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ABSTRACT

The realization of wavelength scale and sub-wavelength scale fabrication of integrated
optical devices has led to a concurrent need for computational design tools that can accurately
model electromagnetic phenomena on these length scales. This dissertation describes the
physical, analytical, numerical, and software developments utilized for practical implementation
of two particular frequency domain design tools: the modal method for multilayer waveguides
and one-dimensional lamellar gratings and the Rigorous Coupled Wave Analysis (RCWA) for
1D, 2D, and 3D periodic optical structures and integrated optical devices. These design tools,
including some novel numerical and programming extensions developed during the course of
this work, were then applied to investigate the design of a few unique integrated waveguide and
grating structures and the associated physical phenomena exploited by those structures.

The properties and design of a multilayer, multimode waveguide-grating, guided mode
resonance (GMR) filter are investigated. The multilayer, multimode GMR filters studied consist
of alternating high and low refractive index layers of various thicknesses with a binary grating
etched into the top layer. The separation of spectral wavelength resonances supported by a
multimode GMR structure with fixed grating parameters is shown to be controllable from coarse
to fine through the use of tightly controlled, but realizable, choices for multiple layer thicknesses
in a two material waveguide; effectively performing the simultaneous engineering of the
wavelength dispersion for multiple waveguide grating modes. This idea of simultaneous
dispersion band tailoring is then used to design a multilayer, multimode GMR filter that
possesses broadened angular acceptance for multiple wavelengths incident at a single angle of

incidence.
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The effect of a steady-state linear loss or gain on the wavelength response of a GMR
filter is studied. A linear loss added to the primary guiding layer of a GMR filter is shown to
produce enhanced resonant absorption of light by the GMR structure. Similarly, linear gain
added to the guiding layer is shown to produce enhanced resonant reflection and transmission
from a GMR structure with decreased spectral line width.

A combination of 2D and 3D modeling is utilized to investigate the properties of an
embedded waveguide grating structure used in filtering/reflecting an incident guided mode. For
the embedded waveguide grating, 2D modeling suggests the possibility of using low index
periodic inclusions to create an embedded grating resonant filter, but the results of 3D RCWA
modeling suggest that transverse low index periodic inclusions produce a resonant lossy cavity
as opposed to a resonant reflecting mirror.

A novel concept for an all-dielectric unidirectional dual grating output coupler is
proposed and rigorously analyzed. A multilayer, single-mode, high and graded-index, slab
waveguide is placed atop a slightly lower index substrate. The properties of the individual
gratings etched into the waveguide’s cover/air and substrate/air interfaces are then chosen such
that no propagating diffracted orders are present in the device superstrate and only a single order
is present outside the structure in the substrate. The concept produces a robust output coupler that
requires neither phase-matching of the two gratings nor any resonances in the structure, and is
very tolerant to potential errors in fabrication. Up to 96% coupling efficiency from the substrate-

side grating is obtained over a wide range of grating properties.
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CHAPTER 1 INTRODUCTION

As micro-scale and then nano-scale fabrication techniques have been introduced and
refined, the promise of optical devices having feature sizes on the same scale as or smaller than
the wavelength of light has gone from pure theoretical conceptualization to physical reality. This
miniaturization of device size has made possible the potential duplication of the successes that
have been achieved in integrated electronic circuits, where numerous functionalities are provided
by devices on a single chip, with integrated photonic devices possessing similar capabilities.

As society pushes towards wavelength scale and subwavelength scale optical
components, there has been a concurrent need for design tools that accurately represent the
physical phenomena occurring at these diminishing length scales. While all of classical
electromagnetism can be described by Maxwell’s famous set of equations [1], it is the sources
and materials (with their respective geometries) which are to be modeled using these equations
that determine the complexity needed and difficulty level in building the mathematical tools
necessary for useful designs. Whereas classical lens design may only require a geometrical ray
tracing for an acceptable design solution or a weakly guiding waveguide or a phase grating may
only require a scalar approximation of the wave equation [2-4], nano-scale optical devices often
require a full rigorous treatment of Maxwell’s equations for an acceptably accurate solution to
the wave propagation design problem.

Traditionally, two of the main building blocks for passive integrated optical devices have
been piecewise continuous index-guided waveguides, consisting of two or more materials where
light is guided by a core with a relatively high-magnitude permittivity surrounded by a material

having lower magnitude permittivity, and diffraction gratings, consisting of structures having



periodic variations of high and low permittivity materials. Devices consisting of a combination
of these building blocks provide for a wide variety of functionalities ranging from simple light
pipes and channels, to wavelength filters, to dispersion compensators and enhancers, to
interferometers, to beam shapers/splitters/combiners, to sensors of all kinds, and many other
devices [4-8].

While the development of both waveguide theory and grating theory share common
roots, namely in Maxwell’s equations of electromagnetism, differences in device geometries and
differences in required boundary conditions between the two types of structures have led to a
variety of techniques for determining modal/homogeneous solutions and wave
propagation/particular solutions for the corresponding systems of equations. Despite the variety,
it was not until this decade, apart from generic methods that do not fully exploit device
geometry, that techniques were developed which specifically linked waveguide and grating
modeling in a single method that could reliably and efficiently handle either type of device [9].
While it has been pointed out that there is no “silver bullet”, no “one size fits all” technique [10],
for efficiently modeling all types of integrated optical devices, the enhancement of the Rigorous
Coupled Wave Analysis (RCWA) technique [7, 11-15] with the inclusion of Perfectly Matched
Layer (PML) boundary conditions [16] has extended what is probably the most extensively used
tool for modeling infinitely periodic diffraction gratings into a tool for efficiently modeling many
types of problems involving finite waveguides.

In the course of this work, some recently extended numerical techniques were
implemented for modeling finite waveguides using a bi-directional eigenmode expansion
method, which in this case involved using RCWA/PML as the eigenmode solver, and either an

enhanced transmittance matrix [13] or a scattering matrix method [17, 18] for mode matching



and wave propagation. Further enhancements and extensions to the implementation of these
methods [19] developed during the course of this work were added for modeling some new
variations on integrated waveguides and gratings that were the physical focus of our study. This
dissertation provides a thorough description of the mathematical and numerical development
needed to model integrated waveguides and gratings in one, two, or three dimensions using
RCWA as well as an explanation of how to go about translating the derived equations for
numerical solutions into efficient and flexible computer codes that can be used for a variety of
different material property distributions and input sources. These tools are then applied to some
unique nano-scale integrated waveguide/grating devices whose overriding themes are enhanced
functionality over conventional devices due to integration of components on a single platform,
and material geometries that provide a realistic potential for fabrication using current fabrication
techniques. For each of the devices studied, the desired functionality of the device is described
in terms of the relevant physics involved in device operation and relevant geometric and material
tolerances required for desired device performance.

As much of the design work undertaken in this study revolves around understanding and
manipulating the properties of a waveguide or grating’s eigenmodes, Chapter 2 provides the
development of the transcendental equations which may be used to solve for the eigenmodes of a
simple three layer slab waveguide, an anisotropic multilayer slab waveguide, and binary lamellar
diffraction gratings. This chapter also provides a discussion of the various types of modes that
can be supported by these structures, as well as the effects that the choice of boundary
conditions, and solution method has on the solutions to these systems of equations.

Chapter 3 describes the Rigorous Coupled Wave Analysis (RCWA) method for modeling

transversely infinite diffraction gratings and finite waveguides. A development is presented of



the equations necessary for using RCWA in determining eigenmodes in homogeneous regions of
space, as well as one, two, and three dimensionally periodic regions of space. Use of these
modes for determining diffraction efficiencies from one and two dimensional infinite gratings are
discussed, as well as the means for incorporating Perfectly Matched Layer (PML) boundary
conditions for modeling transversely finite waveguides.

Chapter 4 develops the tools necessary for modeling wave propagation in layered media.
The concept of mode matching between layers having differing eigenmodes is discussed as well
as four separate means of relating input and output waves at an interface between two distinct
layers. The two methods utilized during the course of this work are then discussed more
thoroughly, the enhanced transmittance matrix and the scattering matrix. The means of
modeling the propagating energy between separate layer’s eigenmodes as well as through a
generic multilayer system are presented in detail. For the scattering matrix technique, in
particular, use of the Redheffer star-product operation [16, 19, 20] allows for a numerically
stable means of calculating the field harmonic amplitudes either internal or external to the
multilayered system. This chapter concludes with a novel computational enhancement to the
RCWA/Scattering-Matrix technique introduced during the course of this work, zero thickness
homogeneous layers [19].

In the following chapters, the numerical tools that are developed in Chapters 2 through 4,
as well as Appendices B through E, are used to design a few unique waveguide/grating structures
as well as study the physical phenomena governing their operation. In Chapter 5, the concept of
a multilayer, multimode, guided mode resonance filter is studied. This inquiry begins with a
brief discussion of the history of resonant gratings and the theory of their operation. This

historical introduction leads into a discussion of the fundamental physics involved in resonant



gratings, their mode structure and coupling properties. Next, a mixture of effective medium
theory [21] and the multilayer waveguide theory from Chapter 2 is utilized for modeling the real-
valued properties of the eigenmodes in a multilayer, multimodal resonant grating structure, and
is utilized for studying the control of resonance separation in a multilayer multimode GMR filter.
Making use of scattering matrix methods [22, 23] for modeling the complex-valued dispersion
properties of resonant grating structures, the concept of coupling an input plane wave to two
modes at a dispersion band edge resulting in broadened angular acceptance is expanded to the
case of multiple wavelengths and oblique incidence. In Chapter 6, the effects of incorporating a
linear gain or linear loss within the primary guiding layer of a waveguide grating guided mode
resonance filter are studied. Chapter 7 explores the potential for integrating transverse, low-
index, periodic inclusions as an embedded waveguide grating filter/mirror. In Chapter 8, the
concept of an all dielectric, unidirectional, dual grating output coupler is proposed and rigorously
analyzed in terms of its separate components as well as a unified whole device. The output
coupling performance of this structure is shown to be very robust in that it does not depend on
any grating resonances and is tolerant to potential fabrication errors in numerous grating
parameters. Conclusions and potential for future work is then presented in Chapter 9.

Appendix A provides some of the electromagnetic background upon which eigenmode
expansion modeling is grounded. Appendix B through D provide some of the implementation
details needed for setting up the coupled wave modal matrix equations described in Chapter 3.
Appendix B describes the creation of spatial harmonic grids in one, two, and three dimensionally
periodic systems [24]. Appendix C presents various means of determining the permittivity and
permeability dependent coupling coefficient matrices in one, two, and three dimensions [10, 25-

32]. Appendix D discusses the exploitation of symmetries present in one and two dimensionally



periodic systems [33-35] that can decrease the numerical size, and hence increase the
computational efficiency, of certain eigenmode problems. Appendix E ties the entire
computational process together by describing the workflow of an RCWA computation from the
initial definition of geometry, material, and input wave properties through to post-processing of

output data.



CHAPTER 2 MODAL SOLUTIONS IN SLAB WAVEGUIDES AND
DIFFRACTION GRATINGS

In order to go about the process of designing integrated optical components, it is first
necessary to develop the fundamentals of electromagnetic wave propagation in continuous or
discrete, and uniform or periodic media. In this chapter, a review is provided for the equations
describing how light propagates through materials having these varied geometries. By starting
from a derivation of the time harmonic Maxwell’s equations, boundary conditions, and Poynting
Theorem , from Appendix A, an analytical derivation is provided for the transcendental
equations governing the eigenmodes of simple three-layer TE and TM slab waveguides [36] in
section 2.1.1, and for an arbitrary anisotropic multilayer TE and TM slab waveguides are
presented in section 2.1.2. Orthogonality of the modes within a slab waveguide is established in
section 2.1.3. Section 2.2 provides a similar development of solving for the eigenmodes in a
diffraction grating, with the Rayleigh expansion of plane waves in a homogeneous medium [37]
presented in section 2.2.1 and the one-dimensional grating modal problem presented in Section
2.2.2. Section 2.3 discusses the issue of how complex boundary conditions can be helpful in
solving for the properties of all the various types of modes that can be determined using these
transcendental equations. Section 2.4 discusses how to obtain direct numerical solutions to these
transcendental eigenvalue equations by means of root-searching algorithms, whose positive and
negative issues are discussed, and finally, the alternative approach utilized in this study is

introduced.



2.1 Eigenmodes in Slab Waveguides

Electromagnetic waveguides are formed by a spatial variation of material properties
(permittivity, permeability, conductivity) that cause energy to be concentrated in, and bound by,
a certain region of space [6, 36, 38]. While this spatial variation may be continuous or discrete,
in this section we consider only discrete spatial variations in electromagnetic material properties.

Having properly derived the governing forms of Maxwell’s equations at an interface
between two separate media, an extension of these concepts to two or more interfaces allows for
the possibility of confining energy within the bounds of those interfaces and for the creation of a
waveguide. This section provides a development of the eigenmodes within a passive

dielectric/magnetic waveguide, and the orthogonality relationships between these modes.

2.1.1 Eigenmode Expansion in Three-layer Slab Waveguides

One of the simplest types of wave guiding structures consists of a finite thickness slab of

permittivity & ;, and permeability ,,, encased by semi-infinite substrate and superstrate layers

having permittivities, & and ¢ and permeabilities, 4, .. a0 Ly prae » @S ShOWD

substrate superstrate

in Figure 2-1.

superstrate! Saperstrate » Mouperstrte

Film: Efilm » Lifilm dai

oubstrate! Sahsteate Heahstrate

Figure 2-1 A sketch showing a 3-layer asymmetric slab waveguide.



Expanding the time-harmonic Maxwell’s Equations (A.1.19) and (A.1.20) in terms of Cartesian

components:
(A.1.19) (a) (A.1.20) (b)
aaE; - aaEyz — o H, agy - a; L = jo,e E, i
66% - aaiz =—jou,u,H, G‘SIZX - 823[: = jweyé E, 8138
- T B = joseE. s

the component fields within a z- and y- invariant slab waveguide for TE and TM waveguides

may be expressed in terms of simplified Maxwell relationships:

TE (a) T™ (b)
OF oH (2.1.4a)
yo_ yo_
- = JemnH, 5 %k, (2.1.4b)
H =0 E =0 (2153)
y y (2.1.5b)
OF oH (2.1.6a)
Y o _ y o . O
= o H PP LIRS (2.1.6b)
2.1.7a)
E = E = (
=0 =0 (2.1.7b)
OH, OH. 0E, OE. (2.1.82)
oz o ORHEy o o A (2.1.8b)
B ~ (2.1.92)
E. =0 H,=0 (2.1.9b)

For this z-invariant slab waveguide, the time-harmonic electric and magnetic fields may

be expressed as follows:

B(F.1)= E(x, )/

- A 2.1.10
H(F,t)=H(x, y)e’(“”_ﬂz) ( )

Determining the TE and TM eigenvalues, B, for this slab waveguide, involves properly

expressing the x-components of the electric and magnetic fields of (2.1.10) in each region and



properly handling the boundary conditions between fields at the two interfaces of the film. For

the substrate and the superstrate, the equations in (2.1.10) may be rewritten as:

7 — F- +7 ubstraie , J(@t—fz)
Esubstrate (V, t) =F trate€ e TE

substrate

- " 2.1.11)
T Sy (2.1
H substrate (l" > t) =H substrate€ e ™
™ — _ o+ ~Vsup erstrate™ _ J ({Ut - ﬂz)
E superstrate (I" 2 t) =E superstratee e TE 21.12
F] (F t) _ rr+ ~Vsup erstrate™ j(wtfﬁ’z) TM ( M )
superstrate \" 2° ) — * % superstrate e e

where the sign on the decay constant y properly represents a decaying of the fields towards
positive or negative infinity. For fields within the film layer, Equation (2.1.10) may be

expressed as:

Eﬁ[m (_., )_ E;lmemzm(x—d/z f[m 7//m i ot—f) (2113)

r7 _Ag- 7 film x_dfl + }/flm wt ﬂz
Hﬁlm ( ) Hﬁlm e + H/zlm

where the origin of the x-axis is located along the substrate-film interface for a film of thickness
dum. In all of these equations, the following dispersion relations hold between the wavelength 4,
the eigenvalues, f, the decay constants, y, and the individual layer permittivities, &, and

permeabilities, u:

TE (a) T™ (b)
(27[}2 < _ yszub:rrate + IB2 (27[)2 ,U _ yszuhstrute + ﬁz (2' 1 . 14a)
), substrate y,substrate —
j’ ! ! lux,subxtra[e /uz,:ubstrate ﬂ‘ " gx,xubstmte gz,.\‘ubxtrate (2' 1 . 14b)
(27[)2 c - _ ]/_vzuperstmte + ,B2 (27[} ? /,l - _ yszuperslrale + ﬁz (2 1 . 1 58.)
ﬂ‘ et /’l X, superstrate /’l z,superstrate ﬂ’ e X,superstrate gz,xuperstmte (2 * 1 * 1 Sb)
2 2 2 2
(2_7[) e Y P (mj p o T, s’ (2.1.16a)
v film — - L v film — -
/1 /ux,ﬁlm luz,ﬁlm ﬂ” gx,ﬁlm gz,ﬁlm (2 1 ' 16b)

Upon inserting Equations (2.1.11) — (2.1.13) into Equations (2.1.4) — (2.1.9) for TE and T™M

waveguides, equating tangential field components, and solving the determinant of the resulting

10



homogeneous matrix equation, the dispersion relation for the three layer slab waveguide can be

expressed as the following transcendental equation:

y}zlm (y;up _ys'ub)
t h imd im ) — ' ' ’ 211
o (7” . ) }/ﬂzlm + }/sub ysup ( 7)

where for TE waveguides 7' =-— and for TM waveguides y' =
&£

X

/4 l. Once the eigenvalues of

the waveguide have been determined, using the orthogonality properties of the eigenmodes to be
established in section 2.1.3, any field distribution within the waveguide can be expressed as a

weighted sum of the set of eigenmodes supported by that waveguide.

2.1.2 Eigenmode Expansion in Anisotropic Multilayer Slab Waveguides

In order to extend the dispersion relation derived in the previous section to an arbitrary
multilayer slab waveguide, the field equations (2.1.11) and (2.1.12) and dispersion relations
(2.1.14) and (2.1.15) remain unchanged, but an equation of the form (2.1.13) and dispersion
relation of the form (2.1.16) are added for each layer in the slab. In order to derive the dispersion
relation of the multilayered slab, once again a homogeneous matrix equation is created involving
the electric and magnetic field boundary condition equations at each interface of the slab.
Establishing the eigenvalues of this homogeneous equation involves finding the roots of the
homogeneous determinant polynomial. As this is also a transcendental equation, any solutions
must be determined numerically.

Upon inserting equations of the form (2.1.11) — (2.1.13) into the TE and TM sets of z, y,
and time-invariant Maxwell’s equations in (2.1.4) — (2.1.9), and equating tangential field
components, the matrix equation for the multilayer slab waveguide takes a similar form to

following (which is given for a 6 region waveguide):

11



+1 -X, -1 0 0 0 0 0 0 0
w41 0 0 0 0 0 0 0p T Tol
%
0 +1 +X, -X, -1 0 0 0 0 o | |0
0 +4 Ty _x, +1 o o o o offr| |
> ) F; 0
0 0 0 +1 +X, -X, -1 0 0 01 g 0
’ ’ 2 _
0 0 o +2-Ly _x 11 o 0o 0| F | o (2.1.18)
73 3 N
0 0 0 0 0 +1 +x, -Xx, -1 o0o]|Ff 0
0 0 0o 0o o +8- By _x o 41 o5 |°
Vo Vs F, 0
0 0 0 0 0 0 0 +1 +X, -1~ | |,
' ’ L sub_ LY
o 0 0 0 0 0 0 +Zlv_Tix 4
L 7/sub }/sub

where X, =e """ is the exponential decay of a wave propagating through a layer, F* and F~
are either the electric field (TE) or magnetic field (TM) amplitudes for waves propagating toward

the superstrate or substrate respectively, and »’ =L or v’ =7 for TE or TM waveguides

&

respectively. The eigenvalues, S, of this matrix equation are found by solving for the roots of the
polynomial created by setting the matrix determinant equal to zero, or equivalently solving for
the roots of a polynomial created by Gaussian elimination of the matrix equation.

A second means of solving this system of equations, and the one utilized in this study,
involves determining the proper phase shifts at each interface for a wave propagating within a
single layer of the multilayer structure as laid out in the notes by Moharam [39], but similar
means of solving these equations have been derived elsewhere [40, 41]. Here we restate the
equations for the electric and magnetic fields for TE polarized waves propagating in a multilayer

slab structure:

12



COWET

I layers

subztrate

Figure 2-2 A sketch of a multilayer slab waveguide where the origin of the coordinate system is
located at the substrate interface.

Substrate: x <0

- _ +7, x —jiB A
Esubstrate - F e’’’ y
(2.1.19)
r 7 > . 7/0 +7 subX _jﬁz
Hsubstrate = X+ ] ze' e
a)lux 0 a)/’lz 0
N
Cover: x = Zd ;
i=1
— —YNaX =P
superstrate N+1€ e y (2120)
Iy o+ /B I . VNa —InuX =Pz
Hsuperstrate FN+1 X _J zle’""e
WO N1 OH; N+
-l p
N layerS: zdt <X SZ O < x_/i'0n17Substmteiside,p < dfmm;vubstrateiside,p
i=l1 i=1
B, (Frerts) g pretnilong
filmp — + y (2.1.21)
I:[film,p N { ﬂ (F_ 71’( ]) + Fp*e_HX)Q - (Fp_eyp (x_dp) N F;e_}/px )f}e_jﬂz
[0)TR WU,

The equations in 2.1.21 for the electric and magnetic fields within internal layers are expressed
in terms of two unknown amplitude coefficients. Within any particular layer p, the following

relationship holds between the counter-propagating field amplitude coefficients:

13



- _ o+ - _ o+ I P ro_
F =Fjc,X, F =FcX, X, =e V=7, M1 (2.1.22)

Using these relationships, the electric and magnetic fields in equation 2.1.21 can be expressed in

one of two manners as follows:

Eﬁlm,p = Fp_ (en (x_dp) + stpe(_VFX))e_jﬂzj)

_ | B (r-a) 7,7 | N o (eea) i \a | e (2.1.23)
Hﬁlmﬂ =Fp {J(e +Spoe )\'—k];p(e _Spoe )Z e’

By =y, )4

5 + B R Y 4 lmd)) i\ | (2.1.24)
Hﬁlm’p :Fp |:a)/u (chpe +e )X+];p(chpe —e )Z e/

The y and z components of the field are tangential to the interfaces, as shown in Figure 2-2, and
are utilized to determine the overall system dispersion relation. By matching these components
between two separate layers, the following relationships between the field amplitudes in the

separate layers are determined:

Substrate Side Cover Side
Fro(t+s, X2 )=F x,(1+s,) Fill+e, X2, )=F X, (l+c,) (2125

Vo Fy =5, X2 ) =7, Fy X (1=5,)  yuFll-c, X2, )=y F X, (1-c,)  (2.1.26)

Using Equations 2.1.25, the following similar relationships hold between forward propagating
waves amplitudes in adjacent layers and between backward propagating wave amplitudes in

adjacent layers.

Substrate S(ide ) Cover Sic(le )
X \l+s X \l+¢
F =F —2 L F' =F —2—2* 2.1.27
- ? il+sp_1X§_1i i ’ l+cp+l)(;Jrl ( )
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Inserting Equations 2.1.27 into Equations 2.1.26, the following definitions can be made for the

unknown coefficients s, and c:

Substrate Side Cover Side

]/; (1+Sp,1X;71)_7/;7—1 (I_Sple;fl) _ 7/;7 (1+CP+1X;2:+1)_7;7+1 (I_CPHX‘Z’H; (2128)

Sp - 7;’7 (1+Sp71Xrifl)+7r'n71(l_Sple;zkl) Cp - 7/;) (1+cp+1X;+l)+}/;’)+l (1—Cp+1XZ+1

Rearranging this equation, we can express these quantities in the following manner:

Substrate Side Cover Side
, =T and 5, =0 y=l e and ey, =0 2129)
7p+7p—1 7/p+7/p+l
where
(1 _Sp—lXi—l) (1 - Cp+1X;+1)

S L=y L= 2.1.30

In the current reference layer of the multilayer stack, the transverse decay constant, y,, can be
expressed as purely imaginary number (y, = jx ). In this case, Equations 2.1.25 — 2.1.29 can be

written as follows:

Substrate Side Cover Side
- 2 - + - 2 + -
Frea (1+5 ref 1K rer1 )=F ot X ver + Frey Frgpa (& Cro1 X rep a1 )=F vt Xy ¥ Frp(2.1.31)
Y tep 1 F e 1 (1 TS g1 sze/'—l ): j’(,(Fr;/‘ X,y —F ) 7/;3_/'+1Fr;f+l (1 - CrefHszefH ): J'K'( r:eref - F,;/) (2.1.32)
+ Ky - - _ Ky +
Fl =™, P, Fo=e e F, (2.133)
s = Kyes (1 + 8,1, rzef—1>+ IV v (1 =S if—l) _ K:ef’(l + X fe/+1)+ 77 ;ef+1(l =Koy 'H) (2.1.34)
ref Ty P ref T L ce
K,y (1 + S,y _]sze,-_] )— IV ver-1 (1 - Sn,f_lXif _1) Ko (1 + crefHszefH )_ TV vef 1 (1 - Cref+1Xr2ef+1)
. s s cC
JK'_]/ref—l Jj24, JK _}/’”ef“'] J2¢.
srefzfze ; cref :#=e (2135)
JK +7ref—l JK +7/ref+l

With the construction of the phase shift terms (analogous to the Goos-Hanchen shift for a three-

layer slab waveguide [2]), ¢ and ¢., by propagating from the substrate and cover respectively
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toward the reference layer, the following dispersion equation can be used to determine the

propagation constants supported by the waveguide:
oA —h=4.) _ (2.1.36)
This equation holds true when the term in parentheses is equal to a multiple of 7 as follows:

Kd,, —@.— ¢, =mnr (2.1.37)

This method is used for solving the dispersion relation in a single reference layer of a
multilayer system surrounded by two media of lower refractive index. In a system that contains
many such identical high/low index layer pairings, solving this particular dispersion relation in
many separate reference layers allows for greater certainty that all modes will be determined for
a given sampling tolerance of the dispersion relation being solved. The value of repeating the
modal solver in separate reference layers is that the slope of the dispersion relation near any
given solution can be significantly different depending on the particular reference layer chosen in
a multilayer slab. By solving the system in each reference layer separately, solutions that may
have been missed at one reference layer may be more likely to be found in one of the other
reference layers for the same initial sample spacing and tolerance. The implementation of these
equations used in this study used a vectorized bracket bisection method [42] where the locations
of individual eigenmodes were initially located for a given propagation constant sampling. The
function was then re-sampled in a vectorized manner near the location of any solution in order
narrow down the location of the root and check for nearly degenerate roots. Other methods of

solving the transcendental equations (2.1.18) and (2.1.37) will be discussed briefly in section 2.4.
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2.2 Eigenmodes in Lamellar Diffraction Gratings

Diffraction gratings consist of a spatially periodic variation of electromagnetic material
properties [37]. As with a waveguide, this spatial variation may also be continuous or discrete,
but in either case the interaction of electromagnetic waves with a spatially periodic media this
variation causes diffraction and interference effects that result in the energy being redirected in
discrete directions, or diffracted orders.

The electromagnetic theory of diffraction gratings has a long history that encompasses a
full range continuous geometries and discrete geometries for the spatial distribution of material
properties describing surface-relief gratings [15] and holographic gratings [7], as well as a wide
variety of methods for solving Maxwell’s Equations in these various geometries [7, 11, 14, 43,
44]. In this study, the structures in which we were interested consisted of both continuous and
discrete surface-relief gratings, but we limited ourselves to solution methods that involved only
stratified lamellar layers. In such cases, the homogeneous solutions to the time-harmonic
Maxwell’s Equations lead to the possibility of modal expansions in both spatially periodic
regions, as well as spatially homogeneous regions [12, 23, 45]. By performing mode-matching
at the interfaces between layers, the reflected and transmitted energy distribution that results
from an input plane-wave or spectral decomposition of plane-waves can be determined.

In this section, modal expansions of spatially periodic fields due to interaction with a
two-material spatially periodic layer are derived for both homogeneous media in Section 2.2.1
and one-dimensional spatially periodic media in Section 2.2.2. In a similar manner to the
discussion presented for waveguides, the concepts of Lorentz reciprocity and modal

orthogonality are useful concepts for justifying the representation of any field distribution as a
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weighted sum of eigenmodes. Derivations of these concepts for diffraction gratings may be

found elsewhere [37].

2.2.1 Rayleigh Expansion in Homogeneous Media and the Grating Equation

In an effort to explain the nature of the diffracted orders produced from a diffraction
grating, and the diffraction anomalies in previously observed by Wood [46], Lord Rayleigh
introduced in 1907 the concept of expanding an electric field in a homogeneous region above a
spatially periodic grating in terms of a plane wave expansion [47, 48]. Spatially periodic
boundary conditions imposed on the tangential components of the electric and magnetic fields
the homogeneous region adjacent to the grating lead to a mathematical description of the
diffracted orders that can be physically observed.

The notion of transverse spatial periodicity of the diffracted field imposes the following

conditions on the supported spatial field distribution in a homogeneous region of space [12, 37]:

E(?at) = E(x, y)ej(w_ﬂz) = E(x + Ax’y + Ay )ej(”)t_ﬁz)

7 7 ‘ 3 - 2.2.1
H(f’t): H()C,y)ej(‘”kﬂz) — H(X+Ax’y+Ay)e_/(wt—ﬁz) ( )

where A, and A, are the spatial periods in the x and y directions. This spatial periodicity
condition has been previously shown to be satisfied by multiplying the original field expression
by an appropriate spatially periodic phase function as follows:

Fej(wt_ﬂz)e—j(kxx+k},y) _ Fej(wt_ﬂz) (kxx+k},y)e—j(kxAx+k),A),) (222)

o
where k. and k, represent the tangential components of the wave vector for a generic field vector

F . To create a plane wave series expansion, we create an infinite summation of terms that differ

from one another by phases incorporating integer multiples of the grating vector.
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e k x+k, 1 mK X +nk, y (a)t ~Bun? )
Fdifﬁ"ucted Z ZF

=—0 n=

0

= Z F ([ A ) )e Hwr-p,,2) (2.2.3)

z z o/ kmx+ky,,y)ej(wt—ﬁ,,,,nZ)

m=—00 n=—00

The terms k., and k,, can be considered to be the tangential components of the wave vectors
associated with each spatial harmonic/diffracted order, and K, and K, are the grating vector

amplitudes in the x and y directions. The definitions of k., and k,, as k , =k +mK_  and

k,, =k, +nK  are the famous grating equations in the x and y directions. The normal component

of the wavevector for each spatial harmonic/diffracted order can be expressed in terms of the

tangential wavevector components as follows:

k > (k ?
k \/ LE — (%} — (%) i kope >k +k;
By = : - (2.2.4)

k  (k 2
(] () e o et

2.2.2 Eigenmode Expansion in Transversely Periodic Dielectric/Magnetic

z-Invariant Media

Performing an explicit modal expansion in a transversely periodic medium involves a
development similar to that provided for waveguides in sections 2.1.1 and 2.1.2 for slab
waveguides with a few slight exceptions. In the case of a slab waveguide, the boundary
conditions in the substrate and superstrate regions were such that the fields decay towards
infinity. Solving the modal problem in a lamellar grating layer requires periodic transverse

boundary conditions. Consequently, there are no semi-infinite transverse layers, and a boundary
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condition is added matching layer 1 and layer N. The second difference involves the imposition
of longitudinal boundary conditions that take into account an input plane wave in an adjacent
homogeneous region as well as all diffracted waves in the Rayleigh expansion.

For a one-dimensional, two-material lamellar diffraction grating in TE, TM, or conical
mounts, the full derivation of the transcendental eigenvalue equation is presented by Li [43].
Using definitions of the decay constants within each layer similar to those defined in Equations

(2.1.14) — (2.1.16), this eigenvalue equation is given as follows:

'
2 7/1

cosh(y,d, )cosh(y,d, )+ %(7—1 + &J sinh(y,d, )sinh(y,d, ) = cos(k A ) (2.2.5)

Real propagating modes may be found by searching the real axis of °, whereas complex, leaky,

or evanescent modes are found by searching the entire complex plane.

2.3 Properties of Various Waveguide/Grating Figenmodes

In previous sections of this chapter, various types of analytical boundary conditions were
utilized in determining the modes that are supported by waveguides and diffraction gratings. This
section expands on these analytical boundary conditions and the properties of modes that can be
most easily determined for systems of equations having each of these types of boundaries. While
the types of modes present in any given physical structure depend only on the nature of the
device itself, the ease or difficulty in modeling the properties of those modes depends on the

computational methods utilized.

2.3.1 Analytical Boundary Conditions

When solving any system of differential equations, the solution to that system depends on

both the differential equation itself as well as the manner in which the equation is handled on the
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boundary of the solution’s domain. For the linear systems of equations normally utilized in a
computational environment, the eigenmodes that can be determined by solving the system
depend significantly upon the choice of boundary conditions. Common types of analytical
boundary conditions used for solving a system of Partial Differential Equations [49, 50] include
Dirichlet boundary conditions, where the field is homogeneous/constant on the boundary,
Neumann boundary conditions, where the derivative of the field is homogeneous/constant on the
boundary, Robin boundary conditions, where the sum of the field and its derivative are
homogeneous/constant on the boundary, periodic boundary conditions, where the fields are
cyclical within the boundary and multiple boundaries become adjacent, and open boundary
conditions, such as Dirichlet to Neumann [51-53] where an outward propagating field decays to

infinity without reflection.

2.3.2 Eigenmodes in Open and Closed Domains

A thorough description of the various types of eigenmodes that can be supported by
optical waveguides on bounded and unbounded domains is given in the dissertation by
Bienstman [54], and this section restates much of the excellent description given in that work.
For a reciprocal lossless dielectric slab waveguide, a mode supported by that waveguide can be
described by its propagation constant S, or by dividing by the free space wavenumber, ko, the

mode can be represented by a complex effective index, ng

21



b Cuided e
Fadiation ==

Complex =
LEal{‘j,F o

— —— Fe(n.g

Figure 2-3 Plot showing the discrete and continuous spectra of modes supported by an open
waveguide structure.

By plotting the complex plane for n.4 as seen in Figure 2-3, there can be seen four
separate types of modes that can be supported by a slab waveguide in an open domain:

1. Guided modes take on discrete values and are located solely on the real axis. These
modes correspond to energy concentration in the core of a waveguide that decays into the
cladding.

2. Radiation modes are located found along both the real and imaginary axes, and can
take on a continuum of values. The field profiles of these modes oscillate in the cladding and
extend to infinity. A real, propagative, radiation mode maintains its amplitude as it moves along
the axis of a waveguide, whereas an imaginary, evanescent, radiation mode decreases in
amplitude with movement along the waveguide axis.

3. Leaky modes are located in the complex plane and may be considered as a
continuation of the guided modes at low frequencies. The field profile of a leaky mode increases
exponentially in the cladding, and consequently are not physical, but can still be useful for
describing the field in certain situations [55]. A leaky mode may arise from a guided mode when

a periodic perturbation is introduced as part of the supporting waveguide.
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4. Complex modes are also found in the complex plane and always occur in quartets.
These modes are very rare, and are only found when resonant transfer occurs between TE and
TM modes [56].

In a closed domain, when the boundary conditions are of the Dirichlet, Neumann, Robin
or periodic type, the radiation modes that can be determined no longer form a continuum, but are

limited by the boundary conditions to take only discrete values, as seen in Figure 2-4.

Itnipeg

Cuided e
Eadiation e

Complex °

Eelng

Figure 2-4 Plot showing the possible discrete spectra of modes supported within a multilayer
slab waveguide structure with Dirichlet, Neumann, or Robin type boundary conditions. Also
representative of the possible longitudinal modes present in a system having only transverse
periodicity.

Consequently, there is no difference mechanically between determining a guided mode or a
radiation mode, but the standard convention is to treat those modes having a real effective index,
Real(n.5), which is greater than the cladding indeX, 7./444ing, and less than the core index, 7., are
said to be guided modes, while those modes have a real effective index less than the index of the
cladding are said to be radiation modes. When open and close boundary conditions are mixed
[22, 23], for example in a multilayer periodic structure, leaky modes may also be determined as

shown in Figure 2.9.
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Figure 2-5 Plot showing the possible discrete spectra of modes present in a multilayer system
having Dirichlet, Neumann, Robin, or periodic boundary conditions where absorbing layer
boundary conditions (i.e. PML BC’s) are utilized in the computational window. Leaky modes
were found to be present in this study when solving generalized eigenvalue problems in
longitudinally periodic systems.

