

Electronic Theses and Dissertations, 2004-2019

2006

Modeling The Influences Of Personality Preferences On The Selection Of Instructional Strategies Inintelligent Tutoring Systems

Robert Sottilare University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Sottilare, Robert, "Modeling The Influences Of Personality Preferences On The Selection Of Instructional Strategies Inintelligent Tutoring Systems" (2006). *Electronic Theses and Dissertations, 2004-2019.* 868. https://stars.library.ucf.edu/etd/868

MODELING THE INFLUENCES OF PERSONALITY PREFERENCES ON THE SELECTION OF INSTRUCTIONAL STRATEGIES IN INTELLIGENT TUTORING SYSTEMS

by

ROBERT A. SOTTILARE B.S.E.E. University of Central Florida, 1984

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Modeling and Simulation in the College of Engineering and Computer Science at the University of Central Florida

Orlando, Florida

Fall Term 2006

© 2006 Robert A. Sottilare

ABSTRACT

This thesis hypothesizes that a method for selecting instructional strategies (specifically media) based in part on a relationship between learning style preference and personality preference provides more relevant and understandable feedback to students and thereby higher learning effectiveness. This research investigates whether personality preferences are valid predictors of learning style preferences. Since learning style preferences are a key consideration in instructional strategies and instructional strategies are a key consideration in learning effectiveness, this thesis contributes to a greater understanding of the relationship between personality preferences and effective learning in intelligent tutoring systems (ITS).

This research attempts to contribute to the goal of a "truly adaptive ITS" by first examining relationships between personality preferences and learning style preferences; and then by modeling the influences of personality on learning strategies to optimize feedback for each student. This thesis explores the general question "what can personality preferences contribute to learning in intelligent tutoring systems?" So, why is it important to evaluate the relationship between personality preferences and learning strategies in ITS? "While one-on-one human tutoring is still superior to ITS in general, this approach is idiosyncratic and not feasible to deliver to [any large population] in any cost-effective manner." (Loftin, 2004). Given the need for ITS in large, distributed populations (i.e. the United States Army), it is important to explore methods of increasing ITS performance and adaptability.

Findings of this research include that the null hypothesis that "there is no dependency between personality preference variables and learning style preference variables" was partly rejected. Highly significant correlations between the personality preferences, openness and

extraversion, were established for both the active-reflective and sensing-intuitive learning style preferences. Discussion of other relationships is provided.

This thesis is dedicated to Shannon, my wife of 25 years. She is my inspiration. Her love and patience allowed me to dedicate the time and effort needed to complete this thesis.

ACKNOWLEDGMENTS

The success of a project of this size and complexity involves contributions of many people. My wife, Shannon, has been a rock. My love and thanks to her and my children, Joseph and Lynn for their many sacrifices during my mid-life college career.

Many thanks go to Dr. Michael Proctor, my committee co-chair and advisor. I had the pleasure of watching him guide several Army officers to their advanced degrees. I knew his guidance and motivational style would keep me on track. When I decided to return to school, Dr. Proctor was the first person I called. Thank you, Dr. Proctor for your support and patience during this process.

Thanks to Dr. Kent Williams, my committee co-chair. His courses on intelligent tutoring systems provided me with thoughtful reflection that shaped this thesis. His efforts in attracting participants for this research were invaluable.

I have been very fortunate to have many role models provide motivation throughout this process. Three immediately come to mind. One model is Dr. Brian Goldiez, who had the courage to return to school and complete his PhD after the tender age of forty. His participation on my committee has been very gratifying.

Another wonderful role model is my Mom, Terri, who returned to school to earn a degree and a second career in nursing. Her tenacity and zest for learning set an example I carry with me every day.

The third role model is my cousin, Dr. Manuel Francisco. His steadiness and camaraderie help me remain "even" through this process. Thanks, Manny for your hospitality and allowing me to blow off steam when I really need it.

Last, but not least, I would like to acknowledge the contributions of my colleagues at the Simulation and Training Technology Center. Thanks to the "lunch bunch" for their counsel and sometimes for just listening. Thanks to Beth, Angel, Neal and John for their patience with my distractions. Thanks to Suzanne for telling me to take a breath once in awhile.

TABLE OF CONTENTS

LIST OF FIGURES	X
LIST OF TABLES	
CHAPTER ONE: GENERAL LITERATURE	
Chapter One Summary	1
Introduction	
Motivation for Research: Why is this research important?	2
Problem Domain and Scope of Research.	
Application Challenges	4
General Practices: Model Development Processes	4
Dimensions of Intelligent Tutoring System Modeling	
General Concepts/Definitions for Intelligent Tutoring Systems	
General Practices in Intelligent Tutoring Systems	
Research in Intelligent Tutoring Systems	
Dimensions of Personality Modeling.	
General Concepts/Definitions for Learning Preference Modeling	12
General Practices in Learning Preference Modeling	
Research in Learning Preference Modeling	
General Concepts/Definitions for Personality Preference Modeling	16
General Practices in Personality Preference Modeling	
Research in Personality Preference Modeling	
General Research Gap and Research Questions	
Research Gap: Correlation of personality preferences and research preferences	
Research Questions	19
CHAPTER TWO: APPROACHES, TECHNIQUES, MODELS AND MEASURES	21
Chapter Two Summary	21
Models, Techniques, Approaches and Measures used by other Authors and Researchers	21
Intelligent Tutoring System Models	
LISP tutor	21
Blackboard instructional planning system	
Smithtown economics tutor	
Sherlock	
A Cognitive Modeling Framework (COGNET)	
Agent-Based Intelligent Tutoring System (ABITS)	
Learning Preference Models	
Theory of Multiple Intelligences	
VARK Learning Styles	
The Index of Learning Styles (ILS)	
Personality Preference Models	
Myers-Briggs Type Indicator® (MBTI)	
Five-Factor Model (FFM)	
Statistical studies: Correlations between MBTI and FFM	
Gaps: Specific Research Questions that have not been addressed	38

Proposed Concept: Models, Approaches and Techniques	39
Proposed Models	
Proposed Approaches and Techniques	41
CHAPTER THREE: RESEARCH METHODS	
Chapter Three Summary	42
Research Goal	
Proposed Hypotheses	42
Model Development and Testing Process.	
Scope and Limitations of Evaluation	46
CHAPTER FOUR: DATA AND ANALYSIS	
Chapter Four Summary	48
Data Summary	48
Data Analysis and Model Development	53
Predictive Models	57
Survey Response Analysis	67
Structural Equation Modeling	70
CHAPTER FIVE: THESIS SUMMARY, RESEARCH CONCLUSIONS, LESSONS	
LEARNED AND SUGGESTED FUTURE RESEARCH	74
Chapter Five Summary	74
Thesis Summary	74
Thesis Limitations	74
Conclusions	74
Lessons Learned	76
Future Research	
APPENDIX A: INSTITUTIONAL REVIEW BOARD (IRB) LETTER	77
APPENDIX B: INDEX OF LEARNING STYLES (ILS) QUESTIONNAIRE AND LICENS	E
FOR USE	79
APPENDIX C: TRAINING SCENARIO FOR THE EXPERIMENTATION PROCESS	89
APPENDIX D: MEDIA FEEDBACK SURVEY	91
APPENDIX E: DEMOGRAPHICS SURVEY	94
APPENDIX F: SCATTER DIAGRAMS WITH LINEAR TRENDLINES	
APPENDIX G: REGRESSION ANALYSIS AND SIGNIFICANCE TESTING RESULTS	. 105
LIST OF REFERENCES	118

LIST OF FIGURES

Figure 1: Analysis and Model Development Process	44
Figure 2: Experimentation Process	
Figure 3: Scope and Limitations of Research.	
Figure 4: SEM Model for Active-Reflective (Group A - AMOS)	
Figure 5: SEM Model for Sensing-Intuitive (Group A - AMOS)	
Figure 6: Sample Learning Style Results from ILS	

LIST OF TABLES

Table 1: The 16 personality types in MBTI (Myers, 1998)	34
Table 2: Factors in the Eight Factor Solution (Litzinger, 2005)	39
Table 3: ILS Factor Analysis (Litzinger, 2005)	40
Table 4: Group A Demographics	50
Table 5: Descriptive Statistics for the Group A Five Factor Model Variables	
Table 6: Descriptive Statistics for the Group A Index of Learning Styles Data	52
Table 7: Results of significance testing for predictors of the Active-Reflective scale	54
Table 8: Results of significance testing for predictors of the Sensing-Intuitive scale	54
Table 9: Results of significance testing for predictors of the Visual-Verbal scale	55
Table 10: Results of significance testing for predictors of the Sequential-Global scale	55
Table 11: Rejection of the Null Hypotheses	56
Table 12: Group A results for predicting Active-Reflective learning style preferences	59
Table 13: Group B results for predicting Active-Reflective learning style preferences	60
Table 14: Group A results for predicting Sensing-Intuitive learning style preferences	61
Table 15: Group B results for predicting Sensing-Intuitive learning style preferences	62
Table 16: Group A results for predicting Visual-Verbal learning style preferences	63
Table 17: Group B results for predicting Visual-Verbal learning style preferences	64
Table 18: Group A results for predicting Sequential-Global learning style preferences	65
Table 19: Group B results for predicting Sequential-Global learning style preferences	66
Table 20: Media feedback survey predicted and actual responses	68
Table 21: Response Analysis	69
Table 22: Regression Weights: (Group A - AR model from AMOS)	71
Table 23: Regression Weights: (Group A - SI model from AMOS)	73

CHAPTER ONE: GENERAL LITERATURE

Chapter One Summary

In this chapter the motivation for proposed research, the problem domain, scope and application challenges are considered. The basic concepts of intelligent tutoring systems and personality preference theories are reviewed along with general practices, ongoing research programs and trends.

Introduction

"An early promise of intelligent tutoring systems (ITS) was their potential to truly adapt to the individual learner, much as a human tutor engaged in a one-on-one encounter with a student. This goal has proven elusive. ITS still, in most cases, lack the capability for doing dynamic diagnosis (during a learning experience) and, in real time, adapting the current scenario to provide the student with the "optimal" learning experience." (Loftin, 2004).

A significant research and development goal for many universities, government science and technology laboratories and research institutes has been to increase the adaptability of ITS to realize this promise. Researchers have investigated methods to provide tailored feedback to each student based on their needs (knowledge/skill gaps) and they have developed a broader range of human personality attributes (i.e. personality preferences, emotions, social cognition and cultural aspects) into virtual humans and other intelligent tutor interfaces. For many years, educators have embraced the idea of a link between personality preferences and learning style preferences in building human tutoring or instructional strategies. However, these methods have not found their way into ITS.

The research proposed in this thesis attempts to contribute to the goal of a "truly adaptive ITS" by first examining relationships between personality preferences and learning style preferences of the student; and then by modeling the influences of personality on instructional strategies to optimize feedback for each student. This thesis explored the general question "what can personality preferences and learning style preferences contribute to learning in intelligent tutoring systems?"

Motivation for Research: Why is this research important?

Why is it important to evaluate the relationship between personality preferences and learning style preferences in regard to ITS? "While one-on-one human tutoring is still superior to ITS in general, this approach is idiosyncratic and not feasible to deliver to [any large population] in any cost-effective manner." (Loftin, 2004). Given the need for ITS in large, distributed populations (i.e. the United States Army), it is important to explore methods of increasing ITS performance and adaptability.

ITS are expected to provide to the students a content or a skill set they wish to learn, in a way that suits their particular personal, individual learning style preferences and psychological features, delivering the right content to the right user in the right form at the right time.

(Rodrigues, 2005). Tutors must "avoid becoming a distraction" (Lane, 2005) by giving too much feedback, asking for too much information, answering the wrong question or answering too slowly.

"From the human-computer interaction point of view a careful examination is necessary of how to adapt the learning environment to the learner's goal and capability" (Oppermann, 1997). This thesis explored methods of adaptability for ITS.

This research hypothesizes that a method for selecting instructional strategies (specifically media) based in part on a relationship between learning style preference and personality preference provides more relevant and understandable feedback to students and thereby higher learning effectiveness. This research explored whether personality preferences were valid predictors of learning style preferences. Since learning style preferences are a key consideration in instructional strategies and instructional strategies are a key consideration in learning effectiveness, the goal of this thesis was to demonstrate the relationship between personality preferences and effective learning in ITS. If successful, this method could be applied across domains and various student populations as an adaptive pedagogical model for instructional strategy selection.

Problem Domain and Scope of Research

This research focused on the pedagogical aspects of intelligent tutoring systems and specifically methods for selecting media that is compatible with an individual student's preferred learning style and his perceived knowledge/skill gaps. This thesis developed a predictive model that uses student learning style preferences to aid in the selection of appropriate instructional strategies (specifically media). Ideally, the proposed research would link media selection to student performance history, identified knowledge and skill gaps. Given the complexity of that task, resources and the need for focus, the researcher narrowed his investigation to the

examination of personality preferences as predictors of learning style preferences and media selection tools.

Application Challenges

The amount and type of feedback provided to students by ITS is a significant issue. Too little feedback can lead to frustration and floundering (Anderson, 1993) and too much feedback can interfere with learning (Kashihara, 1994). The selection method for feedback and other instructional strategies are limited in ITS. Ideally, the student model should influence the selection of instructional strategies so that the strategies selected are most effective for teaching that particular student. One of the key differences between students is their personality preferences (i.e. how they take in information and make decisions with that information).

(Myers, 1998) Making a link between appropriate instructional strategies and personality preferences would go a long way in making ITS truly adaptable to each student's needs.

General Practices: Model Development Processes

This section examines general concepts and trends in two areas related to the scope of the research proposed in this thesis: intelligent tutoring systems modeling and personality preference modeling.

