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ABSTRACT 

The realization of wavelength scale and sub-wavelength scale fabrication of integrated 

optical devices has led to a concurrent need for computational design tools that can accurately 

model electromagnetic phenomena on these length scales.  This dissertation describes the 

physical, analytical, numerical, and software developments utilized for practical implementation 

of two particular frequency domain design tools: the modal method for multilayer waveguides 

and one-dimensional lamellar gratings and the Rigorous Coupled Wave Analysis (RCWA) for 

1D, 2D, and 3D periodic optical structures and integrated optical devices.  These design tools, 

including some novel numerical and programming extensions developed during the course of 

this work, were then applied to investigate the design of a few unique integrated waveguide and 

grating structures and the associated physical phenomena exploited by those structures. 

The properties and design of a multilayer, multimode waveguide-grating, guided mode 

resonance (GMR) filter are investigated.  The multilayer, multimode GMR filters studied consist 

of alternating high and low refractive index layers of various thicknesses with a binary grating 

etched into the top layer.  The separation of spectral wavelength resonances supported by a 

multimode GMR structure with fixed grating parameters is shown to be controllable from coarse 

to fine through the use of tightly controlled, but realizable, choices for multiple layer thicknesses 

in a two material waveguide; effectively performing the simultaneous engineering of the 

wavelength dispersion for multiple waveguide grating modes.  This idea of simultaneous 

dispersion band tailoring is then used to design a multilayer, multimode GMR filter that 

possesses broadened angular acceptance for multiple wavelengths incident at a single angle of 

incidence. 



 iv

The effect of a steady-state linear loss or gain on the wavelength response of a GMR 

filter is studied.  A linear loss added to the primary guiding layer of a GMR filter is shown to 

produce enhanced resonant absorption of light by the GMR structure.  Similarly, linear gain 

added to the guiding layer is shown to produce enhanced resonant reflection and transmission 

from a GMR structure with decreased spectral line width. 

A combination of 2D and 3D modeling is utilized to investigate the properties of an 

embedded waveguide grating structure used in filtering/reflecting an incident guided mode.  For 

the embedded waveguide grating, 2D modeling suggests the possibility of using low index 

periodic inclusions to create an embedded grating resonant filter, but the results of 3D RCWA 

modeling suggest that transverse low index periodic inclusions produce a resonant lossy cavity 

as opposed to a resonant reflecting mirror. 

A novel concept for an all-dielectric unidirectional dual grating output coupler is 

proposed and rigorously analyzed.  A multilayer, single-mode, high and graded-index, slab 

waveguide is placed atop a slightly lower index substrate.  The properties of the individual 

gratings etched into the waveguide’s cover/air and substrate/air interfaces are then chosen such 

that no propagating diffracted orders are present in the device superstrate and only a single order 

is present outside the structure in the substrate. The concept produces a robust output coupler that 

requires neither phase-matching of the two gratings nor any resonances in the structure, and is 

very tolerant to potential errors in fabrication.  Up to 96% coupling efficiency from the substrate-

side grating is obtained over a wide range of grating properties. 
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CHAPTER 1 INTRODUCTION 

 As micro-scale and then nano-scale fabrication techniques have been introduced and 

refined, the promise of optical devices having feature sizes on the same scale as or smaller than 

the wavelength of light has gone from pure theoretical conceptualization to physical reality.  This 

miniaturization of device size has made possible the potential duplication of the successes that 

have been achieved in integrated electronic circuits, where numerous functionalities are provided 

by devices on a single chip, with integrated photonic devices possessing similar capabilities.   

As society pushes towards wavelength scale and subwavelength scale optical 

components, there has been a concurrent need for design tools that accurately represent the 

physical phenomena occurring at these diminishing length scales.  While all of classical 

electromagnetism can be described by Maxwell’s famous set of equations [1], it is the sources 

and materials (with their respective geometries) which are to be modeled using these equations 

that determine the complexity needed and difficulty level in building the mathematical tools 

necessary for useful designs.   Whereas classical lens design may only require a geometrical ray 

tracing for an acceptable design solution or a weakly guiding waveguide or a phase grating may 

only require a scalar approximation of the wave equation [2-4], nano-scale optical devices often 

require a full rigorous treatment of Maxwell’s equations for an acceptably accurate solution to 

the wave propagation design problem.  

Traditionally, two of the main building blocks for passive integrated optical devices have 

been piecewise continuous index-guided waveguides, consisting of two or more materials where 

light is guided by a core with a relatively high-magnitude permittivity surrounded by a material 

having lower magnitude permittivity, and diffraction gratings, consisting of structures having 
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periodic variations of high and low permittivity materials.  Devices consisting of a combination 

of these building blocks provide for a wide variety of functionalities ranging from simple light 

pipes and channels, to wavelength filters, to dispersion compensators and enhancers, to 

interferometers, to beam shapers/splitters/combiners, to sensors of all kinds, and many other 

devices [4-8].   

 While the development of both waveguide theory and grating theory share common 

roots, namely in Maxwell’s equations of electromagnetism, differences in device geometries and 

differences in required boundary conditions between the two types of structures have led to a 

variety of techniques for determining modal/homogeneous solutions and wave 

propagation/particular solutions for the corresponding systems of equations.  Despite the variety, 

it was not until this decade, apart from generic methods that do not fully exploit device 

geometry, that techniques were developed which specifically linked waveguide and grating 

modeling in a single method that could reliably and efficiently handle either type of device [9].  

While it has been pointed out that there is no “silver bullet”, no “one size fits all” technique [10], 

for efficiently modeling all types of integrated optical devices, the enhancement of the Rigorous 

Coupled Wave Analysis (RCWA) technique [7, 11-15] with the inclusion of Perfectly Matched 

Layer (PML) boundary conditions [16] has extended what is probably the most extensively used 

tool for modeling infinitely periodic diffraction gratings into a tool for efficiently modeling many 

types of problems involving finite waveguides. 

 In the course of this work, some recently extended numerical techniques were 

implemented for modeling finite waveguides using a bi-directional eigenmode expansion 

method, which in this case involved using RCWA/PML as the eigenmode solver, and either an 

enhanced transmittance matrix [13] or a scattering matrix method [17, 18] for mode matching 
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and wave propagation.  Further enhancements and extensions to the implementation of these 

methods [19] developed during the course of this work were added for modeling some new 

variations on integrated waveguides and gratings that were the physical focus of our study.  This 

dissertation provides a thorough description of the mathematical and numerical development 

needed to model integrated waveguides and gratings in one, two, or three dimensions using 

RCWA as well as an explanation of how to go about translating the derived equations for 

numerical solutions into efficient and flexible computer codes that can be used for a variety of 

different material property distributions and input sources.  These tools are then applied to some 

unique nano-scale integrated waveguide/grating devices whose overriding themes are enhanced 

functionality over conventional devices due to integration of components on a single platform, 

and material geometries that provide a realistic potential for fabrication using current fabrication 

techniques.  For each of the devices studied, the desired functionality of the device is described 

in terms of the relevant physics involved in device operation and relevant geometric and material 

tolerances required for desired device performance. 

 As much of the design work undertaken in this study revolves around understanding and 

manipulating the properties of a waveguide or grating’s eigenmodes, Chapter 2 provides the 

development of the transcendental equations which may be used to solve for the eigenmodes of a 

simple three layer slab waveguide, an anisotropic multilayer slab waveguide, and binary lamellar 

diffraction gratings.  This chapter also provides a discussion of the various types of modes that 

can be supported by these structures, as well as the effects that the choice of boundary 

conditions, and solution method has on the solutions to these systems of equations.  

Chapter 3 describes the Rigorous Coupled Wave Analysis (RCWA) method for modeling 

transversely infinite diffraction gratings and finite waveguides.  A development is presented of 
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the equations necessary for using RCWA in determining eigenmodes in homogeneous regions of 

space, as well as one, two, and three dimensionally periodic regions of space.  Use of these 

modes for determining diffraction efficiencies from one and two dimensional infinite gratings are 

discussed, as well as the means for incorporating Perfectly Matched Layer (PML) boundary 

conditions for modeling transversely finite waveguides. 

Chapter 4 develops the tools necessary for modeling wave propagation in layered media.  

The concept of mode matching between layers having differing eigenmodes is discussed as well 

as four separate means of relating input and output waves at an interface between two distinct 

layers. The two methods utilized during the course of this work are then discussed more 

thoroughly, the enhanced transmittance matrix and the scattering matrix.  The means of 

modeling the propagating energy between separate layer’s eigenmodes as well as through a 

generic multilayer system are presented in detail.  For the scattering matrix technique, in 

particular, use of the Redheffer star-product operation [16, 19, 20] allows for a numerically 

stable means of calculating the field harmonic amplitudes either internal or external to the 

multilayered system.  This chapter concludes with a novel computational enhancement to the 

RCWA/Scattering-Matrix technique introduced during the course of this work, zero thickness 

homogeneous layers [19]. 

In the following chapters, the numerical tools that are developed in Chapters 2 through 4, 

as well as Appendices B through E, are used to design a few unique waveguide/grating structures 

as well as study the physical phenomena governing their operation.  In Chapter 5, the concept of 

a multilayer, multimode, guided mode resonance filter is studied.  This inquiry begins with a 

brief discussion of the history of resonant gratings and the theory of their operation.  This 

historical introduction leads into a discussion of the fundamental physics involved in resonant 
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gratings, their mode structure and coupling properties.  Next, a mixture of effective medium 

theory [21] and the multilayer waveguide theory from Chapter 2 is utilized for modeling the real-

valued properties of the eigenmodes in a multilayer, multimodal resonant grating structure, and 

is utilized for studying the control of resonance separation in a multilayer multimode GMR filter.  

Making use of scattering matrix methods [22, 23] for modeling the complex-valued dispersion 

properties of resonant grating structures, the concept of coupling an input plane wave to two 

modes at a dispersion band edge resulting in broadened angular acceptance is expanded to the 

case of multiple wavelengths and oblique incidence.  In Chapter 6, the effects of incorporating a 

linear gain or linear loss within the primary guiding layer of a waveguide grating guided mode 

resonance filter are studied.  Chapter 7 explores the potential for integrating transverse, low-

index, periodic inclusions as an embedded waveguide grating filter/mirror.  In Chapter 8, the 

concept of an all dielectric, unidirectional, dual grating output coupler is proposed and rigorously 

analyzed in terms of its separate components as well as a unified whole device.  The output 

coupling performance of this structure is shown to be very robust in that it does not depend on 

any grating resonances and is tolerant to potential fabrication errors in numerous grating 

parameters.  Conclusions and potential for future work is then presented in Chapter 9. 

Appendix A provides some of the electromagnetic background upon which eigenmode 

expansion modeling is grounded.  Appendix B through D provide some of the implementation 

details needed for setting up the coupled wave modal matrix equations described in Chapter 3.  

Appendix B describes the creation of spatial harmonic grids in one, two, and three dimensionally 

periodic systems [24].  Appendix C presents various means of determining the permittivity and 

permeability dependent coupling coefficient matrices in one, two, and three dimensions [10, 25-

32].  Appendix D discusses the exploitation of symmetries present in one and two dimensionally 
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periodic systems [33-35] that can decrease the numerical size, and hence increase the 

computational efficiency, of certain eigenmode problems.  Appendix E ties the entire 

computational process together by describing the workflow of an RCWA computation from the 

initial definition of geometry, material, and input wave properties through to post-processing of 

output data. 
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CHAPTER 2 MODAL SOLUTIONS IN SLAB WAVEGUIDES AND 
DIFFRACTION GRATINGS 

 In order to go about the process of designing integrated optical components, it is first 

necessary to develop the fundamentals of electromagnetic wave propagation in continuous or 

discrete, and uniform or periodic media.  In this chapter, a review is provided for the equations 

describing how light propagates through materials having these varied geometries.  By starting 

from a derivation of the time harmonic Maxwell’s equations, boundary conditions, and Poynting 

Theorem , from Appendix A, an analytical derivation is provided for the transcendental 

equations governing the eigenmodes of simple three-layer TE and TM slab waveguides [36] in 

section 2.1.1, and for an arbitrary anisotropic multilayer TE and TM slab waveguides are 

presented in section 2.1.2.  Orthogonality of the modes within a slab waveguide is established in 

section 2.1.3. Section 2.2 provides a similar development of solving for the eigenmodes in a 

diffraction grating, with the Rayleigh expansion of plane waves in a homogeneous medium [37] 

presented in section 2.2.1 and the one-dimensional grating modal problem presented in Section 

2.2.2. Section 2.3 discusses the issue of how complex boundary conditions can be helpful in 

solving for the properties of all the various types of modes that can be determined using these 

transcendental equations.  Section 2.4 discusses how to obtain direct numerical solutions to these 

transcendental eigenvalue equations by means of root-searching algorithms, whose positive and 

negative issues are discussed, and finally, the alternative approach utilized in this study is 

introduced. 

 



 8

2.1 Eigenmodes in Slab Waveguides 

 Electromagnetic waveguides are formed by a spatial variation of material properties 

(permittivity, permeability, conductivity) that cause energy to be concentrated in, and bound by, 

a certain region of space [6, 36, 38].  While this spatial variation may be continuous or discrete, 

in this section we consider only discrete spatial variations in electromagnetic material properties.  

 Having properly derived the governing forms of Maxwell’s equations at an interface 

between two separate media, an extension of these concepts to two or more interfaces allows for 

the possibility of confining energy within the bounds of those interfaces and for the creation of a 

waveguide.  This section provides a development of the eigenmodes within a passive 

dielectric/magnetic waveguide, and the orthogonality relationships between these modes. 

2.1.1 Eigenmode Expansion in Three-layer Slab Waveguides 

 One of the simplest types of wave guiding structures consists of a finite thickness slab of 

permittivity filmε  and permeability filmµ  encased by semi-infinite substrate and superstrate layers 

having permittivities, substrateε  and esuperstratε , and permeabilities, substrateµ  and esuperstratµ , as shown 

in Figure 2-1. 

 

Figure 2-1  A sketch showing a 3-layer asymmetric slab waveguide. 
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Expanding the time-harmonic Maxwell’s Equations (A.1.19) and (A.1.20) in terms of Cartesian 

components:  
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the component fields within a z- and y- invariant slab waveguide for TE and TM waveguides 

may be expressed in terms of simplified Maxwell relationships: 
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For this z-invariant slab waveguide, the time-harmonic electric and magnetic fields may 

be expressed as follows: 
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Determining the TE and TM eigenvalues, β, for this slab waveguide, involves properly 

expressing the x-components of the electric and magnetic fields of (2.1.10) in each region and 
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properly handling the boundary conditions between fields at the two interfaces of the film.  For 

the substrate and the superstrate, the equations in (2.1.10) may be rewritten as: 

( ) ( )

( ) ( ) TMeeHtrH
TEeeEtrE

ztjx
substratesubstrate

ztjx
substratesubstrate

substrate

substrate

βωγ

βωγ

−+−

−+−

=
=
rvr

rvr

,
,  (2.1.11) 

( ) ( )

( ) ( ) TMeeHtrH
TEeeEtrE

ztjx
esuperstratesuperstrat

ztjx
esuperstratesuperstrat

erstrate

erstrate

βωγ

βωγ

−−+

−−+

=
=

sup

sup

,
,

rvr

vvr

 (2.1.12) 

 
where the sign on the decay constant γ properly represents a decaying of the fields towards 

positive or negative infinity.  For fields within the film layer, Equation (2.1.10) may be 

expressed as: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )TMeeHeHtrH
TEeeEeEtrE

ztjx
film

dx
filmfilm

ztjx
film

dx
filmfilm

filmfilmfilm

filmfilmfilm

βωγγ

βωγγ

−−+−−

−−+−−

+=
+=
rrvr

rrvr

,
,

 (2.1.13) 

 
where the origin of the x-axis is located along the substrate-film interface for a film of thickness 

dfilm.  In all of these equations, the following dispersion relations hold between the wavelength λ, 

the eigenvalues, β, the decay constants, γ, and the individual layer permittivities, ε, and 

permeabilities, µ: 

TE (a) TM (b)  

substratezsubstratex

substrate
substratey

,

2

,

2

,

22
µ

β
µ
γ

ε
λ
π

+−=⎟
⎠
⎞

⎜
⎝
⎛  

substratezsubstratex

substrate
substratey

,

2

,

2

,

22
ε

β
ε
γ

µ
λ
π

+−=⎟
⎠
⎞

⎜
⎝
⎛  (2.1.14a) 

(2.1.14b) 

esuperstratz,esuperstratx,

esuperstrat
esuperstraty, µ

β
µ
γ

ε
λ
π 2222

+−=⎟
⎠
⎞

⎜
⎝
⎛  

esuperstratz,esuperstratx,

esuperstrat
esuperstraty, ε

β
ε
γ

µ
λ
π 2222

+−=⎟
⎠
⎞

⎜
⎝
⎛  (2.1.15a) 

(2.1.15b) 

filmzfilmx

film
filmy

,

2

,

2

,

22
µ

β
µ
γ

ε
λ
π

+−=⎟
⎠
⎞

⎜
⎝
⎛  

filmzfilmx

film
filmy

,

2

,

2

,

22
ε

β
ε
γ

µ
λ
π

+−=⎟
⎠
⎞

⎜
⎝
⎛  (2.1.16a) 

(2.1.16b) 
 

Upon inserting Equations (2.1.11) – (2.1.13) into Equations (2.1.4) – (2.1.9) for TE and TM 

waveguides, equating tangential field components, and solving the determinant of the resulting 
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homogeneous matrix equation, the dispersion relation for the three layer slab waveguide can be 

expressed as the following transcendental equation: 

( ) ( )
supsub

2
film

subsupfilm
filmfilmd

γγγ
γγγ

γ
′′+′

′−′′
=tanh  (2.1.17)

 

where for TE waveguides 
xµ

γγ =′  and for TM waveguides 
xε

γγ =′ .  Once the eigenvalues of 

the waveguide have been determined, using the orthogonality properties of the eigenmodes to be 

established in section 2.1.3, any field distribution within the waveguide can be expressed as a 

weighted sum of the set of eigenmodes supported by that waveguide. 

2.1.2 Eigenmode Expansion in Anisotropic Multilayer Slab Waveguides 

 In order to extend the dispersion relation derived in the previous section to an arbitrary 

multilayer slab waveguide, the field equations (2.1.11) and (2.1.12) and dispersion relations 

(2.1.14) and (2.1.15) remain unchanged, but an equation of the form (2.1.13) and dispersion 

relation of the form (2.1.16) are added for each layer in the slab.  In order to derive the dispersion 

relation of the multilayered slab, once again a homogeneous matrix equation is created involving 

the electric and magnetic field boundary condition equations at each interface of the slab.  

Establishing the eigenvalues of this homogeneous equation involves finding the roots of the 

homogeneous determinant polynomial.  As this is also a transcendental equation, any solutions 

must be determined numerically. 

 Upon inserting equations of the form (2.1.11) – (2.1.13) into the TE and TM sets of z, y, 

and time-invariant Maxwell’s equations in (2.1.4) – (2.1.9), and equating tangential field 

components, the matrix equation for the multilayer slab waveguide takes a similar form to 

following (which is given for a 6 region waveguide): 
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(2.1.18)

 
where nnd

n eX γ−= is the exponential decay of a wave propagating through a layer, +
nF  and −

nF  

are either the electric field (TE) or magnetic field (TM) amplitudes for waves propagating toward 

the superstrate or substrate respectively, and 
xµ

γγ =′ or 
xε

γγ =′ for TE or TM waveguides 

respectively.  The eigenvalues, β, of this matrix equation are found by solving for the roots of the 

polynomial created by setting the matrix determinant equal to zero, or equivalently solving for 

the roots of a polynomial created by Gaussian elimination of the matrix equation. 

A second means of solving this system of equations, and the one utilized in this study, 

involves determining the proper phase shifts at each interface for a wave propagating within a 

single layer of the multilayer structure as laid out in the notes by Moharam [39], but similar 

means of solving these equations have been derived elsewhere [40, 41].  Here we restate the 

equations for the electric and magnetic fields for TE polarized waves propagating in a multilayer 

slab structure: 
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Figure 2-2  A sketch of a multilayer slab waveguide where the origin of the coordinate system is 
located at the substrate interface. 
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(2.1.21)

 

The equations in 2.1.21 for the electric and magnetic fields within internal layers are expressed 

in terms of two unknown amplitude coefficients.  Within any particular layer p, the following 

relationship holds between the counter-propagating field amplitude coefficients: 
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pzpp
d

ppppppppp
ppeXXcFFXcFF ,µγγγ =′=== −+−+−  (2.1.22)

 

Using these relationships, the electric and magnetic fields in equation 2.1.21 can be expressed in 

one of two manners as follows: 

( ) ( )( )
( )( ) ( )( ) zjx

pp
dxpx

pp
dx

x
ppfilm,
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 (2.1.23)
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 (2.1.24)

The y and z components of the field are tangential to the interfaces, as shown in Figure 2-2, and 

are utilized to determine the overall system dispersion relation.  By matching these components 

between two separate layers, the following relationships between the field amplitudes in the 

separate layers are determined: 

Substrate Side Cover Side  
( ) ( )pppppp sXFXsF +=+ −

−−
−
− 11 2

111  ( ) ( )pppppp cXFXcF +=+ −
++

−
+ 11 2

111  (2.1.25)
( ) ( )pppppppp sXFXsF −′=−′ −

−−
−
−− 11 2

1111 γγ  ( ) ( )pppppppp cXFXcF −′=−′ −
++

−
++ 11 2

1111 γγ  (2.1.26)
 

Using Equations 2.1.25, the following similar relationships hold between forward propagating 

waves amplitudes in adjacent layers and between backward propagating wave amplitudes in 

adjacent layers. 

Substrate Side Cover Side  
( )

( )2
11

1 1
1

−−

−−
− +
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=

pp

pp
pp Xs
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( )2
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1 1

1

++

++
+ +

+
=

pp

pp
pp Xc

cX
FF  (2.1.27)
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Inserting Equations 2.1.27 into Equations 2.1.26, the following definitions can be made for the 

unknown coefficients sp and cp: 

Substrate Side Cover Side  
( ) ( )
( ) ( )2
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−−−−−

−′++′
−′−+′

≡
ppmmpp

pppppp
p XsXs

XsXs
s

γγ
γγ

 
( ) ( )
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pppppp

pppppp
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c
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γγ

 (2.1.28)

 

Rearranging this equation, we can express these quantities in the following manner: 
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In the current reference layer of the multilayer stack, the transverse decay constant, γp, can be 

expressed as purely imaginary number (γp = jκ ).  In this case, Equations 2.1.25 – 2.1.29 can be 

written as follows: 

Substrate Side Cover Side  
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With the construction of the phase shift terms (analogous to the Goos-Hanchen shift for a three-

layer slab waveguide [2]), φs and φc, by propagating from the substrate and cover respectively 
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toward the reference layer, the following dispersion equation can be used to determine the 

propagation constants supported by the waveguide: 

( ) 12 =−− screfdje φφκ  (2.1.36)
 

This equation holds true when the term in parentheses is equal to a multiple of π as follows: 

πφφκ md scref =−−  (2.1.37)
 

This method is used for solving the dispersion relation in a single reference layer of a 

multilayer system surrounded by two media of lower refractive index.  In a system that contains 

many such identical high/low index layer pairings, solving this particular dispersion relation in 

many separate reference layers allows for greater certainty that all modes will be determined for 

a given sampling tolerance of the dispersion relation being solved.  The value of repeating the 

modal solver in separate reference layers is that the slope of the dispersion relation near any 

given solution can be significantly different depending on the particular reference layer chosen in 

a multilayer slab.  By solving the system in each reference layer separately, solutions that may 

have been missed at one reference layer may be more likely to be found in one of the other 

reference layers for the same initial sample spacing and tolerance.  The implementation of these 

equations used in this study used a vectorized bracket bisection method [42] where the locations 

of individual eigenmodes were initially located for a given propagation constant sampling.  The 

function was then re-sampled in a vectorized manner near the location of any solution in order 

narrow down the location of the root and check for nearly degenerate roots. Other methods of 

solving the transcendental equations (2.1.18) and (2.1.37) will be discussed briefly in section 2.4. 
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2.2 Eigenmodes in Lamellar Diffraction Gratings 

 Diffraction gratings consist of a spatially periodic variation of electromagnetic material 

properties [37].  As with a waveguide, this spatial variation may also be continuous or discrete, 

but in either case the interaction of electromagnetic waves with a spatially periodic media this 

variation causes diffraction and interference effects that result in the energy being redirected in 

discrete directions, or diffracted orders. 

 The electromagnetic theory of diffraction gratings has a long history that encompasses a 

full range continuous geometries and discrete geometries for the spatial distribution of material 

properties describing surface-relief gratings [15] and holographic gratings [7], as well as a wide 

variety of methods for solving Maxwell’s Equations in these various geometries [7, 11, 14, 43, 

44].  In this study, the structures in which we were interested consisted of both continuous and 

discrete surface-relief gratings, but we limited ourselves to solution methods that involved only 

stratified lamellar layers.  In such cases, the homogeneous solutions to the time-harmonic 

Maxwell’s Equations lead to the possibility of modal expansions in both spatially periodic 

regions, as well as spatially homogeneous regions [12, 23, 45].  By performing mode-matching 

at the interfaces between layers, the reflected and transmitted energy distribution that results 

from an input plane-wave or spectral decomposition of plane-waves can be determined. 

 In this section, modal expansions of spatially periodic fields due to interaction with a 

two-material spatially periodic layer are derived for both homogeneous media in Section 2.2.1 

and one-dimensional spatially periodic media in Section 2.2.2. In a similar manner to the 

discussion presented for waveguides, the concepts of Lorentz reciprocity and modal 

orthogonality are useful concepts for justifying the representation of any field distribution as a 
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weighted sum of eigenmodes.  Derivations of these concepts for diffraction gratings may be 

found elsewhere [37]. 

2.2.1 Rayleigh Expansion in Homogeneous Media and the Grating Equation 

 In an effort to explain the nature of the diffracted orders produced from a diffraction 

grating, and the diffraction anomalies in previously observed by Wood [46], Lord Rayleigh 

introduced in 1907 the concept of expanding an electric field in a homogeneous region above a 

spatially periodic grating in terms of a plane wave expansion [47, 48].  Spatially periodic 

boundary conditions imposed on the tangential components of the electric and magnetic fields 

the homogeneous region adjacent to the grating lead to a mathematical description of the 

diffracted orders that can be physically observed.   

 The notion of transverse spatial periodicity of the diffracted field imposes the following 

conditions on the supported spatial field distribution in a homogeneous region of space [12, 37]: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )ztj
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ztj

ztj
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eyxEeyxEtrE
βωβω
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Λ+Λ+==

Λ+Λ+==

,,,

,,,
rrvr

rrvr

 (2.2.1) 

 
where Λx and Λy are the spatial periods in the x and y directions.  This spatial periodicity 

condition has been previously shown to be satisfied by multiplying the original field expression 

by an appropriate spatially periodic phase function as follows: 

( ) ( ) ( ) ( ) ( )yyxxyxyx kkjykxkjztjykxkjztj eeeFeeF Λ+Λ−+−−+−− = βωβω
rr

 (2.2.2) 
 

where kx and ky represent the tangential components of the wave vector for a generic field vector 

F
r

.  To create a plane wave series expansion, we create an infinite summation of terms that differ 

from one another by phases incorporating integer multiples of the grating vector. 
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The terms kxm and kyn can be considered to be the tangential components of the wave vectors 

associated with each spatial harmonic/diffracted order, and Kx and Ky are the grating vector 

amplitudes in the x and y directions.  The definitions of kxm and kyn as xxxm mKkk +=  and 

yyym nKkk += are the famous grating equations in the x and y directions.  The normal component 

of the wavevector for each spatial harmonic/diffracted order can be expressed in terms of the 

tangential wavevector components as follows: 
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2.2.2 Eigenmode  Expansion  in  Transversely  Periodic  Dielectric/Magnetic 

z-Invariant Media 

 Performing an explicit modal expansion in a transversely periodic medium involves a 

development similar to that provided for waveguides in sections 2.1.1 and 2.1.2 for slab 

waveguides with a few slight exceptions.  In the case of a slab waveguide, the boundary 

conditions in the substrate and superstrate regions were such that the fields decay towards 

infinity.  Solving the modal problem in a lamellar grating layer requires periodic transverse 

boundary conditions.  Consequently, there are no semi-infinite transverse layers, and a boundary 
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condition is added matching layer 1 and layer N.  The second difference involves the imposition 

of longitudinal boundary conditions that take into account an input plane wave in an adjacent 

homogeneous region as well as all diffracted waves in the Rayleigh expansion. 

 For a one-dimensional, two-material lamellar diffraction grating in TE, TM, or conical 

mounts, the full derivation of the transcendental eigenvalue equation is presented by Li [43].  

Using definitions of the decay constants within each layer similar to those defined in Equations 

(2.1.14) – (2.1.16), this eigenvalue equation is given as follows: 
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Real propagating modes may be found by searching the real axis of β2, whereas complex, leaky, 

or evanescent modes are found by searching the entire complex plane. 

2.3 Properties of Various Waveguide/Grating Eigenmodes 

 In previous sections of this chapter, various types of analytical boundary conditions were 

utilized in determining the modes that are supported by waveguides and diffraction gratings. This 

section expands on these analytical boundary conditions and the properties of modes that can be 

most easily determined for systems of equations having each of these types of boundaries.  While 

the types of modes present in any given physical structure depend only on the nature of the 

device itself, the ease or difficulty in modeling the properties of those modes depends on the 

computational methods utilized. 

2.3.1 Analytical Boundary Conditions  

When solving any system of differential equations, the solution to that system depends on 

both the differential equation itself as well as the manner in which the equation is handled on the 



 21

boundary of the solution’s domain.  For the linear systems of equations normally utilized in a 

computational environment, the eigenmodes that can be determined by solving the system 

depend significantly upon the choice of boundary conditions.  Common types of analytical 

boundary conditions used for solving a system of Partial Differential Equations [49, 50] include 

Dirichlet boundary conditions, where the field is homogeneous/constant on the boundary, 

Neumann boundary conditions, where the derivative of the field is homogeneous/constant on the 

boundary, Robin boundary conditions, where the sum of the field and its derivative are 

homogeneous/constant on the boundary, periodic boundary conditions, where the fields are 

cyclical within the boundary and multiple boundaries become adjacent, and open boundary 

conditions, such as Dirichlet to Neumann [51-53] where an outward propagating field decays to 

infinity without reflection. 

2.3.2 Eigenmodes in Open and Closed Domains 

A thorough description of the various types of eigenmodes that can be supported by 

optical waveguides on bounded and unbounded domains is given in the dissertation by 

Bienstman [54], and this section restates much of the excellent description given in that work.   

For a reciprocal lossless dielectric slab waveguide, a mode supported by that waveguide can be 

described by its propagation constant βeff, or by dividing by the free space wavenumber, k0, the 

mode can be represented by a complex effective index, neff.   
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Figure 2-3  Plot showing the discrete and continuous spectra of modes supported by an open 
waveguide structure. 

 

By plotting the complex plane for neff, as seen in Figure 2-3, there can be seen four 

separate types of modes that can be supported by a slab waveguide in an open domain: 

1.  Guided modes take on discrete values and are located solely on the real axis.  These 

modes correspond to energy concentration in the core of a waveguide that decays into the 

cladding. 

2.  Radiation modes are located found along both the real and imaginary axes, and can 

take on a continuum of values.  The field profiles of these modes oscillate in the cladding and 

extend to infinity.  A real, propagative, radiation mode maintains its amplitude as it moves along 

the axis of a waveguide, whereas an imaginary, evanescent, radiation mode decreases in 

amplitude with movement along the waveguide axis. 

