued with limitations such as the short life span of the bacteriophages and the non-specific 

effects of the nanoparticles on the plants. Thus, bacterial resistance remains an ever-growing 

concern for farmers and food manufacturers which rely on the production of tomatoes.  
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1.4 Characterization of Xanthomonas perforans 

This largely menacing plant pathogen, part of bacterial genus Xanthomonas, is one of the 

heavier studied because of its significant impact on tomatoes, peppers, and other common 

ornamental plants. This species of bacteria is bacilli shaped, gram negative, typically 1-3 μm in 

length and 0.4-1.0 μm in width, as well as, mobilized by only a single polar flagellum. While there 

are generally three other species (X. campestri, X. vesicatoria, X. gardneri) known for causing a 

similar array of problems, X. perforans has surpassed them all throughout the last decade (Louws 

et al., 2001; Pohronezny, 1983; Scott, Somodi, & Jones, 1989). Typical treatments for these 

agricultural pests typically relies on the very old method of spraying copper based pesticides. 

Unfortunately, bacteria are quickly able to adapt and overcome and have developed mechanisms 

to prevent efficacy of the copper active ingredients. As a result, these bacteria and others, have left 

researchers with the problem of quickly finding new ways of approaching old problems, such as 

with the application of nanotechnology. To answer these questions, researchers have had to 

understand how X. perforans, and many other gram negative bacteria, are able to be pathogenic to 

plants. 

Bacterial pathogenicity can come from a number of factors, such as cell membrane 

composition or via their external appendages, such as with pili and flagella. Researchers are still 

unsure of which types of bacteria, whether gram-positive or gram-negative, are more prevalent, 

but they have found evidence that gram-negative bacteria are more pathogenic to humans, animals, 

and plants (Abe et al., 2010). Thus, a number of modes of actions have been carefully characterized 

to determine how pathogenicity can occur, and in a large portion of gram negatives, it often comes 

down to a type three secretion system (T3SS). More specifically, this pathway is entirely required 
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for the introduction of pathogenicity of plant pathogens to plants, including pathogenicity by X. 

perforans (Hueck, 1998). The T3SS system allows for the release of various proteins or virulence 

factors into host plant cell cytosol where they translocate, facilitating bacterial host pathogenesis 

(Hueck, 1998; Rossier, Wengelnik, Hahn, & Bonas, 1999). Thus far, experimental studies on T3SS 

effector genes have demonstrated that some mutations can be made to the effectors within this 

pathway, showing relatively small progress on preventing bacterial virulence to plants (Castañeda, 

Reddy, El-Yacoubi, & Gabriel, 2005; White, Potnis, Jones, & Koebnik, 2009). This is just one 

area of characterization that has been conducted to understand what makes X. perforans, and other 

similar plant pathogens, so pathogenic.  

1.5 A novel nanoparticle solution 

One solution that researchers have developed relies on nanotechnology to make more 

efficient and effective treatments, while using less materials. Appropriately coined, the local 

systemic pesticide (LSP) particle is designed with a silica core-shell foundation, incorporated with 

two active ingredients. The aim of creating these nanoparticles was to see if a non-copper 

supplement could be used to decrease the amount of copper needed to be effective. Additionally, 

multivalency was used with copper ions (Cu+0, Cu+1, and Cu+2) to increase the chance for 

effectiveness against copper tolerant strains. Thus, these active ingredients are a uniquely novel 

formulation comprised of multivalent copper ions with the quaternary ammonium acting as a non-

copper supplement. However, with creating a novel design with various formulations, much 

information is still required to see the true potential. 
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1.6 Postulates  

A drastic necessity is present for new pesticides with better efficacy, with the ability to 

overcome copper resistance. One such solution is the introduction of a local systemic pesticide 

provided by a silica core-shell nanoparticle, comprised of two active ingredients for increased 

potency with less copper needed. With smaller sizes and differing release mechanisms, this 

approach will expectedly react within the sub-micrometer level. Probing and observing these 

treatment mechanisms with nanoscale technology will be necessary. Therefore, we propose a 

multifaceted approach. We postulate that we can establish and demonstrate a multiplatform of 

systems as a new method for investigating molecular measurements to obtain a more 

comprehensive understanding of individual bacteria. It will be critical to understand the biological, 

chemical, and physical responses associated with multivalent nanoparticle treatments on bacterial 

systems. 
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CHAPTER TWO: A MULTISCALE VIEW OF THE EFFECT OF NOVEL 

MULTIVALENT COPPER ANTIBACTERIAL FORMULATIONS ON 

PHYSICAL AND CHEMICAL PROPERTIES OF BACTERIA 

2.1 Introduction 

Many overwhelming limitations exist within molecular biology particularly when it comes 

to characterization due to high costs, level of expertise required, time, and relative amount of 

sample per analysis (Quintelas, Ferreira, Lopes, & Sousa, 2017). Because of this, researchers have 

had to reach outside of the box to find new instruments and tools to characterize these types of 

samples to overcome these limitations and forge ahead. Many of these methods include different 

forms of spectroscopies, such as Fourier Transform Infrared spectroscopy (FTIR), Raman 

spectroscopy (RS), and various mass spectrometry (MS) methods. 

2.2 Instrumentation 

2.2.1 Fourier transform infrared spectroscopy (FTIR) 

FTIR is used every day for an overabundance of applications including forensics and drug 

composition/targeting. However, accessories such as ATR-FTIR have been introduced for 

biological samples liquid including cells (Minnes et al., 2017), proteins (Hong, Jiang, Li, & Xu, 

2018), and bacteria (Gao et al., 2017). Due to the relative ease of operating the FTIR, as well as, 

short analysis times, it has quickly become a go-to method for analyzing the chemical 

characteristics of just about any kind of sample. Over time, the FTIR has significantly 

complemented previous molecular biology characterization methods, such as PCR or gel 

electrophoresis. One area FTIR has been widely used for is the characterization of bacteria on the 

genus level, but also the species and subspecies levels. 



 

10 

 

2.2.1.1 FTIR history 

 Spectroscopic techniques are central tools for probing various properties of a sample. Of 

the standard spectroscopic techniques, FTIR and Raman spectroscopy are the forerunners. The 

classical form of infrared (IR) spectroscopy was first developed during the 1940’s, fundamentally 

based on the concept of transmission spectroscopy. With a fairly simple setup, the sample is 

exposed to IR radiation and based on the amount of radiation, at a specific frequency, the output 

(relative absorbance) can be measured. 

A common variation to this early method is with the addition of attenuated total reflectance 

(ATR). Based on the idea of total internal reflection, by using a crystal with a high refractive index, 

an IR beam is steered to the prism at an angle greater than its critical angle, resulting in the 

generation of an evanescent wave at the prism-sample interface. The use of this evanescent wave 

allows for localized probing of the sample in the vicinity of the prism surface. This accessory is 

particularly suitable for liquid and powder samples. The first applications of this method were 

published beginning in 1960’s by Harrick (Harrick, 1960) and confirmed by Fahrenfort 

(Fahrenfort, 1961).  

2.2.1.2 Mid-IR spectroscopy theory 

Vibrational spectroscopy relies on the periodic motion of chemical bonds between atoms 

in a molecule excited with an infrared incident beam. When a sample is excited via incident light 

of appropriate energy, bonds constitutive of molecules vibrate in different modes. The vibrational 

modes are dependent on bond strength and on the mass of the atoms within the molecule. Because 

of this, vibrational spectroscopy is often described using a simplified model of Hooke’s law, 
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considering the atoms to be bound together by a spring of particular bond strength k, illustrated in 

Figure 3.  

 

Figure 3. Application of Hooke’s Law to linear model for understanding molecular vibration. In the case of a 

single bond, Hooke’s Law can be used to determine the displacement, x, by knowing the mass, m, and the spring 

constant or bond strength, k. In many cases, molecules are larger, and therefore, the displacement will be in x, y, and 

z directions. 

However, in a three dimensional molecule, the motion will take place in the x, y, and z 

directions with both perpendicular and rotational displacements. Vibrational modes often include 

stretching or bending either symmetrically or asymmetrically. A schematic of commonly described 

vibrational modes can be found in Figure 4.  

 

Figure 4. Vibrational modes. Common vibrational modes of the CH2 moiety associated with vibrational 

spectroscopy. 
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2.2.1.3 FTIR setup 

Mid-IR spectroscopy assesses the vibrational modes of a molecule. In terms of the FTIR, 

the measurements are done using the excitation of a radiative black body source. Most FTIR 

systems, due to the optical components used in the beam path, will provide molecular absorption 

data across a range from 400 cm-1 to 4000 cm-1 with a resolution varying from 0.5 cm-1 to 8 cm-1. 

The standard iris aperture of our system is 8.9 mm.  

FTIR designed around the Michelson interferometer, shown in Figure 5. IR radiation is 

sent from an IR source, which heads directly towards a beam splitter in the center. The beam 

splitter allows for the light to be split into two separate beams, one directed at each of the mirrors. 

One of these mirrors is static, while the other mirror is moving at a constant velocity. Once the 

light is redirected from these mirrors they converge again, however, with path length varying by a 

small distance due to the moving mirror and forms destructive and constructive interference 

pattern, known as an interferogram (Blum & John, 2012). The light transmitted through the sample 

is then received by the detector. Lastly, the interferogram is Fourier transformed to obtain the 

spectrum.  
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Figure 5. Michelson interferometer diagram. The Michelson interferometer is the general setup used for light 

modulation in FTIR. It works by passing IR radiation through a beam splitter, which as the name entails, splits the 

beam. One of the beams goes to the static mirror while the other reflects on a mirror with a constant velocity. Once 

the beams are reflected and recombined, they pass through the sample. Transmission is recorded by the detector. 

Meanwhile, ATR-FTIR includes the same fundamental setup of FTIR including the 

Michelson interferometer but also exclusively includes an ATR accessory below the sample, 

illustrated in Figure 6. With the ATR accessory, the light passes through an IR transparent material, 

typically zinc selenide (ZnSe). However, to avoid scratches on instruments subjected to routine 

use, a protection layer of diamond is deposited on top of the ZnSe prism for protection. The IR 

response of the diamond component is accounted for in the background collection. Consequently, 

the incoming light is oriented at an angle greater than the critical angle to obtain total internal 

reflection. With total internal reflection comes the creation of an evanescent wave that illuminates 

the sample above the surface of the crystal with a depth of about 0.5-5 μm (Blum & John, 2012). 

The energies absorbed by the sample in the field of the evanescent wave do not get reflected, thus 

do not get recorded by the detector.  
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Figure 6. Schematic diagram of ATR-FTIR setup. Setup includes an IR source, a crystal for attenuated total 

reflection, sample, and detector. By using the IR source in tandem with the ATR crystal, an evanescent wave is 

generated and propagated across the surface to interact with the sample and provide an IR spectrum received by the 

detector. 