Dimensions of Intelligent Tutoring System Modeling

"Broadly defined, an intelligent tutoring system is educational software containing an artificial intelligence component. The software tracks students' work, tailoring feedback and hints along the way. By collecting information on a particular student's performance, the

software can make inferences about strengths and weaknesses, and can suggest additional work." (Hafner, 2004)

An intelligent tutoring "system must be capable of dynamically adapting and monitoring each student." (Rodrigues, 2005) The mere presentation of information does not qualify as instruction. (Liegle, 2000) ITS are expected to perform the following tasks (Rodrigues, 2005):

- Provide to the students a content or a skill set they wish to learn, in a way that suits
 their particular personal, individual learning style preferences and psychological
 features, delivering the right content to the right user in the right form at the right
 time;
- Advise the student, on how he should learn the content or skills and help him to work on a suitable study schedule;
- Co-work with the student in monitoring the learning schedule;
- The monitoring of students learning schedule integrated in the process of collaborative knowledge, namely because students must be aware from other's activities and the collaboration with other persons (students, instructors) must be regulated;
- Intelligent interactive analysis performed on what the students are doing and providing real time diagnostic help

"A tutoring system should try to improve students' metacognitive skills, by, for example, guiding a student who avoids using help to seek help at the right moment." (Roll, 2005)

General Concepts/Definitions for Intelligent Tutoring Systems

There are many variants of ITS block diagrams, but in general, ITS contain four major components as identified by Woolf (1992): the student model, the pedagogical module, the domain knowledge module, and the communication module. Beck (1996) identified a fifth component, the expert model, which Woolf included as part of the domain knowledge module. These components, their functions and interactions are described below:

- Student Model or Performance History Model: The student model is a record of the student's knowledge state (Corbett, 1997). It stores information specific to each individual learner including a history of performance and other pertinent data. This could include personality preference information or other state information. The student model also records observable actions and may (through some fuzzy logic) infer non-observable states (i.e confusion, boredom or other emotions). "Since the purpose of the student model is to provide data for the pedagogical module of the system, all of the information gathered should be able to be used by the tutor [pedagogical module]." (Beck, 1996)
- Pedagogical Module or Instructional Planner: This component provides a model of the instruction process and contains logic for making decisions about when to review information, when to present new topics or concepts. The sequencing of topics is controlled by the pedagogical module. Once the topic has been selected, a problem must be generated for the student to solve and then feedback is provided on the student's performance. As noted above, the student model is used as input to this component, so the pedagogical decisions reflect the differing needs of each student.

- **Domain Knowledge**: This component contains information the tutor uses to instruct the student. It is critical that the domain be accessible by other parts of the ITS. "One related research issue is how to represent knowledge so that it easily scales up to larger domains. Another open question is how to represent domain knowledge other than facts and procedures, such as concepts and mental models." (Beck, 1996) This component contains items like generic instructional strategies, databases of scenarios and diagnostics.
- Communications or Interface Module: This component controls interactions with the learner, including the dialogue and how the material should be presented to the student in the most effective way. This selection of presentation format is driven by the selection of instructional strategies in the pedagogical module. The communications module may also include some type of natural language understanding function to support verbal interaction with the student.
- Expert Model: This component is also know as the Cognitive Model of Ideal Student Behaviors as shown in Figure 2 above. The expert model is similar to the domain knowledge in that it is a model of how someone skilled in a particular domain represents the knowledge. Generally, it takes the form of a runtime expert model (i.e. one that is capable of solving problems in the domain). (Clancey, 1981) "By using an expert model, the tutor can compare the learner's solution to the expert's solution, pinpointing the places where the learner had difficulties." (Beck, 1996)

General Practices in Intelligent Tutoring Systems

Below are several approaches to the development of intelligent tutoring systems. Each of these approaches supports a particular learning style preference (i.e. deductive, inductive or exploratory). In the literature search conducted, it was rare to find a tutor that encompassed more than two of these approaches. Given the variance in human personality, an adaptable tutor that encompassed all of these approaches and others would be desirable.

- Human emulation of a tutor: This approach uses natural language processing to interact with the student and may use some type of virtual human (i.e. embodied conversational agent). This approach is similar to dealing with a human, but is very difficult to model given the requirement to provide real-time reactions (verbal and non-verbal) to student inquiries. Success with this type of tutor has been limited and the cost for this type of approach has been higher than others.
- **Bug Detection**: "There are classically two components in a student model: an overlay of the domain expert knowledge and a bug catalog, which is a set of misconceptions or incorrect rules." (Corbett, 1997) In a bug detection scheme, the tutor corrects errors by explaining what the error is (i.e. the student is using the rules properly, but the problem is that it is the wrong rule is being applied). A drawback to this approach is that too frequent intervention by the tutor can detract from the learning experience.
- Exploratory systems (discovery worlds, micro worlds): Exploratory systems are environments that "place less emphasis on supporting learning through explicit instruction and more on providing the learner with the opportunity to explore the instructional domain

freely, acquiring knowledge of relevant concepts and skills in the process" (Shute, 1990). A drawback to this approach is that learning may be time intensive and very inefficient. Given sufficient time, this approach may be very appealing for some learners. Smithtown, which provides a guided discovery of economics, is an example of an exploratory system.

- Model Tracing: A cognitive model of the task is developed through a task analysis. Student progress is assessed by ``tracing" the student's task actions (i.e., matching user and application events against the task model). The student is permitted to consult task model as needed. This approach seems to be the most prevalent and tied closely to cognitive models like ACT-R (Anderson, 1993) and SOAR (Lehman, 2006).
- Constructivism: "Constructivism is a philosophy of learning founded on the premise that, by reflecting on our experiences, we construct our own understanding of the world we live in.

 Each of us generates our own "rules" and "mental models," which we use to make sense of our experiences. Learning, therefore, is simply the process of adjusting our mental models to accommodate new experiences." (Funderstanding.com, 2006). In this approach, the ITS provide opportunities for the student to participate in the instructional process. There are no standardized curricula, tests or grades. Instead, constructivism promotes the use of customized curricula based on the student's prior knowledge and emphasizes hands-on problem solving and reflection.

Research in Intelligent Tutoring Systems

There are several issues that have been drivers for recent research in ITS. These include: high development costs, lack of interoperability, restrictive delivery platform requirements, difficulty of sharing materials and benchmarking and high maintenance costs (Rodrigues, 2005).

Below are several recommendations for future research thrusts in ITS:

- Ontology: Ontology is defined as "a controlled vocabulary that describes objects and the relations between them in a formal way, and has a grammar for using the vocabulary terms to express something meaningful within a specified domain of interest. The vocabulary is used to make queries and assertions. Ontological commitments are agreements to use the vocabulary in a consistent way for knowledge sharing." (Browne, 2001). "Structured ontologies or upper models that define and organize pedagogically relevant attributes of knowledge for classes of domains, enabling the writing and sharing of instructional strategies in terms of these attributes." (Rodrigues, 2005) "The systematic development of a formal ontology must be pursued, and the results of this effort widely disseminated. Such an effort will serve to focus attention on this critical "missing piece" and generate the necessary discussions within the Intelligent Tutoring System research community to achieve a reasonable degree of consensus." (Loftin, 2004)
- **Architectures**: "A study is required to map current Intelligent Tutoring System capabilities to a selected training/education domain. This mapping will then identify the small number of architectures that must be supported during application development." (<u>Loftin, 2004</u>)

- "Architectures and protocols involving collaborating processes or shared knowledge bases which address issues of modularity and reusability." (Rodrigues, 2005)
- ITS Adaptability: "Basic research is needed to address one of the central "promises" of Intelligent Tutoring Systems—the maturation of systems capable of user adaptability. This is a well-traveled research element that has led to the development of different approaches, none of which has achieved success outside of narrow domain applications." (Loftin, 2004)

 ITS adaptability is the focus of the research proposed in this thesis.
- Motivation: Research "should be initiated to (1) investigate means to measure learner motivation within an Intelligent Tutoring System and (2) develop mechanisms to enhance learner motivation through scenario creation and feedback from the Intelligent Tutoring System." (Loftin, 2004)
- **Virtual Humans**: "Research on the value of virtual humans as an adjunct to or element of an Intelligent Tutoring Systems should be conducted. The potential value of virtual humans may be high, but it remains to be demonstrated." (<u>Loftin, 2004</u>) Perhaps a comparison of interface and feedback mechanisms that include virtual humans should be examined.
- Team Training: Few examples of Intelligent Tutoring Systems for team training have been attempted and the results have not provided convincing evidence that we understand how to develop such systems successfully. (<u>Loftin</u>, 2004)

Rodrigues recommends additional efforts in several areas including: reusable components, standardization of existing software architectures, standardization for interoperability of ITS, personalization techniques, case-based reasoning and adaptive hypermedia.

Dimensions of Personality Modeling

There are many facets to personality modeling including, but not limited to emotions, motivation, trust, learning, social factors and decision-making. In this section, we concentrated on only two concepts in personality modeling related to the research in this thesis: learning style preferences and personality preferences.

General Concepts/Definitions for Learning Preference Modeling

In order to understand learning style preferences, we must first define learning. In reviewing several definitions, this description of learning provides a clearest and comprehensive definition of learning: "Learning is the process of acquiring knowledge, skills, attitudes, or values, through study, experience, or teaching, that causes a change of behavior that is persistent, measurable, and specified or allows an individual to formulate a new mental construct or revise a prior mental construct (conceptual knowledge such as attitudes or values). It is a process that depends on experience and leads to long-term changes in behavior potential. Behavior potential describes the possible behavior of an individual (not actual behavior) in a given situation in order to achieve a goal. But potential is not enough; if individual learning is not periodically reinforced, it becomes shallower and shallower, and eventually will be lost in that individual." (Wikipedia, 2006a)

"Learning styles are different ways that a person can learn. It's commonly believed that most people favor some particular method of interacting with, taking in, and processing stimuli or information." (Wikipedia, 2006b) However, this may not mean that they use this style exclusively. Keefe (1979) defines "learning styles" as characteristic cognitive, affective and

psychological behaviors that serve as relatively stable indicators of how learners perceive, interact with and respond to the learning environment.

"Preference (or "taste") is a concept, used in the social sciences, particularly economics. It assumes a real or imagined "choice" between alternatives and the possibility of rank ordering of these alternatives, based on happiness, satisfaction, gratification, enjoyment, utility they provide. More generally, it can be seen as a source of motivation. In cognitive sciences, individual preferences enable choice of objectives/goals." (Wikipedia, 2006c)

For the purpose of this research, the term "learning style preference" combines the notions of preference and learning style to indicate a particular learning style preferred by a student.

There are currently over seventy learning style preference instruments and theories of learning and several other instruments which have conducted correlation studies between their factors and learning style preferences. A sample of these instruments includes, but is limited to:

- Entwistle's Approaches and Study Skills Inventory for Students (ASSIST)
- Fleming's VARK Learning Styles Questionnaire
- Gardner's Theory of Multiple Intelligences
- Honey and Mumford's Learning Styles Questionnaire (LSQ)
- Jackson's Learning Styles Profiler (LSP)
- Kolb's Learning Style Inventory (LSI)
- Riding's Cognitive Styles Analysis (CSA)
- Sternberg's Thinking Styles Inventory (TSI)
- Vermunt's Inventory of Learning Styles (ILS)

• Felder and Silverman's Index of Learning Styles (ILS)

For example, <u>Kolb (1984)</u> has developed a learning cycle model called the Experiential Learning Model (ELM) which identifies four ways in which people learn:

- through concrete experience
- through observation and reflection
- through abstract conceptualization
- through active experimentation

Kolb's ELM has become a model for adult learning. The use of the ELM cycle (all four styles) insures that all learning types are engaged in the learning process.

General Practices in Learning Preference Modeling

As noted previously, <u>several learning preference instruments are being examined as potential candidates to validate student learning style preferences against any experimental results generated under this thesis.</u> The selection of a single instrument is difficult when over seventy are available. This task may be easier given the validity of several widely used instruments has been questioned. In 2004, a report titled "Learning styles and pedagogy in post-16 learning – a systematic and critical review" was published by the Learning and Skills Research Centre in the United Kingdom.

This study selected 13 of the most influential models for close examination. To ensure consistency they applied the same criteria to each: examining theoretical origins, definition of terms, the instrument itself, the claims made by the author(s), external studies of these claims and independent empirical evidence of impact on teaching and learning (<u>Coffield, 2004</u>).

The Coffield report concluded for many of the learning style inventories that "Moreover, self-report inventories 'are not sampling learning behaviour but learners' impressions' (Mitchell 1994) of how they learn, impressions which may be inaccurate, self-deluding or influenced by what the respondent thinks the psychologist wants to hear. As <u>Price and Richardson (2003)</u> argue: 'the validity of these learning style inventories is based on the assumption that learners can accurately and consistently reflect: how they process external stimuli and what their internal cognitive processes are."

Research in Learning Preference Modeling

At the MIT Media Laboratory, research in affective computing is examining the impact of emotions on learner preferences. "Recent neurological evidence indicates that emotions are not a luxury; they are essential for "reason" to function normally, even in rational decision-making. Furthermore, emotional expression is a natural and significant part of human interaction. Whether it is used to indicate like/dislike or interest/disinterest, emotion plays a key role in multimedia information retrieval, user preference modeling, and human-computer interaction. Affective computing is a new area of research focusing on computing that relates to, arises from, or deliberately influences emotions. The focus of the present project is on giving computers the ability to recognize affect. Current applications include better learning systems (computer recognizes interest, frustration, or pleasure of pupil), and smarter "things" such as a steering wheel/seatbelt that sense when a driver is angry or incapacitated." (Picard, 2006)

Ahn (2006) recently demonstrated that affective biases from affective anticipatory rewards could be applied for improving the speed of learning and regulating the trade-off between exploration and exploitation in learning more efficiently. Her model of affective

anticipatory reward is based two dimensions: valence (good or bad) and uncertainty (hopeful or risky). For example: recognizing the student's smugness or boredom might cause the tutor to raise the "uncertainty of reward" to influence (affect) the student's attitude and level of engagement.

General Concepts/Definitions for Personality Preference Modeling

In order to understand personality preferences, we must first define personality. This definition was selected as clear and comprehensive: "personality is defined as individual difference constructs (traits) that manifest themselves through recurring regularities or trends in a person's behavior that are dependent primarily on conscious or unconscious volition as opposed to ability." (Hunt, 2003)

Preferences are the natural choice to use one mode of operation over use the other mode of operation. So, we are said to "prefer" one function over the other. Personality preference is the essence of Carl Jung's theory of psychological types. Jung stated that "much seemingly random variation in behavior is actually quite orderly and consistent, being due to basic differences in the way individuals prefer to use their perception and their judgment." (Myers, 1998)

The basis for many of the personality preference theories are Carl Jung's two dimensions of personality: perception (gathering data; taking in information; observing the world around you) and judging (evaluating data; making decisions on information; critiquing your observations) (Myers, 1998). Jung's theories are based on the observation of his clients. Of the three most prevalent personality preference models, Myers-Briggs Type Indicator (MBTI) and Keirsey Temperament Sorter (KTS) have their basis in Jung's theories. KTS and the Five Factor

Model (FFM) Model of Personality are evolutions of MBTI. MBTI and KTS are theory-based, while FFM is empirically-based.

General Practices in Personality Preference Modeling

The advent of the FFM taxonomy in the 1980s helped produce order in a previously scattered and disorganized field. "Research had found that "personality" (i.e., any of a large number of hypothesized personality traits) was not predictive of important criteria. However, using the five-factor model as a taxonomy to group the vast numbers of unlike personality traits, a meta-analysis of previous research was shown to have many significant correlations between the personality traits of the five-factor model and job performance in many jobs. Their strongest finding was that the psychometric Conscientiousness was predictive of performance in all the job families studied." (Wikipedia, 2006d)

Research in Personality Preference Modeling

A search of the research database of the Center for Applications of Psychological Type (CAPT), MBTI's primary research center, yielded 249 publications related to "learning styles" and "personality type". About a dozen publications relate to learning strategies, styles and MBTI. None of these publications was related to "intelligent tutoring" or "affective computing".

