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ABSTRACT 
 

This thesis hypothesizes that a method for  selecting instructional strategies (specifically 

media) based in part on a relationship between learning style preference and personality 

preference provides more relevant and understandable feedback to students and thereby higher 

learning effectiveness.  This research investigates whether personality preferences are valid 

predictors of learning style preferences.  Since learning style preferences are a key consideration 

in instructional strategies and instructional strategies are a key consideration in learning 

effectiveness, this thesis contributes to a greater understanding of the relationship between 

personality preferences and effective learning in intelligent tutoring systems (ITS).   

This research attempts to contribute to the goal of a “truly adaptive ITS”  by first 

examining relationships between personality preferences and learning style preferences; and then 

by modeling the influences of personality on learning strategies to optimize feedback for each 

student.   This thesis explores the general question “what can personality preferences contribute 

to learning in intelligent tutoring systems?”  So, why is it important to evaluate the relationship 

between personality preferences and learning strategies in ITS?  “While one-on-one human 

tutoring is still superior to ITS in general, this approach is idiosyncratic and not feasible to 

deliver to [any large population] in any cost-effective manner.” (Loftin, 2004).  Given the need 

for ITS in large, distributed populations (i.e. the United States Army), it is important to explore 

methods of increasing ITS performance and adaptability. 

Findings of this research include that the null hypothesis that “there is no dependency 

between personality preference variables and learning style preference variables” was partly 

rejected.  Highly significant correlations between the personality preferences, openness and 
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extraversion, were established for both the active-reflective and sensing-intuitive learning style 

preferences.  Discussion of other relationships is provided. 
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CHAPTER ONE: GENERAL LITERATURE 

Chapter One Summary 

In this chapter the motivation for proposed research, the problem domain, scope and 

application challenges are considered.  The basic concepts of intelligent tutoring systems and 

personality preference theories are reviewed along with general practices, ongoing research 

programs and trends.  

Introduction 

“An early promise of intelligent tutoring systems (ITS) was their potential to truly adapt 

to the individual learner, much as a human tutor engaged in a one-on-one encounter with a 

student. This goal has proven elusive.  ITS still, in most cases, lack the capability for doing 

dynamic diagnosis (during a learning experience) and, in real time, adapting the current scenario 

to provide the student with the “optimal” learning experience.” (Loftin, 2004).   

A significant research and development goal for many universities, government science 

and technology laboratories and research institutes has been to increase the adaptability of ITS to 

realize this promise.  Researchers have investigated methods to provide tailored feedback to each 

student based on their needs (knowledge/skill gaps) and they have developed a broader range of 

human personality attributes (i.e. personality preferences, emotions, social cognition and cultural 

aspects) into virtual humans and other intelligent tutor interfaces.  For many years, educators 

have embraced the idea of a link between personality preferences and learning style preferences 

in building human tutoring or instructional strategies.  However, these methods have not found 

their way into ITS.      
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The research proposed in this thesis attempts to contribute to the goal of a “truly adaptive 

ITS”  by first examining relationships between personality preferences and learning style 

preferences of the student; and then by modeling the influences of personality on instructional 

strategies to optimize feedback for each student.   This thesis explored the general question 

“what can personality preferences and learning style preferences contribute to learning in 

intelligent tutoring systems?”   

Motivation for Research: Why is this research important? 

Why is it important to evaluate the relationship between personality preferences and 

learning style preferences in regard to ITS?  “While one-on-one human tutoring is still superior 

to ITS in general, this approach is idiosyncratic and not feasible to deliver to [any large 

population] in any cost-effective manner.” (Loftin, 2004).  Given the need for ITS in large, 

distributed populations (i.e. the United States Army), it is important to explore methods of 

increasing ITS performance and adaptability. 

ITS are expected to provide to the students a content or a skill set they wish to learn, in a 

way that suits their particular personal, individual learning style preferences and psychological 

features, delivering the right content to the right user in the right form at the right time. 

(Rodrigues, 2005).  Tutors must “avoid becoming a distraction” (Lane, 2005) by giving too 

much feedback, asking for too much information, answering the wrong question or answering 

too slowly.   

 

2 



 

“From the human-computer interaction point of view a careful examination is necessary 

of how to adapt the learning environment to the learner’s goal and capability” (Oppermann, 

1997).  This thesis explored methods of adaptability for ITS.   

This research hypothesizes that a method for  selecting instructional strategies 

(specifically media) based in part on a relationship between learning style preference and 

personality preference provides more relevant and understandable feedback to students and 

thereby higher learning effectiveness.  This research explored whether personality preferences 

were valid predictors of learning style preferences.  Since learning style preferences are a key 

consideration in instructional strategies and instructional strategies are a key consideration in 

learning effectiveness, the goal of this thesis was to demonstrate the relationship between 

personality preferences and effective learning in ITS.  If successful, this method could be applied 

across domains and various student populations as an adaptive pedagogical model for 

instructional strategy selection.   

Problem Domain and Scope of Research  

 This research focused on the pedagogical aspects of intelligent tutoring systems and 

specifically methods for selecting media that is compatible with an individual student’s preferred 

learning style and his perceived knowledge/skill gaps.  This thesis developed a predictive model 

that uses student learning style preferences to aid in the selection of appropriate instructional 

strategies (specifically media).  Ideally, the proposed research would link media selection to 

student performance history, identified knowledge and skill gaps.  Given the complexity of that 

task, resources and the need for focus, the researcher narrowed his investigation to the 
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examination of personality preferences as predictors of learning style preferences and media 

selection tools.    

Application Challenges 

 The amount and type of feedback provided to students by ITS is a significant issue.  Too 

little feedback can lead to frustration and floundering (Anderson, 1993) and too much feedback 

can interfere with learning (Kashihara, 1994).  The selection method for feedback and other 

instructional strategies are limited in ITS.  Ideally, the student model should influence the 

selection of instructional strategies so that the strategies selected are most effective for teaching 

that particular student.  One of the key differences between students is their personality 

preferences (i.e. how they take in information and make decisions with that information).  

(Myers, 1998)  Making a link between appropriate instructional strategies and personality 

preferences would go a long way in making ITS truly adaptable to each student’s needs.  

General Practices: Model Development Processes 

 This section examines general concepts and trends in two areas related to the scope of the 

research proposed in this thesis: intelligent tutoring systems modeling and personality preference 

modeling.   

Dimensions of Intelligent Tutoring System Modeling 

“Broadly defined, an intelligent tutoring system is educational software containing an 

artificial intelligence component. The software tracks students' work, tailoring feedback and 

hints along the way. By collecting information on a particular student's performance, the 
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software can make inferences about strengths and weaknesses, and can suggest additional work.” 

(Hafner, 2004) 

An intelligent tutoring “system must be capable of dynamically adapting and monitoring 

each student.” (Rodrigues, 2005)  The mere presentation of information does not qualify as 

instruction. (Liegle, 2000)   ITS are expected to perform the following tasks (Rodrigues, 2005):  

• Provide to the students a content or a skill set they wish to learn, in a way that suits 

their particular personal, individual learning style preferences and psychological 

features, delivering the right content to the right user in the right form at the right 

time; 

• Advise the student, on how he should learn the content or skills and help him to work 

on a suitable study schedule; 

• Co-work with the student in monitoring the learning schedule;  

• The monitoring of students learning schedule integrated in the process of 

collaborative knowledge, namely because students must be aware from other’s 

activities and the collaboration with other persons (students, instructors) must be 

regulated; 

• Intelligent interactive analysis performed on what the students are doing and 

providing real time diagnostic help 

“A tutoring system should try to improve students’ metacognitive skills, by, for example, guiding 

a student who avoids using help to seek help at the right moment.” (Roll, 2005) 
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General Concepts/Definitions for Intelligent Tutoring Systems 

There are many variants of ITS block diagrams, but in general, ITS contain four major 

components as identified by Woolf (1992): the student model, the pedagogical module, the 

domain knowledge module, and the communication module.  Beck (1996) identified a fifth 

component, the expert model, which Woolf included as part of the domain knowledge module. 

These components, their functions and interactions are described below:  

• Student Model or Performance History Model: The student model is a record of the 

student’s knowledge state (Corbett, 1997).  It stores information specific to each 

individual learner including a history of performance and other pertinent data.  This could 

include personality preference information or other state information.  The student model 

also records observable actions and may (through some fuzzy logic) infer non-observable 

states (i.e confusion, boredom or other emotions).  “Since the purpose of the student 

model is to provide data for the pedagogical module of the system, all of the information 

gathered should be able to be used by the tutor [pedagogical module].” (Beck, 1996) 

• Pedagogical Module or Instructional Planner: This component provides a model of the 

instruction process and contains logic for making decisions about when to review 

information, when to present new topics or concepts.  The sequencing of topics is 

controlled by the pedagogical module.  Once the topic has been selected, a problem must 

be generated for the student to solve and then feedback is provided on the student’s 

performance. As noted above, the student model is used as input to this component, so 

the pedagogical decisions reflect the differing needs of each student.      
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• Domain Knowledge: This component contains information the tutor uses to instruct the 

student.  It is critical that the domain be accessible by other parts of the ITS. “One related 

research issue is how to represent knowledge so that it easily scales up to larger domains. 

Another open question is how to represent domain knowledge other than facts and 

procedures, such as concepts and mental models.” (Beck, 1996)  This component 

contains items like generic instructional strategies, databases of scenarios and 

diagnostics. 

• Communications or Interface Module: This component controls interactions with the 

learner, including the dialogue and how the material should be presented to the student in 

the most effective way.  This selection of presentation format is driven by the selection of 

instructional strategies in the pedagogical module.  The communications module may 

also include some type of natural language understanding function to support verbal 

interaction with the student.  

• Expert Model:  This component is also know as the Cognitive Model of Ideal Student 

Behaviors as shown in Figure 2 above. The expert model is similar to the domain 

knowledge in that it is a model of how someone skilled in a particular domain represents 

the knowledge.  Generally, it takes the form of a runtime expert model (i.e. one that is 

capable of solving problems in the domain). (Clancey, 1981)  “By using an expert model, 

the tutor can compare the learner's solution to the expert's solution, pinpointing the places 

where the learner had difficulties.” (Beck, 1996)   
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General Practices in Intelligent Tutoring Systems  

Below are several approaches to the development of intelligent tutoring systems.  Each of 

these approaches supports a particular learning style preference (i.e. deductive, inductive or 

exploratory).  In the literature search conducted, it was rare to find a tutor that encompassed 

more than two of these approaches.  Given the variance in human personality, an adaptable tutor 

that encompassed all of these approaches and others would be desirable.   

• Human emulation of a tutor: This approach uses natural language processing to interact 

with the student and may use some type of virtual human (i.e. embodied conversational 

agent).  This approach is similar to dealing with a human, but is very difficult to model given 

the requirement to provide real-time reactions (verbal and non-verbal) to student inquiries.  