When using eigenmodes to represent a field, the completeness of the basis set, i.e. the
ability to represent any given field using the modes in that set, is important for producing an
accurate and reliable numerical model. For lossless waveguides that do not support complex
modes, the guided modes along with the radiation modes can be rigorously proven to form a
complete basis. While for structures containing lossy materials or supporting complex modes,
there has been no formal proof of completeness. The use of guided and radiation modes as a
basis set in the presences of lossy materials often give results that appear to be complete within
any desired numerical accuracy, and with the addition of complex modes to the basis set, near
effective completeness has been shown for structures supporting complex modes as well [57].
Leaky modes have not been shown to be useful in producing a complete basis set in any setting

[58].
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2.3.3 Eigenmode Orthogonality

Establishing an orthogonal set of eigenmodes for a waveguide creates a set of basis
functions that can be weighted to represent any field distribution within that waveguide. To

establish this orthogonality, we begin with the electric and magnetic field distributions,

(E,,H,)and (E,,H,) associated with two eigenmodes:

Mode m (a) Mode 7 (b)
E,(F)=E,(x.y)e E,(7)=E,(x.y)e " @3.10
F]m (’7): gm (x7 y)e_jﬁmz gn (F): F]n (x’ y)e_jﬁ'"z (231b)

To show that any two eigenmodes of a waveguide are orthogonal to one another, we begin by

utilizing the Lorentz reciprocity theorem for longitudinally invariant media:
I
50z

As the establishment of these eigenmodes is the result of solving a homogenous equation, they

=N
x
]
|
b

i,)i.ds=[[ (], E ~7J,E,)ds 232)

exist in source-less media, and consequently the currents J ., and J , are equal to zero. Inserting

equations (2.3.1) into the resulting homogeneous equation involving the left-hand side of (2.3.2),

results in the following equation:
(B, +B,)[[.(E, (x.9)x A, (x.7)~ E, (x.y)x H,,(x.y))- 4.dS = 0 (2.3.3)

Next, by considering a similar relationship between a mode m propagating in the same z-
direction as before and a mode » that is propagating in the opposite z-direction, the following

expression can be obtained:

(B = B[] (B, (v 0)x 1, (x,9)+ E, (x,9)x H,,(x.7))-2.dS =0 (2.3.4)
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Assuming that f

m

and g, are not degenerate, the addition of (2.3.5) and (2.3.6) provides the

following orthogonality relationship between modes m and n:

[ (B, G.y)x A, (x,7))-it.ds = 0 2.3.7)

2.4 Discussion of Direct Numerical Solutions to Modal Expansion Methods

Numerical solutions to transcendental eigenvalue equations of the type found in
Equations (2.1.17), (2.1.18), (2.1.37), and (2.2.4) require root-searching algorithms, which,
depending on the properties of the modes to be determined, search either the real number line or
the entire complex plane. For searching exclusively along the real number line, examples of
simple root-searching algorithms include the bracketing and bisection method, the Newton-
Raphson method, the secant-method, and various hybrid root-finding methods [59]. For
multimodal systems, root-searching algorithms generally involve separate iterations or the
branching of separate threads for determining each individual mode of the system. Root
searching algorithms can potentially run into problems for systems having nearly degenerate
eigenmodes, or in cases where the slope of the transcendental function close to a root is nearly
infinite, especially for methods that involve the derivative of a function. In such cases, sampling
of the real line or complex plane must be very fine in order to distinguish between separate
eigenmodes or even to find what may be multiple eigenmodes that are nearly degenerate. As an
alternative to exact modal expansions and root-searching algorithms, in this study we made use
of a method that approximates the modes of a spatially periodic material via an orthogonal
function expansion. By doing so, problems with sampling transcendental functions are
transferred to the relatively more straightforward problem of convergence in a finite series

expansion and solution of a matrix eigenvalue problem.
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CHAPTER 3 RIGOROUS COUPLED WAVE ANALYSIS OF
DIFFRACTION GRATINGS AND FINITE WAVEGUIDES

As a member of the family of differential modal methods for solving Maxwell’s
equations (and more broadly as a member of the family of spectral modal methods), RCWA now
has a long history as a robust and flexible tool for the analysis of wave propagation in periodic
optical media [7, 9, 11-15, 19, 25, 27, 28, 31, 60-64]. RCWA is a frequency-domain method for
determining the modal properties of the electric and magnetic fields within a transversely
periodic longitudinally-invariant lamellar layer. The method rigorously solves Maxwell’s
equations by decomposing the electric and magnetic fields, as well as the material properties,
within a lamellar layer in terms of spatial harmonics on a pseudo-periodic Fourier basis set. As
the technique has matured through the years, it has been applied successfully in modeling the
diffractive properties of volume gratings, as well as binary and multilevel surface relief gratings
composed of isotropic or anisotropic dielectric, metallic and magnetic materials. At the turn of
the new millennium, the range of the technique’s usefulness was extended by the incorporation
of absorbing boundary conditions [9, 16], most notably PML boundary conditions [65, 66],
within the unit cell of the periodic media. By incorporating this absorbing boundary condition,
RCWA could then be utilized as a modal solver for finite transverse waveguides. This chapter
intends to provide a full development of the RCWA as a modal solver for one, two, or three

dimensional infinitely periodic media.
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3.1 Coupled Wave Modal Expansion of Periodic Maxwell’s Equations

3.1.1 Homogeneous Rayleigh Expansion in Cartesian or Skewed Coordinates

For homogeneous material layers, the plane wave expansion utilized for determining
eigenmodes in a Rayleigh expansion is performed in exactly the same manner as that presented
in Section (2.3.1). Unlike the modal method presented in Chapter 2, which currently has only
been implemented in regular Cartesian, cylindrical, or spherical axes for one-dimensional modal
problems, RCWA allows for the use of periodicity in non-orthogonal coordinate multi-
dimensional systems as well.

For periodicity on a two-dimensional non-orthogonal lattice, having an angle, &, between
directions of periodicity, the corresponding homogeneous region Rayleigh expansion for a

generic field vector may be expressed as follows:

00

F diffracted = Z

m=—000 p=—00

Azt i) 6L

m,n

[Ms

3.1.2 Three-dimensional Coupled-Wave Modal Expansion

Over the last two decades, there has been an increased interest in optical structures
having multi-dimensional periodicity. Theoretically, infinite three-dimensional photonic crystals
possess the ability to completely forbid the propagation of certain wavelengths of light from
traveling in particular directions through the crystal [32, 67-69], analogous to the forbidden
band-gaps of electrons in solid-state electronics [70]. Realistically, infinitely periodic structures
are not possible in practice, but if the size of the structure is much larger than the wavelength of
the light and periodicity length within the structure, then the assumption of infinite periodicity

describes well the performance of a structure away from its boundaries. Determination of these
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photonic band-gaps for crystals of any material and geometry depend upon finding solutions to a
three dimensional eigenvalue problem. The use of three-dimensional periodicity models can also
be useful in determining the properties of certain two-dimensionally periodic structures when
proper boundary conditions are utilized [71]. Exploiting three-dimensional models for
determining the modal properties of two-dimensionally periodic structures requires the use of
absorbing boundary conditions similar to those explained in section 2.4.2, but in doing so one
must utilize an orthogonal function expansion in all three dimensions and may require many
thousands of basis functions to obtain modal convergence.

Starting from Maxwell’s Equations as expressed in Equations (2.2.1) — (2.2.3), the

Cartesian, three-dimensional, homogeneous equation to be solved can be expressed as:

0 0

0o -Z 0o o0 [ 1 To
P E, 0
0 0
— 0 -— 0 , 0 E
oz’ ox' Hy Y 0
N A R
oy’ ox' o
a a - (3.1.2)
-&, 0 0 0o -— Jn.H . 0
oz' oy
0 o | .
0 -—¢ 0 = 0 ——=|JnH 0
g oz' ox' v
0 0 -o -2 2 o |inH.] |0
i oy’ ox' ]
wherex' =k,x, y'=k,y, z' =k,z, and 1, = Fo By applying periodic series expansions of
£

0
the fields in all three-dimensions, as in Equation (3.1.1), and taking the necessary partial-

derivatives, the above homogeneous equation can be expressed as:
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z y x
K. 0 -K. 0 i, 0 E, 0
-K, K, 0 0 0 )7 E. 0
= (3.1.3)
-&, 0 0 0 -K. K, | /jnH, 0
0 -¢g 0 K. 0 -K,|jnH, 0
L 0 0 _82 _Ky Kx 0 __jnOHz_ _0_
which can be put in the form of a matrix eigenvalue problem as follows:
s \Ku'K+Kpu'K) oK u'k,) e/ (ku'k)  E] [E
—o'(ka'k,) KKK K)  —e(Ku'k,) | E, |=|E, (3.1.4)
~o (K. p'K ) kK)o K KK )| B LE

where K, K,, K. are diagonal matrices containing the x, y, and z components of the wave vector
(kxmny> Ky mnys Kz mny) for each spatial harmonic, divided the free space angular wavenumber,
ko.

While the above development has addressed the spatial periodicity of the field, it has not

yet addressed the spatial periodicity of the materials. The matrices defined by ¢ b EysEL s s s

and g are full matrices created by performing Fourier series expansions of the spatially periodic

functions representing material permittivity and permeability components. The matrices are full
since the involve coupling every spatial harmonic in the electric and magnetic field series
expansions to every other spatial harmonic in that series. Explicit derivations and discussions of

these coupling matrices can be found in Appendix A.

30



3.1.3 Two-dimensional Coupled-Wave Modal Expansion

Solutions to the coupled-wave equations for systems involving two-dimensional
transverse periodicity and longitudinal invariance can be useful for modeling infinite crossed
diffraction grating devices [25, 27, 31] as well as finite-sized integrated guided wave structures
[72]. Solving this set of equations begins with the same set of Maxwell’s Equations as expressed
in Equation (3.1.2), but in this case Fourier expansion of the electric and magnetic fields using
pseudo-periodic boundary conditions are only taken for the transverse (x and y) directions with
the longitudinal fields solved as a matrix eigenvalue problem. Applying the pseudo-periodic
Fourier series expansions in Equation (3.1.1) to the transverse fields in Equation (3.1.2), and
taking derivatives for the transverse coordinates results in the following relationships between
the transverse electric and magnetic field harmonic expansions:

oL, Ke'K u-Ke'K |[H
82' _ y©z X x ¢z ¥y y
aE KXS;IKX _ll’ly _Kxg;IKV Hx
oz' )

(3.1.5)

=

-1 -1

> K u K, e —K u K |E,
Z = (3.1.6)
o -1 -1

> Ku K. -¢, —-Ku K, |E

X

Upon taking the derivative of Equation (3.1.5) with respect to z" and inserting Equation (3.1.6)
into the result of this derivative, we obtain the following matrix eigenvalue equation for the

transverse electric field harmonic expansions:

O’E,
oo | | KK, ru KK e, KK - p KoK, ]!Ey} G
2 - -1 -1 -1 -1 st
2:sz Ke Ke —uK pu K Ke Ke +uKu K —pe | E,
4
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A similar equation may be obtained by solving the system as a magnetic field eigenvalue
problem. By solving Equation (3.1.7), not only can the vector of eigenvalues, ¢, (the modal
indices) be determined, but an eigenvector matrix, W, (the modal matrix) can be determined
where each column is a spatial harmonic decomposition of each individual mode in the system.

The corresponding magnetic field eigenvector can be expressed as follows:

K, u'K e, —K,u'K
yo| Dol B Eem R y}[W]diag([%D (3.1.8)
KXILIZ KX _8_)) _KXILIZ Ky
Utilizing these eigenvalues and eigenvectors, the spatial harmonic expansions of the transverse

electric and magnetic field components can be expressed as follows:

S)/
S, w W |explk,q(z—d)) 0 b
= (3.1.9)
u,| v -v 0 exp(—k,qz)| f
_Ux .

where b and f are the unknown field harmonic amplitudes in this lamellar layer. The normal
components of the electric and magnetic field can be determined by inserting Equation (3.1.9)
into Equations (2.2.6a), isolating the normal field harmonic components, and taking the proper

derivatives.

S, =—jnel KU, -K U,
(3.1.10)
U, =—jn;'u'K.S, -K,S,]

The actual electric and magnetic fields within the layer can then be determined by multiplying

the spatial harmonic expansions by appropriate phase terms for each harmonic at any point on a

predetermined spatial grid as follows:
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nyz‘xy’ ZZnyz mn )ej x+k

) (3.1.11)

3.1.4 One-dimensional Coupled-Wave Modal Expansion

In a similar vein, one-dimensionally periodic coupled wave equations may also be used to
model systems that have one dimension of transverse periodicity, one dimension of longitudinal
invariance, but also have one dimension of transverse invariance [11, 12]. The structures that
can be modeled also include diffraction gratings having infinite transverse periodicity as well as
waveguides with finite transverse dimensions. In one-dimensional systems though, the approach
taken to solve the eigenvalue problem for a lamellar layer depends upon the polarization of the
input light. For systems whose input wavevector is coplanar with the grating vector and the
surface normal vector, only a single eigenvalue equation need be solved involving a second order
differential equation for a single field component. However, in the case of conical diffraction
[12, 62] from a purely isotropic dielectric grating, where the incident wave vector is not coplanar
with the grating vector and surface normal vector, two decoupled polarizations are present in the
system. Consequently, the system may be solved either as a single eigenvalue equation
involving both polarizations, or as two separate sets of eigenvalue equations involving separate
field components. In the latter case, portions of the fields involving each polarization are
combined upon field matching with outer homogeneous layers to produce proper reflection and
transmission coefficients for each diffracted order.

For one-dimensionally periodic structures having TE polarized incident light, the electric
field is in the y-direction, which is parallel to the grating grooves and perpendicular to the

grating vector. Components of the electric field parallel to the grating vector and in the
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longitudinal direction are null, as is the component of the magnetic field in the y-direction.
Starting from Maxwell’s Equations in (3.1.2), and then inserting an x-direction, pseudo-periodic
series expansion for the non-null components of the field, results in the following matrix

eigenvalue equation for the transverse electric field harmonic expansion:

0°E,
{ = } =K u'K, - e, ]E,] (3.1.12)

With the resulting vector of eigenvalues, ¢, and electric field eigenvector matrix, W, the

corresponding magnetic field eigenvector can be expressed as V = ,udoiag([%D. The

transverse electric and magnetic field harmonic expansions can be expressed as follows:

AR G R

ue)] v -v exp(—koqz) | f

where b and f are the unknown field harmonic amplitudes in this lamellar layer. The normal
components of the electric and magnetic field can be determined by inserting Equation (3.1.9)
into Equations (2.2.6a) isolating the normal component magnetic field expansion, and taking the

proper spatial derivatives.

U,=-jn, ' u.'K.S, (3.1.14)

The actual electric and magnetic fields within the layer can then be determined by multiplying
the spatial harmonic expansions by appropriate phase terms for each harmonic at any point on a

predetermined spatial grid as follows:
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(3.1.15)

Following similar logic for a one-dimensional, transversely periodic system having a transverse

magnetic field, the matrix eigenvalue problem to be solved takes the following form:

2
Faj? } =lek ek, —ep [H ) (3.1.16)

where the electric and magnetic fields are calculated in a similar manner to the TE problem.

For one-dimensionally periodic systems in a conical mount, the y-component of the
incident, reflected, and transmitted wavevectors is a constant, non-zero value. Consequently, the
derivative matrix, K,, is an identity matrix multiplied by the incident wavevector’s y-component,
normalized by the free-space angular wavenumber. In solving the modal problem for the case of
a purely dielectric grating composed of isotropic materials in a conical mount, the most efficient
manner is to start with Maxwell’s Equations as given in (3.1.2), insert the proper series
expansions containing the pseudo-periodic phase terms into the electric and magnetic field terms,
take the necessary derivatives, and then simplify the system in to two separate eigenvalue
problems. The resulting electric and magnetic field matrix eigenvalue equations are the

following:

2
5 E; = [Kxg’lKXg +K°> - g]EX (3.1.17)
/4 !

“[r+x2-¢ln, (3.1.18)
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where once again the electric and magnetic fields can be calculated using the eigenvalues and
eigenvectors resulting from the above equations, and performing summations over the spatial

harmonic expansions.

3.2 Diffraction Grating Efficiency Calculations

Having determined the modal expansions in all homogenous and spatially periodic
regions through the use of Rayleigh expansions as well as Fourier series approximations of
spatially periodic modes, diffraction efficiency calculations can be performed via a mode
matching of proper tangential components for the fields in each region and the selection of a
particular mode(s)/diffracted order(s) into which the input energy is placed, which allows for the

determination of all spatial harmonic field amplitudes.

3.2.1 One-Dimensional Diffraction Efficiency Calculations

Matching the tangential components of the electric and magnetic field harmonic
expansions in the input and output homogenous layers to the grating layer results in the

following homogenous system of equations:

)
-1 -1 W WX 0 0 JRr| [0
-jY, jY, v -=-VX 0 0 0
JEXp  J4 S _ (3.2.1)
0 o wx w -1 —-I1|b 0
0 o vx v -jy, jY,|T 0
_O_
where X = exp(~k,qd) for both TE and TM systems, ¥, = (,Bm’mpm / ko), Y, = (,Bmwwm / ko) for

TE SyStemS’ and Y[ = (ﬂm,input /(koﬂinputginput ))’ YI[ = (ﬂm,output /(kOIuoutputgoutput )) for ™ SyStemS'
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By initially eliminating the reflection and transmission coefficients, Equation (3.2.1) can
be rearranged to solve for the unknown forward and backward propagating spatial harmonic

amplitudes as follows:

{f} _ { Gyw+v)  (jy,w- V)XT [jzy,ﬂ

322
b _(jYHW_V)X _(j}IIIW+V) 0 ( )
The reflection and transmission coefficients can then be solved using the following matrix

equations:

R=Wf+WXb-o (3.2.3)
T =WXf + Wb (3.2.4)

Finally, the diffraction efficiency for each diffracted order can then be determined using the

above reflection and transmission coefficients.

DE,, s = (R, R, )Re(Y”m J (3.2.5)

1,0

DEm,reﬂected = (Tm Tr:: )Rﬁ{ Vi } (3.2.6)

1,0
Diffraction efficiency calculations for purely dielectric gratings in conical mountings require the
rotation of the eigenvector spatial harmonic decompositions into planes that are perpendicular
and parallel to the plane of incidence of the input wavevector. After rotation of the eigenvectors,
the procedure for determining the diffraction efficiency for each diffracted order follows
essentially the same procedure as for TE and TM mounts (presented above) and for two-

dimensional gratings (presented below) [39].
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3.2.2 Two-Dimensional (Crossed) Gratings

To calculate the diffraction efficiency for two-dimensional gratings, tangential
components of the spatial harmonic field expansions in the grating layer first need to be rotated
into planes that are perpendicular and parallel to the incident wavevector’s plane of incidence.

Rotation of the field harmonic expansions involves the following rotation matrices:

Sul_| K =K, Ur|_| K -k 10, (32.7)
S// Ky Kx Sx U// Ky Kx Ux

Sy _ KL K; SJ_ Uy _ K)'c K,: UJ_ (3 2 8)
Sx _K; K)’C S// Ux _K}” K"c U// o

where the rotation sub-matrices are defined as follows:

k
K'! = diagonal : x’(’”’”)z (32.10
_\/kx,(m,n) + K ) |
K! _d Z ky,(m,n)
S ; (3.2.11)
_\/kx,(m,n) Ky ) |

These rotation operations are effectively linear transformations that are performed on the
eigenvector matrices W and V.

Matching the tangential components of the electric and magnetic field harmonic
expansions in the input and output homogenous layers to the grating layer results in the

following homogenous system of equations:
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-7y 0 7Y 0 Vo Yy X =X, 0 0 0 0 fl 0
0 -1 0 -1 WV, VX, -VX, 0 0 0 0| f 0
0 0 0 0 WX, W,X, W, w, -1 0 -I 0 b | o (3.2.12)
0 0 0 0 WX, WyX, Wy, Wy 0 —JjZy 0 jZ, b, 0
0 0 0 0 X, X, -V -y —JjY 0 JZy 0 o 0
L 0 0 0 0 X, X, " Vi 0 -1 0 _]_ by _0_
0
0

where X = exp(— kyqd ) and is divided into two equal sized sub-matrices X; and X5,
YI = (IBm,input /kO )’ YII = (ﬂm,output /kO ) H ZI = (ﬂm,input /(koﬂinputginput ))’ and

Z, = (ﬂm,output / (kOILloutputgautput )) :

By eliminating the reflection and transmission coefficients, Equation (3.2.12) can be

rearranged to solve for the forward and backward propagating spatial harmonic amplitudes:

g (JYWH Vi

) (jYWu ) (jYIWH_Vzl)Xl (]YWn 22)X1 B J2Y, sinyd,
Al mzn) -z

(o = JZ V)X, W= 2V )X, | | 22,12, cosyd, (3.2.13)

b, - (JYqul VZI)XI (JYquz VZZ)XI (/YuWn VZI) (quWn_sz)
b, ( .]ZIIVII)XZ ( JZ11V12) 2 ( ]Z11V11) (WZZ_jZIIVIZ) 0
o 0,
T =wf e wxp—| (3.2.14)
AR JZ164,
I tE 1,TE
o =WXf +Wb 3.2.15
_]ZIItH,J_,TE ( )

The diffraction efficiency for each diffracted order can then be determined using the above

reflection and transmission coefficients.

Y, VA
DEm,reﬂected = Sil’lz W‘FE,L,(m,n) ’ Re ;,(m,n) + COS2 W‘FH,L,(m,n) ’ Re % (32 16)
1,(0,0) 1,(0,0)
Y, V4
DEm,transmitted = Sin2 l//‘tE,L,(m,n) ’ Re M + COSZ l//‘t[-[,i,(m,n) ’ M (3217)
Y1,(0,0) Y1,(0,0)
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3.3 Use of RCWA in Integrated Optics

As cleverly introduced by Lalanne and Silberstein [9, 16], the RCWA modal method can
be extended to the modeling of transversely finite-sized waveguides through the incorporation of
artificial absorbing material layers or non-linear, complex coordinate transforms [73] within the
system’s transverse unit cell. Proper selection of these absorbing parameters can numerically
isolate the materials and propagating modes within a unit cell from its neighboring cell and will
dampen any and all energy scattered from guided modes in the unit cell due to mode matching
between layers. The most effective absorbing boundary layers are the Perfectly Matched Layer
(PML) type boundaries described in Section 2.4.2. Incorporation of PML materials in this study
were implemented in the manner of an anisotropic material as described by Sacks [66]. Using
RCWA/PML expansions, the modes determined by the truncated Fourier series are no longer
strictly orthogonal to one another, but for practical purposes the modes have been found to be
“nearly-orthogonal” as discussed in Section 2.4.2. The origins of the PML concept and the
definition of a PML as an anisotropic material are presented in section 3.3.1, and the
incorporation of a PML into a periodic unit cell, as implemented in RCWA, is discussed in

section 3.3.2.

3.3.1 Artificial Absorbing Boundary Materials and Perfectly Matched Layers

When modeling an object in any system of differential equations using a purely closed or
periodic system creates a problem for attempting to model finite sized structures. The presence
of “hard walls” associated with purely Dirichlet or Neumann boundary conditions or strongly
coupled unit cells with periodic boundary conditions means that any scattered energy will be

reflected or coupled back into the region of interest upon interacting with the boundaries.
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Attempting to alleviate this problem while maintaining purely Dirichlet, Neumann, or periodic
boundary conditions often means that the size of the computational window must be increased
dramatically and a centrally located object of interest then only occupies a small percentage of
the entire computational window. Increasing the size of the computational window utilized,
regardless of boundary condition or modeling technique utilized, usually increases the expense
of performing the computation in both time and memory requirements. Consequently, finding
methods of minimizing the size of a computational window for a given problem is very
important.

One approach that is often taken to approximate an open, Dirichlet to Neumann (DtN)
boundary condition is to place an absorbing material within a computational window that will
collect all of the energy from the primary object being studied. Application of this idea in the
electromagnetics community developed through a number of different iterations starting with a
“radiating boundary condition,” [74, 75] followed by the matched layer where the computational
domain is encased in an absorbing media matched to free space [65, 76], as well as a “one-way”
approximation of the wave equation at a boundary [77]. A dramatic improvement in the
convergence of most widely used computational methods (finite-difference, finite-element,
spectral methods) can be obtained through the use of so-called Perfectly Matched Layer (PML)
boundary conditions. As originally proposed by Berenger for the truncation of two-dimensional
FDTD meshes [65], a PML boundary condition is a material which is impedance matched to the
computational region of interest’s outer boundary such that the interface is reflection-less for
energy propagating at all angles, polarizations, and wavelengths. Consequently, all power is
transmitted into and absorbed by the PML. Berenger’s formulation of the PML boundary

condition required a “split-field” modification of Maxwell’s equations on the Yee grid [78]
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utilized in FDTD calculations. A second interpretation of the PML boundary condition was
proposed by Sacks et. al. [66], which does not require a significant modification of Maxwell’s
equations. This approach treats the PML region as an anisotropic material having complex
permittivity and permeability properties. This anisotropic material interpretation of the PML is
utilized in this work. Further equivalent interpretations of the PML concept include the idea of
utilizing a complex coordinate stretching of the spatial variable included in the argument of a
wave’s phase term in certain regions of space [79, 80], as well as the concept of a non-linear
coordinate stretching that maps infinite boundaries to finite locations [73]. This last
interpretation comes closest to the idea of a true DtN boundary condition, which itself has also
recently been added to the list of boundary conditions that have been utilized within a

computational electromagnetics setting [81].

Homogeneous FLIL
Eincideg, Mincidomst & PRI PhT

.
B,}xg ;

Figure 3-1 A sketch showing an interface between a homogeneous material half-space and a
Perfectly Matched Layer material half-space that absorbs, without reflection, a plane wave
traveling with any wavelength in any direction.
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Explaining the concept of a PML as an anisotropic dielectric/magnetic material begins

with considering two material layers that are impedance matched as follows:

LuJincidem _ Lu JPML

[8 ]incident B [8 ]PML

- [/u]incident [‘9 ]PML = [‘9 ]incident [IU]PML (3.3.1)

For energy incident from a non-magnetic material upon a PML material as shown in Figure 3-1,
Hincidens 18 an identity matrix and zpyy is the following matrix:

[:U]PML: 0 s 0 s.=1-jo (3.3.2)

where J; is an absorption/gain coefficient of the material. For a PML to be truly as effective as
designed here, it must be of a semi-infinite spatial extent. In most computational settings, this is
rarely the case. As a result, the PML implemented within a computational environment must be
of a finite spatial extent and must be truncated with a Dirichlet, Neumann, or a periodic boundary
condition, as in the RCWA approach. Perfect absorption is not analytically possible within a
finite PML region, but by properly choosing both the layer thickness and the value of the
absorption/gain parameter J,, any wave incident upon the PML region can be effectively
absorbed without undergoing any further interaction with the scattering object of interest . The
PML absorption profile utilized in most of this study is one that was developed by our research
group, and was found to be effective in most cases. Studies of varying PML properties or

computational window sizes have been performed [9, 16, 22], and has shown that given an
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adequate initial choice for a PML’s absorbing properties, the performance of that PML is fairly
robust to changes in wavelength and layer thickness.

For three dimensional systems, the PML material utilized can be either a uniaxial or a
biaxial material depending on its location with the computational window. The most general
material would allow for light to be perfectly absorbed along any of the three Cartesian axes and

would have a permeability matrix as follows:

o _
| 0 0
Vo0 0l 0 ofs 0 s
(1] =| O sxoo% 00 0 x 0
y | s, (3.3.3)
0 0 Sy 0 0 Sy 0 S, S.S
(e
S, |

s,=1-jo, s,=1-jo, s, ,=1-jo,

For absorption along any desired direction, the value of & corresponding to that particular
direction is non-zero. For the computational techniques utilized in this study, the value of &, is
always chosen to be zero within the lamellar layers utilized for eigenmode computation. The
assumption of input and output half spaces that are utilized in this study allow any light scattered
into the PML material traveling in a longitudinal direction to continue propagating infinitely
without contaminating the fields near the device of interest. Figure 3-2 shows the permittivity
layout for a ridge waveguide structure that represents a 2D lamellar layer which can be used

within a 3D eigenmode expansion computation.
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(b)

Figure 3-2 (a) A figure showing the transverse computational window of a ridge waveguide
device with PML boundaries in the window. (b) A 3D-view of a ridge waveguide structure with
PML boundaries, also showing the depth of a layer slice. (c) A transversely periodic structure
where each unit supercell contains a single ridge waveguide structure. In solving for the modes
of the ridge waveguide using RCWA, this structure is truly representative of the problem solved.

The ridge waveguide is surrounded by an air region, and the entire structure is surrounded by
PML materials. For three dimensional structures, the PML material in this case is chosen to
match its neighboring dielectric material. This choice creates the scenario of having different
PML materials adjacent to one another, which generates the possibility for spurious reflections,
but for a robustly designed total PML region, these interfaces usually do not present a significant
problem for determining fundamental eigemode solutions given the overall absorption of the
total PML regions. Robustness of an eigenmode solution for a given PML can normally be
checked by varying the computational window size or by the number of spatial harmonic basis
functions in an RCWA calculation (or similarly by varying the grid sampling in a FDTD or FEM

computation).

3.3.2 Use of PML in RCWA

Use of PML layers in RCWA involves incorporating layers with PML properties at the
borders of the computational window. To model anything except a simple slab waveguide (1D

eigenmodes) or ridge waveguide (2D eigenmodes), requires the use of longitudinal mode-
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matching techniques between separate layers having different eigenmodes. The actual routines
for performing wave propagation through these differing layers will be explained in the next
chapter, but here we will concern ourselves with methods for determining a system’s reflection
and transmission coefficients as well as a means for approximating conservation of energy in our
finite waveguide problem.

By performing mode matching and wave propagation through a layered system, the
reflection and transmission coefficients associated with each mode (each column of the modal
matrices W and V) can be determined. In order to determine the actual reflection and
transmission efficiencies into each mode, an overlap integral must be performed between the
spatial profile of the input mode from the input half-space region and the spatial profile of each
mode of the input and output half-spaces weighted by their corresponding reflection and
transmission coefficients. These overlap integrals are then normalized by the magnitude of the
power contained in the input mode. Given that the overlap integrals are performed on spatial
modes that have been decomposed in terms of spatial harmonics, these overlap integrals can be
performed as inner products between the spectral decompositions of each pair of modes.
Compact expressions of the reflection efficiency for a mode m in the input half-space and a mode

n in the output half-space are given as follows:

input input
2 <W ) Vm >

m
input input
e )
output output
(e v

m

input input
(e vy )

R =\ input

m m

(3.3.4)

toutput 2
m

T =

m

(3.3.5)

As the modes calculated using the RCWA/PML method are not truly orthogonal, energy balance

between the incident, reflected, and transmitted waves does not hold identically due to

46



absorption of energy within the PML materials, and the non-hermitian nature of the matrix

operators involved.

Figure 3-3 A single surface waveguide grating coupler with sampling box drawn interior to
absorbing boundaries within a transverse unit cell and over the length of the structure.

By calculating the power flow around a box that is external to the PML boundary layers, it has
been shown empirically that conservation of energy can be obtained to any desired accuracy by
proper spatial sampling of both the transverse and longitudinal computational windows [19].
Figure 3.1 shows an example of a spatial sampling box that may be utilized for calculating

conservation of energy around a simple waveguide grating coupler.
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CHAPTER 4 WAVE PROPAGATION IN LAYERED MEDIA

In modeling the propagation of light through multilayered stratified media, or through
structures with continuously varying surface geometries, it is often convenient, and necessary, to
represent the geometry via layer stair casing. For numerical modeling techniques utilizing
eigenmode expansion in longitudinally-invariant media, approximating these various geometries
using stratified layered media is normally required. Any continuous or discrete variation of a
structure’s longitudinal material property distributions (permittivity, permeability, conductivity)
require that the structure be approximated by a stack of uniform thickness layers each having
distinct solutions to separate eigenvalue problems. This chapter aims to present various methods
of modeling wave propagation in layered media, to discuss the strengths and weaknesses of each
technique that determine when one technique is more appropriate than another, and to discuss
how the building blocks of single layers may be pieced together for accurate and efficient
modeling of various device geometries.

For completeness, Section 4.1 briefly introduces four separate matrix propagation
methods for layered media (the transfer matrix [13, 82], the scattering matrix [16, 17, 19, 20, 83],
the impedance matrix [84-86], and the hybrid matrix [87]), discusses the potential numerical
instability present in two of the methods, as well as the strengths and weaknesses of each
propagation method. Section 4.2 discusses the standard transfer matrix formalism in more depth,
and derives the enhanced transfer matrix that properly eliminates this numerical instability.
Section 4.3 presents the scattering matrix formalism, and discusses its strengths in modeling
longitudinally periodic layered media as well as numerically stable calculations of internal field

amplitudes, and its relationship to the longitudinal eigenmodes of a cavity.

48



4.1 Mode/Field Matching and Wave Propagation

For any type of eigenmode expansion technique, the propagation of light within a layer,
or transmission and reflection of light between layers involves coupling between all of the modes
within a layer or between adjacent layers. Expression of the field harmonic expansion within a
single layer of thickness d was given in Equation (3.1.13) in terms of the layer’s eigenvalues and

eigenvectors and is restated here as follows:

il A RN "

Propagation of light within a layer or between layers can be expressed by the interaction of two
sets of Equations based on (4.1.1). The use of mode matching methods have a long history in
areas of applied mathematics, science and engineering ranging from network transmission line
wave propagation [88-90], to seismic wave propagation [91-98], to atmospheric radio wave
propagation [99], and quantum wave propagation [100]. For transmission and reflection between

two layers, 1 and 2, the tangential components of electric and magnetic field harmonic

expansions (S (0), S®(2), UY(0), U®(d)) are set equal and a relationship can be determined

tan tan tan tan

between the field harmonic amplitudes, b and f, in each layer.
SwO)|_[mX, w o] [saa)|_[w. wox, b, w12
UR0)] nx =vlal ld@)] [ - ls .

When determining propagation within a layer, the field harmonic amplitudes, b and f, are

constant allowing for a relationship between the field expansions at both ends of a layer,

(S (0), 55(d), UR(0). UL (A)).

tan
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SO _[mx, w o] [sh@)]_[m wx, b
vl©)| [nx, -vA] ul@)] ", -rx g, (4.1.3)

The four methods utilized for solving Equations (4.1.2) and (4.1.3) are generally referred to as
the Transfer Matrix (T-Matrix), the Scattering Matrix (S-Matrix), the Impedance Matrix (R-

Matrix), and the Hybrid Matrix (H-Matrix).

b, [ s wrvyv)x,  Lrwm-vn) b .
fj i {;Xz‘(W;Wl G L W+ VZ‘V])LJ (T-Matrix) — (4.1.4)

bz} { 2w, v x, N A AN A ]X]H

(S-Matrix)  (4.1.5)

BB A VAN AAAY oww v ] x, 5
[ Sin (O)J emex2-x) e 2w - x2) {U (0)} .
S,..(d) { —omx - x2) e wex - x2) | U(@) (R-Matrix) (4.1.6)

(H-Matrix) (4.1.7)

[ S (0)} _ { w1+ X2 w —w1- x2 i+ x2)! VII

ni-xfiex)'w o 2rx (e X2y

S(d)}
U (0)
Upon an initially analyzing Equations (4.1.4) — (4.1.7), the T-Matrix and the R-Matrix can be
seen to possess potential numerical instabilities due to matrix inversion. For the standard T-
Matrix, numerical instability occurs when either the eigenvalues or the thickness of layer 2 are
large enough to cause the exponential terms to be near zero. For the R-Matrix, numerical
instability occurs when the thickness of the layer approaches zero. For modeling of diffraction
grating efficiencies, where the field harmonic amplitudes and field amplitudes internal to the
structure are not necessary, the cascading of these matrix methods have been reformulated in
such a manner to eliminate these numerical instabilities [13, 84]. The definitions of the S-Matrix
and the H-Matrix, as well as their respective recursive algorithms for cascading matrices are both
numerically stable for any value of layer thickness values. The H-Matrix definition and
recursive algorithm provide a relationship between the field expansions at two separate planes,
whereas the S-Matrix definition and recursive algorithm provide relationships between the field

harmonic amplitudes in separate layers. The choice of when to use one method over the other
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depends upon the initial system information that is present and the final information that is
desired. Use of the H-Matrix is more beneficial when the specific spatial profile of the input
fields of a generic field distribution is known, and system response to that known distribution is
desired. The S-Matrix is more beneficial when all initial energy is placed into specific modes of
the input layers and the modal reflection and transmission coefficients are desired. The S-Matrix
is also the most straightforward method for determining the complex modal indices of
periodically layered media. In either case, the internal field expansions and field harmonic
amplitudes are easily obtained in a numerically stable manner through the use of recursive
propagation algorithms. In this study, only the enhanced T-Matrix algorithm and the S-Matrix
algorithm were utilized for diffraction grating efficiency and integrated optical waveguide

studies and will be presented in more detail in the following sections.