Most of the research in recent years on learning style preferences and personality type has centered on the correlation of the sixteen MBTI types and data on educational performance and behaviors that contribute to educational performance (Myers, 1998). The results show that each MBTI dichotomy is related to the certain characteristics of learners (Myers, 1998). For example,

extraverts may be characterized as concrete experiential learners or active experimental learners.

Introverts might be characterized as abstract sequential learners.

This research does not provide a measure of probability for these factors (i.e. if a student is an ESTJ (extraverted-sensing-thinker-judger) and some of the characteristics of E's conflict with S's, T's and J's, which factor has the higher probability or tendency to resulting in an attitude (unobserved characteristic) or a behavior (observed characteristic)). Conflicting characteristics can even appear within the same factor.

Current research for the FFM is generally concentrated in three areas (Wikipedia, 2006d):

- Are the five factors the right ones? Why not four or seven or three?
- Which factors predict what? "Job outcomes for leaders and salespeople have already been measured, and research is currently being done in expanding the list of careers. There are also a variety of life outcomes which preliminary research indicates are affected by personality, such as smoking (predicted by high scores in Neuroticism and low scores in Agreeableness and Conscientiousness) and interest in different kinds of music (largely mediated by Openness)."
- To make a theory-based model of personality. The FFM personality traits are empirical observations, not theory.

General Research Gap and Research Questions

There is a plethora of studies that show correlation between personality preferences and learning style preferences. However, based on <u>Coffield's (2004)</u> analysis, the construct validity and predictive validity of many learning style preference instruments and the MBTI is questionable. In conducting the literature search for this thesis, no correlation study showing the

relationship of an empirical personality preference model (i.e. the Five Factor Model) as a predictor of validated learning style preferences was found. No adaptive ITS was found that utilized personality as predictor to select learning strategies.

Research Gap: Correlation of personality preferences and research preferences

The prevalence of the instrument is not a measure of validity. The first step is to find a validated learning preference model. One that has been demonstrated to contain factors that when present, positively impact learning outcomes. Predicting correct learning strategies based on a correlation with a student's personality preferences will improve learning. Predicting incorrect or invalid strategies will not.

Research Questions

- Why not just give the student a learning style preferences survey instead of trying to predict
 learning style preferences from personality preferences? If the personality preferences are
 good predictors of learning style preferences, they may be good predictors of other behaviors
 (i.e. motivation, trust, emotions and other attitudes) and it would be more efficient to use one
 survey that could predict all those factors.
- How do personality preferences relate to learning style preferences? Is there a strong correlation?
- Are personality preferences good predictors of learning style preferences? If they are, then they could aid in the optimal selection of instructional strategies/tactics within intelligent tutoring systems. The predictive nature of personality preferences based on the input of five numbers (factors) would reduce the interface load and interventions between the student and

the tutor that would otherwise be required to assess whether the strategies presented to the student were effective.

 Which models and methods would work best to demonstrate a correlation between personality preferences and learning style preferences?

CHAPTER TWO: APPROACHES, TECHNIQUES, MODELS AND MEASURES

What approaches exist that might address the operational or technical need for adaptive ITS and why they are inadequate?

Chapter Two Summary

This chapter examines current and developing models of intelligent tutoring systems and personality preferences with eye toward how they might be integrated, extended or otherwise modified to support the proposed research goals and tasks. Six intelligent tutoring systems and their pedagogical models were evaluated: the LISP tutor, the blackboard instructional planning system, the Smithtown economics tutor, COGNET, SHERLOCK and ABITS. Two prevalent learning preference theories were reviewed: Gardner's "Multiple Intelligences" and Fleming's VARK Learning Styles. Two prevalent personality preference models were reviewed: the Myers-Briggs Type Indicator® (MBTI) and the Five Factor Model (FFM) of Personality. Specific advantages and disadvantages of each ITS and preference model are discussed. A specific research gap is identified and a concept to address that gap is proposed.

Models, Techniques, Approaches and Measures used by other Authors and Researchers

Intelligent Tutoring System Models

A review of ITS models and approaches is provided in this section.

LISP tutor

The LISP tutor (<u>Anderson and Reiser 1985</u>) is an Intelligent Tutoring System developed to teach the basic principles of programming in LISP. The expert model in the LISP tutor was

created as a series of correct production rules for creating LISP programs and a learner model was built as a subset of these correct production rules along with common incorrect production rules (Holt et al 1991).

LISP tutor is based on the principle of "learning by doing" where the learner discovers the productions while working through problems. The tutor acts as a problem solving guide but never states the productions to be learned. The LISP Tutor is an application of Anderson's ACT theory (Anderson 1983).

ACT theory is one of the earliest attempts to establish a complete theory of human cognition. It combines declarative knowledge in the form of semantic nets with procedural knowledge in the form of production rules. In ACT learning is accomplished by forming new procedures through the combination of existing production rules. The main principles of the ACT theory are:

- Cognitive functions can be represented as a set of production rules. The use of a production rule depends on the state of the system and the current goals.
- Knowledge is learned declaratively through instructions. The learner must carry out the
 process of knowledge compilation if the productions are to be properly understood and
 integrated into their existing knowledge and later recalled and used.

Anderson represented the knowledge in LISP tutor as approximately 325 production rules. The system also had about 425 buggy production rules which represented the misconceptions of novice programmers.

The LISP tutor used model tracing to provide the learner with detailed feedback. The learner would be given a problem and the tutor would monitor the learners input character by

character. The tutor generates all the possible next characters using both correct and buggy production rules.

- If the character is predicted by the correct rule the learner is allowed to continue.
- If the character is predicted by a buggy production rule remedial instructions is given.
- If the character is not predicted the tutor says that it cannot understand and asks the learner to try again. After several tries the tutor explains the next step.

This method has the advantages of early diagnosis of learner misconceptions and of giving immediate feedback to the learner. The learner never strays far from a correct solution. However, this can be viewed as unnecessarily restrictive and counter productive as the student is never allowed to explore incorrect behavior.

Blackboard instructional planning system

Blackboard instructional systems are ITS focused on "how to teach" (i.e. instructional activities like when to test, demonstrate, review or conduct "dynamic planning"). Blackboard instructional systems are composed of:

- a hierarchically structured global database
- independent knowledge sources production rules that change the global database
- an agenda scheduler
- knowledge source activation record agenda of prioritized actions to be executed Blackboard systems operate as follows:
 - tutor compares student's choice to domain expert's model (represented as a semantic network) and updates the student model

- when the difference between the student model and expected performance indicates failure of instruction, diagnosis is begun in order to identify the prerequisite skill most likely to have been misunderstood
- upon diagnosis (i.e. a student has failed to answer a multiple choice question correctly), the appropriate missing prerequisite is spliced into the lesson plan

The control blackboard in the blackboard instructional planner:

- refines and assesses objectives: what needs to be taught in terms of instructional objectives
- relates activities to objectives: proposes, prioritizes, filters, sequences, and critiques
 activities that support objectives
- relates procedures to activities: proposes, selects, sequences, and critiques actions that support activities
- partitions lessons

Smithtown economics tutor

Smithtown is an ITS designed as a guided discovery world. Smithtown's goals are to teach students the scientific inquiry process (how to solve problems). It imparts knowledge and prompts actions consistent with good inquiry skills (thinking and planning):

- tendency to test generalizability of hypotheses
- use of adequate data collection in testing hypotheses
- tendency to test systematically (change one variable at a time)
- tendency to thoroughly investigate cause-effect relationships

• tendency to volunteer predictions with respect to outcomes

Its secondary goal is to impart specific content knowledge in microeconomics, specifically the laws of supply and demand. Smithtown diagnoses student performance by comparing student performance with buggy critics (suboptimal behavior) and good critics (expert solutions) – as in model tracing. This critic information is fed to the Smithtown coach who then guides the student's learning experience (Shute, 1990).

Sherlock

Sherlock, was developed in the early 1990s to train Air Force personnel on jet aircraft troubleshooting procedures. Learners taught using Sherlock performed significantly better than the control group and, after 20 hours of instruction, performed as well as technicians with four years of on-the-job experience. (Ong, 2006)

A Cognitive Modeling Framework (COGNET)

The main components of the COGNET cognitive modeling language are: a problem representation blackboard containing declarative knowledge about the situation, procedural knowledge represented as tasks, and mechanisms for sensing the external environment (perceptual demons) and then acting on it (actions). (Ryder, 2000)

Agent-Based Intelligent Tutoring System (ABITS)

ABITS is organized as a Multi Agent System (MAS) composed by pools of three different types of agents (evaluation, pedagogical and affective agents). Each agent is able to solve in autonomous way a specific task and they work together in order to improve web-based

tutoring learning effectiveness by adapting instructional materials to user skills and preferences (<u>Capuano</u>, 2000).

The ABITS concept is compatible with the research goal proposed in this thesis in that it considers the learner's preferences. However this approach does not include consideration for personality preferences as predictors for learning style preferences. The learning style preferences selected by the course management system are based on evaluations of the pedagogical effectiveness of learning object typologies. For example, if the knowledge of a particular concept has been primarily simulation-based, ABITS infers that the student is receptive to simulations and the system increases the "format" preference that refers to simulations. This could be very cumbersome since it is unclear how often this type of assessment must be made or how much information is needed to make clear distinction between each of the choices of format. Formats can include text, images, slides, hypertext, video, simulations or even virtual reality. In ABITS, the approach (inductive, deductive or explorative) can vary along with interactivity level, semantic density and level of difficulty.

Learning Preference Models

This section reviews multiple learning preference theories including Gardner's "Multiple Intelligences" and Fleming's "VARK Learning Styles".

Theory of Multiple Intelligences

The theory of multiple intelligences was developed in 1983 by Dr. Howard Gardner, professor of education at Harvard University who maintained that we solve problems in seven distinct styles and that each style is an "intelligence". He theorizes that most people learn by

blending several of these styles (<u>Gardner</u>, 1999). Learning style preferences are shown in italics for each intelligence. The seven intelligences are:

- Verbal/Linguistic Intelligence: This intelligence, which is related to words and language. It is the ability to think in words and to use language to express and appreciate complex meanings. This includes both written and spoken language. It is the most widely shared human competence and is evident in poets, novelists, journalists, and effective public speakers. Characteristics of this intelligence are:
 - o likes to: read, write and tell stories
 - o is good at: memorizing names, places, dates and trivia
 - o learns best by: saying, hearing and seeing words
- Logical/Mathematical Intelligence: Often called "scientific thinking," this intelligence deals with inductive and deductive thinking/reasoning, numbers and the recognition of abstract patterns. It includes the ability to calculate, quantify, consider propositions and hypotheses, and carry out complex mathematical operations. Logical intelligence is usually well developed in mathematicians, scientists, and detectives. Characteristics of this intelligence are:
 - likes to: do experiments, figure things out, work with numbers, ask questions and explore patterns and relationships
 - o is good at: math, reasoning, logic and problem solving
 - learns best by: categorizing, classifying and working with abstract patterns/relationships

- Visual/Spatial Intelligence: This intelligence, which relies on the sense of sight and being able to visualize an object, includes the ability to create internal mental images/pictures. It is the ability to think in three dimensions. Sailors, pilots, sculptors, painters, and architects all exhibit spatial intelligence. Characteristics of this intelligence are:
 - likes to: draw, build, design and create things, daydream, look at pictures/slides, watch movies and play with machines
 - is good at: imagining things, sensing changes, mazes/puzzles and reading maps,
 charts
 - learns best by: visualizing, dreaming, using the mind's eye and working with colors/pictures
- **Body/Kinesthetic Intelligence**: This intelligence is related to physical movement and the knowing/wisdom of the body. It is the capacity to manipulate objects and use a variety of physical skills. Athletes, dancers, surgeons, and craftspeople exhibit well-developed bodily-kinesthetic intelligence. Characteristics of this intelligence include:
 - o likes to: move around, touch and talk and use body language
 - o is good at: physical activities (sports/dance/acting) and crafts
 - learns best by: touching, moving, interacting with space and processing knowledge through bodily sensations.
- Musical/Rhythmic Intelligence: This intelligence is based on the recognition of tonal patterns, sounds, and sensitivity to rhythm and beats. It is the capacity to discern pitch,

rhythm, timbre, and tone. This intelligence is demonstrated by composers, conductors, musicians, vocalists, and sensitive listeners. Characteristics of this intelligence include:

- o likes to: sing, hum tunes, listen to music, play an instrument and respond to music
- is good at: picking up sounds, remembering melodies, noticing pitches/rhythms
 and keeping time
- o learns best by: rhythm, melody and music
- Interpersonal Intelligence: This intelligence operates primarily through person-to person relationships and communication. It is the ability to understand and interact effectively with others. Teachers, social workers, actors, and politicians all exhibit interpersonal intelligence. Characteristics of this intelligence include:
 - o likes to: have lots of friends, talk to people and join groups
 - is good at: understanding people, leading others, organizing, communicating,
 manipulating and mediating conflicts
 - o learns best by: sharing, comparing, relating, co-operating and interviewing
- Intrapersonal Intelligence: This intelligence relates to inner states of being, self-reflection, metacognition (i.e., thinking about thinking) and awareness of spatial realities. It is the capacity to understand oneself and one's thoughts and feelings and to use such knowledge in planning and directing one's life. It involves not only an appreciation of the self, but also of the human condition. It is evident in psychologists, spiritual leaders, and philosophers. Characteristics of this intelligence include:
 - o likes to: work alone and pursue own interests

- is good at: understanding self, focusing inward on feelings/dreams, following instincts, pursuing interests/goals and being original
- learns best by: working alone, on individualized projects, with self-paced instruction and having their own space

VARK Learning Styles

VARK (<u>Fleming</u>, 2001) evolved around the learner's preference for taking in and giving information in a learning context. It has four modalities: visual, aural, reading/writing and kinesthetic. The results of the VARK questionnaire include a description of an individual's stronger preferences and recommended study strategies.

Visual Learning Style (V): This style includes the need for information in charts, graphs, flow charts, and all the symbolic arrows, circles, hierarchies and other devices that teachers use to represent what could have been presented in words. This mode does not include pictures, movies, videos, virtual simulations or animated websites because they are multimodal (visual, aural, read/write and kinesthetic. (<u>Fleming, 2001</u>)

Aural Learning Style (A): This perceptual mode describes a preference for information that is "heard and spoken". Learners with style report that they learn best from lectures, group discussion, tutorials, student seminars and talking with other students.

Read/Write Learning Style (R): This modal preference is for information displayed as text and printed words. Many teachers in Western cultures have a strong preference for this modality.

Kinesthetic Learning Style (K): By definition, this modality refers to the "perceptual preference related to the use of experience and practice (simulated or real)." Although such an experience may include other modalities, the key is that the student is connected to reality, "either through experience, example, practice or simulation". (Fleming & Mills, 1992) In this style, students use many senses (sight, tough, taste, hearing, speaking and smell) to experience something new.