Success with this type of tutor has been limited and the cost for this type of approach has 

been higher than others.   

• Bug Detection: “There are classically two components in a student model: an overlay of the 

domain expert knowledge and a bug catalog, which is a set of misconceptions or incorrect 

rules.” (Corbett, 1997)  In a bug detection scheme, the tutor corrects errors by explaining 

what the error is (i.e. the student is using the rules properly, but the problem is that it is the 

wrong rule is being applied).  A drawback to this approach is that too frequent intervention 

by the tutor can detract from the learning experience. 

• Exploratory systems (discovery worlds, micro worlds): Exploratory systems are 

environments that “place less emphasis on supporting learning through explicit instruction 

and more on providing the learner with the opportunity to explore the instructional domain 
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freely, acquiring knowledge of relevant concepts and skills in the process” (Shute, 1990).  A 

drawback to this approach is that learning may be time intensive and very inefficient.  Given 

sufficient time, this approach may be very appealing for some learners.  Smithtown, which 

provides a guided discovery of economics, is an example of an exploratory system.     

• Model Tracing: A cognitive model of the task is developed through a task analysis.  Student 

progress is assessed by ``tracing'' the student's task actions (i.e., matching user and 

application events against the task model).  The student is permitted to consult task model as 

needed.  This approach seems to be the most prevalent and tied closely to cognitive models 

like ACT-R (Anderson, 1993) and SOAR (Lehman, 2006).  

• Constructivism: “Constructivism is a philosophy of learning founded on the premise that, by 

reflecting on our experiences, we construct our own understanding of the world we live in. 

Each of us generates our own "rules" and "mental models," which we use to make sense of 

our experiences. Learning, therefore, is simply the process of adjusting our mental models to 

accommodate new experiences.” (Funderstanding.com, 2006).  In this approach, the ITS 

provide opportunities for the student to participate in the instructional process.  There are no 

standardized curricula, tests or grades.  Instead, constructivism promotes the use of 

customized curricula based on the student’s prior knowledge and emphasizes hands-on 

problem solving and reflection. 
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Research in Intelligent Tutoring Systems 

 There are several issues that have been drivers for recent research in ITS.  These include: 

high development costs, lack of interoperability, restrictive delivery platform requirements, 

difficulty of sharing materials and benchmarking and high maintenance costs (Rodrigues, 2005).   

Below are several recommendations for future research thrusts in ITS:  

• Ontology: Ontology is defined as “a controlled vocabulary that describes objects and the 

relations between them in a formal way, and has a grammar for using the vocabulary terms to 

express something meaningful within a specified domain of interest. The vocabulary is used 

to make queries and assertions. Ontological commitments are agreements to use the 

vocabulary in a consistent way for knowledge sharing.” (Browne, 2001).  “Structured 

ontologies or upper models that define and organize pedagogically relevant attributes of 

knowledge for classes of domains, enabling the writing and sharing of instructional strategies 

in terms of these attributes.” (Rodrigues, 2005) “The systematic development of a formal 

ontology must be pursued, and the results of this effort widely disseminated. Such an effort 

will serve to focus attention on this critical “missing piece” and generate the necessary 

discussions within the Intelligent Tutoring System research community to achieve a 

reasonable degree of consensus.” (Loftin, 2004) 

• Architectures: “A study is required to map current Intelligent Tutoring System capabilities 

to a selected training/education domain. This mapping will then identify the small number of 

architectures that must be supported during application development.”  (Loftin, 2004)  
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“Architectures and protocols involving collaborating processes or shared knowledge bases 

which address issues of modularity and reusability.” (Rodrigues, 2005) 

• ITS Adaptability: “Basic research is needed to address one of the central “promises” of 

Intelligent Tutoring Systems—the maturation of systems capable of user adaptability. This is 

a well-traveled research element that has led to the development of different approaches, 

none of which has achieved success outside of narrow domain applications.” (Loftin, 2004)  

ITS adaptability is the focus of the research proposed in this thesis. 

• Motivation: Research “should be initiated to (1) investigate means to measure learner 

motivation within an Intelligent Tutoring System and (2) develop mechanisms to enhance 

learner motivation through scenario creation and feedback from the Intelligent Tutoring 

System.” (Loftin, 2004) 

• Virtual Humans: “Research on the value of virtual humans as an adjunct to or element of an 

Intelligent Tutoring Systems should be conducted. The potential value of virtual humans may 

be high, but it remains to be demonstrated.” (Loftin, 2004)  Perhaps a comparison of 

interface and feedback mechanisms that include virtual humans should be examined.   

• Team Training: Few examples of Intelligent Tutoring Systems for team training have been 

attempted and the results have not provided convincing evidence that we understand how to 

develop such systems successfully. (Loftin, 2004) 

Rodrigues recommends additional efforts in several areas including: reusable components, 

standardization of existing software architectures, standardization for interoperability of ITS, 

personalization techniques, case-based reasoning and adaptive hypermedia. 
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Dimensions of Personality Modeling 

 There are many facets to personality modeling including, but not limited to emotions, 

motivation, trust, learning, social factors and decision-making.  In this section, we concentrated 

on only two concepts in personality modeling related to the research in this thesis: learning style 

preferences and personality preferences.  

General Concepts/Definitions for Learning Preference Modeling 

In order to understand learning style preferences, we must first define learning.  In 

reviewing several definitions, this description of learning provides a clearest and comprehensive 

definition of learning:  “Learning is the process of acquiring knowledge, skills, attitudes, or 

values, through study, experience, or teaching, that causes a change of behavior that is persistent, 

measurable, and specified or allows an individual to formulate a new mental construct or revise a 

prior mental construct (conceptual knowledge such as attitudes or values).  It is a process that 

depends on experience and leads to long-term changes in behavior potential. Behavior potential 

describes the possible behavior of an individual (not actual behavior) in a given situation in order 

to achieve a goal. But potential is not enough; if individual learning is not periodically 

reinforced, it becomes shallower and shallower, and eventually will be lost in that individual.” 

(Wikipedia, 2006a) 

“Learning styles are different ways that a person can learn. It's commonly believed that 

most people favor some particular method of interacting with, taking in, and processing stimuli 

or information.” (Wikipedia, 2006b)  However, this may not mean that they use this style 

exclusively.   Keefe (1979) defines “learning styles” as characteristic cognitive, affective and 
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psychological behaviors that serve as relatively stable indicators of how learners perceive, 

interact with and respond to the learning environment.   

“Preference (or "taste") is a concept, used in the social sciences, particularly economics. 

It assumes a real or imagined "choice" between alternatives and the possibility of rank ordering 

of these alternatives, based on happiness, satisfaction, gratification, enjoyment, utility they 

provide. More generally, it can be seen as a source of motivation. In cognitive sciences, 

individual preferences enable choice of objectives/goals.” (Wikipedia, 2006c) 

For the purpose of this research, the term “learning style preference” combines the 

notions of preference and learning style to indicate a particular learning style preferred by a 

student. 

There are currently over seventy learning style preference instruments and theories of 

learning and several other instruments which have conducted correlation studies between their 

factors and learning style preferences.    A sample of these instruments includes, but is limited to: 

• Entwistle’s Approaches and Study Skills Inventory for Students (ASSIST) 

• Fleming’s VARK Learning Styles Questionnaire  

• Gardner’s Theory of Multiple Intelligences 

• Honey and Mumford’s Learning Styles Questionnaire (LSQ)  

• Jackson’s Learning Styles Profiler (LSP)  

• Kolb’s Learning Style Inventory (LSI)  

• Riding’s Cognitive Styles Analysis (CSA)  

• Sternberg’s Thinking Styles Inventory (TSI)  

• Vermunt’s Inventory of Learning Styles (ILS) 
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• Felder and Silverman’s Index of Learning Styles (ILS) 

For example, Kolb (1984) has developed a learning cycle model called the Experiential 

Learning Model (ELM) which identifies four ways in which people learn: 

• through concrete experience  

• through observation and reflection  

• through abstract conceptualization  

• through active experimentation 

Kolb’s ELM has become a model for adult learning.  The use of the ELM cycle (all four 

styles) insures that all learning types are engaged in the learning process.   

General Practices in Learning Preference Modeling 

 As noted previously, several learning preference instruments are being examined as 

potential candidates to validate student learning style preferences against any experimental 

results generated under this thesis.  The selection of a single instrument is difficult when over 

seventy are available.  This task may be easier given the validity of several widely used 

instruments has been questioned.  In 2004, a report titled “Learning styles and pedagogy in post-

16 learning – a systematic and critical review” was published by the Learning and Skills 

Research Centre in the United Kingdom.   

This study selected 13 of the most influential models for close examination.  To ensure 

consistency they applied the same criteria to each: examining theoretical origins, definition of 

terms, the instrument itself, the claims made by the author(s), external studies of these claims and 

independent empirical evidence of impact on teaching and learning (Coffield, 2004).     
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 The Coffield report concluded for many of the learning style inventories that “Moreover, 

self-report inventories ‘are not sampling learning behaviour but learners’ impressions’ (Mitchell 

1994) of how they learn, impressions which may be inaccurate, self-deluding or influenced by 

what the respondent thinks the psychologist wants to hear. As Price and Richardson (2003) 

argue: ‘the validity of these learning style inventories is based on the assumption that learners 

can accurately and consistently reflect: how they process external stimuli and what their internal 

cognitive processes are.”  

Research in Learning Preference Modeling   

 At the MIT Media Laboratory, research in affective computing is examining the impact 

of emotions on learner preferences.  “Recent neurological evidence indicates that emotions are 

not a luxury; they are essential for "reason" to function normally, even in rational decision-

making. Furthermore, emotional expression is a natural and significant part of human interaction.  

Whether it is used to indicate like/dislike or interest/disinterest, emotion plays a key role in 

multimedia information retrieval, user preference modeling, and human-computer interaction. 

Affective computing is a new area of research focusing on computing that relates to, arises from, 

or deliberately influences emotions. The focus of the present project is on giving computers the 

ability to recognize affect. Current applications include better learning systems (computer 

recognizes interest, frustration, or pleasure of pupil), and smarter "things" such as a steering 

wheel/seatbelt that sense when a driver is angry or incapacitated.” (Picard, 2006) 

 Ahn (2006) recently demonstrated that affective biases from affective anticipatory 

rewards could be applied for improving the speed of learning and regulating the trade-off 

between exploration and exploitation in learning more efficiently.  Her model of affective 
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anticipatory reward is based two dimensions: valence (good or bad) and uncertainty (hopeful or 

risky).  For example: recognizing the student’s smugness or boredom might cause the tutor to 

raise the “uncertainty of reward” to influence (affect) the student’s attitude and level of 

engagement. 

