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ABSTRACT

Since its introduction in the 1980s, the Adomian Decomposition Method (ADM) has proven

to be an efficient and reliable method for solving many types of problems. Originally devel-

oped to solve nonlinear functional equations, the ADM has since been used for a wide range

of equation types (like boundary value problems, integral equations, equations arising in flow

of incompressible and compressible fluids etc...). This work is devoted to an evaluation of

the effectiveness of this method when used for fluid dynamic applications. In particular, the

ADM has been applied to the Blasius equation, the Falkner-Skan equation, and the Orr-

Sommerfeld equation.

This study is divided into five Chapters and an Appendix. The first chapter is devoted to an

introduction of the Adomian Decomposition method (ADM) with simple illustrations. The

Second Chapter is devoted to the application of the ADM to generalized Blasius Equation and

our result is compared to other published results when the parameter values are appropriately

set. Chapter 3 presents the solution generated for the Falkner-Skan equation. Finally, the

Orr-Sommerfeld equation is dealt with in the fourth Chapter. Chapter 5 is devoted to the

findings and recommendations based on this study. The Appendix contains details of the

solutions considered as well as an alternate solution for the generalized Blasius Equation

using Bender’s δ-perturbation method.
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CHAPTER ONE: INTRODUCTION

Fluid dynamics is an important aspect of applied physics and engineering. When one con-

siders the amount of air and water in the surrounding environment, the large quantities of

fluid operating in the human body, and the many devices which use fluids, one can begin to

see the scope of the influence of fluid dynamics and understand the necessity for developing

an understanding of this field.

Of particular interest in fluid dynamics is the study of the boundary layer. A boundary layer

is a region “in which a rapid change occurs in the value of a variable” [26]. For instance,

when considering the fluid flow near a solid surface, there exists a portion of the flow imme-

diately adjacent to the surface where the velocity or some other related property of the fluid

changes dramatically. This is usually called the boundary layer.

Fluid dynamic topics often give rise to nonlinear differential equations. These problems tend

to be more difficult to solve, often with no known exact solution. As such, researchers are

continually looking for ways to accurately and effeciently solve these problems. One newly

developed method that shows potential in this application is the Adomian Decomposition

Method.

1.1 Adomian Decomposition Method

In the 1980’s, George Adomian introduced a new method to solve nonlinear functional equa-

tions [28]. This method has since been termed the Adomian decomposition method (ADM)

and has been the subject of much investigation[13, 28, 47, 53, 60]. The ADM involves

separating the equation under investigation into linear and nonlinear portions. The linear
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operator representing the linear portion of the equation is inverted and the inverse operator

is then applied to the equation. Any given conditions are taken into consideration. The non-

linear portion is decomposed into a series of Adomian polynomials. This method generates a

solution in the form of a series whose terms are determined by a recursive relationship using

these Adomian polynomials. A brief outline of the method follows.

In reviewing the basic methodology involved, a general nonlinear differential equation will

be used for simplicity. Consider

Fy = f

where F is a nonlinear differential operator and y and f are functions of t. Begin by rewriting

the equation in operator form

Ly + Ry + Ny = f

where L is an operator representing the linear portion of F which is easily invertible, R

is a linear operator for the remainder of the linear portion, and N is a nonlinear operator

representing the nonlinear terms in F. Applying the inverse operator L−1, the equation then

becomes

L−1Ly = L−1f − L−1Ry − L−1Ny.

Since F was taken to be a differential operator and L is linear, L−1 would represent an

integration and with any given initial or boundary conditions, L−1Ly will give an equation

for y incorporating these conditions. This gives

y(t) = g(t)− L−1Ry − L−1Ny.

where g(t) represents the function generated by integrating f and using the initial/boundary

conditions. Then assume that the unknown function can be written as an infinite series

y(t) =
∞∑

n=0

yn(t).

2



We set y0 = g(t) and the remaining terms are to be determined by a recursive relationship

defined later. This is found by first decomposing the nonlinear term into a series of Adomian

polynomials, An. The nonlinear term is written as

Ny =
∞∑

n=0

An.

In order to determine the Adomian polynomials, a grouping parameter, λ, is introduced. It

should be noted that λ is not a “smallness parameter” [28]. The series

y(λ) =
∞∑

n=0

λnyn

and

Ny(λ) =
∞∑

n=0

λnAn

are established. Then An can be determined by

An =
1

n!

dn

dλn
Ny(λ)

∣∣∣∣
λ=0

.

From

∞∑
n=0

yn = y0 − L−1

∞∑
n=0

Ryn − L−1

∞∑
n=0

An,

the recursive relationship is found to be

y0 = g(t)

yn+1 = L−1Ryn + L−1An.

This method produces a convergent series solution [36] and the truncated series provides an

approximate solution.

As stated above, the ADM produces a convergent series solution. The issue of convergence

is addressed by several researchers [13, 28, 47]. According to Cherruault et al. [28], the

3



series produced by the decomposition method is absolutely convergent as well as uniformly

convergent. This is the case because the series “rearranges a strongly convergent Taylor

series of the analytic functions u and f(u). The series converges uniformly (and absolutely

and in norm), hence the sum is not changed by rearrangement of the terms” [28]. Babolian

and Biazar [13] provide a definition from which the order of convergence for the method

could be determined. Of course, having a higher order of convergence is desirable since then

the series will converge more rapidly.

1.1.1 Example

As a simple example, consider the nonlinear, initial value problem

dy

dx
= y2 (1.1)

with the initial condition

y(0) = 1. (1.2)

This differential equation has the exact solution of y(x) = 1
1−x

.

Following the method described above, we define a linear operator

L =
d

dx
. (1.3)

The inverse operator is then

L−1 =

∫ x

0

(·)dx. (1.4)

Rewriting the differential equation (1.1) in operator form, we have

Ly = Ny (1.5)

where N is a nonlinear operator such that

Ny = y2. (1.6)

4



Next we apply the inverse operator for L to the equation. On the left hand side of the

equation, this gives

L−1Ly = y(x)− y(0). (1.7)

Using the initial condition, this becomes

L−1Ly = y(x)− 1. (1.8)

Returning this to equation (1.5), we now have

y(x)− 1 = L−1(Ny) (1.9)

or

y(x) = 1 + L−1(Ny). (1.10)

Next, we need to generate the Adomian polynomials, An. Let y be expanded as an infinite

series y(t) =
∑∞

n=0 yn(t) and define Ny =
∑∞

n=0 An.

Then

∞∑
n=0

yn(t) = 1 + L−1

(
∞∑

n=0

An

)
. (1.11)

To find An, we introduce the scalar λ such that,

y(λ) =
∞∑

n=0

λnyn. (1.12)

Then,

Ny(λ) =
∞∑

n=0

λn

n∑
i=0

(yiyn−i). (1.13)

From the definition of the Adomian polynomials,

An =
1

n!

dn

dλn
(Ny(λ))

∣∣∣∣
λ=0

, (1.14)
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we find the Adomian polynomials.

A0 = y2
0 (1.15)

A1 = 2y0y1 (1.16)

A2 = 2y0y2 + y2
1 (1.17)

A3 = 2y0y3 + 2y1y2 (1.18)

A4 = 2y0y4 + 2y1y3 + y2
2 (1.19)

Returning the Adomian polynomials to equation (1.11), we can determine the recursive

relationship that will be used to generate the solution.

y0(x) = 1 (1.20)

yn+1(x) = L−1(An) (1.21)

Solving this yields

y0 = 1 (1.22)

y1 = x (1.23)

y2 = x2 (1.24)

y3 = x3 (1.25)

y4 = x4 (1.26)

We can see that the series solution generated by this method is

y(x) = 1 + x + x2 + x3 + x4 + · · · =
∞∑

n=0

xn (1.27)

which we recognize as the Taylor series for the exact solution

y(x) =
1

1− x
. (1.28)
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1.2 Advantages and Disadvantages of the Adomian Decomposition Method

Researchers who have used the ADM have frequently enumerated on the many advantages

that it offers. Most often cited is the efficiency of the method. Many authors find that

the ADM requires less computational work than traditional approaches [25, 53, 60]. Other

advantages include the ability to solve nonlinear problems without linearization, the wide

applicability to several types of problems and scientific fields, and the development of a reli-

able, analytic soltuion. According to Wang [60], this method does not linearize the problem

nor use assumptions of weak nonlinearity and therefore can handle nonlinearities which are

“quite general” and generates solutions that “may be more realisitic than those achieved by

simplifying the model...to achieve conditions required for other techniques.” Jiao et al.[44]

state that the “ADM is quantitative rather than qualitative, analytic, requiring neither lin-

earization nor perturbation, and continuous with no resort to discretization and consequent

computer-intensive calculations”.

The ADM does have some disadvantages, however. The first is that the method gives a

series solution which must be truncated for practical applications. In addition, the rate and

region of convergence are potential shortcomings. According to Jiao et al. [44], “although

the series can be rapidly convergent in a very small region, it has very slow convergence

rate in the wider region...and the truncated series solution is an inaccurate solution in that

region, which will greatly restrict the application area of the method.” An investigation into

this claim would greatly benefit the scientific community.

Nonetheless, the ADM is proving to be a very useful tool with wide application. According

to Wazwaz [61], “The main advantage of the method is that it can be applied directly for all

types of differential and integral equations, linear or nonlinear, homogeneous or inhomoge-

neous, with constant coefficients or with variable coefficients. Another important advantage

7



is that the method is capable of greatly reducing the size of computational work while still

maintaining high accuracy of the numerical solution.” These advantages are presumably the

basis for the wide-ranging applicability of the method.

1.3 Applications of the Adomian Decomposition Method

Adomian decomposition has been shown to provide solutions for a wide array of equa-

tions, including algebraic equations, ordinary and partial differential equations, integral

equations, and integro-differential equations [5, 2, 1, 4, 38, 57, 60]. As such, this method

has extensive applications in such fields as physics, biology, chemistry, and engineering

[5, 3, 14, 24, 43, 37]. In fact, the ADM has recently been applied to “such diverse areas

as chaos theory, heat and/or mass transfer, particle transport, nonlinear optics, and the

fermentations process”[37].

In the field of fluid mechanics, Adomian decomposition has been applied to several prob-

lems already. A few examples of this are detailed below. To begin with, Bulut et al. [25]

used Adomian decomposition to develop an analytic solution for “a steady flow problem of a

viscous incompressible fluid through an orifice” as governed by the Navier-Stokes equations.

By comparing the ADM results of a “simple problem of Poisson’s equations” with results of

a numerical solution, the authors found the decomposition method to be a reliable technique

with “less computational work” and therefore, quite practical [25].

Adomian decomposition was also applied to “a time-fractional Navier-Stokes equation” for

“unsteady flow of a viscous fluid in a tube” by Momani and Odibat [53]. The time-fractional

Navier-Stokes equations are nonlinear and as such, “there is no known general method to

solve these equations” and “very few cases where an exact solution can be obtained”. The

ADM allows the construction of an analytic solution in the form of a series through a reliable

8



technique with less work than traditional techniques. In this case, the authors found that

the solution “continuously depends on the time-fractional derivative”[53].

Recently, Wang [60] applied the ADM to the classical Blasius equation. Although, the ADM

easily provided an analytic solution to the classical problem, it was impossible to determine

the value of the parameter y′′(0) with this solution. Therefore, the problem was transformed

into a singular nonlinear boundary value problem to which the ADM was also applied. From

this new solution, the parameter y′′(0) was easily determined. The 5-term approximate so-

lution was comparable to the numerical solution. This showed that the ADM provided a

reliable solution.

One final example of the applicability of this method was provided by Al-Hayani and Casús

[7]. Their work applied the ADM to first order initial value problems with Heaviside functions

and other discontinuities. The ADM worked well for this analysis and led to some interesting

findings. To begin with, “the size of the jump does not affect the convergence of the method,

which behaves equally well on both sides of the discontinuity”[7]. However, some cases

required the inclusion of “more digits...in order to avoid unstable oscillations”[7]. Finally,

the authors found that the error could be reduced with a slight modification to the ADM

by including the term associated with the inverse operator applied to the source function in

the first Adomian polynomial rather than the initial term in the series solution.

1.4 Modifications to the Adomian Decomposition Method

Since it was first presented in the 1980’s, Adomian’s decomposition method has led to sev-

eral modifications on the method made by various researchers in an attempt to improve the

accuarcy or expand the application of the original method. To begin with, Adomian and

Rach [6] introduced modified Adomian polynomials which converge slightly faster than the

9



original or classical Adomian polynomials and are convenient for computer generation. The

modified polynomials are defined using a differencing method. The first few terms of the

modified Adomian polynomials generated are identical to the original Adomian polynomi-

als, but higher order terms do exhibit differences. In addition to the classical and modified

Adomian polynomials, Adomian also introduced accelerated Adomian polynomials [6, 28].

These Adomian polynomials provide faster convergence; however, they are “less convenient

computationally” [6]. Despite the various types of Adomian polynomials available, the orig-

inal Adomian polynomials are more generally used based on the advantage of a “convenient

algorithm which is easily remembered” [28]. They are “easily generated without a computer

and converge rapidly enough for most problems” [6].

Proposed modifications to the standard ADM can be as simple as the following. As stated

previously, Jiao et al. [44] found that the ADM has a slow convergence rate in a wide region

and has limited accuarcy. To improve on this, the authors introduced an aftertreatment

technique to the original ADM when applied to nonlinear differential equations. The af-

tertreatment involves applying the Padé approximant to the truncated series generated by

the ADM. Because the Padé approximant generally enlarges the “convergence domain of the

truncated Tayolor series”, its use tends to improve the convergence rate and accuracy of the

ADM [44]. In the event of an oscillatory system, the Laplace transform is first applied to

the truncated seris, then the Padé approximant is formed and the final solution is obtain by

applying the inverse Laplace transformation. The effectiveness of this aftertreatment tech-

nique is supported by Hashim [36]. Hashim [36] compared the results of an original ADM

to those with a Padé approximation of the truncated series and found that “the ADM with

Padé approximation give more accurate results compared with the standard ADM without

Padé approximation.” Wazwaz [62] also used Padé approximants to the solution obtained

using a modified decomposition method and found that not only does this improve the re-
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sult, but that the “error decreases dramatically with the increase of the degree of the Padé

approximants.”

Another modification to the standard ADM was proposed by Wazwaz. Wazwaz [62] pre-

sented “a reliable modification of the Adomian decomposition method”. In the standard

ADM, the solution is defined as a series using a recursive relationship y0(x) = f(x), yk+1 =

L−1(Nf). The modified decomposition method proposed by Wazwaz addresses this recursive

relationship. It divides the original function into two parts, one assigned to the initial term of

the series and the other to the second term. All remaining terms of the recursive relationship

are defined as previously, but the modification results in a different series being generated.

This method has been shown to be “computationally effecient”; however, it “does not always

minimize the size of calculations needed and even requires much more calculations than the

standard Adomian method” [50]. “The success of the modified method depends mainly on

the proper choice” of the parts into which to divide the original function [50].

In 2005, Wazwaz [61] presented another type of modification to the ADM. The purpose

of this new approach was to overcome the difficulties that arise when singular points are

present. The modification arises in the initial definition of the operator when applying the

ADM to the Emden-Fowler equation. According to Wazwaz [61], the “Adomian decompo-

sition method usually starts by defining the equation in an operator form by considering

the lowest-ordered derivative in the problem.” However, by defining the differential operator

in terms of both derivatives in the equation, the singularity behavior was easily overcome.

“The most striking advantage of using this choice for the operator L is that it attacks the

Emden-Fowler equation directly without any need for a transformation formula” [61]. This

modification could prove useful for similar models with singularities.
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Another modification was proposed by Luo [50]. This variation separates the ADM into

two steps and therefore is termed the two-step Adomian decomposition method (TSAMD)

[50, 66]. The purpose behind the proposed scheme is to identify the exact solution more

readily and eliminate some calculations as such. The two steps proposed by Luo [50] are as

follows:

(1) First, apply the inverse operator and the given conditions. Then, define a

function, u0, based on the resulting terms. If this satisfies the original

equation and the conditions as checked by substiution, it is considered the exact

solution and the calcuations terminated. Otherwise, continue on to

step two.

(2) Continue with the standard Adomian recursive relationship.

As one can see, this modification involves “verifying that the zeroth component of the series

solution includes the exact solution” [50]. As such, it offers the advantage of requiring less

caluculations than the standard ADM.

Another recent modification is termed the restarted Adomian method [15, 16]. This method

involves repeatedly updating the initial term of the series generated. Rather than calculating

additional terms of the solution by determining “Adomian polynomials for large indexes”

[17], a few Adomian polynomials are determined. After which, the series solution is gener-

ated and then using this result to reinitialize the initial term of the series, new Adomian

polynomials and solution terms are generated. By repeating this only a few times, a more

accurate approximation can be obtained [15, 16, 17] .

Several other researchers have developed modifications to the ADM [42, 41, 45]. The modifi-

cations arise from evaluating difficulties specific for the type of problem under consideration.

Usually the modification involves only a slight change and is aimed at improving the con-
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vergence or accuarcy of the series solution. This further demonstrates the wide applicablity

that the ADM has, as well as its simplicity since it can be easily modified for the situation

at hand.

1.5 Present Work

As one can see, much interest and research has been focused on the Adomian Decomposition

Method. Researchers frequently laud the benefits of the ADM, whereas little mention is

made of the disadvantages or drawbacks of the method. As such, a contextual evalutaion

of the method is recommended. The present work represents an initial effort towards this

evalution with respect to equations arising in fluid dynamic applications.

In order to provide cohesiveness in the work, three fluid dynamic problems were chosen

relating to boundary layer theory and with some correlation to each other. The first problem

analyzes the Blasius equation with generalized boundary conditions. This equation describes

the velocity profile in the boundary layer along a semi-infinite flat plate. Next, the Falkner-

Skan equation is examined, which also describes the velocity profile in the boundary layer.

However, in this case the fluid flow is along a curved plate or wedge. Finally, an analysis

of the Orr-Sommerfeld equation is developed. This equation is related to the hydrodynamic

stability of the fluid flow when a small disturbance is introduced. The solutions developed by

the ADM are compared to previously published results in order to examine the advantages

and disadvantages arising from this method.
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CHAPTER TWO: GENERALIZED BLASIUS EQUATION

2.1 The Blasius Equation

The Blasius Equation is a famous problem arising from boundary layer theory of fluid me-

chanics. This equation emerged when Blasius developed a method in which the boundary

layer equations are reduced to ordinary differential equations [30]. This well-known equation

is a third order, nonlinear differential equation,

f ′′′(η) + f ′′(η) · f(η) = 0 (2.1)

on 0 ≤ η < ∞ satisfying the boundary conditions

f(0) = 0, f ′(0) = 0, f ′(∞) = 1. (2.2)

This equation describes the velocity profile in the boundary layer when one considers the

movement of an incompressible, viscous fluid along a semi-infinite plate [20, 22].

In this work, we generalize the boundary conditions as

f(0) = −α, f ′(0) = −β, f ′(∞) = 1 (2.3)

where α and β are constants. According to Guedda [32], in the event of f(0) = −α, α

represents a suction/injection parameter where −α > 0 represents suction and −α < 0

corresponds to injection of the fluid. The initial condition, f ′(0) = −β, indicates the slip

condition at the the wall [51]. The case where β = 0 represents no-slip.

Another parameter considered when evaluating the Blasius equation is the initial value of

the second derivative, f ′′(0). The value of f ′′(0) is a significant parameter in the boundary

layer theory which gave rise to the equation. According to Weyl [63], “the value [f ′′(0)]
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is the essential factor in the formula for the skin friction along the immersed plate”. Due

to its importance, a portion of this work is focused on accurately determining this parameter.

Much work has been done on the Blasius equation, although no exact solution is known.

Solutions for the equation have been developed by many approaches. Blasius gave a power

series solution [49]. Numerical methods, such as the Runge-Kutta method or the shooting

mehtod, have also been used [29, 31]. Other techniques used include perturbation methods

[22, 49], the homotopy analysis method [49], and the differential transformation method [65].

Recently, Wang [60] presented a solution utilizing the Adomian Decomposition Method to

solve the classical Blasius equation. This method proves to be reliable and demonstrates

many advantages.

In the Adomian decomposition method, the solution is expanded as an infinite series and

is determined by a series of successive calculations. The partial sum of this series at any

point provides an approximate solution, which can be improved by adding additional terms.

Hashim [36] provided corrections to the numerical values in Wang’s [60] article and also

showed that the accuracy of the numercial solution can be improved by using Padé approxi-

mations. Despite the errors in the numerical values, the methodology in Wang [60] appears

to be reliable.

In this section, we will apply Wang’s [60] methodology to the generalized Blasius equation

f ′′′(η) + f ′′(η) · f(η) = 0 (2.4)

on 0 ≤ η < ∞ with

f(0) = −α, f ′(0) = −β, f ′(∞) = 1. (2.5)
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2.2 Adomian Decomposition of Blasius Equation

We begin by introducing a differential operator, L, as

L =
d3

dη3
. (2.6)

Then the inverse operator is

L−1 =

∫ η

0

∫ η

0

∫ η

0

(·)dηdηdη. (2.7)

The Blasius equation is then written as f ′′′ = −f ′′f .

Therefore,

Lf = Nf (2.8)

where

Nf = −f ′′f. (2.9)

Operating with L−1 yields

f(η)− f(0)− f ′(0)η − 1

2
f ′(0)η2 = L−1(−f ′′f). (2.10)

Using the boundary conditions and letting f ′′(0) = k,

f(η) = −α− βη +
1

2
kη2 + L−1(−f ′′f). (2.11)

Let f be expanded as an infinite series f(η) =
∑∞

n=0 fn(η).

Then

∞∑
n=0

fn(η) = −α− βη +
1

2
kη2 + L−1

(
∞∑

n=0

An

)
. (2.12)

Next, we need to determine the Adomian polynomials, An. To find An, we introduce the

scalar λ,

f(λ) =
∞∑

n=0

λnfn (2.13)
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such that

Nf(λ) = −
∞∑

n=0

λnf ′′n ·
∞∑

n=0

λnfn = −
∞∑

n=0

λn ·

(
n∑

i=0

fif
′′
n−i

)
. (2.14)

From

An =
1

n!

dn

dλn
(Nf(λ))

∣∣∣∣
λ=0

, (2.15)

we find the Adomian polynomials.

A0 = −f0f
′′
0 (2.16)

A1 = −f1f
′′
0 − f0f

′′
1 (2.17)

A2 = −f0f
′′
2 − f1f

′′
1 − f2f

′′
0 (2.18)

A3 = −f0f
′′
3 − f1f

′′
2 − f2f

′′
1 − f3f

′′
0 (2.19)

A4 = −f0f
′′
4 − f1f

′′
3 − f2f

′′
2 − f3f

′′
1 − f4f

′′
0 (2.20)

Returning the Adomian polynomials to the equation

∞∑
n=0

fn(t) = −α− βη +
1

2
kη2 + L−1

(
∞∑

n=0

An

)
, (2.21)

we can determine the recursive relationship that will be used to generate the solution.

f0(η) = −α− βη +
1

2
kη2 (2.22)

fn+1(η) = L−1(An) (2.23)
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Solving this yields

f0 = −α− βη +
1

2
kη2 (2.24)

f1 = − 1

120
k2η5 +

1

6
αkη3 +

1

24
βkη4 (2.25)

f2 = 2.728175× 10−4k3η8 +
1

24
α2kη4 + 0.025αβkη5 + η6(−0.0069444αk2

+0.00416667β2k)− 0.00218254βk2η7 (2.26)

f3 = −9.394541× 10−6k4η11 + 0.008333α3kη5 + 0.008333α2βkη6

+η7(−0.00317460α2k2 + 0.00297619αβ2k) + η8(−0.0020833αβk2

+3.720238× 10−4β3k) + η9(3.224206× 10−4αk3

−3.554894× 10−4β2k2) + 1.033399× 10−4βk3η10 (2.27)

f4 = 3.199994× 10−7k5η14 + 0.00138889α4kη6 + 0.00198413α3βkη7

+η8(−0.001041667α3k2 + 0.00111607α2β2k) + η9(−0.0010582α2βk2

+2.89352× 10−4αβ3k) + η10(2.025463× 10−4α2k3 − 3.69544× 10−4αβ2k2

+2.89352× 10−5β4k) + η11(1.322000× 10−4αβk3 − 4.411677× 10−5β3k2)

+η12(−1.41482× 10−5αk4 + 2.204586× 10−5β2k3)

−4.47999× 10−6βk4η13. (2.28)

By truncating the solution, we have an approximate solution as

f = f0 + f1 + f2 + f3 + f4. (2.29)

The next step is to find k by the boundary condition f ′(∞) = 1. Unfortunately, the solution

equations are polynomials in η, which has an indeterminable limit as η →∞. To accomodate

for this, Wang [60] attempted using Padé approximants in order to find a limit; however, this

approach failed for both the (2,2) and (3,3) Padé attempts. As an alternative, a transformed

Blasius equation was used to determine f ′′(0) = k.
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2.3 Transformed Blasius Equation

Let

x = f ′(η) (2.30)

y(x) = f ′′(η) (2.31)

Then we see that

(1) −β < x < 1

(2) y(x) = df ′(η)
dη

= dx
dη

(3) Since f ′ → 1 as η →∞ indicates f behaves as g(η) = η for large η, we know that f ′′ → 0

as η →∞ and therefore y(x) = f ′′(η) means y(1) = f ′′(∞) = 0.

Rearranging f ′′′ + f ′′f = 0, we see that f = −f ′′′

f ′′ . The derivative of the Blasius equation is

then taken with respect to η and substitutions are made for f.

d

dη
(f ′′′ + f ′′f = 0) (2.32)

f (4) + f ′′f ′ + f ′′′f = 0 (2.33)

f (4) + f ′′f ′ − f ′′′2

f ′′
= 0 (2.34)

Note that

y′ =
dy

dx
=

f ′′′

f ′′
(2.35)

y′′ =
d2y

dx2
=

f (4)

f ′′2
− f ′′′2

f ′′3
(2.36)

From this we see that y′ = −f and therefore f(0) = −α gives us that −y′(−β) = −α.

