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ABSTRACT 

Even changing one atom in nanoscale materials is expected to alter their properties due to their 

small physical sizes. Such sensitivity can be utilized to modify  materials’ properties from 

bottom up and is essential for the utility of nanoscale materials. As such, the impact of extrinsic 

atomic adsorbates was measured on pristine graphene and a network of carbon nanotubes using 

atomic hydrogen, cesium atoms, and dye molecules. In order to further quantify such an atomic 

influence, the resistance induced by a single potassium atom on metallic and semiconducting 

carbon nanotubes was measured for the first time. Carbon nanotubes are sensitive to adsorbates 

due to their high surface-to-volume ratio. The resistance arising from the presence of extrinsic 

impurity atoms depends on the types of nanotubes. Metallic carbon nanotubes are resilient to a 

long-ranged, Coulomb-like potential, whereas semiconducting carbon nanotubes are susceptible 

to these impurities. The difference in the scattering strength originates from the chirality of 

carbon nanotubes, which defines their unique electronic properties. This difference had not 

directly measured experimentally because of the issue of contact resistance, the difficulty of 

chirality identification, and the uncertainty in the number of impurity atoms introduced on 

carbon nanotubes. 

We synthesized atomically clean, long (>100 μm) carbon nanotubes, and their chirality was 

identified by Rayleigh scattering spectroscopy. We introduced potassium atoms on the nanotubes 

to impose a long-range, Coulomb potential and measured the change in resistivity, excluding the 

contact resistance, by plotting the resistance as a function of the carbon nanotube length. The 
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flux of potassium atoms coming onto the nanotubes was monitored by quartz crystal 

microbalance, and the scattering strength of a single potassium atom was deduced from the 

change in resistivity and the density of potassium atoms on the nanotubes. We found that the 

scattering strength of potassium atoms on semiconducting nanotubes depends on the charge 

carrier type (holes or electrons). Metallic nanotubes were found to be less affected by the 

presence of potassium atoms than semiconducting nanotubes, but the scattering strength showed 

a large dependence on Fermi energy. These experimental results were compared to theoretical 

simulations, and we found a good agreement with the experiments. Our findings provide crucial 

information for the application of carbon nanotubes for electronic devices, such as transistors and 

sensors. 
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CHAPTER 1: INTRODUCTION 

Carbon nanotubes were discovered for the first time in 1991 by Iijima with a transmission 

electron microscope [1]. This discovery was assisted by the research in carbon fibers. The 

discovery of C60 in 1985 [2] suggested researchers that the size of C60 be related to the narrowest 

carbon fibers, i.e., carbon nanotubes. Experimental realization of carbon nanotubes sparked a 

whole new field of research, and a vast amount of theoretical and experimental studies on carbon 

nanotubes have been reported since then. Even decades after the discovery, carbon nanotubes are 

still an active area of research, along with graphene, a two-dimensional sheet of graphite, found 

for the first time in 2004 by mechanically exfoliating graphite [3]. 

 

Figure 1.1: An image of graphite flakes. Graphite is made of a stack of graphene. Carbon 

nanotubes and C60 are conceptually constructed from graphene by forming a tubular shape and 

buckyball, respectively. 
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Various applications of carbon nanotubes have been realized [4] owing to their outstanding 

thermal [5, 6], electrical [7] conductivity, and elastic mechanical strength [8]. The electronic 

properties of carbon nanotubes especially have promising commercial applications for electronic 

devices: transparent and flexible transistors have been demonstrated using carbon nanotubes [9-

11], and the techniques for a low-cost, print fabrication of these transistors were developed [12-

14]. The high thermal conductivity of carbon nanotubes allows computers to dissipate heat 

efficiently [15], and the high current density makes it possible to use carbon nanotubes as an 

alternate material for efficient electric cables [16, 17]. Carbon nanotubes can also be used to add 

electrical conductivity to rubber [18] and extra mechanical strength to ceramic [19, 20] or 

cement [21]. Due to their nanoscale size, carbon nanotubes have been used for medical 

applications [22]. For example, non-invasive tracking of a blood flow in a brain [23] and 

artificial retinas [24] have been reported, utilizing the optical response of carbon nanotubes.  

One of the important applications of carbon nanotubes is electronic sensors. Their mechanical 

robustness and high surface-to-volume ratio make carbon nanotubes ideal for sensors to detect 

gases, such as hydrogen [25, 26], oxygen [27], ammonia [28-30], carbon monoxide [31], 

nitrogen dioxide [32], and chemical vapors [33, 34]. The possibility of using nanotubes as pH 

sensors is also demonstrated [35-37]. The pressure sensors are another application of an unique 

combination of mechanical and electronic properties [38]. Carbon nanotubes are used for sensing 

bio-molecules, such as glucose [39, 40], tyramine [41], protein [42, 43], DNA [44-46], and 

viruses [47-49]. Carbon nanotube sensors are often functionalized by adding particles or 

molecules either covalently or non-covalently. The sensing mechanism is explained by a charge 
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transfer from an analyte into nanotubes, charge-carrier scattering on bio-molecules, Schottky 

effect, or defects in nanotubes [50, 51]. The detection time of these sensors is usually much 

faster than conventional optical methods, and the sensing level can be as good as a single bio-

molecule detection [52, 53]. 
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CHAPTER 2: ELECTRONIC PROPERTIES OF GRAPHENE AND 

CARBON NANOTUBES 

2.1 Electronic properties of graphene 

The electronic properties of carbon nanotubes are derived from their parental material – 

graphene. Carbon nanotubes are formed conceptually by rolling graphene into a tubular shape. 

For this reason, the electronic properties of graphene are discussed first. Those of carbon 

nanotubes are readily derived by applying a periodic boundary condition to graphene. 

2.1.1 Hybridization of valence electrons in carbon atom 

The Hamiltonian of an atomic carbon has eigenstates          . Two of the six electrons in a 

carbon atom are in the 1s state (         ) with the electron spin up and down. They are strongly 

bound to the atomic nucleus and do not participate in the formation of chemical bonds. The rest 

of the electrons are in the 2s states (         ) and the 2p states (          ). The linear combination 

of the eigenstates in the 2p states forms an orthogonal basis in L
2
 (angular momentum operator). 

    
     

  
                       

    
     

  
                       

     
                                             

   (2.1) 
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The four valence electrons 2s, 2px, 2py, 2pz, can be hybridized to create covalent bonds to 

neighboring carbon atoms in molecules and crystals. In a planar structure, 2s, 2px, and 2py have 

the same mirror symmetry and hybridize to form three sp
2
 orbitals, as shown in Figure 2.1. 

Connecting the sp
2
 orbitals between carbon atoms forms strong σ-bonds. The resulting two-

dimensional sheet of carbon atoms has a honeycomb lattice structure, and it is called graphene. 

The remaining 2pz orbitals at each carbon site in graphene form weak π-bonds. It is this π-bonds 

that are responsible for the electronic properties of graphene. 

 

Figure 2.1: Schematic of sp
2
 orbitals. 

2.1.2 Unit cell and first Brillouin zone of graphene 

The honeycomb structure is basically a two-dimensional, triangular Bravais lattice with a two-

atom basis, i.e., there are two equivalent carbon atoms, A and B, in a unit cell. The lattice 
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constant is          = 0.246 nm, where acc = 0.146 nm is the carbon-to-carbon distance. The 

primitive vectors,    and   , can be chosen as in Figure 2.2. 

     
   

 
 
 

 
                      

   

 
  

 

 
   (2.2) 

Then, using the condition,            , the reciprocal vectors,    and   , are defined as  

    
  

 
 

 

  
                       

  

 
 

 

  
      (2.3) 

The first Brillouin zone forms a hexagonal shape with vertices located at   
 

     
 
  and   

 
   

   
   

 
 . 

                           

Figure 2.2: Primitive vectors and reciprocal vectors. (a) The area in the dashed line is a unit cell. 

(b) Reciprocal space. K and K’ points are located at vertices of the hexagonal first Brillouin zone. 

a1

a2

A B

A B

A B

(a) (b) 
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2.1.3 Tight-binding approximation 

The electronic band structure of graphene is derived by tight-binding approximation. It assumes 

that the overlap of atomic wave functions between each atomic site is small. Thus, each atomic 

wave function satisfies the Schrӧdinger equation,             , where n denotes the atomic 

orbitals. The periodic lattice or crystal Hamiltonian for a single electron is then 

   
  

   
  

         

 

        

     
  

   
  

                                      

 

  

                             

               ,              (2.4) 

where Uperiodic and Uatom are the periodic potential of the crystal and the potential of a single 

atom, respectively. The difference of the potentials,      , is negative because the potential is 

attractive to electrons. This shows that the full crystal Hamiltonian can be constructed by adding 

a correction term,      , to the atomic Hamiltonian. If the atomic wave functions are confined 

at each atomic site and do not leak to neighboring sites, they will all satisfy the full crystal 

Hamiltonian 

                     (2.5) 
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where Ri represents the coordinates of each atomic site. Therefore, the N linear combination of 

these degenerate atomic orbitals is also the eigenstates of the full Hamiltonian. In order for this 

linear combination to satisfy Bloch condition of a periodic potential, it needs to be in the form 

(with normalization factor     , where N is the number of atomic sites), 

       
 

  
                            

 

  
             

  

 

               

 

 

If, instead, atomic wave functions are allowed to leak slightly to nearest neighbor sites, i.e., both 

ΔU(r) and Ψn(r) are small but finite away from the atomic site,       
   is no longer the eigenstates 

of the full Hamiltonian because the matrix elements,                                     

          is non-zero. However, the above N linear combination is still eigenstates of the full 

Hamiltonian in the basis set of atomic orbitals,       
  , and this leads to 

            
 

  
              

  

 

 

            
 

  
     

           
                   

  

 

                 
    

                                                            (2.7) 

in the case of two nearest neighbor atoms. 
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For the case of graphene, there are two carbon atoms (A and B) in a unit cell. In order to calculate 

the π-bonds arising from the pz orbitals, let the pz orbital states at site A and B be            

and          . The orbital wave function in a unit cell is then the linear combination of the 

two wave functions at the sub-lattice A and B, 

                                           
       

    (2.8) 

The eigenstates of the full crystal Hamiltonian is now, 

       
 

  
                                         

 

 

                              

                                         (2.9) 

The energy dispersion is found by calculating                               . For 

convenience, regard the states of the two sub-lattices at A and B as two bases. Then, the 

Hamiltonian can be written as a 2 × 2 matrix with its elements given by                       , 

and the overlap matrix elements are given by                     . The energy dispersion, ε(k), 

is found by solving the secular equation, 

             (2.10) 
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Setting              as an energy reference, and assuming that the overlap of atomic 

orbitals is negligible (SAB = SBA = 0), the equation (2.10) is reduced to be 

               (2.11) 

Taking only the nearest-neighbor atoms, HAB is evaluated as 

        
   

 

 
       

                          

  

  

              
                               

  

 

               
                               

  

  

       
                   

              
                       

  

 

               
                       

  

  

                        (2.12) 
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Here the transition amplitude or transfer energy between nearest neighbor atoms is defined as 

–         
                         

                         (2.13) 

The energy dispersion is then calculated to be 

                                                         

                         
     

 
   

   

 
       

   

 
 (2.14) 

This shows symmetric forms for holes and electrons, but this approximation is only valid near 

the Fermi energy. The symmetry breaks down at higher energy due to deviation from the 

approximation, i.e., a non-zero overlap matrix and the inclusion of second nearest neighbors. 

The Hamiltonian can be simplified in the vicinity of K and K’ point by the k-p approximation, 

which expands the wave function in the form of                    (   ), with       

satisfying a Bloch equation. The Hamiltonian in this approximation becomes 

      
       

       
  (2.15) 

where        

  
. Equation (2.15) is analogous to the Dirac Hamiltonian       . The 

eigenstates of the Hamiltonian are given by spinors, 
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with          
  

  
 , angle measured from y-axis, and the ± sign is for           . The 

spinor eigenstates are called pseudospins, in contrast to physical spins. Pseudospins are coupled 

to the direction of propagation (either parallel or anti-parallel).  

2.2 Energy dispersion of carbon nanotubes 

The energy dispersion of carbon nanotube is obtained by applying a periodic boundary condition 

in the circumferential direction. The structure of carbon nanotubes is specified by the diameter of 

the tube and the chiral angle measured from zigzag direction. The chiral vector or chirality is 

defined as 

            (2.17) 

Carbon nanotubes are rolled up in the direction of the chiral vector, and the magnitude of the 

chiral vector is the circumference of the carbon nanotube. Therefore, the diameter of nanotube is 

   
    

 
  

 

 
            (2.18) 
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The electronic band structure of carbon nanotubes is obtained by applying a periodic boundary 

condition on the circumference of nanotubes 

                             (2.19) 

This leads to the condition 

                     
   

 
        

 

 
          (2.20) 

where j is an integer. Substituting equation (2.20) into (2.14) gives a nanotube electronic band 

structure; 

  
               

   

   
 

   

   

  

 
     

  

 
        

  

 
  (2.21) 

In the vicinity of K point,                                , the boundary 

condition (2.19) becomes 

                              (2.22) 

When the chirality satisfies the condition        (l: integer), the boundary condition (2.22) 

is simplified to 
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                                 (2.23) 

with j an integer. In this case, the lowest-energy state is given by j = 0, passing through the Dirac 

point in the graphene energy dispersion. The conduction band and the valence band then touch at 

Fermi energy, forming metallic carbon nanotubes. The first sub-band of metallic nanotubes in 

the vicinity of the Dirac point is 

    
      

     

 
                                                             

When         , the boundary condition becomes 

     
  

 
          

  

    
   

 

 
                                         

where    is the wavevector in the circumferential direction. The energy dispersion then becomes 

  
       

    

 
  

  

    
 
 

   
 

 
 
 

   
                                            

where    is a wavevector parallel to the tube axis. The energy in the equation (2.26) has a finite 

energy gap between conduction and valence bands, forming semiconducting carbon nanotubes. 

The boundary conditions for metallic and semiconducting nanotubes are shown in Figure 2.3. 
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Figure 2.3: Quantized states in the reciprocal space of graphene from the boundary condition. 