General Concepts/Definitions for Personality Preference Modeling 

  In order to understand personality preferences, we must first define personality.  This 

definition was selected as clear and comprehensive: “personality is defined as individual 

difference constructs (traits) that manifest themselves through recurring regularities or trends in a 

person’s behavior that are dependent primarily on conscious or unconscious volition as opposed 

to ability.” (Hunt, 2003) 

 Preferences are the natural choice to use one mode of operation over use the other mode 

of operation.  So, we are said to "prefer" one function over the other.  Personality preference is 

the essence of Carl Jung’s theory of psychological types.  Jung stated that “much seemingly 

random variation in behavior is actually quite orderly and consistent, being due to basic 

differences in the way individuals prefer to use their perception and their judgment.” (Myers, 

1998) 

 The basis for many of the personality preference theories are Carl Jung’s two dimensions 

of personality: perception (gathering data; taking in information; observing the world around 

you) and judging (evaluating data; making decisions on information; critiquing your 

observations) (Myers, 1998).  Jung’s theories are based on the observation of his clients.  Of the 

three most prevalent personality preference models, Myers-Briggs Type Indicator (MBTI) and 

Keirsey Temperament Sorter (KTS) have their basis in Jung’s theories.  KTS and the Five Factor 
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Model (FFM) Model of Personality are evolutions of MBTI.  MBTI and KTS are theory-based, 

while FFM is empirically-based.  

General Practices in Personality Preference Modeling 

The advent of the FFM taxonomy in the 1980s helped produce order in a previously 

scattered and disorganized field.  “Research had found that "personality" (i.e., any of a large 

number of hypothesized personality traits) was not predictive of important criteria.  However, 

using the five-factor model as a taxonomy to group the vast numbers of unlike personality traits, 

a meta-analysis of previous research was shown to have many significant correlations between 

the personality traits of the five-factor model and job performance in many jobs. Their strongest 

finding was that the psychometric Conscientiousness was predictive of performance in all the job 

families studied.”  (Wikipedia, 2006d)    

Research in Personality Preference Modeling   

 A search of the research database of the Center for Applications of Psychological Type 

(CAPT), MBTI’s primary research center, yielded 249 publications related to “learning styles” 

and “personality type”.  About a dozen publications relate to learning strategies, styles and 

MBTI.  None of these publications was related to “intelligent tutoring” or “affective computing”.   

 Most of the research in recent years on learning style preferences and personality type has 

centered on the correlation of the sixteen MBTI types and data on educational performance and 

behaviors that contribute to educational performance (Myers, 1998).  The results show that each 

MBTI dichotomy is related to the certain characteristics of learners (Myers, 1998).  For example, 
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extraverts may be characterized as concrete experiential learners or active experimental learners. 

Introverts might be characterized as abstract sequential learners.   

This research does not provide a measure of probability for these factors (i.e. if a student 

is an ESTJ (extraverted-sensing-thinker-judger) and some of the characteristics of E’s conflict 

with S’s, T’s and J’s, which factor has the higher probability or tendency to resulting in an 

attitude (unobserved characteristic) or a behavior (observed characteristic)).  Conflicting 

characteristics can even appear within the same factor.  

Current research for the FFM is generally concentrated in three areas (Wikipedia, 2006d): 

• Are the five factors the right ones? Why not four or seven or three? 

• Which factors predict what? “Job outcomes for leaders and salespeople have 

already been measured, and research is currently being done in expanding the list 

of careers. There are also a variety of life outcomes which preliminary research 

indicates are affected by personality, such as smoking (predicted by high scores in 

Neuroticism and low scores in Agreeableness and Conscientiousness) and interest 

in different kinds of music (largely mediated by Openness).” 

• To make a theory-based model of personality. The FFM personality traits are 

empirical observations, not theory. 

General Research Gap and Research Questions 
 
 There is a plethora of studies that show correlation between personality preferences and 

learning style preferences.  However, based on Coffield’s (2004) analysis, the construct validity 

and predictive validity of many learning style preference instruments and the MBTI is 

questionable.  In conducting the literature search for this thesis, no correlation study showing the 
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relationship of an empirical personality preference model (i.e. the Five Factor Model) as a 

predictor of validated learning style preferences was found.  No adaptive ITS was found that 

utilized personality as predictor to select learning strategies.           

Research Gap: Correlation of personality preferences and research preferences 

 The prevalence of the instrument is not a measure of validity.  The first step is to find a 

validated learning preference model.  One that has been demonstrated to contain factors that 

when present, positively impact learning outcomes.  Predicting correct learning strategies based 

on a correlation with a student’s personality preferences will improve learning.    Predicting 

incorrect or invalid strategies will not. 

Research Questions 

• Why not just give the student a learning style preferences survey instead of trying to predict 

learning style preferences from personality preferences?  If the personality preferences are 

good predictors of learning style preferences, they may be good predictors of other behaviors 

(i.e. motivation, trust, emotions and other attitudes) and it would be more efficient to use one 

survey that could predict all those factors.   

• How do personality preferences relate to learning style preferences?  Is there a strong 

correlation? 

• Are personality preferences good predictors of learning style preferences?  If they are, then 

they could aid in the optimal selection of instructional strategies/tactics within intelligent 

tutoring systems.  The predictive nature of personality preferences based on the input of five 

numbers (factors) would reduce the interface load and interventions between the student and 
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the tutor that would otherwise be required to assess whether the strategies presented to the 

student were effective.   

• Which models and methods would work best to demonstrate a correlation between 

personality preferences and learning style preferences? 
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CHAPTER TWO: APPROACHES, TECHNIQUES, MODELS AND MEASURES 

What approaches exist that might address the operational or technical need for adaptive 

ITS and why they are inadequate? 

Chapter Two Summary 

This chapter examines current and developing models of intelligent tutoring systems and 

personality preferences with eye toward how they might be integrated, extended or otherwise 

modified to support the proposed research goals and tasks.  Six intelligent tutoring systems and 

their pedagogical models were evaluated:  the LISP tutor, the blackboard instructional planning 

system, the Smithtown economics tutor, COGNET, SHERLOCK and ABITS.    Two prevalent 

learning preference theories were reviewed: Gardner’s “Multiple Intelligences” and Fleming’s 

VARK Learning Styles.  Two prevalent personality preference models were reviewed: the 

Myers-Briggs Type Indicator® (MBTI) and the Five Factor Model (FFM) of Personality.  

Specific advantages and disadvantages of each ITS and preference model are discussed.  A 

specific research gap is identified and a concept to address that gap is proposed.       

Models, Techniques, Approaches and Measures used by other Authors and Researchers  

Intelligent Tutoring System Models 

 A review of ITS models and approaches is provided in this section. 

LISP tutor  

 The LISP tutor (Anderson and Reiser 1985) is an Intelligent Tutoring System developed 

to teach the basic principles of programming in LISP.  The expert model in the LISP tutor was 
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created as a series of correct production rules for creating LISP programs and a learner model 

was built as a subset of these correct production rules along with common incorrect production 

rules (Holt et al 1991).  

LISP tutor is based on the principle of "learning by doing" where the learner discovers 

the productions while working through problems. The tutor acts as a problem solving guide but 

never states the productions to be learned.   The LISP Tutor is an application of Anderson’s ACT 

theory (Anderson 1983).  

ACT theory is one of the earliest attempts to establish a complete theory of human 

cognition. It combines declarative knowledge in the form of semantic nets with procedural 

knowledge in the form of production rules. In ACT learning is accomplished by forming new 

procedures through the combination of existing production rules. The main principles of the 

ACT theory are: 

• Cognitive functions can be represented as a set of production rules. The use of a 

production rule depends on the state of the system and the current goals.  

• Knowledge is learned declaratively through instructions. The learner must carry out the 

process of knowledge compilation if the productions are to be properly understood and 

integrated into their existing knowledge and later recalled and used.  

Anderson represented the knowledge in LISP tutor as approximately 325 production 

rules. The system also had about 425 buggy production rules which represented the 

misconceptions of novice programmers. 

The LISP tutor used model tracing to provide the learner with detailed feedback. The 

learner would be given a problem and the tutor would monitor the learners input character by 
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character. The tutor generates all the possible next characters using both correct and buggy 

production rules. 

• If the character is predicted by the correct rule the learner is allowed to continue.  

• If the character is predicted by a buggy production rule remedial instructions is given.  

• If the character is not predicted the tutor says that it cannot understand and asks the 

learner to try again. After several tries the tutor explains the next step.  

This method has the advantages of early diagnosis of learner misconceptions and of 

giving immediate feedback to the learner. The learner never strays far from a correct solution. 

However, this can be viewed as unnecessarily restrictive and counter productive as the student is 

never allowed to explore incorrect behavior. 

Blackboard instructional planning system 

Blackboard instructional systems are ITS focused on “how to teach” (i.e. instructional activities 

like when to test, demonstrate, review or conduct “dynamic planning”).  Blackboard instructional 

systems are composed of:  

• a hierarchically structured global database 

• independent knowledge sources – production rules that change the global database 

• an agenda scheduler 

• knowledge source activation record – agenda of prioritized actions to be executed 

Blackboard systems operate as follows: 

• tutor compares student’s choice to domain expert’s model (represented as a semantic 

network) and updates the student model  
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• when the difference between the student model and expected performance indicates 

failure of instruction, diagnosis is begun in order to identify the prerequisite skill most 

likely to have been misunderstood 

• upon diagnosis (i.e. a student has failed to answer a multiple choice question correctly), 

the appropriate missing prerequisite is spliced into the lesson plan  

The control blackboard in the blackboard instructional planner: 

• refines and assesses objectives: what needs to be taught in terms of instructional 

objectives 

• relates activities to objectives: proposes, prioritizes, filters, sequences, and critiques 

activities that support objectives 

• relates procedures to activities: proposes, selects, sequences, and critiques actions that 

support activities 

• partitions lessons 

Smithtown economics tutor 

Smithtown is an ITS designed as a guided discovery world.  Smithtown’s goals are to teach 

students the scientific inquiry process (how to solve problems).  It imparts knowledge and 

prompts actions consistent with good inquiry skills (thinking and planning):   

• tendency to test generalizability of hypotheses  

• use of adequate data collection in testing hypotheses 

• tendency to test systematically (change one variable at a time) 

• tendency to thoroughly investigate cause-effect relationships 
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• tendency to volunteer predictions with respect to outcomes 

Its secondary goal is to impart specific content knowledge in microeconomics, 

specifically the laws of supply and demand.  Smithtown diagnoses student performance by 

comparing student performance with buggy critics (suboptimal behavior) and good critics 

(expert solutions) – as in model tracing.  This critic information is fed to the Smithtown coach 

who then guides the student’s learning experience (Shute, 1990). 