2.2.2 Raman Spectroscopy (RS) 

Raman spectroscopy is another analytical tool commonly used to elucidate the chemical 

signatures of materials based on the vibrational modes of their constitutive chemical bonds. A 

primary example of this is a recent paper published in Nature Protocols highlighting the uses of 

RS in characterizing biological materials (Butler et al., 2016). Pharmacology, plant science, and 

microbiology are just some of the fields the paper claims Raman has been pushing ahead. But, 

while Raman has been useful in studying all facets of biology, its ability to discriminate bacteria 

across various genus and species, is another demonstration of how researchers are pushing the 

capabilities of the instrument every day. 

2.2.2.1 The history of Raman spectroscopy 

The history of RS begins with the understanding of the Raman effect. Following a sea 

voyage, C.V. Raman noted specific scattering of light from the sea, refusing to accept the beliefs 

of Lord Rayleigh that the color of the sea was caused by the absorption and reflection of light from 

the sky (Masters, 2009). The Raman effect specifically describes the change in wavelengths in 

scattering of light from a medium. This effect was first theoretically considered by Adolf Smekal 
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in 1923, but 5 years later the Raman effect was experimentally observed and corroborated by 

Raman and his colleague Krishnan (Raman, 1928).  

Raman inelastic scattering accounts for about 1 out of every 108 photons (Butler et al., 

2016) making it significantly weaker then elastic scattering described by Rayleigh. Therefore, 

without the use of lasers, inelastic scattering is incredibly difficult to observe. Then, with the 

emergence of lasers in the 1960’s, studies on the Raman effect were put on hold. However, with 

the discovery and development of detector and optical systems in the 1980’s, the range of 

applications for Raman spectroscopy became very attractive (Ellis, Cowcher, Ashton, O'Hagan, & 

Goodacre, 2013). 

2.2.2.2 The theory behind Raman spectroscopy 

The Raman effect describes specifically the inelastic scattering of light, which stems from 

a monochromatic laser radiation, most commonly in the visible range. The theory of Raman can 

be simplified considering Hooke’s law as illustrated in Figure 3 above. The energy used by the 

molecule to vibrate can be deduced from the inelastically scattered light, as “missing” energy 

compared to the incoming excitation energy. This translates in collecting a photon with this 

“missing” energy compared to the incoming photon. Each molecule exhibits a set of energy 

absorbed that makes it possible to identify their “fingerprint” using RS. 

2.2.2.3 Raman spectroscopy setup 

Raman spectroscopy is commonly used to investigate the chemical characteristics of 

biological samples (Hanlon et al., 2000). RS does this by utilizing a monochromatic laser beam 

directed to a specified target area. The most commonly used monochromatic beams are 457 nm, 

473 nm, 488 nm, 514 nm, 532 nm, 633 nm, or 660 nm. Excitations in the ultra-violet and near 



 

16 

 

infrared are also frequently used in biology. The choice of laser largely depends on the energy of 

the bonds to excite and on the spatial resolution when mapping is considered. Scattered light is 

collected and goes through a grating system before being analyzed with a charge coupled device 

(CCD) detector, shown in Figure 7. We note that both elastic and inelastic scattered light are 

captured by the objective, but elastic scattering (photons with the same wavelength as the laser or 

Rayleigh scattering) is filtered out using a notch filter. The remaining inelastically scattered 

photons continue through an optical fiber to the spectrometer, where the photons at different 

wavelengths, and thus varying diffraction angles, are measured by the CCD detector. CCD 

detectors are widely used for a variety of instruments and applications, but function such that they 

contain photosensitive materials that when charged by a photon, can display corresponding photon 

intensity. 

 

Figure 7. Schematic of Raman spectroscopy. Raman spectroscopy includes: a laser source, mirror, and a 

spectrometer. A laser is used to excite the material via a monochromatic laser, interacts with the sample and causes 

scattering of the light. Scattered light, then goes back through the objective with elastic scattering being filtered out. 

The inelastically scattered light continues to the spectrometer and is measured by the CCD detector. 
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2.3 Materials 

2.3.1 Nanoparticle sample preparation 

As described by the postulates presented in Chapter 1, the nanoparticles synthesized for 

the purposes of this project are aimed at targeting the copper resistant strains of X. perforans, as 

well as, diminishing the amount of copper contamination released into the environment. To 

accomplish that, a novel multivalent silica core-shell nanoparticle with embedded copper 

multivalent ions and coated with quaternary ammonium was created and coined as the local 

systemic pesticide (LSP) particle, illustrated in Figure 8.  

 

Figure 8. Schematic of the Local Systemic Pesticide (LSP) particle. The LSP particle is comprised of a silica 

core-shell nanoparticle with embedded multivalent Cu ions and coating of quaternary ammonium. 

The LSP particle was created to significantly lower the concentrations of copper needed to have 

an effect against copper resistant bacteria. These particles were designed by Dr. Santra’s group. 

Thus, the aim was to design a formulation that was non-phytotoxic, as well as, EPA approved. 

Synthesis of the LSP particles was achieved by a series of steps: 

1. Silica “seed” particles of 35-50 nm were synthesized using the Stöber sol-gel method 

(Maniprasad & Santra, 2012) with modifications. 
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2. The silica shell was grown using previous established protocols (Maniprasad & Santra, 

2012) with additional modifications to allow for the multivalent Cu ion loading 

between the silica core and shell. Overall size of the nanoparticles was controlled 

during this step by using various sizes of “seed” particles. 

3. Lastly, the quaternary ammonium was coated over the mixed-valence core-shell Cu 

loaded silica nanoparticles following earlier proven protocols (Young et al., 2017). 

In the end, the core nanoparticle size of interest was found to be 50 nm in diameter. This 

size was selected because preliminary studies conducted by Santra’s group indicated that 50 nm 

and 200 nm particles were effective in killing the bacteria; however, with a 50 nm nanoparticle the 

plant has a better chance of uptaking the treatment to reach bacteria both external and internal to 

the leaf. Since the LSP particle is dependent upon a synergistic relationship between the 

multivalent copper and the quaternary ammonium, one of the concerns moving forward was to test 

the particle with the two active ingredients, but also their individual constituents to prove 

synergistic behaviors of the particles on the bacteria. These samples included: 50 nm LSP particles 

with both active ingredients (4000 ppm copper, 1000 ppm quaternary ammonium), 50 nm LSP 

particles with multivalent copper only (4000 ppm copper), 50 nm LSP particles with quaternary 

ammonium only (1000 ppm quaternary ammonium), and 50 nm silica core-shell inert 

nanoparticles with no active ingredients. Several iterations of these samples have been tested, 

including with ethanol as the solvent and with dH2O as the solvent for a “purified” nanoparticle. 

Samples were never used longer than 1 week as stability has not yet been established. 
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2.3.2 Bacteria sample preparation 

Sample preparation began with a 15 mL culture of Xanthomonas perforans grown 

overnight in a 50 mL conical tube, incubated at 27 C. Bacteria were then harvested 22 h later, 

diluted and re-incubated with the growth medium and 50 nm multivalent silica core-shell 

nanoparticle (Local Systemic Particle, LSP) solution (2000ppm Cu : 500ppm Quat) for 30 min in 

a 1:1 mixture. Additional treatments included: 50 nm LSP copper active only, 50 nm LSP 

quaternary ammonia active only, and inert silica core-shell 50 nm nanoparticles. After 30 min, 

bacteria were again harvested, centrifuged at 1000 rpm for 1 min to pellet down nanoparticles, and 

supernatant was transferred into microcentrifuge tubes. Once in microcentrifuge tubes, bacteria 

were again centrifuged at 1500 rpm for 1min. The supernatant was discarded and the pellet was 

resuspended in 2 mL of autoclaved water. This process was repeated for a total of 3 washes.  

2.3.3 Substrate selection 

Selection of substrate when dealing with smaller samples can potentially lead to significant 

differences being covered up and missed. As a result, careful considerations well before 

experimentation must be made when selecting the substrate for use. In the case of Raman, and for 

future experiments, an IR transmissive material was necessary for no interference with the sample. 

To meet this need, calcium fluoride (CaF2) was selected as an ideal candidate, further corroborated 

by established studies (Schuster, Urlaub, & Gapes, 2000). However, the costs of the material to 

create substrates can serve as a potentially limiting factor. Despite being more expensive, CaF2 

substrates prevented any interference with samples fingerprint and are more reusable than their 

common experimental counterpart, borosilicate glass slides.  
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2.3.4 Sample preparation for imaging and spectroscopy 

Calcium fluoride (CaF2) slides were prepared by rinsing in ethanol and then dried using 

compressed air. To allow for technical replicates, 3 drops of 2 L bacteria solutions were pipetted 

onto CaF2 slides and were then left to dry in ambient air within a closed container for 

approximately 1 h. Prepared slides were then used to conduct Raman spectroscopy, atomic force 

microscopy,  and infrared nanospectroscopy imaging.  

2.4. Methods 

2.4.1 Minimum Inhibitory concentration assay 

 Minimum inhibitory concentration assays (MIC) is a bioassay used to determine the 

smallest concentration of an antimicrobial necessary to stunt or prevent growth of microbes 

following a set amount of time. To assess the effect of LSP particles on the bacteria, an MIC was 

conducted on X. perforans using 98 well sterile plates (Corning Falcon, Corning, NY, USA) using 

a broth microdilution method as put forth by the Clinical and Laboratory Standards Institute 

(CLSI) and as established in previous studies (Wayne, 2009; Young et al., 2017). After the wells 

were prepared, the concentration ranges of nanoparticle solution screened was 4000 ppm to 1 ppm 

Cu. As a modification, 10 μL resazurin dye (0.0125% w/v) per 100 μL well volume. By adding 

the resazurin dye, detection was improved and allowed for color changes (blue to pink for living 

organisms) to be observed despite cloudiness of materials and broth for improved detection, 

demonstrated below in Figure 9. 
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Figure 9. Demonstration of MIC assay. With the addition of the resazurin dye, the detection is improved by 

allowing for the visualization of live to dead (blue to pink). 

2.4.2 Live/Dead bacterial assay 

 Live/Dead assay was conducted as suggested by the kit (Boulos, Prevost, Barbeau, 

Coallier, & Desjardins, 1999; Probes, 2004). The dyes provided by the kit were chosen because of 

their wider use and less limitations than those specific to the metabolic processes. Additionally, 

dyes and stains typically used in the cell membrane tend to fluoresce brighter. Normally, Syto9 

will mark all bacteria, healthy and otherwise. However, with the tandem use of propidium iodide 

(PI), which slips into damaged membranes, Syto9 is effectively reduced in fluorescence. As a 

result, when combined with appropriate mixtures, bacteria with intact cells will fluoresce a green 

color, while membrane damaged bacteria will fluoresce a red color. 