4.2  Enhanced Transfer Matrix Method

As presented in Equation (4.1.4), the transfer matrix relates known forward and backward
propagating field harmonics in layer 1 to unknown forward and backward propagating field
harmonics in layer 2. In order to make use of the transfer matrix in a numerically stable manner,
the instability present due to the inversion of the exponential eigenvalue matrix X, must be
properly handled [13]. To gain an understanding of how to properly handle this instability, it is

enlightening for first expand Equation (4.1.4) into a series of block 2x2 matrix multiplications as

AR A b H
= L (4.2.1)
f2 0 Xz Vz - Vz Vl - Vl 0 1 fl

follows:
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Cascading the transfer matrix between layers 1 and N produces the following matrix

relationship:

{bNHl 0 }{W w, HW Wy }{X 0}{1 0 }{W Wy HW Wy }{X 0}
fN - 0X ;'1 VN _VN VN*I _VN—I 0 10X ;/171 Vmul _VN—I VALZ _VN—Z 0 1
1o w, w,'[w, w, Tx, ot o Tw, w, '[w, w, Tx, ofb,

|:0 X%_I}L/z _V3:| |:V2 —VJ{O 1}|:0 Xgl}{Vz _V2:| {Vl _Vli||:0 1}|:f1:|

For determining the reflection and transmission coefficients in diffraction grating problems, the

(4.2.2)

exponential decay terms in the input and output regions can be disregarded without affecting the
physical correctness of the solution, and the backward propagating waves in the output region

are null.
-1 -1
R _ WN WN WN—I WAH XN—I 01 0 WN—I WN—I WN—Z WN—Z X N-2 0
S VN _VN VN—I _VN—I 0 1]0 X 1:/171 VN—I _VN—I VN—Z _VN—Z 0 1
10w, w, 7' [w, w, Tx, 01 © WZWZ"WIT
0X,' |\ Vv, =V, | |V, =V, 0 L|oX," |V, -V, | |\

The process of avoiding numerical instability then proceeds by introducing some intermediary

fo| 4.2.4
6] #29
a] [w, w, 1F
=2 ‘ (4.2.5)
bz Vz _Vz Gl
which then allows for the stack of transfer matrices to be expressed as follows:
R _ WN I/I/N B WN—I WN—I XN—I 0 1 0 WN—I VI/N—I B WN—2 WN—2 XN—Z 0 .
9 - VN _VN VN*I _VN—I 0 10 X;/lfl VAH _VN—I VN—Z _VNfZ 0 1
1o Tw, w,'[w, W, X,a,T
00X, |V, =Vy| |V, =V, | X,'B,T

The substitution which effectively handles the numerical instability defines the following

(4.2.3)

variables:

(4.2.6)

temporary variable:
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T=b"X,T, (4.2.7)
which upon inserting into (4.1.8) creates the following expression:
R _ WN' VVN B VVN—I WN'—I XN—I 041 0 VVN—I Ww'—l h VVN—Z Ww-z X.r\uz 0
|:5}_|:Vrv _Vn} |:VN—I _Vw_1i|{ 0 1}|:0 X:.J{VAH —V,V_J Vs =Vaa 0 1
voqw wm R
[0 X;‘L —Vj {G}

(4.2.8)

where

{E}:[%(I‘F‘Xﬂzbzl)} (4.2.9)

G| | n(-x,ab")
This process can be repeated until a final expression is obtained involving the incidence and

reflection coefficients:

Wy Wy | R Fy
= Ty 4.2.10
{VN N VN}{é} |:GN1 " ( )
where
T, =2wyF,, -G, |'s 4.2.11)
R = Wl\;IFN—lTN—l -0 (4.2.12)
T=b, X,L,b;' X,T;+-b X, T -b L, X, Ty by Xy T (4.2.13)

4.3  Scattering Matrix Method

The scattering matrix represents what is essentially a 4 port system that separates the
information that is known initially on one-side of the matrix equation (system inputs for field
harmonic amplitudes) from what is unknown on the opposite side of the equality (system outputs
for field harmonic amplitudes). As was stated previously, through recursive application of
scattering matrices within a stack of lamellar layers, a numerically stable method of determining

the field harmonic amplitudes and field amplitudes can be obtained. In this study, the scattering
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matrix technique for wave propagation was utilized to build a flexible and efficient tool for the

modeling of passive waveguide and diffractive optical devices.

4.3.1 Scattering Matrix Definition

Starting from our definition of the scattering matrix in Equation (4.1.5), the sub-matrices

of the scattering matrix could be defined as follows:

[ff’ ’lf] | ey, e ew-nx, (4.3.1)
’ _[W271W1 +V27]V1]>][W27]Wl_V271V1]X1 2[W271W1+V271V1]4X2 -

i
but this definition of the S-Matrix is not the most convenient definition for handling the
exponential terms from various layers. By renormalizing the longitudinal coordinate system in
the stack of layers, a single layer scattering matrix can be defined as following manner. As
shown in Figure 4.1, the layered media is defined such that the origin is placed at the output.

H
4

|

Input |dy dpell dp |cdpa dp | Cutput

birer|Bag| oo [2pe| Bp [Bpd - |81 B
fiq"']. J{N ,I-I:P+1 fp fP'l e f]. fl:l
= = | ——

Figure 4-1 Sketch showing a stack of layers and the associated coordinate system, distances,
layer labels, and field harmonic labels used in the scattering matrices developed in this section.
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The overall distance from the origin within any layer is defined to be a negative quantity, but the

thickness value utilized in the exponential eigenvalue matrices correspond to a negatively valued

p=1
distance measured from the input side of a particular layer, z/ = Z+Zd . <0. Given these
i=1

definitions for the longitudinal coordinate system, the amplitudes of the field expansions within a

single layer can be expressed as follows:

[Stan,p (z)] B [Wp exp(koqu;) w, exp(— koqu;)]{bp]
_ )

Uanp (z) v, exp(koqu;) -V, exp(— kog,z, )| f, (43.2)
At the interface between the p™ and p™ + 1 layers, the location in the p™ layer is z,,=-d, and
the location in the pth +1layerisz’ , =0. Setting equal the tangential fields in these two layers
leads to the following equality:

Wpo Wp)(;1 bp VVerl Wp+1 bp+1
. = (4.3.3)
Vpo - Vp Xp fP VP+1 a Vp+1 fp+1

The interface scattering matrix between two layers can then be expressed in the following

manner:
|‘bp‘+1‘| _[ 2[W le+l +V, le+lT X [W p+1 p+lT [W p+1 p ]][ b‘P ‘| (4’3.4)
v s, -vw Ix, 2X [ ww,+v I fra
ti I’;‘ 2[W W,.+V, VpH} X, [W_leH p+l} [W Woi =V, ¥
(43.5)
[ Wl +V,., }[ W, =V, ]X 2X [ W, +V1>+1V}

4.3.2 Redheffer’s Star Product

Propagation of energy through a stack of layers requires the cascading of scattering
matrices using the Redheffer star product [16, 17, 19, 20, 89, 90, 101]. This star product is a

type of linear fractional transformation that maintains the relationship between the system inputs
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and outputs on opposite sides of the resulting matrix expression. The Redheffer star product and
resulting scattering matrix between the interface scattering matrices for interfaces p — p+1 and

pt1 —pt2 can be expressed as follows:

bP+2 T;H R}7f+l bp
=, ; (4.3.6)
fP Rp+1 Tp+l __fp+2
pr+1 R;H t;u V;';/;rl tf; ”;}/
, T ; * s g (4.3.7)
Rp+1 T;}+1 rp+l t,b+1 i rp tp
b b rob b 4.3.8
TpH_tpH[]_rprpH] r ( )
: 1
N | o (4.3.9)
. . . 11 .
Ry =rf+tbarfl1=rtur! ') (4.3.10)
I b f s
Tp+l - tp [[ - rp+lrp ] tp (431 1)

By cascading star products for all layers in a stack, a relationship can be determined between the

input and output infinite half-space modes.

The inverted matrix [/ —7r]"', is known as the reverberation operator, and can be

considered as an infinite summation of reflections between two interfaces. The reverberation
operator is intimately related to the modes of a longitudinal cavity as well as the gain threshold
required for laser resonators. This infinite summation is one reason that in the presence of

evanescent waves, the scattering matrix does not possess a numerically stable inverse operation.

4.3.3 Internal Field Harmonic Amplitudes
Once the field harmonic amplitudes are known for the input and output half-spaces, the
field harmonic amplitudes for internal layers can then be determined in a numerically stable
manner. By knowing the two scattering matrices (S, and Sg) representing all layers on each side

of a plane of interest, as well as the forward and backward field harmonic amplitudes on the
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input and output sides of the region of interest (by, f1, br, fr), the internal field harmonics at this

plane of interest can be determined as follows:
by | |T) R{ |by b, ] [T RLT by
| ob = (4.3.12)
ful R T/ |/ fol [RE T\ fo
fu =l -RERLLRITE D, + T, 1] (4.3.13)

by =Tiby + R} [y, (4.3.14)

4.3.4 Incorporating Homogeneous Zero-Thickness Layers

Within an isotropic, homogeneous layer, solving of the necessary eigenvalue problem
results in eigenvector matrices that are diagonal matrices. When the eigenvalue problem solved
is for the tangential electric fields, the electric field eigenvector matrix is an identity matrix, and
the corresponding magnetic field eigenvector matrix is a diagonal matrix containing the layer’s
eigenvalues (normal direction propagation constants). In this case, the electric field expansion
amplitudes can be determined as the simple sum of the forward and backward field harmonic
amplitudes in the layer, and the magnetic field expansion amplitudes can be determined as the
difference of these forward and backward field harmonic amplitudes multiplied by this diagonal

magnetic field eigenvector matrix.

S tan [ ] buniform bumﬁ)rm + f uniform
- - (4.3.14)
Utan Q - Q f uniform Q(buniform = J uniform )
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diagonal[\/kf(m,n) + kf,(m,n) - ,ug] TE
Oy, = diagonazwkj(m) N ,ug] ™ (4.3.15)
\/kf(m ) K ) — HE 0
’ o 2D
0 ﬂg/\/kf(m’n) + k;(m,n) — UE

Utilizing Equations (4.3.2) and (4.3.14), the tangential fields in a periodic layer surrounded by

identical homogenous, isotropic layers may be set equal as follows:
{I I :| buniform,L WX I/V)(71 {b:|
Q - Q f‘un[/hrm,L VX - VX?I f
{W W ][ b :| |: ] [ } bumform’R
S 4 f Q - Q funiﬁ)rm,R
The composite scattering matrix for these two interfaces takes the following form:
buniﬁ)rm,L t r buni/’orm,R
= (4.3.17)
f uniform,R r t f uniform,L

where the sub-matrices can be defined as follows:

(4.3.16)

r=D"'C+4D" X4 BX|I - 4" Bx4™ BX]" 4™

(4.3.18)
t=4D" X[ - A" BxA" BX]' 4~ 4.3.19)
At =[y+ow]'o (4.3.20)
A‘le[VJrQW]_l[V—QW] (4.3.21)
D =Wy oWy (4.3.22)
piC=-wly+ow|' v -owp" (4.3.23)

By analyzing Equations (4.3.14) and (4.3.17), the advantages of surrounding all transversely
periodic lamellar layers with zero-thickness homogeneous layers becomes apparent. These

additions to the system do not change the physical nature of the problem being studied, but they
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create symmetry in the single layer scattering matrix that can reduce memory storage
requirements by half for a single layer and they allow for the field calculations throughout the
internal layers of a structure to be obtained as a simple sum and difference of plane waves (as
opposed to a full matrix-vector product). The usefulness of longitudinal symmetry also extends
beyond a single layer. When a stack of layers is longitudinally symmetric, the composite
scattering matrix shares these same properties. Furthermore, a binary-based application of the
Redheffer star-product [19, 20], which will be explained in Appendix D, can be executed far
more efficiently in the presence of longitudinal symmetry.

Once the field harmonic amplitudes are known within the homogeneous layers
surrounding a transversely periodic lamellar layer, the field harmonic amplitudes within that

lamellar layer can then be calculated without using interface scattering matrices as follows:

b %W71 (bun[/hrm,R + fun[fhrm,R )_ % V71 Q(bum'ﬁ)rm,R - fung’/brm,R )
= . N (4.3.24)
f %W (bun(/brm,L + f‘ung’/hrm,L )_ 2 V Q(bum'ﬁ)rm,L - fun(/brm,L )
The corresponding field amplitudes within the layer can then be determined as follows:
Stan (Z) = W[exp(koq(z - d))b + eXp(— kOqZ)]
(4.3.25)

Uan (Z) = V[exp(koq(z - d))b + exp(— koqz)]
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CHAPTER 5 MULTILAYER MULTIMODE GUIDED MODE
RESONANT FILTERS

Resonant grating structures are devices that utilize spatial periodicity and energy storage
to provide narrowband spectral and spatial filtering of a free-space or guided optical wave [45,
102]. The narrowband filtering provided by a transversely periodic grating structure can be
either a reflection [45, 102-111] or a transmission filter [112, 113]. In either case, the transverse
periodicity that gives rise to the diffraction process utilized for filtering is often not wholly
sufficient for producing an acceptable optical filter since it alone does not address the broadband
behavior of the device. A desirable narrowband optical filter is a device providing for full
reflection or transmission of energy over a predefined spectral or angular range, whereas outside
of that range the device performs in the completely opposite manner. To accomplish this
contrasting behavior, it has been noted [113, 114] that by partially decoupling the diffraction
process from the energy storage/wave guiding process, narrowband filters having nearly 100%
reflection or transmission that also have nearly 0% out-of-band reflection or transmission
respectively can be designed more easily than through use of a single periodic layer alone.

A single grating layer with a single separate wave guiding layer is usually designed to
support a single leaky mode that produces resonant filtering over a single spectral or angular
range. While the design of resonant grating devices that support multiple leaky modes producing
multiple resonances has received some attention in the literature [108, 115, 116], there are varied
methods of exploiting multiple leaky modes. This chapter aims to briefly discuss these various
means of exploiting multiple leaky mode resonant grating devices, and then present in more
detail the structure under study in this work: the multilayer, multimode guided mode resonant

filter.
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The chapter begins with a brief discussion of the history of diffraction grating anomalies
and the theory of resonant gratings. Then the physical and mathematical underpinnings of
guided mode resonance are presented. Next, effective medium theory and dielectric waveguide
theory are utilized to explore the nature of resonance separation for multimode guided mode
resonant structures. Using these tools, the real-valued dispersion properties of multilayer
structures are studied and an initial approach for designing resonance separations is presented.
Then, through the use of diffraction grating theory and explicit numerical tools like RCWA, the
complex band structures of multilayer, multimode resonant gratings are presented. By using
these complex band structures, a multi-parameter design/optimization approach is developed for
modeling multilayer, multimode guided mode resonant reflection filters that produce multiple
narrowband spectral resonances with broadened angular acceptance at normal and obliquely

incident angles.

5.1 Historical Background of Resonant Gratings

The study of resonant grating devices has a long history beginning with R.W. Wood’s
experimental observations of “anomalous” behavior present in the intensity variations of
diffraction orders over narrow frequency ranges [46]. From this initial set of observations, the
explanation for this observed anomalous behavior of diffraction gratings has been continually
developed over the past century, and can now be readily explained by two separate phenomena;
the redistribution of energy associated with the passing off of a diffracted order and the coupling
of energy to leaky modes supported by the grating structure. While a thorough historical account
of the development of resonant grating theory, and guided mode resonant devices, has been

provided elsewhere [117], a few of the major highlights of this development are restated here.
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Following the work of Wood, Lord Rayleigh ascribed the presence of grating anomalies
to the passing off of diffracted orders with a change in wavelength or incident angle, arguing that
as a diffracted order reaches its cut-off condition the energy must be redistributed among
diffracted orders [47, 48]. Fano was the first to connect the presence of grating anomalies to the
coupling to surface waves in metallic gratings as well as describe the spectral shape of these
anomalies nearly twenty-five years later [118, 119]. The next major development was presented
by Hessel and Oliner when they implemented a model involving a periodically variation in
surface impedance that was approximated using a Fourier series expansion [120]. By coupling
this model with a Rayleigh expansion external to the grating, the resulting linear systems
treatment of the grating problem was able to identify both the redistribution of energy with the
passing off of a diffracted order and the coupling to leaky modes supported by a grating-
waveguide. Through further refinement of the ideas presented by Hessel and Oliner, Neviére
further explained the presence of grating anomalies as the coupling to resonant modes supported
by the grating [106, 121]. He later showed how the complex modal index associated with a
grating mode describes the Lorentzian shape of the grating resonances [45]. During this same
period, Peng and Tamir developed an explicit Fourier-series expansion, scattering matrix method
for calculating the complex modal indices associated with a periodically modulated waveguide
[23]. With much of the physics of grating resonance explained, Mashev and Popov [105], and
shortly thereafter Magnusson and Wang [102], began to investigate the use of resonant gratings
as narrowband optical filters, as well as use for performing a variety of other functionalities.
With the physical explanation grating resonances, as well as numerical and phenomenological
modeling tools in place, much of the theoretical work of the last twenty five years surrounding

the study of grating resonances has gone into developing an understanding of the means of
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controlling resonance properties (spectral/spatial location, bandwidth) and total system response

(reflection/transmission contrast) to a variety of input conditions.

5.2 Fundamentals of Grating Resonances

As stated in the previous section, the “anomalous” behavior that can be observed in the
spectral and/or angular reflection or transmission response of a diffraction grating to an incident
wave can be explained as either the redistribution of energy with the passing-off of a diffracted
order or the coupling to a complex valued leaky mode supported by a grating-waveguide. It is
the latter of these two mechanisms that lends itself to the engineering of spatial and spectral
filtering devices. By properly controlling the structural parameters of a grating waveguide,
optical filters can be designed that possess a narrowband spectral response, a broadband angular
response, and a nearly 100% contrast between in-band and out-of-band reflection and
transmission.

An explicit explanation of the resonant grating phenomena utilized in resonant grating
filters begins with a definition of the complex mode supported by a periodic system. A grating’s
leaky mode tangential propagation constant is defined as follows:

K node = K modercal = J X rmode (5.2.1)

ke =n = n:node - jn;;ode kO = (522)

For a plane wave incident upon the grating, the tangential component of the wave can be
expressed using the grating equation. For TE incident light on a one-dimensional periodicity, the

tangential x-component of the propagation constant can be expressed as follows:
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kx,p = kincident - pK (523)
k A

x,p . _

kO - nmcident sin eincident p AX (524)

Coupling between an incident wave and grating’s leaky mode determines the spectral and spatial
location of the resonance, and it occurs when the real part of the tangential propagation constants
defined in Equations (5.2.2) and (5.2.4) are approximately equal.

' . A
= nincident sm eincident - pA_ (525)

X

n

mode

As was shown by Neviere [45], when coupling occurs between an incident plane wave and a
single complex mode, the spectral and spatial bandwidth of the grating’s Lorentzian shaped
resonant response is directly proportional to the imaginary part of the leaky mode index. The
relationships between the spectral and spatial bandwidths and the imaginary leaky mode index

are the following:

Ay =20 .

mode

A (5.2.6)
Abpyins = 2Ny (5.2.7)

At normal incidence, the tangential components of both the +1 and -1 diffracted orders are
phase-matched to equal magnitude leaky mode propagation constants traveling in opposing
directions. In this situation, it has now been often noted that while the spectral bandwidth of the
resonant grating can remain very narrow, on the order of a few Angstroms, the angular
bandwidth can often become quite broad, many angular degrees [117]. Studying the manner in
which to control this pair of properties for normal incidence has now been widely studied [117,
122-126], and has also been extended to the idea of increased angular tolerance for obliquely
incident waves as well [117, 125, 127]. In the case of oblique incidence, the phase matching

occurs when two diffracted orders become phase matched to two counter-propagating complex
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grating modes of differing magnitudes. It is this idea that we exploit in this study to design,
multilayer, multimode resonant grating filters that have narrow spectral resonances, and

broadened angular resonances at nearly a single angle of incidence, be it normal or oblique.

5.3 Effective Medium Theory and Waveguide Theory for Modeling Multilayer Grating

Waveguides

While the concept of resonant coupling to grating leaky modes is valid for gratings of
almost any periodicity, in practice a grating periodicity that produces multiple diffracted orders
in either the reflected or transmitted regions, for reflection or transmission filters respectively, is
not very practical. As the main purpose of most optical filters is to either fully reflect or fully
transmit waves of a specific frequency band in a specific range of directions, the presence of
higher order diffraction can reduce the amount of energy passed to a desired diffraction order.
Consequently, resonant gratings are often configured with “sub-wavelength gratings™ that cut-off
all but the zero order from propagating.

For modeling the properties of sub-wavelength periodicity it can often be sufficient to
consider the grating layer as an effective homogeneous medium, making use of approximate
methods to model both the grating resonance and broadband behavior. The means by which this
approximation of a homogenous medium can be made varies in complexity from simplistic to
rigorous. Although in any plausible model, the results reflect the fact that a sub-wavelength
grating made of isotropic materials will behave as an anisotropic material with varying refractive

indices between the grating’s tangential and normal directions.
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In the most simplistic approach, the tangential component of a grating’s permittivity is
modeled as a weighted sum of the two materials comprising the grating layer, where the weights

are the fractional composition of each material in the layer.
ng_ :(C"L :ghigh(f)_i_glow(l_f) (531)
where f'is fractional part of the grating period occupied by the high index material. Similarly,

the normal component of a grating’s impermittivity is modeled as a weighted sum of the two

materials in the grating layer.

—_—= =4

n E Chign Elow

L. LA et (5.3.2)
\

These relationships are equivalent to keeping only the 0™ order term in a Fourier harmonic
expansion of the permittivity and impermittivity respectively. Consequently, as the index
contrast of the two materials increases, this approximation becomes less accurate.

A more accurate approach to an effective medium theory of binary gratings was
presented by Rytov [21]. In this approach, a rigorous evaluation of the dispersion relation is
derived which is equivalent to Equation (2.3.5) except that the tangential component of the input
wave is parallel to the grating interface. Consequently, cosine term in (2.3.5), which contains

information about the tangential phase of the input wave, is equal to zero.

COSh(71d1 )COSh(72d2 )+ %{7/_: +7_2,j Sinh(7/1d1 )Sinh(72d2 ) =0 (5.3.3)

2
where the transverse propagation constant, y, is related to the waveguide modal propagation

constant, 5, within a single layer as follows:

2
2r
(lj ll’llayerglayer = _}/liyer + 182 (53-4)
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and ;.. = Ywer for TE waveguides and 7, = Tier gor TM waveguides.

layer layer
Upon applying various trigonometric identities, the dispersion relation in (5.3.3) can be

expressed as follows:
: d , d
75 tanh(%j +7 tanh(%} =0 (5.3.5)

Rytov’s approximation then consists of taking a power series approximation to Equation (5.3.5).
If only the 0™ order term is kept, then the Equations in (5.3.1) or (5.3.2) are obtained for TE or
TM respectively. As with any power series expansion, the accuracy of the approximation
increases by retaining more terms in the series. By keeping the second order terms, one obtains

the following expressions for TE and TM respectively:

2
ni =&, =&, T (ghigh ~ Elow )f + (ghigh = Elow )2 %fz(l - f)2 [;\J (5.3.6)
) € high € low € high € low (5 high — €low )2 (‘9 tow T (5 high ~ €low )f ) 7 . 1 2 ( A )2
. — - — 53.7
nH SH gh[gh + (8low - glﬁgh )f " (ghigh + (8lr)w - ghigh )f )3 3 f ( f) A ( )

It has been previously shown that as the index contrast, grating period to wavelength ratio, and
grating thickness to wavelength ratio increase, the effectiveness of effective medium theories for
modeling resonant gratings decreases [128-130]. While no homogenous thin-film
approximations produce rigorous solutions to the resonant grating problem, the most accurate
means of using an effective medium theory is to solve the transcendental dispersion problem in
Equation (5.3.3) or (5.3.5) directly for the fundamental modal propagation constant, 5. The
modal index can be derived from this modal propagation constant and this quantity is then

utilized as the refractive index of the homogeneous thin-film representing the grating.
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By incorporating this homogeneous thin-film into the multilayer waveguide, a solution to
the multilayer dispersion relation similar to Equation (2.2.37) provides an approximate value for
the real-modal indices of the multilayered grating waveguide. To determine the location of the
resonances for a multilayered grating waveguide using an effective medium approximation, the
transcendental modal solution of Equation (2.3.5) must be determined over a range for a
parameter of interest (wavelength, period). The grating equation is then solved for each
diffraction order present in the multilayer waveguide. As the concept of refractive index and
angle of propagation are only truly defined within a single material layer, only the solution to the
grating equation at normal incidence is determined for each diffracted order. The intersection of
the multilayer modal index spectral curves with the spectral curves associated with the
diffraction orders satisfy the requirements of Equation (5.2.5) and approximate the spectral
location of the multilayer waveguide grating resonances. This approach to using an effective
medium in the approximation of multilayer multimode grating resonances was introduced in Liu
et al [115], but in this paper they utilized both the 0™ order effective medium approximation and
separate waveguide dispersion relations for two separate high index regions surrounding a
grating layer, as opposed to single dispersion relation for the multilayer waveguide stack used
here. Using the solution to transcendental dispersion relations for both a grating layer to
approximate an effective medium and a multilayer waveguide provides a more accurate

approximation of all modal indices within a multimode structure.
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5.4 Real-Valued Dispersion Tailoring for the Design of Multiple Resonance Locations

5.4.1 Single Layer, Multimode Structures

One of the simplest manners for creating a resonant grating structure supporting multiple
resonances is to couple a diffraction grating layer with a single optically thick layer of material.
The single layer of material is thick enough to support multiple waveguide modes, each of which
can be coupled to a diffracted order having a proper tangential wavevector component. Figure
5-1 shows the two modes supported by a multilayer waveguide grating composed of only three
materials as well as the modal index curves and 0™ order reflection for this waveguide grating
calculated using RCWA. The structure is composed of an infinite substrate of index ng, = 1.47,
an infinite superstrate of index ny,, = 1, a high index film layer of index ngm = 2.5, and a grating
layer with refractive indices nnien = 1.47 and niow = 1. The grating periodicity is chosen to be 220
nm with a 50% high index fill factor.

While the fabrication complexity of a single material layer for the waveguide is minimal,
this configuration also provides the least flexibility for tailoring the shape of the modal index
curves, and hence the separation of resonances. Figures 5-2 through 5-4 show how the modal
index curves and reflection efficiencies supported by the multimode waveguide change as the

thickness of the high index film increases.
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Figure 5-1 (a) Figure showing both the index distribution and spatial mode profile for the two
modes supported by the single waveguiding layer GMR structure. (b) The real modal index
distribution of the two modes supported by the structure as well as the modal index of the +1
tangential diffracted order in free space, whose intersection indicates the location of a resonance.
(c) The 0™ order reflection response for the structure calculated using RCWA showing the
spectral resonance response.
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Figure 5-2 (a) Figure showing both the index distribution and spatial mode profile for the first
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index
distribution of the three modes supported by the structure as well as the modal index of the 1
tangential diffracted order in free space, whose intersection indicates the location of a resonance.
(c) The 0™ order reflection response for the structure calculated using RCWA showing the

spectral resonance response.
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Figure 5-3 (a) Figure showing both the index distribution and spatial mode profile for the first
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index
distribution of the four modes supported by the structure as well as the modal index of the +1
tangential diffracted order in free space, whose intersection indicates the location of a resonance.

(c) The 0™ order reflection response for the structure calculated using RCWA showing the

spectral resonance response.
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Figure 5-4 (a) Figure showing both the index distribution and spatial mode profile for the first
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index
distribution of the five modes supported by the structure as well as the modal index of the +1
tangential diffracted order in free space, whose intersection indicates the location of a resonance.
(¢) The 0™ order reflection response for the structure calculated using RCWA showing the
spectral resonance response.
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Increasing the thickness of the film layer not only changes the location of, and separation
between, the original resonances, but also introduces more resonances into the spectral range of

interest.

5.4.2 Single Layer, Single Mode Structures with Multiple Periodicities

Having the ability to tailor the spectral location of, and separation between multiple
resonances is a desirable property for multi-line filters. The most direct means of controlling a
two-line filter is to introduce multiple directions of periodicity as presented by Boonruang [131].
In this scenario, the modes supported by a vertical slab waveguide can have energy coupled into
them by diffracted orders along two separate dimensions of transverse periodicity. Since the
periodicity of each transverse dimension can be controlled separately during design and

fabrication, the location of two separate resonances can be controlled independently.

5.4.3 Multiple Layer, Multimode Structures

A separate method for providing more control over multiple grating resonances, involves
the introduction of multiple layers within the vertical waveguide stack. While the fabrication
complexity involved in growing multiple layers is more difficult than using a single wave
guiding layer, thin-film filters have long been grown with tens or hundreds of alternating layers
of high and low refractive indices [5]. In the multilayer, multimode resonant grating filter, the
variation of thickness for multiple layers of two or more refractive index values allows for a wide
range of flexibility in tailoring the dispersion properties of super-modes in a multilayer structure.
While the dispersion properties (spectral slope, spectral separation) of every mode in the system
are changed when any variable in the system changes, having the ability to alter the vertical

spatial distribution of material properties provides far more control over the dispersion properties
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of each mode than does having only a single layer of one material. Figures 5-5 to 5-8 show how
the separation between two resonances can be altered from course to fine over a given spectral
range by changing only the thicknesses of the layers. Design of a multi-line filter with any
desired spectral separation, within the limits of the materials present in the structure, then

becomes a multi-parameter numerical optimization problem.
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Figure 5-5 (a) Figure showing both the index distribution and spatial mode profile for the first
two modes supported by the multilayer waveguiding layer GMR structure. (b) The real modal
index distribution of the three modes supported by the structure as well as the modal index of the
+1 tangential diffracted order in free space, whose intersection indicates the location of a
resonance. (c) The 0" order reflection response for the structure calculated using RCWA

showing the spectral resonance response.
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Figure 5-6 (a) Figure showing both the index distribution and spatial mode profile for the first
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index
distribution of the three modes supported by the structure as well as the modal index of the 1
tangential diffracted order in free space, whose intersection indicates the location of a resonance.
(c) The 0™ order reflection response for the structure calculated using RCWA showing the
spectral resonance response.
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Figure 5-7 (a) Figure showing both the index distribution and spatial mode profile for the first
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index
distribution of the three modes supported by the structure as well as the modal index of the £1
tangential diffracted order in free space, whose intersection indicates the location of a resonance.
(c) The 0" order reflection response for the structure calculated using RCWA showing the

spectral resonance response.
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Figure 5-8 (a) Figure showing both the index distribution and spatial mode profile for the first
two modes supported by the single waveguiding layer GMR structure. (b) The real modal index
distribution of the four modes supported by the structure as well as the modal index of the +1
tangential diffracted order in free space, whose intersection indicates the location of a resonance.
(¢) The 0™ order reflection response for the structure calculated using RCWA showing the
spectral resonance response.
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5.5 Use of Grating Theory and the “Homogeneous Problem” for Modeling Multilayer,

Multimode GMR Devices

Exact solutions for the complex modal indices of a resonant grating structure require the
use of a rigorous Maxwell equation solver, like RCWA. The method by which the complex
modal indices of the multilayer diffraction grating can be extracted from the eigenmode solutions
and layer propagation matrices of RCWA can be accomplished in two different manners. The
original method by which these values were obtained involves a solution to the “homogeneous”
problem [45, 122, 132]. In this method [23], the eigenmodes of a transversely periodic lamellar

diffraction grating are combined with the plane wave expansions in a structure’s uniform

homogenous layers to produce a single “transverse” scattering matrix as shown in Figure 5-9.

5 | [ R

T | o

Figure 5-9 (a) A drawing of a multilayer grating structure showing the relationship between the
incoming and outgoing waves for a “transverse” scattering matrix.

For a single incident plane wave, the relationship between the incident, reflected and transmitted

waves can be expressed as follows:

T S 21 Séz §input
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The homogeneous problem involves determining non-trivial solutions to Equation (5.5.1)

-1
t t R 0
ERIJEz
SZI SZZ T 0

Such non-trivial solutions are only possible if the determinant of the inverse matrix in (5.5.2)

wheno.  =0.

input

equals zero.

-1
det [Sljl Sljz} =0 (5.5.3)
S 21 22

The complex roots of this determinant correspond to the poles of the original scattering matrix,
where these poles are the complex modes of the grating waveguide. Solving this determinant
equation requires an iterative numerical process that searches the entire complex plane similar to
that described in Section 2.5, but whereas that process only described a root search performed in
one dimension, two dimensions are necessary here. A number of different methods have been
developed for determining the complex roots of transcendental equations [59], but regardless off
the method chosen, each complex mode that is to be found must be searched for in a separate
iterative process.

A second method of determining the complex modal indices, which was utilized in this
study, involves the use of a “longitudinal” scattering matrix [22]. In this approach, RCWA is
utilized where PML boundary conditions are matched to the superstrate and substrate regions
and contained within an artificial transversely periodic unit-cell as described in Section 3.3. The

scattering matrix for a single grating unit cell is then created by cascading the scattering matrices

of the slices that represent the high and low grating index sections.
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Figure 5-10 A drawing of a multilayer grating structure showing the relationship between the
incoming and outgoing waves for a “longitudinal” scattering matrix.

The relationships between the incoming and outgoing modes to this unit cell are shown in Figure

5-10 and are related through this longitudinal scattering matrix as follows:

|:bin j|:|:Slll S112:||:bout:| (5 54)
fout Sél SéZ j;'n a

The complex modal indices can then be determined by applying longitudinal periodic boundary

— jﬁmoch — -/ﬁmoch
=e binandfout =e f

in?d

I —S. b 4 0| b,
[ *?12}{ l"} =e/ﬁmodeA|: S”l }{ ”’} (5.5.9)
0 Szz ﬁ _S21 1 f;

Unlike the “transverse” scattering matrix approach, the solution of Equation (5.5.5)

conditions, b and solving the following generalized

out

eigenvalue problem:

determines all complex modes supported by the waveguide grating system in a single matrix
operation. By solving Equation (5.5.5) over a range of wavelengths or grating periods, complex-

valued modal dispersion curves can be determined. Figure 5-11 shows the material and
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structural parameters for a grating-waveguide structure supporting single leaky mode whose

corresponding complex band structure is shown in Figure 5-12.
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Fill factor = 761nm / 902 nm

Figure 5-11 A drawing a grating waveguide structure that supports a single leaky mode, as well
as the material and structural parameters for the grating waveguide.

In a manner similar to that described in Section 5.3, the intersection of the grating modal
dispersion curves with the tangential component of the diffracted waves satisfies the conditions
in Equation (5.2.5) and indicates the presence of a resonance. Figure 5-12 shows the complex
band structure diagrams and 0™ order reflection spectra for this single-mode as well as the
angular spectrum associated with the each of the resonances at normal incidence and at a 1°

angle of incidence respectively.
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Figure 5-12 The complex band structure, as well as the Oth order reflection response for all of
the resonances of the system at 0° and 1° angles of incidence for the single leaky mode resonant

grating structure.

0°

84

0°




Table 5.1 Numerical values for the spectral and spatial resonance properties associated with the
single leaky mode grating structure in Figure 5-11 and plots in Figure 5-12. The table shows the
central resonance wavelengths, spectral bandwidths, angular bandwidths, and complex modal

indices associated with resonances at normal incidence and 1°.

q 0° 1°
resonance 1 1 2
Aresonance (LUM) 1.55001 1.54129 1.57001
A\ (nm) 934 .653 281
A6 (mrad) 5.848 6747 3115
(degrees) .33509 .03866 01785
n’ 1.7363 1.7262 1.7231
n”’ .000336 .000364 .000159
2n”’A = AL (nm) N/A 6567 2868
2n’’ = AO (mrad) N/A 7281 3182
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Table 5.1 shows the quantitative relationship between the resonance wavelength, spectral and
angular bandwidths, and complex modal index values for the structure at normal and 1° angles of
incidence. The angular bandwidth for this structure is nearly 100 times broader at normal
incidence than at oblique incidence due to the coupling of symmetric diffracted orders into
counter-propagating complex modes. The coupling of these two modes causes a flattening of the

2"

dispersion relation and the creation of a “band-edge.” Between the upper band-edge and lower
band-edge is the “photonic band-gap” where coupling between free-space and periodic modes is

considerably suppressed.

5.6 Complex-Valued Dispersion Tailoring for Design of Multilayer, Multimode GMR Devices

Using the concepts and numerical methods introduced in the previous sections, the band
structures of multilayer, multimode resonant grating devices can be rigorously calculated. By
proper design of the material and structural parameters of a two-mode resonant grating, Sentenac
et. al [127] showed how the concept of dual mode coupling and grating asymmetry can be used
to broaden the angular line width of not only normally incident filters but obliquely incident
filters as well. Figure 5-13 shows the structural and material parameters of the dual mode

grating waveguide studied in their work.

Ncover = 1 a= @5 nm b =225.5nm
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$217.9 nm n =147 _——
1309.8 nm n=2.07 A
N4 A2 3A/A4

Nsubstrate = 1.4448

o A=902 nm
grating pattern (top view)

Figure 5-13 A drawing of a grating waveguide structure that supports two leaky modes, as well
as the material and structural parameters for the grating waveguide.
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At normal incidence, their structure supports two resonances.

spectral reflection, and angular acceptance of each resonance can be seen in Figure 5-14.
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Figure 5-14 The complex band structure, as well as the 0™ order reflection response for all of the
resonances of the system at a 0° angle of incidence for the dual leaky mode resonant grating

structure.

By changing the angle of incidence to 1°, as shown in Figure 5-15, the angular line width

associated with the each of the four resonances produced is considerably narrowed.
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Figure 5-15 The complex band structure, as well as the 0™ order reflection response for all of the
resonances of the system at 1° angles of incidence for the dual leaky mode resonant grating
structure.
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Figure 5-16 shows the reflection spectrum and band structure diagrams at an angle of incidence
of 4.986°, which is the location of the band-edge between the TE, and TE; modes. By
examining the angular spectrum of each resonance shown in Figure 5-16, the angular line width
of the resonance associated with the upper band-edge of central band-gap is shown to be

considerably broadened.
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Figure 5-16 The complex band structure, as well as the 0" order reflection response for all of the
resonances of the system at a 4.986° angle of incidence for the dual leaky mode resonant grating
structure.

89



Due to the curvature of the modal band diagram in this band-gap, as can be seen more closely in
Figure 5-17, the central portions of the upper and lower band-edges are not aligned with one

another.

TE Real 2™ Stopband

4.98IG degrees
(A M)npoge > ~(A/M)Nyeget2

Figure 5-17 The complex band structure for the dual leaky mode resonant grating structure
showing the non-alignment of the upper and lower band edges at oblique incidence.

Consequently, the spectral response of the 0™ order reflection includes resonances for both the
upper and lower band-edges, but in this case only the upper band-edge produces a broadened
angular response.

The original contribution of our work performs a slight variation on this idea of
multimode coupling. In order to produce an N-line resonant filter that has broadened angular
acceptance for each resonance at an oblique angle of incidence requires a wave-guide grating
that supports N+1 complex modes, where N band-edges are aligned in the angular domain for
separate spectral resonance.. Figure 5-18 shows a slightly altered version of the structure studied

by Sentenac, where the new structure supports three complex modes.
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grating pattern (top view)

Figure 5-18 A drawing of a grating waveguide structure that supports three leaky modes, as well
as the material and structural parameters for the grating waveguide.