Sherlock 

Sherlock, was developed in the early 1990s to train Air Force personnel on jet aircraft 

troubleshooting procedures. Learners taught using Sherlock performed significantly better than 

the control group and, after 20 hours of instruction, performed as well as technicians with four 

years of on-the-job experience. (Ong, 2006)   

A Cognitive Modeling Framework (COGNET) 

The main components of the COGNET cognitive modeling language are: a problem 

representation blackboard containing declarative knowledge about the situation, procedural 

knowledge represented as tasks, and mechanisms for sensing the external environment 

(perceptual demons) and then acting on it (actions).  (Ryder, 2000) 

Agent-Based Intelligent Tutoring System (ABITS) 

ABITS is organized as a Multi Agent System (MAS) composed by pools of three 

different types of agents (evaluation, pedagogical and affective agents).  Each agent is able to 

solve in autonomous way a specific task and they work together in order to improve web-based 
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tutoring learning effectiveness by adapting instructional materials to user skills and preferences 

(Capuano, 2000).   

The ABITS concept is compatible with the research goal proposed in this thesis in that it 

considers the learner’s preferences.  However this approach does not include consideration for 

personality preferences as predictors for learning style preferences.  The learning style 

preferences selected by the course management system are based on evaluations of the 

pedagogical effectiveness of learning object typologies.  For example, if the knowledge of a 

particular concept has been primarily simulation-based, ABITS infers that the student is 

receptive to simulations and the system increases the "format" preference that refers to 

simulations.  This could be very cumbersome since it is unclear how often this type of 

assessment must be made or how much information is needed to make clear distinction between 

each of the choices of format.  Formats can include text, images, slides, hypertext, video, 

simulations or even virtual reality.  In ABITS, the approach (inductive, deductive or explorative) 

can vary along with interactivity level, semantic density and level of difficulty.   

Learning Preference Models 

 This section reviews multiple learning preference theories including Gardner’s “Multiple 

Intelligences” and Fleming’s “VARK Learning Styles”. 

Theory of Multiple Intelligences 

The theory of multiple intelligences was developed in 1983 by Dr. Howard Gardner, 

professor of education at Harvard University who maintained that we solve problems in seven 

distinct styles and that each style is an “intelligence”.  He theorizes that most people learn by 
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blending several of these styles (Gardner, 1999).  Learning style preferences are shown in italics 

for each intelligence.  The seven intelligences are:  

• Verbal/Linguistic Intelligence: This intelligence, which is related to words and 

language.  It is the ability to think in words and to use language to express and appreciate 

complex meanings.  This includes both written and spoken language.  It is the most 

widely shared human competence and is evident in poets, novelists, journalists, and 

effective public speakers.  Characteristics of this intelligence are: 

o likes to: read, write and tell stories 

o is good at: memorizing names, places, dates and trivia 

o learns best by: saying, hearing and seeing words 

• Logical/Mathematical Intelligence: Often called "scientific thinking," this intelligence 

deals with inductive and deductive thinking/reasoning, numbers and the recognition of 

abstract patterns.  It includes the ability to calculate, quantify, consider propositions and 

hypotheses, and carry out complex mathematical operations.  Logical intelligence is 

usually well developed in mathematicians, scientists, and detectives.  Characteristics of 

this intelligence are: 

o likes to: do experiments, figure things out, work with numbers, ask questions and 

explore patterns and relationships 

o  is good at: math, reasoning, logic and problem solving 

o learns best by: categorizing, classifying and working with abstract 

patterns/relationships 
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• Visual/Spatial Intelligence:  This intelligence, which relies on the sense of sight and 

being able to visualize an object, includes the ability to create internal mental 

images/pictures.  It is the ability to think in three dimensions.  Sailors, pilots, sculptors, 

painters, and architects all exhibit spatial intelligence.  Characteristics of this intelligence 

are:  

o likes to: draw, build, design and create things, daydream, look at pictures/slides, 

watch movies and play with machines 

o is good at: imagining things, sensing changes, mazes/puzzles and reading maps, 

charts 

o learns best by: visualizing, dreaming, using the mind's eye and working with 

colors/pictures 

• Body/Kinesthetic Intelligence: This intelligence is related to physical movement and the 

knowing/wisdom of the body.  It is the capacity to manipulate objects and use a variety of 

physical skills.   Athletes, dancers, surgeons, and craftspeople exhibit well-developed 

bodily-kinesthetic intelligence.  Characteristics of this intelligence include:  

o likes to: move around, touch and talk and use body language 

o is good at: physical activities (sports/dance/acting) and crafts 

o learns best by: touching, moving, interacting with space and processing 

knowledge through bodily sensations.  

• Musical/Rhythmic Intelligence: This intelligence is based on the recognition of tonal 

patterns, sounds, and sensitivity to rhythm and beats.  It is the capacity to discern pitch, 
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rhythm, timbre, and tone.  This intelligence is demonstrated by composers, conductors, 

musicians, vocalists, and sensitive listeners.  Characteristics of this intelligence include:  

o likes to: sing, hum tunes, listen to music, play an instrument and respond to music 

o is good at: picking up sounds, remembering melodies, noticing pitches/rhythms 

and keeping time 

o learns best by: rhythm, melody and music 

• Interpersonal Intelligence: This intelligence operates primarily through person-to 

person relationships and communication.  It is the ability to understand and interact 

effectively with others.  Teachers, social workers, actors, and politicians all exhibit 

interpersonal intelligence.  Characteristics of this intelligence include: 

o likes to: have lots of friends, talk to people and join groups 

o is good at: understanding people, leading others, organizing, communicating, 

manipulating and mediating conflicts 

o learns best by: sharing, comparing, relating, co-operating and interviewing 

• Intrapersonal Intelligence: This intelligence relates to inner states of being, self-

reflection, metacognition (i.e., thinking about thinking) and awareness of spatial realities.  

It is the capacity to understand oneself and one's thoughts and feelings and to use such 

knowledge in planning and directing one's life.  It involves not only an appreciation of 

the self, but also of the human condition. It is evident in psychologists, spiritual leaders, 

and philosophers.  Characteristics of this intelligence include:  

o likes to: work alone and pursue own interests 
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o is good at: understanding self, focusing inward on feelings/dreams, following 

instincts, pursuing interests/goals and being original 

o learns best by: working alone, on individualized projects, with self-paced 

instruction and having their own space 

 

VARK Learning Styles  

VARK (Fleming, 2001) evolved around the learner’s preference for taking in and giving 

information in a learning context.  It has four modalities: visual, aural, reading/writing and 

kinesthetic.  The results of the VARK questionnaire include a description of an individual’s 

stronger preferences and recommended study strategies.   

Visual Learning Style (V): This style includes the need for information in charts, 

graphs, flow charts, and all the symbolic arrows, circles, hierarchies and other devices that 

teachers use to represent what could have been presented in words. This mode does not include 

pictures, movies, videos, virtual simulations or animated websites because they are multimodal 

(visual, aural, read/write and kinesthetic. (Fleming, 2001) 

Aural Learning Style (A): This perceptual mode describes a preference for information 

that is “heard and spoken”.  Learners with style report that they learn best from lectures, group 

discussion, tutorials, student seminars and talking with other students. 

Read/Write Learning Style (R): This modal preference is for information displayed as 

text and printed words. Many teachers in Western cultures have a strong preference for this 

modality. 
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Kinesthetic Learning Style (K): By definition, this modality refers to the “perceptual 

preference related to the use of experience and practice (simulated or real).” Although such an 

experience may include other modalities, the key is that the student is connected to reality, 

“either through experience, example, practice or simulation”. (Fleming & Mills, 1992) In this 

style, students use many senses (sight, tough, taste, hearing, speaking and smell) to experience 

something new. 

The Index of Learning Styles (ILS) 

The Index of Learning Styles © (ILS) is an instrument designed to assess preferences on 

the four dimensions of the Felder-Silverman learning style model (see Appendix B).  The Web-

based version of the ILS is taken hundreds of thousand of times per year and has been used in a 

number of published studies, some of which include data reflecting on the reliability and validity 

of the instrument.  The model’s dimensional pairs are a continuum not a dichotomy.  A 

dimension like “sensing” could be classified as mild, moderate or strong and resulting profiles 

suggest behavioral tendencies rather than being infallible predictors of behavior (Felder and 

Silverman, 2005).  The dimensions of the ILS are: 

• sensing (concrete thinker, practical, oriented toward facts and procedures) or intuitive 

(abstract thinker, innovative, oriented toward theories and underlying meanings); 

• visual (prefer visual representations of presented material, such as pictures, diagrams and 

flow charts) or verbal (prefer written or spoken explanations)  

• active (learn by trying things out,  enjoy working in groups) or reflective (learn by 

thinking things through, prefer working alone or with a single familiar partner) 
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• sequential (linear thinking process, learn in small incremental steps) or global (holistic 

thinking process, learn in large leaps) 

  Personality Preference Models 

There are numerous personality preference models available for use in this research 

including the Keirsey Temperament Sorter, Strength Deployment Inventory, Myers-Briggs Type 

Indicator® (MBTI), Cattell's 16 Personality Factor Model, the Murphy-Meisgeier Type Indicator 

for Children and the Five Factor Model (FFM).  For the purposes of this thesis, we examined two 

of the most prevalent preference models: MBTI and the FFM.  This choice was made based on 

availability, ease of use, the need to limit scope and examine models that represent the variability 

of preferences in adults vice children or infants. 

Myers-Briggs Type Indicator® (MBTI) 

Currently MBTI is the most widely utilized personality preference instrument in the 

world is a tool designed to implement the theories of C. G. Jung, a Swiss psychiatrist, who 

developed a comprehensive theory to explaining human personality.  Jung hypothesized that 

“Much seemingly chance variation in human behavior is not due to chance; it is in fact the 

logical result of a few basic, observable preferences.” (Kroeger, 2001) 

The MBTI instrument was developed by Katherine Briggs and Isabel Briggs Myers to 

make C. G. Jung’s theory of personality types practical and useful in people’s lives.  MBTI 

reflects an individual’s preferences, but does not measure abilities, likelihood of success, 

intelligence, skills, maturity or mental health.  This tool aids in achieving an understanding of the 
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differences of others.  Specifically, MBTI assesses preferences based on Carl Jung’s two 

functions of personality: perception (gathering data; taking in information; observing the world 

around you) and judging (evaluating data; making decisions on information; critiquing your 

observations) (Myers, 1998). 

There are sixteen (16) personality types based on four (4) dichotomies (two functions and 

two attitudes) as follows: 

• Perceiving function (sensing or intuiting): Sensing (S) people seek the fullest 

possible experience of what is immediate and real while Intuitive (N) people seek the 

furthest reaches of the possible and imaginative (Myers, 1998).  

• Judging function (thinking or feeling): Thinking (T) people seek rational order in 

accord with the non-personal logic of cause and effect while Feeling (F) seeks 

rational order in accord with the creation and maintenance of harmony among 

important subjective values (Myers, 1998).  By the way, it is not true that thinkers 

don’t feel and feelers don’t think! 

• Energy Source attitude (introversion or extraversion): For Extraverts (E) energy and 

attention flow out or are drawn out to objects and people in the environment while 

Introverts (I) draw energy from the environment toward inner experience and 

reflection (Myers, 1998).  

