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ABSTRACT 

Monitoring water quality on a near-real-time basis to address water resources 

management and public health concerns in coupled natural systems and the built environment is 

by no means an easy task. Furthermore, this emerging societal challenge will continue to grow, 

due to the ever-increasing anthropogenic impacts upon surface waters. For example, urban 

growth and agricultural operations have led to an influx of nutrients into surface waters 

stimulating harmful algal bloom formation, and stormwater runoff from urban areas contributes 

to the accumulation of total organic carbon (TOC) in surface waters. TOC in surface waters is a 

known precursor of disinfection byproducts in drinking water treatment, and microcystin is a 

potent hepatotoxin produced by the bacteria Microcystis, which can form expansive algal blooms 

in eutrophied lakes. Due to the ecological impacts and human health hazards posed by TOC and 

microcystin, it is imperative that municipal decision makers and water treatment plant operators 

are equipped with a rapid and economical means to track and measure these substances. 

Remote sensing is an emergent solution for monitoring and measuring changes to the 

earth’s environment. This technology allows for large regions anywhere on the globe to be 

observed on a frequent basis. This study demonstrates the prototype of a near-real-time early 

warning system using Integrated Data Fusion and Mining (IDFM) techniques with the aid of 

both multispectral (Landsat and MODIS) and hyperspectral (MERIS) satellite sensors to 

determine spatiotemporal distributions of TOC and microcystin. Landsat satellite imageries have 

high spatial resolution, but such application suffers from a long overpass interval of 16 days. On 

the other hand, free coarse resolution sensors with daily revisit times, such as MODIS, are 

incapable of providing detailed water quality information because of low spatial resolution. This 
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issue can be resolved by using data or sensor fusion techniques, an instrumental part of IDFM, in 

which the high spatial resolution of Landsat and the high temporal resolution of MODIS 

imageries are fused and analyzed by a suite of regression models to optimally produce synthetic 

images with both high spatial and temporal resolutions. The same techniques are applied to the 

hyperspectral sensor MERIS with the aid of the MODIS ocean color bands to generate fused 

images with enhanced spatial, temporal, and spectral properties. The performance of the data 

mining models derived using fused hyperspectral and fused multispectral data are quantified 

using four statistical indices. The second task compared traditional two-band models against 

more powerful data mining models for TOC and microcystin prediction. The use of IDFM is 

illustrated for monitoring microcystin concentrations in Lake Erie (large lake), and it is applied 

for TOC monitoring in Harsha Lake (small lake). Analysis confirmed that data mining methods 

excelled beyond two-band models at accurately estimating TOC and microcystin concentrations 

in lakes, and the more detailed spectral reflectance data offered by hyperspectral sensors 

produced a noticeable increase in accuracy for the retrieval of water quality parameters. 
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CHAPTER 1: INTRODUCTION 

Remote sensing is the collection of information from a target object or event from a 

distance. The sensors for observation can be used from ground, air, and space-borne installations 

to monitor the environment and observe ecological changes occurring over time. Space-borne 

sensors possess the ability to monitor large spatial extents at a high spatial or temporal 

frequency. This presents a unique advantage for monitoring the environment, which is in a 

constant state of flux due to anthropogenic influences. Surface waters in the 20
th

 were subject to 

rapid changes and contaminates due to population rise, economic development, and climate 

change. This brings forth the emerging challenge of monitoring the health of surface waters in 

urban areas, which can be degraded by excess nutrients in wastewater, residential runoff, and 

agricultural runoff; suspended solids in runoff, and additional pollutants that alter water quality.  

Manual sampling of the waters has been the traditional method to garner water quality 

information, yet it is a costly, time-consuming, and tedious approach. The use of remote sensing 

to assess water quality is quick and economical approach, and its accuracy at predicting the 

spatiotemporal distributions of water quality parameters in optically complex waters is 

constantly improving.  

Remote sensing of water quality parameters is fundamentally rooted in the detection of 

electromagnetic radiation from the target. This is made possible by the fact that all substances 

absorb, transmit, and reflect electromagnetic waves. However, the amount of light that is 

reflected or absorbed is a function of wavelength. For example, chlorophyll-a is known for its 

predominantly green hue, which indicates that it strongly reflects light from the “green portion” 

of the electromagnetic spectrum. On the other hand, a blue object would reflect electromagnetic 
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waves from the blue portion of the spectrum. This simplified example illustrates how objects 

with differing spectral properties can be identified and differentiated based upon their spectral 

reflectance curves, aka. their propensity to reflect electromagnetic waves at specific frequencies. 

Monitoring case 1 waters is relatively straightforward, since their optical properties are primarily 

determined by phytoplankton and other biological organics. Case 2 waters are known for their 

optical complexity resulting from the presence of suspended solids, colored dissolved organic 

matter, phytoplankton, and additional substances. The real challenge is deciphering the 

spatiotemporal distribution of individual water quality parameters when the observed spectral 

curve is a multifaceted function of the various constituents contained in the water.  

1.1. Research Objectives 

The question remains for how to develop a cost-effective, daily spatiotemporal 

monitoring system of microcystin and TOC concentrations in a water body to achieve a 

successful early warning system. The overall goal of this research was to develop a robust 

framework for monitoring water quality constituents on a daily basis in inland water bodies of 

various sizes. This robust and innovative technological development for determining 

concentrations and distributions of potentially hazardous water quality constituents would have 

strong benefits for the following users: 1.) drinking water treatment plants, 2.) commercial 

fisherman, 3.) recreational users, and 4.) municipal decision makers assessing total maximum 

daily loads (TMDL). The resulting methodology designed for this task is the Integrated Data 

Fusion and Mining (IDFM) technique, and 3 specific research objectives were formulated: 
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1. apply data or sensor fusion techniques, in which high spatial resolution satellite sensors 

are fused with high temporal resolution sensors into a single data stream possessing 

enhanced spatial and temporal properties; 

2. develop advanced forecasting models that link the data mining techniques with ground-

truth databases and fused spectral inputs for TOC and microcystin prediction; 

3. apply the modeling technologies in both large and small inland water bodies to evaluate 

these techniques in developing microcystin and TOC concentration maps for a functional 

early warning system. 

1.2. Thesis Organization 

This thesis is organized into two (2) standalone chapters featuring applications of the 

IDFM technique. Thesis organization from a research objective point of view is visually depicted 

in Figure 1.1: 
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Figure 1.1: Thesis organization from a research objective point of view. 

 

Chapter 2 investigates the use of IDFM techniques for predicting TOC spatiotemporal 

distributions in a small lake. Harsha Lake is located in the East Fork of the Little Miami River in 

Clermont County, Ohio, and it covers an area of 8.739 km
2
. The objectives of the case study 

featuring the small lake were: 1.) quantify the advantages of using multispectral sensors versus 

hyperspectral sensors and 2.) assess the performance of a suite of traditional inversion models 

against innovative and complex data mining techniques for TOC prediction. The multispectral 

data set was provided by the Landsat TM/TM+ and Terra MODIS sensors, while the 

Water Quality Constituent Identification 

• Identify water quality parameters to be spatially and temporally predicted. 

Satellite Sensor Selection 

• Select a suite of multispectral and hyperspectral satellite sensors as surface reflectance 
inputs in order to statistically quantify the performance advantages of hyperspectral 
sensors, which require additional data storage, management, and processing. 

Fusion of Spectral Data 

• Assess the performance of fusing data from a fine spatial resolution satellite sensor 
with a temporally frequent sensor in surface water applications for interpretation by 
empirical inversion models. 

Assess Empirical Inversion Model Results and Spectral Inputs 

• Assessing the innovation of data mining: 

• Compare powerful data mining techniques to traditional inversion mothods common 
to remote sensing. 

• Validate data fusion: 

• Fused and unfused sensor data are separately used as inputs for interpretation by 
traditional two-band and data mining approaches for analysis and comparison. 

• Quantify performance advantages of hyperspectral over multispectral sensors: 

• Both traditional inversion models and data mining models are derived from 
multispectral and hyperspectral (both fused and unfused) inputs for a multitiered 
performance analysis. 
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hyperspectral data set was supplied by Envisat MERIS. A traditional two-band ratio inversion 

model was tested against a genetic programming model. Concentration maps depicting the 

spatiotemporal distribution of TOC in Harsha Lake were created using the most successful 

model. Lastly, seasonal TOC maps were generated to visually identify seasonal trends for TOC 

levels and distribution within the lake. 

 Chapter 3 applies a similar approach using IDFM for predicting microcystin 

concentrations and distributions in Lake Erie. This large lake is subject to frequent and expansive 

algal blooms each summer, and the goal is to delineate between toxic and nontoxic algal blooms 

covering the lake. Once more, the objective is to assess the performance of IDFM; however, this 

time it is applied for microcystin prediction in a large lake. The specific objectives are: 1.) 

quantify the advantages of using multispectral sensors versus hyperspectral sensors and 2.) 

assess the performance of a suite of traditional inversion models against innovative and complex 

data mining techniques for microcystin prediction. The multispectral data set was provided by 

the Landsat TM/TM+ and Terra MODIS sensors, while the hyperspectral data set was supplied 

by Envisat MERIS. A genetic programming model was tested against two traditional models, a 

two-band ratio model and a two-band spectral slope model. The model exhibiting the highest 

performance was used to generate microcystin concentration maps for both the multispectral and 

hyperspectral spectral inputs.  

1.3. Study Limitations 

Cloud cover is a primary limitation in both applications of IDFM in this study. Detection 

of electromagnetic waves reflecting off the water’s surface by the sensors relies on the study site 

being void of clouds. Both Harsha Lake and Lake Erie are subject to heavy cloud cover 
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throughout the year, which would prevent the early warning system from functioning when the 

study site is visually obscured. The physical reason for this limitation is attributed to the portion 

of the electromagnetic spectrum detected by the sensors. The visible and infrared frequencies 

reflected off the water are unable to pierce through thick fog, clouds, and smoke. One possible 

workaround is to use spectral sensors mounted on airplanes for monitoring sites, instead of 

space-borne sensors. While this method is more costly, it is a reliable method of data collection 

on days when the view of the water body is obstructed from space. Alternatively, the inclusion of 

microwave sensors capable of piercing through cloud cover is a possibility to be explored. 

Similarly, a second limiting scenario posed by clouds is when the site is only partially exposed to 

cloud cover. This makes for less accurate fused images by the STAR-FM data fusion algorithm, 

because the obscured areas cannot be used for fusion. 

The data mining methods used in this study are all used to develop empirical models. 

Often, these models are data heavy. As a result, these models rely on a robust set of ground-truth 

data that accurately depict all water quality conditions experienced in the lake throughout the 

year. Furthermore, surface reflectance observations should be available for a comprehensive 

range of concentrations for the water quality parameter. Otherwise, the model may not accurately 

predict concentrations outside of this range.  

It should be understood that objects, pollution plumes, and algal blooms smaller than the 

spatial resolution of the satellite sensor may not be observable. For example, the MODIS sensor 

used in this study has a spatial resolution of 250 m for bands 1 and 2. The spectral signatures of 

all objects at the water’s surface within a 250 m box will be averaged into the observed 

reflectance for that pixel. If an algal bloom encompasses the majority of the pixel, then the 
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spectral reflectance signature of the bloom will dominate. However, a mix of small toxic blooms 

and pristine water in the 250 m search box will result in a lower microcystin concentration being 

predicted, since the poor resolution of the satellite prevents it from delineating between small 

algal blooms and clean water. Wind is also an influence that can alter the estimation of 

microcystin. The sheer forces from wind cause algal blooms at the surface to mix with the water 

below. Consequently, the bloom becomes vertically dispersed throughout the water column, and 

the spectral reflectance from the bloom at the water’s surface is diminished. 
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CHAPTER 2: INTEGRATED DATA FUSION AND MINING 

TECHNIQUES FOR MONITORING TOTAL ORGANIC CARBON 

CONCENTRATIONS IN A LAKE 

2.1. Introduction 

Total organic carbon (TOC) is a gross water quality parameter comprised of particulate, 

colloidal and dissolved organic matter, which can include floating vegetative and animal matter 

and volatile organic matter (GEAS 1994). Disinfection byproducts (DBPs) are formed when 

organic matter reacts with oxidants, such as free chlorine, in drinking water disinfection 

processes. Disinfection byproducts in finished water of a water treatment plant often include 

trihalomethantes (THMs) and haloacetic acids (HAAs). The surface water treatment rules 

managed by the United States Environmental Protection Agency (US EPA) require water 

disinfection in treatment plants in order to protect the consumers from microbiological 

contaminants, and at the same time restrict the concentration of disinfection byproducts such as 

THMs and HAAs, below the levels that are harmful to human health (USEPA 1998).  

Manual water sampling and laboratory TOC measurement of source water is the widely 

used practice, which has a substantial cost and a significant time delay (O’Connor 2004). For 

large TOC changes in source water, the time delay and a lack of information on TOC spatial 

distribution can impede the preparation of operational and engineering adjustment in drinking 

water treatment. This is the impetus to develop the remote sensing methods in this study for an 

accurate TOC estimation on a daily basis. The capabilities of the Integrated Data Fusion and 

Mining (IDFM) techniques may offer daily monitoring for examining water quality conditions to 

present a series of near-real-time TOC estimations as an early warning system around the water 

intake and associated water body.  
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Satellites’ sensors can detect the surface reflectance emissions with medium to high 

resolution images of selected light spectrums, which can be used to estimate the level of TOC 

concentrations present in water using inversion models and machine learning techniques (Smith 

and Baker 1978, Stramski et al. 1999, Stedmon et al. 2000, Ohmori et al. 2010). The individual 

Landsat and MODIS sensors have their own stand-alone disadvantages for CDOM detection in 

water, such as long revisit times, low spatial resolution, and inability to sense the majority of the 

reflected light at the CDOM peaks. One of the possible solutions to overcome this barrier is to 

incorporate the best qualities of MODIS and Landsat data streams into a composite image with 

both high temporal and spatial resolution. This was done through the use of data fusion 

algorithms, as discussed in this paper. 

The question remains for how to develop a cost-effective, daily spatiotemporal 

monitoring system of TOC concentrations in water body to fulfill its early warning functionality. 

The objective of this study is thus to provide a near-real-time monitoring system measuring the 

spatiotemporal distributions of TOC concentrations in a lake through the use of the proposed 

IDFM techniques. In this paper, we wish to explore: 1) the feasibility of determining the 

spatiotemporal distributions of TOC within a lake using fused image reflectance bands and 

machine learning algorithms, 2) if there is a justifiable advancement in using fused images from 

Landsat and MODIS to provide more accurate estimation of TOC concentrations than that done 

by using MODIS or Landsat images alone, 3) how the performance of genetic programming 

(GP) models based on a machine learning algorithm compares to a traditional two-band ratio 

model, and 4) the spectral bands that achieved the most frequent use among the GP models. 



 

10 

 

2.2. Background Information 

2.2.1. Total Organic Carbon Sources and Effects 

TOC is the measure of organic molecules of carbon in water, and it is the sum of 

dissolved organic carbon (DOC) and particulate organic carbon (POC). It serves as a key water 

quality parameter in lakes and reservoirs, due to its effect on pH, redox reactions, bioavailability 

of metals, and the sorption capacity of suspended solids with regards to hydrophobic organic 

chemicals (Thurman 1985; Parks and Baker 1997). TOC is introduced to surface waters from 

both natural and anthropogenic sources. Humic substances and degraded vegetation and animal 

matter are naturally occurring sources of TOC (Thurman 1985; GEAS 1994; Bayram et al. 

2011). Anthropogenic sources include fertilizers captured by stormwater runoff and irrigation 

return flows, pesticides, surfactants, and solvents from sewage treatment plants (Visco et al. 

2005). While TOC by itself is not the direct cause of human health issues in drinking water 

treatment, its presence during disinfection operations generates DBPs that are hazardous to 

humans when consumed. 

As is required by the EPA, drinking water treatment plants use disinfection to protect 

consumers from pathogens. When TOC has not been removed from the source water prior to 

disinfection using chlorinated agents, the formation of DBPs, specifically THMs and HAAs, 

occurs. Knowledge of TOC concentrations in the source water enables treatment plant operators 

to alter the treatment strategy to limit DBP generation. This can include but is not limited to 

adjusting coagulant feed rates or altering the pH for heightened TOC removal through 

coagulation (TCEQ 2002). In addition, TOC removal in most drinking water treatment plants 

may be facilitated with the following processes: coagulation, granular activated carbon 
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adsorption, membrane filtration, and ion exchange. These processes, however, have varying 

removal efficiencies and vastly different operation and maintenance costs. 

