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ABSTRACT 

 

The transformation of genomic data into functionally relevant information about the 

composition of biological systems hinges critically on the field of computational genome 

biology, at the core of which lies comparative genomics. The aim of comparative genomics is to 

extract meaningful functional information from the differences and similarities observed across 

genomes of different organisms. We develop and test a novel framework for applying complex 

models of nucleotide evolution to solve phylogenetic and comparative genomic problems, and 

demonstrate that these techniques are crucial for accurate comparative evolutionary inferences. 

Additionally, we conduct an exploratory study using vertebrate mitochondrial genomes as a 

model to identify the reciprocal influences that genome structure, nucleotide evolution, and 

multi-level molecular function may have on one another. Collectively this work represents a 

significant and novel contribution to accurately modeling and characterizing patterns of 

nucleotide evolution, a contribution that enables the enhanced detection of patterns of 

genealogical relationships, selection, and function in comparative genomic datasets. Our work 

with entire mitochondrial genomes highlights a coordinated evolutionary shift that 

simultaneously altered genome architecture, replication, nucleotide evolution and molecular 

function (of proteins, RNAs, and the genome itself). Current research in computational biology, 

including the advances included in this dissertation, continue to close the gap that impedes the 

transformation of genomic data into powerful tools for the analysis and understanding of 

biological systems function. 
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CHAPTER 1 – INTRODUCTION 
 

 

A Foundation for Comparative Genomics 

 

“He looked at the streak of rust on the stone and thought of iron ore under the ground. To 

be melted and to emerge as girders against the sky… waiting for the drill, the dynamite and my 

voice; waiting to be split, ripped, pounded, reborn…” (Rand, 1943). 

The expanding yet fledgling field of comparative genomics exists at the interface of 

several historically unrelated fields, thus relying on advances in a number of otherwise disjunct 

areas of science – computer science, computational biology, biological modeling, biochemistry, 

structural biology, systems biology, molecular and cellular biology, classical genetics, statistical 

genetics, and population genetics. The technological aspects of comparative genomics involved 

in the collection of essentially infinite amounts of genome sequence data has excelled far past the 

fields of science that enable the interpretation of this limitless resource of biological information. 

The factors limiting the extraction of vast amounts of biological system information from 

available genomic data is, therefore, not the ability to collect the data. Instead, the current 

limitations are imposed by the infancy of the science involved in analyzing and distilling patterns 

of genomic diversity into relevant quanta of information that may be applied to: 1) our 

understanding of the makeup and function of biological systems and, 2) deciphering how 

biological genomic diversity directs biological functional diversity.  
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Comparative genomic data are also absolutely essential for bridging biological 

information from numerous model organisms to the organisms of ultimate interest, whether the 

ultimate interests are humans, important crops, disease vectors, or agricultural pests. In fact, 

exploiting these comparative data is so crucial to deciphering biological information from 

genomic sequence that the core of the current phase of the Human Genome Project is to obtain 

additional comparable genomes and to develop comparative genome analyses to distill functional 

information from the human genome (Collins et al., 2003). Collectively, the studies that 

comprise this dissertation directly target major limitations of genomic analysis by addressing and 

advancing the theoretical and practical issues required for distilling biologically meaningful 

information from comparative genomic data, while also identifying several significant examples 

of dogmatic patterns of system-wide functional genome evolution in the mitochondrial genomes 

of vertebrates.  

 

 

Complex Modeling of the Nucleotide Evolutionary Process 

 

The most critical component of comparative genomics is an understanding of the 

evolutionary relationships and temporal contexts for comparative data points (be they organisms, 

genomes, genes, proteins, or single nucleotides), or in other words, having robust information 

detailing the relationship among species and genes that are being compared. This is particularly 

critical because such an evolutionary comparative framework provides the context whereby the 

order and precise patterns of genomic change may be understood, and subsequent overall 
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patterns of genome change may be correlated to functional biological effects. The most 

fundamental analyses in the field of comparative genomics rely not only on a well-known 

organismal phylogeny, but also the ability to compare this organismal tree of life with the 

phylogenetic relationships of members of multi-gene families or homologous genome regions 

(e.g., regulatory regions). These types of studies are critical for our inference of how the changes 

in non-protein-coding regions (regulatory regions), and the expansion/contraction, 

diversification, and modification of gene families in different genomes results in similarities or 

modifications observed in organismal complexity, ontogeny, and overall biological system 

function – the fundamental goal of comparative genomics.  

Incorporating genetic data from multiple genes, often from multiple genomes, is 

becoming standard in molecular phylogenetics, as is the use of complex model-based likelihood 

techniques to estimate phylogenetic relationships based on these data. Despite numerous authors 

advocating the superiority of using multiple loci (especially from multiple genomes) to 

reconstruct phylogenies (e.g., Pamilo and Nei, 1988; Wu, 1991), few have addressed theoretical 

and practical effects of modeling sequence evolution simultaneously for different genes (but see 

examples: Yang, 1996a; Caterino et al., 2001; Pupko et al., 2002; Nylander et al., 2004). Using a 

single model with a single set of parameters to account for nucleotide substitution over 

heterogeneous gene regions in a combined analysis may fail to accurately portray locus-specific 

or site-specific evolutionary patterns. For instance, protein-coding vs. rRNA genes may evolve 

under drastically different constraints because protein-coding genes commonly experience 

particularly elevated rates of substitution at the third positions of codons. Ribosomal RNA genes, 

on the other hand, may experience relatively slow rates of compensatory change over regions 
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corresponding to stem-forming secondary structures in the core of the molecule, yet generally 

more rapid rates in regions corresponding to functionally distinct loops and short-range stems 

(e.g., Dixon and Hillis, 1993; Simon et al., 1994; Muse, 1995; Hickson et al., 1996; Savill et al., 

2001). Even among protein-coding genes or rRNA genes, different patterns of substitution rate 

heterogeneity may result from overall differential rates of evolution or differential functional 

constraints on particular regions within a gene (Hickson et al., 1996; Yang, 1996b; Moncalvo et 

al., 2000). Considering these potential variations in evolutionary rates and patterns across sites, 

genes and genomes, it seems logical that models of molecular evolution that account for 

evolutionary heterogeneity need be employed to reconstruct phylogenetic trees.  

The recent shift in phylogenetic methodology towards Bayesian inference of phylogeny 

has heightened the importance of the use of more realistic evolutionary models. This is important 

for topological accuracy (e.g., Huelsenbeck, 1995; Huelsenbeck, 1997; Sullivan and Swofford, 

2001) as well as accurate estimation of support via posterior probabilities (e.g., Buckley, 2002; 

Suzuki et al., 2002; Erixon et al., 2003). A major strength of Bayesian analyses is that posterior 

probability distributions of trees allow direct interpretation of the likelihood of a particular 

relationship recovered being true, given the data, the model, and the priors. However, because 

the accuracy of posterior probabilities in Bayesian phylogenetic methods relies inherently on the 

model, even models that do not affect the consensus topology may still have important effects on 

the posterior probability distribution of parameters, and thus on confidence regarding 

phylogenetic conclusions. Therefore, employing complex models that more realistically and 

precisely portray natural patterns of DNA evolution should produce less biased posterior 

probability estimates as long as the added parameters can be accurately estimated from the data.  
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The accuracy of posterior probability estimates in Bayesian phylogenetic reconstruction 

and the factors that may affect this accuracy remain unclear. Many studies suggest Bayesian 

posterior probabilities appear to be inflated compared to conventional bootstrap support (e.g., 

Leaché and Reeder, 2002; Cummings et al., 2003; Douady et al., 2003), although the accuracy of 

posterior probability support values in terms of both type I and type II error remains unresolved 

(e.g., Buckley, 2002; Suzuki et al., 2002; Wilcox et al., 2002; Alfaro et al., 2003). Despite this, 

evidence is accumulating that suggests a direct relationship between accuracy of posterior 

probabilities and model complexity whereby Bayesian analyses conducted with 

underparameterized models appear to experience higher error rates compared with parameter 

rich models (Suzuki et al., 2002; Wilcox et al., 2002; Erixon et al., 2003). Complicating the 

matter, the benefits of constructing and employing more realistic evolutionary models of DNA 

substitution are challenged by the potential for imprecise and inaccurate parameter estimation 

(including topology) resulting from overparameterization. Given ever-increasing computational 

power, in addition to the speed afforded by Bayesian Markov Chain Monte Carlo phylogenetic 

methods, the need for accurate models and model testing is apparent.   

The first three main chapters of this dissertation (Chapters 2, 3, and 4) focus on the 

development of methods for employing complex models of nucleotide evolution, and the 

practical effects of using such complex (versus simple) models of evolution for the inference of 

phylogenetic trees. The results of these studies have tremendous ramifications for achieving 

accuracy, reliability, and precision in essentially all comparative genomics studies, as accurate 

phylogenetic inferences are absolutely critical for meaningful comparative genomics. These 

three studies analyzed datasets designed to estimate relationships among organisms (rather than 
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genes within gene families) because organismal phylogeny questions have the advantage of 

being able to incorporate larger genomic datasets (ie, multiple genes) per branch being placed in 

the tree. Thus, they represent preferred training datasets and ideal model systems for 

investigating these evolutionary modeling questions, and the results of these studies are exactly 

comparable to more restricted problems of estimating gene genealogies in which the available 

data used to estimate trees is limited to the gene of interest.  

 

 

Vertebrate Mitochondrial Genomes as a Model System for Comparative Genomics 

 

In addition to the gaps in our understanding of modeling nucleotide evolution of genomes 

discussed above, a significant unexplored aspect of genomic research remains in the linking of 

the biological significance of genome structure, genome nucleotide evolution, and genome 

function (at the molecular and system-wide scales). Genomic research has demonstrated the 

plasticity of genome structure at almost all levels yet how this diversity of structure relates to 

genome evolution at the level of nucleotide evolution is essentially uninvestigated. How these 

features affect nucleotide evolution and genome function require further attention, ideally with a 

model system that is both sufficiently complex yet still computationally tractable.  

Organellar genomes (mitochondrial and plastid genomes) present a valuable opportunity 

to explore patterns of genome evolution on a computationally manageable scale, unlike the 

computationally unwieldy nuclear genomes of eukaryotes, and may demonstrate insightful 

patterns applicable to their nuclear counterparts. Accordingly, vertebrate mitochondrial genomes 
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(mtDNA) have been a prevalent model system for studying molecular evolution, phylogenetic 

reconstruction, and genome structure. Furthermore, mitochondrial genomes are the genetic 

repository for some of the most critical genes in eukaryotes that play primary roles in aerobic 

metabolism and are also directly linked to apoptosis. Collectively, the tremendous functional 

significance of vertebrate mitochondrial genomes, together with their small size and limited 

complexity make them ideal models for comparative genomics.  

The versatility and prominence of vertebrate mitochondrial genomes stems from their 

compactness and manageable size for sequencing and analysis, well-characterized replication 

and transcription processes (e.g., (Clayton, 1982; Fernandez-Silva et al., 2003; Shadel and 

Clayton, 1997; Szczesny et al., 2003; see also Holt and Jacobs, 2003; Reyes et al., 2005; Yang et 

al., 2002), and the diversity of protein and structural RNA genes that they encode. Vertebrate 

mitochondrial genomes generally lack recombination and have a conserved genome structure, 

although instances of intramolecular recombination have been proposed (Piganeau et al., 2004; 

Tsaousis et al., 2005), and there are numerous examples of structural rearrangements (Cooper et 

al., 2001; Mindell et al., 1998; Sankoff et al., 1992). Despite extensive molecular studies, little is 

known regarding the ways in which genome architecture might affect the various aspects of 

genome function and evolution (including replication, transcription, and function of proteins and 

RNAs). Nevertheless, patterns linking mitochondrial genome structure, function, and nucleotide 

evolution have begun to emerge (Krishnan et al., 2004a; Krishnan et al., 2004b; Raina et al., 

2005).  

Across vertebrates, mitochondrial genome size and structure are generally conserved 

(relative to plant mitochondria for example; Adams et al., 2002; Albert et al., 1998; Cho et al., 
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1998; Cosner et al., 2001; Stiller et al., 2003). Typically, vertebrate mitochondrial genomes are 

characterized by a size of ~17kb and a gene content including 13 protein-coding genes, 2 rRNA 

genes, 22 tRNA genes, and a control region (or D-loop) involved in initiation of DNA replication 

and transcription. A traditional view of mitochondrial genome stability highlights the dramatic 

structural plasticity of plant mtDNA contrasting a ‘conserved’ structure across animal 

mitochondrial genomes (Palmer et al., 2000). While plant mitochondrial structural 

rearrangements are dramatic, the literature over the last several years has demonstrated 

significant structural diversity among animal mitochondrial genomes (Arntdt and Smith, 1998; 

Beagley et al., 1996; Dowton and Austin, 1999; Hickerson and Cunningham, 2000; Karabayashi 

et al., 2000; Ladoukakis and Zouros, 2001; Shao et al., 2001; including vertebrate: Cooper et al., 

2001; Macey et al., 1998; Macey et al., 1999; Macey et al., 2000; Mindell et al., 1998), 

especially considering their smaller size (~17 kb) as compared to plant mitochondrial genomes 

(~100 – 1000 kb; Adams et al., 2002; Palmer et al., 2000).  

Despite their small size and limited gene content, vertebrate mitochondrial genomes show 

a diverse array of heterogeneous patterns of evolution both within and among genes (Krakauer 

and Plotkin, 2002; McKenzie et al., 2003; Monclavo et al., 2000; Nielsen, 1997; Pesole et al., 

1999; Pupko et al., 2002; Rand, 2001; Savolainen et al., 2002). This collection of genic regions 

evolving under a mosaic of patterns presents an ideal, underutilized system for testing 

hypotheses of the molecular evolution of diverse genomic regions, with broad applications to 

modeling larger genomes (including eukaryotic nuclear genomes). Elevated rates of molecular 

evolution characteristic of vertebrate mitochondrial genomes additionally provide a high degree 
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of variance, which adds tremendous detection and hypothesis testing power to comparative 

genomic analyses.  

Insight into the evolutionary forces that govern the composition of biological systems 

often comes from the study of extreme examples, where otherwise subtle patterns become 

dramatic and obvious. The mitochondrial genomes of snakes contain a number of particularly 

unusual qualities and structural features compared to other vertebrates. Snake mitochondrial 

genomes have elevated evolutionary rates and contain truncated tRNAs (Dong and Kumazawa, 

2005; Kumazawa et al., 1998). All snake species sampled to date, except the scolecophidian 

snake Leptotyphlops dulcis, have a duplicated control region (CR2) between NADH 

dehydrogenase subunit 1 (ND1) and subunit 2 (ND2), in addition to a control region (CR1) 

adjacent to 5’-end of the 12s rRNA, as it is in other vertebrates. These two control regions appear 

to undergo concerted evolution that acts to homogenize the nucleotide sequence of each 

duplicate copy within a given genome (Dong and Kumazawa, 2005; Kumazawa et al., 1996, 

1998). This pattern has been likened to the situation in chloroplast genomes (Kumazawa et al., 

1996, 1998), many of which contain inverted repeated regions that are also maintained via 

concerted evolution (Goulding et al., 1996). Interestingly, based on comparisons between 

chloroplast genomes (cpDNA) with and without the inverted repeat region, several studies have 

suggested that the presence of the inverted repeats in cpDNA has genome-wide effects on both 

structural (Palmer and Thompson, 1982; Strauss et al., 1988) and nucleotide (Perry and Wolfe, 

2002) evolutionary patterns, suggesting a link in a different organellar genome (other than 

mtDNA) between genome structure and nucleotide evolution.  
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In snake mtDNA, the functionality of the two control regions in transcription and 

initiation of heavy strand replication is not clear, but since the nucleotide sequence of each is 

nearly identical, any functional features that are not dependent on surrounding sequences should 

be similar. In contrast, recent evidence suggest that initiation of heavy strand replication may be 

distributed across a broad zone, including cytochrome b (CytB) and NADH dehydrogenase 

subunit 6 (ND6; Reyes et al., 2005), indicating that CR2 may not function as effectively in this 

role.  

Using vertebrate mitochondrial genomes as a model, a number of interesting questions 

arise that might be addressed through comparative genomic analysis, including: (1) does one or 

the other, or do both control regions function as origins of heavy strand DNA synthesis? (2) does 

the altered genome structure affect patterns of snake mtDNA molecular evolution? (3) when 

during snake evolution did various features arise, and do particular features appear to coincide? 

(4) do patterns of molecular evolution vary at different depths of phylogeny? and (5) is there any 

evidence or plausible rationale for selection as a causative agent in generating these differences 

in genomic structure and molecular evolutionary patterns? In chapter 4 we address these 

questions, that are broadly relevant to comparative genome biology, by conducting an extensive 

analysis of vertebrate mitochondrial genomes, focusing on the extreme examples observed in the 

mitochondria of snakes. 
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CHAPTER 2 – DATA PARTITIONS AND COMPLEX MODELS IN 
BAYESIAN ANALYSIS: THE PHYLOGENY OF GYMNOPHTHALMID 

LIZARDS 
 

 

Introduction 

 

 Incorporating genetic data from multiple genes, often from multiple genomes, is 

becoming standard in molecular phylogenetics, as is the use of complex model-based likelihood 

techniques to estimate phylogenetic relationships based on these data.  Despite numerous authors 

advocating the superiority of using multiple loci (especially from multiple genomes) to 

reconstruct phylogenies (e.g., Pamilo and Nei, 1988; Wu, 1991), few have addressed theoretical 

and practical effects of modeling sequence evolution simultaneously for different genes (but see 

examples: Yang, 1996a; Caterino et al., 2001; Pupko et al., 2002; Nylander et al., in press).  

Using a single model with a single set of parameters to account for evolution over multiple loci 

in a combined analysis may fail to accurately portray locus-specific evolutionary patterns. For 

instance, protein-coding vs. rRNA genes may evolve under drastically different constraints 

because protein-coding genes commonly experience particularly elevated rates of substitution at 

the third positions of codons.  Ribosomal RNA genes, on the other hand, may experience 

relatively slow rates of compensatory change over regions corresponding to stem-forming 

secondary structures in the core of the molecule, yet generally more rapid rates in regions 

corresponding to functionally unconstrained loops and short-range stems (e.g., Dixon and Hillis, 
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1993; Simon et al., 1994; Muse, 1995; Hickson et al., 1996; Savill et al., 2001).  Even among 

protein-coding genes or rRNA genes, different patterns of substitution rate heterogeneity may 

result from overall differential rates of evolution or differential functional constraints on 

particular regions within a gene (Hickson et al., 1996; Yang, 1996b; Moncalvo et al., 2000).  

Considering these potential variations in evolutionary rates across sites, it seems logical that 

models of molecular evolution that account for heterogeneity with regard to among-site rate 

variation should be employed to reconstruct phylogenetic trees.   

The recent shift in phylogenetic methodology towards Bayesian inference of phylogeny 

has heightened the importance of the use of more realistic evolutionary models.  This is 

important for topological accuracy (e.g., Huelsenbeck, 1995; Huelsenbeck, 1997; Sullivan and 

Swofford, 2001) as well as accurate estimation of posterior probabilities (e.g., Buckley, 2002; 

Suzuki et al., 2002; Erixon et al., 2003).  In general, it has been shown that likelihood methods 

are fairly robust to model choice in their estimation of topology (Yang et al., 1994; Posada and 

Crandall, 2001; Sullivan and Swofford, 2001).  A major strength of Bayesian analyses is that 

posterior probability distributions of trees allow direct interpretation of the likelihood of a 

particular relationship recovered being true, given the data, the model, and the priors (although 

the robustness of posterior probabilities has not been thoroughly investigated).  However, 

because the accuracy of posterior probabilities in Bayesian phylogenetic methods relies 

inherently on the model, models that do not affect the consensus topology may have notable 

effects on the posterior probability distribution of parameters, and thus on confidence regarding 

phylogenetic conclusions.  Therefore, employing complex models that more accurately portray 
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DNA evolution should produce less biased posterior probability estimates as long as parameters 

can be accurately estimated from the data.   

The accuracy of posterior probability estimates in Bayesian phylogenetic reconstruction 

and the factors that may affect this accuracy remain unclear.  Many studies suggest Bayesian 

posterior probabilities appear to be inflated compared to conventional bootstrap support (e.g., 

Leaché and Reeder, 2002; Cummings et al., 2003; Douady et al., 2003).  However, the accuracy 

of posterior probability support values in terms of both type I and type II error remains 

unresolved (e.g., Buckley, 2002; Suzuki et al., 2002; Wilcox et al., 2002; Alfaro et al., 2003).  

Despite this, evidence is accumulating that suggests a direct relationship between accuracy of 

posterior probabilities and model complexity whereby Bayesian analyses conducted with 

underparameterized models appear to experience higher error rates compared with parameter 

rich models (Suzuki et al., 2002; Wilcox et al., 2002; Erixon et al., 2003).  However, benefits of 

constructing and employing more realistic evolutionary models of DNA substitution are 

challenged by the potential for imprecise and inaccurate parameter estimation (including 

topology) resulting from overparameterization.  Given ever-increasing computational power, in 

addition to the speed afforded by Bayesian Markov Chain Monte Carlo phylogenetic methods, 

the need for accurate models and model testing is apparent.     

Our primary goal in this paper is to concentrate on evaluation of alternative models which 

practically affect phylogenetic inference.  Specifically, we designed our approaches to make final 

decisions about best-fitting models based on the effects they had on topology and posterior 

probability estimates.  This is important because while some alternative, relatively parameter rich  

models may provide a better fit to the data, they may not result in alternative topologies or 
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significantly different posterior probability estimates.  In such cases, our strategy would instead 

favor a model with fewer parameters that produced essentially the same topology and posterior 

probability support estimates.   

In this study, the genes used to reconstruct phylogenies are diverse and include one 

protein-coding nuclear gene (c-mos), one protein-coding mitochondrial gene (ND4) and two 

rRNA mitochondrial gene fragments (12S and 16S).  We focused on the construction and 

evaluation of models that utilize alternatively partitioned patterns of among-site rate variation to 

account for heterogeneous evolution of multiple loci in a combined phylogenetic analysis.  

Particularly, MrBayes v2.01 allows among-site rate variation (gamma; Yang, 1993) to be 

partitioned among defined sites (site-specific gamma) as well as allowing the use of an auto-

correlated gamma parameter to account for local auto-correlation of among-site rates (Kimura, 

1985; Schöniger and von Haeseler, 1994; Yang, 1995; Nielsen, 1997).  These models allow 

gamma parameter for among-site rate variation to be rescaled across partitions while using a 

single rate nucleotide substitution rate matrix for the entire data set.  Along with conventional 

models of sequence evolution (e.g., GTR+I+G), we explore more complex models which 

partition the among-site rate variation in various ways among loci, in addition to those which 

employ an additional parameter for auto-correlation of site rate variation.  We examine the 

phylogenetic hypotheses resulting from several alternative partitions of among-site rate variation 

and discuss their relevance to Bayesian support for clades and support for alternative topological 

placements of clades.   

The taxonomic group examined in this study, lizards of the family Gymnophthalmidae, 

comprises a large radiation consisting of approximately 34 genera and 180 species occurring 
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throughout South America with relatively few species in Middle America (Pellegrino et al., 

2001; Doan, 2003a).  The family is composed of small to medium lizards that occur in a variety 

of habitats and occupy a wide range of niches.  This lizard group has been poorly studied with 

many species unknown beyond their original descriptions.   

Relationships of genera within the family Gymnophthalmidae are poorly understood.  

The most comprehensive and contemporary revision of the supergeneric classification of the 

family Gymnophthalmidae was made by Pellegrino et al. (2001).  They reconstructed a 

phylogeny of 50 species in 24 genera (recently reduced from 26 by Doan, 2003a) using five 

genes (two nuclear and three mitochondrial).  Based on their reconstruction they erected four 

subfamilies and four tribes.  The subfamily Alopoglossinae, consists solely of Alopoglossus.  The 

subfamily Gymnophthalminae contains 13 genera, divided into two tribes, the Heterodactylini (5 

genera) and the Gymnophthalmini (8 genera).  The subfamily Rhachisaurinae is monotypic, 

consisting of Rhachisaurus brachylepis, a new genus separated from Anotosaura.  The final 

subfamily, the Cercosaurinae, consists of 20 genera divided into tribe Cercosaurini (14 genera) 

and tribe Ecpleopini (6 genera).  

Harris (2003) used c-mos sequences to reconstruct a phylogeny of the Squamata with 

concentrated taxon sampling in the Gymnophthalmidae.  He primarily used Pellegrino et al.’s 

(2001) sequences but added a new sequence of Proctoporus bolivianus.  Harris’s (2003) 

reconstruction differed from Pellegrino et al.’s in the placement of Ptychoglossus, Bachia, 

Arthrosaura, and several smaller scale relationships.  In addition, a teiid genus, Tupinambis, was 

nested within the Gymnophthalmidae as the sister to Ptychoglossus and Alopoglossus (although 

this relationship received bootstrap and posterior probability support below 50%). 
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Missing from Pellegrino et al.’s (2001) study were 10 genera.  Whereas Pellegrino et al. 

sampled all genera of Alopoglossinae, Rhachisaurinae, and Gymnophthalmini, they lacked 

Stenolepis from the Heterodactylini, Amapasaurus from the Ecpleopini, and eight genera from 

the Cercosaurini.  The limited taxon sampling of the Cercosaurini renders conclusions about that 

tribe problematic (see Hillis, 1998) because only half of the genera and 18 of the approximately 

121 species were sampled (14.9%).   

In addition to limited taxon sampling, the separate gene partitions were often in conflict 

with regards to the positions and relationships of many key taxa (Pellegrino et al., 2001).  Such 

conflicts put into doubt the subfamilial and/or tribal placement of genera such as Ptychoglossus, 

Rhachisaurus, Bachia, and Neusticurus.  Our study addresses some of the problems suggested in 

the combined analysis of Pellegrino et al. (2001) and fills in some significant gaps in taxon 

sampling.  Concentrating on the Cercosaurini, we add 19 new individuals, including 12 new 

species and one new genus, as well as an additional individual of Ptychoglossus brevifrontalis (a 

total of 73 additional sequences).  With this greater taxon sampling we clarify the relationships 

and classification within family Gymnophthalmidae.  In addition to adding more taxa, we utilize 

a Bayesian approach to the phylogeny to complement the standard parsimony and likelihood 

methods used by Pellegrino et al. (2001).  We synthesize this information, emphasizing overall 

phylogenetic evidence, and propose an alternative hypothesis for the inter-generic relationships 

and taxonomy within the family.   

The objectives of our study included: 1) evaluating the effects of partitioning among-site 

rate variation and among-site rate auto-correlation parameters on phylogenetic topology and 

posterior probabilities for relationships, 2) developing a robust strategy for choosing the best-fit 
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model for among-site rate variation considering practical effects on topology and posterior 

probability support, 3) identifying the most likely and robust phylogenetic hypothesis for 

relationships among gymnophthalmid lizards, and 4) re-evaluating the supergeneric classification 

of the family based on our best estimate of gymnophthalmid phylogeny.   

 

 

Methods 

 

DNA Sequences Used 

A significant subset of the sequences used in this study is from Pellegrino et al. (2001) 

and Doan and Castoe (2003).  Additional sequences of gymnophthalmid lizards were added to 

this dataset.  Of the five genes used by Pellegrino et al. (2001), we chose to use and expand upon 

four: mitochondrial NADH dehydrogenase subunit 4 (ND4), mitochondrial small subunit rRNA 

gene (12S), mitochondrial large subunit rRNA gene (16S), and the nuclear oocyte maturation 

factor gene (c-mos).  The nuclear small subunit rRNA gene (18S) used by Pellegrino et al. 

(2001) was omitted from our study for two reasons: 1) low phylogenetic signal apparent from the 

Pellegrino et al. (2001) study, and 2) the nuclear gene for 18S occurs in hundreds or thousands of 

copies per nuclear genome (e.g., humans, International Human Genome Sequencing Consortium, 

2001; Xenopus, Pardue, 1974; Long and Dawid, 1980).  Using sequences of this multi-copy gene 

to resolve relationships principally among species and genera within a family may increase the 

potential for recovery of misleading phylogenetic estimates based on incomplete gene 
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conversion among alleles at different loci or differential fixation of alleles among loci (Gasser et 

al, 1998; Gonzalez and Sylvester, 2001). 

Laboratory methods for obtaining novel sequences used in this study are as follows.  

Where possible, two individuals of each taxon from distant sampling localities were added to the 

data set.  Genomic DNA was isolated from tissue samples (liver or skin preserved in ethanol) 

using the Qiagen DNeasy extraction kit and protocol (Qiagen Inc., Hilden, Germany).  The 

mitochondrial ND4 gene was amplified via PCR using the primers ND4 and LEU as described in 

Arévalo et al. (1994). Mitochondrial ribosomal small and large subunit genes (12S and 16S) 

were amplified as described in Parkinson et al. (1997) and Parkinson et al. (1999).  The nuclear 

c-mos gene was amplified with primers G73 and G74 as described in Saint et al. (1998) and 

Pellegrino et al. (2001).  Positive PCR products were excised from agarose electrophoretic gels 

and purified using the GeneCleanIII kit (BIO101).  Purified PCR products were sequenced in 

both directions with the amplification primers (and for ND4, an additional internal primer HIS, 

Arévalo et al., 1994).  Samples that could not be sufficiently sequenced directly were cloned 

using the Topo TA cloning kit (Invitrogen) according to the manufacturer’s protocols.  Plasmids 

were isolated from multiple clones per individual using the Qiaquick spin miniprep kit (Qiagen).  

Plasmids were sequenced using M13 primers (provided by Topo TA kit, Invitrogen) and, in 

some cases, the internal HIS primer for ND4.  Purified PCR products and plasmids were 

sequenced using the CEQ D Dye Terminator Cycle Sequencing (DTCS) Quick Start Kit 

(Beckman-Coulter) and run on a Beckman CEQ2000 automated sequencer according to the 

manufacturers’ protocols.  Raw sequence chromatographs for sequences generated in this study 

were edited using Sequencher 3.1 (Gene Codes Corp.).  In cases where gene fragments were 
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cloned, all sequences from a single individual were edited together.  Novel sequences were 

deposited in GenBank.  The GenBank accession numbers for each gene sequence used in this 

study (including novel sequences) are given in Table 1.    

 

Sequence Homology and Alignment 

Multiple sequence alignment was performed using ClustalW (Thompson et al., 1994).  

Initial alignments were conducted with a gap opening penalty of 10, a gap extension penalty of 1, 

and a transition weight of 0.5.  For rRNA genes (12S and 16S), alternative multiple alignments 

were examined with gap opening and gap extension penalties ranging from 10 and 10 

(respectively) to 1 and 1, including varying ratios in this range.  Initial alignments for protein-

coding genes (ND4 and c-mos) were rechecked based on the homology of their translated amino 

acid sequence using GeneDoc (Nicholas and Nicholas, 1997).  The ND4 alignment was 

unambiguous and not edited manually and the c-mos alignment was slightly manually modified 

to maximize amino acid similarity over a short indel region within the alignment.  Alternative 

automated alignments (from ClustalW) for rRNA genes (12S and 16S) were compared, along 

with estimates of secondary structures (Gutell, 1994; Gutell et al., 1994; Titus and Frost, 

1996),to evaluate evidence for positional homology.  Positions in rRNA genes where alignment 

was ambiguous were excluded.  To minimize the effects of missing data resulting from 

incomplete sequences, all gene alignments were truncated at the 5´ and 3´ ends.  The final 

alignment of all concatenated genes, including positions excluded from phylogenetic analyses, is 

available as supplemental data at http://biology.ucf.edu/~clp/Lab/Lab.htm. 
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Table 1. List of sequences used in this study. operational taxonomic units (OTUs) used in this 
study with GenBank accession numbers. Cells with an X indicate that gene sequence was not 
used in this study.  (a) and (b) refer to individuals indicated in the figures.  Museum accession 
numbers for specimens sequenced in this study are given. Acronyms for museums are: KU 
(University of Kansas), MHNSM (Museo de Historia Natural, Universidad Nacional Mayor de 
San Marcos, Lima, Peru), QCAZ (Museo de Zoología, Pontifica Universidad Católica del 
Ecuador, Quito, Ecuador) and UTA (University of Texas at Arlington). 

 

 

OTU Museum number ND4 c-mos 12S 16S 
Alopoglossus atriventris   AF420908  AF420821  AF420695 AF420746 
Alopoglossus carinicaudatus   AF420909 AF420847  AF420693  AF420744 
Alopoglossus copii   AF420865  AF420819  AF420692  AF420745 
Anotosaura spn   AF420902 X AF420682  AF420719 
Anotosaura vanzolinia   AF420910 X AF420670 AF420724 
Arthrosaura kockii  AF420866 X  AF420680 AF420721 
Arthrosaura reticulata   AF420894 X  AF420676 AF420722 
Bachia bresslaui   AF420876 AF420860 X AF420755 
Bachia dorbignyi   AF420892 X  AF420688 AF420754 
Bachia flavescens  AF420869 AF420859  AF420705 AF420753 
Calyptommatus leiolepis   AF420874 AF420858 AF420683  AF420712 
Calyptommatus nicterus   AF420903  AF420822  AF420684 AF420747 
Calyptommatus sinebrachiatus   AF420873  AF420832 AF420685  AF420720 
Cercosaura argulus (a)  AF420896  AF420838 AF420698 AF420751 
Cercosaura argulus (b)  AF420893 AF420852  AF420696 AF420750 
Cercosaura eigenmanni  AF420895  AF420828 AF420690 AF420728 
Cercosaura ocellata  AF420883 AF420834 AF420677 AF420731 
Cercosaura quadrilineata   AF420880 AF420830  AF420672 AF420717 
Cercosaura schreibersii albostrigata  AF420882 AF420856 AF420658 AF420729 
Cercosaura schreibersii schreibersii  AF420911 AF420817 AF420686 AF420749 
Colobodactylus dalcyanus  AF420881  AF420844  AF420663 AF420736 
Colobodactylus taunayi  X AF420831 AF420662 AF420741 
Colobosaura mentalis  AF420899 AF420842 AF420694 AF420726 
Colobosaura modesta  AF420887 AF420845 AF420666  AF420733 
Colobosaura spn  AF420868 AF420840  AF420667 AF420739 
Colobosauroides cearensis  AF420886  AF420849  AF420659 AF420727 
Ecpleopus gaudichaudii  AF420901  AF420855  AF420660 AF420738 
Gymnophthalmus leucomystax  AF420906 AF420824 AF420675 AF420715 
Gymnophthalmus vanzoi   AF420867  AF420827 AF420687  AF420743 
Heterodactylus imbricatus  AF420885 AF420835 AF420661  AF420725 
Iphisa elegans  AF420889 AF420843 AF420668 AF420714 
Leposoma oswaldoi  AF420897 AF420854  AF420678 AF420723 
Leposoma percarinatum   AF420898 X  AF420700 AF420735 
Micrablepharus atticolus  AF420904  AF420826 AF420664  AF420718 
Micrablepharus maximiliani   AF420875 AF420850 AF420657 AF420730 
Neusticurus bicarinatus  X  AF420816  AF420671 AF420708 
Neusticurus ecpleopus   AF420890 AF420829 AF420656 AF420748 
Neusticurus juruazensis   AF420878 AF420857  AF420704  AF420758 
Neusticurus rudis   AF420905 X  AF420689  AF420709 
Neusticurus strangulatus KU 21677  X   
Nothobachia ablephara  AF420900 AF420851  AF420669  AF420740 
Pholidobolus macbrydei KU 218406     
Pholidobolus montium  AF420884  AF420820 AF420701  AF420756 
Placosoma cordylinum  AF420879 AF420823 AF420673  AF420734 
Placosoma glabellum  AF420907  AF420833 AF420674  AF420742 
Procellosaurinus erythrocercus   AF420870  AF420836  AF420679 AF420711 
Procellosaurinus tetradactylus   AF420871  AF420818 AF420703 AF420713 
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OTU Museum number ND4 c-mos 12S 16S 
Proctoporus bolivianus (a) UTA R-51506 AY225175    
Proctoporus bolivianus (b) UTA R-51487 AY225180    
Proctoporus cashcaensis KU 217205  X   
Proctoporus colomaromani KU 217209     
Proctoporus guentheri (a) UTA R-51515 AY225185    
Proctoporus guentheri (b) UTA R-51517 AY225169    
Proctoporus orcesi KU 221772  X   
Proctoporus simoterus KU 217207     
Proctoporus sucullucu (a) UTA R-51478 AY225171    
Proctoporus sucullucu (b) UTA R-51496 AY225177    
Proctoporus unicolor KU 217211     
Proctoporus unsaacae (a) UTA R-51477 AY225170    
Proctoporus unsaacae (b) UTA R-51488 AY225186    
Proctoporus ventrimaculatus KU 219838     
Proctoporus cf. ventrimaculatus KU 212687     
Proctoporus sp. K19 QCAZ 879     
Psilophthalmus paeminosus   AF420872 AF420825  AF420702  AF420710 
Ptychoglossus brevifrontalis  X  AF420848 AF420697  AF420757 
Ptychoglossus brevifrontalis MHNSM     
Rhachisaurus brachylepis  AF420877  AF420853  AF420665  AF420737 
Tretioscincus agilis  AF420891 AF420837 AF420681  AF420732 
Tretioscincus oriximinensis   AF420888  AF420846 AF420691 AF420752 
Vanzosaura rubricauda  X  AF420839 AF420699 AF420716 
Cnemidophorus ocellifer  AF420914  AF420862  AF420706  AF420759 
Kentropyx calcarata  AF420913  AF420864 AF420707  AF420760 
Tupinambis quadrilineatus   AF420912  AF420863 X AF420761 
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automated alignments (from ClustalW) for rRNA genes (12S and 16S) were compared, along 

with estimates of secondary structures (Gutell, 1994; Gutell et al., 1994; Titus and Frost, 

1996),to evaluate evidence for positional homology.  Positions in rRNA genes where alignment 

was ambiguous were excluded.  To minimize the effects of missing data resulting from 

incomplete sequences, all gene alignments were truncated at the 5´ and 3´ ends.  The final 

alignment of all concatenated genes, including positions excluded from phylogenetic analyses, is 

available as supplemental data at http://biology.ucf.edu/~clp/Lab/Lab.htm. 

 

Phylogeny Estimation Using Maximum Parsimony 

We inferred phylogenies based on the maximum parsimony (MP) criterion in PAUP* 

v4.0b10 (Swofford, 2002) and Bayesian (Markov Chain Monte Carlo, MCMC) analysis in 

MrBayes v2.01 (Huelsenbeck and Ronquist, 2001).  Phylogenetic inference was conducted, 

hierarchically, in three steps: 1) all genes individually, 2) intermediate partitions including both 

rRNA genes (12S+16S) and all mitochondrial genes (mtgenes), and 3) the combined 

concatenated dataset including all four genes.  For MP analyses of independent genes and 

intermediate partitions, we conducted equally-weighted parsimony searches using the heuristic 

strategy with 200 random taxon addition sequence replicates.  Settings for MP analyses were tree 

bisection-reconnection branch swapping, steepest descent off, and MULTREES option on 

(Swofford, 2002).  For all individual genes and intermediate partitions (rRNA and mtgenes) we 

assessed support for clades using 200 nonparametric bootstrap pseudoreplicates (Felsenstein, 

1985) with 20 random taxon addition sequence replicates implemented with PAUP*.  For the 

combined MP analysis of all genes we searched for trees using equally-weighted parsimony 
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heuristic searches with 1000 random taxon addition sequence replicates and assessed clade 

support with 200 bootstrap pseudoreplicates with 200 random addition sequence replicates per 

bootstrap pseudoreplicate.  We consider relationships that are supported by at least 70% 

bootstrap to be significantly resolved (Hillis and Bull, 1993).   

 

Bayesian Phylogeny Estimation 

ModelTest version 3.0 (Posada and Crandall, 1998) was used to infer the best-fit model 

of evolution for each gene data set (individual genes, intermediate partitions, and total combined 

data) based on hierarchical log-likelihood ratio tests comparing successively complex models 

(Huelsenbeck & Crandall, 1997; Posada & Crandall, 2001).   

All MCMC phylogenetic reconstructions were conducted in MrBayes v2.01 

(Huelsenbeck and Ronquist, 2001) with vague priors (as per the program’s defaults) and model 

parameters estimated as part of the analyses.  Three heated chains and a single cold chain were 

used in all MCMC analyses and runs were initiated with random trees, as per the program’s 

defaults.  Trees were sampled every 100 generations and majority rule consensus phylograms 

and posterior probabilities for nodes were assembled from all post burn-in sampled trees.  

Phylogenetic reconstructions for all data partitions were estimated using three independent runs 

to confirm that stationarity (or global optimality) was reached and that independent runs 

converged on similar stationary parameter estimates.  Each of these data partition runs was 

conducted with a total of 1.4 million generations, 400,000 of which were discarded as burn-in, 

yielding 1 million post burn-in generations.   
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Each MCMC run for all individual gene and intermediate data partitions employed the 

model selected by ModelTest for that partition, or the nearest model to that model that could be 

implemented in MrBayes.  The total combined data set was subjected to MCMC analyses under 

multiple alternative evolutionary models which differed in the way they parameterized among-

site rate variation.  

The most complex (parameter rich) model that ModelTest v3.0 can evaluate is a General 

Time Reversible (GTR; Tavaré, 1986) model with an estimated proportion of invariant sites (I) 

and gamma distributed among-site rate variation (G; Yang, 1993).  MrBayes v2.10 is capable of 

employing more complex models than this GTR+I+G model.  MrBayes allows among-site rate 

variation to be partitioned among user defined sites (site-specific gamma; SSG) as well as 

allowing the use of an auto-correlated gamma (A; e.g., Yang, 1995; Penny et al., 2001; 

Huelsenbeck, 2002) to account for auto-correlation of among-site rates.  These two modifications 

of among-site rate variation may be used independently as well as simultaneously in a given 

model in MrBayes.  In addition to the GTR+I+G model, we conducted combined data MCMC 

analyses with alternative models that partitioned gamma with (SAG) and without (SSG) 

accounting for auto-correlation (A) of rates.  These two alternative ways to estimate among-site 

rate variation were invoked by the commands “rates = ssadgamma” and “rates = ssgamma” 

(respectively) in the MrBayes 2.0 command block.  All models applied a single common GTR 

substitution rate matrix across all data and differed only in the way they modeled and partitioned 

among-site rates according to the following a priori partitions: GTR + auto-correlated gamma 

(GTR+AG); protein-coding genes vs. rRNA genes (PR-SSG and PR-SAG); nuclear vs. 

mitochondrial genes (NM-SSG and NM-SAG); c-mos vs. ND4 vs. rRNA genes (CNR-SSG and 
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CNR-SAG); all genes partitioned independently (4gene-SSG and 4gene-SAG).  Table 2 provides 

a summary of the parametric content of each of these models.    