• Lifestyle Orientation attitude (judging or perceiving): The Judging (J) attitude is 

concerned with making decisions, seeking closure, planning and organizing while the 

Perceiving attitude is attuned to taking in information (Myers, 1998).  
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None of the four dichotomies stand alone, but are part of an interactive system where the 

lifestyle orientation (judging or perceiving) drives which of the four functions (sensing, intuition, 

thinking and feeling) are dominant.  The sixteen (16) types, shown in Table 1, represent 

preferences and personal interactions.  People of the same type tend to take in information and 

make decisions in a similar way.  It doesn’t mean they do everything the same or that they only 

do things one way.  It means they have preferences for how they do things and in the absence of 

stress follow these preferences.   

Table 1: The 16 personality types in MBTI (Myers, 1998) 

 

 

Five-Factor Model (FFM) 

The Five-Factor Model (FFM) is a much newer model than MBTI that has taken hold in 

the scientific community.  The Big Five Personality Test (John, 2003) is a representative 

instrument that measures the five dimensions of the FFM.  The FFM is not a radical departure 

from the MBTI.  It evolved from it.  However, FFM is sufficiently different from MBTI to 

require a significant shift in thinking.   Per Howard (2004) the characteristics of FFM include: 

• five dimensions of personality (vice four in MBTI); 

• a normal distribution of scores on these dimensions (vice a bi-modal distribution 

[dichotomy] in MBTI); 

• an emphasis on individual personality traits (vice the type concept in MBTI); 
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• preferences indicated by strength of score, and 

• a model based on experience, not theory. 

“Each of the Big Five dimensions is like a bucket that holds a set of traits that tend to 

occur together.  The definitions of the five super factors represent an attempt to describe the 

common element among the traits, or sub-factors, within each "bucket.” (Howard, 2004) The 

five factors are: 

• Openness (O): refers to the degree to which we are open to new experiences/new ways of 

doing things, and encompasses four traits (imagination, complexity, change and scope) 

across a continuum of preserver > moderate > explorer (Howard, 2004).  High scorers tend to 

be original, creative, curious and complex; Low scorers tend to be conventional, down to 

earth, have narrow interests and be uncreative (John, 2003). 

• Conscientiousness (C) refers to the degree to which we push toward goals at work, and 

encompasses five traits (perfectionism, organization, drive, concentration and 

methodicalness) across a continuum of flexible > balanced > focused (Howard, 2004).   High 

scorers tend to be reliable, well-organized, self-disciplined and careful; Low scorers tend to 

be disorganized, undependable and negligent (John, 2003). 

• Extraversion (E): refers to the degree to which a person can tolerate sensory stimulation 

from people and situations, and encompasses six traits (enthusiasm, sociability, energy mode, 

taking charge, trust of others and tact) across a continuum of introvert > ambivert > extravert 

(Howard, 2004).  High scorers tend to be sociable, friendly, fun loving and talkative; Low 

scorers tend to be introverted, reserved, inhibited and quiet (John, 2003). 
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• Agreeableness (A): refers to the degree to which we defer to others, and encompasses five 

traits (service, agreement, deference, reserve and reticence) across a continuum of challenger 

> negotiator > adapter (Howard, 2004).  High scorers tend to be good natured, sympathetic, 

forgiving and courteous; Low scorers tend to be critical, rude, harsh and callous (John, 2003).  

• Neuroticism (N): refers to the degree to which a person responds to stress and encompasses 

four traits (sensitiveness, intensity, interpretation and rebound time) across a continuum of 

resilience > responsiveness > reactiveness (Howard, 2004).  High scorers tend to be nervous, 

high-strung, insecure and worriers; Low scorers tend to be calm, relaxed, secure and hardy 

(John, 2003).   

Howard uses slightly different terms to characterize the five factors.  He uses originality 

vice openness, consolidation vice conscientiousness, accommodation vice agreeableness and the 

need for stability vice neuroticism.  Each factor is measured as low (< 45), medium (> 45 and < 

55) and high (> 55).   

The dimensionality and quantitative nature of FFM provides the ability to represent a 

finer granularity of personality traits than MBTI.  An example of the quantitative nature of FFM 

is shown in the model’s relationship to age.  From age 20 to age 30, need for stability, 

extraversion, and originality tend to decrease, while accommodation and consolidation tend to 

increase (Howard, 2004).  For the purposes of this study, FFM will be utilized as the preference 

model based on its quantitative characteristics.  This research will evaluate independent variables 

in FFM in regards to their ability to predict the appropriate selection of instructional strategies 

(specifically media needs).     
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Statistical studies: Correlations between MBTI and FFM 

McCrae and Costa (1989) studied correlations between the MBTI scales and the FFM 

personality construct. The study was based on the results from 267 men who were followed as 

part of a longitudinal study of aging. (Similar results were obtained with 201 women.)  This data 

suggests that four of the MBTI scales are related to the FFM personality traits. The correlation 

study indicates that the MBTI Extraversion-Introversion (E-I) dichotomy has a strong negative 

correlation with the FFM Extraversion trait and the MBTI Sensing-Intuiting (S-N) dichotomy 

has a strong positive correlation with the FFM Openness trait.  The MBTI Thinking-Feeling (T-

F) and Judging-Perceiving (J-P) dichotomies are more weakly related to the FFM Agreeableness 

and Conscientiousness traits respectively. The neuroticism dimension of the FFM is largely 

absent from the MBTI. 

Split-half reliability of the MBTI scales is good, although test-retest reliability is sensitive 

to the time between tests. However, because the MBTI dichotomies scores in the middle of the 

distribution, type allocations are less reliable. Within each scale about 83% of categorizations 

remain the same when retested within nine months, and around 75% when retested after nine 

months. About 50% of people tested within nine months remain the same overall type and 36% 

remain the same after nine months. (Harvey, 1996) 

Have there been any studies regarding correlations between personality preferences and 

learning style preferences?  Rosati (1995) published the only correlation study looking at 

personality preferences and learning style preferences using MBTI and ILS.  The MBTI and ILS 

were administered to the same students and he found: 
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• Most students that were “sensing” on ILS were also “sensing: on MBTI with the 

association being highly significant. 

• There was a correlation between “active” learning on ILS and “extraversion” on 

MBTI; “active” learners were significantly more “extraverted” and “perceiving” 

• “Sequential” learners in ILS were more likely to be “sensors” than “intuitors” on 

MBTI 

However, these results provide no basis to predict the degree/probability of sensing 

behavior in a “sensing” learner based on being an MBTI sensor since MBTI does not measure 

the degree of sensing.  

Gaps: Specific Research Questions that have not been addressed 

• Specifically, how do FFM personality preference variables (i.e. openness, 

conscientiousness…) relate to ILS learning style preferences (i.e. visual, sequential, 

reflective…)?   

• Is there a strong correlation?  

• Can a dependency between any two variables be established? 

• Are FFM personality preferences variables good predictors of learning style preferences?   
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Proposed Concept: Models, Approaches and Techniques 

Proposed Models 

 The FFM variables will be used (vice MBTI) for the experimentation and analysis 

proposed in this thesis since their construct validity and predictive validity is not in question.  

The FFM instrument is conveniently available online at http://www.outofservice.com/bigfive/ 

 The Index of Learning Styles (ILS) will be used for the experimentation and analysis 

proposed in this thesis.  This selection is based on reliability, the validity of the instrument and 

the convenience of taking the instrument online.   

What is known about the reliability and validity of the ILS?  Three studies have 

examined the independence, reliability, and construct validity of the four instrument scales. The 

authors (Felder and Spurlin, 2005; Zywno, 2003; Litzinger, et al, 2005) concluded that the ILS 

meets standard acceptability criteria for instruments of its type. 

The factor analysis conducted shows the eight factors, corresponding scales and 

questionnaire items shown in Table 2.  

Table 2: Factors in the Eight Factor Solution (Litzinger, 2005) 
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The result of the factor analysis is shown in Table 3.  The factor analysis, combined with 

the estimates of reliability, provides evidence of construct validity for the ILS. 

Table 3: ILS Factor Analysis (Litzinger, 2005) 
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Proposed Approaches and Techniques 

 This thesis proposes a regression analysis for the one-on-one interactions between FFM 

variables and ILS variables.  SEM (structure equation modeling) analysis, which is an extension 

of a path analysis, will be used to study the patterns of relationships among the several variables 

that constitute the FFM and the ILS.  The SEM analysis will produces a diagram indicating 

specific manner by which variables are related (i.e., paths) and strength of those relationships.  It 

will also clarify the direct and indirect of relationships among variables based on underlying 

theoretical constructs.  AMOS (Analysis of Moment Structures) 5.0.1, a SEM analysis computer 

program will be used to conduct this analysis.  
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CHAPTER THREE: RESEARCH METHODS 

Chapter Three Summary 
 
 This chapter reviews the research goal for this thesis, a proposed hypothesis and research 

methods selected for the correlation analysis of variables contained in the FFM and the ILS.  The 

protocol for this study was submitted to the University of Central Florida (UCF) Institutional 

Review Board (IRB) for approval.  The results of their review are in Appendix A.   

Research Goal 
 
 The primary research goal for this thesis is to investigate relationships between 

personality preferences, learning style preferences, and learning.    

Proposed Hypotheses 
 

The null hypothesis one, H0 is:  There is no dependency between personality preference 

variables and learning style preference variables.  Dependency will be measured by using 

regression analysis to determine standardized direct effects (also known as correlation 

coefficients or multiple R) and model fit was determined by the comparative fit index (CFI) 

using the AMOS structural equation modeling tool.  The Microsoft Excel data analysis package 

and AMOS were used to determine significant correlations of the individual results of both the 

Big Five Personality Test and the Index of Learning Styles questionnaire.    The sub hypotheses 

tested were: 

• Sub null hypothesis H0A: There is no dependency between personality preference 

variables and the active-reflective learning style preference. 
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• Sub null hypothesis H0B: There is no dependency between personality preference 

variables and the sequential-global learning style preference. 

• Sub null hypothesis H0C: There is no dependency between personality preference 

variables and the sensing-intuiting learning style preference. 

• Sub null hypothesis H0D: There is no dependency between personality preference 

variables and the visual-verbal learning style preference. 

The alternate hypothesis one, H1 is: There is a dependency between personality 

preference variables and learning style preference variables.  

Model Development and Testing Process 
 

In order to investigate the above hypothesis, research was conducted involving two 

groups of participants.  Seventy-five percent of the sample (75 people) were randomly assigned 

to Group A and their data was used to support model development.  Twenty-five percent were 

assigned to Group B and their data was used to support model validation.  The minimum sample 

size of seventy-two (72) was selected based on the number of variables (five FFM variables + 

four ILS variables x eight participants per variable).  AMOS, the structural equation modeling 

tool used in this study, generally calls for fifteen (15) participants per independent variable (five 

FFM variables * 15 participants per variable = 75 participants).  Both groups of participants were 

randomly drawn from a population of engineering professionals, simulation industry 

professionals and students in the Greater Orlando, Florida area.  The demographics for this group 

are summarized in Table 4. 
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Group A test participants will be administered the FFM and ILS online.  The correlation 

data derived through the regression analysis shown in Figure 5 will be used to construct a 

predictive model for use in an ITS instructional planner.   