3.  Leaky modes are located in the complex plane and may be considered as a 

continuation of the guided modes at low frequencies.  The field profile of a leaky mode increases 

exponentially in the cladding, and consequently are not physical, but can still be useful for 

describing the field in certain situations [55].  A leaky mode may arise from a guided mode when 

a periodic perturbation is introduced as part of the supporting waveguide. 
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4.  Complex modes are also found in the complex plane and always occur in quartets.  

These modes are very rare, and are only found when resonant transfer occurs between TE and 

TM modes [56]. 

In a closed domain, when the boundary conditions are of the Dirichlet, Neumann, Robin 

or periodic type, the radiation modes that can be determined no longer form a continuum, but are 

limited by the boundary conditions to take only discrete values, as seen in Figure 2-4.   

 
 
Figure 2-4  Plot showing the possible discrete spectra of modes supported within a multilayer 
slab waveguide structure with Dirichlet, Neumann, or Robin type boundary conditions.  Also 
representative of the possible longitudinal modes present in a system having only transverse 
periodicity. 

 

Consequently, there is no difference mechanically between determining a guided mode or a 

radiation mode, but the standard convention is to treat those modes having a real effective index, 

Real(neff), which is greater than the cladding index, ncladding, and less than the core index, ncore, are 

said to be guided modes, while those modes have a real effective index less than the index of the 

cladding are said to be radiation modes.  When open and close boundary conditions are mixed 

[22, 23], for example in a multilayer periodic structure, leaky modes may also be determined as 

shown in Figure 2.9. 
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Figure 2-5  Plot showing the possible discrete spectra of modes present in a multilayer system 
having Dirichlet, Neumann, Robin, or periodic boundary conditions where absorbing layer 
boundary conditions (i.e. PML BC’s) are utilized in the computational window.  Leaky modes 
were found to be present in this study when solving generalized eigenvalue problems in 
longitudinally periodic systems. 

 

When using eigenmodes to represent a field, the completeness of the basis set, i.e. the 

ability to represent any given field using the modes in that set, is important for producing an 

accurate and reliable numerical model.  For lossless waveguides that do not support complex 

modes, the guided modes along with the radiation modes can be rigorously proven to form a 

complete basis.  While for structures containing lossy materials or supporting complex modes, 

there has been no formal proof of completeness.   The use of guided and radiation modes as a 

basis set in the presences of lossy materials often give results that appear to be complete within 

any desired numerical accuracy, and with the addition of complex modes to the basis set, near 

effective completeness has been shown for structures supporting complex modes as well [57].  

Leaky modes have not been shown to be useful in producing a complete basis set in any setting 

[58]. 



 25

2.3.3 Eigenmode Orthogonality 

 Establishing an orthogonal set of eigenmodes for a waveguide creates a set of basis 

functions that can be weighted to represent any field distribution within that waveguide.  To 

establish this orthogonality, we begin with the electric and magnetic field distributions, 

( mE
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, mH
r

) and ( nE
v

, nH
r
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To show that any two eigenmodes of a waveguide are orthogonal to one another, we begin by 

utilizing the Lorentz reciprocity theorem for longitudinally invariant media: 

( ) ( ) dSEJEJdSuHEHE
z S mnnmzS mnnm ⋅⋅−⋅=⋅×−×

∂
∂

∫∫∫∫
rrrrrrvv

ˆ  (2.3.2)

 
As the establishment of these eigenmodes is the result of solving a homogenous equation, they 

exist in source-less media, and consequently the currents mJ
r

 and nJ
r

 are equal to zero.  Inserting 

equations (2.3.1) into the resulting homogeneous equation involving the left-hand side of (2.3.2), 

results in the following equation: 

( ) ( ) ( ) ( ) ( )( ) 0ˆ,,,, =⋅×−×+ ∫∫ dSuyxHyxEyxHyxE zS mnnmnm

rrvv
ββ  (2.3.3)

 
Next, by considering a similar relationship between a mode m propagating in the same z-

direction as before and a mode n that is propagating in the opposite z-direction, the following 

expression can be obtained: 

( ) ( ) ( ) ( ) ( )( ) 0ˆ,,,, =⋅×+×− ∫∫ dSuyxHyxEyxHyxE zS mnnmnm

rrvv
ββ  (2.3.4)
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Assuming that mβ  and nβ  are not degenerate, the addition of (2.3.5) and (2.3.6) provides the 

following orthogonality relationship between modes m and n: 

( ) ( )( ) 0ˆ,, =⋅×∫∫ dSuyxHyxE zS nm

vv
 (2.3.7)

2.4 Discussion of Direct Numerical Solutions to Modal Expansion Methods 

 Numerical solutions to transcendental eigenvalue equations of the type found in 

Equations (2.1.17), (2.1.18), (2.1.37), and (2.2.4) require root-searching algorithms, which, 

depending on the properties of the modes to be determined, search either the real number line or 

the entire complex plane.  For searching exclusively along the real number line, examples of 

simple root-searching algorithms include the bracketing and bisection method, the Newton-

Raphson method, the secant-method, and various hybrid root-finding methods [59].  For 

multimodal systems, root-searching algorithms generally involve separate iterations or the 

branching of separate threads for determining each individual mode of the system.  Root 

searching algorithms can potentially run into problems for systems having nearly degenerate 

eigenmodes, or in cases where the slope of the transcendental function close to a root is nearly 

infinite, especially for methods that involve the derivative of a function.  In such cases, sampling 

of the real line or complex plane must be very fine in order to distinguish between separate 

eigenmodes or even to find what may be multiple eigenmodes that are nearly degenerate.  As an 

alternative to exact modal expansions and root-searching algorithms, in this study we made use 

of a method that approximates the modes of a spatially periodic material via an orthogonal 

function expansion.  By doing so, problems with sampling transcendental functions are 

transferred to the relatively more straightforward problem of convergence in a finite series 

expansion and solution of a matrix eigenvalue problem.   
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CHAPTER 3 RIGOROUS COUPLED WAVE ANALYSIS OF 
DIFFRACTION GRATINGS AND FINITE WAVEGUIDES  

 As a member of the family of differential modal methods for solving Maxwell’s 

equations (and more broadly as a member of the family of spectral modal methods), RCWA now 

has a long history as a robust and flexible tool for the analysis of wave propagation in periodic 

optical media [7, 9, 11-15, 19, 25, 27, 28, 31, 60-64].  RCWA is a frequency-domain method for 

determining the modal properties of the electric and magnetic fields within a transversely 

periodic longitudinally-invariant lamellar layer.  The method rigorously solves Maxwell’s 

equations by decomposing the electric and magnetic fields, as well as the material properties, 

within a lamellar layer in terms of spatial harmonics on a pseudo-periodic Fourier basis set.  As 

the technique has matured through the years, it has been applied successfully in modeling the 

diffractive properties of volume gratings, as well as binary and multilevel surface relief gratings 

composed of isotropic or anisotropic dielectric, metallic and magnetic materials.  At the turn of 

the new millennium, the range of the technique’s usefulness was extended by the incorporation 

of absorbing boundary conditions [9, 16], most notably PML boundary conditions [65, 66], 

within the unit cell of the periodic media.  By incorporating this absorbing boundary condition, 

RCWA could then be utilized as a modal solver for finite transverse waveguides.  This chapter 

intends to provide a full development of the RCWA as a modal solver for one, two, or three 

dimensional infinitely periodic media.   
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3.1 Coupled Wave Modal Expansion of Periodic Maxwell’s Equations  

3.1.1 Homogeneous Rayleigh Expansion in Cartesian or Skewed Coordinates 

For homogeneous material layers, the plane wave expansion utilized for determining 

eigenmodes in a Rayleigh expansion is performed in exactly the same manner as that presented 

in Section (2.3.1).  Unlike the modal method presented in Chapter 2, which currently has only 

been implemented in regular Cartesian, cylindrical, or spherical axes for one-dimensional modal 

problems, RCWA allows for the use of periodicity in non-orthogonal coordinate multi-

dimensional systems as well.   

For periodicity on a two-dimensional non-orthogonal lattice, having an angle, ξ, between 

directions of periodicity, the corresponding homogeneous region Rayleigh expansion for a 

generic field vector may be expressed as follows: 
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3.1.2 Three-dimensional Coupled-Wave Modal Expansion 

 Over the last two decades, there has been an increased interest in optical structures 

having multi-dimensional periodicity.  Theoretically, infinite three-dimensional photonic crystals 

possess the ability to completely forbid the propagation of certain wavelengths of light from 

traveling in particular directions through the crystal [32, 67-69], analogous to the forbidden 

band-gaps of electrons in solid-state electronics [70].  Realistically, infinitely periodic structures 

are not possible in practice, but if the size of the structure is much larger than the wavelength of 

the light and periodicity length within the structure, then the assumption of infinite periodicity 

describes well the performance of a structure away from its boundaries. Determination of these 
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photonic band-gaps for crystals of any material and geometry depend upon finding solutions to a 

three dimensional eigenvalue problem.  The use of three-dimensional periodicity models can also 

be useful in determining the properties of certain two-dimensionally periodic structures when 

proper boundary conditions are utilized [71].  Exploiting three-dimensional models for 

determining the modal properties of two-dimensionally periodic structures requires the use of 

absorbing boundary conditions similar to those explained in section 2.4.2, but in doing so one 

must utilize an orthogonal function expansion in all three dimensions and may require many 

thousands of basis functions to obtain modal convergence. 

Starting from Maxwell’s Equations as expressed in Equations (2.2.1) – (2.2.3), the 

Cartesian, three-dimensional, homogeneous equation to be solved can be expressed as: 
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where xkx 0=′ , yky 0=′ , zkz 0=′ , and 
0

0
0 ε

µ
η = .  By applying periodic series expansions of 

the fields in all three-dimensions, as in Equation (3.1.1), and taking the necessary partial-

derivatives, the above homogeneous equation can be expressed as: 
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which can be put in the form of a matrix eigenvalue problem as follows: 
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where Kx, Ky, Kz are diagonal matrices containing the x, y, and z components of the wave vector 

(kx,(l,m.n), ky,(l,m.n), kz,(l,m.n)) for each spatial harmonic, divided the free space angular wavenumber, 

k0.   

While the above development has addressed the spatial periodicity of the field, it has not 

yet addressed the spatial periodicity of the materials.  The matrices defined by xε , yε , zε , xµ , yµ , 

and zµ  are full matrices created by performing Fourier series expansions of the spatially periodic 

functions representing material permittivity and permeability components.  The matrices are full 

since the involve coupling every spatial harmonic in the electric and magnetic field series 

expansions to every other spatial harmonic in that series.  Explicit derivations and discussions of 

these coupling matrices can be found in Appendix A. 
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3.1.3 Two-dimensional Coupled-Wave Modal Expansion 

 Solutions to the coupled-wave equations for systems involving two-dimensional 

transverse periodicity and longitudinal invariance can be useful for modeling infinite crossed 

diffraction grating devices [25, 27, 31] as well as finite-sized integrated guided wave structures 

[72].  Solving this set of equations begins with the same set of Maxwell’s Equations as expressed 

in Equation (3.1.2), but in this case Fourier expansion of the electric and magnetic fields using 

pseudo-periodic boundary conditions are only taken for the transverse (x and y) directions with 

the longitudinal fields solved as a matrix eigenvalue problem.  Applying the pseudo-periodic 

Fourier series expansions in Equation (3.1.1) to the transverse fields in Equation (3.1.2), and 

taking derivatives for the transverse coordinates results in the following relationships between 

the transverse electric and magnetic field harmonic expansions:  
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Upon taking the derivative of Equation (3.1.5) with respect to z' and inserting Equation (3.1.6) 

into the result of this derivative, we obtain the following matrix eigenvalue equation for the 

transverse electric field harmonic expansions: 
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A similar equation may be obtained by solving the system as a magnetic field eigenvalue 

problem.  By solving Equation (3.1.7), not only can the vector of eigenvalues, q, (the modal 

indices) be determined, but an eigenvector matrix, W, (the modal matrix) can be determined 

where each column is a spatial harmonic decomposition of each individual mode in the system.  

The corresponding magnetic field eigenvector can be expressed as follows: 
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Utilizing these eigenvalues and eigenvectors, the spatial harmonic expansions of the transverse 

electric and magnetic field components can be expressed as follows: 

( )( )

( ) ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

f

b

qzk

dzqk

VV

WW

U

U

S

S

x

y

x

y

0

0

exp0

0exp
 (3.1.9) 

 
where b and f are the unknown field harmonic amplitudes in this lamellar layer.  The normal 

components of the electric and magnetic field can be determined by inserting Equation (3.1.9) 

into Equations (2.2.6a), isolating the normal field harmonic components, and taking the proper 

derivatives. 
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The actual electric and magnetic fields within the layer can then be determined by multiplying 

the spatial harmonic expansions by appropriate phase terms for each harmonic at any point on a 

predetermined spatial grid as follows: 
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3.1.4 One-dimensional Coupled-Wave Modal Expansion 

 In a similar vein, one-dimensionally periodic coupled wave equations may also be used to 

model systems that have one dimension of transverse periodicity, one dimension of longitudinal 

invariance, but also have one dimension of transverse invariance [11, 12].  The structures that 

can be modeled also include diffraction gratings having infinite transverse periodicity as well as 

waveguides with finite transverse dimensions.  In one-dimensional systems though, the approach 

taken to solve the eigenvalue problem for a lamellar layer depends upon the polarization of the 

input light.   For systems whose input wavevector is coplanar with the grating vector and the 

surface normal vector, only a single eigenvalue equation need be solved involving a second order 

differential equation for a single field component.  However, in the case of conical diffraction 

[12, 62] from a purely isotropic dielectric grating, where the incident wave vector is not coplanar 

with the grating vector and surface normal vector, two decoupled polarizations are present in the 

system.  Consequently, the system may be solved either as a single eigenvalue equation 

involving both polarizations, or as two separate sets of eigenvalue equations involving separate 

field components.  In the latter case, portions of the fields involving each polarization are 

combined upon field matching with outer homogeneous layers to produce proper reflection and 

transmission coefficients for each diffracted order. 

 For one-dimensionally periodic structures having TE polarized incident light, the electric 

field is in the y-direction, which is parallel to the grating grooves and perpendicular to the 

grating vector.  Components of the electric field parallel to the grating vector and in the 
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longitudinal direction are null, as is the component of the magnetic field in the y-direction.  

Starting from Maxwell’s Equations in (3.1.2), and then inserting an x-direction, pseudo-periodic 

series expansion for the non-null components of the field, results in the following matrix 

eigenvalue equation for the transverse electric field harmonic expansion: 
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With the resulting vector of eigenvalues, q, and electric field eigenvector matrix, W, the 

corresponding magnetic field eigenvector can be expressed as ⎟
⎠
⎞

⎜
⎝
⎛
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⎤

⎢⎣
⎡= qWdiagV x

1µ .  The 

transverse electric and magnetic field harmonic expansions can be expressed as follows: 
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where b and f are the unknown field harmonic amplitudes in this lamellar layer.  The normal 

components of the electric and magnetic field can be determined by inserting Equation (3.1.9) 

into Equations (2.2.6a) isolating the normal component magnetic field expansion, and taking the 

proper spatial derivatives. 

yxzz SKjU 11
0

−−−= µη  (3.1.14)
 

The actual electric and magnetic fields within the layer can then be determined by multiplying 

the spatial harmonic expansions by appropriate phase terms for each harmonic at any point on a 

predetermined spatial grid as follows: 
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Following similar logic for a one-dimensional, transversely periodic system having a transverse 

magnetic field, the matrix eigenvalue problem to be solved takes the following form: 
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where the electric and magnetic fields are calculated in a similar manner to the TE problem. 

For one-dimensionally periodic systems in a conical mount, the y-component of the 

incident, reflected, and transmitted wavevectors is a constant, non-zero value.  Consequently, the 

derivative matrix, Ky, is an identity matrix multiplied by the incident wavevector’s y-component, 

normalized by the free-space angular wavenumber.  In solving the modal problem for the case of 

a purely dielectric grating composed of isotropic materials in a conical mount, the most efficient 

manner is to start with Maxwell’s Equations as given in (3.1.2), insert the proper series 

expansions containing the pseudo-periodic phase terms into the electric and magnetic field terms, 

take the necessary derivatives, and then simplify the system in to two separate eigenvalue 

problems.  The resulting electric and magnetic field matrix eigenvalue equations are the 

following: 
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where once again the electric and magnetic fields can be calculated using the eigenvalues and 

eigenvectors resulting from the above equations, and performing summations over the spatial 

harmonic expansions. 

3.2 Diffraction Grating Efficiency Calculations  

 Having determined the modal expansions in all homogenous and spatially periodic 

regions through the use of Rayleigh expansions as well as Fourier series approximations of 

spatially periodic modes, diffraction efficiency calculations can be performed via a mode 

matching of proper tangential components for the fields in each region and the selection of a 

particular mode(s)/diffracted order(s) into which the input energy is placed, which allows for the 

determination of all spatial harmonic field amplitudes.  

3.2.1 One-Dimensional Diffraction Efficiency Calculations 

 Matching the tangential components of the electric and magnetic field harmonic 

expansions in the input and output homogenous layers to the grating layer results in the 

following homogenous system of equations: 
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where ( )qdkX 0exp −=  for both TE and TM systems, ( )0, / kY inputmI β= , ( )0, / kY outputmII β=  for 

TE systems, and ( )( )inputinputinputmI kY εµβ 0, /= , ( )( )outputoutputoutputmII kY εµβ 0, /=   for TM systems.    
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By initially eliminating the reflection and transmission coefficients, Equation (3.2.1) can 

be rearranged to solve for the unknown forward and backward propagating spatial harmonic 

amplitudes as follows: 
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The reflection and transmission coefficients can then be solved using the following matrix 

equations: 
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(3.2.4)
 

Finally, the diffraction efficiency for each diffracted order can then be determined using the 

above reflection and transmission coefficients. 
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Diffraction efficiency calculations for purely dielectric gratings in conical mountings require the 

rotation of the eigenvector spatial harmonic decompositions into planes that are perpendicular 

and parallel to the plane of incidence of the input wavevector.  After rotation of the eigenvectors, 

the procedure for determining the diffraction efficiency for each diffracted order follows 

essentially the same procedure as for TE and TM mounts (presented above) and for two-

dimensional gratings (presented below) [39].  
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3.2.2 Two-Dimensional (Crossed) Gratings 

 To calculate the diffraction efficiency for two-dimensional gratings, tangential 

components of the spatial harmonic field expansions in the grating layer first need to be rotated 

into planes that are perpendicular and parallel to the incident wavevector’s plane of incidence.  

Rotation of the field harmonic expansions involves the following rotation matrices: 
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where the rotation sub-matrices are defined as follows: 
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These rotation operations are effectively linear transformations that are performed on the 

eigenvector matrices W and V.   

 Matching the tangential components of the electric and magnetic field harmonic 

expansions in the input and output homogenous layers to the grating layer results in the 

following homogenous system of equations: 
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where ( )qdkX 0exp −=  and is divided into two equal sized sub-matrices X1 and X2, 

( )0, / kY inputmI β= , ( )0, / kY outputmII β= , ( )( )inputinputinputmI kZ εµβ 0, /= , and 

( )( )outputoutputoutputmII kZ εµβ 0, /=  .    

By eliminating the reflection and transmission coefficients, Equation (3.2.12) can be 

rearranged to solve for the forward and backward propagating spatial harmonic amplitudes: 
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The diffraction efficiency for each diffracted order can then be determined using the above 

reflection and transmission coefficients. 
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3.3 Use of RCWA in Integrated Optics  

 As cleverly introduced by Lalanne and Silberstein [9, 16], the RCWA modal method can 

be extended to the modeling of transversely finite-sized waveguides through the incorporation of 

artificial absorbing material layers or non-linear, complex coordinate transforms [73] within the 

system’s transverse unit cell.  Proper selection of these absorbing parameters can numerically 

isolate the materials and propagating modes within a unit cell from its neighboring cell and will 

dampen any and all energy scattered from guided modes in the unit cell due to mode matching 

between layers.  The most effective absorbing boundary layers are the Perfectly Matched Layer 

(PML) type boundaries described in Section 2.4.2.  Incorporation of PML materials in this study 

were implemented in the manner of an anisotropic material as described by Sacks [66].  Using 

RCWA/PML expansions, the modes determined by the truncated Fourier series are no longer 

strictly orthogonal to one another, but for practical purposes the modes have been found to be 

“nearly-orthogonal” as discussed in Section 2.4.2.  The origins of the PML concept and the 

definition of a PML as an anisotropic material are presented in section 3.3.1, and the 

incorporation of a PML into a periodic unit cell, as implemented in RCWA, is discussed in 

section 3.3.2. 

3.3.1 Artificial Absorbing Boundary Materials and Perfectly Matched Layers 

When modeling an object in any system of differential equations using a purely closed or 

periodic system creates a problem for attempting to model finite sized structures.  The presence 

of “hard walls” associated with purely Dirichlet or Neumann boundary conditions or strongly 

coupled unit cells with periodic boundary conditions means that any scattered energy will be 

reflected or coupled back into the region of interest upon interacting with the boundaries.  
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Attempting to alleviate this problem while maintaining purely Dirichlet, Neumann, or periodic 

boundary conditions often means that the size of the computational window must be increased 

dramatically and a centrally located object of interest then only occupies a small percentage of 

the entire computational window.  Increasing the size of the computational window utilized, 

regardless of boundary condition or modeling technique utilized, usually increases the expense 

of performing the computation in both time and memory requirements.  Consequently, finding 

methods of minimizing the size of a computational window for a given problem is very 

important. 

One approach that is often taken to approximate an open, Dirichlet to Neumann (DtN) 

boundary condition is to place an absorbing material within a computational window that will 

collect all of the energy from the primary object being studied.  Application of this idea in the 

electromagnetics community developed through a number of different iterations starting with a 

“radiating boundary condition,” [74, 75] followed by the matched layer where the computational 

domain is encased in an absorbing media matched to free space [65, 76], as well as a “one-way” 

approximation of the wave equation at a boundary [77].  A dramatic improvement in the 

convergence of most widely used computational methods (finite-difference, finite-element, 

spectral methods) can be obtained through the use of so-called Perfectly Matched Layer (PML) 

boundary conditions.  As originally proposed by Berenger for the truncation of two-dimensional 

FDTD meshes [65], a PML boundary condition is a material which is impedance matched to the 

computational region of interest’s outer boundary such that the interface is reflection-less for 

energy propagating at all angles, polarizations, and wavelengths.  Consequently, all power is 

transmitted into and absorbed by the PML.  Berenger’s formulation of the PML boundary 

condition required a “split-field” modification of Maxwell’s equations on the Yee grid [78] 



 42

utilized in FDTD calculations.  A second interpretation of the PML boundary condition was 

proposed by Sacks et. al. [66], which does not require a significant modification of Maxwell’s 

equations.  This approach treats the PML region as an anisotropic material having complex 

permittivity and permeability properties.  This anisotropic material interpretation of the PML is 

utilized in this work.  Further equivalent interpretations of the PML concept include the idea of 

utilizing a complex coordinate stretching of the spatial variable included in the argument of a 

wave’s phase term in certain regions of space [79, 80], as well as the concept of a non-linear 

coordinate stretching that maps infinite boundaries to finite locations [73].  This last 

interpretation comes closest to the idea of a true DtN boundary condition, which itself has also 

recently been added to the list of boundary conditions that have been utilized within a 

computational electromagnetics setting [81]. 

 

 

Figure 3-1  A sketch showing an interface between a homogeneous material half-space and a 
Perfectly Matched Layer material half-space that absorbs, without reflection, a plane wave 
traveling with any wavelength in any direction. 
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Explaining the concept of a PML as an anisotropic dielectric/magnetic material begins 

with considering two material layers that are impedance matched as follows: 
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For energy incident from a non-magnetic material upon a PML material as shown in Figure 3-1, 

µincident is an identity matrix and µPML is the following matrix: 
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where δx is an absorption/gain coefficient of the material.  For a PML to be truly as effective as 

designed here, it must be of a semi-infinite spatial extent.  In most computational settings, this is 

rarely the case.  As a result, the PML implemented within a computational environment must be 

of a finite spatial extent and must be truncated with a Dirichlet, Neumann, or a periodic boundary 

condition, as in the RCWA approach.  Perfect absorption is not analytically possible within a 

finite PML region, but by properly choosing both the layer thickness and the value of the 

absorption/gain parameter δx, any wave incident upon the PML region can be effectively 

absorbed without undergoing any further interaction with the scattering object of interest .  The 

PML absorption profile utilized in most of this study is one that was developed by our research 

group, and was found to be effective in most cases.  Studies of varying PML properties or 

computational window sizes have been performed [9, 16, 22], and has shown that given an 
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adequate initial choice for a PML’s absorbing properties, the performance of that PML is fairly 

robust to changes in wavelength and layer thickness.  

 For three dimensional systems, the PML material utilized can be either a uniaxial or a 

biaxial material depending on its location with the computational window.  The most general 

material would allow for light to be perfectly absorbed along any of the three Cartesian axes and 

would have a permeability matrix as follows: 
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For absorption along any desired direction, the value of  δ corresponding to that particular 

direction is non-zero.  For the computational techniques utilized in this study, the value of δz is 

always chosen to be zero within the lamellar layers utilized for eigenmode computation.  The 

assumption of input and output half spaces that are utilized in this study allow any light scattered 

into the PML material traveling in a longitudinal direction to continue propagating infinitely 

without contaminating the fields near the device of interest.  Figure 3-2 shows the permittivity 

layout for a ridge waveguide structure that represents a 2D lamellar layer which can be used 

within a 3D eigenmode expansion computation. 
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(a)    (b)    (c) 

Figure 3-2 (a) A figure showing the transverse computational window of a ridge waveguide 
device with PML boundaries in the window.  (b) A 3D-view of a ridge waveguide structure with 
PML boundaries, also showing the depth of a layer slice.  (c)  A transversely periodic structure 
where each unit supercell contains a single ridge waveguide structure.  In solving for the modes 
of the ridge waveguide using RCWA, this structure is truly representative of the problem solved. 

 
The ridge waveguide is surrounded by an air region, and the entire structure is surrounded by 

PML materials.  For three dimensional structures, the PML material in this case is chosen to 

match its neighboring dielectric material.  This choice creates the scenario of having different 

PML materials adjacent to one another, which generates the possibility for spurious reflections, 

but for a robustly designed total PML region, these interfaces usually do not present a significant 

problem for determining fundamental eigemode solutions given the overall absorption of the 

total PML regions.  Robustness of an eigenmode solution for a given PML can normally be 

checked by varying the computational window size or by the number of spatial harmonic basis 

functions in an RCWA calculation (or similarly by varying the grid sampling in a FDTD or FEM 

computation). 

3.3.2 Use of PML in RCWA 

 Use of PML layers in RCWA involves incorporating layers with PML properties at the 

borders of the computational window.  To model anything except a simple slab waveguide (1D 

eigenmodes) or ridge waveguide (2D eigenmodes), requires the use of longitudinal mode-
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matching techniques between separate layers having different eigenmodes.  The actual routines 

for performing wave propagation through these differing layers will be explained in the next 

chapter, but here we will concern ourselves with methods for determining a system’s reflection 

and transmission coefficients as well as a means for approximating conservation of energy in our 

finite waveguide problem. 

 By performing mode matching and wave propagation through a layered system, the 

reflection and transmission coefficients associated with each mode (each column of the modal 

matrices W and V) can be determined.  In order to determine the actual reflection and 

transmission efficiencies into each mode, an overlap integral must be performed between the 

spatial profile of the input mode from the input half-space region and the spatial profile of each 

mode of the input and output half-spaces weighted by their corresponding reflection and 

transmission coefficients.  These overlap integrals are then normalized by the magnitude of the 

power contained in the input mode.  Given that the overlap integrals are performed on spatial 

modes that have been decomposed in terms of spatial harmonics, these overlap integrals can be 

performed as inner products between the spectral decompositions of each pair of modes.  

Compact expressions of the reflection efficiency for a mode m in the input half-space and a mode 

n in the output half-space are given as follows: 
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As the modes calculated using the RCWA/PML method are not truly orthogonal, energy balance 

between the incident, reflected, and transmitted waves does not hold identically due to 
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absorption of energy within the PML materials, and the non-hermitian nature of the matrix 

operators involved.   

 

Figure 3-3  A single surface waveguide grating coupler with sampling box drawn interior to 
absorbing boundaries within a transverse unit cell and over the length of the structure. 
 

By calculating the power flow around a box that is external to the PML boundary layers, it has 

been shown empirically that conservation of energy can be obtained to any desired accuracy by 

proper spatial sampling of both the transverse and longitudinal computational windows [19].  

Figure 3.1 shows an example of a spatial sampling box that may be utilized for calculating 

conservation of energy around a simple waveguide grating coupler.   
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CHAPTER 4 WAVE PROPAGATION IN LAYERED MEDIA 

 In modeling the propagation of light through multilayered stratified media, or through 

structures with continuously varying surface geometries, it is often convenient, and necessary, to 

represent the geometry via layer stair casing.  For numerical modeling techniques utilizing 

eigenmode expansion in longitudinally-invariant media, approximating these various geometries 

using stratified layered media is normally required.  Any continuous or discrete variation of a 

structure’s longitudinal material property distributions (permittivity, permeability, conductivity) 

require that the structure be approximated by a stack of uniform thickness layers each having 

distinct solutions to separate eigenvalue problems.  This chapter aims to present various methods 

of modeling wave propagation in layered media, to discuss the strengths and weaknesses of each 

technique that determine when one technique is more appropriate than another, and to discuss 

how the building blocks of single layers may be pieced together for accurate and efficient 

modeling of various device geometries.   

 For completeness, Section 4.1 briefly introduces four separate matrix propagation 

methods for layered media (the transfer matrix [13, 82], the scattering matrix [16, 17, 19, 20, 83], 

the impedance matrix [84-86], and the hybrid matrix [87]), discusses the potential numerical 

instability present in two of the methods, as well as the strengths and weaknesses of each 

propagation method.  Section 4.2 discusses the standard transfer matrix formalism in more depth, 

and derives the enhanced transfer matrix that properly eliminates this numerical instability.  

Section 4.3 presents the scattering matrix formalism, and discusses its strengths in modeling 

longitudinally periodic layered media as well as numerically stable calculations of internal field 

amplitudes, and its relationship to the longitudinal eigenmodes of a cavity.   
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4.1 Mode/Field Matching and Wave Propagation 

 For any type of eigenmode expansion technique, the propagation of light within a layer, 

or transmission and reflection of light between layers involves coupling between all of the modes 

within a layer or between adjacent layers.  Expression of the field harmonic expansion within a 

single layer of thickness d was given in Equation (3.1.13) in terms of the layer’s eigenvalues and 

eigenvectors and is restated here as follows: 
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Propagation of light within a layer or between layers can be expressed by the interaction of two 

sets of Equations based on (4.1.1).  The use of mode matching methods have a long history in 

areas of applied mathematics, science and engineering ranging from network transmission line 

wave propagation [88-90], to seismic wave propagation [91-98], to atmospheric radio wave 

propagation [99], and quantum wave propagation [100].  For transmission and reflection between 

two layers, 1 and 2, the tangential components of electric and magnetic field harmonic 

expansions ( ( ) ( ),01
tanS ( )( ),2

tan dS ( ) ( ),01
tanU ( )( )dU 2

tan ) are set equal and a relationship can be determined 

between the field harmonic amplitudes, b and f, in each layer.   
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When determining propagation within a layer, the field harmonic amplitudes, b and f, are 

constant allowing for a relationship between the field expansions at both ends of a layer, 

( ( ) ( ),01
tanS ( ) ( ),1

tan dS ( ) ( ),01
tanU ( ) ( )dU 1

tan ).   
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The four methods utilized for solving Equations (4.1.2) and (4.1.3) are generally referred to as 

the Transfer Matrix (T-Matrix), the Scattering Matrix (S-Matrix), the Impedance Matrix (R-

Matrix), and the Hybrid Matrix (H-Matrix).   
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Upon an initially analyzing Equations (4.1.4) – (4.1.7), the T-Matrix and the R-Matrix can be 

seen to possess potential numerical instabilities due to matrix inversion.  For the standard T-

Matrix, numerical instability occurs when either the eigenvalues or the thickness of layer 2 are 

large enough to cause the exponential terms to be near zero.  For the R-Matrix, numerical 

instability occurs when the thickness of the layer approaches zero. For modeling of diffraction 

grating efficiencies, where the field harmonic amplitudes and field amplitudes internal to the 

structure are not necessary, the cascading of these matrix methods have been reformulated in 

such a manner to eliminate these numerical instabilities [13, 84].  The definitions of the S-Matrix 

and the H-Matrix, as well as their respective recursive algorithms for cascading matrices are both 

numerically stable for any value of layer thickness values.  The H-Matrix definition and 

recursive algorithm provide a relationship between the field expansions at two separate planes, 

whereas the S-Matrix definition and recursive algorithm provide relationships between the field 

harmonic amplitudes in separate layers.  The choice of when to use one method over the other 
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depends upon the initial system information that is present and the final information that is 

desired.  Use of the H-Matrix is more beneficial when the specific spatial profile of the input 

fields of a generic field distribution is known, and system response to that known distribution is 

desired.  The S-Matrix is more beneficial when all initial energy is placed into specific modes of 

the input layers and the modal reflection and transmission coefficients are desired.  The S-Matrix 

is also the most straightforward method for determining the complex modal indices of 

periodically layered media.  In either case, the internal field expansions and field harmonic 

amplitudes are easily obtained in a numerically stable manner through the use of recursive 

propagation algorithms.  In this study, only the enhanced T-Matrix algorithm and the S-Matrix 

algorithm were utilized for diffraction grating efficiency and integrated optical waveguide 

studies and will be presented in more detail in the following sections. 