Choosing among these models to identify the best model of evolution on which to base 

phylogenetic and taxonomic decisions was approached in several ways.  Our goal was to find the 

model of evolution which best fit the data yet contained the fewest total parameters (the best-fit 

model).  Specifically, our major criteria for identification of the simplest best-fit model included 

the demonstration of clear improvements of likelihood estimates under that model, along with a 

practical effect on topology and/or posterior probability support for clades.  Therefore, we were 

not interested in more complex models which did not estimate a different topology or have 

significant effects on posterior probability estimates.  Once a tentative model was chosen, this 

model was rigorously tested for overparameterization and unreliability (which would suggest it 

was not a candidate for the best-fit model).   

We examined the burn-in plots of likelihoods for MCMC chains for each model to 

determine the rate of ascent to an apparent stationary plateau, in addition to the degree of overlap 

between models and superiority (based on chain likelihood values) of models, relative to the 

number of parameters they employed.  To examine the relative improvement in likelihood scores 

with respect to model complexity, we compared the 95% credibility interval (CI) of MCMC 

chain likelihood scores between models.  To calculate the 95% CI, we ranked all post burn-in 

tree estimates by ln likelihood and included the most likely 95% (Felsenstein, 1968; Huelsenbeck 

et al., 2002).  Once a tentative best-fit was identified, we evaluated parameter burn-in plots of 

these models for evidence of identifiability of parameters by checking for commonality in 

parameter estimates among runs.  We also examined the sensitivity of posterior probability 
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Table 2. Parametric composition of models tested in Bayesian MCMC analyses of the combined 
data. 

 

 

 

Model Name 

Nucleotide 
Substitution 

Matrix 

Model 
Parameters in 
Addition to 
GTR Matrix 

Gamma 
Parameter 

Gamma 
Autocorrelation 

Parameter 

Site (= Partition) 
Specific Gamma 

Parameters 
GTR+I+G GTR 2 + - - 
GTR+AG GTR 2 + + - 
NM-SSG GTR 3 + - 2 
PR-SSG GTR 3 + - 2 
NM-SAG GTR 4 + + 2 
PR-SAG GTR 4 + + 2 
CNR-SSG GTR 5 + - 3 
CNR-SAG GTR 6 + + 3 
4gene-SSG GTR 6 + - 4 
4gene-SAG GTR 7 + + 4 
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values to model complexity using Wilcoxon signed rank tests implemented with Statistica 

(StatSoft, 1993) to test for significant changes in posterior probability estimates between the 

chosen model and those which were proximal alternative best-fit models.  For interpretation of 

phylogenetic inferences, we consider posterior probability values over 95% to be well-resolved.   

In addition to the three independent MCMC runs (1.4 million generations each) 

conducted for each model, we conducted a single MCMC run for an extended number of 

generations (33 million generations) for the two main alternative best-fit models (GTR+I+G and 

CNR-SSG) for the combined data set.  For each long MCMC run, the posterior probabilities for 

clades were monitored in intervals of two million generations to examine any trends and the 

overall precision associated with posterior probability estimates through generations of extended 

MCMC runs.  Additionally, posterior probabilities of clades estimated from these long MCMC 

runs were compared to those estimated from the initial three MCMC runs per model (run for 1.4 

million generations) to examine the effect that MCMC analysis strategy (multiple short runs vs. 

single long run) has on estimates of posterior probabilities.  Posterior probabilities estimated 

from these long runs were also used to re-test for significant changes in posterior probability 

estimates derived from analyses under alternative models (as described above).   
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Results 

 

A total of 1810 characters were included in the analysis (c-mos 408 bp; ND4 623 bp; 12S 

331 bp; 16S 448 bp).  Details of optimal trees selected by maximum parsimony and best-fit 

models of evolution selected by ModelTest (Posada and Crandall, 1998) are presented in Table 

3.  After preliminary phylogenetic reconstructions, we identified several apparent problems with 

the Pellegrino et al. (2001) dataset, including switching of taxon names and apparent 

contamination, which we rectified prior to final analyses.   

 

Parsimony Phylogenetic Reconstruction 

The total evidence (all four genes) equally-weighted parsimony reconstruction resulted in 

two most parsimonious trees of 6600 steps with 769 parsimony-informative characters and CI = 

0.228, RI = 0.543, RC = 0.124, HI = 0.772 (Fig. 1).  Six major clades were recovered, each with 

high bootstrap support (70–100%) and differing from the reconstruction of Pellegrino et al.  

(2001).  Whereas the earliest split within the Gymnophthalmidae in Pellegrino et al. 

(2001) was the divergence of a clade composed of the three Alopoglossus species from all others, 

we recovered a clade of Alopoglossus spp. and Ptychoglossus brevifrontalis.  As explained in 

Appendix 2, an apparent taxon name error in the 12S and 16S data sets presumably resulted in 

the erroneous placement of Ptychoglossus in the Cercosaurinae.  
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Table 3. Statistics for datasets used, including results from MP searches and suggested model from hierarchical ln likelihood 
ratio test (hLRT) criterion from ModelTest. 

 

 

  c-mos ND4 12S 16Sa All rRNA all mt All protein Total 
 Number of Characters 408 623 331 448 779 1402 1031 1810 
 Parsimony-informative  173 363 112 121 233 596 536 769 
 Number of Trees 666 30 5195 >120,000 5065 6 4 2 
 Optimal tree score 566 4365 749 739 1547 5990 4976 6600 
 CI 0.528 0.177 0.290 0.296 0.282 0.202 0.215 0.228 
 HI 0.472 0.823 0.710 0.704 0.718 0.798 0.785 0.772 
  hLRT selected model K80+G GTR+I+G TrN+I+G TrN+I+G HKY+I+G TVM+I+G TVM+I+G GTR+I+G 
 Proportion invariable sites --- 0.321 0.421 0.551 0.535 0.461 0.331 0.432 
 Gamma parameter 0.595 0.506 0.543 0.511 0.657 0.564 0.519 0.553 
 Ti:Tv ratio 2.67 --- --- --- 2.651 --- --- --- 
Rate Matrix: r(A-C) --- 0.301 1 1 --- 0.438 0.411 0.553 
 r(A-G) --- 6.907 12.086 3.023 --- 3.531 4.370 4.101 
 r(A-T) --- 0.648 1 1 --- 0.476 0.543 0.530 
 r(C-G) --- 0.429 1 1 --- 0.179 0.630 0.384 
 r(C-T) --- 4.648 5.352 7.150 --- 3.531 4.370 3.608 
  r(G-T) --- 1 1 1 --- 1 1 1 
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Figure 1. Strict consensus phylogram of two most parsimonious trees based on the equally-
weighted maximum parsimony search including all four genes (c-mos, ND4, 12S, and 16S).  
Labels (a) and (b) indicate individuals of a species (see Appendix 1).  For reference, labels on the 
right side represent the taxonomy presented by Pellegrino et al. (2001).  Taxa that are not labeled 
have relationships that do not agree with that former taxonomy. 
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Mitochondrial Gene MCMC Analyses 

Based on hierarchical log likelihood ratio tests (hLRT) of successively complex models 

of sequence evolution, ModelTest indicated the best-fit model for the combined mitochondrial 

dataset was the TVM+I+G (Table 3).  This model of evolution, characterized by a five parameter 

nucleotide substitution rate matrix, is not currently available in MrBayes.  Instead, the next best-

fitting parameter rich model, which employs a general time reversible (GTR) six parameter 

nucleotide substitution rate matrix, was employed with proportion of invariant sites (I) and 

gamma distributed among-site rate variation (G).  Parameter estimates derived from the 

combination of all post burn-in estimates from the three independent MCMC runs are 

summarized in Table 4.  All three runs reached apparent stationarity (in estimates of substitution 

model parameters, as well as chain likelihood scores) prior to 50,000 generations, well before the 

conservative burn-in period of 400,000 generations.   

The all mitochondrial data partition MCMC reconstruction (Fig. 2a) contrasts with the 

Pellegrino et al. (2001) reconstruction in the relative phylogenetic placement of major clades 

deep in the phylogeny, but posterior probability support for some the relationships was not high.  

As in the parsimony reconstruction described above, Alopoglossus and Ptychoglossus form a 

clade sister to the remaining gymnophthalmids.  The next node splits the Ecpleopini from the 

remainder of the taxa (but with low posterior probability support).  Of the three MCMC runs, one 

differed slightly with regard to the structure of the remainder of the tree.  Examination of this 

difference among runs revealed that the difference between the majority rule topologies from 

post burn-in MCMC trees resulted from an approximately 1% difference between runs in the 

posterior probability density supporting one relationship over another (both of which received 
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Table 4. Parameter estimates for all mitochondrial gene and c-mos. 

 All mt genes – All runs c-mos – All Runs 
ln likelihood -26274.1 

(-26295.6 – -26254.2) 
-3616.0 
(-3634.3 – -3599.0) 

pi(A) 0.397 (0.380 – 0.416) 0.259 (0.0.230 – 0.289) 
pi(C) 0.283 (0.269 – 0.297) 0.265 (0.236 – 0.294) 
pi(G) 0.077 (0.070 – 0.084) 0.243 (0.215 – 0.272) 
pi(T) 0.243 (0.230 – 0.256) 0.233 (0.205 – 0.262) 
r(A-C) 0.406 (0.310 – 0.524) --- 
r(A-G) 4.236 (3.497 – 5.091) --- 
r(A-T) 0.470 (0.351 – 0.604) --- 
r(C-G) 0.201 (0.124 – 0.300) --- 
r(C-T) 3.641 (2.910 – 4.459) --- 
r(G-T) 1 --- 
Tv:Ti ratio --- 5.432 (4.490 – 6.534) 
Gamma parameter 0.503 (0.462 – 0.547) 0.644  (0.517 – 0.803) 
Proportion of invariable sites 0.419 (0.387 – 0.450) --- 
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posterior probabilities below 50%).  Figure 2a depicts the consensus of those three runs that 

collapses nodes in conflict, creating a polytomy of Rhachisaurus, Bachia, the 

Gymnophthalminae, and the Cercosaurini minus Bachia.  Even with the differences among the 

reconstructions, the lack of monophyly of the Cercosaurinae differs from Pellegrino et al. (2001; 

their Fig. 4) and our parsimony reconstruction (Fig. 1).   

 

C-mos (Nuclear Gene) MCMC Analyses 

Based on hLRTs of successively complex models of sequence evolution, ModelTest 

indicated the best-fit model for the combined mitochondrial dataset was the K80+G model 

(Table 3).  Parameter estimates derived from the combination of all post burn-in estimates from 

the three independent MCMC runs, using a K80+G model, are summarized in Table 4.  All three 

runs reached apparent stationarity (in estimates of substitution model parameters, as well as 

chain likelihood scores) prior to 50,000 generations.  

The nuclear c-mos reconstruction (Fig. 2b) differs from that of Pellegrino et al. (2001), 

Harris (2003), our parsimony reconstruction (Fig. 1), and our mitochondrial reconstruction (Fig. 

2a).  As with Harris (2003), our parsimony reconstruction, and our mitochondrial DNA 

reconstruction, Alopoglossus and Ptychoglossus form a basal clade.  Similar to our parsimony 

reconstruction, four additional major clades are formed, each with high posterior probability 

support for clade monophyly, but low support of the relationships among the clades.  The 

Gymnophthalminae forms a monophyletic group with strong posterior probability support.  The 

Cercosaurinae is not monophyletic because there is strong support for the Ecpleopini being only 

distantly related to the Cercosaurini.  Additionally, as in the parsimony reconstruction, Bachia 
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Figure 2. Bayesian phylogenetic trees for the independent nuclear and mitochondrial data 
partitions.  Labels (a) and (b) indicate individuals of a species (see Appendix 1).  (A) Majority 
rule phylogram and posterior probabilities resulting from Bayesian analysis of all three 
mitochondrial genes combined (ND4, 12S, and 16S) based on a combined 3 million post burn-in 
generations under the GTR+I+G model of evolution.  (B) Majority rule phylogram and posterior 
probabilities resulting from Bayesian analysis of nuclear c-mos gene data based on a combined 3 
million post burn-in generations under the K80+G model of evolution. 
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and Rhachisaurus form a clade.  As in Pellegrino et al.’s (2001) maximum likelihood 

reconstruction, but differing from our parsimony reconstruction, tribe Heterodactylini is not 

monophyletic but is paraphyletic with respect to the Gymnophthalmini. 

 

Combined MCMC Analyses 

Based on the hLRT criterion for model selection, ModelTest chose the GTR+I+G model 

of nucleotide substitution for the combined data set (Table 3).  Burn-in plots of likelihood scores 

of MCMC chains conducted with this model and alternative models are shown in Figure 3 and 

mean stationary values (with 95% credibility interval) across models are compared in Figure 4.  

A more detailed plot of the ascent of likelihood scores of chains toward stationarity for each 

model is shown in Figure 5.  Although we only show burn-in plots for chains from one of three 

individual MCMC analyses for each model, no single run (under a particular model) was 

noticeably different with regard to burn-in time, parameter estimate mean, or credible interval at 

stationarity. 

Based on the post-burn-in plateau of chain likelihood values observed in Figures 3 and 4, 

the GTR+I+G model appears to out-perform models which partition among-site rate variation 

between either nuclear vs. mitochondrial genes (NM-SSG and NM-SAG) or between protein- 

coding vs. ribosomal RNA genes (PR-SSG and PR-SAG).  The GTR+AG model resulted in 

chain likelihood scores which were markedly lower than those estimated under the GTR+I+G 

model.  Two classes of models which partition among-site rate variation into either three or four 

classes appeared to result in clear improvements in the likelihood scores of stationary chains 

when compared to the GTR+I+G model: models which partitioned among-site rate variation 
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Figure 3. The ln likelihood scores of MCMC chains based on alternative models of evolution, 
sampled in 10,000 generation intervals for clarity of presentation.  See text for descriptions of 
alternative models. 
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 Figure 4. The mean and 95% credibility interval for post burn-in ln likelihood scores of MCMC 
chains based on alternative models of evolution.   
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among c-mos (nuclear protein-coding) vs. ND4 (mitochondrial protein-coding) vs. ribosomal 

RNA genes (CNR-SSG and CNR-SAG; three site partitions) and those which partitioned rate 

variation among all individual genes (4gene-SSG and 4gene-SAG; four site partitions).  Within 

this group of models with either three or four partitions of among-site rate variation (with and 

without auto-correlated gamma), no single model clearly outperformed any other based on 

estimates of stationary chain likelihood scores (Fig. 3).  From Figure 5 we observe that all 

models, including those with three or four partitions for among-site rate variation, achieve 

stationarity rapidly by approximately 30,000 generations (although we conservatively discarded 

trees prior to 400,000 generations as burn-in).        

Consensus topologies estimated from post-burn-in generations were identical among 

multiple independent runs under a particular model (Fig. 6).  We found a general correlation 

between topology and model fit (inferred based on relative values of stationary chain likelihood 

scores), whereby the two models with the lowest range of ln likelihood scores (mean ln 

likelihood < -30,550) for chains produced slightly different topologies compared with all models 

resulting in chains with higher ln likelihoods (mean ln likelihood > -30,550).  Analyses of the 

combined data employing all models except NM-SSG and GTR+AG recovered the identical 

topology.  The analyses under the NM-SSG and GTR+AG models recovered a topology identical 

to the others except for a swap in the relative branching order with respect to two clades 

(Rhachisaurus + Gymnophthalminae and Ecpleopini; neither rearrangement received high 

posterior probability support), in addition to a modification affecting the phylogenetic position of 

Proctoporus ventrimaculatus + P. cf. ventrimaculatus.    
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Figure 5. The ln likelihood scores of MCMC chains based on alternative models of evolution, 
focusing on the period below 50,000 generations, sampled every 100 generations.   
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Based on our a priori criteria for initial identification of the preferred evolutionary model 

as that which contained the fewest number of parameters while demonstrating a clear 

optimization of overall chain likelihood, we chose the CNR-SSG model.  To examine the effect 

of model choice on the cumulative posterior probabilities for clades, we tested for significant 

changes in posterior probabilities between the CNR-SSG model and all other models that were 

found to be as good or better than the GTR+I+G model (including GTR+I+G, CNR-SAG, 

4gene-SSG, and 4gene-SAG) with Wilcoxon signed rank tests.  For these, posterior probabilities 

for matched nodes were pairs for comparison.  Tests comparing the overall change in posterior 

probabilities between the CNR-SSG model and other models with three or four gamma partitions 

(with and without auto-correlated gamma) were not significant.  However, the GTR+I+G model 

was found to produce, overall, significantly lower estimates for posterior probabilities of clades 

than the preferred model (CNR-SSG; z = 2.173, p = 0.029).  This trend is demonstrated by the 

relationship between posterior probabilities from the GTR+I+G model and the CNR-SSG model, 

plotted against one another in Figure 7.  Overall, a majority of nodes plotted in this figure fall 

above the 1:1 line, indicating higher nodal support resulting from the CNR-SSG model.  It is also 

important to note, however, that several nodes did decrease in posterior probability support under 

the CNR-SSG model. 

As described above, burn-in plots of ln likelihood of MCMC chain scores from all 

independent MCMC runs under the CNR-SSG model are essentially identical with a rapid and 

direct approach to a common stationary plateau (not shown).  To investigate burn-in and 

common estimates at stationarity for the parameters of the independent (1.4 million generation) 

CNR-SSG model runs, burn-in plots of the reversible rate of A-G and A-T substitutions as well 
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Figure 6. Bayesian phylogenetic tree and posterior probabilities for clades based on the 
combined, four-gene data set analyzed under the CNR-SSG model.  Tree is based on the 
combination of all post burn-in generations resulting from three independent runs of the model, 
for a combined total of 3 million post-burn-in generations.   
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as the gamma parameter and site-specific partition rate parameters are shown in Figure 8.  

Similar to burn-in plots of likelihood tree scores (Fig. 5), all parameters appear to approach 

stationarity rapidly (in less than 50,000 generations) and oscillate around a common stationary 

value (across independent runs).  Because all three (1.4 million generation) independent runs of 

our preferred model (CNR-SSG) appear to reach common stationary estimates of parameters, 

produce identical topologies, and nearly identical posterior probability estimates, hereafter we 

report only results based on the combination of all 3 million post burn-in generations pooled 

from the three independent runs of MCMC analyses using the CNR-SSG model. Parameter 

values, with 95% credibility intervals, resulting from MCMC CNR-SSG model analyses are 

given in Table 5.      

Posterior probability estimates derived from post burn-in generations from the single long 

MCMC run (33 million generations) of the GTR+I+G and CNR-SSG models were very similar 

to estimates based on the combination of the three shorter (1.4 million generation) runs.  

Considering only clades supported with less than 100% posterior probability support, the long 

MCMC run of the GTR+I+G model produced estimates that were, on average, 1.05% different 

from the short run estimates, compared with 0.40% for the CNR-SSG model.  Given the almost 

identical posterior probability estimates (within 1%) derived from the single long MCMC run 

under the CNR-SSG model as compared with those previously estimated from the combination 

of the three short MCMC runs of this model, we retain the use of posterior probabilities derived 

from the three short runs for further discussions of the phylogeny.  Estimates of model 

parameters derived from this long CNR-SSG MCMC run are given in Table 5.   
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Figure 7. Plot of the posterior probabilities derived from the GTR+I+G MCMC analyses (all 
three runs combined) versus the posterior probabilities derived from the CNR-SSG model (all 
three runs combined).  For comparison, a 1:1 line is plotted on the same axis. 

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100
GTR+I+G Posterior Probabilities



 53

 

Figure 8. Plots of selected parameters of the CNR-SSG model through generations.  All three 
independent runs are plotted per graph to show common burn-in rates and similar parameter 
estimates.  (a) Plot of parametric estimates of r(A-G) from the GTR rate matrix.  (b) Plot of the 
parametric estimates of r(A-T) from the GTR rate matrix.  (c) Plot of the gamma parameter 
estimates.  (d) Plot of the site-specific rate multiplier for the ND4, rRNA (12S + 16S), and c-mos 
site specific partitions of the gamma parameter 
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Table 5. Parameter estimates for CNR-SSG model MCMC runs summarized as means with 95% credibility interval in 
parentheses. 

 

  

CNR-SSG Run 1 
(1.4 million 
generations) 

CNR-SSG Run 2 
(1.4 million generations) 

CNR-SSG Run 3 
(1.4 million generations) 

CNR-SSG All Short Runs 
(1.4 million generations X 3)

CNR-SSG Long Run 
(33 million generations) 

ln likelihood -30318.7 
(-30338 – -30300.6) 

-30317.6 
(-30336.3 – -30302.2) 

-30319.7 
(-30340.0 – -30301.8) 

-30318.7 
(-30338.2 – -30301.5) 

-30319.5 
(-30335.6 – -30283.4) 

pi(A) 
0.393 (0.377 – 

0.409) 0.393 (0.378 – 0.409) 0.393 (0.379 – 0.410) 0.393 (0.378 – 0.410) 0.393 (0.362 – 0.385) 

pi(C) 
0.283 (0.270 – 

0.295) 0.283 (0.270 – 0.295) 0.283 (0.271 – 0.294) 0.283 (0.270 – 0.295) 
0.283 (0.257 – 0.284) 

pi(G) 
0.087 (0.081 – 

0.094) 0.087 (0.081 – 0.094) 0.087 (0.081 – 0.094) 0.087 (0.081 – 0.094) 
0.087 (0.075 – 0.088) 

pi(T) 
0.237 (0.227 – 

0.248) 0.237 (0.226 – 0.248) 0.237 (0.225 – 0.248) 0.237 (0.226 – 0.248) 
0.237 (0.214 – 0.243) 

r(A-C) 
0.409 (0.312 – 

0.491) 0.412 (0.339 – 0.506) 0.412 (0.325 – 0.509) 0.411 (0.324 – 0.504) 
0.411 (0.269 – 0.400) 

r(A-G) 
4.491 (3.843 – 

5.257) 4.483 (3.86 – 5.203) 4.489 (3.744 – 5.210) 4.488 (3.81 – 5.221) 
4.502 (3.163 – 4.324) 

r(A-T) 
0.504 (0.403 – 

0.614) 0.508 (0.414 – 0.630) 0.504 (0.391 – 0.622) 0.506 (0.404 – 0.624) 
0.507 (0.333 – 0.490) 

r(C-G) 
0.364 (0.257 – 

0.474) 0.358 (0.259 – 0.488) 0.357 (0.262 – 0.483) 0.359 (0.259 – 0.481) 
0.360 (0.178 – 0.340) 

r(C-T) 
3.745 (3.139 – 

4.423) 3.771 (3.199 – 4.469) 3.759 (3.120 – 4.503) 3.758 (3.152 – 4.466) 
3.767 (2.651 – 3.509) 

r(G-T) 1 1 1 1 1 

Gamma parameter 
0.326 (0.308 – 

0.344) 0.3254  (0.308 – 0.343) 0.325 (0.308 – 0.343) 0.325 (0.308 – 0.343) 
0.325 (0.291 – 0.329) 

SS1 (c-mos) 
0.134 (0.113 – 

0.162) 0.134 (0.114 – 0.158) 0.133 (0.112 – 0.157) 0.134 (0.113 – 0.158) 
0.133 (0.095 – 0.133) 

SS2 (ND4) 
2.409 (2.359 – 

2.454) 2.414 (2.365 – 2.456) 2.415 (2.370 – 2.459) 2.412 (2.364 – 2.457) 
2.412 (2.312 – 2.407) 

SS3 (rRNA genes) 
0.326 (0.295 – 

0.362) 0.323 (0.293 – 0.356) 0.323 (0.290 – 0.354) 0.324 (0.292 – 0.358)
0.324 (0.262 – 0.329) 
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Relative to the overall estimates of posterior probabilities (all 33 million generations 

minus 1 million burn-in), the deviation of posterior probability estimates at intervals of 

generations showed greater variance for the GTR+I+G model than did the CNR-SSG estimates 

(Fig. 9).  The GTR+I+G model produced less precise point (intermediate interval) estimates than 

did the CNR-SSG model. In other words, as MCMC chains progressed through generations, the 

posterior probability estimates tended to vary more for the GTR+I+G than the CNR-SSG model.  

Although the GTR+I+G model included 20 nodes supported below 100%, while the CNR-SSG 

model included only 17, this bias was factored out by reporting deviations per interval after 

dividing by the number of nodes considered.  This average nodal support deviation (from overall 

long run estimates) calculated from intervals of generations for the GTR+I+G model was more 

than twice that for the CNR-SSG model (Fig. 9).  In comparisons of variance for nodes receiving 

similar levels of support (e.g., around 80% posterior probability) greater degrees of variation 

were evident in the GTR+I+G than the CNR-SSG model run (see Fig. 10 for detail), suggesting 

that elevated deviation observed in GTR+I+G estimates were not particularly biased by overall 

higher posterior probability estimates from the CNR-SSG model.  Despite variance in posterior 

probability estimates for intervals of generations, however, no latent trends were observed in 

posterior probabilities that may indicate that new tree islands were sampled only late in runs 

(after many generations) or that chains were not completely burned-in after the inferred burn-in 

period (based on likelihood plateau).  Instead, fluctuations in nodal support through generations 

appear to represent oscillating patterns (see Figure 10 for detail).   

We re-examined the effect of model choice on the cumulative posterior probabilities for 

clades based on these two extended MCMC runs (for the GTR+I+G and CNR-SSG models).   
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Figure 9. Comparison of deviation of posterior probability estimates at intervals of generations 
compared to overall means from long MCMC runs (33 million generations) for the GTR+I+G 
and CNR-SSG models.  Values represent the absolute deviation of posterior probability 
estimates (relative to overall mean for long MCMC run) averaged across all nodes receiving less 
than 100% posterior probability.   
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Figure 10. Plots of individual node posterior probability estimates over intervals of extended (33 
million generation) MCMC runs of the GTR+I+G and CNR-SSG models.  Numbers for nodes 
are given at the right; numbering of nodes is consistent between the two graphs for comparative 
purposes.   
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Results from a Wilcoxon signed rank test returned very similar results as previous 

estimates based on the three short MCMC runs suggesting the GTR+I+G model produced overall  

significantly lower estimates for posterior probabilities of clades than the preferred model (CNR-

SSG; z = 2.334, p = 0.019).   

The topology of the MCMC CNR-SSG tree (Fig. 6) has similarities with each of the other 

reconstructions but also differs from all aforementioned reconstructions in several ways.  As with 

all of our phylogenetic reconstructions, Alopoglossus and Ptychoglossus form a well supported 

clade sister to the rest of the Gymnophthalmidae.  The Cercosaurinae is polyphyletic. As in the c-

mos reconstruction, the Heterodactylini is paraphyletic with respect to the Gymnophthalmini.  

Although the placement of Rhachisaurus as the sister taxon to the Gymnophthalminae is unique 

among the parsimony and data partitions (mitochondrial and nuclear) in this study, it is in the 

same position as that was recovered by Pellegrino et al. (2001; their Fig. 4).  Additionally, 

Bachia is recovered (with weak support) as the sister taxon to the Cercosaurini, as was found by 

Pellegrino et al. (2001). 

 

Comparison Among Phylogenetic Reconstructions 

Not all individual gene data sets (Fig. 2, and not shown) were in agreement with the 

combined tree (Fig. 6).  The c-mos data partition agreed with the combined tree on higher-level 

relationships except for the placement of Rhachisaurus and Bachia.  Similar to the parsimony 

reconstruction (Fig. 1), Rhachisaurus and Bachia formed a clade instead of Rhachisaurus being 

related to the Gymnophthalminae and Bachia to the Cercosaurini.  The ND4 data partition 

supported a monophyletic Heterodactylini.  The 16S data partition resolved the same general 
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relationship as the combined data CNR-SSG tree except that one of the outgroups, Tupinambis 

quadrilineatus, was nested within the ingroup.  The 12S data partition produced topologies most 

divergent from other genes, but nearly all of those relationships received poor posterior 

probability support. 

 

 

Discussion 

 

Model Selection and Evaluation 

Bayesian methods have greatly improved our ability to estimate phylogenies using larger 

datasets and complex models of evolution.  However, this creates a seemingly paradoxical 

dilemma with regard to model complexity and overparameterization.  In general, it is assumed 

that more realistic models of evolution will yield more accurate trees and clade credibility 

(posterior probability) values, thus perhaps favoring parameter-rich models, because 

interpretations of posterior probabilities are contingent on model specifications (Huelsenbeck et 

al., 2002).  However, a key assumption of Wald’s (1949) proof of the consistency of maximum 

likelihood estimates is that all of the parameters of the likelihood function are identifiable from 

the true probability distribution of the data (Rogers, 2001).  Even if a particular parameter may 

be intrinsic in the evolution of DNA sequences, we need to consider whether this parameter can 

be accurately estimated based on the data.  This dilemma is manifest when attempting to 

construct and implement models that realistically describe DNA evolution, while avoiding 
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overparameterization, or using more parameters than can be meaningfully estimated from the 

data. 

In a Bayesian analysis, the problem of identifying the best model may be condensed to 

two intertwined issues: evaluating model performance and fit and examining the sensitivity of 

posterior probability distributions to model specifications (Gelman et al., 1995; Huelsenbeck et 

al., 2002).  Detecting overparameterized models, however, is not readily accomplished, 

especially in a Bayesian phylogenetic framework (Huelsenbeck et al., 2002; Rannala, 2002).  

Several authors have suggested features of MCMC analyses that may be monitored to identify 

overparameterization including: poor convergence of MCMC chains (Carlin and Louis, 1996), a 

strong correlation among parameters in the posterior density despite independence under the 

prior density (Rannala, 2002), delayed convergence of a MCMC chain to a stationary plateau 

relative to less parameterized models (Rannala, 2002), failure of multiple independent runs 

(chains) of the same model to converge on similar estimates of parameters and posterior 

probabilities (Huelsenbeck et al., 2002).  We used these criteria, with the exception of testing 

among-parameter correlation, to guide the evaluation of what we tentatively identified as the 

best-fit model (CNR-SSG).  Testing for among-parameter correlation, in our case, was not 

possible because the nature of the model causes inherent correlation of the parameters of interest 

(those which partition the among-site rate variation across partitions).    

Different evolutionary rates and among-site rate patterns may be intrinsic evolutionary 

characteristics of different genes owing to their genomic origin (organellar vs. nuclear) or 

function (e.g., protein-coding vs. non-protein-coding).  Sufficient evidence exists to suggest that 

drastically different evolutionary rates and distinct, gene-specific among-site rates can be 
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observed among different genes categorized within a particular class (e.g., among protein-coding 

mitochondrial genes; Miyata, 1982; Kelly and Rice, 1996).  We used these observations to 

identify plausible alternative partitions across which to estimate specific rates of among-site rate 

variation.  Comparison of post burn-in MCMC chain likelihood scores across alternative models 

for among-site rate variation showed that only the three partition (CNR-SSG and CNR-SAG) 

and four partition (4gene-SSG and 4gene-SAG) models fit the data better than the GTR+I+G 

model chosen by ModelTest.  We found no evidence for substantial differences in burn-in time, 

chain likelihood score at stationarity, or overall clade posterior probability estimates across these 

models, yet we did detect a significant overall improvement in clade posterior probability 

estimates between one of these four models (CNR-SSG) and the GTR+I+G model.  We found no 

evidence that this best-fit model (CNR-SSG) was parametrically over-fitted (excessively 

parameter rich).  In fact, based on the analysis of the extended MCMC runs, we found this model 

to produce significantly more consistent posterior probabilities through generations than did the 

GTR+I+G model.  Given available evidence, we concluded that the best-fit model of evolution, 

in keeping with our goal of practical improvement for the sake of phylogenetic inference, was 

the CNR-SSG model, upon which we base our preferred hypothesis for the phylogeny of 

Gymnophthalmidae. 

  Here, we summarize our approach to model construction and evaluation as an explicit 

hierarchical process:   

Use hLRTs (e.g., ModelTest) to first identify best-fit conventional parameters (although 

other model choice criteria such as AIC [Akaike, 1974; also available in ModelTest], BIC 

[Schwarz, 1974], or DT (Minin et al., 2003) may be substituted) 
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Construct alternative models with data set partitions defined based on a priori 

expectations of potentially biologically relevant subsets of the data (e.g., protein-coding vs. non-

protein-coding genes or mitochondrial vs. nuclear genes)  

Examine model fit based on 95% CI of post burn-in MCMC chain likelihood values 

Tentatively choose best-fit model  

Examine this model for evidence of parameter identifiability or over-fitting  

Compare relative burn-in period across alternative models 

Check for topological consistency across multiple runs of tentative model 

Examine consistency of parameter estimates across multiple independent runs of the 

tentatively optimal model 

Check for consistency of clade posterior probabilities across independent runs 

Check for consistency of posterior probability estimates across generations for extended 

MCMC runs (with large number of generations) 

Test for significant differences in posterior probabilities between tentative model and 

those models of similar fit to the data 

Given evidence for parameter identifiability and significant changes to posterior 

probabilities, accept model.  If identifiability is questionable or no significant changes to 

posterior probability are observed, reduce model parameterization and repeat model evaluation.   

 

Effects of Partitioning Gamma and Using Auto-correlated Rate Variation 

Several studies based on simulated data have strongly supported the view that maximum 

likelihood estimates of phylogeny remain accurate and robust even when the model used to 
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estimate phylogeny differs markedly from that used to generate simulated data (Fukami-

Kobayashi and Tateno, 1991; Yang et al., 1994; Sullivan and Swofford, 2001).  Our results 

support this conclusion using empirical data, in that several different models for among-site rate 

variation support the same or very similar topologies.  Many authors have underscored the 

importance of including estimates of among-site rate variation (e.g., Yang, 1993; Sullivan and 

Swofford, 2001; Buckley and Cunningham, 2002; Nylander et al., in press; see review in Yang, 

1996b) in models of sequence evolution for increasing the consistency and accuracy of 

phylogenetic inference.  Our results demonstrate that apparent inappropriate partitioning of 

gamma among loci (e.g., NM-SAG model) may lead to inconsistent and presumably inaccurate 

phylogenetic inferences.  The fact that our preferred model (CNR-SSG) provided a significant 

increase in overall posterior probability estimates for clades over the GTR+I+G model suggests 

that well fitted partitioning of among-site rate variation appears to significantly affect the 

posterior probability distributions of MCMC analyses.  These results parallel previous studies 

that have demonstrated the significant effects of substitution model on maximum likelihood 

bootstrap support (Yang et al., 1995; Sullivan et al., 1997; Buckley et al, 2001; Buckley and 

Cunningham, 2002).   

An interesting, yet difficult to interpret, result was observed in comparisons of posterior 

probability monitored through intervals during extended MCMC runs.  We found the CNR-SSG 

model to produce more consistent posterior probabilities through generations than did the 

GTR+I+G model.  If we assume that the complexity of tree space remained relatively constant 

under the two models, this may suggest that the MCMC chains of the CNR-SSG model were 

more consistent over intervals of generations with respect to the regular visitation of tree islands.  
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Alternatively, it seems possible that implementing the partitioned gamma model (CNR-SSG) 

may have reduced the complexity of tree space by decreasing the number of optimal or near 

optimal peaks (reducing the number of major islands visited by MCMC chains over time), 

thereby reducing the variance through generations in trees sampled in the posterior distribution.  

This may have been accomplished by reducing the likelihood of certain peaks within tree space 

due to the different parameterization of among-site rates, thereby decreasing the number of near 

optimal tree islands.  In general, the properties associated with the behavior of MCMC chains in 

tree space through generations has been essentially untouched in the literature, yet represents a 

significant gap in our understanding of Bayesian MCMC analyses.  Future research is clearly 

necessary to answer questions about the number of generations and independent runs required 

for robust conclusions from MCMC and also how this may relate to model complexity and 

changes to the general topology of tree space.      

While the results of this study favor use of models which partition among-site rate 

variation, they also highlight a potential pitfall of such parameter-rich models.  Not all alternative 

models improved model fit relative to GTR+I+G.  The GTR+AG, PR-SSG, PR-SAG, NM-SSG, 

and NM-SAG models all decreased the fit of the model to the data, relative to the GTR+I+G 

model (chosen initially by hLRT criteria).  These results re-emphasize the need to test the fit of 

alternative models instead of choosing a particular model a priori (e.g., Huelsenbeck and 

Crandall, 1997; Posada and Crandall, 2001; Minin et al., 2003).  The GTR+I+G model not only 

fit the data better than some partitioned models (e.g., NM-SSG, PR-SAG; Fig. 4), but also 

recovered the identical topology while (on average) underestimating posterior probability 

support for clades (Fig. 7).  These findings support the utility of this conventionally employed 
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model and suggest that previous analyses using this model are likely to be as robust (with regard 

to topology) as more complex models, but provide more conservative estimates of posterior 

probability support for clades.  However, our analysis of extended MCMC runs suggests that, for 

a reason which is not immediately clear, the GTR+I+G model appeared to take a large number of 

generations to undergo oscillation cycles with respect to estimates of posterior probabilities.  

This suggests that, for some models, at least one extended MCMC run (with a large number of 

generations) is desirable to precisely and accurately estimate posterior probabilities so that trees 

are sampled in the posterior distribution according to their posterior probability (Swofford, 

Warren, and Wilgenbusch, unpublished data).  It is encouraging, from the standpoint of 

computational feasibility, that the estimates of model parameters, chain likelihood scores, and, 

particularly, posterior probabilities derived from the combination of three short (1.4 million 

generation) independent MCMC runs provided what appears to be, at least, a sufficient 

approximation of posterior probabilities derived from much longer MCMC runs.     

Several authors have demonstrated the utility of employing a parameter to account for 

auto-correlated among-site rate variation in phylogenetic analyses (e.g., Yang, 1995; Penny et 

al., 2001; Huelsenbeck, 2002).  While evidence for the occurrence of auto-correlated rates has 

been well documented (Yang, 1995; Nielsen, 1997; Penny et al., 2001), we found the addition of 

this parameter to alternative models to be of limited value for improving the fit of models to our 

data.  As can be seen in Figure 4, models which fit the data poorly (PR-SSG and NM-SSG) did 

appear to be notably improved with the addition of a parameter for auto-correlation of among-

site rates, although this increase in fit did not exceed that of the GTR+I+G model (or the CNR or 

4gene models).  Among models which showed the best-fit to the data (CNR and 4gene), the 
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addition of a parameter to account for among-site rate auto-correlation only slightly increased the 

likelihood scores for MCMC chains such that there was still broad overlap in the 95% credibility 

interval of likelihood scores (Fig. 4).  Similarly, Wilcoxon signed rank tests comparing overall 

posterior probabilities for clades between SSG and SAG variants of the CNR and 4gene models 

found no significant differences attributable to the addition of the auto-correlation parameter.         

In this study we have concentrated on accounting for one particular type of heterogeneity 

in among-site rate patterns in combined DNA sequence analysis, that which exists at or above 

the level of a gene or locus, ignoring potential partitions which may be prescribed within genes.  

Models that do examine and attempt to account for within gene heterogeneity by constructing 

partitions based on codon position (e.g., Yang, 1996a; Krajewski et al., 1999; Buckley et al., 

2001), protein domain (Herron et al., in press), or secondary structure for rRNA or tRNA genes 

(e.g., Schoniger and von Haeseler, 1994; Savill et al., 2001) have also been implemented.  These 

intra-locus partitions have yet to be thoroughly evaluated in a Bayesian framework and may 

potentially add additional realistic parameters to models of sequence evolution, especially in 

cases where very distant relationships are inferred (Penny et al., 2001) or where extreme 

accuracy of branch length estimates or model parameters are particularly critical to conclusions 

(Yang et al., 1994).  Understanding and testing of parametric identifiability in complex models 

have been poorly studied and clearly requires additional attention.  This issue, in addition to 

topology and posterior probability sensitivity to model choice, would benefit from future 

investigations using both simulated data and known phylogenies where more definitive 

conclusions about the effects of model choice may be drawn.   
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Taxonomic Considerations and Alterations 

Much of our phylogeny reconstruction is consistent with that recovered by Pellegrino et 

al. (2001).  However, our preferred phylogenetic hypothesis (combined data MCMC CNR-SSG 

reconstruction; Fig. 6) suggests four higher level taxonomic changes to the current classification 

(Pellegrino et al., 2001).  The first change is that Ptychoglossus appears to be most closely 

related to Alopoglossus and not to the Cercosaurini.  The placement of Ptychoglossus in the 

Cercosaurini by Pellegrino et al. (2001) was presumably the result of the swapping of taxon 

names between Ptychoglossus and Neusticurus juruazensis, as discussed in Appendix 2.  This 

relationship was also inferred from the nuclear partition trees of Pellegrino et al. (2001) (and the 

c-mos reconstruction of Harris, 2003) in which Ptychoglossus was sister to the three 

Alopoglossus species.  After making the correction to the Pellegrino et al. (2001) dataset, and 

adding our own sequences for this taxon, it seems clear that Ptychoglossus brevifrontalis is sister 

to Alopoglossus; therefore, we remove Ptychoglossus from the Cercosaurinae and place it in the 

Alopoglossinae.  This relationship is also supported by the morphological synapomorphy 

(present in both Ptychoglossus and Alopoglossus) of infralingual plicae, unique in the family 

Gymnophthalmidae. 

The second taxonomic alteration involves the tribe Heterodactylini.  This tribe is 

paraphyletic with respect to the Gymnophthalmini in our combined tree (Fig. 6) and in the c-mos 

(Fig. 2) and 16S (not shown) reconstructions.  The paraphyly of the tribe was also apparent in 

Pellegrino et al.’s (2001) maximum likelihood tree.  Because there does not appear to be 

sufficient support for recognizing a separate tribe Heterodactylini, we remove both of the 
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Gymnophthalmini and Heterodactylini tribal names and refer all of the pertaining genera to 

subfamily Gymnophthalminae with no tribes.  

The third taxonomic alteration involves species belonging to the cercosaurine tribe 

Ecpleopini.  The CNR-SSG tree (Fig. 6) suggests that the ecpleopiines and the cercosauriines do 

not comprise a monophyletic Cercosaurinae.  Although posterior probability support for 

intervening clades is low, monophyly of both groups is well supported.  The Ecpleopini appears 

to be distantly related to the Cercosaurini and we hereby raise the status of the former members 

of tribe Ecpleopini (Amapasaurus, Anotosaura, Arthrosaura, Colobosauroides, Ecpleopus, and 

Leposoma; Pellegrino et al., 2001) to subfamily status, the Ecpleopinae Fitzinger.  