The red lines represent the allowed states. (a) Metallic carbon nanotubs. j = 0 passes through the 

Dirac point. (b) Semiconducting nanotubes. j = 0 does not pass through the Dirac point, thus 

forming a band gap. 
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CHAPTER 3: SYNTHESIS AND CHARACTERIZATION OF GRAPHENE 

AND CARBON NANOTUBES 

There are many different methods to make graphene and carbon nanotubes. High quality samples 

are usually limited to small quantity, and it is time consuming to produce them. Large quantity 

samples, on the other hand, can be produced quickly but contain atomic defects that degrade the 

quality of the samples. Since it is impossible to introduce every synthesis method, only selected 

synthesis methods are discussed in this chapter. The optical spectroscopy to characterize the 

quality of graphene and carbon nanotubes concludes this chapter. 

3.1 Methods for monolayer graphene production 

3.1.1 Mechanical exfoliation of graphene (adhesive tape method) 

Mechanically exfoliating a piece of graphite with adhesive tape is the simplest method to 

produce monolayer graphene [3]. In this method, a small piece of graphite flake is placed on a 

strip of adhesive tape (Figure 3.1). The graphite is thinned down by repeating the process of 

attaching the tape to the graphite and peeling off a piece of graphite layers. Eventually, layers of 

thin graphite pieces, though not monolayer graphene yet, are formed on the tape. It is important 

to keep the freshly exfoliated surface of graphite from the tape adhesives during this process. The 

tape is then placed face down on a small substrate, and the non-adhesive side of the tape is 

rubbed with a pair of plastic tweezers. The tape is peeled off after rubbing the tape for 
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approximately 1 minute. The yield of monolayer graphene is low with this method, and our 

statistical study shows that the yield does not depend on the rubbing time, the number of 

exfoliation times, the peeling-off speed or peeling-off direction. 

 

Figure 3.1: Graphene mechanical exfoliation process with adhesive tape. (a) A piece of graphite 

is placed on adhesive tape. (b) The graphite is exfoliated. Thinner graphite pieces spread in the 

middle of the tape. (c) The adhesive tape is placed face down on a substrate and is rubbed with a 

pair of plastic tweezers. 

The target substrate is cleaved out of a doped silicon wafer with 280 nm thick of thermally 

grown oxide layer. The cleaved substrate must be prepared clean beforehand. The cleaning 

process is as follows: soak substrates in piranha solution (sulfuric acid : hydrogen peroxide = 3:1 

by volume) for at least 10 minutes and place them in a bath of de-ionized water (DI water) for 5 

minutes. Then, sonicate in isopropyl alcohol (IPA) for 1 minute to get rid of dust particles and 

blow-dry with compressed air or nitrogen gas. 

Monolayer graphene can be found with an optical microscope. Typically, one finds many flakes 

of different colors on the surface as in Figure 3.2a. Yellow flakes are thick graphite, and the 

color changes to green, blue, purple, and pink as the graphite becomes thinner. This color change 
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is the result of the optical contrast imposed by the layer of 280 nm oxide. Pieces of undefined 

edges are adhesive residues from the tape. Gold markers are pre-patterned on the substrate for 

the purpose of recoding the graphene location. These gold markers are fabricated using electron 

beam lithography or photolithography, which is discussed in Chapter 4. 

                        

Figure 3.2: Optical images of graphene on a SiO2/Si substrate with 280 nm of oxide layer. (a) 

Purple pieces are a few-layer graphene, and yellow and light green ones are thick graphite. Gold 

markers are present on the substrate for bookkeeping graphene locations. The scale bar is 30 μm. 

(b) Monolayer graphene attached to bilayer graphene. The scale bar is 10 μm. The bilayer 

graphene has slightly darker color. 

Figure 3.2b is an optical image of monolayer graphene. Even though graphene is one-atom layer 

thick, it becomes visible because of the optical contrast. The best contrast is achieved when the 

thickness of the oxide layer is 280 nm. Substrates with different oxide thickness may not have 

sufficient optical contrast that human eyes can perceive. Monolayer graphene appears light pick 

on 280 nm of oxide layer, and bilayer graphene is slightly darker than monolayer graphene. 

It is possible to distinguish monolayer graphene from bilayer graphene by the color, but the 

precise identification of the number of layers has to wait for Raman spectroscopy, which is 

(a) (b) 
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discussed in section 3.3.4. It is not recommended to rely solely on the color of graphene to 

identify the number of layers. 

3.1.2 Mechanical exfoliation of graphene (non-adhesive tape method) 

Monolayer of graphene can be exfoliated alternatively without adhesive tape if a razor blade and 

Kish graphite are used. Kish graphite is a large crystal of graphite and has more ordered stacking 

of layers in a larger size than regular graphite. Figure 3.3 shows the process of mechanical 

exfoliation by a razor blade. First, a very thin layer of Kish graphite is peeled off with a fine pair 

of tweezers. When placed, it sticks on a substrate. The thin layer of graphite needs to appear flat 

without having different domains, and it is crucial to have a clean surface on the substrate to 

make the thin graphite piece stick. Once the thin graphite is stuck, scratch it off with a razor 

blade. The most of the thin graphite is scratched off, but some pieces of graphite/graphene stay 

on the surface. 

The advantage of this method is that the surface is devoid of adhesive residue, the size of 

graphene is larger, and the scratching process can be applied repeatedly until monolayer 

graphene is found. However, it is time consuming to stick thin graphite pieces, and graphene 

produced this way may be attached to a large piece of graphite. Moreover, there is a risk of 

scratching the oxide layer down to the doped silicon underneath, causing a gate leakage during 

the device fabrication. 



20 

                 

Figure 3.3: (a) Thin flake of graphite peeled off from Kish graphite at the tip of tweezers. (b) The 

thin flakes of graphite are stuck on a clean SiO2/Si substrate. A razor blade is used to scratch off 

the graphite pieces. 

Artificial bilayer graphene is created several times when a part of monolayer graphene is folded 

onto itself during the scratching process (Figure 3.4). Graphite has the Bernal AB stacking 

structure, where the second layer is rotated by 60 degrees. The stacking of this artificial bilayer 

graphene is, however, non-AB stacking, and interesting features are studied in Raman 

spectroscopy [55, 56]. 

 

Figure 3.4: Folded bilayer graphene (incommensurate bilayer graphene). 
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3.1.3 Chemical vapor deposition (CVD) 

Though mechanically produced graphene is clean and defect-free, it takes time and patience to 

find monolayer graphene. Furthermore, the size is small (10 m  10 m at most), and the yield 

is low. For the fast, large-scale graphene production, chemical vapor deposition (CVD) method 

is routinely used in laboratories [57-59]. The CVD method is a bottom-up synthesis technique: 

the gas that contains carbon atoms, such as methane, is decomposed on a supporting metal film 

(usually copper) at elevated temperature, and graphene forms on the surface of the film. 

 

       

Figure 3.5: (a) CVD graphene synthesis setup. (b) Schematic of the synthesis setup. A flow of 

argon and hydrogen are mixed before they are flown into the furnace. The quartz tube is 

evacuated by a mechanical pump located down the stream. 

(a) 

(b) 
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Figure 3.5 shows the setup of CVD synthesis. Before the synthesis, a copper foil is flattened and 

treated with 5.4 wt% nitric acid for 90 seconds, followed by triple rinsing with DI water and 

blow-drying with nitrogen gas. The copper foil is placed in the middle of the quartz tube, and the 

tube is evacuated by a mechanical pump down to < 30 mTorr. A flow of 2 sccm hydrogen is then 

introduced into the quartz tube to keep the pressure at around 70 mTorr while pumping with the 

mechanical pump. The furnace is gradually heated up to 1050 °C at the rate of 20 °C /min. Once 

the temperature reaches 1050 °C, the copper foil is annealed for 1 hour to increase the domain 

size. To grow graphene, 25.4 sccm of methane is flown into the tube with the total pressure of 

420 mTorr. After 45 minutes of synthesis, the methane flow is stopped, and the furnace is moved 

away from the copper foil for the rapid cooling. 

 

Figure 3.6: An optical image of CVD graphene. The scale bar is 10 μm. Multiple patches of 

small graphene are formed. 

The CVD grown graphene is shown in Figure 3.6. The quality of CVD graphene is not as good 

as mechanically exfoliated graphene. The degradation of quality is related to the formation of 
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domains in graphene. Within each domain, crystal structure is maintained, but domains with 

different orientations are stitched together to form grain boundaries, at which large electrical 

resistance arises. 

CVD grown graphene needs to be transferred from the copper support to a different substrate. 

Figure 3.7 shows this transfer process. First, the graphene-grown copper foil is spin-coated with 

495 PMMA A4 at 5000 rpm and baked at 185 °C for 10 minutes. The same spin-coating process 

is repeated to have thicker PMMA film. The copper foil is wet-etched with 1 wt% ammonium 

persulfate (APS) solution overnight. The PMMA film floats on the solution when copper is 

dissolved. The floating PMMA film is transferred to a new APS solution to dissolve copper 

completely. After 2 hours, the film is placed on ultrapure water overnight to dilute the residual 

APS solution on the film. The film is transferred to new ultrapure water, and the floating 

PMMA/graphene is scooped out on a target substrate. 

 

Figure 3.7: Schematic of the graphene transfer process. Copper is etched with an APS solution. It 

is necessary to dilute residual solution in order to have better graphene quality. 
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3.2 Growth of carbon nanotubes 

Carbon nanotubes are routinely synthesized in many laboratories. The most common growth 

technique is a chemical vapor deposition (CVD) method. Carbon nanotubes grow from catalyst 

particles on a substrate in a flow of reaction gas(es) at elevated temperature. Three parameters 

i.e., catalyst, reaction gas, and growth temperature, need to be controlled in order to have optimal 

growth results. For instance, the diameter of carbon nanotube is correlated to the size of the 

catalyst particles, and the cleanliness of carbon nanotubes depends on the reaction gases and 

reaction temperature. In this section, three CVD growth techniques are discussed. 

3.2.1 A network of carbon nanotubes (iron catalyst) 

A network of carbon nanotubes grows when catalysts are deposited randomly on a substrate. The 

150 μg/mL of a catalyst solution (iron particles) is prepared by dissolving ferric (III) nitrate 

nonahydrate in isopropyl alcohol [60]. The density of the nanotube network is determined by the 

concentration of the catalyst solution. A growth substrate (1 cm × 1 cm in size) is cleaved out 

from a doped silicon wafer with 500 nm of a thermally grown oxide layer. The clean substrate is 

then dipped in the catalyst solution for 10 seconds, rinsed in hexanes for 10 seconds, and blow-

dried with nitrogen gas. 

The growth setup is similar to that for CVD graphene synthesis, except for the mechanical pump. 

The growth substrate is placed in a quartz tube, and temperature is raised to 900 °C in 40 minutes 

in 1700 sccm of argon flow. Once 900 °C is reached, the temperature is kept at 900 °C for 10 
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minutes in the same flow of the gas. After 10 minutes of annealing, nanotubes are synthesized in 

a flow of hydrogen, methane, and ethylene (2000 sccm, 1300 sccm, and 60 sccm, respectively) in 

10 minutes at the same temperature. 

            

Figure 3.8: (a) Ferric (III) nitrate nonahydrate catalyst solution. (b) A SEM image of a network 

of carbon nanotubes. The scale bar is 10 μm. The acceleration voltage of the SEM is 1 kV. 

The outcome of the growth is checked by a scanning electron microscope (SEM). Figure 3.8b 

shows an SEM image of a network of carbon nanotubes. Imaging just one carbon nanotube can 

be challenging, but it is easier to image a network of nanotubes because it behaves as a 

conducting film. The diameter of nanotube in SEM images appears an order of magnitude larger 

than the actual size. This is because the nanotube becomes visible by charging the substrate 

underneath the nanotubes. 
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3.2.2 Network of carbon nanotubes (cobalt catalyst) 

Another method to grow a network of carbon nanotubes uses cobalt as a catalyst [61]. Figure 3.9 

shows the setup of the synthesis. First, 0.5 nm thick of cobalt is deposited on a substrate by 

electron beam evaporation. The substrate is placed in a quartz tube and annealed in a flow of 

520-sccm argon and 65-sccm hydrogen at 850 °C for 1 hour. For the synthesis, the same flow of 

gases is switched to bubble through ethanol in ice bath for 10 minutes. After the synthesis, the 

furnace is cooled down to room temperature in the original flow of argon and hydrogen without 

ethanol. 

     

Figure 3.9: Schematic of synthesis setup for the cobalt-catalyst carbon nanotube growth. Ice bath 

is added to prevent the vaporization of ethanol. A flow of hydrogen and argon is bubbled through 

the ethanol. 
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3.2.3 Growth of single-walled carbon nanotubes 

Compared to a network of carbon nanotubes, more sophisticated growth technique is required to 

grow individual single-walled carbon nanotubes [62, 63]. A mixture of molybdenum and cobalt 

is used as a catalyst [64], and a strip of the catalyst past is applied on a substrate [65]. Figure 

3.10 shows the catalyst paste and the synthesis setup. The substrate is placed in the middle of the 

furnace and baked in the air at 400 °C for 30 minutes. Once it is cooled down, the air inside the 

quartz tube is evacuated with a mechanical pump for 30 minutes. After the evacuation, 200 sccm 

of Argon is flown through the tube at 1 atm to remove residual gases inside the tube. 

              

Figure 3.10: Single-walled carbon nanotube synthesis. (a) Catalyst solution/paste. (b) Synthesis 

setup. 

A flow of 200-sccm hydrogen and 85-sccm argon mixture is then bubbled through ethanol and 

added to the first 200-sccm Argon flow. The furnace is slid away from the substrate to the 

downstream of the gas flow, and the temperature is set to 1000 °C. Once the temperature 

becomes stable at 1000 °C, the furnace is slid back quickly to the substrate position, and the 

furnace temperature is set to 900 °C. After 2–5 minutes, the ethanol supply is stopped while 
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hydrogen and argon are kept flowing to cool down the system to room temperature. In this 

method, carbon nanotubes grow in the direction of the gas flow, and it yields small diameter 

carbon nanotubes due to the small size of the nanoparticles. 

Carbon nanotubes can also be grown suspended over a slit with this method. The suspension of 

carbon nanotubes makes it easier to identify the chirality of individual carbon nanotubes later by 

Rayleigh scattering spectroscopy (section 3.3.5). It also enables us to transfer the nanotubes to 

any substrate (section 4.3.1). The slit is made by a directional etching of <100> silicon with 

potassium hydroxide (KOH). Figure 3.11 shows optical images of growth chips. A silicon wafer 

is first passivated with a silicon nitride layer on both sides. Photolithography is performed to 

make small widows, and the passivation layer of silicon nitride is dry-etched, exposing the 

underlying silicon through the small windows. The silicon is then wet-etched through to the 

other side of the wafer with KOH. In order to make the transfer process easy, a raised platform is 

made. A protection layer is patterned over the etched side, and the surroundings are dry-etched 

by 20 μm. The whole silicon nitride passivation layer is then dry-etched. At the final step, a 

silicon oxide layer is thermally grown. The final chip has a raised platform in the middle of the 

chip with a slit in the center of the platform. This raised platform structure is important for a 

successful transfer of carbon nanotubes. 
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Figure 3.11: Optical images of growth chips with raised platforms. (a) Platform substrates made 

on a large-scale wafer. (b) An individual platform substrate. The open slit is located in the 

middle in the platform. 