Substituting y′ and y′′ into equation (2.34), we now have

y′′(x) · (y(x))2 + y(x) · x = 0

or

y′′(x)y(x) + x = 0 (2.37)
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The transformed Blasius equation is then

y′′(x) · y(x) + x = 0 (2.38)

on −β < x < 1 with the boundary conditions

y(1) = 0 (2.39)

y′(−β) = α (2.40)

We now apply the Adomian Decomposition Method to the transformed equation. This will

provide us with a solution from which we can determine our constant k.

2.4 Adomian Decomposition of Transformed Blasius Equation

Again, we introduce the operator L as

L =
d2

dx2
(2.41)

Then

L−1 =

∫ x

−β

∫ x

−β

(·)dxdx (2.42)

The transformed eqn is then y′′ = −−x
y

or Ly = −x
y
.

Operating with L−1 yields

y(x)− y(−β)− y′(−β)x− βy′(−β) = L−1(−x

y
). (2.43)

Using the boundary conditions and letting f ′′(0) = k which means y(−β) = k,

y(x) = k + αx + αβ + L−1(−x

y
). (2.44)

As before, we let f be expanded as an infinite series y(x) =
∑∞

n=0 yn(x).

Then

∞∑
n=0

yn(t) = k + αx + αβ + L−1

(
∞∑

n=0

An

)
(2.45)
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Again, we need to find the Adomian polynomials, An, using

y(λ) =
∞∑

n=0

λnyn (2.46)

and hence

Ly(λ) = − x∑∞
n=0 λnyn

. (2.47)

From the definition of the Adomian polynomials,

An =
1

n!

dn

dλn
(Ny(λ))

∣∣∣∣
λ=0

, (2.48)

we find

A0 = − x

y0

(2.49)

A1 =
xf1

y2
0

(2.50)

A2 = −x

[
y2

1

y3
0

− y2

y2
0

]
(2.51)

A3 = −x

[
−y3

y2
0

+
2y1y2

y3
0

− y3
1

y4
0

]
(2.52)

A4 = −x

[
−y4

y2
0

+
y2

2

y3
0

+
2y1y3

y3
0

− 3y2
1y2

y4
0

+
y4

1

y5
0

]
(2.53)

As before, we now have the recursive relationship

y0(x) = k + αx + αβ (2.54)

yn+1(x) = L−1(An) (2.55)

which is then solved. We find that, in this instance, the solution requires two cases: (1) for

α = 0 and (2) for α 6= 0.
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Case 1. α = 0

y0 = k (2.56)

y1 = −x3

6k
+

β2x

2k
+

β3

3k
(2.57)

y2 = − x6

180k3
+

β2x4

24k3
+

β3x3

18k3
− β5x

30k3
− β6

72k3
(2.58)

y3 = − x9

2160k5
+

5β2x7

1008k5
+

β3x6

180k5
− β4x5

80k5
− 11β5x4

360k5

−β6x3

48k5
+

β8x

180k5
+

13β9

7560k5
(2.59)

y4 = − x12

19008k7
+

37β2x10

50400k7
+

β3x9

1296k7
− 43β4x8

13440k7
− β5x7

144k7

+
β6x6

4320k7
+

17β7x5

1200k7
+

5β8x4

288k7
+

121β9x3

15120k7

− 17β11x

13860k7
− 79β12

259200k7
(2.60)

Case 2. α 6= 0

y0 = k + αβ + αx (2.61)

y1 = s1x
2 + s2x + s3 ln |f0|+ s4x ln |f0|+ s5 (2.62)

y2 = p1x
3 + p2x

2 + p3x + p4 ln |f0|+ p5x ln |f0|+ p6 ln2 |f0|

+p7x ln2 |f0|+ p8x
2 ln |f0|+ p9 (2.63)

y3 = t1x
4 + t2x

3 + t3x
2 + t4x +

t5
f0

+ t6 ln |f0|+ t7 ln2 |f0|+ t8 ln3 |f0|

+t9x ln |f0|+ t10x ln2 |f0|+ t11x ln3 |f0|+ t12x
2 ln |f0|+ t13x

2 ln2 |f0|

+t14x
3 ln |f0|+ t15 (2.64)

y4 = z1x
5 + z2x

4 + z3x
3 + z4x

2 + z5x +
z6

f0

+
z7 ln |f0|

f0

+
z8

f 2
0

+
z9 ln |f0|

f 2
0

+ z10 ln |f0|+ z11 ln2 |f0|+ z12 ln3 |f0|

+z13 ln4 |f0|+ z14x ln |f0|+ z15x ln2 |f0|+ z16x ln3 |f0|+ z17x ln4 |f0|

+z18x
2 ln |f0|+ z19x

2 ln2 |f0|+ z20x
2 ln3 |f0|+ z21x

3 ln |f0|

+z22x
3 ln2 |f0|+ z23x

4 ln |f0|+ z24 (2.65)
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where the coefficients, si, pi, ti, and zi are functions of the initial conditions, α, β, and k,

which are all constant values. Due to the size and complexity of these functions, they are

given in Appendix A.

2.5 Adomian Decomposition Solution

The next step is to determine the value of f ′′(0) = k which could then be returned to the

original series solution, equation (2.29). This provides an approximate solution to the Bla-

sius equation.

As a simple example, consider the case for α = β = 0. This has the approximate solution

from the truncated series,

y = y0 + y1 + y2 + y3 + y4 = k − x3

6k
− x6

180k3
− x9

2160k5
− x12

19008k7
. (2.66)

Using the boundary condition from the transformed Blasisus equation, y(1) = 0, we are able

to determine that

k = 0.457674....

The nonlinear shooting method was used to generate the numerical solution for the Bla-

sius equation for comparison to the ADM solution. The numerical value for k = f ′′(0) =

0.46960... for α = β = 0. Therefore, the approximation generated by ADM has a relative

error of 2.5% indicating that the Adomian decomposition provides an acceptable approxi-

mation.

Figure 2.1 shows the ADM solution and the numerical solution for α = β = 0. This

further demonstrates that the truncated ADM solution is a good approximation of the actual

solution. We can also see that the solution is convergent in a small region (η < 3.5) after

which it diverges quickly. However, it should be noted that the boundary layer is also a

small region.
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Figure 2.1: Solution Comparison, α = β = 0

2.6 Results

In addition, the ADM solution was generated for various values of α and β. The values

selected for β were based on the fact that β = −1 represents a straight line. This is a trivial

solution to the Blasius equation (with f ′′(0) = f ′′′(0) = 0). Furthermore, the solutions are

convex for β ∈ (−1, 0] indicating f ′′(0) > 0; whereas, the solutions are concave, f ′′(0) < 0

for β < −1 [20].

The selection of the values for α were based on the following theorem defining existence and

uniqueness of the solution presented by Hartman [35]. Slight modifications have been made

to match the nomenclature used in the present work.

Theorem A [[35], pg. 531]. If −1 < β < 0, then equation (2.1) has one and only one solution

for every α,−∞ < α < ∞. If β = 0, there exists a number A ≤ 0 such that equation (2.1)
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has a solution if and only if −α ≥ A; in this case, the solution is unique. In either case

0 < −β < 1 or β = 0, the solution satisfies f ′′(η) > 0 for 0 ≤ η∞.

Thus, values for α were chosen so that −α > 0.

Figure 2.2: Solution Values for Case 1. α = 0

Case 1. α = 0.

The values for f ′′(0) for various values of β are given in Table 2.1. The relative error of the

ADM solution as compared to the numerical solution is also given. In figure 2.2, the results

are shown graphically. The solution graphs for these values of f ′′(0) are shown in figures 2.3

and 2.4.

Case 2. α 6= 0.

The results for β = 0 are given in Table 2.2 and shown graphically in Figure 2.5. In addition,
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Figure 2.3: Solution Comparison for Case 1. α = 0 with β > 0

Table 2.1: Solution values for f ′′(0) for Case 1. α = 0.

β f ′′(0) numerical f ′′(0) error(%)

0 0.457673776 0.46960056 2.54
-0.25 0.418856959 0.42954 2.49
-0.5 0.32086020 0.32874079 2.40
-0.75 0.178633046 0.18284834 2.31
-1 -1.69E-14 0

-1.25 -0.210116330 -0.21472 2.14
-1.5 -0.448284389 -0.45778062 2.07
-1.75 -0.711949665 -0.72657515 2.01
-2 -0.999121704 -1.0190742 1.96

the results for various values of α and β are given in Table 2.3. We see that the results for this

case are not as accurate as the first. The reasons for this might be found in an examination

of the existence and uniqueness of the solution. Figure 2.6 shows one example of y(1) as a
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Figure 2.4: Solution Comparison for Case 1. α = 0 with β < 0

function of k since the boundary conditions mandate the solution is a zero of this function.

Ultimately, this case requires further examination.

Table 2.2: Solution values for f ′′(0) for β = 0.

α f ′′(0) numerical f ′′(0) error(%)

0 0.45767 0.46960 2.5
-0.25 0.63748 0.65774 3.1
-0.5 0.73001 0.85792 14.9
-0.75 0.92910 1.06725 12.9
-1 1.16151 1.28366 9.5

-1.5 2.50943 1.73199 44.9
-2 3.00028 2.19470 36.7

-2.5 1.49962 2.66758 43.8
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Figure 2.5: Solution values for Case 2 with β = 0

2.7 Aftertreatment Technique

An aftertreatment technique involving the application of Padé approximants to the trun-

cated series generated by the ADM has been shown by many researchers to be an effective

tool [36, 44, 62]. This process has been useful in improving the convergence rate and the

accuracy of the method. As such, Padé approximants were applied to the solution generated

above.

To begin with, a [6,6] Padé approximant was applied to equation (2.66), the approximate

solution for α = β = 0. This was chosen in accordance with the work presented by [36].

This yielded a solution of k = 0.463257... which reduced the relative error to 1.4%. The new

value was returned to the ADM solution and is graphed in Figure 2.7. Table 2.4 gives the

results for Case 1. α = 0 with a comparison to the relative error from the method without
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Figure 2.6: y(1) as a function of k for α = −0.5, β = 0

the aftertreatment. This shows a limited effectiveness in applying the Padé approximants as

an aftertreatment in this work. Possible reasons for this should be explored.

2.8 Conclusion

The use of the ADM demonstrates several advantages in this application. To begin with,

it requires nominal computational work and does not require linearization or additional

assumptions. The method generates fairly accurate results indicating that it is an effective

method. As such, its application to fluid dynamic applications should be further investigated.
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Table 2.3: Solution values for f ′′(0) for α 6= 0 and β 6= 0.

α β f ′′(0) numerical f ′′(0) error(%)

-0.25 -0.25 0.64366 0.56268 14.4
-0.5 -0.25 0.63531 0.70570 10.0
-0.75 -0.25 0.75549 0.85650 11.8
-1 -0.25 0.67637 1.01344 33.3

-0.25 -0.50 1.37114 0.41465 230.7
-0.50 -0.50 0.54653 0.50703 7.8
-0.75 -0.50 0.59692 0.60469 1.3
-1.00 -0.50 0.66743 0.70665 5.5

-0.25 -0.75 0.37305 0.22490 65.9
-0.50 -0.75 0.38392 0.27005 42.2
-0.75 -0.75 0.44351 0.31781 39.5
-1.00 -0.75 0.40011 0.36775 8.8
-0.25 -1.00 0.12926 0 12.9
-0.50 -1.00 0.16140 0 16.1
-0.75 -1.00 0.30740 0 30.7
-1.00 -1.00 0.91235 0 91.2

Table 2.4: Values for f ′′(0) for Case 1. α = 0 with aftertreatment.

β f ′′(0) Padé numerical f ′′(0) error(%) original error (%)

-0.25 0.416625 0.429541 3.0 2.5
-0.5 0.271482 0.328741 17.4 2.4
-0.75 0.000000 0.182848 100.0 2.3
-1 0 0.000000

-1.25 0.000000 -0.214718 100.0 2.1
-1.5 -0.447447 -0.457781 2.3 2.1
-1.75 -0.709768 -0.726575 2.3 2.0
-2 -0.990113 -1.019074 2.8 2.0

2.9 Comparison with Bender’s Perturbation Method

Based on the small region of convergence, it is concluded that the ADM is only acceptable

for a localized solution. If a global solution is desired, it is recommended that an alternate
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Figure 2.7: Solution Comparison with Padé Aftertreatment, α = β = 0

method be employed. One method that has proved effective in this respect for the gener-

alized Blasius equation (2.1) is the δ-perturbation method developed by Bender et al. [22].

This method is used to solve equation (2.1) in Appendix B of this work. In this section, we

compare those results with the results of the present chapter.

To begin with, the case for α = β = 0 is examined. In this instance, the δ-perturbation

solution yields a skin friction value of

k = 0.42871...

This exhibits a relative error of 8.7% as compared to the numerical solution. This error

is slightly larger than that of the ADM solution. However, it should be noted that the

δ-perturbation method is only a second-order approximation; whereas, the ADM utilizes a

fourth-order approximation. Figure 2.8 shows both the ADM solution and the δ-perturbation
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solution in comparison to the numerical solution. In addition, Figure 2.9 illustrates the in-

crease in accuracy of the solution as the degree of order for the approximation increases.

Figure 2.8: Solution Comparison for ADM and δ-Perturbation Method

Next, the case for α = 0 was examined. Table 2.5 gives the results for the δ-perturbation

method in conjunction with the ADM results. This is shown graphically in figure 2.10. The

results for β = 0 are shown in table 2.6 and figure 2.11. Finally some results are displayed

in table 2.7 for varying α and β.

Based on these findings, we note that while the ADM exhibited greater computational ease,

the δ-perturbation solution yields a better quality solution. In addition to providing a global

solution not hindered by a small region of convergence, it also maintains its accuracy as the

variables α and β are changed.
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Figure 2.9: Solution Comparison for δ-Perturbation Method

Table 2.5: δ-Perturbation and ADM values for f ′′(0) for Case 1. α = 0.

β f ′′(0)δ error(%) f ′′(0) ADM error(%)

0 0.42871 8.7 0.45767 2.5

-0.25 0.40413 5.9 0.41886 2.5

-0.5 0.31607 3.9 0.32086 2.4

-0.75 0.17962 1.8 0.17863 2.3

-1 0.0 - 0.00000 -

-1.25 -0.20968 2.3 -0.21012 2.1

-1.5 -0.44708 2.3 -0.44828 2.1

-1.75 -0.70821 2.5 -0.71195 2.0

-2 -0.98652 3.2 -0.99912 2.0
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Figure 2.10: Solution Values for ADM and δ-Perturbation Method, Case 1. α = 0

Table 2.6: δ-Perturbation and ADM values for f ′′(0) for Case 2. α 6= 0, β = 0.

α f ′′(0) δ error(%) f ′′(0) ADM error(%)

0 0.42871 8.7 0.45767 2.5

-0.25 0.63352 3.7 0.63748 3.1

-0.5 0.84616 1.4 0.73001 14.9

-0.75 1.06765 0.04 0.92910 12.9

-1 1.27500 0.7 1.16151 9.5

-1.5 1.71719 0.9 2.50943 44.9

-2 2.20905 0.7 3.00028 36.7

-2.5 2.77353 4.0 1.49962 43.8
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Figure 2.11: Solution Values for ADM and δ-Perturbation Method for β = 0

Table 2.7: δ-Perturbation and ADM values for f ′′(0) for α 6= 0 and β 6= 0.

α β f ′′(0)δ error (%) f ′′(0) ADM error(%)

-0.25 -0.25 0.550297287 2.2 0.64366 1 4.4

-0.5 -0.25 0.672484886 4.7 0.63531 10.0

-0.75 -0.25 0.85454543 0.2 0.75549 11.8

-1 -0.25 1.005311119 0.8 0.67637 33.3

-0.25 -0.5 0.408016698 1.6 1.37114 230.7

-0.5 -0.5 0.510072545 0.6 0.54653 7.8

-0.75 -0.5 0.602349796 0.4 0.59692 1.3

-1 -0.5 0.700168194 0.9 0.66743 5.5

-0.25 -0.75 0.221528741 1.5 0.37305 65.9

-0.5 -0.75 0.270147278 0.04 0.38392 42.2

-0.75 -0.75 0.316182757 0.5 0.44351 39.5

-1 -0.75 0.364016828 1.0 0.40011 8.8
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CHAPTER THREE: FALKNER-SKAN EQUATION

A natural extension of the previous work on the Blasius Equation is to examine the Falkner-

Skan equation since the Blasius equation can be viewed as a special case of the Falkner-Skan

equation.

3.1 The Falkner-Skan Equation

The Falkner-Skan Equation is given by the third-order, nonlinear differential equation

f ′′′ + ff ′′ + β(1− f ′2) = 0 (3.1)

with boundary conditions

f(0) = 0 (3.2)

f ′(0) = 0 (3.3)

lim
η→∞

f ′(η) = 1. (3.4)

While the Blasius equation describes fluid flow past a flat plate, the Falkner-Skan equation

would describe flow along a curved plate or wedge. As for the Blasius equation, the ini-

tial value of the second derivative, f ′′(0), indicates the skin friction along the wall. A new

parameter, β, is introduced with the Falkner-Skan equation, which is the pressure gradient

parameter. Solutions for β > 0 corresponds to accelerating flows, β = 0 indicates constant

flows, and β < 0 represents decelerating flows.

The Falkner-Skan is also frequently written in an alternate form utilizing m as the Falkner-

Skan pressure parameter instead of β.

f ′′′ +
m + 1

2
ff ′′ + m(1− f ′2) = 0 (3.5)
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The Falkner-Skan equation includes as special cases Blasius flow (m = 0) and Hiemenz stag-

nation point flow (m = 1)[34].

Like the Blasius equation, the Falkner-Skan equation has been the subject of much research

[12, 21, 33, 64]. For instance, Xenos et al. [64] examined compressible turbulent boundary-

layer flow over a wedge which has significant application in the field of aerodynamics. Their

work involved transforming the governing equations, the Reynolds-Averaged Boundary Layer

using the compressible Falkner-Skan transformation. In addition, two algebraic turbulence

models were considered. The authors successfully developed a numerical solution using the

Keller-box method, which they claim is unconditionally stable. Their results show that “an

instant separation of the turbulent compressible boundary layer over the wedge occurs when

m ≤ 0.1”[64]. Additionally, “application of suction retains the boundary layer for larger

values of the dimensionless pressure parameter, m”[64].

Furthermore, Guedda and Hammouch [33] examined the problem for similarity solutions

based on the velocity distribution outside the boundary layer. The question of existence of

solutions was addressed for “the case where the external velocity is an inverse-linear func-

tion” which occurs in sink flow [33]. The results indicate multiple solutions for lateral suction

and no solutions for injection. In addition, they were able to define a sufficient condition

for existence which “indicates that for the same positive value of the suction parameter the

permeable wall stretching” with prescribed velocity has multiple boundary layer flows that

are uniquely determined by the skin friction, f ′′(0)([33].

In addition, Belhachmi et al. [21] examined an equation similar to the Falkner-Skan equation

that arises when considering a heated impermeable flat plate embedded in a porous medium.

Solutions to this equation can give an approximation to the thermal boundary layer. Their

37



work included the derivation of the governing equations, established properties of the solu-

tions, and examined the existence and uniqueness of solutions. The equation examined by

their work includes a parameter, α that describes the temperature distribution on the wall.

The problem only has physical meaning for α ∈ [−1
3
, 1]. They found that no solution exists

for α < −1
3
, at least one solution for α ∈ (−1

3
, 0), and one and only one solution for α = −1

3

and α ≥ 0. It is interesting to find that solutions only exist where the problem has physical

meaning. Due to the similarities of the equations, their work can provide a foundation for

understanding the solutions of the Falkner-Skan equation.

While no closed-form solutions are known, the solutions to the Falkner-Skan equation are

“similarity solutions of the two-dimensional incompressible laminar boundary layer equa-

tions” according to Asaithambi [12] who reported the numerical solutions for the Falkner-

Skan based on the shooting and finite differences techniques. Asaithambi [12] presented one

shooting method for solving the Falkner-Skan equation. The method utilizes the Taylor se-

ries method and was found to be efficient and successful. The solution was obtained by first

beginning with a coordinate transformation, followed by a change of variables to convert the

problem to a system of first-order problems. Then an algorithm was established utilizing a

recursive evaluation of the Taylor coeffiecients. To evaluate the method, the author exam-

ined the cases of the Pohlhausen, Blasius, and Homann flows, accelerating, constant, and

decelerating flows. The results were found to be “in excellent agreement” with previously

reported solutions[12].

Another numerical solution presented by Asaithambi [11] also showed “excellent agreement”

with previously published solutions. The method again started with a coordinate trans-

formation and a change of variables technique. The new system of differential equations

consists of a second-order equation which was “approximated using a Galerkin formulation
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with piecewise linear elements” and a first-order equation which was “approximated using

a centered-difference approximation”[11]. Asaithambi has repeatedly shown that by trans-

forming the Falkner-Skan equation utilizing some coordinate transformation and a change

of variables allows for easily generating solutions using various numerical methods, such as

the finite-difference or the classical Runge-Kutta methods[10, 9, 8].

Padé [56] provided a proof of the existence and uniqueness for the solutions of the Falkner-

Skan equation subject to “a physical set of boundary conditions”, such as positive wall

temperature, positive skin friction at the wall (f ′′(0) > 0), and favourable pressure gradients

(β > 0). In addition, some properties of the solutions and “bounds on important quantities”

were established. In relation to the present work, the Falkner-Skan equation has a unique

solution satisfying f ′2 < 1, a unique solution satisfying f ′′ > 0. Furthermore, the solution

to the Falkner-Skan equation, f , can be related to the solution to the Blasius equation, f0,

such that f ≤ f0. [56]

While much work has been done on the Falkner-Skan equation, the Adomian Decomposi-

tion Method potentially provides a way of quickly and accurately developing an analytical

solution for the equation that would benefit other aspects of research. The Falkner-Skan

equation is useful in many types of problems (see for example [34, 40]). Some instances of

how it has already been used are mentioned below.

To begin with, the classical Falkner-Skan problem typically employs steady-state conditions.

Recent research has explored cases involving unsteady conditions, particulary motion and

temperature, which have increasing importance in applications such as aerodynamics and

hydrodynamics [34]. For instance, Harris et al. [34] considered a transient Falkner-Skan

problem with forced-convection, thermal boundary layer. A comprehensive solution was

39



generated utilizing a series solution for small time, steady state Falkner-Skan solution for

large time, and a finite difference method for the transition range from the small time, un-

steady state to large time, steady state. Their findings indicate that while the effect is

“initially confined within a region close to the surface, as time progresses, diffusion effects

eventually modify the solution at a great distance from the surface” [34]. In addition, the

solution is in “very good agreement with all of the previously reported results” [34].

Butler et al. [27] developed a direct numerical method to generate the solution to the Prandtl

problem. They utilized “the Falkner-Skan similarity solution of Prandtl’s problem” to pro-

vide boundary conditions necessary for a direct numerical solution and also as a reference

solution for determining the error of the numerical solution to the unknown exact solution.

“Since the Falkner-Skan solution is known to converge Reynolds uniformly to the solution

of Prandtl’s problem, we can compute Reynolds uniform error bounds” [27]. Extensive nu-

merical experiments were used to validate the performance of the direct numerical method

developed and indicates the method is “Reynolds and uniform” [27].

Itoh [40] examined Gortler instability along a “concavely curved surface”. Theoretical stud-

ies concerning this typically utlize the Blasius flow profile. However, Itoh [40] points out that

Blasius boundary-layer profile “indicates no pressure gradient along the wall” and therefore

utilized the Falkner-Skan boundary layer family to extend the stability analysis. In partic-

ular, Itoh [40] focused on stagnation point flow, m = 1, and generated a series solution for

the eignevalue problem derived by reducing the disturbance equations governing Gortler in-

stability. This approach yielded the “neutral stability curve with a minimum of the Gortler

number” and provided the critical Gortler number and the critical wave number, which

“could not be obtained from the classical parallel-flow theory”.
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As stated previously, the ADM provides a way to develop an analytical solution for the

Falkner-Skan equation quickly and accurately. Based on its similarity to the Blasius equa-

tion, a solution for the Falkner-Skan equation will be generated utilizing the Adomian de-

composition method following the techniques presented by Wang [60] and presented in the

previous chapter.

3.2 Adomian Decomposition of the Falkner-Skan Equation

The linear differential operator, L, for the Falkner-Skan equation is the same as used previ-

ously for the Blasius equation

L =
d3

dη3
. (3.6)

This then gives the inverse operator as

L−1 =

∫ η

0

∫ η

0

∫ η

0

(·)dηdηdη. (3.7)

The nonlinear operator is defined as

Nf = −ff ′′ + βf ′2. (3.8)

The equation is then rewritten in operator form

Lf + β = Nf. (3.9)

Operating with the inverse operator and incorporating the boundary conditions yields

f(η) =
1

2
kη2 − 1

6
βη3 + L−1(Nf) (3.10)

where k is used to represent the initial value of the second derivative, f ′′(0), the skin friction.