2.4.2.1 Bacterial suspension 

15 mL of Xanthomonas perforans was grown in a 50 mL conical tube to late log phase 

with nutrient broth. Once harvested, the culture was concentrated to 10 mL by centrifuging at 5000 
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rpm for 3 min. The supernatant was removed and the pellet was then resuspended in 20 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfinic acid (HEPES). Once thoroughly resuspended, 1 mL of 

the suspension was added to four 50 mL centrifugation tubes containing: (1) 20 mL of HEPES, (2) 

20 mL of LSP treatment (2500 ppm copper, 625ppm quaternary ammonium), (3) 20 mL of 70% 

ethanol (EtOH), and (4) 20 mL of dH2O. All of the samples were then incubated with their 

respective solutions for 1 h, mixing every 15 min. After the 1 h, the solutions were again pelleted 

by centrifugation at 5000 rpm for 3 min. The exception to this, due to the presence of nanoparticles, 

is the second solution which was resuspended and allowed for natural sedimentation of the 

particles, and the supernatant was removed and used as the “bacterial suspension” moving forward. 

All supernatants were removed and the pellets were resuspended in 20 mL of HEPES and then 

centrifuged again at 5000 rpm. The samples were then aliquoted as 3 mL samples to be dyed. 

2.4.2.2 Epifluorescence microscopy for Live/Dead assay 

To prepare the bacteria for staining to conduct the live/dead assay via epifluorescence, the 

dyes to be used were the nucleic acid stain, Syto9, and the nuclear stain, propidium iodide (PI). In 

a microcentrifuge tube, the dyes were combined with equal volumes (18 μL) Syto9 and PI for a 

total dye concentration of 36 μL. The molar concentrations of each dye was 5mM Syto9 and 20mM 

PI, accounting for the 30% DMSO concentration to prevent harming the bacteria. Once the dyes 

were prepared, the 3 mL aliquoted bacterial suspensions were collected and 9 μL of the dye mixture 

were added to each of the 4 samples. The bacterial suspensions and their dye mixtures were 

carefully mixed thoroughly and incubated at room temperature in the dark for 30 min. After the 

incubation, 2 μL of the stained bacterial suspension was trapped between an 18 mm glass coverslip 

and glass slide. These samples were then observed under epifluorescence using a Nikon Eclipse 

Ti TIRF microscope system. This system included a Hamamatsu Image EM X2 CCD camera, and 
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Nikon LU-94 laser with employed laser wavelengths of 440 nm for Syto9 and 520 nm for PI to 

overlay (done in ImageJ). Optically, images were collected with a 100X oil immersion objective 

with a 1.49 numerical aperture.  

2.4.3 Attenuated total reflection – Fourier transform infrared spectroscopy 

 Preparation of diamond crystal prism for analysis was accomplished by applying isopropyl 

alcohol and wiping clean with Kimwipe to remove any contamination. The studies were conducted 

by a Perkin Elmer Spectrum 100 series ATR-FTIR and were performed on samples in their liquid 

state. Resolution of the spectrometer was set to 4 cm-1 with a standard aperture of 8.9 mm. 

Experiments were conducted by running 10 μL of the appropriate background solution (dH2O, 

PBS, NB), then depositing a 10 L drop of bacterial solution onto the prism. A wait time of 1min 

was applied to allow for the particulates within the solution to settle. Replications of experiments 

were performed 30 times for statistical relevance. The resulting spectra were collected and 

analyzed further during post-processing using Unscrambler X program. 

2.4.4 Raman spectroscopy 

Raman spectroscopy (RS) measurements were obtained using a confocal Raman 

spectroscope on a WITec Alpha 300 Raman and atomic force microscope (AFM) (RA) instrument. 

Spectra were collected using a 100x objective with a numerical aperture of 1.25 using a laser 

wavelength of 532 nm, at a continuous laser power of 16.61 mW (1.35 a.u. indicator on the laser), 

and an integration time of 10 s. The scattered photons were passed through a 600 g/mm grating 

and then detected using a CCD detector. Resulting spectra and mapping were used for advanced 

analysis during post-processing using WITec Project, Origin, and The Unscrambler X programs. 
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2.4.5 Principal component analysis 

Principal component analysis is a statistical analysis method useful in extracting out the 

largest areas of variation within a data set. Ideally, PCA serves to show underlying patterns within 

data, as well as, elucidate factors contributing to both similarities and differences between data 

sets. The factors provided by PCA are known as principal components. The principal components 

then serve as the eigenvectors highlighting data inconsistency. Therefore, the first principal 

component is representative of the largest variation within the data set, and so on in order. Because 

of this, PCA allows for the features of importance to be easily identified. PCA on all data sets was 

calculated using The Unscrambler X program. 

In the case of PCA on spectra obtained with RS, FTIR, and NanoIR, a two-dimensional 

plot was obtained between the first and second principal components which were found to 

represent more than 95% of the variations in the data set. Loadings were plotted in relation to 

Raman shift or wavenumber to identify the bands responsible for the largest variation. An example 

of a plot of principal loadings 1 & 2 relative to spectra is provided in Figure 10.  
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Figure 10. Demonstration of fundamental process of principal component analysis (PCA). PCA is often used to 

extrapolate out significant variations between data sets qualitatively, where the more overlapped a set of data, the 

more related they are; vice versa. Here, simplified groupings indicate how defined variations would appear. 

2.5 Results & Discussion 

2.5.1 Live/Dead assay shows bacterial viability of various formulations 

A Live/Dead assay was determined to be useful in visually showing the effects of 

treatments before running experiments on them, to validate quantitatively the survival rates. 

Therefore, a preliminary study was conducted using epifluorescence (440 nm for green 

fluorescence and 520 nm for red fluorescence) to help show visually how four simple formulations 

(20 mM HEPES, HEPES with 2500 ppm copper/625 ppm quaternary ammonium, 70% ethanol, 

and dH2O) would affect the bacteria. This study allowed us to uncover limitations and additional 

considerations for future studies on the nanoparticle formulations.  
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It was found that the bacteria appeared, in most cases, to be alive but in the process of 

dying due to membrane destruction. However, one limitation with this study was the lack of 

specificity associated with the dye Syto9. While propidium iodide, which can only fluoresce once 

bound internally, is meant to decrease the fluorescence of Syto9 when in its presence. This was 

not the case for our live/dead assay. Instead, referencing Figure 11a and 11d, the bacteria instead 

fluoresced brightly green with parts that were yellow from the interaction. Moving forward, a more 

specific dye, one that fluoresces based on presence of metabolic activity could be a better option.  

  

 

Figure 11. Live/Dead Assay indicates visual evidence of cell viability across different treatments. (a) Bacteria 

incubated for 1 h with HEPES buffer, (b) bacteria incubated for 1 h with HEPES buffer and LSP Solution (2500 

ppm copper, 625 ppm quaternary ammonium), (c) bacteria incubated for 1 h with 70% ethanol, and (d) bacteria 

incubated with 1 h with dH2O. 

2.5.2 ATR-FTIR data shows key chemical changes caused by formulations 

During our preliminary studies, using ATR-FTIR, we were able to extract data regarding 

the specific chemical fingerprints of a large population of bacteria. A series of spectra was 



 

27 

 

collected and demonstrated particularly significant variations between the untreated bacteria and 

bacteria treated with various formulations, shown in Figure 12. 

 

Figure 12. ATR-FTIR data for untreated and treated bacteria. (a) Untreated and treated bacteria 1st derivative 

spectra after 30 min incubation with formulations of treatment, (b) comparison of loadings for principal component 

loadings 1 & 2, and (c) distribution of untreated and treated bacteria with respect to PC1 and PC2. 

Then, by analyzing and assigning the corresponding peak interactions, the fingerprint of 

specific molecules within the cell wall being altered by the treatment were revealed, such as to 

carbohydrates and lipids. Therefore, the data suggested using the ATR-FTIR was a successful 

method to study the multiscale view of the effects of the formulations on X. perforans. However, 

discrepancies within this data led to testing further types of formulations. One such example of 
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this was the inclusion of 30% ethanol as the solvent for the initial core-shell nanoparticle solution. 

It is well established that ethanol has destructive effects on the proteins present in the cell 

membrane (Dombek & Ingram, 1984). Therefore, a purified nanoparticle in a non-harmful solvent, 

such as dH2O, was necessary to be analyzed, shown below in Figure 13. 

 

Figure 13. Readdressed ATR-FTIR data regarding the effects of formulations without the presence of 

ethanol. (a) 1st derivative of ATR-FTIR spectra for untreated and treated bacteria after 30 min incubation (dashed 

lines to emphasize peaks of interest and associated shifts), (b) plotted scores comparing the two largest variations by 

percentage, and (c) comparison of the 1st derivative spectra for the two largest variations by percentage. 

 The data of the purified nanoparticle obtained showed unique behaviors that were of 

interest to the study. The first notable observation was the presence of a peak at the band 1050 cm-

1 (peptidoglycan carbohydrates) for the LSP nanoparticle with 2 active ingredients, while all the 

other iterations lacked the presence of this band. Another notable observation was the significant 
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peak shift that occurred for both 2950 cm-1 and 3000 cm-1 peaks, bands representative of 

lipopolysaccharide structures in the outer cell wall. This data was also processed using principal 

component analysis (PCA) was visually demonstrated the overall variation throughout the group. 

The primary observation based on this output was that all the iterations, except for the LSP with 2 

actives, behaved in a similar fashion to the untreated control. This finding suggests that there is in 

fact a synergistic mechanism behind the multivalent copper ions and the quaternary ammonium of 

the nanoparticle that is not present when on their own. 

2.5.3 Raman spectra corroborates ATR-FTIR chemical variance data  

Similar to the ATR-FTIR data, Raman spectra were obtained and analyzed for indication 

of unique molecular changes from before and after treatment. As with the FTIR data, peak shifts 

were observed in bands specific to lipids, membrane proteins, and with carbohydrates. Important 

to note, Figure 14 was subject to similar discrepancies as presented in Figure 12 (30% ethanol 

solvent potentially skewing data).  
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Figure 14. Raman spectroscopy data for untreated and treated bacteria. (a) Untreated and treated bacteria 

spectra after 30 min incubation with formulations of treatment, (b) peak assignment associated with key peaks, (c) 

comparison of loadings for principal component loadings 1 & 2, and (d) distribution of two largest variations 

between untreated and treated bacteria. 