 Monitoring TOC can be an expensive and time consuming process. Purchasing 

equipment for on-site measurement of TOC costs between $20 000 and $30 000 USD, while 

using an outside laboratory for analysis takes 2 to 4 weeks to obtain results (TCEQ 2002). This is 

a key motivation for using the IDFM method to predict TOC concentrations. IDFM rapidly 

generates a TOC concentration map for the entire lake; meaning, a TOC concentration value is 

assigned to every pixel comprising the image of the lake. Another benefit is that the TOC map 

generation comes at no cost when using freely available data from Landsat and MODIS. This is 

also an advantage to water treatment plants that are required by law to routinely sample the 

source water to characterize TOC content. Instead of having to sample 3 weeks in advance to 

have TOC data available for water quality reports at the end of the month, IDFM enables the 

treatment plant to account for TOC variations for all cloud-free days throughout the month. 

Niche applications of IDFM include predicting whether TOC levels have increased after heavy 

rains and aiding in decision making processes when water treatment plants have multiple 

reservoirs to obtain source water from. 

 TOC export into water bodies is dependent upon two main aspects: the type of TOC 

source and the hydrological transport of TOC from the source (Agren et al. 2008). The typical 

source of TOC is the upper layers of the soil matrix, due to the higher levels of organic matter 

present at the top while decreasing downward into the soil profile (Thurman 1985). Thus, boreal 

regions can be a large contributor to TOC in nearby surface waters (Agren et al. 2008). Another 

primary TOC source is wetlands, even though their coverage may only account for a small 
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portion of the lake’s watershed (Dosseky and Bertsch 1994). Runoff controls the transport of 

TOC from terrestrial sites into surface waters. This provides insight into seasonal TOC 

variations, since rainfall intensity and frequency changes between seasons. During the transition 

from winter to spring in areas with snowfall, TOC concentrations have been known to drop due 

to dilution from snowmelt (Parks and Baker 1997). A number of studies conclude that the 

highest levels of TOC in runoff from boreal areas occur during the late summer and fall as a 

result of the increased rainfall and temperature (Heikkinen 1989, Naden and McDonald 1989, 

Ivarsson and Jansson 1994, Scott et al. 1998, Agren et al. 2008). The first strong rainfall events 

late in the summer yield high concentrations of TOC, due to microbial interactions with organic 

matter in the upper soil matrix (Parks and Baker, Agren et al. 2008). This is because the 

formation of soluble organic matter resulting from oxidation and microbial activity increases 

with temperature (Ivarsson and Jansson 1994, Christ and David 1996, Scott et al. 1998). Thus, 

the soluble organic carbon builds up in the soil, until it is washed away and carried into surface 

waters during the wet season in late summer and autumn (Scott et al. 1998). For this reason, 

TOC in runoff leading to surface waters is lower during the winter and spring (Argen et al. 

2008). In conclusion, TOC concentrations will always increase with runoff, but the concentration 

of TOC present in the runoff is subjected to seasonal temperature fluctuations, exhibiting a 

buildup of TOC in the soils during the summer and autumn seasons. 

2.2.2. Remote Sensing of Organic Carbon 

In a remote sensing study conducted by Smith and Baker (1978), particulate organic 

carbon had an effect on remotely sensed chlorophyll-a readings from phytoplankton. In more 

recent years, the practice of organic carbon detection through remote sensing has been proven 
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effective by a number of studies (Stramski et al. 1999, Stedmon et al. 2000, Ohmori et al. 2010). 

This study expands upon the preliminary efforts detailed in Chang and Vannah (2012) for remote 

TOC retrieval using IDFM. The major differences and advancements carried out in this study are 

as follows: 1.) the previous study was a brief foray into remote TOC retrieval to assess the 

feasibility of using IDFM on a small inland lake, 2.) this expanded study approaches the problem 

of remote TOC prediction using genetic programming (GP) as an alternative retrieval algorithm 

to artificial neural networks (ANNs), 3.) to justify the use of more complex and computationally 

intensive machine learning techniques, a performance comparison between the GP model and a 

traditional two-band  ratio model is carried out, 4.) an extended background review has been 

presented for deepened discussion of the results, and 5.) more lucid explanations of the 

methodological processes comprising IDFM are given. 

TOC can be identified based on its unique spectral response and differentiated from other 

compounds in the water column. This is because every substance gives off a different spectral 

signature or pattern, some of which can overlap. For any given substance, the measured 

reflectance will vary throughout the length of the electromagnetic spectrum, since reflectance is a 

function of wavelength. When a substance is especially reflective to a specific wavelength of 

light, a peak will be incurred on the spectral signature graph, because the majority of light at this 

wavelength rebounded off the object. For this study, the spectral reflectance peaks of interest for 

TOC are based on published experiments measuring the peaks of chromophoric dissolved 

organic matter (CDOM). CDOM is the light absorbing fraction of dissolved organic carbon. In a 

series of three different case studies, the spectral reflectances associated with varying levels of 

CDOM were measured in over 38 different lakes and reservoirs. The observed spectral peaks are 

detailed in Table 2.1: 
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Table 2.1: CDOM spectral peaks as determined from case study analysis. 

CDOM Spectral 

Peaks (nm) 

Sampling 

Locations 
Sampling Instrument Source 

570 25 
Spectron Engineering SE-590 

spectrometer 
Menken et al.(2005) 

550, 571, 670, 710 8 Scanning spectrophotometer Arenz et al.(1995) 

560, 

650—700 
5+ 

Spectron Instrument CE395 

spectroradiometer 
Vertucci (1989) 

 

It is imperative that satellites with sensors that detect light at bandwidths corresponding to 

reflectance peaks be chosen when determining TOC concentrations based upon surface 

reflectance. The ability for MODIS and Landsat to detect the main spectral peaks of CDOM is 

shown in Figure 2.1: 

 

Figure 2.1: CDOM spectral reflectance peaks and the associated MODIS and Landsat sensor capabilities. 

 

Two main spectral peaks for CDOM are marked in gray in Figure 2.. In order for the MODIS 

and Landsat to determine TOC concentrations, the bands for these satellites must overlap with 
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the CDOM spectral peaks. For the first CDOM peak, it can be seen that the Landsat satellite is 

able to detect the entirety of the peak, whereas the MODIS satellite can detect the majority of the 

reflected light caused by CDOM. However, for the second CDOM peak, Landsat can detect the 

first two-thirds of the CDOM peak, whereas MODIS only the first half. Thus, Landsat not only 

contributes enhanced spatial information to the fused image, but the third band provides 

additional spectrally-relevant data for TOC estimation. 

According to previously mentioned studies, observed spectral reflectance emissions were 

linked to organic carbon concentrations in the water. Smith and Baker (1978) and Stramski et al. 

(1999) performed this for particulate organic carbon, and Stedmon et al. (2000) conducted a 

similar analysis for CDOM. In an effort to measure TOC (the  dissolved and particulate forms of 

organic carbon), Ohmori et al. (2010) used a spectroradiometer (Opt Research Inc., HSR-8100)  

to capture the spectral signature of the water body and relate it to TOC. While Ohmori’s study is 

titled “Feasibility Study of TOC and C/N Ratio Estimation from Multispectral Remote Sensing 

Data,” the spectral signatures were obtained at ground level from a spectroradiometer (e.g., C/N 

ratio stands for carbon to nitrogen ratio). Then, the spectral signatures were manipulated to 

simulate the bands for the SGLI sensor onboard the GCOM-C satellite. This study expands on 

the progression of TOC estimation in multiple ways. First, actual remote sensing data from 

Landsat and MODIS are used. Thus, the inversion and machine learning models are exposed to 

data that has been radiometrically and geometrically corrected, instead of being retrieved with a 

handheld spectroradiometer. Secondly, both a traditional two-band ratio model and a GP model 

are evaluated for TOC prediction by a comparative way. Lastly, the use of standalone MODIS 

imagery and fused satellite data as inputs for training and validation for the GP model are 

statistically assessed. Data fusion enhanced the Landsat and MODIS input data spatially and 
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temporally, and the authors hypothesize that this will yield a more precise early warning message 

than if only MODIS were used for TOC detection spatially.    

2.2.3. Data Fusion 

Fused images are the algorithmic fusion of the spectral, temporal, or spatial properties of 

two or more images into a composite or synthetic image possessing the characteristics of the 

input images (Genderen and Pohl 1994). The fusion of data streams into a single image has the 

potential to increase the reliability of the data, and displays more of an object’s defining 

attributes at once (Pohl and Genderen 1998). Such benefits can lead to more informed decision 

making (Hall 1992). There are a number of data fusion techniques available, and selecting an 

algorithm to apply depends upon the type of output data required for the application, the 

accuracy of the fused data, and the characteristics of the input data streams that the user would 

like to fuse. Data fusion techniques are classified into three groups according to the level at 

which the processing takes place (Pohl and Genderen 1998) including: 1) pixel level, 2) feature 

level, and 3) decision level. Pixel level image fusion refers to the fusion of the measured physical 

attributes of the data, prior to significant processing, as shown in Figure 2.2: 
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Figure 2.2: Image fusion processing methodologies for pixel level fusion (left), feature level fusion (center), 

and decision level (right) fusion (adapted from Pohl and Genderen 1998). 

 

 Preprocessing steps typically entail radiometric correction, resampling, and reprojection, 

by which measurement errors are corrected and compatibility is assured between data streams. 

Image fusion at the feature level takes the measured input data and extracts objects using 

segmentation procedures (Pohl and Genderen 1998). The classification of objects can be a 

function of their shape, location, pixel value, and extent (Mangolini 1994). Classified objects 

from the data streams are then fused in preparation for assessment via statistical methods or 

Artificial Neural Networks (ANN) (Pohl and Genderen 1998). Decision level fusion, also called 

interpretation level fusion, takes feature level fusion a step farther by processing the classified 

data in order to glean additional information, which is then fused according to user-defined 

decision rules (Shen 1990). Some fusion techniques and their associated fusion level are detailed 

in Table 2.2: 
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Table 2.2: Fusion techniques and their associated fusion level. 

Fusion Technique 
Fusion 

Level 

Enhanced 

Properties 
Source 

Color Composites (RGB) Pixel Spectral Pohl and Genderen (1998) 

Intensity-Hue-Saturation (HIS) Pixel Spectral Pohl and Genderen (1998) 

Principal Component Analysis Pixel Spatial Pohl and Genderen (1998) 

Wavelets Pixel Spatial Pohl and Genderen (1998) 

High Pass Filtering (HPF) Pixel Spatial Pohl and Genderen (1998) 

STAR-FM Pixel Spatial/Temporal Gao et al. (2006) 

Bayesian Inference 
Decision/

Feature 
Spatial/Temporal Robin et al. (2005) 

Dempster-Shafer 
Decision/

Feature 
Spatial/Temporal Yeng et al. (2006) 

  

The STAR-FM algorithm performs fusion at the pixel level based upon spectral 

similarities. It was selected in this study to produce a fused image of enhanced spatial, spectral, 

and temporal properties, thereby allowing for accurate prediction of TOC concentrations in the 

water body on a daily basis, assuming cloud-cover is not blocking the area of interest. The 

spectral reflectance value for each pixel of the MODIS image is a conglomeration of the surface 

reflectance from each object in the 250 by 250 m area for MOD09GQ and 500 by 500 m for 

MOD09GA. Alternatively, spectral reflectance values provided by the Landsat image are an 

average of objects contained within a 30 by 30 m pixel. The extremely coarse spatial resolution 

of MODIS is the primary justification for performing fusion with Landsat. Integrating the 

enhanced spatial resolution of Landsat into the fusion process is beneficial for small water bodies 

due to the supplementary spatial detail. With regard to the fusion process, the STAR-FM 

algorithm relates the changes between an input MODIS image and another MODIS image taken 

on the day the synthetic image is being generated on. These changes are then applied to a 

Landsat image taken on the same date as the MODIS image, which produces the predicted or 
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synthetic Landsat image (Gao et al. 2006). The computational time requirement for fusing 

Landsat and MODIS images for a lake of this size was under 5 seconds for the computer used in 

this experiment (computer specifications: Intel® Core™ i7-3720QM CPU at 2.6 GHz, 8 192 MB 

RAM, and 500 GB hard drive). Fusion needs to be performed prior to generating TOC 

predictions, and processing time is of the essence in any early warning system. After the machine 

learning model is trained and validated using the fused imagery, it does not need to be retrained, 

except for periodic updates to reflect the evolution of the water quality characteristics of the 

water body over time. One caution in the method is noted in fusing the data streams from 

Landsat and MODIS. Landsat band 1 does not have the same spectral range of MODIS band 1. 

Instead, band 1 of Landsat corresponds to Band 3 of MODIS and so on. Table 2.3 details the 

proper band combinations for the fusion of MODIS and Landsat: 

Table 2.3: Landsat 5/7 and Terra MODIS band comparisons. Matching the bands for fusion is based upon 

corresponding band centers, instead of fusion the same band number. For example, Landsat band 1 is 

fused with MODIS band 3, since they detail similar portions of the electromagnetic spectrum. 

Landsat 5 TM 

Band 

Landsat Bandwidth 

(nm) 

Terra MODIS 

Band 

MODIS Bandwidth 

(nm) 

1 450–520 3 459–479 

2 520–600 4 545–565 

3 630–690 1 620–670 

4 760–900 2 841–876 

5 1550–1750 6 1628–1652 

7 2080–2350 7 2105–2155 

  

As the STAR-FM program translates through the matrix of pixels in the Landsat and 

MODIS images, it may select a central pixel every few steps and reassign the pixel’s value based 

upon candidate pixels that are both near the central pixel and spectrally similar. The candidate 

pixels are then filtered out if they exhibit more change over time than the central pixel, or if the 

spectral features of the candidate pixel are greater than the difference between the spectral 
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features of the central pixel in the Landsat and MODIS images (Gao et al. 2006). Thus, the 

surface reflectance of the central pixel will be generated from the group of selected candidate 

pixels. However, the surface reflectance of the candidate pixels is not simply the average value 

of all surface reflectance values involved. A weighted average is applied based upon how likely 

each of the selected candidate pixels could represent the central pixel. Higher weighting factors 

are assigned if the candidate pixel is spectrally and temporally similar to the central pixel, in 

addition to its geometric distance from the central pixel (Gao et al. 2006). Through this entire 

process, the synthetic Landsat image is generated based on the input candidate pixels in the 

MODIS image taken during the desired prediction date. 

2.2.4. Machine Learning and Genetic Programming 

A number of different machine learning techniques can be applied to identify patterns 

and perform classification or regression within a data set. The IDFM technique uses machine 

learning to determine the complex relationships between independent variables, specifically 

surface reflectance, and the concentration of a water quality parameter. The machine learning 

algorithms can be classified as supervised, unsupervised, and semi-supervised learning 

algorithms. The first type is supervised learning in which labeled training and validation data 

sets are analyzed to develop a function linking input data to the target data. Unsupervised 

learning is most closely related to data mining techniques, since the data has not been 

preprocessed, and the learning algorithm makes discoveries for clustered data based upon 

inherent similarities. Lastly, semi-supervised learning uses both unprocessed and processed input 

data to generate a function explaining the relationship between the input and target values. 

Notable machine learning techniques with regression capabilities include GP, ANN, and Support 
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Vector Machining (SVM) (Doerffer and Schiller 2007, Chen et al. 2008, Ioanna et al. 2011, 

Song et al. 2012, Chang et al. 2013, Nieto et al. 2013).   

GP is a machine learning or data mining method that is one of a class of techniques 

called "evolutionary computing algorithms" based on the Darwin principles. These algorithms 

solve problems by mimicking the natural evolutionary processes (Goldberg 1989, Davis 1991).  

GP can decode system behaviors based on empirical data for symbolic regression in an 

unsupervised learning fashion and examine observation data sets using association, path 

analysis, classification, clustering, and forecasting in the context of data mining via all 

dimensions of the machine learning efforts (Seifert 2004). This is very useful as the user does 

not need to specify a solution procedure or have prior knowledge of the relationship between the 

model inputs and the objective. Holland (1975) first developed genetic algorithms (GA), which 

are the basis of evolutionary computing, and Koza (1992) advanced evolutionary computing by 

developing the GP techniques that are commonly used today.  

The first step of GP is to initialize the population by creating a number of programs 

randomly. The larger the population, the greater the ability to accurately model the problem, yet 

this requires more computational time and computer memory (Francone 1998). Programs in the 

population are evaluated in order to rank their fitness. If a program meets the minimum error 

criteria set by the user, then the GP process is complete. However, if the stop criterion has not 

been achieved, it is necessary to start the next iteration to create an improved generation of 

programs (Francone 1998, Nieto et al. 2013). The new generation is formed by applying 3 

principal search or genetic operators to the better fitting programs in order to replace programs 

with poor performance. The principal genetic operators are as follows: 
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 Reproduction: programs of good fit are copied without change into the new generation. 

 Crossover/Recombination: Crossover exchanges instructions or nodes within best fit 

programs to develop a new program. There are three specific types of crossover that can 

be applied when generating a new program (Engelbercht 2007): 

o Asexual: only one program is used to create the new program 

o Sexual: two programs are used to create the new program 

o Multi-recombination: nodes from more than two programs are used to develop the 

new program 

 Mutation: Random changes are made to the best fit programs, which results in the 

formation of a new program, and thereby, promote genetic diversity within a population. 

It should be noted that mutation is applied probabilistically to all programs of best fit, 

including those that have been selected for crossover. 