The grating properties of this new structure at the same as for the Sentenac structure, but two
additional layers have been added to the waveguide and the thickness of each layer in the
waveguide has been varied. Figure 5-19 shows the 0" order reflection spectrum and the complex
band diagram for the three mode system at normal incidence, as well as the angular acceptance
of each of the three resonances. Figures 5-20 to 5-22 show the same information at 1°, 2.455°,

and 5.374°.
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Figure 5-19 The complex band structure, as well as the 0™ order reflection response for all of the
resonances of the system at a 0° angle of incidence for the dual leaky mode resonant grating
structure.
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Figure 5-20 The complex band structure, as well as the 0™ order reflection response for all of the
resonances of the system at a 1° angle of incidence for the three leaky mode resonant grating
structure.

93



0 = 2.455° ~ TEReal 2”‘J Stopband TE Imaginary 2™ Stopband

0.64 .
0.63 :
0.62 :
0.61 :
0.6 ] <...::- . . . :>
< 0.59
s < =
0.58} : i
LI
0.57} ] < B >
0.56] [ : < S
0.55} .
0.54} E
0 o5 1 2.455 degrees 002 -001 0 001 002
0" order reflection (A/M)Npode > ~(A/A)Npoget2 Olmode > ~Olmode
A = 1.47562 ym , A/p = .6113 A = 1.526733 um , A/x = 590804 A = 1.5476166 um , A/, = 0.5828
1 1 1
0.8 ] 0.8 ] 0.8
0.6 ] 0.6 , 0.6
0.4 1 0.4 4 0.4
0.2 1 0.2 1 0.2
J
0, . n
2 2.5 3 02 2.5 3 02 2.5 3
0° 0° 6°
A = 1.6071445 ym, A/) = .56124 ) =1.615936 ym, A/) = .55819 L =1.68672 uym, A/) = .5348
1 1 1
0.8 ] 0.8 0.8
0.6 ] 0.6 0.6
0.4 { 04 0.4
0.2 ] 0.2 0.2
% 2.5 3 9% 25 3 % 25 3
0° 0° 0°

Figure 5-21 The complex band structure, as well as the 0™ order reflection response for all of the
resonances of the system at a 2.455° angle of incidence for the three leaky mode resonant grating
structure. At this angle of incidence, the broadened resonances are nearly aligned in their central
angle.
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Figure 5-22 The complex band structure, as well as the 0" order reflection response for all of the
resonances of the system at a 5.37° angle of incidence for the three leaky mode resonant grating

structure.
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While this design does not possess polarization independence, as can be seen in Figure 5-
23 showing the real part of the band diagrams associated with TE and TM polarizations for this

structure, there is no theoretical reason why a structure with these properties could not be

designed.
TE polarization TM polarization
0.64 | | | | 0.64]
0.63r 0.63r
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Figure 5-23 The real part of the band structure diagram for the three leaky mode resonant
grating structure for both TE and TM polarizations. These diagrams show the obvious
polarization dependence for this resonant grating structure.

Attempting to create a specific design for a polarization independent multi-line resonant filter
with broad angular acceptance for all resonances operating at oblique incidence would double
the number of conditions to be met in an optimization problem, and would therefore increase the
level of difficulty in performing the optimization.

While the angular alignment of resonances is not fully present in the previous figures, the

graphs for a 2.455° angle of incidence show broadened angular resonances that are nearly aligned
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to the same angle of incidence. In order obtain angular alignment of the resonances; a numerical
search/scan and optimization can be performed over any combination of grating parameters one
so chooses. Changing any single parameter or combination of parameters affects the slope and
shape of all of the dispersion curves in the band structure diagrams. As an example of how this
process can be performed, the thickness of the bottom two layers of the structure were varied in

tandem, as shown in Figure 5-24, maintaining a constant overall structure thickness.

Ncover = 1
$100.0 nm
300.0 nm n =207 a= 18<5_.§ nm b=225.5nm
338.0 nm n=1.47 .
350.0 nm n=2.07 //alr
}250.0 nm - Ah n=1.47 Pl
250.0 nm + Ah n =2.07 A4 N2 3N/
Nsubstrate = 1.4448 A =902 nm

grating pattern (top view)

Figure 5-24 A drawing of a grating waveguide structure that supports three leaky modes, as well
as the material and structural parameters for the grating waveguide and the two layers that were
varied in tandem to modify the overall dispersion properties of the structure.

By varying Ah from -100 nm to +100 nm, the relative locations of the two upper band-edge
dispersion curves vary significantly. Figure 5-25 shows three-dimensional plots of the real and
the imaginary parts of the band structure diagrams over this entire range, as well as two-

dimensional plots of these same band structure diagrams superimposed.
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Figure 5-25 Plots showing the changing nature of the real (a) & (¢) and imaginary (b) & (d)
parts of the band structure diagram as a function of Ah.
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The changing nature of the resonances involved can also be seen by directly observing the

reflection from the structure, as shown in Figure 5-26 for normal incidence.

1 | 0.1 -0.05 o 0.05 01
A\ Ah (pum)
(a) (b)

Figure 5-26 Plots of the 0" order reflection spectrum for the multilayer resonant grating
structure as a function of the period/wavelength ratio and change in layer height.

In investing the two upper band edges involved in the targeted simultaneous broadened
angular acceptance at oblique incidence, it is instructive to zoom-in on this section of the band

diagram plot, as shown in Figure 5-27.
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Figure 5-27 Plots showing the dispersion band edges involved in the angular alignment problem.
(a) Plot showing the dispersion curves for the entire range of Ah. (b) Plot showing the dispersion
curves at Ah = -100 nm, 0 nm, and 100 nm.
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This figure shows that negative values of Ah (which decreases the amount of high index
material) alter the band structure appreciably, and causes serious angular misalignment of the
resonance locations. On the other hand, positive values of Ah (which increases the amount of
high index material) have a smaller affect on resonance separation and a small positive value
(Ah = 63.7 nm) actually brings about the angular alignment being sought. Figure 5-28 shows the
reflection spectrum and complex band structure for the structure with an optimized angular

resonance alignment at an input angle of 3.165°.
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Figure 5-28 Reflection spectrum and complex dispersion band diagram for the optimized
multilayer structure (Ah = 63.7 nm) having two collocated, angular spectrum resonances at
separate wavelengths. The vertical lines in (b) represent the value of the expression

1—- A/ Asin @, while the horizontal lines represent the value of A/ A for the same resonance.

The plot of the angular spectrum at the peak wavelength of each spectral resonance can

be seen in Figure 5-29 along with an image of the real part of the dispersion band diagram for
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this aligned structure tightened to show only the two dispersion band edges contributing to the

angular resonances of interest. The resonance properties of each resonance are in Table 5-2.
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Figure 5-29 (a) Plot showing the angular resonances associated with the optimized multilayer
guided mode resonance structure. The resonances at wavelengths of 1.5076 um and 1.6038 um
are both centered at an input angle of 3.165° and have broad angular bandwidth due to the
simultaneous interactions of separate pairs of leaky modes. (b) The real band structure diagram
showing the band edges of interest. The circles are numbered and color-matched to the
resonance curves from part (a).
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Table 5.2 Numerical values for the spectral and spatial resonance properties associated with the
optimized multilayer multimode guided mode resonance filter having two collocated broadened
angular resonances for two separate wavelengths. The table shows the central resonance
wavelengths, spectral bandwidths, angular bandwidths, and complex modal indices associated
with resonances at a 3.165° angle of incidence.

resonance 1 2 3 4 5

Aresonance (M) | 1.44396 | 1.50761 1.52704 1.60381 1.61370

AN (nm) 025144 | .065396 | .010290 .026894 .004839

AO (mrad) | .003982 | .227848 .087816 105519 .042296

(degrees) .002281 | .130547. | .050028 060458 .024234
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5.7 Multilayer Multimode Guided Mode Resonance Filter Conclusions

This chapter discussed the concept of a multilayer multimode guided mode resonance
filter by initially discussing the background and history of the resonant grating concept, then
presenting various means of modeling the real and complex parts of the modal indices associated
with a multilayer resonant grating, and finally specific examples of multilayer, multimode GMR
filters were investigated. The multilayer, multimode GMR filter was shown to possess the
ability to control spectral resonance separations from coarse to fine depending on only the (very
controllable) properties of multilayer thicknesses for a pair of alternating material layers, given
set grating parameters. The angular resonances associated with a multilayer, multimode GMR
filter were then investigated, and it was shown that a multilayer, multimode GMR filter could be
designed to have broadened angular acceptance for multiple wavelengths at a single angle of

incidence by properly tailoring the structure’s complex modal dispersion bands.
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CHAPTER 6 EFFECT OF LOSS OR GAIN ON GUIDED MODE
RESONANT DEVICES

As described in the previous chapter, guided mode resonant (GMR) devices couple an
input optical wave to a leaky mode via diffraction from a grating. Utilizing the GMR effect, a
variety of narrow bandpass and bandstop devices have been designed previously for tailoring the
spectral and angular response of an optical filter, as discussed in the previous and following
chapters, but to date most work has focused either on modeling dielectric materials having purely
real permittivity values or metallic structures having significant conductivity. The idea of
incorporating a GMR structure as a resonant mirror interacting with a gain medium has been
proposed previously, but the effect of the gain itself on the resonance was not investigated [133].
Spectrally selective grating waveguide absorbers have been proposed as well by incorporating
metallic layers with significant conductivity [134-136]. The purpose of this chapter is to
investigate the effect of incorporating a slight gain or loss within the high refractive index layer
that primarily contains the leaky mode. The incorporation of an appropriate amount of gain or
loss is shown to produce an enhanced reflection/transmission or absorption resonance

respectively.

6.1 Definition of Physical Parameters Studied and Device Structure

In terms of a material’s complex refractive index, n — jk, with n defined as a purely
positive value, the imaginary part of the refractive index corresponds to either a gain or loss
depending on whether « is negative or positive. Figure 6.1 shows the geometric structure of the

device under study as well as the layer whose absorption/gain parameter is varied.
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Figure 6-1 Guided Mode Resonance Structure with gain/loss layer integrated

Using RCWA, a GMR structure without gain or loss is designed initially to produce a
narrowband reflection peak at a design wavelength (in this case A = 1.55 um). The multilayer
structure under study consists of a high index substrate (ngypsyrate = 3.24), a quarter wave — half
wave — quarter wave thickness stack with refractive indices of nar = 3.37, nyye = 3.5, and nar =
3.37, and a grating layer with high and low refractive indices of nsgee = 3.24 and ngroove = Nair = 1
respectively. The input half space is assumed to be air. For normally incident having TE
polarization, a grating period of 469 nm is chosen such that a resonance is produced at the design
wavelength and non-zero order diffraction is not present in either the input or output half-spaces.
The fill factor (.1705) and the thickness of the grating (230 nm) are chosen such that the

broadband Fresnel reflection of the structure is minimized.

6.2 Results and Discussion

As shown in Figure 6.2 and Figure 6.3, the addition of loss or gain to the system is
investigated by varying the imaginary part of the refractive index for the wave guiding layer.

Figure 6.2 shows the spectral response of the structure’s absorption, reflection, and transmission
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as the imaginary part of the refractive index is varied over positive values, i.e. loss in our

definition.
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Figure 6-2 (a) GMR absorption wavelength spectra plotted for varying imaginary refractive
index. (b) Corresponding 0™ order reflection spectra. (¢) Corresponding 0™ order transmission

Spectra.

Initially, a peak absorption of approximately 50% with an absorption line width of 2.5 nm
is found at the design wavelength when k., = .0027. By further varying the grating thickness at
this value of ky.,, the peak absorption is increased to 64% and the absorption line width is 1.9
nm when the grating thickness is equal to 296 nm. This increased absorption peak results from
an improved phase matching between the diffracted wave and the guided leaky mode. A further

increase in the loss coefficient of the material reduces the absorption peak, causing most of the
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energy to shift into the 0™ transmitted order. This effect is due to the fact that as the loss is
increased, the phase matching condition no longer holds between the tangential component of the

diffracted wave and the modal index of the leaky mode.
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Figure 6-3 (a) 0™ order reflection plotted with change in wavelength and imaginary part of
refractive index for the guiding layer. (b) Contour plot of 0™ order reflection. (c) 0" order
transmission plotted with change in wavelength and imaginary part of refractive index for the
guiding layer. (d) Contour plot of 0™ order transmission.

Similarly, Figure 6.3(a) through Figure 6.3(d) show the spectral response of the 0" order
reflection and 0™ order transmission as Kwvg 1S varied over negative values, i.e. gain in our
definition. While feedback is not pertinent to this numerical model, in a practical system

utilizing optical pumping, feedback into the pumping source is not desirable. To eliminate any
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feedback along the direction of the incident wave, the angle of incidence is set to 10°. While the
issues of the previous chapter involving the interaction of multiple modes at oblique incidence
would be relevant to increasing the angular tolerance of this model, multiple modes were not
considered in this example. The grating period is adjusted to 446 nm to maintain resonance at
the design wavelength, and the fill factor (.179) and the grating thickness (220 nm) are adjusted
to minimize broadband reflection.

Upon varying the gain, a peak reflection occurs at a value of kyy, = -.00137. At this
value of kg, the peak reflection is increased by a factor of greater than 2.6 x 10° versus a gain-
less resonator, while the level of the sidebands changes considerably less. As shown in Figure
6.3(b), the existence of a resonant reflection is very tolerant to a change in the amount of gain
present in the wave guiding layer, but the substantial increase in resonant reflection that occurs
near the peak value of the gain occurs within a narrower range. The resonant response takes on a
Lorentzian line shape in both wavelength and gain. Near the gain resonance, the 0™ order
transmission of the structure increases significantly, with a peak transmission having the same
order of magnitude as the peak reflection. For both the reflection and transmission responses,
increasing the gain beyond an optimal value decreases the effectiveness of the resonator. As
with the absorption response, an increase in the gain causes the phase matching condition to
breakdown, eventually eliminating the resonance entirely.

As previously suggested [133], use of a gain material within a GMR device could be
useful as an integrated mirror/resonator/amplifier for either a vertical cavity laser or as a means
of altering an incident free space optical wave in an optical pumping regime, but the gain level
must be kept within a specific, albeit wide, range to maintain resonant reflection. Similarly, the

addition of a lossy material to a GMR structure could also be useful as a narrowband, current
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producing spectral sensor [134], but the amount of loss included within the GMR structure will
affect the shape, or even the presence, of the resonant absorption spectral profile. As with all
GMR devices, finite beam size and finite grating size will affect the resonant performance of the
structure. Furthermore, the effects presented above are for steady-state gain or loss of the
system. In summary, this chapter shows that incorporation of gain or loss within a defined range
for a specific GMR device geometry can be expected to enhance resonant reflection/transmission

or absorption.
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CHAPTER 7 EMBEDDED WAVEGUIDE GRATINGS AND
WAVEGUIDE GRATING FILTERS/MIRRORS

In the same manner that a periodic structure can be used as a means of spatially and
spectrally filtering a free-space optical wave, gratings may also be utilized to filter and reflect
guided waves. Over the past decade, there has been a considerable amount of research in the
area of planar photonic crystal waveguides which make use of this idea [68, 137-142]. In a
planar photonic crystal waveguide, a spatially periodic array of holes is etched into waveguide
that vertically confines a guided mode. By varying the periodicity, removal factor, and index
contrast of the holes, as well as creating “defects” in areas where holes are not present, photonic
crystal waveguides exploit Bragg diffraction from multiple rows of embedded layered gratings to
guide light within the defect regions. An embedded resonant grating performs in a slightly
different manner from a standard planar photonic crystal mirror. In an embedded resonant
grating, the vertically guided mode is incident on what can be a single row periodic structure.
Transverse diffraction occurs at the site of this periodicity, and when the mode is phase-matched
to the periodic region, energy is stored in the periodic layer and either resonant reflection or
resonant transmission can occur.

A principal problem in planar photonic crystal waveguides and embedded gratings is that
of vertical confinement. When a waveguide mode is tightly confined to the waveguide core, due
to a vertical core/cladding refractive index contrast, the presence a lower index inclusion, such as
an air hole, causes vertical scattering of light. The strength of this vertical scattering depends on
all properties of the holes (periodicity, removal factor, index contrast, depth). If the removal of

material can be replaced by the addition of material of a higher refractive index than all other
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materials within the waveguide, then vertical scattering from a planar periodic structure can be
eliminated.

This chapter explains how the design of an embedded resonant grating structure was
attempted, using two separate two-dimensional models. The first two-dimensional is a
horizontal-direction + longitudinal-direction model that uses an effective index for the vertical
direction. This model can show transverse diffraction, but assumes the vertical direction is
infinitely invariant. The second two-dimensional model is a vertical-direction + longitudinal-
direction model that determines the modal index of the confined vertical mode. This model can
also take into account vertical scattering from low index inclusions, but does not include
transverse diffraction. By comparing the results of the initial two-dimensional model with a
fully three-dimensional model, the assumption of a vertical effective index made in the
horizontal + longitudinal two-dimensional model is shown to ignore vertical scattering and
eliminates (or at least severely reduces) the possibility of properly designing an embedded
resonant grating with low index periodic inclusions. Finally, the incorporation of high refractive
index periodic inclusions within the waveguide is shown to solve the problem of vertical

scattering and allow for the design of embedded resonant grating structures.

7.1 Two-Dimensional Embedded Grating Models

7.1.1 Determination of the Waveguide’s Modal Index

In order to determine the modal index of a vertical slab waveguide, a multilayer modal
solver was utilized. Both the transcendental dispersion equation approach described in Chapter 2
and the RCWA/PML method described in Chapter 3 can be utilized to determine the modal

index of a slab waveguide. In both this chapter and the next, the base structure considered is a
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high refractive index device representing an AlGaAs multi-quantum well core, surrounded by a
graded index cladding, with a GaAs substrate, a GaAs cover layer, and an air superstrate. Figure
7.1 shows the index distribution and spatial modal profile of the single mode waveguide

considered.
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Figure 7-1 The normalized longitudinal Poynting vector component and refractive index
distribution of the single mode waveguide showing both location and size of the graded index
section relative to the substrate and the power distribution within the graded index section.

The modal index of this single mode waveguide is 3.355. Variations in the cover layer
thickness, and to an even lesser extent in the substrate thickness, have a small effect on this

modal index.

7.1.2  Two-Dimensional Horizontal + Longitudinal Model

A two-dimensional model of the transverse diffraction was implemented using the
standard infinitely periodic grating implementation of RCWA where the high refractive index
regions were assigned the modal index of the single mode waveguide and the low refractive
index regions were assigned to be air. As the incident light is confined within the waveguide, the
input region of the model is assigned the value of the high refractive index material. Since the
original concept to be studied called for a waveguide mirror, the output region was assigned to

be that of air, as would be present in a cleaved end-facet. In order to create the conditions for
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both transverse diffraction and a resonator cavity, a single row of air holes was placed within the

high index region as shown in Figure 7.2.

@ (b)

Figure 7-2 (a) A top view of an waveguide with an embedded periodicity of low-index
inclusions (air holes) and a thin resonator cavity layer, as well as arrows representing the
incident, reflected and diffracted plane wave directions in the structure. (b) A three-dimensional
view of the waveguide with embedded air holes.

The periodicity of the grating was chosen such that upon normal incidence, an input plane wave
produces both +1 and -1 diffracted orders within the high index regions but produces no higher
order diffraction within the output air region. Since the presence of this transverse diffraction
could potentially degrade the performance of an input light source, the grating should be
designed to minimize the amount of energy diffracted into these orders. This same diffraction
mechanism also occurs within the resonator cavity, but upon resonance of the +1 and -1
diffracted orders in this region, nearly all of the input energy would be retro-reflected into the
input 0™ order. Figure 7-3 shows the reflection response for a system of square low index

inclusions.
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Figure 7-3 The reflection response of the 0™ order and +1* order diffracted plane waves in the
1D grating RCWA model.

While this structure does produce a nearly 100% reflection response on resonance, the
presence of a high index contrast output causes a significant broadband reflection response as
well. In order to decrease the level of this broadband reflection without having to introduce extra

material layers, the addition of subwavelength gratings acting as artificial optical materials can

be introduced [143, 144] as shown in Figure 7-4.

cooclV

(a) (b)

Figure 7-4 (a) A top view of an waveguide with an embedded periodicity of low-index inclusions
(H-shaped air holes) and a thin resonator cavity layer, as well as arrows representing the

incident, reflected and diffracted plane wave directions in the structure. (b) A three-dimensional
view of the waveguide with embedded H-shaped air holes.
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At each interface of the homogeneous high index material, a subwavelength grating is
added in order to decrease the impedance mismatch between that high index material and either
the adjacent grating layer or the output air region. For the two subwavelength AR layers
surrounding the diffraction grating, mechanical stability and fabrication issues for the resulting
structure would limit the periodicity of these layers to be half that of the actual diffractive grating
layer. This geometry produces what from the top-down view would look like a row of “H”
shaped holes. On the output side of the structure the periodicity of the subwavelength grating
can take any periodicity that does not produce higher order diffraction in the air regions or +2 or
-2 diffraction in the high index region, but for simplicity in the computations this period was
chosen to be the same as the other two AR layers. Figure 7-5 shows the 0" order reflection

response of this structure.
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Figure 7-5 The reflection response of the 0™ order and +1st order diffracted plane waves in the
1D grating RCWA model for the structure with H-shaped air holes.

As is desired for any resonant grating reflection filter, the broadband reflection response of this

structure is almost non-existent, whereas the narrowband reflection response is nearly 100%.
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7.1.3 Two-Dimensional Vertical + Longitudinal Model

In order to estimate the amount of loss due to vertical scattering from longitudinal holes,
the two-dimensional, RCWA/PML eigenmode expansion, scattering matrix model was utilized.
A single low index inclusion was set to represent an air hole that has been fully etched through

the graded index waveguide down to the level of the substrate.

| PML

Figure 7-6 A sketch showing the graded index waveguide with a fully etched hole (etched to the
substrate) where the length of the hole is set to be the maximum hole length considered in the H-
shaped holes of the previous section. The sum of the spectral reflection and transmission into the
fundamental mode was used to estimate vertical losses from the etched waveguide.

By setting the length of this hole to be the same as the length of the holes used in the previous
section, the difference between the incident energy and the sum of the reflection and
transmission coefficients of the fundamental mode in the input and output waveguides can be
used to estimate the amount of loss due to vertical scattering. In the wavelength range from 970
nm to 990 nm, the vertical loss from the structure with a hole length of 400 nm ranged from

23.4% to 23.7%.

7.2  Three-Dimensional Embedded Grating Models

A full three dimensional model of an embedded grating was implemented using RCWA

with incorporated PML boundary conditions in the vertical direction, purely periodic boundary
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conditions in the horizontal direction, and identical infinite waveguides in the input and output
half-spaces. The two-dimensional modal problem to be solved in each longitudinal slice makes
use of the coupled wave expansion as described in Section 3.1.3 as well as the Fourier harmonic
expansions for 2D systems described in Appendix C with horizontal symmetry considerations as
derived in Appendix D. The propagation of energy was calculated using the scattering matrix
method of Section 4.3, with the reflection coefficients of each mode determined using the
methods described in Section 3.3. Due to the large number of Fourier harmonics used to obtain
convergence of the eigenvalue problem (1059 harmonics on a diamond shaped grid) for each
transverse slice, the determination of spectral modal reflection and transmission coefficients

resulted in rather long computational run times.

Figure 7-7 A sketch of the longitudinally symmetric 3D structure considered in the computation
having an output half-space waveguide as opposed to a half space air region.

Using the final grating geometries presented in the previous section, two rows of “H”
shaped holes are embedded in the waveguide structure. This structure was tested for the
longitudinally symmetric three-dimensional model shown in Figure 7-7 using an output
waveguide as opposed to an output air half-space, due to concerns about the accuracy of
representing the system as having a purely homogeneous output air half space that would involve
longitudinal interfaces between vertical PML layers and complete air regions (as well as

concerns about numerical contamination between previously isolated unit cells), or having an
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output air region with vertical PML layers whose mode structure was not clearly understood.

Figure 7-8 shows both the reflection and transmission response of this structure.

Reflection, Transmission and Sum vs. Wavelength
for 3D GMR filter calculation
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Figure 7-8 Reflection and transmission response of the fundamental mode associated with the
longitudinally symmetric structure with two rows of H-shaped holes. The sum of the reflection
and transmission clearly indicate that on resonance this structure has enhanced scattering (either
vertical or longitudinal but out of the fundamental mode).

The location of the resonance for this structure can be seen, but the performance of the structure
on resonance is not as desired. On resonance both the transmission and reflection of the device
in the fundamental mode have decreased, which can be interpreted as an increase in the amount
of vertical scattering that occurs in the device on resonance. Consequently, the inclusions of
these low-index holes in no way act as a narrowband resonant mirror for a vertically confined
waveguide mode.

Upon conclusion of this work involving low index inclusions, it was found in the patent
by Grann [145], a means of resolving this vertical scattering issue. The concept presented
requires that the transverse periodic inclusions in a vertical waveguide must possess a higher

refractive index than all of the other materials comprising the vertical slab waveguide. When the
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periodic inclusions are the highest index in the material, transverse diffraction of the input
waveguide mode can occur without excessive vertical scattering. Energy diffracted by the
embedded grating is both vertically and horizontally concentrated in the regions near the high
index inclusions and a true resonator cavity can then be created. Fabrication of such a device
structure in a semiconductor waveguide is a considerable challenge due to the need to either
backfill material into holes or grow material around pillars in a controlled and precise manner.
Testing of both the low index inclusion and high index inclusion device structures are
both very costly computational problems. While code capable of modeling the device structure
was written and debugged, a definitive answer as to the feasibility of a low index inclusion
structure operating as an embedded resonant waveguide grating device could not be determined
satisfactorily given the present computational resources. The one 3D calculation produced in
this study made use of C,, symmetry considerations and ignored the substrate altogether. The
reasoning behind this assumption was that the fundamental mode is confined primarily to the
graded index waveguide, with little impact from the substrate itself. Any scattering from that
input fundamental mode would then result in energy lost that could not be fed back into that
mode through a resonant cavity. Even with these symmetry considerations, the 101 iterations
utilized to produce Figure 7-8 took 2 weeks of run-time, and several previously failed trials due
to out of memory errors, to produce. As the price/performance ratio of computational hardware
decreases, and the use of parallel algorithms in photonics becomes more prevalent (or at least the
ability of the present author and potential readers to write effective parallel algorithms increases),
the ability to tackle computational problems of the size and scope considered in this chapter will
become much more common place. So in conclusion, the concept of an embedded waveguide

grating guided mode resonant filter having low index inclusions remains an open problem.
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CHAPTER 8 ALL-DIELECTRIC UNIDIRECTIONAL DUAL
GRATING OUTPUT COUPLER

8.1 Introduction

Traditionally, the out coupling of light guided within a planar waveguide has been
achieved in one of four manners: end facet couplers, prism couplers, tapered couplers and grating
couplers [146]. End facet coupling creates the problems of reflection from a cleaved facet back
into the input waveguide mode that can affect the stability of the light source generating the
guided wave, the presence of an elliptical spot size created by planar waveguides that normally
have vastly different horizontal and vertical dimensions, and the potential for catastrophic end
facet damage in high power configurations. Prism coupling eliminates the issues of reflection
into an input mode and end facet damage by the use of vertical surface coupling, but the
necessity for a prism to have a denser refractive index than the materials comprising the
waveguide also precludes the use of prism coupling for high refractive index semiconductor
waveguides. Vertically tapered couplers normally consist of an adiabatic variation of the modal
index of a waveguide by means of a gradual geometric variation, similar to a prism coupler, but
normally results in a large beam divergence. Transversely tapered couplers can be either
adiabatic transverse variations [147] or a numerically optimized series of end facet couplings that
utilize multilayer resonance effects [148]. In either case, the use of a final end facet coupling
retains the same potential for end-facet damage in high power configurations. The use of a
surface grating as a means of out coupling from a planar waveguide addresses the weaknesses of
both end facet and prism coupling by minimizing reflection into the input waveguide mode and
providing a means of surface coupling for any type of material, while also spreading power over

a larger surface area and providing numerous degrees of freedom for shaping the output beam.
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Grating coupler surface emitting devices tend to have deep grooves in order to interact
with the guided mode. This results in diffraction in both a low index superstrate, normally air,
and a higher index substrate. Consequently, there is a splitting of the diffracted energy between

the substrate and superstrate regions, an example of which can be seen in Figure 8-1.
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Figure 8-1 Power flow in a single surface grating with a 275 nm period, 250 nm depth, and 50%
fill factor, which shows the splitting of diffracted energy between a substrate region (70%) and a
superstrate region (30%). (a) Transverse power flow over the entire computational window. (b)
Transverse power flow near the initial grating interface. (c)-(d) 3D view of transverse and
normal power flow showing the power magnitude.
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Attempts to force unidirectional coupling of the diffracted energy have previously involved
the addition of either a metallic coating [149, 150] or a thin-film quarter-wave-stack coating to
either the grating or the substrate [151]. Metallization of either the grating or the substrate
introduces additional absorption and scattering losses which are also problems that should try to

be minimized. The addition of a quarter wave stack mirror requires the deposition of additional
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thin film layers having tight fabrication tolerances, which increases the structure’s overall
fabrication complexity.

In recent years, the concept of dual-side wafer processing for semiconductor waveguides
has been introduced. By integrating a superstrate-side diffraction grating with either a substrate
side refractive or diffractive element, numerous applications in spatial and spectral beam control
have been introduced [149, 152]. In this work, we present a novel all-dielectric unidirectional
grating coupler that avoids the need for any additional material deposition. A model for a
unidirectional coupler with a 96% output coupling efficiency is obtained. The dual grating
structure is shown to be tolerant to a variety of potential fabrication errors while maintaining a

high output power coupling efficiency.

8.2 Proposed Structure and Device Design Methodology

8.2.1 Proposed Structure

The device considered consists of a single mode high index waveguide with a superstrate
grating that does not produce diffraction in the superstrate air region and diffracts only a single
order into the substrate, as well as a substrate side grating that diffracts a single order in the

substrate side air region as shown in Figure §-2.

Superstrate Air
Superstrate

Vv

Substrate ,
Substrate Air Output s

Figure 8-2 A simple drawing of the dual grating output coupler device considered in this study,
as well as the principal directions of energy flow in the structure.
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The periodicity for the superstrate side grating must result in that the guided mode
diffraction by the grating produces no propagating diffracted orders in air and only produces a
single diffracted order in the substrate region. This is determined from the grating equations:

k =k

tangential,mode - p K

4 (8.2.1)
A

sup

tangential,diffracted sup

nsm adif =Mipoge = P

where Ay is light wavelength, Ay, is the periodicity of the superstrate grating, and »n is the
average refractive index of the region where the diffraction occurs. In order to restrict the
propagation of diffracted orders in air, the upper bound on the superstrate periodicity is as
follows:

Agy < 2 /(Mg +1) (8.2.2)
To ensure the propagation of at least a single diffracted order in the substrate region (ngs), the
lower bound on the superstrate periodicity obeys the following inequality:

Asup > //l()/(nmode + nsub) (823)

For the grating on the substrate side, the grating equation is as follows:

A A

sup

. A A
Sin gdg’f’,oul = {nmode + : j - p - (8.24)

sub

To ensure that the substrate grating will produce only a single diffracted order in air, its
periodicity is determined by the following inequalities:

sub

j’()/(nmode - Sin Hair + j’0 /Asup)< A < 210/(nm0de - Sin auir + 2’0 /Asup) (825)
To investigate the properties and behavior of the proposed dual grating structure, the properties

of each individual grating are rigorously studied by means of the Rigorous Coupled Wave

Analysis (RCWA), using both its original form for infinite transverse gratings [12, 13] and its
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application to finite-sized integrated optical structures [9, 16, 20, 153]. Finally, the integration of
both gratings in a single device is studied using this same finite waveguide eigenmode expansion
method. A similar approach to modeling an integrated dual grating directional coupler using a

different eigenmode expansion technique has been used previously as well [154].

8.2.2 Single Mode Waveguide

The waveguide under consideration consists of a multi-quantum well AlyGa;.<xAs region
of tens of nanometer thickness surrounded by equivalent graded index AlyGa;x regions of
roughly 200nm in thickness on top of a GaAs substrate (n = 3.24). A superstrate GaAs cladding
layer is added on top of the graded index layers. Using a modal solver with incorporated
Perfectly Matched Layer (PML) boundary conditions, the modal index of this TE single mode
waveguide considered at a 980 nm wavelength is determined to be 3.355. Figure 8-3 shows the

longitudinal component of the time-averaged Poynting vector associated with this waveguide
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Figure 8-3 The normalized longitudinal Poynting vector component of the single mode
waveguide showing both the location and size of the graded index section relative to the
substrate and the distribution of power within the graded index section.
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8.2.3 Bounds on Grating Periodicities

The modal index of the single mode waveguide is then used to determine the range of
periodicities allowing for unidirectional output coupling from the substrate side of the device.
For a modal index, 7n,,,4. = 3.355, the upper limit of the superstrate side grating periodicity is 225
nm (which ensures no diffraction in air). For a substrate region average index, ng,, = 3.24, the
lower limit of the superstrate-side grating periodicity is 148 nm (which ensures the presence of
diffraction into the substrate). As shown in Equation 8.2.5, the range on the substrate grating
period depends upon the choice for the superstrate grating period, which determines the incident

and exit angles for the substrate grating.
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Figure 8-4 The output diffracted angle in air vs. the substrate grating period, for substrate index
of nsub = 3.24, and a superstrate grating period of (a) 225 nm. and (b) 148 nm.

As shown in Figure 8-4(a), for a superstrate grating period of 225 nm, the substrate
grating period can take a value of anywhere from 490 nm (where the 1% order begins
propagating) to 979 nm (where the 2" order begins propagating). Similarly Figure 8-4(b) shows
that for a superstrate grating period of 148 nm, the substrate grating period can range from 231
nm to 437 nm. With a choice of superstrate grating period between 148 nm and 225 nm, the

potential periodicity range for the substrate grating moves accordingly, but as shorter
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periodicities produce larger diffracted angles into the substrate, it is desirable to choose a period

at the longer end of this range.

8.2.4 Determination of Proper Individual Grating Strengths

Once the ranges of potential superstrate and substrate grating periodicities are known, the
gratings can then be evaluated on the basis of their diffractive strengths. For the superstrate and
substrate gratings, properties such as the grating periodicity, depth, fill factor, and profile all
contribute to how power is diffracted away from the input waveguide mode and out of the device
substrate.

Since the superstrate grating affects the coupling loss from the input mode most
significantly, its properties are investigated first. To analyze the superstrate grating in isolation,
PML boundary conditions are placed adjacent to the superstrate air region and the GaAs
substrate. A virtually semi-infinite grating coupler (length ~1 m) is used to ensure that all the
energy is coupled out and no reflection occurs from a possibly mismatched output half-space
waveguide. However, coupled energy was only collected over a finite length (~700 um) which
is found to be sufficient, in most cases, to collect all power that is scattered in the transverse

direction by the structure as shown in Figure 8-5.

Figure 8-5 A sketch showing the computational and power collection windows for both a single
surface grating with an “infinite” substrate and a dual grating coupler. Dotted lines represent
interfaces used to define layer scattering matrices.
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The selection of grating period, thickness, and fill factor for the superstrate grating
involves a trade off between the coupling length of the complex grating mode, the modal
mismatch between the input waveguide mode and the leaky waveguide-grating mode, and the

reasonable ability to fabricate the chosen grating geometry.
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Figure 8-6 (a) Real part and (b) imaginary part of the Bloch mode index of the fundamental
mode in the superstrate grating vs. superstrate grating period for various grating thicknesses.

Figures 8-6(a) and (b) show the real and imaginary Bloch mode index values vs. period
associated with the superstrate grating for various grating thicknesses having a 50% fill factor
calculated using the generalized eigenvalue approach described in Cao et. al [22]. While all
values within the previously defined superstrate periodicity range will couple nearly all of the
input power into the substrate, the variation in modal losses, seen in Figure 8-6(b), show that
coupling length can vary significantly with grating period and grating depth. A grating period of
220 nm with a grating depth of 250 nm is chosen due to it having a relatively shallow diffraction
angle in the substrate (~20°), a significant modal loss for our chosen 50% fill factor, a negligible
reflection, and a reasonable depth from a fabrication point of view. Consequently, these
parameters are utilized in the remainder of this work. Figures 8-7(a) through (d) show views of
the transverse and normal components of the Poynting vector at a 220 nm period, with a 250 nm

grating depth and 50% fill factor, which produce a 99.9% coupling efficiency into the substrate.
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Figure 8-7 Power flow in a single surface grating (a) Transverse power flow over the length of
the coupler (b) Transverse power flow near the initial grating interface. (c)-(d) 3D view of
transverse and normal power flow showing the power magnitude.
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Having analyzed properties for the superstrate grating, we then investigate the substrate
grating properties. Using the infinitely periodic, grating form of RCWA, diffraction into the 1*
diffracted order in air is calculated for the following set of parameters: a high index input half-
space is assigned the refractive index of the GaAs substrate (n = 3.24), a low index output half-
space is assigned that of air (n = 1), and the incident angle is assigned as the previously
determined superstrate grating diffraction angle into the substrate (~20°). In performing a full
parameter scan of the 3 dimensional space of grating period (400 nm to 700 nm), grating depth
(25 nm to 525 nm), and fill factor (0 to 1), for the grating under consideration, it is found that a
fill factor of 30% produced the highest diffraction efficiency over a wide range of grating periods
and depths. The 2D contour plot of 1* order diffraction efficiency vs. grating depth and grating

period at a fill factor of 30% is shown in Figure 8-8. The diffraction efficiency is calculated to
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be above 85% within relative a wide range (570-595 nm for the grating period and 250-270 nm
for the grating depth). Any grating period and grating depth within these ranges will produce

nearly the maximum efficiency.
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Figure 8-8 Contour plot showing the effects of varying grating period and grating depth on the
Ist order Transmission efficiency for an infinite binary grating with an input refractive index,
Ninput = 3.24, an output refractive index, nouput = 1, a grating tooth refractive index of

Nridge = 3.24, a grating groove refractive index, Ngroove = 1, an input angle, Oinpu = -19.83°, and a
grating fill factor of 30%.