The Index of Learning Styles (ILS)

The Index of Learning Styles © (ILS) is an instrument designed to assess preferences on the four dimensions of the Felder-Silverman learning style model (see <u>Appendix B</u>). The Webbased version of the ILS is taken hundreds of thousand of times per year and has been used in a number of published studies, some of which include data reflecting on the reliability and validity of the instrument. The model's dimensional pairs are a continuum not a dichotomy. A dimension like "sensing" could be classified as mild, moderate or strong and resulting profiles suggest behavioral tendencies rather than being infallible predictors of behavior (<u>Felder and Silverman, 2005</u>). The dimensions of the ILS are:

- **sensing** (concrete thinker, practical, oriented toward facts and procedures) or **intuitive** (abstract thinker, innovative, oriented toward theories and underlying meanings);
- **visual** (prefer visual representations of presented material, such as pictures, diagrams and flow charts) or **verbal** (prefer written or spoken explanations)
- **active** (learn by trying things out, enjoy working in groups) or **reflective** (learn by thinking things through, prefer working alone or with a single familiar partner)

• **sequential** (linear thinking process, learn in small incremental steps) or **global** (holistic thinking process, learn in large leaps)

Personality Preference Models

There are numerous personality preference models available for use in this research including the Keirsey Temperament Sorter, Strength Deployment Inventory, Myers-Briggs Type Indicator® (MBTI), Cattell's 16 Personality Factor Model, the Murphy-Meisgeier Type Indicator for Children and the Five Factor Model (FFM). For the purposes of this thesis, we examined two of the most prevalent preference models: MBTI and the FFM. This choice was made based on availability, ease of use, the need to limit scope and examine models that represent the variability of preferences in adults vice children or infants.

Myers-Briggs Type Indicator® (MBTI)

Currently MBTI is the most widely utilized personality preference instrument in the world is a tool designed to implement the theories of C. G. Jung, a Swiss psychiatrist, who developed a comprehensive theory to explaining human personality. Jung hypothesized that "Much seemingly chance variation in human behavior is not due to chance; it is in fact the logical result of a few basic, observable preferences." (Kroeger, 2001)

The MBTI instrument was developed by Katherine Briggs and Isabel Briggs Myers to make C. G. Jung's theory of personality types practical and useful in people's lives. MBTI reflects an individual's preferences, but does not measure abilities, likelihood of success, intelligence, skills, maturity or mental health. This tool aids in achieving an understanding of the

differences of others. Specifically, MBTI assesses preferences based on Carl Jung's two functions of personality: <u>perception</u> (gathering data; taking in information; observing the world around you) and <u>judging</u> (evaluating data; making decisions on information; critiquing your observations) (Myers, 1998).

There are sixteen (16) personality types based on four (4) dichotomies (two functions and two attitudes) as follows:

- **Perceiving function** (sensing or intuiting): Sensing (S) people seek the fullest possible experience of what is immediate and real while Intuitive (N) people seek the furthest reaches of the possible and imaginative (Myers, 1998).
- **Judging function** (thinking or feeling): Thinking (T) people seek rational order in accord with the non-personal logic of cause and effect while Feeling (F) seeks rational order in accord with the creation and maintenance of harmony among important subjective values (Myers, 1998). By the way, it is not true that thinkers don't feel and feelers don't think!
- Energy Source attitude (introversion or extraversion): For Extraverts (E) energy and attention flow out or are drawn out to objects and people in the environment while Introverts (I) draw energy from the environment toward inner experience and reflection (Myers, 1998).
- **Lifestyle Orientation attitude** (judging or perceiving): The Judging (J) attitude is concerned with making decisions, seeking closure, planning and organizing while the Perceiving attitude is attuned to taking in information (Myers, 1998).

None of the four dichotomies stand alone, but are part of an interactive system where the lifestyle orientation (judging or perceiving) drives which of the four functions (sensing, intuition, thinking and feeling) are dominant. The sixteen (16) types, shown in Table 1, represent preferences and personal interactions. People of the same type tend to take in information and make decisions in a similar way. It doesn't mean they do everything the same or that they only do things one way. It means they have preferences for how they do things and in the absence of stress follow these preferences.

Table 1: The 16 personality types in MBTI (Myers, 1998)

ISTJ	ISFJ	INFJ	INTJ
ISTP	ISFP	INFP	INTP
ESTP	ESFP	ENFP	ENTP
ESTJ	ESFJ	ENFJ	ENTJ

Five-Factor Model (FFM)

The Five-Factor Model (FFM) is a much newer model than MBTI that has taken hold in the scientific community. The Big Five Personality Test (<u>John</u>, <u>2003</u>) is a representative instrument that measures the five dimensions of the FFM. The FFM is not a radical departure from the MBTI. It evolved from it. However, FFM is sufficiently different from MBTI to require a significant shift in thinking. Per Howard (<u>2004</u>) the characteristics of FFM include:

- five dimensions of personality (vice four in MBTI);
- a normal distribution of scores on these dimensions (vice a bi-modal distribution
 [dichotomy] in MBTI);
- an emphasis on individual personality traits (vice the type concept in MBTI);

- preferences indicated by strength of score, and
- a model based on experience, not theory.

"Each of the Big Five dimensions is like a bucket that holds a set of traits that tend to occur together. The definitions of the five super factors represent an attempt to describe the common element among the traits, or sub-factors, within each "bucket." (Howard, 2004) The five factors are:

- Openness (O): refers to the degree to which we are open to new experiences/new ways of doing things, and encompasses four traits (imagination, complexity, change and scope) across a continuum of preserver > moderate > explorer (Howard, 2004). High scorers tend to be original, creative, curious and complex; Low scorers tend to be conventional, down to earth, have narrow interests and be uncreative (John, 2003).
- Conscientiousness (C) refers to the degree to which we push toward goals at work, and encompasses five traits (perfectionism, organization, drive, concentration and methodicalness) across a continuum of flexible > balanced > focused (Howard, 2004). High scorers tend to be reliable, well-organized, self-disciplined and careful; Low scorers tend to be disorganized, undependable and negligent (John, 2003).
- Extraversion (E): refers to the degree to which a person can tolerate sensory stimulation from people and situations, and encompasses six traits (enthusiasm, sociability, energy mode, taking charge, trust of others and tact) across a continuum of introvert > ambivert > extravert (Howard, 2004). High scorers tend to be sociable, friendly, fun loving and talkative; Low scorers tend to be introverted, reserved, inhibited and quiet (John, 2003).

- Agreeableness (A): refers to the degree to which we defer to others, and encompasses five traits (service, agreement, deference, reserve and reticence) across a continuum of challenger > negotiator > adapter (Howard, 2004). High scorers tend to be good natured, sympathetic, forgiving and courteous; Low scorers tend to be critical, rude, harsh and callous (John, 2003).
- Neuroticism (N): refers to the degree to which a person responds to stress and encompasses
 four traits (sensitiveness, intensity, interpretation and rebound time) across a continuum of
 resilience > responsiveness > reactiveness (Howard, 2004). High scorers tend to be nervous,
 high-strung, insecure and worriers; Low scorers tend to be calm, relaxed, secure and hardy
 (John, 2003).

Howard uses slightly different terms to characterize the five factors. He uses originality vice openness, consolidation vice conscientiousness, accommodation vice agreeableness and the need for stability vice neuroticism. Each factor is measured as low (< 45), medium (> 45 and < 55) and high (> 55).

The dimensionality and quantitative nature of FFM provides the ability to represent a finer granularity of personality traits than MBTI. An example of the quantitative nature of FFM is shown in the model's relationship to age. From age 20 to age 30, need for stability, extraversion, and originality tend to decrease, while accommodation and consolidation tend to increase (Howard, 2004). For the purposes of this study, FFM will be utilized as the preference model based on its quantitative characteristics. This research will evaluate independent variables in FFM in regards to their ability to predict the appropriate selection of instructional strategies (specifically media needs).

Statistical studies: Correlations between MBTI and FFM

McCrae and Costa (1989) studied correlations between the MBTI scales and the FFM personality construct. The study was based on the results from 267 men who were followed as part of a longitudinal study of aging. (Similar results were obtained with 201 women.) This data suggests that four of the MBTI scales are related to the FFM personality traits. The correlation study indicates that the MBTI Extraversion-Introversion (E-I) dichotomy has a strong negative correlation with the FFM Extraversion trait and the MBTI Sensing-Intuiting (S-N) dichotomy has a strong positive correlation with the FFM Openness trait. The MBTI Thinking-Feeling (T-F) and Judging-Perceiving (J-P) dichotomies are more weakly related to the FFM Agreeableness and Conscientiousness traits respectively. The neuroticism dimension of the FFM is largely absent from the MBTI.

Split-half reliability of the MBTI scales is good, although test-retest reliability is sensitive to the time between tests. However, because the MBTI dichotomies scores in the middle of the distribution, type allocations are less reliable. Within each scale about 83% of categorizations remain the same when retested within nine months, and around 75% when retested after nine months. About 50% of people tested within nine months remain the same overall type and 36% remain the same after nine months. (Harvey, 1996)

Have there been any studies regarding correlations between personality preferences and learning style preferences? Rosati (1995) published the only correlation study looking at personality preferences and learning style preferences using MBTI and ILS. The MBTI and ILS were administered to the same students and he found:

- Most students that were "sensing" on ILS were also "sensing: on MBTI with the association being highly significant.
- There was a correlation between "active" learning on ILS and "extraversion" on MBTI; "active" learners were significantly more "extraverted" and "perceiving"
- "Sequential" learners in ILS were more likely to be "sensors" than "intuitors" on MBTI

However, these results provide no basis to predict the degree/probability of sensing behavior in a "sensing" learner based on being an MBTI sensor since MBTI does not measure the degree of sensing.

Gaps: Specific Research Questions that have not been addressed

- Specifically, how do FFM personality preference variables (i.e. openness, conscientiousness...) relate to ILS learning style preferences (i.e. visual, sequential, reflective...)?
- Is there a strong correlation?
- Can a dependency between any two variables be established?
- Are FFM personality preferences variables good predictors of learning style preferences?

Proposed Concept: Models, Approaches and Techniques

Proposed Models

The FFM variables will be used (vice MBTI) for the experimentation and analysis proposed in this thesis since their construct validity and predictive validity is not in question.

The FFM instrument is conveniently available online at http://www.outofservice.com/bigfive/

The Index of Learning Styles (ILS) will be used for the experimentation and analysis proposed in this thesis. This selection is based on reliability, the validity of the instrument and the convenience of taking the instrument online.

What is known about the reliability and validity of the ILS? Three studies have examined the independence, reliability, and construct validity of the four instrument scales. The authors (Felder and Spurlin, 2005; Zywno, 2003; Litzinger, et al, 2005) concluded that the ILS meets standard acceptability criteria for instruments of its type.

The factor analysis conducted shows the eight factors, corresponding scales and questionnaire items shown in Table 2.

Table 2: Factors in the Eight Factor Solution (<u>Litzinger, 2005</u>)

Scale	#F	Items	Factors
Sensing - Intuitive	1	38, 6, 18, 14, 2, 10, 34 26, 22, 42, 30	Preference for concrete information (facts, data, the "real world") or abstraction (interpretations, theories, models)
Visual -	2	7, 31, 23, 11, 15	Information format preferred for input
Verbal	5	27, 19, 3, 35, 43, 39	Information format preferred for memory or recall
Sequential	3	20, 36, 44, 8, 12, 32, 24	Linear/sequential or random/holistic thinking
- Global	8	28, 4, 16, 40	Emphasize details (the trees) or the big picture (the forest)
Active -	4	25, 1, 29, 5, 17	Action-first or reflection-first
Reflective	6	37, 13, 9	Outgoing or reserved
	7	21, 33, 41	Favorable or unfavorable attitude toward group work

The result of the factor analysis is shown in Table 3. The factor analysis, combined with the estimates of reliability, provides evidence of construct validity for the ILS.

Table 3: ILS Factor Analysis (Litzinger, 2005)

SCALE	ITEM				FAC.	ΓORS			
SCALE	ITEM	1	2	3	4	5	6	7	8
	25				0.68				
	1		0.23		0.67	0.11			
	29	0.23	0.18		0.53	0.22			
	5		-0.16		0.43		0.31	0.26	
Active	17*		-0.14		0.42		-0.40		
/	13				0.11		0.59	0.17	
Reflective	37	-0.10	-0.12	-0.17	0.24		0.56	0.21	
	9	-0.23					0.50		
	41	0.22						0.63	0.10
	21		0.15				0.20	0.61	
	33						0.14	0.60	
	20	0.26		0.53			-0.11		0.19
	36	0.20		0.52		-0.12		0.11	0.22
	44	0.14		0.50	0.10				
	8			0.46		0.23		0.12	0.34
Sequential	12			0.43			0.28	-0.18	
/	32			0.42				0.14	-0.32
Global	24	0.13		0.40	-0.22	0.11	0.22	-0.25	-0.10
	4			0.15					0.62
	28	0.13		0.21		-0.18			0.60
	16	0.18		0.11			0.20		0.36
	40*	-0.12					-0.29		0.12
	38	0.75		0.15	0.13	0.11			0.17
	6	0.71			0.12	0.20			
	18	0.68		0.20	0.18				
	14	0.57	0.12		0.11	-0.19			0.18
Sensing	2	0.52		0.26					-0.28
/	10	0.52	-0.16	0.11		0.17			0.30
Intuitive	34	0.46	0.12	0.19	-0.15				-0.35
	26	0.44	0.18	0.12	-0.14	-0.10	-0.13	0.10	-0.18
	22	0.35		0.45	-0.19			-0.19	
	42*	0.24	0.12	0.11	-0.24		0.52	-0.18	0.16
	30	0.21	-0.13	0.57			-0.11		
	7		0.77			0.15			
	31		0.70		0.17	0.19			
	23		0.66	-0.17					
	11		0.65			0.19		0.21	
Visual	15		0.55			0.15			
/	19		0.22			0.59		-0.10	
Verbal	35		0.17	0.17	0.17	0.54			
	3		0.18			0.53		0.15	
	27		0.38			0.53			
	43	0.16		-0.15		0.50			
	39*	0.35		0.10		0.19		0.34	

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition Copyright © 2005, American Society for Engineering Education

Proposed Approaches and Techniques

This thesis proposes a regression analysis for the one-on-one interactions between FFM variables and ILS variables. SEM (structure equation modeling) analysis, which is an extension of a path analysis, will be used to study the patterns of relationships among the several variables that constitute the FFM and the ILS. The SEM analysis will produces a diagram indicating specific manner by which variables are related (i.e., paths) and strength of those relationships. It will also clarify the direct and indirect of relationships among variables based on underlying theoretical constructs. AMOS (Analysis of Moment Structures) 5.0.1, a SEM analysis computer program will be used to conduct this analysis.