The fourth taxonomic alteration involves the placement of Bachia.  Pellegrino et al. 

(2001) recovered its placement as basal within the Cercosaurini.  The node joining Bachia to the 

rest of the Cercosaurini was supported by bootstrap values less than 50% on their parsimony tree 

and by 81% on their maximum likelihood tree.  We found conflict between our parsimony 

reconstructions and Bayesian reconstructions.  In the parsimony trees (and 16S and c-mos 

individual Bayesian gene trees; 16S not shown) we found Bachia to be closely related to 

Rhachisaurus brachylepis, either joined with the Ecpleopini or distantly related to the 

Cercosaurinae.  In our CNR-SSG reconstruction Bachia appears to be the sister lineage to the 

rest of the Cercosaurini with low posterior probabilities supporting Bachia in that position.  In 

addition, a large genetic distance separated Bachia from the other cercosauriines.  Based on these 

data we are still unsure of the phylogenetic placement of Bachia within the family.  However, we 

are confident that Bachia appears to be distantly related to all other sampled taxa.  We believe 

the best course of action at the present time is to leave Bachia in the Cercosaurinae but elevate 
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the genus to tribe status, the Bachini.  In this way the relationships of this genus with other 

genera of the Cercosaurinae are not confused. 

A new phylogenetic classification for the family is presented in Table 6.   The addition of 

Pholidobolus macbrydei provides preliminary support for a monophyletic Pholidobolus.  The 

newly re-designated genus Cercosaura, which now includes all taxa formerly placed in 

Pantodactylus and Prionodactylus (Doan, 2003a), is supported in this study.  The addition of 

Neusticurus strangulatus shows that this species forms a clade with two other members of its 

genus, N. ecpleopus and N. juruazensis, but overall the genus is polyphyletic.  Additionally, 

Anotosaura is paraphyletic with respect to Colobosauroides and Colobosaura is paraphyletic 

with respect to Iphisa.   

Proctoporus is the genus that was not included by Pellegrino et al. (2001).  Contrary to 

the conclusions made by Doan (2003b) using morphological data, Proctoporus appears to be a 

polyphyletic member of the Cercosaurini.  In the CNR-SSG reconstruction two separate 

Proctoporus clades are apparent, separated from each other by Pholidobolus, Cercosaura, and 

one clade of Neusticurus.  One Proctoporus clade is composed of members from Ecuador, 

whereas the other includes members from Peru and Bolivia.  In the parsimony reconstruction 

Proctoporus ventrimaculatus additionally forms a third lineage that appears to be most closely 

related to Cercosaura.  This species (including an unidentified specimen designated as P. cf. 

ventrimaculatus) is the sole species from northern Peru, separated by a vast distance from the 

Ecuadorian clade to its north and the southern Peruvian and Bolivian clade to its south.  It is 

clear that taxonomic rearrangement is necessary to rectify the taxonomy of this genus.   



 70

Table 6. Current phylogenetic classification of family Gymnophthalmidae. 

 

Taxon             
Gymnophthalmidae Merrem, 1820    
 Alopoglossinae Pellegrino, Rodrigues, Yonenaga-Yassuda, and Sites, 2001  
  Alopoglossus Boulenger, 1885                     
  Ptychoglossus Boulenger, 1890    
 Cercosaurinae Gray, 1838    
  Tribe Bachini New Tribe    
   Bachia Gray, 1845    
  Tribe Cercosaurini Gray, 1838    
   Anadia Gray, 1845    
   Cercosaura Wagler, 1830    
   Echinosaura Boulenger, 1890    
   Euspondylus Tschudi, 1845    
   Macropholidus Noble, 1921    
   Neusticurus Duméril and Bibron, 1839    
   Opipeuter Uzzell, 1969    
   Pholidobolus Peters, 1862    
   Placosoma Tschudi, 1847    
   Proctoporus Tschudi, 1845    
   Riolama Uzzell, 1973    
   Teuchocercus Fritts and Smith, 1969    
 Ecpleopinae Fitzinger, 1843    
  Amapasaurus Cunha, 1970    
  Anotosaura Amaral, 1933    
  Arthrosaura Boulenger, 1885    
  Colobosauroides Cunha and Lima Verde, 1991    
  Ecpleopus Duméril and Bibron, 1839    
  Leposoma Spix, 1825    
 Gymnophthalminae Merrem, 1820    
  Calyptommatus Rodrigues, 1991    
  Colobodactylus Amaral, 1933    
  Colobosaura Boulenger, 1887    
  Heterodactylus Spix, 1825    
  Iphisa Gray, 1851    
  Gymnophthalmus Merrem, 1820    
  Micrablepharus Dunn, 1932    
  Nothobachia Rodrigues, 1984    
  Procellosaurinus Rodrigues, 1991    
  Psilophthalmus Rodrigues, 1991    
  Stenolepis Boulenger, 1888    
  Tretioscincus Cope, 1862    
  Vanzosaura Rodrigues, 1991    
 Rhachisaurinae Pellegrino, Rodrigues, Yonenaga-Yassuda, and Sites, 2001  
  Rhachisaurus Pellegrino, Rodrigues, Yonenaga-Yassuda, and Sites, 2001  
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CHAPTER 3 – MODELING NUCLEOTIDE EVOLUTION AT THE 
MESOSCALE: THE PHYLOGENY OF THE NEOTROPICAL PITVIPERS 

OF THE PORTHIDIUM GROUP (VIPERIDAE: CROTALINAE) 
 

 

Introduction 

 

Modeling nucleotide evolution at the mesoscale 

Incorporating DNA sequence data from multiple genes to solve phylogenetic problems 

has essentially become a standard across contemporary molecular phylogenetic studies. 

Paralleling the increasing frequency of multi-locus datasets, model-based techniques have also 

become a standard in molecular phylogenetics. These methods are attractive because they 

effectively incorporate probabilistic models of DNA substitution and should, therefore, be less 

likely to be misled by the complexities of DNA evolution (Huelsenbeck and Crandall, 1997). 

Numerous empirical studies have demonstrated an array of molecular evolutionary patterns that 

vary across partitions of molecular datasets including mutation and base-compositional biases 

(e.g., Faith and Pollock, 2003; Reeder, 2003), and among-site rate variation (e.g., Castoe et al., 

2004; Monclavo et al., 2000; Yang, 1996). Thus, an important concern arises when utilizing 

parametric model-based techniques: a single model with one set of parameters to account for 

molecular evolution over multiple heterogeneous partitions (e.g., multiple loci, codon positions, 

structural RNA vs. protein coding regions, etc.) in a combined analysis may fail to portray 

partition-specific evolutionary patterns.  
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The use of sing a single model of evolution for a dataset that is heterogeneous forces a 

compromise (or averaging) in parameter estimates that may introduce a major source of 

systematic error and mislead phylogenetic conclusions (Brandley et al., 2005; Reeder, 2003; 

Wilgenbusch and de Queiroz, 2000; see also Huelsenbeck and Rannala, 2004; Lemmon and 

Moriarty, 2004). This type of systematic error may be avoided by employing independent 

models of evolution (and parameter estimates) for subsets of a heterogeneous dataset within a 

combined analysis (Nylander et al., 2004; Ronquist and Huelsenbeck, 2003; Yang, 1996). 

Development of robust methods for fitting appropriately complex models of evolution to data 

partitions, however, has only recently been addressed directly (e.g., Brandley et al., 2005; Castoe 

et al., 2004; Nylander et al., 2004; Pupko et al., 2002; Yang, 1996).  

Model choice has been shown to affect both phylogenetic topology (e.g., Huelsenbeck, 

1995; Huelsenbeck, 1997; Sullivan and Swofford, 2001) as well as accurate estimation of 

posterior probabilities (e.g., Buckley, 2002; Castoe et al., 2004; Erixon et al., 2003; Huelsenbeck 

and Rannala, 2004; Suzuki et al., 2002). Because the accuracy of posterior probabilities in 

Bayesian phylogenetic methods relies (at least in part) on the model, models that may not affect 

the consensus topology may have notable effects on the posterior probability distribution of 

parameter estimates, and thus on confidence regarding phylogenetic conclusions. Based on this 

logic, employing complex models that more accurately portray DNA evolution should produce 

less-biased posterior-probability estimates as long as parameters can be accurately estimated 

from the data (Huelsenbeck et al., 2002; Huelsenbeck and Rannala, 2004). The benefits of 

constructing and employing more realistic evolutionary models of DNA substitution are 

challenged by the potential for imprecise and inaccurate parameter estimation (including 
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topology). This may result from overparameterization when the ratio of free parameters to data 

increases past a poorly characterized critical point (where parameters are no longer identifiable 

based on the data), beyond which a likelihood function may become unreliable (Huelsenbeck et 

al., 2002; Rannala, 2002; Rogers, 2001; Wald, 1949).  

Fundamental differences in the process of optimization of Bayesian and maximum-

likelihood methods (see reviews in Holder and Lewis, 2003; Huelsenbeck et al., 2001) have 

required reconsideration of methods and criteria for selection of best-fit models of evolution. 

Specific to Bayesian phylogenetics, analytical derivation of the marginal model likelihood is 

usually impossible when the number of parameters is large, although several estimators of the 

model likelihood have been proposed. Nylander et al. (2004) followed the proposal of Newton 

and Raferty (1994) by using the harmonic mean of the post burn-in likelihood values as a 

reasonable estimate of the marginal model likelihood (for details and justification see Nylander 

et al., 2004; see also Aris-Brosou and Yang, 2002; Suchard et al., 2001; Huelsenbeck et al., 

2004). Here we take advantage of the harmonic mean estimation of Bayesian model likelihoods 

to employ Bayes factors (Nylander et al., 2004) and adapted version of Akaike weights (Buckley 

et al., 2002; based on Akaike Information Criteria: Akaike, 1973, 1974, 1983; Sakamoto et al., 

1986) to identify the best-fit model of nucleotide substitution for our combined nucleotide data 

comprising two mitochondrial protein-coding gene fragments.  

In this study, we analyze what we believe is representative of a mid-sized molecular 

phylogeny that ranges in sampling scope from intra-specific to inter-generic. The nucleotide data 

consist of two of the more common genes used in molecular phylogenetics, the mitochondrial 

NADH dehydrogenase subunit 4 (ND4) and cytochrome-b (cyt-b), from 61 terminal taxa. This 
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dataset provides a reasonably representative model of contemporary ‘mesoscale’ molecular 

phylogenetics. As such, understanding how phylogenetic hypotheses from this ‘mesoscale’ 

dataset are affected by analysis under various complex models of nucleotide evolution is an 

important concern relevant to a majority of contemporary analyses of similar molecular and 

taxon-sampling scope.  

 

Systematics of the Neotropical pitvipers of the Porthidium group 

Pitvipers (Viperidae: Crotalinae), comprise an extensive radiation of both Old and New 

World venomous snakes with over 180 species allocated to 29 genera (Campbell and Lamar, 

2004; Malhotra and Thorpe, 2004; McDiarmid et al., 1999). This diverse radiation of highly 

venomous snakes has received substantial taxonomic and phylogenetic attention over the last 

several decades, yet many taxonomic and phylogenetic hypotheses remain unresolved. Recent 

studies examining molecular characters from a large number of taxa (Parkinson, 1999; Parkinson 

et al., 2002) have supported several higher-level relationships within Neotropical pitvipers. 

Within Neotropical pitvipers there appears to be: 1) several basal clades (genera: Bothriechis, 

Lachesis, and Ophryacus), 2) a primarily South American lineage (genera: Bothrocophias, 

Bothriopsis, and Bothrops), and 3) a primarily Middle American lineage (genera: Atropoides, 

Cerrophidion, and Porthidium). This study focuses on this third clade of Neotropical species, 

referred to as the ‘Porthidium group’ (Parkinson et. al., 2002; Castoe et al., 2003; see Campbell 

and Lamar [2004] for detailed updated distribution maps of all Porthidium group species). 

The Porthidium group radiation of Neotropical pitvipers contains three genera, each of 

which is morphologically and ecologically distinct. Cerrophidion (montane pitvipers) contains 
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four mid-sized species that inhabit mid-to-high elevation Middle American subtropical habitats. 

Atropoides (jumping pitvipers) contains five species of particularly stout-bodied pitvipers that 

inhabit low-to-middle elevation tropical and subtropical habitats in Middle America (ranging 

from rainforest and cloud forest to pine-oak forest). Porthidium (hognose pitvipers) contains nine 

more diminutive species that primarily inhabit low elevation wet and dry tropical and subtropical 

forests across Middle America and northern South America (Campbell and Lamar, 2004). 

The Porthidium group has been the subject of a number of taxonomic rearrangements and 

specific additions over the last few decades (see detailed reviews in Campbell and Lamar, 1989, 

2004; Castoe et al., 2003; Gutberlet and Harvey, 2004). Initially, all members of this group were 

recognized under the nominal genus Porthidium (Burger, 1971; Campbell and Lamar, 1989), and 

later were dissected into the three current genera (Werman, 1992; Campbell and Lamar, 1992). 

In addition to these revisions, two taxa that were once considered members of the Porthidium 

group have been subsequently reallocated to different genera (Ophryacus melanurum: Gutberlet, 

1998; Bothrocophias hyoprora: Gutberlet and Campbell, 2001). At the level of alpha taxonomy, 

new species have been recently recognized in each of the three genera. Several of these new 

additions have suggested the taxonomic splitting of widely ranging species (Atropoides spp.: 

Campbell and Lamar, 2004; P. porrasi: Lamar and Sasa, 2003), while other recently described 

species represent previously unknown populations only recently discovered (e.g., C. 

petlalcalensis; López-Luna et al., 2000; P. volcanicum: Solórzano, 1995). 

While no molecular phylogenetic analyses have inclusively examined relationships 

across the entire Porthidium group, several studies have provided insight into the phylogeny and 

systematics of the group. The most comprehensively sampled inter-generic molecular 
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phylogenetic study of pitvipers to date (Parkinson et al., 2002) resolved a monophyletic 

Porthidium group and the genus Porthidium as the sister taxon to Atropoides plus Cerrophidion. 

Castoe et al. (2003) did not find support for the monophyly of Atropoides and demonstrated the 

paraphyly of A. nummifer (later rectified by raising each subspecies to species status by 

Campbell and Lamar, 2004). Castoe et al. (2003) also demonstrated large divergences among 

populations of the widespread species Cerrophidion godmani. Similarly, Wüster et al. (2003) 

demonstrated paraphyly of the species Porthidium nasutum and P. lansbergi (each of which have 

also recently been taxonomically subdivided; Lamar and Sasa, 2003; Campbell and Lamar, 

2004). In summary, the entirety of previous phylogenetic and systematic work conducted on the 

Porthidium group falls short of providing a united perspective on the relationships and taxonomy 

of these snakes as a result of conflicting or weakly resolved phylogenetic hypotheses, or because 

of limited taxonomic and geographic sampling. In this study we rectify these problems by 

reconstructing the phylogenetic relationships within this group including samples representing 

nearly all species, with many species represented by multiple samples from geographically 

distinct or isolated populations.  

 

Theoretical and empirical scope of this study 

The goals of this study incorporate a number of theoretical and empirical questions. We 

employ two different objective methods (Bayes factors and an adapted version of AIC) for 

identifying complex best-fit models of nucleotide evolution in a Bayesian phylogenetic context. 

In doing so, we address the question, “Is it practically important to consider complex models of 
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evolution for ‘mesoscale’ phylogenetic analyses?” Given careful consideration of appropriate 

model choice, we apply the resulting phylogenetic hypotheses to outstanding questions regarding 

systematics of the Porthidium group. Specifically, we sought to address the following empirical 

questions: 1) Do we find evidence for the monophyly of Atropoides? 2) What are the 

relationships among the three Porthidium group genera? 3) Is there evidence of undescribed or 

non-monophyletic Porthidium group taxa?  

 

 

Materials and methods 

 

Taxon sampling 

In total, 61 terminal taxa (OTU’s) were included in this study. The ingroup (members of 

the genera Atropoides, or Cerrophidion, and Porthidium) included 52 samples representing 15 of 

18 nominal species. We included multiple representatives of nominal species where possible, 

Details of terminal-taxon sampling (along with voucher information) are provided in Table 7. 

Our sampling of recognized species included 5/5 Atropoides species, 3/4 Cerrophidion species 
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Table 7. Specimens used in this study including GenBank accession numbers. 

Taxon Specimen Reference ID Voucher Locality ND4 cyt-b 

Outgroups      

Lachesis stenophrys Lachesis stenophrys  Costa Rica: Limón U41885 AY223603 
Ophryacus melanurus Ophryacus melanurus UTA-R-34605 Mexico AY223634 AY223587 
Ophryacus undulatus Ophryacus undulatus CLP-73 Mexico AY223633 AY223586 
Bothriechis schlegelii Bothriechis schlegelii MZUCR-11149 Costa Rica AY223636 AY223590 
Bothriechis nigroviridis Bothriechis nigroviridis MZUCR-11151 Costa Rica AY223635 AY223589 
Bothriechis lateralis Bothriechis lateralis MZUCR-11155 Costa Rica U41873 AY223588 
Bothrocophias hyoprora Bothrocophias hyoprora  Colombia: Leticia U41886 AY223593 
Bothriopsis taeniata Bothriopsis taeniata  Surinam AY223637 AY223592 
Bothrops ammodytoides Bothrops ammodytoides MVZ-223514 Argentina: Neuquén AY223639 AY223595 

Ingroup      
Atropoides mexicanus A. mexicanus Costa Rica1 UTA-R-12943 Costa Rica: Cartago: Pavones de Turrialba AY220335 AY220312 
 A. mexicanus Costa Rica2 MSM Costa Rica: Puntarenas: San Vito AY220336 AY220313 
 A. mexicanus Costa Rica3 CLP-168 Costa Rica: San José U41871 AY223584 
 A. mexicanus Guatemala1 UTA-R-35942 Guatemala: Baja Verapaz: Nino Perdido AY220330 AY220037 
 A. mexicanus Guatemala2 UTA-R-32746 Guatemala: Huehetanango: Finca Chiblac AY220331 AY220308 
 A. mexicanus Guatemala3 UTA-R-35944 Guatemala: Izabal: Puerto Barrios AY220332 AY220309 
 A. mexicanus Guatemala4 UTA-R-43592 Guatemala: Quiché: Mountains West of El Soch AY220334 AY220311 
 A. mexicanus Guatemala5 UTA-R-46616 Guatemala: Alta Verapaz: Finca San Juan AY220329 AY220306 
 A. mexicanus Guatemala6 UTA-R-32419 Guatemala: Petén: San José El Espinero AY220333 AY220310 
Atropoides nummifer A. nummifer Mexico1 UTA-R-24842 Mexico: Hidalgo: vic. Huejutla AY220337 AY220314 
 A. nummifer Mexico2 ENS-10515 Mexico: Puebla: San Andres Tziaulan DQ061220 DQ061195 
Atropoides occiduus A. occiduus Guatemala1 UTA-R-29680 Guatemala: Escuintla: S. slope Volcán de Agua AY220338 AY220315 
 A. occiduus Guatemala2 UTA-R-46719 Guatemala: Sololá: San Lucas Tolimán AY220340 AY220317 
 A. occiduus Guatemala3 UTA-R-24763 Guatemala: Guatemala: Villa Nueva AY220339 AY220316 
 A. occiduus Honduras ENS-10630 Honduras: Olancho: Sierra de Botaderos DQ061219 DQ061194 
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Taxon Specimen Reference ID Voucher Locality ND4 cyt-b 
Atropoides olmec A. olmec Guatemala UTA-R-34158 Guatemala: Baja Verapaz: Niño Perdido AY220342 AY220319 
 A. olmec Mexico1 ENS-10510 Mexico: Chiapas: Mapastepec DQ061221 DQ061196 
 A. olmec Mexico2 JAC-9745 Mexico: Oaxaca: Cerro El Baúl AY220343 AY220320 
 A. olmec Mexico3 UTA-R-25113 Mexico: Veracruz: Sierra de los Tuxtlas AY220344 AY220321 
 A. olmec Mexico4 UTA-R-14233 Mexico: Veracruz: Sierra de los Tuxtlas AY220345 AY220322 
Atropoides picadoi A. picadoi Costa Rica1 CLP-45 Costa Rica: Alajuela: Varablanca U41872 AY223593 
 A. picadoi Costa Rica2 UTA-R-23837 Costa Rica: San José: Bajo la Hondura AY220347 AY220324 
 A. picadoi Costa Rica3 MSM-10350 Costa Rica: San José: Bajo la Hondura DQ061222 DQ061197 
Cerrophidion godmani C. godmani Costa Rica1 MSM Costa Rica: San José AY220351 AY220328 
 C. godmani Costa Rica2 MSM Costa Rica: San José: Goicochea DQ061224 DQ061199 
 C. godmani Costa Rica3 MSM Costa Rica: San José: Goicochea DQ061225 DQ061200 
 C. godmani Guatemala1 UTA-R-40008 Guatemala: Baja Verapaz: La Unión Barrios AY220348 AY220325 
 C. godmani Guatemala2 ENS-8195 Guatemala: Quiché DQ061223 DQ061198 
 C. godmani Honduras ENS-10631 Honduras: Ocotepéque: Güisayote DQ061226 DQ061201 
 C. godmani Mexico JAC-15709 Mexico: Oaxaca: Cerro El Baúl AY220349 AY220326 
Cerrophidion petlalcalensis C. petlalcalensis Mexico ENS-10528 Mexico: Veracruz: Orizaba DQ061227 DQ061202 
Cerrophidion tzotzilorum C. tzotzilorum Mexico1 ENS-10529 Mexico: Chiapas: Las Rosas DQ061228 DQ061203 
 C. tzotzilorum Mexico2 ENS-10530 Mexico: Chiapas: Zinacantán DQ061229 DQ061204 
Porthidium arcoase P. arcosae Ecuador WWW-750 Ecuador: Manabí: Salango AY223631 AY223582 
Porthidium dunni P. dunni Mexico1 MS Mexico: Chiapas: Guardiania DQ061243 DQ061217 
 P. dunni Mexico2 ENS-9705 Mexico: Oaxaca: near San Pedro Pochutla AY223630 AY223581 
Porthidium lansbergii P. lansbergii Panama MSM Panama: Darién DQ061231 DQ061206 
 P. lansbergii Venezuela WES Venezuela: Isla Margarita  DQ061230 DQ061205 
Porthidium nasutum P. nasutum Costa Rica1 MSM Costa Rica: Alajuela: Río Cuarto de Grecia DQ061235 DQ061210 
 P. nasutum Costa Rica2 MSM Costa Rica: Cartago: Guayacán de Turrialba DQ061233 DQ061208 
 P. nasutum Costa Rica3 MSM Costa Rica: Cartago: Guayacán de Turrialba DQ061234 DQ061209 
 P. nasutum Costa Rica4 MZUCR-11150 Costa Rica U41887 AY223579 
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Taxon Specimen Reference ID Voucher Locality ND4 cyt-b 
 P. nasutum Ecuador FGO-live-517 Ecuador: Esmeraldas: Zapallo Grande AF29574 AF292612 
 P. nasutum Guatemala UTA-R-44749 Guatemala: Alta Verapaz: Cobán DQ061232 DQ061207 
Porthidium ophryomegas P. ophryomegas Costa Rica UMMZ-210276 Costa Rica: Guanacaste U41888 AY223580 
 P. ophryomegas Guatemala MSM-23 Guatemala: Zacapa DQ061241 DQ061216 
 P. ophryomegas Honduras UTA-R-52580 Honduras: Gracias a Dios: Mocorón DQ061240  
Porthidium porrasi P. porrasi Costa Rica1 MSM Costa Rica: Puntarenas DQ061239 DQ061214 
 P. porrasi Costa Rica2 MSM Costa Rica: Puntarenas: Sierpe DQ061236 DQ061211 
 P. porrasi Costa Rica3 MSM Costa Rica: Puntarenas: San Pedrillo DQ061237 DQ061212 
 P. porrasi Costa Rica4 MSM Costa Rica: Puntarenas: Golfito DQ061238 DQ061213 
Porthidium yucatanicum P. yucatanicum Mexico JAC-24438 Mexico: Yucatán: Car. Yaxcabá-Tahdzibichen DQ061244 DQ061215 
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(lacking C. barbouri), and 7/9 Porthidium species (lacking P. hespere and P. volcanicum). 

Outgroup taxa were chosen based on results from recent large-scale pitviper phylogenetic studies 

(Parkinson, 1999; Parkinson et al., 2002; Parkinson and Castoe, unpublished). Additionally, we 

intentionally included two taxa (Ophryacus melanurum and Bothrocophias hyoprora) that were 

at one time considered members of the Porthidium group and later removed (Gutberlet, 1998; 

Gutberlet and Campbell, 2001). Our outgroup sampling strategy included multiple successive 

outgroups (Smith, 1994) based on the expectation that this approach would reduce potential 

biases imposed by rooting phylogenies with a single outgroup.  

 

DNA sequencing and sequence alignment 

In addition to novel sequences generated from this study, several sequences used in this 

study have been previously published (Parkinson 1999; Parkinson et al., 2002; Castoe et al., 

2003; Wüster et al., 2002; see Table 1 for details). Laboratory methods for obtaining novel 

sequences used in this study are as follows. Genomic DNA was isolated from tissue samples 

(liver or skin preserved in ethanol) using the Qiagen DNeasy extraction kit and protocol (Qiagen 

Inc., Hilden, Germany). Two protein-coding mitochondrial gene fragments were amplified and 

sequenced per sample: the ND4 fragment (including the 3’ region of the NADH dehydrogenase 

subunit 4 gene), and the cyt-b fragment (including the 3’ region of the cytochrome-b gene). 

The ND4 fragment was amplified via PCR using the primers ND4 and LEU or ND4 and 

HIS (Arévalo et al., 1994). The cyt-b fragment was PCR amplified using the primers Gludg and 

AtrCB3 (Parkinson et al., 2002). Genechoice or Sigma brand PCR reagents were used to conduct 

PCR in the following final concentrations: 1x standard PCR buffer, 1.5 units Taq polymerase, 
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0.1 µM per primer, 1.0 mM dNTPs 2.0 mM MgCl2 and 0.004% DMSO. Thermocycling 

conditions included initial denaturation at 95C for 3 min.; 35 cycles of 95C for 30 sec., 48C for 

30 sec., 72C for 45 sec., and a final extension at 72C for 5 min. Positive PCR products were 

excised from agarose electrophoretic gels and purified using the GeneCleanIII kit (BIO101). 

Purified PCR products were sequenced in both directions with the amplification primers (and for 

ND4, an additional internal primer HIS; Arévalo et al., 1994). Purified PCR products were 

sequenced using the CEQ D Dye Terminator Cycle Sequencing (DTCS) Quick Start Kit 

(Beckman-Coulter) and run on a Beckman CEQ2000 automated sequencer according to the 

manufacturers’ protocols. Raw sequence chromatographs for sequences generated in this study 

were edited using Sequencher 3.1 (Gene Codes Corp, 1996). Sequences of each fragment were 

aligned manually in GeneDoc (Nicholas and Nicholas, 1997). Alignment was unambiguous and 

contained no inferred indels within the ingroup but included the absence of a complete codon in 

the cyt-b fragment in several outgroup specimens. No internal stop codons were found in either 

fragment. The final alignment of both gene fragments concatenated comprised a total of 1405 

aligned positions: 693 from ND4 and 712 from cyt-b. Novel sequences were deposited in 

GenBank (GenBank accession numbers for all sequences used are given in Table 7). 

 

Phylogenetic reconstruction 

Throughout all phylogenetic reconstructions, gaps in alignment were treated as missing 

data. Maximum parsimony (MP) and Bayesian Metropolis-Hastings coupled Markov chain 

Monte Carlo (MCMC) phylogenetic methods were used to reconstruct phylogenies. Both 
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methods were initially used to compare phylogenetic reconstructions based on each gene 

fragment independently to identify any instances where different gene fragments demonstrated 

strongly supported alternative phylogenetic arrangements. We expect that mitochondrial loci 

should all contain phylogenetic signal supporting a common phylogeny because mitochondrial 

haplotypes are inherited maternally as a single linkage unit. We tested this assumption (prior to 

combining data) by estimating individual gene fragment phylognies and checking for bipartitions 

that differed between gene fragments and were well supported (e.g., Wiens, 1998) using both 

maximum parsimony and Bayesian MCMC analyses.  

All MP phylogenetic analyses were conducted using PAUP* version 4.0b10 (Swofford, 

2002). All characters were treated as equally-weighted in MP searches. We used the heuristic 

search option with inactive steepest descent option, tree bisection reconnection (TBR) branch-

swapping option, and 10,000 random-taxon-addition sequences to search for optimal trees. 

Support for nodes in MP reconstructions was assessed using non-parametric bootstrapping 

(Felsenstein, 1985) with 1,000 full heuristic pseudo-replicates (10 random-taxon-addition 

sequence replicates per bootstrap pseudo-replicate).  

ModelTest version 3.0 (Posada and Crandall, 1998, 2001) was used to select an 

appropriate model of evolution for MCMC analyses based on consideration of both available 

criteria, hLRT and AIC (with likelihoods for models estimated in PAUP*). In addition to the 

combined dataset, all putative partitions of the dataset were independently analyzed using 

ModelTest to determine best-fit models of nucleotide evolution. These estimates were used as a 

partial justification for partition-specific model choice during the construction of partitioned 

MCMC models, similar to the suggestions of Brandley et al. (2005).  
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All MCMC phylogenetic analyses were conducted in MrBayes 3.0b4 (Ronquist and 

Huelsenbeck, 2003) with vague priors and three heated chains in addition to the cold chain (as 

per the program’s defaults). Each MCMC analysis was conducted in triplicate, with three 

independent runs initiated with random trees, and run for a total of 4.0 x 107 generations 

(sampling trees every 100 generations). Conservatively, the first 1.0 x 107 generations from each 

run were discarded as burn-in. Summary statistics and consensus phylograms with nodal 

posterior probability support were estimated from the combination of the triplicate set of runs per 

analysis.   

An initial set of MCMC runs (for the individual and combined datasets) was run using 

the model estimated by ModelTest (considering both AIC and hLRT criteria) to fit each 

individual gene or combined dataset (or nearest model available in MrBayes 3.0, as explained 

below). In addition to the model selected by ModelTest, the combined dataset was subjected to 

five additional MCMC analyses under alternative evolutionary models. These five additional 

MCMC analyses were designed to allow independent models of evolution to be used for 

partitions of the combined dataset. This was accomplished by partitioning the dataset into what 

we assumed were biologically relevant partitions and specifying that an independent GTR+Γ+I 

model, with independent base frequencies, be used for each identified partition (using the 

“unlink” command in MrBayes 3.0). For these complex models, only branch lengths and 

topology remained linked between partitions. The names and details of all models used to 

analyze the combined dataset are summarized in Table 8. These models partitioned the combined 

dataset based on combinations of codon position and/or gene fragment (ND4 vs. cyt-b).  
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Several methods are available for model selection in a Bayesian context. In this study we 

employ three statistics for the purposes of model selection: 1) Bayes factors (B10), 2) relative 

Bayes factors (RBF), and 3) Akaike weights (Aw) to choose a best-fit model from among the 

alternative models outlined above. Each of these criteria allow testing of non-nested models (not 

allowed by hierarchical log-likelihood ratio tests: hLRTs), which is important here because two 

alternative models are non-nested (“2x-gene” and “2x-pos12,3” models). Also, each criteria 

allow accommodation of marginal model likelihoods (rather than maximum likelihoods) derived 

from Bayesian MCMC analyses (accommodation of marginal model likelihoods for AIC is 

described below).  

Bayes factors were calculated following Nylander et al. (2004) and we report the results 

in the form of 2lnB10. To compare two competing models, M0 and M1, the Bayes factor 

supporting M1 over M0 is equal to the ratio of the model likelihoods. We considered 2lnB10 > 10 

sufficient to support M1 over M0 (Kass and Raftery, 1995; see also Brandley et al., 2005; 

Nylander et al., 2004).  

Relative Bayes factors (RBF) were used to quantify the average impact that each free 

model parameter had on increasing the fit of the model to the data. These values were also used 

qualitatively to estimate the ratio of parameters to posterior evidence (of prior modification by 

the data) of increasingly complex models. This statistic is a permutation of the Bayes factor 

between the simplest (best-fit unpartitioned) and the alternative partitioned model that is 

normalized to the difference in free model parameters between models. We calculated the RBF  
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Table 8. Best-fit models selected by ModelTest for various partitions of the dataset based on both 
hLTR and AIC criteria. P1-6 refer to the six independent partitions of the dataset under the 6x-
gene,codon model. 

Partition hLTR AIC 

Entire dataset GTR+Γ+I GTR+Γ+I 

ND4  TVM+Γ+I TrN+Γ+I 

cyt-b TVM+Γ+I TrN+Γ+I 

codon position 1 TrN+Γ+I TVM+Γ+I 

codon position 2 HKY+Γ+I TIM+Γ+I 

codon position 3 TIM+Γ+I TIM+Γ+I 

P1 = (ND4,pos1) TrNef+Γ+I GTR+Γ+I 

P2 = (ND4,pos2) HKY+Γ TVM+Γ+I 

P3 = (ND4,pos3) TrN+Γ GTR+Γ+I 

P4 = (cyt-b,pos1) TrNef+Γ+I HKY+Γ+I 

P5 = (cyt-b,pos2) HKY+Γ+I TrN+Γ+I 

P6 = (cyt-b,pos3) HKY+Γ+I TrN+Γ+I 
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of each complex model by calculating 2lnB10 between the base model and each complex 

(partitioned) model and dividing this by the difference in the number of free model parameters 

between the base and complex model.  

We used a statistic derived from Akaike Information Criteria (AIC) in addition to 

statistics based on Bayes factors. Specifically, we implemented an adapted version of Akaike 

weights to infer the best-fit model of nucleotide evolution. Instead of using the maximum 

likelihood value, we used the harmonic mean estimator of the lnL from MCMC analyses to 

incorporate an estimate of the marginalized likelihood of models to be compared using Akiake 

weights (Aw; see also Kauermann, et al., 2004; Wager et al., in press). The estimation of Aw has 

been recently reviewed by Posada and Buckley (2004), and we provide a brief summary here. 

The AIC of each model is calculated as the AIC = -2L + 2K where K is the number of 

estimatable parameters (model parameters plus branch lengths in our case; for unrooted 

bifurcating trees the total number of branches is equal to twice the number of taxa minus three). 

From this, we calculated the change in AIC across models by comparing the AIC of the ith 

model to the model with the highest likelihood (min AIC) using the equation ∆AICi = AICi – 

min AIC. Akaike (1983) suggested that the relative likelihood of the models given the data may 

be obtained using the formula e(-∆AICi/2), which may then be normalized over all models to obtain 

a set of positive Akaike weights (Aw). This is accomplished by dividing each e(-∆AICi/2) by the 

sum of all e(-∆AICi/2) values across all models. Thus, the higher the Aw for a model, the higher the 

relative support for that model.  

In addition to employing Bayes factors and Akaike weights to identify best-fit models of 

nucleotide evolution, we secondarily evaluated the performance of alternative models to check 
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for problems with mixing and convergence indicative of model over-fitting 

(overparameterization). Once a tentative model was chosen, this model was rigorously examined 

to check for evidence of parameter identifiability, failed convergence, and unreliability (which 

would suggest the model may be parametrically over-fit). We investigated the performance of 

models (using Tracer; Rambout and Drummond, 2003) by examining features of model 

likelihood and parameter estimate burn-in, as well as the shapes and overlap of posterior 

distributions of parameters. Specifically, we looked for evidence that model likelihood and 

parameter estimates ascended directly and relatively rapidly to a stable plateau, and that 

independent runs converged on similar likelihood and parameter posterior distributions 

(considered evidence that a model was not over-fit). We also examined the model parameter 

estimates to confirm that the shape of their posterior distributions reflected a substantial 

modification of the priors (indicating their identifiability). As a secondary validation that the 

partitioning of the dataset was justified, we compared posterior distributions of parameter 

estimates across partitions (by inspecting posterior distributions using Tracer, and by comparing 

95% credibility intervals of parameters) to confirm that, in fact, different partitions demonstrated 

unique posterior distributions of parameter estimates.  
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Results 

 

Dataset characteristics and individual gene phylogenies 

The concatenated alignment of 1405 characters contained 538 parsimony-informative 

characters and 713 constant characters. Nucleotide frequencies were similar between the two loci 

used, and the nucleotide frequencies of the combined dataset were G = 11.57%, A = 29.79%, T = 

26.46%, and C = 32.18%. Individual gene phylogenetic reconstructions showed extremely 

similar, yet poorly resolved, phylogenetic estimates. Based on the apparent congruence in 

phylogenetic signal between the two gene fragments, we proceeded with combined data 

analyses.  

The greatest pairwise sequence divergence among terminal taxa was between Bothrops 

ammodytoides and Porthidium yucatanicum (uncorrected divergence of 17.4%). Within ingroup 

genera, the highest sequence divergence within Atropoides was 11.6% (between “A. picadoi 

Costa Rica2” and “A. mexicanus Guatemala4”), within Cerrophidion was 9.4% (between “C. 

tzotzilorum Mexico2” and “C. godmani Costa Rica1”), and within Porthidium was 13.7% 

(between “P. dunni Mexico2” and P. lansbergii Panama”).  

 

Maximum parsimony phylogenetic analysis 

The MP heuristic search on the combined dataset found 144 equally parsimonious trees 

of 2587 steps. A substantial degree of character-state homoplasy was inferred across these trees 
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based on the homoplasy index (HI = 0.6308) and rescaled consistency index (RCI = 0.2690). The 

50% majority-rule consensus of these 144 MP trees, along with bootstrap support for nodes, is 

shown in Fig. 11.  

The MP phylogenetic reconstruction did not infer a monophyletic Atropoides, placing A. 

picadoi in an unresolved clade with Cerrophidion and Porthidium. Atropoides minus A. picadoi, 

referred to as the nummifer complex (Castoe et al., 2003), was resolved as monophyletic with 

100% bootstrap support (BS). All Atropoides and Cerrophidion species were estimated to be 

monophyletic, as were all species of Porthidium except P. nasutum. Samples of Central 

American P. nasutum formed a well-supported clade (BS = 100%) distantly related to South 

American (Ecuadorian) P. nasutum. The P. nasutum sample from Ecuador appears to be more 

closely related to South American and southern Central American P. lansbergi. A majority of 

MP phylogenetic results overlap broadly with those from MCMC analyses. For this reason, and 

our expectation that MCMC results should produce more accurate estimates of phylogeny, we 

limit our discussion to these results.  

 

Bayesian MCMC model selection and evaluation 

Both AIC and hLTR model selection criteria supported the GTR+Γ+I model as the best 

fit for the combined dataset (Table 9). The TVM+Γ+I (under hLTR criteria) and the TrN+Γ+I 

(under AIC criteria) models were selected as best fitting the individual gene data sets. These 

models are restrictions of the GTR+Γ+I model that are not available in MrBayes 3.0; instead we 

used a GTR+Γ+I model as our base model for the analysis of both individual and combined data.  
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Figure 11. Majority-rule consensus of 144 equally-parsimonious trees (of 2587 steps) from 
heuristic maximum parsimony search based on 1405 bp. Bootstrap support for nodes is provided 
(values below 50% not shown). Bootstrap values of 100% are indicated with gray-filled circles. 
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Table 9. Description of complex partitioned models used in the analysis of the combined dataset. 

Model # Partitions 
# Free Model 
Parameters Description 

1x-GTR+Γ+I 1 10 base model employing a single 
GTR+Γ+I model for the combined data 

2x-gene 2 20 independent GTR+Γ+I models for each 
of the two gene fragments 

2x-pos12,3 2 20 one GTR+Γ+I model for codon 
positions 1 and 2, and a second 
GTR+Γ+I for position 3 

3x-codon 3 30 one GTR+Γ+I model per codon 
position 

4x-gene12,3 4 40 each of the two gene fragments are 
allocated a set of two GTR+Γ+I 
models, one for codon positions 1 and 
2, a second for position 3 

6x-gene,codon 6 60 each codon position of each of the two 
gene fragments are allocated an 
independent GTR+Γ+I model 
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In addition to the GTR+Γ+I model, we analyzed the combined dataset under five 

additional more complex models that employed multiple GTR+Γ+I models assigned to specific 

partitions of the dataset (see Table 9). In MrBayes 3.0, available choices for modeling time-

reversible nucleotide substitution include three possible substitution matrices including 1, 2, or 6 

parameters. ModelTest results for all putative partitions indicated, in general, that there was 

evidence for the justification of nucleotide models including substitution matrices with greater 

than 2 parameters, as well as the parameters Γ and I (Table 8). Based on these results, we 

allocated independent GTR+Γ+I models, per partition, in our partitioned MCMC analyses.  

The evaluation of model fit for the complex models is visually depicted in Fig. 12. In 

comparing Bayes factors (2lnB10) between models, simple models were rejected in favor of more 

complex models that allowed parameters to be independently allocated to partitions of the 

dataset (Fig. 2). Ultimately, the most complex model tested, 6x-gene,codon, was supported as the 

best-fit model by 2lnB10 estimates. Similarly, Akaike weights (Aw) placed nearly all relative 

weight (Aw = 0.9998) under the same 6x-gene,codon model as best fitting the data. Relative 

Bayes factors (RBF) demonstrate that, as model complexity and the number of free parameters 

increased, the relative improvements in model likelihood (per parameter added) decreased (Fig. 

12). In summary, the RBF values suggest diminishing returns (in terms of likelihood) as more 

parameters were added to the model.  

The best-fit complex model (6x-gene,codon) showed no evidence of parametric over-

fitting based on analysis of convergence and mixing. All independent MCMC runs of this model 

converged on nearly identical parameter and phylogenetic estimates. Model likelihoods and 

parameter estimates of all runs demonstrated effective mixing with burn-in characterized by a  
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Figure 12. Flow chart illustrating the process of model selection among complex models tested 
for the analysis of the combined dataset. Statistics for models are given (Aw = Akaike weights, 
2lnB10 = 2lnBayes factor, RBF = Relative Bayes factor). For 2lnB10 comparisons between 
models, M1 is represented by the model indicated by the arrowhead. See Table 9 for definitions 
of models. 
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direct rapid ascent to a stationary plateau (for model likelihood and parameters). Across all 

independent runs of the 6x-gene,codon model, likelihood values reached apparent stationarity 

(burned-in) prior to 1.5 x 106 generations, and parameter estimates reached apparent stationary 

by 2.0 x 106 generations. These observations confirm that our conservative a-priori choice of 

burn-in period at 1 x 107 effectively excluded non-stationary estimates.  