Next, the Adomian polynomials are generated such that

An = −(
n∑

i=0

fif
′′
n−i) + β(

n∑
i=0

f ′if
′
n−1) (3.11)
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hence

A0 = −f0f
′′
0 + βf ′20 (3.12)

A1 = −(f0f
′′
1 + f1f

′′
0 ) + β(2f ′0f

′
1) (3.13)

A2 = −(f0f
′′
2 + f1f

′′
1 + f2f

′′
0 ) + β(f ′21 + 2f ′0f

′
2) (3.14)

A3 = −(f0f
′′
3 + f1f

′′
2 + f2f

′′
1 + f3f

′′
0 ) + β(2f ′0f

′
3 + 2f ′1f

′
2). (3.15)

From this, we can determine the recursive relationship that determines the solution.

f0 =
1

2
kη2 − 1

6
βη3 (3.16)

fn+1 = L−1(An) (3.17)
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Utilizing this, the series solution to the Falkner-Skan is found to be

f0 =
1

2
kη2 − 1

6
βη3 (3.18)

f1 = (− 1

1260
β2 +

1

840
β3)η7 + (

1

180
kβ − 1

120
kβ2)η6 + (− 1

120
k2

+
1

60
k2β)η5 (3.19)

f2 = (
19

1247400
β4 − 1

155925
β3 − 1

118800
β5)η11 + (

1

14175
kβ2

+
1

10800
kβ4 − 19

113400
kβ3)η10 + (

113

181440
k2β2

− 11

30240
k2β3 − 1

4032
βk2)η9 + (

11

40320
k3

− 1

1260
k3β +

1

2016
k3β2)η8 (3.20)

f3 = (
1

16848000
β7 +

3557

20432412000
β5 − 563

10216206000
β4

− 2407

13621608000
β6)η15 + (− 1

1123200
kβ6 − 3557

1362160800
kβ4

+
563

681080400
kβ3 +

2407

908107200
kβ5)η14 + (

5723

389188800
k2β3

− 7081

1556755200
k2β2 − 3397

222393600
k2β4 +

1363

259459200
k2β5)η13

+ (
577

53222400
k3β +

1597

39916800
k3β3 − 19

1330560
k3β4 (3.21)

− 8849

239500800
k3β2)η12 + (− 19

475200
k4β2 +

233

6652800
k4β

− 5

532224
k4 +

1

66528
k4β3)η11 (3.22)

3.3 Transformed Falkner-Skan Equation

As before, it is necessary to transform the equation in order to determine the value of k.

We begin by letting

x = f ′(η) (3.23)

y(x) = f ′′(η) (3.24)
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This gives the Transformed Falkner-Skan Equation as

y2y′′ − β(1− x2)y′ + (1− 2β)xy = 0 (3.25)

on 0 ≤ x < 1 subject to the boundary conditions

y(0) = k (3.26)

y(1) = 0 (3.27)

y′(0) = −β

k
(3.28)

This equation is rewritten as

y′′ − β(1− x2)
y′

y2
+ (1− 2β)

x

y
= 0 (3.29)

for use with the ADM.

3.4 Adomian Decomposition of Transformed Falkner-Skan Equation

The Adomian Decomposition Method was then applied to the transformed Falkner-Skan

equation. We begin by defining the linear operator as

L =
d2

dx2
. (3.30)

This gives the inverse operator as

L−1 =

∫ x

0

∫ x

0

(·)dxdx. (3.31)

Operating with this on Equation 3.29 and incorporating the boundary conditions yields

y(x) = k − β

k
x + L−1(β(1− x2)

y′

y2
− (1− 2β)

x

y
). (3.32)

We take a linear combination of two nonlinear operators in order to decompose the nonlinear

portion into the Adomian polynomials. We set

N1y =
y′

y2
(3.33)

N2y =
1

y
. (3.34)
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This gives the nonlinear portion as

L−1
(
β(1− x2)N1y − (1− 2β)xN2y

)
. (3.35)

Using the definition for Adomian polynomials, we have

A0 = β(1− x2)
y′0
y2

0

− (1− 2β)
x

y0

(3.36)

A1 = β(1− x2)

(
y′1
y2

0

− 2y′0y1

y3
0

)
− (1− 2β)x

(
−y1

y2
0

)
(3.37)

A2 = β(1− x2)

(
y′2
y2

0

− 2y′1y1

y3
0

+
3y′0y

2
1

y4
0

− 2y′0y2

y3
0

)
− (1− 2β)x

(
y2

1

y3
0

− y2

y2
0

)
(3.38)

A3 = β(1− x2)

(
y′3
y2

0

− 2y′2y1

y3
0

+
3y′1y

2
1

y4
0

− 2y′1y2

y3
0

− 4y′0y
3
1

y5
0

+
6y′0y1y2

y4
0

−2y′0y3

y3
0

)
− (1− 2β)x

(
−y3

1

y4
0

+
2y1y2

y3
0

− y3

y2
0

)
. (3.39)

Finally we define the recursive relationship as follows

y0(x) = k − β

k
x (3.40)

yn+1(x) = L−1(An). (3.41)

This yields the solution for transformed equation as

y0 = k − β

k
x (3.42)

y1 = p1x
2 + p2x + p3 ln(y0) + p4x ln(y0) + p5 (3.43)

y2 = q1x
3 + q2x

2 + q3x + q4 ln(y0) + q5x ln(y0) + q6x
2 ln(y0)

+ q7 ln2(y0) + q8x ln2(y0) +
q9

y0

+
q10 ln(y0)

y0

+ q11 (3.44)

y3 = r1x
4 + r2x

3 + r3x
2 + r4x + r5 ln(y0) + r6x ln(y0) + r7x

2 ln(y0) + r8x
3 ln(y0)

+ r9 ln2(y0) + r10x ln2(y0) + r11x
2 ln2(y0) + r12 ln3(y0)

+ r13x ln3(y0) +
r14

y0

+
r15

y2
0

+
r16 ln(y0)

y0

+
r17 ln(y0)

y2
0

+
r18 ln2(y0)

y0

+
r19 ln2(y0)

y2
0

+ r20. (3.45)
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where the coefficients pi, qi, and ri are functions of k and β. Again, these functions are given

in Appendix A due to their size.

3.5 Solution

To determine a solution to the Falkner-Skan equation, the truncated solution to the trans-

formed equation y = y0 + y1 + y2 + y3 could be evaluated for a particular value of β at the

boundary condition y(1) = 0 to provide a value for the skin friction f ′′(0). In addition to

determining this important parameter, an analytical solution for f(η) can be determined by

returning k to the truncated solution of the original equation f = f0 + f1 + f2 + f3. From

the coefficient functions for the solution to the transformed equation, we see that the special

case, β = 0, describing the Blasius flow would have to be solved separately; however, since

this was already done in the previous chapter, no further mention will be made. Therefore,

in order to analyze the solution generated by this method, the special case for Hiemenz

stagnation flow, β = 1, will be evaluated.

To find the solution, we fix β at 1. Then we apply the boundary condition y(1) = 0 in order

to determine f ′′(0) = k. This yields k = 1.092079498. This value was compared to the

numerical solution given by Asaithambi [11] which was obtained by using piecewise linear

functions. The author utilized a coordinate transformation and change of variable to the

original Falkner-Skan equation as mentioned previously. The value of the skin friction for

Hiemenz stagnation was determined to be k = 1.232589 [11]. The results from the ADM

has a relative error of 11.4% when compared to this value. While this is a small error, it

is noted that it is only accurate to one significant digit. As such, the Padé aftertreatment

was applied in attempt to improve the accuracy of the solution. This yielded a result of

k = 1.096566, which has a relative error of 11.0%. This indicates that the Aftertreatment

Technique was essentially ineffective in this result.
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One advantage of the ADM is that it provides an analytical solution for f(η). The value of

k was returned to the original solution which was then compared to the numerical solution

graphically. This comparison is shown in figure 3.1. While the numerical solution can plot

the solution, the benefits to having an equation to describe the solution are many.

Figure 3.1: Solution Comparison to Numerical Solution

3.6 Results

To further examine the effectiveness of the solution, figure 3.2 shows the series solution uti-

lizing the published value of k. This indicates that the original solution is quite accurate

(exhibiting a relative error < 0.1% for η ≤ 1.25). This seems to indicate that the trans-

formed solution is less effective. Further analysis demonstrated that the best approximation

of the transformed solution would be O(2) solution. This yields k = 1.187669477 which has
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a relative error of 3.6%. Ordinarily, one would expect the accuracy to increase as more terms

are included in the series. This prompted an examination of the solution term by term. This

is demonstrated in figure 3.3, which shows the solution graph beginning with f0 and then

addiing successive terms. It is noted that for the small region of convergence f0 is fairly

accurate on its own, but when the region is widened it fails to remain so.

Figure 3.2: Examination of Original Solution

Solutions of the Falkner-Skan equation were also examined for various values of β. As stated

previously, solutions for β > 0 corresponds to accelerating flows, β = 0, constant flows, and

β < 0, decelerating flows. Since it has been determined that “physically relevant solutions

exist only for −0.19884 < β ≤ 2” [11], values were chosen in agreement with those bounds.

Results are given in table 3.1 and displayed graphically in figure 3.4. These results seem to

imply that the solution is only effective for β > 0. Figure 3.5 shows solutions for various β.
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Figure 3.3: Solution Comparison for Increasing Series Terms

Table 3.1: Solution values for f ′′(0) for various β.

β f ′′(0) numerical f ′′(0) error(%)

2 1.8611 1.687222 10.3
1 1.1876 1.232589 3.6

0.5 0.8602 0.927682 7.3
-0.1 0.2180 0.31927 31.7
-0.12 0.2391 0.281762 15.2
-0.15 0.2678 0.21636 23.8
-0.18 0.2935 0.128637 128.1

-0.1988 0.3080 0.005217 5804.4

3.7 Conclusion

Again, several benefits can be seen in the use of the ADM for developing a solution. Pri-

marily, the ADM yields an analytic expression for f(η). Furthermore, it can be obtained by
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Figure 3.4: Solution Values for f ′′(0) for Various β.

direct application to the Falkner-Skan equation. It is necessary to incorporate some modi-

fication in order to utilize the boundary condition at infinity to determine the skin friction;

nevertheless, the solution developed by ADM of the original solution was shown to be quite

accurate. Furthermore, we find the initial term of the series to be an adequate approximation

on its own. In addition, we continue to see the ease of computation frequently remarked upon.

We note that much of the work in this section can be performed without computer assistance.

Conversely, some negative aspects to utilizing this method were also noted. To begin with,

we again see a small region of convergence for the solution. Likewise, the method exhibits

slow convergence as higher-order approximations are needed for reasonably accurate results.

This can be difficult to execute if the equations are complex and not conducive to successive

iterations. In addition, the transformation seems to introduce some error. It is also noted
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Figure 3.5: Solutions for Various β.

that when evaluating a highly symbolic equation as a means of increasing the generality of

the problem, the series terms become increasingly large and unwieldy losing some of the

computational ease. In addition, the type of nonlinearity seems to influence the quality of

the solution. In the transformed equation where the nonlinearity is expressed as a quotient

instead of a product, we begin to see unfavorable functions in certain terms viz. ln(f0) or

1/f0. This was also evidenced in the previous work on the Blasius equation.

Some of these difficulties have been overcome by a method similar to the ADM. Liao [48]

developed a solution for the Falkner-Skan and Blasius equations using the newly developed

Homotopy Analysis Method (HAM). This method incorporates the Adomian Decomposition

Method and some perturbation methods as special cases. In the case of Hiemenz stagnation

flow β = 1, Liao determined the skin friction to be 1.2308, 1.2327, and 1.2326 for the 10th,
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20th, and 30th order approximations to f ′′(0). While these are good approximations to the

numerical result of 1.2326, it is difficult to objectively compare to the work herein since we

only conducted a 3rd order approximation. Liao also noted slow convergence for β < 0 and

attributes this to the question of multiple solutions existing in this instance. See [48] for

details on the HAM and the solutions. The major benefit to the Homotopy Analysis Method

is the ability to select the base functions for the series expansion. For instance, in the case of

the original Falkner-Skan and Blasius equations, the ADM yields a series solution in terms

of a power series of η (ηn). With the HAM, exponential terms (i.e. enη), which are more

suited to the behavior of the solution, can be selected as the base functions and HAM could

be used to avoid the special functions, such as ln(f0), that appear in the solutions for the

transformed equations in this work.

3.8 Magnetohydrodynamic Boundary Layer Equations

A problem closely related to the Falkner-Skan equation are the magnetohydrodynamic

boundary layer equations that were examined by Shivamoggi and Rollins [58]. The equations

are a pair of coupled nonlinear ordinary differential equations that describe the fluid flow

“past a semi-infinite flat plate in the presence of a magnetic field which is uniform at infinity

and parallel to the stream” [58]. A brief examination into the usefulness of the ADM applied

to these equations is conducted here.

The coupled equations are given by

g′′ + µ(fg′ − f ′g) = 0 (3.46)

f ′′′ + ff ′′ − 1

A2
gg′′ = 0 (3.47)

(3.48)
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with boundary conditions

f(0) = 0, f ′(0) = 0, g(0) = 0 (3.49)

As η ⇒∞,

f ≈ 2η, g ≈ 2η (3.50)

or equivalently

lim
η→∞

f ′(η) = 2, lim
η→∞

g′(η) = 2. (3.51)

The ADM allows direct application to the equations without the need to decouple the equa-

tions. We start by defining two linear operators,

L1 =
d2

dη2
(3.52)

L2 =
d3

dη3
(3.53)

operating separately on equations (3.46) and (3.47), respectively. This gives the inverse

operators as

L−1
1 =

∫ η

0

∫ η

0

(·)dηdη (3.54)

L−1
2 =

∫ η

0

∫ η

0

∫ η

0

(·)dηdηdη. (3.55)

We then have two nonlinear operators,

N1(fg) = (f ′g − fg′) (3.56)

N2(fg) =
1

A2
gg′′ − ff ′′ (3.57)

We can rewrite equations (3.46) and (3.47) as

L1g = µN1(fg) (3.58)

L2f = N2(fg). (3.59)
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Operating with the inverse operators and applying the initial conditions in (3.49), we have

g(η) = g′(0)η + L−1
1 (An) (3.60)

f(η) =
1

2
f ′′(0)η2 + L−1

2 (Bn). (3.61)

where An and Bn are the Adomian polynomials based on N1 and N2, respectively. To

determine the Adomian polynomials, we expand g(η) and f(η) as

g(λ) =
∞∑

n=0

λngn (3.62)

f(λ) =
∞∑

n=0

λnfn (3.63)

such that

N1(fg(λ)) =
∞∑

n=0

λn · µ

(
n∑

i=0

f ′ign−i −
n∑

i=0

fig
′
n−i

)
(3.64)

N2(fg(λ)) =
∞∑

n=0

λn ·

(
1

A2

n∑
i=0

gig
′′
n−i −

n∑
i=0

fif
′′
n−i

)
(3.65)

and utilize the definition

An =
1

n!

dn

dλn
(Nf(λ))

∣∣∣∣
λ=0

. (3.66)

This yields the Adomian polynomials as

A0 = µ(f ′0g0 − f0g
′
0)

A1 = µ(f ′0g1 + f ′1g0 − (f0g
′
1 + f1g

′
0))

A2 = µ(f ′0g2 + f ′1g1 + f ′2g0 − (f0g
′
2 + f1g

′
1 + f2g

′
0))

A3 = µ(f ′0g3 + f ′1g2 + f ′2g1 + f ′3g0 − (f0g
′
3 + f1g

′
2 + f2g

′
1 + f3g

′
0))

A4 = µ(f ′0g4 + f ′1g3 + f ′2g2 + f ′3g
′
1 + f ′4g0 − (f0g

′
4 + f1g

′
3 + f2g

′
2 + f3g

′
1 + f4g

′
0))
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and

B0 =
1

A2
g0g

′′
0 − f0f

′′
0

B1 =
1

A2
(g0g

′′
1 + g1g

′′
0)− (f0f

′′
1 + f1f

′′
0 )

B2 =
1

A2
(g0g

′′
2 + g1g

′′
1 + g2g

′′
0)− (f0f

′′
2 + f1f

′′
1 + f2f

′′
0 )

B3 =
1

A2
(g0g

′′
3 + g1g

′′
2 + g2g

′′
1 + g3g

′′
0 − (f0f

′′
3 + f1f

′′
2 + f2f

′′
1 + f3f

′′
0 )

B4 =
1

A2
(g0g

′′
4 + g1g

′′
3 + g2g

′′
2 + g3g

′′
1 + g4g

′′
0)− (f0f

′′
4 + f1f

′′
3 + f2f

′′
2 + f3f

′′
1 + f4f

′′
0 )

If we designate g′(0) = γ1 and f ′′(0) = γ2, we find the recursive relationship that defines the

solution to be

g0(η) = γ1η f0(η) =
1

2
γ2η

2 (3.67)

gn+1(η) = L−1
1 (An) fn+1(η) = L−1

2 (Bn). (3.68)

Solving this yields the solution to the coupled magnetohydrodynamic boundary layer equa-

tions as

g0 = γ1η (3.69)

g1 = 1/24 µ γ2 γ1 η4 (3.70)

g2 =

(
− 1

1008
γ2

2µ2γ1 −
1

1260
γ2

2µ γ1

)
η7 (3.71)

g3 =

(
1

36288
γ2

3µ3γ1 +
11

604800
γ2

3µ2γ1

+
11

518400
γ2

3µ γ1

)
η10 +

1

2688A2
γ3

1µ
2γ2η

8 (3.72)

g4 =

(
− 25

41513472
γ4

2µγ1 −
1

1747200
γ4

2µ
3γ1 −

1

1415232
γ4

2µ
4γ1

− 191

566092800
γ4

2µ
2γ1

)
η13 +

(
− 1

69300A2
γ2

2γ
3
1µ

2 − 19

1900800A2
γ2

2γ
3
1µ

3

)
η11 (3.73)
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and

f0 =
1

2
γ2η

2 (3.74)

f1 = − 1

120
γ2

2η5 (3.75)

f2 =
1

240A2
γ2

1µγ2η
6 +

11

40320
γ2

3η8 (3.76)

f3 = − 5

532224
γ2

4η11 +

(
− 1

24192

γ2
2µ2γ1

2

A2
− 1

5040

γ1
2γ2

2µ

A2

)
η9 (3.77)

f4 =
9299

29059430400
γ2

5η14 +

(
1

5322240

γ1
2γ2

3µ3

A2
+

167

159667200

γ1
2γ2

3µ2

A2

+
443

53222400

γ1
2γ2

3µ

A2

)
η12 +

1

34560

γ1
4µ2γ2 η10

A4
(3.78)

Figure 3.6: ADM Solution for f(η) and g(η) for magnetohydrodynamic equations.

While a solution needs to be acquired through a suitable modification that would allow

incorporation of the boundary conditions, an initial glance at the behavior of this solution

can be explored. By only considering the initial terms in equation (3.67), a rough estimate
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for γ1 and γ2 can be obtained. By setting

g0(η) = 2η f0(η) = 2η, (3.79)

we can use γ1 = 2 as an approximation. This would also yield γ2 = 4
x
⇒ 0, which would give

a null solution. Therefore, we can approximate γ2 as small based on the projected region of

convergence. If we approximate γ2 = 0.5 for η < 8, we can graph the ADM solution in figure

3.6.
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CHAPTER FOUR: ORR-SOMMERFELD EQUATION

The next equation chosen as a means of developing a cohesive work was the Orr-Sommerfeld

equation. This equation arises when a small amplitude wavy disturbance is introduced

into the flow. This disturbance is described by the Orr-Sommerfeld equation while the

corresponding mean flow has been described using the Blasius flow by several researchers

[23, 46].

4.1 The Orr-Sommerfeld Equation

The Orr-Sommerfeld Equation is given by

d4v

dy4
− 2α2 d2v

dy2
+ α4v − iαR

[
(u− λ)

(
d2v

dy2
− α2v

)
− d2u

dy2
v

]
= 0 (4.1)

with boundary conditions

v(−1) = v′(−1) = v(1) = v′(1) = 0. (4.2)

According to Lahmann and Plum [46], the Orr-Sommerfeld equation is one of the cen-

tral equations governing hydrodynamic stability of incompressible flows and constitutes a

non-selfadjoint eigenvalue problem. It is ”obtained by linearization of the Navier- Stokes

equations for flat parallel flows between two fixed walls” [59].

The Orr-Sommerfeld equation deals with ”the physical question of stability or instability of

the underlying flow in response” to a disturbance and hence, the growth or decay of the dis-

turbance in time [46, 54]. The undisturbed stream flow in the channel has Reynold’s number

R and a velocity profile u(y). The parameter α represents the wave number. Analysis of

the equation involves λ, which represents the complex-valued wave velocity, specifically with

Re(λ)(= cr) and Im(λ)(= ci) describing the phase velocity and the amplicfication factor,
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respectively. As an eigenvalue problem, λ is treated as the eigenvalue parameter [19, 46, 54].

Subject to the boundary conditions above, the side walls are located at y = ±1. The distur-

bance can also be examined for flow along a single wall by utilizing a half-plane boundary

([0,∞)).

While the undisturbed velocity profile can be described in many ways depending on the

physical conditions (i.e. Blasius flow, plane Pouseille flow, plane Couette flow), this work

utilized plane Poiseuille flow, given as u(y) = 1 − y2, for simplicity and comparison to pre-

viously published results [55].

When considering stability, several aspects can be examined. A solution to the Orr-Sommerfeld

equation with Im(λ) > 0 is considered ”an unstable linear eigenmode, in the sense that the

amplitude of the disturbance grows exponentially with time” [55]. For the case of plane

Pouseille flow, the disturbance is unstable if αci > 0 and stable for αci ≤ 0. If αci = 0,

disturbance is ”marginally stable” for some α and R, if subject to the condition that αci > 0

for neighboring α, R [19]. Furthermore, Lahmann and Plum indicate that flow is unstable

if cr < 0 [46].

Previously, researchers utilized numerical methods to determine the solutions to this equa-

tion. In 1971, Orszag utilized expansions in Chebyshev polynomials with the QR matrix

eigenvalue algorithm to find the exact eigenvalue ”for the most unstable mode of plane

Poiseuille flow with α = 1,R = 10000 [55]. This was reported as 0.23752649 + 0.00373967i.

He also determined the critical values of α,R to be αc = 1.02056 and Rc = 5772.22 and gave

the 32 eigenvalues for the”least stable antisymmetric eigenmodes” [55].

Banerjee et al. established eigenvalue bounds for the Orr-Sommerfeld equation [18, 19]. From
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this, they showed that for the case of plane Pouseille flow, the phase velocity cr cannot be

negative and thus, there cannot be any neutral backward perturbation wave, when umin = 0

[18]. Their work shows that the disturbance wave velocity is bound by the maximum and

minimum values of the base flow (umin < cr < umax). For the case of plane Pouseille flow,

these values are specifically

−4

π2 + 4α2
< cr < 1. (4.3)

Recently, the main body of research on the Orr-Sommerfeld equation has focused on spectral

analysis [46, 54, 59].

Lahmann and Plum [46] examined the ”spectrum of the Orr-Sommerfeld equation”. The aim

of their research was to first obtain a mathematical instability proof for the Orr-Sommerfeld

problem. The authors determined the essential spectrum and the eigenvalue enclosures in

the complex plane [46].

Ng and Reid [54] also examined the spectrum of the Orr-Sommerfeld equation. They noted

that there exist three distinct families of eigenvalues that ”exhibit a Y-shaped pattern in

the (cr, ci) plane” [54]. Their work involved successfully approximating these modes by an

asymptotic formula, specifically for plane Pouseille flow with α = 0.

Shkalikov and Tumanov [59] also examined the spectrum of the Orr-Sommerfeld equation, in

particular for Couette and Pouseille flow. They show that the Orr-Sommerfeld problem can

be reduced to a model problem. Further examination shows that the ”limit spectral curves

for the problem remain the same as for the model problem, and the aymptotic formulas are

also preserved” [59].

Bera and Dey [23] used the Orr-Sommerfeld equation to examine the linear stability of
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boundary layer flow subject to uniform shear. The equation was solved using a spectral

collocation method based on Chebyshev polynomials. Their findings indicate that a free

stream shear can stabilize the flow.

4.2 Solution for Plane Pouseille Flow

First, we define the linear differential operator

L =
d4

dy4
. (4.4)

This gives the inverse operator as

L−1 =

∫ y

−1

∫ y

−1

∫ y

−1

∫ y

−1

(·)dydydydy. (4.5)

We apply these to equation 4.1 and designate the initial conditions v′′(−1) = k1 and

v′′′(−1) = k2. We can then rewrite the equation as

v(y) = v0 + L−1(Rv) (4.6)

where

Rv = (−2α2 + λiαR)
d2v

dy2
+ (α4 − λiα3R)v − iαRu

d2v

dy2
+
(
iα3Ru

+iαR
d2u

dy2

)
v. (4.7)

From L−1Lv, we can define

v0 =
k2

6
y3 +

k1 + k2

2
y2 +

(
k1 +

k2

2

)
y +

k2

6
+

k1

2
. (4.8)

In order to continue with the recursive relationship, we must designate the base flow utilizing

plane Poiseuille flow for the velocity profile. Taking

u(y) = 1− y2, (4.9)
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we substitute u(y) into equation 4.7 so that we can determine

vn+1(y) = L−1(Rvn). (4.10)

Utilizing this recursive relationship yields

v1 = c1y
9 + c2y

8 + c3y
7 + c4y

6 + c5y
5 + c6y

4 + c7y
3 + c8y

2 + c9y + c10 (4.11)

v2 = g1y
15 + g2y

14 + g3y
13 + g4y

12 + g5y
11 + g6y

10 + g7y
9

+ g8y
8 + g9y

7 + g10y
6 + g11y

5 + g12y
4 + g13y

3 + g14y
2 + g15y + g16 (4.12)

v3 = h1y
21 + h2y

20 + h3y
19 + h4y

18 + h5y
17 + h6y

16 + h7y
15

+ h8y
14 + h9y

13 + h10y
12 + h11y

11 + h12y
10 + h13y

9 + h14y
8

+ h15y
7 + h16y

6 + h17y
5 + h18y

4 + h19y
3 + h20y

2 + h21y + h22. (4.13)

The coefficients, ci,gi, and hi, are functions of α, R, λ, and the initial conditions, k1, and k2.

Again, these are given in Appendix A.

4.3 Results for Plane Pouseille Flow

To evaluate this solution, we examined the case with α = 1,R = 10, 000 in order to compare

to the exact eigenvalue of λ = 0.23752649 + 0.00373967i that was obtained by Orszag utiliz-

ing Chebysev polynomials [55].