CHAPTER THREE: RESEARCH METHODS

Chapter Three Summary

This chapter reviews the research goal for this thesis, a proposed hypothesis and research methods selected for the correlation analysis of variables contained in the FFM and the ILS. The protocol for this study was submitted to the University of Central Florida (UCF) Institutional Review Board (IRB) for approval. The results of their review are in Appendix A.

Research Goal

The primary research goal for this thesis is to investigate relationships between personality preferences, learning style preferences, and learning.

Proposed Hypotheses

The null hypothesis one, H₀ is: There is no dependency between personality preference variables and learning style preference variables. Dependency will be measured by using regression analysis to determine standardized direct effects (also known as correlation coefficients or multiple R) and model fit was determined by the comparative fit index (CFI) using the AMOS structural equation modeling tool. The Microsoft Excel data analysis package and AMOS were used to determine significant correlations of the individual results of both the Big Five Personality Test and the Index of Learning Styles questionnaire. The sub hypotheses tested were:

• Sub null hypothesis H_{0A}: There is no dependency between personality preference variables and the active-reflective learning style preference.

42

- Sub null hypothesis H_{0B}: There is no dependency between personality preference variables and the sequential-global learning style preference.
- Sub null hypothesis H_{0C}: There is no dependency between personality preference variables and the sensing-intuiting learning style preference.
- Sub null hypothesis H_{0D}: There is no dependency between personality preference variables and the visual-verbal learning style preference.

The alternate hypothesis one, H1 is: There is a dependency between personality preference variables and learning style preference variables.

Model Development and Testing Process

In order to investigate the above hypothesis, research was conducted involving two groups of participants. Seventy-five percent of the sample (75 people) were randomly assigned to Group A and their data was used to support model development. Twenty-five percent were assigned to Group B and their data was used to support model validation. The minimum sample size of seventy-two (72) was selected based on the number of variables (five FFM variables + four ILS variables x eight participants per variable). AMOS, the structural equation modeling tool used in this study, generally calls for fifteen (15) participants per independent variable (five FFM variables * 15 participants per variable = 75 participants). Both groups of participants were randomly drawn from a population of engineering professionals, simulation industry professionals and students in the Greater Orlando, Florida area. The demographics for this group are summarized in Table 4.

Group A test participants will be administered the FFM and ILS online. The correlation data derived through the regression analysis shown in Figure 5 will be used to construct a predictive model for use in an ITS instructional planner.

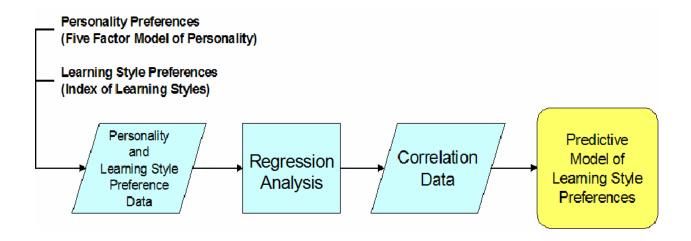


Figure 1: Analysis and Model Development Process

This research will utilize linear regression modeling, but will also use SEM (structural equation modeling) analysis, which is an extension of a path analysis to study the patterns of relationships among the variables that constitute the FFM and the ILS. The SEM analysis produces a diagram indicating the specific manner by which variables are related (i.e. paths) and strength of those relationships. It will also clarify the direct and indirect of relationships among variables based on underlying theoretical constructs. AMOS 5.0.1, a SEM analysis computer program will be used to conduct this analysis. Data from this analysis will be derived from the two instruments (FFM and ILS) consisting of five and four variables respectively. Once the SEM analysis is complete, the correlation data will be used to construct a predictive model for

use in an ITS instructional planner. The predictive model will then be tested in an experiment with Group B.

In Group B, the process in **Figure 2** will be used to validate the model developed from Group A's preference data:

- the Group B participants will take FFM online;
- the researcher will take the FFM data and use it as input for the predictive model;
- the researcher will run model which will predict appropriate preferences;
- the participants will be exposed to the training scenario shown in <u>Appendix C</u>;
- the participants will then be queried about the media presented in the training scenario using the media feedback survey in <u>Appendix D</u> to ascertain if the training scenario supported their learning style preferences;
- the predicted learning style preferences (expected results) will be compared with the student's actual learning style preference based on the participant's observations of the media.

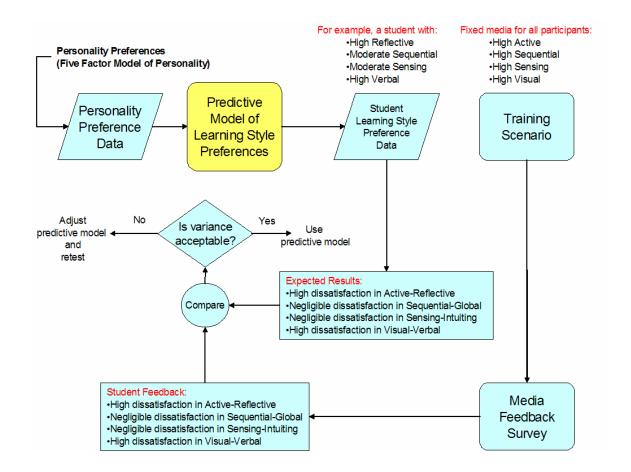


Figure 2: Experimentation Process

Ideally, the variance between the predicted learning style preferences and the participant's actual learning style preference should be small. If it is not, the predictive model will be adjusted and additional participants will be tested as needed to validate the model.

Scope and Limitations of Evaluation

Even a strong correlation between personality preference and learning preference variables does not guarantee an increase in learning. The correct media could be selected and ignored due to lack of motivation, boredom, frustration or another emotion. Additional work is needed to integrate the influences of parameters like motivation and trust into a comprehensive

instructional planner that might look like the conceptual model shown in Figure 3. The portion of the model shown within the dotted line is the defined scope for this thesis.

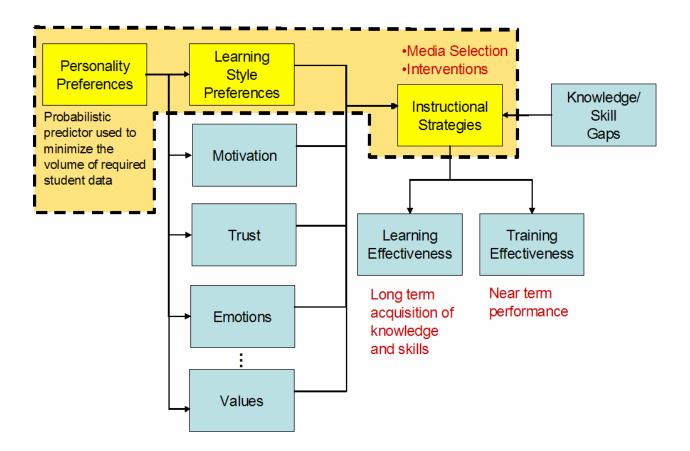


Figure 3: Scope and Limitations of Research

CHAPTER FOUR: DATA AND ANALYSIS

Chapter Four Summary

This chapter reviews the characteristics of the data collected including demographic breakouts and descriptive statistics for the key variables. A regression analysis is conducted. Correlation coefficients are tested for significance. Predictive models are developed based on highly significant correlations and the models are tested to minimize error and are validated by a media feedback survey. The responses of the media feedback survey are analyzed. A structural equation model is constructed and compared to the regression analysis for consistent results.

Data Summary

Group A was comprised of seventy-five randomly selected participants. Group A data was used as the basis for regression analysis and development of a predictive model. Group A provided demographic data via the survey in <u>Appendix E</u>. Group A demographics are shown in

Table 4. Subgroups were used to examine more specific correlations and included two subgroups for age (younger than 30 years old and 30 years old and older), two subgroups for gender (male and female) and three subgroups for educational level (high school graduate without a degree, Bachelors Degree and Masters/PhD). Participants were at least 18 years old.

Table 4: Group A Demographics

Subgroup	Sample Size	% of Sample
All	75	100.0%
Age < 30	35	46.7%
Age ≥ 30	40	53.3%
Male	51	68.0%
Female	24	32.0%
High School Graduate	17	22.7%
Bachelors Degree	34	45.3%
Masters Degree or PhD	24	32.0%
Male and Age < 30	24	32.0%
Female and Age <30	11	14.7%
High School Graduate and Age < 30	15	20.0%
Bachelors Degree and Age < 30	15	20.0%
Masters/PhD and Age <30	5	6.7%
Male and Age ≥ 30	27	36.0%
Female and Age ≥ 30	13	17.3%
High School Graduate and Age ≥ 30	2	2.7%
Bachelors Degree and Age ≥ 30	19	25.3%
Masters/PhD and Age ≥ 30	19	25.3%
Male and High School Graduate	12	16.0%
Male and Bachelors Degree	25	33.3%
Male and Masters/PhD	14	18.7%
Female and High School Graduate	5	6.7%
Female and Bachelors Degree	9	12.0%
Female and Masters/PhD	10	13.3%

Variable data was collected from Group A participants that included the results of the Big Five Personality Test and the Index of Learning Styles. The data was compiled in a spreadsheet and analyzed per the methods described in Chapter Three. Table 5 provides the descriptive statistics for the five independent variables of the Five Factor Model (FFM) collected via the Big Five Personality Test.

Table 5: Descriptive Statistics for the Group A Five Factor Model Variables

Openness		Conscientiousn	ess	Extraversion)
Mean	43.61333333	Mean	70.17333333	Mean	47.12
Standard Error	3.193794283	Standard Error	2.673687155	Standard Error	3.234997807
Median	47	Median	79	Median	42
Mode	53	Mode	79	Mode	37
Standard Deviation	27.65906984	Standard Deviation	23.15480998	Standard Deviation	28.01590282
Sample Variance	765.0241441	Sample Variance	536.1452252	Sample Variance	784.8908108
Kurtosis	-1.019620748	Kurtosis	0.066941188	Kurtosis	-1.192880256
Skewness	0.220000491	Skewness	-0.842962372	Skewness	0.172979582
Range	94	Range	90	Range	94
Minimum	2	Minimum	8	Minimum	3
Maximum	96	Maximum	98	Maximum	97
Sum	3271	Sum	5263	Sum	3534
Count	75	Count	75	Count	75
Largest(1)	96	Largest(1)	98	Largest(1)	97
Smallest(1)	2	Smallest(1)	8	Smallest(1)	3
Confidence Level (95.0%)	6.363774773	Confidence Level (95.0%)	5.327438577	Confidence Level (95.0%)	6.445874597
Agreeablenes	SS	Neuroticism	1		
Mean	55.85333333	Mean	38.4		
Standard Error	3.045936199	Standard Error	3.313907359		
Median	57	Median	32		
Mode	74	Mode	43		
Standard Deviation	26.37858126	Standard Deviation	28.69927958		
Sample Variance	695.8295495	Sample Variance	823.6486486		
Kurtosis	-0.966146999	Kurtosis	-1.086632841		
Skewness	-0.347545729	Skewness	0.445771325		
Range	95	Range	95		
Minimum	1	Minimum	2		
Maximum	96	Maximum	97		
Sum	4189	Sum	2880		
Count	75	Count	75		
Largest(1)	96	Largest(1)	97		
Smallest(1)	1	Smallest(1)	2		
Confidence Level (95.0%)	6.069161075	Confidence Level (95.0%)	6.603105329		

Table 6 provides descriptive statistics the four dependent variables of the Felder-Silverman Learning Style Model collected via the Index of Learning Styles (ILS) instrument.

Table 6: Descriptive Statistics for the Group A Index of Learning Styles Data

Active-Reflecti	ive	Sensing-Intuitive				
Mean	11.2	Mean	9.04			
Standard Error	0.609829396	Standard Error	0.663444465			
Median	12	Median	10			
Mode	12	Mode	12			
Standard Deviation	5.281277487	Standard Deviation	5.74559761			
Sample Variance	27.89189189	Sample Variance	33.01189189			
Kurtosis	-0.5743744	Kurtosis	-0.842805984			
Skewness	0.275969315	Skewness	0.129842795			
Range	20	Range	20			
Minimum	2	Minimum	0			
Maximum	22	Maximum	20			
Sum	840	Sum	678			
Count	75	Count	75			
Largest(1)	22	Largest(1)	20			
Smallest(1)	2	Smallest(1)				
Confidence Level (95.0%)	1.215111739	Confidence Level (95.0%)	1.32194211			
Visual-Verba	I	Sequential-Global				
Mean	6.24	Mean	10.4			
Standard Error	0.53552702	Standard Error	0.505109033			
Median	6	Median	10			
Mode	4	Mode	10			
Standard Deviation	4.637800038	Standard Deviation	4.374372542			
Sample Variance	21.50918919	Sample Variance	19.13513514			
Kurtosis	0.446214441	Kurtosis	-0.324811315			
Skewness	0.865819946	Skewness	0.063692839			
Range	20	Range	20			
Minimum	0	Minimum	2			
Maximum	20	Maximum	22			
Sum	468	Sum	780			
Count	75	Count	75			
Largest(1)	20	Largest(1)	22			
Smallest(1)	0	Smallest(1)	2			
Confidence Level (95.0%)	1.067061006	Confidence Level (95.0%)	1.006451837			

Data Analysis and Model Development

The first step in the development of a predictive model of learning styles was to conduct a linear regression with the data from the seventy-five participants that make up Group A. Linear regression was conducted pair wise to identify correlations. The linear regression was conducted on the entire sample in Group A and defined subgroups (males, females, age \geq 30, age <30, high school graduates, Bachelors degree, Masters/PhD degree and combinations of these subgroups). The scatter diagrams with trend lines for the twenty (20) variable pairs (i.e. extraversion vs. sensing-intuitive) are shown in Appendix F.

For each ILS factor (Active-Reflective, Sensing-Intuitive, Visual-Verbal and Sequential-Global) and group/subgroup, the regression equation(s) with the greatest absolute value of slope and standardized direct effect (also known as correlation coefficient and multiple R) was selected to test for significance. Only those highly significant ($p \le 0.05$) regression equations were used to predict learning styles.

Table 7 through Table 10 show significance tests in blue (high significance with a probability, p = 0.05, 0.01 or 0.001) and red (low significance with a p > 0.05). The items in gray were not tested for significance since they were not the highest correlated items in the treatment they were in.

The null hypothesis, H₀, asserted that there is no dependency between personality preference variables and learning preference variables. Based on a desired minimum confidence level of 95%, treatments not meeting these criteria were discarded. The correlation coefficient

and significance testing provided the criteria to reject the null hypothesis. The results of the regression analysis/significance testing for each treatment are contained in <u>Appendix G</u>.