We observed similar trends in the Raman data with respect the preliminary formulations, 

but found that they were slightly less specific in identifying degrees of variation. In some cases, 

Raman can be less sensitive than FTIR due to the relative frequency of each of their “events”. 

Raman scattering requires much more excitation photons and is less likely to occur than an 

absorption event with IR (Matthäus et al., 2008). Despite this limitation, Raman is often still the 

instrument of choice due to the low response of water and of glass substrates. In addition, RS 
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allows for the mapping at approximately 250 nm lateral resolution. As a whole, we found that RS 

was still extremely useful in identifying additional points of change, as well as, has potential use 

for chemical mapping, as depicted in Figure 15b, making a strong addition for future studies. 

Therefore, Raman was also conducted on the purified nanoparticles immersed in dH2O. 

 

Figure 15. Readdressed Raman spectroscopy regarding effects of treatment formulations without the 

presence of ethanol solvent. (a) Raman spectra of bacteria cell wall before and after treatment and (b) Raman 

mapping showing distribution of surface chemistry (inset) with associated spectra demonstrating unique variances in 

bands dependent on region of bacterial cell wall. 

Without the presence of ethanol, almost immediately, significant differences in surface 

chemistry were present between all the formulations, noted specifically by the absence, presence, 

and shifting of peaks in various regions (Figure 15). In particular, the presence of the band in the 

LSP 2 Actives at 1080 cm-1 that is absent in the untreated control indicates chemical manipulation 

to the lipopolysaccharides of the outer most layer. This would be expected since the mode of action 

of quaternary ammonium is known to attack lipid based structures (Gerba, 2015; Merianos, 2001). 

Similarly, the absence of the band at 1400 cm-1 (fatty acid chain) in LSP 2 actives while present in 

the untreated control, shows that again, lipids are being altered, likely due to the quaternary 
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ammonium. On the other hand, the last band of interest at 1600 cm-1 shows variation to the amide 

I structure of the cell membrane. Amide I bands are structural proteins that help maintain cell 

membrane rigidity and structure, therefore, this is likely being interfered with due to the copper 

ions, which are known to cause damage to cell membrane structures. 

2.6 Conclusion 

The data thus far has led us to believe that the various formulations have significant effects, 

similar to what was hypothesized when synthesized. While a mode of action has not been formally 

determined, we have postulated that the mode of action includes altering the lipids and surface 

membrane proteins, possibly by inhibition. The last restraint to these studies is the relative binding 

affinity of the chemicals to their respective layers within the formulation. While the multivalent 

copper is effectively maintained within the silica shell, the quaternary ammonium coating the shell 

layer, is held in place only by weak electrostatic bonding. Additional ongoing studies will seek to 

answer this question. 
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CHAPTER THREE: USING FLUORESCENCE TO STUDY THE EFFECT 

OF NOVEL MULTIVALENT COPPER ANTIBACTERIAL 

FORMULATIONS ON BIOMECHANICAL PROPERTIES OF BACTERIA 

3.1 Introduction 

 Bacteria are often characterized and studied as model systems to elucidate macroscale 

interactions, however, the fundamental understanding of bacterial mechanical properties remains 

an area of research not well established. To study mechanical properties such as bending 

persistence length of X. perforans, TIRF microscopy offers the potential for visualization of 

bacteria, which in turn allows for subsequent imaging analysis, and generation of persistence 

length. This measurement will then be utilized to calculate Young’s modulus, detailing the elastic 

stiffness associated to our model system. Given the nature of bacterial cells the straightness of a 

cell can reflect its persistence length. Recently, analysis of bacterial curvature was experimentally 

tested to show how the effects of variations in cellular shape can effect X. perforans persistence 

length (Ursell et al., 2014).  

3.2 Measurements with total internal reflection fluorescence (TIRF) microscopy and Persistence 

3.2.1 A brief TIRF history  

The TIRF microscope is used for a wide variety of biological imaging applications using 

fluorescence. First proposed over half a century ago by E.J. Ambrose (Ambrose, 1956), TIRF 

contributed to improving the resolution of fluorescence imaging while further reducing frustrating 

background fluorescence. Since the earliest versions of TIRF, many modifications have been 

introduced to push the instrument’s performance further. One of the forerunners responsible for 

popularizing the TIRF into what it is known for today was Daniel Axelrod’s lab during the 1980’s 

(Axelrod, 1981). Taking the concept of the TIRF and expanding the various applications that it 
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could be used for, Axelrod et al., as well as other groups, successfully used and continue to use 

TIRF to understand single molecule behaviors (Douglass & Vale, 2005; Mortensen, Churchman, 

Spudich, & Flyvbjerg, 2010), in addition to unlocking biophysical features of biological processes 

(Elam, Kang, & De La Cruz, 2013; Kang et al., 2014). 

3.2.2 TIRF setup and theory 

What makes TIRF microscopy unique is its ability to selectively image fluorophore-excited 

samples that lay in the evanescent field of light formed at the interface of a substrate with a high 

refractive index. TIRF microscopy components, include: a laser source, 3 lenses, 4 mirrors, an 

inverted TIRF objective, and a CCD detector (Bohannon, Holz, & Axelrod, 2017). But, it is the 

formation of the evanescent field based on the special arrangement of the objective and coverslip 

that is of particular interest in this system. We note that the concept of exciting a sample with 

evanescent wave is similar to what we described about ATR-FTIR in Chapter 2, Section 2.1.3.  

The main premise of TIRF microscopy involves an excitation light being totally internally 

reflected creating an electromagnetic wave at the interface between sample and substrate. This 

electromagnetic wave, better known as an evanescent wave, is what is used to excite the 

fluorophores used to conduct fluorescence imaging (Fish, 2009). However, what makes the 

evanescent wave superior, is that it allows for relatively precise excitation of fluorophores within 

a range of a few hundred nanometers from the sample, as seen in Figure 16. As a result, TIRF 

imaging is widely acceptable and deeply valuable for imaging biological samples. 
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Figure 16. TIRF imaging mechanism. TIRF microscopy relies on the formation of an evanescent wave through the 

total internal reflection of the electromagnetic wave at the interface between sample and high refractive index 

substrate. 

In TIRF, the incident light, composed of parallel light rays, traveling up from the light 

source to the glass cover slip, at an incident angle to the substrate (θ3), illustrated in Figure 17. At 

this point, the light interacts with the second layer, the intermediate layer with a measured height 

of h, and then passes onto the sample. The angle of reflected light can then be measured by 

assuming it’s equivalence to the normalized angle of incident light, θ3. When θ3 is greater than the 

critical angle, θc, an evanescent wave penetrates the glass coverslip, through to the opposite side 

of the actual interface (side closest to intermediate layer), demonstrated in Figure 17. As a result, 

the fluorophores (shown in the Figure 16 and 17 as red dots) are excited. Therefore, to TIRF 

properly, the refractive index of n1 and n2 must be less than the refractive index of n3.  
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Figure 17. TIRF microscopy concept. The system was comprised of 3 layers with their respective refractive 

components: n1, the refractive index of the sample (bacteria); n2, the refractive index of the intermediate layer (poly-

L-lysine binding layer), and n3, the refractive index of the glass coverslip substrate. 

3.2.3 Persistence length analysis and calculations of Young’s modulus 

Thus, in referencing Figure 17, determining the angle necessary to achieve the total internal 

reflection for TIRF to work can be understood by the formula for critical angle, shown in Equation 

3.1. 

𝜃𝑐 = sin−1 𝑛2

𝑛1
        (1) 

In our study we carried out TIRF measurements to collect images of the bacteria that can be 

analyzed by using a program called Persistence. The program supplies values for contour length 

and bending persistence length. Therefore, the associated bending rigidity of the bacteria, 

considered here as a polymer, as determined by Persistence can be defined by Equation 3.2: 

persistence length, Lp, the flexural rigidity, κ, and Boltzmann’s constant, kBT to demonstrate 

thermal stability of the polymeric bacteria (Graham et al., 2014).  

𝐿𝑝 =
𝑘

𝑘𝑏𝑇
       (2) 
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 As previously mentioned, the program outputs a value for the bending persistence length, 

Lp. The output Lp was based on the calculation of the two-dimensional (2D) angular correlation 

(<Cs>) of the tangent angles (θ) of the segment lengths (s) along the bacteria, and A for the scaling 

factor (Castaneda et al., 2018; Graham et al., 2014):    

< 𝐶(𝑠) > = < cos[θ(s) − θ(0)] > = A 𝑒−𝑥/2𝐿𝑝    (3) 

3.3 Materials 

3.3.1 Bacteria sample preparation 

Sample preparation began with culturing Xanthomonas perforans overnight in a 50 mL 

conical tube at a 15 mL concentration and incubated at 27 C. Bacteria were harvested 22 h later 

at approximately 1011 CFU.  

3.3.2 Protocol optimization 

 To establish a protocol for TIRF examination of bacteria, optimization of the different 

components of sample preparation of the Xanthomonas bacteria had to be performed. Multiple 

variables, including environments, concentration, and substrate preparation conditions were tested. 

Each variable was examined to ensure of compatibility and bacteria viability. The slides were 

observed with optical microscopy under a 50x objective. First, untreated bacteria were imaged on 

a glass slide for reference of coverage to determine the shape of healthy bacteria (Figure 18a). 

Next, bacteria deposited on a slide covered with adherent poly-L-lysine were observed (Figure 

18b). The dye, (2Z)-2-[(E)-3-(3,3-dimethyl-1-octadecylindol-1-ium-2-yl)-prop-2-enylidene]-3,3-

dimethyl-1-octadecylindole (DiIC18 or DiI) required for TIRF imaging was then applied at two 

different concentrations of ethanol (5% and 30%). As can be seen by comparing Figure 18c and 

18d, the bacteria are sensitive to the concentration of ethanol in the system, with 10% being over 
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the killing threshold. Hence, we identified that the dye solution should be diluted to 5% EtOH in 

order to perform the measurements.  

 

Figure 18. Optical images of protocol parameters. Optical images were obtained at each of sample preparation to 

determine any potentially detrimental effects: (a) clean slide with non-dyed bacteria, (b) poly-L-lysine coated slide 

with non-dyed bacteria, (c) clean slide with diluted 30mM DiI in 30mM ethanol, and (d) clean slide with further 

diluted 5mM DiI in 5mM ethanol. 