Across partitions of the 6x-gene,codon model, base frequency, Γ, and I parameter 

estimates demonstrated posterior distributions with relatively low variance. In support of 

partitioning, these parameter-estimate distributions showed relatively little overlap between 

partitions (based on comparisons of the parameter distributions in Tracer and 95% confidence 

intervals; Table 10) and supported the distinctiveness of each partition. Posterior distributions of 

parameter estimates from the nucleotide substitution-rate matrix (i.e., GTR matrix parameters) of 

each partition showed higher degrees of overlap across partitions and greater variance compared 

with base frequencies, Γ, and I parameters (Table 10). While increasing parameter variance is 

expected when models are partitioned (because less data is available for estimation of each 

parameter), it was initially unclear if this increased variance may indicate that fitting each 

partition with a GTR substitution matrix over-fit the combined model. To test this we conducted 

a second set of partitioned runs in which we conducted MCMC analyses under an array of 

partitioned models where the substitution matrices were hierarchically re-linked (thereby 

reducing the number of free substitution matrix parameters overall). When we examined model 

fitting using Aw and 2lnB10, we found that all tested restrictions of the 6x-gene,codon model 

were never favored by either statistic as being a better fit to the data than the 6x-gene,codon 

model (data not shown). Collectively, our post-hoc analyses of the 6x-gene,codon model support  
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Table 10. Mean and 95% credibility interval for each parameter sampled from the combined posterior distribution of three 
independent MCMC runs of the 6x-gene,codon model. 

       

 P1 - (ND4,pos1) P2 - (ND4,pos2) P3 - (ND4,pos3) P4 - (cyt-b,pos1) P5 - (cyt-b,pos2) P6 - (cyt-b,pos3) 

r(G-T) 1 1 1 1 1 1 

r(C-T) 32.32 (9.69 – 82.3) 33.36 (5.04 – 84.36) 17.46 (5.1 – 43.57) 16.7 (3.81 – 49.34) 2.57 (1.18 – 5.08) 13.39 (3.37 – 28.14) 

r(C-G) 0.32 (0.02 – 1.18) 24.19 (3.11 – 67.99) 0.17 (0.01 – 0.94) 1.10 (0.14 – 4.02) 0.33 (0.01 – 1.22) 4.32 (0.92 – 9.79) 

r(A-T) 3 (0.78 – 8.17) 4.64 (0.35 – 16.35) 1.47 (0.34 – 3.78) 2.05 (0.39 – 6.45) 0.25 (0.04 – 0.69) 1.41 (0.28 – 3.14) 

r(A-G) 7.51 (2.13 – 20.28) 44.37 (7.06 – 94.96) 
33.40 (10.18 – 
82.42) 17.10 (4.37 – 48.85) 

83.59 (53.96 – 
99.42) 52.14 (13.85 – 97.19) 

r(A-C) 0.78 (0.15 – 2.32) 6.88 (0.49 – 23.94) 0.92 (0.24 – 2.27) 1.71 (0.31 – 5.35) 0.32 (0.05 – 0.88) 0.50 (0.1 – 1.16) 

pi(A) 0.361 (0.308 – 0.414) 0.161 (0.118 – 0.208) 
0.408 (0.362 – 
0.453) 0.338 (0.281 – 0.399) 

0.240 (0.19 – 
0.295) 0.313 (0.269 – 0.358) 

pi(C) 0.306 (0.256 – 0.359) 0.32 (0.266 – 0.377) 
0.367 (0.326 – 
0.409) 0.254 (0.207 – 0.305) 

0.257 (0.208 – 
0.309) 0.469 (0.429 – 0.51) 

pi(G) 0.178 (0.14 – 0.219) 0.128 (0.089 – 0.172) 
0.065 (0.053 – 
0.079) 0.158 (0.11 – 0.205) 

0.104 (0.069 – 
0.144) 0.036 (0.028 – 0.044) 

pi(T) 0.155 (0.122 – 0.194) 0.392 (0.334 – 0.452) 
0.16 (0.137 – 
0.185) 0.249 (0.202 – 0.3) 

0.399 (0.342 – 
0.456) 0.182 (0.16 – 0.207) 

Γ 0.218 (0.181 – 0.266) 0.098 (0.085 – 0.113) 
3.836 (2.35 – 
6.333) 0.306 (0.232 – 0.408) 

0.264 (0.161 – 
0.471) 4.958 (2.786 – 9.137) 

I 0.170 (0.06 – 0.277) 0.599 (0.481 – 0.705) 
0.054 (0.01 – 
0.104) 0.400 (0.276 – 0.506) 0.549 (0.4 – 0.681) 0.039 (0.009 – 0.08) 
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this model as the superior best-fit model examined for our data. Hereafter, we consider the 6x-

gene,codon model as our preferred model, and results based on analyses under this model as our 

preferred phylogenetic hypothesis. 

 

Effects of model choice on Bayesian phylogenetic hypotheses 

We present the majority-rule consensus topology of both the chosen model (6x-

gene,codon) and the unpartitioned (1x-GTR+Γ+I) model (Fig. 13) in order to compare the 

practical effects of model choice. No overall trend of increasing or decreasing posterior 

probability values for clades (Pp hereafter) is evident between the trees. Also, no relationships 

that were supported by 100% Pp changed more than a single percent across the two models. 

Instead, the majority of differences between consensus topologies and Pp support represented 

changes at weakly supported nodes (Pp < 90%) that result in a change in the majority-rule 

consensus topology. The Pp support for basal relationships between Porthidium group genera 

becomes substantially stronger in the complex model (from Pp = 64 and 68 to Pp = 81 and 84, 

respectively). Other deep nodes, including the resolution of relationships among outgroup taxa, 

showed substantial changes across the two models (Fig. 13). Also, the two models produce 

different consensus topologies affecting the resolution of members of Atropoides as well as 

Porthidium (although both relationships are weakly supported under either scenario).  
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Figure 13. Majority rule consensus trees resulting from Bayesian MCMC phylogenetic 
reconstructions under two different models of nucleotide evolution (the favored partitioned 
model “6x-gene,codon” and the base unpartitioned 1x- GTR+Γ+I). Nodal posterior probabilities 
are indicated; nodal posterior probabilities of 100% are indicated with a gray-filled circle. (A) 
Majority rule consensus phylogram based on a combined 9 x 107 post burn-in Bayesian MCMC 
generations of the favored “6x-gene,codon” partitioned model. (B) Majority rule consensus 
cladogram based on a combined 9 x 106 post burn-in Bayesian MCMC generations of the 
unpartitioned 1x-GTR+Γ+I model (note: branch lengths are not informative in Fig. 13B). 
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Bayesian MCMC phylogenetic results under the best-fit model 

The phylogenetic estimates for the Porthidium group derived from the MCMC analyses 

under the 6x-gene,codon model strongly support monophyly of the group (Pp = 100%) and also 

inferred a clade comprising the primarily South American bothropoid lineages (genera Bothrops, 

Bothriopsis, and Bothrocophias). Monophyly is well supported for each of the genera 

Cerrophidion and Porthidium (Pp = 100), which are grouped (Pp = 84) as the sister taxon to a 

monophyletic Atropoides (Pp = 81). Within Atropoides, A. picadoi was inferred as the sister 

taxon to the remaining species (Pp = 81%), which collectively form the nummifer complex. This 

group of Atropoides species was strongly supported as monophyletic, with a clade containing A. 

mexicanus and A. olmec (Pp = 51) forming the sister taxon to A. nummifer, and A. occiduus 

being the sister lineage to the remaining nummifer complex species (Pp = 100). Within A. 

occiduus, we found Honduran and Guatemalan populations to be well differentiated (~5.7 %) 

compared to more shallow intraspecific divergences among populations of other Atropoides 

species.  

Monophyly of the genus Cerrophidion received strong support (Pp = 100). The 

widespread species C. godmani was inferred with very weak support as monophyletic (Pp = 48), 

although a clade containing Honduran and Costa Rican populations received strong support (Pp 

= 100). Within this genus, we found evidence for an early phylogenetic split between a clade 

containing the two species restricted to Mexico (C. tzotzilorum and C. petlalcalensis) and C. 

godmani. Our sampling of C. godmani populations throughout Middle America highlights 

several cladogenetic divisions within this species (among northern, central, and southern Middle 
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American populations; divergences among the three lineages all > 7 %) that are deeper than 

those observed between the two other Cerrophidion species (< 6 %).  

The first phylogenetic split within Porthidium separates a branch comprising P. dunni 

and P. ophryomegas (Pp = 100) from a branch comprising the remaining species (Pp = 100). All 

Porthidium species were resolved as monophyletic except P. nasutum. South American P. 

nasutum formed a weakly supported clade with P. arcosae (Pp = 44), the sister taxon to P. 

lansbergii (Pp = 75). This group of three South American lineages formed a clade with P. 

porrasi (Pp = 100). Central American populations of P. nasutum were found to represent a 

monophyletic group (Pp = 100) inferred to be the sister lineage (Pp = 63) to a clade comprising 

P. porrasi and the South American species.  

 

 

Discussion 

 

Model partitioning in Bayesian MCMC analyses 

Our results support three important conclusions relevant to the use of complex partition-

specific models in combined MCMC analyses. 1) Model choice may have important practical 

effects on phylogenetic conclusions even for mesoscale datasets such as the one used here. 2) 

The use of a complex partitioned model did not produce widespread increases or decreases in Pp 

nodal support. 3) A majority of differences in resolution resulting from model choice was 
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concentrated at deeper nodes. Also, a majority of these deeper nodes increased substantially in 

resolution (as measured by nodal Pp) with increasing model complexity.  

Several studies have supported a direct relationship between accuracy of posterior 

probabilities and model complexity. In these studies, Bayesian analyses conducted with 

underparameterized models appear to experience elevated error rates, compared with parameter-

rich models (Erixon et al., 2003; Huelsenbeck and Rannala, 2004; Lemmon and Moriarty, 2004; 

Suzuki et al., 2002). Also, simpler models have been shown to exhibit signs of poor mixing when 

compared to more complex partitioned models, based on the variance in Pp estimates through 

MCMC generations (Castoe et al., 2004). In addition to overall accuracy of results, this study 

(and Brandley et al., 2005) found that complex partitioned models may have important effects in 

the resolution of deeper nodes, a majority of which receive increased support under complex 

models. These results suggest that more complex models may be more effective at estimating 

patterns of molecular evolution when sequences are more divergent and phylogenetic signal is 

otherwise obscured by multiple substitutions or by homoplasy (see also discussion below). While 

not a panacea for resolving deep nodes, complex models that account for natural heterogeneity of 

molecular evolution within combined datasets appear to extract more phylogenetic signal than 

would a non-partitioned “compromise” model (see also Brandley et al., 2005; and analogous 

studies: Pupko et al., 2002; Voelker and Edwards, 1998; Yang, 1996).  

Despite considerations favoring complex models, benefits of constructing and 

implementing more realistic evolutionary models of DNA substitution are challenged by the 

potential for imprecise and inaccurate model parameter and phylogeny estimation that may result 

from excess model complexity. Expanding computational power, increasing genomic resources, 
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and advances allowing broad flexibility in modeling evolutionary patterns in a Bayesian MCMC 

context collectively underscore the importance of developing accurate models and objective 

strategies for model testing.   

As the implementation of complex models becomes more widespread in molecular 

phylogenetics, it may be useful to identify how reliant phylogenetic conclusions are on model 

specification. Reporting such details would provide an assessment of how much phylogenetic 

signal seems readily extracted from the data compared to that extracted through the 

implementation of more complex models (which may or may not ultimately contribute to the 

accuracy of phylogenetic results). In part, this is analogous to the common practice of providing 

results based on MP and likelihood-based phylogenetic methods. Also, advances with 

incorporating model averaging in phylogenetics (including reverse-jump Bayesian MCMC 

methods: Green, 1995; Suchard et al., 2001; Huelsenbeck et al., 2004) represent an attractive 

alternative to the common reliance on a single model for phylogeny estimation (see also Posada, 

2003; Posada and Buckley, 2004).  

 

Suggestions and prospects for complex Bayesian MCMC modeling and model testing 

In accordance with previous empirical studies (e.g., Brandley et al., 2005; Castoe et al., 

2004; Pupko et al., 2002), our results support the hypothesis that more complex models of 

evolution may have practical effects on phylogenetic inference. Furthermore, such models may 

more accurately portray heterogeneous patterns of evolution within a dataset, facilitating the 

extraction of more phylogenetic signal (i.e., at deep nodes) compared with simpler or non-
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partitioned models. Support for the use of complex models has also been reiterated by simulation 

studies. With simulated data, Bayesian phylogenetic analyses conducted with oversimplified 

models suffer from inaccurate bipartition posterior probability estimates, whereas overly 

complex models do not appear to experience the same magnitude of inaccuracy (Alfaro et al., 

2003; Huelsenbeck and Rannala, 2004; Lemmon and Moriarty, 2004). The potential utility of 

complex models, however, is balanced by potentially inaccurate or unreliable results that may be 

obtained from employing overly complex models. Resolving these opposing points requires 

robust and objective strategies for testing and evaluating such models.  

In this study we exploited a three-part strategy for identifying, testing, and evaluating 

candidate complex models in a Bayesian MCMC context. We used standard methods 

implemented in ModelTest to examine potential models for biologically intuitive potential 

partitions of the dataset (as in Brandley et al., 2005), three statistics (Aw, 2lnB10, and RBF) to 

examine model fit across partitioned Bayesian MCMC models, and post-hoc evaluation of model 

performance to check for proper mixing and convergence (including model parameter 

identifiability). We believe that these three steps represent a thorough strategy for the 

identification of best-fit models for partitioned Bayesian MCMC analyses that satisfy concerns 

(positive and negative) associated with employing complex models.  

Several authors (Brandley et al., 2005; Nylander et al., 2004) have argued the efficacy of 

2lnB10 in Bayesian phylogenetic model selection. Here we find the results of Aw to support the 

same conclusions (picking the same model) as 2lnB10, which is not entirely surprising given 

suggestions that AIC and Bayes factors are asymptotically equivalent (Akaike, 1983; see also 

Huelsenbeck et al., 2004). Through the use of the harmonic mean estimate of margin model 
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likelihood, both methods attractively incorporate parameter uncertainty into model choice (rather 

than maximum likelihood point estimates of model parameters and phylogeny). In terms of 

convenience, 2lnB10 allows ready comparisons between two models, while Aw provides a useful 

perspective on model choice simultaneously over all models. Although the results of these two 

criteria were similar, they provide unique information and approaches to model selection (with 

different assumptions), and thus represent a desirable confirmatory approach to model selection 

when used together.  

Although many interpretations exist, Bayes factors may be interpreted as the posterior 

evidence provided by the data for one model versus another being true (under uniform model 

priors) or as a comparison of the predictive likelihoods of the models (Gelfand and Dey, 1994; 

Kass and Rafferty, 1995 Wasserman, 2000). Alternatively, Levine and Schervisch (1999) 

suggested Bayes factors should be interpreted as measuring “the change in evidence in the odds 

in favor of the hypothesis when going from the prior to the posterior”, thus placing emphasis on 

the data modifying the priors as playing a primary role in determining the Bayes factor (see also 

Huelsenbeck et al., 2004; Wasserman, 2000). Unlike Bayes factors, AIC does not imply that the 

true model is contained in the set of candidate models (although the importance of this 

assumption for Bayes factors has been debated: e.g., Kass and Rafferty, 1995; Posada and 

Buckley, 2004). Instead, AIC attempts to identify which model is most likely to be closest to the 

true model, or has the highest predictive accuracy, based on the Kullback-Liebler distance 

(Akaike, 1973; Forester, 2002; Sober, 2002). In comparing methods, some have suggested that 

Bayes factors may tend to favor simpler models than AIC (e.g., Barlett, 1957; Kass and Rafferty, 

1995; Lindley, 1957; Shibata, 1976). The AIC may also be less biased by specification of priors 
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(e.g., prior variance) whereas Bayes factors may become inaccurate if priors are too vague 

(diffuse and uninformative;  Raferty and Zheng, 2003; see also Findley, 1991). However, AIC 

may only perform well when the dataset is large and when only ‘good’ models are compared 

(Burnham and Anderson, 1998). Neither method is clearly superior, but both have strengths, 

weaknesses, and potential biases. If methods agree, one can be more confident that biases or 

weaknesses of any one method have not misled model choice. If methods were to disagree 

regarding model choice, an investigator should weigh carefully the potential biases of each 

method in order to identify a preferred model; alternatively, one could evaluate multiple models 

and select the most complex that appears to not suffer from identifiability, mixing, and 

convergence problems (e.g., Huelsenbeck and Rannala, 2004).  

In addition to Bayes factors and Aw, we also employed RBF (a rescaling of the Bayes 

factor) as a simple way to quantify the relative contribution of each added free parameter 

towards increasing overall model likelihood (starting from the base-unpartitioned model). As 

such, RBFs represent a simple post-hoc means of comparing the relative explanatory power of 

the added free parameters simultaneously across models. In general, as the number of free model 

parameters increase, we expect the RBF to decrease as the data to parameter ratio decreases. 

Thus, RBF values should generally decrease asymptotically with increasing model complexity. 

The rate of RBF decline should also be proportional to the size and heterogeneity of a dataset 

(assuming models are effectively portraying data heterogeneity).  

These properties of the RBF make it a useful indicator that may help decide if model 

complexity is approaching the maximum justifiable complexity, or if the array of models tested 

still fall well below the maximum model complexity that may be warranted (e.g., through AIC or 
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Bayes factor model choice). If RBF values steadily decrease with model complexity, an 

investigator may be more convinced that they are approaching the higher end of model 

complexity justifiable by the data, as observed in this study. Contrastingly, if RBF values remain 

relatively constant across increasingly complex models, one may assume that the proportion of 

data to model parameters is high, which may suggest that even more complex models should be 

explored if possible. This later pattern has been observed with large and more heterogeneous 

datasets (Castoe and Parkinson, unpublished manuscript).   

 

Relationships and taxonomy of the Porthidium group 

The intergeneric relationships among pitvipers have been investigated by numerous 

authors using either morphological or molecular data (recently reviewed by Gutberlet and 

Harvey, 2004). Despite this intensive systematic effort, a cohesive and robust hypothesis of 

relationships among genera has yet to be achieved. Many studies have supported a sister group 

relationship between the Porthidium group and South American bothropoid genera (Bothrops, 

Bothriopsis, Bothrocophias; e.g., Gutberlet and Harvey, 2002; Kraus et al., 1996; Parkinson, 

1999; Parkinson et al., 2002). This relationship was supported in all our analyses, including MP 

and MCMC. As in previous molecular phylogenetic studies, we found strong support for the 

monophyly of the Porthidium group; this contrasts with previous studies based on morphology 

or morphology plus allozymes (Gutberlet and Harvey, 2002; Werman, 1992). Also, in 

accordance with previous studies (Parkinson, 1999; Parkinson et al., 2002; Gutberlet and Harvey, 

2002), we found strong phylogenetic evidence supporting the previous removal of Ophryacus 
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melanurus and Bothrocophias hyoproras from the Porthidium group (Gutberlet, 1998; Gutberlet 

and Campbell, 2001).  

Resolution of the basal relationships between the three genera of the Porthidium group 

appear to be a difficult phylogenetic problem to solve with either morphological or molecular 

data, as can be seen in our MP analyses (Fig. 12). Several molecular phylogenetic studies have 

either failed to resolve the relationships altogether or failed to resolve them with any substantial 

support (e.g., Castoe et al., 2003; Parkinson, 1999; Parkinson et al., 2002). In all cases, molecular 

phylogenies have inferred very short internodes connecting the three genera, implying a rapid 

radiation from a common ancestor and a difficult phylogenetic problem to solve. Parkinson et al. 

(2002) found weak support (BS = 68) for a clade containing Cerrophidion and Atropoides, as the 

sister taxon to Porthidium. Here, our partitioned MCMC analyses instead group Cerrophidion 

and Porthidium as a clade (Pp = 84) that is the sister lineage to Atropoides. It is important to note 

that resolution of these relationships appeared particularly dependent on MCMC model choice, 

with increasingly complex models recovering higher Pp for these relationships (Fig. 13). These 

different results across MCMC models would be reconciled under the hypothesis that complex 

models are, in fact, doing a better job extracting phylogenetic signal from the dataset which 

clearly does contain substantial homoplasy.  

Despite the fact that species of Atropoides constitute a distinctive group of 

morphologically similar snakes, monophyly of this genus has not been well resolved based on 

molecular studies (Castoe et al., 2003; Parkinson, 1999; Parkinson et al., 2002). Our MP results 

also fail to resolve the question of monophyly. Similar to the resolution of the Porthidium group, 
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our MCMC analyses under the 6x-gene,codon model resolved monophyly of Atropoides with Pp 

= 81, compared to Pp = 64 in unpartitioned MCMC analyses.  

Within the genus Atropoides, slight changes in the posterior distribution of trees under 

different MCMC models produced different majority-rule consensus trees of relationships among 

Atropoides species (in which A. olmec and A. nummifer exchanged positions). It is interesting to 

note that A. olmec and A. mexicanus share a presumed derived morphological feature (in having 

two or more subfoveal rows; Campbell and Lamar, 2004). Across all MP and MCMC analyses, 

A. olmec appears as the sister taxon to A. mexicanus only in the complex MCMC analysis (albeit 

with Pp = 51). These two species were resolved as the sister lineage to A. nummifer. These three 

species also all have nasorostral scales not present in the remaining species of Atropoides. 

Previous molecular and morphological studies have supported A. picadoi as the sister lineage to 

all other Atropoides, and A. occiduus as the sister taxon to the remaining ‘nummifer complex’ 

species (Campbell and Lamar, 2004; Castoe et al., 2003; Parkinson et al., 2002). We also find 

strong evidence for these relationships based on MP (in part) and MCMC analyses.  

Although not extensive, our intraspecific sampling within Atropoides illuminates several 

interesting patterns of phylogeography and undescribed taxonomic diversity. Castoe et al. (2003) 

demonstrated that the range of A. olmec included three closely-related disjunct populations in 

Veracruz and Oaxaca, Mexico, and Baja Verapaz, Guatemala. They concluded that in recent 

evolutionary time, the range of A. olmec may have been more continuous between these three 

known populations. Additional samples in this study include newly discovered populations in 

Chiapas, Mexico that further support the historical existence of a dispersal corridor spanning the 

Mexican Isthmus of Tehuantepec that facilitated relatively recent geneflow among these 
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populations. Atropoides mexicanus is the widest-ranging species in the genus and spans a 

majority of Middle America, although the occurrence of this species has not been confirmed 

throughout a large portion of Central America (in parts of Honduras and Nicaragua; Campbell 

and Lamar, 2004). We found evidence for phylogenetic structure within A. mexicanus whereby 

populations in northern Middle America form a clade, as do populations from Costa Rica. 

Shallow divergences between these clades indicate that geneflow across the large range of A. 

mexicanus has been prevalent at least within recent evolutionary time. These data support 

assertions that the ‘nummifer complex’ diversified in northern Middle America, and A. 

mexicanus later expanded its range southward (Castoe et al., 2003; Werman, 2005). Within A. 

occiduus, we found a Honduran sample to be substantially diverged from other Guatemalan 

populations. This and associated Honduran populations of A. occiduus may be candidates for 

species recognition if additional data support this distinction.  

The genus Cerrophidion is composed of four species, three of which occupy small 

isolated rages in Mexico. The two of these three range-restricted species sampled in this study, 

C. tzotzilorum and C. petlalcalensis, were recovered as a well-supported clade forming the sister 

lineage to the wide-ranging C. godmani. Although not sampled, the fourth Cerrophidion species, 

C. barbouri, shares a several presumably derived characters (low numbers of teeth and low 

numbers of middorsal scale rows) with C. petlacalensis, suggesting these taxa may be sister 

species (Gutberlet and Harvey, 2004; although see Campbell, 1988).  

The range of C. godmani extends from southern Mexico to northern Panama, although 

populations are patchily distributed across disjunct highland masses. Our results support for the 

existence of multiple divergent lineages within C. godmani that correspond to disjunct groups of 
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populations. We found strong support for three C. godmani lineages including: 1) populations in 

Mexico and Guatemala (BS = 100, Pp = 100); 2) populations in Honduras; 3) populations in 

Costa Rica (supported with BS = 83 and Pp = 100 as the sister lineage to Honduran C. godmani). 

These three lineages appear associated with three discrete geographic and geologic montane 

complexes that have been recognized as distinct biogeographic units in a number of studies (e.g.: 

Campbell, 1999; Savage, 1966, 1982; Stuart, 1966). Based on molecular evidence presented 

here, and on the allopatric distributions of these three lineages, additional work has been initiated 

to investigate the potential taxonomic recognition of these lineages of C. godmani.  

Our results suggest a basal split within Porthidium between a clade including P. dunni 

and P. ophryomegas (both of which are restricted exclusively to tropical and subtropical dry 

habitats), and a clade comprising the remaining species, hereafter called the “nasutum group” 

(similar to Castoe et al., 2003; Parkinson, 1999; Parkinson et al., 2002). This basal split within 

Porthidium species is also supported by differences between clades in a dorsal-scale 

microstructural pattern (Estol, 1981; although not all Porthidium species were examined). The 

unsampled species P. hespere (of southwestern Mexico), like P. ophryomegas and P. dunni, is 

restricted to tropical dry forests and occurs geographically closest to P. dunni. While these facts 

suggest that P. hespere may be a member of the P. ophryomegas / P. dunni clade (see also 

Werman, 2005), no specific phylogenetic evidence is currently available to test this hypothesis. 

Within the widespread species P. ophryomegas, we observed shallow genetic structure across 

geographically distant populations, suggesting recent evolutionary genetic continuity across 

populations (Fig. 3, as inferred by Werman, 2005).  
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Porthidium yucatanicum has been hypothesized as being the sister taxon to all 

Porthidium species based on morphological data (Gutberlet and Harvey, 2002). We found strong 

support for this species to instead be the sister taxon to the remaining nasutum group species. 

This implies that early vicariance within the nasutum-group may have been centered in northern 

Middle America, which is not intuitive based on the lower Middle American and South 

American distribution of a majority of nasutum group taxa. We resolved P. porrasi as the sister 

lineage to this clade of South American lineages (P. lansbergii, P. arcoase, and Ecuadorian “P. 

nasutum”). Porthidium porrasi is restricted to the Osa Peninsula of southwestern Costa Rica 

(and immediately adjacent mainland), and was considered P. nasutum until recently (Lamar and 

Sasa, 2003). The close phylogenetic relationship of P. porrasi and South American Porthidium 

(rather than Central American lineages) seems to support a historical pattern of reticulating 

dispersal into and out of South America (see also Wüster et al., 2002). 

We found strong evidence for paraphyly of P. nasutum, as reported by Wüster et al. 

(2002; see also Gutberlet and Harvey, 2004). Sampled populations of P. nasutum from Central 

America formed an evolutionarily shallow clade, distantly related to South American 

(Ecuadorian) “P. nasutum”. These results suggest that some taxonomic action may be required to 

rectify the phylogenetic relationships of South American “P. nasutum”, although the affinities of 

other populations allocated to P. lansbergii require further attention. We found Ecuadoran “P. 

nasutum” closely related to P. lansbergii and P. arcosae (both of which are geographically 

proximal and morphologically similar to South American populations of “P. nasutum”). Thus, 

decisive taxonomic treatment of P. nasutum may require a larger-scale reevaluation of the 

taxonomic status of P. lansbergii and P. arcosae (formerly considered a subspecies of P. 
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lansbergii; Campbell and Lamar, 2004). The unsampled species P. volcanicum (restricted to 

southwestern Costa Rica) has been suggested as a close relative of P. lansbergii by Solórzano 

(1995), which implies the potential for additional complications in clarifying the phylogeny and 

taxonomy of species related to P. lansbergii. Porthidium has historically been plagued with 

difficulties regarding taxonomic stability and correct species identification (reviewed by 

Campbell and Lamar, 2004). The taxonomic problems discussed here, and the likelihood of 

additional cryptic diversity among South American Porthidium populations (Campbell and 

Lamar, 2004) highlight future taxonomic activity for the genus. 
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CHAPTER 4 – BAYESIAN MIXED MODELS AND THE PHYLOGENY OF 
PITVIPERS (VIPERIDAE: SERPENTES) 

 

 

Introduction 

 

Pitvipers and their contemporary systematics 

The venomous snake family Viperidae (asps, moccasins, rattlesnakes, and true vipers) 

includes about 260 species in four subfamilies: Azemiopinae, Causinae, Crotalinae and 

Viperinae (McDiarmid et al., 1999). The Crotalinae (pitvipers) is the most species rich of the 

four subfamilies, containing over 190 species (approximately 75% of viperid species) allocated 

to 29 genera (Gutberlet and Campbell, 2001; Malhotra and Thorpe, 2004; McDiarmid et al., 

1999; Zhang, 1998; Ziegler et al., 2000). Among viperid groups, pitvipers are also the most 

widely distributed subfamily, with major radiations of species in the Old World and the New 

World (Campbell and Lamar, 2004; Gloyd and Conant, 1990; McDiarmid et al., 1999).  

Pitviper species produce a wide diversity of proteinaceous venom toxins, and many 

species are capable of inflicting fatal bites to humans (e.g., Russell, 1980). Accordingly, a valid 

taxonomy and a robust understanding of relationships among these venomous species are 

important for systematics, in addition to the fields of medicine, pharmacology, and toxicology 

(e.g., > 3000 citations on PubMed [National Center for Biotechnical Information] for “pit viper 

venom”). The phylogeny and taxonomy of this group has received substantial research attention 
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that has lead to many revisions to make taxonomy consistent with estimates of phylogeny (see 

reviews in Campbell and Lamar, 2004; Gutberlet and Harvey, 2004; Malhotra and Thorpe, 2004; 

Parkinson et al., 2002). Of the 29 generic names in use, 19 have been recognized in the last three 

decades (Burger, 1971; Campbell and Lamar, 1989; Campbell and Lamar, 1992; Gutberlet and 

Campbell, 2001; Hoge and Romano-Hoge, 1981; Hoge and Romano-Hoge, 1983; Werman, 

1992; Zhang, 1998; Ziegler et al., 2000; Malhotra and Thorpe, 2004).  

The deepest phylogenetic divergences among pitvipers have yet to be resolved with 

strong support. Current evidence indicates either: 1) a clade containing Hypnale, Calloselasma, 

Deinagkistrodon, and Tropidolaemus as the sister group to the remaining pitvipers (Malhotra and 

Thorpe, 2004; Parkinson et al., 2002) or, 2) a clade comprised of Deinagkistrodon and 

Tropidolaemus as the sister group to the remaining pitvipers (Knight et al., 1992; Parkinson, 

1999; Parkinson et al., 2002; Vidal et al., 1998).  

The Old World genus Trimeresurus (sensu lato; e.g., Burger, 1971) was found to be 

polyphyletic by a number of studies (e.g., Malhotra and Thorpe, 2000; Parkinson, 1999), and was 

subsequently dissected into a total of 11 genera, including: Protobothrops (Hoge and Romano-

Hoge, 1983), Ovophis (Burger, 1971; Hoge and Romano-Hoge, 1981), Zhaoermia (described as 

Ermia by Zhang, 1993, changed to Zhaoermia by Gumprecht and Tillac, 2004), 

Triceratolepidophis (Ziegler et al., 2000), and Cryptelytrops, Garthius, Himalayophis, Parias, 

Peltopelor, Popeia, and Viridovipera (Malhotra and Thorpe, 2004). Despite these changes, 

recent pitviper phylogenetic estimates suggest that Ovophis and Trimeresurus (sensu stricto) 

remain polyphyletic (e.g., Malhotra and Thorpe, 2000, 2004; Parkinson et al., 2002).  
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Kraus et al. (1996) hypothesized that New World pitvipers are monophyletic, and recent 

molecular studies have shown increasing support for this clade (e.g., Malhotra and Thorpe, 2004; 

Parkinson, 1999; Parkinson et al., 2002). This contradicts all morphology-based phylogenetic 

hypotheses (not constraining New World pitviper monophyly) which find a polyphyletic origin 

of New World pitvipers (Brattstrom, 1964; Burger, 1971; Gloyd and Conant, 1990). Currently 

there are twelve genera of New World pitvipers recognized (Campbell and Lamar, 2004) and the 

relationships among these remain poorly understood and inconsistent across studies. Certain 

molecular studies (Parkinson, 1999; Parkinson et al., 2002), and the morphological data set of 

Gutberlet and Harvey (2002), support the earliest New World divergence as being between a 

temperate North American clade and a Neotropical clade. Within this temperate clade, 

rattlesnakes (Crotalus and Sistrurus) have been consistently inferred to be monophyletic, and to 

be the sister group to a clade containing the cantils/copperheads/moccasins (Agkistrodon; Knight 

et al., 1992; Murphy et al., 2002; Parkinson, 1999; Parkinson et al., 2002; Vidal et al., 1999).  

Few relationships among the tropical New World genera are supported by multiple 

studies, although several notable relationships have been repeatedly identified. A primarily South 

American bothropoid clade, with Bothrocophias inferred as the sister group to Bothrops plus 

Bothriopsis, has been found by both morphological and molecular-based studies (Castoe et al., 

2005; Gutberlet and Campbell, 2001; Parkinson et al., 2002). Results of several studies have 

agreed on the paraphyly of Bothrops (sensu stricto) with respect to Bothriopsis (Gutberlet and 

Campbell, 2001; Knight et al., 1992; Parkinson, 1999; Parkinson et al., 2002; Salomão et al., 

1997, 1999; Vidal et al., 1997, 1999; Wüster et al., 2002). Although studies incorporating 

morphological data disagree (Gutberlet and Harvey, 2002; Werman, 1992), several molecular 
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studies have inferred a clade comprising the primarily Middle American genera Porthidium, 

Atropoides, and Cerrophidion (Castoe et al., 2003, 2005; Parkinson, 1999; Parkinson et al., 

2002).  

 

Challenges and strategies for resolving pitviper phylogeny 

Despite the efforts of numerous authors, phylogenetic relationships within the subfamily 

Crotalinae remain controversial, particularly at the intergeneric level (e.g. Gutberlet and Harvey, 

2004; Malhotra and Thorpe, 2004; Parkinson et al., 2002). Three issues have likely played major 

roles in the generation of inconsistent conclusions or poor resolution across studies: 1) Only four 

(Kraus et al., 1996; Malhotra and Thorpe, 2004; Parkinson, 1999; Parkinson et al., 2002) of 

nearly twenty inter-generic molecular-based studies have included most of the proposed crotaline 

genera. No study has included a large representation of both Old World and New World genera 

and species. Limited taxonomic sampling can be problematic in phylogenetic analyses (Hillis, 

1998; Poe, 1998; Poe and Swofford, 1999; Salisbury and Kim, 2001), and when only a few 

representatives of a diverse group are sampled, the resulting phylogenies may represent sampling 

artifacts (e.g., due to long-branch attraction) rather than accurate and objective phylogenetic 

reconstructions (Graybeal, 1998; Hillis, 1996, 1998). 2) Many studies (particularly earlier 

studies) employed only a small gene region to infer inter-generic relationships providing few 

informative characters. 3) Most DNA-based studies to date have analyzed relationships based on 

mitochondrial gene sequences. Mitochondrial-based phylogenetics has proven very successful 

largely because of the rapid rate of sequence evolution characteristic of this genome (Brown et 

al., 1979; Caccone et al., 1997; Vidal et al., 1999), yielding large proportions of potentially 
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informative (variable) sites. This strength becomes problematic, however, because the 

probability of continued sequence turnover at sites increases with phylogeny depth. Confident 

estimation of deeper relationships becomes increasingly difficult as the phylogenetic signal-to-

noise ratio becomes unfavorable. This problematic feature of molecular evolution, combined 

with limited taxon sampling and limited character sampling has synergistically weighed against 

previous attempts to reconstruct crotaline phylogeny.  

Here, we use DNA sequences from four mitochondrial gene regions sampled from a large 

array of pitviper taxa (including 28 of 29 genera) to estimate pitviper phylogeny. Our extensive 

taxonomic sampling design targets difficulties that limited taxon sampling may impose on 

recovering accurate phylogenetic estimates. Our sampling of gene regions (mitochondrial genes), 

however, remains potentially susceptible to problems associated with the high rate of sequence 

evolution characteristic of mitochondrial genes, leading to excessive homoplasy and obscured 

phylogenetic signal at deeper nodes. We target this latter problem analytically through complex-

partitioned modeling of nucleotide evolution during phylogenetic analyses.  

Model-based phylogenetic methods (including Bayesian phylogenetic techniques) are 

particularly useful for reconstructing phylogenies from divergent sequences because they 

incorporate probabilistic models of DNA substitution that should be less likely to be misled by 

complexities of DNA evolution (Huelsenbeck, 1995; Huelsenbeck and Crandall, 1997). 

Multigene datasets, as in this study, may contain partitions (e.g., multiple genes, rRNA vs. 

protein coding genes, codon positions, types of RNA secondary structures) that evolve under 

different models (or patterns) of evolution. In these cases, using a single likelihood model for the 

entire dataset forces a compromise in parameter estimates that must (under a single model) be 
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averaged over the entire dataset. This compromise may lead to systematic error and mislead 

phylogenetic conclusions (Brandley et al., 2005; Huelsenbeck and Rannala, 2004; Lemmon and 

Moriarty, 2004; Reeder, 2003; Wilgenbusch and de Queiroz, 2000). Important for our 

phylogenetic problem, a single compromise model may not capture the range of complexities in 

nucleotide substitution across the entire mixed dataset. In turn, this compromise may result in 

increased error identifying substitutions with high likelihoods of change (and homoplasy), versus 

substitutions with low likelihoods of change (with higher probabilities of containing 

phylogenetic signal). This type of modeling compromise may also increase the error in 

reconstructing ancestral states. This problematic compromise may be avoided by allocating 

independent models of nucleotide evolution to partitions of a heterogeneous dataset (e.g., 

Nylander et al., 2004; Pagel and Meade, 2004; Yang, 1996).  

Model choice may affect both phylogenetic topology (e.g., Huelsenbeck, 1995; 

Huelsenbeck, 1997; Sullivan and Swofford, 2001) and posterior probability estimation (e.g., 

Buckley, 2002; Castoe et al., 2004; Suzuki et al., 2002; Erixon et al., 2003). Complex partitioned 

models may have important effects in the resolution of deeper nodes, a majority of which receive 

increased support under complex models (Brandley et al., 2005; Castoe et al., 2004, 2005). 

Complex models appear to be more effective at estimating patterns of molecular evolution when 

sequences are highly divergent and phylogenetic signal is otherwise obscured by multiple 

substitutions (Brandley et al., 2005; Castoe et al., 2005; see also Huelsenbeck and Rannala, 

2004; Lemmon and Moriarty, 2004).  

In this study we combine taxon sampling and analytical strategies to estimate a robust 

hypothesis for the phylogeny of pitvipers. Along with maximum parsimony analyses, we 
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implement complex partitioned models of nucleotide evolution (in a Bayesian MCMC 

framework) to help counter problems likely to have biased previous analyses of pitviper 

phylogeny. We compare phylogeny and parameter estimates between simple and complex 

models to identify the impacts that complex models have on phylogenetic inference and on 

modeling patterns of nucleotide evolution. Based on our estimates of pitviper phylogeny we 

evaluate the current genus-level taxonomy and discuss the relevance of our estimates to previous 

phylogenetic and taxonomic hypotheses.  

 

 

Materials and methods 

 

Taxon sampling 

A total of 167 terminals were included in this study. We base our taxonomic assignment 

of species and genera on McDiarmid et al. (1999), Malhotra and Thorpe (2004) and Campbell 

and Lamar (2004), unless specifically noted (see Table 11). The ingroup, members of the 

subfamily Crotalinae (pitvipers), were represented by 157 terminals comprising 116 currently 

recognized species, including 45 Old World and 71 New World species (Table 11). Collectively, 

our sampling included representatives of 28 of 29 genera, excluding only the monotypic Old 

World genus Peltopelor. Outgroup taxa including representatives of the three other subfamilies  
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Table 11. Taxon sampling with voucher information, locality data, and Genbank accession numbers for gene fragments. An 
asterisk is used to indicate novel sequences generated in this study. 