Table 7: Results of significance testing for predictors of the Active-Reflective scale

	Subgroup	Sample Size	Openness	Conscientiousness	Extraversion	Agreeableness	Neuroticism
	All	75			p = 0.001		
e <	Age < 30	35			p = 0.001		
lectiv Style	Age ≥ 30	40			p = 0.001		
Reflective ing Style	Male	51			p = 0.001		
	Female	24			p = 0.01		
> ≒	High School Graduate	17			p = 0.01		
Acti	Bachelors Degree	34			p = 0.001		
	Masters Degree or PhD	24			p = 0.001		

Referencing Table 7, there are highly significant correlations between extraversion (E) and the active-reflective (AR) learning style scale. All eight treatments tested demonstrated high significance at a probability, $p \le 0.01$ (confidence level $\ge 99\%$).

Openness, conscientiousness, agreeableness and neuroticism had lower correlations and therefore, were not as significant of a predictor of the AR learning style as extraversion. The sub null hypothesis, H_{0A} , asserted that there is no dependency between the personality preference variables and the AR learning style preference variable. This sub null hypothesis can be rejected.

Table 8: Results of significance testing for predictors of the Sensing-Intuitive scale

	Subgroup	Sample Size	Openness	Conscientiousness	Extraversion	Agreeableness	Neuroticism
	All	75	p = 0.001				
e <	Age < 30	35			p = 0.05		
tuiti	Age ≥ 30	40	p = 0.001				
+2 07	Male	51	p = 0.01				
ng-Ir ning	Female	24	p = 0.01				
ensii Leari	High School Graduate	17					
Ser	Bachelors Degree	34	p = 0.01				
	Masters Degree or PhD	24					

Referencing Table 8, there are highly significant correlations between openness (O) and the sensing-intuitive (SI) learning style scale. Six (6) of the eight treatments tested demonstrated high significance at a probability, $p \le 0.01$ (confidence level $\ge 99\%$). The two (2) other

treatments tested were determined to have low significance in relationship to our criteria and were not used as production rules in our cognitive model. Conscientiousness, agreeableness and neuroticism had lower correlations and therefore, were not as significant of a predictor of the SI learning style as openness and extraversion.

Table 9: Results of significance testing for predictors of the Visual-Verbal scale

	Subgroup	Sample Size	Openness	Conscientiousness	Extraversion	Agreeableness	Neuroticism
	All	75					
_ 0	Age < 30	35					
erbal Style	Age ≥ 30	40	p = 0.05				
I-Vel	Male	51					
- α ·=	Female	24			p = 0.05		
ਤ ਨ	High School Graduate	17					
ž š	Bachelors Degree	34					
	Masters Degree or PhD	24	p = 0.05				

Referencing Table 9, there are three (3) of eight (8) treatments tested that demonstrated highly significant correlations between openness (O) and the visual-verbal (VV) learning style scale. One (1) of the treatments tested demonstrated a highly significant correlation between extraversion (E) and the visual-verbal learning style scale. The remaining five (5) treatments tested were determined to have low significance in relationship to our criteria.

Conscientiousness, agreeableness and neuroticism had lower correlations and therefore, were not as significant of a predictor of the VV learning style as openness and extraversion.

Table 10: Results of significance testing for predictors of the Sequential-Global scale

	Subgroup	Sample Size	Openness	Conscientiousness	Extraversion	Agreeableness	Neuroticism
	All	75					
obal	Age < 30	35					
Styl	Age ≥ 30	40					
	Male	51					
ential arning	Female	24					
	High School Graduate	17					
Sequ	Bachelors Degree	34	p = 0.05				
0,	Masters Degree or PhD	24					

Referencing Table 10, there was only one (1) of ten (10) treatments that demonstrated highly significant correlations between any of the five factors and the sequential-global (SG)

learning style scale. The Bachelors Degree subgroup was determined to have a highly significant correlation between openness (O) and the sequential-global learning style. The remaining nine (9) other treatments tested were determined to have low significance in relationship to our criteria. Conscientiousness, extraversion, agreeableness and neuroticism had lower correlations and therefore, were not as significant of a predictor of the SG learning style as openness.

Based on the results of the significance testing, null hypotheses noted in Table 11 were rejected since it was determined that highly significant relationships exist between these variables.

Table 11: Rejection of the Null Hypotheses

	Reject H₀?	Learning Style Preferences							
	rtojoot ri ₀ :	Active-Reflective	Sensing-Intuitive	Visual-Verbal	Sequential-Global				
r.	Openness		Reject H ₀	Reject H ₀	Reject H ₀				
e ct	Conscientiousness								
ive Factor Model	Extraversion	Reject H ₀	Reject H ₀	Reject H ₀					
S ≥	Agreeableness								
证	Neuroticism								

Based on the significant correlations noted above, a predictive model was developed using the mathematical relationships from the regression analysis as "production rules" to predict learning style preferences. As a basis, the regression equation of each treatment (i.e. AR predicted by E) is used. Again, only the equations that provide a 95% or greater confidence level are used in the model.

The mathematical equation for the regression equation with the best fit for AR predicted by E is:

Equation 1: AR = slope * E + b

A regression line was calculated for each significant treatment and multiple predictions of AR are generated in the model. To weight the impact of each linear regression calculation, each of the predicted AR values is multiplied by the confidence level and then summed. The result is divided by the sum of the confidence levels as shown in Equation 2. This equation was also applied to the other models for SI, VV and SG learning style preferences.

Equation 2: Predictive Model for i significant treatments $AR \ Predicted = \sum (AR_i * Confidence_i) / \sum Confidence_i$

Next, the predictive model was tested against the known data in Group A to detect and minimize errors. Once the errors were minimized for the set of Group A data, the predictive model was then applied to the Group B data to predict learning styles and validate/invalidate the model.

Predictive Models

Since most of the population (67%) demonstrates a preference for the "active" learning style preference (Montgomery, 1995), the predictive model for AR was setup to only select "reflective" when the calculations demonstrated a very clear preference for the reflective learning style. The predictive model for AR was set up to select the "reflective" learning style preference when the "AR Predicted" value is greater than 14.436. This value provided the minimum error and was derived from the mean of AR plus or minus the average error computed for Group A. The average numerical error between the predicted values and the actual values for Group A was 3.236. Since the mean of AR is 11.2, this yields two values 7.964 and 14.436.

Any computed value of AR > 14.436 and < 7.964 is less ambiguous and is more clearly "reflective" or "active" respectively. Any ambiguous values (7.964 > AR >14.436) are assumed to be "active" based on expected population norms.

The AR predictive model (based on Group A data) output an error (selected the wrong learning style) 20% of the time. This was also the expected error rate for Group B, the model validation group. In actuality, Group B output an error 16% of the time with an average numerical error of only 1.207 vice 3.236 in Group A. These error rates are significantly lower than the expected 33% error rate that would have been realized if the only choice was "active". The predictive results for the refined model based on Group A data are shown in Table 12.

Table 12: Group A results for predicting Active-Reflective learning style preferences

Participant	Predicted AR	Predicted Learning Style	Actual Learning Style	Error Count	Numerical Error	Participant	Predicted AR	Predicted Learning Style	Actual Learning Style	Error Count	Numerical Error
1	11.722	Active	Active	0	5.722	40	12.722	Active	Active	0	1,278
2	5.529	Active	Active	0	6.471	41	8.124	Active	Active	0	1.876
3	7.353	Active	Active	0	4.647	42	11.769	Active	Active	0	1.769
4	14.313	Active	Reflective	1	7.687	43	15.165	Reflective	Active	1	7.165
5	9.829	Active	Active	0	5.829	44	16.925	Reflective	Reflective	0	5.075
6	12.370	Active	Active	0	2.370	45	12.361	Active	Active	0	1.639
7	8.092	Active	Active	0	4.092	46	8.436	Active	Reflective	1	7.564
8	13.033	Active	Active	0	0.967	47	15.655	Reflective	Reflective	0	4.345
9	15.904	Reflective	Active	1	3.904	48	13.147	Active	Active	0	9.147
10	14.947	Reflective	Active	1	0.947	49	5.317	Active	Active	0	2.683
11	5.773	Active	Active	0	4.227	50	8.302	Active	Active	0	1.698
12	8.092	Active	Active	0	0.092	51	14.944	Reflective	Active	1	6.944
13	6.286	Active	Active	0	0.092	52	12.361	Active	Active	0	1.639
14	7.888	Active	Active	0	3.888	53	10.778	Active	Active	0	4.778
15	10.270	Active	Active	0	2.270	54	6.139	Active	Active	0	2.139
16	16.644	Reflective	Reflective	0	3.356	55	11.717	Active	Active	0	0.283
17	8.873	Active	Active	0	2.873	56	13.535	Active	Active	0	5.535
										0	
18	16.256	Reflective	Reflective	0	5.744	57	10.483	Active	Active		0.483
19 20	13.952	Active	Active	0	0.048	58 59	13.066	Active	Active	0	3.066
	14.770	Reflective	Active	1	4.770		13.859	Active	Active		1.859
21	8.366	Active	Active	0	3.634	60	9.435	Active	Active	0	1.435
22	10.298	Active	Active	0	0.298	61	9.778	Active	Active	0	4.222
23	6.568	Active	Active	0	1.432	62	8.491	Active	Active	0	1.510
24	5.614	Active	Active	0	2.386	63	12.121	Active	Active	0	0.121
25	12.556	Active	Active	0	0.556	64	4.796	Active	Active	0	2.796
26	14.831	Reflective	Reflective	0	3.169	65	12.306	Active	Active	0	4.306
27	14.806	Reflective	Active	1	2.806	66	10.717	Active	Active	0	1.283
28	9.435	Active	Active	0	5.435	67	8.096	Active	Active	0	5.904
29	14.034	Active	Reflective	1	1.966	68	11.124	Active	Active	0	0.876
30	15.542	Reflective	Active	1	1.542	69	14.831	Reflective	Active	1	0.831
31	12.361	Active	Reflective	1	5.639	70	12.361	Active	Active	0	1.639
32	14.662	Reflective	Reflective	0	7.338	71	7.604	Active	Active	0	1.604
33	8.124	Active	Active	0	4.124	72	6.139	Active	Active	0	4.139
34	17.051	Reflective	Reflective	0	0.949	73	10.778	Active	Reflective	1	7.222
35	15.965	Reflective	Reflective	0	4.035	74	7.361	Active	Active	0	3.361
36	15.920	Reflective	Active	1	3.920	75	5.117	Active	Active	0	3.117
37	15.542	Reflective	Reflective	0	2.458			Gro	up A Errors =	15	242.67
38	6.993	Active	Active	0	0.993			Group	A % Error =	20.00%	3.236
39	13.531	Active	Reflective	1	4.469						

Table 13: Group B results for predicting Active-Reflective learning style preferences

	Predicted	Predicted Learning	Actual Learning	Error	Numerical
Participant	AR	Style	Style	Count	Error
1	5.731	Active	Active	0	2.269
2	11.717	Active	Active	0	2.283
3	14.025	Active	Active	0	6.025
4	5.111	Active	Active	0	6.889
5	11.844	Active	Active	0	1.844
6	4.700	Active	Active	0	1.300
7	8.363	Active	Active	0	3.637
8	7.209	Active	Active	0	4.791
9	12.059	Active	Reflective	1	7.941
10	14.025	Active	Active	0	4.025
11	6.412	Active	Active	0	0.412
12	10.298	Active	Active	0	3.702
13	6.452	Active	Active	0	0.452
14	15.655	Reflective	Reflective	0	4.345
15	7.816	Active	Active	0	0.184
16	10.748	Active	Reflective	1	5.252
17	15.707	Reflective	Reflective	0	2.293
18	13.406	Active	Active	0	3.406
19	16.256	Reflective	Active	1	6.256
20	14.436	Active	Active	0	4.436
21	5.529	Active	Active	0	2.471
22	14.469	Reflective	Reflective	0	1.531
23	13.501	Active	Reflective	1	4.499
24	14.313	Active	Active	0	0.313
25	13.952	Active	Active	0	9.952
		Group B Errors =		4	90.511
		Group B % Error =		16.00%	1.207

The model development and validation process involved implementing the AR model developed from Group A data with Group B FFM inputs to predict learning styles. Group B results are shown in Table 13. Group B also provided ILS inputs to aid in model validation.

Table 14: Group A results for predicting Sensing-Intuitive learning style preferences

Participant	Predicted SI	Predicted Learning Style	Actual Learning Style	Error Count	Numerical Error	Participant	Predicted SI	Predicted Learning Style	Actual Learning Style	Error Count	Numerical Error
1	5.141	Sensing	Sensing	0	5.141	40	8.787	Sensina	Sensing	0	1,213
2	8.167	Sensing	Sensing	0	8.167	41	8.710	Sensing	Sensing	0	1.290
3	14.774	Intuitive	Sensing	1	2.774	42	6.896	Sensing	Intuitive	1	9.104
4	6.911	Sensing	Sensing	0	1.089	43	8.675	Sensing	Sensing	0	3.325
5	11.821	Sensing	Sensing	0	2.179	44	8.918	Sensing	Sensing	0	5.082
6	10.746	Sensing	Intuitive	1	9.254	45	10.127	Sensing	Sensing	0	4.127
7	12.188	Sensing	Sensing	0	2.188	46	6.337	Sensing	Sensing	0	4.127
8	6.682	Sensing	Intuitive	1	9.318	47	4.654	Sensing	Sensing	0	4.654
9	5.768	Sensing	Sensing	0	4.232	48	10.156	_		0	4.054
10				0				Sensing	Sensing	0	
	11.136	Sensing	Sensing	0	2.864	49	11.407	Sensing	Sensing	0	3.407
11 12	5.911	Sensing	Sensing		5.911	50	8.143	Sensing	Sensing		1.857
13	5.911	Sensing	Sensing	0	0.089	51	11.145	Sensing	Intuitive	1 0	4.855
	4.976	Sensing	Sensing	0	4.976	52	5.939	Sensing	Sensing	1	6.061
14	14.676	Intuitive	Sensing		2.676	53	11.600	Sensing	Intuitive		6.400
15	10.154	Sensing	Intuitive	1	7.846	54	13.856	Sensing	Intuitive	1	4.144
16	9.566	Sensing	Sensing	0	7.566	55	11.821	Sensing	Intuitive	1	6.179
17	13.795	Sensing	Sensing	0	1.795	56	11.254	Sensing	Sensing	0	1.254
18	6.911	Sensing	Sensing	0	2.911	57	9.121	Sensing	Sensing	0	0.879
19	9.932	Sensing	Sensing	0	3.932	58	9.407	Sensing	Sensing	0	0.593
20	5.197	Sensing	Sensing	0	3.197	59	10.481	Sensing	Sensing	0	2.481
21	14.676	Intuitive	Intuitive	0	3.324	60	9.932	Sensing	Sensing	0	2.068
22	7.895	Sensing	Intuitive	11	10.105	61	10.173	Sensing	Sensing	0	2.173
23	8.174	Sensing	Sensing	0	2.174	62	10.070	Sensing	Sensing	0	0.070
24	11.136	Sensing	Sensing	0	7.136	63	7.088	Sensing	Sensing	0	4.912
25	9.220	Sensing	Sensing	0	2.780	64	9.932	Sensing	Sensing	0	2.068
26	5.928	Sensing	Sensing	0	3.928	65	8.140	Sensing	Sensing	0	4.140
27	14.052	Intuitive	Intuitive	0	5.948	66	7.280	Sensing	Sensing	0	3.280
28	9.344	Sensing	Sensing	0	3.344	67	7.305	Sensing	Intuitive	1	12.695
29	6.835	Sensing	Sensing	0	4.835	68	6.818	Sensing	Sensing	0	3.182
30	10.073	Sensing	Sensing	0	1.927	69	5.436	Sensing	Sensing	0	6.564
31	6.272	Sensing	Sensing	0	5.728	70	11.124	Sensing	Sensing	0	1.124
32	7.203	Sensing	Sensing	0	2.797	71	5.715	Sensing	Sensing	0	5.715
33	8.710	Sensing	Sensing	0	0.710	72	9.344	Sensing	Sensing	0	9.344
34	9.272	Sensing	Sensing	0	1.272	73	6.304	Sensing	Sensing	0	0.304
35	8.046	Sensing	Sensing	0	4.046	74	8.484	Sensing	Sensing	0	8.484
36	11.527	Sensing	Sensing	0	7.527	75	11.336	Sensing	Intuitive	1	6.664
37	7.325	Sensing	Sensing	0	1.325			Grou	p A Errors =	13.00	312.91
38	7.544	Sensing	Sensing	0	3.544				A % Error =	17%	4.172
39	8.168	Sensing	Sensing	0	4.168						

The same process was followed with the Group A data to develop a predictive model for SI and then the model was validated against data from Group B. Results for the Group A data are shown in Table 14 and Group B results are shown in Table 15. About five (5) out of every six (6) participants were correctly predicted to either be "sensing" or "intuitive".