The Discipulus® software used in this study has the same methodological flow, and the GP 

algorithm is detailed in the following steps (Francone 1998): 

1. Initialize the population with a default starting size of 500. 

2. A tournament is run using 4 randomly selected programs out of the population. Based 

upon their fitness, 2 programs are retained and the other 2 are removed. 

3. Principal genetic operations are applied to the winning programs to produce 2 

children to replace the losers. The specifics of this process are detailed below: 

a. Copy the 2 winners 

b. Using the default crossover frequency (50%), crossover the copies of the winners 

c. Using the default mutation frequency (95%), mutate one of the copies from step 

3a 

d. Repeat step 3c for the other copy produced in step 3a 

4. Replace the losers with the offspring produced in step 3 

5. Repeat steps 2 through 4 until the run is terminated 

Discipulus® uses an instruction set composed of mathematical operations (additional, 

subtraction, multiplication, division, trigonometry, exponents, and arithmetic), data transfer, 
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stack rotation, and conditions. This means, each instruction can be represented by a mathematical 

equation or logic function, resulting in a white-box model. If only the mathematical operations 

are used as instruction sets, then they can be solved in order to generate a single equation. 

A primary advantage of GP is that the length of a program is only limited by the memory 

capabilities of the computer or software. This allows for programs to grow and evolve without 

constraint until the stop criterion has been achieved. Additionally, little knowledge of the 

relationships between the input and target values is required when using this supervised learning 

technique. Unconstrained program size is also a disadvantage of GP, since lengthy programs 

burden the computer’s resources and take a significant amount of time to develop (Francone 

1998, Nieto et al. 2013). This is because a single program can start with a handful of operations 

and grow to a candidate solution that is comprised of thousands of operations; yet, the increase in 

performance can be negligible (Luke 2000). This is known as code bloat in GP. It is a severe 

issue when dealing with large, complex problems, and developing a GP model under these 

conditions turns into a race against time to obtain an optimal solution before the search 

procedure is unduly hampered with code bloat (Luke 2000, Liu et al. 2007). For example, in a 

study by Luke (2000) for evaluating team strategies in the Robocup Soccer Server (Kitano et al. 

1995), their specific problem was expected to require a full year of evolution time due to its size 

and complexity, but after taking steps to minimize code bloating, their solution time was cut 

down to several months. Even though GP develops a white-box model, the complexity of lengthy 

solutions, which can muddled with code bloat, complicates drawing clear conclusions based 

upon the white-box model. 
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2.3. Methods and Materials 

2.3.1. Study Site 

The William H. Harsha Lake (Figure 2.3) is located in Clermont County, Ohio, roughly 

40 km (25 miles) east of Cincinnati, and covers an area of 8 739  360 m
2
 (2 160 acres).  

 

Figure 2.3: The William H. Harsha Lake is located in Ohio, USA. The intake to the water treatment plant 

is marked with a black dot shown near the northwest corner of the lake. 

 

Since its impoundment, the lake has prevented over $77 million in flood damages, and it has 

generated $32.7 million in visitor expenditures (USACE, n.d.). This valuable community 

resource also serves as a surface water intake for the Bob McEwen surface water treatment plant 

that has a design capacity of 37 600 m
3
∙day

-1
 (10 MGD). The water quality fluctuates seasonally 

as detailed in Table 2.4: 
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Table 2.4: Harsha Lake water quality characterization (Green et al. 2010). 

Raw Water Characterization 

Parameter/Dose Range Average 

Turbidity (ntu) 3.0–38.7 9.1 

UV-254 (cm
-1

) 0.153–0.231 0.18 

pH 7.1–7.86 7.6 

Temperature (°C) 11.5–17.0 - 

Alkalinity (mg∙L⁻¹ as CaCO3) 98–108 103 

Total Organic Carbon (mg∙L⁻¹) 5.6–5.9 5.7 

Total Manganese (µg∙L⁻¹) 17–618 120 

 

2.3.2. Methodology 

The IDFM procedural steps undertaken in this study are detailed in Figure 2.4: 
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1
Landsat and MODIS 

Data Aquisition

Landsat Reflectance 
Bands 1-5,7 (30 m)

MODIS Reflectance Bands 
1-4,6,7 (250/500 m)

Image Processing Steps:
  -Atmospheric Correction
  -Reproject to UTM 16N
  -Crop out Land

Image Processing Steps:
  -Reproject to UTM 16N
  -Resample to 30 m
  -Crop out Land

Landsat Reflectance 
Bands 1-5,7 (30 m)

MODIS Reflectance Bands 
1-5,7 (30 m)

2

Data Fusion3

Fused Surface Reflectance 
Bands 1-6 (30 m)

Ground Truthing Data

TOC Concentration Map 
(30 m)

Data Mining

TOC Prediction Model

4

5
 

Figure 2.4: Methodological flowchart in the TOC concentration retrieval procedures. 

 

The chart is split into five main steps. Step one pertains to acquiring the Landsat and MODIS 

swath path images containing Harsha Lake. The second step involves the procedures required to 

prepare the images for fusion. Data fusion procedures are encompassed in step three; this study 

used the Spatial and Temporal Adaptive Reflectance Fusion Model (STAR-FM), although other 
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candidate pixel selection and fusion algorithms can be used. The fourth step involves 

assimilating the ground-truth data and fused image band data into a machine learning algorithm. 

In this study, Discipulus


 was used to perform the GP modeling analysis for the estimation of 

TOC concentrations via a nonlinear equation to be developed in terms of relevant fused images 

(bands). Lastly, step five specifically relates the GP model to the ground-truth data to train and 

validate the TOC concentration maps based on the band values embedded in the fused images. 

The essential steps are described in the following sections. 

2.3.2.1. Data Acquisition [Figure 2.4; Step 1] 

The ground-truth data for TOC in Harsha Lake were collected by the Army Corps of 

Engineers during 2008 and 2009 and by the US EPA from 2010 to 2012. The date for each 

ground-truth sample is shown in Table 2.5: 
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Table 2.5: Ground-truth acquisition dates. Grey images correspond to data used to train the GP model and 

the data in the blue cells were designated for model validation. 

Date TOC (mg/L) Date TOC (mg/L) Date TOC (mg/L) 

08/20/2008 4.50 06/16/2010 6.90 07/27/2011 6.20 

5/18/2009 8.36 06/16/2010 7.20 07/27/2011 7.70 

6/29/2009 9.12 06/16/2010 7.20 07/28/2011 8.50 

7/6/2009 8.27 9/7/2010 5.92 07/28/2011 11.00 

7/13/2009 8.66 9/8/2010 5.50 07/28/2011 10.00 

7/21/2009 7.77 09/08/2010 5.70 8/1/2011 5.92 

8/3/2009 7.75 09/08/2010 6.70 8/22/2011 5.37 

8/17/2009 7.65 09/08/2010 5.60 08/23/2011 14.00 

8/31/2009 7.33 9/9/2010 5.60 08/23/2011 12.00 

9/14/2009 7.73 09/09/2010 5.80 08/24/2011 11.00 

9/28/2009 6.45 3/2/2011 6.14 08/24/2011 12.00 

10/5/2009 6.33 3/17/2011 6.91 08/24/2011 6.30 

10/26/2009 5.82 4/13/2011 7.35 8/29/2011 5.49 

4/12/2010 8.23 5/23/2011 7.01 10/5/2011 5.38 

4/19/2010 8.96 6/1/2011 7.05 11/2/2011 5.45 

5/3/2010 7.26 6/7/2011 7.57 11/17/2011 5.99 

5/24/2010 7.88 6/13/2011 6.98 05/24/2012 5.70 

6/14/2010 6.72 6/21/2011 5.98 6/13/2012 4.30 

06/15/2010 7.20 7/5/2011 6.34   

06/15/2010 6.90 7/11/2011 7.03   

 

Reflectance data for Harsha Lake were collected from the Landsat 5 TM, Landsat 7 ETM+,
 
and 

Terra MODIS satellites. A comparison between these satellites is presented in Table 2.6: 

Table 2.6: Satellite products utilized in this study. 

Satellite Sensor 
Product 

Selection 

Spatial 

Resolution 

Temporal 

Resolution 

Bands 

Used 

Terra MODIS 
Surface Reflectance 

(MOD09GA) 
250/500 m Daily 1–4,6,7 

Landsat 5 TM 

Landsat 7 ETM+ 
Surface Reflectance 30 m 16 Days 1–5,7 
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MODIS Terra images were obtained from the online Data Pool overseen by the NASA Land 

Processes Distributed Active Archive Center (LP DAAC), United States Geological Survey 

(USGS), and Earth Resources Observation and Science (EROS) Center, located at Souix Falls, 

South Dakota. The USGS also provided the Landsat
 
imagery that was used for this study; 

however, these images were obtained from the Global Visualization Viewer, which is maintained 

by the LP DAAC, USGS, and EROS Center. Dates for downloading MODIS imagery were 

based on two criteria: 1.) each ground-truth date must be cloud-free (see Table 2.5) and 2.) 

remotely acquired on the same day as all Landsat imagery used in this study. As is described in 

greater detail in the data fusion section below, a Landsat image is required before and/or after 

each of the ground-truth dates. If a cloud free Landsat image was not available within two 16 day 

revisit cycles of the ground-truth date, then the ground-truth date was not used, since there was 

insufficient information for data fusion. For example, the first ground-truth sample was taken on 

August 20, 2008. As a result, a MODIS image on this date, as well as Landsat and MODIS 

images on the 16
th

 of August and 1
st
 of September were acquired. For the last ground-truth 

sample taken on June 13, 2012, a MODIS image on this data, in addition to Landsat and MODIS 

images on the 31
st
 of May and the 16

th
 of June were downloaded. 

2.3.2.2. Image Processing and Preparation [Figure 2.4; Step 2] 

The acquired MODIS data are at a level-2G basis, where the data have been 

radiometrically calibrated and atmospherically corrected to account for scattering and aerosols 

(Vermote et al. 2011). The Landsat data is on a level-1T basis, with radiometric and geometric 

corrections (USGS n.d.). As denoted by step 2 of Figure 2.4, ArcGIS, mapping and spatial 

analysis software, was used to process the images in preparation for the data fusion process. It 
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was necessary to perform the following actions on the Landsat images: 1) perform atmospheric 

correction using MODIS 6S radiative transfer code using the LEDAPS toolbox supplied by 

NASA for this operation; 2) carry out reprojection to the Universal Transverse Mercator (UTM) 

zone 16 North; and 3) crop-out land data from around Harsha Lake. Besides, the following steps 

were taken to process the MODIS images: 1) perform reprojection to the UTM zone 16 North; 2) 

carry out resampling to a 30 m spatial resolution, and 3) crop-out land data from around Harsha 

Lake. 

Processing of the images consists of two essential categories, namely: 1) modifying the 

images to have the same projection, pixel size, and scale in order to fuse them, and 2) preparing 

the images to increase fusion accuracy by cropping out the land and narrow portion of the lake. 

In the first processing category, images of disparate geographic map projections cannot be 

accurately compared. Therefore, UTM 16 North projection was used applied to all Harsha Lake 

images to ensure the same viewing angle. Next, only the MODIS images came pre-processed to 

adjust for backscattering effects of the atmosphere. MODIS/6S radiative transfer code was 

applied to algorithmically correct the pixel values to generate more accurate surface reflectance 

values. Resampling of the MODIS imagery to the resolution of the Landsat images was required 

since the STAR-FM data fusion algorithm compares images on a pixel by pixel basis; thus, each 

image needs to have the same number of pixels, rows, and columns. Landsat and MODIS 

surface reflectance products store the reflectance values at different scales. The Landsat product 

stores the surface reflectances on a scale from 0 to 255 (USGS n.d.), and the MODIS data is 

ranges from -100 to 16 000 (Vermote et al. 2011). In order for STAR-FM to compare pixel 

values, each of the images needs to have the same scale. The LEDAPS Processing Toolbox uses 

the MODIS/6S radiative transfer approach (Vermote et al. 1997) to atmospherically correct the 
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Landsat surface reflectance bands (Masek et al. 2006). This is the same procedure used to 

correct MODIS images during level 2 processing. Therefore after applying this toolbox to the 

Landsat images, both Landsat and MODIS data are stored as signed 16-bit integers that are 

scaled from -100 to 16 000.  

The second element of image processing was to crop out the land and narrow portions of 

the lake. This is shown in Figure 2.5: 

 

Figure 2.5: Cropping out narrow channels of the Lake to reduce land surface reflectance contamination. 

 

The rationale behind this approach is to reduce the potential for surrounding land to contaminate 

the fused image. The contamination may occur during the data fusion process, when the STAR-

FM algorithm searches through neighboring pixels. In order to limit the search to just the lake, 

the land has been removed. Additionally, narrow areas of the lake were blacked out; when water 

channels are smaller than MODIS’ 250/500 m resolution, it is likely that a part of the land 

surface is averaged into the pixel value representing the reflectance of the water causing 

contamination.  
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2.3.2.3. Data Fusion [Figure 2.4; Step 3]  

Fused images corresponding to the ground-truth dates were developed for every day a 

ground-truth sample was collected with two notable limitations. The first is that the area of 

interest must be free of cloud-cover, since neither MODIS nor Landsat observe frequencies that 

pierce through clouds. Secondly, both near and off-nadir viewing angles of the lake were used, 

since this is representative of how the IDFM technique would be applied in the field, instead of a 

best case scenario featuring only near-nadir images of the lake. For each ground-truth 

observation shown in Table 2.5, a MODIS image was acquired. For fusion, Landsat and MODIS 

images taken before or after the ground-truth date are required. The accuracy of the synthetic 

image can be increased by using Landsat and MODIS images taken both before and after the 

ground-truth date (Gao et al. 2006). Generation of the fused image is illustrated in Figure 2.6 

with this study site used as an example: 

 

Figure 2.6: A Test of the STAR-FM Algorithm for gap-filling using images of Harsha Lake from the noted 

days in 2009. 
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The top row in Figure 2.6 is three coarse MODIS images (A, B, C) and the bottom row is the 

corresponding fine Landsat images (D, E, F). The individual image pairs A and D, B and E, and 

C and F correspond to satellite images captured on the same date. The three MODIS images and 

the two Landsat images (D and F) on the two adjacent dates were used in the IDFM process. 

Image E is the actual Landsat image taken, and the synthetic image will be compared to this.  

 In reconstruction of past events for gap-filling purposes, a total of five images, three 

MODIS and two Landsat, should be used to increase accuracy of the output image (Gao et al. 

2006). This provides the algorithm with a set of pre and post conditions. Using A, D, and B a 

synthetic image based upon pre-conditions is created. Next, images C, F, and B are used to 

create the post-condition synthetic image. The two synthetic Landsat images based upon pre and 

post conditions are used to generate a single synthetic image. The synthetic image fills the data 

gap between images D and F. The resulting fused product is compared to the actual Landsat 

image shown in Figure 2.7: 

 

Figure 2.7: A Comparison between the true Landsat (E) and synthetic Landsat product (G). 
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To assess the performance of STAR-FM, the correlation between the actual (E) and fused (F) 

Landsat true-color images shown in Figure 2.7 is calculated. The true-color Landsat image was 

created using bands 3 (red), 2 (green), and 1 (blue). The true-color synthetic image was formed 

using the RGB bands of the fused product. Note that the fused image uses bands 3 and 1 of 

Landsat and MODIS for red, 2 and 4 for green, and 1 and 3 for blue. The correlation coefficient 

the two RGB images in Figure 2.7 is 0.7301 and the coefficient of determination is 0.5330.  

 The STAR-FM algorithm is effective at filling in data gaps when pre and post conditions 

are available, but what about using the algorithm for near-real-time monitoring? Post conditions 

will obviously not be available when monitoring images at the present time, yet the STAR-FM 

algorithm process can be manipulated for such applications. Recall that a synthetic image was 

generated for both pre and post condition cases; and, then, it was combined to form the final 

synthetic image. In a near-real-time monitoring situation, the pre-condition image will be the 

final image. Using only pre-condition images (A, D, and B) to predict E is less accurate, and the 

resulting synthetic image yields a coefficient of determination of 0.4147 when compared to the 

true image E. When using images B, C, and F to predict E, a coefficient of determination of 

0.7482 was yielded. This is quite similar to using both pre and post conditions, but it goes to 

show the amount of variability that can be incurred when only using one set of conditions. 

2.3.2.4. Machine Learning and Data Mining [Figure 2.4; Step 4] 

  The GP model used in this study was developed using the Discipulus software package, 

created by Francone (1998). Discipulus is designed to sort through GP models using 

supervised machine learning techniques and determine 30 of the best models based on the fitness 

of the training and validation data. The arithmetic operations selected for training the GP model 
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were addition, subtraction, division, multiplication, trigonometric functions, square root, and 

absolute value. The recommended values of 95% and 50% were used for mutation and crossover 

frequency (Francone 1998). Lastly, the initial program size was set to 80 Mb with a max 

program size of 256 Mb. If an accurate GP model cannot be developed for the provided training 

and validation data sets, then the max program size is gradually increased. This enhances the 

explanatory power of the model by increasing the number of mathematical operations that can be 

used to relate surface reflectance to TOC. This is especially useful for complex, nonlinear 

relationships between the independent and dependent variables, but larger program sizes increase 

the potential for over fitting the model and it can take longer to solve (Francone 1998). 