Taxon and sample identifier Voucher Locality Genbank numbers (12s, 16s, cyt-b, ND4) 
Causus rhombeatus    Africa DQ305409*, DQ305432*, DQ305455*, DQ305473* 

Causus resimus Moody 515 Africa AY223649, AY223662, AY223555, AY223616 

Causus defilippi CLP154 Tanzania AF057186, AF057233, AY223556, AY223617 

Atheris ceratophora    DQ305410*, DQ305433*, DQ305456*, DQ305474* 

Atheris nitchei CAS201653 Tanzania  AY223650, AY223663, AY223557, AY223618 

Bitis nasicornis CAS207874   DQ305411*, DQ305434*, DQ305457*, DQ305475* 

Bitis peringueyi CAS193863   DQ305412*, DQ305435*, DQ305458*, DQ305476* 

Bitis arietans   Togo AF057185, AF57232, AY223558, AY223619 

Daboia russelii CAS205253   DQ305413*, DQ305436*, DQ305459*, DQ305477* 

Azemiops feae CLP-157 China AF057187, AF057234, AY223559, AFU41865 

Calloselasma rhodostoma UTA-R22247   AF057190, AF057237, AY223562, U41878 

Cryptelytrops albolabris (A165) AM A165 Thailand, Loei Prov.  AF517169, AF517182, AF517185, AF517214 

Cryptelytrops albolabris (A229) AM A229 Thailand, Pha Yao Prov.  AY059544, AY059560, AY059566, AY059583 

Cryptelytrops albolabris (B22) AM B22 Thailand, Nonthaburi AF517165, AF517178, AF517189, AF517221 

Cryptelytrops albolabris (B47) AM B47 Thailand, Phetburi Prov.  AF517160, AF517173, AF517187, AF517216 

Cryptelytrops albolabris (B6) AM B6 Indonesia, Java, Cilacap AF517158, AF517171, AF517186, AF517213 

Cryptelytrops albolabris (MCZR) MCZR-177966 Hong Kong, Port Shelter Is., 
Yim Tin Tsi 

AF057195, AF057242, AY223567, U41890 

Cryptelytrops andersonii AM A77 India, Andaman Is.  AY352801, AY352740, AF171922, AY352835 

Cryptelytrops cantori (A85) AM A85 India, Nicobar Is.  AY352802, AY352741, AF171889, AY352836 

Cryptelytrops cantori (CLP)  India, Nicobar Is., Kamurta AF057196, AF057243, -AY223568, U41891 

Cryptelytrops erythrurus (A209) AM A209 Myanmar, Rangoon  AF517161, AF517174, AF171900, AF517217 

Cryptelytrops erythrurus (B220) AM B220 Bangladesh, Chittagong  AY352800, AY352739, AY352768, AY352834 

Cryptelytrops insularis (A109) AM A109 Indonesia, Java  AY352799, AY352738, AY352767, AY352833 

Cryptelytrops insularis (B7) AM B7 Indonesia, Timor  AY059534, AY059550, AY059568, AY059586 

Cryptelytrops macrops AM B27 Thailand, Bangkok  AF517163, AF517176, AF517184, AF517219 

Cryptelytrops purpureomaculatus (A83) AM A83 Thailand, Satun Prov.  AF517162, AF517175, AF517188, AF517218 

Cryptelytrops purpureomaculatus (B418) CAS212246 Myanmar, Ayeyarwade AY352807, AY352746, AY352772, AY352746 

Cryptelytrops septentrionalis (A100) AM A100 Nepal, Mahattari Dist.  AY059543, AY059559, AF171909, AY059592 

Cryptelytrops septentrionalis (B487) AM B487 Nepal, Kathmandu Dist.  AY352784, AY352724, AY352755, AY352818 

Cryptelytrops venustus AM A241 Thailand, Thammarat Prov. AY293931, AY352723, AF171914, AY293930 

Deinagkistrodon acutus CLP-28 China AF057188, AF057235, AY223560, U41883 

Garthius chaseni AM B306 Malaysia, Sabah AY352791, AY352729, AY352760, AY352825 
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Taxon and sample identifier Voucher Locality Genbank numbers (12s, 16s, cyt-b, ND4) 
Gloydius halys  Kazakhstan AF057191, AF057238, AY223564, AY223621 

Gloydius shedaoensis ROM-20468 China, Liaoning AF057194, AF057241, AY223566, AY223623 

Gloydius strauchi ROM-20473 China, Jilin, Waqie Sichuan AF057192, AF057239, AY223563, AY223620 

Gloydius ussuriensis ROM-20452  China, Jilin, Kouqian AF057193, AF057240, AY223565, AY223622 

Himalayophis tibetanus ZMB-65641 Nepal, Helambu Prov. AY352776, AY352715, AY352749, AY352810 

Hypnale hypnale CLP-164 Sri Lanka, Columbo AF057189, AF057236, AY223561, U41884 

Ovophis monticola (A87) AM A87 Taiwan  AY059545, AY059561, AF171907, AY059582 

Ovophis monticola (JBS) CAS215050  China, Yunnan Prov., Nu 
Jiang Prefecture 

DQ305416*, DQ305439*, DQ305462*, DQ305480* 

Ovophis monticola (MAK) NTNUB200800   DQ305417*, DQ305440*, DQ305463*, DQ305481* 

Ovophis okinavensis (162) CLP-162 Japan, Okinawa AF057199, AF057246, AY223573, U41895, 

Ovophis okinavensis (FK) FK  DQ305418*, DQ305441*, DQ305464*, U41895 

Parias flavomaculatus (B289) AM B289 Philippines, Batan Is. AY371756, AY371795, AY371831, AY371858 

Parias flavomaculatus (B3) AM B3 Philippines, Luzon AY059535, AY059551, AF171916, AY059584 

Parias flavomaculatus (B4) AM B4 Philippines, Mindanao  AY352796, AY352734, AY352764, AY352830 

Parias hageni (B33) AM B33 Thailand, Songhkla Prov.  AY059536, AY059552, AY059567, AY059585 

Parias hageni (B364) AM B364 Indonesia, Sumatra, Bengkulu 
Prov. 

AY371763, AY371790, AY371825, AY371863 

Parias malcomi AM B349 Malaysia, Sabah AY371757, AY371786, AY371832, AY371861 

Parias schultzei AM B210 Philippines, Palawan AY352785, AY352725, AY352756, AY352819 

Parias sumatranus (B347) AM B347 Malaysia, Sabah  AY371759, AY371788, AY371823, AY371859 

Parias sumatranus (B367) AM B367 Indonesia, Sumatra, Bengkulu 
Prov.  

AY371765, AY371791, AY371824, AY371864 

Popeia popeiorum (A203) AM A203 Thailand, Thammarat Prov. AY059537, AY059553, AY371796, AY059588 

Popeia popeiorum (B196) FMNH-258950 Laos, Phongsaly Prov. AY059538, AY059554, AY059571, AY059590 

Popeia popeiorum (B246) AM B246 Malaysia, Selangor  AY059540, AY059556, AY059570, AY059589 

Popeia popeiorum (B34) AM B34 Thailand, Phetburi Prov.  AY059542, AY059558, AY059572, AY059591 

Protobothrops cornutus ZFMK75067 Vietnam, Phong Nha- Ke NP  AY294272, AY294262, AY294276, AY294267 

Protobothrops elegans UMMZ-199970 Japan, Ryuku Is., Ishigaki AF057201, AF057248, AY223575, U41893 

Protobothrops falvoviridis UMMZ-199973 Japan, Ryuku Is., 
Tokunoshima 

AF057200, AF057247, AY223574, U41894 

Protobothrops jerdonii CAS215051 China, Nu Jiang, Yunnan  AY294278, AY294269, AY294274, AY294264  

Protobothrops mucrosquamatus (2717) ROM-2717 Vietnam AY223653, AY223666, AY223577, AY223629 

Protobothrops mucrosquamatus (B106) AM B106 Vietnam, Vin Phuc Prov.  AY294280, AY294271, AY294275, AY294266 

Protobothrops tokarensis FK-1997 Japan, Ryuku Is., Takarajima AF057202, AF057249, AY223576, AY223628 

Triceratolepidophis sieversorum (B162) AM B162 Vietnam  AY352782, AY352721, AY352753, AY352816 

Triceratolepidophis sieversorum (CLP) ZFMK 75066 Vietnam, Phong Nha- Quang 
Ping Province 

DQ305414*, DQ305437*, DQ305460*, DQ305478* 
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Taxon and sample identifier Voucher Locality Genbank numbers (12s, 16s, cyt-b, ND4) 
Trimeresurus borneensis AM B301 Malaysia, Sabah  AY352783, AY352722, AY352754, AY352817  

Trimeresurus gracilis (A86) AM A86 Taiwan  AY352789, AY352728, AF171913, AY352823 

Trimeresurus gracilis (NTUB) NTNUB 200515  DQ305415*, DQ305438*, DQ305460*, DQ305478* 

Trimeresurus gramineus (A220) AM A220 India, Tamil Nadu  AY352793, AY352731, AY352761, AY352827 

Trimeresurus gramineus (B261) AM B261 India, Maharashtra   AY352794, AY352732, AY352762, AY352828 

Trimeresurus malabaricus (A218) AM A218 India, Tamil Nadu   AY059548, AY059564, AY059569, AY059587 

Trimeresurus malabaricus (B260) AM B260 India, Maharashtra   AY352795, AY352733, AY352763, AY352829 

Trimeresurus puniceus AM B213 Indonesia  AF517164, AF517177, AF517192, AF517220 

Trimeresurus trigonocephalus AM A58 Sri Lanka, Balangoda  AY059549, AY059565, AF171890, AY059597 

Tropidolaemus wagleri (B132) AM B132 Malaysia, Perak  AF517167, AF517180, AF517191, AF517223 

Tropidolaemus wagleri (B311) AM B311 Malaysia, Sabah  AY352788, AY352727, AY352759, AY352822 

Tropidolaemus wagleri (141) CLP-141 Indonesia, West Kalimantan AF057198, AF057245, AY223571, AY223625 

Viridovipera gumprechti (A164) AM A164 Thailand, Loei Prov.  AF517168, AF517181, AY352766, AF157224 

Viridovipera gumprechti (B15) NMNS-3113 China, Yunnan Prov. AY352798, AY352736, AY3521487, AY352736 

Viridovipera gumprechti (B174) FMNH-255579 Vietnam, Nghe An Prov. AY059547, AY059563, AY059573, AY059595 

Viridovipera medoensis CAS 221528 Myanmar, Kachin  AY352797, AY352735, AY352765, AY352831 

Viridovipera stejnegeri (A160) AM A160 Taiwan, Taipei  AY059539, AY059555, AF171896, AY059593 

Viridovipera stejnegeri (A222) NMNS-3651 China, Fujian Prov. AY059541, AY059557, AF277677, AY059594 

Viridovipera stejnegeri (UMMZ) UMMZ-190532 Taiwan, Taipei AF057197, AF057244, AY223570, U41892 

Viridovipera vogeli (B97) AM B97 Thailand, Ratchasima Prov.  AY059546, AY059562, AY059574, AY059596 

Viridovipera vogeli  ROM-7234  AY223651, AY223664,AY223569, AY223624 

Zhaoermia mangshanensis AM B300 China, Hunan Prov.  AY352787, AY352726, AY352758, AY352821 

Agkistrodon bilineatus WWL Costa Rica, Guanacaste AF156593, AF156572, AY223613, AF156585 

Agkistrodon contortrix Moody 338 USA, Ohio, Athens Co.  AF057229, AF057276, AY223612, AF156576 

Agkistrodon piscivorus CLP-30 USA, South Carolina AF057231, AF057278, AY223615, AF156578 

Agkistrondon taylori CLP-140 Mexico, Tamaulipas AF057230, AF057230, AY223614, AF156580 

Atropoides mexicanus CLP-168 Costa Rica AF057207, AF057254, AY223584, U41871 

Atropoides nummifer ENS-10515 Mexico. Puebla, San  Andres 
Tziaulan 

DQ305422*, DQ305445*, DQ061195, DQ061220 

Atropoides occiduus UTA-R29680 Guatemala, Escuintla DQ305423*, DQ305446*, AY220315, AY220338 

Atropoides olmec JAC-16021 Mexico, Veracruz AY223656, AY223669, AY220321, AY220344 

Atropoides picadoi CLP-45 Costa Rica, Alajuella AF057208, AF057255, AY223593, U41872 

Bothriechis aurifer UTA-R35031 Guatemala DQ305425*, DQ305448*, DQ305466*, DQ305483* 

Bothriechis bicolor UTA-R34156  DQ305426*, DQ305449*, DQ305467*, DQ305484* 

Bothriechis lateralis MZUCR-11155 Costa Rica, Acosta AF057211, AF057258, AY223588, U41873 
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Taxon and sample identifier Voucher Locality Genbank numbers (12s, 16s, cyt-b, ND4) 
Bothriechis marchi UTA-R52959 Guatemala: Zacapa: Cerro del 

Mono 
DQ305428*, DQ305451*, DQ305469*, DQ305486* 

Bothriechis nigroviridis MZUCR-11151 Costa Rica, San Gerondo de 
Dota 

AF057212, AF057259, AY223589, AY223635 

Bothriechis rowleyi JAC 13295  Mexico: Cerro Baúl DQ305427*, DQ305450*, DQ305468*, DQ305485* 

Bothriechis schlegelii MZUCR-11149  Costa Rica, Cariblanco de 
Sarapiquí 

AF057213, AF057260, AY223590, AY223636 

Bothriechis supercilliaris    San Vito, Costa Rica DQ305429*, DQ305452*, DQ305470*, DQ305487* 

Bothriechis thalassinus UTA-R52958 Guatemala: Zacapa DQ305424*, DQ305447*, DQ305465*, DQ305482* 

Bothriopsis bilineata   Colombia, Letícia AF057214, AF057261, AY223591, U41875,  

Bothriopsis chloromelas LSUMZ 41037 Peru, Pasco Dept. DQ305430*, DQ305453*, DQ305471*, DQ305488* 

Bothriopsis taeniata   Suriname  AF057215, AF057262, AY223592, AY223637 

Bothrocophias hyoprora   Colombia, Letícia AF057206, AF057253, AY223593, U41886 

Bothrocophias microphthalmus LSUMZ H-9372 Peru, Pasco Dept. AY223657, AY223670, AY223594, AY223638 

Bothrops alternatus DLP-2879   AY223660, AY223673, AY223601, AY223642 

Bothrops ammodytoides MVZ-223514 Argentina, Neuguen AY223658, AY223671, AY223595, AY223639 

Bothrops asper MZUCR-11152 Costa Rica AF057218, AF057265, AY223599, U41876 

Bothrops atrox WWW-743   AY223659, AY223672, AY223598 AY223641 

Bothrops cotiara WWW Brazil AF057217, AF057264, AY223597, AY223640 

Bothrops diporus PT3404  Depto. Castro Barros, Prov. 
La Rioja, Argentina 

DQ305431*, DQ305454*, DQ305472*, DQ305489* 

Bothrops erythromelas RG-829 Brazil, Algóóas, Piranhas AF057219, AF057266, -AY223600, U41877 

Bothrops insularis WWW Brazil, São Palo, Iiha 
Queimada Grande 

AF057216, AF057263, AY223596, AF188705 

Bothrops jararacussu DPL-104   AY223661, AY223674, AY223602, AY223643 

Cerrophidion godman (CR) MZUCR-11153 Costa Rica, San Jose AF057203, AF057250, AY223578, U41879 

Cerrophidion godmani (GM) UTAR-40008 Guatemala: Baja Verapaz DQ305419*, DQ305442*, AY220348, AY220325 

Cerrophidion petlalcalensis ENS-10528 Mexico, Veracruz, Orizaba DQ305420*, DQ305443*, DQ061202, DQ061227 

Crotalus adamanteus CLP-4  USA, Florida, St. Johns Co. AF057222, AF057269, AY223605, U41880 

Crotalus aquilus ROM-18117 Mexico, San Luis Potosi AF259232, AF259125, AF259162, ----- 

Crotalus atrox CLP-64 USA, Texas, Jeff Davis Co. AF0572225, AF057272, AY223608, AY223646 

Crotalus basiliscus ROM-18188 Mexico, Nyarit AF259244, AF259136, AF259174, ----- 

Crotalus catalinensis ROM-18250, BYU-34641-
42 

Mexico, Baja California Sur, 
Isla Santa Catalina  

AF259259, AF259151, AF259189, ----- 

Crotalus cerastes ROM-FC-20099, ROM-
19745 

USA, California, Riverside 
Co. 

AF259235, AF259128, AF259165, ----- 

Crotalus durissus ROM-18138 Venezuala AF259248, AF259140, AF259178, ----- 
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Taxon and sample identifier Voucher Locality Genbank numbers (12s, 16s, cyt-b, ND4) 
Crotalus enyo ROM-FC411, ROM13648 Mexico, Baja California Sur AF259245, AF259137, AF259175, ----- 
1Crotalus “exsul” BYU-34753-54 Mexico, Baja California, Isla 

de Cedros 
AF259260, AF259152, AF259190, ----- 

Crotalus horridus (AR) UTA-R14697 USA, Arkansas AF259252, AF259144, AF259182, ----- 

Crotalus horridus (NY) ROM-18132-33 USA, New York AF259251, AF259143, AF259181, ----- 

Crotalus intermedius ROM-FC223, ROM-18164 Mexico, Veracruz AF259238, AF259131, AF2589205, ----- 

Crotalus lepidus ROM-18128 Mexico, Chihuahua AF259230, AF259123, AF259160, ----- 

Crotalus mitchelli ROM-18178 USA, California, Imperial Co. AF259250, AF259142, AF259180, ----- 

Crotalus molossus CLP-66 USA, Texas, El Paso Co.  AF057224, AF057271, AY223607, AY223645 

Crotalus oreganus ROM-19656 USA, California, Los Angeles 
Co. 

AF259253, AF259145, AF259183, ----- 

Crotalus polystictus ROM-FC263, ROM-18139 Mexico, Districto Federal AF259236, AF259129, AF259166, ----- 

Crotalus pricei ROM-FC2144, ROM-
18158 

Mexico, Nuevo Leon AF259237, AF259130, AF259167, ----- 

Crotalus pusillus ROM-FC271 Mexico, Michoacan AF259229, AF259122, AF259159, ----- 

Crotalus ravus UTA-live Mexico, Puebla, Zapotitlán AF057226, AF057273, AY223609, AY223647 

Crotalus ruber ROM-18197-98, 
ROM18207 

USA, California, Riverside 
CO. 

AF259261, AF259153, AF259191 

Crotalus scutulatus ROM-18210, ROM-18218 USA, Arizona, Mojave Co. AF259254, AF259146, AF259184, ----- 

Crotalus tigris CLP169 USA, Arizona, Pima Co.  AF057223, AF057270, AY223606, AF156574 

Crotalus tortugensis ROM-18192, ROM-18195 Mexico, Baja California Sur, 
Isla Tortuga 

AF259257, AF259149, AF259187, ----- 

Crotalus transversus KZ-shed skin Mexico AF259239, AF259206, AF259169, ----- 

Crotalus triseriatus (LG) ROM-18114 Mexico, Districto Federal, 
Llano Grande 

AF259231, AF259124, AF259161, ----- 

Crotalus triseriatus (TO) ROM-18121 Mexico, Districto Federal, 
Toluca 

AF259233, AF259126, AF259163, ----- 

Crotalus triseriatus (XO) ROM-18120 Mexico, Districto Federal, 
Xochomiko 

AF259234, AF259127, AF259164, ----- 

Crotalus unicolor ROM-18150 Aruba Island AF259246, AF259138, AF259176, ----- 
2Crotalus “vegrandis” ROM-18261 Venezuela AF259247, AF259139, AF259177, ----- 

Crotalus willardi (2575) HWG-2575 USA, Arizona, Coshise Co. AF259242, AF259134, AF259172, ----- 

Crotalus willardi (413) ROM-FC363, KZ-413 USA, Arizona, Santa Cruz Co. AF259241, AF259133, AF259171, ----- 

Crotalus willardi (ROM) ROM-18183, ROM-18185 Mexico, Sonora AF259240, AF259132, AF259170, ----- 

Lachesis muta Cadle 135 Peru AF057221, AF057268, AY223604, AY223644 

Lachesis stenophrys   Costa Rica, Limón AF057220, AF057267, AY223603, U41885 

Ophryacus melanurus UTA-R34605 Mexico AF057210, AF057257, AY223587, AY223634 

Ophryacus undulatus CLP-73 Mexico AF057209, AF057256, AY223586, AY223633 

Porthidium arcose WWW-750 Ecuador AY223655, AY223668, AY223582, AY223631 

Porthidium dunni ENS-9705 Mexico, Oaxaca AY223654, AY223667, AY223581, AY223630  
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Taxon and sample identifier Voucher Locality Genbank numbers (12s, 16s, cyt-b, ND4) 
Porthidium nasutum MZUCR-11150 Costa Rica AF057204, AF057251, AY223579, U41887 

Porthidium ophryomegas UMMZ-210276 Costa Rica, Guanacaste Prov. AF057205, AF057252, AY223580, U41888 

Porthidium porrasi MSM Costa Rica, Puntarenas DQ305421*, DQ305444*, DQ061214, DQ061239 

Sistrurus catenatus Moody-502 USA, Texas, Haskel Co. AF057227, AF057274, AY223610, AY223648 

Sistrurus miliarus UTA-live USA, Florida, Lee Co. AF057228, AF057275, AY223611, U41889 
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of viperids (Causinae, Viperinae, Azemiopinae) were also included so that the monophyly of the 

Crotalinae could be assessed. We rooted phylogenies with members of the genus Causus based 

on previous suggestions that the Causinae is the sister group to all other viperids (McDiarmid et 

al., 1999).  

 

DNA sequencing and sequence alignment 

A majority of sequences used in this study have been published previously (Castoe et al., 

2003, 2005; Kraus et al., 1996; Malhotra and Thorpe, 2004; Murphy et al., 2002; Parkinson, 

1999; Parkinson et al., 1997, 2000, 2002). Laboratory methods for novel sequences generated for 

this study are provided below. Genomic DNA was isolated from tissue samples (liver or skin 

preserved in ethanol) using the Qiagen DNeasy extraction kit and protocol. Four mitochondrial 

gene fragments were independently PCR amplified and sequenced per sample. The 12s gene was 

amplified using the primers L1091 and H1557, and the 16s gene was amplified using the primers 

L2510 and H3059 (described in Parkinson et al., 1997; Parkinson, 1999). The cyt-b fragment 

was PCR amplified using the primers Gludg and AtrCB3 (described in Parkinson et al., 2002) 

and the ND4 fragment was amplified via PCR using the primers ND4 and LEU or ND4 and HIS 

as described in Arévalo et al. (1994). Positive PCR products were excised from agarose 

electrophoretic gels and purified using the GeneCleanIII kit (BIO101). Purified PCR products 

were sequenced in both directions with the amplification primers (and for ND4, an additional 

internal primer HIS; Arévalo et al., 1994). In cases where PCR products were too weak to 

sequence directly, they were cloned using the Topo TA cloning kit (Invitrogen). Plasmids were 

isolated from multiple clones per individual using the Qiaquick spin miniprep kit (Qiagen) and 
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sequenced using M13 primers. All sequencing was accomplished using the CEQ Dye Terminator 

Cycle Sequencing Quick Start Kit (Beckman-Coulter) and run on a Beckman CEQ8000 

automated sequencer. Raw sequence chromatographs were edited using Sequencher 4.2 (Gene 

Codes Corp.). Sequences of each fragment were aligned manually in GeneDoc (Nicholas and 

Nicholas, 1997). Alignment of protein-coding genes was straightforward and included several 

indels that represented deletions or insertions of complete codons. No internal stop codons were 

found in either protein coding fragment. Alignment of rRNA genes was based on models of 

secondary structure for snake mitochondrial rRNAs (Parkinson, 1999). A total of 24 sites were 

excluded because positional homology was not obvious (all occurred in loop structural regions of 

rRNA genes), including 10 sites from 12s and 14 sites from 16s. Novel sequences were 

deposited in GenBank (accession numbers DQ305409 – DQ305489; Table 12). 

 

Phylogenetic reconstruction 

Gaps in alignment were treated as missing data for all phylogenetic reconstructions. 

Maximum parsimony (MP) and Bayesian Metropolis-Hastings coupled Markov chain Monte 

Carlo (MCMC) phylogenetic methods were used to reconstruct phylogenies. Both methods were 

initially used to compare phylogenetic reconstructions based on each gene fragment 

independently. In general, we expect that mitochondrial loci should all contain phylogenetic 

signal supporting a common phylogeny because mitochondrial haplotypes are inherited 

maternally as a single linkage unit. We verified this assumption, prior to combining data, by 

reconstructing phylogenies of each gene independently and searching for strongly supported 

incongruent relationships across gene trees (e.g., Wiens, 1998).  
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Table 12. Description of complex partitioned models used in the analysis of the combined dataset. Each partition identified 
below was allocated the model selected by AIC criteria estimated in MrModeltest. 

Model Partitions 
Free Model 
Parameters Description of Partitions 

Harmonic Mean of 
Marginal 
Likelihood 

Akaike weight 
(Aw) 

Relative 
Bayes Factor 
(RBF) 

1x 1 11 single model for the entire dataset 
 

-66557.76 0.0000 ---- 

2x 2 22 protein coding genes; rRNA genes 
 

-66405.69 0.0000 27.65 

3x 3 33 codon positions 1+2; codon position 3; rRNA genes 
 

-66337.62 0.0000 20.01 

4xA 4 44 12s; 16s; codon positions 1+2; codon position 3 
 

-66300.39 0.0000 15.60 

4xB 4 44 12s; 16s; ND4; cyt-b 
 

-66342.22 0.0000 13.06 

5xA 5 51 rRNA stems, rRNA loops, codon position 1; codon 
position 2; codon position 3 
 

-66195.33 0.0000 18.12 

5xB 5 55 12s; 16s; codon position 1; codon position 2; codon 
position 3 
 

-66255.71 0.0000 13.73 

5xC 5 55 rRNA genes; ND4 position 1+2; ND4 position 3; cyt-
b position 1+2; cyt-b codon position 3 
 

-66043.64 0.0000 23.37 

8x 8 84 12s; 16s; ND4 position 1; ND4 position 2; ND4 
position 3; cyt-b position 1; cyt-b position 2; cyt-b 
position 3 
 

-65842.18 0.0000 19.60 

10x 10 94 all codon positions or stem and loop regions of each 
gene allocated independent model (labeled P1–10 in 
Table 2) 

-65737.02 1.0000 19.78 
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All MP phylogenetic analyses were conducted using PAUP* version 4.0b10 (Swofford, 

2002). All characters were treated as equally-weighted in MP searches. We used the heuristic 

search option with tree bisection reconnection (TBR) branch-swapping option, and 1,000 

random-taxon-addition sequences to search for optimal trees. Support for nodes in MP 

reconstructions was assessed using non-parametric bootstrapping (Felsenstein, 1985) with 1,000 

full heuristic pseudo-replicates (10 random-taxon-addition sequence replicates per bootstrap 

pseudo-replicate).  

MrModeltest v.2.2 (Nylander, 2004) was used to select an appropriate model of evolution 

for MCMC analyses because this program only considers nucleotide substitution models that are 

currently available in MrBayes v3.04b (Ronquist and Huelsenbeck, 2003). PAUP* was used to 

calculate model lilkelihoods for use in MrModeltest. Based on arguments presented by Posada 

and Buckley (2005), we used AIC (Akaike, 1973, 1974; Sakamoto et al., 1986) to select best-fit 

models in MrModeltest. In addition to the combined dataset, putative a priori partitions of the 

dataset were independently analyzed using MrModeltest to estimate best-fit models of nucleotide 

evolution. These best-fit models for each partition were implemented as partition-specific models 

within partitioned-model analyses of the combined dataset, similar to the suggestions of 

Brandley et al. (2005).  

All MCMC phylogenetic analyses were conducted in MrBayes 3.0b4 (Ronquist and 

Huelsenbeck, 2003) with vague priors and three incrementally heated chains in addition to the 

cold chain (as per the program’s defaults). Each MCMC analysis was conducted in triplicate, 

with three independent runs initiated with random trees, and run for a total of 4.0 x 106 

generations (sampling trees every 100 generations). Conservatively, the first 1.0 x 106 
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generations from each run were discarded as burn-in. Summary statistics and consensus 

phylograms with nodal posterior probability support were estimated from the combination of the 

triplicate set of runs per analysis.  

An initial set of MCMC runs (for the individual and combined datasets) was conducted 

using the model estimated by AIC in MrModeltest for each dataset. In addition to the 

unpartitioned model selected by AIC for the entire dataset, the combined dataset was subjected 

to additional MCMC analyses under nine alternative evolutionary models. These additional 

MCMC analyses were designed to allow independent models of nucleotide evolution to be 

applied to partitions of the combined dataset. This was accomplished by dividing the dataset into 

a priori assumed biologically relevant partitions and specifying that an independent (partition-

specific) model be used for each partition (using the “unlink” command in MrBayes). For these 

complex-partitioned models, only branch lengths and topology remained linked between 

partitions. These mixed models partitioned the combined dataset based on gene fragment type 

(protein coding or rRNA), gene, codon position (for protein encoding genes), and stem and loop 

secondary structure (for rRNA genes). The names and details of all models used to analyze the 

combined dataset are summarized in Table 13. MrBayes blocks containing the settings for 

various MCMC analyses are available from the authors upon request.  

We used three statistics to choose the best-fit partitioned model for analysis of the 

combined data: 1) Bayes factors (B10), 2) relative Bayes factors (RBF), and 3) Akaike weights 

(Aw) (as in Castoe et al., 2005). Each of these criteria allow objective evaluation of non-nested 

partitioned models, which is important here because several alternative models are non-nested. 

Bayes factors were calculated using the harmonic mean approximation of the marginal model  
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Table 13. Results of AIC model selection conducted in MrModeltest for partitions of the dataset. 

Partition AIC Model 
all data GTR+ΓI 
all rRNA GTR+ΓI 
all rRNA, stems SYM+ΓI 
all rRNA, loops GTR+ΓI 
12S GTR+ΓI 
12s, stems (=P1) SYM+ΓI 
12s, loops (=P2) HKY+ΓI 
16s GTR+ΓI 
16s, loops (=P3) GTR+ΓI 
16s, stems (=P4) SYM+ΓI 
all protein coding GTR+ΓI 
positions 1+2 GTR+ΓI 
position 1 GTR+ΓI 
position 2 GTR+ΓI 
position 3 GTR+ΓI 
cyt-b GTR+ΓI 
cyt-b, positions 1+2 GTR+ΓI 
cyt-b, position 1 (=P5)  GTR+ΓI 
cyt-b, position 2 (=P6) HKY+ΓI 
cyt-b, position 3 (=P7) GTR+ΓI 
Nd4 GTR+ΓI 
Nd4, positions 1+2 GTR+ΓI 
Nd4, position 1 (=P8) GTR+ΓI 
Nd4, position 2 (=P9) GTR+ΓI 
Nd4, position 3 (=P10)  GTR+ΓI 
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likelihood following Nylander et al. (2004; see also Kass and Raferty, 1995), and we report the 

results in the form of 2lnB10. Evidence for model M1 over M0 was considered very strong (and 

considered sufficient for our purposes) if 2lnB10 > 10 (Kass and Raftery, 1995, see also Nylander 

et al., 2004).  

Relative Bayes factors (RBF; Castoe et al., 2005) were used to quantify the average 

impact that each free model parameter had on increasing the fit of the model to the data. These 

values were also used to estimate the ratio of parameters to posterior evidence (of prior 

modification by the data) of increasingly complex partitioned models. This may provide a simple 

means of determining the parameter richness of candidate models tested in relation to how 

complex a model may be justified by the size and heterogeneity of a dataset (Castoe et al., 2005). 

We calculated the RBF of each complex model by calculating 2lnB10 between the base model 

and each complex (partitioned) model and dividing this by the difference in the number of free 

model parameters between the base and complex model (Castoe et al., 2005).  

Akaike weights (Aw) were employed as a means of confirming model choice, together 

with 2lnB10 estimates. To estimate Aw, we used the harmonic mean estimator of the model 

likelihood from MCMC analyses to incorporate an estimate of the marginalized likelihood of 

models (following Castoe et al., 2005). The higher the Aw for a model, the higher the relative 

support for that model.  

Once a tentative best-fit model was chosen for the combined data, this model was 

checked for evidence of parameter identifiability, failed convergence, and unreliability (which 

would suggest the model may be parametrically over-fit; e.g., Castoe et al., 2004; Huelsenbeck et 

al., 2002; Rannala, 2002). We investigated the performance of models (using Tracer; Rambout 
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and Drummond, 2003) by examining features of model likelihood and parameter estimate burn-

in, as well as the shapes and overlap of posterior distributions of parameters. We looked for 

evidence that model likelihood and parameter estimates ascended directly and rapidly to a stable 

plateau, and that independent runs converged on similar likelihood and parameter posterior 

distributions (considered evidence that a model was not over-fit). We also examined the model 

parameter estimates to confirm that the shape of their posterior distributions reflected a 

substantial modification of the priors (indicating their identifiability based on the data). As a 

secondary validation that the partitioning of the dataset was justified, we graphically compared 

posterior distributions of parameter estimates across partitions to confirm that, in fact, different 

partitions demonstrated unique posterior distributions of parameter estimates. 

 

 

Results 

 

Properties of the dataset 

The final alignment of all four gene fragments concatenated consisted of a total of 2306 

aligned positions: 417 from 12s, 503 from 16s, 717 from cyt-b, and 669 from ND4. This 

alignment contained 1105 parsimony-informative characters and 906 invariant characters.  

The greatest pairwise sequence divergence (uncorrected percent divergence) across all 

taxa was 20.8% (Causus resimus and Bothrops atrox), and 17.7% among crotaline taxa 

(Calloselasma rhodostoma and Sistrurus miliarus). The maximum divergence among Old World 
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pitvipers was 16.4% (C. rhodostoma and Cryptelytrops venustus), and 16.2% among New World 

pitvipers (Porthidium porrasi and Crotalus transverses). The mean divergence between Old and 

New World pitvipers was 12.9%.  

Individual gene phylogenies generally suffered from poor resolution and low support 

under MP and MCMC analyses. No instances of strongly supported differences across individual 

gene trees were observed, providing evidence for the assumption that individual genes supported 

a common phylogeny and are appropriate for combined data analysis. Previous studies that have 

analyzed many of the sequences used in this study have come to the same general conclusion 

supporting the combinability of these four gene fragments (e.g., Castoe et al., 2005; Malhotra 

and Thorpe, 2004; Murphy et al., 2002; Parkinson, 1999; Parkinson et al., 2002).  

 

Maximum Parsimony phylogenetic analyses 

The MP heuristic search found 12 equally-parsimonious trees, each with 14,816 steps. 

These trees had a consistency index of 0.162, a retention index of 0.568, and a homoplasy index 

of 0.838. The strict consensus of these 12 trees, along with nodal bootstrap support (BS 

hereafter) values, is provided (Fig. 14).  

Maximum parsimony phylogenetic estimates (Fig. 14) show strong support for a clade 

containing the monotypic Azeimopinae (Azemiops fea) and the Crotalinae (BS = 100), as well as 

the sister-group relationship of these two subfamilies (BS = 89). Three ancient clades of pitvipers 

are inferred by MP analyses: two exclusively Old World clades, and a third containing both Old 

and New World species, although support for these clades is low. The deepest phylogenetic split 

among pitvipers is estimated as being between a clade including Hypnale and Calloselasma and  
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Figure 14. Strict consensus cladogram of 12 equally-parsimonious trees obtained from maximum 
parsimony analysis of 2306 bp of mitochondrial DNA sequences (14816 steps, consistency index 
= 0.162, retention index = 0.568, homoplasy index = 0.838). Bootstrap support for nodes above 
50% is given adjacent to nodes; nodes receiving boostrap support of 100% are indicated by gray-
filled circles. 
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the remaining Crotalinae. Following this divergence, a clade including Deinagkistrodon, 

Garthius, and Tropidolaemus is estimated to be the sister group to the third ancient pitviper clade 

comprising the remaining Asiatic and New World species (Fig. 14).  

A large clade containing nearly all members of Trimeresurus sensu lato was strongly 

supported (BS = 89), as were a majority of intra and intergeneric relationships within this clade 

(Fig. 14). Trimeresurus sensu stricto is inferred to be polyphyletic, with T. gracilis distantly 

related to the remaining members. Monophyly of Popeia, Viridovipera, and Parias received 

moderate to strong (BS > 74) support, although Cryptelytrops was found to be polyphyletic, with 

a clade containing C. venustus and C. macrops distantly related to the remaining Cryptelytrops 

species (Fig. 14). Ovophis was found to be polyphyletic, with O. monticola estimated to be the 

sister lineage to a clade containing Triceratolepidophis, Zhaoermia, and Protobothrops (Fig. 14). 

The other representative of this genus included in this study, O. okinavensis, was strongly 

supported as the sister taxon to Trimeresurus gracilis, both forming the sister clade to Gloydius. 

This clade was weakly supported as the sister taxon to a moderately supported (BS = 76) clade 

including all New World genera (Fig. 14).  

The deepest phylogenetic relationships among New World genera were poorly resolved 

by MP analyses (Fig. 14). The temperate New World genera (Agkistrodon, Sistrurus, and 

Crotalus) did not form a clade (Fig. 14). Ophryacus and Lachesis formed a weakly supported 

clade, inferred as the sister group to Agkistrodon. Monophyly of Ophryacus, Lachesis, and 

Agkistrodon were all strongly supported (BS > 96), and monophyly of Bothriechis received weak 

support (BS = 58). The primarily Middle American genera Atropoides, Cerrophidion, and 

Porthidium formed a strongly supported (BS = 95) clade inferred to be the sister group to a clade 
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(BS = 100) containing the primarily South American genera Bothrocophias, Bothrops, and 

Bothriopsis. Within the Middle American group, monophyly of Porthidium was well supported 

(BS = 100). Atropoides was inferred to be paraphyletic (BS = 72) with respect to Cerrophidion 

and Porthidium, with A. picadoi distantly related to other Atropoides species. Within the South 

American group, a Bothrocophias clade (BS = 100) was inferred to be the sister taxon to a clade 

containing a Bothriopsis clade (BS = 100) and paraphyletic clustering of Bothrops species. 

Monophyly of the rattlesnakes, Sistrurus and Crotalus, was strongly supported (BS = 100), with 

a monophyletic (BS = 89) Sistrurus forming the sister taxon to a weakly supported (BS = 57) 

monophyletic Crotalus. Deep phylogenetic relationships among Crotalus species generally 

received weak support (Fig. 14). 

 

Selection, evaluation, and comparison of Bayesian MCMC models 

The single (unpartitioned) best-fit model for the combined dataset identified by AIC 

criteria was the GTR+ΓI model (Tavaré, 1996; Table 13; “1x” model in Table 12). In addition to 

this unpartitioned model, nine other models that allocated an independent model of nucleotide 

evolution to various partitions of the dataset within a combined data analysis were examined 

(Table 12). Partition-specific best-fit models selected using AIC criteria in MrModeltest are 

shown in Table 13, and included one of three different models selected for various partitions: the 

GTR+ΓI (11 free model parameters), the HKY+ΓI (Hasegawa et al., 1985; 7 free parameters), 

and SYM+ΓI (a GTR model with fixed equal base frequencies; 7 free parameters). Across all 

models for the combined dataset, Akaike weights (Aw = 1.0000; Table 12) and Bayes factors 

(2lnB10 > 210; Table 3) provided extremely strong support for the most complex partitioned 
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model examined, 10x, as the best-fit to the combined data. Relative Bayes factors demonstrate 

that, despite the large number of free model parameters in the 10x model, the average 

contribution of each parameter to increasing the overall likelihood remains high (RBF = 19.78), 

compared across other partitioned models (Table 12). Only one model, the 2x model in which 

protein-coding and rRNA genes were allocated separate models, had a RBF (27.65; Table 12) 

substantially higher than the 10x model.  

The best-fit 10x model showed no indications of being parametrically overfitted, or of 

poor mixing or convergence. The three independent runs of the 10x model produced identical 

tree topologies, extremely similar posterior probability estimates (all values within three 

percentage points, most less than three), and model likelihoods and parameter estimates that 

were nearly identical. Plots of the model likelihoods through generations from independent runs 

all show a rapid and direct ascent to a stationary plateau by no later than 200,000 generations 

(suggesting that burn-in occurred by this period), implying that our exclusion of the first 106 

generations (as “burn-in”) was conservative. Similar to plots of model likelihoods through time, 

plots of parameter estimates all demonstrated a direct approach to a stationary range, occurring at 

approximately the same number of generations as likelihood values appeared to reach 

stationarity (as visualized using Tracer). Based on our model-selection criteria, combined with 

our inability to identify any problems indicating that the 10x model is excessively parameter 

rich, we treat phylogenetic estimates based on the 10x model as our favored phylogenetic 

hypothesis hereafter.  

Substantial differences in parameter estimates were observed between the 1x model and 

the parameters of the 10x partitions, as well as among different partitions of the 10x model 
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(based on parameter means and 95% credibility intervals, CI hereafter; Table 14). A subset of 

parameter estimates is shown in Fig. 2. For each of the five parameters plotted across models and 

partitions, at least two partition-specific parameter estimates (based on CIs) from the 10x model 

do not overlap with the CI of the analogous parameter from the 1x model (Fig. 15). Among 

parameter CIs that do overlap between the 1x and 10x partitions, many partitions have parameter 

estimates in which a majority of posterior density is concentrated outside the 95% CI of the 1x 

model estimates (Fig. 15). Among model parameters, estimates of the gamma shape parameter 

(and I parameter, pInvar.) show the least overlap between 10x partitions and the 1x model, 

followed in magnitude by nucleotide frequencies, and then by parameters of the GTR 

substitution matrix (Fig. 15; Table 14).  