However, to reduce the computational effort it is important for the ratio between the
periodicities of the superstrate side and substrate side gratings to have a ratio of two small
integers. This reduces the length of the unit cell, as well as the number of layers needed to
represent that unit cell. For example, a substrate grating period of 582 nm (peak of the range)
would result in a grating period ratio of Aguperstrate/ Asubstrate = 110/291 and over 800 distinct layers
within the unit cell with a length of just over 64 microns. However, by choosing a grating period
integer ratio of 3/8, resulting in a substrate grating period of 586 2/3 nm, the 1% order diffraction

efficiency remains above 85%, but the length of the longitudinal unit cell (1.76 um) and the

129



number of distinct layers (23 layers) within the unit cell are both significantly reduced. A more
detailed discussion of the layer slicing necessary for modeling double grating structures in

eigenmode expansion techniques can be found in Dong et. al [154].
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Figure 8-9 Contour plot showing the effects of varying the half-height grating fill factor and
grating tooth sidewall angle on the 1st order Transmission efficiency for an infinite binary
grating with an input refractive index, ninpu = 3.24, an output refractive index, Noupue = 1, @
grating tooth refractive index of nsgee = 3.24, a grating groove refractive index, Ngroove = 1, an
input angle, Oinpu = -19.83°, a grating period of 586.66 nm, and a grating depth of 260 nm.
Sloped sidewalls are approximated by an 8§ level staircase profile. White background regions
with a fill factor less than 67% represent gratings with triangular teeth which were not
considered.

In Figure 8-9, we investigate the effect of the substrate grating profile by determining the
1** order diffraction efficiency of an infinitely periodic substrate grating as a function of the half
height fill factor vs. outer sidewall angle for a grating depth of 260 nm. The tapered sidewall
angle is approximated by an 8 level staircase profile. Angles that are greater than 90° represent a
sloped grating tooth sidewall. Outside of the colored contour plot, the white background
indicates grating tooth parameters that will produce a triangular shaped grating tooth and are not

considered here. A slightly tapered sidewall angle of 92° at a fill factor of 30% is calculated to
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have the best diffraction efficiency performance at nearly 86%, but as can be seen in Figure §8-9;
in the neighborhood of a 25-30% fill factor there is a considerable amount of variation possible

in the sidewall angle that maintains greater than 80% transmission efficiency.

8.2.5 Full Dual Grating Coupler Model

Building on the knowledge gained from investigating the superstrate and substrate
grating properties, the performance of the full dual grating coupler device is then explored. For
this dual grating structure, the two gratings are separated by a substrate of multiple wavelength
thickness. In a real device this substrate is likely to be 100-500 um in thickness, but to keep
practical limits on the required amount of computation time we limited the size to about 10-20
um such that the utilized number of spatial harmonics will maintain convergence in the
eigenvalue problems. The superstrate and substrate gratings are then surrounded by air regions
that are then adjacent to PML boundary layers. In order to collect all of the downward diffracted
energy from the initial waveguide/superstrate grating interface, the length of the substrate grating
is extended from the longitudinal location of the waveguide/superstrate grating interface toward
the input interface by an arbitrary length of 150 um. While this choice of length is more than
enough to collect all of the scattered light for a substrate thickness of roughly 10 um, for a
realistic substrate of a few hundred microns a substrate grating extension of this length scale will
be critical to collecting all of the scattered light. This length choice depends upon the substrate
thickness and the angle of diffraction in the substrate. For the structure having simple binary
superstrate and substrate gratings, the effect of grating separation on the model is initially tested.
As can be seen in Figure 8-10(a), by changing the thickness of the substrate, relatively narrow

resonances are produced, but by examining Figure 8-10(b), representing the reflection into the
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input interface, as well as the reflection coefficients of all individual modes in the input half-
space, these resonances can be attributed to coupling into higher order super-modes of the

overall device.
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Figure 8-10 (a) Relationship between substrate thickness/grating separation and fractional
substrate output coupling. Resonances indicate coupling to higher order super-modes of the
entire waveguide stack. (b) Sum of the reflection into all individual modes at the computational
window’s input interface.

Given that a real device structure will have a slight amount of surface roughness and thickness
variation over surface of the wafer; these resonances are most likely just an artifact of the
model’s “perfect geometry”. To avoid this higher order mode coupling, a substrate thickness is
chosen, as shown by the dotted line in Figure 8-10(a), in a relatively flat region between super-

mode coupling resonances.
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Figure 8-11 Substrate output power coupling vs. (a) the superstrate grating thickness and (b) the
substrate grating thickness.

Figures 8-11(a) and (b) show the effects that varying superstrate grating thickness and
substrate grating thickness in a dual grating structure have on substrate output power coupling
efficiency. The narrow resonances in Figures 8-11(a) and (b) correspond to super-mode type
resonances discussed earlier, while the broader resonances in Figure 8-11(a) correspond to
increased coupling lengths (decreased modal leakage rates) that cause most of the energy to be

guided beyond the 700 um longitudinal window length.
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Figure 8-12 Map showing the effects of varying the half-height grating fill factor and grating
tooth sidewall angle on the substrate output power coupling for the dual grating coupler. As in
Figure 8-9, the white background regions with a fill factor less than 67% represent gratings with
triangular teeth which were not considered.

Figure 8-12 shows the effects on substrate output power coupling for varying the
substrate grating’s half-height fill factor and outer side-wall angle. As in the infinite grating
model, the peak substrate power coupling efficiency, which in this case is close to 96%, occurs
near a fill factor of 30% and has a slightly sloped sidewall angle of 92°. As can be seen in Figure
8-12, there is a channel in the vicinity of a 25-30% fill factor, where the substrate power
coupling efficiency remains above 90% from a sidewall angle of 90° to just over 105°. Both
Figures 8-11 and 8-12 show that for the initial grating parameters determined in the previous
section, a robust and tolerant output grating coupler having an output coupling efficiency around
96% can be achieved. As is the case with varying the grating period ratios, to perform sloped

side-wall calculations for the dual grating device, stair-casing of the gratings increases the
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number of layer interfaces, distinct eigenvalue problems, and scattering matrices required within
a longitudinal unit cell.

Figure 8-13 shows the normal and transverse Poynting vector components for a dual
grating coupler having a superstrate grating period, fill factor, and thickness of 220 nm, 50%,
and 250 nm respectively, as well as a substrate grating period, fill factor and thickness of 586.66
nm, 30% and 260 nm respectively. Within the 700 um longitudinal power collection window,
the substrate power coupling efficiency is nearly 96%, with just over 2% coupled from the
superstrate side of the device (primarily at the initial interface of the superstrate grating), and just
under 2% coupled into all modes of the input interface. The substrate coupling efficiency can
likely be improved upon even further by using a tapered transitional superstrate grating period
similar to the approach used in Lalanne et. al [155]. Chirping the superstrate grating fill factor
[150], depth, or period will also provide for the ability to shape the spatial distribution of output
power, but will admittedly make the computational design process much more costly in time and

memory requirements.
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Figure 8-13 Power flow in a dual grating coupler with a superstrate grating having a 220 nm
period, 250 nm depth, and 50% fill factor, and a substrate grating having a 586.67 nm period, a
260 nm depth, and a 30% fill factor, which show the splitting of diffracted energy between the
substrate region (96%) and superstrate region (~2%). (a) Transverse power flow over the entire
computational window. (b) Transverse power flow near the initial superstrate grating interface.
(c)-(d) 3D view of transverse and normal power flow showing the power magnitude.

Figure 8-14(a) shows the near-field transverse Poynting vector component at 2 pum from
the substrate grating surface and Figure 8-14(b) shows the angular spectrum of this Transverse
Poynting vector component calculated using a discrete Fourier transform performed on our non-
uniformly spaced longitudinal sampling window. As can be seen in this angular spectrum the
vast majority of the light coupled from the device is located in a very narrow angular range

around a diffraction angle of 34°.
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Figure 8-14 (a) Transverse power flow in air at 2 um from the surface of the substrate grating.
(b) Angular spectrum of the transverse power in air, and an inset showing the shape of the
angular spectrum at + 3° of its maximum value.

Figure 8-15(a) shows this transverse Poynting vector component propagated through 100
um of air by performing an inverse discrete Fourier transform. Figure 8-15(b) shows this same
transverse Poynting vector component spatially filtered at £3° around the peak 34° angular
spectrum component, which clearly shows how energy can be concentrated in a particularly

narrow angular range and whose spectral profile can be maintained over a long propagation

distance.
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Figure 8-15 (a) Transverse power flow in air at 100 um from the surface of the substrate grating,
calculated by propagating the angular spectrum using an Inverse Discrete Fourier Transform. (b)
Transverse power flow in air at 100 pm from the surface of the substrate grating spatially filtered
at £ 3° of the maximum angular spectrum component.
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8.2.6 Spectral Response of the Dual Grating Coupler

The spectral response of the dual grating coupler was modeled using the final geometry

and varying the wavelength over a 100 nm range (01 nm sampling) as shown in Figure 8-16.
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Figure 8-16 (a) Broadband spectral response of the dual grating output coupler. (b) Narrowband
response around the design wavelength of 980 nm.

138



In a similar manner to the testing of the effect of variable substrate thickness in section 8.2.5, a
number of resonances can be observed in the power output from the bottom of the structure as
well as in the total reflected power. By examining the individual reflection coefficients for each
of the high order modes in the input waveguide, once again the phenomena of coupling to
supermodes of the input waveguide. And while this supermode coupling occurs at a more
frequent interval for a variable wavelength with a fixed thickness, than for a variable thickness
with a fixed wavelength, the effect is the same. By ignoring the individual resonances, the
presence of a 25 to 30 nm band over which the output coupling is over 90% shows the

effectiveness of the dual grating structure for acting as a broadband output coupler.

8.3  Dual Grating Coupler Conclusions

By rigorously modeling, both separately and together, the waveguide and two gratings
contained in a dual grating device, a novel all-dielectric unidirectional output grating coupler was
designed. The all-dielectric dual grating coupler is robust in that it does not depend on any type
of resonance or any type of phase matching between the two gratings and is also tolerant to
potential variations in numerous grating parameters. The device eliminates the need for any
additional material deposition post-etching and fits neatly within the recently developed

framework of dual sided wafer processing.
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CHAPTER 9 CONCLUSIONS AND FUTURE PERSPECTIVES

This research study aimed to investigate the integration of disparate optical components,
namely waveguides and gratings, in individual device structures that provide enhanced
functionality due to integration. To accomplish this task, a combination of numerical methods
for rigorously solving Maxwell’s equations on wavelength and subwavelength scales and
analytical methods for interpreting data and understanding the underlying physical processes
were used in driving the design process. Despite the numerical and computationally intensive
means of building the necessary tools and performing the various device studies, the end goal of
the process always remains an increased understanding of the relevant device physics; the
capabilities and the limitations of tightly integrated bulk waveguides and periodic structures.

The numerical tools utilized in performing the physical device studies included both the
transcendental equations governing the properties of eigenmodes in multilayer slab waveguides
and one-dimensional periodic lamellar gratings, as well as the Rigorous Coupled Wave Analysis
(RCWA)/Fourier harmonic modal method for 1D, 2D, and 3D periodic optical structures. The
later modal method (RCWA) was combined with two separate, numerically stable, mode-
matching/energy-propagation techniques, the enhanced transmittance matrix (T-Matrix)
technique and the scattering matrix (S-Matrix) technique, in order to create a rigorous, efficient,
and flexible computational tool for modeling a variety of discrete or continuous, symmetric or
asymmetric, periodic or aperiodic, wavelength scale integrated optical devices. In this work’s
main body, as well as the attached appendices, a thorough description of the various components
of these mathematical techniques has been provided along with a description of how these
components were built into a single computational modeling tool capable of efficiently handling

a wide variety of cases.
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These numerical tools were applied in the modeling of a multilayer, multimode,
waveguide grating, guided mode resonance (GMR) filter. Initially, the real-valued dispersion
properties of the multilayer, multimode GMR filter was modeled by coupling an effective
medium representation of a lamellar grating etched into the top layer of a multilayer structure
with the transcendental modal equation representation of the multilayer slab waveguide. By
holding the parameters of the grating layer constant, it was shown that the resonant responses of
multiple spectral resonances can be controlled from a coarse to a fine separation by only
controlling the thicknesses of a two-material multilayer slab waveguide. Then by utilizing the
RCWA/S-Matrix representation of the multilayer, multimode GMR filter, the complex-valued
modal dispersion bands were used for studying the angular acceptance bandwidth of multiple
spectral resonances. By simultaneously engineering multiple dispersion band edges, through the
variation of multiple material layers, a multilayer, multimode GMR filter was designed that had
broadened angular acceptance for multiple wavelengths and whose angular resonances were
centered at the same angle of incidence. The use of a multi-wavelength guided mode resonant
reflection filter with broadened angular acceptance at a single incident angle could be especially
useful at oblique incidence since the reflected beams would be spatially separated from the input
beams but would not require additional optics for re-collimating the two beams upon reflection.
This collimation of would allow for interference effects for the two wavelengths to be easily
observed in a sensing environment, to maintain multiwavelength mode locking as a mirror in a
multiwavelength laser cavity, or to act as a compact multiple wavelength add/drop filter in a
communications environment.

The properties of reflection and transmission responses in guided mode resonance filters

were then studied in the presence of a linear loss or a linear gain in the multilayer structure’s

141



main guiding layer. By varying the linear loss for set structural parameters, an enhanced
resonant absorption was shown to occur at the design wavelength for a non-zero value for the
layer’s complex refractive index, but a large loss value was shown to eliminate the resonance
altogether with most of the previous resonantly reflected energy being transmitted. Adding a
lossy material to a guided mode resonant filter would potentially be useful as a current producing
spectral sensor. By varying the gain coefficient of the guiding layer’s complex refractive index,
significantly increased amplitudes for both the resonant reflection and resonant transmission
were shown to occur at the design wavelength, with a significantly narrowed bandwidth in both
cases. The broadband reflection and transmission baselines were increased with increasing gain
values as well. Adding gain to a guided mode resonant filter could potentially be useful as an
integrated mirror/resonator/amplifier for either a vertical cavity laser or as a means for altering
an incident free space optical beam in an optical pumping regime.

The idea of incorporating a low-index horizontal and transverse periodicity in a vertical
slab waveguide was studied for the possibility of its use as an integrated resonant reflection filter
for an input guided mode. In applying two-dimensional modeling, with an effective index
approximation utilized for the vertical direction, the possibility of a low-index periodic inclusion
looked promising. By incorporating both a diffractive grating that produced symmetric +1*
order diffraction in the high index region, as well as subwavelength anti-reflective gratings
producing only 0™ order diffraction, two-dimensional models produce a narrowband resonant
reflection response with a nearly 100% contrast between in band and out of band reflection. But
the results obtained for the application of three-dimensional RCWA modeling suggest that a low-
index periodic inclusion in a high index waveguide produces only a lossy resonator cavity where

energy is diffracted vertically out of the input waveguide mode. A final answer to the question
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of whether low-index transverse periodic inclusions could produce a narrowband guided mode
resonant reflection filter was not definitively solved and remains an open problem.

A combination of multilayer waveguide modal modeling, analytical application of the
grating equation, infinite transverse grating RCWA modeling, and transversely finite RCWA
modeling for integrated optics was utilized in the study and design of an all-dielectric
unidirectional grating output coupler. By analyzing both gratings individually and together as a
single device, a robust output coupler was designed that depends neither on phase matching of
the gratings nor any resonances in the structure, and the device was shown to be very tolerant to
potential fabrication errors in numerous grating parameters.

For the specific devices studied in this dissertation, areas for further study could still be
made in each case. For the multilayered, multimode GMR filters, finding a rigorous means of
modeling these structures having a finite-spatial size would help to determine the effect that a
finite size has on each individual mode and the overall device operation. Also, the idea of a
multilayered, multimode GMR filter can be extended to two-dimensional gratings, which would
help in the design of a polarization independent, multi-wavelength GMR filter with broadened
angular acceptance at a single obliquely incident angle. For the study of the effects of gain or
loss on a GMR filter, the integration of more complex and accurate material models for the gain
or loss would show how a resonant mode interacts with a real material. For the embedded
waveguide resonant grating filter, the use of more powerful computational hardware, or possibly
more tightly written code for present hardware, will allow for the rigorous and accurate modeling
of three-dimensional without the memory limitation problems and long computation times that
plagued the current study. If a design for an embedded waveguide grating resonant filter for an

input guided mode can be designed, then that would provide a compact means of spatially and
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spectrally filtering a guided mode and would also be more easily fabricated than transversely
periodic higher index inclusions. For the dual grating output coupler, more powerful
computational systems will allow for the solution of eigenmode problems for larger waveguides
that more closely match the size of real devices. More powerful models will also allow for slight
random variations that appear in real materials while maintaining overall periodicity, and
possibly allow for more complex spatial relationships between the two gratings (such as a tilting
of the bottom grating) and the rigorous modeling of a full three dimensional waveguide dual
grating output coupler.

Moving forward the methods utilized in this study can evolve in a number of manners.
First, through the use of more powerful computational hardware and smarter serial and parallel
algorithms, the device sizes and complexity of the optical structures that can be numerically
studied and designed will increase. This will allow for more components of differing discrete
and continuous geometries to be studied in an integrated fashion, and will allow for design of
entire integrated optics systems in a rigorous manner. Second, the linear optical models utilized
here will be enhanced to include the ability to solve for various non-linear optical phenomena
[156, 157] as well as being coupled to various electrical [158], thermal, mechanical, and material
models that will provide true multi-physics modeling capabilities on multiple spatial scales. All
of which will provide the ability to gain a more comprehensive view of how these devices

operate and allow for rapid virtual prototyping of these integrated optical structures.

144



APPENDIX A. ELECTROMAGNETIC PRELIMINARIES
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Any description of the interaction between electromagnetic fields and any material
medium should always begin with the beautifully defined Maxwell’s Equations of
electromagnetism. A similar derivation to that contained in this section can be found in any good

textbook on electrodynamics [38, 54, 159, 160].

A.l Deriving the Linear Time-Harmonic Maxwell’s Equations

The differential form of Maxwell’s Equations can be stated as follows:

VxE + 2—3 =0 (Faraday’s induction law) (A.1.1)
4
- oD - . L
VxH—-—=J (generalized Ampere’s law) (A.1.2)
4
V-B=0 (Gauss’ magnetic field law) (A.1.3)
V-D=p (Gauss’ electric field law) (A.1.4)

where 82 is the partial derivative operator with respect to time, V =(8/0x,d/dy,d/éz) is the
t

spatial partial derivative operator, E , H , E’, 5, and p are the electric field strength (volts/meter),

magnetic field strength (amperes/meter), magnetic flux density (webers/meter?), electric

displacement (coulombs/meter®), and electric charge density (coulombs/meter’).

ds ds

C
(a) (b)

Figure A-1 (a) A sketch showing the relationship between a vector area element on a surface
and the direction of traversal on a contour of that surface. (b) A sketch showing a volume
bounded by a closed surface and the orientation of a vector area directed outward from that
surface.
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Upon integration of equation (A.1.1) over a surface, S, that is bounded by a contour, C, as
shown in Figure A-1 and making use of Stokes’ theorem and the divergence theorem from vector
analysis, Maxwell’s Equations may be placed in their integral form. Stokes’ theorem states that
for any piecewise smooth orientable surface, S, bounded by a closed, piecewise smooth curve, C,
having positive orientation, performing a contour integral of the component of a continuous
vector field having a continuous first partial derivative and is tangential to that contour is
equivalent to performing a surface integral of the component of the curl of that vector field

normal to the surface.
ﬁi;CF(Fat)'f(F)dl = ”S (VX F(?,f))‘ A7 )ds (Stokes’ Theorem) (A.1.5)
In Equation (A.1.5), F (F,t) is a vector field defined for a spatial position vector 7 and time ¢,

T (F) is the unit tangent vector along contour C, and 7(7) is the unit normal vector across surface

S.

The divergence theorem states that for any solid of volume V having an outwardly
oriented surface S, performing a surface integration over S of a vector field that has continuous
first partial derivatives in an open set containing V' is equivalent to performing a volume

integration over V of the divergence of that vector field.
ﬁs F(7,t)-a(F)ds = I J. J.V (V F(F,t ))iV (Divergence Theorem) (A.1.6)

Applying Stokes’ Theorem to Equations (A.1.1) and (A.1.2) and applying the divergence

theorem to Equations (A.1.3) and (A.1.4) leads to Maxwell’s Equations in their integral form.

§ EF.0)di = —%  B(F.1)-ds (A.1.7)
§. 1G0T =< DF.0)-d5 + f T(7.0)-ds (A.18)
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fi B(F.0)-ds =0 (A.1.9)
ﬁ -d§=j odV (A.1.10)
fI(F.0)- f_——j pdV (A.1.11)

For passive dielectric waveguides and gratings, source and current free regions are
generally considered such that p = 0 and J=0. Given that the fields to be considered in this
study are generally of a time-harmonic nature, a generic vector field, F (F ,t) can be expressed as

F(7,t) = F(F)exp(—jt) (A.1.12)

The electric displacement and the magnetic flux density are the result of the interaction
between the material medium and the electric and magnetic fields respectively. B andD are
related to H and E through the following constitutive relationships:

B =,

D=

(A.1.13)
(A.1.14)

Dﬁl L“u
R

+
+

where ¢, is the permittivity of free space, y, 1s the permeability of free space, andM and P
are the magnetic and electric polarizations induced in the medium by the fields. For linear
media, the magnetic and electric polarizations can be expressed in terms of H, E, and the

magnetic and electric susceptibility tensors, y, and y, as follows:

M = u[x, JH (A.115)
P=¢[y.JE (A.1.16)

By inserting equations (A.1.7) and (A.1.8) into (A.1.9) and (A.1.10) respectively, the constitutive
relationships can be expressed in terms of the magnetic permeability and electric permittivity

tensors within the media as follows:
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B = u,(1+ [, DH = u[ulH (A.117)
D=¢g,(1+[y.)E =¢,[¢]E. (A.1.18)

Consequently, the time-harmonic, source and current free version of Maxwell’s equations can be

expressed as

VxE = jou,|ulH (A.1.19)
VxH =—jws,|s]E (A.1.20)
V.B=0 (A.1.21)
V-D=0 (A.1.22)

A.2  Boundary Conditions Between Two Media

The versions of Maxwell’s equations presented in section 2.1.1 are valid for any
continuous medium, but at the surface between two dissimilar media, the permittivity,
permeability, and conductivity of each medium may change abruptly from one medium to the
other. In order to maintain a solution to the equations from one media to the next, boundary
conditions must be imposed on the field vectors at the interface. To derive these boundary
conditions, we consider a curved surface, S, separating medium 1, having constitutive

parameters &,, 4, and medium 2, having constitutive parameters &,, u,, whose surface normal,

n, is positive in medium 1, as shown in Figure A-2.
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Figure A-2 An interface surface, S, located between two separate electromagnetic media with a
surface normal, 71, and a pillbox used in determining the boundary conditions for the electric
displacement and magnetic flux density.

A small circular cylindrical pillbox of height Ah is bisected by surface S. To determine the
boundary condition on the magnetic flux density vector, a surface integral of B is performed
over the surface of the pillbox. For a cylinder having a small cross-sectional area, As, El and Ez

may be considered to be constant over each respective circular end. As the height approaches

zero, Ah — 0, the location of the circular ends of the cylinder approach surface S and the
magnitudes of B, and 1§2 over the cylinder’s curved surface on either side of S become

negligible. Using Equation (A.1.9), the following condition on the normal component of the

magnetic flux density at an interface can be expressed as

(B,-B,)-a=0 (A2.1)
Equation (A.2.1) shows that the normal component of the magnetic flux density is continuous
across a surface boundary. By performing a similar surface integration involving the electric
displacernents,f)l andDz, the use of Equation (A.1.10) produces the following expression

describing the boundary condition on the normal component of the electric displacement.

- lim
(b,~B,) 7= ™ p Ah=p, (A22)
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Equation (A.2.2) shows that there is a discontinuity in the electric displacement at an interface
between two media that is equal to the amount of electric charge located on that surface. In a
source free environment, no surface charge is present; consequently the normal component of the
electric displacement is continuous at the boundary between two media.

To find the boundary conditions for tangential field components, a rectangular loop of

area, A4, having a length, A/, and a height A/ is bisected by surface S as shown in Figure A-3.

n Medium 1
< Ah Surface S

Figure A-3 A sketch of an interface between two media and a rectangular loop used for
determining the boundary conditions of tangential field components.

As the height of the rectangular loop approaches zeros, Ah — 0, the surface integrals on the right
hand side of Equations (A.1.7) approaches a value of zero. Upon taking the difference between
expressions for El and Ez involving the left hand side of Equation (A.1.7), the boundary
conditions on the tangential electric field component can be expressed in the following manner:
(E,-E,)i=0 (A.2.3)
Expressions for tangential boundary conditions may also be derived by taking the vector cross
product of the unit normal vector, i, with the right hand sides of Equations (A.1.7) and (A.1.8)

as the loop height, Ah — 0.

ix(E,-E,)=0 (A2.4)
ax(d, A= ™ T =T, (A.2.5)
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Equation (A.2.5) shows that the tangential magnetic field is discontinuous by an amount equal to
the surface current density at the interface of the two media. In the case where no current is

present, the tangential magnetic field is continuous at the boundary.

A3 Conservation of Energy and the Poynting Theorem

By taking the dot product of Equation (A.1.1) with H and the dot product of Equation
(A.1.2) with— E , as well as making use of the following vector identity:
V-(ixB)=B-(vx4)-4-(VxB) (A3.1)
the following expression relating £, H, B, and D can be obtained:

E(7.1) aﬁg 1)y G0 PBCD) g (BG o AG0)- EGa)- ) (A32)

If the right hand side of Equation (A.3.2) can be assumed to be a time varying quantity of a

scalar function /¥ (7,¢), then Equation (A.3.2) may be expressed as

B(7.1)- 2P0 | fir ). PBE-1) _ OW(.1) (A33)
ot ot ot
which may also be written as
ow (7,t) . .
P =-V-p(¥,t) - O(F,1) (A3.4)
where
p (7,t)= E(F,t)x H(F,t)
(A.3.5)

b (7.1)= %Re(ﬁ(?,t)x I:I(F,t)*)+%Re[(E(?,t)x H(F 1)t |

is the instantaneous Poynting vector and complex Poynting vector with units of watts/m* and

Q(i7 ,t) represents the energy dissipated in a medium per unit volume per second. The Poynting
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vector is a measure of the amount of power in a unit area whose surface normal is perpendicular
to both the electric and magnetic fields. Equation (A.3.4) represents a form of conservation of

energy and is known as the differential form of Poynting’s Theorem.

A.4  Lorentz Reciprocity Theorem

The concept of reciprocity in electromagnetism refers to the idea that for time harmonic
fields, the system response to a source is unchanged if the position of the source and the receiver
are interchanged [161]. In the context of dielectric waveguides and gratings, the concept of
reciprocity is useful for establishing orthogonality of the system’s eigenmodes. Here we follow
the derivations as given by Kong [38] and Bienstman [54]. Establishing the concept of
reciprocity involves the consideration of the electric and magnetic fields established by two

sources. In terms of Maxwell’s equations in a single linear isotropic media, the relationships

between the first source J, and its corresponding fields E, and H,, and the second source ./,

and its corresponding fields £, and H, can be expressed as follows:

VxE, =—jouH, (A4.1)
VxH, = josE, +J, (A.4.2)
VxE, =—jouH, (A.4.3)
VxH, = josE, +J, (A.4.4)

Expressions involving the curl of the electric or magnetic fields due to one source are then

multiplied by the magnetic or electric fields corresponding to the other source as follows:

i, - (VxE,)=—joul,H, (A4.5)
E,-(VxH,)= jwek,E, + E,J, (A.4.6)
i, -(VxE,)=—joul, , (A4.7)
E, -(Vxﬁ2)=ja)gEIEZ +EJ, (A.4.8)
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Then by combining these equations as, (A.4.5) — (A.4.7) + (A.4.6) — (A.4.8), and making use of
the vector identity in (A.3.1), we obtain the following expression:

v (E xf,-E,xd,)=],-E,~J,E (A4.9)
Lorentz’s reciprocity theorem is then obtained by integrating both sides over a volume V with a

surface S containing both of the sources and then making use of the divergence theorem (A.1.6)

on the left hand side of the expression to obtain:

(A.4.10)

Figure A-4 A z-invariant cylinder with two end faces and three total surfaces used in
establishing Lorentz’s reciprocity theorem.

For cylindrical and planar z-invariant wave guiding media, we again follow the
derivation of Bienstman [54], and define the volume to be a cylinder whose axis is in the z-
direction. The surface of the cylinder is then composed of three surfaces: the curved surface of
the cylinder and the two flat ends of the cylinder. This allows the surface integral on the right
hand side of (A.1.40) to be divided into three separate surface integrals, one for each surface.
The integral for the curved surface involves the use of boundary conditions that are often of the
Dirichlet type (the field equals zero) for open structures whose fields decay at infinity, or of the

Dirichlet or Neumann type (where the field or its derivative is zero) for structures having perfect
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electric or magnetic conducting walls. For perfectly conducting spatially periodic media, a
derivation of the Lorentz reciprocity theorem can be found in Petit et al [37]. Defining the

expression:

-

F=E xH,-E,xH, (A4.11)
an integral involving the two ends of the cylinder may be expressed as follows:

J‘J‘S ﬁ.dsl +HS ﬁ-dSz - _ns FZdS+IIS F.dS

_”S F'dS1 +IL F'dSz = IL (FHAZ ~F. )dS (A4.12)

The fields on the right hand side of (A.4.11) contained within volume V" are independent of z as
Az approaches zero. Consequently, the volume integral of (A.4.11) can be expressed as a surface

integral multiplied by Az:
[[[V,-E,~J,-E)av =00 (J,-E,~J,E) as (A4.13)
The Lorentz reciprocity theorem for longitudinally invariant media can then be obtained by

equating the left hand sides of (A.4.12) and (A.4.13), dividing by Az and then taking the limit as

Az approaches zero:

”S%(El xH, _Ez XHI)'LA‘zdS :,”s(jl 'Ez _jz 'El)'dS (A.4.14)

This theorem will be useful in the next section for establishing the orthogonality of

electromagnetic eigenmodes.
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APPENDIX B. SPATIAL HARMONIC GRIDS IN 1D, 2D AND 3D
SYSTEMS
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In numerical spectral methods, continuous and discrete quantities are approximated
through the use of series expansions of orthogonal basis functions by retaining a finite number of
terms [162]. Each term in the resulting series has an initially unknown coefficient whose value
is determined by both the value of the function over the computational window and the boundary
conditions of that window. Regardless of the dimensionality of the problem, the nature of matrix
computation requires that the relationship between the two quantities on each side of the
equation be expressed as a matrix relation between two one-dimensional arrays. For one-
dimensional problems, an initial series expansion is itself one-dimensional, and by relating every
term in the first one-dimensional array to every term in the second one-dimensional array, the
resulting expression fits naturally into the requirements for matrix computation.

Spatial Harmonic Grid for One-Dimensional Periodicity
l l l l l

x-harmonic y-harmonic
index index

0 0

y-harmonic index
=]

OO0 |O|O |0

T
IR
s

4

x-harmonic index

(a) (b)

Figure B-1 (a) A one-dimensional spatial harmonic grid used in modeling a one-dimensional
periodicity. (b) The associated initial 0"-order harmonic indexing for the one dimensional grid.

Figure B-1 shows an example of a discrete harmonic grid that can be used in a one-dimensional
. . . e th . . .
series expansion, as well as an initial 0" harmonic ordering of the series terms that becomes very

convenient for information handling purposes.
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In two-dimensional and three-dimensional spectral method models [24], the series
expansions themselves are second rank and third rank tensors respectively. In order to create
series relations that may be conveniently modeled using digital computation methods, these
second rank and third rank tensors must be transformed into effective one-dimensional arrays.
Relating every element in two of these effective one-dimensional arrays creates the necessary
coupling matrix for solving the modal problem of interest. Figure B.2 shows a square two-
dimensional and a cubic three-dimensional grid, as well as tables showing the corresponding

harmonic ordering based on the spectral distance of grid points from the origin.
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Spatial Harmonic Grid for Two-Dimensional Periodicity

2
x-index y-index
0 0
%1 1 0
2 1 0
.é 0 1
£ 0 0 -1
I
< 1 1
>
-1 -1 1
1 -1
-1 -1
25 -1 0 1 2
X-harmonic index
(a) (b)
x-index y-index z-index
0 0 0
1 0 0
Spatial Harmonic Grid for Three-Dimensional Periodicity _g' 2 8
0 -1 0
0 0 1
0 0 -1
1 1 0
g e
e] -
c
o -1 -1 0
'g 1 0 1
£ -1 0 1
S 1 0 -1
< -1 0 -1
N 0 1 1
0 -1 1
0 1 -1
0 -1 -1
1 1 1
L -1 1 1
x-harmonic index 1 1 1
o 1 1 1
-1 y-harmonic index 1 1 1
-1 1 -1
1 -1 -1
(c) (d)

Figure B-2 (a) A square grid of Fourier harmonics for a two-dimensionally periodic system. (b)
The associated initial 0™-order harmonic indexing based on both distance from the origin and
pairing of orders for symmetry operations. (c) A cubic grid of Fourier harmonics for a three-
dimensionally periodic system. (d) The associated initial 0"-order harmonic indexing based on

both distance from the origin and pairing of orders for symmetry operations.
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The spatial harmonic expansions in two or three dimensions allows for a wide range of flexibility
in how those series can be truncated. Equation B.1 provides one example of truncating a two-
dimensional grid of harmonics within the bounds of conic sections in a two-dimensional plane.

bow bow

X harmonic indezx y harmonic il’ldE;X < (B . 1 )
N, -1 N, -1
2 2

By performing these non-rectangular grid truncations, the spatial harmonics can be retained that

are most likely to produce rapid modal convergence and most likely to contribute to energy
propagation in mode matching problems. Figure B.3 shows the truncation of a 101x101 square

grid of harmonics when the conic section power factor is 0.25, 0.5, 0.75, and 1.0 respectively.
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Spatial Harmonic Grid for Two Dimensional Periodicity
Bowing Parameter = 0.25 , NW = 1705

y-harmanic index

Pﬂ'ameher 0.75, NW = 8813

y-harmenic index

Spatial Harmonic Grid for Two Dimensional Periodicity
anq Paramatel Q. 5 NW' = 5101

(b)

Spatial Harmonic Grid for Two Dimensional Periodicity
Bwnng Parameter = 1, NW = 7845

0 10 20 30 40 50
xmmmcm:

(d)

Figure B-3 Truncated spatial harmonic grids for two periodic dimensions with truncation bow

parameters equal to (a) 0.25 (b) 0.5 (¢) 0.75 (d) 1.0.
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APPENDIX C. DETERMINING THE FOURIER COUPLING
COEFFICIENTS IN 1D, 2D, AND 3D
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In solving the modal problem for periodic optical structures using Fourier series
expansions, the most critical aspects of the method for determining numerically accurate and
physically consistent solutions are the means of representing the coupling coefficients between
spatial harmonics of the electric and magnetic fields [24-28, 31, 39, 163, 164]. To determine
these coupling coefficients requires use of Fourier series expansions of the spatial distribution of
materials (permittivity and permeability), as well as the creation of a coupling matrix used for
performing a discrete convolution between the field spatial harmonic expansions and the material
spatial harmonic expansions.

In its original form [12], the RCWA made use of a single method, the “Laurent Rule”, for
performing the analytical Fourier transforms, series expansions, and discrete convolutions
necessary to obtain a system’s coupling coefficients regardless of a problem’s input polarization
or material properties. In certain situations, most notably metallic gratings in TM polarization,
the RCWA was shown to have poor numerical convergence as a function of the number of
spatial harmonics retained in the model. Based on an empirical numerical study performed by
Lalanne and Morris [26], and later put on more firm mathematical footing by Li [163], the poor
numerical convergence for metallic gratings in TM polarization was attributed to the use of an
improper method of performing discrete convolutions between two Fourier series representing
functions that share collocated jump discontinuities but whose product is to be a continuous
function. Li established a set of three rules describing various means of handling the
multiplication of series expansions when one or both of the series expansions possess collocated
jump discontinuities, and showed that when a proper method, the so called “inverse-rule,” is
utilized in proper circumstances for performing these Fourier series expansions and discrete

convolutions, the convergence problem associated with metallic gratings in TM polarization can
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be eliminated. The method of applying the “inverse-rule” has come to be known as the Fast
Fourier Factorization (FFF) method, and has now been applied to not only Fourier series
methods, but also other orthogonal function expansion methods as well [165, 166]. To find a full
mathematical justification of the “inverse-rule” and Fast Fourier Factorization the reader is
directed to the works by Li [27-31, 61, 163], and Popov et. al [167-169]. This appendix aims to
show how to implement both the original expansions method in 1D, 2D, and 3D periodic
systems, as well as a version of the Fast Fourier Factorization method in 1D and 2D periodic
systems. While they have been implemented, it should be noted that Fast Fourier Factorization

methods in 2D and 3D systems do not possess the property of mathematical uniqueness.