4.2 Enhanced Transfer Matrix Method  

 As presented in Equation (4.1.4), the transfer matrix relates known forward and backward 

propagating field harmonics in layer 1 to unknown forward and backward propagating field 

harmonics in layer 2.  In order to make use of the transfer matrix in a numerically stable manner, 

the instability present due to the inversion of the exponential eigenvalue matrix X2 must be 

properly handled [13].  To gain an understanding of how to properly handle this instability, it is 

enlightening for first expand Equation (4.1.4) into a series of block 2x2 matrix multiplications as 

follows: 
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Cascading the transfer matrix between layers 1 and N produces the following matrix 

relationship:  
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For determining the reflection and transmission coefficients in diffraction grating problems, the 

exponential decay terms in the input and output regions can be disregarded without affecting the 

physical correctness of the solution, and the backward propagating waves in the output region 

are null. 
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The process of avoiding numerical instability then proceeds by introducing some intermediary 

variables: 
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which then allows for the stack of transfer matrices to be expressed as follows: 
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The substitution which effectively handles the numerical instability defines the following 

temporary variable: 
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which upon inserting into (4.1.8) creates the following expression: 
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This process can be repeated until a final expression is obtained involving the incidence and 

reflection coefficients: 
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4.3 Scattering Matrix Method 

 The scattering matrix represents what is essentially a 4 port system that separates the 

information that is known initially on one-side of the matrix equation (system inputs for field 

harmonic amplitudes) from what is unknown on the opposite side of the equality (system outputs 

for field harmonic amplitudes).  As was stated previously, through recursive application of 

scattering matrices within a stack of lamellar layers, a numerically stable method of determining 

the field harmonic amplitudes and field amplitudes can be obtained.  In this study, the scattering 
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matrix technique for wave propagation was utilized to build a flexible and efficient tool for the 

modeling of passive waveguide and diffractive optical devices.   

4.3.1 Scattering Matrix Definition 

 Starting from our definition of the scattering matrix in Equation (4.1.5), the sub-matrices 

of the scattering matrix could be defined as follows: 
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but this definition of the S-Matrix is not the most convenient definition for handling the 

exponential terms from various layers.  By renormalizing the longitudinal coordinate system in 

the stack of layers, a single layer scattering matrix can be defined as following manner.  As 

shown in Figure 4.1, the layered media is defined such that the origin is placed at the output. 

 

Figure 4-1  Sketch showing a stack of layers and the associated coordinate system, distances, 
layer labels, and field harmonic labels used in the scattering matrices developed in this section. 
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The overall distance from the origin within any layer is defined to be a negative quantity, but the 

thickness value utilized in the exponential eigenvalue matrices correspond to a negatively valued 

distance measured from the input side of a particular layer, ∑
=

=

<+=′
1

1

0
p

i
ip dzz .  Given these 

definitions for the longitudinal coordinate system, the amplitudes of the field expansions within a 

single layer can be expressed as follows: 
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At the interface between the pth and pth + 1 layers, the location in the pth layer is pp dz −=′  and 

the location in the pth + 1 layer is 01 =′ +pz .  Setting equal the tangential fields in these two layers 

leads to the following equality: 
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The interface scattering matrix between two layers can then be expressed in the following 

manner: 
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4.3.2 Redheffer’s Star Product 

Propagation of energy through a stack of layers requires the cascading of scattering 

matrices using the Redheffer star product [16, 17, 19, 20, 89, 90, 101].  This star product is a 

type of linear fractional transformation that maintains the relationship between the system inputs 
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and outputs on opposite sides of the resulting matrix expression.  The Redheffer star product and 

resulting scattering matrix between the interface scattering matrices for interfaces p – p+1 and 

p+1 – p+2 can be expressed as follows: 
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By cascading star products for all layers in a stack, a relationship can be determined between the 

input and output infinite half-space modes.   

The inverted matrix [ ] 1−− rrI , is known as the reverberation operator, and can be 

considered as an infinite summation of reflections between two interfaces.  The reverberation 

operator is intimately related to the modes of a longitudinal cavity as well as the gain threshold 

required for laser resonators.  This infinite summation is one reason that in the presence of 

evanescent waves, the scattering matrix does not possess a numerically stable inverse operation.   

4.3.3 Internal Field Harmonic Amplitudes 

Once the field harmonic amplitudes are known for the input and output half-spaces, the 

field harmonic amplitudes for internal layers can then be determined in a numerically stable 

manner.  By knowing the two scattering matrices (SL and SR) representing all layers on each side 

of a plane of interest, as well as the forward and backward field harmonic amplitudes on the 
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input and output sides of the region of interest (bL, fL, bR, fR), the internal field harmonics at this 

plane of interest can be determined as follows: 
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4.3.4 Incorporating Homogeneous Zero-Thickness Layers 

Within an isotropic, homogeneous layer, solving of the necessary eigenvalue problem 

results in eigenvector matrices that are diagonal matrices.  When the eigenvalue problem solved 

is for the tangential electric fields, the electric field eigenvector matrix is an identity matrix, and 

the corresponding magnetic field eigenvector matrix is a diagonal matrix containing the layer’s 

eigenvalues (normal direction propagation constants).  In this case, the electric field expansion 

amplitudes can be determined as the simple sum of the forward and backward field harmonic 

amplitudes in the layer, and the magnetic field expansion amplitudes can be determined as the 

difference of these forward and backward field harmonic amplitudes multiplied by this diagonal 

magnetic field eigenvector matrix.   
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Utilizing Equations (4.3.2) and (4.3.14), the tangential fields in a periodic layer surrounded by 

identical homogenous, isotropic layers may be set equal as follows: 
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The composite scattering matrix for these two interfaces takes the following form: 
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where the sub-matrices can be defined as follows: 

[ ]
[ ]

[ ]
[ ] [ ]

[ ]
[ ] [ ] 111

11

11

11

11111

1111111

4

4

−−−

−−

−−

−−

−−−−−

−−−−−−−

−+−=

+=

−+=

+=

−=

−+=

WQWVQWVWCD

VQWVWD

QWVQWVBA

QQWVA

ABXBXAAIXDt

ABXBXAAIBXXADCDr

 

 
(4.3.18) 

 

(4.3.19) 
 

(4.3.20) 
(4.3.21) 

 

(4.3.22) 
 

(4.3.23)
 

By analyzing Equations (4.3.14) and (4.3.17), the advantages of surrounding all transversely 

periodic lamellar layers with zero-thickness homogeneous layers becomes apparent.  These 

additions to the system do not change the physical nature of the problem being studied, but they 
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create symmetry in the single layer scattering matrix that can reduce memory storage 

requirements by half for a single layer and they allow for the field calculations throughout the 

internal layers of a structure to be obtained as a simple sum and difference of plane waves (as 

opposed to a full matrix-vector product).  The usefulness of longitudinal symmetry also extends 

beyond a single layer.  When a stack of layers is longitudinally symmetric, the composite 

scattering matrix shares these same properties.  Furthermore, a binary-based application of the 

Redheffer star-product [19, 20], which will be explained in Appendix D, can be executed far 

more efficiently in the presence of longitudinal symmetry. 

 Once the field harmonic amplitudes are known within the homogeneous layers 

surrounding a transversely periodic lamellar layer, the field harmonic amplitudes within that 

lamellar layer can then be calculated without using interface scattering matrices as follows: 
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The corresponding field amplitudes within the layer can then be determined as follows: 
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CHAPTER 5 MULTILAYER MULTIMODE GUIDED MODE 
RESONANT FILTERS 

 Resonant grating structures are devices that utilize spatial periodicity and energy storage 

to provide narrowband spectral and spatial filtering of a free-space or guided optical wave [45, 

102].  The narrowband filtering provided by a transversely periodic grating structure can be 

either a reflection [45, 102-111] or a transmission filter [112, 113].  In either case, the transverse 

periodicity that gives rise to the diffraction process utilized for filtering is often not wholly 

sufficient for producing an acceptable optical filter since it alone does not address the broadband 

behavior of the device.  A desirable narrowband optical filter is a device providing for full 

reflection or transmission of energy over a predefined spectral or angular range, whereas outside 

of that range the device performs in the completely opposite manner.  To accomplish this 

contrasting behavior, it has been noted [113, 114] that by partially decoupling the diffraction 

process from the energy storage/wave guiding process, narrowband filters having nearly 100% 

reflection or transmission that also have nearly 0% out-of-band reflection or transmission 

respectively can be designed more easily than through use of a single periodic layer alone. 

 A single grating layer with a single separate wave guiding layer is usually designed to 

support a single leaky mode that produces resonant filtering over a single spectral or angular 

range.  While the design of resonant grating devices that support multiple leaky modes producing 

multiple resonances has received some attention in the literature [108, 115, 116], there are varied 

methods of exploiting multiple leaky modes.  This chapter aims to briefly discuss these various 

means of exploiting multiple leaky mode resonant grating devices, and then present in more 

detail the structure under study in this work: the multilayer, multimode guided mode resonant 

filter. 
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 The chapter begins with a brief discussion of the history of diffraction grating anomalies 

and the theory of resonant gratings.  Then the physical and mathematical underpinnings of 

guided mode resonance are presented.  Next, effective medium theory and dielectric waveguide 

theory are utilized to explore the nature of resonance separation for multimode guided mode 

resonant structures.  Using these tools, the real-valued dispersion properties of multilayer 

structures are studied and an initial approach for designing resonance separations is presented.  

Then, through the use of diffraction grating theory and explicit numerical tools like RCWA, the 

complex band structures of multilayer, multimode resonant gratings are presented.  By using 

these complex band structures, a multi-parameter design/optimization approach is developed for 

modeling multilayer, multimode guided mode resonant reflection filters that produce multiple 

narrowband spectral resonances with broadened angular acceptance at normal and obliquely 

incident angles. 

5.1 Historical Background of Resonant Gratings 

The study of resonant grating devices has a long history beginning with R.W. Wood’s 

experimental observations of “anomalous” behavior present in the intensity variations of 

diffraction orders over narrow frequency ranges [46].  From this initial set of observations, the 

explanation for this observed anomalous behavior of diffraction gratings has been continually 

developed over the past century, and can now be readily explained by two separate phenomena; 

the redistribution of energy associated with the passing off of a diffracted order and the coupling 

of energy to leaky modes supported by the grating structure.  While a thorough historical account 

of the development of resonant grating theory, and guided mode resonant devices, has been 

provided elsewhere [117], a few of the major highlights of this development are restated here.  
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 Following the work of Wood, Lord Rayleigh ascribed the presence of grating anomalies 

to the passing off of diffracted orders with a change in wavelength or incident angle, arguing that 

as a diffracted order reaches its cut-off condition the energy must be redistributed among 

diffracted orders [47, 48].  Fano was the first to connect the presence of grating anomalies to the 

coupling to surface waves in metallic gratings as well as describe the spectral shape of these 

anomalies nearly twenty-five years later [118, 119].  The next major development was presented 

by Hessel and Oliner when they implemented a model involving a periodically variation in 

surface impedance that was approximated using a Fourier series expansion [120].  By coupling 

this model with a Rayleigh expansion external to the grating, the resulting linear systems 

treatment of the grating problem was able to identify both the redistribution of energy with the 

passing off of a diffracted order and the coupling to leaky modes supported by a grating-

waveguide.   Through further refinement of the ideas presented by Hessel and Oliner, Nevière 

further explained the presence of grating anomalies as the coupling to resonant modes supported 

by the grating [106, 121].  He later showed how the complex modal index associated with a 

grating mode describes the Lorentzian shape of the grating resonances [45].  During this same 

period, Peng and Tamir developed an explicit Fourier-series expansion, scattering matrix method 

for calculating the complex modal indices associated with a periodically modulated waveguide 

[23].  With much of the physics of grating resonance explained, Mashev and Popov [105], and 

shortly thereafter Magnusson and Wang [102], began to investigate the use of resonant gratings 

as narrowband optical filters, as well as use for performing a variety of other functionalities.  

With the physical explanation grating resonances, as well as numerical and phenomenological 

modeling tools in place, much of the theoretical work of the last twenty five years surrounding 

the study of grating resonances has gone into developing an understanding of the means of 
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controlling resonance properties (spectral/spatial location, bandwidth) and total system response 

(reflection/transmission contrast) to a variety of input conditions.    

5.2 Fundamentals of Grating Resonances 

 As stated in the previous section, the “anomalous” behavior that can be observed in the 

spectral and/or angular reflection or transmission response of a diffraction grating to an incident 

wave can be explained as either the redistribution of energy with the passing-off of a diffracted 

order or the coupling to a complex valued leaky mode supported by a grating-waveguide.  It is 

the latter of these two mechanisms that lends itself to the engineering of spatial and spectral 

filtering devices.  By properly controlling the structural parameters of a grating waveguide, 

optical filters can be designed that possess a narrowband spectral response, a broadband angular 

response, and a nearly 100% contrast between in-band and out-of-band reflection and 

transmission. 

 An explicit explanation of the resonant grating phenomena utilized in resonant grating 

filters begins with a definition of the complex mode supported by a periodic system.  A grating’s 

leaky mode tangential propagation constant is defined as follows: 

moderealmode,mode αjkk −=  (5.2.1) 

modemodemode
0

mode njnn
k

k ′′−′=≡               
λ
π2

0 =k  (5.2.2) 

 
For a plane wave incident upon the grating, the tangential component of the wave can be 

expressed using the grating equation.  For TE incident light on a one-dimensional periodicity, the 

tangential x-component of the propagation constant can be expressed as follows: 
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Coupling between an incident wave and grating’s leaky mode determines the spectral and spatial 

location of the resonance, and it occurs when the real part of the tangential propagation constants 

defined in Equations (5.2.2) and (5.2.4) are approximately equal.   
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As was shown by Nevière [45], when coupling occurs between an incident plane wave and a 

single complex mode, the spectral and spatial bandwidth of the grating’s Lorentzian shaped 

resonant response is directly proportional to the imaginary part of the leaky mode index.  The 

relationships between the spectral and spatial bandwidths and the imaginary leaky mode index 

are the following: 
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At normal incidence, the tangential components of both the +1 and -1 diffracted orders are 

phase-matched to equal magnitude leaky mode propagation constants traveling in opposing 

directions.  In this situation, it has now been often noted that while the spectral bandwidth of the 

resonant grating can remain very narrow, on the order of a few Angstroms, the angular 

bandwidth can often become quite broad, many angular degrees [117].  Studying the manner in 

which to control this pair of properties for normal incidence has now been widely studied [117, 

122-126], and has also been extended to the idea of increased angular tolerance for obliquely 

incident waves as well [117, 125, 127].  In the case of oblique incidence, the phase matching 

occurs when two diffracted orders become phase matched to two counter-propagating complex 
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grating modes of differing magnitudes.  It is this idea that we exploit in this study to design, 

multilayer, multimode resonant grating filters that have narrow spectral resonances, and 

broadened angular resonances at nearly a single angle of incidence, be it normal or oblique. 

5.3 Effective Medium Theory and Waveguide Theory for Modeling Multilayer Grating 

Waveguides 

While the concept of resonant coupling to grating leaky modes is valid for gratings of 

almost any periodicity, in practice a grating periodicity that produces multiple diffracted orders 

in either the reflected or transmitted regions, for reflection or transmission filters respectively, is 

not very practical.  As the main purpose of most optical filters is to either fully reflect or fully 

transmit waves of a specific frequency band in a specific range of directions, the presence of 

higher order diffraction can reduce the amount of energy passed to a desired diffraction order.  

Consequently, resonant gratings are often configured with “sub-wavelength gratings” that cut-off 

all but the zero order from propagating.   

 For modeling the properties of sub-wavelength periodicity it can often be sufficient to 

consider the grating layer as an effective homogeneous medium, making use of approximate 

methods to model both the grating resonance and broadband behavior.  The means by which this 

approximation of a homogenous medium can be made varies in complexity from simplistic to 

rigorous.  Although in any plausible model, the results reflect the fact that a sub-wavelength 

grating made of isotropic materials will behave as an anisotropic material with varying refractive 

indices between the grating’s tangential and normal directions. 
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 In the most simplistic approach, the tangential component of a grating’s permittivity is 

modeled as a weighted sum of the two materials comprising the grating layer, where the weights 

are the fractional composition of each material in the layer.   

( ) ( )ffn lowhigh −+== ⊥⊥ 12 εεε  (5.3.1) 
 

where f is fractional part of the grating period occupied by the high index material.  Similarly, 

the normal component of a grating’s impermittivity is modeled as a weighted sum of the two 

materials in the grating layer.   
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These relationships are equivalent to keeping only the 0th order term in a Fourier harmonic 

expansion of the permittivity and impermittivity respectively.  Consequently, as the index 

contrast of the two materials increases, this approximation becomes less accurate.   

 A more accurate approach to an effective medium theory of binary gratings was 

presented by Rytov [21].  In this approach, a rigorous evaluation of the dispersion relation is 

derived which is equivalent to Equation (2.3.5) except that the tangential component of the input 

wave is parallel to the grating interface.  Consequently, cosine term in (2.3.5), which contains 

information about the tangential phase of the input wave, is equal to zero. 
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where the transverse propagation constant, γ, is related to the waveguide modal propagation 

constant, β, within a single layer as follows: 
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and 
layer

layer
layer µ

γ
γ =′ for TE waveguides and 

layer

layer
layer ε

γ
γ =′ for TM waveguides. 

Upon applying various trigonometric identities, the dispersion relation in (5.3.3) can be 

expressed as follows: 

0
2

tanh
2

tanh 1
1

2
2 =⎟

⎠
⎞

⎜
⎝
⎛′+⎟

⎠
⎞

⎜
⎝
⎛′ dd γγγγ  (5.3.5) 

 
Rytov’s approximation then consists of taking a power series approximation to Equation (5.3.5).  

If only the 0th order term is kept, then the Equations in (5.3.1) or (5.3.2) are obtained for TE or 

TM respectively.  As with any power series expansion, the accuracy of the approximation 

increases by retaining more terms in the series.  By keeping the second order terms, one obtains 

the following expressions for TE and TM respectively: 
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It has been previously shown that as the index contrast, grating period to wavelength ratio, and 

grating thickness to wavelength ratio increase, the effectiveness of effective medium theories for 

modeling resonant gratings decreases [128-130].  While no homogenous thin-film 

approximations produce rigorous solutions to the resonant grating problem, the most accurate 

means of using an effective medium theory is to solve the transcendental dispersion problem in 

Equation (5.3.3) or (5.3.5) directly for the fundamental modal propagation constant, β.  The 

modal index can be derived from this modal propagation constant and this quantity is then 

utilized as the refractive index of the homogeneous thin-film representing the grating. 
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 By incorporating this homogeneous thin-film into the multilayer waveguide, a solution to 

the multilayer dispersion relation similar to Equation (2.2.37) provides an approximate value for 

the real-modal indices of the multilayered grating waveguide.  To determine the location of the 

resonances for a multilayered grating waveguide using an effective medium approximation, the 

transcendental modal solution of Equation (2.3.5) must be determined over a range for a 

parameter of interest (wavelength, period).  The grating equation is then solved for each 

diffraction order present in the multilayer waveguide.  As the concept of refractive index and 

angle of propagation are only truly defined within a single material layer, only the solution to the 

grating equation at normal incidence is determined for each diffracted order.  The intersection of 

the multilayer modal index spectral curves with the spectral curves associated with the 

diffraction orders satisfy the requirements of Equation (5.2.5) and approximate the spectral 

location of the multilayer waveguide grating resonances.  This approach to using an effective 

medium in the approximation of multilayer multimode grating resonances was introduced in Liu 

et al [115], but in this paper they utilized both the 0th order effective medium approximation and 

separate waveguide dispersion relations for two separate high index regions surrounding a 

grating layer, as opposed to single dispersion relation for the multilayer waveguide stack used 

here.  Using the solution to transcendental dispersion relations for both a grating layer to 

approximate an effective medium and a multilayer waveguide provides a more accurate 

approximation of all modal indices within a multimode structure. 
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5.4 Real-Valued Dispersion Tailoring for the Design of Multiple Resonance Locations 

5.4.1 Single Layer, Multimode Structures 

 One of the simplest manners for creating a resonant grating structure supporting multiple 

resonances is to couple a diffraction grating layer with a single optically thick layer of material.  

The single layer of material is thick enough to support multiple waveguide modes, each of which 

can be coupled to a diffracted order having a proper tangential wavevector component.   Figure 

5-1 shows the two modes supported by a multilayer waveguide grating composed of only three 

materials as well as the modal index curves and 0th order reflection for this waveguide grating 

calculated using RCWA.  The structure is composed of an infinite substrate of index nsub = 1.47, 

an infinite superstrate of index nsup = 1, a high index film layer of index nfilm = 2.5, and a grating 

layer with refractive indices nhigh = 1.47 and nlow = 1.  The grating periodicity is chosen to be 220 

nm with a 50% high index fill factor.   

 While the fabrication complexity of a single material layer for the waveguide is minimal, 

this configuration also provides the least flexibility for tailoring the shape of the modal index 

curves, and hence the separation of resonances.  Figures 5-2 through 5-4 show how the modal 

index curves and reflection efficiencies supported by the multimode waveguide change as the 

thickness of the high index film increases.   
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(a) 

 
(b) 

 

 
(c) 

Figure 5-1 (a) Figure showing both the index distribution and spatial mode profile for the two 
modes supported by the single waveguiding layer GMR structure. (b) The real modal index 
distribution of the two modes supported by the structure as well as the modal index of the ±1 
tangential diffracted order in free space, whose intersection indicates the location of a resonance. 
(c) The 0th order reflection response for the structure calculated using RCWA showing the 
spectral resonance response.
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5-2 (a) Figure showing both the index distribution and spatial mode profile for the first 
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index 
distribution of the three modes supported by the structure as well as the modal index of the ±1 
tangential diffracted order in free space, whose intersection indicates the location of a resonance. 
(c) The 0th order reflection response for the structure calculated using RCWA showing the 
spectral resonance response. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5-3 (a) Figure showing both the index distribution and spatial mode profile for the first 
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index 
distribution of the four modes supported by the structure as well as the modal index of the ±1 
tangential diffracted order in free space, whose intersection indicates the location of a resonance. 
(c) The 0th order reflection response for the structure calculated using RCWA showing the 
spectral resonance response. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5-4 (a) Figure showing both the index distribution and spatial mode profile for the first 
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index 
distribution of the five modes supported by the structure as well as the modal index of the ±1 
tangential diffracted order in free space, whose intersection indicates the location of a resonance. 
(c) The 0th order reflection response for the structure calculated using RCWA showing the 
spectral resonance response. 
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Increasing the thickness of the film layer not only changes the location of, and separation 

between, the original resonances, but also introduces more resonances into the spectral range of 

interest.   

5.4.2 Single Layer, Single Mode Structures with Multiple Periodicities 

 Having the ability to tailor the spectral location of, and separation between multiple 

resonances is a desirable property for multi-line filters.  The most direct means of controlling a 

two-line filter is to introduce multiple directions of periodicity as presented by Boonruang [131].  

In this scenario, the modes supported by a vertical slab waveguide can have energy coupled into 

them by diffracted orders along two separate dimensions of transverse periodicity.  Since the 

periodicity of each transverse dimension can be controlled separately during design and 

fabrication, the location of two separate resonances can be controlled independently.   

5.4.3 Multiple Layer, Multimode Structures 

 A separate method for providing more control over multiple grating resonances, involves 

the introduction of multiple layers within the vertical waveguide stack.  While the fabrication 

complexity involved in growing multiple layers is more difficult than using a single wave 

guiding layer, thin-film filters have long been grown with tens or hundreds of alternating layers 

of high and low refractive indices [5]. In the multilayer, multimode resonant grating filter, the 

variation of thickness for multiple layers of two or more refractive index values allows for a wide 

range of flexibility in tailoring the dispersion properties of super-modes in a multilayer structure.  

While the dispersion properties (spectral slope, spectral separation) of every mode in the system 

are changed when any variable in the system changes, having the ability to alter the vertical 

spatial distribution of material properties provides far more control over the dispersion properties 
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of each mode than does having only a single layer of one material.  Figures 5-5 to 5-8 show how 

the separation between two resonances can be altered from course to fine over a given spectral 

range by changing only the thicknesses of the layers.  Design of a multi-line filter with any 

desired spectral separation, within the limits of the materials present in the structure, then 

becomes a multi-parameter numerical optimization problem.   
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5-5 (a) Figure showing both the index distribution and spatial mode profile for the first 
two modes supported by the multilayer waveguiding layer GMR structure. (b) The real modal 
index distribution of the three modes supported by the structure as well as the modal index of the 
±1 tangential diffracted order in free space, whose intersection indicates the location of a 
resonance. (c) The 0th order reflection response for the structure calculated using RCWA 
showing the spectral resonance response. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5-6 (a) Figure showing both the index distribution and spatial mode profile for the first 
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index 
distribution of the three modes supported by the structure as well as the modal index of the ±1 
tangential diffracted order in free space, whose intersection indicates the location of a resonance. 
(c) The 0th order reflection response for the structure calculated using RCWA showing the 
spectral resonance response. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5-7 (a) Figure showing both the index distribution and spatial mode profile for the first 
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index 
distribution of the three modes supported by the structure as well as the modal index of the ±1 
tangential diffracted order in free space, whose intersection indicates the location of a resonance. 
(c) The 0th order reflection response for the structure calculated using RCWA showing the 
spectral resonance response. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5-8 (a) Figure showing both the index distribution and spatial mode profile for the first 
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index 
distribution of the four modes supported by the structure as well as the modal index of the ±1 
tangential diffracted order in free space, whose intersection indicates the location of a resonance. 
(c) The 0th order reflection response for the structure calculated using RCWA showing the 
spectral resonance response. 
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5.5 Use of Grating Theory and the “Homogeneous Problem” for Modeling Multilayer, 

Multimode GMR Devices 

 
 Exact solutions for the complex modal indices of a resonant grating structure require the 

use of a rigorous Maxwell equation solver, like RCWA.  The method by which the complex 

modal indices of the multilayer diffraction grating can be extracted from the eigenmode solutions 

and layer propagation matrices of RCWA can be accomplished in two different manners.  The 

original method by which these values were obtained involves a solution to the “homogeneous” 

problem [45, 122, 132].  In this method [23], the eigenmodes of a transversely periodic lamellar 

diffraction grating are combined with the plane wave expansions in a structure’s uniform 

homogenous layers to produce a single “transverse” scattering matrix as shown in Figure 5-9.   

 

Figure 5-9 (a) A drawing of a multilayer grating structure showing the relationship between the 
incoming and outgoing waves for a “transverse” scattering matrix. 
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The homogeneous problem involves determining non-trivial solutions to Equation (5.5.1) 

when 0=inputδ . 
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Such non-trivial solutions are only possible if the determinant of the inverse matrix in (5.5.2) 

equals zero. 
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The complex roots of this determinant correspond to the poles of the original scattering matrix, 

where these poles are the complex modes of the grating waveguide.  Solving this determinant 

equation requires an iterative numerical process that searches the entire complex plane similar to 

that described in Section 2.5, but whereas that process only described a root search performed in 

one dimension, two dimensions are necessary here.  A number of different methods have been 

developed for determining the complex roots of transcendental equations [59], but regardless off 

the method chosen, each complex mode that is to be found must be searched for in a separate 

iterative process. 

 A second method of determining the complex modal indices, which was utilized in this 

study, involves the use of a “longitudinal” scattering matrix [22].  In this approach, RCWA is 

utilized where PML boundary conditions are matched to the superstrate and substrate regions 

and contained within an artificial transversely periodic unit-cell as described in Section 3.3.  The 

scattering matrix for a single grating unit cell is then created by cascading the scattering matrices 

of the slices that represent the high and low grating index sections.   
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Figure 5-10 A drawing of a multilayer grating structure showing the relationship between the 
incoming and outgoing waves for a “longitudinal” scattering matrix. 
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5-10 and are related through this longitudinal scattering matrix as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

in

out
ll

ll

out

in

f
b

SS
SS

f
b

2221

1211  (5.5.4)

 
The complex modal indices can then be determined by applying longitudinal periodic boundary 

conditions, in
j

out beb Λ= modeβ and in
j

out fef Λ= modeβ , and solving the following generalized 

eigenvalue problem: 
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Unlike the “transverse” scattering matrix approach, the solution of Equation (5.5.5) 

determines all complex modes supported by the waveguide grating system in a single matrix 

operation.  By solving Equation (5.5.5) over a range of wavelengths or grating periods, complex-

valued modal dispersion curves can be determined.  Figure 5-11 shows the material and 
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structural parameters for a grating-waveguide structure supporting single leaky mode whose 

corresponding complex band structure is shown in Figure 5-12. 

 

Figure 5-11 A drawing a grating waveguide structure that supports a single leaky mode, as well 
as the material and structural parameters for the grating waveguide. 

 

In a manner similar to that described in Section 5.3, the intersection of the grating modal 

dispersion curves with the tangential component of the diffracted waves satisfies the conditions 

in Equation (5.2.5) and indicates the presence of a resonance.  Figure 5-12 shows the complex 

band structure diagrams and 0th order reflection spectra for this single-mode as well as the 

angular spectrum associated with the each of the resonances at normal incidence and at a 1º 

angle of incidence respectively. 
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Figure 5-12  The complex band structure, as well as the 0th order reflection response for all of 
the resonances of the system at 0º and 1º angles of incidence for the single leaky mode resonant 
grating structure. 
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Table 5.1  Numerical values for the spectral and spatial resonance properties associated with the 
single leaky mode grating structure in Figure 5-11 and plots in Figure 5-12.  The table shows the 
central resonance wavelengths, spectral bandwidths, angular bandwidths, and complex modal 
indices associated with resonances at normal incidence and 1º. 

 
q 0° 1° 

resonance 1 1 2 

λresonance (µm) 1.55001 1.54129 1.57001 

∆λ (nm) .934 .653 .281 

∆θ (mrad) 

(degrees) 

5.848 

.33509 

.6747 

.03866 

.3115 

.01785 

n’ 1.7363 1.7262 1.7231 

n’’ .000336 .000364 .000159 

2n’’Λ ≅ ∆λ (nm) N/A .6567 .2868 

2n’’ ≅ ∆θ (mrad) N/A .7281 .3182 
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Table 5.1 shows the quantitative relationship between the resonance wavelength, spectral and 

angular bandwidths, and complex modal index values for the structure at normal and 1º angles of 

incidence.  The angular bandwidth for this structure is nearly 100 times broader at normal 

incidence than at oblique incidence due to the coupling of symmetric diffracted orders into 

counter-propagating complex modes.  The coupling of these two modes causes a flattening of the 

dispersion relation and the creation of a “band-edge.”  Between the upper band-edge and lower 

band-edge is the “photonic band-gap” where coupling between free-space and periodic modes is 

considerably suppressed. 