After the program has finished creating models, the 30 models with the best overall 

performance are saved and analyzed. An advantage of Discipulus


 is the capability to adapt 

current models with new ground-truth data (Francone 1998). As additional TOC samples are 

collected, this allows for the model to be updated to reflect hydrological and anthropogenic 

changes over time. Since Discipulus


 ranks the models based on the average fitness between the 

training and calibration data sets, it is necessary to discern whether the high average fitness is 

due to over-fitting of either the validation or calibration data set. Thus, the model that yields high 

fitness values for both calibration and validation is selected for the GP model used in this study. 

The GP model is presented as a series of mathematical or logic operations that must be applied 

in sequence to the fused surface reflectance band data in order to generate a TOC concentration 

value. Furthermore, since this study proposes the development of an early warning system for 

water treatment plant operators, it is imperative that the selected model be capable of predicting 

peak TOC concentrations in the lake. This ensures that the plant operators are able to observe 
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and track plumes of TOC in the lake that are in the vicinity of the treatment plant’s source water 

intake. With this knowledge, the treatment operations can be adjusted to minimize the 

production of disinfection byproducts. The GP model was tested against a traditional two-band 

model (Vincent 2004) which was solved through a linear regression model in Matlab using band 

ratios instead of individual bands as explanatory variables. The generic form of the two-band 

ratio model is shown in Eq. 2.1: 

CTOC = A*λ1/λ2 + B                                                      (2.1) 

where CTOC is the concentration of TOC, A is the slope, λ1 is the wavelength of the first band, λ2 

is the wavelength of the second band in the ratio, and B is the intercept. The same training and 

calibration data sets used for creating the GP model were employed to train and calibrate the 

two-band model. 

The training set was allotted 67% of the ground-truth data, which corresponds to 39 of 

the grey colored cells in Table 2.5, to aid the training and calibration procedure. The remaining 

33% or 19 ground-truth observations were used for validation. Determining which observations 

were selected for calibration and validation data sets is based purely on the measured 

concentration without regard to the temporal aspects. First, the observation data was sorted from 

low to high values, and then, 67% of the low, medium, and high concentrations were allotted to 

the training and calibration data set. Then the remainder was used for validation. It is necessary 

to ensure that both the calibration and validation data sets are exposed to the widest range of 

TOC values available to increase the accuracy of the model’s prediction capabilities at extremes. 

After training, the validation stage confirms whether the model is well suited for calculating 

TOC concentrations by checking the model’s performance using the validation data set. For 
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example, a model may aptly predict a peak TOC concentration when using the training data set, 

but this may be a result of over fitting or chance if these results cannot be achieved when 

attempting to predict a peak value in the validation data set. The final choice of a model must be 

based on the correct prediction capabilities when both the training and validation data sets may 

exemplify good fitness (Francone 1998). To gain a level of general understanding of the TOC 

characteristics in the lake, an analysis of the ground-truth data is provided in Table 2.7: 

Table 2.7: Ground-truth data analysis. 

Parameter Value 

Ground-truth Time Period 2008-2012 

Number of Ground-truth Samples 58 

Average TOC Value (mg∙L⁻¹) 7.2 

Maximum TOC Value (mg∙L⁻¹) 14.0 

Minimum TOC Value (mg∙L⁻¹) 4.3 

Sample Standard Deviation (mg∙L⁻¹) 1.9 

 

2.3.2.5. Concentration Map Generation [Figure 2.4; Step 5]  

The GP model translates the surface reflectance values to TOC concentrations and maps 

the TOC concentrations throughout Harsha Lake finally. Each pixel of the fused images 

represents a 30 by 30 meter square of the lake, characterizing the surface reflectance at the 

bandwidths specified in Table 2.3. The TOC concentration at each pixel can be obtained by 

using the GP regression equation that is highly nonlinear in terms of surface reflectance values. 

This estimation process is then repeated for each of the pixels making up the lake map. As 

determined by the GP model, certain bandwidths may have a stronger explanatory power in the 

determination of the TOC concentration. It was also likely that in some iterations of the GP 

model, not all bandwidths were used in the determination of the TOC concentration.  
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2.3.3. Statistical Indices for Assessment and Model Selection 

When developing multiple models, methods for comparison must be established to 

evaluate and rank the models. In general, a model is accurate if the predicted values closely 

match the observed values. For this study, model performance was analyzed using four statistical 

indices. The indices include the root mean square error (RMSE), ratio of the standard deviations 

(CO), mean percent of error (PE), and the square of the Pearson product moment correlation 

coefficient (RSQ). The RMSE and CO are given by Eqs. 2.2 and 2.3, respectively:  

N

yy

RMSE

N

i
oiip





 1

)(

                                                      (2.2) 

   














N

i
oioi

N

i
pipi

yy

yy

CO

1

2

1

2

)(

)(

                                                         (2.3) 

where ypi is the i
th

 predicted value and yoi is the i
th

 observed value; n is the number of samples 

taken; 
piy  is the arithmetic mean of the i

th
 predicted value; and 

oiy  is the arithmetic mean of the 

observed value. Ideally, the RMSE should be zero, and a model exhibits ideal performance when 

the CO equals 1. The remaining two statistical indices for judging the estimation accuracy are 

PE and RSQ: 
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Model performance ranks well when the PE approaches zero, and the RSQ should ideally equal 1 

for a good model. 

2.4. Results 

The GP model as an integral part of the IDFM algorithm reconstructed the TOC 

variations over various dates based on the surface reflectance bands of the fused images. To 

substantiate the advantage of the data fusion process for the purpose of comparison, a second 

model was also developed by simply using MODIS surface reflectance. The same data splitting 

techniques described in Step 4 of the Methodology section were applied for calibrating the 

MODIS-based GP model. This addresses the science question aimed at determining whether the 

MODIS or fused MODIS-Landsat will be better inputs for predicting TOC. Both the fused and 

MODIS images were separately processed for 75 runs in Discipulus


. A single run is 

characterized by the Discipulus


 building a model until the maximum size of 256 Mb has been 

reached. Thus, both the MODIS and fused GP models were appropriated equal amounts of 

computational effort. The correlation between the predicted and observed TOC concentration for 

the MODIS surface reflectance training and validation data sets are presented in Figure 2.8. The 

coefficients of determination for the training data and validation data sets are 0.6836 and 0.4570. 

These results indicate a strong correlation for the training data set, and a moderate correlation for 

the validation data set. Examination of Figure 2.8 shows that the model performs well when 

predicting concentrations within one standard deviation of the average TOC value. Yet, the 



 

40 

 

model under-predicts higher TOC concentration values, since a number of predicted TOC values 

fall below the 45 degree line past 9 mg∙L⁻¹. The corresponding correlation plot for the GP model 

using the fused data as inputs is shown in Figure 2.9: 

 

Figure 2.8: Correlation between predicted vs. observed TOC concentrations formulated using the MODIS 

surface reflectance as inputs to the GP model. 

 

Figure 2.9: Correlation between estimated vs. observed TOC concentrations formulated using the fused 

image surface reflectance as inputs to the fusion-based GP model. 
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The fusion-based GP model yields coefficients of determination of 0.8745 and 0.5635 for the 

training and validation data sets. These values entail that a strong relationship exists between the 

predicted and observed values. Unlike the MODIS-based GP model that under-predicted TOC 

values past 9 mg∙L⁻¹, the fusion-based model excels at predicting peak concentrations without a 

bias toward under or over-prediction . 

A more lucid comparison of the MODIS-based GP model in Figure 2.8 and the MODIS-

based GP model of Figure 2.9 is presented by plotting the predicted and observed results as a 

time series in Figure 2.10: 

 

Figure 2.10: Time series plots comparing the predicted TOC values from the MODIS and Fused GP 

Models. The predicted TOC values based on the MODIS surface reflectance share similar accuracy to the 

TOC values with predicted ones using the fused surface reflectance; however, the GP model using the 

fused image surface reflectance as inputs excelled at predicting the peak TOC values.  
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Through visual examination of Figure 2.10, it can be observed that both GP models exhibit 

moderate to strong performance, since the predicted values (dotted lines) replicate the temporal 

trends of observed TOC values in the lake. In comparing the two models, the fused images as 

inputs to the GP model exhibit more accurate estimation of TOC above 9 mg∙L⁻¹. Further 

analysis is difficult to draw by visual examination alone.  

 The four statistical indices presented in the methodology section are used to quantify the 

relative performance between the MODIS-based and fusion-based GP models, as well as a 

traditional two-band ratio model. The resulting two-band model is shown in Eq. 2.6: 

CTOC = -0.04630*v3/v5 + 7.2087                                           (2.6) 

where CTOC = concentration of TOC. Comparison using the four statistical indices is presented in 

Table 2.8: 

Table 2.8: Observed vs. predicted TOC values and indices of accuracy for the traditional two-band model 

and the GP models created from MODIS and fused images. 

Metric 
2-

Band 

MODIS 

GP 

Fusion-

based 

GP 

TOC Obs mean (mg∙L⁻¹) 7.276 7.276 7.276 

TOC Pred Mean (mg∙L⁻¹) 7.276 7.085 7.433 

Percent Difference of the Means (%) 0.000 2.629 -2.166 

Root Mean Square Error (mg∙L⁻¹) 1.716 1.248 0.900 

Ratio of St. Dev. 0.394 0.851 0.855 

Mean Percent Error (%) 5.046 -0.448 3.921 

Square of the Pearson Product 

Moment Correlation Coefficient 
0.1974 0.5628 0.7680 

 

As shown in Table 2.8, the mean predicted values of the two-band model equaled the observed 

mean values. However, a more detailed analysis of the predicted values indicates poor 
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performance. The RMSE of 1.716 mg∙L⁻¹ and the CO of 0.394 are far from the ideal values of 0 

mg∙L⁻¹ and 1. The PE of 5.046% is relatively low. But this is likely due to the fact that the linear 

regression two-band model yielded predicted values close to the observed average of 7.276 

mg∙L⁻¹, and the range of TOC values in the lake were typically between 6 and 9 mg∙L⁻¹. This is 

why it is important to use multiple methods to assess prediction quality. Lastly, the R
2
 value for 

this model was 0.1974, which means that only 19.74% of the variation is explained by the two-

band model. In conclusion, the traditional two-band model exhibited poor TOC prediction 

capabilities across all statistical indices, thus, necessitating a more powerful modeling technique.  

Next, the performance of the GP models is presented. The average values of estimated 

TOC concentrations based on the MODIS-based and fusion-based-based GP models are within 

the range 2.629% and -2.166% of measured TOC concentrations in the lake, respectively. 

However, more systematic analyses are required to examine the relative performance of the GP 

model based on MODIS only data vs. fused (MODIS-Landsat) data. RSME values of 1.248 and 

0.900 mg∙L⁻¹ for the MODIS-based and fusion-based GP models are reasonably close to the 

minimum error of zero, with the fusion-based GP model exhibiting higher accuracy. A CO value 

close to 1 indicates the estimated values are close to the observed values. Both GP model 

performed quite well with the ratios of 0.851 and 0.855, respectively, as opposed to the two-band 

model. With regard to the PE, both models are under 5%, although the MODIS-based GP model 

outperforms the fusion-based GP model by 3.433% with an actual value of -0.488. In principle, 

the higher the levels of accuracy, the closer the PE value is to zero. The negative value indicates 

that the estimated TOC concentrations are lower than the observed counterparts. In terms of 

RSQ, accurate results are depicted as the R
2
 value approaches 1. The values achieved by these 
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two models are 0.5628 and 0.7680, which corresponds to a positive correlation between the 

estimated and observed values. The MODIS-based GP model accounts for a little over half of 

the variation, whereas the fusion-based GP model successfully explains over 75% of the 

variation. 

The fused-based GP model with the aid of data fusion developed to fit the observed data 

curve in Figure 2.10 is explicitly depicted in Appendix A. Variables v0, v1, v2, v3, v4, and v5 

characterize the band data of the fused images (Table 2.9). As previously noted in Table 2.3, the 

Landsat and MODIS images were fused in accordance with their bandwidths, not their band 

numbers. Among the 30 best candidate models being generated, the frequency of use for each 

bandwidth is shown in Table 2.9: 

Table 2.9: Frequency of use for bands in the TOC GP model. 

Variable Band Number Bandwidth (nm) 

MODIS-based GP 

Frequency of Use 

(%) 

Fusion-based GP 

Frequency of Use 

(%) 

v0 
MODIS Band 3 

Landsat Band 1 

459–479 

450–520 
67 97 

v1 
MODIS Band 4 

Landsat Band 2 

545–565 

520–600 
100 100 

v2 
MODIS Band 1 

Landsat Band 3 

620–670 

630–690 
80 97 

v3 
MODIS Band 2 

Landsat Band 4 

841–876 

760–900 
70 93 

v4 
MODIS Band 6 

Landsat Band 5 

1628–1652 

1550–1750 
87 80 

v5 
MODIS Band 7 

Landsat Band 7 

2105–2155 

2080–2350 
63 70 

 

The frequency of use describes how often a variable (a specific bandwidth) was used among the 

30 best GP models developed. 100% frequency of use means that the variable was used to 

compute TOC in all 30 models. In the context of the fusion-based GP model, it can be seen that 
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v1 was used in all of the programs, while v0 and v2 were determined to be of significance in the 

67 to 97 & and 80 to 97% of the programs. When comparing this to the MODIS-based model, it 

is noticeable that although v1 was also heavily used by the program, then the similarities between 

band usage deviates over the subsequent bands.    

2.4.1. TOC map, seasonal changes, and limitations 

For the purpose of applications, model predictability for TOC concentrations can be 

further assessed by reconstruction of the TOC distributions in Harsha Lake. First, the fusion-

based GP model with the solution procedure listed as a series of equations in Appendix A may 

yield the TOC concentration map for the dates of missing high-resolution Landsat imaginaries. 

As an example, the fusion-based GP model developed above was applied based on the proposed 

data fusion process using surface reflectance values collected from mostly cloud-free days in 

June and July of 2011. Fused images and derived TOC concentration maps are shown in Figure 

2.11 for the 158
th

, 164
th

, and 191
st
 day of year in 2011 that were missing high-resolution Landsat 

imageries: 
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Figure 2.11: Data fusion and TOC map generation for June-July 2011. This represents both the gap filling 

capabilities of the IDFM technique and the ability to predict TOC concentrations for cloud free regions of 

the water body. The top row is the daily MODIS images, and the second row is comprised of 2 Landsat 

images. STAR-FM is used to create high resolution synthetic images for ground-truth dates. Surface 

reflectance values at sampling locations in the fused images are used to train the genetic programming 

model for TOC map generation featuring the lake. 

 

MODIS images are available for each of these days, and the Landsat images serve as a pre and 

post reference for conditions on the lake. Using STAR-FM, the high spatial and temporal fused 

images fill in the gaps left by Landsat on the 158
th

, 164
th

, and 191
st
 day of year. The 4

th
 row 

consists of the concentration maps that are generated to detail the spatiotemporal variations and 

concentration of TOC on the lake. A closer inspection of the TOC maps indicates no significant 

spatial variations in concentration levels during individual dates of the 2011 summer season with 

the predicted concentrations falling into a narrow range of 5 and 9 mg∙L⁻¹ with few extreme 
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values. Closer analysis of a TOC concentration map is provided for on 24-May, 2010 (Figure 

2.12): 

 

Figure 2.12: TOC concentration map for Harsha Lake on 24-May-2010. 

 

The concentrations identified in this image range are as low as 5 mg∙L⁻¹ and as high as 15 

mg∙L⁻¹. The average concentrations range between 5.5 mg∙L⁻¹ and 9 mg∙L⁻¹. While the TOC 

concentration is mostly uniform through the lake, the GP model has identified patches of 

extreme TOC levels occurred in the lake. Streams and tributaries feeding into the lake do not 

exhibit an influx or reduction of TOC at these interfaces.  

Seasonal TOC maps provide a visual representation into the dynamics of TOC 

throughout the year. The seasonal TOC maps (Figure 2.13) were generated by grouping the 
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images into seasons (Table 2.10) and averaging the predicted TOC values during the season. The 

average TOC value in the winter, spring, summer, and fall were 7.2 mg∙L⁻¹, 8.0 mg∙L⁻¹, 7.2 

mg∙L⁻¹, and 7.4 mg∙L⁻¹. In the spring, TOC concentrations remained high at 7 to 9 mg∙L⁻¹ and 

homogenous throughout the lake. The TOC level in summer and fall decreased to a range of 6 to 

8 mg∙L⁻¹, and the TOC remained highest toward the western side of the lake. In winter, there 

appears to be a transition in which higher TOC concentrations began to occur in the middle 

portion of the lake.  