To find the eigenvalues, we solved the truncated solution v(y) = v0 + v1 + v2 + v3 at y = 1

to utilize the boundary conditions v(1) = v′(1) = 0. This returns two equations as functions

of λ, k1, and k2. By solving both equations for one of the unknown ki and equating to each

other, we can eliminate both ki yielding an equation that can be solved for λ.

To demonstrate this method, we show the process for v approximated by v0 +v1. Evaluating
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v(1) = 0 yields

52

63
k2 +

152000

63
iλ k2 +

52000

9
iλ k1 +

34

45
k1 −

32000

7
ik1 −

1312000

567
ik2 = 0 (4.14)

32000

3
iλ k1 +

34

45
k2 +

52000

9
iλ k2 − 2/5 k1 −

232000

21
ik1 −

400000

63
ik2 = 0 (4.15)

Solving both equations for k1, we find

k1 = −10

9

k2 (342000 iλ + 117− 328000 i)

910000 iλ + 119− 720000 i
(4.16)

and

k1 = −1/3
k2 (910000 iλ + 119− 1000000 i)

560000 iλ− 21− 580000 i
(4.17)

Equating these two, we can eliminate k2 and solve for λ.

This yields two eigenvalues:

λ = 0.3966241512− 0.00005191583577i and λ = 1.141242656 + 0.0001685210018i.

Both eigenvalues are stable based on cr; however, the second eigenvalue lies outside the

bounds given by equation 4.3. Comparing the first to Orszag’s solution, we find a relative

error of 67%.

If we expand the approximation to include v approximated by v0 + v1 + v2, we find four

eigenvalues:

λ1 = 0.7262427911 + 0.00002869052383i

λ2 = 0.8686726277 + 0.0006556053226i

λ3 = 0.3260290691− 0.0001285417983i

λ4 = 1.147543943− 0.0001075476011i

with the third eigenvalue exhibiting a relative error of 37.3%.
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For v approximated by v0 + v1 + v2 + v3, we find six eigenvalues:

λ1 = 1.122077386− 0.0002547450763i

λ2 = .6429616572 + 0.0002092540891i

λ3 = .9807599963 + 0.000499077057i

λ4 = .7640821235 + 0.03234203810i

λ5 = .7644742380− 0.03150667053i

λ6 = .2744327229− 0.00008555253643i

The sixth eigenvalue results in a relative error of 15.6%.

If we continue to expand the solution, we find 2n eigenvalues for the order of the approxima-

tion used. For the addition of the fourth and fifth terms, these are given in table 4.1. The

eigenvalues are then plotted on the (cr, ci) plane in figure 4.1.

Table 4.1: Eigenvalues for Orr-Sommerfeld equation.

v4 v5

0.2391148096-0.00006589723323i 0.2132886117-0.00005199967033i
1.042083687+0.0004163308117i 0.5387369666+0.0004090920213i
0.5833654237+0.0003361058945i 1.071970411+0.01863580102i
0.8149149161+0.02993999132i 0.8430277474+0.02337901683i
0.7010801873+0.04112940677i 0.7590100501+0.03161103565i
0.7012920891-0.03996643045i 0.6531234661+0.04581859786i
0.8149521784-0.02898886403i 0.6533586912-0.04439381505i
1.093942316-0.0004282859236i 0.7589067198-0.016967363i

- 0.8427823736-0.02241511415i
- 1.072348165-0.01887326347i

We note that the first eigenvalue found for the fourth order approximation exhibits a rel-

ative error of 1.7%. However, we do not find any eigenvalues closely resembling the exact

eigenvalue determined by Orszag [55] in the higher order approximations. We also note that

none of the eigenvalues determined herein match any of the least stable eigenvalues reported
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Figure 4.1: Eigenvalues for the Orr-Sommerfeld equation in the (cr, ci) plane

by Orszag [55].

While some of the eigenvalues reported exceed the bounds established by Banerjee [18]

(−0.2884 < cr < 1 for the case being examined), all eigenvalues found lie within the spectrum

established by Lahmann and Plum [46]. They report that eigenvalues are bound by the

following.

α2 − R

2
|u′|max ≤ Re(λ) (4.18)

αRumin −
R

2
|u′|max ≤ Im(λ) ≤ αRumax +

R

2
|u′|max (4.19)

For the case u′′ < 0, Lahmann and Plum [46] improved the bounds by determining that

all eigenvalues lie below the essential spectrum or Im(λ) ≤ αRumax. This translates to the
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following bounds for the case being examined herein.

−9999 ≤ Re(λ) (4.20)

−10000 ≤ Im(λ) ≤ 10000 (4.21)

Therefore, all the eigenvalues reported lie well within this spectrum.

One of the main advantages of utilizing this method is a means of expressing the solution or

eigenfunction for the problem. However, the solution derived is expressed as a function of

two unknown initial conditions, k1 and k2. Several attempts to determine these values have

been so far unsuccessful.

4.4 Solution for Plane Couette Flow

In this case, we define the base flow as plane Couette flow instead of plane Pouseille flow.

Therefore, we take

u(y) = y. (4.22)

Next, we substitute u(y) into equation (4.7) as before and use the recursive relationship

based on equations (4.8) and (4.10). This yields the series solution which was truncated as

v(y) = v0 + v1 + v2 + v3 + v4 + v5.

4.5 Results for Plane Couette Flow

Again, we examine the case with α = 1,R = 10, 000. An exact eigenvalue for comparison

in this case is not available. The ten eigenvalues found for Couette flow in this case are as

follows:

λ1 = 0.5100478269 + 0.00008734831670i

λ2 = 0.2028383343 + 0.0003207142211i
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λ3 = 0.01969431594 + 0.0005644943245i

λ4 = −0.06543595313 + 0.1751337700i

λ5 = −0.1864337287 + 0.08529065802i

λ6 = −0.4213334371 + 0.1171511358i

λ7 = −0.8459002026− 0.0001280705563i

λ8 = −0.4210798540− 0.1168018015i

λ9 = −0.1857557109− 0.08414051006i

λ10 = −0.06712899028− 0.1735280611i

The eigenvalues are plotted on the (cr, ci) plane in figure 4.2. It is interesting to note that a

comparsion of the graphs reflects the difference in sign utilized by plane Couette flow versus

plane Pouseille flows. The eigenvalue behavior generally appears reflected across a horizontal

line in the plane.

Figure 4.2: Eigenvalues for the Orr-Sommerfeld equation in the (cr, ci) plane
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4.6 Conclusion

While it is difficult to say that the Adomian Decomposition Method was efficiently utilized

for this problem since the equation exhibits no nonlinear terms and hence “decomposition”

was unnecessary, the underlying approach established by the ADM was found useful in

examining this equation. Again, many of the advantages previously expounded were noted.

While examining this problem, it became evident that some of the difficulties encountered

in this work could be due to the boundary conditions. All problems examined are boundary

value problems and since the ADM has only a small region of convergence, utilizing the

boundary conditions in the result would naturally lead to some error. Hence it is believed

that the ADM is more useful for initial value problems than for boundary value problems.
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CHAPTER FIVE: CONCLUSION

The main objective of this study was to examine the effectiveness of the Adomian Decom-

position Method. In particular, we focused on examining some well-known hydrodynamic

equations arising in boundary layer theory, the Blasius equation, the Falkner-Skan equation,

and the Orr-Sommerfeld equation. The ADM was used to find solutions for these equations

and the results were then compared to previously published results as a means of evaluating

the quality of these solutions.

Since its introduction in the 1980’s, the ADM has been the subject of much research. As

shown in the first chapter, many researchers find the method very convenient. It is also

reported as efficient and accurate. However, an objective reporting of both advantages and

disadvantages to the method was notably absent from the existing body of research. This

omission prompted the current work.

To begin with, the ADM was applied to the Blasius equation with generalized boundary con-

ditions in Chapter 2. From this work, the convenience of the method was observed in that

it involves direct application to the problem and is easily performed. The results obtained

were found to be quite accurate. The main disadvantage that was noted was the small region

of convergence for the solution. Although several researchers have claimed to improve this

with Padé approximants as an after-treatment, this work shows that while their use does

improve accuracy, it does not appear to improve region of convergence (see section 2.7).

The ADM was next used for the Falkner-Skan equation in Chapter 3. The main advan-

tage found from this was that the method generates an analytic expression for the solution.

The computations are easily utilized and could be completed without computer assistance
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if desired. This work indicates that an increase in symbolism results in an increase in the

complexity of the solution, thereby losing the computational ease which has been a major

advantage of this method (see section 3.4). Furthermore, it appears that the type or strength

of nonlinearity also influences the qualitative properties of the solution (see section 3.2 and

3.4). The solutions generated in this work exhibit functions in the series terms that are

unfavorable for use in recursive relationship.

Finally, the ADM was employed to develop a solution for the Orr-Sommerfeld equation in

Chapter 5. This exhibits the wide applicability of the method. As Wazwaz indicated, it can

be used for linear as well as nonlinear problems [61]. In utilizing the method for this problem,

it became evident that the small region of convergence for this method could account for the

difficulties in application to boundary value problems (see section 4.4).

Overall Observations

Based on our study, the advantages of the ADM can be enumerated as follows:

1. The ADM is a convenient tool. It can be used with direct application to the problem.

2. The ADM demonstrates computational ease. The process is simple and easily utilized

and can be carried out by hand.

3. The ADM has wide applicability. It can be applied to many types of problems.

4. The ADM generates an analytic expression for the solution. While many solutions can

be solved numerically, it is extremely beneficial to have an analytic solution.

5. The ADM produces an accurate solution in many situations.

The limitations exhibited by the ADM based on this work are as follows:

1. The ADM exhibits a small region of convergence. While the accuracy can be improved

by the applied aftertreatment technique utilizing Padé approximants, it does note appear to
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significantly improve the region of convergence. Hence, it is recommended that this method

is acceptable only for localized solutions. If global solution is desired, it is suggested that

alternate methods, such as HAM or Bender’s δ-perturbation method, can be employedis

utilized (see Appendix B for an alternate solution to the generalized Blasius equation).

2. The solution becomes cumbersome as symbolism for the equation increases. This study

demonstrates that the successive equations for the series solution become large and awkward,

losing some of the computational ease that is claimed as the main benefit of this method.

3. Occasionally, the method is unsuccessful and the problem needs to be modified in order

to accomodate this (see section 2.2 and 3.2).

4. While it has been claimed that the ADM can be applied directly to nonlinear problems,

this work seems to indicate difficulties based on the strength or type of nonlinearity. This

was only briefly noted and requires further investigation before the claim can be asserted.

5. The convergence problems for the ADM lead to a hestinancy in recommending application

to boundary value problems.

In general, the ADM is believed to be an easy and convenient tool with wide applicability.

However, some discretion is recommended for its use as there are certain conditions which

limit the quality of the solution generated.
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CHAPTER SIX: FUTURE RESEARCH

The completion of this study has led to an awareness of several topics that require further

investigation, such as the new homotopy analysis method (HAM). As such, a breif descrip-

tion of future research based on this work has been included.

To begin with, additional problems have already been identified for study. These include

Ernigen’s micropolar fluid equations [39] and the nano boundary layer equations examined

by Matthews and Hill [52]. Ernigen’s micropolar fluid equations considered by Ishak et al.

[39] are a set of four coupled equations similar to those already examined in this work. The

nano boundary layer equations examined by Matthews and Hill [52] are of particular interest

because of the inclusion of the nonlinear boundary condition. This arises from the standard

no-slip boundary condition being inapplicable at the micro and nano scale and therefore

“must be replaced by a boundary condition that allows some degree of tangential slip”.

Several topics for future research remain for the Falkner-Skan equation. To begin with, an

effort should be made to improve the quality of the solution. Possible area that could be

explored for this include the definition of the linear/nonlinear operators and utilizing an

alternate transformation. In addition, the Falkner-Skan problem could include possible ex-

tensions to the Prandtl and the Görtler equations. Finally, a more thorough evaluation of

the coupled magnetohydrodynamic equations should be conducted.

With respect to the Orr-Sommerfeld equation, future research should include an examination

of alternate solution methods. This would hopefully lead to a better means of ascertaining

the quality of the solution. The question as to the number and location of the eigenvalues is

still undetermined in this work. In addition, this work can be expanded by establishing the
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unknown values to give the eigenvalue functions.

The Blasius equation could also be examined further. As stated before, an alternate trans-

formation or definition for the operators could be investigated. This problem could be used

for examining the convergence issues and effectiveness of aftertreatment techniques.

In general, several topics specific to the ADM also require further examination. To begin

with, an understanding of the convergence should be developed. This would hopefully lead to

an understanding of the limited effectiveness of Padé aftertreatment. In addition, the degree

to which the strength and type of nonlinearity affect the quality of the solution should also

be investigated.
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APPENDIX A: COEFFICIENT FUNCTIONS
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A.1 Blasius Equation

The coeffiecient functions from the solution equations for Case 2, α 6= 0 from Chapter 2 are

given below.

s1 − s5 are the coefficients for f1.

s1 = − 1

2α

s2 = −β

α
− k + αβ

α2
− (k + αβ) ln |k|

α2

s3 =
(k + αβ)2

α3

s4 =
k + αβ

α2

s5 = −β2

2α
− β(k + αβ)

α2
− (k + αβ)2 ln |k|

α3

p1 − p9 are the coefficients for f2.

p1 = − 1

12α3

p2 = − β

2α3
− 3(k + αβ)

4α4
− (k + αβ) ln |k|

2α4

p3 = −2(k + αβ)2

α5
− β(k + αβ)

α4
− 5(k + αβ)2 ln |k|

2α5
− β2

4α3

− β(k + αβ) ln |k|
α4

− (k + αβ)2 ln2 |k|
2α5

+
β2 ln |k|

2α3
− (k + αβ)3

2α5k

+
β2(k + αβ)

2α3k

p4 =
5(k + αβ)3

2α6
+

β(k + αβ)2

α5
+

(k + αβ)3 ln |k|
α6

− β2(k + αβ)

α4
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p5 =
5(k + αβ)2

2α5
+

β(k + αβ)

α4
+

(k + αβ)2 ln |k|
α5

− β2

2α3

p6 = −(k + αβ)3

2α6

p7 = −(k + αβ)2

2α5

p8 =
k + αβ

2α4

p9 =
β3

6α3
− (k + αβ)3 ln2 |k|

2α6
− 5(k + αβ)3 ln |k|

2α6
− β(k + αβ)2 ln |k|

α5

− 2β(k + αβ)2

α5
+

β2(k + αβ) ln |k|
α4

− 5β2(k + αβ)

4α4
− β(k + αβ)3

2α5k

+
β3(k + αβ)

2α3k

t1 − t15 are the coefficients for f3.

t1 = − 1

36α5

t2 = − β

4α5
− 25(k + αβ)

72α6
− (k + αβ) ln |k|

4α6

t3 = −3(k + αβ)2

8α7
− 5β(k + αβ)

4α6
− 3(k + αβ)2 ln |k|

2α7
− 3β2

4α5
− 3(k + αβ)2

α

− 3β(k + αβ)

2
− 3(k + αβ)2 ln |k|

2α
+

β2α

4
− 3β(k + αβ) ln |k|

2α6

− (k + αβ)3

4α7k
+

β2(k + αβ)

4α5
− 3(k + αβ)2 ln2 |k|

4α7
+

β2 ln |k|
4α5
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t4 =
β3α

2
+

β4(k + αβ)

8α4k2
− 71(k + αβ)3 ln |k|

6α8
− 4(k + αβ)3 ln2 |k|

α8

− (k + αβ)3 ln3 |k|
2α8

− 3β(k + αβ) ln |k|
α

+
3β2(k + αβ) ln |k|

4α6
− 3β(k + αβ)2 ln2 |k|

2α7

+
5β3 ln |k|

6α5
− 9β(k + αβ)2 ln |k|

2α7
− β3(k + αβ) ln |k|

2α5k

+
β2(k + αβ) ln2 |k|

2α6
− 25(k + αβ)4

12α8k
+

3(k + αβ)5 ln |k|
2α8k2

− 5β3

18α5
+

7β2(k + αβ)

24α6
− 4β(k + αβ)2

α7
− 6β(k + αβ)2

α

− 3β2(k + αβ)− 109(k + αβ)3

12α8
+

21(k + αβ)5

8α8k2
+

2β2(k + αβ)

α6k

− β(k + αβ)3

2α7k
− 5β3(k + αβ)

6α5k
+

2β(k + αβ)4

α7k2
− β3(k + αβ)2

2α5k2

− β4

18α4k
− (k + αβ)4 ln |k|

α8k
+

β(k + αβ)3 ln |k|
2α7k

t5 =
3(k + αβ)5 ln |k|

2α9
+

25(k + αβ)5

8α9
− β2(k + αβ)3

2α7

+
3β(k + αβ)4

2α8
+

β4(k + αβ)

8α5

t6 = −3β2(k + αβ) ln |k|
2α7

− 3β2(k + αβ)3

2α7k
+

7(k + αβ)4 ln |k|
α9

+
3(k + αβ)4 ln2 |k|

2α9
+

61(k + αβ)4

6α9
+

3β(k + αβ)3 ln |k|
α8

+
3(k + αβ)5

2α9k

− 3β2(k + αβ)2

2α7
+

13β(k + αβ)3

2α8
− 5β3(k + αβ)

3α6
− β(k + αβ)4

α8k

+
β3(k + αβ)2

α6k
+

β4

4α5

t7 = −7(k + αβ)4

2α9
+

3β2(k + αβ)2

4α7
− 3β(k + αβ)3

2α8

− 3(k + αβ)4 ln |k|
2α9

t8 =
(k + αβ)4

2α9
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t9 =
71(k + αβ)3

6α8
− 3β2(k + αβ)

4α6
+

15β(k + αβ)2

2α7
+

8(k + αβ)3 ln |k|
α8

+
3(k + αβ)3 ln2 |k|

2α8
− β(k + αβ)3

2α7k
+

β3(k + αβ)

2α5k
− β2(k + αβ) ln |k|

α6

+
3β(k + αβ)2 ln |k|

α7
− 5β3

6α5
− β2(k + αβ)2

α6k

+
(k + αβ)4

α8k

t10 = −4(k + αβ)3

α8
+

β2(k + αβ)

2α6
− 3β(k + αβ)2

2α7
− 3(k + αβ)3 ln |k|

2α8

t11 =
(k + αβ)3

2α8

t12 =
3(k + αβ)2

2α7
+

3β(k + αβ)

2α6
+

3(k + αβ)2 ln |k|
2α7

− β2

4α5

t13 = −3(k + αβ)2

4α7

t14 =
k + αβ

4α6

t15 =
9β2(k + αβ)2 ln |k|

2α7
− 3β2(k + αβ)2 ln |k|

2α
+

β(k + αβ)4 ln |k|
α8k

+
β4α

4

+
β5(k + αβ)

8α4k2
+

21β(k + αβ)5

8α8k2
+

2β2(k + αβ)4

α7k2

− β4(k + αβ)2

2α5k2
− β5

4α4k
+

11β4(k + αβ)

24α5k

− 43β(k + αβ)4

12α8k
− 109β(k + αβ)3

12α8
− β3(k + αβ)2 ln |k|

α6k

+
3β2(k + αβ)3 ln |k|

2α7k
− 13β(k + αβ)3 ln |k|

2α8
− 3β(k + αβ)3 ln2 |k|

2α8

+
3β2(k + αβ)2 ln2 |k|

4α7
+

5β3(k + αβ) ln |k|
3α6

− 7(k + αβ)4 ln2 |k|
2α9

+
3β4(k + αβ)5 ln |k|

2α8k2
+

2β3(k + αβ)2

α6k
− β4 ln |k|

4α5

− 25(k + αβ)5

8α9k
+

β4

4α5
+

43β3(k + αβ)

36α6

− 29β2(k + αβ)2

8α7
− 3β2(k + αβ)2

α
− 3β3(k + αβ)

2
+

β2(k + αβ)3

4α7k

− 3(k + αβ)5 ln |k|
α9k

− (k + αβ)4 ln3 |k|
2α9

− 61(k + αβ)4 ln |k|
6α9

78



z1 − z24 are the coefficients for f4.

z1 = − 17

1440α7

z2 = − 5β

36α7
− 25(k + αβ)

96α8
− 5(k + αβ) ln |k|

36α8
+

k + αβ

6α6

z3 = −575(k + αβ)2

432α9
− 125β(k + αβ)

72α8
− 67(k + αβ)2 ln |k|

36α9
− 5β2

9α7

− (k + αβ)3

8α9k
− β(k + αβ)

4α2
− (k + αβ)2

2α3
+

β2

24α

+
β2(k + αβ)

8α7k
− 5β ln |k|

4α8
− 5(k + αβ)2 ln2 |k|

8α9
− (k + αβ)2 ln |k|

4α3

+
β2 ln |k|

8α7

z4 = −15(k + αβ)3

4α11
+

3β2(k + αβ) ln |k|2

4α8
− 3β(k + αβ)2

2α3
− 7β2(k + αβ)

4α2

− (k + αβ)4 ln |k|
α10k

− 5(k + αβ)3 ln3 |k|
4α10

− 67(k + αβ)3 ln2 |k|
8α10

− 71(k + αβ)3 ln |k|
3α10

+
3(k + αβ)3 ln |k|

2α4
+

11β3k2 ln |k|
12α7

− 3595(k + αβ)3

144α10
− 151β(k + αβ)2

8α9

− 85(k + αβ)β2

24α8
+

2β2(k + αβ)2

α8k
− 5β(k + αβ)3

8α9k
+

19(k + αβ)β3

24α7k

+
21(k + αβ)5

16α10k2
− 49(k + αβ)4

24α10k
+

3(k + αβ)5 ln(k)

4α10k2
− 3β(k + αβ)2 ln(k)

2α3

+
3(k + αβ)3

α4
+

β3

4α
+

(k + αβ)β4

16α6k2
− 31β3

72α7

+
β(k + αβ)4

α9k2
− β3(k + αβ)2

4α7k2
− β4

8α6k
− 29β ln(k)(k + αβ)2

2α9

+
(k + αβ)2β2 ln(k)

α8k
+

β ln(k)(k + αβ)3

4α9k
− ln(k)β3(k + αβ)

4α7k
− 9(k + αβ)β2 ln |k|

8α8

− 15β(k + αβ)2 ln2 |k|
4α9
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z5 =
12(k + αβ)β6

288α5k3
+

592(k + αβ)7 ln(k)

288α11k3
− 26836(k + αβ)4

288α11
+

233β4

288α7

− 108β5(k + αβ)2

288α6k3
− 684β2(k + αβ)5

288α3k3
+

216β4(k + αβ)3

288α7k3
− 252β(k + αβ)6

288α10k3

− 18β6

288α5k2
+

2202(k + αβ)6

288α11k2
− 2324(k + αβ)5

288α11k
− 168β5

288α6k
+

192β3(k + αβ)

288α6

− 180(k + αβ)4 ln(k)4

288α11
− 4176β ln(k)2(k + αβ)3

288α10
− 3024β(k + αβ)3 ln(k)

288α4

+
372β4 ln |k|

288α7
+

2592(k + αβ)6 ln |k|
288α11k2

+
3888(k + αβ)4 ln |k|

288α5
+

396β(k + αβ)5 ln |k|
288α10k2

+
432β2(k + αβ)3 ln |k|

288α3k
+

216(k + αβ)2β4 ln |k|
288α7k2

− 31052(k + αβ)4 ln |k|
288α11

− 10284(k + αβ)4 ln |k|2

288α11
− 72 ln(k)β4

288α
+

864 ln(k)2(k + αβ)6

288α11k2
+

72 ln(k)β5

288α6k

− 36 ln(k)2β4

288α7
+

1296 ln(k)2(k + αβ)4

288α5
− 432β(k + αβ)6 ln(k)

288α10k3
+

432(k + αβ)5 ln(k)

288α5k

+
72(k + αβ)5 ln(k)2

288α11k
− 516 ln(k)(k + αβ)5

288α11k
− 2040(k + αβ)4 ln(k)3

288α11

− 360(k + αβ)3 ln(k)

288α11
+

192(k + αβ)2 ln(k)β3

288α8k
− 1296β2(k + αβ)2 ln(k)

288α3

− 720(k + αβ)3β ln(k)3

288α10
− 324(k + αβ)2β2 ln(k)2

288α9
+

984(k + αβ)β3 ln(k)

288α8

− 576β2 ln(k)(k + αβ)4

288α9k2
− 864(k + αβ)4β ln(k)

288α4k
+

1728(k + αβ)3 ln(k)β2

288α9k2

+
360(k + αβ)3 ln(k)2β2

288α9k
− 288(k + αβ)3 ln(k)β3

288α8k2
+

96(k + αβ)2β2 ln(k)

288α9

− 18168β ln(k)(k + αβ)3

288α10
+

216 ln(k)3(k + αβ)2β2

288α9
+

528 ln(k)2(k + αβ)β3

288α8

+
432 ln(k)2β2(k + αβ)2

288α3
− 144 ln(k)2β3(k + αβ)2

288α8k
+

144 ln(k)2β(k + αβ)4

288α10k

− 1728 ln(k)2β(k + αβ)3

288α4
− 36 ln(k)β5(k + αβ)

288α6k2
+

720 ln(k)β3(k + αβ)

288α2

− 432 ln(k)2β(k + αβ)5

288α10k2
+

4320β ln(k)(k + αβ)3

288α11
+

1320(k + αβ)4 ln(k)β

288α10k

− 708(k + αβ) ln(k)β4

288α7k
+

864(k + αβ)5

288α5k
+

2592(k + αβ)4

288α5
+

36β4

288α
− 416(k + αβ)3

288α11

+
300(k + αβ)β5

288α6k2
+

870(k + αβ)4β2

288α9k2
− 546β4(k + αβ)2

288α7k2
− 600β3(k + αβ)3

288α8k2

+
1572β(k + αβ)5

288α10k2
− 720(k + αβ)6

288α11k2
− 432β(k + αβ)3

288α4
− 1512β2(k + αβ)2

288α3

− 72β3(k + αβ)