5.6 Complex-Valued Dispersion Tailoring for Design of Multilayer, Multimode GMR Devices 

 Using the concepts and numerical methods introduced in the previous sections, the band 

structures of multilayer, multimode resonant grating devices can be rigorously calculated.  By 

proper design of the material and structural parameters of a two-mode resonant grating, Sentenac 

et. al [127] showed how the concept of dual mode coupling and grating asymmetry can be used 

to broaden the angular line width of not only normally incident filters but obliquely incident 

filters as well.  Figure 5-13 shows the structural and material parameters of the dual mode 

grating waveguide studied in their work.   

  
Figure 5-13  A drawing of a grating waveguide structure that supports two leaky modes, as well 
as the material and structural parameters for the grating waveguide. 
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At normal incidence, their structure supports two resonances.  The complex band structure, 

spectral reflection, and angular acceptance of each resonance can be seen in Figure 5-14.   

 

 
 

Figure 5-14  The complex band structure, as well as the 0th order reflection response for all of the 
resonances of the system at a 0º angle of incidence for the dual leaky mode resonant grating 
structure. 
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Figure 5-15  The complex band structure, as well as the 0th order reflection response for all of the 
resonances of the system at 1º angles of incidence for the dual leaky mode resonant grating 
structure. 
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Figure 5-16 shows the reflection spectrum and band structure diagrams at an angle of incidence 

of 4.986º, which is the location of the band-edge between the TE0 and TE1 modes.  By 

examining the angular spectrum of each resonance shown in Figure 5-16, the angular line width 

of the resonance associated with the upper band-edge of central band-gap is shown to be 

considerably broadened.   

 

 
 

Figure 5-16  The complex band structure, as well as the 0th order reflection response for all of the 
resonances of the system at a 4.986º angle of incidence for the dual leaky mode resonant grating 
structure. 
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Due to the curvature of the modal band diagram in this band-gap, as can be seen more closely in 

Figure 5-17, the central portions of the upper and lower band-edges are not aligned with one 

another.   

 

Figure 5-17  The complex band structure for the dual leaky mode resonant grating structure 
showing the non-alignment of the upper and lower band edges at oblique incidence. 
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Figure 5-18  A drawing of a grating waveguide structure that supports three leaky modes, as well 
as the material and structural parameters for the grating waveguide. 
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band diagram for the three mode system at normal incidence, as well as the angular acceptance 

of each of the three resonances.  Figures 5-20 to 5-22 show the same information at 1º, 2.455º, 

and 5.374º. 
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Figure 5-19  The complex band structure, as well as the 0th order reflection response for all of the 
resonances of the system at a 0º angle of incidence for the dual leaky mode resonant grating 
structure. 
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Figure 5-20  The complex band structure, as well as the 0th order reflection response for all of the 
resonances of the system at a 1º angle of incidence for the three leaky mode resonant grating 
structure. 
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Figure 5-21  The complex band structure, as well as the 0th order reflection response for all of the 
resonances of the system at a 2.455º angle of incidence for the three leaky mode resonant grating 
structure.  At this angle of incidence, the broadened resonances are nearly aligned in their central 
angle. 
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Figure 5-22  The complex band structure, as well as the 0th order reflection response for all of the 
resonances of the system at a 5.37º angle of incidence for the three leaky mode resonant grating 
structure. 
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 While this design does not possess polarization independence, as can be seen in Figure 5-

23 showing the real part of the band diagrams associated with TE and TM polarizations for this 

structure, there is no theoretical reason why a structure with these properties could not be 

designed.   

  
 

Figure 5-23  The real part of the band structure diagram for the three leaky mode resonant 
grating structure for both TE and TM polarizations.  These diagrams show the obvious 
polarization dependence for this resonant grating structure. 
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to the same angle of incidence.  In order obtain angular alignment of the resonances; a numerical 

search/scan and optimization can be performed over any combination of grating parameters one 

so chooses.  Changing any single parameter or combination of parameters affects the slope and 

shape of all of the dispersion curves in the band structure diagrams.  As an example of how this 

process can be performed, the thickness of the bottom two layers of the structure were varied in 

tandem, as shown in Figure 5-24, maintaining a constant overall structure thickness. 

 

Figure 5-24  A drawing of a grating waveguide structure that supports three leaky modes, as well 
as the material and structural parameters for the grating waveguide and the two layers that were 
varied in tandem to modify the overall dispersion properties of the structure. 

 
By varying ∆h from -100 nm to +100 nm, the relative locations of the two upper band-edge 

dispersion curves vary significantly.  Figure 5-25 shows three-dimensional plots of the real and 

the imaginary parts of the band structure diagrams over this entire range, as well as two-

dimensional plots of these same band structure diagrams superimposed. 
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(a)     (b) 

 
(c)     (d) 

 

Figure 5-25  Plots showing the changing nature of the real (a) & (c) and imaginary (b) & (d) 
parts of the band structure diagram as a function of ∆h. 
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The changing nature of the resonances involved can also be seen by directly observing the 

reflection from the structure, as shown in Figure 5-26 for normal incidence. 

 
(a)      (b) 

 

Figure 5-26  Plots of the 0th order reflection spectrum for the multilayer resonant grating 
structure as a function of the period/wavelength ratio and change in layer height. 

 
In investing the two upper band edges involved in the targeted simultaneous broadened 

angular acceptance at oblique incidence, it is instructive to zoom-in on this section of the band 

diagram plot, as shown in Figure 5-27.   
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Figure 5-27  Plots showing the dispersion band edges involved in the angular alignment problem.  
(a) Plot showing the dispersion curves for the entire range of ∆h.  (b) Plot showing the dispersion 
curves at ∆h = -100 nm, 0 nm, and 100 nm. 
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This figure shows that negative values of ∆h (which decreases the amount of high index 

material) alter the band structure appreciably, and causes serious angular misalignment of the 

resonance locations.  On the other hand, positive values of ∆h (which increases the amount of 

high index material) have a smaller affect on resonance separation and a small positive value  

(∆h = 63.7 nm) actually brings about the angular alignment being sought.  Figure 5-28 shows the 

reflection spectrum and complex band structure for the structure with an optimized angular 

resonance alignment at an input angle of 3.165º. 

 
Figure 5-28  Reflection spectrum and complex dispersion band diagram for the optimized 
multilayer structure (∆h = 63.7 nm) having two collocated, angular spectrum resonances at 
separate wavelengths.  The vertical lines in (b) represent the value of the expression 

θλ sin/1 Λ− , while the horizontal lines represent the value of λ/Λ for the same resonance. 

 
 The plot of the angular spectrum at the peak wavelength of each spectral resonance can 
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this aligned structure tightened to show only the two dispersion band edges contributing to the 

angular resonances of interest.  The resonance properties of each resonance are in Table 5-2. 

 

 
Figure 5-29  (a) Plot showing the angular resonances associated with the optimized multilayer 
guided mode resonance structure.  The resonances at wavelengths of 1.5076 µm and 1.6038 µm 
are both centered at an input angle of 3.165º and have broad angular bandwidth due to the 
simultaneous interactions of separate pairs of leaky modes. (b) The real band structure diagram 
showing the band edges of interest.  The circles are numbered and color-matched to the 
resonance curves from part (a). 
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Table 5.2  Numerical values for the spectral and spatial resonance properties associated with the 
optimized multilayer multimode guided mode resonance filter having two collocated broadened 
angular resonances for two separate wavelengths.  The table shows the central resonance 
wavelengths, spectral bandwidths, angular bandwidths, and complex modal indices associated 
with resonances at a 3.165º angle of incidence. 

 
resonance 1 2 3 4 5 

λresonance (µm) 1.44396 1.50761 1.52704 1.60381 1.61370 

∆λ (nm) .025144 .065396 .010290 .026894 .004839 

∆θ (mrad) 

(degrees) 

.003982 

.002281 

.227848 

.130547. 

.087816 

.050028 

.105519 

.060458 

.042296 

.024234 
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5.7 Multilayer Multimode Guided Mode Resonance Filter Conclusions 

This chapter discussed the concept of a multilayer multimode guided mode resonance 

filter by initially discussing the background and history of the resonant grating concept, then 

presenting various means of modeling the real and complex parts of the modal indices associated 

with a multilayer resonant grating, and finally specific examples of multilayer, multimode GMR 

filters were investigated.  The multilayer, multimode GMR filter was shown to possess the 

ability to control spectral resonance separations from coarse to fine depending on only the (very 

controllable) properties of multilayer thicknesses for a pair of alternating material layers, given 

set grating parameters.  The angular resonances associated with a multilayer, multimode GMR 

filter were then investigated, and it was shown that a multilayer, multimode GMR filter could be 

designed to have broadened angular acceptance for multiple wavelengths at a single angle of 

incidence by properly tailoring the structure’s complex modal dispersion bands. 
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CHAPTER 6 EFFECT OF LOSS OR GAIN ON GUIDED MODE 
RESONANT DEVICES 

As described in the previous chapter, guided mode resonant (GMR) devices couple an 

input optical wave to a leaky mode via diffraction from a grating.  Utilizing the GMR effect, a 

variety of narrow bandpass and bandstop devices have been designed previously for tailoring the 

spectral and angular response of an optical filter, as discussed in the previous and following 

chapters, but to date most work has focused either on modeling dielectric materials having purely 

real permittivity values or metallic structures having significant conductivity.  The idea of 

incorporating a GMR structure as a resonant mirror interacting with a gain medium has been 

proposed previously, but the effect of the gain itself on the resonance was not investigated [133].  

Spectrally selective grating waveguide absorbers have been proposed as well by incorporating 

metallic layers with significant conductivity [134-136].  The purpose of this chapter is to 

investigate the effect of incorporating a slight gain or loss within the high refractive index layer 

that primarily contains the leaky mode.  The incorporation of an appropriate amount of gain or 

loss is shown to produce an enhanced reflection/transmission or absorption resonance 

respectively. 

6.1 Definition of Physical Parameters Studied and Device Structure 

In terms of a material’s complex refractive index, n – jκ, with n defined as a purely 

positive value, the imaginary part of the refractive index corresponds to either a gain or loss 

depending on whether κ is negative or positive.  Figure 6.1 shows the geometric structure of the 

device under study as well as the layer whose absorption/gain parameter is varied. 
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Figure 6-1  Guided Mode Resonance Structure with gain/loss layer integrated 

 
Using RCWA, a GMR structure without gain or loss is designed initially to produce a 

narrowband reflection peak at a design wavelength (in this case λ = 1.55 µm).  The multilayer 

structure under study consists of a high index substrate (nsubstrate = 3.24), a quarter wave – half 

wave – quarter wave thickness stack with refractive indices of nAR = 3.37, nwvg = 3.5, and nAR = 

3.37, and a grating layer with high and low refractive indices of nridge = 3.24 and ngroove = nair = 1 

respectively.  The input half space is assumed to be air.  For normally incident having TE 

polarization, a grating period of 469 nm is chosen such that a resonance is produced at the design 

wavelength and non-zero order diffraction is not present in either the input or output half-spaces.  

The fill factor (.1705) and the thickness of the grating (230 nm) are chosen such that the 

broadband Fresnel reflection of the structure is minimized. 

6.2 Results and Discussion 

As shown in Figure 6.2 and Figure 6.3, the addition of loss or gain to the system is 

investigated by varying the imaginary part of the refractive index for the wave guiding layer.  

Figure 6.2 shows the spectral response of the structure’s absorption, reflection, and transmission 
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as the imaginary part of the refractive index is varied over positive values, i.e. loss in our 

definition. 

 
(a) 

  
(b)      (c) 

 

Figure 6-2 (a) GMR absorption wavelength spectra plotted for varying imaginary refractive 
index. (b) Corresponding 0th order reflection spectra. (c) Corresponding 0th order transmission 
spectra. 

 
Initially, a peak absorption of approximately 50% with an absorption line width of 2.5 nm 

is found at the design wavelength when κwvg = .0027.  By further varying the grating thickness at 

this value of κwvg, the peak absorption is increased to 64% and the absorption line width is 1.9 

nm when the grating thickness is equal to 296 nm.  This increased absorption peak results from 

an improved phase matching between the diffracted wave and the guided leaky mode.  A further 

increase in the loss coefficient of the material reduces the absorption peak, causing most of the 
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energy to shift into the 0th transmitted order.  This effect is due to the fact that as the loss is 

increased, the phase matching condition no longer holds between the tangential component of the 

diffracted wave and the modal index of the leaky mode. 

  
(a)       (b) 

 

  
(c)       (d) 

 

Figure 6-3 (a) 0th order reflection plotted with change in wavelength and imaginary part of 
refractive index for the guiding layer. (b) Contour plot of 0th order reflection.  (c) 0th order 
transmission plotted with change in wavelength and imaginary part of refractive index for the 
guiding layer.  (d) Contour plot of 0th order transmission. 

 
Similarly, Figure 6.3(a) through Figure 6.3(d) show the spectral response of the 0th order 

reflection and 0th order transmission as κwvg is varied over negative values, i.e. gain in our 

definition.  While feedback is not pertinent to this numerical model, in a practical system 

utilizing optical pumping, feedback into the pumping source is not desirable.  To eliminate any 
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feedback along the direction of the incident wave, the angle of incidence is set to 10º.  While the 

issues of the previous chapter involving the interaction of multiple modes at oblique incidence 

would be relevant to increasing the angular tolerance of this model, multiple modes were not 

considered in this example.  The grating period is adjusted to 446 nm to maintain resonance at 

the design wavelength, and the fill factor (.179) and the grating thickness (220 nm) are adjusted 

to minimize broadband reflection. 

Upon varying the gain, a peak reflection occurs at a value of κwvg = -.00137.  At this 

value of κwvg, the peak reflection is increased by a factor of greater than 2.6 x 105 versus a gain-

less resonator, while the level of the sidebands changes considerably less.  As shown in Figure 

6.3(b), the existence of a resonant reflection is very tolerant to a change in the amount of gain 

present in the wave guiding layer, but the substantial increase in resonant reflection that occurs 

near the peak value of the gain occurs within a narrower range.  The resonant response takes on a 

Lorentzian line shape in both wavelength and gain.  Near the gain resonance, the 0th order 

transmission of the structure increases significantly, with a peak transmission having the same 

order of magnitude as the peak reflection.  For both the reflection and transmission responses, 

increasing the gain beyond an optimal value decreases the effectiveness of the resonator.  As 

with the absorption response, an increase in the gain causes the phase matching condition to 

breakdown, eventually eliminating the resonance entirely. 

As previously suggested [133], use of a gain material within a GMR device could be 

useful as an integrated mirror/resonator/amplifier for either a vertical cavity laser or as a means 

of altering an incident free space optical wave in an optical pumping regime, but the gain level 

must be kept within a specific, albeit wide, range to maintain resonant reflection.  Similarly, the 

addition of a lossy material to a GMR structure could also be useful as a narrowband, current 
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producing spectral sensor [134], but the amount of loss included within the GMR structure will 

affect the shape, or even the presence, of the resonant absorption spectral profile.  As with all 

GMR devices, finite beam size and finite grating size will affect the resonant performance of the 

structure.  Furthermore, the effects presented above are for steady-state gain or loss of the 

system.  In summary, this chapter shows that incorporation of gain or loss within a defined range 

for a specific GMR device geometry can be expected to enhance resonant reflection/transmission 

or absorption. 
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CHAPTER 7 EMBEDDED WAVEGUIDE GRATINGS AND 
WAVEGUIDE GRATING FILTERS/MIRRORS 

 In the same manner that a periodic structure can be used as a means of spatially and 

spectrally filtering a free-space optical wave, gratings may also be utilized to filter and reflect 

guided waves.  Over the past decade, there has been a considerable amount of research in the 

area of planar photonic crystal waveguides which make use of this idea [68, 137-142].  In a 

planar photonic crystal waveguide, a spatially periodic array of holes is etched into waveguide 

that vertically confines a guided mode.  By varying the periodicity, removal factor, and index 

contrast of the holes, as well as creating “defects” in areas where holes are not present, photonic 

crystal waveguides exploit Bragg diffraction from multiple rows of embedded layered gratings to 

guide light within the defect regions.  An embedded resonant grating performs in a slightly 

different manner from a standard planar photonic crystal mirror.  In an embedded resonant 

grating, the vertically guided mode is incident on what can be a single row periodic structure.  

Transverse diffraction occurs at the site of this periodicity, and when the mode is phase-matched 

to the periodic region, energy is stored in the periodic layer and either resonant reflection or 

resonant transmission can occur.   

A principal problem in planar photonic crystal waveguides and embedded gratings is that 

of vertical confinement.  When a waveguide mode is tightly confined to the waveguide core, due 

to a vertical core/cladding refractive index contrast, the presence a lower index inclusion, such as 

an air hole, causes vertical scattering of light.  The strength of this vertical scattering depends on 

all properties of the holes (periodicity, removal factor, index contrast, depth).  If the removal of 

material can be replaced by the addition of material of a higher refractive index than all other 
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materials within the waveguide, then vertical scattering from a planar periodic structure can be 

eliminated. 

 This chapter explains how the design of an embedded resonant grating structure was 

attempted, using two separate two-dimensional models.  The first two-dimensional is a 

horizontal-direction + longitudinal-direction model that uses an effective index for the vertical 

direction.  This model can show transverse diffraction, but assumes the vertical direction is 

infinitely invariant.  The second two-dimensional model is a vertical-direction + longitudinal-

direction model that determines the modal index of the confined vertical mode.  This model can 

also take into account vertical scattering from low index inclusions, but does not include 

transverse diffraction.  By comparing the results of the initial two-dimensional model with a 

fully three-dimensional model, the assumption of a vertical effective index made in the 

horizontal + longitudinal two-dimensional model is shown to ignore vertical scattering and 

eliminates (or at least severely reduces) the possibility of properly designing an embedded 

resonant grating with low index periodic inclusions.  Finally, the incorporation of high refractive 

index periodic inclusions within the waveguide is shown to solve the problem of vertical 

scattering and allow for the design of embedded resonant grating structures.   

7.1 Two-Dimensional Embedded Grating Models 

7.1.1 Determination of the Waveguide’s Modal Index 

 In order to determine the modal index of a vertical slab waveguide, a multilayer modal 

solver was utilized.  Both the transcendental dispersion equation approach described in Chapter 2 

and the RCWA/PML method described in Chapter 3 can be utilized to determine the modal 

index of a slab waveguide.  In both this chapter and the next, the base structure considered is a 
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high refractive index device representing an AlGaAs multi-quantum well core, surrounded by a 

graded index cladding, with a GaAs substrate, a GaAs cover layer, and an air superstrate.  Figure 

7.1 shows the index distribution and spatial modal profile of the single mode waveguide 

considered.   

   
(a)           (b)    (c) 

 

Figure 7-1  The normalized longitudinal Poynting vector component and refractive index 
distribution of the single mode waveguide showing both location and size of the graded index 
section relative to the substrate and the power distribution within the graded index section. 

 
The modal index of this single mode waveguide is 3.355.  Variations in the cover layer 

thickness, and to an even lesser extent in the substrate thickness, have a small effect on this 

modal index.   

7.1.2 Two-Dimensional Horizontal + Longitudinal Model 

 A two-dimensional model of the transverse diffraction was implemented using the 

standard infinitely periodic grating implementation of RCWA where the high refractive index 

regions were assigned the modal index of the single mode waveguide and the low refractive 

index regions were assigned to be air.  As the incident light is confined within the waveguide, the 

input region of the model is assigned the value of the high refractive index material.  Since the 

original concept to be studied called for a waveguide mirror, the output region was assigned to 

be that of air, as would be present in a cleaved end-facet.  In order to create the conditions for 
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both transverse diffraction and a resonator cavity, a single row of air holes was placed within the 

high index region as shown in Figure 7.2.   

   

(a)      (b) 

Figure 7-2  (a) A top view of an waveguide with an embedded periodicity of low-index 
inclusions (air holes) and a thin resonator cavity layer, as well as arrows representing the 
incident, reflected and diffracted plane wave directions in the structure. (b) A three-dimensional 
view of the waveguide with embedded air holes. 

 

The periodicity of the grating was chosen such that upon normal incidence, an input plane wave 

produces both +1 and -1 diffracted orders within the high index regions but produces no higher 

order diffraction within the output air region.  Since the presence of this transverse diffraction 

could potentially degrade the performance of an input light source, the grating should be 

designed to minimize the amount of energy diffracted into these orders.  This same diffraction 

mechanism also occurs within the resonator cavity, but upon resonance of the +1 and -1 

diffracted orders in this region, nearly all of the input energy would be retro-reflected into the 

input 0th order.  Figure 7-3 shows the reflection response for a system of square low index 

inclusions. 
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Figure 7-3  The reflection response of the 0th order and ±1st order diffracted plane waves in the 
1D grating RCWA model. 

 
While this structure does produce a nearly 100% reflection response on resonance, the 

presence of a high index contrast output causes a significant broadband reflection response as 

well.  In order to decrease the level of this broadband reflection without having to introduce extra 

material layers, the addition of subwavelength gratings acting as artificial optical materials can 

be introduced [143, 144] as shown in Figure 7-4. 

   

 (a)      (b) 

Figure 7-4 (a) A top view of an waveguide with an embedded periodicity of low-index inclusions 
(H-shaped air holes) and a thin resonator cavity layer, as well as arrows representing the 
incident, reflected and diffracted plane wave directions in the structure. (b) A three-dimensional 
view of the waveguide with embedded H-shaped air holes. 
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At each interface of the homogeneous high index material, a subwavelength grating is 

added in order to decrease the impedance mismatch between that high index material and either 

the adjacent grating layer or the output air region.  For the two subwavelength AR layers 

surrounding the diffraction grating, mechanical stability and fabrication issues for the resulting 

structure would limit the periodicity of these layers to be half that of the actual diffractive grating 

layer.  This geometry produces what from the top-down view would look like a row of “H” 

shaped holes.  On the output side of the structure the periodicity of the subwavelength grating 

can take any periodicity that does not produce higher order diffraction in the air regions or +2 or 

-2 diffraction in the high index region, but for simplicity in the computations this period was 

chosen to be the same as the other two AR layers.  Figure 7-5 shows the 0th order reflection 

response of this structure. 

 

Figure 7-5 The reflection response of the 0th order and ±1st order diffracted plane waves in the 
1D grating RCWA model for the structure with H-shaped air holes. 

 

As is desired for any resonant grating reflection filter, the broadband reflection response of this 

structure is almost non-existent, whereas the narrowband reflection response is nearly 100%.   
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7.1.3 Two-Dimensional Vertical + Longitudinal Model 

 In order to estimate the amount of loss due to vertical scattering from longitudinal holes, 

the two-dimensional, RCWA/PML eigenmode expansion, scattering matrix model was utilized.  

A single low index inclusion was set to represent an air hole that has been fully etched through 

the graded index waveguide down to the level of the substrate.   

 

Figure 7-6 A sketch showing the graded index waveguide with a fully etched hole (etched to the 
substrate) where the length of the hole is set to be the maximum hole length considered in the H-
shaped holes of the previous section.  The sum of the spectral reflection and transmission into the 
fundamental mode was used to estimate vertical losses from the etched waveguide. 

 
By setting the length of this hole to be the same as the length of the holes used in the previous 

section, the difference between the incident energy and the sum of the reflection and 

transmission coefficients of the fundamental mode in the input and output waveguides can be 

used to estimate the amount of loss due to vertical scattering.  In the wavelength range from 970 

nm to 990 nm, the vertical loss from the structure with a hole length of 400 nm ranged from 

23.4% to 23.7%.   

7.2 Three-Dimensional Embedded Grating Models 

 A full three dimensional model of an embedded grating was implemented using RCWA 

with incorporated PML boundary conditions in the vertical direction, purely periodic boundary 

hole 
length

PML

PML
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conditions in the horizontal direction, and identical infinite waveguides in the input and output 

half-spaces.  The two-dimensional modal problem to be solved in each longitudinal slice makes 

use of the coupled wave expansion as described in Section 3.1.3 as well as the Fourier harmonic 

expansions for 2D systems described in Appendix C with horizontal symmetry considerations as 

derived in Appendix D.  The propagation of energy was calculated using the scattering matrix 

method of Section 4.3, with the reflection coefficients of each mode determined using the 

methods described in Section 3.3.  Due to the large number of Fourier harmonics used to obtain 

convergence of the eigenvalue problem (1059 harmonics on a diamond shaped grid) for each 

transverse slice, the determination of spectral modal reflection and transmission coefficients 

resulted in rather long computational run times. 

 

Figure 7-7 A sketch of the longitudinally symmetric 3D structure considered in the computation 
having an output half-space waveguide as opposed to a half space air region. 

 
 Using the final grating geometries presented in the previous section, two rows of “H” 

shaped holes are embedded in the waveguide structure.  This structure was tested for the 

longitudinally symmetric three-dimensional model shown in Figure 7-7 using an output 

waveguide as opposed to an output air half-space, due to concerns about the accuracy of 

representing the system as having a purely homogeneous output air half space that would involve 

longitudinal interfaces between vertical PML layers and complete air regions (as well as 

concerns about numerical contamination between previously isolated unit cells), or having an 
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output air region with vertical PML layers whose mode structure was not clearly understood.  

Figure 7-8 shows both the reflection and transmission response of this structure. 

 

Figure 7-8 Reflection and transmission response of the fundamental mode associated with the 
longitudinally symmetric structure with two rows of H-shaped holes.  The sum of the reflection 
and transmission clearly indicate that on resonance this structure has enhanced scattering (either 
vertical or longitudinal but out of the fundamental mode). 

 
The location of the resonance for this structure can be seen, but the performance of the structure 

on resonance is not as desired.  On resonance both the transmission and reflection of the device 

in the fundamental mode have decreased, which can be interpreted as an increase in the amount 

of vertical scattering that occurs in the device on resonance.  Consequently, the inclusions of 

these low-index holes in no way act as a narrowband resonant mirror for a vertically confined 

waveguide mode.   

 Upon conclusion of this work involving low index inclusions, it was found in the patent 

by Grann [145], a means of resolving this vertical scattering issue.  The concept presented 

requires that the transverse periodic inclusions in a vertical waveguide must possess a higher 

refractive index than all of the other materials comprising the vertical slab waveguide.  When the 
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periodic inclusions are the highest index in the material, transverse diffraction of the input 

waveguide mode can occur without excessive vertical scattering.  Energy diffracted by the 

embedded grating is both vertically and horizontally concentrated in the regions near the high 

index inclusions and a true resonator cavity can then be created.  Fabrication of such a device 

structure in a semiconductor waveguide is a considerable challenge due to the need to either 

backfill material into holes or grow material around pillars in a controlled and precise manner.   

 Testing of both the low index inclusion and high index inclusion device structures are 

both very costly computational problems.  While code capable of modeling the device structure 

was written and debugged, a definitive answer as to the feasibility of a low index inclusion 

structure operating as an embedded resonant waveguide grating device could not be determined 

satisfactorily given the present computational resources.  The one 3D calculation produced in 

this study made use of C2v symmetry considerations and ignored the substrate altogether.  The 

reasoning behind this assumption was that the fundamental mode is confined primarily to the 

graded index waveguide, with little impact from the substrate itself.  Any scattering from that 

input fundamental mode would then result in energy lost that could not be fed back into that 

mode through a resonant cavity.  Even with these symmetry considerations, the 101 iterations 

utilized to produce Figure 7-8 took 2 weeks of run-time, and several previously failed trials due 

to out of memory errors, to produce.  As the price/performance ratio of computational hardware 

decreases, and the use of parallel algorithms in photonics becomes more prevalent (or at least the 

ability of the present author and potential readers to write effective parallel algorithms increases), 

the ability to tackle computational problems of the size and scope considered in this chapter will 

become much more common place.  So in conclusion, the concept of an embedded waveguide 

grating guided mode resonant filter having low index inclusions remains an open problem. 
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CHAPTER 8 ALL-DIELECTRIC UNIDIRECTIONAL DUAL 
GRATING OUTPUT COUPLER 

8.1 Introduction 

Traditionally, the out coupling of light guided within a planar waveguide has been 

achieved in one of four manners: end facet couplers, prism couplers, tapered couplers and grating 

couplers [146].  End facet coupling creates the problems of reflection from a cleaved facet back 

into the input waveguide mode that can affect the stability of the light source generating the 

guided wave, the presence of an elliptical spot size created by planar waveguides that normally 

have vastly different horizontal and vertical dimensions, and the potential for catastrophic end 

facet damage in high power configurations.  Prism coupling eliminates the issues of reflection 

into an input mode and end facet damage by the use of vertical surface coupling, but the 

necessity for a prism to have a denser refractive index than the materials comprising the 

waveguide also precludes the use of prism coupling for high refractive index semiconductor 

waveguides.  Vertically tapered couplers normally consist of an adiabatic variation of the modal 

index of a waveguide by means of a gradual geometric variation, similar to a prism coupler, but 

normally results in a large beam divergence.  Transversely tapered couplers can be either 

adiabatic transverse variations [147] or a numerically optimized series of end facet couplings that 

utilize multilayer resonance effects [148].  In either case, the use of a final end facet coupling 

retains the same potential for end-facet damage in high power configurations.  The use of a 

surface grating as a means of out coupling from a planar waveguide addresses the weaknesses of 

both end facet and prism coupling by minimizing reflection into the input waveguide mode and 

providing a means of surface coupling for any type of material, while also spreading power over 

a larger surface area and providing numerous degrees of freedom for shaping the output beam. 
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Grating coupler surface emitting devices tend to have deep grooves in order to interact 

with the guided mode. This results in diffraction in both a low index superstrate, normally air, 

and a higher index substrate. Consequently, there is a splitting of the diffracted energy between 

the substrate and superstrate regions, an example of which can be seen in Figure 8-1.   

  
(a)        (b) 

  
 (c)        (d) 

Figure 8-1  Power flow in a single surface grating with a 275 nm period, 250 nm depth, and 50% 
fill factor, which shows the splitting of diffracted energy between a substrate region (70%) and a 
superstrate region (30%). (a) Transverse power flow over the entire computational window. (b) 
Transverse power flow near the initial grating interface.  (c)-(d) 3D view of transverse and 
normal power flow showing the power magnitude. 

 
Attempts to force unidirectional coupling of the diffracted energy have previously involved 

the addition of either a metallic coating [149, 150] or a thin-film quarter-wave-stack coating to 

either the grating or the substrate [151].  Metallization of either the grating or the substrate 

introduces additional absorption and scattering losses which are also problems that should try to 

be minimized. The addition of a quarter wave stack mirror requires the deposition of additional 
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thin film layers having tight fabrication tolerances, which increases the structure’s overall 

fabrication complexity. 

In recent years, the concept of dual-side wafer processing for semiconductor waveguides 

has been introduced.  By integrating a superstrate-side diffraction grating with either a substrate 

side refractive or diffractive element, numerous applications in spatial and spectral beam control 

have been introduced [149, 152].  In this work, we present a novel all-dielectric unidirectional 

grating coupler that avoids the need for any additional material deposition.  A model for a 

unidirectional coupler with a 96% output coupling efficiency is obtained.  The dual grating 

structure is shown to be tolerant to a variety of potential fabrication errors while maintaining a 

high output power coupling efficiency. 