 

Figure 2.13: Seasonal average TOC concentration maps predicted by IDFM. 
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Table 2.10: Separation of the sampling data by season. 

Spring Summer Fall Winter 

05/18/09 04/13/11 08/20/2008 09/14/09 07/28/2011 09/28/09 03/02/11 

04/12/10 05/23/11 06/29/09 09/07/10 08/01/11 10/05/09 03/17/11 

04/19/10 06/01/11 07/06/09 09/08/2010 08/22/11 10/26/09  

05/03/10 06/07/11 07/13/09 09/09/2010 08/23/2011 10/05/11  

05/24/10 06/13/11 07/21/09 06/21/11 08/24/2011 11/02/11  

06/14/10 05/24/2012 08/03/09 07/05/11 08/29/11 11/17/11  

06/15/10 06/13/2012 08/17/09 07/11/11    

06/16/2010  08/31/09 07/27/2011    

 

2.5. Discussion 

2.5.1. Spatiotemporal TOC Variations 

The first scientific question addresses the spatiotemporal variations in TOC calculated by 

the fusion-based GP model. Temporal variations in TOC were examined by averaging the 

predicted TOC values in the spring, winter, summer, and fall seasons (Table 2.10). The average 

TOC value in the winter, spring, summer, and fall were 7.2 mg∙L⁻¹, 8.0 mg∙L⁻¹, 7.2 mg∙L⁻¹, and 

7.4 mg∙L⁻¹. Previous studies have reported that TOC values were lowest during the winter 

(Agren et al. 2008; Bayram et al. 2011). Our study likewise found that that winter had one of the 

lowest TOC values, due to low temperatures reducing microbial activity and runoff. Spring 

yielded the highest TOC value in the study, and summer yielded one of the lowest. This was 

largely unexpected, since Bayram et al. (2011) reported that spring TOC values were lower than 

fall and late summer. Agren et al. 2008 similarly found that spring TOC values peaked slightly, 

yet late summer and fall TOC values were still higher due to increased temperature and 

precipitation. Possible explanations can be attributed to differences in a number of variables that 

factor into TOC generation and export, such as regional climate influences, municipal discharge, 
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land usage, and soil types. The fall TOC value was higher than the summer and winter, which 

coincides with the findings of Bayram et al. 2011. 

Figure 2.12 is an example of spatial variations of TOC within the lake, particularly for 

tracking TOC plumes. The accuracy of these plumes cannot be completely verified due to the 

narrow range of available ground-truth TOC concentrations that were used to train the model. 

The majority of the in-situ values used in training were from 6 to 9 mg∙L⁻¹. Nevertheless, from 

Figure 2.10, the fusion-based GP model was able to accurately predict peak TOC values at 11, 

12, and 14 mg∙L⁻¹, which does showcase the potential for plume tracking. For this reason, the 

current fusion-based GP model may not be thoroughly trained to detect events that are 

significantly higher or lower than the narrow range of the sample data. Ideally, a wider range of 

TOC in-situ data would have been provided for the study, as well as samples and the location of 

a major TOC plume detected the lake. However, this could still be explored in a future study due 

to the flexibility of the IDFM technique and the Discipulus® GP software. Discipulus allows for 

GP models to be updated as new in-situ data is obtained, and IDFM can use the new GP model 

and previously derived fused images to immediately develop updated TOC concentration maps. 

Thus, periodic sampling of source water allows a water treatment plant to acclimate their model 

to accurately predict TOC fluctuations due to anthropogenic influences, climate change, and 

weather. This ensures the TOC prediction capabilities of the GP model stays relevant as water 

quality conditions change on a long-term scale. 

2.5.2. Impact of Data Fusion 

The second scientific question in this study aimed to assess whether a GP model would 

have better performance when using fused imagery (Landsat and MODIS) as opposed to using 
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MODIS imagery only. Data fusion was used to create a daily synthetic image with the spatial 

resolution of Landsat (30 m), whereas daily MODIS images have a 250 to 500 m resolution 

depending on the bands used. The enhanced spatial resolution is a significant advantage when 

monitoring water quality in a small lake. This provides reduces the amount of surface reflectance 

from the land contaminating shoreline pixels, since the fused image offers delineation between 

the land, the shoreline, and open water. The finer spatial resolution can detect pollution events on 

the water’s surface that are only 30 m in size, whereas MODIS would require the plume to be 

250 to 500 m. This is crucial for detecting plumes coming toward source water intakes of water 

treatment plants. 

A comparison of Figs. 8 and 9 showed that MODIS-based GP model and the fusion-

based GP model had little error and show negligible bias when predicting TOC concentrations 

below 9 mg∙L⁻¹. However, the MODIS-based GP model exhibited an underestimation bias for 

TOC concentrations at and above 9 mg∙L⁻¹, which was not observed in the fusion-based GP 

model. Possible explanations for this are based on sensor limitations and possible constraints 

imposed while solving the GP model. First, band 1 of the MODIS sensor does not capture the 

entire CDOM spectral feature between 650 and 710 nm. MODIS band 1 is centered at 645 nm 

and its upper range is 670 nm, while the fused image benefits from additional spectral data of 

Landsat band 3, which is centered at 660 nm with an upper range of 690 nm. Another reason for 

the bias of the MODIS-based GP model could be due to the constraints imposed while training 

the GP model. The best GP model was selected after 75 runs, and this may have not been enough 

time for the MODIS-based GP model to decode and explain the relationship at higher TOC 

concentrations. Since both models were afforded the same training time, this indicates that the 
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fusion-based GP model is a better input given how it trained better in the same number of runs. 

Statistical analysis presented in Table 2.8 supports the claim that the fusion-based GP model 

noticeably outperformed the MODIS-based GP model for RMSE, CO, and R
2
.  

2.5.3. GP versus Two-Band Ratio Inversion Modeling 

The third scientific question aimed to compare a traditional two-band model to a GP 

model. Per the results in Table 2.8, both GP models yielded more accurate RMSE, CO, PE, and 

R
2
 values. Two-band models are generally analytically derived based on knowledge of which 

band contains a telltale spectral feature for TOC, then dividing by another band to reduce 

systematic noise, backscattering, or reflectance contamination from other water quality 

parameters. This can be effective in case I waters, where the surface reflectance is the sum of 

clean water and a low number of water quality constituents. This method is less effective in case 

II waters, in which the spectral reflectance is a product of numerous water quality constituents. 

On the other hand, GP is suited for decomposing complex relationships without prior knowledge 

or input. This is especially handy for developing an empirical model specifically tuned to the 

unique water quality characteristics and trends of the lake in question.  

2.5.4. GP Model – Identifying Important Spectral Bands 

The frequency of use explains which bands the GP model found most useful in 

explaining the relationship between surface reflectance and TOC concentration. This discovery is 

the topic of the fourth scientific question. Band data frequency of use is beneficial in determining 

which satellites have the bands necessary to monitor the lake, as well as limiting the amount of 

band data to be downloaded and stored. The frequency of use for each band is given in Table 2.9. 

Overall, v1 and v2 would be commonly used in most occasions for TOC estimation, since these 
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bands correspond with the spectral reflectance peaks for TOC occurring at 550 and 675 nm as 

seen in Figure 2.. The MODIS-based model still prioritizes the use of the v2 band in 80% of the 

best programs, yet v4 was given a slightly higher significance, as it has been used in 87% of the 

programs. By analyzing Figure 2. once more, a possible explanation can be observed for why the 

fusion-based model uses v2 in 97% of the best models, while it is only used 80% of the time in 

the MODIS based models. It can be seen that Landsat is capable of detecting more of the CDOM 

peak occurring at v2 (Band 3 in Figure 2.) than MODIS. This is another advantage of using data 

fusion, since the additional spectral information from Landsat band 3 has been integrated with 

MODIS band 1 to form a single synthetic image. Lastly, in the fusion-based GP model, the 

variables v4 and v5 were used in the least priority, which implies that there is not a strong relation 

between the TOC concentration in the water and TOC’s reflectance at these wavelengths. 

2.6. Conclusions 

Real-time knowledge of TOC distribution in source water can help treatment operation to 

minimize the byproduct generation. Yet how to fuse fusion-based images to achieve essential 

resolutions spatially and temporally by an optimal way requires screening multiple inverse 

modeling in a timely fashion. Using the MODIS and Landsat data streams, the STAR-FM 

algorithm generated accurate fused images with high temporal and spatial resolutions. With the 

IDFM method, the fusion-based GP model was able to fuse different band data to estimate and 

reconstruct TOC concentrations in Harsha Lake for dates of no high-resolution Landsat 

imageries. The calibration and validation plots of the fusion-based GP model had R
2
 values of 

0.5635 and 0.8745, respectively, which excelled beyond that of the GP model developed simply 

using MODIS surface reflectance data. Overall analysis of the GP model showed that the data 
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from the first, second, and third fused bands contributed the most in determining the TOC 

concentrations upon the lake. These bands correspond with spectral ranges between 459-900 nm, 

of which TOC has two spectral peaks around 550 and 675 nm. Upon assessing the model for 

accuracy testing using the RMSE, ratio of standard deviations, PE, and square of the Pearson 

product moment correlation coefficient, it was observed that the fusion-based GP model yielded 

low error for the specific set of fused image input data.  

The IDFM technique proved reliable in estimating TOC concentrations spatially and 

temporally. However, there still exist difficulties that need to be overcome. The GP model was 

still not sensitive enough when it encountered the peak values of TOC within the lake. The 

model robustness should be improved through the collection of a large amount of ground-truth 

data, which will allow for accurate event-based detection event. Furthermore, such a near-real-

time monitoring system using Landsat and MODIS imageries is impractical in areas with 

significant cloud clover. To resolve the deficiency, the integration of band data from microwave 

satellite sensors capable of penetrating clouds may become necessary.  More inverse modeling 

tools with regression capabilities, such as GP, ANN, and SVM, may be compared further to 

improve the estimation accuracy in the future.  
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CHAPTER 3: COMPARATIVE SENSOR FUSION BETWEEN 

HYPERSPECTRAL AND MULTISPECTRAL REMOTE SENSING 

DATA FOR MONITORING MICROCYSTIN DISTRIBUTIONS IN 

LAKE ERIE 

3.1. Introduction 

Human population growth and agricultural use have led to the increase in eutrophic 

conditions in surface waters. The subsequent influx of nutrients has fueled cyanobacteria-

dominated algal blooms in polluted waters in many parts of the globe (WHO 1999). Blooms 

containing toxins that negatively impact human health and the environment are referred to as 

harmful algal blooms (HABs). Not only can HABs form and spread rapidly, but wind and water 

currents will mobilize the blooms (Lekki et al. 2009). The dynamic movement of the HABs 

requires constant monitoring and forecasting, due to the threat posed to humans recreating on the 

lake, commercial fishing operations, and water treatment facilities. The predominant species of 

cyanobacteria that produce cyanotoxins are Microcystis aeruginsa, Microcystis viridis, 

Aphanizomenon flos-aquqe, and Anabaena. While there are a variety of cyanotoxins, microcystin 

is the main toxin produced (WHO 1999, Hitzfield 2000). The aberrant toxicity of microcystin 

can lead to liver cancer, liver failure, and even death (Toivola et al. 1994, WHO 1999). To 

ensure the protection of human health from microcystin exposure, it is necessary to develop a 

reliable method for the near real-time prediction of microcystin within hazardous algal blooms. 

Satellites can provide medium to high resolution images of selected light spectrums. 

Using the detected surface reflectance emissions, predictions of microcystin concentrations are 

possible. The theoretical basis for this claim lies behind the fact that every substance gives off a 

unique spectral signature. As a substance is exposed to different portions of the electromagnetic 
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spectrum, it will reflect a certain percentage of the light. The percentage of reflectance can be 

plotted as a function of wavelength to clearly display which frequencies the substance has an 

affinity for absorbing and reflecting. The unique curve that is produced is known as a spectral 

signature. The substance will have the defining spectral peaks and troughs, almost like a 

fingerprint for that object, where much of the radiation has either been reflected or absorbed. The 

intensity of the reflectance at different wavelengths can be then used to determine the amount of 

the substance present in the water. However, the relationship between reflectance and 

concentration is highly nonlinear for certain substances.  As a result, effective data mining 

techniques must be applied to accurately predict the concentration for an observed spectral 

response.  In this paper, we demonstrate the utility, technical difficulties, as well as data mining 

approaches for near real-time monitoring of microcystin concentrations in Lake Erie. 

3.2. Literature Review 

The prediction of microcystin concentrations in a lake poses a unique problem, since 95% 

of the microcystin is contained within healthy Microcystis cells (Jones and Orr 1994). It is not 

until death or induced rupture of the cell wall that the toxin is released. Thus, in order to generate 

an accurate estimate of microcystin concentration, it is necessary to establish a relationship 

between microcystin and other substances present in the water. These substances will serve as 

indicators of microcystin concentration. Chlorophyll-a levels in Microcystis blooms are related to 

the amount of microcystin present (WHO 1999, Rogalus and Watzin 2008, Rinta-Kanto et al. 

2009). Since Microcystis is a bacterium that uses photosynthesis for energy production, it is 

reasonable to conclude that high concentrations of Microcystis can be linked with elevated 

chlorophyll-a levels. In a study by Budd et al. (2001), algal blooms were detected and tracked 
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using AVHRR and Landsat Thematic Mapper (TM) images to determine chlorophyll-a 

concentrations in the lake. Their study established that it is possible to use surface reflectance 

data to detect and track algal blooms based upon chlorophyll-a levels, and Wynne et al. (2008) 

expanded the depth of this study by using the surface reflectance of chlorophyll-a to specifically 

predict Microcystis blooms, instead of algal blooms in general. It was discovered that 

Microcystis blooms can be distinguished from other cyanobacteria blooms through close analysis 

of the detected surface reflectance at 681 nm (Ganf et al. 1989). Studies by Mole et al. (1997) 

and Ha et al. (2009), had similar findings for chlorophyll-a as an indicator for microcystin in 

algae blooms that have stabilized, and reached the late exponential growth phase and stationary 

phase. In summary, chlorophyll-a is a reliable indicator of microcystin for Microcystis HABs 

that are no longer in the peak of the exponential growth phase.  

Phycocyanin is a pigment that all cyanobacteria contain (WHO 1999), and it has been 

shown that phycocyanin concentrations share a positive correlation with microcystin levels 

(Rinta-Kanto et al. 2009). In a study by Vincent et al. (2004). Landsat TM images in the visible 

and infrared spectral bands were used to generate algorithms to predict phycocyanin 

concentrations with 73.8% to 77.4% accuracy. Thus, the surface reflectance of phycocyanin, 

chlorophyll-a, and Microcystis are suitable indicators for the prediction of microcystin levels in a 

lake. The surface reflectance curves for chlorophyll-a and phycocyanin in surface waters peak at 

525 nm, 625 nm, 680 nm, and 720 nm, and these spectral peaks are aptly captured by Landsat 

and MODIS satellites (multispectral fusion pair), as well as MERIS and MODIS (hyperspectral 

fusion pair). However, a significant drawback of Landsat and MERIS is their 16 and 3 day revisit 

times. Daily revisit time of the MODIS sensor can fill in the data gaps through the use of data 

fusion. However, MODIS alone cannot be used as a substitute because of its poor 250/500 m 
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spatial resolution for the land bands, which is outclassed by Landsat’s 30 m resolution, and its 

1,000 m spatial resolution for the ocean bands, which is enhanced by MERIS’ 300 m resolution. 

We propose an ultimate solution by fusing Landsat and MODIS (MODIS’ land bands) or MERIS 

and MODIS (MODIS’ ocean color bands) pairwise to generate a synthetic image with both 

enhanced spatial and temporal resolutions. Such a synthetic image can enable near real-time 

monitoring of microcystin concentrations, creating seasonal maps, and populating a database 

with information on spatial occurrence and its timing of HABs in the lake and general movement 

patterns. The information provides water treatment, fishing operations, and areal residents with 

the knowledge required in decision-making. 

Having presented the rational for fusing the selected satellites, the next consideration is 

given to the intercomparisons between multispectral hyperspectral remote sensing data. 

Multispectral sensors collect a smaller number of noncontiguous, wide spectral bands (less than 

20) (Belokon et al. 1997, Pabich 2002, Shippert n.d., Bianco n.d.); they typically offer enhanced 

spatial resolution. Hyperspectral sensors, on the other hand, provide greater spectral solution by 

capturing a greater number of spectral bands with a bandwidth of 10 - 20 nm. Since the 

emergency in the 1970s and 80s, hyperspectral remote sensing techniques have advanced 

significantly with the development of the Compact Airborne Spectrographic Imager (CASI) in 

1978 and the proposal of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to the 

National Aeronautics and Space Administration (NASA) in 1983. Due to the small width of each 

band, hyperspectral sensors have a worse lower signal-to-noise ratio than multispectral scanners; 

the latter collect more photons per band, thus are able to lessen the impact of the noise (Chang et 

al. 2004).  
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Multispectral sensors aptly function in the open ocean, from which a few, select bands 

can be used to monitor water quality constituents (O’Reilly et al. 1998). Case 2 water bodies 

(such as the one examined in this study) exhibit significantly more optical complexity than the 

open ocean, and the algorithms utilizing multispectral data products have diminished 

performance in these waters (Hu et al. 2000, Lee and Carder 2002). The benefit of hyperspectral 

sensors is the number of additional bands they provide at a finer bandwidth. The added bands 

with more narrow bandwidths more accurately depict the spectral reflectance curve of the water 

body, as is depicted in Figure 3.1: 

 

Figure 3.1: Comparing the bandwidths between multispectral (Landsat) bands and hyperspectral 

(MERIS) bands (adapted from Vincent et al. 2004). 