3.3 Optical characterization of graphene and single-walled carbon nanotubes 

Even though monolayer graphene can be distinguished from bilayer graphene by the color, a 

scientific method to identify monolayer graphene is essential. Atomic force microscopy provides 

a way to measure thickness, but the step height from the thermally grown oxide to monolayer 

graphene is of questionable accuracy and consistency. In the case of single-walled carbon 

nanotubes, the identification of the chirality is important to know the exact band structure of the 

nanotubes. Optical spectroscopy probes to the intrinsic properties of a material and can be used 

to characterize the material. In this section, Raman spectroscopy and Rayleigh scattering 

spectroscopy are discussed for the identification of monolayer graphene and the chirality 

assignment of single-walled carbon nanotubes. 
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3.3.1 Rayleigh scattering and Raman scattering 

Rayleigh scattering spectroscopy and Raman spectroscopy both measure the intensity of light 

scattering. When monochromatic light is incident on a material, it interacts with electrons in the 

material and induces dipole oscillations. If the dipole oscillations radiate back monochromatic 

light without loss of energy, the process is called Rayleigh scattering or elastic scattering. The 

process is called Raman scattering or inelastic scattering if the dipole oscillations interact with 

the vibration of atoms in the material (phonon) and radiate back monochromatic light with 

different energy from that of the incident light. Raman scattering is called Stoke (anti-Stoke) 

process when the inelastically scattered light has smaller (larger) energy. The term Raman 

scattering is specifically used for the inelastic scattering of light with optical phonons. The 

inelastic scattering involving acoustic phonons is termed Brillouin scattering. Rayleigh and 

Raman scattering both emit light, but this process is different from photoluminescence (Figure 

3.12). In photoluminescence, electrons absorb the incident monochromatic light or photon and 

transit to different energy levels before the emission of light. Contrarily, the interacting electrons 

in the scattering process rather transit to virtual states, without absorption of photons. This 

intermediate virtual state does not need to be a real state, and Rayleigh and Raman scattering 

occurs at any wavelength of light. According to the perturbation theory, the virtual state is 

represented by a linear combination of eigenstates, and the energy uncertainty is large. 

Therefore, the life-time in the virtual state is very short, unless the virtual states are actual states 

(described in section 3.3.3). In Rayleigh scattering, the scattering process only goes through two 

steps: (1) the transition from the initial state to virtual states and (2) the transition from the 

virtual states to the initial state. Thus, the intensity of Rayleigh scattering is calculated by the 
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second-order perturbation. Raman scattering involves the extra interaction with phonon, and the 

intensity of Raman scattering is obtained from the third or fourth-order perturbation, leading to 

much smaller intensity in Raman than in Rayleigh scattering. 

 

 

Figure 3.12: (a) Rayleigh scattering and Raman scattering. Both transit to a virtual state. (b) 

Photoluminescence. Absorbed light transits to an excited state. The excited electron loses its 

energy to lower energy states through interaction with phonons, and photon is emitted. 

(a) 

(b) 
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Rayleigh and Raman scattering are associated with the dielectric property or polarizability of 

constituting atoms in a material. The dipole moment is written as P = α E, where α is 

polarizability and is expressed as 

           (3.1) 

where u is the displacement of the core atom in a harmonic potential. The second term describes 

the strain-dependence of the polarizability. Describing the vibration of an atom as           , 

then the dipole moment is written as 

                           

                    
 

 
               

 

 
               (3.2) 

The first term, which comes from the zero-th order of polarizability is responsible for energy 

conserving Rayleigh scattering, and the last two terms are Stoke and anti-Stoke processes. 

3.3.2 Gross selection rule 

The energy and momentum must be conserved in the scattering process, and these conditions 

serve as a gross selection rule. The energy conservation is 

Ei electron = Ef electron + Ephoton/phonon (3.3) 
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The momentum conservation with photon has a special condition: in Rayleigh and Raman 

spectroscopy, visible light is usually used, and the wavevector of visible light is much smaller 

than the size of Brillouin zone, satisfying the condition, kphoton << kBZ. This leads to the 

momentum conservation, 

ki electron = kf electron + kphoton ≈ kf electron (3.4) 

and the wavevector of electrons remains virtually the same after the photo-excitation. This 

condition, however, does not apply to the momentum conservation with phonons. 

The momentum conservation is always satisfied in Rayleigh scattering because it does not 

exchange momentum with phonons. In Raman scattering, however, the conservation of 

momentum sets a restriction on the possible processes of Raman scattering. If one scattering 

event happens during Raman process (first-order Raman), the intermediate virtual state has 

momentum k ± q after the interaction with the phonon, where q is a phonon momentum. Since 

there is only one scattering event in the first-order Raman, there is no other momentum exchange 

to bring the momentum back to its original state. The only way to satisfy the momentum 

conservation in k = k ± q is to set q = 0. For this reason, the first-order Raman is associated with 

zone center phonons. 

On the other hand, it is possible to have non-zero q if two scattering events occur (second-order 

Raman). The second-order Raman involves one phonon and another scattering process that has 

the opposite momentum –q. The other scattering process can be either another phonon (two-
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phonon, second-order Raman) or elastic scattering from defects (one-phonon, second-order 

Raman). The second-order process gives useful information about the phonon with non-zero 

momentum. 

3.3.3 Resonance scattering 

When virtual states correspond to real electronic states, resonance scattering occurs. The 

intensity of resonance scattering is much greater than non-resonance one. If the initial transition 

state is real, it is called incident resonance, and if the final transition state is real, it is called 

scattered resonance. In the second-order process, the resonance is called double resonance if the 

second transition state meets the resonance condition Egap = Escattered photon + ħωq. The double 

resonance has even stronger intensity than the single resonance. The resonance Rayleigh and 

Raman scatterings are responsible for the large-intensity signals from a nano-structured material 

like graphene and single-walled carbon nanotubes. 

3.3.4 Raman spectroscopy on graphene 

Figure 3.13 shows the Raman spectra of monolayer and bilayer graphene. The incident light 

wavelength is 514 nm (green). The two characteristic peaks in monolayer and bilayer graphene 

are G peak (1590 cm
-1

) and 2D peak (2690 cm
-1

). The G peak is the first-order resonance Raman 

with the zone center phonon. The 2D peak is the double resonance Raman scattering with two 

phonon exchanges over two valleys at K and K’. 
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Figure 3.13: (a) Raman spectrum of monolayer graphene. The FWHM of the 2D peak is 32cm
-1

. 

(b) Raman spectrum of bilayer graphene. The FWHM of 2D peak is 54cm
-1

. The intensity ratio 

of 2D and G peaks changes depending on the number of graphene layers. 

The number of the layers is determined by the spectral linewidth of the 2D peak [66]. The 2D 

peak of monolayer graphene has the FWHM of      30 cm
-1

, while bilayer graphene has the 

FWHM of about 50 cm
-1

. This 2D peak broadening in bilayer graphene is related to the 

electronic band structure of bilayer graphene: due to the interaction between layers, the 

electronic band splits in bilayer graphene, and phonon scattering with slightly different 

momentum occurs near the K and K’ point. The 2D peak broadening is large enough to 

distinguish monolayer graphene from bilayer graphene. The intensity ratio of 2D peak and G 

peak is also informative. The 2D peak intensity is larger than the G peak intensity in monolayer 

graphene, while in bilayer graphene, both 2D and G peaks have similar intensity. 

Figure 3.14 shows the Raman spectra of CVD graphene. The FWHM is 54 cm
-1

, and the 

intensity of 2D peak is smaller than that of G peak, indicating that the graphene is mostly bilayer. 
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Besides the 2D and G peak, D peak at 1373 cm
-1

appears. The 2D peak is actually an overtone of 

this D peak, which is associated with the one-phonon, second-order double resonance Raman 

scattering. Instead of the two-phonon process as in the 2D overtone, the D peak involves elastic 

scattering from defects to bring the momentum back to the initial state (Figure 3.15). The D peak 

does not appear in defect-free, pristine graphene. The intensity of the D peak increases as the 

defect density increases. Thus, the presence of the D peak is a signature of defects in graphene.  

 

Figure 3.14: Raman spectrum of CVD graphene. It show an emerging D peak, which means 

there are defects in the graphene. 
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Figure 3.15: The mechanism of the double resonance Raman scattering responsible for (a) the 

2D peak and (b) the D peak in graphene Raman spectra. The 2D peak involves the two-phonon 

process, and the D peak involves one phonon and one defect scattering. The energy loss of the 

two-phonon process is twice as large as that of the one-phonon process. The D peak does not 

show up in the Raman spectra without defects in graphene. 

3.3.5 Rayleigh scattering spectroscopy of single-walled carbon nanotubes 

The chirality assignment of single-walled carbon nanotubes with Raman spectroscopy is not as 

easy as the identification of monolayer graphene. Raman spectroscopy probes to the radial 

breathing mode (RBM) of phonon that is related to the diameter of carbon nanotubes, but it is 

difficult to completely indentify the chirality (n,m) with the information on phonon. The 

resonance Rayleigh scattering spectroscopy, which probes to electronic transition energy [67, 

68], is more advantageous over Raman spectroscopy because the chirality of nanotubes uniquely 
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defines the electronic band structure. Rayleigh scattering occurs in a broad range of wavelength, 

but it shows prominent peaks when incident photon energy is in resonance with the electronic 

transition energy in carbon nanotubes. Applying Rayleigh scattering spectroscopy to carbon 

nanotubes is, however, challenging when the nanotubes are on a substrate. The signal intensity is 

weak due to the size of the nanotube, and the noise from the substrate makes it harder to 

accurately determine the spectra. This problem is solved by suspending carbon nanotubes as 

described in section 3.2.3. 

 

Figure 3.16: The schematic of Rayleigh scattering spectroscopy of suspended single-walled 

carbon nanotubes. Incident light is supercontinuum light. Most of the light transmits without 

scattering, which is used as a reference for the spectra. The scattered light is collected in a 

different optical path, and it is compared to the reference. 
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The principle setup of Rayleigh scattering spectroscopy is shown in Figure 3.16. For the fast data 

collection in broad band, a supercontinuum light source is used for the incident light, and the 

scattered light is detected in the direction off the line of transmitting light [67]. The suspended 

nanotubes are easily spotted with an optical lens as the incident light scatters off the nanotube. 

The location of the nanotube is recorded with the position reading on the micromanipulator. 

Figure 3.17 shows a spectrum of Rayleigh scattering spectroscopy of a single-walled carbon 

nanotube. These energy peaks correspond to the electronic transition energy of a carbon 

nanotube. One can refer to Kataura plot to assign a chirality (n,m) [69]. If the spectrum shows 

multiple peaks, it is likely to be bundled nanotubes (Figure 3.18). 

 

Figure 3.17: (a) A Rayleigh scattering spectrum of a (13,7) metallic nanotube. (b) DOS of a 

(13,7) nanotube obtained from the equation (2.21) with γ = 3.0 eV. E11 = 1.82 eV, E22 = 1.92 eV, 

and E33 = 3.36 eV. 
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Figure 3.18: A Rayleigh scattering spectrum of bundled carbon nanotubes. Multiple peaks are 

present in the spectrum. 
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CHAPTER 4: DEVICE FABRICATION 

4.1 Graphene electronic device fabrication 

Graphene devices are usually fabricated in a four-probe configuration, in which, constant current 

is passed from a source electrode to drain electrode, and the voltage drop across the other two 

probes is measured (Figure 4.1). The four-probe configuration is often used for materials with 

small resistance, like graphene, and is advantageous over the source-drain, two-probe 

configuration because the contact resistance does not interfere with the measurement, and the 

extra probes can also be used to measure Hall effect. In this section, the device fabrication 

process of graphene on SiO2 and strontium titanate is discussed. 

            

Figure 4.1: A four-probe configuration for a graphene device. A resistor with large resistance is 

connected in series with graphene so that virtually constant current passes through the graphene. 

The extra probes measure the voltage drop in the graphene channel. 
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4.1.1 Graphene device on SiO2 

Once graphene is found on a SiO2/Si substrate, as described in section 3.1, an undercut layer of 

MMA is spin-coated at 6000 rpm and baked at 180 °C for 5 minutes. PMMA A4 is spin-coated 

on the top of MMA layer at 6000 rpm and also baked at 180 °C for 5 minutes. Graphene may be 

lost or rolled up during the spin-coating process if it is not adhered well to the oxide layer. 

Electron beam lithography is performed with an electron dosage of 350 C/cm
2
 for small 

features (a few microns in width) and 400 C/cm
2
 for larger features. These values may need to 

be adjusted depending on the type and thickness of PMMA and MMA layers. The device design 

requires extra caution so that no electrodes go across scratches on the surface of the substrate. 

These scratches form a short circuit between the electrode and backgate (the doped silicon 

underneath the oxide layer). 

                         

Figure 4.2: Graphene and device design. (a) Mechanically exfoliated graphene on a SiO2/Si 

substrate. The scale bar is 30 μm. (b) A device design. Gold markers are used for the alignment 

of the design to the graphene during the electron beam lithography.  

The pattern is developed in a mixture of MIBK and IPA solution with 1 to 3 volume ratio for 1 

minute at room temperature after the electron beam lithography. Then, 3 nm of chromium and 80 

(b) 
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nm of gold are deposited in a thermal evaporation chamber. Chromium is used as an adhesion 

layer to the oxide since gold does not readily stick to SiO2. The excess Cr/Au film is lifted-off in 

Remover PG or acetone. This lift-off process needs to be gentle enough not to roll up the 

graphene. Another electron beam lithography patterning may be needed to selectively etch off 

excess pieces of graphene with oxygen plasma. 

 

Figure 4.3: Schematic of Electron beam lithography. (a) Layers of PMMA and MMA are spin-

coated on a SiO2/Si substrate. (b) Pattern is made with electron beam lithography and subsequent 

development in MIBK/ IPA solution. (c) Cr and Au are deposited. (d) Polymer layer and its 

attached excess metal film are removed in Remover PG or acetone. 