 

Bayesian phylogenetic hypotheses based on 10x partitioned model 

Bayesian phylogenetic estimates under the 10x partitioned model inferred a strongly 

supported clade (Pp = 100) comprising the Azemiopinae (Azemiops) and the Crotalinae, with the 

Crotalinae forming its own monophyletic group (Pp =100; Fig. 16). This MCMC phylogeny 

implied the same three early phylogenetic splits among pitvipers as did MP, although the 

relationships between the three were unresolved (Fig. 16). The first of these clades (Pp = 100) 

includes Hypnale and Calloselasma. The second of these clades (Pp = 92) includes 

Deinagkistrodon, Garthius, and Tropidolaemus. The third basal pitviper clade (Pp = 100) 

includes all remaining Old World and New World genera (Fig. 16). 
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Table 14. Mean and 95% credibility interval (in parentheses) of model parameters from Bayesian phylogenetic analyses of the 
combined data set conducted under the 1x and 10x models. Parameter estimates for each model are based on a total of 9 x 106 
generations combined from three independent MCMC runs. Partitions of the 10x model (P1 – P10) are defined in Table 2. 
Model - Partition Ti:Tv r(C–T) r(C–G) r(A–T) r(A–G) r(A–C) 
1x --- 7.21 (6.12–8.61) 0.77 (0.60–0.96) 0.83 (0.68–1.01) 11.63 (9.63–13.70) 0.57 (0.47–0.70) 

10x-P1 --- 
70.32 (34.36–
98.54) 1.50 (0.47–3.24) 4.70 (2.25–7.94) 

19.61 (10.35–
30.26) 6.33 (2.99–10.82) 

10x-P2 11.44 (9.89–13.18) --- --- --- --- --- 
10x-P3 --- 10.16 (5.97–16.51) 1.37 (0.59–2.69) 3.26 (1.74–5.58) 10.93 (6.02–18.78) 1.68 (0.75–3.17) 
10x-P4 --- 12.90 (6.78–26.99) 1.18 (0.47–2.67) 1.40 (0.71–2.95) 8.14 (4.41–16.01) 0.99 (0.48–2.07) 
10x-P5 --- 11.46 (6.01–21.67) 0.70 (0.25–1.52) 0.95 (0.45–1.82) 16.93 (9.51–30.88) 0.54 (0.29–1.03) 
10x-P6 --- 4.19 (2.59–6.86) 0.05 (0.01–0.14) 0.66 (0.35–1.18) 5.47 (3.33–8.88) 0.30 (0.17–0.52) 
10x-P7 --- 17.08 (4.12–60.87) 20.04 (6.09–65.38) 1.71 (0.34–6.17) 28.82 (8.15–82.77) 3.85 (0.65–14.12) 
10x-P8 --- 3.40 (2.27–5.09) 0.25 (0.12–0.44) 0.50 (0.31–0.78) 3.63 (2.44–5.29) 0.21 (0.12–0.35) 
10x-P9 7.27 (5.50–9.48) --- --- --- --- --- 
10x-P10 --- 6.05 (3.78–9.73) 1.70 (0.90–2.99) 0.63 (0.35–1.08) 15.74 (9.38–26.20) 0.36 (0.21–0.59) 
       
Model - Partition pi(A) pi(C) pi(G) pi(T) Γ pInvar. 
1x 0.35 (0.34–0.37) 0.36 (0.35–0.37) 0.07 (0.06–0.07) 0.22 (0.21–0.23) 0.63 (0.60–0.66) 0.31 (0.28–0.33) 
10x-P1 --- --- --- --- 0.39 (0.36–0.42) 0.29 (0.22–0.38) 
10x-P2 0.39 (0.36–0.42) 0.31 (0.29–0.34) 0.08 (0.07–0.09) 0.22 (0.20–0.24) 0.30 (0.27–0.32) 0.08 (0.03–0.14) 
10x-P3 --- --- --- --- 0.21 (0.19–0.22) 0.17 (0.08–0.25) 
10x-P4 0.47 (0.43–0.52) 0.24 (0.21–0.27) 0.07 (0.05–0.09) 0.22 (0.19–0.25) 0.46 (0.41–0.5) 0.32 (0.26–0.37) 
10x-P5 0.43 (0.40–0.47) 0.35 (0.32–0.38) 0.06 (0.05–0.06) 0.16 (0.15–0.18) 3.63 (2.76–4.62) 0.03 (0.00–0.07) 
10x-P6 0.35 (0.30–0.40) 0.38 (0.34–0.43) 0.10 (0.08–0.13) 0.17 (0.14–0.20) 0.33 (0.29–0.37) 0.21 (0.15–0.28) 
10x-P7 0.16 (0.12–0.20) 0.28 (0.23–0.34) 0.11 (0.06–0.15) 0.46 (0.40–0.52) 0.22 (0.20–0.25) 0.41 (0.33–0.49) 
10x-P8 0.37 (0.33–0.42) 0.33 (0.29–0.38) 0.09 (0.07–0.11) 0.20 (0.18–0.23) 0.48 (0.44–0.51) 0.34 (0.28–0.39) 
10x-P9 0.24 (0.20–0.29) 0.26 (0.22–0.30) 0.11 (0.09–0.14) 0.38 (0.34–0.43) 0.21 (0.20–0.23) 0.31 (0.23–0.38) 
10x-P10 0.32 (0.29–0.35) 0.43 (0.40–0.46) 0.04 (0.03–0.04) 0.21 (0.20–0.23) 2.89 (2.31–3.62) 0.03 (0.00–0.07) 
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Figure 15. Comparisons of means and 95% credibility intervals (CI) of selected nucleotide model 
parameters estimated from Bayesian MCMC analyses conducted under the 1x (unpartitioned) 
and the 10x (partitioned) models. Partitions of the 10x model are designated P1–P10 and 
correspond with Table 2. Gray-shaded bands indicate the 95% CI of parameters estimated under 
the 1x model. 
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Figure 16. Bayesian MCMC fifty-percent majority-rule consensus phylogram compiled from 
analyses of 2306 bp of mitochondrial DNA sequences analyzed under the best-fit “10x” 
partitioned model (see text for model definition and selection). Consensus phylogram and 
posterior probabilities (shown adjacent to nodes) were estimated from a total of 9 x 106 post-
burn-in generations (from three independent MCMC runs). Nodes receiving posterior probability 
support of 100% are indicated by grey-filled circles; otherwise, posterior probability support for 
nodes based on the 10x model is shown in black print. Posterior probability estimates based on 
the unpartitioned 1x model that differed notably from those from the 10x model are shown in 
black rectangles with white print (black boxes with dashes indicate clades that were not present 
in the consensus topology of the 1x tree). 
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A large clade containing almost all members of Trimeresurus sensu lato is strongly 

supported (Pp = 100). Trimeresurus sensu stricto was inferred to be polyphyletic (with strong 

support across several intervening nodes), with T. gracilis distantly related to a strongly 

supported clade (Pp = 100) containing the remaining members of Trimeresurus (Fig. 16). 

Monophyly of Popeia (Pp = 100), Viridovipera (Pp = 98), and Parias (Pp = 100) received strong 

support. Cryptelytrops was found to be monophyletic, unlike in the MP tree, but with low 

support (Pp = 63). Ovophis was estimated to be polyphyletic, with O. monticola placed as the 

sister lineage (Pp = 97) to a clade containing Triceratolepidophis, Zhaoermia, and 

Protobothrops. Within this clade, Zhaoermia was inferred as the sister lineage (Pp = 70) to a 

monophyletic (Pp = 100) Protobothrops clade. Ovophis okinavensis was strongly supported (Pp 

= 100) as the sister lineage to Trimeresurus gracilis (both taxa placed far from congeneric 

species); collectively, this clade formed the sister group to a monophyletic (Pp = 100) Gloydius 

(Fig. 16). The sister group to all New World genera was not resolved, with a polytomy uniting 

three clades (Pp = 100) including: a Gloydius, O. okinavensis, T. gracilis clade; an O. monticola, 

Triceratolepidophis, Zhaoermia, Protobothrops clade; and a third clade (Pp = 100) including all 

New World genera (Fig. 16.  

The earliest phylogenetic divisions among New World pitvipers were generally inferred 

with weak support and poor resolution. The earliest divergence within New World genera was 

estimated between a clade (Pp = 100) including Middle and South American bothropoid genera 

(Atropoides, Cerrophidion, Porthidium, Bothrocophias, Bothrops, Bothriopsis) and a weakly 

supported clade (Pp = 64) containing the remaining temperate and tropical New World genera 

(Fig. 16). The Middle American genera Atropoides, Cerrophidion, and Porthidium formed a 
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clade inferred to be the sister group to a clade comprising the South American genera 

Bothrocophias, Bothrops, and Bothriopsis (Pp = 100). Within the Middle American clade, the 

monophyly of Porthidium received strong support (Pp = 100). Atropoides was estimated to be 

paraphyletic (Pp = 78) with respect to Cerrophidion and Porthidium, due to A. picadoi not being 

grouped with other Atropoides species (Fig. 16). Among South American bothropoids, a 

monphyletic (Pp = 100) Bothrocophias formed the sister group to a clade containing a 

monophyletic (Pp = 100) Bothriopsis and a paraphyletic Bothrops group.  

Relationships among members of the second basal clade of New World genera (including 

tropical and temperate genera) were unresolved, with a polytomy between three clades: a clade 

(Pp = 51) containing a monophyletic Ophryacus (Pp = 100) and a monophyletic Lachesis (Pp = 

100), a clade (Pp = 100) including all Bothriechis species, and a clade (Pp = 52) containing the 

temperate New World genera (Agkistrodon, Sistrurus, and Crotalus). Monophyly of Agkistrodon 

and Sistrurus received strong support (both Pp = 100) and Crotalus monophyly received weak 

support (Pp = 75). Agkistrodon was weakly inferred to be the sister taxon (Pp = 52) to a clade 

including Crotalus and Sistrurus (Pp = 100). Deep phylogenetic relationships among Crotalus 

species received poor support (Fig. 16). 

 

Differences in MCMC phylogenetic estimates between 1x and 10x partitioned analyses  

Consensus topology and nodal posterior probabilities from the 1x model analyses that 

differed notably (Pp difference > 5 for weakly supported clades, > 3 for Pp values above 90) 

from that of the 10x model are indicated in Fig. 16. A majority of the differences between the 

MCMC phylogeny based on the unpartitioned 1x model, compared to the partitioned 10x model, 
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represented changes in the posterior probability for moderately or weakly supported nodes. No 

nodes receiving 100% Pp under one model received less than 97% Pp support under the other 

model. Posterior probabilities that differed notably between the 1x and 10x estimates tended to 

show higher Pp estimates in the 10x model, although examples to the contrary were observed. 

This trend of increased Pp support under the 10x model was more pronounced at deeper nodes 

(Fig. 16).  

There were no major changes in the tree topology between the 1x and 10x analyses 

(considering moderate to well supported clades). The 50% majority rule consensus topology, 

however, did show several differences in resolution of poorly supported clades between 

estimates. The only important difference in the majority-rule consensus topology among Old 

World pitvipers was the collapse of the internode supporting Cryptelytrops venustus plus C. 

macrops as sister to the remaining members of the genus, hence the failure of the 1x model to 

infer/resolve the monophyly of Cryptelytrops (1x-Pp < 50, 10x-Pp = 63). Deep phylogenetic 

relationships among New World pitvipers, based on the 50% majority-rule consensus of the 1x 

analyses, suggest a different (yet poorly supported) topology with a primary phylogenetic 

division occurring between a clade containing Sistrurus and Crotalus (the rattlesnakes; Pp = 

100), and the remaining New World genera (Pp = 51), similar to that seen in the MP tree. Within 

this second large New World clade, there was a polytomy of three lineages in the 1x tree 

including the following clades: 1) an Agkistrodon clade, 2) a Lachesis and Ophryacus clade, and 

3) a clade containing Bothriechis as the sister group (Pp = 56) to Middle and South American 

bothropoid genera. Relationships among several Crotalus species also show alternative 

consensus topology between models, largely resulting from the placement of C. enyo shifting 
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from the sister taxon to C. willardi in the 1x tree (Pp = 59), to the sister lineage (Pp = 78) of a 

clade containing C. molossus, C. basiliscus, C. unicolor, C. durissus, and C. “vergrandis” in the 

10x tree.  

 

 

Discussion 

  

Strengths and limitations of complex partitioned models 

Model specification in Bayesian MCMC analyses is inherently critical to the accuracy of 

phylogeny estimates since Bayesian Pps represent estimates of bipartition support that are 

dependent on the model (and priors) and the data (Huelsenbeck et al., 2002; Larget and Simon, 

1999; also see Huelsenbeck and Rannala, 2004). In general, Pps have been shown to be less 

conservative than bootstrap values (Douady et al., 2003; Erixon et al., 2003; Leaché and Reeder, 

2002; see also Cummings et al., 2003). Nonetheless, broad claims that bipartition Pps represent 

over-inflated estimates of phylogenetic confidence (e.g., Simmons et al., 2004; Suzuki et al., 

2002) are not necessarily justifiable. Available evidence suggests, instead, that Pp values provide 

a more powerful estimate of phylogenetic structure present in aligned sequences than do BS 

values (Alfaro et al., 2003; Wilcox et al., 2002), provided major assumptions of the method are 

not violated (e.g., Suzuki et al., 2002). Many studies agree that Bayesian analyses conducted 

using overly simplistic models suffer from decreased Pp accuracy (e.g., Erixon et al., 2003; 

Huelsenbeck and Rannala, 2004; Suzuki et al., 2002; Wilcox et al., 2002). In contrast, simulation 
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studies have shown that when Bayesian analyses are conducted using models more complex than 

that used to generate simulated data, Pp accuracy remains high (Huelsenbeck and Rannala, 2004; 

Lemmon and Moriarty, 2004). Collectively, these conclusions suggest that using a 

“compromise” model, in which multiple unique patterns of evolution are modeled using a single 

set of parameters, appears to be a major concern for phylogenetic estimatimation. Partitioning 

models of evolution across portions of a dataset provides a straightforward means of reducing the 

biases inherent with oversimplified modeling in Bayesian phylogenetic analyses. Generally, 

favoring the use of more complex models offers the best chance of recovering an accurate 

Bayesian phylogenetic estimate, as long as parameters can be accurately identified from the data 

(see also Huelsenbeck and Rannala, 2004). The upper limit of model complexity imposed by the 

need for parameters to be estimatable (or identifiable; see Castoe et al., 2004; Huelsenbeck et al., 

2002; Rannala, 2002) is the primary justification for employing methods of model selection (e.g., 

Bayes factors, Akaike weights) and post hoc MCMC run evaluation in Bayesian phylogenetic 

analyses.  

To what extent is an unpartitioned model forced to compromise estimates of model 

parameters in the analysis of a combined multi-gene dataset (as in our case), versus a model like 

the 10x that contains several partitions? Our results suggest that this compromise is extreme in 

some cases, and is evident across different classes of model parameters. Comparisons of the 95% 

CI of parameter estimates derived from the 1x, versus partitions of the 10x model (Fig. 15, Table 

14), show many instances where 95% CIs of partitions do not overlap those based on the 1x 

model. Furthermore, many CIs that do overlap do not coincide for a majority of their posterior 

densities. These findings point directly at the elevated potential for an unpartitioned model to fall 
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into the trap identified in simulation studies where an oversimplified model suffers from 

decreased posterior probability accuracy. Collectively, available evidence supports not only the 

use of complex models (including partitioned models), but implies that these may be crucial for 

accurate phylogenetic estimates (see also Huelsenbeck and Rannala, 2004).  

Across the models we tested for the combined data, all model-selection criteria supported 

the most complex partitioned model by a large margin (the 10x model). A majority of Bayes 

factors provided extremely strong support for increasingly complex models (data not shown). 

Relative Bayes factors (RBF) for increasingly complex models remained high, suggesting high 

returns on parameter addition even with increasing model complexity (Castoe et al., 2005). 

Collectively, these results seem to suggest that even more complex models than those tested here 

are likely to have been favored by model-selection criteria. Our most complex candidate model 

exhausted our a priori conceptions of biologically meaningful partitions of the data, placing an 

upper limit on the models examined. Future studies that investigate additional partitioning 

schemes (e.g., identify heterogeneous patterns within genes not examined here) may provide 

additional suggestions for partitioning heterogeneous datasets (Faith and Pollock, 2003; 

Huelsenbeck et al., 2004).  

How should the differences in phylogenetic hypotheses between simple and complex 

models be interpreted? We found complex models to result in changes in Pps of clades that, in 

some instances, altered the Bayesian consensus topology. These changes tended to provide 

higher Pps in the complex (10x) model, with a majority of changes concentrated at deeper nodes 

(e.g., Brandley et al., 2005; Castoe et al., 2004, 2005; see also Alfaro et al., 2003). This 

observation raises two possibilities, either complex models result in over-inflated Pp support, or 
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they provide (at least on average) more accurate estimates of nodal support. Three points of 

evidence suggest that complex models do generally provide to more accurate, rather than over-

inflated, posterior probability estimates: 1) the results of simulation studies discussed above, 2) 

empirical studies, including this one, demonstrating that even though a majority of nodes may 

increase, some decrease under complex model analyses (see also Brandley et al., 2005; Castoe et 

al., 2004, 2005; Nylander et al., 2004), and 3) results that show a coincidence between clades 

that show increased Pp support under complex-model analyses and are also supported by other 

independent data (noted below; see also examples in Castoe et al., 2005).  

 

Phylogeny and systematics of pitvipers 

In agreement with previous studies (e.g., Kraus et al., 1996; Malhotra and Thorpe, 2004; 

Parkinson et al., 2002), our results provide strong support for the monophyly of the Crotalinae 

(BS = 100, Pp = 100) and the Azemiopinae as its sister lineage (BS = 89, Pp = 100). We found 

evidence of three early-diverging lineages of pitvipers, two exclusively Old World clades, and a 

third containing both Old and New World species, although the branching pattern and order 

among these three clades was poorly resolved (Figs. 14, 16). Strong support for two exclusively 

Old World clades, Hypnale plus Calloselasma, and Deinagkistrodon, Garthius, and 

Tropidolaemus, was found by MP and MCMC analyses, although it remains unclear whether 

these two clades are sister groups (Figs. 14, 16). The third early-diverging pitviper group 

included all other Old and New World genera (Fig. 16), including a clade containing all 

members of Trimeresurus sensu lato (except T. gracilis) inferred to be the sister lineage to the 

remaining Old and New World genera. 
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The recent generic subdivision of Trimeresurus (Malhotra and Thorpe, 2004) is 

supported by our results. Monophyly of Popeia, Viridovipera, and Parias received strong 

support under MCMC (Pp > 97) and MP (BS > 74) analyses. Although Cryptelytrops was 

paraphyletic under MP (Fig. 14) and unresolved in the 1x MCMC tree, the 10x MCMC tree 

weakly supported the monophyly of this new genus (Pp = 63; Fig. 16). Monophyly of 

Cryptelytrops is additionally supported by the presence of long, slender, deeply-bifurcated 

papillose hemipenes (and other external morphological characters) in members of this genus 

(Malhotra and Thorpe, 2004). Interestingly, the monophyly of Viridovipera, united by the 

possession of spinose “type 2” hemipenes (Malhotra and Thorpe, 2004), also received increased 

support under the 10x (Pp = 98) versus the 1x model (Pp = 84; Fig. 16). We found strong 

support for the validity of two newly described monotypic genera, Triceratolepidophis (Ziegler 

et al., 2000) and Zhaoermia (Zhang, 1993; Gumprecht and Tillac, 2004), which formed a clade 

with Protobothrops (BS < 50, Pp = 100). Zhaoermia was inferred with weak to moderate support 

(BS = 73, 1x-Pp = 88, 10x-Pp = 70) as the sister lineage to a clade (BS = 97, Pp = 100) 

comprising Protobothrops species.  

All analyses provided strong evidence that Trimeresurus sensu stricto is rendered 

polyphyletic by T. gracilis being placed distantly from remaining members of Trimeresurus. 

Similarly, the placement of O. okinavensis (distant from the type species O. monticola ) renders 

the genus Ovophis polyphyletic. These two enigmatic species, O. okinavensis and T. gracilis, 

formed a strongly supported clade in all analyses (BS = 100, Pp = 100). Our results supporting 

the close relationship of T. gracilis and O. okinavensis, and the distant relationship of these taxa 

to congeneric species, is in agreement with previous studies based on mitochondrial gene 
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sequences (Malhotra and Thorpe, 2000, 2004) as well as sequences of a nuclear intron (Giannasi 

et al., 2001). The close relationship of these two species is particularly surprising because T. 

gracilis (like a majority of pitvipers) gives live birth to offspring, whereas O. okinavensis is 

among the few egg-laying species. Malhotra and Thorpe (2004) discussed possible actions to 

rectify the current generic allocation of O. okinavensis and T. gracilis (i.e., recognition of these 

species as a new genus versus allocating them to the genus Gloydius). These authors deferred 

taxonomic action until they could amass additional hemipenal and other morphological 

characters (work in progress by Malhotra and Thorpe), and we follow their decision.  

Which lineage is the sister group to the New World pitvipers is an important question, 

with numerous ramifications relative to biogeography and trait evolution, yet no two studies have 

yielded identical results. Among molecular-based hypotheses, four Old World genera 

(Protobothrops, Ovophis, Trimeresurus and Gloydius) have been variously estimated as the 

sister group to the New World clade (Knight et al., 1992; Malhotra and Thorpe, 2004; Parkinson, 

1999; Parkinson et al., 2002). Although support was weak, our MP tree inferred a clade 

containing Gloydius, O. okinavensis, and T. gracilis as the sister group to all New World genera 

(Fig. 14). Bayesian estimates did not resolve this relationship (based on the 50% majority-rule 

consensus), and yielded a polytomy between three clades: 1) a clade including all New World 

genera, 2) a Gloydius, O. okinavensis, T. gracilis clade, and 3) a clade containing Protobothrops, 

Zhaoermia, Triceratolepidophis, and O. monticola.  

Early pitviper systematic studies suggested a close relationship between terrestrial 

pitvipers with large head shields (rather than many small head scales) in the Old World and New 

World, recognizing a trans-continental genus Agkistrodon (e.g., Gloyd and Conant, 1990). 
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Several studies, including our results, indicate that New World and Old World Agkistrodon 

(sensu lato) do not form a clade exclusive of other New World pitvipers (e.g., Knight et al., 

1992; Kraus et al., 1996; Parkinson et al., 1997, 2002), supporting the recognition of Gloydius 

(Hoge and Romano-Hoge, 1981) for the Asiatic members of Agkistrodon sensu lato. Despite the 

polyphyly of Agkistrodon sensu lato, Gloydius is relatively close phylogenetically to New World 

pitvipers (Figs. 14, 16).  

All non-crotaline members of the Viperidae are distributed exclusively in the Old World. 

Here, as in other studies (Kraus et al., 1996; Malhotra and Thorpe, 2004; Parkinson, 1999; 

Parkinson et al., 2002), we find strong evidence for multiple early-diverging lineages of Old 

World pitvipers, and the relatively recent origin of a monophyletic clade of New World pitvipers. 

Kraus et al. (1996) were the first to provide molecular evidence for the monophyly of all New 

World pitvipers and suggest a historical biogeographic scenario for pitvipers including a single 

dispersal event from the Old World into the New World, and subsequent studies have supported 

this hypothesis (Kraus et al., 1996; Parkinson, 1999; Parkinson et al., 2002; see also Gutberlet 

and Harvey, 2002, 2004).  

Phylogenetic estimates based on both MP and MCMC did not resolve the deep 

phylogenetic relationships among New World genera with any decisive levels of support (Figs. 

14, 16). We did not find evidence for a temperate (Agkistrodon, Sistrurus, Crotalus) clade as the 

sister group to the remaining New World (Neotropical) genera, as has been suggested by several 

studies (e.g., Gutberlet and Harvey, 2002; Parkinson et al., 2002). The Bayesian 10x tree placed 

the earliest New World phylogenetic split between a clade (Pp = 100) including the Middle and 

South American bothropoid genera (Atropoides, Cerrophidion, Porthidium, Bothrocophias, 
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Bothrops, Bothriopsis) and a weakly supported clade (Pp = 64) containing the remaining 

temperate and tropical New World genera (Fig. 16).  

Morphological and molecular studies have found strong support for the monophyly of the 

primarily temperate genera (Agkistrodon, Sistrurus, and Crotalus; e.g., Gutberlet and Harvey, 

2002; Parkinson et al., 2002). Although MP and Bayesian analyses under the 1x model did not 

resolve this temperate clade, this clade was weakly supported (Pp = 52) under the 10x MCMC 

model. Monophyly of Agkistrodon and the rattlesnakes (Sistrurus and Crotalus) was strongly 

supported by both MP and MCMC analyses. The monophyly of the rattlesnake genera was 

supported by both MP and MCMC, although Crotalus monophly received weak support (BS = 

57, 1x-Pp = 81, 10x-Pp = 75). Our estimates of Crotalus phylogeny differ notably from 

estimates of Murphy et al. (2002, based only on MP including many of the same sequences as 

this study), although many deep phylogenetic relationships among Crotalus species received 

weak support under MP and MCMC analyses (Figs. 14, 16). Both MP and MCMC inferred C. 

polystictus to be the sister taxon to the remaining Crotalus species, instead of C. ravus as 

suggested by Murphy et al. (2002). Other novel relationships in our trees include the early 

divergence of C. cerastes, and the placement of C. enyo as the sister taxon to a clade containing 

C. molossus, C. basiliscus, C. unicolor, C. durissus, and C. “vegrandus” (Fig. 16; rather than 

nested within it). Despite the inclusion of nearly all Crotalus species by Murphy et al. (2002), 

and in this study, our understanding of relationships among rattlesnakes remains incomplete.  

Several molecular studies have supported a clade comprising the primarily Middle 

American genera Porthidium, Atropoides, and Cerrophidion (Castoe et al., 2003, 2005; 

Parkinson, 1999; Parkinson et al., 2002), although studies incorporating morphological data 
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disagree (Gutberlet and Harvey, 2002; Werman, 1992; see also Gutberlet and Harvey, 2004). 

These Middle American genera formed a strongly supported clade (BS = 96, Pp = 100) inferred 

as the sister group to a clade comprising the South American genera Bothrocophias, Bothrops, 

and Bothriopsis (as in Castoe et al., 2005; Parkinson et al., 2002). Within the Middle American 

group, Atropoides appeared paraphyletic (BS = 72, 1x-Pp = 73, Pp = 78) with respect to 

Cerrophidion and Porthidium, with A. picadoi distantly related to other Atropoides species (Fig. 

16). Based on results of several studies, the phylogenetic status of Atropoides appears to be a 

difficult problem to solve with molecular data (Castoe et al., 2003, 2005; Kraus et al., 1996; 

Parkinson, 1999; Parkinson et al., 2002). A recent study using two mitochondrial gene sequences 

(ND4 and cyt-b) for a large sample of Middle American pitvipers did resolve Atropoides 

monophyly with moderate support (Castoe et al., 2005), as had been found by studies based on 

morphology (Gutberlet and Harvey, 2002) and morphology plus allozymes (Werman, 1992). 

This example demonstrates the potential impact of taxon sampling and inclusion of 

morphological characters on estimating pitviper phylogeny.  

As the sister group to Middle American pitvipers in all analyses, the South American 

bothropoid genera formed a strongly supported clade (BS = 100, Pp = 100) with Bothrocophias 

estimated to be the sister taxon to a clade containing a monophyletic (BS = 100, Pp = 100) 

Bothriopsis and a paraphyletic Bothrops grouping. The problem of the recognition of 

Bothriopsis, rendering Bothrops paraphyletic, has been noted by many studies (e.g., Gutberlet 

and Harvey, 2002; Gutberlet and Campbell, 2001; Parkinson, 1999; Salomão et al., 1997; Wüster 

et al., 2002), with some suggesting that Bothriopsis should not be recognized (e.g., Salomão et 

al., 1997; Wüster et al., 2002). Currently, Bothrops contains a large and diverse assemblage 
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(around 40 species; Campbell and Lamar, 2004) of primarily South American pitvipers, and 

some have argued that the genus Bothriopsis should be retained and Bothrops be subdivided to 

rectify the current paraphyly of the genus. The subdivision of Bothrops is most consistent with 

recent trends in pitviper systematics characterized by the recognition of genera that include 

restricted numbers of ecologically and morphologically similar species, rather than recognition 

of genera including a broad diversity and large number of species (e.g., Gutberlet and Campbell, 

2001; Campbell and Lamar, 1992; Malhotra and Thorpe, 2004). Neither this study, nor previous 

studies, have sufficiently sampled Bothrops species to the extent that new generic allocations 

from within Bothrops are obvious. Our results do suggest, however, that subdivision of Bothrops 

may be accomplished by recognition of at least the three major groups receiving strong support 

throughout our analyses, including: 1) B. ammodytoides, B. cotiara, and B. alternatus, 2) B. 

jararacussu, B. atrox, and B. asper, and 3) B. insularis, B. erythromelas, and B. diporus clades 

(see also Salomão et al., 1997, 1999; Parkinson, 1999; Parkinson et al., 2002; Werman, 1992; 

Wüster et al., 2002). The challenge of placing unsampled species within these groups, and 

confirming that these three groups are monophyletic, needs to be confronted before a valid 

taxonomy can be proposed (see also Gutberlet and Harvey, 2004).  

Studies incorporating morphological data have inferred Ophryacus to be the sister taxon 

to Bothriechis (Gutberlet, 1998; Gutberlet and Harvey, 2002; Werman, 1992), although no DNA-

sequence-based evidence has supported this relationship (Kraus et al., 1996; Parkinson, 1999; 

Parkinson et al., 2002; see discussion in Gutberlet and Harvey, 2004). Our phylogenies place 

Ophryacus in a clade with Lachesis with weak support (BS < 50, 10x model Pp = 51). It is 

interesting to note that the 10x MCMC analyses showed decreased Pp support for this 



 175

relationship compared to the 1x model (Pp = 78), vaguely suggesting convergence of the 10x 

model on trees that are more in agreement with morphological studies (that reject the existence 

of this clade). Neither MP nor MCMC results resolved the sister lineage to Bothriechis, but both 

supported monophyly of the genus (BS = 66, Pp = 100).  

 

Future directions for pitviper systematics 

Over thirty years of intense research on pitviper systematics, including works by 

numerous authors, have produced a phylogeny that is nearing resolution and a current taxonomy 

that is approaching stability. Sampling of molecular phylogenetic characters has, to date, been 

largely restricted to mitochondrial gene data, except for studies restricted to particular groups 

(Giannasi et al., 2001; Creer et al., 2003). Although mitochondrial gene sequences provide a 

large number of variable characters, homoplasy due to the high divergence of mitochondrial 

sequences probably substantially hinders estimates of deep relationships among pitvipers. 

Sequences of nuclear genes may hold valuable synapomorphies required to solidify estimates of 

relationships at deeper nodes that are not confidently resolved in this study. Additionally, no 

studies have combined morphological and molecular data to estimate pitviper relationships. 

These future directions have the potential for establishing robust synapomorphic evidence for 

relationships, particularly at the inter-generic level, that comprise a majority of the currently 

outstanding questions in pitviper phylogeny and systematics. 
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CHAPTER 5 – COMPARATIVE MITOCHONDRIAL GENOMICS OF 
SNAKES: EXTRAORDINARY SUBSTITUTION RATE DYNAMICS AND 

FUNCTIONALITY OF THE DUPLICATE CONTROL REGION 
 

 

Introduction 

 

The vertebrate mitochondrial genome has been an important model system for studying 

molecular evolution, organismal phylogeny, and genome structure. The versatility and 

prominence of vertebrate mitochondrial genomes stems from their compactness and manageable 

size for sequencing and analysis, well-characterized replication and transcription processes (e.g., 

(Clayton, 1982; Fernandez-Silva et al., 2003; Shadel and Clayton, 1997; Szczesny et al., 2003); 

see also (Holt and Jacobs, 2003; Reyes et al., 2005; Yang et al., 2002)), and the diversity of 

protein and structural RNA genes that they encode. Vertebrate mitochondrial genomes generally 

lack recombination and have a conserved genome structure, although instances of intramolecular 

recombination have been proposed (Piganeau et al., 2004; Tsaousis et al., 2005), and there are 

numerous examples of structural rearrangements (Cooper et al., 2001; Mindell et al., 1998; 

Sankoff et al., 1992). Despite extensive molecular studies, little is known regarding the ways in 

which genome architecture might affect the various aspects of genome function and evolution 

(including replication, transcription, and function of proteins and RNAs). Nevertheless, patterns 

linking mitochondrial genome structure, function, and nucleotide evolution have begun to 

emerge (Krishnan et al., 2004a; Krishnan et al., 2004b; Raina et al., 2005).  
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The mitochondrial genome (mtDNA) has long been believed to replicate asymmetrically 

(Clayton, 1982), which creates a substantial difference in mutation rates and nucleotide 

composition biases between strands (Bielawski and Gold, 2002; Jermiin et al., 1995; Perna and 

Kocher, 1995a, b; Tanaka and Ozawa, 1994). During replication under the classical model, the 

synthesis of the nascent heavy strand initiates at the origin of heavy strand replication (OH), 

within the control region (CR). This has been extensively reviewed elsewhere (Bielawski and 

Gold, 2002; Faith and Pollock, 2003), but in brief, after two thirds of the nascent heavy strand is 

synthesized, the synthesis of the nascent light strand starts at the origin of light strand replication 

(OL), a short secondary structure forming segment located within the tRNA cluster (the WANCY 

region) between the NADH dehydrogenase subunit 2 (ND2) and Cytochrome C oxidase subunit 

1 (COX1) genes. The strand-asymmetric replication mechanism has been thought to expose 

different regions of the parental heavy strand to varying amounts of time in the single-stranded 

state during replication (DssH; (Tanaka and Ozawa, 1994)), depending on the distances of the 

regions from the OH and OL. Variation in this strand-asymmetric mutation processes appears to 

have contributed substantially to variation in substitution rates among genes (Bielawski and 

Gold, 2002; Faith and Pollock, 2003; Raina et al., 2005).  

Controversy has recently arisen concerning the classical mitochondrial replication 

mechanism, mostly concerning the asymmetry of the process, the role of the putative origin of 

light strand replication, and whether the replicating DNA spends substantial amounts of time 

single-stranded (Reyes et al., 2005; Yang et al., 2002; Yasukawa et al., 2005). Although the 

newly proposed models of replication are directly at odds with the genetic data, one of us has 

hypothesized (Pollock, in review) that most of the biochemical and genetic data is compatible 
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with a reconciled model of mitochondrial replication, which retains most critical features of the 

classical model except for single strandedness. Regardless of the final reconciliation, to take a 

neutral position on the biochemical issue of single-strandedness we will refer to the time that a 

gene or nucleotide is predicted to spend in an asymmetric mutagenic state ( TAMS
 ), rather than the 

predicted duration of time that the heavy strand spends single-stranded ( SSHD
 ); the calculation 

is, however, identical to that for SSHD  (Faith and Pollock, 2003; Reyes et al., 1998; Tanaka and 

Ozawa, 1994).  

Cytosine →Uracil deaminations are common in single-stranded DNA, while Adenine → 

Hypoxanthine deaminations are less common (Frederico et al., 1990; Impellizzeri et al., 1991). 

These two deaminations lead to mutations (Cytosine→Thymine and Adenine→Guanine, or 

C→T and A→G) that appear to account for most of the asymmetry in synonymous substitutions 

found in vertebrate mtDNA (Bielawski and Gold, 1996; Faith and Pollock, 2003; Frank and 

Lobry, 1999; Krishnan et al., 2004a; Krishnan et al., 2004b; Raina et al., 2005; Rand and Kann, 

1998; Reyes et al., 1998). C→T and A→G mutations on the heavy strand during replication 

apparently lead respectively to G→A and T→C substitutions (and G and T deficiencies) on the 

light strand. Most protein-coding genes (all but ND6) use the heavy strand as a template; thus, 

the mutation biases observed in the light strand parallel the biases in most protein-coding gene 

transcripts. Faith and Pollock (Faith and Pollock, 2003) found that, in vertebrates, T→C light 

strand substitutions at four-fold and two-fold redundant 3
rd

 codon positions increase linearly with 

increasing TAMS
 . In contrast, G→A light strand substitutions increase rapidly but quickly reach a 
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maximal level. Consequently, T→C substitutions and the resultant C/T nucleotide frequency 

gradient are good predictors of TAMS.  

The mitochondrial genomes of snakes contain a number of qualities and structural 

features that are unusual among the vertebrates. Snake mitochondrial genomes have elevated 

evolutionary rates and contain truncated tRNAs (Dong and Kumazawa, 2005; Kumazawa et al., 

1998). All snake species sampled to date, except the scolecophidian snake Leptotyphlops dulcis, 

have a duplicated control region (CR2) between NADH dehydrogenase subunit 1 (ND1) and 

subunit 2 (ND2), in addition to a control region (CR1) adjacent to 5’-end of  the 12s rRNA, as it 

is in other vertebrates. These two control regions appear to undergo concerted evolution that acts 

to homogenize the nucleotide sequence of each duplicate copy within a given genome (Dong and 

Kumazawa, 2005; Kumazawa et al., 1996, 1998). The functionality of these two control regions 

in transcription and initiation of heavy strand replication is not clear, but since the nucleotide 

sequence of each is nearly identical, any functional features that are not dependent on 

surrounding sequences should be similar. In contrast, recent evidence suggest that initiation of 

heavy strand replication may be distributed across a broad zone, including cytochrome b (CytB) 

and NADH dehydrogenase subunit 6 (ND6) (Reyes et al., 2005), indicating that CR2 may not 

function as effectively in this role.  

A number of interesting questions arise that might be addressed through comparative 

analysis, including: (1) does one or the other, or do both control regions function as origins of 

heavy strand DNA synthesis? (2) does the altered genome structure affect patterns of snake 

mtDNA molecular evolution? (3) when during snake evolution did various features arise, and do 

particular features appear to coincide? (4) do patterns of molecular evolution vary at different 
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depths of phylogeny? and (5) is there any evidence or plausible rationale for selection as a 

causative agent in generating these differences in genomic structure and molecular evolutionary 

patterns?  

To investigate outstanding questions regarding snake mitochondrial genome evolution, 

structure, and function, we analyzed a dataset consisting of three new complete snake 

mitochondrial genomes together with eight previously published snake mitochondrial genomes, 

and 42 other vertebrate mitochondrial genomes for comparative purposes. The new snake 

genomes were obtained from Pantherophis slowinskii (a corn snake from Louisiana; previously 

Elaphe guttata), and from Agkistrodon piscivorus (the cottonmouth or water moccasin; one 

specimen from Florida and the other from Louisiana). These genomes were targeted in order to 

increase the phylogenetic density of sampling in alethinophidian snakes, which appear to show 

among the most interesting mitochondrial genome evolutionary patterns based on previous 

studies (Kumazawa et al., 1996, 1998).  

The research presented here constitutes an exploratory comparative study of genomic 

architecture and substitution rate variation among genes and among lineages. Given the large 

amount and diversity of data in this study, we have deferred to a future study all analysis of site-

specific selection via dN/dS ratios and its relation to details of protein structure and function. 

Although this dataset does not (and was not designed to) resolve any major questions in 

squamate phylogeny, we were able to map onto the phylogeny changes in genome size, gene 

organization, tRNA size and structure, and dynamics of gene-specific evolutionary rates, and to 

conduct detailed comparisons of mtDNA evolution at the intraspecific level with the two A. 

piscivorus samples. We also used predictions based on the asymmetrical pattern of mitochondrial 
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genome replication (and corresponding nucleotide substitution and frequency biases) to make a 

preliminary assessment of control region functionality.  

 

 

Material and Methods 

 

Sampling, sequencing and annotation  

Several complete mitochondrial genomes of snakes have been published, and previous 

snake mtDNA sampling has targeted divergent lineages (e.g., no family of snakes is represented 

by multiple examples). To complement this broader sampling, we sequenced complete mtDNAs 

of two species, each of which representing the second taxon within a family from which a 

complete mtDNA was already available. Also, we sequenced two mtDNAs from divergent 

populations of a single species. Thus, our taxonomic sampling was designed to complement 

existing snake mtDNA sequences by providing comparative genomic data at shallower levels of 

phylogenetic divergence. Such sampling is essential to more accurately assess details concerning 

the process of evolution. 

DNA was extracted from vouchered specimens available at the Louisiana State 

University Museum of Natural Science (LSUMZ) and the University of Central Florida (CLP). 

The A. piscivorus (cottonmouth or water moccasin; Viperidae) specimens were from Louisiana, 

USA (LSUMZ-17943) and from Florida, USA (CLP-73). We will refer to these as Api1 

(Louisiana specimen) and Api2 (Florida specimen). The P. slowinskii (corn snake; Colubridae) 
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specimen was from Louisiana, USA (LSUMZ- H-2036). The genus Pantherophis (Utiger et al., 

2002) was recently erected to contain a clade of species formerly allocated to Elaphe. The 

species P. slowinskii was formerly considered Pantherophis (Elaphe) guttatus, and was recently 

recognized as a distinct species (Burbrink, 2002). The P. slowinskii specimen used as a source of 

DNA in this study is the type specimen for the species. Since no genera in this study are 

represented by multiple species, for mnemonic convenience we will hereafter primarily use the 

names of genera to identify sources of mtDNA genomes. Details of molecular laboratory 

methods (e.g., PCR, cloning, sequencing), genome annotation (Slack et al., 2003), and accession 

numbers are provided below.  

Total DNA was isolated from frozen (-80C) liver tissue of Api2 using the Qiagen DNeasy 

extraction kit and protocol (Qiagen Inc.). Using the Expand Long Template PCR system (Roche 

Molecular Biochemicals), the mitochondrial genome was amplified in six overlapping fragments 

with 12 primers (Table S1). In addition, several smaller fragments were also amplified using the 

BIO-X-ACT Short PCR kit (Bioline) to fill-in otherwise inadequately sequenced regions. 

Cycling conditions followed the manufacturers’ suggestions, with annealing temperatures 

between 50°C and 55°C, and for 35 cycles.  

Positive PCR products were electrophoretically separated and excised from agarose gels, 

followed by purification using the GeneCleanIII kit (BIO101). Purified PCR products were 

cloned using either the TopoTA or TopoXL cloning kits (Invitrogen). Plasmids containing 

amplification fragments were isolated and purified using QIAprep Spin Miniprep kits (Qiagen) 

and sequenced using M13 primers (flanking the cloning site in the Topo vectors), an array of 

internal primers (details available upon request), and the CEQ Dye Terminator Cycle Sequencing 



 193

Quick Start Kit (Beckman-Coulter), and were run on a Beckman CEQ8000 automated sequencer 

according to the manufacturers’ protocols.  

Total DNA was extracted from Api1 using a High Pure PCR Template Preparation Kit 

(Roche), and amplified into two long overlapping fragments, 8kb and 9kb, using the Expand 

Long Template PCR Amplification System (Roche) and 4 primers (Table 15). These two 

fragments overlap in the 16s RNA and COIII genes. Conditions followed the manufacturer’s 

recommendations, with annealing temperatures of 58.4°C (9kb fragment), and 52.2°C (8kb 

fragment). After electrophoresis as above, PCR products were purified using the Agarose Gel 

DNA Purification kit (Mo Bio Laboratory), followed by end phosphorylation, ligation, and 

shearing in a nebulizer (Invitrogen). Fragments ranging from 1.5-3kb were purified from 0.8% 

agarose gels using QIAquick Gel Extraction Kit (Qiagen), cloned into pPCR-Script Amp SK(+) 

vector (Stratagene PCR-Script Amp Cloning Kit), and transformed into XL-10 Gold Kan 

ultracompetent cells (Stratagene). Bacterial clones containing plasmids with snake mitochondrial 

inserts were amplified using M13 primers, and the products were purified by QIAquick PCR 

Purification Kit and sequenced using T3 primer and Big Dye Terminator Sequence Master (PE 

Biosystems) using standard protocols. The reactions were purified on DyeEx columns (Qiagen), 

and the DNA sequence was determined using an ABI 3700 automated sequencer.  

Total DNA from Pantherophis was extracted and amplified using the same protocol and 

reagents as for Api1, but with a different set of four primers (Table 15) yielding 12.5 Kb and 4.5 

Kb fragments. These two fragments overlap in the CytB and 16s rRNA genes, and were 

sequenced following the same protocol as used for Api1, with additional internal primers. 
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Table 15. Table S1 - Primer sets used to amplify mitochondrial genome fragments in this study. 

 

 

Primer Name Primer sequence (5’ – 3’) Source 
  
Agkistrodon piscivorus - Api2 amplification primers  
L2932  MYTGGTGCCAGCCGCCGCGG This study 
tRNATrpR  GGCTTTGAAGGCTMCTAGTTT R. Lawson, unpub. 
   
ND1L  CTATCCCCCATCATAGCMC This study 
ND2H  TCGGGGTATGGGCCCG This study 
   
LRattle  ACTCTAACGCTCCTAACCTGAC K. Zamudio, unpub. 
Leu  CCAACACCTVTTCTGATT Arévalo et al. 1994 
   
L6929  CCAACACCTVTTCTGATT This study 
ND4CP200  ARATTGYRGCTRCTACTARGCC This study 
   
ND4  CACCTATGACTACCAAAAGCTCATGTAGAAGC Arévalo et al. 1994 
AtrCB3  TGAGAAGTTTTCYGGGTCRTT Parkinson et al. 2002 
   
Gludg  TGACTTGAARAACCAYCGTTG Parkinson et al. 2002 
H3059  CCGGTCTGAACTCAGATCACGT This study 
  
Agkistrodon piscivorus - Api1 amplification primers  
DPFB002R  AGTGGTCAWGGGCTKGGGACTA This study 
DPFB0013F  CGGCCGCGGTATYCTAACCGTGCAAAG This study 
   
DPFB001F  TAGTAGACCCMAGCCCWTGACCACT This study 
DPFB0021R  CTGATCCAACATCGAGGTCGTAAACC This study 
  
Pantherophis slowinskii amplification primers   
DPAL007 CTACGTGATCTGAGTTCAGACC This study 
DPFB007 CTCAGAAKGATATYTGTCCYCATGG This study 
   
DPFB006 CCATGRGGACARATATCMTTCTGAG This study 
DPAL006 CTCCGGTCTGAACTCAGATCAC This study 
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Most tRNAs in the raw genome sequences were detected using tRNAscan (Lowe et al. 