Table 15: Group B results for predicting Sensing-Intuitive learning style preferences

	Predicted	Predicted Learning	Actual Learning	Error	Numerical
Participant	SI	Style	Style	Count	Error
1	7.139	Sensing	Sensing	0	0.861
2	11.821	Sensing	Sensing	0	5.821
3	8.855	Sensing	Sensing	0	1.145
4	8.682	Sensing	Sensing	0	5.318
5	6.406	Sensing	Sensing	0	1.594
6	7.368	Sensing	Sensing	0	7.368
7	12.684	Sensing	Sensing	0	1.316
8	6.997	Sensing	Sensing	0	3.003
9	11.342	Sensing	Sensing	0	0.658
10	11.042	Sensing	Intuitive	1	4.958
11	11.828	Sensing	Sensing	0	2.172
12	7.895	Sensing	Sensing	0	7.895
13	8.395	Sensing	Sensing	0	0.395
14	4.654	Sensing	Sensing	0	4.654
15	7.305	Sensing	Sensing	0	3.305
16	8.813	Sensing	Sensing	0	2.813
17	8.444	Sensing	Sensing	0	2.444
18	6.125	Sensing	Intuitive	1	13.875
19	5.141	Sensing	Sensing	0	0.859
20	7.169	Sensing	Intuitive	1	8.831
21	13.267	Sensing	Sensing	0	11.267
22	9.080	Sensing	Sensing	0	4.920
23	8.280	Sensing	Sensing	0	3.720
24	6.715	Sensing	Sensing	0	0.715
25	13.757	Sensing	Intuitive	1	2.243
		Grou	p B Errors =	4	102.149
		Group	B % Error =	16.00%	1.362

Only three (3) highly significant relationships were used to try to predict VV learning style preferences. The three (3) production rules (predictive relationships) included relationships to characteristics that included age \geq 30, female and Masters/PhD. This left out some participants who were either age < 30, males, high school graduates or had Bachelors degrees. There were insufficient productions rules to reach a prediction for each participant (in either

Group A or Group B). The results are shown in Table 16 for Group A and Table 17 for Group B.

Table 16: Group A results for predicting Visual-Verbal learning style preferences

Participant	Predicted VV	Predicted Learning Style	Actual Learning Style	Error Count	Numerical Error	Participant	Predicted VV	Predicted Learning Style	Actual Learning Style	Error Count	Numerical Error
1	10.340	Visual	Visual	0	2.340	40	7.158	Visual	Visual	0	3.158
2	7.669	Visual	Visual	0	2.331	41	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
3	4.143	Visual	Visual	0	0.143	42	6.855	Visual	Visual	0	1.145
4	9.019	Visual	Verbal	1	6.981	43	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
5	5.748	Visual	Visual	0	0.252	44	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
6	6.156	Visual	Visual	0	5.844	45	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
7	4.938	Visual	Visual	0	0.938	46	4.916	Visual	Visual	0	0.916
8	8.411	Visual	Visual	0	0.411	47	9.449	Visual	Visual	0	2.551
9	9.350	Visual	Verbal	1	6.650	48	6.597	Visual	Visual	0	6.597
10	7.105	Visual	Visual	0	3.105	49	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
11	9.201	Visual	Visual	0	7.201	50	5.868	Visual	Visual	0	5.868
12	9.201	Visual	Visual	0	9.201	51	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
13	3.764	Visual	Visual	0	1.764	52	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
14	4.301	Visual	Visual	0	0.301	53	5.338	Visual	Visual	0	1.338
15	6.329	Visual	Visual	0	2.329	54	3.806	Visual	Visual	0	0.194
16	7.037	Visual	Visual	0	1.037	55	6.179	Visual	Visual	0	2.179
17	3.881	Visual	Visual	0	2.119	56	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
18	9.019	Visual	Verbal	1	6.981	57	#DIV/0!	#DIV/0!	Verbal	#DIV/0!	#DIV/0!
19	6.470	Visual	Visual	0	5.530	58	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
20	8.922	Visual	Visual	0	1.079	59	5.373	Visual	Visual	0	5.373
21	4.400	Visual	Visual	0	0.400	60	6.470	Visual	Visual	0	6.470
22	8.285	Visual	Verbal	1	11.715	61	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
23	5.929	Visual	Visual	0	2.071	62	4.844	Visual	Visual	0	3.156
24	5.185	Visual	Visual	0	6.815	63	8.402	Visual	Visual	0	4.402
25	7.234	Visual	Visual	0	0.766	64	6.470	Visual	Visual	0	2.470
26	9.753	Visual	Visual	0	0.700	65	7.158	Visual	Visual	0	7.158
27	3.673	Visual	Visual	0	3.673	66	7.130	Visual	Visual	0	1.211
28	6.870	Visual	Visual	0	7.130	67	8.725	Visual	Visual	0	8.725
29	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!	68	6.491	Visual	Visual	0	2.491
30	#DIV/0!	#DIV/0!	Visual	#DIV/0! #DIV/0!	#DIV/0!	69	10.120	Visual	Visual	0	0.120
31	#DIV/0!	#DIV/0!	Visual	#DIV/0! #DIV/0!	#DIV/0!	70	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
32	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	Visual	#DIV/0! #DIV/0!	#DIV/0!	71	9.334	#DIV/0! Visual	Visual	#DIV/0!	9.334
32	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	Visual		#DIV/0! #DIV/0!	71	9.334 6.870	Visual		0	0.870
33	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	Visual	#DIV/0!	#DIV/0!	73	8.934		Visual	0	5.066
35	#DIV/0! 8.855			#DIV/0! 0		74	4.370	Visual	Visual	0	3.630
		Visual	Visual		3.145 #DIV/0!			Visual	Visual		
36	#DIV/0!	#DIV/0!	Visual	#DIV/0!		75	5.716	Visual	Visual	0	1.716
37	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!				up A Errors =	#DIV/0!	#DIV/0!
38 39	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	Visual Visual	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!			Group	A % Error =	#DIV/0!	#DIV/0!

Although the three (3) predictors were statistically significant, they were impractical as a model to predict VV learning style preferences.

Table 17: Group B results for predicting Visual-Verbal learning style preferences

	Predicted	Predicted Learning	Actual Learning	Error	Numerical
Participant	VV	Style	Style	Count	Error
1	6.083	Visual	Visual	0	1.917
2	6.179	Visual	Visual	0	0.179
3	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
4	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
5	11.364	Visual	Visual	0	7.364
6	9.426	Visual	Visual	0	9.426
7	5.048	Visual	Visual	0	3.048
8	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
9	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
10	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
11	5.349	Visual	Visual	0	3.349
12	8.285	Visual	Visual	0	6.285
13	6.403	Visual	Visual	0	2.403
14	9.449	Visual	Visual	0	1.449
15	4.734	Visual	Visual	0	2.734
16	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
17	8.733	Visual	Visual	0	3.267
18	9.606	Visual	Visual	0	2.394
19	10.340	Visual	Visual	0	6.340
20	8.491	Visual	Visual	0	5.509
21	4.206	Visual	Visual	0	1.794
22	7.791	Visual	Visual	0	1.791
23	#DIV/0!	#DIV/0!	Visual	#DIV/0!	#DIV/0!
24	9.166	Visual	Visual	0	3.166
25	3.873	Visual	Visual	0	0.127
		Grou	ıp B Errors =	#DIV/0!	#DIV/0!
		Group	B % Error =	#DIV/0!	#DIV/0!

Only one (1) highly significant relationship was used to try to predict SG learning style preferences. The only production rule (predictive relationships) included a relationship between participants who held a Bachelors Degree and the SG learning style (either sequential or global). This left out predictors for a large number of participants who were outside the Bachelors Degree subgroup. There were insufficient productions rules to reach a prediction for each participant (in

either Group A or Group B). The results are shown in Table 18 for Group A and Table 19 for Group B.

Table 18: Group A results for predicting Sequential-Global learning style preferences

Participant	Predicted SG	Predicted Learning Style	Actual Learning Style	Error Count	Numerical Error	Participant	Predicted SG	Predicted Learning Style	Actual Learning Style	Error Count	Numerical Error
1	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	40	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
2	8.888	Sequential	Sequential	0	6.888	41	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
3	12.158	Sequential	Sequential	0	2.158	42	8.070	Sequential	Sequential	0	3.930
4	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!	43	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
5	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	44	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!
6	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!	45	10.523	Sequential	Sequential	0	6.523
7	11.122	Sequential	Sequential	0	1.122	46	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
8	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	47	7.144	Sequential	Sequential	0	1.144
9	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	48	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!
10	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!	49	12.212	Sequential	Sequential	0	0.212
11	7.634	Sequential	Sequential	0	5.634	50	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
12	7.634	Sequential	Sequential	0	5.634	51	11.122	Sequential	Sequential	0	2.878
13	7.198	Sequential	Sequential	0	5.198	52	7.089	Sequential	Global	1	8.911
14	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	53	10.795	Sequential	Global	1	5.205
15	9.869	Sequential	Sequential	0	2.132	54	12.049	Sequential	Sequential	0	6.049
16	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	55	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
17	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	56	11.340	Sequential	Sequential	0	3.340
18	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	57	9.869	Sequential	Sequential	0	0.131
19	9.869	Sequential	Global	1	6.132	58	9.869	Sequential	Sequential	0	0.131
20	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	59	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
21	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	60	9.869	Sequential	Global	1	6.132
22	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	61	10.795	Sequential	Sequential	0	4.795
23	8.888	Sequential	Sequential	0	1.113	62	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
24	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	63	8.288	Sequential	Sequential	0	0.288
25	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	64	9.869	Sequential	Global	1	6.132
26	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	65	8.888	Sequential	Sequential	0	1.113
27	12.158	Sequential	Global	1	3.843	66	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
28	9.542	Sequential	Sequential	0	0.458	67	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!
29	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	68	8.070	Sequential	Sequential	0	4.070
30	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	69	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
31	7.362	Sequential	Sequential	0	3.362	70	11.340	Sequential	Sequential	0	2.660
32	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	71	7.525	Sequential	Sequential	0	6.475
33	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	72	9.542	Sequential	Sequential	0	0.458
34	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	73	7.852	Sequential	Sequential	0	2.148
35	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	74	9.542	Sequential	Sequential	0	3.542
36	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!	75	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
37	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!			Grou	ıp A Errors =	#DIV/0!	#DIV/0!
38	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!			Group	A % Error =	#DIV/0!	#DIV/0!
39	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!						

Table 19: Group B results for predicting Sequential-Global learning style preferences

Participant	Predicted SG	Predicted Learning Style	Actual Learning Style	Error Count	Numerical Error
1	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
2	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
3	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
4	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
5	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
6	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
7	11.122	Sequential	Sequential	0	7.122
8	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
9	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
10	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!
11	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
12	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
13	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!
14	7.144	Sequential	Sequential	0	3.144
15	8.670	Sequential	Sequential	0	0.670
16	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!
17	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
18	#DIV/0!	#DIV/0!	Global	#DIV/0!	#DIV/0!
19	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
20	8.016	Sequential	Sequential	0	3.985
21	11.722	Sequential	Sequential	0	3.722
22	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
23	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
24	#DIV/0!	#DIV/0!	Sequential	#DIV/0!	#DIV/0!
25	11.994	Sequential	Sequential	0	2.006
		Grou	ıp B Errors =	#DIV/0!	#DIV/0!
		Group	B % Error =	#DIV/0!	#DIV/0!

Survey Response Analysis

The participants in Group B were asked to take a short course on how to solve Sudoku number puzzles (<u>Instructables, 2006</u>). The course was presented in a slide presentation format and afterwards the twenty-five participants were asked to answer the twelve questions shown in the media feedback survey in <u>Appendix D</u>. Each question in the survey related to a learning style preference dichotomy. Based on the predictive model, responses to the survey were also predicted.

Since no satisfactory prediction model for VV and SG were generated, the six (6) questions related to both VV and SG were eliminated from the analysis. Predicted responses were provided and compared to actual responses. The difference in actual and predicted responses determined the error rate calculated for each question and shown in Equation 3.

Equation 3: Response Error Calculation: ∑ |Actual Response-Predicted Response| /Maximum Error

The "Maximum Error" is equal to the total # of responses * (highest response possible – lowest response possible). In this case, there are twenty-five (25) responses for each question and the highest possible response is five (5) and the lowest possible response is one (1). Therefore "Maximum Error" for each question is one hundred (100). The "Response Error Calculation" is a percentage of the maximum possible error. The actual and predicted responses along with the "Response Error" calculation results are shown in Table 20. The total error across all six questions is 20.3%. This is consistent with the results from our predictive models for both AR and SI learning style preferences.