The graphene device after the lift-off process has some polymer residue left on it. Annealing 

under a flow of Ar (800 sccm) and H2 (900 sccm) at 400 °C for 3 hours removes the residue 

effectively and leads to atomically clean graphene devices.  

 

Figure 4.4: An optical image of a graphene device. 
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4.1.2 Graphene device on strontium titanate 

Graphene devices can be made on different substrates by following the same device fabrication 

procedure described in the previous section. A substrate with large dielectric constant is of 

particular interest due to its gating efficiency and dielectric screening of charged impurities. 

Strontium titanate (STO) has a dielectric constant of 330 at room temperature, roughly 80 times 

larger than that of SiO2, and it increases to >20,000 at 10K [70]. However, monolayer graphene 

has poor optical contrast on STO substrates, and it is a formidable task to search for monolayer 

graphene on STO. Instead of finding monolayer graphene, graphene can be transferred from a 

SiO2 substrate onto a STO substrate. 

                                                 

Figure 4.5: (a) An STO crystal. The crystal orientation is <100>. The scale bar is 1 cm. (b) An 

AFM image of the surface of a STO crystal. The scale bar is 200 nm. 

The transfer process begins with finding monolayer graphene on a SiO2/Si substrate, as described 

in section 3.1.1 or 3.1.2. After the number of layers is confirmed with Raman spectroscopy, the 

substrate is spin-coated with PMMA A4 at 6000 rpm and baked at 170 °C for 5 minutes. Optical 

images of the graphene and surrounding features (graphite flakes, etc.) are captured after the 

(a) (b) 
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spin-coating process. These images are used later as a reference to locate graphene on a STO 

substrate. One of the corners on the PMMA film is scratched to expose the SiO2 so as to quicken 

the etching process. The substrate is then submerged into a hydrogen fluoride (HF) solution and 

begins to etch off the silicon oxide layer underneath the PMMA film. This etching process may 

take up to one day to complete. Once the etching is complete, the PMMA film detaches and 

floats on the HF solution with graphene stuck to the underside of the film. The floating film is 

transferred to DI water to dilute the residual HF solution on the film, and then scooped out onto 

the target substrate. This target substrate can be another SiO2/Si substrate, STO or any other 

substrates of interest. The target substrate and transferred film are then baked at 90 °C on a hot 

plate to dry the film. Finally, the PMMA film is dissolved in acetone. 

 

Figure 4.6: Graphene transferred onto another SiO2/Si substrate. The scale bar is 30 μm. 

Other graphite flakes around the graphene are also transferred during this process, and they 

maintain their relative distance to one another, as shown in Figure 4.6 (the target substrate here 

being SiO2/Si). These thicker graphite flakes are visible on a STO substrate and can be used as a 

reference to locate graphene, though it is very hard to see on STO. Optical filters may help make 
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graphene visible. The presence of the transferred graphene can be further confirmed by AFM if 

necessary. 

The STO substrate is annealed in air at 1100 °C for 4 hours prior to the transfer. This annealing 

treatment changes the surface morphology of STO, and it becomes more ordered as shown in 

Figure 4.7. The annealing needs to be done with the presence of oxygen, otherwise oxygen atoms 

would be removed from the crystal during the annealing process. STO cannot be cleaned with a 

piranha solution as in the case of graphene on a SiO2/Si substrate as the piranha solution etches 

the surface of STO as shown in Figure 4.8. This selective etching of the surface happens because 

of dislocations of the crystal on the surface. 

                                                  

Figure 4.7: Morphology change of a STO crystal. (a) Before annealing. (b) After annealing. The 

size of the images is 5 μm × 5 μm. 

(a) (b) 
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Figure 4.8: An STO crystal etched by a piranha solution. 

Once monolayer graphene is located on STO, the same MMA and PMMA A4 polymers are spin-

coated on STO as in section 4.1.1 for electron beam lithography. However, an extra layer of 

metal (25 nm of chromium) is thermally deposited on the top of MMA/PMMA film. In general, a 

conducting metal layer is necessary for electron beam lithography on electrically insulating 

substrates in order to discharge electrons from the surface during the lithography process. The 

electron dosage is the same as in the previous section for this thickness of chromium. The dosage 

value may need to be adjusted depending on the thickness of the metal film. Alignment markers 

(Au/Cr) are first deposited in the neighborhood of the graphene. The electrodes are fabricated by 

electron beam lithography using these markers to align the device design to the graphene. STO is 

not compatible with the plasma etching. The plasma takes away oxygen atoms from the STO 

crystal and makes STO electrically conducting. Thus, it is necessary to transfer an isolated piece 
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of graphene so that there is no need for etching. Finally, Chromium (10 nm) and gold (100 nm) 

are deposited on the backside of the STO crystal to be used as a backgate electrode. 

 

Figure 4.9: An AFM image of a graphene device on STO. The scale bar is 1 μm. 

4.2 Nanotube network device fabrication 

For device fabrication on a network of carbon nanotubes covering an entire substrate surface, 

photolithography is advantageous as the process is much faster than electron beam lithography. 

However, it is limited in that it cannot fabricate sub-micron size device features. Figure 4.10 

shows the device fabrication process using photolithography. First, a substrate with carbon 

nanotubes is spin-coated with an adhesive layer of HMDS at 4000 rpm for 40 seconds. The 

undercut layer of LOR is then spin-coated at 3000 rpm for 30 seconds and baked at 170 °C for 5 

minutes. On top of the LOR layer, Shipley S1811 is spin-coated at 5000 rpm for 30 seconds and 
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is baked at 120 °C for 2 minutes. The photoresist-coated substrate is brought into contact with a 

photomask and exposed to UV light for 6 seconds (Process b in Figure 4.10). After exposure, the 

substrate is placed in a developing solution, CD-26, for 35 seconds, and then rinsed in DI water 

for 5 minutes (process c). Chromium (10 nm) and gold (80 nm) are deposited in the thermal 

evaporation chamber, and the excess metal film is lifted-off in acetone (process d). 

In the second lithography step, only HMDS and Shipley are spin-coated, using the same 

procedure described above. The square pattern in the photomask blocks the UV light so that only 

the nanotubes between the two electrodes are covered with the photoresist after the development 

(process e and f). This photoresist acts as a protective layer for the desired carbon nanotubes 

during the plasma etching process. The exposed carbon nanotubes are then etched away by 

oxygen plasma (process g). Finally, the device is annealed under a flow of Ar (800 sccm) and H2 

(900 sccm) at 400 °C for 3 hours. The nanotube network device can be cleaned using a UV lamp 

in UHV as well [71]. Figure 4.11 shows optical and SEM device images. Carbon nanotubes are 

not visible with an optical microscope, but they can be imaged with SEM. 
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Figure 4.10: Schematic of the photolithography process. (a) A network of carbon nanotubes on a 

substrate. (b) UV light exposure through a photomask; part of the UV light is blocked. The 

photoresist becomes selectively soluble in the developing solution after exposure to the UV light. 

(c) Development washes away the exposed photoresist, exposing the sample beneath. (d) 

Deposition and lift-off of Cr and Au. (e) The process is repeated with a different photomask to 

make a protective layer over the device region. (f) Development to expose the nanotubes around 

the device. (g) Plasma etching of the excess nanotubes. 

                        

Figure 4.11: (a) An optical image of a nanotube network device. Carbon nanotubes are not 

visible. (b) SEM images of the network device. The nanotubes outside the device area are etched 

away. 

(a) (b) 



51 

4.3 Single-walled carbon nanotube device fabrication 

The device fabrication process of single-walled carbon nanotubes with known chirality involves 

multiple, delicate steps in order to ensure the device quality. The device fabrication starts with 

transferring a suspended carbon nanotube to a target substrate. The deposition of electrodes is 

achieved by two steps of electron beam lithography in order to optimize electrical contact to the 

carbon nanotubes.  

4.3.1 Carbon nanotube transfer 

Once the chirality of a suspended carbon nanotube is identified, as described in section 3.3.5, the 

nanotube is ready to be transferred onto a substrate. Figure 4.12 shows one such target substrate. 

It has pre-patterned markers which are separated by 50 μm apart from each other. These markers 

aid in accurately transferring a suspended nanotube to a specific location. The target substrate is 

first spin-coated with 60 nm of PMMA A2, and a small rectangular window is made over the 

markers by electron beam lithography. The surrounding PMMA serves as an anchor to hold the 

nanotube during the transfer process. 
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Figure 4.12: (a) An optical image of the target substrate with markers. (b) Schematic of a transfer 

window. 

Figure 4.13 shows the carbon nanotube transfer station. The target substrate is held by vacuum 

on a stage that can be heated. A small piece of PDMS is placed on a glass slide, and a carbon 

nanotube chip is placed on the PDMS. The target substrate on the stage is moved to align the 

nanotube and the transfer window through the microscope. The coordinate of the nanotube from 

the edge of the window is recorded during the chirality determination process. The coordinate is 

then used, in conjunction with deposited markers, to align the target substrate to the carbon 

nanotube. Once the nanotube and the transfer window are aligned, the stage temperature is 

gradually increased to 180 °C as the target substrate is raised close to the carbon nanotube chip. 

The PDMS softens during this heating process, and frequent adjustment of the alignment is 

needed. When the temperature reaches 180 °C, the suspended part of the nanotube is pressed 

against the target substrate for 5 minutes. Then, the system is allowed to cool, and the target 

substrate stage is lowered when the temperature falls below 50 °C. 

(a) (b) 
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Figure 4.13: (a) Carbon nanotube transfer station. (b) Transfer stage, with cartridge heaters inside 

to raise the temperature of the stage during the transfer process. (c) PDMS on a glass slide. A 

suspended nanotube chip will be attached to the PDMS. 

4.3.2 Contact resistance issue with single-walled carbon nanotube devices 

When an electrode is directly placed on a single-walled carbon nanotube, the electronic transport 

through the nanotube is inevitably affected by the presence of the electrode. This prevents us 

from performing the four-probe measurement on nanotubes, and the contact resistance becomes 

an important issue [72]. The detrimental effects of the electrodes’ presence on the nanotubes can 

be minimized if the contact is ohmic and the contact area is small. However, the charge carriers 

may not be completely transferred from nanotubes due to the small contact [73]. When two-

probe measurements are performed on carbon nanotubes, the experimentally measured resistance 

is the sum of the nanotube resistance and the contact resistance, 

                        (4.1) 

For ohmic contact, the contact resistance is 
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where h is planck constant, e is electron charge, and M is the number of conduction channels 

(excluding the spin degeneracy). In carbon nanotubes, there are two different conduction 

channels in the first sub-band at K and K’ point (M = 2). The ohmic contact resistance is 6.5 kΩ 

for M = 2. The contact resistance value will be larger than this ideal ohmic contact if a Schottky 

barrier is formed between the metal contact and semiconducting nanotubes [74-76]. The size of 

the Schottky barrier is determined by the difference in the work function of metal and 

semiconducting nanotubes. The larger the work function difference is, the larger the barrier 

becomes, and the work function of the metal contact needs to be close to that of the 

semiconducting nanotubes so as to minimize the contact resistance arising from Schottky barrier. 

As stated before, gold contacts generally require a sticking layer in order to remain attached to 

device chips due to the gold’s poor adhesion to SiO2. However, the chromium sticking layer 

previously used in the graphene devices is not suitable for single-walled carbon nanotubes as the 

work functions of chromium and carbon nanotubes are 4.5 eV and 5 eV, respectively [77-79]. 

This difference in work function is large enough that the conduction through the device is 

dominated by the Schottky barrier. As an alternative, palladium is a typical choice of sticking 

layer that retains good electrical contact to carbon nanotubes because it has a similar work 

function and adheres well to SiO2. However, palladium is not compatible with our hydrogen 

cleaning process; palladium inflates when it absorbs hydrogen, degrading the contact quality. 

Therefore, we have chosen to use gold alone to make the electrical contact to carbon nanotubes 
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because it is compatible with our hydrogen cleaning process and it has a similar work function to 

that of the carbon nanotubes in question. The solution to the problem of poor adhesion is to 

develop a two-step electron beam lithography process outlined in the next section.  

4.3.3 Two-step electron beam lithography 

This two-step electron beam lithography technique is useful when the metal does not adhere to 

the oxide layer of a target substrate. Figure 4.14 outlines the process. The first lithography step is 

designed to create breaks in the electrodes so as not to touch the nanotube. These electrodes are 

deposited following the same electron beam lithography steps as in graphene, and the chromium 

layer (10 nm) ensures the adhesion of the electrodes. In the second lithography step, the break in 

each electrode is bridged with only gold. The overlapping gold layers adhere well to one another, 

preventing the issue of delamination while preserving the desired electrical contact. 

                                  

Figure 4.14: Two-step electron beam lithography. (a) Schematic of two-step lithography. (b) An 

SEM image of a device before the deposition of the gold bridge.  

(a) (b) 
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The second lithography procedure is different from the first lithography in order to improve the 

contact quality by minimizing the incidence of resist residues adhering to the nanotube surface. 

300 nm of PMMA 495 is spin-coated first, instead of MMA, and PMMA 950 is spin-coated on 

top of it. The layer of PMMA is used as an undercut layer due to its improved performance over 

MMA. The typical agent for development is the mixture of MIBK and IPA, but we found that 

polymer residues cannot be removed completely using this solution. To resolve this issue and 

effect a cleaner development, a mixture of IPA and DI water in a 3:1 volume ratio - chilled at 7 

°C - is used. The electron beam dosage has to be increased to 550 μC/cm
2
 accordingly to 

compensate for the chilled developer. The bridge patterns are developed in this chilled solution 

for 1 minute and 20 seconds. Figure 4.15 shows the clear difference of MIBK/IPA development 

and chilled IPA/DI water development. 100 nm of gold is deposited after the development, and 

the devices are hydrogen annealed at 350 °C for 3 hours to remove polymer residue. Extra care is 

required not to overshoot the temperature as the thin film of gold begins to deform and 

eventually evaporate around 400 °C. 