Once we established that the 5% EtOH solution presented limited to no harmful effects to 

the bacteria, the next phase of imaging could begin. The next hurdle of imaging would be under 

what series of conditions would make for the best imaging. The sample preparation of X. perforans 

at 1011 CFU for TIRF imaging at a constant laser power of 10% was then optimized. In all cases, 

slides were comprised of the sample, compressed between a glass coverslip and a glass slide. Six 

deposition methods were compared, as shown in Figure 19: (1) bacteria were completely dried, 

stained, and 3x rinsed with dH2O, and then completely dried again, (2) bacteria remained in liquid 

environment after 10 PBS washes and were slightly hard pressed when sandwiched with flat glass 
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slide, (3) bacteria remained in liquid environment after 10 PBS washes on a normal slide with soft 

press, (4)  bacteria remained in liquid environment 10 PBS washes; deposition was done on 

concave well slide, (5) bacteria remained in liquid environment after 5 PBS washes with concave 

well slide deposition, and (6) A double sided poly-L-lysine slide. The results of the various 

imaging conditions can be found in Figure 19.  

 

Figure 19. TIRF optimization results. TIRF images obtained of (a) Stained dry bacteria, (b) 10 washes with hard 

press, (c) 10 washes with soft press, (d) 10 washes with concave slides, (e) 5 washes with concave slides, and (f) 

double sided poly-L-lysine. 

Based on the visual results of Figure 19, 19e was found to be most accurate for analysis based on 

reduced over-excitation of dyed bacteria and more precise in shape. It was determined that using 

only 5 washes combined with concave slides was the most ideal and imaging was thus conducted 

following that protocol. 
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3.3.3 Sample preparation for TIRF imaging 

In summary, for TIRF imaging presented in this project, glass slide substrates were 

prepared by cleaning in absolute ethanol in a sonication bath for 2 h, followed by thorough ddH2O 

rinsing. The coverslips were then prepared by depositing 1mL of poly-L-lysine (Sigma-Aldrich, 

St. Louis, MO, USA) and were left to sit for 1 h. The poly-L-lysine was then rinsed off using dH2O 

and dried using compressed air. Meanwhile, 900 μL of bacteria were combined and incubated with 

100 μL of DiI. 300 µL of dyed bacteria were added to the dry poly-L-lysine coated substrate. To 

ensure sufficient adherence, bacteria were left to immobilize for 1 h before being rinsed using PBS 

5 times. After the 5th rinse, the concave slide was pressed onto the coverslip with the dyed bacteria 

and sealed using nail polish.  

3.4 Methods 

3.4.1 Total internal reflection fluorescence microscopy 

 Images of the bacteria were obtained using a Nikon Eclipse Ti TIRF microscope system. 

Associated equipment included the Hamamatsu Image EM X2 CCD camera along with a 100X oil 

immersion objective and a numerical aperture of 1.49. The Nikon LU-N4 laser was focused at a 

wavelength of 561 nm to maximize total internal reflection. The imaging software (Nikon) was 

used to capture images of bacteria for which analysis on bending mechanics was to be conducted. 

All measurements were carried out in ambient conditions (~22 ºC) on both wet and dry samples, 

as described by (Kang et al., 2014). 

3.4.2 Bacteria persistence length (Lp) and average length analysis 

Analysis of the bacteria was conducted by using ImageJ, Persistence, as well as, Origin. 

As originally described by (Graham et al., 2014; Kang et al., 2014) the images obtained using 
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TIRF and AFM were uploaded and enhanced by ImageJ and prepared for analysis by Persistence. 

The enhancement included subtraction of background, Gaussian smoothing, enhancement of the 

contrast, maximization of threshold, and then finally skeletonization. Average bacteria length and 

persistence length (Lp) were determined using software Persistence, utilizing a pixel size of 

0.16µm/pixel, and were then plotted in Origin. Additionally, to calculate Lp values, angular 

correlation values collected on about 400 images, with N = 300-700 amount of total average 

bacteria, were extracted from Persistence as explained in (Graham et al., 2014; Kang et al., 2014). 

Processing of images is illustrated in Figure 20. 

 

Figure 20. Example of analysis conducted by Persistence. Using an enhanced image overlayed with the 

skeletonization, the program is used to measure bacterial bending persistence length and contour length. The red line 

represents bacteria skeletonization, while the green line represents software bacteria reconstruction. 

Then, using the two-dimensional average angular correlation of the tangent angles (θ) along the 

segment length (s) of the bacteria, the bending persistence length, Lp, was calculated, as shown by 

Equation (1) (Graham et al., 2014; Kang et al., 2014). 
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3.4.3 Determining equations necessary to generate Young’s modulus  

Bacterial cytoskeleton properties are often credited with dominating the integrity of cell 

walls, and therefore overall bacterial survival. However, the quantification of these assets has been 

mildly explored, instead often focusing on particular structural proteins. These components, 

attributing to the mechanical abilities of the bacterial cell, include the bending persistence length, 

but also the bending elasticity and flexural rigidity. Here we explore these variables as functions 

derived from the bending persistence length, which mechanics describes as the flexibility of a 

polymer, or in our case, the bacteria. Thus, bending persistence length, Lp, is defined by Equation 

4, where EI describes the flexural rigidity (E is the Young’s modulus, I represents the second 

moment of inertia), kB is the Boltzmann constant, and T is temperature. 

𝐿𝑝 =  
𝐸𝐼

𝑘𝐵𝑇
  (4) 

From this equation, we can determine the Young’s modulus (E) of X. perforans. We seek 

to solve for Young’s modulus because we can observe and describe the mechanical responses of 

cell wall organization when exposed to differing environments, such as treated or untreated. Thus, 

we will calculate the Young’s modulus of X. perforans in an untreated, aqueous PBS environment. 

To calculate Young’s modulus, the rearrangement of Equation 4 becomes 

𝐸 =  
𝐿𝑝𝑘𝐵𝑇

𝐼
  (5) 

Here, we consider our I value to be the second moment of inertia of a thin, hollow cylinder with a 

radius, r, and a cell wall thickness, b, as previously described (Wang, Arellano-Santoyo, Combs, 

& Shaevitz, 2010). Utilizing the second moment of inertia is important in this case because it 
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specifically describes bending stresses, typically demonstrated by beam theory (Malvar et al., 

2016). Therefore, the I for our calculations is πr3b.  

3.5 Results & Discussion 

There are many reasons for studying the bending mechanics of bacteria, such as enhanced 

understanding of bacterial interactions in various environments and potentially in the presence of 

biofilms. Researchers have already applied creative methods to study these parameters such as 

optical traps with DIC imaging (Wang et al., 2010), atomic force microscopy (Rheinlaender, 

Gräbner, Ott, Burkovski, & Schäffer, 2012), and even electron micrographs of stained bacteria 

(Bullitt & Makowski, 1998). However, these studies all have one thing in common: they chose to 

focus on the filaments bound to bacteria, instead of the bacteria itself. As we have established, 

bacteria themselves are also capable of being considered “rod-like” (Ursell et al., 2014). These 

properties have never been reported in literature for the agricultural bacteria X. perforans. Thus, 

we propose bending persistence length, contour length, and Young’s Modulus of untreated and 

treated X. perforans in a liquid environment. 

3.5.1 TIRF with Persistence can be used to reveal bacterial cell wall mechanical properties 

The incorporation of fluorescent dyes to bacteria has allowed for the use of fluorescence 

microscopy, enabling researchers to elucidate physical characteristics of these microorganisms. 

By the addition of TIRF microscopy we were able to visualize bacteria in the presence of a dry 

and an aqueous environment and describe these cells in terms of their average length, length 

distributions, and persistence length. In accordance to their length distribution, we confirm what 

is established in the literature for X. perforans (Paret et al., 2013), in which their average length 

residing between 1-3 µm, shown in Figure 21.  
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Figure 21. Length distributions across all six samples of untreated X. perforans bacteria confirm average 

length between 1-3μm. The box represents the 25th-75th percentile, whiskers indicate the standard deviation (SD), 

and the middle square shows the mean. 

Furthermore, we show the length distribution associated to these bacteria in various 

samples and are able to properly fit the collected data with log-normal distribution, as seen in 

Figure 22. Described by Rheinlaender et al., evidence was provided regarding the Log-normal 

distribution function being the best fit for proper analysis of bacterial pili. Accordingly, we applied 

the fit to our full-body bacteria experiments (Rheinlaender et al., 2012). The distribution data 

indicates the greatest probable length of a bacteria in a sample is roughly between 1-2 µm, 

concurrent with established studies (Paret et al., 2013).   
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Figure 22. Representative length distribution plots fitted with Log-normal distribution function. Data sets 

corroborate established reports of average bacteria length to be between 1-3μm. Dashed line represents best fit (N = 

~400-800 bacteria). 

Mechanical properties of the bacteria were measured using Persistence software in order 

to extrapolate Lp to elucidate bacterial stiffness. Persistence length of the bacteria in solution was 

quantified from a two-dimensional average cosine correlation analysis, seen below in Figure 23 

(Graham et al., 2014). The results show the average Lp obtained from the samples is ~8.0 µm. 

 

Figure 23. Representative angular correlation functions plotted as a function of bacterial segment length. 

Data suggests bending persistence length of bacteria in solution is approximately 8 μm. Solid line represents best fit 

(N = ~400-800 bacteria). 

Moreover, the Lp was plotted as a function of length demonstrating a correlation between 

overall bacterial length and its relation to bacterial stiffness, illustrated in Figure 24. Various other 

systems such as DNA and other rod-like biopolymers display similar, reasonably quantifiable 
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stiffness characteristics. For example, DNA can display larger Lp values dependent on charge 

interactions, while bacteriophages such as Pf1, although rod-like in structure, have been shown to 

demonstrate lower stiffness and, in some cases, increased stiffness dependent on ions in the 

environment (Janmey, Slochower, Wang, Wen, & Cēbers, 2014).  

 

Figure 24. Bending persistence length (μm) as a function of bacteria length (μm) in liquid environment. 

Comparison of Lp values as they are related to bacteria length. Data suggests that the longer the bacteria, the higher 

the bending persistence length. Dashed lines represent the average Lp. 

Therefore, now that the bending persistence length had been generated, we were able to 

determine the Young’s modulus of X. perforans based on the described equations above. As a 

standard, we first calculated the Young’s modulus for untreated bacteria in an aqueous 

environment, with a few parameters, accounting for: X. perforans cell wall thickness, b, at 10 nm, 

and the radius of the bacterial body at 32 nm (Paret et al., 2013). According to the equations 

presented in section 3.4.3, Young’s modulus, or bending elasticity, calculations can be seen below, 
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𝐸 (𝑀𝑃𝑎) =
(8x10−6m)(4x10−12N)(1x10−9m)

6.5x10−31m4
     (6) 

Therefore, the calculated Young’s modulus of X. perforans in an aqueous environment before 

treatment is approximately 0.049 MPa. For perspective, the Young’s modulus is approximately 

equivalent with another soil microbe, Sphingomonas paucimobilis, which is similar to X. perforans 

(Tuson et al., 2012). Having obtained a “control” Young’s modulus is of significant importance to 

use these measurements to observe mechanical changes with treatments. 