1997), followed by manual verification. The tRNAs not identified by tRNAscan were identified 

by their position in the genome and folded manually based on homology. The tRNAs were then 

used to identify approximate boundaries of protein coding genes, control region, and ribosomal 

RNAs. Final boundaries of protein coding genes were set based on position of the most plausible 

first start and last stop codons in each region, including non-canonical signal codons known to 

operate in vertebrate mitochondrial genome (Slack et al. 2003). Proteins were also translated to 

their amino acid sequence, and all amino acid and DNA sequences were compared to the 

corresponding genes or regions from published snake genomes to verify the annotation. 

 

Phylogenetic and sliding-window analyses  

In addition to the three new snake mitochondrial genome sequences, the sequence dataset 

used included all eight available snake mtDNAs, and 42 additional taxa for comparative 

purposes, including heavy sampling of birds, mammals (mostly primates), and lizards (species 

scientific names and access numbers are in Table 16). We limited our sampling of mammalian 

mtDNAs almost exclusively to primates (and Bos taurus) because we were particularly interested 

in obtaining precise comparative estimates of mutation rates that may otherwise become 

unreliable when sampling is overly sparse, due to the high rates of mitochondrial genome 

evolution. Also, focused sampling of primates was incorporated to keep the total number of 

sequences low enough to facilitate complex likelihood analyses (which would otherwise be 

computationally unfeasible), and to facilitate comparisons in rates and patterns between snakes 

and primates (Raina et al., 2005).  
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Table 16. Table S2 - Complete mitochondrial genomes used in this study, and associated 
Genbank accession numbers. 

Vertebrate 
Group 

Genbank 
Accession Taxon 

 Vertebrate 
Group 

Genbank 
Accession Taxon 

NC_002756 Mertensiella luschani  Birds NC_002782 Apteryx haastii Amphibians 
NC_001573 Xenopus laevis   NC_003128 Buteo buteo 
NC_000886 Chelonia mydas   NC_002196 Ciconia boyciana 
NC_002073 Chrysemys picta   NC_002197 Ciconia ciconia 
NC_002780 Dogania subplana   NC_002069 Corvus frugilegus 

Turtles 

NC_001947 Pelomedusa subrufa   NC_002784 Dromaius novaehollandiae 
Tuatara NC_004815 Sphenodon punctatus   NC_000878 Falco peregrinus 

NC_005958 Abronia graminea   NC_001323 Gallus gallus 
NC_005962 Cordylus warreni   NC_000846 Rhea americana  
NC_000888 Eumeces egregius   NC_000879 Smithornis sharpei 
NC_002793 Iguana iguana   NC_002785 Struthio camelus 
NC_005960 Sceloporus occidentalis   NC_002781 Tinamus major 
NC_005959 Shinisaurus crocodilurus   NC_000880 Vidua chalybeata 

Lizards 

AB080275-6 Varanus komodoensis  Mammals NC_001567 Bos taurus 
NC_007400 Acrochordus granulatus   NC_002763 Cebus albifrons 

NC_002082 Hylobates lar  GB_###### Agkistrodon piscivorus 
(Api1) 

  
NC_001646 Pongo pygmaeus 
NC_001644 Pan paniscus  GB_###### Agkistrodon piscivorus 

(Api2) 
  

NC_001645 Gorilla gorilla 
NC_007398 Boa constrictor   NC_001807 Homo sapiens 
NC_007401 Cylindrophis ruffus   NC_001992 Papio hamadryas  
NC_001945 Dinodon semicarinatus   NC_002764 Macaca sylvanus 
NC_005961 Leptotyphlops dulcis   NC_002811 Tarsius bancanus 
NC_007397 Ovophis okinavensis   NC_004025 Lemur catta  
 GB_###### Pantherophis slowinskii   NC_002765 Nycticebus coucang 
NC_007399 Python regius     

Snakes 

NC_007402 Xenopeltis unicolor     
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Sequences of protein-coding and rRNA genes were aligned using ClustalX (Thompson et 

al., 1997), followed by manual adjustment. Protein-coding genes were first aligned at the amino 

acid level, and then the nucleotide sequences were aligned according to the corresponding amino 

acid alignment. The alignment of rRNAs contained a small number of sites (corresponding to the 

loop-forming structures of the rRNAs) with ambiguous alignments only among major tetrapod 

lineages. Since we wanted to compare estimates of mitochondrial gene evolutionary rates and 

patterns, we chose not to exclude any sites of the alignment. This was also justified by 

preliminary phylogenetic estimates that suggested the incorporation of these few potentially 

ambiguous sites did not effect phylogenetic results. The main phylogeny used and presented here 

was inferred using the concatenated nucleotide sequence of all 13 protein-coding and two rRNA 

genes by maximum-likelihood (ML) analysis in PAUP 4.0 beta10 (Swofford, 1997). This 

analysis incorporated the GTR+ Γ +I model of evolution, which was the best-fit model under all 

criteria in ModelTest (Posada and Crandall, 1998). Estimated ML model parameters were as 

follows: rAC = 1.51278, rAG = 2.46909, rAT = 0.90191, rCG = 0.2503, rCT = 4.56723, Γ (alpha 

shape) = 0.997413, and I (proportion of invariable sites) = 0.19647. 

Support for this topology was evaluated in two ways: (1) based on 1000 NJ bootstraps (in 

PAUP) with ML distances calculated under the same model as above, but with down-weighted 

synonymous sites to avoid saturation problems (rRNAs relative weight = 5 and 1
st
, 2

nd
, and 3

rd
 

codon positions relative weights = 4, 5, and 1) and (2) based on Bayesian posterior probability 

support estimated by conducting two simultaneous independent MCMC runs conducted for 10
6
 

generations (with the first 400,000 generations of each run discarded as burn-in) using a GTR+ Γ 

+I model of evolution (in MrBayes 3.1 (Ronquist and Huelsenbeck, 2003)). The burnin period 
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was determined by visual assessment of stationarity and convergence of likelihood values 

between the chains. To analyze nucleotide substitution rate variation in different lineages and 

different genes, branch length estimates were separately calculated under the GTR+Γ+I model 

for different genes (COX1, ND1, ND2, ND4, ND5, CytB) and gene clusters (COX2 + ATP8 + 

ATP6, and COX3 + ND3 + ND4L; each comprising groups of individually short genes adjacent 

along the mtDNA) using the ML topology and PAML (Yang, 1997). We also calculated the 

length of the internal branch (ancestral branch) leading to each of three nominal clades 

(mammals, snakes, and lizards), and the total branch lengths within each of these clades (species 

cluster length).  

To further analyze fluctuations in nucleotide substitution rates, we conducted sliding 

window analyses (SWA) on the phylogenetic dataset. The program Hyphy (Pond et al., 2005) 

was used to estimate branch lengths (estimated numbers of substitutions) for 1000 bp windows. 

SWA was conducted using the GTR model with global parameter estimation and topological 

relationships specified based on the ML tree estimate, with a window slide of 200 bp. Based on 

preliminary trials, the size of the window and slide length were chosen to minimize noise 

observed with shorter windows, but to allow differentiation of patterns in different regions. To 

compare patterns of substitution across the mitochondrial genome for select branches or groups 

of branches, we first divided substitution estimates for each window by the median substitution 

rate across all windows. Since branch lengths are estimates of δbtb  (the branch-specific 

substitution rate times divergence time) this procedure estimates a ratio of substitution rates, 

δb
w /δb

ξ
, where δb

w
 is the branch- and window-specific substitution rate, and δb

ξ
 is the branch-

specific substitution rate in the median window. To evaluate whether the windows had 
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relative rates that were slower or faster than expected, we took the substitution rate ratio 

from the set of all branches in the non-snakes (NS) as a standard. This was then subtracted from 

the branch-specific ratio to obtain a “standardized substitution rate”, δb
w /δb

ξ −δNS
w /δNS

ξ
. When 

relative rates of substitution are distributed similarly across the mtDNA, in comparison with NS, 

this standardized rate comparison approaches zero.  

 

tRNA structure  

To compare predicted tRNA stabilities, the secondary structures of squamate (snake and 

lizard) tRNAs were determined under the guidance of the mammalian tRNA cloverleaf structures 

(Helm et al., 2000) and the tRNAscan program (Lowe and Eddy, 1997), and then used to modify 

tRNA alignments by hand (tRNA
Ser

 [AGY] was not included in these analyses since it does not 

form a cloverleaf structure). To determine the relative stabilities of the tRNA secondary 

structures, we calculated the energy (∆G  ) of the cloverleaf structure using the Vienna Package 

version 1.4 (Hofacker et al., 1994). The minimum energy (∆ G  ) is the predicted amount of 

energy (in calories) required to destroy the structure: the lower the energy of the molecules, the 

more stable its secondary structure.  

 

Analysis of control region functionality  

The calculation of AMST  differs depending on whether CR1 or CR2 is functional, but only 

for the genes that are in between the two control regions, the two rRNAs and ND1 (Table 17).  
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Table 17. Estimated TAMS values of genes for squamates. Two TAMS values are given for each 
species of alethinophidian snakes; TAMS

1 is estimated based on the assumption of exclusive CR1 
usage, whereas TAMS

2 is estimated based on exclusive CR2 usage. Genes that have alternative 
TAMS estimates under different CR usage scenarios in alethinophidian mtDNAs are indicated in 
bold. 

 

  Snakes 

 A
gk

ist
ro

do
n 

O
vo

ph
is

 

Pa
nt

he
ro

ph
is

 

D
in

od
on

 

A
cr

oc
ho

rd
us

 

B
oa

 

C
yl

in
dr

op
hi

s 

Py
th

on
 

X
en

op
el

tis
 

Le
pt

ot
yp

hl
op

s 

Genes TAMS1 TAMS2 TAMS1 TAMS2 TAMS1 TAMS2 TAMS1 TAMS2 TAMS1 TAMS2 TAMS1 TAMS2 TAMS1 TAMS2 TAMS1 TAMS2 TAMS1 TAMS2 TAMS 

12s 0.35 1.36 0.34 1.34 0.35 1.35 0.35 1.35 0.35 1.35 0.33 1.33 0.35 1.35 0.36 1.36 0.32 1.32 0.45
16s 0.50 1.51 0.48 1.48 0.50 1.50 0.50 1.49 0.50 1.49 0.47 1.46 0.50 1.49 0.51 1.50 0.46 1.45 0.61
ATP6 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.35 0.35 0.33 0.33 0.35 0.35 0.36 0.36 0.33 0.33 0.39
ATP8 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.29 0.29 0.31 0.31 0.31 0.31 0.29 0.29 0.34
COX1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.11 0.11 0.10 0.10 0.12
COX2 0.26 0.26 0.25 0.25 0.26 0.26 0.26 0.26 0.25 0.25 0.23 0.23 0.25 0.25 0.26 0.26 0.23 0.23 0.28
COX3 0.45 0.45 0.44 0.44 0.45 0.45 0.45 0.45 0.44 0.44 0.41 0.41 0.44 0.44 0.45 0.45 0.41 0.41 0.48
CytB 1.10 1.10 1.08 1.08 1.09 1.09 1.09 1.09 1.07 1.07 1.00 1.00 1.08 1.08 1.10 1.10 1.01 1.01 1.17
ND1 0.64 1.65 0.62 1.62 0.64 1.64 0.64 1.63 0.64 1.64 0.60 1.60 0.64 1.64 0.66 1.66 0.59 1.59 0.77
ND2 0.91 0.91 0.92 0.92 0.91 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.92 0.92 0.91
ND3 0.52 0.52 0.51 0.51 0.52 0.52 0.52 0.52 0.51 0.51 0.47 0.47 0.51 0.51 0.52 0.52 0.47 0.47 0.55
ND4 0.66 0.66 0.65 0.65 0.66 0.66 0.66 0.66 0.64 0.64 0.60 0.60 0.65 0.65 0.66 0.66 0.60 0.60 0.70
ND4L 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.55 0.55 0.51 0.51 0.55 0.55 0.56 0.56 0.52 0.52 0.60
ND5 0.86 0.86 0.85 0.85 0.86 0.86 0.86 0.86 0.84 0.84 0.79 0.79 0.85 0.85 0.86 0.86 0.79 0.79 0.92
ND6 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.97 0.97 0.91 0.91 0.98 0.98 1.00 1.00 0.91 0.91 1.06
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Genes   TAMS TAMS TAMS TAMS TAMS TAMS 

12s  0.44 0.47 0.46 0.47 0.43 0.45 
16s  0.60 0.62 0.62 0.62 0.59 0.60 
ATP6  0.37 0.35 0.36 0.36 0.39 0.37 
ATP8  0.32 0.31 0.31 0.31 0.33 0.32 
COX1  0.11 0.11 0.11 0.11 0.12 0.11 
COX2  0.26 0.25 0.26 0.25 0.27 0.26 
COX3  0.46 0.44 0.45 0.45 0.48 0.46 
CytB  1.15 1.10 1.12 1.11 1.19 1.15 
ND1  0.76 0.78 0.77 0.77 0.76 0.76 
ND2  0.91 0.91 0.91 0.91 0.91 0.91 
ND3  0.54 0.51 0.52 0.52 0.56 0.54 
ND4  0.68 0.65 0.67 0.66 0.71 0.68 
ND4L  0.58 0.56 0.57 0.56 0.60 0.58 
ND5  0.90 0.86 0.88 0.87 0.93 0.90 
ND6   1.04 0.99 1.01 1.01 1.08 1.04 
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Based on previous work, the light strand C/T ratio at synonymous two-fold and fourfold 

redundant 3
rd

 codon positions is expected to increase linearly with AMST
 , so we used this 

prediction to determine whether there was any evidence for activity of CR1 or CR2 in initiating 

heavy strand replication. We implemented a slightly modified version of the MCMC approach in 

(Raina et al., 2005) to estimate the most likely slope and intercept of the C/T ratio gradient 

depending on the calculated AMST  at every site. We applied these calculations using AMST  from 

CR1 and CR2, and also separately calculated the slope and intercept for the most likely weighted 

average AMST  for the two control regions. Other than the addition of the weighting parameter, all 

details of the Markov chain were as in (Raina et al., 2005).  

 

 

Results 

 

Brief summary of the new complete snake mitochondrial genomes  

The gene contents of A. piscivorus and P. slowinskii mtDNAs are similar to other snakes 

(Figure 17; detailed genome annotation in Tables 18 and 19). There is a duplicated control region 

(CR2) between ND1 and ND2, in addition to the original control region (CR1) present in all 

vertebrates adjacent to the 5’ end of the 12s rRNA gene (Dong and Kumazawa, 2005; 

Kumazawa et al., 1996, 1998). These genomes also possess the translocated tRNA
Leu

 common to  
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Figure 17. Annotated mitochondrial genome maps of Agkistrodon piscivorus and Pantherophis 
slowinskii. The two Agkistrodon samples (Api1 and Api2) have identical annotations except for 
minor variations in gene length. Labels of genes outside the circle refer to genes transcribed from 
the light strand, and names within the circle represent genes transcribed from the heavy strand. 
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Table 18. Detailed genome annotation of Agkistrodon piscivorus. 

  From To Size Strand Codon StartCodon StopCodon 
Phe 1 65 65 L TTC   
12sRNA 62 976 915 -    
Val 977 1040 64 L GTA   
16sRNA 1041 2527 1487 -    
ND1 2528 3488 961 L  ATC T 
Ile 3489 3556 68 L ATC   
Pro 3560 3622 63 H CCA   
CR1 3623 4642 1020 -    
Leu 4643 4715 73 L TTA   
Gln 4716 4785 70 H CAA   
Met 4786 4848 63 L ATG   
ND2 4849 5878 1030 L  ATA T 
Trp 5879 5944 66 L TGA   
Ala 5945 6009 65 H GCA   
Asn 6010 6081 72 H AAC   
OL 6084 6117 34 -     
Cys 6116 6175 60 H TGC   
Tyr 6176 6236 61 H TAC   
COX1 6238 7839 1602 L  GTG AGA 
Ser4 7830 7897 68 H TCA   
Asp 7898 7960 63 L GAC   
COX2 7962 8646 685 L  ATG T 
Lys 8647 8710 64 L AAA   
ATP8 8711 8875 165 L  ATG TAA 
ATP6 8866 9546 681 L  ATG TAA 
COX3 9546 10329 784 L  ATG T 
Gly 10330 10390 61 L GGA   
ND3 10391 10733 343 L  ATC T 
Arg 10734 10797 64 L CGA   
ND4L 10798 11087 290 L  ATG TA 
ND4 11088 12425 1338 L  ATG AGA 
His 12426 12487 62 L CAC   
Ser2 12488 12542 55 L AGC   
Leu4 12543 12614 72 L CTA   
ND5 12616 14403 1788 L  ATG TAA 
ND6 14399 14908 510 H  GTG AGG 
Glu 14918 14980 63 H GAA   
CytB 14981 16094 1114 L  ATG T 
Thr 16095 16159 65 L ACA   
Pseudo-Pro 16160 16190 31 -    
CR2 16191 17213 1019     -       
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Table 19. Detailed genome annotation of Pantherophis slowinskii. 

 From To Size (bp) Strand Codon StartCodon StopCodon 
Phe* 1 60 60 L TTC     
12sRNA 59 991 933 -        
Val 992 1054 63 L GTA     
16sRNA 1055 2531 1477 -       
ND1 2532 3495 964 L   ATA T 
Ile 3496 3561 66 L ATC     
Pseudo-Pro 3558 3592 35        
CR1 3593 4613 1021 -        
Leu2 4614 4686 73 L TTA     
Gln 4689 4759 71 H CAA     
Met 4761 4822 62 L ATG     
ND2 4823 5852 1030 L   ATT T 
Trp 5853 5917 65 L TGA     
Ala 5919 5981 63 H GCA     
Asn 5983 6055 73 H AAC     
OL 6058 6093 36   -       
Cys 6092 6152 61 H TGC     
Tyr 6153 6214 62 H TAC     
COX1 6216 7817 1602 L   GTG AGA 
Ser4 7808 7874 67 H TCA     
Asp 7875 7938 64 L GAC     
COX2 7940 8624 685 L   ATG T 
Lys 8625 8688 64 L AAA     
ATP8 8690 8848 159 L   ATG TAA 
ATP6 8839 9519 681 L   ATG TAA 
COX3 9519 10302 784 L   ATG T 
Gly 10303 10363 61 L GGA     
ND3 10364 10706 343 L   GTG T 
Arg 10707 10771 65 L CGA     
ND4L 10772 11061 290 L   ATG TA 
ND4 11062 12399 1338 L   ATG TAA 
His 12400 12464 65 L CAC     
Ser2 12465 12521 57 L AGC     
Leu4 12519 12589 71 L CTA     
ND5 12590 14536 1947 L   ATG ATT 
ND6 14353 14853 501 H   ATG TAG 
Glu 14863 14924 62 H GAA     
CytB 14923 16039 1117 L   ATG T 
Thr 16040 16103 64 L ACA     
Pro 16104 16164 61 H CCA     
CR2 16165 17189 1025 -       
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all alethinophidian snakes (3’ of CR2). In addition to an intact tRNA
Pro

 between CytB and CR1, 

Pantherophis has an apparent pseudo-tRNA
Pro

 gene (Ψ-tRNA
Pro

) between ND1 and CR2 (as 

does the previously sequenced colubrid, Dinodon). This Ψ -tRNA
Pro

 exactly matches the first 35 

bases of tRNA
Pro

. In contrast, the intact tRNA
Pro

 of Agkistrodon (and the previously sequenced 

viperid, Ovophis) is located between ND1 and CR2 (exactly the location of Ψ -tRNA
Pro

 in the 

colubrids), and there is a 31 bp non-coding fragment between tRNA
Thr

 and CR1, where tRNA
Pro

 

is usually located. In Ovophis, this is clearly a Ψ -tRNAPro as these 31 bp are an exact match the 

CR1-proximal end of the complete tRNAPro, but in Agkistrodon the homology is much less clear 

(see below for further detail). These alternative positions of tRNA
Pro

, Ψ -tRNA
Pro

, and a 

previously noted (Dong and Kumazawa, 2005) duplication of tRNA
Phe

 in Ovophis (see below) 

are the only notable mtDNA gene rearrangements identified within the alethinophidian snakes.  

 

Comparison of A. piscovorus genomes  

Polymorphisms were observed between the two Agkistrodon genomes, Api1 and Api2, for 

all protein and rRNA genes (Table S6) and for 14 of 22 tRNAs (Table S7). The 12s and 16s 

rRNAs were the most conserved genes between the two Agkistrodon individuals, with 2% and 

3% sequence divergence respectively (Figure 18A; Table S6). Protein-coding genes differed 

more, up to 6.2% for ND3 (Figure 18A; Table 20). Most differences occurred at 3
rd

 codon 

positions (Figure 18A; Table 20), as expected under predominantly neutral patterns of 

divergence (for example, 57/58 substitutions in COX1 were at 3
rd 

codon positions). Within a  
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Figure 18. Differences per site for homologous genes or groups of sites in the two Agkistrodon 
genomes and in the two viperid genomes. The differences per site are shown for a comparison of 
Api1 and Api2 (A), and for Agkistrodon (mean of Api1 and Api2) and Ovophis (B). Differences 
are shown only for the longer protein-coding genes. For the control regions only (shaded black), 
differences are shown for each aligned site including indels (e.g., CR1+I), or excluding indels 
(e.g., CR1-I). For all other genes, indels are not included in the difference measure. The bars for 
3

rd

 codon positions (3rd Codon) and for all codon positions (All Codon) are summed over all 
protein-coding genes. 
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Table 20. Gene-specific polymorphisms observed between the two Agkistrodon piscivorus 
genomes (Api1 and Api2). 

 

     Substitutions 
Genes Length Similarity all 1st 2nd 3rd AA 

12s RNA 915 98.80% 11 - - - - 
16s RNA 1487 97.40% 39 - - - - 

ATP6 681 95.00% 32 5 2 25 4 
ATP8 165 93.94% 11 3 1 7 3 
COX1 1602 96.38% 58 0 1 57 2 
COX2 685 96.50% 24 6 0 18 3 
COX3 786 96.40% 28 6 1 21 5 
CytB 1114 95.33% 52 10 3 39 10 
ND1 960 96.46% 34 8 1 25 3 
ND2 1030 96.12% 40 6 4 30 8 
ND3 343 93.88% 21 2 6 20 8 
ND4 1338 95.81% 56 9 3 44 5 

ND4L 290 97.93% 6 2 0 4 2 
ND5 1788 94.46% 96 21 9 69 28 
ND6 510 95.00% 26 3 4 19 5 
CR1 1021 98.20% 19 - - - - 
CR2 1022 98.40% 18 - - - - 

 



 208

mtDNA, the duplicated CRs of each newly sequenced species are nearly identical, as is typical 

for alethinophidian snakes (Dong and Kumazawa, 2005; Kumazawa et al., 1998). In 

Pantherophis there is a single point mutation and four extra nucleotides at one end of CR1, in 

Api1 there is one indel plus 14 extra nucleotides on one end of CR1, and in Api2 there are seven 

indels and two base changes between the two control regions. Comparing within a species 

between Api1 and Api2, CR1 differs by five indels and 19 point mutations, whereas CR2 differs 

by three indels (two at the 5’ end) and 18 point mutations. Within Agkistrodon, the control 

regions (e.g., CR1 in Api1 vs. CR1 in Api2) are as similar to each other as rRNAs and more 

similar than the protein coding genes (Figure 18A). This is in strong contrast to the normal 

pattern of divergence between vertebrate species, for which control region similarity is far less 

than that of protein-coding or rRNA genes. Between Agkistrodon and the other viperid Ovophis, 

the control regions have 30% more differences (with indels included) than the rRNAs, and are on 

par with divergence in the protein-coding genes (Figure 18B). If indels are included, the control 

regions between these two species are nearly as different as the average 3rd codon position 

(Figure 18B). The high degree of similarity (low divergence) observed between the CRs of the 

two Agkistrodon individuals (e.g., CR1 of Api1 vs. CR1 of Api2) is surprising, and contrasts 

sharply with the high relative divergence of CRs between Ovophis and Agkistrodon (Fig. 18). 

 

Phylogenetics  

Taxonomic sampling in this study was designed to include multiple groups to compare 

with the snakes. We included all available snakes, crocodilians and turtles with complete 
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mitochondrial genomes, as well as a sampling of birds and mammals (mostly primates), and all 

lizards with an unambiguous evolutionary relationship to snakes (including the tuatara Rest et al. 

2003). The phylogenetic tree obtained by ML is shown, with NJ bootstrap values (BS) and 

posterior probabilities (PP) for nodal support, which were generally high (Figure 19). Our 

phylogeny estimate provides a well-resolved and, in many cases, strongly-supported amniote 

phylogeny that is consistent with previous molecular studies. Differences between the ML 

topology (Figure 19), and the topology based on Bayesian analysis (not shown) were minor, and 

included an alternative placement of Bos among mammals, and alternative placements of Gallus 

and Rhea among birds. Additionally, relationships among lizard taxa varied, with Cordylus 

estimated to be the sister lineage to all other lizards, and an alternative placement of Varanus in 

the Bayesian estimate. 

All phylogenetic estimates provided an identical well-supported topology for 

relationships among snakes (Figure 19), and a summary of results concerning snake relationships 

is shown in Figure 20. The Scolecophidia (Typhlopoidea), represented here by Leptotyphlops, 

formed the sister group to the remaining snakes. Rather than finding support for a sister-group 

relationship between Henophidia and Caenophidia (Acrochordus plus Colubroidea (Dong and 

Kumazawa, 2005; Gower et al., 2005)), we find strong support for Acrochordus as the sister 

lineage to the Henophidia. Hereafter we will therefore operationally refer to Henophidia as 

including Acrochordus, and we will refer to the sister clade of the Henophidia as the Colubroidea 

(Lawson et al., 2005).  
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Figure 19. Maximum likelihood phylogeny for vertebrate taxa included in this study. This 
phylogeny is based on all protein-coding and rRNA genes. Most branches have greater than 95% 
support for both NJ ML distance bootstrap and Bayesian posterior probability support (see 
Methods), and are not annotated with support values. Where support from either measure is less 
than 95%, the support values are indicated by ratios, with the ML bootstrap support on top and 
the Bayesian posterior probability support below in italics, except for two nodes with less than 
50% support by either measure, which are indicated by a hollow circle. Other than for these two 
nodes, support values less than 50% are indicated with an asterisk (*). 
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Figure 20. Hypotheses for the relative timing of alterations in mitochondrial genome architecture 
and molecular evolution throughout snake phylogeny. The topological relationships among 
snakes and branch lengths shown are the same as in Figure 3. Major groups of snakes are 
indicated along with the approximate diversification time of the Alethinophidia. 
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Since both the snake and the overall amniote phylogeny are strongly supported by our 

analysis of this dataset, we will henceforth treat this phylogeny as though it is accurate. We wish 

to emphasize, however, that the consistency of the phylogenetic results do not guarantee that 

they are, in fact, accurate. Some difficult questions were avoided (amphisbaenian lizards were 

not included because their placement in relation to snakes is uncertain), and we used a single 

nucleotide substitution model for the entire dataset rather than a complex set of partitioned 

models. We have, however, analyzed an expanded version of this dataset (with additional 

mtDNAs) using complex partitioned models for each gene and codon position, and the resulting 

phylogeny estimates were essentially identical to those presented here. We provide evidence 

below for extremely complex non-stationary patterns of nucleotide substitution across branches 

and mtDNA regions, and have previously identified asymmetric substitution gradients in mtDNA 

(Faith and Pollock, 2003) that may vary among species (e.g., primates (Raina et al., 2005)). 

These latter patterns cannot be modeled using available phylogenetic programs (e.g., MrBayes 

(Ronquist and Huelsenbeck, 2003)). Some of us are currently developing new analytical 

strategies to accommodate these spatial and temporal nucleotide substitution dynamics, but the 

subject of improved phylogenetic reconstruction using such methods is a complicated topic that 

is outside the scope of this study, and we will reserve it for future research. We expect our 

phylogenetic estimates here to represent a good estimate of the relationships among mtDNAs 

sampled, and if minor inaccuracies in the topology have occurred in our estimates, these changes 

should not substantially impact the qualitative conclusions of further analyses (e.g., sliding 

window analysis, SWA) because a majority of these later estimates are averaged over many 
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branches of the tree, and the dynamics we concentrate on are quite dramatic and are likely to be 

obvious and qualitatively similar even with slight changes in the topology estimate.  

 

Nucleotide frequencies and control region functionality  

In Agkistrodon and Pantherophis mtDNA, as in other vertebrates (Reyes et al., 1998), 

nucleotides A and C are favored on the light strand, particularly at 3
rd

 codon positions. This bias 

is probably related to elevated rates of deamination mutations on the heavy strand incurred 

during replication (see Background), and is not systematically different between lizards and 

snakes, although there is considerable variation among individual mtDNAs.  

Due to the simple linear relationship in most vertebrate mtDNAs between C/T ratios and 

TAMS
 predicted based on the location of the (functional) control region, it is of interest to 

determine whether there has been any clear genetic effect of the duplicated control region in 

alethinophidians. Exclusive use of one control region or the other would be most strongly 

observable in ND1, the only protein-coding gene located between the two control regions in 

alethinophidian snake mtDNAs. Since the nucleotide sequence of duplicate control regions is 

nearly identical within each genome, however, it is also reasonable to consider the possibility 

that both control regions are functional. 

To test these predictions, we applied our MCMC analysis (Raina et al., 2005) to fit 

alternative models of exclusive CR1 or CR2 usage, or mixed control region effect (Table 21). 

The Akaike weights for the alternative individual models provide a prediction of the degree to 

which a control region is exclusively functional, while the weight parameter in the mixed model  
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Table 21.  Negative log likelihood values and Akaike weights (in parentheses) for individual 
origin of replication models and the mixed model, along with the most likely CR2 preference 
parameter in the mixed model, for alethinophidian snakes. 

 

 Individual model Mixed model 

Species OH
CR1 OH

CR 2  OH
CR1 + OH

CR 2  % OH
CR 2  

Agkistrodon piscivorus 1179.2 (18%) 1178.0 (60%) 1179.0 (22%) 99% 
Pantherophis slowinskii 1164.6 (29%) 1164.1 (47%) 1164.8 (24%) 54% 
Dinodon semicarinatus 1167.1 (21%) 1166.2 (57%) 1167.1 (22%) 78% 
Ovophis okinavensis 1252.7 (38%) 1252.6 (45%) 1253.5 (17%) 59% 
Boa constrictor 854.5 (29%) 853.9 (50%) 854.8 (21%) 64% 
Acrochordus granulatus 1245.0 (2%) 1241.5 (72%) 1242.5 (26%) 100% 
Xenopeltis unicolor 1159.4 (31%) 1159.0 (45%) 1159.6 (24%) 50% 
Python regius 1133.0 (1%) 1128.9 (72%) 1130.0 (26%) 100% 
Cylindrophis ruffus 1129.8 (70%) 1132.6 (4%) 1130.8 (26%) <1% 
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represents the time-averaged effect of mixed control region usage on the C/T ratios. There is 

evidence for at least mixed CR2 usage in all but one species (Cylindrophis). The evidence is 

good for exclusive or nearly exclusive CR2 functionality in two species (Acrochordus and 

Python), and for a strong CR2 preference in Agkistrodon. The patterns appear to be species-

specific (strong preferences for a particular control region are widely dispersed on the tree), 

which may indicate rapid evolution of the strength of the gradient (as suggested in primates 

(Raina et al., 2005)) or rapid evolution of differential usage of the two control regions. Species 

with ambiguous control region preferences may have mixed usage, may not have a strong 

enough gradient to differentiate, or may have previously switched usage and thus have not 

reached mutational equilibrium. A potentially relevant observation is that three of the five 

henophidians have both strong control region preferences and also greater divergence between 

their CR sequences than do colubroids (Dong and Kumazawa, 2005). 

 

Gene length and stability of truncated tRNAs in snakes  

In snakes, all protein-coding genes (except COX1), ribosomal RNAs, tRNAs, and 

individual CRs are shorter than their counterparts in most lizards and most other vertebrates 

(Figure 21). An exception to this is Sphenodon, for which the control region, ATP8 (ATP 

synthase subunit 8) and the 12s rRNA are all shorter than in snakes. With the increased sampling 

in this study, it appears that while the tRNAs and proteins became shorter prior to the divergence 

of all snakes, the tRNAs became shorter still in the Colubroidea (Figures 20 and 21).  
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Figure 21. Comparison of gene lengths in snakes and other squamates. The total length is shown 
for all protein coding regions (A), tRNAs (B), and rRNAs (C). All snakes are in gray, while 
other squamates (lizards) are in black, and light gray and dark gray bars are drawn under snake 
species to indicate membership in the Colubroidea or Henophidia, respectively. 
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Additionally, the rRNAs did not become shorter in Leptotyphlops or the Henophidia, but are 

dramatically shorter in the Colubroidea (Figures 20 and 21).  

The shorter length of tRNAs in snakes results mainly from a truncated T-arm in the 

secondary structure (see also (Kumazawa et al., 1996, 1998)). In some tRNAs, the D-arm is also 

shorter, but to a lesser extent than the T-arms. Although short tRNAs are typically less stable 

than long ones, there is only a minor effect of sequence length on secondary structure stability 

(∆G) in snake tRNAs. The cloverleaf structures of most snake tRNAs are slightly less stable than 

their lizard counterparts (Table S8), but two tRNAs (tRNA
Ile

, tRNA
Met

) are actually more 

structurally stable in snakes than in other squamates with longer tRNAs.  

 

Spatio-temporal substitution rate dynamics across mtDNA genes and regions  

Although the mitochondrial genomes of snakes (as well as crocodilians) have been 

identified as evolving faster than other tetrapods (Hughes and Mouchiroud, 2001; Janke et al., 

2001; Kumazawa and Nishida, 1999), the details and uniformity of such rate dynamics have not 

been investigated. To assess the difference in substitution rates among genes, we fixed the 

topology (Figure 19) and calculated branch lengths based on rRNAs and on all protein-coding 

genes (Figure 22). Along the branches leading to modern snake taxa there was a slight increase 

in the rate of molecular evolution of rRNAs and a dramatic increase in protein-coding gene rates. 

For the rRNAs, most other major amniote groups have experienced similar amounts of total 

evolution from their common ancestor with the amphibians, and the snake lineages stand out as  

unusual in their accelerated evolution (Figure 22A). For protein-coding genes, there is much  
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A. rRNA Genes B. Protein-Coding Genes

 

Figure 22. Phylograms based on the relative branch lengths for rRNA and protein-coding genes, 
topologically constrained based on the ML phylogeny (Figure 3). Branch lengths on this 
constrained topology were estimated using all rRNA genes (A) or all protein-coding genes (B). 
The substitution rate scale is the same in both trees.  
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more variation, and mammals, some lizards, crocodilians, and one turtle have longer branches 

than the other turtles, lizards, and all birds (Figure 22B). The snake lineage has, comparatively, 

even longer branches than any of these groups, and certain branches (e.g., the ancestor of all 

snakes and the ancestor of Alethinophidia) are disproportionately long compared to branch 

lengths based on rRNAs (Figure 22). To evaluate this further, branch lengths were calculated for 

different genes and gene clusters. There was considerable variation among genes with respect to 

relative branch lengths in the ancestral snake lineages (data not shown). As an example, for each 

gene or gene cluster we compared cumulative branch lengths within three clades (mammals, 

snakes, or lizards) and among the lineages leading to their common ancestors (Figure 23). There 

is a remarkable degree of consistency in the total and relative amounts of evolution between the 

mammal clade and the lizard clade (Figure 23A). In contrast, four genes and gene clusters 

(COX1, CytB, the COX2+ATP6+ATP8 cluster, and the COX3+ND3+ND4L cluster) have 

relatively longer branch lengths (indicating higher substitution rates) in snakes than in lizards 

and mammals. For the remaining genes (ND1, ND2, ND4, and ND5) the total branch lengths for 

snakes are either intermediate or similar to that of mammals and lizards. There is more variation 

for the ancestral branches (Figure 23B), which is not surprising given that it is a single branch 

with shorter total length, but a few details stand out. First, the snake ancestral branch length is 

similar to the mammal ancestral branch length for a majority of genes, but is considerably shorter 

for the rRNAs and ND2, and is obviously far longer for COX1. Combining evidence from Figure 

23 with the tree-based evidence (Figure 22), we interpret these patterns as indicating that there 

has been accelerated evolution in many mitochondrially-encoded proteins along ancestral  
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Figure 23. Comparison of branch lengths from different genes and gene clusters for mammals, 
snakes, and lizards. Branch lengths for each gene or gene cluster are shown based on the 
cumulative branch lengths within each clade (A), or based on the gene or gene cluster branch 
length estimated along the ancestral branch leading to each nominal clade (B). Mammals are 
shown in gray, snakes in black, and lizards in white fill. rRNA branch lengths have been 
multiplied by ten to make them visible in this figure compared to protein branch lengths. 
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branches of the snake phylogeny, but that most ND subunits have experienced minimal 

acceleration, similar to the rRNAs.  

To qualitatively elucidate the spatio-temporal dynamics in rates of substitution between 

gene regions that occur across branches, we plotted the branch lengths derived from rRNAs 

(which appear to have had only minimal acceleration; e.g., Figure 22A) versus the branch 

lengths of various genes and gene clusters (Figure 24). All gene pairs generally appear to have 

highly correlated branch lengths (Figure 24), but some branches are outside the main 

distribution. These are of the greatest interest since they may indicate unusual molecular 

evolutionary dynamics in these genes, including possible accelerated evolution.  

Two branches consistently below the main distribution in most comparisons are the 

terminal branch leading to Ovophis and the ancestral branch leading to the henophidians (Figure 

24). Looking back (Figure 22), it is apparent that these two branches are disproportionally longer 

in the rRNA trees than in the protein trees. These two lineages (the ancestor of Henophida, and 

Ovophis) appear to have experienced acceleration of rRNA genes well beyond the mild 

accelerated evolution of rRNA that occurred along the ancestral lineages leading to all snakes 

and to the Alethinophidia.  

The ancestral branches leading to all snakes and to the alethinophidians are well above 

the main distribution in comparisons of COX1 (Figure 24A), CytB (Figure 24B), and 

COX2+ATP6+ATP8 (Figure 24C). Notably, these clusters include nearly all mitochondrially-

encoded protein-coding genes except those from ND (although ND6 does show some dramatic 

acceleration; Figure 24H). This suggests that the acceleration was targeted at certain functional 

groups of genes, and was not ubiquitous or evenly distributed across all mitochondrial genes.  
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Figure 24. Plot of branch lengths obtained from rRNA versus various genes and gene clusters. 
Snake branches are indicated with filled circles, and non-snake tetrapod branches are indicated 
with an unfilled circle. The locations of selected snake branches are labeled (in bold) with 
arrows. Outlying non-snake branches are indicated and labeled in normal type. Genes and gene 
clusters shown are (A) COX1, (B) CytB, (C) COX2 + ATP6 + ATP8, (D) ND2, and (E) COX3 + 
ND3 + ND4L, (F) ND1, (G) ND4, (H) ND5, (I) ND6.  
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The ancestor of the Colubroidea does not stand out as having had experienced notable 

accelerated evolution in these comparisons, which could mean that it did not, or that acceleration 

across various genes is balanced by acceleration of rRNA evolution. We also observed several 

non-snake tetrapod tip branches that were outliers on these plots (Figure 24), indicating that 

differential selection on a single gene has occasionally occurred in taxa other than snakes.  

The branch leading to Leptotyphlops is not detectably accelerated in any comparison in 

this analysis (Figure 24), and generally falls amidst the distribution of non-snake vertebrates. The 

branch leading to Acrochordus (the most divergent henophidian, as described earlier) is 

outstanding only in the COII+ATP6+ATP8 comparison (and slightly in CytB; Figure 24). All 

other branches in the snakes (unlabelled filled circles in Figure 24) are consistently in the midst 

of the distribution, indicating either that any accelerated evolution in their proteins is 

proportionally matched by acceleration in their rRNAs (which is somewhat inconsistent with 

Figure 22A), or that genome-wide evolutionary rates conform to average relative rates in 

tetrapods (Figure 24).  