 

Figure 4.15: AFM images of residues after the development. (a) MIBK/IPA development. (b) DI 

water/IPA development. The scales bars are 0.5 μm. 
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Figure 4.16: An optical image of a single-walled carbon nanotube device. 
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CHAPTER 5: MEASUREMENT ON GRAPHENE AND NANOTUBE 

NETWORK 

It is of great physical and technological interest to find the effect of an impurity on graphene and 

carbon nanotubes. The high surface to volume ratio of graphene and carbon nanotubes makes 

them susceptible to  impurities on them. In this chapter, the effect of different kinds of impurities 

are investigated on graphene and on a network of carbon nanotubes; namely, hydrogen atoms on 

graphene with silicon dioxide (SiO2) and strontium titanate (STO) substrates, hydrogen and 

cesium atoms on a network of carbon nanotubes, and dye aggregates on a network of carbon 

nanotubes. The effect of atomic potassium on metallic and semiconducting carbon nanotubes is 

intensively studied and is discussed in the next chapter. 

5.1 Measurement of graphene on SiO2 

If graphene is atomically clean and devoid of lattice defects, the theoretical charge carrier 

mobility limit of 200,000 cm
2
/Vs can be achieved at room temperature [80]. When graphene is 

on SiO2/Si substrates, the experimental value of the mobility is limited to approximately 10,000 

cm
2
/Vs. The mobility of charge carriers in suspended graphene approaches the theoretical limit 

[81], indicating that substrate plays an important role in the reduction of the mobility. In fact, the 

surface of a thermally grown oxide on Si substrates has electron-hole charge puddles that are 

tens of nanometers in size which affect the charge carrier mobility of graphene [82]. Placing 

graphene on clean hexagonal boron nitride (hBN) increases the mobility to 80,000 cm
2
/Vs [83]. 
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In order to quantify the relation between extrinsic impurities and mobility, we have measured the 

change in the electronic transport as atomic hydrogen is introduced on graphene. 

5.1.1 Experimental setup 

Figure 5.1 shows the schematic of the experimental setup. The device is placed in UHV in order 

to reduce the interference of other molecules outside of atomic hydrogen. The device is annealed 

in UHV at 450 K prior to the measurement so as to remove residual gases from the surface of the 

graphene. The copper block extends outside the UHV chamber, and the device attached to the 

block is cooled down to 10 – 20 K by extracting heat with a flow of liquid helium. Atomic 

hydrogen is introduced to graphene via a hydrogen cracker (Omicron Nanotechnology). 

Hydrogen molecules are cracked into atomic hydrogen as it passes through a tungsten capillary 

heated to 2300 °C by an electron beam. The amount of hydrogen is controlled by the shutter 

immediately below the device. 

 

Figure 5.1: Schematic of hydrogen dosing on graphene devices. 
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5.1.2 Measurement setup 

The conductance of graphene is measured with a four-probe configuration. Figure 5.2 shows the 

experimental schematic. A constant current of 100 nArms is passed through the source and drain 

electrodes by connecting a 10 MΩ resistor in series. The resistance of graphene is small (< 1kΩ), 

and applying 1Vrms of bias voltage from a lock-in amplifier results in 100 nArms of constant 

current. The resistance of graphene is found by measuring the voltage drop between the other 

two probes, and the sheet conductivity is calculated using the simple ohm’s law R = V/I and the 

area of graphene between the two-probe electrodes. The gate electrode (doped silicon) forms a 

capacitive coupling to the graphene, and the charge carrier density is continuously varied from 

electrons (positive gate voltage) to holes (negative gate voltage). 

                                 

Figure 5.2: The electronic transport measurement setup. (a) An image of the UHV chamber and 

electronics. (b) Schematic of graphene four-probe measurement. 

(a) (b) 
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5.1.3 Hydrogen dosing experiment  

Figure 5.3 shows the conductance of graphene at different atomic hydrogen concentrations as a 

function of gate voltage at T = 12 K. The conductance of graphene before the addition of 

hydrogen (purple) shows ambipolar conductance. The gate voltage at the minimum conductance 

point corresponds to the charge neutrality point, where Fermi energy is located at the Dirac 

point. This minimum conductance point should be located at Vg = 0V without any extrinsic 

doping. Having the minimum point at around Vg = 4V for our pristine graphene indicates that 

there is extrinsic doping effect. 

 

Figure 5.3: Conductance as a function of gate voltage with different amount of atomic hydrogen 

dosage. The areal densities, the number of impinging hydrogen (which may not be necessarily 

adsorbed on graphene) are, purple: clean, black: 1 × 10
15

/cm
2
, red: 1.6 × 10

15
/cm

2
, green: 4 × 

10
15

/cm
2
, and blue: 5.4 × 10

15
/cm

2
. 
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The field effect mobility of graphene is calculated by 

   
 

    
                                                                         

The slope of the conductivity becomes smaller (mobility decreases) as the concentration of 

atomic hydrogen increases on the surface of graphene, showing that hydrogen atoms serve as 

charge carrier scatterers. The conductivity curves also shift to the left with increasing 

concentration of hydrogen atoms. This is consistent with that hydrogen atoms partially donate 

electron to graphene. 

Figure 5.4a shows the resistivity change from the pristine graphene at different hydrogen dosage 

levels. The curves with different hydrogen concentration is shifted and aligned at the minimum 

conductance point (Vmin) with the new horizontal axis label, Vg – Vmin. The alignment of curves is 

essentially the same as aligning Fermi energy. According to Matthiesen’s rule, the total 

resistivity is the sum of the resistivity arising from different scattering mechanisms, such as 

crystal defect, phonon, and extrinsic impurity, assuming that each scattering mechanism is 

independent of each other. 
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Figure 5.4: (a) Resistivity added by hydrogen as a function of Vg – Vmin at different areal dosage 

density. (b) Added resistivity as a function of the areal dosage density normalized to Vshift. 

                                     (5.2) 

In our experiment, adsorbate is the dominant contribution to the change in resistivity since the 

number of atomic defect is small and constant and the scattering due to phonon is suppressed at 

the low temperature. This is verified when the change in resistivity is divided by Vshift, the gate 

voltage offset imposed by the electron doping from hydrogen atoms (Figure 5.4b). Since Vshift is 

proportional to the number of atomic hydrogen attached on graphene, the fact that all the curves 

collapse onto each other when divided by Vshift shows that the change in resistivity is indeed 

proportional to the number of hydrogen. Interestingly, as the concentration of hydrogen atoms 

increases, Vshift approaches to the saturation point (Vsat), where the curve does not shift anymore 

(Figure 5.5a). 
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We have performed the same measurement with multiple graphene devices, and Vsat for each 

device is recorded. In Figure 5.5b, the inverse initial mobility, which is proportional to resistivity 

of pristine graphene, is plotted against Vsat for each device, and they show a linear correlation. 

The (inverse) initial mobility shows different values because the number of atomic defects is 

different in each graphene device. Thus, this correlation indicates that hydrogen atoms 

preferentially attach to these native atomic defects and saturate once the defect sites are 

exhausted. The pristine limit of graphene mobility on thermally grown SiO2 is deduced to be 1.5 

 0.3  10
4
 cm

2
/Vs. This is the upper limit of graphene mobility imposed by the presence of the 

electron-hole charge puddles on SiO2. The mobility is reduced by an order of magnitude from the 

theoretical value of 200,000 cm
2
/Vs, and it concludes that the substrate on which graphene is 

placed on needs to be free of electron-hole charge puddles in order to achieve the high mobility 

of graphene. 

 

Figure 5.5: (a) Vshift as a function of the increasing areal dosage density. (b) Initial maximum 

electron and hole mobility as a function of the saturation voltage shift, Vsat, for different samples. 
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5.2 Measurement of graphene on Strontium titanate 

Placing graphene on a material with a high dielectric constant is of particular interest. According 

to the simple parallel plate capacitor model, a high dielectric constant leads to a larger 

capacitance. Strontium titanate, which has a dielectric constant of 330 at room temperature, has a 

capability to induce more charges in graphene. The high charge density and high dielectric 

constant increase an effective screening of impurity charges, and the mobility of graphene is 

expected to increase on STO. In this section, mobility measurement of graphene on STO is 

discussed. 

5.2.1 Gate dependence of conductance in graphene on STO 

A graphene device fabricated on STO as described in section 4.1.2 is placed in a helium-3 

cryostat to measure conductivity of graphene with the four-probe configuration. The thickness of 

the STO crystal is 200 μm. Figure 5.6 shows the conductivity as a function of gate voltage at T = 

4.6 K. The ambipolar behavior of the conductivity is consistent with that of graphene on SiO2. 

The conductivity over the small gate scan range (Figure 5.6a) shows only a minimal amount of 

hysteresis. The minimum conductivity point is located in the positive gate voltage side, which 

indicates that the graphene is electron-doped by impurity charges on the STO crystal. However, 

it is not clear if the doping is coming from impurities introduced during the device fabrication 

process or from bound charges at the edges of the crystal terraces on the surface of STO. The 

AFM image of the device does not show a significant amount of residue on or underneath the 

graphene, and charged impurities are expected to be effectively screened. This indicates that the 
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native surface impurities on the STO are causing the doping. The fact that the surface of STO is 

not atomically flat but consists of many terraces also supports this scenario. The precise nature of 

the doping may be revealed by Kelvin probe measurement, which is not discussed here.  

        

Figure 5.6: Conductivity as a function of gate voltage. (a) The conductivity over small gate scan 

range. It shows minimal hysteresis. (b) The conductivity over large gate scan range. The 

hysteresis is prominent. The minimum conductivity value is smaller when the gate voltage is 

swept down to the negative gate voltage side. In both plots, arrows represent the direction of the 

gate voltage sweep. 

Another interesting aspect of the conductivity curves is that the minimum conductivity value is 

lower when the gate voltage is swept toward the negative voltage. This difference becomes clear 

when the gate scan range is increased, as in Figure 5.6b. In this plot, the degree of the hysteresis 

becomes prominent as well. The difference in the minimum conductivity values may be related 

to the ferroelectric modulation of the surface state on the STO. 

For the large gate scan range, it is clearly seen that the conductivity plateaus out at the higher 

gate voltage. This saturation of conductivity is not intrinsic to the graphene but is coming from 
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that the dielectric constant of STO has dependence on the applied electric field: the dielectric 

constant decreases as the applied electric field increases. This effect limits the maximum charge 

density in the graphene to be 1.1 × 10
13

 cm
-2

 for the 200 μm thick STO. This number can be 

attainable with graphene on SiO2. However, thinning the STO crystal down to 0.2 μm will 

increase the charge density by three orders of magnitude to be in the range of 10
16

 cm
-2

. Thin 

STO crystals can be epitaxially grown, and it provides a way to induce a large charge density in 

graphene. On the other hand, the gate dependence of the dielectric constant of STO makes it 

difficult to calculate the mobility of the graphene from the conductivity vs. gate voltage plot. In 

order to find the mobility, Hall effect is measured at low temperature. 

5.2.2 Hall Mobility measurement of graphene on STO 

Hall effect measurement is another avenue to find the charge density in the graphene. The charge 

density, n , is related to Hall voltage, VHall, by  

   
  

      
                                                                     

where I is electric current, B magnetic field, and e electron charge. Figure 5.7 is the measured 

Hall voltage at 4.8 K with 1.0 T of constant magnetic field applied perpendicular to the 

graphene. As the gate voltage is varied, the charge density changes in the graphene and as a 

result, Hall voltage changes. In the gate voltage range between 9 V and 15 V, Hall voltage is 

positive and increases (in this case, it corresponds to charge carriers being holes). However, it 
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starts decreasing around Vg = 15 V, and the sign changes to negative (corresponds to electrons as 

charge carriers) at Vg = 16.5 V. According to the equation, Hall voltage diverges as the charge 

carrier is continuously varied from holes to electrons in graphene, a zero gap semiconductor. 

However, the surface charges become dominant near the charge neutrality point (Vg ≈ 16.5 V), 

and the charge density in graphene is affected by them. Figure 5.7b shows the conversion of the 

gate voltage into the charge density. Away from the charge neutrality point, the charge density 

shows a linear dependence on the gate voltage. 

           

Figure 5.7: Hall measurement. (a) Hall voltage as a function of gate voltage. (b) The conversion 

from the gate voltage to charge density in the graphene. The positive (negative) charge density 

represents holes (electrons). 

When large gate voltage is applied (Figure 5.8a), it is clearly seen that the charge density 

saturates. The charge saturation for holes (~1.5 × 10
13

 cm
-2

) is about three times larger than that 

of electrons (~0.5 × 10
13

 cm
-2

). From the theoretical limit of charge density 1.1 × 10
13

 cm
-2

, it is 

estimated that there are net negative charges of density 0.5 × 10
13

 cm
-2

 on the STO. It is negative 

charges since the presence of negative charge near the surface of graphene induces positive 
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charges. This is consistent with the fact that the minimum conductivity point is shifted to the 

positive gate voltage side (hole doped) as in Figure 5.6a. 

   

Figure 5.8: (a) The conversion of the gate voltage to the charge density in the graphene for the 

large gate scan range. It exhibits a strong hysteresis effect and shows the (asymmetric) saturation 

of charge density for holes and electrons. The positive (negative) charge density represents holes 

(electrons). Arrows represent the direction of the gate voltage sweep. (b) The conductivity as a 

function of the charge density induced in the graphene. The gate voltage is converted to the 

charge density according to the Hall measurement. 

Once the conductivity is plotted against the charge density, the Hall mobility is calculated 

(Figure 5.8b). From the slop of the conductivity curve, the mobility is found to be 2100 cm
2
/Vs 

for hole conduction and 1900 cm
2
/Vs for electron conduction. The mobility does not show a 

significant improvement for the graphene on STO. This may be caused by the inhomogeneity of 

the STO surface, i.e., the STO crystal itself has a significant amount of surface bound charges, 

which results in the reduction of the mobility. In this experiment, the induced charge density is 

comparable to that of graphene on SiO2, and the charge screening effect is not as strong as 

-40 -20 0 20 40 60
20

10

0

-10

-20

 

 

ch
ar

g
e 

d
en

si
ty

 (
1
0

1
2
 c

m
-2

)

Vg (V)

(a)

-4 0 4 8 12
0

40

80

120


e
 = 1900 cm

2
/Vs 

 charge density (10
12

 cm
-2
)

co
n
d
u
ct

iv
it

y
 (

e2
/h

)

 

 


h
 = 2100 cm

2
/Vs 

(b)



70 

expected. This situation may change when the thickness of the STO crystal is reduced to 0.2 μm 

to induce more charges in the graphene.  

5.3 Measurement on a network of carbon nanotubes 

A network of carbon nanotubes has a potential use for sensing application as described in section 

1.2. In order to fully utilize the carbon nanotube as a sensor, it is important to understand how a 

network of carbon nanotubes responses to extrinsic impurities. We have measured the effect of 

hydrogen and cesium atoms on the electronic transport through a network of carbon nanotubes. 