 

From Figure 3.1, one can see that the defining peaks and troughs for Landsat are smoothed out 

when the total reflectance is averaged for the bands; therefore, the resulting band is unable to 

reveal detailed reflectance information that may be necessary for differentiating between water 

quality constituents and characterizing the species within a phytoplankton bloom. In comparison, 
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MERIS captures the unique spectral features (peaks and troughs). When combining the multi-

spectral Landsat and hyperspectral MERIS, one may be able to take the advantage of each 

satellite imagery techniques and address the aforementioned short-comings. The application of 

this hypothesis for ocean color remote sensing has been reported by Lubac et al. (2008), which 

concluded that both multispectral and hyperspectral data can be used to quantify phytoplankton 

blooms, yet an enhanced hyperspectral resolution provides superior quantitative assessment and 

monitoring of phytoplankton blooms. Through this approach, the superior detail of hyperspectral 

information introduces more degrees of freedom, and allows for optical models and algorithms 

of higher explanatory power to quantify the nonlinear relationships between surface reflectance 

and concentrations, more accurately classifying species and concentrations of water quality 

constituents, and enhancing the determination of inherent optical properties that vary with depth 

(Chang et al. 2004, Torrecilla et al. 2009).  

The goal of this study was to develop the Integrated Data Fusion and Mining (IDFM) 

technique of combing multispectral and hyperspectral data, and further to quantify the 

performance for providing near real-time monitoring of the spatiotemporal distributions of 

microcystin in a lake . In addition to real-time monitoring, seasonal maps of microcystin were 

retrieved to assess HABs spatial distribution throughout the year. In this paper, we wish to 

explore: 1.) the feasibility in predicting microcystin concentrations in a lake using the IDFM 

technique, 2.) which of the fused band combinations are most useful in determining microcystin 

concentrations in a case-2 inland water body, and 3.) whether hyperspectral data products 

provide a significant advantage over multispectral data products for microcystin prediction. 
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3.3. Methodology 

3.3.1. Study Site 

Lake Erie is one of the five Great Lakes located in North America. Together, the lakes 

make up the largest supply of fresh water in the world. The lakes provide drinking water for over 

40 million Americans, in addition to 56 billion gallons per day withdrawn from the lakes for 

industrial, agricultural, and municipal use (Lekki et al. 2009). Each summer, the Great Lakes are 

threatened by Microcystis blooms, yet the blooms in western Lake Erie are the most severe and 

contain levels of microcystin that are not suitable for drinking water. Throughout the 2000’s, 

Microcystis blooms have increased in frequency and severity (Bridgeman 2005, Ouelette et al. 

2006).  

3.3.2. Satellites Used and In Situ Data 

Surface reflectance data utilized in this study were obtained from Landsat TM, MERIS 

and MODIS sensors. MERIS is a hyperspectral sensor with moderation 300 m resolution, and 

has a 3-day revisit time for sites near the equator. Landsat offers superior spatial resolution at 30 

m; however, the spectral resolution is much poorer than MERIS. The revisit time of Landsat is 

significantly longer at 16 days. In developing the near real-time monitoring system, daily 

satellite images of the area of interest are required for which data fusion techniques are used to 

fill in the data gaps in MERIS and Landsat by using the MODIS sensor of daily revisit time. The 

spatial, temporal, and spectral resolutions of these two satellites central to this technical approach 

are compared in Table 3.1: 
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Table 3.1: Spatial, temporal, and spectral properties of the satellite sensors used in this study. The band 

centers shared between the satellites have been aligned in the table. Band combinations that occur on the 

same row are suitable candidates for spectral fusion.  

Parameters Hyperspectral Sensor Pair  Multispectral Sensor Pair 

 MERIS 
MODIS TERRA 

(ocean bands) 

 
Landsat TM 

MODIS TERRA 

(land bands) 

Product MER_FR_2P MODOCL2  LT5 MODO9 

Spatial Resolution 300 m 1000 m  30 m 250/500 m 

Temporal Resolution 1-3 days 1 day  16 days 1 day 
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1: 412 ± 10 8: 413 ± 15  1: 485 ± 35 3: 469 ± 10 

2: 443 ± 10 9: 443 ± 10  2: 570 ± 40 4: 555 ± 10 

3: 490 ± 10 10: 488 ± 10  3: 660 ± 30 1: 645 ± 25 

4: 510 ± 10   4: 840 ± 60 2: 859 ± 18 

 11: 531 ± 10  5: 1650 ± 100 6: 1640 ± 12 

5: 560 ± 10 12: 551 ± 10  7: 2090 ± 130 7: 2130 ± 25 

6: 620 ± 10     

7: 665 ± 10 13: 667 ± 10    

8: 681 ± 10 14: 678 ± 10    

9: 708 ± 10     

10: 753 ± 10 15: 748 ± 10    

11: 760 ± 10     

12: 779 ± 10     

13: 865 ± 10 16: 869 ± 15    

 

As shown in the table, MERIS is fused with the ocean color bands of MODIS. The pixel level 

data fusion of STARFM requires input images to be spectrally similar. Accordingly, Landsat TM 

were fused with the land bands of MODIS. 

The National Oceanic and Atmospheric Administration (NOAA) is the sole provider of 

the in situ data for microcystin concentration. NOAA collects surface water samples in western 

Lake Erie, when probable blooms are identified based on their analysis of satellite images. 

Samples are taken at the surface to provide surface microcystin concentrations that coincide with 

the surface reflectance observed in satellite data products. ELISA techniques are used to quantify 

total microcystin concentration. In total, 44 microcystin measurements were made from 2009 to 

2011 available for ground-truth (Table 3.2). These data only include those with sampling 
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locations free of cloud-cover, land aerosol contamination, and significant suspended sediment 

levels in the corresponding satellite images.  

Table 3.2: Ground-truth samples were taken at various sites in western Lake Erie on these days. 

 Jun. Jul. Aug. Sep. 

2009  7,14   

2010 28 26 2,16,30 2 

2011  12 11 14 

 

3.3.3. Methodology 

The IDFM technique for the prediction of microcystin is shown in Figure 3.2.  It is 

designed to fuse satellite data streams and apply machine-learning algorithms to derive a 

working model relating the data streams to the desired output parameter. For this study, Landsat, 

MERIS, and MODIS surface reflectance imagery serve as the data streams, and the estimated 

concentration of the toxin microcystin is the desired output parameter. Data mining techniques 

are applied to incorporate data into a single image for analysis by machine learning techniques, 

which create prediction models for near real-time monitoring and data gap-filling applications.  
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Figure 3.2: Methodological flowchart for the IDFM procedure using hyperspectral or multispectral data 

 

The IDFM technique consists of five main steps. Step one is the acquisition of the surface 

reflectance data from MERIS and MODIS. The second step formats the images for fusion 
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followed by the application of data fusion techniques and algorithms. This study employed the 

Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to fuse the 

MODIS (ocean bands) and MERIS pair, and also the MODIS (land bands) and Landsat pair. In 

Step four, the synthetic images and ground-truth data were used as inputs for data mining. A 

genetic programing (GP) model was trained in Discipulus to create an explicit, nonlinear 

equation relating the fused band data to the ground-truth data. Lastly, the fifth step uses the GP 

model created in step four to compute microcystin concentration maps using the fused band data 

generated in Step Three (Figure 3.2). 

3.3.3.1. Data Acquisition [Figure 3.2; Step 1] 

Surface reflectance data for Lake Erie were collected from the ENVISAT MERIS, Terra 

MODIS satellite, and Landsat TM sensors. Level 2, ocean-band images for 2009-2011 from the 

Terra MODIS satellite were downloaded from the online repository through the NASA Ocean 

Color Web. Since multiple ground-truth samples were taken at different locations on the same 

day, the MODIS images were inspected for cloud cover at each of the locations. The level 2 

image was downloaded as an HDF-EOS image, only when at least one location was not 

obstructed by cloud cover. The same criterion was applied to the rest of the satellite data 

acquired. Additionally, Level 2, land-band images for Terra MODIS were downloaded from the 

online repository overseen by the NASA Land Processes Distributed Active Archive Center (LP 

DAAC), United States Geological Survey (USGS), and Earth Resources Observation and 

Science Center (EROS). Level 2, full resolution MERIS data was obtained through the European 

Space Agency (ESA). Failure of the MERIS sensor in 2012 prevented usage of ground-truth data 
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during this time period. Lastly, the Landsat TM data was obtained through the USGS by way of 

the Global visualization Viewer, which is maintained by LP DAAC, USGS, and EROS.  

3.3.3.2. Image Processing [Figure 3.2; Step 2] 

The MODIS images were preprocessed at a level 2 basis. This includes the 

radiometrically calibrated data that were atmospherically corrected for aerosols and scattering 

(Vermote et al. 2011). Full resolution MERIS data came processed on a level 2 basis, with 

radiometric, geometric, and atmospheric corrections (ESA 2006). Landsat data came processed 

on a level-1T basis with radiometric and geometric corrections (USGS, n.d.). Because the fusion 

process requires input image pairs to have the same bit-depth and spatial resolution, the input 

images were processed in ArcGIS, a mapping and spatial analysis software. Specifically, MERIS 

images were processed by: 

 Reproject to the Universal Transverse Mercator (UTM) zone 17 North 

 Crop out land data surrounding Lake Erie 

The MODIS ocean-band images were processed in a similar manner: 

 Reproject to UTM zone 17 North 

 Resampling to the 300-m spatial resolution to match those of MERIS 

 Land data was cropped out from around Lake Erie 

 Surface reflectance values were recalculated to using the same offset and scaling 

applied to MERIS data 

The MODIS land-band images were processed in a similar manner: 

 Reproject to UTM zone 17 North 

 Resampling to 30 m spatial resolution to match Landsat 

 Land data was cropped out from around Lake Erie 

 Surface reflectance values were recalculated to using the same offset and scaling 

applied to MERIS data 

Landsat images were processed as follows: 
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 Atmospherically correct Landsat images using the LEDAPS Processing software 

available through NASA 

 Reproject to UTM zone 17 North 

 Land data was cropped out from around Lake Erie 

The image processing consists of three categories of actions: 1) modification of the geometric 

projections, pixel size, bit depth, and scale in order to fuse them properly, 2) atmospheric 

correction, and 3) preparation of the image to increase the accuracy of the fused image by 

removing land contamination from the original images. With regard to the first category, the 

images need to have the same geographic projection and scaling prior to fusion. Otherwise data 

for the same pixels between the satellite pairs becomes incomparable, because they represent 

different swaths of land and have differently scaled values. In this study, all images were 

projected to the UTM 17N. Additionally, the MODIS ocean-band data were resampled to match 

the resolution of MERIS and Landsat. In color modification, the MODIS ocean color band 

surface reflectance values were scaled upward to match those of MERIS; Because of the 

dimensionless integer values in MERIS, integer values are required for input into STARFM. 

This ensures that both input images have the same number of pixels, enabling the pixel by pixel 

comparison techniques used by STARFM. Initially, the Landsat and MODIS data are not the 

same bit depth, but atmospheric correction using the LEDAPS Processing tool scales the Landsat 

values from 0—255 to -100—16,000 (Vermote et al. 2002, Masek et al. 2005). This is because 

the same MODIS 6S radiative transfer techniques are applied to correct the Landsat data.  

For the other two categories, atmospheric correction is needed to remove the scattering 

effects of the atmosphere from the raw data, thus, producing surface reflectance instead of top of 

atmosphere radiance. The last category of processing was performed on all images with the 

purpose to mask the pixel values for the land surrounding Lake Erie. This step is required to 
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prevent fusing land pixel values with surface water values during processing with the STARFM 

algorithm.  

3.3.3.3. Data Fusion [Figure 3.2; Stage 3] 

A fused image is created by the algorithmic fusion of the spectral, temporal, and spatial 

properties of two or more images (Genderen and Pohl 1994). The resulting synthetic or fused 

image has all the characteristics of the input images, and incorporates object’s defining attributes 

into a single image with a potential to increase the reliability of the data (Pohl and Genderen 

1998). Fusion of spatial and temporal properties on a pixel by pixel basis was required for this 

study based on the STARFM algorithm by NASA. For this study, the algorithm was used to fill 

in data gaps caused by the 1-3 day revisit time of MERIS using MODIS ocean color bands, and 

the 16 day revisit time of Landsat using MODIS land color bands. The Landsat and MERIS 

images are of higher quality than MODIS, but they are sparse in time. As a result, MODIS data 

are used to capture temporal changes during the periods of data gaps. The overall workflow of 

the STARFM algorithm is detailed in Figure 3.3: 
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Figure 3.3: Procedural flow for the STARFM algorithm as shown for the MODIS and Landsat fusion pair. 

The same process is applied when using MERIS (substitute for Landsat) and MODIS ocean color products 

(Gao et al. 2006). 

 

The methodology described here is data fusion using the Landsat and MODIS images as the 

input pair; the same approach applies for the MERIS (fine spatial resolution image) and MODIS 
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pair. In order to generate a synthetic Landsat image L0 (the higher spatial resolution image) to fill 

in the data gap at time t0, a MODIS image M0 from that day is required. This MODIS image is 

referred to as the predicted MODIS in following discussions. Next, a temporally analogous 

MODIS Mk and Landsat Lk image pair are required from before or after the prediction date t0. 

The input image pair (Mk and Lk) obtained for date tk serve as a boundary condition detailing how 

the area of interest looked prior to or after t0. The dates (t0 and tk) of the input and predicted 

images should be as close as possible, because the chance for significant spectral change 

between the two images increases with time. In the case of the Landsat input image, it would 

preferable be from the next 16 day revisit cycle. Acquiring these images is step 1. 

Step 2 involves selecting a central pixel from the Lk image. This is a sequential process, 

which starts with the first pixel in the image and then moves to the second pixel, etc. During each 

round of iteration, the central pixel value in Lk, Mk, and M0 is the same. Step 3 identifies the 

candidate pixels which will be used to predict the reflectance of the central pixel in L0. 

Unsupervised classification is performed on pixels that fall within the search box encompassing 

the central pixel; the user defines the size of the search box. Pixels sharing the same 

classification type as the central pixel are then selected as candidate pixels. Step 4 is designed to 

rank the candidate pixels based on three criteria that determined how much they are related to the 

central pixel. From Step 4a, the spectral differences between the candidate pixels in the input 

MODIS and Landsat are computed, as shown in Eq. 3.1 (Geo et al. 2006): 

     | (        )             |                                              (3.1) 

where xi corresponds to a row in the image, yj denotes a specific column, L(xi,yj,tk) refers to a 

specific pixel in the input Landsat image, and M(xi,yj,tk) refers to a specific pixel in the input 
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MODIS image. Recall that the spatial resolution of MODIS can be up to 500 m, compared to the 

30 m of Landsat. As a result, the spectra of objects within the 500 m are averaged for the 

MODIS pixel. This step determines how well the spectral reflectance of the MODIS pixel 

compares to the Landsat pixel value. If the two have minimal spectral differences, a small value 

for Sijk will be computed and a high weighting will be assigned to that candidate pixel. Step 4b 

compares the spectral changes that occur temporally in the input and predicted MODIS images, 

as detailed in Eq. 3.2 (Geo et al. 2006): 

       (        )   (        )                                           (3.2)                     

where M(xi,yj,t0) refers to a specific pixel in the predicted MODIS image. A large value of Tijk 

indicates that there has been significant change in the water quality at this candidate pixel, and it 

is assigned a lower weighting. Step 4c follows the basic logic that candidate pixels closer to the 

central pixel should receive a higher weighting, as shown in Eq. 3.3 (Geo et al. 2006): 

         
√(   ⁄    )

 
 (   ⁄    )

 

 
                                             (3.3) 

where w is the user defined search box side length, xw/2 is row of the central pixel, yw/2 is the 

column of the central pixel, and A is a constant relating the importance of the spatial distance Dijk 

to the spectral Sijk and temporal Tijk distances. Candidate and central pixels that are close together 

will likely exhibit similar spectral changes over time, whereas a candidate pixel farther from the 

central pixel is less spatially similar and it receives a lower weighting. Step 4d combines 

individual ranking criteria (Dijk, Sijk and Tijk) to form an overall weighting factor for each 

candidate pixel. This is accomplished in Eqs. 3.4 and 3.5 (Geo et al. 2006): 

       (        )    (        )                                       (3.4) 
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where B is a scale factor and Wijk is the combined weighting factor. The value for B is 10,000 

when using LEDAPS reflectance products, and a value of 54,645 was used for the MODIS ocean 

color and MERIS pair, since a scaling factor of 1.83*10
5
 is applied to MERIS products to store 

them as an integer.  