288α2
− 5550β2(k + αβ)2

288α9
+

3060β2(k + αβ)3

288α9k
− 21188β(k + αβ)3

288α10
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z5 continued

− 80(k + αβ)β3

288α8
+

984β(k + αβ)4

288α10k
+

1280β3(k + αβ)2

288α8k
+

48(k + αβ)β4

288α7k

− 72β2(k + αβ)3

288α3k
+

576β3(k + αβ)2

288α2k
− 72(k + αβ)β4

288αk3
− 1296(k + αβ)4β

288α4k

+
2160(k + αβ)4

288α12
− 360(k + αβ)2β

288α10
+

36(k + αβ)β2

288α9
+

816(k + αβ)7

288α11k3

z6 =
24(k + αβ)4β3

48α9k
− 12β5(k + αβ)2

48α7k
− 24β2(k + αβ)5

48α10k
+

12β4(k + αβ)3

48α8k

+
14(k + αβ)β5

48α7
− 35(k + αβ)4β2

48α10
+

21β4(k + αβ)2

48α8
− 20β3(k + αβ)3

48α9

− 30β(k + αβ)5

48α11
− 12β(k + αβ)6

48α11k
+

12(k + αβ)7

48α12k
+

71(k + αβ)6

48α12

+
6(k + αβ)2β4 ln(k)

48α8
− 3β6

48α6
− 30(k + αβ)6 ln(k)

48α12
− 12β2 ln(k)(k + αβ)4

48α10

− 120(k + αβ)5

48α12

z7 =
β2(k + αβ)4

4α10
− (k + αβ)6

8α12
− β4(k + αβ)2

8α8

z8 =
β2(k + αβ)5

16α10
− β4(k + αβ)3

16α8
+

17(k + αβ)7

144α12
+

β6(k + αβ)

48α6

z9 =
5(k + αβ)7

18α12
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z10 = −324(k + αβ)7 ln(k)

72α12k2
+

18β5(k + αβ)2

72α7k2
+

288β2(k + αβ)5

72α10k2
− 99β4(k + αβ)3

72α8k2

− 54β(k + αβ)6

72α11k2
+

216(k + αβ)6

72α12k
+

6956(k + αβ)5

72α12
+

42β5

72α7
+

165(k + αβ)2

72α12

+
108(k + αβ)4β3

72α9k2
− 108β(k + αβ)5 ln(k)

72α11k
− 216β2(k + αβ)3 ln(k)

72α4

+
216β(k + αβ)6 ln(k)

72α11k2
− 432(k + αβ)5 ln(k)

72α6
+

1314(k + αβ)5 ln(k)2

72α12

+
4158 ln(k)(k + αβ)5

72α12
− 396(k + αβ)2 ln(k)β3

72α9
− 216β2 ln(k)(k + αβ)4

72α10k

+
648(k + αβ)4β ln(k)

72α5
+

126(k + αβ)3 ln(k)β2

72α10
− 216(k + αβ)3 ln(k)2β2

72α10

+
108(k + αβ)3 ln(k)β3

72α9k
+

540 ln(k)2β(k + αβ)4

72α11
+

1872(k + αβ)4 ln(k)β

72α11

+
54(k + αβ) ln(k)β4

72α8
− 864(k + αβ)5

72α6
− 72(k + αβ)β5

72α7k
− 864(k + αβ)4β2

72α10k

+
372β4(k + αβ)2

72α8k
− 18β3(k + αβ)3

72α9k
− 246β(k + αβ)5

72α11k
− 384β2(k + αβ)3

72α10

+
2460β(k + αβ)4

72α11
− 218β3(k + αβ)2

72α9
− 177(k + αβ)β4

72α8
+

288β2(k + αβ)3

72α4

− 324β3(k + αβ)2

72α3
+

36(k + αβ)β4

72α2
+

864(k + αβ)4β

72α5
− 540(k + αβ)5

72α13

+
180(k + αβ)5 ln(k)3

72α12
− 567(k + αβ)7

72α12k2

z11 = −12(k + αβ)6

8α12k
+

17β2(k + αβ)3

8α10
− 60β ln(k)(k + αβ)4

8α11

+
24(k + αβ)3β2 ln(k)

8α10
− 146(k + αβ)5 ln(k)

8α12
− 30(k + αβ)5 ln(k)2

8α12

− 237(k + αβ)5

8α12
+

12β2(k + αβ)4

8α10k
− 140β(k + αβ)4

8α11
+

22(k + αβ)2β3

8α9

+
6β(k + αβ)5

8α11k
− 6β3(k + αβ)3

8α9k
− 3β4(k + αβ)

8α8

z12 =
73(k + αβ)5

12α12
− β2(k + αβ)3

α10
+

5β(k + αβ)4

2α11
+

5(k + αβ)5 ln |k|
2α12

z13 = −5(k + αβ)5

8α12
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z14 =
18β4 ln(k)

72α7
+

108β(k + αβ)5 ln(k)

72α10k2
− 162(k + αβ)2β2 ln(k)2

72α9

− 264(k + αβ)β3 ln(k)

72α8
− 54β2 ln(k)(k + αβ)2

72α9
+

7853(k + αβ)4

72α11

+
72β3(k + αβ)3

72α8k2
− 648(k + αβ)4

72α5
+

18β4

72α
− 108β2(k + αβ)2 ln(k)

72α3

− 180β2 ln(k)(k + αβ)3

72α9k
+

72β3(k + αβ)2 ln(k)

72α8k
− 72β(k + αβ)4 ln(k)

72α10k

+
2520β ln(k)(k + αβ)3

72α10
+

540β ln(k)2(k + αβ)3

72α10
− 99β(k + αβ)5

72α10k2

+
9β5(k + αβ)

72α6k2
+

144β2(k + αβ)4

72α9k2
− 54β4(k + αβ)2

72α7k2
− 18β5

72α6k

+
180(k + αβ)4 ln(k)3

72α11
+

72(k + αβ)5 ln(k)

72α11k
+

1530 ln(k)2(k + αβ)4

72α11

+
5142 ln(k)(k + αβ)4

72α11
+

345(k + αβ)5

72α11k
+

432β(k + αβ)3 ln(k)

72α4

− 324(k + αβ)4 ln(k)

72α5
− 378(k + αβ)6

72α11k2
− 216(k + αβ)6 ln(k)

72α11k2

+
540β(k + αβ)3

72α4
− 93β4

72α7
− 246β3(k + αβ)

72α8
− 24β2(k + αβ)2

72α9

+
270β2(k + αβ)2

72α3
− 180β3(k + αβ)

72α2
− 648β2(k + αβ)3

72α9k
+

177β4(k + αβ)

72α7k

+
3894β(k + αβ)3

72α10
− 48β3(k + αβ)2

72α8k
− 114β(k + αβ)4

72α10k

z15 = −30(k + αβ)5

24α11k
− 510(k + αβ)4 ln(k)

24α11
− 90(k + αβ)4 ln(k)2

24α11
+

45β2(k + αβ)2

24α9

− 857(k + αβ)4

24α11
+

30β2(k + αβ)3

24α9k
− 492β(k + αβ)3

24α10
+

44(k + αβ)β3

24α8

+
12β(k + αβ)4

24α10k
− 12β3(k + αβ)2

24α8k
− 3β4

24α7
+

54(k + αβ)2β2 ln(k)

24α9

− 180β ln(k)(k + αβ)3

24α10

z16 =
85(k + αβ)4

12α11
− 3β2(k + αβ)2

4α9
+

5β(k + αβ)3

2α10
+

5(k + αβ)4 ln |k|
2α11

z17 = −5(k + αβ)4

8α11
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z18 = −3β2(k + αβ) ln |k|
2α8

+
15β(k + αβ)2 ln |k|

2α9
+

97(k + αβ)3

6α10
− 11β3

12α7

− β(k + αβ)3

4α9k
+

β3(k + αβ)

4α7k
− β2(k + αβ)2

α8k
+

9β2(k + αβ)

8α8

+
16β(k + αβ)2

α9
+

67(k + αβ)3 ln |k|
4α10

+
15(k + αβ)3 ln2 |k|

4α10

+
(k + αβ)4

α10k
+

15(k + αβ)3

2α11

z19 = −67(k + αβ)2

8α10
+

3β2

4α8
− 15β(k + αβ)

4α9
− 15(k + αβ)2 ln |k|

4α10

z20 =
5(k + αβ)3

4α10

z21 =
67(k + αβ)2

36α9
+

5β(k + αβ)

4α8
+

5(k + αβ)2 ln |k|
4α9

− β2

8α7

z22 = −5(k + αβ)2

8α9

z23 =
5(k + αβ)

36α8
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z24 = −9810β4(k + αβ)3

4320α8k2
− 5400β ln(k)(k + αβ)3

4320α11
+

16200β2(k + αβ)3

4320α11

− 209970β2(k + αβ)3

4320α10
− 7460β3(k + αβ)2

4320α9
− 1710β6

4320α6k
− 360β5

4320α

+
19800β2(k + αβ)5

4320α10k2
+

26730β2(k + αβ)4

4320α10k
− 19440β2(k + αβ)3

4320α4

+
49860β3(k + αβ)3

4320α9k
− 3420β5(k + αβ)

4320α7k
+

8670β4(k + αβ)2

4320α8k

− 18360β3(k + αβ)2

4320α3
+

5400β4(k + αβ)

4320α2
+

4140β6(k + αβ)

4320α6k2

+
6570β3(k + αβ)4

4320α9k2
− 6030β5(k + αβ)2

4320α7k2
− 402540β(k + αβ)4

4320α11

+
34110β(k + αβ)6

4320α11k2
+

10800(k + αβ)5

4320α12k
+

180β7(k + αβ)

4320α5k3

− 1620β6(k + αβ)2

4320α6k3
− 10260β3(k + αβ)5

4320α9k3
+

3240β5(k + αβ)3

4320α7k3

− 3780β2(k + αβ)6

4320α10k3
− 270β7

4320α5k2
+

12240β(k + αβ)7

4320α11k3

− 1590(k + αβ)7

4320α12k2
− 6390(k + αβ)6

4320α12k
− 5400β2(k + αβ)2

4320α10

− 6240β(k + αβ)3

4320α11
+

540(k + αβ)β3

4320α9
− 32160β(k + αβ)5

4320α11k

+
12960β(k + αβ)5

4320α5k
+

38880β(k + αβ)4

4320α5
− 26280(k + αβ)5 ln(k)3

4320α12

− 9720(k + αβ)6 ln(k)

4320α12k
− 2520β5 ln(k)

4320α7
− 2700(k + αβ)5 ln(k)4

4320α12

+
32820(k + αβ)7 ln(k)

4320α12k2
− 417360 ln(k)(k + αβ)5

4320α12
− 9900 ln(k)(k + αβ)2

4320α12

+
51840 ln(k)(k + αβ)5

4320α6
+

19440 ln(k)2(k + αβ)7

4320α12k2
+

25920 ln(k)2(k + αβ)5

4320α6

− 121500 ln(k)2(k + αβ)5

4320α12
+

6480(k + αβ)6 ln(k)2

4320α12k
+

8880β(k + αβ)7 ln(k)

4320α11k3

− 6480β2(k + αβ)6 ln(k)

4320α10k3
+

6480β2 ln(k)2(k + αβ)4

4320α10k
+

12960β2 ln(k)2(k + αβ)3

4320α4

− 2160β4 ln(k)(k + αβ)

4320α2
+

32400β2 ln(k)(k + αβ)3

4320α11
+

19440β(k + αβ)6 ln(k)

4320α11k2

− 32400β(k + αβ)4 ln(k)

4320α5
− 142200β(k + αβ)4 ln(k)

4320α11
− 10800(k + αβ)4β ln(k)3

4320α11

− 36720β(k + αβ)4 ln(k)2

4320α11
− 12960β ln(k)2(k + αβ)6

4320α11k2
+

6480β3(k + αβ)3 ln(k)

4320α3k

− 1080β5(k + αβ)2 ln(k)

4320α7k2
− 38880β ln(k)2(k + αβ)4

4320α5
+

6480β(k + αβ)5 ln(k)

4320α5k
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z24 continued

+
3240β(k + αβ)5 ln(k)2

4320α11k
+

27720β ln(k)(k + αβ)5

4320α11k
− 16740(k + αβ)3β2 ln(k)2

4320α10

− 1620(k + αβ)β4 ln(k)2

4320α8
+

6600β3 ln(k)(k + αβ)2

4320α9
+

21600β3(k + αβ)2 ln(k)

4320α3

− 22320β4(k + αβ)2 ln(k)

4320α8k
+

64800β2(k + αβ)4 ln(k)

4320α10k
+

16560β2(k + αβ)3 ln(k)

4320α10

+
4320(k + αβ)3β2 ln(k)3

4320α10
+

11880(k + αβ)2β3 ln(k)2

4320α9
+

10620(k + αβ)β4 ln(k)

4320α8

+
32400 ln(k)(k + αβ)5

4320α13
− 36720β2(k + αβ)3 ln(k)

4320α4
− 20520β2(k + αβ)5 ln(k)

4320α10k2

− 11880β3 ln(k)(k + αβ)3

4320α9k
+

4320β5 ln(k)(k + αβ)

4320α7k
− 6480β3 ln(k)(k + αβ)4

4320α9k2

− 12960β2(k + αβ)4 ln(k)

4320α4k
− 3240β3(k + αβ)3 ln(k)2

4320α9k
+

5940β4(k + αβ)3 ln(k)

4320α8k2

− 10800β(k + αβ)6

4320α11k2
− 1080β3(k + αβ)3

4320α3k
+

8640β4(k + αβ)2

4320α2k

− 1080β5(k + αβ)

4320αk
− 19440β2(k + αβ)4

4320α4k
+

32400β(k + αβ)4

4320α12
+

3504β5

4320α7

+
2160β4(k + αβ)

4320α6
+

7725β4(k + αβ)

4320α8
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A.2 Falkner-Skan Equation

The functions for the coeffiecients of the solution equations for the transformed Falkner-Skan

equation considered in Chapter 3 are given below.

p1 − p5 are the coefficients for y1.

p1 = −1/2
β3 (β − 1)

k3

p2 = −k4 + k4β + β3 + k4 ln (k)

β2k

p3 = −k (β3 + k4 + k4β)

β3

p4 =
k3

β2

p5 =
k (β3 + k4 + k4β) ln (k)

β3

q1 − q11 are the coefficients for y2.

q1 =
1

12
β (β − 1) (2 β − 1)

q2 =
1

4β4
k
(
k4β − 5 k4 + 2 β6 − 4 β5 + 2 k4β2 + 4 β4 + 2 β k4 ln (k)− 2 β3

−2 k4 ln (k)
)

q3 = − 1

2β5k

(
−6 k4β3 + β8 − 8 k8 ln (k)− β7 + 2 β4k4 + k8 (ln (k))2 β

+k4 (ln (k))2 β3 − 3 β5k4 ln (k)− 4 k8 ln (k) β + 5 β4k4 ln (k) + 2 β2k8 ln (k)

−2 k4 ln (k) β3 − 9 k8 − 3 k4β6 − k4β5 − 13 k8β − 2 k8β2 − k8 (ln (k))2)
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q4 = − 1

2β6
k
(
2 β6 − 4 k4β3 + 2 β8 − 2 k8 ln (k)− 2 β7 + 2 β4k4 + 2 k8 ln (k) β

+4 β4k4 ln (k) + 4 β2k8 ln (k) + 6 k4 ln (k) β3 − 9 k8 − 4 k4β6 − 15 k8β − 4 k8β2
)

q5 = − 1

2β5
k3
(
2 β3 + 4 k4β − 2 k4β2 − 5 β4 − 2 β k4 ln (k) + 2 k4 ln (k)− 2 ln (k) β3

+8 k4 + 3 β5
)

q6 = − 1

2β4
k5 (β − 1)

q7 =
1

2β6
k5
(
−k4 + k4β + 2 β4 + 2 k4β2 + 3 β3

)

q8 = − 1

2β5
k3
(
−k4 + β3 + k4β

)

q9 = − 1

2β5
k2
(
4 β5 + 2 k4β2 + β7 − β6 + 2 k8 ln (k) β − 2 ln (k) β5 − k4β5 + β4k4

−2 k8 − 4 k8β
)

q10 = −k2

β4

(
−k8 + β4

)

q11 =
1

2β6
k
(
4 β6 + 2 k4β3 + 2 β4k4 (ln (k))2 + β8 − 9 k8 ln (k)− β7 + k8 (ln (k))2 β

+3 k4 (ln (k))2 β3 − 4 β6k4 ln (k)− 15 k8 ln (k) β + 2 β4k4 ln (k)− 4 β2k8 ln (k)

−4 k4 ln (k) β3 + 2 ln (k) β6 + 2 ln (k) β8 − 2 ln (k) β7 − k4β6 + k4β5 − 2 k8β

−4 k8β2 − k8 (ln (k))2 + 2 β2k8 (ln (k))2)
r1 − r25 are the coefficients for y3.

r1 = − 1

144β k3
(β − 1)

(
−12 β5 + 3 β4 + 6 k4β2 − 5 k4β + k4 + 9 β6

)
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r2 = − 1

72β6k

(
44 k4β7 + 12 k8β3 − 18 k8 ln (k) β + 12 β4k4 ln (k) + 12 β2k8 ln (k)

+6 k8 ln (k) + 6 k4β3 − 36 β5k4 ln (k) + 60 β9 − 45 β10 + 18 β11 − 45 β8 + 12 β7

−4 β4k4 + 20 k8 + 24 β6k4 ln (k)− 50 k4β6 + 4 k4β5 − 42 k8β + 4 k8β2
)

r3 =
1

24β7k3

(
108 k12β − 23 k4β7 − 24 β8k4 ln (k) + 12 β7k4 ln (k)− 6 k8 (ln (k))2 β3

+18 k8 ln (k) β3 + 81 k8β3 + 12 β7k8 ln (k) + 6 k8β4 (ln (k))2 − 24 k12β (ln (k))2

+6 k12β2 (ln (k))2 − 66 k12β2 ln (k)− 84 k8β4 ln (k)− 66 k8β6 ln (k) + 108 k8β5 ln (k)

+12 k12β3 ln (k) + 12 β9k4 ln (k)− 36 k12β ln (k) + 90 k8β5 + 3 β11 + 3 β13 − 6 β12

+185 k12 − 30 k12β3 − 119 k12β2 + 114 k12 ln (k)− 149 k8β4 + 18 k12 (ln (k))2

−66 k8β7 − 76 k4β9 + 51 k4β8 + 50 k8β6 − 18 β11k4 + 12 k4β6 + 54 β10k4
)

r4 =
1

24β8k

(
−1206 k12β + 88 k4β7 − 144 β8k4 ln (k) + 60 β7k4 ln (k)

+24 k8 (ln (k))2 β3 − 300 k8 ln (k) β3 − 540 k8β3 + 120 β7k8 ln (k) + 160 k8β4 (ln (k))2

+44 k12β (ln (k))2 + 124 k12β2 (ln (k))2 + 144 k12β2 ln (k) + 352 k8β4 ln (k)

−328 k8β6 ln (k)− 60 k8β5 ln (k) + 96 k12β3 ln (k) + 168 β9k4 ln (k)− 672 k12β ln (k)

+166 k8β5 − 8 k8 (ln (k))3 β4 + 20 k12 (ln (k))3 β − 8 k12 (ln (k))3 β2 + 12 k8 (ln (k))3 β3

+24 k4 (ln (k))2 β8 + 60 k8 (ln (k))2 β6 − 60 k4 ln (k) β10 − 16 (ln (k))2 β7k4

−12 k12 (ln (k))3 − 24 β10 + 42 β11 + 18 β13 − 36 β12 − 638 k12 − 628 k12β2

−636 k12 ln (k)− 404 k8β4 − 144 k12 (ln (k))2 − 124 k8β7 + 86 k4β9 − 231 k4β8

−96 β6k4 ln (k)− 574 k8β6 − 60 β11k4 − 360 k4β6 − 116 k8β5 (ln (k))2

−16 k12β3 (ln (k))2 + 12 β6k4 (ln (k))2 + 33 β10k4
)
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r5 =
1

12β9
k
(
−690 k12β − 27 k4β7 + 54 β8k4 ln (k)− 42 β7k4 ln (k) + 48 k8 (ln (k))2 β3

+90 k8 ln (k) β3 − 243 k8β3 + 120 β7k8 ln (k) + 48 k12β (ln (k))2 + 42 k12β2 (ln (k))2

+318 k12β2 ln (k) + 420 k8β4 ln (k)− 54 k8β6 ln (k) + 48 k8β5 ln (k) + 120 k12β3 ln (k)

+36 β9k4 ln (k)− 36 k12β ln (k)− 12 ln (k) β11 + 12 ln (k) β10 + 88 k8β5 + 12 β9

−30 β10 + 48 β11 + 18 β13 − 36 β12 − 325 k12 − 6 k12β3 − 443 k12β2 − 138 k12 ln (k)

−247 k8β4 − 18 k12 (ln (k))2 − 124 k8β7 + 27 k4β9 − 84 k4β8 + 120 β6k4 ln (k)

−296 k8β6 − 45 β11k4 − 156 k4β6 − 24 k8β5 (ln (k))2 − 24 k12β3 (ln (k))2

−18 β6k4 (ln (k))2 + 45 β10k4
)

r6 =
k3

6β8

(
−30 k4β7 + 12 k8 ln (k) β3 − 24 k8β3 − 6 ln (k) β6 − 12 ln (k) β8 + 12 ln (k) β7

+24 β6 + 75 k4β3 − 42 β9 + 15 β10 + 36 β8 − 15 β7 − 88 β4k4 + 72 k8 ln (k)

−18 k8 ln (k) β − 72 β4k4 ln (k)− 54 β2k8 ln (k)− 30 β6k4 ln (k) + 6 β2k8 (ln (k))2

+159 k8 + 9 k8 (ln (k))2 + 82 k4β6 + 15 k4β5 + 168 k8β − 36 k8β2 − 15 k8 (ln (k))2 β

−9 k4 (ln (k))2 β3 + 66 β5k4 ln (k)− 12 k4 ln (k) β3 + 6 β4k4 (ln (k))2)
r7 = − k

4β7

(
2 k4β7 + 2 β2k8 ln (k) + 2 β4k4 ln (k) + 2 k8β3 + 3 k4β3 + 2 β9 + 6 k8 ln (k)

−4 β8 + 2 β7 − 14 β4k4 + 19 k8 − 11 k4β6 + 18 k4β5 − 6 k8β − 11 k8β2

−8 k8 ln (k) β − 2 k4 ln (k) β3
)

r8 =
k3

12β6
(β − 1)

(
−k4 − 2 β4 + 4 β5 + 2 k4β

)

r9 = − k5

4β9

(
12 k4β7 − 4 β2k8 ln (k)− 4 β4k4 ln (k) + 8 k8β3 + 14 β6 + 17 k4β3 + 12 β9

+12 k8 ln (k)− 8 β8 + 25 β4k4 + 7 k8 − 10 k4β6 + 12 k4β5 − 12 k8β + 5 k8β2

−8 k8 ln (k) β + 12 k4 ln (k) β3
)
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r10 =
k3

2β8

(
−2 β2k8 ln (k)− 2 β4k4 ln (k)− 2 k8β3 + β6 + 2 k4β3 − 3 k8 ln (k) + 2 β8

−2 β7 + 12 β4k4 − 12 k8 + 5 k4β6 − 11 k4β5 + 3 k8β + 9 k8β2 + 5 k8 ln (k) β

+3 k4 ln (k) β3
)

r11 =
k5

4β7

(
3 k4 − β3 − 4 k4β + β4 + k4β2

)

r12 = − k5

6β9

(
3 k8 − 8 k4β3 − 6 k8β + 4 β4k4 − 3 k8β2 + 6 k8β3 + 3 β6 + 2 β7 + 8 k4β5

)

r13 =
k7

6β8

(
3 k4 − 3 β3 − 5 k4β + 2 β4 + 2 k4β2

)

r14 =
k2

24β9

(
−198 k12β − 238 k4β7 + 48 β8k4 ln (k) + 48 β7k4 ln (k) + 48 k8 ln (k) β3

+30 k8β3 + 144 β7k8 ln (k) + 24 k12β (ln (k))2 + 84 k12β2 (ln (k))2

+168 k12β2 ln (k) + 168 k8β4 ln (k)− 144 k8β6 ln (k) + 408 k8β5 ln (k) + 312 k12β3 ln (k)

−24 β9k4 ln (k)− 24 ln (k) β11 + 24 ln (k) β10 − 446 k8β5 + 120 β9 − 96 β10 + 120 β11

+24 β13 − 48 β12 − 12 k12 − 300 k12β3 − 24 β9 ln (k)− 450 k12β2 − 306 k8β4 − 280 k8β7

−38 k4β9 + 63 k4β8 + 96 β6k4 ln (k) + 114 k8β6 − 36 β11k4 + 24 k4β6 − 48 k8β5 (ln (k))2

−48 k12β3 (ln (k))2 − 36 β6k4 (ln (k))2 + 69 β10k4
)

r15 = − k3

24β8

(
−24 k12β + 24 k4β7 + 8 k8 (ln (k))2 β3 − 24 k8β3 − 48 ln (k) β8

−4 k8β4 (ln (k))2 + 8 k12β (ln (k))2 − 8 k12β2 (ln (k))2 + 24 k12β2 ln (k)

+48 k8β4 ln (k) + 12 k8β6 ln (k)− 12 k8β5 ln (k) + 24 k12β ln (k)− 12 ln (k) β10

−24 β9 + 27 β10 − 6 β11 + 3 β12 − 12 k12 + 12 β9 ln (k)− 48 k8β4 + 60 β8 + 4 k12 (ln (k))2

+6 k4β9 − 15 k4β8 − 24 β6k4 ln (k)− 12 k8β6 − 12 k4β6 + 48 k4β5 + 12 k8β2

+16 β6k4 (ln (k))2 − 3 β10k4 − 24 β5k4 ln (k) + 12 (ln (k))2 β8
)
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r16 =
k2