Functionalization of a network of carbon nanotubes with dye molecules is also discussed in this 

section.  

5.3.1 Network of nanotubes as a percolation system 

A network of carbon nanotubes consists of a mixture of metallic and semiconducting carbon 

nanotubes. Charge carriers transport from one nanotube to another through the mesh of carbon 

nanotubes. The electronic transport properties are largely determined by the ratio of metallic 

nanotubes to semiconducting nanotubes, the average length of each nanotube, and the number 

density of nanotubes. Regarding the ratio, one third of the nanotubes are assumed to be metallic 

for simplicity according to the condition for the metallic nanotubes (n – m = 3l). 
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The length and number density are two key parameters that describe the characteristics of the 

network. The electronic transport from source to drain electrode is only possible when there are 

paths of nanotubes connecting these two electrodes. For example, if the number density is small, 

each carbon nanotube needs to be long enough to create a path connecting two electrodes. If the 

nanotube length is short, the number density needs to be large. The network of carbon nanotubes 

is considered as a percolation system. The threshold of percolation is determined by the relation 

[84], Lave > ρ
-1/2

, where Lave is the average length of nanotube and  is the number density. The 

length and number density can be found using SEM images. Figure 5.9 is an SEM image of part 

of a carbon nanotube network device. 147 nanotubes are counted in 53 µm  53 µm area 

(number density ρ = 0.052 µm
-2

) with the average nanotube length of Lave = 11.3 µm. This is 

dense enough to be above the percolation threshold.  

 

Figure 5.9: A network of carbon nanotubes. The number of nanotubes is counted one by one, 

along with the measurement of the nanotube length. 
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5.3.2 Hydrogen and cesium dosing experiment 

Figure 5.10 is the conductance of a nanotube network device as a function of gate voltage in ultra 

high vacuum (UHV) at room temperature. It shows ambipolar, almost symmetric conductance. 

The ambipolar transport is the characteristics of metallic and semiconducting carbon nanotubes 

[85]. At the conductance minimum, semiconducting nanotubes become non-conductive, and the 

transport is only carried by the network of metallic nanotubes [84, 86]. The transport is still 

above the percolation threshold at this point, assuming that one third of nanotubes are metallic. 

Hence, we only consider non-percolative transport from this point on. 

                     

Figure 5.10: The conductance vs. gate voltage. Arrows represent the direction of the gate voltage 

sweep. (a) The conductance measured in UHV at room temperature. (b) The conductance 

measured in the air at room temperature. The electron conduction side (positive gate voltage 

side) is suppressed as compared to that in UHV. 

The device conductance in UHV is slightly different from the one in the air (Figure 5.10b). The 

hole conduction (toward the negative gate voltage) is suppressed in UHV while the electron 

conduction (toward the positive gate voltage) is enhanced. The suppression and enhancement of 

conductance are attributed to the modulation of the Schottky barrier formed at the cross junctions 
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of metallic and semiconducting nanotubes: the depletion of oxygen from the junctions in UHV 

changes the Schottky barrier height [74, 87]. The Schottky barrier is also formed at the interface 

of nanotubes and metal electrodes, but this has a minimal contribution to the total device 

conductance since the metal contact is 750 μm wide [86, 88]. 

At the conductance minimum, the effect of the Schottky barrier should be negligible since only 

metallic nanotubes are responsible for the electronic transport (semiconducting nanotubes turn 

off). The transport around the minimum conductance point is governed by the resistance of 

metallic nanotubes and the resistance arising from the metallic nanotube junctions. The 

resistivity of a single metallic nanotube at its conductance minimum can be estimated to be 

approximately from 120 to 160 kΩ/µm from the work of Kong et. al and Purewal et. al [89, 90]. 

The density of metallic nanotubes ρmetal = 1/3ρ = 0.017 µm
-2

 corresponds to the average of 1 

nanotube in 5 µm × 5 µm area. One metallic carbon nanotube crosses another metallic carbon 

nanotube about every 5 µm, leading to 600 to 800 kΩ of a metallic nanotube without crossing 

another metallic nanotube. This is comparable with the resistance arising from a metallic 

nanotube cross junction of 259 kΩ [91]. Thus, the contribution of junction resistance cannot be 

ignored at the conductance minimum. 
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Figure 5.11: The conductance of the network of carbon nanotubes as a function of gate voltage 

with hydrogenation. The conductance curves start shifting toward the negative gate voltage side 

due to electron doping from hydrogen atoms. The hole conduction side is suppressed because of 

the presence of hydrogen, but the minimum conductance is not affected. 

In order to investigate the response of the nanotube network device to hydrogen atoms, the same 

hydrogen cracker is used as in the graphene hydrogenation experiment described in section 5.1. 

When the nanotubes are hydrogenated in UHV at room temperature, the whole conductance 

curve is shifted toward the negative gate voltage side (Figure 5.11) as a result of electron doping 

from hydrogen atoms. We aligned each conductance curve from different hydrogen dosage at the 

minimum conductance point for comparison (Figure 5.12). 
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Figure 5.12: The conductance curves are aligned to the minimum conductance point. (a) The gate 

voltage is swept toward the negative gate voltage. (b) The gate voltage is swept toward the 

positive gate voltage. The enhancement of the conductance on the electron conduction side is 

more visible. 

The minimum conductance point, does not show a significant change with hydrogenation, 

indicating that metallic nanotubes and metallic nanotube junctions are resilient to hydrogen 

atoms [92]. Away from the metallic nanotube conduction around the minimum point, it is clear 

that the hole conduction becomes increasingly suppressed with the hydrogen dosage (Figure 

5.12a), whereas the electron conduction is enhanced (Figure 5.12b). This behavior is consistent 

with the conductance change due to a modulation of the Schottky barrier. In this case, the 

observed conductance change is dominated by the Schottky barrier formed at the junction of 

metallic and semiconducting carbon nanotubes. 

The nanotube network devices are effectively cleaned after the experiment by annealing in UHV 

at 450 K. The adsorbed atoms are thermally removed during the annealing process so that the 

direct comparison of the effect of different adsorbed atoms becomes possible. Figure 5.13 is the 
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result of cesium dosing on the same nanotube network device in UHV at room temperature. 

Cesium atoms are introduced onto carbon nanotubes with a cesium atom dispenser (SAES). The 

detail of the operation of alkali metal dispensers is discussed in section 6.2.4. As seen in the 

hydrogen case, the conductance on the hole side is suppressed, while the electron side is 

enhanced. However, the minimum conductance increased with cesium dosage. It is 

counterintuitive that the addition of impurities results in the increased conductance. 

 

Figure 5.13: The conductance of the network of carbon nanotubes as a function of gate voltage 

with the addition of cesium atoms. The curves shifts to the negative gate voltage side due to the 

electron doping from the cesium atoms. Interestingly, the minimum conductance increases. 

The enhancement of the minimum conductance can be clearly seen once the minimum points 

from each conductance curved are aligned, as shown in Figure 5.14. Since only metallic 

nanotubes are conducting at the minimum conductance point, this behavior can be explained by 

the reduction of the resistance at metallic nanotube junctions. The metallic nanotubes themselves 

are resilient to the presence of cesium atoms, but the junction resistance may be reduced by 
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cesium atoms, leading to the enhancement of the conductance. This is one possible scenario 

since the junction resistance makes a considerable contribution to the resistance as discussed 

above. The difference between hydrogen and cesium atoms may be explained by hydrogen’s 

preferential attachment to defect sites, as discussed in section 5.1. 

          

Figure 5.14: The conductance curves are aligned to the minimum conductance point from the 

cesium dosing experiment. The hole and electron conduction side behaves in the same way as in 

the hydrogenation case. However, the minimum conductance value increases as cesium atoms 

are introduced on the nanotube network device. 

Another possible scenario is a modulation of the Schottky barrier at the metallic and 

semiconducting nanotube junctions. Potassium atoms are known to modulate Schottky barrier in 

semiconducting carbon nanotube devices [74], and cesium is assumed to have the same effect. 

Reduction of the Schottky barrier leads to opening more conduction channels through 

semiconducting nanotubes in the network. Even though the precise mechanism of the 

conductance enhancement is not clear, it is demonstrated that a network of carbon nanotubes can 

be used to detect different type of atoms. Further understanding on the mechanism of the 
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modulation of the Schottky barrier by different atomic species is needed to have an accurate 

control of carbon nanotube sensors. 

5.3.3 Dye aggregates 

In the previous section, the electronic response of the nanotube network devices to different 

kinds of atomic impurity is studied. Such modulation of conductance with extrinsic agents 

suggests that the performance of the nanotube network devices may be improved by intentionally 

adding molecules on nanotubes. Squaraine dye molecules (SQ dyes) have a specific optical 

absorbance as monomers. π–π interaction between SQ dye molecules, however, transforms the 

dye molecules into an aggregate and changes the optical response. We expect a unique π–π 

interaction between nanotubes and SQ dyes due to the π–bond of the nanotubes, and this 

motivates us to measure the optical response of the nanotube network devices with SQ dye 

molecules. When SQ dyes are stacked into supramolecular structures, the strong intermolecular 

π–π interaction known as J (Jelley)-aggregates and H (Hypsochromic)-aggregates are formed. 

Molecules are stacked side-by-side in J-aggregates, while stacked face-to-face in H-aggregates. 

As compared to the absorption band of dye monomers, J (H)-aggregates have red (blue)-shifted 

absorption bands, called J (H)-bands. The specific SQ dye we used is (Z)-2-(4-(dibutylamino)-2-

hydroxyphenyl)-4-(4-(dibutylaminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocylcobut-1-

enolate (SQ44OH), and it has molecular structure as shown in Figure 5.15. SQ44OH is dissolved 

in 1,2-dichloroethane (DCE) with concentration of 1 wt%. Dye molecules in DCE have a single 

peak in the optical adsorption spectrum at 650 nm with a full width at half maximum of 29 nm, 
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indicating that SQ44OH molecules are in the form of isolated monomers in the DCE solution. 

 

Figure 5.15: Structure of an SQ44OH dye molecule. 

 

Figure 5.16: Optical absorption spectra of SQ44OH. (a) The absorbance of SQ44OH in DCE. 

The single peak at 650 nm is a signature of monomers. (b) The absorbance of SQ44OH spin-

coated on quartz or nanotubes. 

When a thin film of SQ44OH is spin-coated on a quartz substrate, new peaks emerge in the 

absorbance at 618 nm and 785 nm due to the formation of aggregates, each with broad shoulders 

tending toward 700 nm (Figure 5.16). These peaks correspond to the blue-shifted and red-shifted 

absorption band of H-aggregates and J-aggregates. With the absence of the network of carbon 

nanotubes, SQ44OH molecules exist as a mixture of H- and J-aggregates on quartz substrates. 

When the same SQ44OH is spin-coated on the carbon nanotubes grown on a quartz substrate, the 
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two peaks have blue-shifted to 608 nm and 766 nm. The blue-shifting of H- and J-bands is 

possibly caused by the interaction of dye aggregates with nanotubes. The absorbance increased 

by 115% at the H-band, while increased by 20% at the J-band. The H-band is significantly 

enhanced with the presence of carbon nanotubes. 

 

Figure 5.17: Optoelectronic response of the nanotube-dye system. (a) Without SQ44OH. (b) 

With SQ44OH. 

Figure 5.17 shows the optoelectronic response of the nanotube/dye system as a function of gate 

voltage, comparing the optical response of bare and SQ44OH-coated nanotube network devices. 

The bare nanotubes have only a small optical response and are not correlated with wavelength of 

the incident light. This is likely to be caused by the gate oxide stress induced by the applied gate 

voltage [93]. On the other hand, SQ44OH hole-dopes the nanotubes and shifts the curves to the 

positive gate voltage side. The curves shifts even more in response to light due to optical gating 

[94-97]. This optically induced change in conductance has wavelength dependence, and it 

matches with the optical absorbance peaks of the nanotube/dye system. Assuming that the optical 



81 

response is linear with the intensity of the incident light, the device sensitivity is estimated to be 

20 μW cm
−2

 in the optical window of 620 to 760 nm with 25 V of gate voltage. The 

photosensitivity is improved by the combination of the SQ dye and nanotubes. This result is 

better than dye monomer [95, 97] or photoactive polymer-sensitized [98] devices by an order of 

magnitude. 
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CHAPTER 6: MEASUREMENT OF SINGLE-WALLED CARBON 

NANOTUBES 

While studies of electronic transport in carbon nanotubes have been carried out for over two 

decades, still little is understood about the impact of extrinsic charged impurities. The lack of 

research may be due to the complexity arising from the contact resistance as discussed in section 

4.3. As a consequence, no previous experiment has been able to determine the scattering induced 

by Coulomb potential on carbon nanotubes. Metallic carbon nanotubes have fundamentally 

different electronic properties which come from the extra degree of freedom, pseudospin, as 

described in chapter 2. Pseudospin conservation does not allow backscattering in metallic carbon 

nanotubes within the same valley. The effect of pseudospin conservation will be manifested 

when a long-ranged, Coulomb potential is imposed on carbon nanotubes, i.e., the Coulomb 

potential is not an effective charge-carrier scatterer on metallic carbon nanotubes. However, 

semiconducting carbon nanotubes will exhibit an increase in resistance with the addition of such 

a potential. This difference can be observed experimentally by introducing charged impurities on 

carbon nanotubes. In this chapter, the experiment to determine the scattering strength of a single 

potassium atom on carbon nanotubes of known chirality is discussed in detail. The experimental 

results are compared with theoretical simulations by a recursive Green’s Function method in the 

tight-binding model. 
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6.1 Pseudospin conservation conjecture 

Theoretically, the intravalley scattering in metallic carbon nanotubes is forbidden because of the 

pseudospin conservation [92, 99, 100]. This restriction is derived from calculating transition 

amplitude. In graphene the transition amplitude due to a scattering potential is treated with 

perturbation theory 

               (6.1) 

For a long-range impurity potential, the Fourier component of the impurity potential is 

considered to be constant because the wavevector is small, and this leads to  

               
       

     
 
   

 
                                                

where  
 
   

 
 is the angle between     and   . The amplitude decreases as the overlap between 

pseudospin decreases, and it reaches zero when the angle becomes π. In metallic nanotubes, 

backscattering happens from k to –k (angle π) because the quantized states pass through the 

Dirac point and the transition amplitude becomes zero, forbidding backscattering within the 

same valley. It leads to the pseudospin conservation since the pseudospin cannot flip. 