3.5.2 Effects of treatments on bacterial cell wall mechanics in an aqueous environment  

 While much has been observed and learned about how these treatments effect bacteria, 

they often adapt to overcome the treatments, leaving scientists with a lack of understanding. In 

other cases, non-immediate or non-direct harm has left other bacteria largely unexplored. 

Therefore, several studies have focused on understanding the many modes of action associated 

with various types of treatments, whether that be antibiotics, nanoparticles, environmental pH, or 

natural occurrences (i.e. UV radiation, electric fields, and atmospheric pressure) (Li & Webster, 

2018; McArdle, Lagan, & McDowell, 2018; Oguma, Kanazawa, Kasuga, & Takizawa, 2018; Qiu, 

Meyer, Christenson, Klaper, & Haynes, 2017; Van Acker & Coenye, 2017). Here, we explore how 

treatments modulate bacterial cell wall mechanics by first measuring average length and bending 

persistence length of the untreated and treated X. perforans.  

 To simulate treatment conditions, we first introduced a “model” treatment of ethanol to 

observe what type of modulations to bending persistence length would occur. We tested two 

concentrations, both 5% and 10% ethanol (EtOH), and recorded their associated average lengths 

and bending persistence lengths. Similar to our previous TIRF studies, we first corroborated the 

validity of selection and processing by determining the average distribution of the lengths for the 
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untreated and treated X. perforans. We found that in all cases the average length of the bacteria 

was approximately 2 μm, with a majority of the distributions fitting between 1-3 μm, presented 

below in Figure 25. Therefore, with the average lengths providing accurate readings, we then 

proceeded with the bending persistence length measurements. 

 

Figure 25. Average bacterial length before and after treatment shows no significant changes. Data sets 

corroborate established reports of average bacteria length to be between 1-3μm. Dashed line represents best fit (N = 

~200-600 bacteria).   

Previously, we determined the average bending persistence length of untreated X. 

perforans to be approximately 8 μm. However, we predicted that with the addition of ethanol, the 

bacterial cell wall would become compromised and would result in higher bending elasticity. Our 

results, revealed in Figure 26, show quantitatively this effect. The bending persistence length 

calculated for the 5% ethanol treated X. perforans was determined to be about 7 μm, while the 

10% ethanol treatment resulted in a bending persistence length of about 6 μm. Therefore, we have 

demonstrated the ability of both TIRF with Persistence in being used to determine bacterial cell 

wall mechanical properties.  



 

49 

 

 

Figure 26. Representative effects of formulations on bacteria bending persistence length. The data indicates 

that when increasing concentrations of ethanol treatment were added, the bending persistence length decreased. This 

trend indicates that with this treatment the bacterial cell wall becomes more flexible.  

 With the determination of bending persistence lengths of both untreated and treated 

bacteria, we were then able to compute the values of bacterial Young’s modulus as a function of 

varying concentrations of treatment. Previously described, the untreated bacteria bending 

persistence length was 8 μm, calculated to have a corresponding Young’s modulus of 0.049 MPa. 

Therefore, with the addition of 5% ethanol and a bending persistence length of 7 μm, the Young’s 

modulus appropriately became more flexible with a value of 0.043 MPa. With the treatment of 

10% ethanol, the bacteria persistence length again dropped to 6 μm and thus a corresponding 

Young’s modulus of 0.037 MPa, visualized here in Figure 27. 
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Figure 27. Young’s modulus values altered by increasing concentrations of treatment. Young’s modulus values 

decrease with decreasing values of bending persistence length. This reduction in both values is caused by the 

increased flexibility generated by compromised bacterial cell wall integrity. 

 However, having observed these properties in liquid, we were left with two remaining 

questions: could we translate these measurements to systems with refined resolution (such as 

atomic force microscopy and infrared nanospectroscopy) and what effects would occur from 

conducting these measurements in air versus liquid. Both of these answer critical field wide 

questions regarding improved resolution and validity of studies in ex-vivo environments.  

3.6 Conclusion 

In summary, we have demonstrated the use of TIRF microscopy in imaging bacteria to 

generate values regarding the 2D bending mechanics. We developed and optimized a protocol that 

would successfully result in adhered and dyed bacteria, as well as, selecting the best imaging 

parameters. Our next big hurdle was determining if the program Persistence would be suitable for 

calculating bacterial bending mechanics by visualizing them as similar to rod-shaped filaments. 

We found that the program is in fact a good fit for calculating out average length, contour length, 

and persistence length values which was corroborated by comparing the average length data to 



 

51 

 

what was established in the literature for X. perforans. Therefore, we found that for X. perforans, 

the average length was 2 μm and had an average bending persistence length of 8 μm. Lastly, we 

sought to understand the effect of treatments on bacterial cell wall integrity, and the ability of our 

system to measure it. We show that the Young’s modulus associated with untreated X. perforans 

was 0.049 MPa. Meanwhile, the treated bacteria demonstrated increased elasticity due to cell wall 

deterioration, at 0.043 MPa (5% EtOH) and 0.037 MPa (10% EtOH). However, the current 

restraints to this study is that the TIRF system is limited to the micrometer scale, as well as, in 

two-dimensions; therefore, we would like to explore this system and program using an instrument 

capable of nanoscale resolution, that also allows for three dimensions, to compare the values. In 

the next chapter, we evaluate AFM for this purpose.  
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CHAPTER FOUR: USING ATOMIC FORCE MICROSCOPY TO STUDY 

THE EFFECT OF NOVEL MULTIVALENCE COPPER ANTIBACTERIAL 

FORMULATIONS ON BIOMECHANICAL PROPERTIES OF BACTERIA 

4.1 Introduction 

 We established in the previous chapter how the use of TIRF microscopy could be used to 

establish unknown mechanical values for X. perforans. However, other methods, researchers have 

introduced, include various ways to measure these same properties and more (Bullitt & Makowski, 

1998; Rheinlaender et al., 2012; Wang et al., 2010). AFM has already been used to study 

mechanical properties of pili on bacteria, so it stands to reason that it should be an ideal system to 

determine bending persistence length and thereby Young’s modulus.  

4.2 Persistence: From TIRF to AFM 

TIRF microscopy is a wonderful method to obtain mechanical properties at a rate much 

quicker than what is often obtained with AFM. It easily translates between dry and liquid 

techniques, without the need of complicated additional equipment and a lot less fragility overall. 

However, TIRF is limited in providing mechanical properties and is heavily dependent on resolved 

imaging. Particularly limiting is the quantification of bending mechanics of shorter bacteria. Still, 

while the quantification may be possible but limited by the resolution of the instrument, we have 

demonstrated TIRF can be useful for monitoring qualitative changes to mechanical behaviors, 

before and after treatments. As a result, it is pertinent to compare these two methods and to 

establish their respective advantages and limitations.  

Both AFM and TIRF do not provide persistence length or contour length without thorough 

data analysis of the images. However, several papers have indicated using various models 

(Wormlike Chain Model (WCM)) (Mogyoros, 2016) and codes for programs such as MATlab 
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(Rheinlaender et al., 2012). TIRF can generate information regarding fluorescence intensity which 

can tell properties like filament thickness (Castaneda et al., 2018), provide limited evidence of 

morphology for larger samples (Manneville et al., 2003), and single molecule detection (Xiao et 

al., 2006). These measurements are often found sensitive only up to the micron level. Interestingly, 

the versatility of AFM makes it possible to capture nanomechanical traits (Young’s modulus, 

adhesion, stiffness, and surface chemistry) on biological systems. This is done with up to 10 nm 

resolution, a significant improvement from TIRF. This allows for the possibility of more precise 

measurements and can account for persistence and more comprehensive measurements, and other 

mechanical measurements, within the nanometer range (Rheinlaender et al., 2012).  

Furthermore, another function limitation exists for the TIRF system. Because the TIRF 

system relies on an objective, with the bacteria adhered to a coverslip, the system is limited in two 

dimensions. The AFM system is able to overcome this limitation. Bacteria can be adhered at a 

single point at the tip of the cantilever, thus being able to see the bacteria move freely in three 

dimensions. Bacteria can also be attached to the substrate, where properties such as adhesion and 

stiffness, energy dissipation, and deformation upon force applied with the cantilever tip could be 

measured. This is uniquely relevant for this study because in our comparison, we will be able to 

compare TIRF to AFM calculations of lateral Young’s modulus, but also have the additional 

“transverse” Young’s modulus from AFM.  

To complement nanomechanical measurements, a system that combines IR radiation with 

the sensitivity of AFM, called infrared nanospectroscopy (NanoIR), can be implemented. NanoIR 

has been used on bacteria and revealed changes in the chemistry of components with great details. 
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It is significantly advantageous to be able to translate the biomechanical measurements to AFM in 

order to reach a multi-parametric representation of the bacteria and their response to treatments. 

4.3 Methods 

4.3.1 Atomic force microscopy 

AFM has already been applied with persistence length, to understand a multitude of 

behaviors, including: studying the heterogeneity and flexibility of bacterial mucins (Round et al., 

2002), understanding various types of pilis such as the retractable Type IV pili (Lu et al., 2015), 

as well as, to real world applications like biofilm growth in soil water (Huang, Wu, Cai, Fein, & 

Chen, 2015) and early biofilm bacterial mechanics on implants for nanomedicine (Aguayo, Donos, 

Spratt, & Bozec, 2016). 

4.3.1.1 History of AFM 

Beginning with the discovery of scanning probe microscopy (SPM), including Scanning 

Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM), in the mid 1980’s, 

microscopy and surface characterization would never be the same (Binnig, Quate, & Gerber, 1986; 

Binnig, Rohrer, Gerber, & Weibel, 1982). It was about a decade later that AFM was commercially 

made available. At the time, AFM was thought of as a revolutionary tool for biology. It has since 

been used for a plethora of biological applications (Dufrêne et al., 2017; Jalili & Laxminarayana, 

2004; Khalili & Ahmad, 2015). AFM can reach sub-10 nm resolution of surface morphologies and 

height profiles. Advanced applications of AFM have become prominent in assessing 

biomechanical properties (adhesion, stiffness, Young’s modulus) of biological samples in their 

native environment.  
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4.3.1.2 AFM setup 

The fundamental setup of the AFM system is fairly simple. It is comprised of: a cantilever 

with sharp tip, a read out laser diode, a photodiode detector, and a controller. The image is formed 

by monitoring the changes in deflection of the cantilever corresponding with the changes to surface 

topography of the sample. The deflection of the cantilever is monitored using the laser diode 

reflected on the back of the cantilever to the photodiode detector. Changes in deflection of the 

cantilever result in variations of the photodiode detector signal. The signal recorded by the detector 

is controlled by a feedback loop and relays the information to the controller, which in turn controls 

the position of the cantilever and transforms the detector signal into images on the computer. 