8.2 Proposed Structure and Device Design Methodology 

8.2.1 Proposed Structure 

The device considered consists of a single mode high index waveguide with a superstrate 

grating that does not produce diffraction in the superstrate air region and diffracts only a single 

order into the substrate, as well as a substrate side grating that diffracts a single order in the 

substrate side air region as shown in Figure 8-2.   

 
 

Figure 8-2  A simple drawing of the dual grating output coupler device considered in this study, 
as well as the principal directions of energy flow in the structure.   

Substrate Air Output

Superstrate Air  
Superstrate  

Substrate 
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The periodicity for the superstrate side grating must result in that the guided mode 

diffraction by the grating produces no propagating diffracted orders in air and only produces a 

single diffracted order in the substrate region.  This is determined from the grating equations: 

sup

0
mode

supmode,tangentialdiffracted,tangential

sin
Λ

−=

−=

λθ pnn

pKkk

dif

 (8.2.1) 

 
where λ0 is light wavelength, Λsup is the periodicity of the superstrate grating, and n is the 

average refractive index of the region where the diffraction occurs.  In order to restrict the 

propagation of diffracted orders in air, the upper bound on the superstrate periodicity is as 

follows: 

( )1mode0sup +<Λ nλ  (8.2.2) 
 
To ensure the propagation of at least a single diffracted order in the substrate region (nsub), the 

lower bound on the superstrate periodicity obeys the following inequality: 

( )subnn +>Λ mode0sup λ  (8.2.3)
 
For the grating on the substrate side, the grating equation is as follows: 
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 (8.2.4)

 
To ensure that the substrate grating will produce only a single diffracted order in air, its 

periodicity is determined by the following inequalities: 

( ) ( )sup0mode0sup0mod0 /sin2/sin Λ+−<Λ<Λ+− λθλλθλ airsubaire nn  (8.2.5)
 
To investigate the properties and behavior of the proposed dual grating structure, the properties 

of each individual grating are rigorously studied by means of the Rigorous Coupled Wave 

Analysis (RCWA), using both its original form for infinite transverse gratings [12, 13] and its 
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application to finite-sized integrated optical structures [9, 16, 20, 153]. Finally, the integration of 

both gratings in a single device is studied using this same finite waveguide eigenmode expansion 

method.  A similar approach to modeling an integrated dual grating directional coupler using a 

different eigenmode expansion technique has been used previously as well [154]. 

8.2.2 Single Mode Waveguide 

The waveguide under consideration consists of a multi-quantum well AlxGa1-xAs region 

of tens of nanometer thickness surrounded by equivalent graded index AlxGa1-x regions of 

roughly 200nm in thickness on top of a GaAs substrate (n = 3.24).  A superstrate GaAs cladding 

layer is added on top of the graded index layers.  Using a modal solver with incorporated 

Perfectly Matched Layer (PML) boundary conditions, the modal index of this TE single mode 

waveguide considered at a 980 nm wavelength is determined to be 3.355.  Figure 8-3 shows the 

longitudinal component of the time-averaged Poynting vector associated with this waveguide 

mode. 

   
 

Figure 8-3  The normalized longitudinal Poynting vector component of the single mode 
waveguide showing both the location and size of the graded index section relative to the 
substrate and the distribution of power within the graded index section. 
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8.2.3 Bounds on Grating Periodicities 

The modal index of the single mode waveguide is then used to determine the range of 

periodicities allowing for unidirectional output coupling from the substrate side of the device.  

For a modal index, nmode = 3.355, the upper limit of the superstrate side grating periodicity is 225 

nm (which ensures no diffraction in air).   For a substrate region average index, nsub = 3.24, the 

lower limit of the superstrate-side grating periodicity is 148 nm (which ensures the presence of 

diffraction into the substrate). As shown in Equation 8.2.5, the range on the substrate grating 

period depends upon the choice for the superstrate grating period, which determines the incident 

and exit angles for the substrate grating. 

 
       (a)               (b) 

Figure 8-4  The output diffracted angle in air vs. the substrate grating period, for substrate index 
of nsub = 3.24, and a superstrate grating period of (a) 225 nm. and (b) 148 nm. 

 
As shown in Figure 8-4(a), for a superstrate grating period of 225 nm, the substrate 

grating period can take a value of anywhere from 490 nm (where the 1st order begins 

propagating) to 979 nm (where the 2nd order begins propagating).  Similarly Figure 8-4(b) shows 

that for a superstrate grating period of 148 nm, the substrate grating period can range from 231 

nm to 437 nm.  With a choice of superstrate grating period between 148 nm and 225 nm, the 

potential periodicity range for the substrate grating moves accordingly, but as shorter 
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periodicities produce larger diffracted angles into the substrate, it is desirable to choose a period 

at the longer end of this range. 

8.2.4 Determination of Proper Individual Grating Strengths 

Once the ranges of potential superstrate and substrate grating periodicities are known, the 

gratings can then be evaluated on the basis of their diffractive strengths.  For the superstrate and 

substrate gratings, properties such as the grating periodicity, depth, fill factor, and profile all 

contribute to how power is diffracted away from the input waveguide mode and out of the device 

substrate. 

Since the superstrate grating affects the coupling loss from the input mode most 

significantly, its properties are investigated first.  To analyze the superstrate grating in isolation, 

PML boundary conditions are placed adjacent to the superstrate air region and the GaAs 

substrate.  A virtually semi-infinite grating coupler (length ~1 m) is used to ensure that all the 

energy is coupled out and no reflection occurs from a possibly mismatched output half-space 

waveguide.  However, coupled energy was only collected over a finite length (~700 µm) which 

is found to be sufficient, in most cases, to collect all power that is scattered in the transverse 

direction by the structure as shown in Figure 8-5.  

 
 

Figure 8-5  A sketch showing the computational and power collection windows for both a single 
surface grating with an “infinite” substrate and a dual grating coupler.  Dotted lines represent 
interfaces used to define layer scattering matrices. 
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The selection of grating period, thickness, and fill factor for the superstrate grating 

involves a trade off between the coupling length of the complex grating mode, the modal 

mismatch between the input waveguide mode and the leaky waveguide-grating mode, and the 

reasonable ability to fabricate the chosen grating geometry. 

   
(a)                (b) 

Figure 8-6  (a) Real part and (b) imaginary part of the Bloch mode index of the fundamental 
mode in the superstrate grating vs. superstrate grating period for various grating thicknesses. 

 
Figures 8-6(a) and (b) show the real and imaginary Bloch mode index values vs. period 

associated with the superstrate grating for various grating thicknesses having a 50% fill factor 

calculated using the generalized eigenvalue approach described in Cao et. al [22].  While all 

values within the previously defined superstrate periodicity range will couple nearly all of the 

input power into the substrate, the variation in modal losses, seen in Figure 8-6(b), show that 

coupling length can vary significantly with grating period and grating depth.  A grating period of 

220 nm with a grating depth of 250 nm is chosen due to it having a relatively shallow diffraction 

angle in the substrate (~20º), a significant modal loss for our chosen 50% fill factor, a negligible 

reflection, and a reasonable depth from a fabrication point of view.  Consequently, these 

parameters are utilized in the remainder of this work.  Figures 8-7(a) through (d) show views of 

the transverse and normal components of the Poynting vector at a 220 nm period, with a 250 nm 

grating depth and 50% fill factor, which produce a 99.9% coupling efficiency into the substrate.  

0.15 0.17 0.19 0.21 0.23 0.25 

3.338 

3.340 

3.342 

3.344 

3.346 

  

 
150 nm
200 nm
250 nm
300 nm
350 nm

Superstrate Grating Period (µm)

R
ea

l M
od

al
 In

de
x 

0.15 0.17 0.19 0.21 0.23 0.25 
-7 

-6 

-5

-4 

-3 

-2 

-1

0

 

  

150 nm 
200 nm 
250 nm 
300 nm 
350 nm Im

ag
in

ar
y 

M
od

al
 In

de
x 

(x
10

-3
) 

Superstrate Grating Period (µm) 



 128

  

 
(a)     (b) 

 
(c)     (d) 

Figure 8-7  Power flow in a single surface grating (a) Transverse power flow over the length of 
the coupler (b) Transverse power flow near the initial grating interface.  (c)-(d) 3D view of 
transverse and normal power flow showing the power magnitude. 

 
Having analyzed properties for the superstrate grating, we then investigate the substrate 

grating properties.  Using the infinitely periodic, grating form of RCWA, diffraction into the 1st 

diffracted order in air is calculated for the following set of parameters:  a high index input half-

space is assigned the refractive index of the GaAs substrate (n = 3.24), a low index output half-

space is assigned that of air (n = 1), and the incident angle is assigned as the previously 

determined superstrate grating diffraction angle into the substrate (~20º).  In performing a full 

parameter scan of the 3 dimensional space of grating period (400 nm to 700 nm), grating depth 

(25 nm to 525 nm), and fill factor (0 to 1), for the grating under consideration, it is found that a 

fill factor of 30% produced the highest diffraction efficiency over a wide range of grating periods 

and depths.  The 2D contour plot of 1st order diffraction efficiency vs. grating depth and grating 

period at a fill factor of 30% is shown in Figure 8-8.  The diffraction efficiency is calculated to 
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be above 85% within relative a wide range (570-595 nm for the grating period and 250-270 nm 

for the grating depth).  Any grating period and grating depth within these ranges will produce 

nearly the maximum efficiency.   

 

 
 

Figure 8-8  Contour plot showing the effects of varying grating period and grating depth on the 
1st order Transmission efficiency for an infinite binary grating with an input refractive index, 
ninput = 3.24, an output refractive index, noutput = 1, a grating tooth refractive index of  
nridge = 3.24, a grating groove refractive index, ngroove = 1, an input angle, θinput = -19.83º, and a 
grating fill factor of 30%. 

 
However, to reduce the computational effort it is important for the ratio between the 

periodicities of the superstrate side and substrate side gratings to have a ratio of two small 

integers. This reduces the length of the unit cell, as well as the number of layers needed to 

represent that unit cell. For example, a substrate grating period of 582 nm (peak of the range) 

would result in a grating period ratio of Λsuperstrate/Λsubstrate = 110/291 and over 800 distinct layers 

within the unit cell with a length of just over 64 microns. However, by choosing a grating period 

integer ratio of 3/8, resulting in a substrate grating period of 586 2/3 nm, the 1st order diffraction 

efficiency remains above 85%, but the length of the longitudinal unit cell (1.76 µm) and the 
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number of distinct layers (23 layers) within the unit cell are both significantly reduced.  A more 

detailed discussion of the layer slicing necessary for modeling double grating structures in 

eigenmode expansion techniques can be found in Dong et. al [154]. 

 
 

Figure 8-9  Contour plot showing the effects of varying the half-height grating fill factor and 
grating tooth sidewall angle on the 1st order Transmission efficiency for an infinite binary 
grating with an input refractive index, ninput = 3.24, an output refractive index, noutput = 1, a 
grating tooth refractive index of nridge = 3.24, a grating groove refractive index, ngroove = 1, an 
input angle, θinput = -19.83º, a grating period of 586.66 nm, and a grating depth of 260 nm.  
Sloped sidewalls are approximated by an 8 level staircase profile.  White background regions 
with a fill factor less than 67% represent gratings with triangular teeth which were not 
considered. 

 
In Figure 8-9, we investigate the effect of the substrate grating profile by determining the 

1st order diffraction efficiency of an infinitely periodic substrate grating as a function of the half 

height fill factor vs. outer sidewall angle for a grating depth of 260 nm.  The tapered sidewall 

angle is approximated by an 8 level staircase profile.  Angles that are greater than 90º represent a 

sloped grating tooth sidewall.  Outside of the colored contour plot, the white background 

indicates grating tooth parameters that will produce a triangular shaped grating tooth and are not 

considered here.  A slightly tapered sidewall angle of 92º at a fill factor of 30% is calculated to 

G
ra

tin
g 

Fi
ll 

Fa
ct

or
 

Sidewall Angle (degrees)

θ h ff 

Λ



 131

have the best diffraction efficiency performance at nearly 86%, but as can be seen in Figure 8-9; 

in the neighborhood of a 25-30% fill factor there is a considerable amount of variation possible 

in the sidewall angle that maintains greater than 80% transmission efficiency. 

8.2.5 Full Dual Grating Coupler Model 

Building on the knowledge gained from investigating the superstrate and substrate 

grating properties, the performance of the full dual grating coupler device is then explored.   For 

this dual grating structure, the two gratings are separated by a substrate of multiple wavelength 

thickness.  In a real device this substrate is likely to be 100-500 µm in thickness, but to keep 

practical limits on the required amount of computation time we limited the size to about 10-20 

µm such that the utilized number of spatial harmonics will maintain convergence in the 

eigenvalue problems.  The superstrate and substrate gratings are then surrounded by air regions 

that are then adjacent to PML boundary layers.  In order to collect all of the downward diffracted 

energy from the initial waveguide/superstrate grating interface, the length of the substrate grating 

is extended from the longitudinal location of the waveguide/superstrate grating interface toward 

the input interface by an arbitrary length of 150 µm.  While this choice of length is more than 

enough to collect all of the scattered light for a substrate thickness of roughly 10 µm, for a 

realistic substrate of a few hundred microns a substrate grating extension of this length scale will 

be critical to collecting all of the scattered light.  This length choice depends upon the substrate 

thickness and the angle of diffraction in the substrate.  For the structure having simple binary 

superstrate and substrate gratings, the effect of grating separation on the model is initially tested.  

As can be seen in Figure 8-10(a), by changing the thickness of the substrate, relatively narrow 

resonances are produced, but by examining Figure 8-10(b), representing the reflection into the 



 132

input interface, as well as the reflection coefficients of all individual modes in the input half-

space, these resonances can be attributed to coupling into higher order super-modes of the 

overall device.  

  
(a)      (b) 

Figure 8-10 (a) Relationship between substrate thickness/grating separation and fractional 
substrate output coupling.  Resonances indicate coupling to higher order super-modes of the 
entire waveguide stack.  (b) Sum of the reflection into all individual modes at the computational 
window’s input interface. 

 
Given that a real device structure will have a slight amount of surface roughness and thickness 

variation over surface of the wafer; these resonances are most likely just an artifact of the 

model’s “perfect geometry”.  To avoid this higher order mode coupling, a substrate thickness is 

chosen, as shown by the dotted line in Figure 8-10(a), in a relatively flat region between super-

mode coupling resonances. 
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Figure 8-11  Substrate output power coupling vs. (a) the superstrate grating thickness and (b) the 
substrate grating thickness. 

 
Figures 8-11(a) and (b) show the effects that varying superstrate grating thickness and 

substrate grating thickness in a dual grating structure have on substrate output power coupling 

efficiency.  The narrow resonances in Figures 8-11(a) and (b) correspond to super-mode type 

resonances discussed earlier, while the broader resonances in Figure 8-11(a) correspond to 

increased coupling lengths (decreased modal leakage rates) that cause most of the energy to be 

guided beyond the 700 µm longitudinal window length. 
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Figure 8-12  Map showing the effects of varying the half-height grating fill factor and grating 
tooth sidewall angle on the substrate output power coupling for the dual grating coupler.  As in 
Figure 8-9, the white background regions with a fill factor less than 67% represent gratings with 
triangular teeth which were not considered. 

 
Figure 8-12 shows the effects on substrate output power coupling for varying the 

substrate grating’s half-height fill factor and outer side-wall angle.  As in the infinite grating 

model, the peak substrate power coupling efficiency, which in this case is close to 96%, occurs 

near a fill factor of 30% and has a slightly sloped sidewall angle of 92º.  As can be seen in Figure 

8-12, there is a channel in the vicinity of a 25-30% fill factor, where the substrate power 

coupling efficiency remains above 90% from a sidewall angle of 90º to just over 105º.  Both 

Figures 8-11 and 8-12 show that for the initial grating parameters determined in the previous 

section, a robust and tolerant output grating coupler having an output coupling efficiency around 

96% can be achieved.  As is the case with varying the grating period ratios, to perform sloped 

side-wall calculations for the dual grating device, stair-casing of the gratings increases the 
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number of layer interfaces, distinct eigenvalue problems, and scattering matrices required within 

a longitudinal unit cell.   

Figure 8-13 shows the normal and transverse Poynting vector components for a dual 

grating coupler having a superstrate grating period, fill factor, and thickness of 220 nm, 50%, 

and 250 nm respectively, as well as a substrate grating period, fill factor and thickness of 586.66 

nm, 30% and 260 nm respectively.  Within the 700 µm longitudinal power collection window, 

the substrate power coupling efficiency is nearly 96%, with just over 2% coupled from the 

superstrate side of the device (primarily at the initial interface of the superstrate grating), and just 

under 2% coupled into all modes of the input interface.  The substrate coupling efficiency can 

likely be improved upon even further by using a tapered transitional superstrate grating period 

similar to the approach used in Lalanne et. al [155].  Chirping the superstrate grating fill factor 

[150], depth, or period will also provide for the ability to shape the spatial distribution of output 

power, but will admittedly make the computational design process much more costly in time and 

memory requirements. 
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(a)     (b) 

 
(c)     (d) 

Figure 8-13  Power flow in a dual grating coupler with a superstrate grating having a  220 nm 
period, 250 nm depth, and 50% fill factor, and a substrate grating having a 586.67 nm period, a 
260 nm depth, and a 30% fill factor, which show the splitting of diffracted energy between the 
substrate region (96%) and superstrate region (~2%). (a) Transverse power flow over the entire 
computational window. (b) Transverse power flow near the initial superstrate grating interface.  
(c)-(d) 3D view of transverse and normal power flow showing the power magnitude. 

 
Figure 8-14(a) shows the near-field transverse Poynting vector component at 2 µm from 

the substrate grating surface and Figure 8-14(b) shows the angular spectrum of this Transverse 

Poynting vector component calculated using a discrete Fourier transform performed on our non-

uniformly spaced longitudinal sampling window.  As can be seen in this angular spectrum the 

vast majority of the light coupled from the device is located in a very narrow angular range 

around a diffraction angle of 34º.   
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(a)     (b) 

 

Figure 8-14 (a) Transverse power flow in air at 2 µm from the surface of the substrate grating. 
(b) Angular spectrum of the transverse power in air, and an inset showing the shape of the 
angular spectrum at ± 3º of its maximum value. 

 
Figure 8-15(a) shows this transverse Poynting vector component propagated through 100 

µm of air by performing an inverse discrete Fourier transform.  Figure 8-15(b) shows this same 

transverse Poynting vector component spatially filtered at ±3º around the peak 34º angular 

spectrum component, which clearly shows how energy can be concentrated in a particularly 

narrow angular range and whose spectral profile can be maintained over a long propagation 

distance. 

 
(a)     (b) 

Figure 8-15 (a) Transverse power flow in air at 100 µm from the surface of the substrate grating, 
calculated by propagating the angular spectrum using an Inverse Discrete Fourier Transform. (b)  
Transverse power flow in air at 100 µm from the surface of the substrate grating spatially filtered 
at ± 3º of the maximum angular spectrum component. 
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8.2.6 Spectral Response of the Dual Grating Coupler 

The spectral response of the dual grating coupler was modeled using the final geometry 

and varying the wavelength over a 100 nm range (01 nm sampling) as shown in Figure 8-16. 

 

 
Figure 8-16 (a) Broadband spectral response of the dual grating output coupler.  (b) Narrowband 
response around the design wavelength of 980 nm. 
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In a similar manner to the testing of the effect of variable substrate thickness in section 8.2.5, a 

number of resonances can be observed in the power output from the bottom of the structure as 

well as in the total reflected power.  By examining the individual reflection coefficients for each 

of the high order modes in the input waveguide, once again the phenomena of coupling to 

supermodes of the input waveguide.  And while this supermode coupling occurs at a more 

frequent interval for a variable wavelength with a fixed thickness, than for a variable thickness 

with a fixed wavelength, the effect is the same.  By ignoring the individual resonances, the 

presence of a 25 to 30 nm band over which the output coupling is over 90% shows the 

effectiveness of the dual grating structure for acting as a broadband output coupler. 

8.3 Dual Grating Coupler Conclusions 

 
By rigorously modeling, both separately and together, the waveguide and two gratings 

contained in a dual grating device, a novel all-dielectric unidirectional output grating coupler was 

designed.   The all-dielectric dual grating coupler is robust in that it does not depend on any type 

of resonance or any type of phase matching between the two gratings and is also tolerant to 

potential variations in numerous grating parameters.  The device eliminates the need for any 

additional material deposition post-etching and fits neatly within the recently developed 

framework of dual sided wafer processing.   
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CHAPTER 9 CONCLUSIONS AND FUTURE PERSPECTIVES 

This research study aimed to investigate the integration of disparate optical components, 

namely waveguides and gratings, in individual device structures that provide enhanced 

functionality due to integration.  To accomplish this task, a combination of numerical methods 

for rigorously solving Maxwell’s equations on wavelength and subwavelength scales and 

analytical methods for interpreting data and understanding the underlying physical processes 

were used in driving the design process. Despite the numerical and computationally intensive 

means of building the necessary tools and performing the various device studies, the end goal of 

the process always remains an increased understanding of the relevant device physics; the 

capabilities and the limitations of tightly integrated bulk waveguides and periodic structures.   

 The numerical tools utilized in performing the physical device studies included both the 

transcendental equations governing the properties of eigenmodes in multilayer slab waveguides 

and one-dimensional periodic lamellar gratings, as well as the Rigorous Coupled Wave Analysis 

(RCWA)/Fourier harmonic modal method for 1D, 2D, and 3D periodic optical structures. The 

later modal method (RCWA) was combined with two separate, numerically stable, mode-

matching/energy-propagation techniques, the enhanced transmittance matrix (T-Matrix) 

technique and the scattering matrix (S-Matrix) technique, in order to create a rigorous, efficient, 

and flexible computational tool for modeling a variety of discrete or continuous, symmetric or 

asymmetric, periodic or aperiodic, wavelength scale integrated optical devices.  In this work’s 

main body, as well as the attached appendices, a thorough description of the various components 

of these mathematical techniques has been provided along with a description of how these 

components were built into a single computational modeling tool capable of efficiently handling 

a wide variety of cases. 
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 These numerical tools were applied in the modeling of a multilayer, multimode, 

waveguide grating, guided mode resonance (GMR) filter.  Initially, the real-valued dispersion 

properties of the multilayer, multimode GMR filter was modeled by coupling an effective 

medium representation of a lamellar grating etched into the top layer of a multilayer structure 

with the transcendental modal equation representation of the multilayer slab waveguide.  By 

holding the parameters of the grating layer constant, it was shown that the resonant responses of 

multiple spectral resonances can be controlled from a coarse to a fine separation by only 

controlling the thicknesses of a two-material multilayer slab waveguide.  Then by utilizing the 

RCWA/S-Matrix representation of the multilayer, multimode GMR filter, the complex-valued 

modal dispersion bands were used for studying the angular acceptance bandwidth of multiple 

spectral resonances.  By simultaneously engineering multiple dispersion band edges, through the 

variation of multiple material layers, a multilayer, multimode GMR filter was designed that had 

broadened angular acceptance for multiple wavelengths and whose angular resonances were 

centered at the same angle of incidence.  The use of a multi-wavelength guided mode resonant 

reflection filter with broadened angular acceptance at a single incident angle could be especially 

useful at oblique incidence since the reflected beams would be spatially separated from the input 

beams but would not require additional optics for re-collimating the two beams upon reflection.  

This collimation of would allow for interference effects for the two wavelengths to be easily 

observed in a sensing environment, to maintain multiwavelength mode locking as a mirror in a 

multiwavelength laser cavity, or to act as a compact multiple wavelength add/drop filter in a 

communications environment. 

 The properties of reflection and transmission responses in guided mode resonance filters 

were then studied in the presence of a linear loss or a linear gain in the multilayer structure’s 
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main guiding layer.  By varying the linear loss for set structural parameters, an enhanced 

resonant absorption was shown to occur at the design wavelength for a non-zero value for the 

layer’s complex refractive index, but a large loss value was shown to eliminate the resonance 

altogether with most of the previous resonantly reflected energy being transmitted.  Adding a 

lossy material to a guided mode resonant filter would potentially be useful as a current producing 

spectral sensor.  By varying the gain coefficient of the guiding layer’s complex refractive index, 

significantly increased amplitudes for both the resonant reflection and resonant transmission 

were shown to occur at the design wavelength, with a significantly narrowed bandwidth in both 

cases.  The broadband reflection and transmission baselines were increased with increasing gain 

values as well.  Adding gain to a guided mode resonant filter could potentially be useful as an 

integrated mirror/resonator/amplifier for either a vertical cavity laser or as a means for altering 

an incident free space optical beam in an optical pumping regime. 

 The idea of incorporating a low-index horizontal and transverse periodicity in a vertical 

slab waveguide was studied for the possibility of its use as an integrated resonant reflection filter 

for an input guided mode.  In applying two-dimensional modeling, with an effective index 

approximation utilized for the vertical direction, the possibility of a low-index periodic inclusion 

looked promising.  By incorporating both a diffractive grating that produced symmetric ±1st 

order diffraction in the high index region, as well as subwavelength anti-reflective gratings 

producing only 0th order diffraction, two-dimensional models produce a narrowband resonant 

reflection response with a nearly 100% contrast between in band and out of band reflection.  But 

the results obtained for the application of three-dimensional RCWA modeling suggest that a low-

index periodic inclusion in a high index waveguide produces only a lossy resonator cavity where 

energy is diffracted vertically out of the input waveguide mode.  A final answer to the question 
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of whether low-index transverse periodic inclusions could produce a narrowband guided mode 

resonant reflection filter was not definitively solved and remains an open problem. 

 A combination of multilayer waveguide modal modeling, analytical application of the 

grating equation, infinite transverse grating RCWA modeling, and transversely finite RCWA 

modeling for integrated optics was utilized in the study and design of an all-dielectric 

unidirectional grating output coupler.  By analyzing both gratings individually and together as a 

single device, a robust output coupler was designed that depends neither on phase matching of 

the gratings nor any resonances in the structure, and the device was shown to be very tolerant to 

potential fabrication errors in numerous grating parameters.   

 For the specific devices studied in this dissertation, areas for further study could still be 

made in each case.   For the multilayered, multimode GMR filters, finding a rigorous means of 

modeling these structures having a finite-spatial size would help to determine the effect that a 

finite size has on each individual mode and the overall device operation.  Also, the idea of a 

multilayered, multimode GMR filter can be extended to two-dimensional gratings, which would 

help in the design of a polarization independent, multi-wavelength GMR filter with broadened 

angular acceptance at a single obliquely incident angle.  For the study of the effects of gain or 

loss on a GMR filter, the integration of more complex and accurate material models for the gain 

or loss would show how a resonant mode interacts with a real material.  For the embedded 

waveguide resonant grating filter, the use of more powerful computational hardware, or possibly 

more tightly written code for present hardware, will allow for the rigorous and accurate modeling 

of three-dimensional without the memory limitation problems and long computation times that 

plagued the current study.  If a design for an embedded waveguide grating resonant filter for an 

input guided mode can be designed, then that would provide a compact means of spatially and 
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spectrally filtering a guided mode and would also be more easily fabricated than transversely 

periodic higher index inclusions.  For the dual grating output coupler, more powerful 

computational systems will allow for the solution of eigenmode problems for larger waveguides 

that more closely match the size of real devices.  More powerful models will also allow for slight 

random variations that appear in real materials while maintaining overall periodicity, and 

possibly allow for more complex spatial relationships between the two gratings (such as a tilting 

of the bottom grating) and the rigorous modeling of a full three dimensional waveguide dual 

grating output coupler.   

 Moving forward the methods utilized in this study can evolve in a number of manners.  

First, through the use of more powerful computational hardware and smarter serial and parallel 

algorithms, the device sizes and complexity of the optical structures that can be numerically 

studied and designed will increase.  This will allow for more components of differing discrete 

and continuous geometries to be studied in an integrated fashion, and will allow for design of 

entire integrated optics systems in a rigorous manner.  Second, the linear optical models utilized 

here will be enhanced to include the ability to solve for various non-linear optical phenomena 

[156, 157] as well as being coupled to various electrical [158], thermal, mechanical, and material 

models that will provide true multi-physics modeling capabilities on multiple spatial scales.  All 

of which will provide the ability to gain a more comprehensive view of how these devices 

operate and allow for rapid virtual prototyping of these integrated optical structures. 
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APPENDIX A.  ELECTROMAGNETIC PRELIMINARIES 
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Any description of the interaction between electromagnetic fields and any material 

medium should always begin with the beautifully defined Maxwell’s Equations of 

electromagnetism. A similar derivation to that contained in this section can be found in any good 

textbook on electrodynamics [38, 54, 159, 160]. 

A.1 Deriving the Linear Time-Harmonic Maxwell’s Equations 

 
The differential form of Maxwell’s Equations can be stated as follows: 
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∂  is the partial derivative operator with respect to time, ( )zyx ∂∂∂∂∂∂=∇ ,,  is the 

spatial partial derivative operator, ,E
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 and ρ are the electric field strength (volts/meter), 

magnetic field strength (amperes/meter), magnetic flux density (webers/meter2), electric 

displacement (coulombs/meter2), and electric charge density (coulombs/meter3).   

   
Figure A-1  (a) A sketch showing the relationship between a vector area element on a surface 
and the direction of traversal on a contour of that surface. (b)  A sketch showing a volume 
bounded by a closed surface and the orientation of a vector area directed outward from that 
surface. 
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 Upon integration of equation (A.1.1) over a surface, S, that is bounded by a contour, C, as 

shown in Figure A-1 and making use of Stokes’ theorem and the divergence theorem from vector 

analysis, Maxwell’s Equations may be placed in their integral form.  Stokes’ theorem states that 

for any piecewise smooth orientable surface, S, bounded by a closed, piecewise smooth curve, C, 

having positive orientation, performing a contour integral of the component of a continuous 

vector field having a continuous first partial derivative and is tangential to that contour is 

equivalent to performing a surface integral of the component of the curl of that vector field 

normal to the surface.   

( ) ( ) ( )( ) ( )dSrntrFdlrTtrF
C S

rrrrrr ˆ,ˆ, ⋅×∇=⋅∫ ∫∫  (Stokes’ Theorem) (A.1.5) 
 

In Equation (A.1.5), ( )trF ,r
v

 is a vector field defined for a spatial position vector rr  and time t, 

( )rT rˆ  is the unit tangent vector along contour C, and ( )rn rˆ  is the unit normal vector across surface 

S. 

 The divergence theorem states that for any solid of volume V having an outwardly 

oriented surface S, performing a surface integration over S of a vector field that has continuous 

first partial derivatives in an open set containing V is equivalent to performing a volume 

integration over V of the divergence of that vector field. 