C.1 One-dimensional coupling coefficients

For a one dimensional binary grating, such as the one shown in Figure C.1, the function
representing the permittivity distribution in the grating layer is a piecewise continuous periodic
function with jump discontinuities at the grating ridge/groove interfaces. Two components of the
electric and magnetic fields (E,, E,, H,, H,) are tangential to the grating ridge/groove interfaces,

and one component of each field (Ex, Hy) is normal to these interfaces.

Figure C-1 A sketch showing the high and low index permittivity/permeability distributions for a
one-dimensionally periodic structure and the electric and magnetic field components in relation
to that periodicity.
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The tangential components of these fields (E,, E,, H,, Hy) are continuous across the grating
ridge/groove interfaces. Consequently, the product of the continuous function for the field and a
discontinuous function for the material allows for the use of the standard “Laurent-rule” for
performing the necessary discrete convolution. The normal components of the fields (Ey, Hy) are
discontinuous across the boundary, but the product of these normal fields with the material
property functions (ex,llx) lead to continuous quantities for the electric displacement (Dy) and
magnetic flux density (Bx). Consequently, the “inverse-rule” of Fast Fourier Factorization is

applicable in these cases.

C.1.1 Constructing 1D Coupling Coefficients for the Laurent Rule

The Fourier series expansion for the permittivity components in directions perpendicular

to the grating vector can be expressed generically as follows:

+p +A2772 .
gy(x)zgz(x):ZApe At (C.1.1)
-pr

For a grating composed of M separate permittivity regions the coefficients of this series can be

expressed as follows:

R S
APZXZ&‘M [ e " ax (C.1.2)
m=1 Xleft.m
g . 272. xright,m + xleﬁ,m .
A, =806+ Z_l(é‘m — &, )exp N sinc(pf)f (C.1.3)
M
A, =8,08 + 2 (6, — e, (C.1.4)

m=1
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2 xri1m+xe'm . xn‘ m_xg'm .
where A4, =exp —j%p(%} smc(pf)f, f=[%j, e 1s the

e : e ) . sin(/ox
background permittivity, &y is the permittivity of the m™ region, and smc(x) = L .
X

The coupling coefficient matrix used in the discrete convolution mutually couples all
harmonics used in the spatial harmonic expansions of the electric and magnetic fields. This

coupling coefficient matrix takes on the following form:

Aosey Aoy Aoy Aespy Aoy Aoy Aosp)
Aisey Apo Ay Aspy Aoy Aoy Ausop)
Ay Aoy Aosoy v Aoy Ay Aosy Aoy
[c<]= (C.1.5)
A(p—]ﬁo) A(p—lﬁl) A(p—]ﬁ—]) o A(p—]ﬁp—l) A(p—]ﬁ—pﬂ) A(p—]ap) A(p—]ﬁ—p)
A(—p+1—>0) A(—p+1—>l) A(—p+1—>—1) A(—p+1—>p—1) A(—p+1—>—p+1) A(—p+1—>p) A(—p+1—>—p)
A(PAO) A(zHl) A(p%*l) A(pépfl) A(p%*ml) A(p%p) A(pé*p)
LA Aoy Ao Aoy Apopy A Apop) |
AO A—l A+1 A—p+l Ap—l A—p A+p
A+1 AO A+2 —p+2 A+p A—p+1 Ap+1
A—l A—z Ao A—p p-2 A—p—l Ap—l
[c]= (C.1.6)
Apfl Apr Ap 4 A2p—2 A4, Aprl
A—p+l A—p A—p+2 A—2p+2 Ao A—2p+1 A+1
Ap Ap—l Ap+1 A2p+l A2p—1 AO A2p
_Afp Afpfl A—p—l A72p+1 A—l A72p Ao |
where the subscripts denote the difference between two spatial harmonics, €)%, =4, . The

matrix in Equation (C.1.5) is a Toeplitz matrix that has been permuted into a form convenient for

the diffraction and wave propagation problems utilized in the RCWA. In determining the
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elements of this coupling coefficient matrix, only the terms in the Fourier series expansion of the
permittivity from -2p to +2p need to be initially stored in memory, and the coupling coefficient
matrix can be filled from these values. Application of this matrix for the coupling coefficients

between two separate Fourier series expansions is an implementation of the “Laurent-rule.”

C.1.2 Constructing 1D Coupling Coefficients for the Inverse Rule

The Fourier series expansion for the permittivity components in directions parallel to the

grating vector is determined by means of an impermittivity expansion:

! —iB ;A (C.1.7)
gr(x) - —-p g o

For a grating composed of M separate permittivity regions the coefficients of this series can be

expressed as follows:

1 17" -2
B, =XZ‘_ j e Mdx (C.1.8)
M= Xigge
1 M 1 1 27[ xr[ ht ,m + xleft m :
B =65 .—+ — ——lexp| = j == p| 2™ | iSine C.1.9
» = %0 ;(g EL} p{ X p( : (o )f (C.1.9)
1 &1 1
B =0,,—+ ——— B, C.1.10
P (p.0) £, ;(gm g, }Bp, ( )
x‘y m+xe m . ri m_ eft,m :
where B® = exp —jz—”p Zrightm _ letm s1nc(pf)f, f= Lright.n — Fietm , & 1s the
P A 2 A
e : e th . . sin(7zx)
background permittivity, &, is the permittivity of the m™ region, and smc(x) = .
a8

As with the tangential component coupling coefficient matrices, the normal component coupling
coefficient matrix used in the discrete convolution mutually couples all spatial harmonics used in

the series expansions of the electric and magnetic fields, but in this case the impermittivity was
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modeled as a Fourier series expansion. Using the impermittitvity series expansion to model the

permittivity coupling coefficient matrix involves the following matrix inverse:

- a1

Bosey  Bosy  Bosoy v Bospy Bospy Bosp Bosop
Bi,ey  Buny By v Buspy By Busp Busop
Bl i,y  Busy Bl Bl i,y Bus,ay  Busy  Busoy)
[c]= (C.1.9)
Bipso) By Bipoisoy Bipspy Bipop)  Bosp) Blpsp)
B(—p+1—>0) B(—p+l—>l) B(—p+1—>—1) B(—p+1—>p—1) B(—p+1—>—p+1) B(—p+1—>p) B(—p+1—>—p)
By By Blpory) Bipopy  Biopy  Buon) B
_B(-1H0) B(-pﬂl) B(-1H-1) (=p—>p-1) B(‘F%—P“) B(-pﬂp) B(—p%—p)
- a-1
B, B, B, - B, B, B, B
B+1 BO +2 —-p+2 Bp B—p+l Bp+l
B—l B—2 BO B—p p-2 B—p—l Bp—l
[c*]= (C.1.10)
B, B_, B, B, B,, B, B,
B—p+1 B—p B—p+2 B—2p+2 BO B—2p+l Bl
Bp Bp—l Bp+1 B2p+1 BZp—l BO BZp
_B—p B—p—l B—p—l B—2p+l B—l B—Zp BO i
Cg,o Cg,l Cg,—l Cg,p—l Cg,—pﬂ Cg,p Cg,—ﬁ
Cl)fo Cl),(l Cl):—l o Cl)f p-1 Cl)f —p+l Cl)f P Cl)f— P
Cfl,o Cfl,l Cfl,—l o Cfl,p—l Cfl,—erl Cfl,p Cfl,—p
[CX]Z X X X X X X X (C.l‘ll)
Cp—l,O C;?—l,l Cp—],—l C;?—l,p—l Cp—l,—erl C;J—l,p Cp—l,—p
Cfp+l,0 Cfpﬂ,l Cprrl,—l Cfpﬂ,p—l Cicp+l,—p+l Cfpﬂ,p Cfpﬂ,—p
X X X X X X X
CP,O Cp,l Cprl Cp,pfl Cprp+1 Cp,p Cprp
X X X X X X X
_C*p,o C*p,l C*prl C*p,pfl C*prp*fl C*P’P C*P’P |
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In this case, the use of a matrix inversion means that all elements in the resulting coupling
coefficient matrix depend upon all terms used in the spatial harmonic series expansion of the
impermittivity function. Consequently, the terms in the impermittivity series expansion from -2p
to +2p must be initially stored in memory and used to fill the matrix whose inverse determines
the coupling coefficients. Use of the matrix in Equation (C.1.11) as the coupling coefficients

between two Fourier series expansions is an implementation of the “inverse-rule.”

C.2 Two-Dimensional Coupling Coefficients

In attempting to determine the coupling coefficients associated with structures that are
periodic in two transverse spatial dimensions, there is an ambiguous definition of what
constitutes the global normal and tangential components of a the field within a unit cell. For the
field in a direction normal to both of the grating vectors, the definition is not ambiguous and the
electric and magnetic field components are continuous across the grating groove/ridge interfaces.
Consequently, the multiplication of the continuous field functions with the discontinuous
material functions allows for safe use of the Laurent rule for the discrete convolution. For the
field components in the plane of the two grating vectors, the fields can be normal to the grating’s
ridge/groove interfaces in some regions within the unit cell, tangential to those interfaces in other
regions, and devoid of either classification in other separate regions within the unit cells. The
fact that the material distributions can take on both elliptical and polygonal transverse shapes
adds to the ambiguity in trying to assign a global label to a field’s transverse or normal properties
over the entire unit cell. Consequently, application of the inverse rule is not a straightforward
approach as it was in one-dimensional periodic systems, and does not actually possess the

properties of mathematical uniqueness. In the first two sub-sections, coupling coefficient
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expansions for two dimensionally periodic structures possessing square and elliptical geometries
will be described. In the third subsection, a method of determining the transverse component
coupling coefficient matrices for rectangular features that makes partial use of the inverse rule

will be described.

C.2.1 Constructing 2D Coupling Coefficients for Rectangular Features Using the Laurent Rule

While the nature of a transverse two-dimensional periodic structure is in no way limited
to having its directions of periodicity along the axes of a regular Cartesian coordinate system, for
simplicity this derivation will only consider orthogonal grating vectors. For a thorough
explanation of performing Fourier series expansions on two-dimensional skew-periodic lattices,
the reader is referred to the excellent text by Papoulis [170]. A simple schematic diagram in
Figure C.2 shows the relationships between the normal field component direction and unit cell

ridge/groove interfaces for doubly periodic structures with rectangular features.

oy
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Clooft
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(a) (b)

Figure C-2 (a) A sketch showing the permittivity distribution within a unit cell for a simple,
binary, two-dimensional grating, as well as the electric field perpendicular to the plane of
periodicities. (b) A similar sketch for a unit cell with multiple high index features.
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A simple Fourier series expansion of a two-dimensional periodic structure with orthogonal

periodic directions can be expressed as follows:

+p +q +12”[p‘c Zy]
=SS 4 e MM (C.2.1)
- -9

where Ay and A, are the periodicities in the x and y directions respectively. Determination of the

series expansion coefficients for a unit cell with M distinct permittivity regions can be expressed

in the following manner:

M 1 X vight ,m —jzlp 1 YViop.m - 2z P
A, A,
A,,=Y ¢, e tde— e dy (C2.2)
m=1 x Vlefz m y Ybottom Jm
+ eft,m 272' ym pm + Yy bottom ,m .
A,, =0, 00081 +Z £, gL)exp[ j== [ Xiept, jjgmc of. fexp[ A q[lz’Dsmc(qf‘,)fv (C23)
m=1 »
M

Aﬁﬂ ‘gL (p.0)a.0) T z —& )Ap m q m (C24)

where A" and A4’ are one-dimensional arrays defined as follows:

X + X, )
Ay = eXp(— j i—”p(—”g’"”" 5 e j]smC(Pfx )1,

. 27[ yt() ,m + X ottom,m :
45, = exp(— J A—Q( - > : BSIHC((]fy )fy’

y

and

_ xright,m - ‘xleﬁ,m _ xright,m + xleft,m
fv - Ax > Xeenter = 2 >

A 2

y

f _ ytop,m - ybottum,m _ ytop,m + yban‘om,m
y = > Veenter = ’
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sin(7zx) .

gL is the background permittivity, &, is the permittivity of the m™ region, and sinc(x) =
X

The coupling coefficients matrix can then be directly filled using the following relationships:

M

Cxpfjpl ‘12%111 Z gL )A();Z—pl ),mA(J;z—q1 ),m (C25)

m=1

M
C();;’—Z’PI:PZ War>a1=4,) = gL + z( gL )AO m 0 m (C26)

m=1

In the classic method of performing the coupling coefficient expansion, the same method of

creating the coupling matrix is used for every component of the permittivity/permeability tensor.

C.2.2 Constructing 2D Coupling Coefficients for Elliptical Features Using the Laurent Rule

An analytical construction of the coupling coefficients for elliptically shaped features on
an orthogonal or skew-periodic lattice requires the use of the Laurent expansion, as there is no
unique method for classifying the normal and tangential components of the transverse fields over
an entire unit cell, and the method presented in the next subsection only applies to parallelogram
shaped features. Once again, a simple Fourier series expansion of a two-dimensional periodic

structure with orthogonal periodic directions can be expressed as follows:

+p + v P
=554, 1) 2
-P 9

where A, and Ay are the periodicities in the x and y directions respectively.
Determination of the series expansion coefficients for a unit cell with M distinct permittivity

elliptical regions can be expressed in the following manner:

i]’y
A4 = e ™ dydx C.2.8
7 area of unit _cell 4 z -[ 4 ( )
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Figure C-3 (a) Single unit cell of a two-dimensionally periodic system with a circular feature of
radius a. (b) A sketch of a two-dimensionally periodic system with circular features showing the
lattice spacing in the x and y directions.

For a circle of radius a centered at the origin, as shown in Figure B.3, the bounds on the y

integral can be expressed as follows:

[ .2 _ 2 <
W)= m@) =)= b <a (C.2.9)
0 |x| >a

By making the substitution, x =asiné, can be expressed as a Hankel transform, whose solution

1s as follows:

2
< ma )4 ’ q 2 2z
A =>c¢ m sombrero| 2a, .|| — | + exp| — J X onter T —— GV conter .
74 ; " area__of _unit _cell { " [AX A, P/ A, Peen A G (C2 10)

y

J,(m)

X

where the sombrero function is defined as sombrero(x)= 2 and J,(x) is the first order

Bessel function of the first kind. For an elliptical feature with one axis of length a along the x-
direction and another axis of length b along the y-direction, the elements of the coupling

coefficient matrix can be expressed as follows:

M

b
A4,,= Z&‘ P sombrer{Z

S " area_of _unit_cell

2z
+AqymmD (C.2.11)

¥
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C.2.3 Constructing 2D Coupling Coefficients for Rectangular Features Using the Inverse Rule

In attempting to make use of the inverse rule for a two dimensionally periodic structure
with rectangular features, the methods utilized for determining the coupling coefficients are
different for the transverse and longitudinal components. For the longitudinal components that
interact with the longitudinal fields (E, and H,), the method presented in subsection C.2.1 is
utilized. For the transverse components that interact with the transverse fields, a separate
approach is taken. In this approach, the grating unit cell is divided into Ny strips that are parallel

to the direction of the x-direction field component as shown in Figure B.4.
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Figure C-4 (a) Permittivity distribution for a two-dimensional simple binary unit cell with one
rectangular feature, and the strips used for determining the coupling coefficient expansion for an
electric field shown in the x-direction. (b) A similar drawing for a unit cell with multiple
features.
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Within each strip, the strip is then divided into My sections in the orthogonal direction based on
the number of material interfaces present. An impermittivity expansion is then performed within

each strip as follows:

2z
1 & v, A"
: ):ZBq re (C.2.12)
gm y —q
Yiop,ny,m .
o 1 X S
B = Z j e Vdy (C.2.13)
y mJ m Ybottom Sy My
von 1 < 27[ ytup,m. +ybolmm,m. .
L omy=

Obtaining the permittivity coupling coefficients associated with the discontinuous material
distribution that couples with a discontinuous field but produces a continuous electric

displacement involves an inversion of the impermittivity coupling coefficient matrix in this

direction.
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The result of Equation (C.2.17) is the permittivity coupling coefficient matrix for each of the Ny
strips in the unit cell. To obtain the global permittivity coupling coefficient matrix, the
individual strip coupling coefficients for the y-harmonics are utilized in a Fourier series

expansion in the x-direction over all N strips.

Clrmitaom = 2 Clitny~— | € ™ dx (C.2.18)
M= X Xefion,
NX
Cé’zﬂpl)s(‘lz%‘h) = Z:IC({I;:’CII)A(!;z;Pl) (C219)

where A™" is a one-dimensional array whose values are defined as follows:
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A 2

Xx,n . 2 xri t,n, +Xx eft,n, .
A(g;z;pl) = eXPL_ ]_ﬁ(pz - pl {uljSInc((pZ - pl )f)x )fr (C220)

Each element of the global coupling coefficient matrix created in Equation (C.2.19) involves a

multiplication between the proper element of the C”"* matrix and the A4™" array, as well as a

summation of these resulting products over all Ny strips in the unit cell.
The process of determining the coupling coefficient matrix associated with the
permittivity/permeability tensor element in the orthogonal direction follows similar logic where

the unit cell is cut into strips as shown in Figure C.5.
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Figure C-5 (a) Permittivity distribution for a two-dimensional simple binary unit cell with one
rectangular feature, and the strips used for determining the coupling coefficient expansion for an
electric field shown in the y-direction. (b) A similar drawing for a unit cell with multiple
features.

177



C.3 Three-Dimensional Coupling Coefficients

C.3.1 Constructing 3D Coupling Coefficients for Rectangular Features Using the Laurent Rule

For constructing the coupling coefficients necessary for modeling three dimensionally
periodic systems using RCWA modal expansions, the Laurent rule expansions are the most
straightforward means of accomplishing this task, but as with the previous invocations of the
Laurent rule, the resulting series expansions do suffer from Gibbs’ phenomena at all material
interfaces and corner points. A simple schematic diagram in Figure C.6 shows the permittivity
layout for simplest rectangular binary unit cell as well as a more complicated unit cell. Much
like for a two-dimensional periodicity, a three-dimensional periodicity creates ambiguity in terms
of where a particular field component is normal or tangential to a particular electromagnetic
feature over the entire unit cell. The Laurent rule ignores this ambiguity and treats the Fourier

expansion the same in every direction.
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E high

Ehighy| —
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(a) (b)

Figure C-6 A sketch of two possible 3D unit cells with rectangular features: (a) a simple single
feature cell (b) a generic multifeature cell.
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A simple Fourier series expansion of a two-dimensional periodic structure with orthogonal

periodic directions can be expressed as follows:

g e 221y
sl yz)= 22,24, .0 2
-» —q -

where Ay, Ay, A, are the periodicities in the x, y, and z directions respectively. Determination of
the series expansion coefficients for a unit cell with M distinct permittivity regions can be

expressed in the following manner:

2
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m=1

where A" and A4’ are one-dimensional arrays defined as follows:
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gL is the background permittivity, e, is the permittivity of the m™ region, and sinc(x) =
X

The coupling coefficients matrix can then be directly filled using the following relationships:

M
C(;fipl Wa2—ar)(r—n) = Z; (8’” —¢ )A(xpz -pi)m A()le —q1)m A(Z’z 1 Jom (C2 25)
5 M 5
C()fl;jipl =p Mar>a=0,)(n—n=r) =¢L + Zl (gm —éL )A(;,m A(im A(im (C226)

In the classic method of performing the coupling coefficient expansion, the Laurent rule for
creating the coupling matrix is utilized for every component of the permittivity/permeability
tensor. Various means of performing the inverse rule have been introduced for systems with
more than one dimension of periodicity [27, 31, 169], but mathematical proofs of improved

numerical convergence accuracy as well as mathematical uniqueness have not yet been provided.
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APPENDIX D. MAKING USE OF TRANSVERSE SYMMETRY: GROUP
THEORY IN GRATING THEORY
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In any type of numerical spectral method, the accuracy of the solution that one can obtain
in any given model depends upon not only the choice of basis set utilized but also on the number
of basis functions retained in the computation. In most cases, the more basis functions that are
retained in a given computation, the more accurate the obtained result will be. The limitation on
the number of basis functions that can be retained in any given computation is a physical
limitation, generally depending on the amount of computer memory (random access memory,
virtual memory, and/or hard disk space) available for storing data generated by a model’s
computations. Apart from the physical limitations associated with system memory, increasing
the number of basis functions used in a given computation also increases the total number of
floating point operations needed to complete a computational run and leads to increased
computation times. In certain cases, specifically when a model possesses proper symmetries,
both the issue of memory requirements and computational time can be reduced by taking
advantage of these symmetries.

In the case of using frequency-domain spectral methods to model waveguide and
diffraction grating problems, a model must possess two separate types of symmetry concurrently,
structural symmetry and input wave symmetry, in order to take advantage of either. This
appendix will provide a description of the conditions necessary for taking advantage of
symmetry in one-dimensional and two-dimensional modal problems, as well as for the
determination of field distributions. The application of group theoretic concepts to RCWA was
first formally applied by the Li group [27, 33-35, 171], but while that work expresses symmetric
matrix reductions by operating on the material coupling matrices, in this appendix symmetry will

be applied to the equations for the electric and magnetic fields directly.
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D.l1  ox-Symmetry in One-Dimensional Systems

In a layered, one-dimensional distribution of materials, a system that is transversely
symmetric about the center of a computational window, which also has symmetric boundary
conditions, can be computationally reduced in size if it is accompanied by a symmetric or an
anti-symmetric energy input. As the transverse axis associated with this one-dimensional
variation is normally associated with the x-axis, the group theoretic name for this type of
symmetry is o, -symmetry. The application of o -symmetry to a one-dimensional system can
take on one of two different forms depending on the polarization of the input wave. For a system
that is polarized in the y-direction, the following relationships hold between various field

harmonic elements:

=E (D.1.1)
=H (D.1.2)

The original system of coupled wave equations relating E, and H, takes on the following matrix

relationship:
_Ey,O | I A0—>0 A0—>1 A0—>—1 A0—>2 AO—)*Z ] _Hx,O ]
E,, Ay AL AL, AL, AL, H,,
0 Ey,—l — A—Ho A—Hl A—H—l A—Hz A—H—z Hx,—l (D 1 3)
oz'| E,, Ay Ay Ay A, A, H,, o
E,_, Ay Ay Ay, A,y A, H,

Applying Equations (D.1.1) and (D.1.2) to (D.1.3) yields the following matrix relationships:
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Ey,O _A0»o Aoy Ay Ay Ay | _Hx,O |
Ey,l Ay A AL AL, A, H,,
i E%l _ A, AL AL AL, A4, H,, (D.1.4)
oz'| E, Ay Ay Ay Ay, Ay, H,, o
Ey,2 AZao AZ%I AZHI AZ%Z AZ»Z o Hx,Z

This system of equations can be reduced in size without any loss of generality as follows:

Ey,o Aoy 244, 24, - Hx,O
0| E 4., 24, 24, | H
' yl | 1-0 1-1 152 x,1 (DlS)
oz'| E A, 24,, 24,,, --|H

7,2 x,2

When the input wave is polarized in the x-direction, a similar relationship holds between the field

components /, and E,.

D.2  oi-and g,-Symmetry in Two-Dimensional Systems

In a two-dimensionally periodic medium, there is a possibility for the occurrence of two
types of one-dimensional transverse symmetries. When the material property distribution has
mirror symmetry about the x-axis of the computational window, the system is said to possess

o - symmetry, and similarly when mirror symmetry is present about the y-axis, the system is
said to possess o, - symmetry.
When the system possesses o - symmetry, and the input field is polarized in the y-

direction, the resulting electric and magnetic field harmonics have the following relationships:

Ex,m,n = _Ex,m,—n (D21)
Ey,m,n = Ey,m,—n (D22)
H. ., .,=H.,_ (D.2.3)
Hy,m,n = _Hy,m,—n (D.2.4)
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The matrix relationship between the derivative of the electric field components and the magnetic

field components can be expressed as follows:
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Similarly, the matrix relationship between the derivative

the electric field components can be expressed as follows:
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Bly:of—mo Blyjl.x—uo Bly:j,—Ho Blyjof—Hl Bly:ofl»—1 Bl‘:;ilal Blyj—xl,—ml Blyjl,x—H—l Bl):);,flafl Ey,l.—l
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BOX:OX,HO BOX:EHO BOX:—XI,HO B(;:ox,lal Bl;:(;lafl ng:lflﬁl Bg:—‘],lﬁl BS:I\,H—l Bo‘:—\LH—l ELOJ
BOX:&—HO Bolex,—mo Bg:fl,—mo Boxjox,—ml Bg:g,—m—l ngﬁ—m] B(}Y:jl,—ml B(}Y:lf—u—l B(}Y:jl,—m—l EXVO -1
Bli:)flaﬂ 1)(:1?1»0 le:;—x],laﬂ lejtflm Bl’:;)),rla—l ;:TH] Bl’z‘l,lal Bl’::flafl Bl':xl,]a—l ELLI
leixo,lao Bj::l,lﬁl) Bj::—l,lﬁli Bfl:):li,lﬁl lei’inafl lei’;.ml Bfliil.ml B—X:j,lﬁ—l Bfliil.mq Exvflvl
Bixjoilao Bi?lf—lao BlA:—AL—Ho B;:df—l»] BiX:OA,H—l B;:l,x—lal le;‘l,—lﬁl B[::‘—H—l BIX:XL—H—l E-vvlrl
Bxﬁx Bxﬁx Bx%x Bxﬁx Bx%x Bxﬁx Bxﬁx Bxﬁx Bxﬁx E

~1550,-150

For the elements listed in Equations (D.2.5) and (D.2.6), the symmetry relationships in Equations

-1-1,-1-0

—l>-1,-150

—150,-151

-1-0,1--1

—Il,-151

—l>-1,-1-1

—I>1,-15-1

(D.2.1) — (D.2.4) can be expressed in matrix form as follows:
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Applying Equations (D.2.7) — (D.2.10) to Equations (D.2.5) and (D.2.6) produces the following

matrix relationships:

r 7 Yoy Yoy gy yoy yoy yoy gy yoy gy
E . AOan,oao 01,050 Aom,n»o 0-50,0->1 A0~>0,04>—1 01,051 01,01 A0~>l,0~>—l A0~>1.0~>—1
yoy yoy gy Yoy Yoy Yoy o gyoy yoy gy
E, AHO.(HO Ao 50 Alﬁl.OaA’) Alan,ﬂal 150,051 151,051 Alﬁl,ﬂal Al~>l.0~>—l Alal,nafl
».1.0
yoy yoy gy Yoy Yoy Yoy gy yoy gy
E, 50050 AiSroso 151,00 Alan,ﬂal 150,051 151,051 Alﬁl,ﬂal 151,0>-1 Alal,nafl
».1.0
yory yoy gy Yoy Yoy Yoy _groy yoy gy
Ey ol is0is0  Aasiise AO%I.I%A’) AOan,Hl 050,151 01,151 A0~>l,l~>l An»uﬁf: 0111
oy oy gy yoy yoy yoy — AV yy — 42
E A0~>0.—l~>0 0-1,-150 A0~>l,71~>0 0-50,-1-51 A0 s 01,-1-1 0-1,-1-1 Aoal.—la—l Au»l,th
2.0,-1
yoy oy yoy yy yory yoy oy Yoy — Ay
E, AHn,Ho 151,150 151,150 AL Alﬁﬂ,lafl AH:.Hl AH:.Hl Alal,la—l 15115-1
vl
yory oy gy yy yory yoy gy Yoy — Ay
E, AHn,Ho 151150 151,150 AL Alﬁﬂ,lafl AH:.Hl AH:.Hl 151151 15115-1
yoy yory — Yoy yoy yoy yoy — yoy yoy — yoy e
E, 150,-1-50 151,-1-0 151,-1-0 150,-1-1 Alﬁﬂ,lafl AHl,le AHl,le 151 -1--1 AHIfol
yoy yory — yoy yoy yoy yoy — yoy yoy — yoy e
E 1-50,-1-50 151,-150 151,-150 150,-1-51 Alﬁﬂ,lafl AHl,le AHl,le 151 -1--1 AHIfol
- Xy x>y _ fXOY Xy xoy xoy _ g3y xoy _ ooy ..
Aow,u»o ALH],(HO Ay5i0s0 Amo.o»l Ay 001 Ay S0 AlHL(Hl Ao Ao
oy x>y _ oy x>y x>y x>y _ oy x>y _ oy ..
A5 00 Ao AHHHU A0 AHU,O» 1 Alal,ual Ao Alal,()» 1 AHLLH 1
_ oy _ gy x>y T = oy T = oy _ gy x>y ..
A 5500 Ao A% o0 AHU,(HI Al~>0.04> 1 AH],(HI Ao AH].(H 1 Alal,()» 1
xoy Xy _ groy Xy x>y x>y gy x>y Y L .
Ay 5010 A0 Aual.lau Ay 501 Aow,m 1 AOal,Hl Ao ALH],H 1 Aum.u 1
x>y Xy 4Oy xoy xoy xoy _groy Xy — g
AlHo. 10 Aum. 10 ALH], o AgSo i Ay 150 A7 Ao A Aum, 1>-1
x>y Xy T = x>y x>y oy _ oy x>y gy ..
Al—>0,1~>0 AH],HO AT Al~>0,14>1 A5G0 A50 5 AHLHl A5 A5
T = _ oy x>y _ oy _ gy _ oy x>y _ gy x>y ..
AHU.HU AH].HU AT A5G0 A5G0 A5 AH],HI A5 A5
x>y x>y _ oy x>y x>y Xy T = x>y o qxoy
A5G 150 A5 50 A5 150 AHU, 151 A5G0 AH], 11 AHI, 151 AHL 11 A5
oy gy oy =t _ gy _ oy x>y _ gy oy .
A5G 10 AHI, 150 AHL 10 Al~>0‘ 11 A5G0 AHL 11 A5 A5 AHL 11
yox yox yox yox yox yoox yox yox yox r
Ay 050 Aistoso AlHL(Hu A0 AiSoosa AiSies Ao A(Hun 1 Ao H,
yox yox yox yox yox yox yox yox yox
Al~>0.0—>0 Alal,()»o A 050 AH(qu Al—»U,Ua 1 AH],(HI A7 1051 Ao Alal,ua 1 Hy](,
yox yox yoox yox yox yox yox yox yox .
Al~>0‘04>0 Ala],()»o Ao Al~>0‘04>1 Al—»U,Ua 1 AH],(HI A7 1051 Ao Alal,ua 1 H,
».1.0
yox yoox yox yox yox yoox yox yox yox .
AU%O‘I—»U AOal,Ho A% 50 AU%OJ%I ALHU,H 1 AlHLHl LN LIl Ay AOal,H 1 Hy(,1
yox yox yox yox yox yox yox yox yox cee
AlHu, so o AiSiase AiSioiso AlHu, o1 AiSoasa A5 A4S 1L-1-1 A ASinn H,,
yox yox yox yox yox yoox yox yox yox
A5 A AHLHU A5 A5 AN A5 AHLH 1 A5 H,
vl
yox yox yox yox yox yoox yox yox yox
A5G0 A AH].HU A5 A5 A5 A5 AHLH 1 A5 H,,
yorx yox yox yorx yox yox yox yox yox .
A5 150 AH!. 10 Alal, o0 Ao AL AH!. o1 ASN AH], 151 AHL 11 Hj, L1
yox yox yox yorx yox yox yox yox yox .
A5 150 AHL 10 Alal, oo ASos AL AH!. o1 ASN AH], 151 AHL 11 Hj, L1
xox o x> x—x xx x—>x xx x—x xox
AyZ0.050 AU*}LO‘)O A0~>L0~>0 A0~>0‘0~>l AO%O,O%—I Ao o AO%I,O%I AO%I,O%—I AU*}],O‘)*] H. o
x—>x xx xx xx x> x> x> X xx
A5500 Alal,[}ao AHl,o»o Al~>0,0~>1 Al~>0‘04>—1 A o Ao Ao Alal,[}a—l Hx,l,ﬂ
x> xox xox xox x—>x x> x—>x x—>x xox
- Al—>0,0~>0 - Al~>l.0~>0 - Al~>|.0—>0 - Al~>0.04>l - Al~>0.0~>71 - Al~>L0~>l - Al~>L0~>l - Al~>l,0~>71 - Al~>l.0~>—l Hx,LO
x> x> 2 -, - -, -, -, x>
A0 Ao!lfmo AOKMTHO Aogox.ml Ao:ox‘mfl AO:ITHI A[))Cﬂl)flal A[))Cﬂl)fla—l AO‘%ITI%—I Hx,ﬂ,l
x> x—>x x—>x x—>x xox xx xox xox x—>x
A0~>0fl~>0 A5 A 150 Ao -1 AgSo 15 Aom,le Ao»l,le Ay Ao erl
xox X X x—>x xx x—>x xx xx x>
A5 AHLHO AHLHO Al~>0‘l~>l AHO,HA A5 AHI,HI Alal,la—l AHLHA H,,,
x> x—>x x—>x x—>x xox x> xx xox x—>x
- AHO,HO - AHLHO - AHLHO - AHO.HI - Al~>0.l~>—l - AHI,Hl - AHI,Hl - Al~>l,l~>—l - Al~>l.l~>71 Hx.Ll
x> xx xox xox xx x> x—>x x—>x x-x
Ala[),fl»[) A5 50 A5 50 A0 AHO,HA AHL—Hl Alal,—lal A5 A Hx,l.—l
xox xox xox x> xx x—>x xx xx xox
- Al»o.flao - Al~>|.71~>0 - AHL—HO - AHOle - Al~>0.l~>—l —AS L —ASTL — AHI,—HA - Alal,—la—l Hx_,l.fl

1
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(D.2.12)

By taking the derivative of Equation (D.2.11) with respect to z" and inserting Equation (D.2.12),

the resulting matrix eigenvalue equation can be written as follows:
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r 1 yoy yoy yoy Yoy yoy Yoy yoy yoy Yoy
Ey,[),() Co»o.o»o Com,o»o CO~>1,0~>O CO%O,O%I C04>070~>71 Com,om Co»l,om CO%I,OH*I CO%I,OH*I
yoy Yoy Yoy yoy yoy yoy Yoy Yoy Yoy
E), Lo 10,00 151,050 Cl~>l,0~>0 150,051 1-50,0->-1 151,051 151,051 Cl~>l,0~>—1 C1~>1,O~>—l
yoy yoy yoy yoy yoy yoy yoy yoy yoy
Em,o CHUJHO CHL(HU CI~>I,0~>U Clﬁl),l)al Cl~>l),()~>fl CHI,(HI 151,01 CI~>I,0~>—1 Clﬁl,()a—l
Yoy Yoy vy vy vy vy Yoy yoy yoy
Ey’o’1 C(Ho,Ho C(Hl,Ho C0~>1,l~>0 C0~>0,l~>l C0~>0,l~>fl C0~>l,l~>l C041,H1 C0~>l,l~>71 Cﬂﬁl,lﬁfl
Yoy Yoy yoy yoy yoy yoy Yoy yoy yoy
E 01 C0~>0:]~>O C0~>1,71~>O Com.—uo C[Ho.—ul C(Ho,—l»—l COAI,*I»I C0~>1,71~>1 Co»l.—l»—l Co»l,—l»—l
yoy yoy yoy yoy yoy yoy Yoy yoy yoy
Ey“ CHU,HO CHI,HQ CHI,HU CHo.Hl Cla().la—l CHl,Hl CHI,HI Cl~>l.l~>—l Cl~>l.l~>—l
yoy yoy yoy yoy Yoy Yoy yoy yoy yoy
E),ﬁl,, CHU,HO CHLHO CHLHO CHO,Hl CHO,H—] CHLHI CHl.H] CH],H—] CH],H—]
yoy yoy yoy Yoy Yoy yoy Yoy Yoy
ENH C1~>0.714>0 C1~>1,71~>0 CH],—HO Gl CHO,H—] C1~>1,71~>1 CHL—H—l CHl,—H—l
yoy yoy yoy o yoy yoy Yoy Yoy
E, 150,-1-50 I51,-1-0 Clal,—lao 1-50,-1-1 150,151 I>l-1-1 Clal,—la—l Clal,—la—l
52 ’ : : : : : : :
2 - — Xy Xy Xy x>y x>y I x>y x>y
0z E x,0,0 C(H(;,(Hn C(Hl.(Hn CU~>I.U~>O C()~>l),()~>l C(ia().()a—l C(Hl,om C(Hl,om C(HHHA C()al,(ia—l
E x>y xoy x>y x>y xoy Xy x>y x>y x>y
x.1.0 CHo,an Cl~>l.0~>0 Cl~>l,0~>0 Cl~>0,0~>1 CHo.(H—l Clal,Oal Clal,om Cla],Oafl CHL(H—I
_ oy oy oy oy oy _ oy _ oy _ oy oy
EX-I,O C1~>0.04>0 CHL[HO C141,040 C1~>0,0~>1 C140.04—1 C1»1,0~>1 C1~>1,O~>1 CHl,(H—l Cul.o»—1
x>y x>y x>y x>y x>y x>y x>y x>y x>y
EY,O,I 050,150 C0~>l,1~>0 01,150 CO%O,I%I 0-0,1->-1 01,11 01,151 01,151 01151
Xy x>y x>y x>y Xy Xy Xy Xy Xy
Ex,Orl C(JHO,—IHO ClHl,—Hu Com,flao Clia(),—lal C()~>l),fl~>fl COHI.—IHI C()al.—lal C()al.—la—l CO~>L7|~>71
x>y x>y x>y x>y x>y x>y x>y x>y x>y
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This system of equations can be reduced in size without any loss of generality as follows:
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containing all zero values, leading to a final reduced matrix eigenvalue equation.