β7

(
−2 k4β5 − 2 k8β + 2 β5k4 ln (k) + 3 β4k4 ln (k)− 3 k12 ln (k) + 8 k8 ln (k) β3

+4 β2k8 ln (k) + 6 k12β ln (k)− 17 k8β3 + β7 − β8 + β9 − 13 k12β − 7 k12 − 7 k8β2

−6 k8β5 + k4β7 − 2 k4β6 + 6 k8β4 − 4 β4k4
)

r17 = − k3

2β7

(
2 k4β5 − 4 k8β3 + 4 β7 − β8 + β9 − 2 k12β − 2 k12 − k8β5 − 2 ln (k) β7

+k8β4 + 2 β4k4 − 2 β5k4 ln (k) + 2 k8 ln (k) β3 + 2 k12β ln (k)
)

r18 = − k6

2β9

(
−6 k8 + 8 k8β + 2 β4k4 − 5 k8β2 + 2 k4β3 + 6 k8β3 + 3 β6 + 2 β7 + 8 k4β5

)

r19 = − k3

2β6

(
β4k4 − k8β2 + β6 − k12

)
r20 = − k

24β9

(
−186 k12β − 226 k4β7 − 168 β8k4 ln (k)− 54 β7k4 ln (k) + 54 k8 (ln (k))2 β3

−486 k8 ln (k) β3 + 18 k8β3 − 248 β7k8 ln (k) + 754 k8β4 (ln (k))2 − 76 k12β (ln (k))2

+670 k12β2 (ln (k))2 − 886 k12β2 ln (k)− 494 k8β4 ln (k)− 592 k8β6 ln (k)

+176 k8β5 ln (k)− 12 k12β3 ln (k) + 54 β9k4 ln (k)− 1380 k12β ln (k)

+168 β7k8 (ln (k))2 − 24 (ln (k))2 β11 + 36 ln (k) β13 − 72 ln (k) β12 + 96 ln (k) β11

−60 ln (k) β10 − 398 k8β5 − 48 β6k4 (ln (k))3 − 72 k12β3 (ln (k))3 − 8 k4 (ln (k))3 β7

−80 k8β5 (ln (k))3 − 90 ln (k) β11k4 + 24 (ln (k))2 β10 + 8 k8 (ln (k))3 β4

+168 k12 (ln (k))3 β + 120 k12 (ln (k))3 β2 + 56 k8 (ln (k))3 β3 + 156 k4 (ln (k))2 β8

−48 k8 (ln (k))2 β6 + 90 k4 ln (k) β10 − 64 (ln (k))2 β7k4 − 120 k12 (ln (k))3 + 60 β9

−72 β10 + 93 β11 + 21 β13 − 42 β12 − 12 k12 − 300 k12β3 + 24 β9 ln (k)− 426 k12β2

−650 k12 ln (k)− 282 k8β4 − 246 k12 (ln (k))2 − 268 k8β7 − 23 k4β9 + 39 k4β8

−312 β6k4 ln (k) + 114 k8β6 − 33 β11k4 − 24 k4β6 + 64 k8β5 (ln (k))2

+212 k12β3 (ln (k))2 + 156 β6k4 (ln (k))2 + 63 β10k4
)
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A.3 Orr-Sommerfeld Equation

The coefficients from the solution equations for the Orr-Sommerfeld equation considered in

Chapter 4 are given below.

c1 − c10 are the coefficients for v1.

c1 = − 1

18144
iα3Rk2

c2 = − 1

3360
iα3R(k1 + k2)

c3 = − 1

2520
iα3Rk2 +

1

5040
α4k2− 1

5040
iλα3Rk2− 1

840
iα3Rk1

+
1

1260
iαRk2

c4 =
1

1080
iα3Rk2 +

1

720
α4k1 +

1

720
α4k2− 1

720
iλα3Rk1− 1

720
iλα3Rk2

c5 = − 1

60
iαRk2− 1

60
iαRk1 +

1

240
iα3Rk2 +

1

120
iλαRk2 +

1

120
α4k1

+
1

240
α4k2− 1

240
iλα3Rk2 +

1

120
iα3Rk1− 1

120
iλα3Rk1− 2

120
α2k2

c6 = − 1

144
iλα3Rk2 +

1

144
iα3Rk2− 1

18
iαRk2− 1

48
iλα3Rk1 +

1

144
α4k2

+
1

48
iα3Rk1− 1

12
iαRk1 +

1

24
iλαRk1− 2

24
α2k1 +

1

24
iλαRk2

− 2

24
α2k2 +

1

48
α4k1

c7 = − 1

36
iλα3Rk1 +

7

1080
iα3Rk2− 2

12
α2k2 +

1

40
iα3Rk1− 1

6
iαRk1

+
1

36
α4k1− 1

144
iλα3Rk2− 1

12
iαRk2 +

1

12
iλαRk2 +

1

6
iλαRk1

− 2

6
α2k1 +

1

144
α4k2
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c8 =
1

48
α4k1− 1

240
iλα3Rk2 +

1

60
iα3Rk1− 1

48
iλα3Rk1− 2

4
α2k1

+
1

240
α4k2− 1

6
iαRk1− 1

15
iαRk2 +

1

280
iα3Rk2 +

1

4
iλαRk1

+
1

12
iλαRk2− 2

12
α2k2

c9 =
1

120
α4k1 +

11

10080
iα3Rk2− 1

720
iλα3Rk2 +

1

720
α4k2 +

1

24
iλαRk2

− 1

120
iλα3Rk1− 2

24
α2k2− 1

36
iαRk2 +

1

168
iα3Rk1 +

1

6
iλαRk1

− 1

12
iαRk1− 2

6
α2k1

c10 = − 1

5040
iλα3Rk2− 1

720
iλα3Rk1− 1

60
iαRk1− 2

24
α2k1− 2

120
α2k2

+
1

1120
iα3Rk1 +

1

24
iλαRk1 +

1

120
iλαRk2− 1

210
iαRk2

+
13

90720
iα3Rk2 +

1

5040
α4k2 +

1

720
α4k1

g1 − g10 are the coefficients for v2.

g1 = − 1

594397440
α6R2k2

g2 = − 1

80720640
α6R2(k1 + k2)

g3 =
211

778377600
α4R2k2− 31

1556755200
α6R2k2− 1

14414400
α6R2k1

− 23

1556755200
λα6R2k2− 23

1556755200
iα7Rk2

g4 =
1

39916800
α6R2k1− 17

119750400
iα7Rk2− 17

119750400
iα7Rk1

+
1

739200
α4R2k2− 17

119750400
λα6R2k1− 17

119750400
λα6R2k2

+
37

359251200
α6R2k2 +

1

739200
α4R2k1
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g5 = − 1

1425600
α4R2k2 +

13

3326400
α4R2k1− 1

249480
α2R2k2

+
1

907200
λα4R2k2 +

31

19958400
λα4R2k2− 1

19958400
iλα7Rk2

− 1

831600
λα6R2k1 +

62

19958400
iα5Rk2 +

1

907200
iα5Rk2

− 1

1814400
iα7Rk2 +

1

831600
α6R2k1− 1

1814400
λα6R2k2

+
1

39916800
α8k2 +

23

39916800
α6R2k2− 1

39916800
λ2α6R2k2

− 1

831600
iα7Rk1

g6 = − 1

259200
λα6R2k1 +

2

86400
iα5Rk1− 1

1814400
iλα7Rk2

− 1

1814400
iλα7Rk1− 53

2721600
α4R2k2 +

1

86400
λα4R2k1

− 1

3628800
λ2α6R2k1 +

1

241920
α6R2k1 +

1

86400
λα4R2k2

− 1

1088640
iα7Rk2− 1

1088640
λα6R2k2 +

1

129600
λα4R2k1

+
1

3628800
α8k2− 1

50400
α4R2k1 +

13

10886400
α6R2k2

+
1

129600
λα4R2k2 +

1

129600
iα5Rk2 +

1

3628800
α8k1

+
1

129600
iα5Rk1 +

2

86400
iα5Rk2− 1

3628800
λ2α6R2k2

− 1

259200
iα7Rk1
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g7 =
1

1306368
α6R2k2− 2

181440
α6k2 +

1

181440
λ2α4R2k2

− 11

181440
λα2R2k2 +

11

362880
λα4R2k2 +

13

181440
λα4R2k1

+
1

181440
iλα5Rk2 +

2

181440
iλα5Rk2− 22

181440
iα3Rk2

+
22

362880
iα5Rk2 +

26

181440
iα5Rk1 +

1

22680
λα4R2k1

+
1

60480
λα4R2k2 +

1

2177280
λα6R2k2− 1

272160
λα6R2k1

− 1

725760
λ2α6R2k2− 1

362880
λ2α6R2k1 +

1

10080
α2R2k1

+
1

9072
α2R2k2 +

1

362880
α8k1 +

1

725760
α8k2− 1

362880
iλα7Rk2

− 1

181440
iλα7Rk1 +

1

22680
iα5Rk1 +

1

60480
iα5Rk2

+
1

2177280
iα7Rk2− 1

272160
iα7Rk1− 19

362880
α4R2k2

− 1

8640
α4R2k1 +

1

181440
α6R2k1

g8 = − 17

8467200
α6R2k2− 2

20160
α6k2− 2

20160
α6k1 +

1

20160
λ2α4R2k2

+
1

20160
λ2α4R2k1− 1

4032
λα2R2k1− 1

4032
λα2R2k2

+
1

120960
λα4R2k2 +

1

8064
λα4R2k1 +

1

20160
iλα5Rk2

+
1

20160
iλα5Rk1 +

2

20160
iλα5Rk2 +

2

20160
iλα5Rk1− 2

4032
iα3Rk1

− 2

4032
iα3Rk2 +

2

120960
iα5Rk2 +

2

8064
iα5Rk1 +

1

20160
λα4R2k1

− 1

60480
λα4R2k2 +

1

172800
λα6R2k2 +

1

80640
λα6R2k1

− 1

241920
λ2α6R2k2− 1

80640
λ2α6R2k1 +

1

2016
α2R2k1

+
1

3024
α2R2k2 +

1

80640
α8k1 +

1

241920
α8k2− 1

120960
iλα7Rk2

− 1

40320
iλα7Rk1 +

1

20160
iα5Rk1− 1

60480
iα5Rk2 +

1

172800
iα7Rk2

+
1

80640
iα7Rk1− 19

604800
α4R2k2− 1

5760
α4R2k1− 1

403200
α6R2k1
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g9 = − 163

25401600
α6R2k2− 2

5040
α6k2− 2

2520
α6k1 +

1

5040
λ2α4R2k2

+
1

2520
λ2α4R2k1− 1

2520
λα2R2k1 +

1

5040
λα2R2k2− 1

6720
λα4R2k2

− 1

5040
λα4R2k1 +

1

5040
iλα5Rk2 +

1

2520
iλα5Rk1− 2

2520
iλα2Rk2

+
2

5040
iλα4Rk2 +

2

2520
iλα4Rk1− 2

2520
iα3Rk1 +

2

5040
iα3Rk2

− 2

6720
iα5Rk2− 2

5040
iα5Rk1− 1

3780
λα4R2k1− 1

6048
λα4R2k2

+
13

907200
λα6R2k2 +

1

18900
λα6R2k1− 1

5040
λ2α2R2k2

− 1

120960
λ2α6R2k2− 1

30240
λ2α6R2k1 +

1

2520
α2R2k1 +

1

30240
α8k1

+
1

120960
α8k2 +

4

5040
α4k2− 1

60480
iλα7Rk2− 1

15120
iλα7Rk1

− 1

3780
iα5Rk1− 1

6048
iα5Rk2 +

13

907200
iα7Rk2 +

1

18900
iα7Rk1

+
61

453600
α4R2k2 +

1

5600
α4R2k1− 1

44100
α6R2k1

g10 = − 311

32659200
α6R2k2− 2

2160
α6k2− 2

720
α6k1 +

1

2160
λ2α4R2k2

+
1

720
λ2α6R2k1 +

1

240
λα2R2k1 +

7

2160
λα2R2k2

− 19

43200
λα4R2k2− 11

8640
λα4R2k1 +

1

2160
iλα5Rk2

+
1

720
iλα5Rk1− 2

360
iλα3Rk1− 2

360
iλα3Rk2 +

2

2160
iλα5Rk2

+
2

720
iλα5Rk1 +

2

240
iα3Rk1 +

14

2160
iα3Rk2− 38

43200
iα5Rk2

− 22

8640
iα5Rk1− 1

864
λα4R2k1− 1

2400
λα4R2k2 +

19

907200
λα6R2k2

+
13

129600
λα6R2k1− 1

720
λ2α2R2k1− 1

720
λ2α2R2k2

− 1

86400
λ2α6R2k2− 1

17280
λ2α6R2k1− 1

360
α2R2k1− 1

540
α2R2k2

+
1

17280
α8k1 +

1

86400
α8k2 +

4

720
α4k1 +

4

720
α4k2− 1

43200
iλα7Rk2

− 1

8640
iλα7Rk1− 1

864
iα5Rk1− 1

2400
iα5Rk2 +

19

907200
iα7Rk2

+
13

129600
iα7Rk1 +

61

151200
α4R2k2 +

1

900
α4R2k1− 53

1209600
α6R2k1
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g11 = − 11

1209600
α6R2k2− 2

1440
α6k2− 2

360
α6k1 +

1

1440
λ2α4R2k2

+
1

360
λ2α4R2k1 +

7

360
λα2R2k1 +

13

1440
λα2R2k2− 29

43200
λα4R2k2

− 19

7200
λα4R2k1 +

1

1440
iλα5Rk2 +

1

360
iλα5Rk1− 2

60
iλα3Rk1

− 2

120
iλα3Rk2 +

2

1440
iλα5Rk2 +

2

360
iλα5Rk1 +

14

360
iα3Rk1

+
26

1440
iα3Rk2− 58

43200
iα5Rk2− 38

7200
iα5Rk1− 1

450
λα4R2k1

− 13

21600
λα4R2k2 +

1

48384
λα6R2k2 +

1

8400
λα6R2k1− 1

120
λ2α2R2k1

− 1

240
λ2α2R2k2− 1

86400
λ2α6R2k2− 1

14400
λ2α6R2k1− 7

720
α2R2k1

− 1

216
α2R2k2 +

1

14400
α8k1 +

1

86400
α8k2 +

4

120
α4k1 +

4

240
α4k2

− 1

43200
iλα7Rk2− 1

7200
iλα7Rk1− 1

450
iα5Rk1− 13

21600
iα5Rk2

+
1

48384
iα7Rk2 +

1

8400
iα7Rk1 +

347

604800
α4R2k2 +

103

50400
α4R2k1

− 1

20160
α6R2k1

98



g12 = − 13

2177280
α6R2k2− 2

1440
α6k2− 2

288
α6k1 +

1

1440
λ2α4R2k2

+
1

288
λ2α4R2k1 +

11

288
λα2R2k1 +

19

1440
λα2R2k2− 13

20160
λα4R2k2

− 1

320
λα4R2k1 +

1

1440
iλα5Rk2 +

1

288
iλα5Rk1− 2

24
iλα3Rk1

− 2

72
iλα3Rk2 +

2

1440
iλα5Rk2 +

2

288
iλα5Rk1 +

22

288
iα3Rk1

+
28

1440
iα3Rk2− 26

20160
iα5Rk2− 2

320
iα5Rk1− 11

4320
λα4R2k1

− 17

30240
λα4R2k2 +

31

2177280
λα6R2k2 +

23

241920
λα6R2k1

− 1

48
λ2α2R2k1− 1

144
λ2α2R2k2− 1

120960
λ2α6R2k2

− 1

17280
λ2α6R2k1− 11

720
α2R2k1− 1

168
α2R2k2 +

1

17280
α8k1

+
1

120960
α8k2 +

4

48
α4k1 +

4

144
α4k2− 1

60480
iλα7Rk2

− 1

8640
iλα7Rk1− 11

4320
iα5Rk1− 17

30240
iα5Rk2 +

31

2177280
iα7Rk2

+
23

241920
iα7Rk1 +

79

155520
α4R2k2 +

29

13440
α4R2k1− 1

26880
α6R2k1
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g13 = − 971

359251200
α6R2k2− 2

2160
α6k2− 2

360
α6k1 +

1

2160
λ2α4R2k2

+
1

360
λ2α4R2k1 +

1

24
λα2R2k1 +

5

432
λα2R2k2− 7

17280
λα4R2k2

− 1

432
λα4R2k1 +

1

2160
iλα5Rk2 +

1

360
iλα5Rk1− 2

18
iλα3Rk1

− 2

72
iλα3Rk2 +

2

2160
iλα5Rk2 +

2

360
iλα5Rk1 +

2

24
iα3Rk1

+
10

432
iα3Rk2− 14

17280
iα5Rk2− 2

432
iα5Rk1− 1

540
λα4R2k1

− 1

2880
λα4R2k2 +

37

5443200
λα6R2k2 +

1

19440
λα6R2k1

− 1

36
λ2α2R2k1− 1

144
λ2α2R2k2− 1

241920
λ2α6R2k2

− 1

30240
λ2α6R2k1− 1

72
α2R2k1− 1

216
α2R2k2 +

1

30240
α8k1

+
1

241920
α8k2 +

4

36
α4k1 +

4

144
α4k2− 1

120960
iλα7Rk2

− 1

15120
iλα7Rk1− 1

540
iα5Rk1− 1

2880
iα5Rk2 +

37

5443200
iα7Rk2

+
1

19440
iα7Rk1 +

89

302400
α4R2k2 +

29

20160
α4R2k1− 47

2494800
α6R2k1
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g14 = − 421

518918400
α6R2k2− 2

5040
α6k2− 2

720
α6k1 +

1

5040
λ2α4R2k2

+
1

720
λ2α4R2k1 +

19

720
λα2R2k1 +

31

5040
λα2R2k2− 59

362880
λα4R2k2

− 43

40320
λα4R2k1 +

1

5040
iλα5Rk2 +

1

720
iλα5Rk1− 2

24
iλα3Rk1

− 2

120
iλα3Rk2 +

2

5040
iλα5Rk2 +

2

720
iλα5Rk1 +

38

720
iα3Rk1

+
62

5040
iα3Rk2− 118

362880
iα5Rk2− 86

40320
iα5Rk1

− 17

20160
λα4R2k1− 5

36288
λα4R2k2 +

43

19958400
λα6R2k2

+
11

604800
λα6R2k1− 1

48
λ2α2R2k1− 1

240
λ2α2R2k2

− 1

725760
λ2α6R2k2− 1

80640
λ2α6R2k1− 19

2520
α2R2k1− 5

2268
α2R2k2

+
1

80640
α8k1 +

1

725760
α8k2 +

4

48
α4k1

4

240
α4k2− 1

362880
iλα7Rk2

− 1

40320
iλα7Rk1− 17

20160
iα5Rk1− 5

36288
iα5Rk2 +

43

19958400
iα7Rk2

+
11

604800
iα7Rk1 +

1091

9979200
α4R2k2 +

13

21600
α4R2k1− 83

13305600
α6R2k1
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g15 = − 1591

10897286400
α6R2k2− 2

20160
α6k2− 2

2520
α6k1 +

1

20160
λ2α4R2k2

+
1

2520
λ2α4R2k1 +

23

2520
λα2R2k1 +

37

20160
λα2R2k2− 23

604800
λα4R2k2

− 17

60480
λα4R2k1 +

1

20160
iλα5Rk2 +

1

2520
iλα5Rk1− 2

60
iλα3Rk1

− 2

360
iλα3Rk2 +

2

20160
iλα5Rk2 +

2

2520
iλα5Rk1 +

46

2520
iα3Rk1

+
74

20160
iα3Rk2− 46

604800
iα5Rk2− 34

60480
iα5Rk1− 1

4536
λα4R2k1

− 29

907200
λα4R2k2 +

7

17107200
λα6R2k2 +

19

4989600
λα6R2k1

− 1

120
λ2α2R2k1− 1

720
λ2α2R2k2− 1

3628800
λ2α6R2k2

− 1

362880
λ2α6R2k1− 23

10080
α2R2k1− 1

1680
α2R2k2 +

1

362880
α8k1

+
1

3628800
α8k2 +

4

120
α4k1 +

4

720
α4k2− 1

1814400
iλα7Rk2

− 1

181440
iλα7Rk1− 1

4536
iα5Rk1− 29

907200
iα5Rk2

+
7

17107200
iα7Rk2 +

19

4989600
iα7Rk1 +

1423

59875200
α4R2k2

+
23

158400
α4R2k1− 53

43243200
α6R2k1
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g16 = − 391

32691859200
α6R2k2− 2

181440
α6k2− 2

20160
α6k1

+
1

181440
λ2α4R2k2 +

1

20160
λ2α4R2k1 +

3

2240
λα2R2k1

+
43

181440
λα2R2k2− 79

19958400
λα4R2k2− 59

1814400
λα4R2k1

+
1

181440
iλα5Rk2 +

1

20160
iλα5Rk1− 2

360
iλα3Rk1− 2

2520
iλα3Rk2

+
2

181440
iλα5Rk2 +

2

20160
iλα5Rk1 +

6

2240
iα3Rk1 +

86

181440
iα3Rk2

− 158

19958400
iα5Rk2− 118

1814400
iα5Rk1− 23

907200
λα4R2k1

− 1

302400
λα4R2k2 +

1

28304640
λα6R2k2 +

43

119750400
λα6R2k1

− 1

720
λ2α2R2k1− 1

5040
λ2α2R2k2− 1

39916800
λ2α6R2k2

− 1

3628800
λ2α6R2k1− 1

3360
α2R2k1− 1

14256
α2R2k2 +

1

3628800
α8k1

+
1

39916800
α8k2 +

4

720
α4k1 +

4

5040
α4k2− 1

19958400
iλα7Rk2

− 1

1814400
iλα7Rk1− 23

907200
iα5Rk1− 1

302400
iα5Rk2

+
1

28304640
iα7Rk2 +

43

119750400
iα7Rk1 +

599

259459200
α4R2k2

+
103

6652800
α4R2k1− 79

726485760
α6R2k1

h1 − h22 are the coefficients for v3.

h1 =
1

85379248281600
iα9R3k2

h2 =
1

9386196019200
iα9R3k2 +

1

9386196019200
iα9R3k1

h3 =
269

1520563755110400
iλα9R3k2− 10151

1520563755110400
iα7R3k2

− 269

1520563755110400
α10R2k2 +

1

1340885145600
iα9R3k1

+
149

760281877555200
iα9R3k2
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h4 = − 1

1961511552000
iα9R3k1− 943

600222534912000
iα9R3k2

+
841

400148356608000
iλα9R3k2− 841

400148356608000
α10R2k2

− 241

4940103168000
iα7R3k1− 841

400148356608000
α10R2k1

+
841

400148356608000
iλα9R3k1− 241

4940103168000
iα7R3k2

h5 =
106

1587890304000
α8R2k2 +

1

44910028800
iλα9R3k1

− 1

44910028800
α10R2k1 +

71

1111523212800
α8R2k2

− 433

44460928512000
α10R2k2 +

433

44460928512000
iλα9R3k2

+
17807

22230464256000
iα7R3k2− 631

2470051584000
iα7R3k1

− 31

22230464256000
λα10R2k2 +

31

44460928512000
iλ2α9R3k2

− 1

44910028800
iα9R3k1− 53

1587890304000
iλα7R3k2

− 31

44460928512000
iα11R2k2− 71

1111523212800
iλα7R3k2

− 29

2778808032000
iα9R3k2− 271

8892185702400
iα7R3k2
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h6 = − 17