Because of the importance of the sample-tip interaction, selection of tip can be critical. For 

bacteria, low-force constant cantilevers are commonly used. The schematic of how AFM is set up 

is described in Figure 28. 

 

Figure 28. Schematic diagram of AFM setup. The components of AFM include: a cantilever, laser source, 

photodiode detector, and controller. This setup measures tip-surface interactions via measuring changes to 

deflections caused by variance in surface topography, read by the photodiode detector. 
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4.3.1.3 AFM theory 

Atomic force microscopy is, as mentioned before, a type of scanning probe microscopy. In AFM 

theory, the tip-sample interaction is often described using the very simplified model of Hooke’s 

law, shown in Equation 7; where F is the force generated by the cantilever, k is the spring constant 

of the cantilever, and Δx is the change in deflection of the cantilever.  

𝐹 = −𝑘∆𝑥       (7) 

Utilizing the underlying theory of Hooke’s law allows some quantification of measurements, such 

as: height, friction, adhesion, stiffness, surface morphology, and/or Young’s modulus. Several 

studies have used this concept to observe changes to physical and mechanical properties of 

bacterial cell wall in the addition of a treatment (Aguayo & Bozec, 2016; Mularski, Wilksch, 

Hanssen, Strugnell, & Separovic, 2016; Potaturkina-Nesterova, Artamonova, Kostishko, 

Pchelintseva, & Nesterov, 2015; Powell, Hilal, & Wright, 2017). 

4.3.1.4 AFM imaging modes 

 AFM can generally be conducted in one of three modes: contact, non-contact, and tapping. 

Contact mode, as the name suggests, entails that the tip of the cantilever is in constant contact with 

the sample. This type of imaging typically requires cantilevers with lower spring constants when 

working on soft materials. Limitations to this method include quicker tip contamination and higher 

likelihood of direct damage to the tip, particularly with soft matter samples. 

 Another AFM imaging mode is non-contact mode. Non-contact mode imaging focuses on 

the long range force that exist at the sample and tip interface, avoiding direct contact with the 

sample. This method is similar to tapping mode, discussed next, in that they both rely on tip 

oscillation at the cantilever resonance, and feedback mechanisms to readout variations to 
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resonance frequency. As the tip is attracted or repulsed by the sample the resonant frequency is 

altered. One of the limitations of this mode is that deflections are often very subtle and may require 

an outside piezoelectric modulator to convert the changes in frequency into images with 

topographical differences. 

Lastly, tapping mode (or AC) uses intermittent gentle contact with the surface, specified 

by a given amplitude and frequency set to match the cantilever resonance. Thus, the tapping 

strength is dictated by the set amplitude. The quality of the cantilever signal can be optimized by 

tuning the oscillation frequency. Thus, tapping mode is often credited with solving most of the 

limitations presented by the other modes of imaging for biology. It can offer better resolution than 

with contact mode in some cases, less surface damage, and can eliminate frictional forces. A 

schematic diagram of all three common modes of imaging are in Figure 29. 

 

Figure 29. Different modes for AFM imaging. (a) Contact mode, (b) Non-contact mode, and (c) Tapping mode. 

4.3.2 Infrared Nanospectroscopy (NanoIR) 

4.3.2.1 A brief history of infrared nanospectroscopy 

 Infrared nanospectroscopy, also called AFM-IR or NanoIR, has not been around very long, 

only being described first in 2000. Stemming from work published by both work conducted by 

Hammiche et al. (Hammiche et al., 1999), but more specifically with the paper, “Infrared 

Spectroscopy with an Atomic Force Microscope”  (Anderson, 2000). These rudimentary designs 

for the original NanoIR were optimized by Dazzi et al., and is what most users are currently 

familiar with (Dazzi, 2008; Dazzi et al., 2012; Dazzi, Prazeres, Glotin, & Ortega, 2005, 2006). 
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Dazzi et al. introduced the use of a pulsed, tunable laser (originally at the synchrotron SOLEIL in 

Saclay, FR) to excite the material. By including this factor, the instruments capabilities now 

became able to do sub-100 nm chemical mapping and imaging. The company Anasys instruments 

has since commercialized the NanoIR platform and made it available to every day researchers by 

introducing a benchtop infrared laser compatible with the requirements of the system. This new 

product has made it possible to probe materials for new forms of information.  

4.3.2.2 NanoIR setup & theory 

 NanoIR takes two simple forms of chemical and physical characterization and merges them 

to form a system that can sense both forms of properties, with the resolution of AFM. The system 

includes a IR light source (or tunable quantum cascade laser (QCL), the AFM cantilever (selected 

based on sample), the laser diode, and photodiode detector, for readout shown in Figure 30.  

 

Figure 30. Schematic diagram of NanoIR. The NanoIR derives its system from both AFM and FTIR, therefore, 

the components include: a cantilever, an IR laser source (a quantum cascade laser), and photodiode detector. 

Infrared nanospectroscopy functions by sending IR light to excite the sample. The sample 

absorbs the radiative energy and generates heat dissipation in the sample. This temperature 

changes causes the sample to thermally expand, which is detected by the AFM cantilever. The 

thermal expansion is modulated by the light pulse. When the light is off, the sample reaches back 
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to ambient temperatures, at a rate that is dependent on the thermal properties of the sample. When 

conducted in contact mode, as we did here, the laser pulse is set to match the resonance of the 

cantilever in contact with the sample. This itself provides some insight on the mechanical 

properties of the sample.  NanoIR can then be used by fixing the laser wavelength and mapping 

the sample response or by fixing the cantilever position and sweeping the wavelength. The first 

forms a chemical map while the second forms a localized IR spectrum.   

4.4 Materials 

4.4.1 Atomic force microscopy 

Atomic force microscopy (AFM) images were collected in ambient atmosphere (~22ºC) 

using an Anasys nanoIR2 instrument. The cantilevers used were silicon n-type probes coated with 

gold on both sides. The associated resonance frequency was 11-19 kHz with a force constant of 

0.1-0.6 N/m. For imaging, contact mode was selected at a constant scan rate of 1.0 Hz as per 

literature protocols (Bras, 2002). Images collected were further analyzed using the Anasys 

Analysis program and Persistence. 

4.4.2 Infrared nanospectroscopy 

Infrared nanospectroscopy images were obtained by first acquiring AFM images in contact 

mode. Atomic force microscopy (AFM) images were collected in ambient atmosphere (~22ºC, 

40% relative humidity) using an Anasys nanoIR2 instrument. The cantilevers used were silicon n-

type probes coated with gold on both sides. The associated free resonance frequency was 11-19 

kHz with a force constant of 0.1-0.6 N/m. For imaging, contact mode was selected at a constant 

scan rate of 1.0 Hz and 500 by 500 pixels at a fixed wavenumber selected from the FTIR spectra 

acquired. 



 

60 

 

4.5 Results & Discussion 

4.5.1 Atomic force microscopy elucidates changes to bacterial surface properties caused by 

treatments 

Atomic force microscopy is highly useful in describing the sample characteristics such as: 

height profiles, morphology, as well as, mechanical properties. Here, AFM was used to visually 

observe and measure the physical properties associated with the untreated X. perforans and to 

compare the changes caused by the various formulations. As a result, we preliminarily showed 

successful employment of the abilities of AFM, adding to our multi-systems based approach. As 

shown in Figure 31 below, the AFM images show morphological changes to the untreated bacteria 

following the various formulations.  

 

Figure 31. AFM height and deflection images of morphological changes following treatment. AFM images of 

X. perforans before and after treatment, (a-d) corresponding height images and (e-h) corresponding deflection 

images. (a, e) Untreated control, (b, f) bacteria incubated with LSP 2 actives formulation for 30 min (2000 ppm 

copper and 500 ppm quaternary ammonium), (c, g) bacteria incubated with LSP with only copper active for 30 min 

(2000 ppm copper), and (d, h) bacteria incubated with LSP with only quaternary ammonium active (500 ppm 

quaternary ammonium). 
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Additional information that can be gathered from the height data are values for surface 

roughness. Surface roughness is a naturally occurring property ubiquitous in nature, such as with 

gecko’s feet (Huber, Gorb, Hosoda, Spolenak, & Arzt, 2007) and with lotus plants and their “lotus 

effect” (Blossey, 2003). However, surface roughness can also be used to observe and quantify 

changes caused by the environmental effects (Nikiyan, Vasilchenko, & Deryabin, 2010). 

Therefore, we applied this measurement to further quantify the changes made to the bacterial cell 

wall as a result of the various LSP treatment formulations, illustrated in Figure 32.  

 

Figure 32. Surface roughness of X. perforans before and after treatment. Surface roughness of the bacteria cell 

wall nearly doubles in roughness with the LSP 2 active nanoparticle. Additional roughening is also observed in the 

LSP Cu and LSP Quat cases. 

From this we show further that with the LSP 2 actives formulation, there is higher surface 

roughness indicating that a stronger detrimental effect is occurring. Meanwhile, LSP Cu showed 

to have stronger effects than LSP Quat. These results corroborate well with the findings described 

in Chapter 2, with a majority of damage occurring in cell wall membranes structures, such as the 

peptidoglycan, lipopolysaccharides, and structural amide I proteins. These results indicate strong 
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compromising of the bacterial cell wall suggesting that mechanical properties would also be 

varied. As a result, we continue by further exploring biomechanical property, first of untreated, 

and then with the introduction of treatment. 

4.5.2 AFM can be used with Persistence to quantify cell wall mechanical properties 

Additionally, length distributions were calculated for bacteria dried onto glass slides using 

AFM with Persistence. In Figure 33, we show a comparison of TIRF dry bacteria average length 

compared to AFM dry bacteria average length, noting that AFM provides higher precision, while 

both methods are accurate in their average length distributions.  

 

Figure 33. Length distributions calculated with TIRF and AFM both confirm average length remains 

approximately 2 μm in ambient air conditions. The box represents the 25th-75th percentile, whiskers indicate the 

standard deviation (SD), and the middle square shows the mean.  

Although, TIRF allows for the visualization of bacteria, one limitation could involve the 

fluorescence emitted by the dyed bacterial sample. Bacterial length analysis could be arbitrarily 

increased with respect to laser power excitation, but with proper optimization accurate 

quantification of average length is achievable by fluorescence microscopy. Meanwhile, the 

average distribution of bacterial lengths between TIRF dry measurements and AFM dry 
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measurements was found to be similar, suggesting the ability to cross-compare the system outputs. 