(D.2.14)

A further reduction of the matrix is then possible by eliminating the rows and columns
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(D.2.15)

For a system possessing o - symmetry, with an input field polarized in the x-direction, the

relationships between the electric and magnetic field harmonic elements are the following:

(D.2.16)
(D.2.17)
(D.2.18)
(D.2.19)

Determining the reduced eigenvalue equation matrix in this case follows similar logic to the

derivation in Equations (D.2.6) — (D.2.15). Similarly, for a system possessing o, - symmetry,

the relationships between the electric and magnetic field harmonic elements for an input field

(D.2.20)
(D.2.21)



H.,,=-H,_, (D.2.22)
H,,,=H,,_, (D.2.23)
and for an input field polarized in the x-direction, the relationships are the following:
E i ==E (D.2.24)
Eypn =Ey (D.2.25)
H.,,=H,.,_ (D.2.26)
Hy,m,n = _Hy,m,—n (D,2,27)

The process of reducing the coupled wave equation matrix and solving the eigenmode problem

then proceeds in a similar manner.

D.3 Gy, Symmetry in Two-Dimensional Systems

For a system possessing material symmetry along the x- and y-axes, the presence of a
field that is polarized along either the x- or y-axis as well creates the possibility of an even
further reduction in the size of the coupled wave equation eigenmode problem. The group
theoretic name for this point group is C,, symmetry. The relationships between the field

harmonics in a C,, symmetric setting with fields polarized along the y-direction are the

following:
Ex,m,n = Ex,m,—n = _Ex,—m,n Ex,—m,—n
Ey,m,n = y,m,—n = Ey,—m,n = y,—m,—n
Hx,m,n = Hx,m,—n = Hx,—m,n Hx —m,—n
Hy,m,n = _Hy,m,—n = _Hy,—m,n Hy —m,—n

(D.3.1)
(D.3.2)
(D.3.3)
(D.3.4)

The matrix relationship between the derivative of the electric field components and the magnetic

field components can be expressed as follows:
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Similarly, the matrix relationship between the

(D.3.5)

derivative of the magnetic field components and

the electric field components can be expressed as follows:
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yox yox yox yox yox yox yox yox yox
Blaﬂ,ﬂaﬂ 151,050 B1~>—1,0~>0 Blaﬂ,ﬂa] Bl~>0,0~>—] BHl.(Hl Bla—l,Oal 11,051 Bla—l,()a—l E )10
yox yox yox yox yox yox yox yox yox
B*IHO,UaU B—I~>I,O~>(i B—la—l,(ia() B—lﬁ(i,l)al B—l~>0,0~>—1 B—lal.()al B—la—l,(}al B—lal,(ia—l Bfoqu E 1.0
yox yox yox yox yox yox yox yox yox
BO~>0,I~>0 BU*}LI*}O BO~>71,14>O BUﬁO,la] BO~>0.I~>71 BO~>I,1~>1 B(H—I,HI B(HLH—I BOa—l,H—l
yox yox yox yox yox yox yox yox yox
Bo»o,—mo Bo»l.—mo 304—1,—14) B[Ho,—lal B(Ho.—u—] Bom,—l»l BO%*I,*I»I Bom,—m—l BO%*I:I%*]
yox yox yox yox yox yox yox yox yox
BHO,HO BHl,Ho Bla—l,la() BHO,Hl Bl~>0,1~>—1 BH],H1 Bla—],lal Blal,la—l Bla—],la—l
yox yox yx yox yox yox yox yox yox
B—Ho,lao B—H],Ho B—H—l.]ao B—Ho.]a] B—Ho,H—l B—HLHI B—H—l.lal B—Hl,H—l B—H—l.la—]
yox yox yox yox yox yox yox yox yox
BHO,—HO BH],—HO Bm—l,—l»o BHO,—Hl BHO,H—l BHL—H] BH—1,—H1 BHL—H—] BH—1,—H—1
yox yox yox yox yox yox yox yox yox
B—laﬂ,—]a() B—lal,—]a() Bflafl,flat) B—1~>051~>1 Bflaﬂ,lafl B—lal,—lal B—]a—l,—lal B B—]a—l,—la—l
xox xox xox xox xox xox xox xox xox
B(Ho.(Ho BOﬁl.OﬁO BOﬂfl,OﬁU BO~>0,0~>I Boao.Oa—l Boal,oal BOa—ma] BO~>L0~>71 BOa—wa—l
xx x> xx xox xx xox xox xox xox
31»0,040 Bl»l.o»o Bl»*l,OaO Buo,om Bl~>0.04>71 BHl,om BH—l.o»l Bla],OafI BH—1,04—1
xox xox xox xox x—x x—x xox xox xox
Bfl~>0,0~>0 BJHI,O»O B—la—l,ﬂaﬂ Bfl~>0,04>1 B—]HO,O%—I B—]a],ﬂal B—la—l,Oal B—lal,ﬂafl B—la—l,ﬂa—l
xsx xsx xsx xox xsx xx xox xox xox
B0~>0,l~>0 BtHLHo B0~>71,14>O BUﬁO,la] BO~>0.I~>71 BO~>I,1~>1 B(H—I,HI B(HLH—I B(H—I,H—l
xx xx xox xx xox xox xox x—>x x—>x
Bo»o,—mo Bo»l.—mo 304—1,—14) B[Ho,—lal B(Ho.—u—] Bom,—l»l BO%*I,*I»I Bom,—m—l BO%*I:I%*]
XX XX XX XX XX XX XX XX XX
BHO,HO BHl,Ho Bla—l,la() BHO,Hl Bl~>0,1~>—1 BH],H1 Bla—],lal 15 L1>-1 Bla—],la—l
XX X=X XX XX XX XX XX XX XX
Bfmo.mo Bflal.la() B—la—l,lal} B—lao,lal B—Ia().la—l B—Ial,lﬁl B—lﬁ—l,lal B—lﬁl,la—l B—lﬁ—l,lﬁ—l
xox xox xox xx xox xox xsx xsx xsx
BHO.—HU BH],—HO BH—L—HU BHO.—HI BHO.H—l BHL—H] BH—L—H] BHI,—H—] Blﬁ*l.*la—l xl,
XX XX XX XX XX XX XX XX XX
B—laﬂ,—]a() B—lal,—]a() Bflafl,flat) B—1~>0;1~>1 Bflaﬂ,lafl B—lal,—lal B—]a—l,—lal B—]~>1,71~>—1 B—]a—l,—la—l E,

(D.3.6)

For the elements listed in Equations (D.2.5) and (D.2.6), the symmetry relationships in Equations

(D.2.1) — (D.2.4) can be expressed in matrix form as follows:
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(D.3.7)
(D.3.8)
(D.3.9)

(D.3.10)

r 1 T Tr 17
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Applying Equations (D.3.7) — (D.3.10) to Equations (D.3.5) and (D.3.6) produces the following

matrix relationships:

r q vy yoy oy Yoy oy Yoy oy oy Yoy
E o A5 050 01,050 A o0 050,01 A5G0 051,01 AD~>I.0~>1 01,01 051,051
yoy yoy gy yoy _gyoy yoy _gyoy — VY yoy
Ey L0 AHD,[HO AHl,o»o Alal,DaO A1~>D,04>1 AlﬁO,Dal AHl,om AHl,om 151,051 Alﬁl.ﬂal
yoy yoy o gyoy yoy _gyoy yoy _gyoy — AYY yoy
Ey L0 AlﬂD,DaO AHl,o»o Alal,DaO A1~>D,04>1 AlﬁO,Dal AHl,om AHl,om 151,051 Alﬁl.ﬂal
yoy yoy — yory yory — yoy yory — yory y=ry yoy “es
Ey ol Aan,Ho A0 A0~>l,l~>0 050,151 AOaa,Hl A(Hl,Hl A0~>l,l~>l 01,11 Aom.Hl
yoy yory — yory yory — yoy yory yory — yoy oy “es
Ey ol Aan,Ho A0 A0~>l,l~>0 050,151 AOaa,Hl A(Hl,Hl 01,11 A0~>l,—l~>l Aom.Hl
vy Yoy gy yoy oy vy oy oy Yoy
E, AHO.HD 151,150 AHI.HD 150,151 AHO.Hl 151151 AHI.Hl 151,151 151151
4o Yooy g Yoy gy Yoy oy gy yoy
E, 150,150 151,150 151,150 150,151 10,151 151151 ISR 151,151 151151
Yoy yoy _ gy oy oy oy Ay yoy oy
E, 150,150 AHLHU 151,150 AHO.Hl 10,151 AHl.Hl 151151 151,151 151151
yoy Yoy — A4 Yoy 4 Yoy 4 Yoy Yoy
E, 150,150 151,150 151,150 150,151 150,151 15111 151151 15111 151151
"\ E - xoy x>y XY x>y Y E=ad xoy XY _ oy x>y
0z x,0,0 Ay 5000 Ay im0 Aual,o»u AlHo.(Hl ASo01 ApSios AlH],(Hl Ay ST ALH],(HI
E x>y Xy _qxoy xoy _ gy x>y _qxoy _gxoy Xy ..
1,0 AHu.o»u AH],(HU Ao A0 AHU,(HI AH],O»I Ao Alal.oal Ao
E oy oy Xy _ gy Xy oy Xy Xy _gxoy
1,0 Al~>0.04>0 Alal.oau A o0 A5G0 A0 Al~>l.04>l Al~>l.04>l AH],O»I Ao
E x>y x>y _qxoy x>y _ gy x>y _qxoy _ gy x>y ..
0,1 AlHo.Hu AlH].Hu A7 Ay o1 AlHu,Hl AU%],I»I Ao Aual.lal Ao
E _ gy _ gy x>y _ gy x>y _ g3y x>y x>y _qxoy
0,1 AlHo. 150 A(HLHU A0 Ay 010 Aoau,Hl Aual.lal Aual.lal Ay A1
x>y x>y _ oy x>y _ gy x>y T = _ gy Xy .
Eon A5G0 AT AH],HU Al~>0,14>l A5 A5 AH],HI A5 AH],HI
E _ gy _ gy x>y oy Xy _ gy x>y x>y _ gy
xLl A 55150 AT A5 Al~>0.14>1 A5G A5 A5 A5 AH!.Hl
E _ gy _gxoy Xy oy Xy _ gy x>y x>y _ gy
xlLl A5 A5 A5 Al~>0.14>1 A5G A5 A5 A5 AH!.Hl
E x>y x>y _ gy x>y _qxoy x>y _ g0y _qxoy x>y ..
xLl A5G0 A5 AH],HU AHO.HI A6 A5 AH],HI A5 AH],HI
e A (D.3.11)
Aow,u»o Am].o»u Ao Aiso0s AiSso0o Aual,om AU~>1.04>1 Ao Ao Hj, 0.0
yox yoox yox yox yox yoox yox yox yox .
A5 AiSTos0 Alal,uao AHO.(Hl Al~>0.04>1 Ao AT Alal,()»l Al~>l.04>l H,
».1.0
yox yoox yox yox yox yoox yox yoox yoox .
A5 AiSTos0 Alal,uao AHO.(Hl Al~>0.04>1 Ao AT Alal,()»l Al~>l.04>l H, .,
yox yoox yox yox yox yoox yox yox yox .
Aiois0 AiSiise AOal,Ho AlHo.Hl Aiois At At Aoal,]»l Al)al,l—»l H,,,
yox yoox yox yox yox yoox yox yox yox .
A1 AiSiise AOal,Ho Al)a(),lal Aiois At At Aoal,]»l Al)al,l—»l H,,,
yox yox yox yoox yox yox yox yoox yox .
AHU,HO AH].HU A5 Ao AL AH],HI AHl.Hl A5 AL Hj, n
yox yox yox yoox yox yox yox yox yox .
AHU,HO AH].HU A5050 Ao AL AH],HI AHl.Hl A0 AL Hj, n
yox yox yox yoox yox yox yox yox yox .
AHU,HO AH].HU A5050 Ao AL AH],HI AHl.Hl A5 AL Hj, n
yox yox yox yoox yox yox yox yoox yox .
AHU,HO AH].HU A0 Ao AL AH],HI AHl.Hl A5 AL Hj, n
o XX XX XX XX XX XX XX XX XX
4350050 Aom,o»o Ay Sro0 AO%O‘OAI Ay S0 AO%I,O%I Ao Ay o A0~>l,0~>1 H. oo
xox xox xox xox xox xox xox xox xox
AS500 Al~>L0~>0 A o0 A1%0,0~>1 A5 05 AHLOM A o A o Al~>L0~>l Hx,l,ﬂ
xox xox xox xox xox xox xox xox xox
- AHO,[HO - Al~>l.0~>0 - Al%LOaO - Al~>0.0~>l - A1%0,0~>1 - Al~>l.0~>l - Al~>|.04>l - Al~>l,0~>l - AHL(HI Hx,l,ﬂ
xox xox xox xox xox xox xox xox xox
Ay 5010 Ao»u»o A0 AO%O,I%I A5 151 AoaLHl Ay Ao A0~>l,l~>l Hx,O,l
xox xox xox xox xox xox xox xox xox
- A0a0,1a0 - A0~>l.l~>0 - AO%IJ%O - A0~>0.|~>l - Aoao,lal - A0~>l.l~>l - A[HI.HI - A0~>l,l~>l - AO%IJ%I Hx,O,l
xox xox xox xox xox xox xox xox xox
A5 AHI,HO A5 Al~>0‘14>l A0 AHI,Hl Eh A5 Al~>l,l~>l el Ho
Y 47 Y Y Y L 4R Y I 4 | H
150,150 151,150 151,150 150,11 150,11 151,11 151,11 1111 15111 xL1
xox xox xox xox xox xox xox xox xox
- AHO,HO - AHLHO - AHI,HO - AHO.HI - Al~>0‘14>l - AHLHI - AHLHI - AHLHl - AHLHI Hx.l.l
xox xox xox xox xox xox xox xox xox
A5 AHI,HO AT Al~>0,14>l A0 AHI,Hl Ehi A5 Al~>l,l~>l Hf.l.l
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- q yoy yoy yoy yoy yoy yoy Yoy Yoy vy
Hv,O,O BO»O.O»O BO%I.O»O BO%I.O»O BO%O,O%I 30407041 BO%I,O%I BO%I.O»I BO»I.O»I BO~>1,0~>1
yoy yoy yoy yoy yoy yoy yoy yoy yoy
H Bla0,0~>0 BIHI,OHO BIHI,OHO Bi 5o Bi 5o Bi oo BH],OM BHLom BHqu
1,0
_ Ry _ By _ Ry _ Ry _ Ry _ Ry _ Ry _ Ry _ Ry
H . B]*}O,O*}O BIHI,OHO BI*}I,OHO Bl*}l),l)*)l B|~>U,0~)| BI~>I,0~>I Bl~>l,()~>l Bl~>l.0~>l Bl~>l.0~>l
.10
Yoy yoy yy yoy yoy yoy yy Yoy Yy
H‘,m 3040.140 BOﬁl.]aO BOﬁl.]aO BO~>0,1~>1 B(Ho,Hl BOﬁl.]a] BOﬁl.lal B(H],Hl B(]A»Llﬁl
vy yoy yoy yoy yoy yoy yoy vy vy
H 0,1 - BOAO.]AO - Bo»l.mo - Bo»l.mo - BO»O,I»I - 3040,1»1 - Bom.l»l - Bo»l.Hl - Bo»l,m] - BO~>1,1~>1
yoy yoy yoy Yoy yoy yoy yoy yoy yoy
Hv,l.l BHU,HU BHLHO BHLHO BHU,Hl BHU.Hl 11,11 BI%I,IHI BHLHI BHI,HI
_ RV _ ROV _ RYOY _ RV _ ROV _ ROV _ ROV _ ROV _ ROV
Hy,l_1 BHO.HU BHLHU BH],HU Blﬂo.lﬂl Blﬂo.lﬂl BH],Hl BHLHI BHLHI BHI,Hl
_ pyoy _ pyoy _ pyoy _ pyoy _ pyoy _ pyoy _ pyoy _ pyoy _ pyoy
Hy',’1 Bmo,l»o BHLHO BH],HO BHO,H1 BHO,H1 Bl~>1714>1 BHLHl BHm»l BHLHl
oy yory yory yory yoy Yoy Yoy oy yoy
H, B1~>0,1~>0 BHl,Ho BHl,Ho BHO,Hl BHo,Hl BHLHl BHl,Hl BHl,H] BHl,H]
' - x>y o Xy Xy x>y Xy x>y Xy x>y
0z H\,U,O B(H().(Ho BlHl,lHu BO~>I,0~>0 B()~>(),()~>l BlHn.lHl Bom,o»l B(Hl,ual Bom,o»l B(Hl,ual
x>y Xy x>y x>y Xy x>y x>y x>y Xy
HXJJJ BHO,(HO BH],an Blﬁl.l)ﬁo BlﬁU,Oﬁl BlﬁO.Oﬁl Blﬁl.l)ﬁl Blﬁl.Oﬁl BHLLHI Blﬁl.Oﬁ]
x>y x>y x>y x>y x>y x>y x>y x>y x>y
HX,LO Bl~>0.0~>0 Bl~>170~>0 3141,040 Bl»O.O»l Bl~>0,0~>1 3141,041 Bl~>1,0~>1 3141,041 Bl~>1,0~>1
x>y x>y x>y x>y x>y x>y x>y x>y x>y
Hx,O,l BO»O,IHO By i1 B(H],Ho BO%O,I»I BO»O,IHI B(Hmm B0~>l,l~>l BtH],Hl BO»I,]H]
Xy Xy x>y x>y Xy x>y x>y Xy Xy
HX«OJ Bl)ﬁli,l%l) BO»LHO 01,10 BlHn,Hl BO~>0,I~>I 01,151 B0~>I,l~>l BU~>I.I~>I B0~>I,l~>l
x>y x>y x>y x>y x>y x>y x>y x>y x>y
Hxlvl Bl~>0,14>0 3141,1»0 Bl»l,]ao BHO,H] Blao,lal Bl%l,]ﬁ] BHLHl Bl»l,]a] BHLHl
x>y x>y x>y oy x>y x>y x>y x>y x>y
Hx,l.l BHO,HO BHLHO Blal,]a() BHO,H] BHo,Hl Blal,]a] BHLHl Blal,]a] BHLHl
x>y Xy x>y Xy Xy x>y Xy x>y x>y
Hxvlvl BHU.HU BHLHU BHI,HO BHO,HI BHU.Hl BHI,HI BHl,Hl BHI,HI BHl,Hl
x>y x>y x5y Xy x>y x5y x>y x5y x>y
HX_JJ BHO,HO BHLHO BHLHO BHO.H] BHO,HI BHl.H] BHLHI BHl.H] BHLHI
yox yox _ RYOX yox _ pyox yox _ Ryox yox _ pyox - B
050,050 01,050 01,050 050,01 050,01 051,051 01,051 051,051 01,051 .
B B B B B B B B B E, o0
yox yox _ pyox yox _ pyox yox _ pyox yox _ pyox
BHUJHO BHIJHO BHIJHO Blﬁl),l)ﬁl Bl~>l),l)~>l Blal,l)ﬁl BI~>LO~>I BI~>I,0~>I BI~>I,O~>I Ey.l,O
_ pyox _ pyox yox _ pyox yox _ pyox yox _ pyox yox
BHO,(HO Bl»l,(Ho 3141,040 Bmo,om BHO,(H] BH],OM B]A],Oa] 3141,041 BH],OM EMO
yox yox _ pyox yox _ prox yox _ prox yox _ prox
By 010 By i By i BO%O,I»I BO»O,I»I BO~>1,1~>1 Bom,lm Bﬂal,lal B0~>l,]~>] E,
_ pyox _ RyoX yox _ Ryox yox _ pyox yox _ pyox yox
Bl)~>0,1~>l) Bli%l,l%l} B(l*}l.l%l' B(l*}ﬂ.l%l BO*}U,]*}] BO~>1J~>1 BO*}L]*}] BU~>I.1~>1 B()~>l,l~>l E 1,01
yox yox _ pyox yox _ pyox yox _ pyox yox _ pyox
BH&HO BHLHU BHI,HO BHO.Hl BHO,Hl BHLH] BH],Hl BH],Hl BHLHI Ev,l,l
_ pyox _ Ryox yox _ pyox yox _ pyox yox _ pyox yox
BHO,HO BH],HO Bl~>l,1~>0 BHO,H] Blaﬂ,lal BHl,Hl BHLHl BHl,H] BHl,Hl EJ,A,VI
yox yox _ Ryox yox _ pyox yox _ pyox yox _ pyox
Blﬁli,lﬁl) Bl%l,l*}l' Bl%l,l*}l) BI*}O,I*}I BI*}OJ%I 1-1,1-1 Bl~>l.l~>l B]*}l.l*}l Bl~>l,l~>l Ev 11
_ pyox _ pyox yox _ pyox yox _ pyox yox _ pyox yox
BHO,HO BH],HO BHLHO BHO,H] BH&HI BHI,Hl BHLHl BHI,H] BHI,Hl EMl
xox xox xox xox xox xox xox xox x—x
Ban.an B(H],o»o - BOﬁl.OﬁO 3040.041 - BO~>0,O~>1 BOal.l)ﬁl - Bo»l,oal - 30»1,041 BO~>I,0~>1 E-nO.O
x>x xox x>x x> xox x> x> x> xox
3140,040 Bl»l.o»o - 3141,040 Bl»o.o»l - Bmo,om B1~>1,O~>1 - Bl»l,om - Bl»l,om BHl,om E»nl,O
XX X=X XX X=X XX XX XX X=X XX
BHU,(HU BI~>I,0~>0 - BHL(HU Blﬁl),l)ﬁl - BHU,UM BI~>I,()~>I - BI~>I,O~>I - BI~>I,O~>I BHl,lHl Ex.,l,ﬂ
xo>x xsx xo>x xsx xo>x xox xox xsx xox
Boao,lao BU~>1.1~>0 - B(HLHU Boao.lal - Boao,lal BOﬁl,lﬁl - BOﬁl,lﬁl - BOﬁl,lﬁl BOal,lﬁl ExﬂJ
x—ox xx x> xox x> xox xox xx xox
3040,140 Bom,l»o - Bom,uo 3040,1»1 - 3040,141 Bo»l.ml - Bo»l.ml - Bo»l.ml Bom,ml E»nOJ
XX XX XX XX XX XX XX XX XX
BHO,Ho BH],HO - BHl,Ho BHO,Hl - BHO,H] BHl,Hl - BH],Hl - BH],Hl 1-11-1 EA,IJ
xx X% x>x xox xox xox xox xox x>x
BHo,HO BHI.HU - BHLH() BH(LHl - BHU,HI 151,11 - BHI.Hl - BHI.Hl BHLHI Exvl,l
xox xox xox xox xox xox xox xox xox
BHO,HO BH],HO - Blal,]ao BHO,Hl - BHO.H] BHl,Hl - BH],Hl - BH],Hl Bl»l.m] E-vvl.l
XX XX XX XX XX XX XX XX XX
BHO.H() BH],HO - BHLHO BHO,Hl - BHO,H] BHl,Hl - BH],Hl - BH],Hl Bl~>l,1~>] Ex.l,l

(D.3.12)

By taking the derivative of Equation (D.3.11) with respect to z" and inserting Equation (D.3.12),

the resulting matrix eigenvalue equation can be written as follows:
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6272

r 7 Yoy yoy yoy Y=y Yoy y=y y=y y=y y=y
E 0.0 C0~>070~>0 C041,090 Co»l,om) C040,041 C0~>0,0~>1 CO~>1,0~>1 CO~>1,0~>1 CO~>1,0~>1 CO~>1,0~>1
Yoy yoy cr2r Yoy Yoy yoy yoy yoy yoy
E), 10 1-50,0-50 151,050 151,050 150,01 150,051 151,051 151,051 151,051 151,051
Yoy yoy Yoy Yoy Yoy Yoy Yoy Yy Yoy
E),JVO CHo.(Ho CHI,[HU CHLLHU CHO.(Hl CHo,(Hl Clﬁl,Oﬁl Clﬁl,Oﬁl Clﬁl,Oﬁl Clﬁl,Oﬁl
Yoy yoy oy oy Yoy Yoy Yoy Yoy Yoy
EyJ),I CO»O.IAO C0~>1,140 C0~>17140 CO~>0.1~>1 CO»O.I»I C04>l.14>1 C04>1,14>1 C04>1,14>1 C04>1,14>1
Yoy yoy Yoy Yoy Yoy yoy yoy yoy yoy
E), 01 C0~>0,1~>0 C0~>1,l~>0 051150 CO~>0,1~>1 C0~>0,1~>1 0111 0111 0111 0111
Yoy Yoy yoy yoy Yoy Yoy Yoy Yoy Yoy
Ey_1 1 CHU.HU CH],HU CH],HO CH(um CHU.Hl CH].Hl CH].Hl CH].Hl CH].Hl
vy vy vy Yoy vy Yoy Yoy Yoy Yoy
Ey,hl CHO,HU CHLHO CHLHO C1~>0<l~>l CHO,Hl CH],Hl CH],Hl CHl,Hl CHl,Hl
Yoy Yoy yoy yoy Yoy Yoy Yoy Yoy Yoy
E Ll CHO,HU CHl,Ho CHl,Ho CHU,Hl CHO,H1 CH],H1 CHl,lm CHl,lm C1~>1,14>1
Yoy Yoy yoy yoy Yoy Yoy Yoy Yoy Yoy
Ey_1 1 CHU.HU CH],HU CH],HO CH(um CHU.Hl CH].Hl CH].Hl CH].Hl CH].Hl
- = x>y = x>y x>y x>y x>y = =
EX«U«O C()~>().()~>() C(i%l,l)ﬁ(i C()~>I.U~>() C0~>(i,0~>l C(H().(Hl CO~>I,O~>I Cum,om C(Hl,(H| C(Hmm
E x>y x>y x>y x>y x>y x>y x>y x>y x>y
x,1,0 Cl~>0,0~>0 CHl,(Ho CHL(HO CHO,Oal CHO,(Hl Clﬁl,Oﬁl ClaLUﬁl CH1,041 CHl.(Hl
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(D.3.13)

This system of equations can be reduced in size without any loss of generality as follows:
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Ey,l,l C1—>0,1—>o 2C1—>1,1—>0 2C1—>o,1—>1 4C1—>1,1—>1
82 . : . .
12 = x>y x>y x>y x>y
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0—0,0—0 »,0,0
C(;:)oyo»o 0 00 Ele
C(;:)oy,o»o 0 00 Ey,O,l
X—)y
C(HO,O»O 0 00 Ey,l,l
x—y
C(H(),o»o 0 00 Ex,O,O
0 00 0 E..,
0 0 0 0 E o
0 00 0 E. .,

A further reduction of the matrix is then possible by eliminating the rows and columns

containing all zero values, leading to a final reduced matrix eigenvalue equation.
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(D.3.15)

For a system possessing x-polarization, with an input field polarized in the x-direction, the

relationships between the electric and magnetic field harmonic elements are the following:

Ex m,n = Ex,m,—n = Ex,—m,n = Ex,—m -n (D3 16)
Eymn = _Ey,m,—n = _Ey —man Ey,—m,—n (D317)
men = _Hx,m,—n = _Hx —man X,—m,—n (D318)
y,m,n = Hy,m,—n = Hy,—m,n = Hy,—m,—n (D319)

Determining the reduced eigenvalue equation matrix in this case follows similar logic to the

derivation in Equations (D.3.6) — (D.3.15).
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APPENDIX E. COMMENTS ON SOFTWARE DEVELOPMENT AND
DESIGN
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When developing the software necessary for the modeling of integrated optical device
structures (or any other physical modeling problem for that matter), perfecting the algorithms
used for determining layer eigenmodes, wave propagation, and field calculations are only part of
the overall computer aided design problem that must be tackled. In order to create a flexible,
versatile, and efficient package capable of modeling a variety of different integrated optical
structures through a single interface, the entire computational workflow, from defining input
parameters to post-processing of output data, needs to be designed in a cohesive manner. While
perfecting “the solver” is vitally important, the overall efficiency of the solver is often affected
by the quality of the input data being passed to the solver. The entire workflow in an RCWA/S-
Matrix computation can take on a number of different forms based on the structure being
modeled and the desired output data, but the most common RCWA/S-Matrix workflow can be
summarized in the following steps:

1. The geometric and material properties are defined for a device under study.
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Figure E-1 (a) Initial “region” layout of the electromagnetic/geometric features in an S-bend
waveguide. The geometric features are initially defined as a background permittivity /
permeability distribution, rectangular boxes, and annular bends in this case. (b) Initial “region”
layout of the electromagnetic/geometric features in a photonic crystal waveguide. The geometric
features are initially defined as input/output rectangular boxes, a background permittivity /
permeability distribution, a lattice of holes, and individual “defect” sites.
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2. The device geometry is then approximated by a stair-cased set of finite thickness,
transversely periodic layers whose material properties are longitudinally invariant within

each layer, as well as semi-infinite input and output half-space regions.

iz
@ ®)

S-bend Waveguide
Permittivity Layout

x - Horizontal Position (um)

2 4 6
z - Longitudinal Position (um)

(c)

Figure E-2 (a) Longitudinal slicing associated with an S-bend photonic wire waveguide. (b)
Longitudinal slicing associated with a bend in a photonic crystal waveguide. (c) Calculated
permittivity layout for an S-bend photonic wire waveguide on a transverse and longitudinal
spatial grid.

3. Employing properties of a defined input wave (wavelength, angle, and polarization); a
global, pseudo-periodic Fourier harmonic basis set is then utilized to represent both the
periodic material properties of a transverse unit cell, as well as the tangential phase

components of each plane wave basis function.
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4. Making appropriate substitutions into Maxwell’s equations, these material property and
tangential phase expansions are used to create a unique full matrix eigenmode problem
for each layer of the system.

5. After determining all desired layer eigenmodes, calculating the field harmonic amplitude
distributions in the input and output half-spaces, and optionally throughout the entire
multilayered structure, is then accomplished by propagating the defined input energy
distribution through the use of a scattering matrix (S-Matrix) mode matching technique
that relates the eigenmodes in adjacent layers, as well as Redheffer’s star-product
operation for concatenating two separate scattering matrices into a larger longitudinal cell
scattering matrix.

6. The spatial field harmonic amplitudes throughout the structure can then be used to
calculate the modal reflection and transmission coefficients of the system and can be
summed on an arbitrary spatial grid in order to visualize the system’s distribution of

electric fields, magnetic fields, and Poynting vector components.

Longitudinal Power Flow Transverse Power Flow
Photonic Wire S-bend Waveguide Photonic Wire S-bend Waveguide
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Figure E-3 Calculated Poynting vector magnitudes for power flow through an S-bend
waveguide on a transverse and longitudinal spatial grid showing both the (a) longitudinal
components (b) transverse components.
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7. Post-processing of the output data can then occur for a single set of inputs, the entire
process can be repeated numerous times over a single parameter range to obtain a spectral
response, or a multi-parameter optimization/evolutionary algorithm study can be
performed.

This appendix will discuss how all of these points were addressed in order to write the software
used to produce the computational results presented in this dissertation. Much of this section
will only be useful when attempting to dissect meanings when viewing the actual code. The
code utilized to perform many of the kinds of computations performed in this dissertation will

eventually be posted on-line at the MATLAB® Central File Exchange website [172].

E.1 Initial Definition of the Input Wave and Input Geometry

When defining input parameters for an RCWA model, there are three distinct sets of
parameters that must be defined initially. The first set of parameters is that set associated with
the input plane-wave/mode properties, as well as any variables that are independent of the
underlying geometry and materials. Included in this set are the wavelength, incident angle
(polar, azimuthal, polarization), and optionally the incident finite beam waist and number of
plane waves used to approximate that finite beam, as well as a number of other parameters that

determine the nature of the information that is to be determined.
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Variable Name Type | Description

input_order scalar | In a “Grating” problem, this determines
position within the Kronecker delta function
for which there is a non-zero value
(MATLAB® array ordering is “1-based” like
Fortran and not “0-based” like C or Python).

number_of modes scalar | In a “Waveguide” problem, this variable
determines the number of input modes for
which field and power distributions will be
calculated.

lambda scalar | Wavelength in microns.

theta scalar | Polar angle in degrees

phi scalar | Azimuthal angle in degrees

polarization_angle scalar | Polarization angle in degrees

eta scalar | Grating periodicity tilt angle for non-
orthogonal periodicity directions.

Nx scalar | Number of spatial harmonics utilized along
the x-axis in Fourier space.

Ny scalar | Number of spatial harmonics utilized along
the y-axis in Fourier space.

bow scalar | Bowing parameter used in truncating the total
number of harmonics utilized on a 2D grid.
Parameter varies from 0 to 1, and keeps all
harmonics bounded by the equation:

bow bow
X harmonic index Y harmonic index
(Nx - 1}2 N, -1Y’
2 2

beam x_harmonics scalar | Number of x-direction plane waves used in
the spectral decomposition of an input finite
beam for a “Grating” problem.

beam_y harmonics scalar | Number of y-direction plane waves used in
the spectral decomposition of an input finite
beam for a “Grating” problem.

beamwaist_xp scalar | The beam waist in the x-direction of an input

finite beam used in a “Grating” problem.
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beamwaist yp

scalar

The beam waist in the y-direction of an input
finite beam used in a “Grating” problem.

real_pole initial

scalar

The value of the real part of the tangential
propagation constant utilized in an iterative
search for a scattering matrix pole using the
iterative technique described in Peng [23].

imag_pole_initial

scalar

The value of the imaginary part of the
tangential propagation constant utilized in an
iterative search for a scattering matrix pole
using the iterative technique described in
Peng [23].

pole determinant tolerance

scalar

The tolerance value used for stopping the
iterative process of determining a scattering
matrix pole using the iterative technique
described in Peng [23].

grid_truncation

string

A string variable that can be set to “on” or
“off” that determines whether a 2D grid of
Fourier harmonics will be truncated.

diffraction_type

string

A string variable that sets the problem as
either “TE”, “TM”,  “conical”, or
“twodimensional.”

StructureType

string

A string variable that can be set as either
“Waveguide” or “Grating”. A “Grating”
problem by-passes the calculation of all
internal field harmonics and only determines
the reflection and transmission coefficients in
the input and output half-spaces. A
“Waveguide” problem allows for the
possibility of determining of all desired
internal layer fields.

symmetry

string

A string variable that defines the type of
symmetry that is present in a particular model

2 ¢

(“sigx”, “sigy”, “c2v”, “off”).

polarization

string

A string variable that defines the polarization
direction of the input wave/mode that is used
in symmetry calculations.

perm_expansion

string

A string variable that determines the type of
Fourier expansion technique utilized in a 2D
grating problem. A value of “regular” uses a
standard Fourier expansion in both the x- and
y-directions, whereas a value of “inverse”
uses a Fast Fourier Factorization technique.

pole search_type

string

A string variable that defines the type of
scattering matrix utilized in the pole search.
A value of “transverse”
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calculateScatteringMatrices

logical

A logical variable that determines whether
any scattering matrices are calculated in either
a “Waveguide” or “Grating” problem.

fieldandpowercalculations

logical

A logical variable that determines whether
any electric/magnetic field or Poynting vector
calculations are performed.

boxedfieldandpowercalculations

logical

A logical variable that determines whether
field and power calculations are determined
on a full grid or only around a box of the
domain.

determineBoxedPower

logical

A logical variable that determines whether the
Poynting vector components around a box of
the computational domain are summed to
determine potential conservation of energy.

calculateFieldHarmonicAmplitudes

logical

A logical variable that determines whether
any field harmonic amplitudes are calculated
in a “Waveguide” problem.

calculateOnlyInputOutputField
Harmonics

logical

A logical variable that determines whether or
not the field harmonics in a “Waveguide”
problem are only determined in the input and
output half-spaces or whether internal field
harmonics are calculated as well.

calculatePermMaps logical | A logical variable that determines whether or
not a map of the permittivity, permeability,
and absorption/gain are calculated on a spatial
grid.

plotInputFiniteBeam logical | A logical variable that determines whether or

not the fields and Poynting vector components
of an input finite beam are calculated for a
“Grating” problem.

xy_cylinder present

logical

A logical variable that defines whether or not
any cylinder features (with an axis in the
longitudinal direction) is present any where in
the model. This affects the type of coupling
coefficient expansion utilized.

pole search

logical

A logical variable that determines whether the
current structure is used in a scattering matrix
pole search.

calculateGeneralizedEigenvalues

logical

A logical variable that determines whether the
current structure, or part thereof, is used in a
scattering matrix generalized eigenvalue
problem of the form in Cao et al. [22]
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longitudinalFourierTransform logical | A logical variable that determines whether the
longitudinal field and power components are
utilized in an angular spectrum calculation.
This angular spectrum can be utilized to
propagate a field using a Discrete Fourier
Transform.

etched layers known logical | A logical variable used as a switch statement
that run code that exploits the binary nature of
a material variation in defining eigenproblem
and scattering matrix labels. When a
geometric/material structure contains the
necessary properties, this switch runs a much
more efficient code for defining these labels
that avoids layer comparison.

material wavelength dispersion | logical | A logical variable used as a switch to run
present code that exploits wavelength dependent
material properties.

The second set of parameters includes all relevant geometric distances for the features being
modeled as well as their associated electromagnetic material property values (complex
permittivity, complex permeability), and the window sizes/grating periodicities which define the

transverse boundaries of computational region.

LAMBDA x scalar Period/Window size in x-direction

LAMBDA y scalar Period/Window size in y-direction or second periodic
direction if non-orthogonal periodicity directions are
present.

eps_background scalar Background permittivity for the entire computational
domain.

mu_background scalar Background permeability for the entire computational
domain.

geometric_tolerance | scalar A scalar value that is used as an acceptable fitting tolerance
for all geometric processing and Geometric Bounding
Toolbox calculations.

epsn 1D-vector | Permittivity value of the zero-thickness layers (epsn(1)) for
“Waveguide” or “Grating” problems, and input halfspace
(epsn(2)), and output halfspace (epsn(3)) for “Grating”
problems.
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mu

1D-vector

Permeability value of the zero-thickness layers (mu(1)) for
“Waveguide” or “Grating” problems, and input halfspace
(mu(2)), and output halfspace (mu(3)) for “Grating”
problems.