 

 

 

Figure 1: Analysis and Model Development Process 

 
This research will utilize linear regression modeling, but will also use SEM (structural 

equation modeling) analysis, which is an extension of a path analysis to study the patterns of 

relationships among the variables that constitute the FFM and the ILS.  The SEM analysis 

produces a diagram indicating the specific manner by which variables are related (i.e. paths) and 

strength of those relationships.  It will also clarify the direct and indirect of relationships among 

variables based on underlying theoretical constructs.  AMOS 5.0.1, a SEM analysis computer 

program will be used to conduct this analysis.  Data from this analysis will be derived from the 

two instruments (FFM and ILS) consisting of five and four variables respectively.   Once the 

SEM analysis is complete, the correlation data will be used to construct a predictive model for 
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use in an ITS instructional planner.  The predictive model will then be tested in an experiment 

with Group B.  

In Group B, the process in Figure 2 will be used to validate the model developed from 

Group A’s preference data: 

• the Group B participants will take FFM online; 

• the researcher will take the FFM data and use it as input for the predictive model; 

• the researcher will run model which will predict appropriate preferences; 

• the participants will be exposed to the training scenario shown in Appendix C;  

• the participants will then be queried about the media presented in the training 

scenario using the media feedback survey in Appendix D to ascertain if the 

training scenario supported their learning style preferences; 

• the predicted learning style preferences (expected results) will be compared with 

the student’s actual learning style preference based on the participant’s 

observations of the media. 
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Figure 2: Experimentation Process 

 
Ideally, the variance between the predicted learning style preferences and the 

participant’s actual learning style preference should be small.  If it is not, the predictive model 

will be adjusted and additional participants will be tested as needed to validate the model.      

Scope and Limitations of Evaluation 

 Even a strong correlation between personality preference and learning preference 

variables does not guarantee an increase in learning.  The correct media could be selected and 

ignored due to lack of motivation, boredom, frustration or another emotion.  Additional work is 

needed to integrate the influences of parameters like motivation and trust into a comprehensive 
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instructional planner that might look like the conceptual model shown in Figure 3.  The portion 

of the model shown within the dotted line is the defined scope for this thesis.   

 

Figure 3: Scope and Limitations of Research 
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CHAPTER FOUR: DATA AND ANALYSIS 

Chapter Four Summary 

This chapter reviews the characteristics of the data collected including demographic 

breakouts and descriptive statistics for the key variables.  A regression analysis is conducted.  

Correlation coefficients are tested for significance.   Predictive models are developed based on 

highly significant correlations and the models are tested to minimize error and are validated by a 

media feedback survey.  The responses of the media feedback survey are analyzed.   A structural 

equation model is constructed and compared to the regression analysis for consistent results. 

Data Summary 

Group A was comprised of seventy-five randomly selected participants.  Group A data was used 

as the basis for regression analysis and development of a predictive model.  Group A provided 

demographic data via the survey in Appendix E.  Group A demographics are shown in 
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Table 4.  Subgroups were used to examine more specific correlations and included two 

subgroups for age (younger than 30 years old and 30 years old and older), two subgroups for 

gender (male and female) and three subgroups for educational level (high school graduate 

without a degree, Bachelors Degree and Masters/PhD).  Participants were at least 18 years old. 
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Table 4: Group A Demographics 

 

Variable data was collected from Group A participants that included the results of the Big 

Five Personality Test and the Index of Learning Styles.  The data was compiled in a spreadsheet 

and analyzed per the methods described in Chapter Three.  Table 5 provides the descriptive 

statistics for the five independent variables of the Five Factor Model (FFM) collected via the Big 

Five Personality Test.  
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Table 5: Descriptive Statistics for the Group A Five Factor Model Variables 
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Table 6 provides descriptive statistics the four dependent variables of the Felder-

Silverman Learning Style Model collected via the Index of Learning Styles (ILS) instrument.    

Table 6: Descriptive Statistics for the Group A Index of Learning Styles Data 
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Data Analysis and Model Development 

The first step in the development of a predictive model of learning styles was to conduct 

a linear regression with the data from the seventy-five participants that make up Group A.  

Linear regression was conducted pair wise to identify correlations.  The linear regression was 

conducted on the entire sample in Group A and defined subgroups (males, females, age ≥ 30, age 

<30, high school graduates, Bachelors degree, Masters/PhD degree and combinations of these 

subgroups).  The scatter diagrams with trend lines for the twenty (20) variable pairs (i.e. 

extraversion vs. sensing-intuitive) are shown in Appendix F.    

For each ILS factor (Active-Reflective, Sensing-Intuitive, Visual-Verbal and Sequential-

Global) and group/subgroup, the regression equation(s) with the greatest absolute value of slope 

and standardized direct effect (also known as correlation coefficient and multiple R) was selected 

to test for significance.  Only those highly significant (p ≤ 0.05) regression equations were used 

to predict learning styles. 

Table 7 through Table 10 show significance tests in blue (high significance with a 

probability, p = 0.05, 0.01 or 0.001) and red (low significance with a p > 0.05).   The items in 

gray were not tested for significance since they were not the highest correlated items in the 

treatment they were in.   

The null hypothesis, H0, asserted that there is no dependency between personality 

preference variables and learning preference variables.  Based on a desired minimum confidence 

level of 95%, treatments not meeting these criteria were discarded.  The correlation coefficient 
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and significance testing provided the criteria to reject the null hypothesis.  The results of the 

regression analysis/significance testing for each treatment are contained in Appendix G.    

Table 7: Results of significance testing for predictors of the Active-Reflective scale 

 

Referencing Table 7, there are highly significant correlations between extraversion (E) 

and the active-reflective (AR) learning style scale.  All eight treatments tested demonstrated high 

significance at a probability, p ≤ 0.01 (confidence level ≥ 99%).     

Openness, conscientiousness, agreeableness and neuroticism had lower correlations and 

therefore, were not as significant of a predictor of the AR learning style as extraversion.  The sub 

null hypothesis, H0A, asserted that there is no dependency between the personality preference 

variables and the AR learning style preference variable.  This sub null hypothesis can be 

rejected. 

Table 8: Results of significance testing for predictors of the Sensing-Intuitive scale 

 

Referencing Table 8, there are highly significant correlations between openness (O) and 

the sensing-intuitive (SI) learning style scale.  Six (6) of the eight treatments tested demonstrated 

high significance at a probability, p ≤ 0.01 (confidence level ≥ 99%).  The two (2) other 
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treatments tested were determined to have low significance in relationship to our criteria and 

were not used as production rules in our cognitive model.  Conscientiousness, agreeableness and 

neuroticism had lower correlations and therefore, were not as significant of a predictor of the SI 

learning style as openness and extraversion. 

Table 9: Results of significance testing for predictors of the Visual-Verbal scale 

 

Referencing Table 9, there are three (3) of eight (8) treatments tested that demonstrated 

highly significant correlations between openness (O) and the visual-verbal (VV) learning style 

scale.  One (1) of the treatments tested demonstrated a highly significant correlation between 

extraversion (E) and the visual-verbal learning style scale. The remaining five (5) treatments 

tested were determined to have low significance in relationship to our criteria.  

Conscientiousness, agreeableness and neuroticism had lower correlations and therefore, were not 

as significant of a predictor of the VV learning style as openness and extraversion. 

Table 10: Results of significance testing for predictors of the Sequential-Global scale 

 

Referencing Table 10, there was only one (1) of ten (10) treatments that demonstrated 

highly significant correlations between any of the five factors and the sequential-global (SG) 
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learning style scale.  The Bachelors Degree subgroup was determined to have a highly 

significant correlation between openness (O) and the sequential-global learning style.  The 

remaining nine (9) other treatments tested were determined to have low significance in 

relationship to our criteria.  Conscientiousness, extraversion, agreeableness and neuroticism had 

lower correlations and therefore, were not as significant of a predictor of the SG learning style as 

openness. 

Based on the results of the significance testing, null hypotheses noted in Table 11 were 

rejected since it was determined that highly significant relationships exist between these 

variables. 

Table 11: Rejection of the Null Hypotheses 

 

 
 

Based on the significant correlations noted above, a predictive model was developed 

using the mathematical relationships from the regression analysis as “production rules” to predict 

learning style preferences.  As a basis, the regression equation of each treatment (i.e. AR 

predicted by E) is used.  Again, only the equations that provide a 95% or greater confidence level 

are used in the model.   

The mathematical equation for the regression equation with the best fit for AR predicted 

by E is: 
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Equation 1: AR = slope * E + b 

A regression line was calculated for each significant treatment and multiple predictions of 

AR are generated in the model.  To weight the impact of each linear regression calculation, each 

of the predicted AR values is multiplied by the confidence level and then summed.  The result is 

divided by the sum of the confidence levels as shown in Equation 2.  This equation was also 

applied to the other models for SI, VV and SG learning style preferences. 

Equation 2: Predictive Model for i significant treatments  

AR Predicted = ∑ (ARi * Confidencei)/∑ Confidencei 

Next, the predictive model was tested against the known data in Group A to detect and 

minimize errors.  Once the errors were minimized for the set of Group A data, the predictive 

model was then applied to the Group B data to predict learning styles and validate/invalidate the 

model. 

Predictive Models 

Since most of the population (67%) demonstrates a preference for the “active” learning 

style preference (Montgomery, 1995), the predictive model for AR was setup to only select 

“reflective” when the calculations demonstrated a very clear preference for the reflective 

learning style.  The predictive model for AR was set up to select the “reflective” learning style 

preference when the “AR Predicted” value is greater than 14.436.  This value provided the 

minimum error and was derived from the mean of AR plus or minus the average error computed 

for Group A.  The average numerical error between the predicted values and the actual values for 

Group A was 3.236.  Since the mean of AR is 11.2, this yields two values 7.964 and 14.436.  
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Any computed value of AR > 14.436 and < 7.964 is less ambiguous and is more clearly 

“reflective” or “active” respectively.  Any ambiguous values (7.964 > AR >14.436) are assumed 

to be “active” based on expected population norms.   

The AR predictive model (based on Group A data) output an error (selected the wrong 

learning style) 20% of the time.  This was also the expected error rate for Group B, the model 

validation group.  In actuality, Group B output an error 16% of the time with an average 

numerical error of only 1.207 vice 3.236 in Group A.  These error rates are significantly lower 

than the expected 33% error rate that would have been realized if the only choice was “active”.   