Backscattering may happen over different valleys at K and K’, but the intervalley scattering is 

rare since it requires a large momentum transfer. This restriction claims that Coulomb potential 

imposed by potassium atoms will not backscatter charge carriers in metallic nanotubes. However, 

this is not the case with semiconducting carbon nanotubes. The forward and backward 
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wavevector (k and –k) have appreciable overlap of pseudospins (mixed state), and this leads to 

finite scattering probability. If the scatterer is short-ranged, the Fourier component with q ~ K is 

not taken to be constant, and the forward state will be coupled with backward state in metallic 

carbon nanotubes, resulting in backscattering. 

 

Figure 6.1: Schematic of backscattering in metallic carbon nanotubes. 

6.2 Measurement setup 

6.2.1 The concept of the experiment 

In this experiment, we introduce potassium atoms on atomically-clean metallic and 

semiconducting carbon nanotubes. A flux of potassium atoms is generated with the same alkali 
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metal dispenser (SAES) as in section 5.3. Potassium atoms donate a partial electron to the 

nanotubes and become positively charged. This positive Coulomb potential on nanotubes serves 

as a charge-carrier scatterer. We measure the resistance change induced by the presence of these 

positively-charged potassium atoms on nanotubes. The scattering strength (resistance coming 

from a single potassium atom) is deduced from the change in resistivity (kΩ/μm) and the number 

density of potassium (atom/μm). As previously mentioned, due to the pseudospin conservation, 

the scattering strength of a potassium atom is expected to be much smaller in metallic carbon 

nanotubes than in semiconducting carbon nanotubes. 

6.2.2 Ultra-high vacuum and low temperature 

Ultra-high vacuum (UHV) and low temperature are two important prerequisites for an accurate 

measurement of the scattering strength. For this experiment, the surface of the carbon nanotubes 

needs to be atomically clean before the introduction of the potassium adsorbates in order to 

isolate their effect on resistivity. To this end, a hydrogen annealing process removes polymer 

residue, as described in section 4.3.3. However, carbon nanotubes readily adsorb molecules from 

the air, and these adsorbed molecules interfere with the potassium atoms. UHV minimizes the 

adsorption of molecules and is also important in maintaining a constant flux of potassium from 

the alkali metal dispenser. 

The temperature of carbon nanotubes needs to be less than 20 K during the experiment for two 

reasons. The first is to prevent potassium atoms from diffusing along or off of the carbon 
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nanotubes as this makes the number of potassium atoms on the nanotubes uncertain. The binding 

energy of a potassium atom on graphite is 30 meV [101], and the same value is adopted to 

estimate the temperature needed to freeze potassium atoms. The other reason is to minimize the 

phonon contribution to the resistance of the carbon nanotubes. However, the temperature of 

nanotubes may increases due to Joule self-heating if a large current is passed through nanotubes. 

The method to identify the impact of Joule self-heating is discussed in Appendix. 

Some issues arise when measurement is performed in UHV at low temperature. Carbon nanotube 

devices show suppression or enhancement of conductance in UHV: the same effect as in the 

measurement of the network of nanotubes in section 5.3. The depletion of oxygen molecules 

from the device in UHV is responsible for this effect. Oxygen creates an extra dipole layer that 

modifies the height of the Schottky barrier. When oxygen is depleted in vacuum, the change in 

the barrier height leads to a change in the contact resistance. The Schottky barrier at contacts is 

also known to be affected by charged adsorbates such as potassium [72, 74, 76, 87, 102]. This 

change in conductance stops when the adsorption and desorption of oxygen molecules are in 

equilibrium. When nanotube devices are annealed at elevated temperature in UHV, more oxygen 

is desorbed, and the hole conduction is eventually completely suppressed with large 

enhancement of electron conduction. This polarity change is employed to measure the scattering 

strength of a potassium atom for both holes and electrons. 

At room temperature, the device current has an ohmic, linear dependence on the bias voltage 

(linear I-V). However, the I-V curve becomes non-linear at low temperature, forming a transport 
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gap. Sufficiently large bias voltage needs to be applied to overcome the transport gap. The 

simple Ohm’s law is not applicable to find conductance in this case since I-V curves are not 

linear. The technique to measure the conductance of non-linear I-V dependence is discussed in 

the next section. 

6.2.3 Measurement technique 

The conductance, which is a slope of I-V curves, is not constant when I-V curves are non-linear. 

As such, a differential conductance, dI/dV, needs to be measured. It is performed by adding a 

small AC bias voltage (dV) on a DC bias voltage and reading only an AC current signal (dI). 

Figure 6.2 shows the method to add a small AC voltage to a DC voltage. The AC bias voltage is 

divided into a small AC bias (dV) through 100 kΩ and 100 Ω resistors (1000 to 1), and the DC 

bias is divided through 10 kΩ and 100 Ω resistors (100 to 1). Since these two voltage dividers 

share the same 100 Ω resistor, the divided voltages add up on the 100 Ω resistor. The resistor is 

chosen to be much smaller than the resistance of nanotubes (typically > 10 kΩ) in order to reduce 

the interference with the measurement. A lock-in amplifier is used to apply an AC voltage and 

measure an AC current. However, the lock-in amplifier has 1 kΩ of input impedance, which is 

comparable with the nanotube resistance. As such, the current signal is first amplified with a 

preamplifier with small input impedance (< 200 Ω). Only the AC current signal (dI) is then 

picked up by the lock-in amplifier. The source dV and the measured dI are used to calculate the 

differential conductance dI/dV. 
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Figure 6.2: (a) The measurement of the differential conductance with a non-linear I-V curve. (b) 

Schematic of the voltage addition. 

6.2.4 Potassium flux measurement with QCM 

Potassium atoms are deposited using alkali metal dispensers (SAES). An electric current larger 

than 6 A is passed to thermally activate the dispensers with Joule heating. A flux of potassium 

atoms is released from the dispensers by reducing potassium salt to potassium atoms during the 

heating process. The number of potassium atoms coming onto carbon nanotubes can be 

calculated if the flux of potassium atoms is known; multiply the flux by the exposure time and 

the area of a carbon nanotube. The exposure time is controlled by the shutter immediately below 

a device, and the effective area of carbon nanotubes is their diameter × length. The diameter is 

calculated with equation (2.18). Alkali metal dispensers release a different amount of flux each 

time they are activated, and the flux is also far from being isotropic. As such, a flux of potassium 

is measured by quartz crystal microbalance (QCM). 

(a) (b) 
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Figure 6.3: An alkali metal dispenser in an UHV chamber. The electrodes extend outside of the 

chamber to pass current through the dispenser. 

QCM is widely used in metal deposition chambers to monitor the thickness of evaporants. QCM 

is driven to oscillate at a resonant frequency. This frequency changes once mass is added on the 

surface of the crystal, and the frequency change has dependence on the amount of the mass 

added. This relation is described by Sauerbrey equation, 

                  
  (6.3) 

where f0: the characteristic frequency of quartz crystal (6 MHz), n: density(g/cm
3
) of the material 

added on QCM, and t: thickness (cm) of the material. The density of potassium, 0.862 g/cm
3
, is 

used. The thickness of a film of potassium on the QCM is then calculated by measuring the 

change in the characteristic frequency as a film of an evaporant is formed on QCM. The 

frequency change of at least 1 Hz is needed to reliably measure the thickness. In the case of 



90 

potassium, this corresponds to the thickness of 1.42 Å, which is attainable with alkali metal 

dispensers. 

 

Figure 6.4: Schematic of the QCM measurement. The QCM is placed between the device and the 

alkali metal dispenser. 

However, QCM is sensitive to temperature change, and it causes a frequency to drift. Even a 

temperature difference of 0.1 °C corresponds to the frequency change comparable with 1 Hz, and 

it obscures interpretation of the frequency change into a flux of potassium. In fact, the radiation 

from the dispenser heats up the QCM to cause the thermal frequency drift. The thermal drift can 

be reduced within ± 0.01 Hz of change when water cooling is incorporated into a QCM system. 

A flow of water keeps the QCM in thermal equilibrium (the equilibrium temperature varies 

depending on the power of thermal radiation from the dispenser). The temperature of the cooling 

water itself may vary over time depending on the condition of a building water system, but it is 

possible to stabilize the frequency by controlling the flow rate of the cooling water. 
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The flux of potassium is determined immediately before exposing a device to the flux. Figure 6.5 

shows a typical frequency change during the measurement of a potassium flux. Initially the 

current through the dispenser is kept at 2.0 A, well below the activation current of the dispenser. 

The current is increased to 5.0 A at t = 300 seconds. The frequency increases immediately after 

the current is increased because of the radiation heating from the dispenser.  

 

Figure 6.5: Frequency change of QCM as a function of time. 

When it reaches thermal equilibrium, the frequency starts decreasing due to the flux of potassium 

atoms coming onto the surface of the QCM. The QCM is mechanically retracted once the rate of 

change in the frequency becomes constant. In this particular case, the rate of change immediately 

before retracting the QCM is 0.557 ± 0.0019 Hz/min, and it is converted to the flux using the 

equation (6.3), molar mass of potassium, and the Avogadro constant; 
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calculated from the slope of a linear fit immediately before retracting the QCM. The shutter is 

opened for the period of time needed to have a specific number of potassium atoms. 

In our measurement system, the QCM is positioned half way between a device and the dispenser. 

The geometric factor which is required to calculate the density of potassium at the device 

position is separately measured using the same QCM. Simple geometric conversion based on the 

distance is not applicable since the flux is not isotropic. We have found the empirical geometric 

factor by using the position manipulator and changing the distance of the dispenser and the 

QCM. We found that the geometric factor is 0.11 ± 0.02. 

 

Figure 6.6: Measurement of the geometric factor. 
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6.3 Potassium dosing experiment on a (7,6) nanotube 

6.3.1 The comparison of conductance in the air and in vacuum at room temperature 

Semiconducting carbon nanotubes usually display conductance in the air only when the gate 

voltage induces holes in nanotubes. In vacuum, however, the conductance can also be carried by 

electrons and shows an ambipolar behavior. This change is clearly observed for the conductance 

measurement of a (7,6) semiconducting carbon nanotube at room temperature, as shown in 

Figure 6.7. In the air, the device turns on when the gate voltage is in the negative voltage side 

(hole conduction). Only up to ±10 V of gate voltage is applied in order to avoid shorting the gate 

electrode to the nanotube. The device has a hysteresis effect which depends on the direction of 

the gate voltage sweep. The red (blue) curve is the conductance when the gate voltage is swept 

up (down). The hysteresis comes from a charge trap within the oxide layer as the gate voltage is 

varied. When the device is placed in UHV, finite conductance also appears in the positive 

voltage side (electron conduction).The hysteresis effect is pronounced with the larger gate 

voltage applied, and either hole or electron conduction is displayed more in detail, depending on 

the direction of the gate voltage sweep. The hole conduction in UHV becomes suppressed as the 

electron conduction increases. This enhancement and suppression of conductance is discussed in 

section 6.2.2. 
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Figure 6.7: Conductance as a function of gate voltage (a) in the air and (b) in UHV. 

6.3.2 Low temperature potassium dosing experiment for hole conduction 

The conductance of the same (7,6) nanotube is measured in UHV at 10 K (Figure 6.8). I-V 

curves are non-linear at low temperature, and the conductance is measured at sufficiently high 

source-drain bias voltage where the device current is linearly dependent on the bias voltage. The 

hole conduction is increased as temperature is lowed. The electron conduction is, on the other 

hand, slightly reduced because of the increase in the transport gap. We define Vonset as the gate 

voltage at which the conductance starts increasing when plotted in a log scale, as in Figure 6.8b. 

This onset voltage corresponds to the beginning of the valence band conduction in 

semiconducting nanotubes. Since the electron conduction is much more resistive than the hole 

conduction, we focus our attention on the conductance obtained when the gate voltage is swept 

down. 
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Figure 6.8: Conductance as a function of gate voltage in UHV at T = 10 K. The y-axis scale is (a) 

linear and (b) log10. 

In Figure 6.9, the conductance is plotted for different segment length. Before introduction of 

potassium atoms, all the segments show ambipolar conductance with enhanced hole conduction 

and the onset voltage from each segment is located close to one another. When potassium atoms 

are added on the nanotube, the hole conduction suppresses for all the segments, and the electron 

conduction is slightly enhanced for some segments. The number of potassium atoms is 

determined using QCM as discussed in section 6.2.4. 
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Figure 6.9: Conductance as a function of gate voltage for the (7,6) semiconducting carbon 

nanotube in UHV at 10 K (a) before the introduction of potassium and (b) after the introduction 

of potassium. It shows ambipolar conductance. The hole conduction (negative gate voltage side) 

is much larger than the electron conduction (positive gate voltage side). 

The impact of potassium atoms on the resistivity of the (7,6) nanotube is determined by plotting 

the resistance as a function of nanotube length. Figure 6.10 shows the length dependence of 

resistance –60 V away from the onset gate voltage (Vg – Vonset = –60 V). From the density of 

states (DOS) of a (7,6) carbon nanotube, Vg – Vonset = –60 V corresponds to E = –1.5 eV of the 

nanotube, which is in the second sub-band. The conversion from the gate voltage to energy is 

done by  

 

 
  

 

  
                                                                        

where the first term is quantum capacitance, and the second term is geometric capacitance. From 
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it changes to ρ = 79.6 ± 1.6 kΩ/μm, with Δρ = 21.9 ± 2.9 kΩ/μm. This leads to the scattering 

strength of 10.0 ± 1.4 kΩ/atom with 2.2 ± 0.1 atom/µm of potassium atoms.  

 

Figure 6.10: Resistance as a function of carbon nanotube length. The slope corresponds to the 

resistivity of the nanotube itself. 

6.3.3 Low temperature potassium dosing experiment for electron conduction 

Once the potassium dosing experiment is completed for the hole conduction, the device is 

annealed in UHV at 460 K for a couple of days. This effectively removes potassium atoms from 

the nanotube surface [103]. Furthermore, the annealing also depletes oxygen from the contact-

nanotube interface, and the device now shows finite conductance when gate voltage is in the 

positive side (electron conduction), as shown in Figure 6.11. Potassium now suppresses the 
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measurements are insufficient for revealing the impact of potassium on the resistivity of 

nanotubes. 

  

Figure 6.11: Conductance as a function of gate voltage in UHV at T = 12 K. (a) Before addition 

of potassium. (b) After addition of potassium. 