( ) ( ) ( )( )dVtrFdSrntrF
VS ∫∫∫∫∫ ⋅∇=⋅ ,ˆ, rrrrr  (Divergence Theorem) (A.1.6) 

 
Applying Stokes’ Theorem to Equations (A.1.1) and (A.1.2) and applying the divergence 

theorem to Equations (A.1.3) and (A.1.4) leads to Maxwell’s Equations in their integral form. 
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( )∫∫ =⋅
S

sdtrB 0, vrr  (A.1.9) 

( )∫∫ ∫=⋅
S V

dVsdtrD ρvrr ,  (A.1.10)

( )∫∫ ∫−=⋅
S V

dV
dt
dsdtrJ ρrrr ,  (A.1.11)

 
For passive dielectric waveguides and gratings, source and current free regions are 

generally considered such that ρ = 0 and J
r

= 0.  Given that the fields to be considered in this 

study are generally of a time-harmonic nature, a generic vector field, ( )trF ,r
v

 can be expressed as 

( ) )exp(),( tjrFtrF ω−=
rrrr

 (A.1.12)
 

The electric displacement and the magnetic flux density are the result of the interaction 

between the material medium and the electric and magnetic fields respectively.  B
r

 and D
r

 are 

related to H
r

and E
r

 through the following constitutive relationships: 

MHB
rrr

+= 0µ  (A.1.13)

PED
rrr

+= 0ε  (A.1.14)
 

where 0ε  is the permittivity of free space, 0µ  is the permeability of free space, and M
r

 and P
r

 

are the magnetic and electric polarizations induced in the medium by the fields.  For linear 

media, the magnetic and electric polarizations can be expressed in terms of ,H
r

,E
r

 and the 

magnetic and electric susceptibility tensors, mχ  and eχ  as follows: 

[ ]HM m

rr
χµ0=  (A.1.15)

[ ]EP e

rr
χε 0=  (A.1.16)

 
By inserting equations (A.1.7) and (A.1.8) into (A.1.9) and (A.1.10) respectively, the constitutive 

relationships can be expressed in terms of the magnetic permeability and electric permittivity 

tensors within the media as follows: 
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[ ]( ) [ ]HHB m

rrr
µµχµ 00 1 =+=  (A.1.17)

[ ]( ) [ ]EED e

rrr
εεχε 00 1 =+= . (A.1.18)

 
Consequently, the time-harmonic, source and current free version of Maxwell’s equations can be 

expressed as 

[ ]HjE
rr

µωµ0=×∇  (A.1.19)

[ ]EjH
rr

εωε 0−=×∇  (A.1.20)

0=⋅∇ B
r

 (A.1.21)
0=⋅∇ D

r
 (A.1.22)

 

A.2 Boundary Conditions Between Two Media 

The versions of Maxwell’s equations presented in section 2.1.1 are valid for any 

continuous medium, but at the surface between two dissimilar media, the permittivity, 

permeability, and conductivity of each medium may change abruptly from one medium to the 

other.  In order to maintain a solution to the equations from one media to the next, boundary 

conditions must be imposed on the field vectors at the interface. To derive these boundary 

conditions, we consider a curved surface, S,  separating medium 1, having constitutive 

parameters 1ε , 1µ  and medium 2, having constitutive parameters 2ε , 2µ , whose surface normal, 

n̂ , is positive in medium 1, as shown in Figure A-2. 
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Figure A-2  An interface surface, S, located between two separate electromagnetic media with a 
surface normal, n̂ , and a pillbox used in determining the boundary conditions for the electric 
displacement and magnetic flux density. 

 
A small circular cylindrical pillbox of height ∆h is bisected by surface S.  To determine the 

boundary condition on the magnetic flux density vector, a surface integral of B
r

 is performed 

over the surface of the pillbox.  For a cylinder having a small cross-sectional area, ∆s, 1B
r

 and 2B
r

 

may be considered to be constant over each respective circular end.  As the height approaches 

zero, ∆h → 0, the location of the circular ends of the cylinder approach surface S and the 

magnitudes of 1B
r

 and 2B
r

 over the cylinder’s curved surface on either side of S become 

negligible.  Using Equation (A.1.9), the following condition on the normal component of the 

magnetic flux density at an interface can be expressed as  

( ) 0ˆ12 =⋅− nBB
rr

 (A.2.1) 
 

Equation (A.2.1) shows that the normal component of the magnetic flux density is continuous 

across a surface boundary.  By performing a similar surface integration involving the electric 

displacements, 1D
r

 and 2D
r

, the use of Equation (A.1.10) produces the following expression 

describing the boundary condition on the normal component of the electric displacement. 

( ) shnDD h ρρ =∆=⋅−
→∆ 0

limˆ12

rr
 (A.2.2) 

 

n̂

11 , µε

22 , µε

∆h

S
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Equation (A.2.2) shows that there is a discontinuity in the electric displacement at an interface 

between two media that is equal to the amount of electric charge located on that surface.  In a 

source free environment, no surface charge is present; consequently the normal component of the 

electric displacement is continuous at the boundary between two media. 

To find the boundary conditions for tangential field components, a rectangular loop of 

area, ∆A, having a length, ∆l, and a height ∆h is bisected by surface S as shown in Figure A-3. 

 

 

Figure A-3  A sketch of an interface between two media and a rectangular loop used for 
determining the boundary conditions of tangential field components. 

 
As the height of the rectangular loop approaches zeros, ∆h → 0, the surface integrals on the right 

hand side of Equations (A.1.7) approaches a value of zero.  Upon taking the difference between 

expressions for 1E
r

 and 2E
r

 involving the left hand side of Equation (A.1.7), the boundary 

conditions on the tangential electric field component can be expressed in the following manner: 

( ) 0ˆ
12 =⋅− tEE
rr

 (A.2.3) 
 
Expressions for tangential boundary conditions may also be derived by taking the vector cross 

product of the unit normal vector, ,n̂  with the right hand sides of Equations (A.1.7) and (A.1.8) 

as the loop height, ∆h → 0.   

( ) 0ˆ 12 =−× EEn
rr

 (A.2.4) 

( ) surfaceJhJhHHn
rrrr

=∆→∆=−× 0
limˆ 12  (A.2.5) 

∆A 

∆l
∆h

n̂  

t̂  
Surface S 

Medium 1

Medium 2
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Equation (A.2.5) shows that the tangential magnetic field is discontinuous by an amount equal to 

the surface current density at the interface of the two media.  In the case where no current is 

present, the tangential magnetic field is continuous at the boundary. 

A.3 Conservation of Energy and the Poynting Theorem 

 By taking the dot product of Equation (A.1.1) with H
r

 and the dot product of Equation 

(A.1.2) with E
r

− , as well as making use of the following vector identity: 

( ) ( ) ( )BAABBA
vrrvrr

×∇⋅−×∇⋅=×⋅∇  (A.3.1) 
 
the following expression relating ,E

r
,H
r

,B
r

 and D
r

 can be obtained: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )trJtrEtrHtrE
t

trBtrH
t

trDtrE ,,,,,,,, rrrvrrrr
rr

rrrr
rr

⋅−×⋅−∇=
∂

∂
⋅+

∂
∂

⋅  (A.3.2) 

 
If the right hand side of Equation (A.3.2) can be assumed to be a time varying quantity of a 

scalar function ( )trW ,r , then Equation (A.3.2) may be expressed as 

( ) ( ) ( ) ( ) ( )
t

trW
t

trBtrH
t

trDtrE
∂

∂
=

∂
∂

⋅+
∂

∂
⋅

,,,,,
rrr

rrrr
rr  (A.3.3) 

 
which may also be written as 

( )
⋅−∇=

∂
∂

t
trW ,r

P ( )tr ,r ( )trQ ,r−  (A.3.4) 

 
where 

P ( ) ( ) ( )trHtrEtr ,,, rrrrr
×=  

P ( ) ( ) ( )( ) ( ) ( )( ) ( )[ ]tjetrHtrEtrHtrEtr ω2* ,,Re
2
1,,Re

2
1, −×+×=

rrrrrrrrr
 

(A.3.5) 

 

is the instantaneous Poynting vector and complex Poynting vector with units of watts/m2 and 

( )trQ ,r  represents the energy dissipated in a medium per unit volume per second.  The Poynting 
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vector is a measure of the amount of power in a unit area whose surface normal is perpendicular 

to both the electric and magnetic fields.  Equation (A.3.4) represents a form of conservation of 

energy and is known as the differential form of Poynting’s Theorem.   

A.4 Lorentz Reciprocity Theorem 

 The concept of reciprocity in electromagnetism refers to the idea that for time harmonic 

fields, the system response to a source is unchanged if the position of the source and the receiver 

are interchanged [161].  In the context of dielectric waveguides and gratings, the concept of 

reciprocity is useful for establishing orthogonality of the system’s eigenmodes.  Here we follow 

the derivations as given by Kong [38] and Bienstman [54].  Establishing the concept of 

reciprocity involves the consideration of the electric and magnetic fields established by two 

sources.  In terms of Maxwell’s equations in a single linear isotropic media, the relationships 

between the first source 1J
r

 and its corresponding fields 1E
v

 and 1H
r

, and the second source 2J
r

 

and its corresponding fields 2E
v

 and 2H
r

 can be expressed as follows: 

11 HjE
rr

ωµ−=×∇  (A.4.1) 

111 JEjH
rvr

+=×∇ ωε  (A.4.2) 

22 HjE
rr

ωµ−=×∇  (A.4.3) 

222 JEjH
rvr

+=×∇ ωε  (A.4.4) 
 

Expressions involving the curl of the electric or magnetic fields due to one source are then 

multiplied by the magnetic or electric fields corresponding to the other source as follows: 

( ) 1212 HHjEH
rrrv

ωµ−=×∇⋅  (A.4.5) 
( ) 121212 JEEEjHE

rrvrrr
+=×∇⋅ ωε  (A.4.6) 

( ) 2121 HHjEH
rrrr

ωµ−=×∇⋅  (A.4.7) 
( ) 212121 JEEEjHE

rvvvrr
+=×∇⋅ ωε  (A.4.8) 
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Then by combining these equations as, (A.4.5) – (A.4.7) + (A.4.6) – (A.4.8), and making use of 

the vector identity in (A.3.1), we obtain the following expression: 

( ) 12211221 EJEJHEHE
rrrrrrvv

⋅−⋅=×−×⋅∇  (A.4.9) 
 

Lorentz’s reciprocity theorem is then obtained by integrating both sides over a volume V with a 

surface S containing both of the sources and then making use of the divergence theorem (A.1.6) 

on the left hand side of the expression to obtain: 

( ) ( )∫∫∫∫∫ ⋅⋅−⋅=⋅×−×
VS

dVEJEJdSHEHE 12211221

rrrrrrvv
 (A.4.10) 

 

 
 

Figure A-4  A z-invariant cylinder with two end faces and three total surfaces used in 
establishing Lorentz’s reciprocity theorem. 

 
 For cylindrical and planar z-invariant wave guiding media, we again follow the 

derivation of Bienstman [54], and define the volume to be a cylinder whose axis is in the z-

direction.  The surface of the cylinder is then composed of three surfaces: the curved surface of 

the cylinder and the two flat ends of the cylinder.  This allows the surface integral on the right 

hand side of (A.1.40) to be divided into three separate surface integrals, one for each surface.  

The integral for the curved surface involves the use of boundary conditions that are often of the 

Dirichlet  type (the field equals zero) for open structures whose fields decay at infinity, or of the 

Dirichlet or Neumann type (where the field or its derivative is zero) for structures having perfect 
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electric or magnetic conducting walls.  For perfectly conducting spatially periodic media, a 

derivation of the Lorentz reciprocity theorem can be found in Petit et al [37].  Defining the 

expression: 

1221 HEHEF
rrvvr

×−×=  (A.4.11) 
 

an integral involving the two ends of the cylinder may be expressed as follows: 

( )∫∫∫∫ ∫∫
∫∫ ∫∫ ∫∫ ∫∫

−=⋅+⋅

+−=⋅+⋅

∆+
11 2

1 2 1 2

21

21

S zzzS S

S S S S zz

dSFFdSFdSF

dSFdSFdSFdSF
rr

rr

 (A.4.12) 

 
The fields on the right hand side of (A.4.11) contained within volume V are independent of z as 

∆z approaches zero.  Consequently, the volume integral of (A.4.11) can be expressed as a surface 

integral multiplied by ∆z: 

( ) ( )∫∫∫∫∫ ⋅⋅−⋅∆=⋅⋅−⋅
SV

dSEJEJzdVEJEJ 12211221

rrrrrrrr
 (A.4.13) 

 
The Lorentz reciprocity theorem for longitudinally invariant media can then be obtained by 

equating the left hand sides of (A.4.12) and (A.4.13), dividing by ∆z and then taking the limit as 

∆z approaches zero: 

( ) ( ) dSEJEJdSuHEHE
z SzS

⋅⋅−⋅=⋅×−×
∂
∂

∫∫∫∫ 12211221 ˆ
rrrrrrvv

 (A.4.14) 

 

This theorem will be useful in the next section for establishing the orthogonality of 

electromagnetic eigenmodes. 
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APPENDIX B.  SPATIAL HARMONIC GRIDS IN 1D, 2D AND 3D 
SYSTEMS 
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 In numerical spectral methods, continuous and discrete quantities are approximated 

through the use of series expansions of orthogonal basis functions by retaining a finite number of 

terms [162].  Each term in the resulting series has an initially unknown coefficient whose value 

is determined by both the value of the function over the computational window and the boundary 

conditions of that window.  Regardless of the dimensionality of the problem, the nature of matrix 

computation requires that the relationship between the two quantities on each side of the 

equation be expressed as a matrix relation between two one-dimensional arrays.  For one-

dimensional problems, an initial series expansion is itself one-dimensional, and by relating every 

term in the first one-dimensional array to every term in the second one-dimensional array, the 

resulting expression fits naturally into the requirements for matrix computation.   
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(a)      (b) 

Figure B-1 (a) A one-dimensional spatial harmonic grid used in modeling a one-dimensional 
periodicity. (b) The associated initial 0th-order harmonic indexing for the one dimensional grid. 

 
Figure B-1 shows an example of a discrete harmonic grid that can be used in a one-dimensional 

series expansion, as well as an initial 0th harmonic ordering of the series terms that becomes very 

convenient for information handling purposes. 
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In two-dimensional and three-dimensional spectral method models [24], the series 

expansions themselves are second rank and third rank tensors respectively.  In order to create 

series relations that may be conveniently modeled using digital computation methods, these 

second rank and third rank tensors must be transformed into effective one-dimensional arrays.  

Relating every element in two of these effective one-dimensional arrays creates the necessary 

coupling matrix for solving the modal problem of interest. Figure B.2 shows a square two-

dimensional and a cubic three-dimensional grid, as well as tables showing the corresponding 

harmonic ordering based on the spectral distance of grid points from the origin. 



 159

    

(a)      (b) 
 

 
(c)      (d) 

 

Figure B-2  (a) A square grid of Fourier harmonics for a two-dimensionally periodic system.   (b) 
The associated initial 0th-order harmonic indexing based on both distance from the origin and 
pairing of orders for symmetry operations. (c) A cubic grid of Fourier harmonics for a three-
dimensionally periodic system. (d) The associated initial 0th-order harmonic indexing based on 
both distance from the origin and pairing of orders for symmetry operations. 
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The spatial harmonic expansions in two or three dimensions allows for a wide range of flexibility 

in how those series can be truncated.  Equation B.1 provides one example of truncating a two-

dimensional grid of harmonics within the bounds of conic sections in a two-dimensional plane.   
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 (B.1) 

 

By performing these non-rectangular grid truncations, the spatial harmonics can be retained that 

are most likely to produce rapid modal convergence and most likely to contribute to energy 

propagation in mode matching problems.  Figure B.3 shows the truncation of a 101x101 square 

grid of harmonics when the conic section power factor is 0.25, 0.5, 0.75, and 1.0 respectively.   



 161

 

 
(a)     (b) 

 
(c)     (d) 

 

Figure B-3  Truncated spatial harmonic grids for two periodic dimensions with truncation bow 
parameters equal to (a) 0.25 (b) 0.5 (c) 0.75 (d) 1.0. 
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APPENDIX C.  DETERMINING THE FOURIER COUPLING 
COEFFICIENTS IN 1D, 2D, AND 3D 
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 In solving the modal problem for periodic optical structures using Fourier series 

expansions, the most critical aspects of the method for determining numerically accurate and 

physically consistent solutions are the means of representing the coupling coefficients between 

spatial harmonics of the electric and magnetic fields [24-28, 31, 39, 163, 164].  To determine 

these coupling coefficients requires use of Fourier series expansions of the spatial distribution of 

materials (permittivity and permeability), as well as the creation of a coupling matrix used for 

performing a discrete convolution between the field spatial harmonic expansions and the material 

spatial harmonic expansions. 

In its original form [12], the RCWA made use of a single method, the “Laurent Rule”, for 

performing the analytical Fourier transforms, series expansions, and discrete convolutions 

necessary to obtain a system’s coupling coefficients regardless of a problem’s input polarization 

or material properties.  In certain situations, most notably metallic gratings in TM polarization, 

the RCWA was shown to have poor numerical convergence as a function of the number of 

spatial harmonics retained in the model.  Based on an empirical numerical study performed by 

Lalanne and Morris [26], and later put on more firm mathematical footing by Li [163], the poor 

numerical convergence for metallic gratings in TM polarization was attributed to the use of an 

improper method of performing discrete convolutions between two Fourier series representing 

functions that share collocated jump discontinuities but whose product is to be a continuous 

function.  Li established a set of three rules describing various means of handling the 

multiplication of series expansions when one or both of the series expansions possess collocated 

jump discontinuities, and showed that when a proper method, the so called “inverse-rule,” is 

utilized in proper circumstances for performing these Fourier series expansions and discrete 

convolutions, the convergence problem associated with metallic gratings in TM polarization can 
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be eliminated.  The method of applying the “inverse-rule” has come to be known as the Fast 

Fourier Factorization (FFF) method, and has now been applied to not only Fourier series 

methods, but also other orthogonal function expansion methods as well [165, 166].  To find a full 

mathematical justification of the “inverse-rule” and Fast Fourier Factorization the reader is 

directed to the works by Li [27-31, 61, 163], and Popov et. al [167-169].  This appendix aims to 

show how to implement both the original expansions method in 1D, 2D, and 3D periodic 

systems, as well as a version of the Fast Fourier Factorization method in 1D and 2D periodic 

systems.  While they have been implemented, it should be noted that Fast Fourier Factorization 

methods in 2D and 3D systems do not possess the property of mathematical uniqueness. 

C.1 One-dimensional coupling coefficients 

 For a one dimensional binary grating, such as the one shown in Figure C.1, the function 

representing the permittivity distribution in the grating layer is a piecewise continuous periodic 

function with jump discontinuities at the grating ridge/groove interfaces.  Two components of the 

electric and magnetic fields (Ez, Ey, Hz, Hy) are tangential to the grating ridge/groove interfaces, 

and one component of each field (Ex, Hx) is normal to these interfaces.   

 
Figure C-1 A sketch showing the high and low index permittivity/permeability distributions for a 
one-dimensionally periodic structure and the electric and magnetic field components in relation 
to that periodicity. 

Λ 

d

Ex,Hx Ey,Hy 

Ez,Hz 
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The tangential components of these fields (Ez, Ey, Hz, Hy)  are continuous across the grating 

ridge/groove interfaces.  Consequently, the product of the continuous function for the field and a 

discontinuous function for the material allows for the use of the standard “Laurent-rule” for 

performing the necessary discrete convolution.  The normal components of the fields (Ex, Hx) are 

discontinuous across the boundary, but the product of these normal fields with the material 

property functions (εx,µx) lead to continuous quantities for the electric displacement (Dx) and 

magnetic flux density (Bx).  Consequently, the “inverse-rule” of Fast Fourier Factorization is 

applicable in these cases. 

C.1.1 Constructing 1D Coupling Coefficients for the Laurent Rule 

 The Fourier series expansion for the permittivity components in directions perpendicular 

to the grating vector can be expressed generically as follows: 

( ) ( ) ∑
+

−

Λ
+

==
p

p

pxj

pzy eAxx
π

εε
2

 (C.1.1) 

 
For a grating composed of M separate permittivity regions the coefficients of this series can be 

expressed as follows: 

∑ ∫
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where ( ) fpf
xx

pjA mleftmrightx
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2
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= mleftmright xx
f ,, , εL is the 

background permittivity, εm is the permittivity of the mth region, and ( ) ( )
x

xx
π

πsinsinc = . 

 The coupling coefficient matrix used in the discrete convolution mutually couples all 

harmonics used in the spatial harmonic expansions of the electric and magnetic fields.  This 

coupling coefficient matrix takes on the following form: 
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where the subscripts denote the difference between two spatial harmonics, .

2121

,
, pp
zy
pp AC −=   The 

matrix in Equation (C.1.5) is a Toeplitz matrix that has been permuted into a form convenient for 

the diffraction and wave propagation problems utilized in the RCWA.   In determining the 
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elements of this coupling coefficient matrix, only the terms in the Fourier series expansion of the 

permittivity from -2p to +2p need to be initially stored in memory, and the coupling coefficient 

matrix can be filled from these values.  Application of this matrix for the coupling coefficients 

between two separate Fourier series expansions is an implementation of the “Laurent-rule.” 

C.1.2 Constructing 1D Coupling Coefficients for the Inverse Rule 

 The Fourier series expansion for the permittivity components in directions parallel to the 

grating vector is determined by means of an impermittivity expansion: 
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For a grating composed of M separate permittivity regions the coefficients of this series can be 

expressed as follows: 
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As with the tangential component coupling coefficient matrices, the normal component coupling 

coefficient matrix used in the discrete convolution mutually couples all spatial harmonics used in 

the series expansions of the electric and magnetic fields, but in this case the impermittivity was 
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modeled as a Fourier series expansion.  Using the impermittitvity series expansion to model the 

permittivity coupling coefficient matrix involves the following matrix inverse: 
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In this case, the use of a matrix inversion means that all elements in the resulting coupling 

coefficient matrix depend upon all terms used in the spatial harmonic series expansion of the 

impermittivity function.  Consequently, the terms in the impermittivity series expansion from -2p 

to +2p must be initially stored in memory and used to fill the matrix whose inverse determines 

the coupling coefficients.  Use of the matrix in Equation (C.1.11) as the coupling coefficients 

between two Fourier series expansions is an implementation of the “inverse-rule.” 

C.2 Two-Dimensional Coupling Coefficients 

 In attempting to determine the coupling coefficients associated with structures that are 

periodic in two transverse spatial dimensions, there is an ambiguous definition of what 

constitutes the global normal and tangential components of a the field within a unit cell.  For the 

field in a direction normal to both of the grating vectors, the definition is not ambiguous and the 

electric and magnetic field components are continuous across the grating groove/ridge interfaces.  

Consequently, the multiplication of the continuous field functions with the discontinuous 

material functions allows for safe use of the Laurent rule for the discrete convolution.  For the 

field components in the plane of the two grating vectors, the fields can be normal to the grating’s 

ridge/groove interfaces in some regions within the unit cell, tangential to those interfaces in other 

regions, and devoid of either classification in other separate regions within the unit cells.  The 

fact that the material distributions can take on both elliptical and polygonal transverse shapes 

adds to the ambiguity in trying to assign a global label to a field’s transverse or normal properties 

over the entire unit cell.  Consequently, application of the inverse rule is not a straightforward 

approach as it was in one-dimensional periodic systems, and does not actually possess the 

properties of mathematical uniqueness.  In the first two sub-sections, coupling coefficient 
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expansions for two dimensionally periodic structures possessing square and elliptical geometries 

will be described.  In the third subsection, a method of determining the transverse component 

coupling coefficient matrices for rectangular features that makes partial use of the inverse rule 

will be described. 

C.2.1 Constructing 2D Coupling Coefficients for Rectangular Features Using the Laurent Rule 

 While the nature of a transverse two-dimensional periodic structure is in no way limited 

to having its directions of periodicity along the axes of a regular Cartesian coordinate system, for 

simplicity this derivation will only consider orthogonal grating vectors.  For a thorough 

explanation of performing Fourier series expansions on two-dimensional skew-periodic lattices, 

the reader is referred to the excellent text by Papoulis [170].  A simple schematic diagram in 

Figure C.2 shows the relationships between the normal field component direction and unit cell 

ridge/groove interfaces for doubly periodic structures with rectangular features. 

      
(a)      (b) 

 

Figure C-2  (a) A sketch showing the permittivity distribution within a unit cell for a simple, 
binary, two-dimensional grating, as well as the electric field perpendicular to the plane of 
periodicities.  (b) A similar sketch for a unit cell with multiple high index features. 
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A simple Fourier series expansion of a two-dimensional periodic structure with orthogonal 

periodic directions can be expressed as follows: 
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where Λx and Λy are the periodicities in the x and y directions respectively.  Determination of the 

series expansion coefficients for a unit cell with M distinct permittivity regions can be expressed 

in the following manner: 
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where xA  and yA are one-dimensional arrays defined as follows: 
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εL is the background permittivity, εm is the permittivity of the mth region, and ( ) ( )
x

xx
π

πsinsinc = . 

The coupling coefficients matrix can then be directly filled using the following relationships: 
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In the classic method of performing the coupling coefficient expansion, the same method of 

creating the coupling matrix is used for every component of the permittivity/permeability tensor. 

C.2.2 Constructing 2D Coupling Coefficients for Elliptical  Features  Using  the  Laurent Rule 

 An analytical construction of the coupling coefficients for elliptically shaped features on 

an orthogonal or skew-periodic lattice requires the use of the Laurent expansion, as there is no 

unique method for classifying the normal and tangential components of the transverse fields over 

an entire unit cell, and the method presented in the next subsection only applies to parallelogram 

shaped features.  Once again, a simple Fourier series expansion of a two-dimensional periodic 

structure with orthogonal periodic directions can be expressed as follows: 
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where Λx and Λy are the periodicities in the x and y directions respectively.   

Determination of the series expansion coefficients for a unit cell with M distinct permittivity 

elliptical regions can be expressed in the following manner: 
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(a)     (b) 

 

Figure C-3  (a) Single unit cell of a two-dimensionally periodic system with a circular feature of 
radius a.  (b) A sketch of a two-dimensionally periodic system with circular features showing the 
lattice spacing in the x and y directions. 

For a circle of radius a centered at the origin, as shown in Figure B.3, the bounds on the y 

integral can be expressed as follows: 
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By making the substitution, θsinax = , can be expressed as a Hankel transform, whose solution 

is as follows: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Λ
+

Λ
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Λ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Λ

= ∑
=

center
y

center
xyx

m

M

m

m
mqp qypxjqpa

cellunitofarea
aA πππε 22exp2sombrero

___

22

1

2

,
 (C.2.10)

 

where the sombrero function is defined as ( ) ( )
x
xJx

π
π12sombrero =  and ( )xJ1  is the first order 

Bessel function of the first kind.  For an elliptical feature with one axis of length a along the x-

direction and another axis of length b along the y-direction, the elements of the coupling 

coefficient matrix can be expressed as follows: 
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C.2.3 Constructing 2D Coupling Coefficients for Rectangular Features Using the Inverse Rule 

 In attempting to make use of the inverse rule for a two dimensionally periodic structure 

with rectangular features, the methods utilized for determining the coupling coefficients are 

different for the transverse and longitudinal components.  For the longitudinal components that 

interact with the longitudinal fields (Ez and Hz), the method presented in subsection C.2.1 is 

utilized.  For the transverse components that interact with the transverse fields, a separate 

approach is taken.  In this approach, the grating unit cell is divided into Nx strips that are parallel 

to the direction of the x-direction field component as shown in Figure B.4. 

  
(a)      (b) 

Figure C-4  (a) Permittivity distribution for a two-dimensional simple binary unit cell with one 
rectangular feature, and the strips used for determining the coupling coefficient expansion for an 
electric field shown in the x-direction.  (b) A similar drawing for a unit cell with multiple 
features. 
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Within each strip, the strip is then divided into My sections in the orthogonal direction based on 

the number of material interfaces present.  An impermittivity expansion is then performed within 

each strip as follows: 
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Obtaining the permittivity coupling coefficients associated with the discontinuous material 

distribution that couples with a discontinuous field but produces a continuous electric 

displacement involves an inversion of the impermittivity coupling coefficient matrix in this 

direction. 
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The result of Equation (C.2.17) is the permittivity coupling coefficient matrix for each of the Nx 

strips in the unit cell.  To obtain the global permittivity coupling coefficient matrix, the 

individual strip coupling coefficients for the y-harmonics are utilized in a Fourier series 

expansion in the x-direction over all Nx strips. 

( ) ( ) ( )

( )
dxeCC

xnright

xnleft

x
x

x

x

x

x

xppj

x

N

n

ny
qq

y
qqpp ∫∑

−
Λ

−

=
→→→ Λ

=
,

,

12

121212

2

1

,
,

1
π

 (C.2.18) 

( ) ( ) ( ) ( )
x

x

x

x nx
pp

N

n

ny
qq

y
qqpp ACC ,

1

,
, 12121212 →

=
→→→ ∑=  (C.2.19) 

 
where xnxA , is a one-dimensional array whose values are defined as follows: 
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Each element of the global coupling coefficient matrix created in Equation (C.2.19) involves a 

multiplication between the proper element of the xnyC ,  matrix and the xnxA , array, as well as a 

summation of these resulting products over all Nx strips in the unit cell. 

The process of determining the coupling coefficient matrix associated with the 

permittivity/permeability tensor element in the orthogonal direction follows similar logic where 

the unit cell is cut into strips as shown in Figure C.5. 

  
(a)      (b) 

Figure C-5  (a) Permittivity distribution for a two-dimensional simple binary unit cell with one 
rectangular feature, and the strips used for determining the coupling coefficient expansion for an 
electric field shown in the y-direction.  (b) A similar drawing for a unit cell with multiple 
features. 
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C.3 Three-Dimensional Coupling Coefficients 

C.3.1 Constructing 3D Coupling Coefficients for Rectangular Features Using the Laurent Rule 

 For constructing the coupling coefficients necessary for modeling three dimensionally 

periodic systems using RCWA modal expansions, the Laurent rule expansions are the most 

straightforward means of accomplishing this task, but as with the previous invocations of the 

Laurent rule, the resulting series expansions do suffer from Gibbs’ phenomena at all material 

interfaces and corner points.  A simple schematic diagram in Figure C.6 shows the permittivity 

layout for simplest rectangular binary unit cell as well as a more complicated unit cell.  Much 

like for a two-dimensional periodicity, a three-dimensional periodicity creates ambiguity in terms 

of where a particular field component is normal or tangential to a particular electromagnetic 

feature over the entire unit cell.  The Laurent rule ignores this ambiguity and treats the Fourier 

expansion the same in every direction. 

   
 (a)      (b) 

 

Figure C-6  A sketch of two possible 3D unit cells with rectangular features: (a) a simple single 
feature cell (b) a generic multifeature cell. 
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A simple Fourier series expansion of a two-dimensional periodic structure with orthogonal 

periodic directions can be expressed as follows: 
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where Λx, Λy, Λz are the periodicities in the x, y, and z directions respectively.  Determination of 

the series expansion coefficients for a unit cell with M distinct permittivity regions can be 

expressed in the following manner: 

∑ ∫∫∫
=

Λ
−

Λ
−

Λ
−

ΛΛΛ
=

M

m

z

z

rzj

z

y

y

qyj

y

x

x

pxj

x
mrqp dzedyedxeA

mtop

mbottom

z

mtop

mbottom

y

mright

mleft

x

1

222

,,

,

,

,

,

,

,

111 πππ

ε  (C.2.22)

( )( )( ) ( ) ( )

( )

( ) zz
mbackmfront

y

yy
mbottommtop

y

xx
mleftmright

x

M

m
LmLrqprqp

frf
zz

rj

fqf
yy

qj

fpf
xx

pjA

sinc
2

2exp

sinc
2

2exp

sinc
2

2exp

,,

,,

,,

1
0,0,0,,,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
Λ

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
Λ

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
Λ

−−+= ∑
=

π

π

πεεεδ  

(C.2.23)

( ) ( ) ( ) ( )∑
=

−+=
M

m

z
mr

y
mq

x
mpLmrqpLrqp AAAA

1
,,,0,,0,,0,,, εεδε  (C.2.24)

 
where xA  and yA are one-dimensional arrays defined as follows: 
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The coupling coefficients matrix can then be directly filled using the following relationships: 
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In the classic method of performing the coupling coefficient expansion, the Laurent rule for 

creating the coupling matrix is utilized for every component of the permittivity/permeability 

tensor.  Various means of performing the inverse rule have been introduced for systems with 

more than one dimension of periodicity [27, 31, 169], but mathematical proofs of improved 

numerical convergence accuracy as well as mathematical uniqueness have not yet been provided. 
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APPENDIX D.  MAKING USE OF TRANSVERSE SYMMETRY: GROUP 
THEORY IN GRATING THEORY 
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 In any type of numerical spectral method, the accuracy of the solution that one can obtain 

in any given model depends upon not only the choice of basis set utilized but also on the number 

of basis functions retained in the computation.  In most cases, the more basis functions that are 

retained in a given computation, the more accurate the obtained result will be.  The limitation on 

the number of basis functions that can be retained in any given computation is a physical 

limitation, generally depending on the amount of computer memory (random access memory, 

virtual memory, and/or hard disk space) available for storing data generated by a model’s 

computations.  Apart from the physical limitations associated with system memory, increasing 

the number of basis functions used in a given computation also increases the total number of 

floating point operations needed to complete a computational run and leads to increased 

computation times.  In certain cases, specifically when a model possesses proper symmetries, 

both the issue of memory requirements and computational time can be reduced by taking 

advantage of these symmetries. 