The predictive results for the refined model based on Group A data are shown in Table 12. 
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Table 12: Group A results for predicting Active-Reflective learning style preferences 
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Table 13: Group B results for predicting Active-Reflective learning style preferences 

 

The model development and validation process involved implementing the AR model 

developed from Group A data with Group B FFM inputs to predict learning styles.  Group B 

results are shown in Table 13.  Group B also provided ILS inputs to aid in model validation. 
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Table 14: Group A results for predicting Sensing-Intuitive learning style preferences 

 

 The same process was followed with the Group A data to develop a predictive model for 

SI and then the model was validated against data from Group B.  Results for the Group A data 

are shown in Table 14 and Group B results are shown in Table 15.  About five (5) out of every 

six (6) participants were correctly predicted to either be “sensing” or “intuitive”. 
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Table 15: Group B results for predicting Sensing-Intuitive learning style preferences 

 

Only three (3) highly significant relationships were used to try to predict VV learning 

style preferences.  The three (3) production rules (predictive relationships) included relationships 

to characteristics that included age ≥ 30, female and Masters/PhD.  This left out some 

participants who were either age < 30, males, high school graduates or had Bachelors degrees.  

There were insufficient productions rules to reach a prediction for each participant (in either 
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Group A or Group B).   The results are shown in Table 16 for Group A and Table 17 for Group 

B. 

Table 16: Group A results for predicting Visual-Verbal learning style preferences 

 

Although the three (3) predictors were statistically significant, they were impractical as a 

model to predict VV learning style preferences. 
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Table 17: Group B results for predicting Visual-Verbal learning style preferences 

 

Only one (1) highly significant relationship was used to try to predict SG learning style 

preferences.  The only production rule (predictive relationships) included a relationship between 

participants who held a Bachelors Degree and the SG learning style (either sequential or global).  

This left out predictors for a large number of participants who were outside the Bachelors Degree 

subgroup.  There were insufficient productions rules to reach a prediction for each participant (in 
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either Group A or Group B).   The results are shown in Table 18 for Group A and Table 19 for 

Group B. 

Table 18: Group A results for predicting Sequential-Global learning style preferences 
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Table 19: Group B results for predicting Sequential-Global learning style preferences 
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Survey Response Analysis 

The participants in Group B were asked to take a short course on how to solve Sudoku 

number puzzles (Instructables, 2006).  The course was presented in a slide presentation format 

and afterwards the twenty-five participants were asked to answer the twelve questions shown in 

the media feedback survey in Appendix D.  Each question in the survey related to a learning 

style preference dichotomy.  Based on the predictive model, responses to the survey were also 

predicted. 

Since no satisfactory prediction model for VV and SG were generated, the six (6) 

questions related to both VV and SG were eliminated from the analysis.  Predicted responses 

were provided and compared to actual responses.  The difference in actual and predicted 

responses determined the error rate calculated for each question and shown in Equation 3.    

Equation 3: Response Error Calculation:   

∑ |Actual Response-Predicted Response| /Maximum Error  
 

The “Maximum Error” is equal to the total # of responses * (highest response possible – 

lowest response possible).  In this case, there are twenty-five (25) responses for each question 

and the highest possible response is five (5) and the lowest possible response is one (1).  

Therefore “Maximum Error” for each question is one hundred (100).  The “Response Error 

Calculation” is a percentage of the maximum possible error.  The actual and predicted responses 

along with the “Response Error” calculation results are shown in Table 20.  The total error across 

all six questions is 20.3%.  This is consistent with the results from our predictive models for both 

AR and SI learning style preferences. 
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Table 20: Media feedback survey predicted and actual responses  

 

 The analysis of responses is shown in Table 21.  The distribution of actual responses is 

consistent with percentage of participants expected to agree/disagree with media format of 

training scenario.  The scenario provide was very active in content and the expectation was that 

people with active learning style preferences would agree that the format provided met their 

68 



 

learning needs.  The reflective learners on the other hand would tend to disagree.  The same 

expectation held true for participants with sensing and intuitive learning style preferences. 

Table 21: Response Analysis 
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Structural Equation Modeling 
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Figure 4: SEM Model for Active-Reflective (Group A - AMOS) 

 The model shown in Figure 4 was generated using the structural equation modeling tool, 

AMOS 5.0.1 (Build 5152).  The advantage of using AMOS is that a multivariate analysis can be 

easily be conducted that evaluates the strength of the paths (or relationships).  This is more 

comprehensive since AMOS examines all the interactions between variables.  The diagram 
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shows that the path (relationship) between extraversion and active-reflective has a correlation 

coefficient of -0.61 indicating an inverse relationship between these variables.  This coefficient 

tells us that as extraversion goes up one standard deviation, active-reflective goes down by 0.61 

standard deviations.  A path is significant at the 95% confidence level when the absolute value of 

the critical ratio (C.R.) shown in Table 22 is > 1.96.  Both extraversion and openness have 

significant relationships with active-reflective.  This comparable to the regression analysis 

conducted earlier.   

Table 22: Regression Weights: (Group A - AR model from AMOS) 

   Estimate S.E. C.R. P Label 
Active-Reflective <--- Openness -.048 .016 -2.900 .004 par_1 
Active-Reflective <--- Neuroticism -.008 .013 -.626 .532 par_11 
Active-Reflective <--- Agreeableness -.008 .016 -.483 .629 par_12 
Active-Reflective <--- Conscientiousness .003 .015 .203 .839 par_13 
Active-Reflective <--- Extraversion -.115 .016 -7.153 *** par_14 

 The comparative fit index (CFI) for the Group AR structural equation model in Figure 4 

is 1.000.  CFI values can range from 0.1 and a CFI close to 1.000 indicates a good fit (Bentler, 

1990).  Fifty percent (50%) of the effect on AR was accounted for by the five factors in this 

model.   
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The model shown in Figure 5 shows the strongest path between a Five Factor Model 

variable and sensing-intuitive is the correlation of 0.47 between openness and SI.  In Table 23, 

only the critical ratio for openness exceeds 1.96 and is therefore the only variable with a 

significant correlation at the 95% confidence level.    
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Figure 5: SEM Model for Sensing-Intuitive (Group A - AMOS) 
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The CFI for the SI model in Figure 5 is 1.000 indicating a good fit.  Approximately 22% 

of the effect on SI was accounted for by the five factors in this model. 

 

Table 23: Regression Weights: (Group A - SI model from AMOS) 

   Estimate S.E. C.R. P Label 
Sensing-Intuitive <--- Extraversion -.034 .022 -1.562 .118  
Sensing-Intuitive <--- Agreeableness -.008 .022 -.367 .714  
Sensing-Intuitive <--- Neuroticism -.015 .018 -.871 .383  
Sensing-Intuitive <--- Conscientiousness -.009 .021 -.440 .660  
Sensing-Intuitive <--- Openness .097 .022 4.368 ***  
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CHAPTER FIVE: THESIS SUMMARY, RESEARCH CONCLUSIONS, LESSONS 
LEARNED AND SUGGESTED FUTURE RESEARCH 

Chapter Five Summary 

 This chapter reviews the objectives of the thesis including motivations, processes, 

findings and conclusions.  Limitations of the scope and testing methods are also discussed along 

with lessons learned and future research.  

Thesis Summary 

This thesis evaluated the relationship between personality preferences and learning style 

preferences in regard to ITS selection of media.   “From the human-computer interaction point of 

view a careful examination is necessary of how to adapt the learning environment to the learner’s 

goal and capability” (Oppermann, 1997).  This thesis examined methods of predicting the media 

needs of learners that interact with ITS. 

Thesis Limitations 

Focusing on the direct effects of learning styles on media selection and personality 

preferences as predictors of learning style allowed this researcher to examine and experimentally 

establish learning style and personality preference relationships without the additional 

complexities of addressing student goals and knowledge gaps.  This should be the goal of future 

research, but was not part of this research.  

Conclusions 

 The null hypothesis that “there is no dependency between personality preference 

variables and learning style preference variables” was partly rejected based on the results of the 
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correlation study of variables of the Big Five Personality Test and the Index of Learning Style 

for the sample population and measurement tools (Microsoft Excel data analysis package and 

AMOS) selected.  Highly significant correlations between the personality preferences, openness 

and extraversion, were established for both the active-reflective and sensing-intuitive learning 

style preferences.  Specifically, there is a dependent relationship between extraversion and the 

active-reflective scale and openness and the sensing-intuitive scale.  The significance of these 

relationships is at p ≤ 0.01.  The sub null hypotheses for these cases are rejected in favor of the 

alternative hypothesis.   

  The sub null hypotheses for the following cases are rejected, but not in favor of the 

alternative hypothesis: 

• relationship between sensing-intuiting learning preferences and extraversion 

• relationship between visual-verbal learning preferences and extraversion 

• relationship between visual-verbal learning preferences and openness 

• relationship between sequential-global learning preferences and openness 

The results were highly significant, but due to the limited number of significant results a viable 

predictive model could not be realized.  The lack of a predictive model limits the ability to accept 

the alternative hypothesis. 

 The two models developed to predict learning style preferences had an error rate of ≤ 

20%.  This was far superior to guessing (50% error rate) or selecting one variable (i.e. active 

learning style) for every participant (30-49% error rate). 
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Lessons Learned 

A more complex methodology could be undertaken with a larger participant pool.  This 

would allow for refined subgroups while still maintaining the numbers needed for adequate 

statistical power.  For example, subgroups in this study were male or high school graduate or age 

< 30.  Larger sample populations would allow subgroup dyads or triads like male high school 

graduate age < 30 to be part of the study.   

Future Research 

 A more expansive study should be undertaken to provide a larger validation group and 

additional refinement of the models developed in this thesis.  Given additional time and 

resources, a more complex analysis could be pursued that includes methods to evaluate and 

predict student goals, knowledge gaps, motivation, values, trust and other variables critical to the 

learning process.  The impact or effect size of implementing these strategies should be addressed 

in future research. 
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APPENDIX A: INSTITUTIONAL REVIEW BOARD (IRB) LETTER 
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APPENDIX B: INDEX OF LEARNING STYLES (ILS) QUESTIONNAIRE AND 
LICENSE FOR USE 
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Copyright © 1991 North Carolina State University (Authored by Richard M. Felder and Barbara 
A. Soloman).  Reprinted by permission of North Carolina State University 

This appendix includes the ILS questionnaire, a license for use at educational institutions for 
educational purposes and an ILS sample report.  In compliance with the license, a copyright is 
posted above. 

Index of Learning Styles  

LICENSE FOR USE AT EDUCATIONAL INSTITUTIONS FOR EDUCATIONAL 
PURPOSES  

This license relates to the “Index of Learning Styles” and associated documentation (ILS 
questionnaire, scoring key, report form, and “Learning Styles and Strategies” handout, 
collectively referred to as “Material”). Permission is hereby granted, free of charge, to use the 
Material without restriction, including without limitation the rights to use, copy, and distribute 
copies of the Material for the internal use of your institution for teaching, advising, staff 
development, and/or research, subject to the following conditions:  

1. The copyright notice,  

Copyright © 1991 North Carolina State University (Authored by Richard M. 
Felder and Barbara A. Soloman). Reprinted by permission of North Carolina 
State University 

must be included in all copies of substantial portions of the Material.  