201180672000
α10R2k1− 1

52306974720
λα10R2k2 +

1

248371200
iα5R3k1

+
1

104613949440
iλ2α9R3k1− 23

72648576000
iλα7R3k1

− 23

72648576000
iλα7R3k2 +

41

67060224000
iα7R3k1

− 1

104613949440
iα11Rk2− 11

713276928000
α10R2k2

+
103

163459296000
α8R2k2− 41

435891456000
iα9R3k1

− 1

52306974720
λα10R2k1 +

6551

7846046208000
iα7R3k2

+
1

104613949440
iλ2α9R3k2− 103

163459296000
iλα7R3k1

+ frac4672648576000α8R2k2− 1

104613949440
iα11Rk1

− 46

72648576000
α8R2k1− 1

40030848000
iα9R3k2

− 103

163459296000
iλα7R3k2 +

11

713276928000
iλα9R3k2

+
17

201180672000
iα9R3k1 +

103

163459296000
α8R2k1

+
1

248371200
iα5R3k2
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h7 = − 19

163459296000
α10λ R2k2− 79

326918592000
α10λ R2k1

− 17

838252800
α6R2k2 +

433

54486432000
iα7R3k1

+
467

130767436800
iα7R3k2− 37

11675664000
iλ α7R3k2

− 433

54486432000
iλ α7R3k1 +

1

1307674368000
iλ3α9R3k2

+
677

163459296000
α8R2k2 +

311

29719872000
α8R2k1

− 19

490377888000
α10R2k1− 43

326918592000
iα9R3k1

− 1

75675600
iα3R3k2− 17

2942267328000
iα9R3k2

+
1

1307674368000
α12k2 +

19

392302310400
α10R2k2

− 19

326918592000
α11iRk2− 79

653837184000
α11iRk1

+
79

653837184000
iλ2α9R3k1− 263

653837184000
iλ2α7R3k2

+
1

1452971520
α9iRk2 +

19

326918592000
iλ2α9R3k2

+
179

18162144000
iα5R3k1− 1

435891456000
α11iλ Rk2

− 1159

163459296000
iα5R3k2− 1

435891456000
α10λ2R2k2

+
19

490377888000
iλ α9R3k1 +

3929

326918592000
iλ α5R3k2

+
713

653837184000
α8λ R2k2− 19

392302310400
iλ α9R3k2

106



h8 = − 1

2514758400
α10λ R2k2− 29

21794572800
α10λ R2k1

− 1619

10897286400
α6R2k2 +

311

14529715200
iα7R3k1

+
563

130767436800
iα7R3k2− 1

16345929600
iλ α7R3k2

− 41

2179457280
iλ α7R3k1 +

1

87178291200
iλ3α9R3k2

− 1

1556755200
α8R2k2 +

509

21794572800
α8R2k1

+
37

43589145600
α10R2k1 +

1

3632428800
iα9R3k1

+
61

457686028800
iα9R3k2 +

1

87178291200
α12k2

− 1619

10897286400
α6R2k1 +

29

3632428800
α9iRk1

− 1

29059430400
α11iλ Rk1− 29

6227020800
λ2α7R3k1

+
43

130767436800
α10R2k2− 1

5029516800
α11iRk2

− 29

43589145600
α11iRk1 +

29

43589145600
iλ2α9R3k1

− 29

6227020800
iλ2α7R3k2 +

29

3632428800
α9iRk2

+
1

5029516800
iλ2α9R3k2− 61

605404800
iα5R3k1

− 1

29059430400
α11iλ Rk2− 11

118879488
iα5R3k2

− 1

29059430400
α10λ2R2k2− 37

43589145600
iλ α9R3k1

+
1927

21794572800
iλ α5R3k2 +

551

43589145600
α8λ R2k2

− 43

130767436800
iλ α9R3k2 +

1

87178291200
iλ3α9R3k1

+
551

43589145600
α8λ R2k1 +

1927

21794572800
iλ α5R3k1

− 1

29059430400
α10λ2R2k1 +

1

87178291200
α12k1
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h9 = − 1

1334361600
α10λ R2k2− 37

9340531200
α10λ R2k1

− 29

119750400
α6R2k2− 37

15567552000
iα7R3k1

− 247

21555072000
iα7R3k2 +

31

934053120
iλ α7R3k2

+
191

4670265600
iλ α7R3k1 +

1

12454041600
iλ3α9R3k2

− 17

359251200
α8R2k2− 601

9340531200
α8R2k1

− 17

62270208
iλ α3R3k2 +

1

518918400
λ2α8R2k2

− 1

2075673600
iλ3α7R3k2 +

13

3592512000
α10R2k1

− 1

1037836800
α10k2 +

179

108972864000
iα9R3k1

+
37

77837760
iα3R3k2 +

821

1961511552000
iα9R3k2

+
17

31135104
α4R2k2 +

1

2471040
iα3R3k1

− 79

518918400
α7iRk2 +

1

12454041600
α12k2

+
17

311351040
iλ2α5R3k2 +

1

415134720
iλ α9Rk2

− 577

3113510400
α6λ R2k2− 121

141523200
α6R2k1

+
29

345945600
α9iRk1− 1

2075673600
α11iλ Rk1

+
19

389188800
iλ2α7R3k1 +

239

280215936000
α10R2k2

− 1

2668723200
α11iRk2− 37

18681062400
α11iRk1

+
37

18681062400
iλ2α9R3k1− 1

43545600
iλ2α7R3k2

+
41

1037836800
α9iRk2 +

1

2668723200
iλ2α9R3k2

− 89

172972800
iα5R3k1− 1

4151347200
α11iλ Rk2

− 631

3113510400
iα5R3k2− 1

4151347200
α10λ2R2k2

− 13

3592512000
iλ α9R3k1 +

461

3113510400
iλ α5R3k2
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h9 continued

+
389

6227020800
α8λ R2k2− 239

280215936000
iλ α9R3k2

+
1

6227020800
iλ3α9R3k1 +

59

444787200
α8λ R2k1

+
89

172972800
iλ α5R3k1− 1

2075673600
α10λ2R2k1

+
1

6227020800
α12k1
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h10 = − 1

3592512000
α10λ R2k2− 1

179625600
α10λ R2k1

+
137

119750400
α6R2k2− 361

2395008000
iα7R3k1

− 551

10059033600
iα7R3k2 +

19

163296000
iλ α7R3k2

+
1

2851200
iλ α7R3k1 +

1

2874009600
iλ3α9R3k2

− 293

1796256000
α8R2k2− 359

718502400
α8R2k1

− 1

887040
iλ α3R3k2 +

1

39916800
λ2α8R2k2

− 1

159667200
iλ3α7R3k1− 1

159667200
iλ3α7R3k2

+
31

4311014400
α10R2k1− 1

79833600
α10k2

− 1

79833600
α10k1 +

1

287400960
iα9R3k1

+
1

665280
iα3R3k2 +

859

1357969536000
iα9R3k2

+
1

443520
α4R2k2 +

1

443520
iα3R3k1

− 19

13305600
α7iRk1− 19

13305600
α7iRk2

+
1

443520
α4R2k1 +

1

2874009600
α12k2

− 1

887040
iλ α3R3k1 +

61

119750400
iλ2α5R3k1

+
61

119750400
iλ2α5R3k2 +

1

31933440
iλ α9Rk2

− 83

47900160
α6λ R2k2− 83

47900160
α6λ R2k1

+
1

31933440
iλ α9Rk1 +

1

39916800
α8λ2R2k1

− 1

29937600
α6R2k1 +

29

79833600
α9iRk1

− 1

319334400
α11iλ Rk1− 101

479001600
iλ2α7R3k1

+
167

150885504000
α10R2k2− 1

7185024000
α11iRk2
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h10 continued

− 1

359251200
α11iRk1 +

1

359251200
iλ2α9R3k1

− 83

1437004800
iλ2α7R3k2 +

1

9979200
α9iRk2

+
1

7185024000
iλ2α9R3k2− 29

79833600
iα5R3k1

− 1

958003200
α11iλ Rk2 +

677

3592512000
iα5R3k2

− 1

958003200
α10λ2R2k2− 31

4311014400
iλ α9R3k1

− 67

102643200
iλ α5R3k2 +

227

1437004800
α8λ R2k2

− 167

150885504000
iλ α9R3k2 +

1

958003200
iλ3α9R3k1

+
1

1741824
α8λ R2k1 +

19

239500800
iλ α5R3k1

− 1

319334400
α10λ2R2k1 +

1

958003200
α12k1
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h11 =
1

359251200
α10λ R2k2 +

1

239500800
α10λ R2k1

+
149

23950080
α6R2k2− 559

1397088000
iα7R3k1

− 9539

100590336000
iα7R3k2 +

23

128304000
iλ α7R3k2

+
529

598752000
iλ α7R3k1 +

1

958003200
iλ3α9R3k2

− 151

598752000
α8R2k2− 1487

1197504000
α8R2k1

+
17

6652800
iλ α3R3k2 +

1

6652800
λ2α8R2k2

− 1

13305600
iλ3α7R3k1− 1

26611200
iλ3α7R3k2

− 31

19958400
iλ2α3R3k2 +

1

13305600
iλ3α5R3k2

+
23

4191264000
α10R2k1− 1

13305600
α10k2

− 1

6652800
α10k1 +

19

5588352000
iα9R3k1

− 1

997920
iα3R3k2 +

17

50295168000
iα9R3k2

− 17

3326400
α4R2k2 +

1

907200
iα3R3k1

− 13

1108800
α7iRk1− 1

190080
α7iRk2

+
1

453600
α4R2k1 +

31

4989600
α5iRk2

+
1

958003200
α12k2− 1

907200
iλ α3R3k1

+
83

19958400
iλ2α5R3k1 +

37

19958400
iλ2α5R3k2

− 1

1663200
α7iλ Rk2− 1

2661120
α6λ2R2k2

+
1

5322240
iλ α9Rk2 +

31

4989600
α4λ R2k2

− 23

3628800
α6λ R2k2− 283

19958400
α6λ R2k1

+
1

2661120
iλ α9Rk1 +

1

3326400
α8λ2R2k1
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h11 continued

+
1

3326400
α8k2 +

731

59875200
α6R2k1

+
29

39916800
α9iRk1− 1

79833600
α11iλ Rk1

− 1

2395008
iλ2α7R3k1− 1

100590336000
α10R2k2

+
1

718502400
α11iRk2 +

1

479001600
α11iRk1

− 1

479001600
iλ2α9R3k1− 23

479001600
iλ2α7R3k2

+
1

11404800
α9iRk2− 1

718502400
iλ2α9R3k2

+
43

13305600
iα5R3k1− 1

319334400
α11iλ Rk2

+
25

14370048
iα5R3k2− 1

319334400
α10λ2R2k2

− 23

4191264000
iλ α9R3k1− 863

239500800
iλ α5R3k2

+
13

95800320
α8λ R2k2 +

1

100590336000
iλ α9R3k2

+
1

239500800
iλ3α9R3k1 +

137

119750400
α8λ R2k1

− 419

59875200
iλ α5R3k1− 1

79833600
α10λ2R2k1

+
1

239500800
α12k1
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h12 =
11

1143072000
α10λ R2k2 +

13

326592000
α10λ R2k1

+
5

435456
α6R2k2− 1291

3048192000
iα7R3k1

− 169

3292047360
iα7R3k2 +

11

571536000
iλ α7R3k2

+
19

23328000
iλ α7R3k1 +

1

435456000
iλ3α9R3k2

− 43

1143072000
α8R2k2− 377

326592000
α8R2k1

− 19

1814400
iλ2α3R3k1 +

1

1209600
iλ3α5R3k1

− 1

151200
α7iλ Rk1− 1

241920
α6λ2R2k1

+
19

453600
α4λ R2k1 +

19

777600
iλ α3R3k2

+
1

1814400
λ2α8R2k2− 1

2419200
iλ3α7R3k1

− 1

7257600
iλ3α7R3k2− 19

1814400
iλ2α3R3k2

+
1

1209600
iλ3α5R3k2− 89

9144576000
α10R2k1

− 1

3628800
α10k2− 1

1209600
α10k1

+
1

302400
α8k1− 1

762048000
iα9R3k1

− 19

1360800
iα3R3k2− 29

41150592000
iα9R3k2

+
19

453600
α5iRk1− 19

388800
α4R2k2

− 19

907200
iα3R3k1− 1

28800
α7iRk1

− 13

1814400
α7iRk2− 19

302400
α4R2k1

+
19

453600
α5iRk2 +

1

435456000
α12k2

+
19

604800
iλ α3R3k1 +

11

907200
iλ2α5R3k1

− 13

5443200
iλ2α5R3k2− 1

151200
α7iλ Rk2
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h12 continued

− 1

241920
α6λ2R2k2 +

1

1451520
iλ α9Rk2

+
19

453600
α4iλ R2k2− 13

1555200
α6λ R2k2

− 151

3628800
α6λ R2k1 +

1

483840
iλ α9Rk1

+
1

604800
α8λ2R2k1 +

1

302400
α8k2

+
443

10886400
α6R2k1− 1

29030400
α11iλ Rk1

+
1

43545600
iλ2α7R3k1− 53

16460236800
α10R2k2

+
11

2286144000
α11iRk2 +

13

653184000
α11iRk1

− 13

653184000
iλ2α9R3k1 +

37

217728000
iλ2α7R3k2

− 1

3628800
α9iRk2− 11

2286144000
iλ2α9R3k2

+
1

94500
iα5R3k1− 1

145152000
α11iλ Rk2

+
1297

381024000
iα5R3k2− 1

145152000
α10λ2R2k2

+
89

9144576000
iλ α9R3k1− 103

15552000
iλ α5R3k2

− 97

217728000
α8λ R2k2 +

53

16460236800
iλ α9R3k2

+
1

87091200
iλ3α9R3k1− 1

43545600
α8λ R2k1

− 19

806400
iλ α5R3k1− 1

29030400
α10λ2R2k1

+
1

87091200
α12k1
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h13 =
17

914457600
α10λ R2k2 +

47

457228800
α10λ R2k1

+
17

10886400
α6R2k2 +

67

304819200
iα7R3k1

+
233

1828915200
iα7R3k2− 241

457228800
iλ α7R3k2

− 19

15240960
iλ α7R3k1 +

1

261273600
iλ3α9R3k2

+
23

32659200
α8R2k2 +

109

65318400
α8R2k1

+
1

18144
iλ2α3R3k1 +

1

120960
iλ3α5R3k1

+
1

30240
α5iλ Rk2 +

1

60480
α4λ2R2k2

− 1

15120
α7iλ Rk1− 1

24192
α6λ2R2k1

+
1

4536
α4λ R2k1 +

37

725760
iλ α3R3k2

+
1

725760
λ2α8R2k2− 1

725760
λ3α7R3k1

− 1

2903040
λ3α7R3k2− 1

51840
iλ2α3R3k2

+
1

241920
iλ3α5R3k2− 319

8230118400
α10R2k1

− 1

1451520
α10k2− 1

362880
α10k1

+
1

30240
α8k1− 1

45360
α6k2

− 307

30177100800
iα9R3k1− 1

36288
iα3R3k2

− 41

19399564800
iα9R3k2 +

1

4536
α5iRk1

− 37

362880
α4R2k2− 23

362880
iα3R3k1

− 1

60480
α7iRk1 +

1

80640
α7iRk2

− 23

90720
α4R2k1 +

1

12960
α5iRk2

+
1

261273600
α12k2− 1

362880
iλ3α3R3k2
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h13 continued