 In the case of using frequency-domain spectral methods to model waveguide and 

diffraction grating problems, a model must possess two separate types of symmetry concurrently, 

structural symmetry and input wave symmetry, in order to take advantage of either.  This 

appendix will provide a description of the conditions necessary for taking advantage of 

symmetry in one-dimensional and two-dimensional modal problems, as well as for the 

determination of field distributions.  The application of group theoretic concepts to RCWA was 

first formally applied by the Li group [27, 33-35, 171], but while that work expresses symmetric 

matrix reductions by operating on the material coupling matrices, in this appendix symmetry will 

be applied to the equations for the electric and magnetic fields directly. 
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D.1 σx-Symmetry in One-Dimensional Systems 

 In a layered, one-dimensional distribution of materials, a system that is transversely 

symmetric about the center of a computational window, which also has symmetric boundary 

conditions, can be computationally reduced in size if it is accompanied by a symmetric or an 

anti-symmetric energy input.  As the transverse axis associated with this one-dimensional 

variation is normally associated with the x-axis, the group theoretic name for this type of 

symmetry is xσ -symmetry.  The application of xσ -symmetry to a one-dimensional system can 

take on one of two different forms depending on the polarization of the input wave.  For a system 

that is polarized in the y-direction, the following relationships hold between various field 

harmonic elements: 

mymy EE −= ,,  (D.1.1)

mxmx HH −= ,,  (D.1.2)
 

The original system of coupled wave equations relating Ey and Hx takes on the following matrix 

relationship: 
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Applying Equations (D.1.1) and (D.1.2) to (D.1.3) yields the following matrix relationships: 
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This system of equations can be reduced in size without any loss of generality as follows: 
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When the input wave is polarized in the x-direction, a similar relationship holds between the field 

components Hy and Ex.  

D.2 σx- and σy-Symmetry in Two-Dimensional Systems 

 In a two-dimensionally periodic medium, there is a possibility for the occurrence of two 

types of one-dimensional transverse symmetries.  When the material property distribution has 

mirror symmetry about the x-axis of the computational window, the system is said to possess 

xσ - symmetry, and similarly when mirror symmetry is present about the y-axis, the system is 

said to possess yσ - symmetry. 

 When the system possesses xσ - symmetry, and the input field is polarized in the y-

direction, the resulting electric and magnetic field harmonics have the following relationships: 

nmxnmx EE −−= ,,,,  (D.2.1)

nmynmy EE −= ,,,,  (D.2.2)

nmxnmx HH −= ,,,,  (D.2.3)

nmynmy HH −−= ,,,,  (D.2.4)
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The matrix relationship between the derivative of the electric field components and the magnetic 

field components can be expressed as follows:  
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(D.2.5)

 
Similarly, the matrix relationship between the derivative of the magnetic field components and 

the electric field components can be expressed as follows: 
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For the elements listed in Equations (D.2.5) and (D.2.6), the symmetry relationships in Equations 

(D.2.1) – (D.2.4) can be expressed in matrix form as follows: 
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Applying Equations (D.2.7) – (D.2.10) to Equations (D.2.5) and (D.2.6) produces the following 

matrix relationships: 
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(D.2.12)

 
By taking the derivative of Equation (D.2.11) with respect to z' and inserting Equation (D.2.12), 

the resulting matrix eigenvalue equation can be written as follows: 
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This system of equations can be reduced in size without any loss of generality as follows: 
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A further reduction of the matrix is then possible by eliminating the rows and columns 

containing all zero values, leading to a final reduced matrix eigenvalue equation. 
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For a system possessing xσ - symmetry, with an input field polarized in the x-direction, the 

relationships between the electric and magnetic field harmonic elements are the following: 

nmxnmx EE −= ,,,,  (D.2.16)

nmynmy EE −−= ,,,,  (D.2.17)

nmxnmx HH −−= ,,,,  (D.2.18)

nmynmy HH −= ,,,,  (D.2.19)
 
Determining the reduced eigenvalue equation matrix in this case follows similar logic to the 

derivation in Equations (D.2.6) – (D.2.15).  Similarly, for a system possessing yσ - symmetry, 

the relationships between the electric and magnetic field harmonic elements for an input field 

polarized in the y-direction are as follows: 

nmxnmx EE −= ,,,,  (D.2.20)

nmynmy EE −−= ,,,,  (D.2.21)
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nmxnmx HH −−= ,,,,  (D.2.22)

nmynmy HH −= ,,,,  (D.2.23)
 

and for an input field polarized in the x-direction, the relationships are the following: 

nmxnmx EE −−= ,,,,  (D.2.24)

nmynmy EE −= ,,,,  (D.2.25)

nmxnmx HH −= ,,,,  (D.2.26)

nmynmy HH −−= ,,,,  (D.2.27)
 

The process of reducing the coupled wave equation matrix and solving the eigenmode problem 

then proceeds in a similar manner. 

D.3 C2v Symmetry in Two-Dimensional Systems 

For a system possessing material symmetry along the x- and y-axes, the presence of a 

field that is polarized along either the x- or y-axis as well creates the possibility of an even 

further reduction in the size of the coupled wave equation eigenmode problem.  The group 

theoretic name for this point group is C2v symmetry.  The relationships between the field 

harmonics in a C2v symmetric setting with fields polarized along the y-direction are the 

following: 

nmxnmxnmxnmx EEEE −−−− =−=−= ,,,,,,,,  (D.3.1) 

nmynmynmynmy EEEE −−−− === ,,,,,,,,  (D.3.2) 

nmxnmxnmxnmx HHHH −−−− === ,,,,,,,,  (D.3.3) 

nmynmynmynmy HHHH −−−− =−=−= ,,,,,,,,  (D.3.4) 
 

The matrix relationship between the derivative of the electric field components and the magnetic 

field components can be expressed as follows: 



 194

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′∂
∂

−−

−

−

−

−

−−

−

−

−

−

→
−→−−→−

→
−→−→−

→
→−−→−

→
→−→−

→
−→→−

→
→−→−

→
→−−→−

→
→−→−

→
→−→−

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→−→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→−

→
−→−→−

→
→−−→−

→
→−→−

→
−→→−

→
→−→−

→
→−−→−

→
→−→−

→
→−→−

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→−→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→−

→
−→−→−

→
→−−→−

→
→−→−

→
−→→−

→
→−→−

→
→−−→−

→
→−→−

→
→−→−

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→−→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→−

→
−→−→−

→
→−−→−

→
→−→−

→
−→→−

→
→−→−

→
→−−→−

→
→−→−

→
→−→−

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→−→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

−−

−

−

−

−

−−

−

−

−

−

M

M

O

L

L

L

L

L

L

L

L

L

MMMMMMMMM

O

L

L

L

L

L

L

L

L

L

MMMMMMMMM
K

O

L

L

L

L

L

L

L

L

L

MMMMMMMMM

O

L

L

L

L

L

L

L

L

L

MMMMMMMMM

M

M

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1011,1011,1011,1011,0011,0001,1001,1001,00

11,1011,1011,1011,1011,0011,0001,1001,1001,00

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1010,1010,1010,1010,0010,0000,1000,1000,00

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1011,1011,1011,1011,0011,0001,1001,1001,00

11,1011,1011,1011,1011,0011,0001,1001,1001,00

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1010,1010,1010,1010,0010,0000,1000,1000,00

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1011,1011,1011,1011,0011,0001,1001,1001,00

11,1011,1011,1011,1011,0011,0001,1001,1001,00

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1010,1010,1010,1010,0010,0000,1000,1000,00

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1011,1011,1011,1011,0011,0001,1001,1001,00

11,1011,1011,1011,1011,0011,0001,1001,1001,00

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1010,1010,1010,1010,0010,0000,1000,1000,00

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E

z

 

(D.3.5) 

 

Similarly, the matrix relationship between the derivative of the magnetic field components and 

the electric field components can be expressed as follows: 



 195

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′∂
∂

−−

−

−

−

−

−−

−

−

−

−

→
−→−−→−

→
−→−→−

→
→−−→−

→
→−→−

→
−→→−

→
→−→−

→
→−−→−

→
→−→−

→
→−→−

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→−→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→−

→
−→−→−

→
→−−→−

→
→−→−

→
−→→−

→
→−→−

→
→−−→−

→
→−→−

→
→−→−

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→−→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→−

→
−→−→−

→
→−−→−

→
→−→−

→
−→→−

→
→−→−

→
→−−→−

→
→−→−

→
→−→−

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→−→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→−

→
−→−→−

→
→−−→−

→
→−→−

→
−→→−

→
→−→−

→
→−−→−

→
→−→−

→
→−→−

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−−→

→
−→−→

→
→−−→

→
→−→

→
−→−→

→
→−→

→
→−−→

→
→−→

→
→−→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→−

→
−→→−

→
→−→−

→
→→−

→
−→→−

→
→→−

→
→−→−

→
→→−

→
→→−

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

→
−→−→

→
−→→

→
→−→

→
→→

→
−→→

→
→→

→
→−→

→
→→

→
→→

−−

−

−

−

−

−−

−

−

−

−

M

M

O

L

L

L

L

L

L

L

L

L

MMMMMMMMM

O

L

L

L

L

L

L

L

L

L

MMMMMMMMM
K

O

L

L

L

L

L

L

L

L

L

MMMMMMMMM

O

L

L

L

L

L

L

L

L

L

MMMMMMMMM

M

M

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1011,1011,1011,1011,0011,0001,1001,1001,00

11,1011,1011,1011,1011,0011,0001,1001,1001,00

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1010,1010,1010,1010,0010,0000,1000,1000,00

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1011,1011,1011,1011,0011,0001,1001,1001,00

11,1011,1011,1011,1011,0011,0001,1001,1001,00

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1010,1010,1010,1010,0010,0000,1000,1000,00

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1011,1011,1011,1011,0011,0001,1001,1001,00

11,1011,1011,1011,1011,0011,0001,1001,1001,00

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1010,1010,1010,1010,0010,0000,1000,1000,00

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1111,1111,1111,1111,0111,0101,1101,1101,01

11,1011,1011,1011,1011,0011,0001,1001,1001,00

11,1011,1011,1011,1011,0011,0001,1001,1001,00

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1110,1110,1110,1110,0110,0100,1100,1100,01

10,1010,1010,1010,1010,0010,0000,1000,1000,00

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxyxy

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yxyxyxyxyxyxyxyxyx

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyy

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB

H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H

z

 

(D.3.6) 

 

For the elements listed in Equations (D.2.5) and (D.2.6), the symmetry relationships in Equations 

(D.2.1) – (D.2.4) can be expressed in matrix form as follows: 



 196

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−−

−

−

−

−

MOMMMMMMMMM

L

L

L

L

L

L

L

L

L

M
1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E

 
(D.3.7) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−−

−

−

−

−

MOMMMMMMMMM

L

L

L

L

L

L

L

L

L

M
1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

E
E
E
E
E
E
E
E
E

E
E
E
E
E
E
E
E
E

 

(D.3.8) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−−

−

−

−

−

MOMMMMMMMMM

L

L

L

L

L

L

L

L

L

M
1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H

 

(D.3.9) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−−

−

−

−

−

MOMMMMMMMMM

L

L

L

L

L

L

L

L

L

M
1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

1,1,

1,1,

1,1,

1,1,

1,0,

1,0,

0,1,

0,1,

0,0,

100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H

 
(D.3.10) 

 



 197

Applying Equations (D.3.7) – (D.3.10) to Equations (D.3.5) and (D.3.6) produces the following 

matrix relationships: 
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By taking the derivative of Equation (D.3.11) with respect to z' and inserting Equation (D.3.12), 

the resulting matrix eigenvalue equation can be written as follows: 
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This system of equations can be reduced in size without any loss of generality as follows: 
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A further reduction of the matrix is then possible by eliminating the rows and columns 

containing all zero values, leading to a final reduced matrix eigenvalue equation. 
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For a system possessing x-polarization, with an input field polarized in the x-direction, the 

relationships between the electric and magnetic field harmonic elements are the following: 

nmxnmxnmxnmx EEEE −−−− === ,,,,,,,,  (D.3.16)

nmynmynmynmy EEEE −−−− =−=−= ,,,,,,,,  (D.3.17)

nmxnmxnmxnmx HHHH −−−− =−=−= ,,,,,,,,  (D.3.18)

nmynmynmynmy HHHH −−−− === ,,,,,,,,  (D.3.19)
 
Determining the reduced eigenvalue equation matrix in this case follows similar logic to the 

derivation in Equations (D.3.6) – (D.3.15). 
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APPENDIX E.  COMMENTS ON SOFTWARE DEVELOPMENT AND 
DESIGN 
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When developing the software necessary for the modeling of integrated optical device 

structures (or any other physical modeling problem for that matter), perfecting the algorithms 

used for determining layer eigenmodes, wave propagation, and field calculations are only part of 

the overall computer aided design problem that must be tackled.  In order to create a flexible, 

versatile, and efficient package capable of modeling a variety of different integrated optical 

structures through a single interface, the entire computational workflow, from defining input 

parameters to post-processing of output data, needs to be designed in a cohesive manner.  While 

perfecting “the solver” is vitally important, the overall efficiency of the solver is often affected 

by the quality of the input data being passed to the solver.  The entire workflow in an RCWA/S-

Matrix computation can take on a number of different forms based on the structure being 

modeled and the desired output data, but the most common RCWA/S-Matrix workflow can be 

summarized in the following steps: 

1. The geometric and material properties are defined for a device under study. 

 
(a)       (b) 

Figure E-1  (a) Initial “region” layout of the electromagnetic/geometric features in an S-bend 
waveguide.  The geometric features are initially defined as a background permittivity / 
permeability distribution, rectangular boxes, and annular bends in this case.  (b)  Initial “region” 
layout of the electromagnetic/geometric features in a photonic crystal waveguide.  The geometric 
features are initially defined as input/output rectangular boxes, a background permittivity / 
permeability distribution, a lattice of holes, and individual “defect” sites. 

region # 5in 4 3 2 out1 region # in 3 2 1 out 
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2. The device geometry is then approximated by a stair-cased set of finite thickness, 

transversely periodic layers whose material properties are longitudinally invariant within 

each layer, as well as semi-infinite input and output half-space regions. 

 
(a)       (b) 

 
(c) 

Figure E-2  (a) Longitudinal slicing associated with an S-bend photonic wire waveguide.  (b) 
Longitudinal slicing associated with a bend in a photonic crystal waveguide.  (c)  Calculated 
permittivity layout for an S-bend photonic wire waveguide on a transverse and longitudinal 
spatial grid. 

 
 

3. Employing properties of a defined input wave (wavelength, angle, and polarization); a 

global, pseudo-periodic Fourier harmonic basis set is then utilized to represent both the 

periodic material properties of a transverse unit cell, as well as the tangential phase 

components of each plane wave basis function. 
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4. Making appropriate substitutions into Maxwell’s equations, these material property and 

tangential phase expansions are used to create a unique full matrix eigenmode problem 

for each layer of the system. 

5. After determining all desired layer eigenmodes, calculating the field harmonic amplitude 

distributions in the input and output half-spaces, and optionally throughout the entire 

multilayered structure, is then accomplished by propagating the defined input energy 

distribution through the use of a scattering matrix (S-Matrix) mode matching technique 

that relates the eigenmodes in adjacent layers, as well as Redheffer’s star-product 

operation for concatenating two separate scattering matrices into a larger longitudinal cell 

scattering matrix. 

6. The spatial field harmonic amplitudes throughout the structure can then be used to 

calculate the modal reflection and transmission coefficients of the system and can be 

summed on an arbitrary spatial grid in order to visualize the system’s distribution of 

electric fields, magnetic fields, and Poynting vector components. 

  
(a)      (b) 

Figure E-3  Calculated Poynting vector magnitudes for power flow through an S-bend 
waveguide on a transverse and longitudinal spatial grid showing both the (a) longitudinal 
components (b) transverse components.  
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0.05

-0.05 
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7. Post-processing of the output data can then occur for a single set of inputs, the entire 

process can be repeated numerous times over a single parameter range to obtain a spectral 

response, or a multi-parameter optimization/evolutionary algorithm study can be 

performed. 

This appendix will discuss how all of these points were addressed in order to write the software 

used to produce the computational results presented in this dissertation.  Much of this section 

will only be useful when attempting to dissect meanings when viewing the actual code.  The 

code utilized to perform many of the kinds of computations performed in this dissertation will 

eventually be posted on-line at the MATLAB® Central File Exchange website [172]. 

E.1 Initial Definition of the Input Wave and Input Geometry 

When defining input parameters for an RCWA model, there are three distinct sets of 

parameters that must be defined initially.  The first set of parameters is that set associated with 

the input plane-wave/mode properties, as well as any variables that are independent of the 

underlying geometry and materials.  Included in this set are the wavelength, incident angle 

(polar, azimuthal, polarization), and optionally the incident finite beam waist and number of 

plane waves used to approximate that finite beam, as well as a number of other parameters that 

determine the nature of the information that is to be determined.   
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Variable Name Type Description 

input_order scalar In a “Grating” problem, this determines 
position within the Kronecker delta function 
for which there is a non-zero value 
(MATLAB® array ordering is “1-based” like 
Fortran and not “0-based” like C or Python). 

number_of_modes scalar In a “Waveguide” problem, this variable 
determines the number of input modes for 
which field and power distributions will be 
calculated. 

lambda scalar Wavelength in microns. 

theta scalar Polar angle in degrees 

phi scalar Azimuthal angle in degrees 

polarization_angle scalar Polarization angle in degrees 

eta scalar Grating periodicity tilt angle for non-
orthogonal periodicity directions. 

Nx scalar Number of spatial harmonics utilized along 
the x-axis in Fourier space. 

Ny scalar Number of spatial harmonics utilized along 
the y-axis in Fourier space. 

bow scalar Bowing parameter used in truncating the total 
number of harmonics utilized on a 2D grid.  
Parameter varies from 0 to 1, and keeps all 
harmonics bounded by the equation: 

1

2
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y

2
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x
2

y

index harmonic
2
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⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
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⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

bowbow

 

beam_x_harmonics scalar Number of x-direction plane waves used in 
the spectral decomposition of an input finite 
beam for a “Grating” problem. 

beam_y_harmonics scalar Number of y-direction plane waves used in 
the spectral decomposition of an input finite 
beam for a “Grating” problem. 

beamwaist_xp scalar The beam waist in the x-direction of an input 
finite beam used in a “Grating” problem. 
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beamwaist_yp scalar The beam waist in the y-direction of an input 
finite beam used in a “Grating” problem. 

real_pole_initial scalar The value of the real part of the tangential 
propagation constant utilized in an iterative 
search for a scattering matrix pole using the 
iterative technique described in Peng [23]. 

imag_pole_initial scalar The value of the imaginary part of the 
tangential propagation constant utilized in an 
iterative search for a scattering matrix pole 
using the iterative technique described in 
Peng [23]. 

pole_determinant_tolerance scalar The tolerance value used for stopping the 
iterative process of determining a scattering 
matrix pole using the iterative technique 
described in Peng [23]. 

grid_truncation string A string variable that can be set to “on” or 
“off” that determines whether a 2D grid of 
Fourier harmonics will be truncated. 

diffraction_type string A string variable that sets the problem as 
either “TE”, “TM”, “conical”, or 
“twodimensional.” 

StructureType string A string variable that can be set as either 
“Waveguide” or “Grating”.  A “Grating” 
problem by-passes the calculation of all 
internal field harmonics and only determines 
the reflection and transmission coefficients in 
the input and output half-spaces.  A 
“Waveguide” problem allows for the 
possibility of determining of all desired 
internal layer fields. 

symmetry string A string variable that defines the type of 
symmetry that is present in a particular model 
(“sigx”, “sigy”, “c2v”, “off”). 

polarization string A string variable that defines the polarization 
direction of the input wave/mode that is used 
in symmetry calculations. 

perm_expansion string A string variable that determines the type of 
Fourier expansion technique utilized in a 2D 
grating problem.  A value of “regular” uses a 
standard Fourier expansion in both the x- and 
y-directions, whereas a value of “inverse” 
uses a Fast Fourier Factorization technique. 

pole_search_type string A string variable that defines the type of 
scattering matrix utilized in the pole search.  
A value of “transverse”  
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calculateScatteringMatrices logical A logical variable that determines whether 
any scattering matrices are calculated in either 
a “Waveguide” or “Grating” problem. 

fieldandpowercalculations logical A logical variable that determines whether 
any electric/magnetic field or Poynting vector 
calculations are performed. 

boxedfieldandpowercalculations logical A logical variable that determines whether 
field and power calculations are determined 
on a full grid or only around a box of the 
domain. 

determineBoxedPower logical A logical variable that determines whether the 
Poynting vector components around a box of 
the computational domain are summed to 
determine potential conservation of energy. 

calculateFieldHarmonicAmplitudes logical A logical variable that determines whether 
any field harmonic amplitudes are calculated 
in a “Waveguide” problem. 

calculateOnlyInputOutputField 
Harmonics 

logical A logical variable that determines whether or 
not the field harmonics in a “Waveguide” 
problem are only determined in the input and 
output half-spaces or whether internal field 
harmonics are calculated as well. 

calculatePermMaps logical A logical variable that determines whether or 
not a map of the permittivity, permeability, 
and absorption/gain are calculated on a spatial 
grid. 

plotInputFiniteBeam logical A logical variable that determines whether or 
not the fields and Poynting vector components 
of an input finite beam are calculated for a 
“Grating” problem. 

xy_cylinder_present logical A logical variable that defines whether or not 
any cylinder features (with an axis in the 
longitudinal direction) is present any where in 
the model.  This affects the type of coupling 
coefficient expansion utilized. 

pole_search logical A logical variable that determines whether the 
current structure is used in a scattering matrix 
pole search. 

calculateGeneralizedEigenvalues logical A logical variable that determines whether the 
current structure, or part thereof, is used in a 
scattering matrix generalized eigenvalue 
problem of the form in Cao et al. [22] 
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longitudinalFourierTransform logical A logical variable that determines whether the 
longitudinal field and power components are 
utilized in an angular spectrum calculation.  
This angular spectrum can be utilized to 
propagate a field using a Discrete Fourier 
Transform. 

etched_layers_known logical A logical variable used as a switch statement 
that run code that exploits the binary nature of 
a material variation in defining eigenproblem 
and scattering matrix labels.  When a 
geometric/material structure contains the 
necessary properties, this switch runs a much 
more efficient code for defining these labels 
that avoids layer comparison. 

material_wavelength_dispersion_ 
present 

logical A logical variable used as a switch to run 
code that exploits wavelength dependent 
material properties. 
 

 

The second set of parameters includes all relevant geometric distances for the features being 

modeled as well as their associated electromagnetic material property values (complex 

permittivity, complex permeability), and the window sizes/grating periodicities which define the 

transverse boundaries of computational region.   

LAMBDA_x scalar Period/Window size in x-direction 

LAMBDA_y scalar Period/Window size in y-direction or second periodic 
direction if non-orthogonal periodicity directions are 
present. 

eps_background scalar Background permittivity for the entire computational 
domain. 

mu_background scalar Background permeability for the entire computational 
domain. 

geometric_tolerance scalar A scalar value that is used as an acceptable fitting tolerance 
for all geometric processing and Geometric Bounding 
Toolbox calculations. 

epsn 1D-vector Permittivity value of the zero-thickness layers (epsn(1)) for 
“Waveguide” or “Grating” problems, and input halfspace 
(epsn(2)), and output halfspace (epsn(3)) for “Grating” 
problems. 
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mu 1D-vector Permeability value of the zero-thickness layers (mu(1)) for 
“Waveguide” or “Grating” problems, and input halfspace 
(mu(2)), and output halfspace (mu(3)) for “Grating” 
problems. 

 

Further geometric parameters that define the number of lamellar slices that will be used in 

representing the target geometric features must also be defined.  Included in this set of slicing 

parameters are parameters that determine the number of slices within a longitudinal unit cell as 

well as parameters that determine the nature of any longitudinal periodicity that is to be 

represented in the system.   

regions scalar A variable defining the number of major longitudinal 
partitions into which the modeled structure is split. 

unit_cells 1D-array of 
size regions 

An array of size regions where each element of the array is 
the number of elementary longitudinal unit cells (power of 
2) contained within a larger conglomerate longitudinal cell 
called a “region cell” for this region. 

reg_cells 1D-array of 
size regions 

An array of size regions where each element of the array is 
the number of “region cells” (power of 2) contained within 
a larger conglomerate longitudinal cell called a “section 
cell” for this region. 

w_z 1D cell of size 
regions 

A cell array of size regions where each element of the cell 
array is an array whose size is the number of slices in an 
elementary unit cell and where each scalar element is the 
thickness of an individual slice.  This thickness array is 
ordered from output side as the first element to input side 
as the output element. 

internalslices 1D cell of size 
regions 

A cell array of size regions where each element of the cell 
array is an array whose size is the number of slices in an 
elementary unit cell and where each scalar element is the 
number of locations internal to an individual layer where 
the field harmonic amplitudes are calculated.  The 
internalslices array within each cell element is ordered 
from output side as the first element to input side as the 
output element. 

Left scalar The negative x location boundary used in laying out the 
spatial grid for field, power, and perm map calculations. 

Right scalar The positive x location boundary used in laying out the 
spatial grid for field, power, and perm map calculations. 
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x_points scalar The number of points used in the x-direction spatial grid 
for field, power, and perm map calculations. 

x 1D-array of 
size x_points 

An array of the x-axis locations for the spatial grid used in 
calculating field, power, and perm map calculations. 

Top scalar The positive y location boundary used in laying out the 
spatial grid for field, power and perm map calculations. 

Bottom scalar The negative y location boundary used in laying out the 
spatial grid for field, power and perm map calculations. 

y_points scalar The number of points used in the y-direction spatial grid 
for field, power, and perm map calculations. 

y 1D-array of 
size x_points 

An array of the y-axis locations for the spatial grid used in 
calculating field, power, and perm map calculations. 

 

E.2 Performing the Necessary Layer Slicing 

In the context of the present work/method, the entire computational domain for a given 

device structure is split into initial partitions that we call “regions.”  The naming conventions that 

were utilized for naming variables in this study evolved over time and may seem a bit confusing 

to anyone but the author, but hopefully not overly confusing.  While the use of object-oriented 

concepts may have been useful, much of the infrastructure of the code was written before these 

concepts were considered.  Within the code itself, one of the main concepts utilized is a “region,” 

which is an array of data structures representing these major layer partitions that can have a 

number of possible fields from among the following: 

 

region 
slice data structure A data structure itself that contains fields 

associated with the properties of each 
individual lamellar layer within an individual 
“region” unit cell. 

slices scalar The total number of lamellar layers within an 
individual “region” elementary unit cell. 

symmetric logical A logical parameter associated with a given 
region’s longitudinal symmetry or asymmetry 
properties. 
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unit_cells scalar The number of elementary longitudinal unit 
cells (power of 2) contained within a larger 
conglomerate longitudinal cell called a “region 
cell” for this region. 

reg_cells scalar The number of “region cells” (power of 2) 
contained within a larger conglomerate 
longitudinal cell called a “section cell” for this 
region. 

plotunitcells logical A logical parameter used to determine whether 
field harmonics are calculated at the interfaces 
on the exterior of every unit cell contained 
within a region cell, or whether the field 
harmonics are only calculated on the exterior 
interfaces of a region cell. 

plotslices logical A logical parameter used to determine whether 
field harmonics are calculated at the interfaces 
of all layers within an elementary unit cell for 
a region.  If “plotunitcells” is false, then this 
parameter’s value has no importance for this 
region. 

symunitscatterlabel scalar A label that uniquely identifies the particular 
elementary longitudinal “unit cell” symmetric 
scattering matrix associated with this region.  
If a region consists of only one slice, or if there 
are no field harmonics to be calculated where a 
symmetric unit cell scattering matrix 
associated with this region is needed, then this 
field remains empty for this region. 

symregscatterlabel scalar A label that uniquely identifies the particular 
“region cell” symmetric scattering matrix 
associated with this region.  If a region has 
only one slice or one “unit cell”, or if there are 
no field harmonics to be calculated where a 
symmetric region cell scattering matrix 
associated with this region is needed, then this 
field remains empty for this region. 

symsectionscatterlabel scalar A label that uniquely identifies the particular 
“section cell” symmetric scattering matrix 
associated with this region.  If a region has 
only one slice, one “unit cell”, or one “region 
cell”, or if there are no field harmonics to be 
calculated where a symmetric section cell 
scattering matrix associated with this region is 
needed, then this field remains empty for this 
region. 
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asymunitscatterlabel scalar A label that uniquely identifies the particular 
elementary longitudinal “unit cell” asymmetric 
scattering matrix associated with this region.  
If a region consists of only one slice, or if there 
are no field harmonics to be calculated where 
an asymmetric unit cell scattering matrix 
associated with this region is needed, then this 
field remains empty for this region. 

asymregscatterlabel scalar A label that uniquely identifies the particular 
“region cell” asymmetric scattering matrix 
associated with this region.  If a region has 
only one slice or one “unit cell”, or if there are 
no field harmonics to be calculated where an 
asymmetric region cell scattering matrix 
associated with this region is needed, then this 
field remains empty for this region. 

asymsectionscatterlabel scalar A label that uniquely identifies the particular 
“section cell” asymmetric scattering matrix 
associated with this region.  If a region has 
only one slice, one “unit cell”, or one “region 
cell”, or if there are no field harmonics to be 
calculated where an asymmetric section cell 
scattering matrix associated with this region is 
needed, then this field remains empty for this 
region. 