2. The Material will not be distributed outside your institution, or used within the institution 
for any purposes but teaching, advising, staff development, and research.  

3. The material is provided "as is," without warranty of any kind, express or implied, 
including but not limited to the warranties of merchantability, fitness for a particular 
purpose and noninfringement. In no event shall the authors or copyright holders be liable 
for any claim, damages or other liability, whether in an action of contract, tort or 
otherwise, arising from, out of or in connection with the material or the use or other 
dealings in the material.  
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ILS Questionnaire Directions  
 

For each of the 44 questions below, select either "a" or "b" to indicate your answer.  Please 
choose only one answer for each question. If both "a" and "b" seem to apply to you, choose the 
one that applies more frequently.    

1) I understand something better after I 

(a) try it out. 

(b) think it through.  

2) I would rather be considered 

(a) realistic. 

(b) innovative.  

3) When I think about what I did yesterday, I am most likely to get 

(a) a picture. 

(b) words.  

4) I tend to 

(a) understand details of a subject but may be fuzzy about its overall structure. 

(b) understand the overall structure but may be fuzzy about details.  

5) When I am learning something new, it helps me to 

(a) talk about it. 

(b) think about it.  

6) If I were a teacher, I would rather teach a course 

(a) that deals with facts and real life situations. 

(b) that deals with ideas and theories.  
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7) I prefer to get new information in 

(a) pictures, diagrams, graphs, or maps. 

(b) written directions or verbal information.  

8) Once I understand 

(a) all the parts, I understand the whole thing. 

(b) the whole thing, I see how the parts fit.  

9) In a study group working on difficult material, I am more likely to 

(a) jump in and contribute ideas. 

(b) sit back and listen.  

10) I find it easier 

(a) to learn facts. 

(b) to learn concepts.  

11) In a book with lots of pictures and charts, I am likely to 

(a) look over the pictures and charts carefully. 

(b) focus on the written text.  

12) When I solve math problems 

(a) I usually work my way to the solutions one step at a time. 

(b) I often just see the solutions but then have to struggle to figure out the steps to 

get to them.  

13) In classes I have taken 

(a) I have usually gotten to know many of the students. 

(b) I have rarely gotten to know many of the students.  
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14) In reading nonfiction, I prefer 

(a) something that teaches me new facts or tells me how to do something. 

(b) something that gives me new ideas to think about.  

15) I like teachers 

(a) who put a lot of diagrams on the board. 

(b) who spend a lot of time explaining.  

16) When I'm analyzing a story or a novel 

(a) I think of the incidents and try to put them together to figure out the themes. 

(b) I just know what the themes are when I finish reading and then I have to go 

back and find the incidents that demonstrate them.  

17) When I start a homework problem, I am more likely to 

(a) start working on the solution immediately. 

(b) try to fully understand the problem first.  

18) I prefer the idea of 

(a) certainty. 

(b) theory.  

19) I remember best 

(a) what I see. 

(b) what I hear.  

20) It is more important to me that an instructor 

(a) lay out the material in clear sequential steps. 

(b) give me an overall picture and relate the material to other subjects.  
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21) I prefer to study 

(a) in a study group. 

(b) alone.  

22) I am more likely to be considered 

(a) careful about the details of my work. 

(b) creative about how to do my work.  

23) When I get directions to a new place, I prefer 

(a) a map. 

(b) written instructions.  

24) I learn 

(a) at a fairly regular pace. If I study hard, I'll "get it." 

(b) in fits and starts. I'll be totally confused and then suddenly it all "clicks."  

25) I would rather first 

(a) try things out. 

(b) think about how I'm going to do it.  

26) When I am reading for enjoyment, I like writers to 

(a) clearly say what they mean. 

(b) say things in creative, interesting ways.  

27) When I see a diagram or sketch in class, I am most likely to remember 

(a) the picture. 

(b) what the instructor said about it.  
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28) When considering a body of information, I am more likely to 

(a) focus on details and miss the big picture. 

(b) try to understand the big picture before getting into the details.  

29) I more easily remember 

(a) something I have done. 

(b) something I have thought a lot about.  

30) When I have to perform a task, I prefer to 

(a) master one way of doing it. 

(b) come up with new ways of doing it.  

31) When someone is showing me data, I prefer 

(a) charts or graphs. 

(b) text summarizing the results.  

32) When writing a paper, I am more likely to 

(a) work on (think about or write) the beginning of the paper and progress 

forward. 

(b) work on (think about or write) different parts of the paper and then order 

them.  

33) When I have to work on a group project, I first want to 

(a) have "group brainstorming" where everyone contributes ideas. 

(b) brainstorm individually and then come together as a group to compare ideas.  
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34) I consider it higher praise to call someone 

(a) sensible. 

(b) imaginative.  

35) When I meet people at a party, I am more likely to remember 

(a) what they looked like. 

(b) what they said about themselves.  

36) When I am learning a new subject, I prefer to 

(a) stay focused on that subject, learning as much about it as I can. 

(b) try to make connections between that subject and related subjects.  

37) I am more likely to be considered 

(a) outgoing. 

(b) reserved.  

38) I prefer courses that emphasize 

(a) concrete material (facts, data). 

(b) abstract material (concepts, theories).  

39) For entertainment, I would rather 

(a) watch television. 

(b) read a book.  

40) Some teachers start their lectures with an outline of what they will cover. Such 

outlines are 

(a) somewhat helpful to me. 

(b)  very helpful to me.  
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41) The idea of doing homework in groups, with one grade for the entire group, 

(a) appeals to me. 

(b) does not appeal to me.  

42) When I am doing long calculations, 

(a) I tend to repeat all my steps and check my work carefully. 

(b) I find checking my work tiresome and have to force myself to do it.  

43) I tend to picture places I have been 

(a) easily and fairly accurately. 

(b) with difficulty and without much detail.  

44) When solving problems in a group, I would be more likely to 

(a) think of the steps in the solution process. 

(b) think of possible consequences or applications of the solution in a wide range 

of areas.   
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A sample report for the ILS is shown in Figure 6 below. 

 

Figure 6: Sample Learning Style Results from ILS 
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APPENDIX C: TRAINING SCENARIO FOR THE EXPERIMENTATION PROCESS 
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In lieu of creating a large number of scenarios to match every conceivable learning style 

preference combination, the experiment for this thesis will provide a single scenario that is 

purposely biased to provide: 

• high active content: action-focused, learn-by-doing activities like making selections 

and completing activities using mouse action vice reflective activities like keeping a 

journal 

• high sequential content: media includes structured, orderly and linear information like 

steps in a process vice random and holistic data  

• high sensing content: media includes concrete facts and observed data vice theories or 

models 

• high visual content: media includes movies, graphs, charts, text or symbols vice 

verbal stimulation. 

Based on these learning style preferences, a training aid for learning how to solve 

“sudoku” number puzzles will be used as the training scenario for this experiment.  The primary 

basis for designing this training scenario is the “Solve Sudoku (Without even thinking!)” 

webpage (Instructables, 2006).  It is highly sequential and focused on data (numbers and grid 

positions).   The information provided in the instructions is very factual and applied to solving a 

specific problem.  The instructions are highly visual and provide good active content.  Some 

additional interaction will be added to increase the active content. 
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APPENDIX D: MEDIA FEEDBACK SURVEY 
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Questions for the media feedback survey were based on the eight factors in the ILS factor 

analysis and responses are on the 5 point - Likert scale.   For each media feedback survey, 

questions were provided in rotating order so there were no ordering effects or bias. 

1. The information presented was too abstract. [relates to SI scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

2. The information provided had the right amount of detail. [Sequential-Global scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

3. There was not enough time to complete the task [relates to Active-Reflective scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

4. It was easy to remember the text presented. [relates to Visual-Verbal scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

5. The task was too structured.  [relates to SI scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

6. The task would have been more interesting if I worked in a group. [relates to AR scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

7. It was easy to remember the pictures presented.  [Visual Verbal scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

8. The course jumped into the process too quickly without explaining the concept first.  

[relates to Sequential-Global scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

9. It took too long to get started with the task. [Active-Reflective scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 
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10. The presentation seemed disjointed. [Sequential-Global scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

11. There was too much text in the presentation. [Visual Verbal scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 

12. I enjoyed the material presented in this course. [relates to SI scale] 

Strongly Disagree Disagree Neutral Agree  Strongly Agree 
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APPENDIX E: DEMOGRAPHICS SURVEY 
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1. Your age is: ____________. 
 
 
2. Your are: (circle one) 

 
a. male 
b. female 

 
 
3. The highest level of education you have completed is: (circle one) 
 

a. Less than 12 years 
b. High School 
c. Bachelors Degree 
d. Masters Degree 
e. Doctoral Degree 

 
   

4. If you are a University of Central Florida student, which college do you attend? (circle 
one) 

a. Arts & Humanities  
b. Biomedical Sciences  
c. Burnett Honors College  
d. Business Administration  
e. Education  
f. Engineering & Computer Science  
g. Health & Public Affairs  
h. Hospitality Management  
i. Optics & Photonics  
j. Sciences 
k. Other ________________________ 
l. Not Applicable 
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5. If you are working fulltime, what is your occupation? (circle one) 
 

a. Management, business and financial operations   
b. Professional (engineers and scientists) 
c. Professional (legal) 
d. Professional (health) 
e. Professional (education) 
f. Service or Sales  
g. Administrative  
h. Farming  
i. Construction  
j. Installation  
k. Production (fabricators, manufacturers, processors) 
l. Transportation  
m. Armed Forces 
n. Not applicable 
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APPENDIX F: SCATTER DIAGRAMS WITH LINEAR TRENDLINES  
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This appendix contains the scatter diagrams and associated trend lines for the points 

plotted for each independent-dependent variable pair for the Group A data collected.  The 

regression equations are noted on each diagram along with the correlation coefficient. 
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Openness vs. Visual-Verbal y = -0.0309x + 7.589
R2 = 0.034
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Conscientiousness vs. Sensing-Intuitive y = -0.0165x + 10.196
R2 = 0.0044
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Extraversion vs. Active Reflective y = -0.1236x + 17.026
R2 = 0.4301
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Extraversion vs. Sequential-Global y = -0.0284x + 11.74
R2 = 0.0332
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Agreeableness vs. Visual Verbal y = -0.0005x + 6.2653
R2 = 7E-06
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Neuroticism vs. Sensing-Intuitive
y = -0.0154x + 9.6305
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APPENDIX G: REGRESSION ANALYSIS AND SIGNIFICANCE TESTING RESULTS 
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