The impact of potassium on the resistivity of the nanotube for electron conduction can be 

determined in the same way as in the case of holes. Figure 6.12 shows the length dependence of 

resistance at Vg – Vonset = +60 V. The contact resistance shows almost no change. The resistivity 

before addition of potassium is ρ0 = 17.0 ± 1.6 kΩ/μm, and, ρ = 23.5 ± 1.7 kΩ/μm after adding 

29.6 ± 0.4 atom/μm of potassium atoms, with Δρ = 6.5 ± 2.3 kΩ/μm. This leads to the scattering 

strength is 0.22 ± 0.08 kΩ/atom. 
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Figure 6.12: Resistance as a function of nanotube length for electron conduction.  

6.3.4 Determination of the scattering strength for holes and electrons 

The resistivity increases linearly with the density of potassium, showing that potassium behaves 

as diffusive and uncorrelated scatterers even at maximum density of 3 atoms/µm for the hole 

conduction and 30 atoms/µm for the electron conduction (Figure 6.13). Such adherence of the 

observation to diffusive, semi-classical picture is consistent with the phase coherence length of 

nanotubes being less than 100 nm for temperature above 10 K. Furthermore, the linear 

dependence on the deposited density also indicates that increased concentration of potassium 

does not lead to clustering. From the linear fit, the scattering strength of potassium is found to be 

8.2 ± 1.3 kΩ/atom for holes and 0.22 ± 0.03 kΩ/atom for electrons. Interestingly, a potassium 

atom scatters holes 37 times more than electrons. 
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Figure 6.13: Resistivity change as a function of potassium atom density for (a) holes and (b) 

electrons. 

6.3.5 Numerical simulation 

The electron-hole asymmetry of the scattering strength observed in the experiments is consistent 

with numerical transport calculations performed on a (7,6) nanotube, using a recursive Green's 

function method. Starting from a clean, single-band, tight-binding model, we randomly added 

Gaussian scattering potentials of the form Vi(R) = V0 exp[-|R-Ri|
2
/ξ

2
], where Ri denotes the 

scatterer's lattice location, V0 is the (positive) scatterer strength, and ξ represents the scattering 

potential range. The zero-temperature linear conductance is then evaluated using the Landauer-

Büttiker formula and averaged over 200 random samples to wash away fluctuations due to 

phase-coherent interference. For large scatterer concentrations, short nanotubes are used to keep 

carriers in the diffusive regime and avoid Anderson localization. 

0 1 2 3
50

60

70

80

90(a)


 (
k


/
m

)

K density (atom/m)

0 10 20 30

15

20

25

 

 


 (

k


/
m

)

K density (atom/m)

(b)



101 

Figure 6.14 shows the result of the analysis of numerical data similar to that presented in Figure 

6.10 and 6.12 for the experimental data, with the Fermi energy fixed at E =      eV and 

impurity potential parameters ξ = 20 Å and V0 = 1.1 eV. These parameter values are found to 

produce the closest results to those obtained in the experiments. In particular, the asymmetry 

between the hole and electron resistivities depends on ξ and on the Fermi energy E and is 

maximal for the values we adopted. The resulting strength of each scatterer, as measured by their 

effect on the nanotube resistivity is 7.7 ± 0.2 kΩ/scatterer for holes and 0.28 ± 0.01 kΩ/scatterer 

for electrons. 

      

Figure 6.14: Simulation of resistance as a function of nanotube length with different impurity 

density for (a) holes and (b) electrons. 
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Figure 6.15: Simulation of the scattering strength for holes and electrons. 

The experimental electron-hole asymmetry with holes being scattered more efficiently than 

electrons is reproduced by our theoretical calculation with atomic scale fidelity to the experiment. 
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suppression in our metallic carbon nanotubes. The scattering strength of a potassium atom in the 

experiment is found by a comparison with this theoretical simulation. 

6.4.1 Anomalous conductance suppression in metallic carbon nanotubes 

Atomically clean, metallic carbon nanotubes usually have ambipolar conductance with a finite 

suppression of conductance, as shown in Figure 6.16a. Most of the metallic carbon nanotubes are 

so-called quasi-metallic nanotubes because of a curvature-induced band gap (< 100 meV), and 

the zero-gap metallic nanotubes are realized only for armchair nanotubes [104]. The finite 

suppression of conductance has been naively attributed to the curvature-induced band gap, 

though some studies suggest that the conduction dip is a manifestation of Mott insulating state 

[105] or a substrate induced inhomogeneity of Fermi energy [106].  

         

Figure 6.16: Comparison of (a) a normal metallic nanotube and (b) the one with anomalous 

conductance suppression. 
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In our experiment, extra conductance suppression has been observed when a large gate voltage is 

applied. The conductance normally increases monotonically from the minimum conduction point 

and tends to saturate toward a larger gate voltage side. However, the conductance in our metallic 

nanotube devices starts decreasing to form a hump shape as the gate voltage is increased. Figure 

6.17 shows the conductance of a (22,4) metallic carbon nanotube at room temperature. The 

anomalous conductance suppression on the positive gate voltage side is present regardless of the 

nanotube length. I-V curves are linear in all segments, showing that a contact effect is not 

responsible for the suppression of conductance. This is further confirmed when the conductivity 

of the nanotube is calculated from the linear fit to a resistance vs. length plot (Figure 6.18). 

            

Figure 6.17: The electronic transport measurement of the (22,4) metallic carbon nanotube in 

UHV at room temperature measurement. (a) Conductance vs. gate voltage shows the hump shape 

in all segments. (b) I-V curves of each segment measured at Vg = 30 V. All the segments show 

linear dependence. 
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Figure 6.18: Conductivity of the (22,4) nanotube calculated from linear fit to  resistance vs. 

length plots. The hump shape is still present. 

In order to find the cause for the formation of the hump, we convert the gate voltage into 

chemical potential in the same way as in the (7,6) semiconducting nanotube case. Using the same 

parameters, we find ±12.3 V of the gate voltage corresponds to the first van Hove singularities of 

a (22,4) nanotube and |Vg| < 30V corresponds to |E| < 0.8 eV, which includes up to the third sub-

band. The quantum capacitance is negligible because the band gap is 11 meV [104]. The 

conductance of a (22,4) metallic carbon nanotube is compared with our numerical simulation 

with varying impurity density in the same energy rage as in the experiment.  

Figure 6.19 shows how the conductance is affected by the presence of impurities. In this 

simulation, positive local potentials of amplitude 1.1 eV and range 18 Å are used. The DOS of 

the (22,4) nanotube is superimposed on the same plot to show the location of van Hove 

singularities. The conductance is G = 4e
2
/h in the first sub-band if no impurity is present. 
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impurity potentials. The conductance shows its peak at the edge of the first sub-band (E = –0.61 

eV) and decreases toward the positive energy side within the first sub-band. The conductance 

minimum occurs in the vicinity of the van Hove singularity at E = 0.61 eV regardless of the 

impurity density. The hole charge carriers (negative energy) is more resilient to positive 

scatterers than electron charge carriers (positive energy), and the contrast of the conductance at 

van Hove singularities (E = ±0.61 eV) is striking. The conductance also shows opposite trends 

beyond the first sub-band (E > |0.61| eV). Interestingly, the conduction at energy above van 

Hove singularities becomes smaller than that of first sub-band even though charge carriers also 

start conducting in the second sub-band. This indicates that extra scattering events from the first 

to the second sub-bands reduce the conductance in the first sub-band, and the conservation of 

pseudospin is no longer effective. 
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Figure 6.19: Simulation of the conductance of a (22,4) metallic nanotube. DOS is superimposed 

for the aid. As the density of impurities increases the suppression of conductance occurs. 

The position of the conductance peak will be shifted toward the middle of the first sub-band if 

there is a mixture of positive and negative charged impurities, as negative impurities reduce the 

conductance on the negative energy side. The suppression of the conductance on the electron 

conduction is qualitatively similar to the experiment. This similarity suggests that the 

conductance suppression occur due to positively charged impurities and the hump top be located 

in the first sub-band. This picture is supported by the fact that the hole resistivity of the (7,6) 

nanotube is greater than that of electrons, i.e., there are more positively charged impurities on the 
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surface of the substrate. If the hump top is in the first sub-band, the change in the conductance is 

expected to be smaller at the hump top upon introduction of potassium atom. 

6.4.2 Low temperature measurement 

Figure 6.20 shows the conductance of 2 μm, 3 μm, and 6 μm segments as a function of gate 

voltage in UHV at T = 12 K. The hump shape is still present at low temperature. Though I-V 

curves are non-linear at this temperature, the source-drain bias voltage is large enough to be in 

the linear regime of the I-V curves (80 mV for 2 μm segment, 90 mV for 3 μm and 6 μm 

segments). Once potassium atoms are introduced, the curves shift to the negative gate voltage 

side, as potassium atoms donate partial electrons to the nanotube. The number density is 1.8 ± 

0.1 atom/μm. The width of the hump becomes smaller for each segment with potassium being 

present. The impact of potassium atoms on the conductivity is shown in Figure 6.21. The 

maximum conductance shows only a slight decrease, but the conductance is suppressed away 

from the hump top upon the addition of positively charged potassium, which is consistent with 

our theoretical simulation. The emerging local minimum around Vg = –3 V indicates that a van 

Hove singularity is located in this region. The energy dependence of the scattering strength is 

revealed when the resistivity is plotted instead of conductivity (Figure 6.21b). The resistivity 

change at the hump top is Δρ = 2.7 ± 3.7 kΩ, leading to the scattering strength of 1.5 ± 2.1 

kΩ/atom. This is approximately 5 times smaller than the scattering strength of 8.2 ± 1.3 kΩ/atom 

for the hole conduction in the (7,6) semiconducting nanotube.  
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Figure 6.20: Conductance of the (22,4) metallic carbon nanotube in UHV at T = 12 K. (a) 2 μm, 

(b) 3 μm, (c) 6 μm, and (d) I-V curves. 

         

Figure 6.21: (a) Conductivity and (b) resistivity of the (22,4) nanotube. 
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Metallic nanotube being resilient to long-range impurities is consistent with the pseudospin 

conservation conjecture. The error on the scattering strength for the metallic nanotube is large, 

and further experiment to confirm the value is necessary. Nevertheless, it shows that the impact 

of a single potassium atom on the metallic nanotube is small. This is the first direct experimental 

observation of the pseudospin conservation in metallic carbon nanotubes. Though scattering 

strength is expected be smaller in metal in general because of a charge screening effect, the 

charge screening in one dimensional conductors is not effective. Furthermore, the large increase 

of the resistivity immediately away from the hump top is contradictory with the screening effect. 

6.5 Conclusion on the pseudospin conjecture 

We have measured the scattering strength of a potassium atom on (7,6) metallic and (22,4) 

semiconducting carbon nanotubes. The (7,6) semiconducting carbon nanotube has an asymmetric 

scattering strength depending on the charge carrier types, holes being scattered more than 

electrons. This asymmetry is explained by the transmission probability of a simple square 

potential barrier or potential well. The (22,4) metallic nanotube displays anomalous conductance 

suppression, and the comparison to our theoretical simulation with the recursive Green’s 

function method in the tight-binding model shows that the suppression of the conductance is 

related to van Hove singularities and the hump top is located in the first sub-band, in which the 

suppression of backscattering is effective due to the conservation of pseudospin. It is found that 

metallic carbon nanotubes are approximately 5 times more resilient to a Coulomb potential than 
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semiconducting carbon nanotubes, showing the effect of pseudospin conservation in metallic 

carbon nanotubes.  

Table 6.1: The scattering strength of a single potassium atom on carbon nanotubes 

Chirality Type Scattering strength (kΩ/μm) 

(7,6) semiconducting (holes) 8.2 ± 1.3 

(7,6) semiconducting (electrons) 0.22 ± 0.03 

(22,4) metallic 1.5 ± 2.1 
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APPENDIX: TEMPERATURE REQUIRED TO LOCK POTASSIUM 

ATOMS ON NANOTUBES 
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Devices are cooled down by extracting heat from the devices with a flow of liquid helium. The 

temperature can be as low as 10 K when the devices are in thermal equilibrium. However, the 

temperature of the devices may increase by Joule self-heating when a large current is passed 

through the devices. It is necessary to keep the temperature of the devices lower than 20 K in 

order to prevent potassium atoms from diffusing. The thermal conductivity of carbon nanotubes 

depends on the temperature, and it becomes small below 20 K; the heat dissipation along 

nanotubes into contact is not efficient (citation). Fortunately, heat can be dissipated directly into 

the substrate on which nanotubes are placed (citation). The effect of Joule self-heating on the 

temperature of nanotube is experimentally measured for semiconducting nanotubes. Owing to a 

finite energy gap, I-V curves of semiconducting nanotubes reveal a non-linear relation at low 

temperature, forming a transport gap. The size of the transport gap has temperature dependence, 

and it is used as a measure of temperature.  

First the threshold gap size at 20 K is needed to be determined as a reference to the temperature. 

This can be tested by scan in a small range of bias voltage. Figure B.1 shows I-V curves of a 5 

μm segment at 20 K. The current is measured 5 cycles (1 cycle is from 0 mV to –50 mV, –50mV 

to +50 mV, and +50 mV down to 0 mV), and the I-V curves from 5 cycles do not deviate from 

each other, meaning Joule heat (average of 0.9 nW) is completely dissipated within a cycle; if the 

heat dissipation is not enough and the temperature starts going up, it should be observable as the 

change in the gap size over multiple scans. When the bias voltage is applied up to ±100 mV 

twice as slow rate (average of 4.67 nW), the shape of the curve is still the same as in the case of 

the ±50 mV. Thus, the difference of 3.77 nW or 0.75 nW/μm sets a lower limit of the heat 
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dissipation from the nanotube. This limit is larger than the Joule heat generated when ±50 mV is 

applied, i.e., the shape of the I-V curve can be used as a reference to T = 20 K. If the temperature 

of nanotube increases above 20 K, the gap should become smaller than this reference gap. If the 

temperature is below the reference gap, then, the temperature of the nanotube is below 20 K. 

 

Figure A.1: I-V curve of carbon nanotube at low temperature 

The same test is also carried out at T = 10 K. A large bias voltage (> 100 mV) needs to be 

applied at low temperature in order to measure the differential conductance in the linear I-V 

regime. This results in large Joule heating. Figure B.2 shows the comparison of I-V curves at T = 

10 K and 20 K. The gap size is larger at T = 10 K, regardless of the scan rate, and the 
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accumulation of heat is not observed, concluding that the temperature remains at T = 10 K for the 

entire time during the measurement. 

 

Figure A.2: Temperature dependence of the transport gap size at Vg = –60V.  
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