 

As stated above, within an individual “region” data structure, the “slice” field is itself an array of 

data structures whose fields depend on the type of geometry that is best used to represent the 

electromagnetic object, as well as the numerical method utilized for performing the coupling 

coefficient expansions of the material permittivity and permeability.  For a computational model 

having one-dimensional periodicity and light polarized in a TE, TM or conical manner, the 

“slice” data structure can contain the following fields: 
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slice 
Sx scalar The number of adjacent rectangular boxes into which a 

lamellar layer is split.  
w_x array of scalars 

size Sx 
The absolute value of the width (in µm) of each rectangular 
box in a layer, ordered from the –Λx/2 side to the Λx/2 side. 
 

x_centers array of scalars 
size Sx 

The absolute value of the center (in µm) of each rectangular 
box in a layer between (–Λx/2, Λx/2), ordered from the –Λx/2 
side to the Λx/2 side. 

f_x array of scalars 
size Sx 

The relative value of the width/fill factor (between 0 and 1) of 
each rectangular box in a layer, ordered from the –Λx/2 side to 
the Λx/2 side.  “w_x” divided by the grating period Λx. 

xs array of scalars 
size Sx 

The relative shift of the center (between -0.5 to 0.5) of each 
rectangular box in a layer.  “x_centers” divided by the grating 
period Λx. 

eps_back scalar The background/reference permittivity value for a slice. 
mu_back scalar The background/reference permeability value for a slice. 

d scalar The thickness (in µm) of a slice. 
eigenlabel scalar The label associated with a layer’s unique eigenmode 

problem. 
scatterlabel scalar The label associate with a layer’s unique individual layer 

scattering matrix. 
eps_x array of scalars 

size Sx 
The x-direction value of the permittivity tensor for each 
rectangular box in a layer. 

eps_y array of scalars 
size Sx 

The y-direction value of the permittivity tensor for each 
rectangular box in a layer. 

eps_z array of scalars 
size Sx 

The z-direction value of the permittivity tensor for each 
rectangular box in a layer. 

mu_x array of scalars 
size Sx 

The x-direction value of the permeability tensor for each 
rectangular box in a layer. 

mu_y array of scalars 
size Sx 

The y-direction value of the permeability tensor for each 
rectangular box in a layer. 

mu_z array of scalars 
size Sx 

The z-direction value of the permeability tensor for each 
rectangular box in a layer. 

sig_x array of scalars 
size Sx 

The x-direction value of the conductivity (absorption/gain 
parameter) tensor for each rectangular box in a layer. 

sig_y array of scalars 
size Sx 

The y-direction value of the conductivity (absorption/gain 
parameter) tensor for each rectangular box in a layer. 

sig_z array of scalars 
size Sx 

The z-direction value of the conductivity (absorption/gain 
parameter) tensor for each rectangular box in a layer. 
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For a lamellar layer having two orthogonal dimensions of periodicity with electromagnetic 

features formed entirely from rectangular shapes, the “slice” data structure is formed from the 

following fields: 

slice 
Sx scalar The number of rows in the grid of adjacent rectangular boxes 

into which a lamellar layer is split.  
Sy scalar The number of columns in the grid of adjacent rectangular 

boxes into which a lamellar layer is split. 
w_x array of scalars 

size Sx 
The absolute value of the x-width (in µm) of each rectangular 
box in a layer, ordered from the –Λx/2 side to the Λx/2 side. 

w_y array of scalars 
size Sy 

The absolute value of the y-width (in µm) of each rectangular 
box in a layer, ordered from the –Λy/2 side to the Λy/2 side. 

x_centers array of scalars 
size Sx 

The absolute value of the x-center (in µm) of each rectangular 
box in a layer between (–Λx/2, Λx/2), ordered from the –Λx/2 
side to the Λx/2 side. 

y_centers array of scalars 
size Sy 

The absolute value of the y-center (in µm) of each rectangular 
box in a layer between (–Λy/2, Λy/2), ordered from the –Λy/2 
side to the Λy/2 side. 
 
 

f_x array of scalars 
size Sx 

The relative value of the x-width/fill factor (between 0 and 1) 
of each rectangular box in a layer, ordered from the –Λx/2 side 
to the Λx/2 side.  “w_x” divided by the grating period Λx. 

f_y array of scalars 
size Sy 

The relative value of the y-width/fill factor (between 0 and 1) 
of each rectangular box in a layer, ordered from the –Λy/2 side 
to the Λy/2 side.  “w_y” divided by the grating period Λy. 

xs array of scalars 
size Sx 

The relative shift of the x-center (between -0.5 to 0.5) of each 
rectangular box in a layer.  “x_centers” divided by the grating 
period Λx. 

ys array of scalars 
size Sy 

The relative shift of the y-center (between -0.5 to 0.5) of each 
rectangular box in a layer.  “y_centers” divided by the grating 
period Λy. 

eps_back scalar The background/reference permittivity value for a slice. 
mu_back scalar The background/reference permeability value for a slice. 

d scalar The thickness (in µm) of a slice. 
eigenlabel scalar The label associated with a layer’s unique eigenmode 

problem. 
scatterlabel scalar The label associate with a layer’s unique individual layer 

scattering matrix. 
eps_x array of scalars 

size (Sy,Sx) 
The x-direction value of the permittivity tensor for each 
rectangular box in a layer. 
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eps_y array of scalars 
size (Sy,Sx) 

The y-direction value of the permittivity tensor for each 
rectangular box in a layer. 

eps_z array of scalars 
size (Sy,Sx) 

The z-direction value of the permittivity tensor for each 
rectangular box in a layer. 

mu_x array of scalars 
size (Sy,Sx) 

The x-direction value of the permeability tensor for each 
rectangular box in a layer. 

mu_y array of scalars 
size (Sy,Sx) 

The y-direction value of the permeability tensor for each 
rectangular box in a layer. 

mu_z array of scalars 
size (Sy,Sx) 

The z-direction value of the permeability tensor for each 
rectangular box in a layer. 

sig_x array of scalars 
size (Sy,Sx) 

The x-direction value of the conductivity (absorption/gain 
parameter) tensor for each rectangular box in a layer. 

sig_y array of scalars 
size (Sy,Sx) 

The y-direction value of the conductivity (absorption/gain 
parameter) tensor for each rectangular box in a layer. 

sig_z array of scalars 
size (Sy,Sx) 

The z-direction value of the conductivity (absorption/gain 
parameter) tensor for each rectangular box in a layer. 

 

For a lamellar layer having two non-orthogonal dimensions of periodicity or a layer that contains 

cylindrical features whose axes are in the longitudinal direction, the “slice” data structure is 

formed from the following fields: 

slice 
S scalar The number of unique electromagnetic/geometric features in a 

lamellar layer whose properties are different from the 
background properties. 

feature Array of data 
structures of 

size S 

A data structure that contains fields representing the 
geometric and material properties for each individual 
electromagnetic/geometric feature in a lamellar layer. 

eps_back scalar The background/reference permittivity value for a slice. 

mu_back scalar The background/reference permeability value for a slice. 

d scalar The thickness (in µm) of a slice. 

eigenlabel scalar The label associated with a layer’s unique eigenmode 
problem. 

scatterlabel scalar The label associate with a layer’s unique individual layer 
scattering matrix. 
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feature 
w_x array of scalars 

size S 
The absolute value of the x-width (in µm) of each rectangular 
box in a layer, ordered from the –Λx/2 side to the Λx/2 side. 

w_y array of scalars 
size S 

The absolute value of the y-width (in µm) of each rectangular 
box in a layer, ordered from the –Λy/2 side to the Λy/2 side. 

x_centers array of scalars 
size S 

The absolute value of the x-center (in µm) of each rectangular 
box in a layer between (–Λx/2, Λx/2), ordered from the –Λx/2 
side to the Λx/2 side. 

y_centers array of scalars 
size S 

The absolute value of the y-center (in µm) of each rectangular 
box in a layer between (–Λy/2, Λy/2), ordered from the –Λy/2 
side to the Λy/2 side. 

f_x array of scalars 
size S 

The relative value of the x-width/fill factor (between 0 and 1) 
of each rectangular box in a layer, ordered from the –Λx/2 side 
to the Λx/2 side.  “w_x” divided by the grating period Λx. 

f_y array of scalars 
size S 

The relative value of the y-width/fill factor (between 0 and 1) 
of each rectangular box in a layer, ordered from the –Λy/2 side 
to the Λy/2 side.  “w_y” divided by the grating period Λy. 

xs array of scalars 
size S 

The relative shift of the x-center (between -0.5 to 0.5) of each 
rectangular box in a layer.  “x_centers” divided by the grating 
period Λx. 
 

ys array of scalars 
size S 

The relative shift of the y-center (between -0.5 to 0.5) of each 
rectangular box in a layer.  “y_centers” divided by the grating 
period Λy. 

radius array of scalars 
of size S 

The radius (in µm) of a circular cylindrical feature in the x-y 
plane 

eps_x array of scalars 
size S 

The x-direction value of the permittivity tensor for each box 
or cylinder in a layer. 

eps_y array of scalars 
size S 

The y-direction value of the permittivity tensor for each box 
or cylinder in a layer. 

eps_z array of scalars 
size S 

The z-direction value of the permittivity tensor for each box 
or cylinder in a layer. 

mu_x array of scalars 
size S 

The x-direction value of the permeability tensor for each box 
or cylinder in a layer. 

mu_y array of scalars 
size S 

The y-direction value of the permeability tensor for each box 
or cylinder in a layer. 

mu_z array of scalars 
size S 

The z-direction value of the permeability tensor for each box 
or cylinder in a layer. 

sig_x array of scalars 
size S 

The x-direction value of the conductivity (absorption/gain 
parameter) tensor for each box or cylinder in a layer. 

sig_y array of scalars 
size S 

The y-direction value of the conductivity (absorption/gain 
parameter) tensor for each box or cylinder in a layer. 

sig_z array of scalars 
size S 

The z-direction value of the conductivity (absorption/gain 
parameter) tensor for each box or cylinder in a layer. 
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material array of strings 
size S 

String variable that names the material used in each geometric 
shape in a region.  This string variable is used in calling a 
function that defines the permittivity, permeability, 
absorption/gain properties of a box or cylinder. 

nonlinear array of logical 
variables of size 

S 

A logical variable that defines whether or not a particular 
electromagnetic/geometric feature possesses non-linearity.  
Material non-linearity in RCWA computations are modeled 
by an iterative harmonic balancing technique [156]. 

 

Before filling the above data structures, which is explained in the following sections, individual 

geometric shapes/electromagnetic materials that are independent of the nature of the transverse 

or longitudinal slicing performed are defined in the following array of “geometricshape” data 

structures of size regions, where each element of the array can be an array of size 

“number_of_features,” having the following potential fields: 

 

geometricshape 
left scalar Left-hand side (negative x-direction) boundary for a 

rectangular box, radial bend or annular bend feature. 
right scalar Right-hand side (positive x-direction) boundary for a 

rectangular box, radial bend or annular bend feature. 
front scalar Front side (negative z-direction) boundary for a 

rectangular box, radial bend, annular bend, or xy-cylinder 
feature. 

back scalar Back side (positive z-direction) boundary for a rectangular 
box, radial bend, annular bend, or xy-cylinder feature. 

top scalar Top side (positive y-direction) boundary for a rectangular 
box, radial bend, annular bend, or xz-cylinder feature. 

bottom scalar Bottom side (negative y-direction) boundaries for a 
rectangular box, radial bend, annular bend, or xz-cylinder 
feature. 

radius scalar Radius for a circular xy-cylinder, circular xz-cylinder, and 
1st-4th quadrant radial bend or annular bend. 

inner_radius scalar Inner radius for a circular 1st-4th quadrant annular bend. 
outer_radius scalar Outer radius for a circular 1st-4th quadrant annular bend. 

x_radius scalar X-direction major/minor radius for an elliptical cylinder 
y_radius scalar Y-direction major/minor radius for an elliptical cylinder 
z_radius scalar Z-direction major/minor radius for an elliptical cylinder 
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segments scalar Number of longitudinal segments used in approximating a 
continuously varying longitudinal geometry used in 
constructing geometric shapes for Geometric Bounding 
Toolbox computations. 

x_center scalar X-location of the center for a rectangular box, radial bend, 
annular bend, or cylindrical feature. 

y_center scalar Y-location of the center for a rectangular box, radial bend, 
annular bend, or cylindrical feature. 

z_center scalar Z-location of the center for a rectangular box, radial bend, 
annular bend, or cylindrical feature. 

left_bezier 1D-vector A real-valued vector of scalar values used in defining the 
control points of a Bezier curve for a left hand side 
(negative x-direction) boundary. 

right_bezier 1D-vector A real-valued vector of scalar values used in defining the 
control points of a Bezier curve for a right hand side 
(positive x-direction) boundary. 

top_bezier 1D-vector A real-valued vector of scalar values used in defining the 
control points of a Bezier curve for a top side (positive y-
direction) boundary. 

bottom_bezier 1D-vector A real-valued vector of scalar values used in defining the 
control points of a Bezier curve for a top side (positive y-
direction) boundary. 

intersectplane 1D-vector A real-valued vector that defines an inequality for a 
hyperplane and half-space that will cut a previously 
defined structure which is defined in the form used for the 
Geometric Bounding Toolbox. 

material string A string variable that defines the type of material utilized 
for a particular electromagnetic/geometric feature. 

nonlinear logical A logical variable that defines whether or not a particular 
electromagnetic/geometric feature possesses non-linearity.  
Material nonlinearity in RCWA computations are modeled 
by an iterative field convergence/spatial grid technique 
[156]. 

 

E.2.1 Longitudinal Slicing Routines 

Upon defining all of the “geometricshape” data structures that are located within a given 

“region,” these geometric shapes must then be processed into a stair-cased set of lamellar layers 

whose material properties are longitudinally invariant within each layer.  The method utilized to 

perform this processing can be arbitrarily generic and capable of handling any given continuous 
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or discrete structure, or can be made specific to take advantage of efficiencies that may be gained 

by exploiting particular structural symmetries or material variations.   

For example, in a region containing continuously varying S-bend waveguide geometry, 

as shown in Figure E.2 (a), longitudinal slicing may consist of splitting the S-bend into a number 

of layers having equal thicknesses or a more specific algorithm that varies the thickness based on 

the longitudinal position of the S-bend interfaces at various transverse locations.  For the dual 

grating coupler, the layer slicing performed within a longitudinal unit cell depended on the 

relative locations of the binary etching interfaces for both a superstrate and substrate grating 

within a longitudinal supercell period.  Similarly, for a photonic crystal waveguide, shown in 

Figure D.2 (b), the elementary longitudinal unit cell of a region can be sliced into layers based on 

user defined layer thickness choices, or the layer thicknesses can be calculated based on the 

relative locations of the holes and a maximum/minimum layer thickness criterion.  Depending on 

the nature of the structure geometry, this longitudinal layer slicing can be either completely 

decoupled from the required transverse layer slicing, as in the case of modeling butt coupled 

straight waveguide segments, weakly coupled to the required transverse layer slicing, as is the 

case for the dual grating structure, or strongly coupled to the required transverse layer slicing, as 

is the case for any continuously varying geometric shapes. 

After performing all necessary longitudinal slicing within a given region, all of the layer 

thickness values are then compared to one another in an effort to find nearly identical layer 

thickness values.  If two layers are found to have thickness values that are within the defined 

“geometric_tolerance,” then these two layer thickness values are set equal to one another.  This 

step is necessary for two reasons.  First, the creation of scattering matrices requires both the 

properties of a layer’s eigenmodes as well as a layer’s thickness.  If two layers were to have 
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exactly the same eigenmodes, but had slightly different thickness values (even on the order of 

machine precision), then they would have different scattering matrices.  By setting equal two 

layer thickness values that are within the value of “geometric_tolerance,” the total number of 

scattering matrices that must be calculated can be minimized.  Second, by setting equal all layer 

thickness values that are within a value of “geometric_tolerance,” then any longitudinal 

symmetry that is present in a given “region” elementary unit cell can be maintained.  Doing so 

allows for the exploitation of symmetry that minimizes memory storage requirements for unit 

cell, region cell, and section cell scattering matrices.  Upon completion of the longitudinal slicing 

routines, most of the longitudinally dependent variables within a “region” data structure are 

filled, including “region.unit_cells”, “region.reg_cells”, “region.slices”, and “region.slice.d”.  

E.2.2 Transverse Slicing Routines 

Once all of the longitudinal slicing routines have completed, the next step in pre-

processing the geometric/material data is to fill the remainder of the fields of in the “region” data 

structure, including all of the fields in the “region.slice” data structure.  Within any given slice 

the nature of fields to be filled depends on the type of diffraction/waveguiding problem to be 

solved (TE, TM, conical, two-dimensional) as discussed at the beginning of this section.  

In the case of “twodimensional” diffraction problem where an “inverse” coupling 

coefficient expansion occurs, “TE,” “TM,” or “conical” problem, the routines for performing 

transverse slicing of geometric/material objects into rectangles involves first collecting the 

location of all transverse material interfaces from every “geometricshape” located within a layer 

and then testing the material values within any two interfaces against all of the 

“geometricshapes” in that layer.  Here again, the use of the “geometric_tolerance” variable is 
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important due to the possibility of creating rectangles having transverse widths on the order of 

machine precision.  In the case where a rectangle having a width on the order of machine 

precision is created, then this rectangle is eliminated from the set of rectangles within the layer.  

Furthermore, the widths of rectangles are tested for symmetry about the origin of the coordinate 

system.  If the widths of two rectangles are found to be transversely symmetric within the value 

of “geometric_tolerance,” then these two width values are set equal to one another.  Similarly, if 

a central rectangle is suppose to be centered at the origin, but due to numerical round-off errors 

has been given a center value that is on the order of machine precision, then this center value is 

set to zero.  Doing so maintains symmetry properties in the coupling coefficient expansion 

matrices to be defined later.   

In the case of a “twodimensional” diffraction/waveguiding problem that involves a 

“regular” coupling coefficient expansion, the fields of the “region.slice” data structures and 

“region.slice.feature” data structures are filled using a variety of different methods.  If a 

particular “geometricshape” is a cylinder or rectangle that is longitudinally invariant between 

multiple layers, then these fields are filled by copying values directly from the relevant 

“geometricshape” data structure into the appropriate field.  If a particular “geometricshape” is a 

longitudinally varying object, then the necessary geometric processing routines are performed, 

be they Geometric Bounding Toolbox [173] routines or routines written by the present author.  If 

geometric processing is necessary for these longitudinally varying “geometricshape” data 

structures, then once again the widths of all rectangles created are tested against the 

“geometric_tolerance” parameter and the location of any centrally located shapes are checked for 

a non-zero center location that is less than the value of “geometric_tolerance.” 
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E.2.3 Layer comparison/Labeling system 

Once all of the initial transversely and longitudinally dependent fields within a “region” 

data structure are filled, the next step in the geometric/material data pre-processing is to perform 

a comparison of every layer in the system to determine the total number of eigenmode problems 

that are to be solved.  Every unique eigenmode problem is to be given a different label, which in 

this setting is called an “eigenlabel.”  By determining all of the layers that have the same 

“eigenlabel,” the total number of eigenmode problems to be solved can be minimized, which is 

useful for maximizing the total problem’s computational efficiency.  The efficiency with which 

this layer comparison/labeling can be performed depends considerably upon the nature of a 

device’s geometric/material layout, but can be performed in the most generic case by comparing 

every element of every data structure field, exclusive of the thickness field “d” of the 

“region(reg).slice(slc)” data structure, to every other element of that same array data structure.  

When the geometry/material distribution allows for the exploitation of known information 

compression, as in the case of the dual grating structure whose dual binary etching creates a 

distinct pattern, the assignment of these “eigenlabels” can be performed in a much more efficient 

manner.  In this case, the “etched_layers_known” logical variable is set to be true and this 

variable acts as a switch statement to run a more efficient assignment function tailored to a 

specific device.  Finally, a cell array variable is created, “eigenlabel,” where each element of the 

cell is a vector that contains a value of “region.slice.eigenlabel,” as well as the label for each 

associated “region” and “region.slice.”  The size of this array is equal to the total number of 

locations within the entire model at which field harmonic amplitudes will be calculated.  The size 

of this array takes into account all values of “plotunitcells,” “plotslices,” and “internalslices” that 

are present in each “region.” 
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After assigning all “eigenlabels”, a similar layer comparison routine is performed 

involving the thickness and “eigenlabel” of every layer in the system to assign each layer a 

“scatterlabel” value.  Upon assigning all “scatterlabel” values, the collection of scatterlabels 

within every elementary unit cell in each “region” is used to assign unique “symunitscatterlabel” 

and “asymunitscatterlabel” values depending upon a unit cell’s longitudinal symmetry or 

asymmetry.  These “symunitscatterlabel” and “asymunitscatterlabel” values are then used with 

each “region’s” number of “unit_cells” to determine unique “symregscatterlabel” and 

“asymregscatterlabel” values.  Similarly, these “symregscatterlabel” and “asymregscatterlabel” 

values are combined with each “region’s” number of “reg_cells” to determine unique 

“symsectionscatterlabel” and “asymsectionscatterlabel” values.  Upon completing the 

assignment of all scattering matrix labels, a cell array is created, “scatterlabel,” where each 

element of the cell contains two fields.  The first field is the region and slice label of a layer that 

is associated with a particular value of “region.slice.scatterlabel” from 1 to “maxscatterlabel,” 

which is the maximum number of unique individual scattering matrices needed.  Upon 

completing all “scatterlabel” assignments, the geometric pre-processing portion of the code is 

completed, and the “solver” portion of the code can begin.   

E.3 Modal Solver and Scattering Matrix Assignment 

In beginning the “solver” portion of the code, the first step is to determine the necessary 

tangential phase components for each periodic direction present in the system as well as 

longitudinal direction, layer eigenmodes.  For uniform, homogeneous materials, the equations 

described in sections 2.3.1 and 3.1.1 can be utilized to determine both the tangential and 

longitudinal phase components.  For inhomogeneous periodic layers, the process of determining 
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layer eigenmodes begins by determining material coupling coefficients, as described in 

Appendix C, for the spatial harmonic distributions described in Appendix B.  These tangential 

phase expansions and material coupling coefficient expansions are then incorporated into the 

coupled wave modal expansions described in section 3.1, where any symmetries that are present 

are exploited as described in Appendix D.  After solving for all of the eigenvectors and 

eigenvalues associated with each “region.eigenlabel” value from 1 to “maxeigenlabel,” each of 

the individual layer scattering matrices are then calculated using the methods described in 

section 4.3.4, then each of the unit cell, region cell, and section cell scattering matrices to be 

created are calculated using the Redheffer star product operations defined in section 4.3.2.  

Finally, the scattering matrices needed to match the input and output halfspace regions to a 

standard vacuum, zero-thickness, homogeneous region are calculated using the single interface 

scattering matrix definitions from section 4.3.1. 

E.4 Wave Propagation in Layered Media 

After defining all single-layer, unit-cell, region-cell, section-cell, and input/output-

interface scattering matrices, modeling of energy propagation through the entire system can be 

performed by choosing the desired input mode(s) and then piecing together scattering matrices to 

calculate the field harmonic amplitudes throughout the device model.  The manner in which 

cascading of field harmonic amplitudes occurs has a profound effect on the efficiency of an 

eigenmode-expansion/S-Matrix code.  Exploiting the ideas of domain decomposition and binary-

based Redheffer star-product multiplication [19, 20] can greatly enhance the computational 

efficiency of the code, especially when dealing with longitudinally periodic devices or when 

piecing together sections having longitundal periodicities or symmetries with sections that do not 
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possess either of these properties.  The basics of both the domain decomposition and binary-

based multiplication have been explained elsewhere, but in the present implementation, the code 

is required to handle both of these aspects in a very generic fashion.  This implementation 

requires that any given longitudinal unit cell can be either longitudinally symmetric or 

asymmetric and can contain an arbitrary number of layers.  The idea of domain decomposition is 

utilized initially to break up a device model into separate “regions,” as was shown in Figure E.1 

and is shown more generically in Figure E.4 below. 

 

Figure E-4  A sketch showing the various means of domain decomposition utilized in the 
multilayer wave propagation/scattering matrix methods utilized in this study.  The scattering 
matrix codes utilized in this study exploited multiple levels longitudinal periodicity, where 
conglomerates of both symmetric and asymmetric cells could be pieced together into a single 
structure as shown. 

 
The field harmonic amplitudes are then calculated using equations 4.3.13 and 4.3.14 at the 

longitudinal boundaries of each region.  Within each region, the field harmonic amplitudes are 

then calculated (optionally) at the boundaries of each section cell, taking advantage of binary 

based star-product multiplication if periodicity is present.  Similarly, within each section cell, the 
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field harmonic amplitudes are calculated (optionally) at the longitudinal boundaries of each 

region cell, once again taking advantage of binary based star-product multiplication if periodicity 

is present.  Then within each region cell, the same process is performed at the boundary of each 

unit cell.  Once the field harmonics are calculated at the boundary of each longitudinal unit cell, 

the process can then continue (optionally) to calculate the field harmonic amplitudes at the 

boundary of each layer within the unit cell.  At this point, even in the presence of a longitudinal 

unit cell, the process of calculating field harmonic amplitudes internal to a unit cell requires the 

use of left and right hand side scattering matrices that are asymmetric, and therefore do not have 

the memory storage advantages of scattering matrices for symmetric unit cells.  Once the field 

harmonic amplitudes have been determined at the interfaces of every desired layer in the system, 

the process can then continue (optionally) to calculate field harmonic amplitudes internal to a 

periodic layer using the method described by equation 4.3.24.  The option of whether or not to 

calculate field harmonic amplitudes at any of the interfaces described above within any or all 

regions is controlled by the “calculateFieldHarmonicAmplitudes,” 

“calculateOnlyInputOutputFieldHarmonics,” “plotunitcells,” “plotslices,” and “interalslices” 

parameters.  The choice of how many total longitudinal interfaces are of interest has a very 

important effect on the overall computational efficiency of the code.  In an effort to improve this 

efficiency, both the ideas of domain decomposition and binary-based star-product multiplication 

coulf be utilized to leverage the benefits of task parallelism in increasing computational 

efficiency in a multi-processor computational environment. 
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E.5 Processing the Field Harmonic Amplitudes/Calculating Fields and Power 

Once all of the desired field harmonic amplitudes have been calculated at every layer 

desired in the device model, these field harmonic amplitude values can be used to determine both 

the modal reflection and transmission percentages in the input and output half-space regions as 

well as the field and power distributions throughout the entire multilayered system.  Determining 

the field and power distributions requires the creation of a transverse spatial grid to be utilized 

for every longitudinal layer of interest.  While there is no absolute requirement that this grid is 

the same for every layer, in the present case a single spatial grid is utilized for every layer.  

Calculating the electric and magnetic fields at a single longitudinal location requires the use of 

equations 3.1.1 and 4.3.14, if the location is a homogeneous zero-thickness layer, or equations 

3.1.11 and 4.3.25, if the location is a heterogeneous periodic layer.  In the presence of transverse 

symmetries, the exponential terms in equations 3.1.1 and 3.1.11 can be simplified into 

trigonometric expressions that operate on a reduced number of spatial harmonics, as described in 

Appendix B, as well as a reduced number of spatial grid points that exploit various mirror 

symmetric/anti-symmetric properties.  Once the discretely sampled electric and magnetic field 

distributions are calculated, these sampled values can be combined using the Poynting theorem 

to determine the transverse and longitudinal power flow at every point on the spatial grid.  In 

performing these computations in an interpreted language such as MATLAB®, the concept of 

“vectorization” of code increases the efficiency of these grid computations tremendously, 

whereas using loops to fill the grid in a code that is written directly in a compiled language like 

C, C++, or Fortran would be very efficient given proper nesting of the operations to be 

performed using each of the various spatial grid loops.  As the code used in this study was 
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written entirely in MATLAB®, proper vectorization of the code, proper nesting of spatial grid 

loops, and minimization in loop usage were critical for computational efficiency. 

E.6 Post-Processing of Calculated Fields and Power 

After calculating the modal reflection/transmission values and field/power distributions 

there are a number of potential data post-processing issues that must be handled.  The most 

obvious issue is visualization of the data.  There is an entire sub-field of computer science 

devoted to computer graphics as well as software packages devoted exclusively to the 

visualization of numerical data, so a discussion of this field is not the present purpose.  In this 

study, the graphics capabilities of MATLAB® are used for visualizing all of the data.  The issues 

involved in visualizing the fields and power flow, especially for the dual grating coupler device, 

involved being able to simultaneously view the power flow magnitude and direction over the 

entire macro-scale of the device (using the “surf” function) while also having the ability to 

zoom-in on nano-scale variations in the field and power distributions and being able to overlay 

these values on a contour plot of the device’s permittivity layout (using the “contour” function).  

The graphics capabilities of MATLAB® on the desktop handled these issues quite well, but due 

to the amount of memory required to calculate the field and power distributions as well as 

display the required graphics, these steps had to be performed in separate MATLAB® sessions 

on the one 32-bit processor with 4 GB of RAM that was available.   

A second issue that was encountered post-field/power processing was the calculation and 

summation of power flow in and out of a defined box that was placed within the computational 

domain.  Summation of the power on the input and output interfaces was a straightforward 

numerical integration that could be performed using Riemann integration on an equally spaced 
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spatial grid (due to the choice for the transverse spatial grid utilized), but for the two sides of the 

box along the longitudinal dimension, the grid was a non-uniformly spaced grid.  For these two 

interfaces, a non-uniformly sampled trapezoidal rule numerical integration technique was 

utilized (“trapz” in MATLAB®).  When the power around the box sums to nearly 100%, the 

computation then possessed conservation of energy to within sampling accuracy.  This 

conservation of energy is a necessary, but not necessarily sufficient, condition for accuracy of the 

code.  The accuracy of a given RCWA model could then be tested by repeating the computation 

with more spatial harmonic basis functions, and observing convergence in the power calculations 

or by testing the obtained values against other computational techniques (such as the eigenmode 

expansion method used in CAMFR [174], an FEM code, or an FDTD code).   

A final post-field/power processing issue is the determination of the angular spectrum of 

the field diffracted from the dual grating coupler device, as discussed in section 8.2.5.    

Determination of this angular spectrum required the use of a discrete Fourier transform 

calculation on a non-regularly spaced spatial grid.  In this case, the same non-uniformly spaced 

trapezoidal rule numerical integration technique was utilized for performing both the forward 

and inverse discrete Fourier transforms.   

E.7 Integrating Variable Loops and Optimization Routines 

Once the “solver” has been fine-tuned for best performance and all post-processing issues 

have been decided upon, the next step in structuring the computer aided design tool is to 

integrate all necessary variable loops into the code.  While the most simplistic method of 

performing calculations over variable wavelengths, angles, polarizations, number of basis 

functions, geometric variables, and other parameters would be to wrap the entire code in the 
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loops for each individual variable, this method is also the most inefficient means of achieving the 

desired outcome.  By placing the loops only around those sections of code that are immediately 

dependent upon a given variable, and extracting all sections of code that are not dependent upon 

a looped variable, the efficiency of the code can be optimized for spectral calculations over any 

desired variable.  In cases where different sections of code may or may not be dependent upon a 

loop variable, given other problem parameters, then conditional statements must be added to the 

code to handle each possible case.  An example of this scenario is the inclusion or exclusion of 

material dispersion properties within a looped wavelength, spectral calculation.  If material 

dispersion is turned off, then the entire geometric processing section of the code can be placed 

outside of the variable wavelength loop, but if material dispersion is turned on, then the 

assignment of material properties to a given geometry should be placed within the wavelength 

loop.  In either case, all elements of the “solver” are placed within the wavelength loop, and are 

repeated for every value of “lambda.”  The same types of issues can occur with every other 

variable over which a spectral parameter scan may be performed. 

In order to handle collection of spectral data over a number of potentially different 

variable parameters, while hopefully avoiding the possibility of “code bloat” (i.e. a code whose 

number of lines grows unnecessarily long) as much as possible, a very convenient solution is to 

exploit methods of string processing.  In MATLAB®, these methods make use of the “eval” and 

“run” commands to create new code at run-time.  The “eval” function accepts string arguments 

whose contents are in the form of a function.  The function contained in this string is then 

processed as a normal function.  By building a string whose contents depend upon the variables 

over which one is looping, code that is very flexible and reusable in a variety of different 

situations can be written.  The desired output variables could be grouped with iterator strings that 
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were dependent upon the particular variables over which loops were occurring.  A similar 

argument applies to the use of the “run” command in MATLAB®.  The “run” command accepts 

a string argument that specifies the absolute path to a particular “.m” script file.  By making use 

of the “run” command, separate scripts for processing transversely dependent and longitudinally 

dependent geometric variables could be written for different devices, while keeping the main 

computational engine file unchanged.  By allowing the user to create code at run-time, 

MATLAB®, and other scripting languages like Python, allow for the creation of very compact, 

flexible, and re-useable code.  In both cases, the expensive parts of a code, in terms of memory 

requirements and more so for long run times, can be written in a lower level language, like 

C/C++ or Fortran, and then called by the scripting language.  In such a case, the scripting 

language acts as the “glue” connecting all of the various parts of the computational workflow. 

 When all necessary variable loops have been integrated into the code, the task of 

optimizing either a single output variable value or optimizing the spectral response of a 

parameter scan can be performed by integrating the entire code with a desired numerical 

optimization routine.  In doing so, similar issues must be considered to those involved in 

integrating variable loops.  For a multi-parameter optimization problem, the optimization routine 

should be placed only around that section of code upon which the routine’s inputs are dependent.  

By making various segments of code as orthogonal and flexible as possible, this integration can 

be as efficient and reusable as possible.   
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