Our results match well with what was found previously in Chapter 3, with the average length of 

bacteria falling between 1 μm and 3 μm for both dry TIRF and dry AFM, with an average length 

of about 2 μm, as shown in Figure 34.  

 

Figure 34. Representative length distribution plots of dry bacteria fitted with Log-normal distribution 

function. Data sets corroborate established reports of average bacteria length to be between 1-3 μm. Dashed line 

represents best fit (N = ~200-600 bacteria). 

Next, we investigated the Lp as a function of length to establish the trend between bacteria 

length and bending stiffness, plotted in Figure 35. The results indicate that there is a significant 

difference between the bending stiffness in liquid environments compared to dehydrated ambient 

environments. This is postulated to be the result of internal turgor pressure necessary for 

moderating metabolic processes, whereas, when the bacteria are metabolically inactive the bending 
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length is more flexible due to the loss of turgor pressure. Furthermore, cell wall composition can 

play a role in the overall bending stiffness associated to bacteria under dry or liquid conditions. In 

the case of E. coli, previous measurements have reported the doubling of their cell wall when in a 

hydrated state (Yao 1999).  

 

Figure 35. Representative angular correlation functions plotted as a function of bacterial segment length. 

Data suggests bending persistence length of bacteria in ambient conditions is approximately 3 μm. Solid line 

represents best fit (N = ~200-600 bacteria). 

This facet of the study demonstrates the Lp associated with TIRF measurements conducted 

on dry samples and compares them with the Lp of dry AFM measurements. Overall, both 

measurements in ambient, dry conditions provide similar bending persistence length values. Slight 

variations could be the result of population density or hyperexcitation of fluorophores in TIRF 

imaging. However, Figure 35a and 35b can also be compared with the previous TIRF 
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measurements of X. perforans in solution, found in Chapter 3 Figure 22. Between the liquid to dry 

environments, an observed decrease in cell wall bending persistence length is observed. This 

suggests that, in the presence of a hydrated environment, there are turgor forces that could be 

present, increasing the bending elasticity.  

4.5.3 Modulation of bacterial cell wall mechanics in response to treatments 

Similar to our observations of treatment effects on bacterial cell wall mechanical properties 

in aqueous environments, measured with TIRF microscopy and Persistence, we observed and 

measured the effects of treatments, this time in ambient conditions via AFM. We noted that as the 

concentration of treatment was increased, the bacterial cell wall was made more elastic, likely due 

to the denaturation of cell wall proteins necessary for maintaining rigidity and structure. Based on 

these observations, we expected much of the same to occur in ambient conditions.  

We previously determined that the average length of the untreated control in ambient 

conditions corresponded well with those in aqueous environments, and this continues to hold true 

for those having undergone treatment. As shown below in Figure 37, the average length is 

unaffected by the treatments illustrating length does not deviate from an average of ~2 µm.  
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Figure 36. Average length of bacteria does not change with EtOH treatments. The average length that was 

determined by AFM with Persistence to still be 2 μm. The box represents the 25th-75th percentile, whiskers indicate 

the standard deviation (SD), and the middle square shows the mean. 

In addition to overall average length, the length distribution was analyzed to determine 

changes associated to various treatment concentrations. Figure 38 indicates the overall abundance 

of bacterial length is similar throughout all tested conditions. The results demonstrate unimodal 

distribution with most of bacterial length in the range of ~1-3 µm, in accordance with previous 

results.  

 

Figure 37. Representative length distribution plots of treated bacteria fitted with Log-normal distribution 

function. Data sets corroborate established reports of average bacteria length to be between 1-3 μm. Dashed line 

represents best fit (N = ~200-600 bacteria). 
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 While the average length and length distribution were expected to remain approximately 

the same, our interest was in the effect caused on the bending persistence length resulting from 

varying concentrations of treatment. As revealed in Figure 38, with increasing concentrations of 

ethanol, the average bending persistence length decreased. This decrease in Lp is indicative of the 

cell wall becoming less rigid, likely caused by the known effects of ethanol (dehydration and 

denaturation of critical cell wall proteins). Therefore, with these measured changes in mechanical 

properties, we lastly wanted to observe the trend associated with Young’s modulus as a function 

of treatment concentrations. 

 

Figure 38. Representative angular correlation functions plotted as a function of bacterial segment length. 

Data suggests bending persistence length of treated bacteria in solution decreases with higher concentrations of 

treatment resulting in decreased flexural rigidity. Solid line represents best fit (N = ~200-600 bacteria). 

4.5.4 Treatment induced cell wall mechanical changes further revealed by Young’s modulus 

 Provided that the AFM is able to push past the limit of sensitivity provided by the TIRF, 

we again calculated the values of Young’s modulus to see how the mechanical properties of the 

bacterial cell wall was modulated by the introduction of treatments. Based on the same 

formulations presented in section 3.4.3, Young’s modulus was again calculated from generated 

bending persistence length. Therefore, an untreated X. perforans Young’s modulus in ambient 

conditions was performed following the function presented in Equation 8, 
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𝐸 (𝑀𝑃𝑎) =
(3.3x10−6m)(4x10−12N)(1x10−9m)

6.5x10−31m4
     (8) 

and found the Young’s modulus was determined to be 0.02 MPa. With the addition of treatment, 

we again postulated that we would see an increase in outer cell membrane elasticity corresponding 

with the decrease in Young’s modulus. We confirmed with our AFM analysis that this was in fact 

the trend observed, demonstrated in Figure 39. With 5% ethanol, we calculated a Young’s modulus 

of approximately the same as the untreated, 0.020 MPa; however, in the presence of 10% ethanol, 

the Young’s modulus decreased to 0.015 Mpa. 

 

Figure 39. Effects of varying treatment concentrations on Young’s modulus. Adding ethanol treatments at 

varying concentrations indicates bacterial cell wall mechanical changes. 

 To tie all of our data together, we lastly wanted to compare the values of Young’s modulus 

that we obtained from conducting TIRF and AFM on the same samples. We found that despite any 

limitations, both instruments generated the same trend in calculated Young’s modulus for ambient 

conditions, represented in Figure 40.  
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Figure 40. Young’s modulus of untreated and treated bacteria in ambient conditions obtained using TIRF 

and AFM. A comparison of these two techniques show that despite limitations, both demonstrate the same trend. As 

the treatment concentrations increase, the Young’s modulus decreases, visualized by both systems. 

Therefore, both systems have shown to translate well with the use of Persistence and have 

successfully demonstrated the ability to generate several mechanical properties useful in 

describing treatment effects. Moving forward, this will be of particular use in understanding how 

the LSP nanoparticles would affect these bacterial cell wall mechanical properties, especially 

considering the targets of the active ingredients. Using this multisystem platform, we would be 

able to determine a mode of action, as well as, aid in streamlining the overall effectiveness of the 

treatment. 

4.5.5 Infrared nanospectroscopy allows for improved resolution of surface chemical changes 

with treatments 

By incorporating NanoIR, further information regarding the distribution of specific 

variations can be observed. By combining infrared spectroscopy with the nanoscale resolution 

provided by AFM, unique information can be extracted, depicted in Figure 41. By utilizing ATR-

FTIR the bands identified by significant changes can be monitored with sub-100 nm resolution to 
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visualize the distribution and spatial locations of those changes. This helps answer questions of 

how bacteria might be modifying or reacting to the treatments. Figure 41 demonstrates the effects 

of using NanoIR fixed at the 1650 cm-1 wavenumber to visualize the spatial distribution of 

peptidoglycan structural proteins (Amide I proteins). As expected, the structural proteins are 

present throughout the entire bacteria and absence outside of the bacteria. In continued research 

efforts we intend to continue probing X. perforans by exploiting this platform to visualize the 

additional variations caused by the LSP treatments explored largely in Chapter 2.  

 

Figure 41. NanoIR is a useful tool in resolving effects of formulations on the nanoscale. (a) AFM height image 

of X. perforans untreated control, (b) spatial distribution of 1650 cm-1 intensity (polypeptides of peptidoglycan), and 

(c) IR spectra of selected regions of the sample. 

4.6 Conclusion 

 In this chapter, we sought to understand if we could push past barriers presented in Chapter 

3, as a result, we tested the program Persistence on AFM images of bacteria. By similarly 

corroborating accuracy with the average length with what is established in literature, we were able 
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to determine that Persistence was successful and useful in extrapolating unique biomechanical 

properties. For this study, data presented is preliminary, with analysis conducted in ambient air on 

dried bacteria. However, it is still of interest to the field to assess the variations to the bacterial 

mechanics in both liquid and dry environments to understand how mechanical measurements 

might vary in each condition. To establish a clear comparison, dried bacteria samples were 

analyzed both with TIRF and AFM. Average length observed on the dry bacteria, in both cases, 

still presented at 2 μm, however, the average bending length was about 3 μm, considerably more 

flexible compared to the liquid TIRF values. Then, we introduced a model treatment of 5% ethanol 

and found that persistence length was significantly altered, with a change from 3 μm to 5 μm. 

Correspondingly, we observed with higher concentrations of treatment, Young’s modulus 

decreased indicating increased surface elasticity. Lastly, we demonstrated how using infrared 

nanospectroscopy could be used moving forward to map the spatial distribution of the chemical 

and biomechanical variances along the cell membrane surface of the bacteria.  
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CHAPTER FIVE: CONCLUSION 

In summary, we have established a unique multipronged approach to study several 

important characteristics associated with bacteria. First, we described several instruments that can 

be used to individually identify and characterize several chemical components associated with pre- 

and post-treatment. Then we explored how using fluorescence microscopy can serve as a method 

to determine mechanical properties of bacteria, using a novel approach. Lastly, we compared 

nanoscale resolved instruments and measurements of biomechanics and compared them to the 

fluorescence microscopy outcomes, as well as, observed how the mechanics would be altered in 

the presence of a treatment. We were able to show how a series of instruments could be used in 

tandem to create a platform that assesses chemical and biomechanical characteristics on the single 

bacterium level, while maintaining connections to population of bacteria treated with the same 

conditions.  

Still, much is left to push the field forward. Namely, we would like to overcome some of 

the limitations presented in each of the projects, such as: quantifying the amount and time 

associated with the nanoparticles delivery of copper ions in the presence of secondary active 

ingredient quaternary ammonium, to implement the LSP treatment into our fluorescence 

microscopy and visualize in real-time the interaction with the bacteria. Extending the AFM 

Persistence measurements to liquid would also be valuable. Still, the implications of this work 

spans a very wide range. Our platform was designed so that it could be applied to any biological 

system to better understand several facets not yet explored. We have the potential study various 

biological events including binary fission in bacteria or cell division in mammalian cells, as well 
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as to improving efficacy and specificity of drug delivery, and perhaps even lend a hand in resolving 

some of the antibiotic resistance issues. 
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