To further evaluate the variation in spatio-temporal dynamics of substitution rates across 

the mitochondrial genome, we used SWA of branch-specific and group-specific patterns of 

relative substitution. Only one of these comparisons, that of the henophidian terminal branches, 

shows little variation of standardized substitution rates across the genome (Figure 25C). This 

suggests that the distribution of substitutions across the mtDNA of contemporary henophidians is 

nearly identical to the distribution across the mtDNA of other tetrapods, and thus that 

contemporary henophidians are not undergoing atypical gene-specific selection. The terminal 

colubroid branches are also fairly flat except for the downstream half of the 16s rRNA (Figure  
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Figure 25. Standardized substitution rates across the mitochondrial genome for selected branches 
or clusters. For each 1000 bp window applied to a set of branches, standardized substitution rates 
were obtained by first dividing by the median window value for that branch, and then subtracting 
this value from the average across all non-snake branches. This helps to visualize regions of the 
genome that are evolving at slower or faster rates, with the average tetrapod relative rate being 
zero. Branches or branch sets shown are (A) the ancestor of all snakes and the ancestor of the 
Alethinophidia; (B) the ancestor of the Colubroidea and the sum of all colubroid terminal 
branches; and (C) the ancestor of the Henophidia and the sum of all henophidian terminal 
branches. 
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25B), which may be entirely attributable to acceleration of the 16s rRNA in Ovophis, as 

discussed earlier. The patterns in the ancestors of henophidians, colubroids, alethinophidians 

(henophidians plus colubroids), and of all snakes contrast sharply with this background, and 

instead have distinctive atypical gene-specific patterns (Figure 25). In the ancestor of 

alethinophidians, there is a strong peak coinciding with the end of COX1, and covering COX2, 

ATP6, and ATP8, and there is another peak in ND6 and CytB (Figure 25A). In the ancestor of all  

snakes, there are less distinctive rises in the same areas. In contrast, the ancestor of the 

Colubroidea has low relative rates in the region from COX1 to ND4, but has rate peaks in the 

beginning of ND5, in ND6, in the 12s rRNA, and somewhat of a peak in the middle of the 16s 

rRNA (Figure 25B). The ancestor of the Henophidia has a broad low peak from ATP6 to ND4 

(including COX3, ND3, and ND4L), another peak in ND6, and an extremely large peak in the 

end of the 16s rRNA (Figure 25C). It is notable that the henophidian ancestral 16s peak closely 

matches the Ovophis peak in the same region  

In summary, the ancestor of all snakes appears to have had moderately accelerated 

evolution in the region starting near the end of COX1 thru COX2, ATP8, and somewhat into 

ATP6, and also in the separate region including the end of ND5, ND6, and CytB (and a rise in 

ND1). The COX1, COX2, ATP8, and ND6 accelerations increased and were stronger in the 

ancestor of the Alethinophidia, while the ND5 acceleration decreased, and a notable acceleration 

of CytB also occurred. In the ancestor of the Colubroidea, only the ND6 acceleration continued, 

but new rate peaks arose in ND5, 12s rRNA, and the first part of the 16s rRNA, followed by a 

strong dropoff in all gene-specific acceleration in modern colubroid lineages, except in the end 

of 16s rRNA in Ovophis. In the ancestor of the Henophidia, the accelerated rates of evolution (in 
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COX1, COX2, ATP8, and ND5 genes) observed along the branch leading to the alethinophidians 

diminished (except for ND6 as in the Colubroidea), but new rate peaks arose in ATP6, COX3, 

ND3, ND4L, and the latter half of the 16s rRNA. These punctuated gene-specific accelerations 

were followed by the complete elimination of all atypical gene-specific signals of rate 

differentiation in contemporary henophidian lineages. We find no evidence for a constant 

accelerated rate of snake mtDNA evolution. Instead, our analyses of rates and patterns of 

substitution underscore both the spatial (gene-specific) and temporal (branch-specific) nature of 

molecular evolutionary rate dynamics in snake mtDNA.  

 

 

Discussion 

 

In this exploratory comparative analysis, we have investigated the potential causes and 

molecular evolutionary consequences of the unique mitochondrial genomic architecture of 

snakes. The three new complete snake mitochondrial genomes presented here, together with 

previously existing vertebrate genomes, compose an intriguing dataset that provides a 

preliminary perspective on a complex history of potentially adaptive genomic change in snakes. 

Unusual changes in gene size and nucleotide substitution rates have accompanied or followed the 

change in genomic architecture (Figure 20), but despite evidence for variable among-lineage 

functionality of the duplicate control region in snakes, the changes in substitution dynamics 

cannot be directly explained by the changes in genome architecture. Collectively, the patterns we 
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have identified over the course of snake mitochondrial genome evolution are most consistent 

with some type of broad selective pressure on the efficiency and function of oxidative 

metabolism in snakes.  

 

Gene size reduction and control region functionality  

All vertebrate mitochondrial genomes are compact, but nevertheless there is a strong 

trend for genes to be smaller in snakes than in other vertebrate mitochondrial genomes. Most of 

the reductions in gene lengths are evident in all snakes, including Leptotyphlops (Figures 20 and 

21), but there are large further reductions in rRNA genes in the Colubroidea, and more moderate 

further reductions in tRNAs and some proteins. We do not have a direct measure of how this 

gene shortening affects the function of mitochondrial genes, but in the case of tRNAs, stability 

(presumably related to functionality) was only slightly affected by reduced length in snakes. It is 

interesting that the genomic size reduction due to gene shortening in alethinophidians is more 

than offset by the retention of duplicate control regions in alethinophidians, maintained by 

concerted evolution. This suggests that these dual CRs are maintained because they provide 

some selective advantage potentially including enhancement of mitochondrial genome 

replication and/or transcription, perhaps allowing these processes to occur more quickly 

(Sessions and Larson, 1987), or facilitating increased transcriptional control (see below).  

Based on the genetic evidence of C/T gradients on the light strand, the duplicate control 

region appears to function in heavy strand replication in at least some snakes, although there is 

evidence for considerable variation in CR usage across snake lineages (Table 21). It is difficult to 
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extrapolate from the genetic data, however, a precise molecular model to explain the mechanism 

of dual control region function, and the mixed model weight cannot be directly interpreted as 

measuring control region functionality. For example, if the control regions usually function 

simultaneously and equally well in the same replication event, then it is possible that (due to 

their relative positions) the AMST  of ND1 would be higher than the average of the two individual 

TAMS, perhaps close to the value predicted if only CR2 were functional. In other words, strong 

evidence for a TAMS consistent with CR2 function may indicate that CR2 functions alone during 

replication, but may also be indicative of dual CR function in each replication event. Future 

analyses with increased taxon sampling (especially with more closely related snake taxa) should 

help clarify patterns resulting from recent replication activity, and may be able to discern 

between potential molecular models.  

Despite some uncertainty regarding the details of how dual control regions may be 

involved in genome replication, our data provide considerable evidence that all but one species 

(Cylindrophis) of alethinophidian snakes utilize CR2, to some extent, to initiate genome 

replication. A number of apparently evolutionarily independent origins of CR duplication, 

coupled with CR concerted evolution, have been recently identified in several divergent 

vertebrate lineages, including eels (Inoue et al., 2003), frogs (Sano et al., 2005), birds (Abbott et 

al., 2005; Eberhard et al., 2001), and lizards (Amer and Kumazawa, 2005; Kumazawa and Endo, 

2004), although no examples are know from mammalian taxa. It seems reasonable to expect that 

these other vertebrates with dual CRs (homogenized by concerted evolution) may also use the 

duplicate CR or both CRs as origins of genome replication. Each of these examples is associated 

with unique rearrangements of genome architecture, and it would be interesting to search for 
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potential mutational effects of these rearrangements and evidence of differential or dual CR 

usage. In contrast, however, our results (and additional unpublished data) suggest that the 

dramatic shifts in rates and patterns of molecular evolution in snakes represent a unique 

phenomenon that we do not expect to be necessarily associated with CR duplication, but rather 

more likely associated with selection for mitochondrial function. As an example, the Sphenodon 

and Varanus samples included both have duplicated CRs, and the Varanus CRs are homogenized 

via concerted evolution, but no indications of dramatic rate dynamics were observed for either of 

these lineages.  

 

Concerted evolution in and around the duplicate control regions  

The control region appears to have duplicated only once in the ancestor of 

alethinophidian snakes over 70 MYA (Dong and Kumazawa, 2005; Kumazawa et al., 1996, 

1998) (based on the fossil record of snakes (Rage, 1987)), and this duplication has been 

maintained in all alethinophidians sequenced to date (Figure 20). The two control regions clearly 

undergo concerted evolution to maintain reciprocal homogeneity between control regions within 

a genome (Dong and Kumazawa, 2005; Kumazawa et al., 1996, 1998), presumably through gene 

conversion. Two interesting points arise from the greater sampling of the relatively closely-

related viperids and colubrids presented here.  

First, there is an apparently nonfunctional partial (or pseudo) proline tRNA ( Ψ -tRNA
Pro

) 

in the colubrids that appears to be maintained by concerted evolution (Figure 17). In 

Pantherophis, Ψ -tRNA
Pro

 is identical to the first 35 bp of tRNA
Pro

, and in Dinodon the Ψ -
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tRNA
Pro

 differs from tRNA
Pro

 by only a single insertion; thus, the Ψ -tRNA
Pro

 closely reflects 

the divergence patterns of functional tRNAs (there is only one indel between the tRNA
Pro

 from 

Pantherophis and Dinodon) rather than the pattern expected from nonfunctional DNA in a 

genome selected for reduction in gene size. In colubrids and most other snakes, tRNA
Pro

 is 

located between CR1 and tRNA
Thr

, and the colubrid Ψ -tRNA
Pro 

is located in the same relative 

position next to CR2 and adjacent to tRNA
Ile

 (Figure 17).  

The concerted evolution of these tRNAs could be explained by a tendency for gene 

conversion events involving the duplicate control regions to extend into the homologous tRNA 

regions. If this is correct, the Ψ -tRNA
Pro

 may be only slowly lost as differences accumulate at 

the end distal to CR2. It is possible that the pseudogene is a leftover remnant from the original 

duplication that created the duplicate control region.  

The location of tRNA
Pro

 in Agkistrodon (and other viperids) between CR2 and tRNA
Ile

, 

precisely where the Ψ -tRNA
Pro

 is located in colubrids (Figure 17), could also be explained as a 

remnant from the original CR duplication. Under this hypothesis, the functional tRNA
Pro

 of 

viperids would have been retained adjacent to the duplicate control region (CR2), and the 

original tRNA
Pro 

(adjacent to CR1) was eliminated or became a pseudogene. Both Ovophis and 

Agkistrodon have a 31 bp sequence between tRNA
Thr

 and CR1, but in Ovophis these 31 bp are 

identical to the CR2-proximal portion of the intact tRNA
Pro

, while in Agkistrodon this 31 bp 

segment shares only 12 bp with the canonical tRNA
Pro

, and is thus only marginally identifiable 

as homologous. Although this is not definitive proof of concerted evolution, it is suggestive that 
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there was only one duplication, and that concerted evolution has occurred recently in Ovophis 

and the colubrids, but that the Ψ -tRNA
Pro

 in Agkistrodon (Figure 17) has diverged too much, 

and is no longer capable of concerted evolution.  

The time span during which both duplicate tRNA
Pro

 genes would have had to remain 

functional is long (i.e., tens of millions of years). If this is a remnant of the original CR 

duplication, it is surprising that the functional tRNA
Pro

 is almost always in the same location as 

in the colubrids. A simple alternative explanation is that a tRNA
Pro 

duplication occurred in some 

common ancestor of the Colubridae and Viperidae, and was resolved differently in different 

lineages. The gene conversion process that homogenizes the control region may occasionally 

pick up extra DNA, making tRNA
Pro

, or part of it, prone to duplication at this location. 

Alternatively, gene duplications adjacent to the control region may simply be more likely to be 

preserved for long periods of time by concerted evolution. The existence of a duplicate tRNA
Phe 

between CR2 and tRNA
Leu

 in Ovophis (Dong and Kumazawa, 2005) makes repeated duplication 

seem a more likely possibility (these two tRNA
Phe

 differ by only 3 of 64 bp; implying either 

concerted evolution or recent duplication).  

The second point of interest concerning gene conversion that arises from this study is a 

preliminary indication of differential evolutionary processes operating on the CRs within versus 

between species. Vertebrate mitochondrial control regions typically evolve very rapidly, and this 

is the case in a comparison of the two viperid species (Ovophis and Agkistrodon) in which CRs 

from these species are approximately as divergent as the fastest positions within the mtDNA, 

third codon positions (Figure 18B). In contrast, the two Agkistrodon pisvicorus genomes, Api1 
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and Api2, have surprisingly similar CRs between individuals (Figure 18A; Table 20), comparable 

to the similarity between rRNA genes, among the slowest regions in the mtDNA. A previous 

study on viperid snakes also showed slow within-species CR evolutionary rates (Ashton and de 

Queiroz, 2001), and other studies have demonstrated alternative rates of CR evolution operating 

within versus between species in fish (Tang et al., 2006).  

In this study we have found a great deal of rate heterogeneity among genes, so it is 

certainly possible that the normally unconserved control regions have become suddenly critical 

and conserved in Agkistrodon. Alternatively, it is plausible that the complex (and poorly 

understood) process of gene conversion of CRs within a genome may also alter rates of CR 

evolution within species through a yet unknown process of gene conversion that may involve 

intragenomic (or even intergenomic) recombination. Although occasional cases of recombination 

between mitochondria have been proposed (Piganeau et al., 2004; Tsaousis et al., 2005), there is 

still very little evidence for a molecular mechanism to explain how concerted evolution in 

mitochondrial genomes may operate. A densely sampled collection (with intra and interspecific 

examples) of snake mtDNAs may eventually be able to directly address such questions.  

 

Potential impacts of genome architecture on genome replication and transcription 

In mitochondrial genomes (particularly in vertebrates), the processes of replication and 

transcription are not entirely functionally independent, and genome structural organization plays 

a prominent role in both processes. The CR acts as the origin of heavy strand replication, in 

addition to its role as the promoter for both heavy and light strand transcription (Fernandez-Silva 

et al., 2003). Genome replication also depends on the processing of light strand transcripts to 
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produce short primers required for heavy strand initiation of genome replication (originating 

from the CR (Clayton, 1982)). The regular distribution of the tRNA genes throughout the 

mtDNA is functionally significant, and these play an important role in RNA processing of 

polycistrons to yield mature RNAs, transcription initiation and termination, as well as initiation 

of light strand replication (Fernandez-Silva et al., 2003). Collectively, many functional 

ramifications are linked tightly to genome architecture in vertebrate mitochondria.  

The possession of two functional control regions in most snake mtDNA could be 

advantageous by increasing the rate at which genome replication proceeds, and/or increasing the 

overall number of mtDNA copies per mitochondrion. It is also possible that dual control regions 

could alter patterns of transcription, since either could potentially serve as an origin of light or 

heavy strand transcripts.  

Since the dual CRs essentially flank the rRNA genes, they (along with adjacent tRNAs) 

could also plausibly function to independently control rates of protein-coding and rRNA gene 

transcription. Across snake species, there are several alterations of the tRNAs flanking the CRs, 

including the translocation of tRNALeu (3’ of CR2) and the duplication / translocation / 

truncation of tRNAPro. In vertebrates, tRNALeu has been shown to decouple rates of rRNA and 

mRNA transcription by acting as a terminator of ~95% of heavy strand transcripts (leading to 

~20-fold higher rRNA vs. mRNA levels; (Fernandez-Silva et al., 2003)). Considering the 

ectothermy of snakes, transcriptional decoupling via independent control regions could provide a 

more direct means of countering thermodynamic depression of enzymatic rates at low 

temperatures. 
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The role of the tRNAPro in genome regulation is not entirely clear, but it is adjacent to the 

promoter site for light strand transcription (for some tRNAs and ND6), and is also adjacent to the 

initiation site for heavy strand replication. It is therefore plausible that tRNAPro plays roles in 

initiation or attenuation of both processes. Despite considerable progress in deciphering the 

molecular mechanisms involved in vertebrate mitochondrial replication and transcription, many 

intriguing questions remain regarding these processes. Vertebrate mtDNAs with unique 

mitochondrial genome architectures, such as alethinophidian snakes, represent an ideal 

comparative model for future research examining the impacts of genome architecture on 

mitochondrial function. 

 

Comparative rates of molecular evolution  

Previous studies have suggested that snake mitochondrial genomes have an accelerated 

rate of evolution (Dong and Kumazawa, 2005; Kumazawa et al., 1998). Our results suggest this 

general conclusion is actually an oversimplification of a much more complex scenario, and that 

rates of snake mtDNA evolution incorporate broad temporal (branch-specific) and spatial (gene 

and gene region-specific) dynamics. Ancestral branches early in snake evolution appear to be 

associated with dramatically elevated evolutionary rates and rate dynamics across the 

mitochondrial genome (Figure 20). In contrast, terminal snake lineages (branches) appear to have 

patterns of mtDNA evolution that are strikingly similar to other (non-snake) vertebrate mtDNAs. 

Our analyses here have concentrated on relative rates of evolution across the mtDNA, and future 

studies that incorporate a greater diversity of snake mtDNA together with estimates of absolute 
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rates of evolution (by calibrating nodes with divergence times) will be required to further 

characterize the absolute rate dynamics that have occurred.  

There is no obvious reason why the existence of duplicate control regions or the usage of 

CR2 as an origin of heavy strand replication should result in genome-wide acceleration of 

protein evolutionary rates. Among protein-coding genes, only ND1 might be expected to 

experience relatively higher rates of evolution in genomes with duplicate CRs, due to higher 

rates of mutation (based on increased TAMS), yet it and other ND genes are among the least 

accelerated of the mitochondrial protein-coding genes. Although it is possible that the usage of 

dual CRs leads to decreased accuracy of DNA synthesis (Kumazawa et al., 1998), we were 

unable to find evidence for an increased neutral transversion rate (data not shown), nor would 

this hypothesis explain the rate dynamics observed among genes.  

Our results suggest that terminal alethinophidian branches have not experienced 

particularly accelerated rates of molecular evolution (except for rRNA in Ovophis), but that the 

early branches in snake evolution did experience highly differential rate acceleration that varied 

along lineages and among genes (Figure 20). The punctuated nature of this phenomenon suggests 

that the evolution of two CRs, gene shortening, and the variable molecular evolutionary rate 

dynamics may be collectively related by a larger pattern of selection for functionality (perhaps 

correlating with a shift in metabolic function).  

In support of a hypothesis involving selection for overall oxidative metabolic function, 

the accelerated rates of molecular evolution in snakes appears to depend greatly on gene 

function, with most ND subunits accelerating only slightly and occasionally, while the COX, 

ATP, CytB, and rRNA evolutionary accelerations are dramatic and punctuated. The roles of 
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these accelerated proteins (and the mitochondria in general) in energetics via oxidative 

phosphorylation are well known, and it may be that a single causative agent accompanying the 

diversification of snakes that dramatically altered metabolic demand, or led to a fluctuation in 

metabolic demand, was responsible for large-scale changes in selective pressure on these 

proteins. If so, it may eventually be possible to find evidence for similar adaptive pressure on 

related nuclear-encoded snake proteins. It is worth noting that other cases have recently been 

identified in which mitochondrial proteins appear to have undergone bursts of selection in 

response to fluctuating energetic demands (McClellan et al., 2005).  

We are undertaking a detailed analysis of coevolutionary interactions (Pollock et al., 

1999; Wang and Pollock, 2005), three-dimensional structure, and site-specific selection events in 

snake mitochondrial proteins in an attempt to understand this acceleration in greater functional 

detail. This requires further sampling of snake genomes to obtain sufficient accuracy and 

statistical power, and is complicated by the ancient nature of the evolutionary acceleration; the 

most dramatic evidence for acceleration exists at the base of the Serpentes clade rather than in 

modern snake lineages (Figure 20).  

 

Conclusions 

Snake mitochondrial genomes present a rare opportunity to observe, and investigate, the 

evolutionary interactions and functional ramifications that link genome architecture, molecular 

evolution, and multi-level molecular function. Available evidence points to selective pressures 

acting at many hierarchical levels of snake mitochondrial genomes, and at different times during 
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snake evolution, leading to diverse, dramatic, and broad-scale changes in the genome. 

Interestingly, some consequences of this adaptive shift appear to have diminished over time (e.g., 

accelerated rates of COX and other gene evolution), whereas others appear to continue in 

modern snakes (i.e., the effects of control region duplication on mutation gradients, replication, 

and potentially transcription, and remnant functional consequences of short and highly 

substituted genes). Although the precise cause is unknown, this outstanding example of an 

apparent punctuated adaptive shift involving multiple aspects of genome architecture evolution 

provides an important comparative tool for the study of vertebrate mitochondrial genome 

evolution. Overall, this highlights the need for further comparative genomic research in snakes to 

provide more accurate resolution of evolutionary patterns and possible site-specific effects of 

mutational dynamics.  
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CHAPTER 6 – CONCLUSION 
 

 

Advancing the Framework for Functional Comparative Genomics 

 

The primary limitation imposed on the exploitation of vast genomic resources currently 

available is our limited abilities to distill meaningful comparative and functionally relevant 

patterns from these practically infinite arrays of four nucleotides. Given that essentially the 

entirety of biological diversity is encoded via the patterns of nucleotide occurrence in genomic 

sequences, developing our abilities to understand and extract information about these patterns is 

absolutely crucial to advancing our understanding of the function and diversity of biological 

systems. Only through the development of a robust comparative framework, whereby 

information about the evolutionary relationships among compared units may be synthesized 

together with structural and functional information, may these vast genomics resources yield 

meaningful insight into the biological relevance of the variation and conservation across genes 

and genomes.  

To advance our ability to understand and draw conclusions from these patterns via a 

comparative framework, we conducted several studies that examined 1) methodologies for 

complex modeling of nucleotide evolution, including the impact these methods have on 

increasing the power and accuracy of phylogenetic inference, 2) exploratory analyses that 

examine novel potential links and interrelationships between genome structure, function, and 

nucleotide evolution, and 3) an truly extreme example of a massive genome-wide adaptive shift 
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that appears to have altered nucleotide evolution, genome architecture, and overall molecular 

function of the genome itself and of the gene products (both RNAs and proteins) encoded by the 

mitochondrial genome. Collectively, these studies significantly contribute a critical foundation 

required for functional comparative genomics by overcoming previous practical, theoretical, and 

methodological limitations, while also providing crucial examples that demonstrates coordinated 

changes in genome structure, function, and nucleotide evolution may collectively contribute 

substantially to system-wide biological functional change.  

 

 

Complex Modeling of the Nucleotide Evolutionary Process 

 

Likelihood-based methods, including Bayesian Markov-chain Monte Carlo (MCMC) 

methods, have greatly improved our ability to estimate evolutionary patterns using larger 

datasets and complex models of evolution. However, this also has lead to a seemingly 

paradoxical dilemma with regard to evolutionary model complexity. In general, it is assumed 

that more realistic models of evolution will yield more accurate phylogenetic estimates and clade 

credibility (posterior probability) values, thus perhaps favoring parameter-rich models, since 

interpretations of posterior probabilities are contingent on model specifications (Huelsenbeck et 

al., 2002). A key assumption of Wald’s (1949) proof of the consistency of maximum likelihood 

estimates, however, is that all of the parameters of the likelihood function are identifiable from 

the true probability distribution of the data (Rogers, 2001). Even if a particular parameter may be 

intrinsic in the evolution of DNA sequences, we need to consider whether this parameter can be 
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accurately estimated based on the data. This dilemma is manifest when attempting to construct 

and implement models that realistically describe DNA evolution, while avoiding 

overparameterization, or using more parameters than can be meaningfully estimated from the 

data. Thus, despite considerations favoring complex models, benefits of constructing and 

implementing more realistic evolutionary models of DNA substitution are challenged by the 

potential for imprecise and inaccurate model parameter and phylogeny estimation that may result 

from excess model complexity. Expanding computational power, increasing genomic resources, 

and advances allowing broad flexibility in modeling evolutionary patterns in a Bayesian MCMC 

context collectively underscore the importance of developing accurate models and objective 

strategies for model testing.  

We have developed a three-part strategy for identifying, testing, and evaluating candidate 

complex models in a Bayesian MCMC context. 1) We have employed simple Akaike 

Information Criteria (Akaike, 1973, 1974, 1983; Sakamoto et al., 1986) to identify best-fit 

models for independent biologically intuitive (potential) partitions of the dataset (see also 

Brandley et al., 2005). 2) To identify the best partitioning strategy for heterogeneous datasets, we 

have developed a three-part means of cross-validation using marginalized Akaike weights 

(novel; see also Buckley et al., 2002), Bayes factors (Nylander et al., 2004), and the Relative 

Bayes Factors (novel) to examine model fit across alternatively partitioned Bayesian MCMC 

models. 3). To test the important assumption that models are not excessively parameter rich 

(which may lead to serious problems in accuracy), we have developed an array of post-hoc 

model evaluation methods to evaluate the performance of complex models and to check for 

proper mixing and convergence. Collectively this novel and robust strategy facilitates the use of 
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more realistic complex models of nucleotide evolution (which we have shown are necessary for 

accurate evolutionary inference) while ensuring that issues that may lead to problems with 

employing overly complex models are avoided.  

Across the multiple studies on complex modeling that we have conducted (including 

manuscripts not included in this dissertation listed in references: Castoe et al., 2007; Castoe et 

al., in press; Doan et al., 2005; Herron et al., 2004) we have found that complex models of 

nucleotide evolution are extremely critical for accurate phylogenetic inference, and thus essential 

for meaningful comparative genomic analyses. Our results support four important conclusions 

relevant to the use of complex partition-specific models in combined MCMC analyses. 1) Model 

choice may have important practical effects on phylogenetic conclusions even for smaller 

datasets. 2) The use of complex partitioned models does not produce widespread increases or 

decreases in inferred support for phylogenetic relationships. 3) A majority of differences in 

resolution resulting from model choice is concentrated at deeper nodes, thus complex models 

become more critical as sequence divergence increases. Also, a majority of these deeper nodes 

increased substantially in resolution (as measured by nodal posterior probability support) with 

increasing model complexity. 4) Appropriately complex models appear to facilitate superior 

exploration of tree and parameter space, thus increasing the speed and effectiveness of evaluation 

of all possible estimates to determine the most optimal and accurate set if likely possibilities.   

Since we observed substantial differences between estimates based on simple versus 

complex models, two important questions arise with regard to these differences. The first is, to 

what extent is an unpartitioned model forced to compromise estimates of model parameters in 

the analysis of a complex heterogeneous dataset, versus a complex model that contains several 
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distinct partitions of evolutionary patterns for portions of the data? In other words, how 

misleading may a single model really be (in terms of nucleotide substitution model parameters) if 

used for a complex dataset? Our results suggest that this compromise is extreme in some cases, 

and is evident across different classes of model parameters. Comparisons of the 95% confidence 

intervals (CIs) of parameter estimates derived from simple models show many instances where 

95% CIs of partitions do not overlap those based on the unpartitioned simple model. 

Furthermore, many CIs that do overlap between simple and complex models do not coincide for 

a majority of their posterior densities. These findings point directly at the elevated potential for 

an unpartitioned model to fall into the trap identified in simulation studies where an 

oversimplified model suffers from decreased accuracy. Collectively, available evidence supports 

not only the use of complex models (including partitioned models), but implies that these may be 

crucial for accurate phylogenetic estimates (see also Huelsenbeck and Rannala, 2004). 

Consequently, these results suggest that accounting for the realistic heterogeneity of nucleotide 

evolution using complex models is essential for accurate, meaningful comparative genomic 

inference.  

Given the differences between the estimates based on simple and complex models, the 

second question arises: how should the differences in phylogenetic hypotheses between simple 

and complex models be interpreted? We found complex models to result in changes in 

phylogenetic support (posterior probabilities) for clades that, in some instances, altered the 

estimate of the consensus topology. These changes tended to provide higher support in complex 

models, with a majority of changes concentrated at deeper nodes (e.g., Brandley et al., 2005; see 

also Alfaro et al., 2003). This observation raises two possibilities, either complex models result 
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in over-inflated support estimates, or they provide (at least on average) more accurate estimates 

of nodal support. Three points of evidence suggest that complex models do generally provide to 

more accurate, rather than over-inflated, posterior probability estimates: 1) the results of 

simulation studies discussed above, 2) empirical studies, including the studies included in this 

dissertation, demonstrating that even though a majority of nodes may increase, some decrease 

under complex model analyses (see also Brandley et al., 2005; Nylander et al., 2004), and 3) 

results described here that show a coincidence between clades that show increased support under 

complex-model analyses and are also supported by other independent data (see also Doan et al., 

2005; Castoe et al., 2007; Castoe et al., in press).  

It may not be immediately obvious how these studies that utilize organismal phylogeny 

examples are relevant to the broad field of functional comparative genomics and ultimately to 

human biology and disease. To illustrate this direct connection, I present several examples from 

our recent work (not included in this dissertation) that build upon these examples of nucleotide 

modeling to make important inferences about broader biological questions.  

Although not completed, we have initiated collaborative work on the functional evolution 

of the Rho GTPase family of proteins across eukaryotes aimed at understanding the evolutionary 

functional context of Rho diversification, and also at definitively identifying orthologous and 

paralagous members of this gene family across model systems (yeast, flies, worms, mammals, 

and humans). The importance of understanding the evolution and relationships among 

RhoGTPases is illustrated by the massive differential expansion of some members of this protein 

family across eukaryotes (e.g., 5 members in C. elegans to over 20 members in mammals). This 

large and diverse family of proteins, ubiquitous among eukaryotes, is so named based on their 
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high homology with the small GTPase Ras, the first oncogene identified. Accordingly, Rho-

family GTPases are of extreme interest based on their roles in directing cellular differentiation, 

development, and cancer. Unlike organismal phylogeny questions, deciphering geneological 

relationships among members of this gene family is particularly difficult because of the small 

size of the protein involved (typically < 200 codons) which only permits a small number of 

aligned homologous nucleotides to be analyzed. Our results clearly show that all previous 

estimates of Rho family phylogeny are significantly inaccurate (e.g., Boureux et al., 2006; 

Wherlock and Mellor, 2002), and that using complex nucleotide modeling strategies to estimate 

the phylogeny of Rho GTPases provides a drastically novel perspective, whereby the current 

views of which members are homologs across model systems is very incorrect. Our comparative 

genomic perspective suggests a completely new model of which functional types of Rho 

GTPases evolved first, and also which single Rho proteins in some model systems have 

numerous paralogous sister proteins in humans, while other proteins in model systems have 

essentially no homolog in humans are less interesting for human health.  

Similarly, our recent work on the eukaryotic type II polyketide and fatty acid synthase 

(PKS/FAS) gene family demonstrated significantly different estimates of the evolutionary 

relationships, grouping very unique homologous clusters of genes across animals (Castoe et al., 

2007). These results also provided strong evidence for several novel groups of non-FAS PKS 

genes in some animal genomes that may play key roles in primitive innate immunity. We have 

also been able to show (only using these advanced models) that there has been a strong trend of 

gene loss of these novel PKS genes in many animal lineages that suggests that the function of 
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these genes may be either strongly favored or unfavored, depending on the unique physiology 

and immune system function of particular animal groups.  

Lastly, in ongoing studies to understand in more functional detail the dramatic patterns of 

evolutionary change that we have discovered in vertebrate mitochondrial genomes discussed 

above (in Chapter 5), these advances in nucleotide modeling have been critical to the accuracy 

and ultimate inference of functional patterns of genomic change. Using these complex models 

has allowed us to add extensive power to our ability to detect even subtle changes in the patterns 

of nucleotide change, facilitating our identification of differential activity of mitochondrial 

control region function (in initiation of genome replication) and also apparent changes in the 

activity of the gamma DNA polymerase activity of different lineages of animals. Understanding 

these types of dynamics has many functional ramifications, including our enhanced ability to 

accurately and meaningfully compare different animal models used for investigating 

mitochondria-related diseases. Additionally, using different models of nucleotide evolution 

provide very different estimates of how selection may have driven the major remodeling of the 

mitochondrial genomes of snakes, and these more accurate complex models yield phylogeny and 

character-state change estimates that drastically revise earlier estimates of where, when, and 

through correlations with other co-occurring phenomenon, why these changes may have 

occurred.   

Collectively, the work in this dissertation that focuses on modeling the nucleotide 

evolutionary process has made a succinct and significant contribution that directly satisfies the 

initial goal of removing limitations on the functional utilization of genomic data by constructing 

a cohesive and robust framework for comparative genomic analyses. Our work demonstrates 
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that, given an infrastructure of careful model selection and evaluation, complex modeling of the 

nucleotide evolutionary process not only contributes to, but is required for accurate inference of 

phylogenetic and evolutionary patterns estimated from comparative genomic data.  

 

 

Insight into the Evolutionary Process at the Genome Scale 

 

In this exploratory comparative genomic analysis, we have focused on the extreme 

example of snake mitochondrial genomes, and investigated the potential causes and molecular 

evolutionary consequences of the unique mitochondrial genomic architecture of snakes. The 

novel complete snake mitochondrial genomes presented here, together with previously existing 

vertebrate genomes, compose an intriguing dataset that provides a preliminary perspective on a 

complex history of potentially adaptive genomic change in snakes that involved a coordinated 

change in genome structure, nucleotide evolution, and molecular function. Unusual changes in 

gene size and nucleotide substitution rates have accompanied changes in genomic architecture, 

but despite evidence for variable among-lineage functionality of the duplicate control region in 

snakes, the changes in substitution dynamics cannot be directly explained by the changes in 

genome architecture alone. Collectively, the patterns we have identified over the course of snake 

mitochondrial genome evolution are most consistent with some type of broad selective pressure 

on the efficiency and function of oxidative metabolism in snakes.  

Previous to the work here, studies have suggested that snake mitochondrial genomes  

(mtDNA) have an accelerated rate of evolution (Dong and Kumazawa, 2005; Kumazawa et al., 
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1998). Our results suggest this general conclusion is actually a drastic oversimplification of a 

much more complex scenario, and that rates of snake mtDNA evolution incorporate broad 

temporal (branch-specific) and spatial (gene and gene region-specific) dynamics. Ancestral 

branches early in snake evolution appear to be associated with dramatically elevated 

evolutionary rates and rate dynamics across the mitochondrial genome. In contrast, terminal 

(recent) snake lineages appear to have patterns of mtDNA evolution that are strikingly similar to 

other (non-snake) vertebrate mtDNAs.  

The punctuated nature of these drastic changes in evolutionary rates suggests that the 

evolution of two mitochondrial control regions, gene shortening, and the variable molecular 

evolutionary rate dynamics may be collectively related by a larger pattern of selection for 

functionality (perhaps correlating with a shift in metabolic function). In support of a hypothesis 

involving selection for overall oxidative metabolic function, the accelerated rates of molecular 

evolution in snakes appears to depend greatly on gene function, with most NADH-

dehydrogenase subunits accelerating only slightly and occasionally, while the Cytochrome C 

Oxidase (COX), Cytochrome-B (Cyt-B), ATPase, and rRNA evolutionary accelerations are 

dramatic and extremely punctuated. The roles of these accelerated proteins (and the 

mitochondria in general) in energetics via oxidative phosphorylation are well known, and it may 

be that a single causative agent accompanying the diversification of snakes that dramatically 

altered metabolic demand, or led to a fluctuation in metabolic demand, was responsible for large-

scale changes in selective pressure on these proteins. It is also interesting that the two most 

accelerated protein complexes in snake mtDNAs also happen to be involved in mitochondrially-

induced apoptosis as they bind Cytochrome-C, which when released is the primary trigger for 



 256

initiation of the intrinsic apoptotic pathway. Presently, however, there is no other data which 

obviously link the abnormal patterns of snake mtDNA evolution with the control of programmed 

cell death.  

Snake mitochondrial genomes present a rare opportunity to observe and investigate the 

evolutionary interactions and functional ramifications that link genome architecture, molecular 

evolution, and multi-level molecular function. Available evidence points to selective pressures 

acting at many hierarchical levels of snake mitochondrial genomes, and at different times during 

snake evolution, leading to diverse, dramatic, and broad-scale changes in the genome. 

Interestingly, some consequences of this adaptive shift appear to have diminished over time (e.g., 

accelerated rates of COX and other gene evolution), whereas others appear to continue in 

modern snakes (i.e., the effects of control region duplication on mutation gradients, replication, 

and potentially transcription, and remnant functional consequences of short and highly 

substituted genes). Our ongoing work on comparative mitochondrial genomics of snakes is 

aimed at testing hypotheses for the cause of these changes, and also investigating the spectrum of 

potential functional ramifications these changes may have lead to. Although the precise cause is 

unknown, this outstanding example of an apparent punctuated adaptive shift involving multiple 

aspects of genome architecture evolution provides an important comparative tool for the study of 

vertebrate mitochondrial genome evolution, and a novel example of coordinated structural, 

molecular and functional evolution for the field of comparative genomics in general. 



 257

References 

 

Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: 

Second International Symposium on Information Theory. Akademiai Kiado, Budapest, pp. 

673–681. 

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Aut. Control 

19, 716–723. 

Akaike, H., 1983. Information measures and model selection. Int. Stat. Inst. 22, 277–291.  

Alfaro, M.E., Zoller, S., Lutzoni, F., 2003. Bayes or bootstrap? A simulation study comparing 

the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in 

assessing phylogenetic confidence. Mol. Biol. Evol. 20, 255–266. 

Brandley, M.C., Schmitz, A., Reeder, T.W., 2005. Partitioned Bayesian analyses, partition 

choice, and the phylogenetic relationships of scincid lizards. Syst. Biol. 54, 373–390.  

Boureux, A., Vignal, E., Faure, S., Fort, P., 2006. Evolution of the Rho family of Ras-like 

GTPases in eukaryotes. Mol. Biol. Evol. 24, 203–216. 

Buckley, T.R., 2002. Model misspecification and probabilistic tests of topology: evidence from 

empirical data sets. Syst. Biol. 51, 509–523. 

Castoe, T.A., Stephens, T.S., Noonan, B.P., Calestani, C.L., 2007. A novel group of type I 

polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs. Gene. 



 258

Castoe, T.A., Smith, E.N., Brown, R.M., Parkinson, C.L., In press. Higher-level phylogeny of 

Asian and American coralsnakes, their placement within the Elapidae (Squamata), and the 

systematic affinities of the enigmatic Asian coralsnake Hemibungarus calligaster. Zool. J. 

Linnean Soc. 

Doan, T.M., Castoe, T.A., Arizábal Arriaga. W., 2005. Phylogenetic relationships of the genus 

Proctoporus sensu stricto (Squamata: Gymnophthalmidae), with a new species from Puno, 

southeastern Peru. Herpetologica 61, 325–336. 

Dong, S., Kumazawa, Y., 2005. Complete mitochondrial DNA sequences of six snakes: 

Phylogenetic relationships and molecular evolution of genomic features. J. Mol. Evol. 61, 12–

22. 

Herron, M.D., Castoe, T.A., Parkinson, C.L., 2004. Sciurid phylogeny and the paraphyly of 

Holarctic ground squirrels (Spermophilus). Mol. Phylogenet. Evol. 31, 1015–1030 

Huelsenbeck, J.P., 2002. Testing a covariotide model of DNA substitution. Mol. Biol. Evol. 19, 

698–707. 

Huelsenbeck, J.P., Rannala, B., 2004. Frequentist properties of Bayesian posterior probabilities 

of phylogenetic trees under simple and complex substitution models. Syst. Biol. 53, 904–913.  

Kumazawa, Y., Ota, H., Nishida, M., Ozawa, T., 1998. The complete nucleotide sequence of a 

snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. 

Genetics 150, 313–329. 

McClellan, D.A., Palfreyman, E.J., Smith, M.J., Moss, J.L., Christensen, R.G., Sailsbery, A.K., 

2005. Physicochemical evolution and molecular adaptation of the cetacean and artiodactyl 

cytochrome b proteins. Mol. Biol. Evol. 22, 437–455. 



 259

Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P., Nieves-Aldrey, J.L., 2004. Bayesian 

phylogenetic analysis of combined data. Syst. Biol. 53, 47–67.  

Rogers, J. S., 2001. Maximum likelihood estimation of phylogenetic trees in consistent when 

substitution rates vary according to the invariable sites plus gamma distribution. Syst. Biol. 50, 

713–722. 

Sakamoto, Y., Ishiguro, M., Kitagawa, G., 1986. Akaike Information Criterion Statistics. 

Springer, NY. 

Wald, A., 1949. Note on the consistency of the maximum likelihood estimate. Ann. Math. Stat. 

20, 595–601.  

Wherlock, M., Mellor, H., 2002. The Rho GTPase family: a Racs to Wrchs story. J. Cell Sci. 

115, 239–240. 

 


	Modeling And Partitioning The Nucleotide Evolutionary Process For Phylogenetic And Comparative Genomic Inference
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 – INTRODUCTION
	A Foundation for Comparative Genomics
	Complex Modeling of the Nucleotide Evolutionary Process
	Vertebrate Mitochondrial Genomes as a Model System for Compa
	References

	CHAPTER 2 – DATA PARTITIONS AND COMPLEX MODELS IN BAYESIAN A
	Introduction
	Methods
	DNA Sequences Used
	Sequence Homology and Alignment
	Phylogeny Estimation Using Maximum Parsimony
	Bayesian Phylogeny Estimation

	Results
	Parsimony Phylogenetic Reconstruction
	Mitochondrial Gene MCMC Analyses
	C-mos (Nuclear Gene) MCMC Analyses
	Combined MCMC Analyses
	Comparison Among Phylogenetic Reconstructions

	Discussion
	Model Selection and Evaluation
	Effects of Partitioning Gamma and Using Auto-correlated Rate
	Taxonomic Considerations and Alterations

	References

	CHAPTER 3 – MODELING NUCLEOTIDE EVOLUTION AT THE MESOSCALE: 
	Introduction
	Modeling nucleotide evolution at the mesoscale
	Systematics of the Neotropical pitvipers of the Porthidium g
	Theoretical and empirical scope of this study

	Materials and methods
	Taxon sampling
	DNA sequencing and sequence alignment
	Phylogenetic reconstruction

	Results
	Dataset characteristics and individual gene phylogenies
	Maximum parsimony phylogenetic analysis
	Bayesian MCMC model selection and evaluation
	Effects of model choice on Bayesian phylogenetic hypotheses
	Bayesian MCMC phylogenetic results under the best-fit model

	Discussion
	Model partitioning in Bayesian MCMC analyses
	Suggestions and prospects for complex Bayesian MCMC modeling
	Relationships and taxonomy of the Porthidium group

	References

	CHAPTER 4 – BAYESIAN MIXED MODELS AND THE PHYLOGENY OF PITVI
	Introduction
	Pitvipers and their contemporary systematics
	Challenges and strategies for resolving pitviper phylogeny

	Materials and methods
	Taxon sampling
	DNA sequencing and sequence alignment
	Phylogenetic reconstruction

	Results
	Properties of the dataset
	Maximum Parsimony phylogenetic analyses
	Selection, evaluation, and comparison of Bayesian MCMC model
	Bayesian phylogenetic hypotheses based on 10x partitioned mo
	Differences in MCMC phylogenetic estimates between 1x and 10

	Discussion
	Strengths and limitations of complex partitioned models
	Phylogeny and systematics of pitvipers
	Future directions for pitviper systematics

	References

	CHAPTER 5 – COMPARATIVE MITOCHONDRIAL GENOMICS OF SNAKES: EX
	Introduction
	Material and Methods
	Sampling, sequencing and annotation
	Phylogenetic and sliding-window analyses
	tRNA structure
	Analysis of control region functionality

	Results
	Brief summary of the new complete snake mitochondrial genome
	Comparison of A. piscovorus genomes
	Phylogenetics
	Nucleotide frequencies and control region functionality
	Gene length and stability of truncated tRNAs in snakes
	Spatio-temporal substitution rate dynamics across mtDNA gene

	Discussion
	Gene size reduction and control region functionality
	Concerted evolution in and around the duplicate control regi
	Potential impacts of genome architecture on genome replicati
	Comparative rates of molecular evolution
	Conclusions

	References

	CHAPTER 6 – CONCLUSION
	Advancing the Framework for Functional Comparative Genomics
	Complex Modeling of the Nucleotide Evolutionary Process
	Insight into the Evolutionary Process at the Genome Scale
	References