+
23

181440
iλ α3R3k1 +

1

217728
iλ2α5R3k1

− 11

2177280
iλ2α5R3k2− 1

30240
α7iλ Rk2

− 1

48384
α6λ2R2k2 +

1

580608
iλ α9Rk2

+
1

12960
α4λ R2k2 +

71

4354560
α6λ R2k2

− 19

1088640
α6λ R2k1 +

1

145152
iλ α9Rk1

+
1

181440
α8λ2R2k1 +

1

60480
α8k2

+
457

10886400
α6R2k1− 29

7257600
α9iRk1

− 1

14515200
α11iλ Rk1 +

13

5443200
iλ2α7R3k1

− 5

658409472
α10R2k2 +

17

1828915200
α11iRk2

+
47

914457600
α11iRk1− 47

914457600
iλ2α9R3k1

− 97

130636800
iλ2α7R3k2− 1

806400
α9iRk2

− 17

1828915200
iλ2α9R3k2 +

281

25401600
iα5R3k1

− 1

87091200
α11iλ Rk2 +

283

182891520
iα5R3k2

− 1

87091200
α10λ2R2k2 +

319

8230118400
iλ α9R3k1

− 43

65318400
iλ α5R3k2− 37

18662400
α8λ R2k2

+
5

658409472
iλ α9R3k2 +

1

43545600
iλ3α9R3k1

− 139

21772800
α8λ R2k1− 263

10886400
iλ α5R3k1

− 1

14515200
α10λ2R2k1 +

1

43545600
α12k1
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h14 =
23

914457600
α10λ R2k2 +

17

101606400
α10λ R2k1

− 977

25401600
α6R2k2 +

1511

1016064000
iα7R3k1

+
37399

100590336000
iα7R3k2− 17

13063680
iλ α7R3k2

− 281

50803200
iλ α7R3k1 +

1

203212800
iλ3α9R3k2

+
67

38102400
α8R2k2 +

383

50803200
α8R2k1

− 1

40320
iλ2α3R3k1 +

1

26880
iλ3α5R3k1

+
1

3360
α5iλ Rk2 +

1

6720
α4λ2R2k2

− 1

3360
α7iλ Rk1− 1

5376
α6λ2R2k1

+
1

10080
α4λ R2k1− 1

80640
iλ α3R3k2

+
1

403200
λ2α8R2k2− 1

322560
iλ3α7R3k1

+
1

1612800
iλ3α7R3k2 +

1

24192
iλ2α3R3k2

+
1

80640
iλ3α5R3k2− 23

338688000
α10R2k1

− 1

806400
α10k2− 1

161280
α10k1

+
1

6720
α8k1− 1

5040
α6k2

+
1

3360
α5iλ Rk1− 103

5588352000
iα9R3k1

− 1

423360
iα3R3k2− 251

81729648000
iα9R3k2

+
1

10080
α5iRk1− 1

5040
α6k1

− 1

40320
iλ3α3R3k1 +

1

6720
α4λ2R2k1

+
1

40320
α4R2k2− 1

24192
iα3R3k1

+
1

5376
α7iRk1 +

31

403200
α7iRk2
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h14 continued

− 5

24192
α4R2k1− 1

6048
α5iRk2

+
1

203212800
α12k2− 1

40320
iλ3α3R3k2

+
5

48384
iλ α3R3k1− 17

241920
iλ2α5R3k1

− 1

34560
iλ2α5R3k2− 1

10080
α7iλ Rk2

− 1

16128
α6λ2R2k2 +

1

322560
iλ α9Rk2

− 1

6048
α4λ R2k2 +

233

2419200
α6λ R2k2

+
113

483840
α6λ R2k1 +

1

64512
iλ α9Rk1

+
1

80640
α8λ2R2k1 +

1

20160
α8k2

− 139

1814400
α6R2k1− 29

2419200
α9iRk1

− 1

9676800
α11iλ Rk1 +

103

14515200
iλ2α7R3k1

− 1081

100590336000
α10R2k2 +

23

1828915200
α11iRk2

+
17

203212800
α11iRk1− 17

203212800
iλ2α9R3k1

+
157

101606400
iλ2α7R3k2− 11

4233600
α9iRk2

− 23

1828915200
iλ2α9R3k2− 131

11289600
iα5R3k1

− 1

67737600
α11iλ Rk2− 5863

914457600
iα5R3k2

− 1

67737600
α10λ2R2k2 +

23

338688000
iλ α9R3k1

+
1171

50803200
iλ α5R3k2− 421

101606400
α8λ R2k2

+
1081

100590336000
iλ α9R3k2 +

1

29030400
iλ3α9R3k1

− 277

14515200
α8λ R2k1 +

331

7257600
iλ α5R3k1

− 1

9676800
α10λ2R2k1 +

1

29030400
α12k1
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h15 =
29

1143072000
α10λ R2k2 +

89

457228800
α10λ R2k1

− 2459

25401600
α6R2k2 +

11027

4191264000
iα7R3k1

+
3173

6035420160
iα7R3k2− 1051

571536000
iλ α7R3k2

− 2251

228614400
iλ α7R3k1 +

1

203212800
iλ3α9R3k2

+
407

163296000
α8R2k2 +

6149

457228800
α8R2k1

+
1

1890
iλ2α3R3k1 +

1

10080
iλ3α5R3k1

+
1

840
α5iλ Rk2 +

1

1680
α4λ2R2k2

− 1

1260
α7iλ Rk1− 1

2016
α6λ2R2k1

− 2

945
α4λ R2k1− 7

25920
iλ α3R3k2

+
1

302400
λ2α8R2k2− 1

201600
iλ3α7R3k1

− 1

1209600
iλ3α7R3k2 +

17

60480
iλ2α3R3k2

+
1

40320
iλ3α5R3k2− 199

2514758400
α10R2k1

− 1

604800
α10k2− 1

100800
α10k1

+
1

2520
α8k1− 1

1260
α6k2

+
1

420
α5iλ Rk1− 457

21794572800
iα9R3k1

+
1

11340
iα3R3k2− 20897

6865290432000
iα9R3k2

− 2

945
α5iRk1− 1

630
α6k1

− 1

5040
iλ3α3R3k1 +

1

840
α4λ2R2k1

+
7

12960
α4R2k2 +

1

6048
iα3R3k1

+
11

16800
α7iRk1 +

53

302400
α7iRk2
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h15 continued

+
1

1008
α4R2k1− 17

15120
α5iRk2

+
1

203212800
α12k2− 1

10080
iλ3α3R3k2

− 1

2016
iλ α3R3k1− 73

302400
iλ2α5R3k1

− 59

907200
iλ2α5R3k2− 1

5040
α7iλ Rk2

− 1

8064
α6λ2R2k2 +

1

241920
iλ α9Rk2

− 17

15120
α4λ R2k2 +

79

362880
α6λ R2k2

+
7

8640
α6λ R2k1 +

1

40320
iλ α9Rk1

+
1

50400
α8λ2R2k1 +

1

10080
α8k2

− 2153

6350400
α6R2k1− 29

1411200
α9iRk1

− 1

8467200
α11iλ Rk1 +

11

907200
iλ2α7R3k1

− 1633

150885504000
α10R2k2 +

29

2286144000
α11iRk2

+
89

914457600
α11iRk1− 89

914457600
iλ2α9R3k1

+
31

14515200
iλ2α7R3k2− 61

16934400
α9iRk2

− 29

2286144000
iλ2α9R3k2− 157

2822400
iα5R3k1

− 1

67737600
α11iλ Rk2− 2167

127008000
iα5R3k2

− 1

67737600
α10λ2R2k2 +

199

2514758400
iλ α9R3k1

+
2921

50803200
iλ α5R3k2− 583

101606400
α8λ R2k2

+
1633

150885504000
iλ α9R3k2 +

1

25401600
iλ3α9R3k1

− 83

2540160
α8λ R2k1 +

47

235200
iλ α5R3k1

− 1

8467200
α10λ2R2k1 +

1

25401600
α12k1
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h16 =
1

51321600
α10λ R2k2 +

11

65318400
α10λ R2k1

− 293

2177280
α6R2k2 +

6871

2395008000
iα7R3k1

+
46357

93405312000
iα7R3k2− 1609

898128000
iλ α7R3k2

− 611

54432000
iλ α7R3k1 +

1

261273600
iλ3α9R3k2

+
397

163296000
α8R2k2 +

5009

326592000
α8R2k1

+
17

8640
iλ2α3R3k1 +

1

5760
iλ3α5R3k1

+
1

360
α5iλ Rk2 +

1

720
α4λ2R2k2

− 1

720
α7iλ Rk1− 1

1152
α6λ2R2k1

− 17

2160
α4λ R2k1− 193

302400
iλ α3R3k2

+
1

302400
λ2α8R2k2− 1

172800
iλ3α7R3k1

− 1

1209600
iλ3α7R3k2 +

29

43200
iλ2α3R3k2

+
1

28800
iλ3α5R3k2− 131

1959552000
α10R2k1

− 1

604800
α10k2− 1

86400
α10k1

+
1

1440
α8k1− 1

540
α6k2

+
1

120
α5iλ Rk1− 253

14859936000
iα9R3k1

+
1

5040
iα3R3k2− 6533

2942267328000
iα9R3k2

− 17

2160
α5iRk1− 1

180
α6k1

− 1

1440
iλ3α3R3k1 +

1

240
α4λ2R2k1

+
193

151200
α4R2k2 +

11

21600
iα3R3k1

+
17

14400
α7iRk1 +

1

4032
α7iRk2
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h16 continued

+
77

21600
α4R2k1− 29

10800
α5iRk2

+
1

261273600
α12k2− 1

4320
iλ3α3R3k2

− 77

43200
iλ α3R3k1− 7

16200
iλ2α5R3k1

− 83

907200
iλ2α5R3k2− 1

3600
α7iλ Rk2

− 1

5760
α6λ2R2k2 +

1

241920
iλ α9Rk2

− 29

10800
α4λ R2k2 +

557

1814400
α6λ R2k2

+
377

259200
α6λ R2k1 +

1

34560
iλ α9Rk1

+
1

43200
α8λ2R2k1 +

1

7200
α8k2

− 2167

3628800
α6R2k1− 29

1209600
α9iRk1

− 1

9676800
α11iλ Rk1 +

41

2903040
iλ2α7R3k1

− 2281

280215936000
α10R2k2 +

1

102643200
α11iRk2

+
11

130636800
α11iRk1− 11

130636800
iλ2α9R3k1

+
277

130636800
iλ2α7R3k2− 13

3628800
α9iRk2

− 1

102643200
iλ2α9R3k2− 167

1814400
iα5R3k1

− 1

87091200
α11iλ Rk2− 8213

359251200
iα5R3k2

− 1

87091200
α10λ2R2k2 +

131

1959552000
iλ α9R3k1

+
5207

65318400
iλ α5R3k2− 149

26127360
α8λ R2k2

+
2281

280215936000
iλ α9R3k2 +

1

29030400
iλ3α9R3k1

− 79

2073600
α8λ R2k1 +

2551

7257600
iλ α5R3k1

− 1

9676800
α10λ2R2k1 +

1

29030400
α12k1
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h17 =
41

3592512000
α10λ R2k2 +

131

1197504000
α10λ R2k1

− 1357

10886400
α6R2k2 +

11273

5189184000
iα7R3k1

+
43889

130767436800
iα7R3k2− 2269

1796256000
iλ α7R3k2

− 767

85536000
iλ α7R3k1 +

1

435456000
iλ3α9R3k2

+
1027

598752000
α8R2k2 +

14671

1197504000
α8R2k1

+
13

3600
iλ2α3R3k1 +

1

4800
iλ3α5R3k1

+
1

240
α5iλ Rk2 +

1

480
α4λ2R2k2

− 1

600
α7iλ Rk1− 1

960
α6λ2R2k1

− 13

900
α4λ R2k1− 113

134400
iλ α3R3k2

+
1

403200
iλ2α8R2k2− 1

201600
iλ3α7R3k1

− 1

1612800
iλ3α7R3k2 +

41

43200
iλ2α3R3k2

+
1

28800
iλ3α5R3k2− 653

15567552000
α10R2k1

− 1

806400
α10k2− 1

100800
α10k1

+
1

1200
α8k1− 1

360
α6k2

+
1

60
α5iλ Rk1− 53

5189184000
iα9R3k1

+
73

302400
iα3R3k2− 1591

1307674368000
iα9R3k2

− 13

900
α5iRk1− 1

90
α6k1

− 1

720
iλ3α3R3k1 +

1

120
α4λ2R2k1

+
113

67200
α4R2k2 +

443

604800
iα3R3k1

+
23

16800
α7iRk1 +

97

403200
α7iRk2
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h17 continued

+
443

75600
α4R2k1− 41

10800
α5iRk2

+
1

435456000
α12k2− 1

2880
iλ3α3R3k2

− 443

151200
iλ α3R3k1− 151

302400
iλ2α5R3k1

− 107

1209600
iλ2α5R3k2− 1

3600
α7iλ Rk2

− 1

5760
α6λ2R2k2 +

1

322560
iλ α9Rk2

− 41

10800
α4λ R2k2 +

719

2419200
α6λ R2k2

+
509

302400
α6λ R2k1 +

1

40320
iλ α9Rk1

+
1

50400
α8λ2R2k1 +

1

7200
α8k2

− 7099

10886400
α6R2k1− 29

1451520
α9iRk1

− 1

14515200
α11iλ Rk1 +

1

85050
iλ2α7R3k1

− 11

2377589760
α10R2k2 +

41

7185024000
α11iRk2

+
131

2395008000
α11iRk1− 131

2395008000
iλ2α9R3k1

+
337

217728000
iλ2α7R3k2− 19

7257600
α9iRk2

− 41

7185024000
iλ2α9R3k2− 6211

66528000
iα5R3k1

− 1

145152000
α11iλ Rk2− 72109

3592512000
iα5R3k2

− 1

145152000
α10λ2R2k2 +

653

15567552000
iλ α9R3k1

+
1147

15552000
iλ α5R3k2− 907

217728000
α8λ R2k2

+
11

2377589760
iλ α9R3k2 +

1

43545600
iλ3α9R3k1

− 691

21772800
α8λ R2k1 +

4177

10886400
iλ α5R3k1

− 1

14515200
α10λ2R2k1 +

1

43545600
α12k1
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h18 =
47

9340531200
α10λ R2k2 +

19

359251200
α10λ R2k1

− 9629

119750400
α6R2k2 +

51173

43589145600
iα7R3k1

+
64651

392302310400
iα7R3k2− 433

667180800
iλ α7R3k2

− 23

4490640
iλ α7R3k1 +

1

958003200
iλ3α9R3k2

+
4117

4670265600
α8R2k2 +

457

65318400
α8R2k1

+
7

1728
iλ2α3R3k1 +

1

5760
iλ3α5R3k1

+
1

240
α5iλ Rk2 +

1

480
α4λ2R2k2

− 1

720
α7iλ Rk1− 1

1152
α6λ2R2k1

− 7

432
α4λ R2k1− 1559

2177280
iλ α3R3k2

+
1

725760
λ2α8R2k2− 1

322560
iλ3α7R3k1

− 1

2903040
iλ3α7R3k2 +

53

60480
iλ2α3R3k2

+
1

40320
iλ3α5R3k2− 2549

130767436800
α10R2k1

− 1

1451520
α10k2− 1

161280
α10k1

+
1

1440
α8k1− 1

360
α6k2

+ 1/48 α5iλ Rk1− 79

17435658240
iα9R3k1

+
227

1197504
iα3R3k2− 391

784604620800
iα9R3k2

− 7

432
α5iRk1− 1

72
α6k1

− 1

576
iλ3α3R3k1 +

1

96
α4λ2R2k1

+
1559

1088640
α4R2k2 +

79

120960
iα3R3k1

+
29

26880
α7iRk1 +

17

103680
α7iRk2
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h18 continued

+
79

13440
α4R2k1− 53

15120
α5iRk2

+
1

958003200
α12k2− 1

2880
iλ3α3R3k2

− 79

26880
iλ α3R3k1− 19

48384
iλ2α5R3k1

− 131

2177280
iλ2α5R3k2− 1

5040
α7iλ Rk2

− 1

8064
α6λ2R2k2 +

1

580608
iλ α9Rk2

− 53

15120
α4λ R2k2 +

881

4354560
α6λ R2k2

+
641

483840
α6λ R2k1 +

1

64512
iλ α9Rk1

+
1

80640
α8λ2R2k1 +

1

10080
α8k2

− 653

1360800
α6R2k1

− 29

2419200
α9iRk1− 1

29030400
α11iλ Rk1

+
307

43545600
iλ2α7R3k1− 773

392302310400
α10R2k2

+
47

18681062400
α11iRk2 +

19

718502400
α11iRk1

− 19

718502400
iλ2α9R3k1 +

397

479001600
iλ2α7R3k2

− 1

712800
α9iRk2− 47

18681062400
iλ2α9R3k2

− 1699

26611200
iα5R3k1− 1

319334400
α11iλ Rk2

− 7613

622702080
iα5R3k2− 1

319334400
α10λ2R2k2

+
2549

130767436800
iλ α9R3k1 +

11387

239500800
iλ α5R3k2

− 1069

479001600
α8λ R2k2 +

773

392302310400
iλ α9R3k2

+
1

87091200
iλ3α9R3k1− 829

43545600
α8λ R2k1

+
683

2419200
iλ α5R3k1− 1

29030400
α10λ2R2k1

+
1

87091200
α12k1
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h19 =
53

32691859200
α10λ R2k2 +

173

9340531200
α10λ R2k1

− 4309

119750400
α6R2k2 +

1877

4191264000
iα7R3k1

+
151103

2615348736000
iα7R3k2− 779

3269185920
iλ α7R3k2

− 17

8236800
iλ α7R3k1 +

1

2874009600
iλ3α9R3k2

+
10583

32691859200
α8R2k2 +

26329

9340531200
α8R2k1

+
11

3780
iλ2α3R3k1 +

1

10080
iλ3α5R3k1

+
1

360
α5iλ Rk2 +

1

720
α4λ2R2k2

− 1

1260
α7iλ Rk1− 1

2016
α6λ2R2k1

− 11

945
α4λ R2k1− 7

17280
iλ α3R3k2

+
1

1814400
λ2α8R2k2− 1

725760
iλ3α7R3k1

− 1

7257600
iλ3α7R3k2 +

13

24192
iλ2α3R3k2

+
1

80640
iλ3α5R3k2− 247

37721376000
α10R2k1

− 1

3628800
α10k2− 1

362880
α10k1

+
1

2520
α8k1− 1

540
α6k2

+
1

60
α5iλ Rk1− 32303

22230464256000
iα9R3k1

+
1

10080
iα3R3k2− 89263

600222534912000
iα9R3k2

− 11

945
α5iRk1− 1

90
α6k1

− 1

720
iλ3α3R3k1 +

1

120
α4λ2R2k1

+
7

8640
α4R2k2 +

23

60480
iα3R3k1

+
1

1728
α7iRk1 +

47

604800
α7iRk2

128



h19 continued

+
23

6048
α4R2k1− 13

6048
α5iRk2

+
1

2874009600
α12k2− 1

4320
iλ3α3R3k2

− 23

12096
iλ α3R3k1− 229

1088640
iλ2α5R3k1

− 31

1088640
iλ2α5R3k2− 1

10080
α7iλ Rk2

− 1

16128
α6λ2R2k2 +

1

1451520
iλ α9Rk2

− 13

6048
α4λ R2k2 +

149

1555200
α6λ R2k2

+
773

1088640
α6λ R2k1 +

1

145152
iλ α9Rk1

+
1

181440
α8λ2R2k1 +

1

20160
α8k2

− 14381

59875200
α6R2k1− 29

5702400
α9iRk1

− 1

79833600
α11iλ Rk1 +

179

59875200
iλ2α7R3k1

− 4801

7846046208000
α10R2k2 +

53

65383718400
α11iRk2

+
173

18681062400
α11iRk1− 173

18681062400
iλ2α9R3k1

+
457

1437004800
iλ2α7R3k2− 43

79833600
α9iRk2

− 53

65383718400
iλ2α9R3k2− 1189

39916800
iα5R3k1

− 1

958003200
α11iλ Rk2− 1181

228614400
iα5R3k2

− 1

958003200
α10λ2R2k2 +

247

37721376000
iλ α9R3k1

+
2183

102643200
iλ α5R3k2− 1231

1437004800
α8λ R2k2

+
4801

7846046208000
iλ α9R3k2 +

1

239500800
iλ3α9R3k1

− 967

119750400
α8λ R2k1 +

8461

59875200
iλ α5R3k1

− 1

79833600
α10λ2R2k1 +

1

239500800
α12k1
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h20 =
59

163459296000
α10λ R2k2 +

97

21794572800
α10λ R2k1

− 1283

119750400
α6R2k2 +

33479

290594304000
iα7R3k1

+
122483

8892185702400
iα7R3k2− 4861

81729648000
iλ α7R3k2

− 6103

10897286400
iλ α7R3k1 +

1

12454041600
iλ3α9R3k2

+
629

7783776000
α8R2k2 +

2381

3113510400
α8R2k1

+
53

40320
iλ2α3R3k1 +

1

26880
iλ3α5R3k1

+
1

840
α5iλ Rk2 +

1

1680
α4λ2R2k2

− 1

3360
α7iλ Rk1− 1

5376
α6λ2R2k1

− 53

10080
α4λ R2k1− 197

1330560
iλ α3R3k2

+
1

6652800
λ2α8R2k2− 1

2419200
iλ3α7R3k1

− 1

26611200
iλ3α7R3k2 +

11

51840
iλ2α3R3k2

+
1

241920
iλ3α5R3k2− 263

174356582400
α10R2k1

− 1

13305600
α10k2− 1

1209600
α10k1

+
1

6720
α8k1− 1

1260
α6k2

+
1

120
α5iλ Rk1− 79

247005158400
iα9R3k1

+
437

12972960
iα3R3k2− 1849

60339831552000
iα9R3k2

− 53

10080
α5iRk1− 1

180
α6k1

− 1

1440
iλ3α3R3k1

+
1

240
α4λ2R2k1 +

197

665280
α4R2k2

+
283

1995840
iα3R3k1 +

41

201600
α7iRk1
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h20 continued

+
163

6652800
α7iRk2 +

283

181440
α4R2k1

− 11

12960
α5iRk2 +

1

12454041600
α12k2

− 1

10080
iλ3α3R3k2− 283

362880
iλ α3R3k1

− 67

907200
iλ2α5R3k1− 179

19958400
iλ2α5R3k2

− 1

30240
α7iλ Rk2− 1

48384
α6λ2R2k2

+
1

5322240
iλ α9Rk2− 11

12960
α4λ R2k2

+
241

7983360
α6λ R2k2 +

181

725760
α6λ R2k1

+
1

483840
iλ α9Rk1 +

1

604800
α8λ2R2k1

+
1

60480
α8k2− 859

10886400
α6R2k1

− 29

19958400
α9iRk1− 1

319334400
α11iλ Rk1

+
409

479001600
iλ2α7R3k1− 5833

44460928512000
α10R2k2

+
59

326918592000
α11iRk2 +

97

43589145600
α11iRk1

− 97

43589145600
iλ2α9R3k1 +

47

566092800
iλ2α7R3k2

− 73

518918400
α9iRk2− 59

326918592000
iλ2α9R3k2

− 2771

302702400
iα5R3k1− 1

4151347200
α11iλ Rk2

− 237733

163459296000
iα5R3k2− 1

4151347200
α10λ2R2k2

+
263

174356582400
iλ α9R3k1 +

19711

3113510400
iλ α5R3k2

− 199

889574400
α8λ R2k2 +

5833

44460928512000
iλ α9R3k2

+
1

958003200
iλ3α9R3k1− 221

95800320
α8λ R2k1

+
11119

239500800
iλ α5R3k1− 1

319334400
α10λ2R2k1

+
1

958003200
α12k1
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h21 =
1

20118067200
α10λ R2k2 +

43

65383718400
α10λ R2k1

− 4177

2179457280
α6R2k2 +

133403

7410154752000
iα7R3k1

+
803381

400148356608000
iα7R3k2− 11

1213056000
iλ α7R3k2

− 15061

163459296000
iλ α7R3k1 +

1

87178291200
iλ3α9R3k2

+
1007

81729648000
α8R2k2 +

41123

326918592000
α8R2k1

+
31

90720
iλ2α3R3k1 +

1

120960
iλ3α5R3k1

+
1

3360
α5iλ Rk2 +

1

6720
α4λ2R2k2

− 1

15120
α7iλ Rk1− 1

24192
α6λ2R2k1

− 31

22680
α4λ R2k1− 3809

119750400
iλ α3R3k2

+
1

39916800
λ2α8R2k2− 1

13305600
iλ3α7R3k1

− 1

159667200
iλ3α7R3k2 +

89

1814400
iλ2α3R3k2

+
1

1209600
iλ3α5R3k2− 4751

22230464256000
α10R2k1

− 1

79833600
α10k2− 1

6652800
α10k1

+
1

30240
α8k1− 1

5040
α6k2

+
1

420
α5iλ Rk1− 359

8281937664000
iα9R3k1

+
283

41912640
iα3R3k2− 3713

950352346944000
iα9R3k2

− 31

22680
α5iRk1− 1

630
α6k1

− 1

5040
iλ3α3R3k1 +

1

840
α4λ2R2k1

+
3809

59875200
α4R2k2 +

617

19958400
iα3R3k1

+
47

1108800
α7iRk1 +

37

7983360
α7iRk2
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h21 continued

+
617

1663200
α4R2k1− 89

453600
α5iRk2

+
1

87178291200
α12k2− 1

40320
iλ3α3R3k2

− 617

3326400
iλ α3R3k1− 307

19958400
iλ2α5R3k1

− 29

17107200
iλ2α5R3k2− 1

151200
α7iλ Rk2

− 1

241920
α6λ2R2k2 +

1

31933440
iλ α9Rk2

− 89

453600
α4λ R2k2 +

1367

239500800
α6λ R2k2

+
1037

19958400
α6λ R2k1 +

1

2661120
iλ α9Rk1

+
1

3326400
α8λ2R2k1 +

1

302400
α8k2

− 23999

1556755200
α6R2k1− 29

115315200
α9iRk1

− 1

2075673600
α11iλ Rk1 +

23

155675520
iλ2α7R3k1

− 6961

400148356608000
α10R2k2 +

1

40236134400
α11iRk2

+
43

130767436800
α11iRk1− 43

130767436800
iλ2α9R3k1

+
577

43589145600
iλ2α7R3k2− 163

7264857600
α9iRk2

− 1

40236134400
iλ2α9R3k2− 2033

1210809600
iα5R3k1

− 1

29059430400
α11iλ Rk2− 21487

87178291200
iα5R3k2

− 1

29059430400
α10λ2R2k2 +

4751

22230464256000
iλ α9R3k1

+
24677

21794572800
iλ α5R3k2− 311

8717829120
α8λ R2k2

+
6961

400148356608000
iλ α9R3k2 +

1

6227020800
iλ3α9R3k1

− 113

283046400
α8λ R2k1 +

523

57657600
iλ α5R3k1

− 1

2075673600
α10λ2R2k1 +

1

6227020800
α12k1
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h22 =
71

22230464256000
α10λ R2k2 +

59

1307674368000
α10λ R2k1

− 131

838252800
α6R2k2 +

19181

14820309504000
iα7R3k1

+
1759

12996271411200
iα7R3k2− 7099

11115232128000
iλ α7R3k2

− 1517

217945728000
iλ α7R3k1 +

1

1307674368000
iλ3α9R3k2

+
53

61072704000
α8R2k2 +

1553

163459296000
α8R2k1

+
71

1814400
iλ2α3R3k1 +

1

1209600
iλ3α5R3k1

+
1

30240
α5iλ Rk2 +

1

60480
α4λ2R2k2

− 1

151200
α7iλ Rk1− 1

241920
α6λ2R2k1

− 71

453600
α4λ R2k1− 227

74131200
iλ α3R3k2

+
1

518918400
λ2α8R2k2− 1

159667200
iλ3α7R3k1

− 1

2075673600
iλ3α7R3k2 +

101

19958400
iλ2α3R3k2

+
1

13305600
iλ3α5R3k2− 433

30780642816000
α10R2k1

− 1

1037836800
α10k2− 1

79833600
α10k1

+
1

302400
α8k1− 1

45360
α6k2

+
1

3360
α5iλ Rk1− 3463

1267136462592000
iα9R3k1

+
79

129729600
iα3R3k2− 9287

39914798571648000
iα9R3k2

− 71

453600
α5iRk1− 1

5040
α6k1

− 1

40320
iλ3α3R3k1 +

1

6720
α4λ2R2k1

+
227

37065600
α4R2k2 +

71

23587200
iα3R3k1

+
53

13305600
α7iRk1 +

23

57657600
α7iRk2
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h22 continued

+
71

1814400
α4R2k1− 101

4989600
α5iRk2

+
1

1307674368000
α12k2− 1

362880
iλ3α3R3k2

− 71

3628800
iλ α3R3k1− 173

119750400
iλ2α5R3k1

− 227

1556755200
iλ2α5R3k2− 1

1663200
α7iλ Rk2

− 1

2661120
α6λ2R2k2 +

1

415134720
iλ α9Rk2

− 101

4989600
α4λ R2k2 +

139

283046400
α6λ R2k2

+
167

34214400
α6λ R2k1 +

1

31933440
iλ α9Rk1

+
1

39916800
α8λ2R2k1 +

1

3326400
α8k2

− 7421

5448643200
α6R2k1− 29

1452971520
α9iRk1

− 1

29059430400
α11iλ Rk1 +

73

6227020800
iλ2α7R3k1

− 1637

1520563755110400
α10R2k2 +

71

44460928512000
α11iRk2

+
59

2615348736000
α11iRk1− 59

2615348736000
iλ2α9R3k1

+
1

1026432000
iλ2α7R3k2− 1

605404800
α9iRk2

− 71

44460928512000
iλ2α9R3k2− 20303

145297152000
iα5R3k1

− 1

435891456000
α11iλ Rk2− 424159

22230464256000
iα5R3k2

− 1

435891456000
α10λ2R2k2 +

433

30780642816000
iλ α9R3k1

+
30179

326918592000
iλ α5R3k2− 1717

653837184000
α8λ R2k2

+
1637

1520563755110400
iλ α9R3k2 +

1

87178291200
iλ3α9R3k1

− 1381

43589145600
α8λ R2k1 +

17467

21794572800
iλ α5R3k1

− 1

29059430400
α10λ2R2k1 +

1

87178291200
α12k1
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APPENDIX B: PERTURBATION SOLUTION FOR BLASIUS
EQUATION
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In 1989, Bender et al.[22] used a δ-perturbation expansion method to obtain an acceptable

approximation for y′′(0) for the case α = β = 0. In this section, we use the same technique

presented by Bender et al. to obtain a perturbative solution that approximates the solution

to the Blasius equation and in particular, the value of y′′(0).

We begin with the generalized Blasius equation as shown below with the accompanying

boundary conditions.

y′′′(t) + y′′(t) · y(t) = 0 (B.1)

on 0 ≤ t < ∞ satisfying the boundary conditions

y(0) = −α, y′(0) = −β, y′(∞) = 1 (B.2)

where α and β are constants. We next introduce a new parameter into the equation, δ. The

boundary-value problem then becomes

y′′′(t) + y′′(t) · y(t)δ = 0 (B.3)

with the original boundary conditions, B.2. Next, we consider y(t) as a series expansion in

terms of δ,

y(t) = y0(t) + δ · y1(t) + δ2 · y2(t) + · · · (B.4)

We substitute this expansion into equation B.1 above and take

y0(t)
δ = eδ ln y0(t) = 1 + δ · ln y0(t) +

δ2

2
· ln2 y0(t) + · · · (B.5)

and (
1 +

δ · y1

y0

+
δ2 · y2

y0

+ · · ·
)δ

= 1 + δ

(
δ · y1

y0

+
δ2 · y2

y0

+ · · ·
)

+
δ2 − δ

2

(
δ · y1

y0

+
δ2 · y2

y0

+ · · ·
)2

+ · · · (B.6)
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After all substitutions and by comparing similar powers of δ, we derive a series of linear

differential equations whose solutions will be combined into a δ series for y(t) and for y′′(0)

as follows.

y(t) = y0(t) + δ · y1(t) + δ2 · y2(t) + · · · (B.7)

and

y′′(0) = y′′0(0) + δ · y′′1(0) + δ2 · y′′2(0) + · · · (B.8)

The set of quations derived by this method are

O(1):

y′′′0 (t) + y′′0(t) = 0 (B.9)

y0(0) = −α, y′0(0) = −β, y′0(∞) = 1

O(δ):

y′′′1 (t) + y′′1(t) = −y′′0(t) · ln (y0(t)) (B.10)

y1(0) = 0, y′1(0) = 0, y′1(∞) = 0

O(δ2):

y′′′2 (t) + y′′2(t) = −y′′0(t)

2
· ln (y0(t))

2 − y′′1(t) · ln (y0(t))−
y′′0(t) · y1(t)

y0(t)
(B.11)

y2(0) = 0, y′2(0) = 0, y′2(∞) = 0

The zero-order equation can be solved easily since it is a linear, homogeneous equation.

However, it is noted that all the equations can be written in the form

u′′′(t) + u′′(t) = g(t) (B.12)

where g(t) is a function of the solution to the previous orders. If we define the vectors

~u(t) =


u(t)

u′(t)

u′′(t)

 (B.13)
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and

~f(t) =


0

0

g(t)

 , (B.14)

we can convert equation B.12 into a first-order linear system

~u′(t) = A(t) · ~u(t) + ~f(t) (B.15)

where

A(t) =


0 1 0

0 0 1

0 0 −1

 (B.16)

This has a general solution of

~u(t) = X(t) · ~c + X(t) ·
∫ t

0

X−1(s)~f(s)ds (B.17)

where X(t) is the fundamental matrix and ~c is a constant vector. The eigenvalues of A(t),

λ = −1 and λ = 0 with multiplicity of 2, leads to the fundamental matrix

X(t) =


e−t 1 t

−e−t 0 1

e−t 0 0

 (B.18)

The determinant of X(t) is e−t; therefore, X(t) has an inverse,

X−1(t) =


0 0 et

1 −t −1− t

0 1 1

 (B.19)

Using these matrices in the general solution, we can now solve the series of equations gener-

ated by the δ-perturbation expansion.
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B.1 Zero-Order Solution

Since the zero-order equation is linear and homogeneous, it is easily solved to give

y0(t) = (1 + β)e−t + t− (1 + α + β). (B.20)

Using the general solution from the linear system above and letting g(t) = 0, we can recreate

the zero-order solution and thus verify both the solution and our methodology. Since g(t) = 0

gives ~f(t) = ~0, we begin with

~y0(t) = X(t) · ~c.

Using the boundary conditions, we can find the constant vector,

~c0 =


1 + β

−(1 + β + α)

1

 .

This gives the solution of

~y0(t) =


(1 + β)e−t + t− (1 + β + α)

−(1 + β)e−t + 1

(1 + β)e−t


or

y0(t) = (1 + β)e−t + t− (1 + α + β) (B.21)

y′0(t) = −(1 + β)e−t + 1 (B.22)

y′′0(t) = (1 + β)e−t. (B.23)

This then gives

y′′0(0) = 1 + β. (B.24)
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B.2 First-Order Solution

For the first-order equation, we have g(t) = −y′′0(t) · ln (y0(t)). First, we note that for

ln (y0(t)) to exist, we need to have y0(t) > 0 on t ≥ 0. This is satisfied when α < 0 and

β < 0. Using the first-order boundary conditions in the general solution from above, we can

find the first-order constant vector

~c1 =


(1 + β)

∫∞
0

e−s ln (y0(s)) ds

−(1 + β)
∫∞

0
e−s ln (y0(s)) ds

(1 + β)
∫∞

0
e−s ln (y0(s)) ds

 .

Returning this constant to the general solution, we can find the first-order solution. First we

note that each entry in the first-order constant vector has the same value. We will designate

this as the constant c1 to simplify the following equations.

y1(t) = c1e
−t − c1 + c1t− (1 + β)e−t

∫ t

0

ln (y0(s)) ds

+ (1 + β)

∫ t

0

((1 + s)e−s ln (y0(s)) ds− (1 + β)t

∫ t

0

e−s ln (y0(s)) ds (B.25)

y′1(t) = −c1e
−t + c1 + (1 + β)e−t

∫ t

0

ln (y0(s)) ds− (1 + β)

∫ t

0

e−s ln (y0(s)) ds (B.26)

y′′1(t) = c1e
−t − (1 + β)e−t

∫ t

0

ln (y0(s)) ds (B.27)

This then gives

y′′1(0) = (1 + β)

∫ ∞

0

e−s ln (y0(s)) ds (B.28)

which interestingly is c1, the value for the constant vector.
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B.3 Second-Order Solution

For this case, g(t) = −y′′
0 (t)

2
· ln (y0(t))

2− y′′1(t) · ln (y0(t))− y′′
0 (t)·y1(t)

y0(t)
. Using the same method

as previously, the second order constant vector is

~c2 =


∫∞

0

[
y′′
0

2
(ln(y0))

2 + y′′1 ln(y0) +
y′′
0 ·y1

y0

]
ds

−
∫∞

0

[
y′′
0

2
(ln(y0))

2 + y′′1 ln(y0) +
y′′
0 ·y1

y0

]
ds∫∞

0

[
y′′
0

2
(ln(y0))

2 + y′′1 ln(y0) +
y′′
0 ·y1

y0

]
ds


and the second-order solution is

y2(t) = c2e
−t − c2 + c2t + e−t

∫ t

0

e−s

[
−y′′0

2
(ln(y0))

2 − y′′1 ln(y0)−
y′′0 · y1

y0

]
ds

+

∫ t

0

(−1− s)

[
−y′′0

2
(ln(y0))

2 − y′′1 ln(y0)−
y′′0 · y1

y0

]
ds

+ t

∫ t

0

[
−y′′0

2
(ln(y0))

2 − y′′1 ln(y0)−
y′′0 · y1

y0

]
ds (B.29)

y′2(t) = −c2e
−t + c2 − e−t

∫ t

0

e−s

[
−y′′0

2
(ln(y0))

2 − y′′1 ln(y0)−
y′′0 · y1

y0

]
ds

+

∫ t

0

[
−y′′0

2
(ln(y0))

2 − y′′1 ln(y0)−
y′′0 · y1

y0

]
ds (B.30)

y′′2(t) = c2e
−t + e−t

∫ t

0

e−s

[
−y′′0

2
(ln(y0))

2 − y′′1 ln(y0)−
y′′0 · y1

y0

]
ds (B.31)

where c2 is the value of the components of ~c2. This gives

y′′2(0) =

∫ ∞

0

[
y′′0
2

(ln(y0))
2 + y′′1 ln(y0) +

y′′0 · y1

y0

]
ds (B.32)

where again, y′′2(0) = c2 and figures significantly in the constant acquired.
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