Step 5 further refines the selection of candidate pixels based on two conditions shown in 

Eqs. 3.6 and 3.7 (Geo et al. 2006): 

       (   ⁄     ⁄    )   (   ⁄     ⁄    )                                        (3.6) 

       (   ⁄     ⁄    )   (   ⁄     ⁄    )                                        (3.7) 

Eq. 3.6 requires that candidate pixels in the input image pair exhibit less spectral change than the 

central pixels, and Eq. 3.7 requires that candidate pixels in the input and predicted MODIS 

images show less temporal change than the central pixels. Otherwise, the pixel is considered a 

“worse neighboring pixel” and it is not used for the predicting the surface reflectance of the 

central pixel in the synthetic image. Now that a suitable subset of candidate pixels have been 

related to the central pixel, the predicted surface reflectance for the central pixel in the synthetic 

image is performed, as shown in Step 6. Steps 2-6 are repeated for all of the pixels. The entire 

process of summed up in Eq. 3.8 (Geo et al. 2006): 

       ∑ ∑ ∑      [ (        )   (        )   (        )]
 
   

 
   

 
                  (3.8) 

where L(t0) is the synthetic Landsat image formed using spatial information from the fine spatial 

resolution Landsat image and the temporal changes from the coarse MODIS images. It should be 
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noted that pixels containing clouds cannot be used for the fusion process, and they must be 

masked out. Furthermore, if there is a great deal of change between the predicted date and a 

boundary image or one of the boundary images exhibits a significant temporal difference, then 

the fused results will be less accurate. Lastly, this explanation only showed one pair of input 

images being used to generate the synthetic image. If an additional input pair is used the results 

can be improved (Geo et al. 2006). Think of this as providing the algorithm with a set of both pre 

and post conditions, instead of just one. This study provided the algorithm with both pre and post 

condition, as long as they were cloud-free and taken within 2 revisit cycles of the prediction date. 

3.3.3.4. Data Mining [Figure 3.2; Step 4] 

The IDFM technique permits the use of numerous machine learning techniques to derive 

an explicit equation or black box model relating the fused surface reflectance data to the ground-

truth observations. Notable data mining and machine learning algorithms include Genetic 

Programming (GP), Artificial Neural Networks (ANN), ANN and Adaptive Resonance Theory, 

Constrained Optimization Techniques, Adaptive Dynamic K-means, Principal Component 

Analysis, and Support Vector Machines (SVM). The GP model for this study was created using 

the Discipulus software package. The user provides the software with inputs and outputs, which 

are used to train and calibrate the model. During training, the accuracy of a model is determined 

using least-squares. Discipulus identifies 30 of the best programs, and the model exhibiting the 

highest fitness is usually selected (Francone 1998).  

The GP models were compared against a traditional two-band model, which was solved 

through a linear regression model using band ratios instead of individual bands as explanatory 

variables (Vincent et al. 2004). The generic setup for a two-band model is shown in Eq. 3.9: 
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                                                              (3.9) 

where Rrs(λ) is the atmospherically corrected surface reflectance at the band center λ. The 

coefficients a and b denote the slope and intercept obtained through regression. Additionally, a 

spectral slope two-band model was included in the analysis (Dash et al. 2011). The spectral slope 

is calculated using Eq. 3.10: 

      
               

       
                                                         (3.10) 

A non-linear exponential fit was used to determine the spectral slope coefficients relating the 

exponential increase of absorption with wavelength for chlorophyll and phycocyanin. For both of 

the models, band combinations were compared to determine the two bands possessing high 

correlation with microcystin and PC estimation (both indicators of Microcystis). The same 

training and calibration data sets used for creating the GP models were employed to train and 

calibrate the two-band model. 

3.3.3.5. Concentration Map Generation [Figure 3.2; Step 5] 

Microcystin concentration maps for western Lake Erie are generated by applying the GP 

model to the fused data product created in step 3. For each pixel of the fused image, there are six 

surface reflectance values, one corresponding to each band from MODIS and MERIS. For this 

study, these band values are used as variables in the explicit equation created from the GP model. 

As determined by the GP model, certain band values will share a strong relationship in the 

determination of the microcystin concentration, while others may offer weak explanatory power. 

Thus, the GP model uses the fused surface reflectance values of the pixel to predict the 

microcystin concentration at that location. After this process is applied to the entire lake, a clear 
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depiction of microcystin blooms is available. Analysis of these maps can lead to the discovery of 

yearly problem spots, factors that contribute to microcystin generation, and probable directions 

of travel for the blooms. 

3.4. Results and Discussion 

3.4.1. Method Reliability 

An IDFM-based early warning system for quantifying toxin levels in algal blooms using 

satellite remote sensing data depends upon two primary constituents for success: 1.) accurate 

surface reflectance data of the water body and 2.) a reliable algorithm for predicting microcystin 

concentration. This section will quantify the advantages of using data-heavy hyperspectral 

products (MERIS and MODIS ocean color bands) over multispectral products (Landsat and 

MODIS land bands) using traditional two band inversion models and more computationally-

intensive GP models. As detailed in Table 3.2, 44 ground-truth samples were used to train and 

calibrate the models. 60% of the input data was used to train the models, and the remaining 40% 

was used to validate the performance of the model. The method for splitting up the data into 

training and calibration sets is as follows: 1) order the ground-truth values from low to high 2) in 

an alternating manner, assign data to the training and validation data sets. This procedure 

exposes the models to the same range of microcystin concentration values during training and 

validation. 

While the traditional two-band models will always yield the same coefficients when 

solved using regression techniques, the equation and performance of each GP model will vary 

during different runs. This is a result of the random starting weights and the fundamental 

methodology used during model creation. To lucidly depict the variation and average 
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performance of the GP models, Discipulus was used to train 5 models for both multispectral and 

hyperspectral inputs. The coefficient of determination, time required to computing each model, 

and the run number of each model are detailed in Table 3.3: 

Table 3.3: Statistical comparison between GP models created using fused multispectral and hyperspectral 

data sets. 

 Model Number 1 2 3 4 5 AVG 
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R2 0.8425 0.7931 0.7683 0.8449 0.8344 0.8166 

Run Time (s) 194 272 246 92 5 162 

Run Number 34 43 40 26 4 29 
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R2 0.8243 0.9270 0.8847 0.9177 0.8879 0.8883 

Run Time (s) 211 450 437 932 389 484 

Run Number 30 50 48 71 43 48 

 

The GP models using fused hyperspectral data products took 322 seconds longer to solve on 

average, yet the resulting coefficient of determination was 0.8883, which is 0.0717 greater than 

the coefficient of determination derived from fused multispectral data products. The 

multispectral solutions had shorter run times, since they stopped improving earlier on in the 

model development. The greater coefficients of determination for the hyperspectral GP models is 

attributed to the finer band widths (refer to Figure 3.1), which allows for telltale peaks and 

troughs of chlorophyll-a and phycocyanin (indicators of microcystin) to be more readily 

identified. An interesting observation is made by analyzing the run times for the multispectral 

GP models. The 5
th

 model was derived in a mere 5 seconds, while the next closest solution was 

obtained in 92 seconds. The order of magnitude difference is rare, yet it is due to randomly 
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generated starting weights and randomly selected input data that are used to initiate model 

formulation. In this case, the program stumbled upon an excellent combination of parameters for 

determining the relationship between surface reflectance and microcystin concentration. 

Verifying that the model has appropriately related the band data from the fused images to 

the microcystin ground-truth data is accomplished through a least squares analysis between the 

observed and the predicted microcystin values. The best model is selected based on the 

coefficient of determination, fitness level achieved, and a visual confirmation that the model can 

accurately identify peak microcystin values. Identification of high microcystin values is 

imperative for an early warning system. Based on these criteria, the fourth fused multispectral 

GP model and the second fused hyperspectral GP model from Table 3.3 were selected for further 

analysis. The predictive capabilities of 3 GP models developed from pure MERIS (A & D), 

fused multispectral data (B & E), and fused hyperspectral data (C & F) are presented in Figure 

3.4: 
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Figure 3.4: Time series plots in the left column exhibit the predictive performance of a pure MERIS GP 

model (A), a fused multispectral GP model (Landsat and MODIS land bands) (B), and a fused 

hyperspectral GP model (MERIS and MODIS ocean color bands) (C). As can be seen in images A, B, and 

C, the models aptly predict peak microcystin values; however, the ability to predict low microcystin values 

varies between the models. In A, it can be seen that the predicted values at low concentrations show 

mediocre correlation with the observed values. From image B, the model has a horizontal line for 

predicting observed values below 0.3 µg∙L⁻¹. The hyperspectral GP model (C) having the best success at 

estimating the microcystin at low concentrations. For images in the right column (D, E, and F), the 

predicted microcystin values have been plotted against the observed values to accentuate any biases that 

are present in the predicted values. 

 

The MERIS GP model (A & D) served as a reference to compare the fused GP models (the two 

GP models derived using the fused spectral data as inputs) to. Only 26 data points were available 
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to generate the MERIS model, compared to 41 data points for the fused models; yet the pure 

MERIS model actually had the best performance with a coefficient of determination equal to 

0.9469 and admirable capacity at predicting peak values. More data points were available for the 

fused models, due to the additional information provided by fusion with MODIS. The MERIS 

GP model obviously requires less computational power and data storage requirements to 

develop, since data from only one satellite sensor is necessary. But, before the fused GP models 

are characterized as underperforming, their inherent advantages should be discussed. The revisit 

time of MERIS is up to 3 days in length, which leaves sizeable data gaps. The fused GP models 

are more reliable and provide a better early warning system because they are able to provide 

medium to high resolution data for generating microcystin concentration maps on a daily basis. It 

should be noted that the MODIS ocean color bands are capable of providing similar spectral data 

on a daily basis; however, the spatial resolution is over 3 times coarser (1000 m) than the fused 

hyperspectral product (300 m). In summary, the drawback of additional computing power and 

storage capacity required to formulate the fused hyperspectral GP models is outweighed by the 

benefits of daily, 300 m concentration maps with comparable performance. 

In analyzing the multispectral (B & E) and hyperspectral (C & F) performance, the GP 

model created from the fused hyperspectral data yields a better coefficient of determination of 

0.9269 compared to 0.8449. Both of the models are capable of predicting peak microcystin 

values, which is a necessary function for delineating between a harmful algal bloom laced with 

microcystin and an algal bloom comprised of nontoxic algal species. The predictive capabilities 

of the fused hyperspectral GP model excelled at predicting microcystin concentrations less than 

1 µg∙L⁻¹, while the multispectral model simply flatlines in this region as detailed in Figure 3.4B. 



 

88 

 

The difference in predictive power in this region is also identified when comparing images E and 

F. As seen by the horizontal set of data points in image E, the fused multispectral GP model 

consistently underestimates low microcystin values. The fused hyperspectral GP model shown 

by image F has the advantage of more accurately predicting low microcystin values, which 

allows for the identification of HAB formation at an early stage. As a result, these areas can be 

more closely monitored for continued HAB formation. This is also useful for assessing water 

quality in environmentally sensitive areas. The near real-time early warning system with more 

accurate microcystin prediction at all concentrations is paramount, and the GP model formulated 

from fused hyperspectral data successfully achieved this.   

3.4.2. Model Predictability 

To compare predictability between the GP models and traditional inversion methods, a 

two band ratio model and a spectral slope model were used (Vincent et al.  2004, Dash et al. 

2011).  The ideal bands for the two band models were found by testing all possible band 

combinations and choosing which yielded the highest coefficient of correlation and fitness. For 

the GP models, all of the bands were supplied as inputs to Discipulus, and the program 

determined the bands that shared a relationship with the microcystin concentration. Comparing 

the two band models along with the GP models was done using 4 statistical indices: the root 

mean square error (RMSE), ratio of standard deviations (CO), mean percent error (PE), and the 

square of the Pearson product moment correlation coefficient (RSQ = R
2
). The results are 

presented in Table 3.4 with special attention to the computational time required to solve the 

models: 
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Table 3.4: GP and two-band models using multispectral and hyperspectral surface reflectance input data 

are evaluated using 4 indices of accuracy. Bolded values indicate the two models exhibiting the highest 

performance in the assigned statistical category. The computational time is the amount of seconds required 

to generate the model. As expected, machine learning methods took longer to solve than regression 

techniques. The fused hyperspectral input provided the most accurate results overall. 

 

Fused Multispectral Input* Fused Hyperspectral 

Input** 

Two-

Band 

Ratio 

Model 

Spectral 

Slope 

Model 

GP 

Model 

Two-

Band 

Ratio 

Model 

Spectral 

Slope 

Model 

GP 

Model 

Observed Microcystin Mean (µg∙L⁻¹) 0.6718 0.6718 0.6718 0.6718 0.6718 0.6718 

Predicted Microcystin Mean (µg∙L⁻¹) 2.226 0.1792 0.6360 1.008 0.3571 0.5936 

Root Mean Square Error (µg∙L⁻¹) 1.348 1.340 0.3451 1.356 0.7583 0.3530 

Ratio of St. Dev. 0.8270 0.1238 0.6787 0.5540 0.5589 0.6837 

Mean Percent Error (%) 87.57 5.251 38.07 61.87 2.177 25.01 

Square of the Pearson Product 

Moment Correlation Coefficient 
0.02393 0.09625 0.8449 0.2710 0.7062 0.9269 

Computational Time (Seconds) < 1 < 1 92 < 1 < 1 450 

               *Fused Multispectral Input Pair: Landsat and MODIS land bands 

         **Fused Hyperspectral Input Pair: MERIS and MODIS ocean color bands 

 

The observed microcystin mean values are the same for each of the models, since they share the 

same set of ground-truth data. The next point of detail is that the traditional two-band models 

performed worse than the spectral slope and GP models. The spectral slope models performed 

poorly when using multispectral input values (R
2
 = 0.09625), but this model performed 

significantly better for the hyperspectral surface reflectance inputs (R
2
 = 0.7062). This is likely 

due to the quality of the hyperspectral data. As previously mentioned, the multispectral data 

covers a wide portion of the electromagnetic for each band. This often leads to spectral peaks 

and troughs becoming averaged with nearby data; thus, losing its shape and detail. Hyperspectral 

data is better suited for the spectral slope model for microcystin prediction, since the defining 

features in the spectral reflectance curves for chlorophyll-a and phycocyanin are captured. As a 

result, the clearly delineated peak or trough values produce a lucid response when analyzed with 
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the spectral slope model. The next comparison is focused on the GP models. The hyperspectral 

GP model underestimates the mean observed microcystin value by 0.0782 µg∙L⁻¹, while the 

multispectral GP model is much closer to the mean with an average underestimation of 0.0338 

µg∙L⁻¹. Recall from Figure 3.4B that the multispectral model often overpredicted the microcystin 

values at low concentrations, yet it underpredicts values close to 1 µg∙L⁻¹. The hyperspectral 

model matched the observed microcystin values more closely, but this model underestimated 

concentrations more often than it overestimated concentrations. The GP model using 

hyperspectral data yielded an RMSE value of 0.3530 µg∙L⁻¹, which is slightly worse than the 

0.3451 µg∙L⁻¹ obtained by the multispectral GP model. Both of these minor shortcomings for the 

hyperspectral GP model are compensated for by the improved performance with regard to the 

CO, PE, and R
2
 values. The multispectral and hyperspectral GP models had CO values of 0.6787 

and 0.6837, which are close to the ideal value of 1. The hyperspectral GP model yielded a PE of 

25%, while the multispectral GP model had 13.06% higher error. With regards to the R
2
 values, 

both models exhibited strong statistical significance and a positive correlation with values of 

0.8449 for the multispectral GP model and 0.9269 for the hyperspectral GP model. In 

conclusion, the GP models are better suited for determining the complex, nonlinear relationship 

between microcystin and surface reflectance, and hyperspectral surface reflectance inputs 

yielded more accurate results than multispectral surface reflectance inputs.  

Analysis of the computational time required to derive the models provides interesting 

theoretical insights. The drawback for using machine learning techniques is the time required to 

retrieve and formulate the nonlinear models. For the purpose of comparison, the traditional 

models were also solved using regression techniques. Computational time required for solving 
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the multispectral and hyperspectral GP models are 92 and 450 seconds respectively. The 

hyperspectral spectral slope model actually yielded reasonable predictions for microcystin. 

Machine learning techniques typically take longer to solve when provided with a significant 

amount of ground-truth data. This would be a slight advantage for the hyperspectral spectral 

slope model, since it could serve as a way to quickly assess water quality in an area, while the 

primary GP model is trained. Of course, the GP model only needs to be trained once (with 

periodic updates in the future) for determining the relationship between a water body’s unique 

surface reflectance characteristics and the microcystin levels.  