Further geometric parameters that define the number of lamellar slices that will be used in

representing the target geometric features must also be defined. Included in this set of slicing

parameters are parameters that determine the number of slices within a longitudinal unit cell as

well as parameters that determine the nature of any longitudinal periodicity that is to be

represented in the system.

regions

scalar

A variable defining the number of major longitudinal
partitions into which the modeled structure is split.

unit_cells

1D-array of
size regions

An array of size regions where each element of the array is
the number of elementary longitudinal unit cells (power of
2) contained within a larger conglomerate longitudinal cell
called a “region cell” for this region.

reg cells

1D-array of
size regions

An array of size regions where each element of the array is
the number of “region cells” (power of 2) contained within
a larger conglomerate longitudinal cell called a “section
cell” for this region.

1D cell of size
regions

A cell array of size regions where each element of the cell
array is an array whose size is the number of slices in an
elementary unit cell and where each scalar element is the
thickness of an individual slice. This thickness array is
ordered from output side as the first element to input side
as the output element.

internalslices

1D cell of size
regions

A cell array of size regions where each element of the cell
array is an array whose size is the number of slices in an
elementary unit cell and where each scalar element is the
number of locations internal to an individual layer where
the field harmonic amplitudes are calculated.  The
internalslices array within each cell element is ordered
from output side as the first element to input side as the
output element.

Left

scalar

The negative x location boundary used in laying out the
spatial grid for field, power, and perm map calculations.

Right

scalar

The positive x location boundary used in laying out the
spatial grid for field, power, and perm map calculations.
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X_points scalar The number of points used in the x-direction spatial grid
for field, power, and perm map calculations.

X 1D-array of | An array of the x-axis locations for the spatial grid used in

size X points | calculating field, power, and perm map calculations.

Top scalar The positive y location boundary used in laying out the
spatial grid for field, power and perm map calculations.

Bottom scalar The negative y location boundary used in laying out the
spatial grid for field, power and perm map calculations.

y_points scalar The number of points used in the y-direction spatial grid
for field, power, and perm map calculations.

y 1D-array of | An array of the y-axis locations for the spatial grid used in

size X_points

calculating field, power, and perm map calculations.

In the context of the present work/method, the entire computational domain for a given
device structure is split into initial partitions that we call “regions.” The naming conventions that
were utilized for naming variables in this study evolved over time and may seem a bit confusing
to anyone but the author, but hopefully not overly confusing. While the use of object-oriented
concepts may have been useful, much of the infrastructure of the code was written before these
concepts were considered. Within the code itself, one of the main concepts utilized is a “region,”

which is an array of data structures representing these major layer partitions that can have a

E.2

Performing the Necessary Layer Slicing

number of possible fields from among the following:

region

slice

data structure A data structure itself that contains fields

associated with the properties of each
individual lamellar layer within an individual
“region” unit cell.

slices

scalar The total number of lamellar layers within an

individual “region” elementary unit cell.

symmetric

logical A logical parameter associated with a given

region’s longitudinal symmetry or asymmetry
properties.
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unit_cells

scalar

The number of elementary longitudinal unit
cells (power of 2) contained within a larger
conglomerate longitudinal cell called a “region
cell” for this region.

reg cells

scalar

The number of “region cells” (power of 2)
contained within a larger conglomerate
longitudinal cell called a “section cell” for this
region.

plotunitcells

logical

A logical parameter used to determine whether
field harmonics are calculated at the interfaces
on the exterior of every unit cell contained
within a region cell, or whether the field
harmonics are only calculated on the exterior
interfaces of a region cell.

plotslices

logical

A logical parameter used to determine whether
field harmonics are calculated at the interfaces
of all layers within an elementary unit cell for
a region. If “plotunitcells” is false, then this
parameter’s value has no importance for this
region.

symunitscatterlabel

scalar

A label that uniquely identifies the particular
elementary longitudinal “unit cell” symmetric
scattering matrix associated with this region.
If a region consists of only one slice, or if there
are no field harmonics to be calculated where a
symmetric unit cell scattering matrix
associated with this region is needed, then this
field remains empty for this region.

symregscatterlabel

scalar

A label that uniquely identifies the particular
“region cell” symmetric scattering matrix
associated with this region. If a region has
only one slice or one “unit cell”, or if there are
no field harmonics to be calculated where a
symmetric region cell scattering matrix
associated with this region is needed, then this
field remains empty for this region.

symsectionscatterlabel

scalar

A label that uniquely identifies the particular
“section cell” symmetric scattering matrix
associated with this region. If a region has
only one slice, one “unit cell”, or one “region
cell”, or if there are no field harmonics to be
calculated where a symmetric section cell
scattering matrix associated with this region is
needed, then this field remains empty for this
region.
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asymunitscatterlabel

scalar

A label that uniquely identifies the particular
elementary longitudinal “unit cell” asymmetric
scattering matrix associated with this region.
If a region consists of only one slice, or if there
are no field harmonics to be calculated where
an asymmetric unit cell scattering matrix
associated with this region is needed, then this
field remains empty for this region.

asymregscatterlabel

scalar

A label that uniquely identifies the particular
“region cell” asymmetric scattering matrix
associated with this region. If a region has
only one slice or one “unit cell”, or if there are
no field harmonics to be calculated where an
asymmetric region cell scattering matrix
associated with this region is needed, then this
field remains empty for this region.

asymsectionscatterlabel

scalar

A label that uniquely identifies the particular
“section cell” asymmetric scattering matrix
associated with this region. If a region has
only one slice, one “unit cell”, or one “region
cell”, or if there are no field harmonics to be
calculated where an asymmetric section cell
scattering matrix associated with this region is
needed, then this field remains empty for this
region.

As stated above, within an individual “region” data structure, the “slice” field is itself an array of
data structures whose fields depend on the type of geometry that is best used to represent the
electromagnetic object, as well as the numerical method utilized for performing the coupling
coefficient expansions of the material permittivity and permeability. For a computational model

having one-dimensional periodicity and light polarized in a TE, TM or conical manner, the

“slice” data structure can contain the following fields:
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slice

Sx scalar The number of adjacent rectangular boxes into which a
lamellar layer is split.
W_X array of scalars | The absolute value of the width (in pm) of each rectangular
size Sx box in a layer, ordered from the —A,/2 side to the A,/2 side.
x_centers | array of scalars | The absolute value of the center (in um) of each rectangular
size Sx box in a layer between (—Ax/2, Ax/2), ordered from the —Ay/2
side to the A,/2 side.
f x array of scalars | The relative value of the width/fill factor (between 0 and 1) of
size Sx each rectangular box in a layer, ordered from the —A,/2 side to
the Ay/2 side. “w x” divided by the grating period Ay.
XS array of scalars | The relative shift of the center (between -0.5 to 0.5) of each
size Sx rectangular box in a layer. “x_centers” divided by the grating
period Ay.
eps back scalar The background/reference permittivity value for a slice.
mu_back scalar The background/reference permeability value for a slice.
d scalar The thickness (in um) of a slice.
eigenlabel scalar The label associated with a layer’s unique eigenmode
problem.
scatterlabel scalar The label associate with a layer’s unique individual layer
scattering matrix.
eps_Xx array of scalars | The x-direction value of the permittivity tensor for each
size Sx rectangular box in a layer.
eps_y array of scalars | The y-direction value of the permittivity tensor for each
size Sx rectangular box in a layer.
eps_z array of scalars | The z-direction value of the permittivity tensor for each
size Sx rectangular box in a layer.
mu_x array of scalars | The x-direction value of the permeability tensor for each
size Sx rectangular box in a layer.
mu_y array of scalars | The y-direction value of the permeability tensor for each
size Sx rectangular box in a layer.
mu z array of scalars | The z-direction value of the permeability tensor for each
size Sx rectangular box in a layer.
sig X array of scalars | The x-direction value of the conductivity (absorption/gain
size Sx parameter) tensor for each rectangular box in a layer.
sig y array of scalars | The y-direction value of the conductivity (absorption/gain
size Sx parameter) tensor for each rectangular box in a layer.
sig z array of scalars | The z-direction value of the conductivity (absorption/gain
size Sx parameter) tensor for each rectangular box in a layer.

215




For a lamellar layer having two orthogonal dimensions of periodicity with electromagnetic

features formed entirely from rectangular shapes, the “slice” data structure is formed from the

following fields:
slice
Sx scalar The number of rows in the grid of adjacent rectangular boxes
into which a lamellar layer is split.
Sy scalar The number of columns in the grid of adjacent rectangular
boxes into which a lamellar layer is split.
W_X array of scalars | The absolute value of the x-width (in um) of each rectangular
size Sx box in a layer, ordered from the —A,/2 side to the A,/2 side.
w_y array of scalars | The absolute value of the y-width (in um) of each rectangular
size Sy box in a layer, ordered from the —A,/2 side to the A,/2 side.
x_centers | array of scalars | The absolute value of the x-center (in pm) of each rectangular
size Sx box in a layer between (—Ay/2, Ax/2), ordered from the —A/2
side to the A,/2 side.
y_centers | array of scalars | The absolute value of the y-center (in um) of each rectangular
size Sy box in a layer between (—A,/2, A,/2), ordered from the —A,/2
side to the A,/2 side.
f x array of scalars | The relative value of the x-width/fill factor (between 0 and 1)
size Sx of each rectangular box in a layer, ordered from the —A,/2 side
to the A,/2 side. “w_x” divided by the grating period A.
fy array of scalars | The relative value of the y-width/fill factor (between 0 and 1)
size Sy of each rectangular box in a layer, ordered from the —A,/2 side
to the A,/2 side. “w_y” divided by the grating period A,.
XS array of scalars | The relative shift of the x-center (between -0.5 to 0.5) of each
size Sx rectangular box in a layer. “x_centers” divided by the grating
period Ay.
ys array of scalars | The relative shift of the y-center (between -0.5 to 0.5) of each
size Sy rectangular box in a layer. “y centers” divided by the grating
period A,.
eps_back scalar The background/reference permittivity value for a slice.
mu_back scalar The background/reference permeability value for a slice.
d scalar The thickness (in um) of a slice.
eigenlabel scalar The label associated with a layer’s unique eigenmode
problem.
scatterlabel scalar The label associate with a layer’s unique individual layer
scattering matrix.
eps_Xx array of scalars | The x-direction value of the permittivity tensor for each
size (Sy,Sx) rectangular box in a layer.
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eps_ y array of scalars | The y-direction value of the permittivity tensor for each
size (Sy,Sx) rectangular box in a layer.

eps_z array of scalars | The z-direction value of the permittivity tensor for each
size (Sy,Sx) rectangular box in a layer.

mu_x array of scalars | The x-direction value of the permeability tensor for each
size (Sy,Sx) | rectangular box in a layer.

mu_y array of scalars | The y-direction value of the permeability tensor for each
size (Sy,Sx) | rectangular box in a layer.

mu _z array of scalars | The z-direction value of the permeability tensor for each
size (Sy,Sx) | rectangular box in a layer.

sig_x array of scalars | The x-direction value of the conductivity (absorption/gain
size (Sy,Sx) | parameter) tensor for each rectangular box in a layer.

sig y array of scalars | The y-direction value of the conductivity (absorption/gain
size (Sy,Sx) parameter) tensor for each rectangular box in a layer.

sig z array of scalars | The z-direction value of the conductivity (absorption/gain
size (Sy,Sx) parameter) tensor for each rectangular box in a layer.

For a lamellar layer having two non-orthogonal dimensions of periodicity or a layer that contains

cylindrical features whose axes are in the longitudinal direction, the “slice” data structure is

formed from the following fields:

slice
S scalar The number of unique electromagnetic/geometric features in a
lamellar layer whose properties are different from the
background properties.
feature Array of data | A data structure that contains fields representing the
structures of | geometric and material properties for each individual
size S electromagnetic/geometric feature in a lamellar layer.
eps_back scalar The background/reference permittivity value for a slice.
mu_back scalar The background/reference permeability value for a slice.
d scalar The thickness (in um) of a slice.
eigenlabel scalar The label associated with a layer’s unique eigenmode
problem.
scatterlabel scalar The label associate with a layer’s unique individual layer

scattering matrix.
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feature

w_X array of scalars | The absolute value of the x-width (in um) of each rectangular
size S box in a layer, ordered from the —A,/2 side to the A,/2 side.
Wy array of scalars | The absolute value of the y-width (in um) of each rectangular
size S box in a layer, ordered from the —A/2 side to the A,/2 side.
x_centers | array of scalars | The absolute value of the x-center (in um) of each rectangular
size S box in a layer between (—Ay/2, Ax/2), ordered from the —A/2
side to the A,/2 side.
y_centers | array of scalars | The absolute value of the y-center (in um) of each rectangular
size S box in a layer between (—=A,/2, Ay/2), ordered from the —A,/2
side to the A,/2 side.
f x array of scalars | The relative value of the x-width/fill factor (between 0 and 1)
size S of each rectangular box in a layer, ordered from the —A,/2 side
to the Ay/2 side. “w_x” divided by the grating period A,.
fy array of scalars | The relative value of the y-width/fill factor (between 0 and 1)
size S of each rectangular box in a layer, ordered from the —A,/2 side
to the Ay/2 side. “w_y” divided by the grating period A,.
XS array of scalars | The relative shift of the x-center (between -0.5 to 0.5) of each
size S rectangular box in a layer. “x_centers” divided by the grating
period Ay.
ys array of scalars | The relative shift of the y-center (between -0.5 to 0.5) of each
size S rectangular box in a layer. “y centers” divided by the grating
period A,.
radius array of scalars | The radius (in um) of a circular cylindrical feature in the x-y
of size S plane
eps_Xx array of scalars | The x-direction value of the permittivity tensor for each box
size S or cylinder in a layer.
eps_y array of scalars | The y-direction value of the permittivity tensor for each box
size S or cylinder in a layer.
eps z array of scalars | The z-direction value of the permittivity tensor for each box
size S or cylinder in a layer.
mu_x array of scalars | The x-direction value of the permeability tensor for each box
size S or cylinder in a layer.
mu_y array of scalars | The y-direction value of the permeability tensor for each box
size S or cylinder in a layer.
mu_z array of scalars | The z-direction value of the permeability tensor for each box
size S or cylinder in a layer.
sig_x array of scalars | The x-direction value of the conductivity (absorption/gain
size S parameter) tensor for each box or cylinder in a layer.
sig y array of scalars | The y-direction value of the conductivity (absorption/gain
size S parameter) tensor for each box or cylinder in a layer.
sig z array of scalars | The z-direction value of the conductivity (absorption/gain
size S parameter) tensor for each box or cylinder in a layer.
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material | array of strings | String variable that names the material used in each geometric
size S shape in a region. This string variable is used in calling a
function that defines the permittivity, permeability,
absorption/gain properties of a box or cylinder.

nonlinear | array of logical | A logical variable that defines whether or not a particular
variables of size | electromagnetic/geometric feature possesses non-linearity.

S Material non-linearity in RCWA computations are modeled
by an iterative harmonic balancing technique [156].

Before filling the above data structures, which is explained in the following sections, individual
geometric shapes/electromagnetic materials that are independent of the nature of the transverse
or longitudinal slicing performed are defined in the following array of “geometricshape” data
structures of size regions, where each element of the array can be an array of size

“number of features,” having the following potential fields:

geometricshape
left scalar Left-hand side (negative x-direction) boundary for a
rectangular box, radial bend or annular bend feature.
right scalar Right-hand side (positive x-direction) boundary for a
rectangular box, radial bend or annular bend feature.
front scalar Front side (negative z-direction) boundary for a
rectangular box, radial bend, annular bend, or xy-cylinder
feature.
back scalar Back side (positive z-direction) boundary for a rectangular
box, radial bend, annular bend, or xy-cylinder feature.
top scalar Top side (positive y-direction) boundary for a rectangular
box, radial bend, annular bend, or xz-cylinder feature.
bottom scalar Bottom side (negative y-direction) boundaries for a
rectangular box, radial bend, annular bend, or xz-cylinder
feature.
radius scalar Radius for a circular xy-cylinder, circular xz-cylinder, and
1¥-4™ quadrant radial bend or annular bend.
inner radius scalar Inner radius for a circular 1°-4™ quadrant annular bend.
outer radius scalar Outer radius for a circular 1*-4"™ quadrant annular bend.
x_radius scalar X-direction major/minor radius for an elliptical cylinder
y_radius scalar Y -direction major/minor radius for an elliptical cylinder
z radius scalar Z-direction major/minor radius for an elliptical cylinder
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segments

scalar

Number of longitudinal segments used in approximating a
continuously varying longitudinal geometry used in
constructing geometric shapes for Geometric Bounding
Toolbox computations.

X _center

scalar

X-location of the center for a rectangular box, radial bend,
annular bend, or cylindrical feature.

y_center

scalar

Y-location of the center for a rectangular box, radial bend,
annular bend, or cylindrical feature.

z_center

scalar

Z-location of the center for a rectangular box, radial bend,
annular bend, or cylindrical feature.

left bezier

1D-vector

A real-valued vector of scalar values used in defining the
control points of a Bezier curve for a left hand side
(negative x-direction) boundary.

right_bezier

1D-vector

A real-valued vector of scalar values used in defining the
control points of a Bezier curve for a right hand side
(positive x-direction) boundary.

top_bezier

1D-vector

A real-valued vector of scalar values used in defining the
control points of a Bezier curve for a top side (positive y-
direction) boundary.

bottom_bezier

1D-vector

A real-valued vector of scalar values used in defining the
control points of a Bezier curve for a top side (positive y-
direction) boundary.

intersectplane

1D-vector

A real-valued vector that defines an inequality for a
hyperplane and half-space that will cut a previously
defined structure which is defined in the form used for the
Geometric Bounding Toolbox.

material

string

A string variable that defines the type of material utilized
for a particular electromagnetic/geometric feature.

nonlinear

logical

A logical variable that defines whether or not a particular
electromagnetic/geometric feature possesses non-linearity.
Material nonlinearity in RCWA computations are modeled
by an iterative field convergence/spatial grid technique
[156].

Upon defining all of the “geometricshape” data structures that are located within a given
“region,” these geometric shapes must then be processed into a stair-cased set of lamellar layers
whose material properties are longitudinally invariant within each layer. The method utilized to

perform this processing can be arbitrarily generic and capable of handling any given continuous

E.2.1 Longitudinal Slicing Routines
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or discrete structure, or can be made specific to take advantage of efficiencies that may be gained
by exploiting particular structural symmetries or material variations.

For example, in a region containing continuously varying S-bend waveguide geometry,
as shown in Figure E.2 (a), longitudinal slicing may consist of splitting the S-bend into a number
of layers having equal thicknesses or a more specific algorithm that varies the thickness based on
the longitudinal position of the S-bend interfaces at various transverse locations. For the dual
grating coupler, the layer slicing performed within a longitudinal unit cell depended on the
relative locations of the binary etching interfaces for both a superstrate and substrate grating
within a longitudinal supercell period. Similarly, for a photonic crystal waveguide, shown in
Figure D.2 (b), the elementary longitudinal unit cell of a region can be sliced into layers based on
user defined layer thickness choices, or the layer thicknesses can be calculated based on the
relative locations of the holes and a maximum/minimum layer thickness criterion. Depending on
the nature of the structure geometry, this longitudinal layer slicing can be either completely
decoupled from the required transverse layer slicing, as in the case of modeling butt coupled
straight waveguide segments, weakly coupled to the required transverse layer slicing, as is the
case for the dual grating structure, or strongly coupled to the required transverse layer slicing, as
is the case for any continuously varying geometric shapes.

After performing all necessary longitudinal slicing within a given region, all of the layer
thickness values are then compared to one another in an effort to find nearly identical layer
thickness values. If two layers are found to have thickness values that are within the defined
“geometric_tolerance,” then these two layer thickness values are set equal to one another. This
step is necessary for two reasons. First, the creation of scattering matrices requires both the

properties of a layer’s eigenmodes as well as a layer’s thickness. If two layers were to have
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exactly the same eigenmodes, but had slightly different thickness values (even on the order of
machine precision), then they would have different scattering matrices. By setting equal two
layer thickness values that are within the value of “geometric_tolerance,” the total number of
scattering matrices that must be calculated can be minimized. Second, by setting equal all layer

2

thickness values that are within a value of “geometric tolerance,” then any longitudinal
symmetry that is present in a given “region” elementary unit cell can be maintained. Doing so
allows for the exploitation of symmetry that minimizes memory storage requirements for unit
cell, region cell, and section cell scattering matrices. Upon completion of the longitudinal slicing
routines, most of the longitudinally dependent variables within a “region” data structure are

2 <6 2 <6

filled, including “region.unit_cells”, “region.reg_cells”, “region.slices”, and “region.slice.d”.

E.2.2 Transverse Slicing Routines

Once all of the longitudinal slicing routines have completed, the next step in pre-
processing the geometric/material data is to fill the remainder of the fields of in the “region” data
structure, including all of the fields in the “region.slice” data structure. Within any given slice
the nature of fields to be filled depends on the type of diffraction/waveguiding problem to be
solved (TE, TM, conical, two-dimensional) as discussed at the beginning of this section.

In the case of “twodimensional” diffraction problem where an “inverse” coupling
coefficient expansion occurs, “TE,” “TM,” or “conical” problem, the routines for performing
transverse slicing of geometric/material objects into rectangles involves first collecting the
location of all transverse material interfaces from every “geometricshape” located within a layer
and then testing the material values within any two interfaces against all of the

“geometricshapes” in that layer. Here again, the use of the “geometric_tolerance” variable is

222



important due to the possibility of creating rectangles having transverse widths on the order of
machine precision. In the case where a rectangle having a width on the order of machine
precision is created, then this rectangle is eliminated from the set of rectangles within the layer.
Furthermore, the widths of rectangles are tested for symmetry about the origin of the coordinate
system. If the widths of two rectangles are found to be transversely symmetric within the value
of “geometric_tolerance,” then these two width values are set equal to one another. Similarly, if
a central rectangle is suppose to be centered at the origin, but due to numerical round-off errors
has been given a center value that is on the order of machine precision, then this center value is
set to zero. Doing so maintains symmetry properties in the coupling coefficient expansion
matrices to be defined later.

In the case of a “twodimensional” diffraction/waveguiding problem that involves a
“regular” coupling coefficient expansion, the fields of the “region.slice” data structures and
“region.slice.feature” data structures are filled using a variety of different methods. If a
particular “geometricshape” is a cylinder or rectangle that is longitudinally invariant between
multiple layers, then these fields are filled by copying values directly from the relevant
“geometricshape” data structure into the appropriate field. If a particular “geometricshape” is a
longitudinally varying object, then the necessary geometric processing routines are performed,
be they Geometric Bounding Toolbox [173] routines or routines written by the present author. If
geometric processing is necessary for these longitudinally varying “geometricshape” data
structures, then once again the widths of all rectangles created are tested against the
“geometric_tolerance” parameter and the location of any centrally located shapes are checked for

a non-zero center location that is less than the value of “geometric_tolerance.”
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E.2.3 Layer comparison/Labeling system

Once all of the initial transversely and longitudinally dependent fields within a “region”
data structure are filled, the next step in the geometric/material data pre-processing is to perform
a comparison of every layer in the system to determine the total number of eigenmode problems
that are to be solved. Every unique eigenmode problem is to be given a different label, which in
this setting is called an “eigenlabel.” By determining all of the layers that have the same
“eigenlabel,” the total number of eigenmode problems to be solved can be minimized, which is
useful for maximizing the total problem’s computational efficiency. The efficiency with which
this layer comparison/labeling can be performed depends considerably upon the nature of a
device’s geometric/material layout, but can be performed in the most generic case by comparing
every element of every data structure field, exclusive of the thickness field “d” of the
“region(reg).slice(slc)” data structure, to every other element of that same array data structure.
When the geometry/material distribution allows for the exploitation of known information
compression, as in the case of the dual grating structure whose dual binary etching creates a
distinct pattern, the assignment of these “eigenlabels” can be performed in a much more efficient
manner. In this case, the “etched layers known” logical variable is set to be true and this
variable acts as a switch statement to run a more efficient assignment function tailored to a
specific device. Finally, a cell array variable is created, “eigenlabel,” where each element of the
cell is a vector that contains a value of “region.slice.eigenlabel,” as well as the label for each
associated “region” and “region.slice.” The size of this array is equal to the total number of
locations within the entire model at which field harmonic amplitudes will be calculated. The size

99 ¢c

of this array takes into account all values of “plotunitcells,” “plotslices,” and “internalslices” that

are present in each “region.”
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After assigning all “eigenlabels”, a similar layer comparison routine is performed
involving the thickness and ‘“‘eigenlabel” of every layer in the system to assign each layer a
“scatterlabel” value. Upon assigning all “scatterlabel” values, the collection of scatterlabels
within every elementary unit cell in each “region” is used to assign unique “symunitscatterlabel”
and “asymunitscatterlabel” values depending upon a unit cell’s longitudinal symmetry or
asymmetry. These “symunitscatterlabel” and “asymunitscatterlabel” values are then used with
each “region’s” number of “unit cells” to determine unique ‘“symregscatterlabel” and
“asymregscatterlabel” values. Similarly, these “symregscatterlabel” and “asymregscatterlabel”
values are combined with each “region’s” number of “reg cells” to determine unique
“symsectionscatterlabel” and “asymsectionscatterlabel” values. Upon completing the
assignment of all scattering matrix labels, a cell array is created, “scatterlabel,” where each
element of the cell contains two fields. The first field is the region and slice label of a layer that
is associated with a particular value of “region.slice.scatterlabel” from 1 to “maxscatterlabel,”
which is the maximum number of unique individual scattering matrices needed. Upon
completing all “scatterlabel” assignments, the geometric pre-processing portion of the code is

completed, and the “solver” portion of the code can begin.

E.3 Modal Solver and Scattering Matrix Assignment

In beginning the “solver” portion of the code, the first step is to determine the necessary
tangential phase components for each periodic direction present in the system as well as
longitudinal direction, layer eigenmodes. For uniform, homogeneous materials, the equations
described in sections 2.3.1 and 3.1.1 can be utilized to determine both the tangential and

longitudinal phase components. For inhomogeneous periodic layers, the process of determining
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layer eigenmodes begins by determining material coupling coefficients, as described in
Appendix C, for the spatial harmonic distributions described in Appendix B. These tangential
phase expansions and material coupling coefficient expansions are then incorporated into the
coupled wave modal expansions described in section 3.1, where any symmetries that are present
are exploited as described in Appendix D. After solving for all of the eigenvectors and
eigenvalues associated with each “region.eigenlabel” value from 1 to “maxeigenlabel,” each of
the individual layer scattering matrices are then calculated using the methods described in
section 4.3.4, then each of the unit cell, region cell, and section cell scattering matrices to be
created are calculated using the Redheffer star product operations defined in section 4.3.2.
Finally, the scattering matrices needed to match the input and output halfspace regions to a
standard vacuum, zero-thickness, homogeneous region are calculated using the single interface

scattering matrix definitions from section 4.3.1.

E4 Wave Propagation in Layered Media

After defining all single-layer, unit-cell, region-cell, section-cell, and input/output-
interface scattering matrices, modeling of energy propagation through the entire system can be
performed by choosing the desired input mode(s) and then piecing together scattering matrices to
calculate the field harmonic amplitudes throughout the device model. The manner in which
cascading of field harmonic amplitudes occurs has a profound effect on the efficiency of an
eigenmode-expansion/S-Matrix code. Exploiting the ideas of domain decomposition and binary-
based Redheffer star-product multiplication [19, 20] can greatly enhance the computational
efficiency of the code, especially when dealing with longitudinally periodic devices or when

piecing together sections having longitundal periodicities or symmetries with sections that do not
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possess either of these properties. The basics of both the domain decomposition and binary-
based multiplication have been explained elsewhere, but in the present implementation, the code
is required to handle both of these aspects in a very generic fashion. This implementation
requires that any given longitudinal unit cell can be either longitudinally symmetric or
asymmetric and can contain an arbitrary number of layers. The idea of domain decomposition is
utilized initially to break up a device model into separate “regions,” as was shown in Figure E.1

and is shown more generically in Figure E.4 below.

- N
uc — unit cell
I~ rc — region cell ——
uc ) sc — section cell uc
rc
N\ A J
~— ~ ~
SC uc rc
Region 3 Region 2 ' Region 1 .
region(3).symmetric = true region(2).symmetric = false region(1).symmetric = false
region(3).slices = 4 region(2).slices = 6 region(1).slices = 6
region(3).unitcells = 2' =2 region(2).unitcells =2° =1  region(1).unitcells = 2’=4
region(3).regcells = 22 =4 region(2).regeells =2°=1  region(1).regeells =2° = 1

Figure E-4 A sketch showing the various means of domain decomposition utilized in the
multilayer wave propagation/scattering matrix methods utilized in this study. The scattering
matrix codes utilized in this study exploited multiple levels longitudinal periodicity, where
conglomerates of both symmetric and asymmetric cells could be pieced together into a single
structure as shown.

The field harmonic amplitudes are then calculated using equations 4.3.13 and 4.3.14 at the
longitudinal boundaries of each region. Within each region, the field harmonic amplitudes are
then calculated (optionally) at the boundaries of each section cell, taking advantage of binary

based star-product multiplication if periodicity is present. Similarly, within each section cell, the
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field harmonic amplitudes are calculated (optionally) at the longitudinal boundaries of each
region cell, once again taking advantage of binary based star-product multiplication if periodicity
is present. Then within each region cell, the same process is performed at the boundary of each
unit cell. Once the field harmonics are calculated at the boundary of each longitudinal unit cell,
the process can then continue (optionally) to calculate the field harmonic amplitudes at the
boundary of each layer within the unit cell. At this point, even in the presence of a longitudinal
unit cell, the process of calculating field harmonic amplitudes internal to a unit cell requires the
use of left and right hand side scattering matrices that are asymmetric, and therefore do not have
the memory storage advantages of scattering matrices for symmetric unit cells. Once the field
harmonic amplitudes have been determined at the interfaces of every desired layer in the system,
the process can then continue (optionally) to calculate field harmonic amplitudes internal to a
periodic layer using the method described by equation 4.3.24. The option of whether or not to
calculate field harmonic amplitudes at any of the interfaces described above within any or all

regions is controlled by the “calculateFieldHarmonicAmplitudes,”

b 2

“calculateOnlyInputOutputFieldHarmonics,” “plotunitcells,” “plotslices,” and “interalslices”
parameters. The choice of how many total longitudinal interfaces are of interest has a very
important effect on the overall computational efficiency of the code. In an effort to improve this
efficiency, both the ideas of domain decomposition and binary-based star-product multiplication

coulf be utilized to leverage the benefits of task parallelism in increasing computational

efficiency in a multi-processor computational environment.
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E.5 Processing the Field Harmonic Amplitudes/Calculating Fields and Power

Once all of the desired field harmonic amplitudes have been calculated at every layer
desired in the device model, these field harmonic amplitude values can be used to determine both
the modal reflection and transmission percentages in the input and output half-space regions as
well as the field and power distributions throughout the entire multilayered system. Determining
the field and power distributions requires the creation of a transverse spatial grid to be utilized
for every longitudinal layer of interest. While there is no absolute requirement that this grid is
the same for every layer, in the present case a single spatial grid is utilized for every layer.
Calculating the electric and magnetic fields at a single longitudinal location requires the use of
equations 3.1.1 and 4.3.14, if the location is a homogeneous zero-thickness layer, or equations
3.1.11 and 4.3.25, if the location is a heterogeneous periodic layer. In the presence of transverse
symmetries, the exponential terms in equations 3.1.1 and 3.1.11 can be simplified into
trigonometric expressions that operate on a reduced number of spatial harmonics, as described in
Appendix B, as well as a reduced number of spatial grid points that exploit various mirror
symmetric/anti-symmetric properties. Once the discretely sampled electric and magnetic field
distributions are calculated, these sampled values can be combined using the Poynting theorem
to determine the transverse and longitudinal power flow at every point on the spatial grid. In
performing these computations in an interpreted language such as MATLAB®, the concept of
“vectorization” of code increases the efficiency of these grid computations tremendously,
whereas using loops to fill the grid in a code that is written directly in a compiled language like
C, C++, or Fortran would be very efficient given proper nesting of the operations to be

performed using each of the various spatial grid loops. As the code used in this study was
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written entirely in MATLAB®, proper vectorization of the code, proper nesting of spatial grid

loops, and minimization in loop usage were critical for computational efficiency.

E.6 Post-Processing of Calculated Fields and Power

After calculating the modal reflection/transmission values and field/power distributions
there are a number of potential data post-processing issues that must be handled. The most
obvious issue is visualization of the data. There is an entire sub-field of computer science
devoted to computer graphics as well as software packages devoted exclusively to the
visualization of numerical data, so a discussion of this field is not the present purpose. In this
study, the graphics capabilities of MATLAB® are used for visualizing all of the data. The issues
involved in visualizing the fields and power flow, especially for the dual grating coupler device,
involved being able to simultaneously view the power flow magnitude and direction over the
entire macro-scale of the device (using the “surf” function) while also having the ability to
zoom-in on nano-scale variations in the field and power distributions and being able to overlay
these values on a contour plot of the device’s permittivity layout (using the “contour” function).
The graphics capabilities of MATLAB® on the desktop handled these issues quite well, but due
to the amount of memory required to calculate the field and power distributions as well as
display the required graphics, these steps had to be performed in separate MATLAB® sessions
on the one 32-bit processor with 4 GB of RAM that was available.

A second issue that was encountered post-field/power processing was the calculation and
summation of power flow in and out of a defined box that was placed within the computational
domain. Summation of the power on the input and output interfaces was a straightforward

numerical integration that could be performed using Riemann integration on an equally spaced
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spatial grid (due to the choice for the transverse spatial grid utilized), but for the two sides of the
box along the longitudinal dimension, the grid was a non-uniformly spaced grid. For these two
interfaces, a non-uniformly sampled trapezoidal rule numerical integration technique was
utilized (“trapz” in MATLAB®™). When the power around the box sums to nearly 100%, the
computation then possessed conservation of energy to within sampling accuracy. This
conservation of energy is a necessary, but not necessarily sufficient, condition for accuracy of the
code. The accuracy of a given RCWA model could then be tested by repeating the computation
with more spatial harmonic basis functions, and observing convergence in the power calculations
or by testing the obtained values against other computational techniques (such as the eigenmode
expansion method used in CAMFR [174], an FEM code, or an FDTD code).

A final post-field/power processing issue is the determination of the angular spectrum of
the field diffracted from the dual grating coupler device, as discussed in section 8.2.5.
Determination of this angular spectrum required the use of a discrete Fourier transform
calculation on a non-regularly spaced spatial grid. In this case, the same non-uniformly spaced
trapezoidal rule numerical integration technique was utilized for performing both the forward

and inverse discrete Fourier transforms.

E.7 Integrating Variable Loops and Optimization Routines

Once the “solver” has been fine-tuned for best performance and all post-processing issues
have been decided upon, the next step in structuring the computer aided design tool is to
integrate all necessary variable loops into the code. While the most simplistic method of
performing calculations over variable wavelengths, angles, polarizations, number of basis

functions, geometric variables, and other parameters would be to wrap the entire code in the
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loops for each individual variable, this method is also the most inefficient means of achieving the
desired outcome. By placing the loops only around those sections of code that are immediately
dependent upon a given variable, and extracting all sections of code that are not dependent upon
a looped variable, the efficiency of the code can be optimized for spectral calculations over any
desired variable. In cases where different sections of code may or may not be dependent upon a
loop variable, given other problem parameters, then conditional statements must be added to the
code to handle each possible case. An example of this scenario is the inclusion or exclusion of
material dispersion properties within a looped wavelength, spectral calculation. If material
dispersion is turned off, then the entire geometric processing section of the code can be placed
outside of the variable wavelength loop, but if material dispersion is turned on, then the
assignment of material properties to a given geometry should be placed within the wavelength
loop. In either case, all elements of the “solver” are placed within the wavelength loop, and are
repeated for every value of “lambda.” The same types of issues can occur with every other
variable over which a spectral parameter scan may be performed.

In order to handle collection of spectral data over a number of potentially different
variable parameters, while hopefully avoiding the possibility of “code bloat” (i.e. a code whose
number of lines grows unnecessarily long) as much as possible, a very convenient solution is to
exploit methods of string processing. In MATLAB®, these methods make use of the “eval” and
“run” commands to create new code at run-time. The “eval” function accepts string arguments
whose contents are in the form of a function. The function contained in this string is then
processed as a normal function. By building a string whose contents depend upon the variables
over which one is looping, code that is very flexible and reusable in a variety of different

situations can be written. The desired output variables could be grouped with iterator strings that
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were dependent upon the particular variables over which loops were occurring. A similar
argument applies to the use of the “run” command in MATLAB®. The “run” command accepts
a string argument that specifies the absolute path to a particular “.m” script file. By making use
of the “run” command, separate scripts for processing transversely dependent and longitudinally
dependent geometric variables could be written for different devices, while keeping the main
computational engine file unchanged. By allowing the user to create code at run-time,
MATLAB®, and other scripting languages like Python, allow for the creation of very compact,
flexible, and re-useable code. In both cases, the expensive parts of a code, in terms of memory
requirements and more so for long run times, can be written in a lower level language, like
C/C++ or Fortran, and then called by the scripting language. In such a case, the scripting
language acts as the “glue” connecting all of the various parts of the computational workflow.
When all necessary variable loops have been integrated into the code, the task of
optimizing either a single output variable value or optimizing the spectral response of a
parameter scan can be performed by integrating the entire code with a desired numerical
optimization routine. In doing so, similar issues must be considered to those involved in
integrating variable loops. For a multi-parameter optimization problem, the optimization routine
should be placed only around that section of code upon which the routine’s inputs are dependent.
By making various segments of code as orthogonal and flexible as possible, this integration can

be as efficient and reusable as possible.
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