Additional insights can be gleaned by analyzing the spectral bands that were used to 

create each of the models. The bands used to train the two-band models are provided in Table 

3.5: 

Table 3.5: Spectral band centers with the highest performance for the traditional two-band models. 

Model Type Band Centers (nm) R
2 

Multispectral Two-Band Ratio 570 & 840 0.02393 

Multispectral Spectral Slope 570 & 660 0.09625 

Hyperspectral Two-Band Ratio 560 & 681 0.2710 

Hyperspectral Spectral Slope 665 & 681 0.7062 

 

The band centers most used by the traditional two-band models fall in the range of 560-570 nm 

and 660-681 nm. This corresponds with the spectral features observed in Figure 3.1. Chlorophyll 

produces a distinct reflectance dip or trough in the range 660-681 nm, and it is clear why this 

wavelength would exhibit a strong relationship with microcystin prediction. Next, the GP models 

are analyzed for the frequency of use for each of the bands. The frequency of use is how often a 

specific band was used in the 30 best programs created in Discipulus. If a band was used in every 

program, it would have 100% frequency of use, and it would likely share a high correlation 
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between surface reflectance and microcystin. The frequency of use for the variables identified in 

the GP models is presented in Table 3.6: 

Table 3.6: Frequency of use for the band centers used as spectral inputs for the multispectral and 

hyperspectral GP models. The top 3 bands for each sensor type have been bolded. 

Fused Multispectral Input Fused Hyperspectral Input 

Band Center (nm) Frequency of Use (%) Band Center (nm) Frequency of Use (%) 

477 67 412.5 83 

562.5 53 443 80 

652.5 97 489 57 

849.5 57 555.5 27 

1645 80 666 7 

2010 70 689.5 100 

 

The fused multispectral and hyperspectral do not share many of the same band centers, so a 

direct comparison cannot be made between the two sensor types, since they observed different 

portions of the electromagnetic spectrum. Nevertheless, an independent analysis of the frequency 

of use can be offered for each sensor type. The fused multispectral GP model favored band 

center at 652.5, 1645, and 2010 nm. This corresponds to bands 3, 5, and 7 of Landsat and the 

MOIDS land color bands 1, 6, and 7. Comparison to Figure 3.1 shows that the wide band center 

at 652.5 nm averages spectral features unique to phycocyanin and chlorophyll-a (both indicators 

of microcystin). What is interesting is the strong emphasis placed on the shortwave infrared 

bands for predicting microcystin. The fused hyperspectral GP model frequency used bands 

centered at 412.5, 443, and 689.5 nm. Chlorophyll-a and phycocyanin both have low reflectance 

at the first two band centers, which is a possible explanation for delineating between these 

parameters and other water quality parameters in this range. The band center at 689.5 nm was 

also used in the traditional two-band models, as it directly corresponds with a strong reflectance 

trough caused by chlorophyll-a in the water. While phycocyanin and chlorophyll-a serve as 
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strong microcystin indicators, variations in optical complexity, such as heavy suspended solid 

levels commonly induced by storm events in the Maumee Bay region, may be necessary to 

identify more abstract indicators, such as HAB growth rate (tied to microcystin production 

(Wynne et al.  2008)) and weather patterns, which may limit light levels.  

3.4.3. Microcystin Maps 

Using the GP model derived from the fused band data, maps of the microcystin 

concentration throughout Lake Erie can be reconstructed to allow for the assessment of blooms 

during the summer. As a result, detailed information on Microcystis bloom proliferation and 

transportation can be identified, and subsequently used to identify probable problem spots that 

require close monitoring during the summer. To illustrate this, microcystin map generated from a 

fused hyperspectral GP model and a fused multispectral GP model are shown in Figure 3.5, and 

they are compared to a false color image of the algal bloom occurring on the same day:   
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Figure 3.5: The concentration maps were generated using the hyperspectral GP model (A) and 

multispectral GP model (B). The false color image of western Lake Erie is presented on the bottom (C). 

Large algal blooms spawning out of the Maumee and Sandusky Bays on July 26, 2010 are seen as dark 

green, while the sediment is a pale white in (C). Dark red spots in (A) and (B) denote areas of high 

microcystin concentration that pose a health threat, while yellow spots indicate low to medium 

concentrations. The 30 m spatial resolution of the multispectral image provides more detailed outlines, 

while the coarser (300 m) hyperspectral resolution predicts microcystin concentrations in locations that 

more closely align with HAB presence. 

 

The concentration map from the fused hyperspectral data (A) is much less detailed, due to the 

300 m resolution. The apparent advantage is that the predicted medium and high concentrations 
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of microcystin align with the green HABs observed in the false color image (C). The less 

accurate concentration map derived from multispectral data (B) appears to exaggerate 

microcystin concentrations throughout the lake. However, the enhanced detail provided by the 30 

m resolution provides insight into the benefits that a hyperspectral satellite with fine spatial 

resolution would yield. This is evidenced by the apparent currents and potential bloom 

delineations seen in B.  

3.5. Conclusion 

STARFM was able to accurately fuse the both hyperspectral (MERIS and MODIS ocean 

color bands) and multispectral (Landsat and MODIS land bands) image pairs to generate 

synthetic images possessing both moderate spatial and temporal resolution. The synthetic images 

contain more data than a single image from either satellite, and the fusion method is used to fill 

in data gaps from the lengthy revisit times of MERIS and Landsat. In comparing traditional two-

band models to more complex GP models, it was observed that the GP models required longer 

training times, yet they offered higher explanatory power in relating microcystin to surface 

reflectance. Next, it was shown that the fused hyperspectral GP model excelled over the fused 

multispectral GP model for microcystin prediction. This was quantified using 4 statistical 

indices. The fused multispectral GP model yielded more desirable mean prediction errors and 

RMSE values of 0.0358 µg∙L⁻¹ and 0.3451 µg∙L⁻¹, compared to 0.0782 µg∙L⁻¹ and 0.3530 

µg∙L⁻¹. The fused hyperspectral GP model ranked the highest when evaluated with the CO, PE, 

and R
2
 statistical indices, achieving values of 0.6837, 25.01 %, and 0.9269, compared to 0.6787, 

38.07 %, and 0.8449. While the fused hyperspectral GP model required the longest training time 
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of 450 s, it had the highest explanatory power microcystin prediction and the fulfillment of an 

early warning system. 

One limiting factor to the ground-truth data is that the majority of the samples correspond 

to fixed points that were sampled when HABs on the lake were observed. Ideally, sampling 

would have been carried out on a daily basis starting from when the HAB formed and stopping 

after it dissipated. This would provide a representative idea on when microcystin began to form 

within the HAB, and daily tracking of the HAB with corresponding microcystin samples could 

corroborate the success of such a map, since a time series of maps would lucidly depict HAB 

mobility. The second limitation is that many of the ground-truth points were below 1 µg∙L⁻¹. 

Even though the GP models successfully predicted peak microcystin concentrations, a larger and 

more diverse data set would improve the predictability of the models at low and peak values. 

With the recent failure of the MERIS sensor, this work would be further explored following the 

upcoming launches of the Sentinel multi-satellite project. 
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CHAPTER 4: GENERAL CONCLUSIONS AND RECOMMENDATIONS 

4.1. Conclusions 

Results demonstrated that the use of IDFM was suitable for an early warning system for 

monitoring TOC and microcystin concentrations in both small and large lakes. STAR-FM as a 

data fusion technique functions well for the pixel level fusion between Landsat and MODIS land 

bands, as well as MERIS and MODIS ocean color bands. A correlation analysis from Figure 2.7, 

showed that there was a moderate to strong correlation (R
2
 = 0.5330) between the observed and 

predicted synthetic image, when using a pre- and post-condition image for STAR-FM. When 

using only a pre-condition image the R
2
 value dropped to 0.4147, and when using a post-

condition image the R
2
 value was 0.7482. This indicates the degree of variability involved when 

forecasting TOC and microcystin values with the early warning system. 

In both studies, the GP models outperformed the traditional two-band ratio and two-band 

slope inversion models at predicting TOC and microcystin. In the study for TOC prediction, the 

traditional two-band model yielded an R
2
 value of 0.1974, and the fusion-based GP model had an   

R
2
 value of 0.7680.  For microcystin prediction, the two-band and GP models had R

2
 values of 

0.2710 and 0.9269. Two-band analytical models are generally applied for case 1 waters, and they 

fail to yield accurate predictions for water quality constituents in case 2 waters. The explanatory 

power of the GP models excels in identifying the complex relationship between surface 

reflectance and water quality parameters in case 2 waters. This is due to the problem solving 

approach used by a GP. Given the time and computational power, a GP model can be made to 

explain any relationship.  



 

103 

 

 The last comparison of interest is between the use of multispectral and hyperspectral 

band data as inputs to IDFM. It is well known that hyperspectral inputs will outperform 

multispectral inputs, but there is a cost for using hyperspectral data. First, multispectral data is 

more widely available from repositories, while hyperspectral data may come at a cost or require 

a proposal to be submitted with the agency the satellite belongs to. Secondly, hyperspectral data 

has more bands than multispectral data, which increases handling and storage requirements. 

Lastly, the number of hyperspectral sensors is quite limited, and a sensor malfunction or 

downtime would render the early warning system unusable. Thus, it is important to quantify the 

advantage gained by using hyperspectral data over multispectral data. From Table 3.4, the 

multispectral and hyperspectral two-band ratio models yielded R
2
 values of 0.02393 and 0.2710. 

While the hyperspectral model constitutes an obvious improvement, both exhibit weak 

correlations. Using these inputs for the spectral slope model confirms the sheer advantage of 

applying hyperspectral data for this analytical model. The R
2
 value for the multispectral spectral 

slope model was 0.09625, while the R
2
 value for the hyperspectral input was 0.7062. The 

detailed band data from the hyperspectral data set highlighted telltale spectral features that could 

be used to identify chlorophyll-a, a primary indicator of microcystin. The differences in 

performance for the multispectral and hyperspectral GP models were less pronounced with R
2
 

values of 0.8449 and 0.9269. The computational time for training the multispectral GP model 

was 92 seconds, while the hyperspectral GP model required an extra 358 seconds. When 

monitoring water quality parameters that can have significant impacts on the environment and 

human health, it is worth the additional training time and processing power for a noticeable gain 

in estimation accuracy.  
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4.2. Recommendations 

A functional early warning system is a vital asset for decision makers, if and only if it is 

functional under all weather and complex water quality conditions. The current application of 

IDFM in the above case studies suffered from two primary limitations: 1.) it requires cloud-free 

surface reflectance data acquired during the day and 2.) during training and calibration, the 

model must be exposed to a thorough ground-truth data set depicting all possible water quality 

conditions. The suite of satellites for obtaining surface reflectance data utilized passive sensors 

that were sensitive to the visible, near infrared, and infrared portions of the electromagnetic 

spectrum. Passive sensors operate by detecting solar radiation from the sun that has reflected off 

the target object. As a result, the sensor can only function during daylight hours. To further 

enhance the early warning system, the use of active sensors should be explored. Active sensors 

emit their own electromagnetic waves and observe the signal that is reflected back; this enables 

surface reflectance readings to be obtained at night. Synthetic aperture radar (SAR) is a key 

example of this. Microwaves from a SAR sensor have a secondary and potentially more 

important advantage. Microwaves are capable of piercing through cloud cover. If a sensor is 

unable to observe the land or water hidden below cloud-cover, then the early warning system is 

rendered inoperable for that day. This is a significant problem for satellites like Landsat, which 

have lengthy revisit times. If the site is covered  with clouds during the 2 times a month that 

Landsat passes over the area, then an entire month of high resolution spatial data is unavailable. 

And, it is crucial for STARFM to have recent high resolution spatial data to generate accurate 

synthetic images each day. Integrating SAR or other sensors capable of piercing through cloud 

cover is a needed development to enrich IDFM. 
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The second limitation faced by empirically derived models, such as GP and ANN, is that 

the predictions made by the models are only accurate for the range of ground-truth data used 

during training and validation. If a range of surface reflectance values indicative of rare peak 

concentrations of TOC or microcystin are fed into the model for prediction, then the model 

cannot be guaranteed to output that a high concentration exists at this location. Model accuracy is 

only assured for the range of conditions it has been exposed to. And, decision makers depend on 

the model’s ability to outline dangerous blooms of TOC or microcystin. This issue can be 

remedied with time due to the suite of data mining techniques used in IDFM. The GP and ANN 

models can be recalibrated to take new ground-truth data into consideration. Thus, a periodic 

sampling routine throughout the year to gain additional ground-truth data will build a robust and 

reliable model over time. Periodic sampling of the surface water, also recalibrates the model to 

account for water quality changes in the surface water that gradually occur over long timespans. 

Measuring the spatiotemporal distribution of water quality parameters is quicker and 

more economical when conducted by way of remote sensing instead of manual sampling. It is a 

challenging task to train models to function in various types of optically complex surface waters 

for the prediction of differing water quality constituents. However, with time and the ever-

expanding lineup of satellite sensors with increased spatial, spectral, and temporal resolution 

these relationships can undoubtedly be deciphered. IDFM establishes a powerful yet flexible 

framework capable of adapting to the new sensors and inversion models applied for predicting 

water quality parameters in the constantly evolving conditions in surface waters throughout the 

globe.   
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APPENDIX A: CHAPTER 2 GENETIC PROGRAMMING SOLUTION 
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The resulting GP algorithm for TOC prediction using the fused band data is given in the columns 

below. TOC is predicted in units of mg∙L⁻¹ by completing each of the calculations shown below 

starting with the first column. The variables f0, f1, and f2 are all initially 0. The variables v0, v1, 

v2, v3, v4, and v5 correspond to the surface reflectance values given in Table 2.9. 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0-v3; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0-1.45; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0*f1; 

f0 = cos(f0); 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = cos(f0); 

f1 = f1+f0; 

f0 = f0/f0; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0+f0; 

f1 = f1+f0; 

f0 = sin(f0); 

f0 = f0/v0; 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0-v3; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2+f0; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0 - f0; 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0-f1; 

f0 = f0+f0; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0+v0; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = sin(f0); 
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f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0-f0; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0*v4; 

f0 = abs(f0); 

f0 = f0/1.25; 

f0 = f0/1.25; 

f0 = f0+v0; 

f0 = f0*0.43; 

f0 = f0-f1; 

f0 = f0+f0; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0-1.45; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0-v3; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0-f1; 

f0 = f0+f0; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0-1.45; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0/f0; 

f0 = f0+f2; 

f0 = f0+f0; 

f0 = f0+v1; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0+v1; 

f0 = f0/0.92; 

f0 = f0+v1; 

f0 = f0+0.13; 

f0 = f0-1.45; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0/f0; 

f0 = f0+v0; 

f0 = f0*0.43; 

f0 = f0-f1; 

f0 = f0+f0; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0-1.45; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0-v3; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0+f0; 
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f0 = sqrt(f0); 

f0 = f0-1.45; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = sqrt(f0); 

f0 = f0+f2; 

f0 = f0+f0; 

f0 = sin(f0); 

f2 = f2-f0; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0-f0; 

f0 = f0+v0; 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0-1.45; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0+f0; 

f2 = f2*f0; 

f0 = f0+0.139; 

f0 = f0+v1; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = abs(f0); 

f2 = f2+f0; 

f0 = f0-f0; 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2+f0; 

f0 = cos(f0); 

f0 = f0+v2; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0-v0; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = abs(f0); 

f2 = f2+f0; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = f0+f0; 

f0 = sqrt(f0); 

f0 = f0-1.45; 

f0 = cos(f0); 

f2 = f2+f0; 

f0 = f0-f0; 

f0 = f0-v2; 

f0 = f0+v1; 

f0 = f0+f0; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2*f0; 

f0 = f0+f2; 

f0 = f0*f0; 
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f0 = f0+v1; 

f0 = cos(f0); 

f0 = f0+v1; 

f0 = f0+v2; 

f0 = sin(f0); 

f0 = f0+f0; 

f2 = f2+f0; 

f0 = f0+f2; 

f0 = f0+f2; 

f0 = f0*f0; 

f0 = f0+v1; 

f0 = f0-v2; 

f0 = f0+v1; 

f0 = f0/1.25; 

f0 = sqrt(f0); 

f0 = f0+f0; 

f0 = sqrt(f0); 
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APPENDIX B: MATERIALS UNDER REVIEW 
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The contents for chapters 2 and 3 have been submitted for review as follows: 

 The content in chapter 2 has been submitted for publication as: Chang, N.B., Vannah, B., 

Yang, J., and Elovitz, M., “Integrated Data Fusion and Mining Techniques for 

Monitoring Total Organic Carbon Concentrations in a Lake”, International Journal of 

Remote Sensing, in review, June. 2013. 

 The content in chapter 3 has been submitted for publication as: Chang, N.B., Vannah, B., 

and Yang, J., “Comparative Sensor Fusion Between Hyperspectral and Multispectral 

Remote Sensing Data for Monitoring Microcystin Distribution in Lake Erie,” IEEE  

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, in 

review, Oct. 2013.
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