Table 20: Media feedback survey predicted and actual responses

	Survey Ke	y:	Strongly D	isagree = 1		Disagree =	2	Neutral = 3		Agree = 4		Strongly Ag	ree = 5		Not Comp	uted = NC		
		Question	1		Question	2		Question 3			Question 4	1		Question 5	5		Question 6	5
	F	Relates to	SI		Relates to S	3G		Relates to A	R	-	Relates to V	V		Relates to \$	SI		Relates to A	R
Participant	Predicted	Actual	Difference	Predicted	Actual	Difference	Predicted	Actual	Difference	Predicted	Actual	Difference	Predicted	Actual	Difference	Predicted	Actual	Differen
1	2	1	1		5	NC	2	1	1		5	NC	2	1	1	4	2	2
2	3	1	2	8 8	4	NC	3	2	1		5	NC	3	2	1	3	2	1
3	2	2	0		4	NC	3	2	1		4	NC	2	2	0	- 3	1	2
4	2	1	1		4	NC	2	1	1		5	NC	2	2	0	4	1	3
5	2	1	1	8 8	5	NC	3	5	2		5	NC	2	2	0	3	1	2
6	2	1	1	4 8	4	NC	2	1	1		5	NC	2	3	1	4	1	3
7	3	2	1		4	NC	3	4	1		4	NC	3	1	2	3	3	0
8	2	1	1		4	NC	2	1	1	-	5	NC	2	1	1	4	2	2
9	3	1	2	8	4	NC	3	1	2		5	NC	3	4	1	3	1	2
10	3	2	1		4	NC	3	2	1		4	NC	3	2	- 1	3	1	2
11	3	1	2		5	NC	2	1	1		1	NC	3	2	1	4	2	2
12	2	2	0	8 8	4	NC	3	2	1		2	NC	2	2	0	3	1	2
13	3	3	0	4 8	2	NC	2	1	1		3	NC	3	4	1	4	4	0
14	2	4	2		4	NC	4	4	0		2	NC	2	2	0	2	3	1
15	2	2	0		4	NC	2	2	0		4	NC	2	2	0	4	4	0
16	3	3	0		3	NC	3	3	0		2	NC	3	2	1	3	3	0
17	3	3	0		4	NC	4	5	1		3	NC	3	3	0	2	2	0
18	2	2	0		3	NC	3	4	1		5	NC	2	1	1	3	2	1
19	2	2	0	3 9	2	NC	4	4	0		5	NC	2	2	0	2	2	0
20	2	1	1	4	2	NC	3	3	0		4	NC	2	2	0	3	3	0
21	3	3	0		4	NC	2	2	0		4	NC	3	3	0	4	5	1
22	3	2	1		4	NC	3	3	0	_	3	NC	3	2	1	3	4	1
23 24	2	2	0	2 3	3 2	NC NC	3	3 4	0		5	NC NC	2	2	0	3	3	0
	2	2						-					2			3		
25	3	rror Rate	17%		3	NC	3	3	0		4	NC	3	3	0	3	4	1
			1770		Error Rate:	NC		Error Rate:	18%		Error Rate:	NC		Error Rate:	14%		Error Rate:	28%
		Question	7		Question	8		Question 9			Question 1	0		Question 1	1		Question 12	2
	R	Question telates to 1	7 VV		Question Relates to S	B GG		Question 9 Relates to A	R	-	Question 1 Relates to S	0 iG		Question 1 Relates to V	1 /V		Question 12 Relates to S	2
articipant		Question telates to \	7 VV Difference		Question Relates to S	8 GG Difference	Predicted	Question 9 Relates to A Actual	R Difference	-	Question 1 Relates to S Actual	0 iG Difference		Question 1 Relates to V	1 /V Difference	Predicted	Question 12 Relates to 8 Actual	2
1	R	Question telates to v Actual 5	7 VV Difference NC		Question Relates to S Actual	8 GG Difference NC	Predicted 4	Question 9 Relates to A Actual 2	R Difference 2	-	Question 1 Relates to S Actual 2	0 G Difference NC		Question 1 Relates to V Actual 2	1 /V Difference NC	Predicted 4	Question 12 Relates to 5 Actual 3	2 SI Difference
1 2	R	Question telates to \ Actual 5	7 VV Difference NC NC		Question Relates to S Actual 3	B GG Difference NC NC	Predicted 4 3	Question 9 Relates to A Actual 2 2	R Difference 2 1	-	Question 1 Relates to S Actual 2 2	0 GG Difference NC NC		Question 1 Relates to V Actual 2 4	1 /V Difference NC NC	Predicted 4 3	Question 12 Relates to 8 Actual 3	2 SI Difference 1 1
1 2 3	R	Question telates to \ Actual 5 5	7 VV Difference NC NC		Question Relates to S Actual 3 2	B GG Difference NC NC	Predicted 4 3 3 3	Question 9 Relates to A Actual 2 2 5	R Difference 2 1	-	Question 1 Relates to S Actual 2 2 2	0 GG Difference NC NC		Question 1 Relates to V Actual 2 4 2	1 // Difference NC NC NC	Predicted 4 3 4	Question 12 Relates to 8 Actual 3 4	2 SI Difference 1 1 2
1 2 3 4	R	Question Relates to V Actual 5 5 4	7 VV Difference NC NC NC		Question Relates to 8 Actual 3 2 1	B GG Difference NC NC NC	Predicted 4 3 3 4	Question 9 Relates to A Actual 2 2 5	R Difference 2 1 2 3	-	Question 1 Relates to S Actual 2 2 2 2	0 GG Difference NC NC NC		Question 1 Relates to V Actual 2 4 2 2	1 // Difference NC NC NC NC NC	Predicted 4 3 4 4	Question 12 Relates to 8 Actual 3 4 2 5	2 SI Difference 1 1 2
1 2 3 4 5	R	Question Relates to V Actual 5 5 4 5	7 VV Difference NC NC NC NC		Question Relates to S Actual 3 2 1 2	B GG Difference NC NC NC NC	Predicted 4 3 4 3 4 3	Question 9 Relates to A Actual 2 2 5 1	R Difference 2 1 2 3	-	Question 1 Relates to S Actual 2 2 2 2 1	0 GG Difference NC NC NC NC		Question 1 Relates to V Actual 2 4 2 2 2	1 // Difference NC	Predicted 4 3 4 4 4	Question 12 Relates to S Actual 3 4 2 5	2 Difference 1 1 2 1
1 2 3 4 5	R	Question telates to v Actual 5 5 4 5 4 5	7 VV Difference NC		Question Relates to S Actual 3 2 1 2 2 2	B GG Difference NC NC NC NC NC	Predicted 4 3 4 3 4 3 4	Question 9 Relates to Al Actual 2 2 5 1 2 1	R Difference 2 1 2 3 1	-	Question 1 Relates to S Actual 2 2 2 2 1	O G Difference NC NC NC NC NC		Question 1 Relates to V Actual 2 4 2 2 2 3	1 // // // // // // // // // // // // //	Predicted 4 3 4 4 4 4	Question 1: Relates to 8 Actual 3 4 2 5 4	2 SI Difference 1 1 2 1 0
1 2 3 4 5 6 7	R	Question telates to VActual 5 5 4 5 4 5 4	7 VV Difference NC		Question Relates to S Actual 3 2 1 2 2 2 2 2	B GG Difference NC NC NC NC NC NC	Predicted 4 3 4 4 3 4 3 4 3	Question 9 Relates to Al Actual 2 2 5 1 2 1 2	R Difference 2 1 2 3 1 3	-	Question 1 Relates to S Actual 2 2 2 2 1 2 2	O G Difference NC NC NC NC NC NC		Question 1 Relates to V Actual 2 4 2 2 2 3	1 // // // // // Difference // // // // // // // // // // // // //	Predicted 4 3 4 4 4 4 3	Question 12 Relates to 8 Actual 3 4 2 5 4 4 4 4	2 SI Difference 1 1 2 1 0 0
1 2 3 4 5 6 7 8	R	Question telates to V Actual 5 5 4 5 4 5 4 5 5	7 VVV Difference NC		Question Relates to S Actual 3 2 1 2 2 2 1 1 1	B GG Difference NC NC NC NC NC NC	Predicted 4 3 3 4 4 3 4 4 3 4	Question 9 Relates to Al Actual 2 2 5 1 2 1 2	R Difference 2 1 2 3 1 3 1 3	-	Question 1 Relates to S Actual 2 2 2 2 1 2 1	0 GG Difference NC		Question 1 Relates to V Actual 2 4 2 2 2 3 2 3	1 /V Difference NC	Predicted 4 3 4 4 4 4 4 3 4 4	Question 1: Relates to 8 Actual 3 4 2 5 4 4 4 4	2 SI Difference 1 1 2 1 0 0
1 2 3 4 5 6 7 8	R	Question telates to VActual 5 5 4 5 4 5 5 5 5	7 VV Difference NC		Question 8 Actual 3 2 1 2 2 2 2 1 1	B GG Difference NC NC NC NC NC NC NC NC NC	Predicted 4 3 3 4 4 3 4 4 3 4 4 3	Question 9 Relates to A Actual 2 2 5 1 2 1 4	R Difference 2 1 2 3 1 3 1 3 1	-	Question 1 Relates to S Actual 2 2 2 1 2 1 2 2	O G G Difference NC		Question 1 Relates to V Actual 2 4 2 2 3 2 3 4	1 I/V Difference NC	Predicted 4 3 4 4 4 4 4 3 3 4 4 2	Question 1: Relates to S Actual 3 4 2 5 4 4 4 4 4	2 5l Difference 1 1 2 1 0 0 0 1
1 2 3 4 5 6 7 8 9	R	Question Relates to VActual 5 5 4 5 4 5 5 4 5 5 4 4 5 5 5 4 4 5 5 5 4 4 5 5 5 5 4 4 5	7 VV Difference NC		Question Selates to S Actual 3 2 1 2 2 2 2 1 1 1 1	B GG Difference NC	Predicted 4 3 4 3 4 3 4 3 4 3 3 3 4 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 4 3 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Question 9 Relates to A/Actual 2 2 5 1 2 1 2 1 4 2 2	R Difference 2 1 2 3 1 3 1 3 1 1 1 1	-	Question 1 Relates to S Actual 2 2 2 2 1 2 1 2 1	O G G Difference NC		Question 1 Relates to V Actual 2 4 2 2 2 3 2 3 4 2	1 PV Difference NC	Predicted 4 3 4 4 4 4 2 4	Question 1: Relates to 8 Actual 3 4 2 5 4 4 4 4 4	2 Sil Difference 1 1 2 1 0 0 0 1 0 2
1 2 3 4 5 6 7 8 9	R	Question telates to vacual 5 5 4 5 4 5 5 4 4 5 5 4 4 5 5 4 4 4 4	7 VV Difference NC		Question : Relates to S Actual 3 2 1 2 2 2 1 1 1 2 4	B GG Difference NC NC NC NC NC NC NC NC NC NC NC NC NC	Predicted 4 3 3 4 4 3 4 4 3 3 4 4 3 3 4 4 4 3 3 4	Question 9 Relates to Al Actual 2 2 5 1 2 1 2 1 4 4 2 1 1	R Difference 2 1 2 3 1 3 1 3 1 3 1 3	-	Question 1 Relates to S Actual 2 2 2 1 2 1 2 1 1 1	O G G Difference NC		Question 1 Relates to V Actual 2 4 2 2 2 3 2 3 4 2 1	1 /V Difference NC	Predicted 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4	Question 1: Relates to 8 Actual 3 4 2 5 4 4 4 4 4	2 Sil Difference 1 1 2 1 0 0 0 1 1 0 2
1 2 3 4 5 6 7 8 9 10	R	Question telates to V Actual 5 5 5 4 5 5 4 5 5 4 4 5 5 4 4 4 4 4 4	7 VV Difference NC		Question Relates to S Actual 3 2 1 2 2 2 1 1 1 1 1 2 4	B GG Difference NC NC NC NC NC NC NC NC NC NC NC NC NC	Predicted 4 3 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 6 4 4 3 6 6 6 6	Question 9 Relates to Al Actual 2 2 2 5 1 2 2 1 4 4 2 1 1 1	R Difference 2 1 1 2 3 1 1 3 1 1 3 2 2	-	Question 1 Relates to S Actual 2 2 2 2 1 1 2 2 1 1 2 1 1 2 1 1 2 2	0 GG Difference NC		Question 1 Relates to V Actual 2 4 2 2 2 2 3 4 4 2 2 1 1 3	1 VV Difference NC	Predicted 4 3 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4	Question 1: Relates to S Actual 3 4 2 5 4 4 4 4 4 4	2 5l Difference 1 1 2 1 0 0 0 1 0 2 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13	R	Question (elates to) Actual 5 5 4 5 4 5 4 5 4 4 4 4 4	7 VV Difference NC		Question to S Actual 3 2 1 2 2 1 1 1 1 4	B G G Difference NC	Predicted 4 3 4 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 4 3 3 4 4 4 3 4 4 4 5 4 5	Question 9 Relates to A/Actual 2 2 5 5 1 2 1 2 1 4 2 1 1 1 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2	R Difference 2 1 2 3 1 3 1 1 3 3 1 1 1 3 2 2 2 2	-	Question 1 Relates to S Actual 2 2 2 2 1 1 2 2 1 1 2 1 1 2 2 1 2	O G G Difference NC		Question 1 Relates to V Actual 2 4 2 2 3 2 3 2 1 3 2 1 3 2 1 3 2 2	1 // // // Difference NC	Predicted 4 3 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4	Question 1: Relates to S Actual 3 4 2 5 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3	2 SI Difference 1 1 2 1 0 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14	R	Question telates to v Actual 5 5 4 5 4 5 4 5 4 4 4 4 4	7 VV Difference NC		Question : Relates to S Actual 3 2 1 2 2 2 1 1 1 2 4 1 4 1 4 2	B B GG Difference NC	Predicted 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 2 2	Question 9 Relates to Al Actual 2 2 5 1 2 1 2 1 1 4 2 1 1 1 2 2 3 3	R Difference 2 1 2 3 1 3 1 3 1 1 3 2 2 1 1	-	Question 1 Relates to S Actual 2 2 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 2 2	O GG Difference NC		Question 1 Relates to V Actual 2 4 2 2 2 3 4 2 1 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 2	1 IVV Difference NC	Predicted 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Question 1: Relates to S Actual 3 4 2 5 4 4 4 4 4 4 4 4 4 3 3 5 5	2 SI Difference 1 1 1 2 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15	R	Question Relates to V Actual 5 5 4 5 4 5 5 4 4 5 5 4 4 4 4 4 4 4 3	7 VV Difference NC		Question Relates to S Actual 3 2 1 2 2 1 1 1 1 1 1 1 4 4 1 2 4 4 4 2 2 4 4	B B GG Difference NC	Predicted 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 4 4 3 4 4 4 3 4	Question 9 Relates to A/ Actual 2 2 5 1 2 1 2 1 4 4 2 1 1 1 2 3 3 4	R Difference 2 1 2 3 1 1 3 1 1 3 2 2 1 1 0	-	Question 1 Relates to S Actual 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 2	O GG Difference NC NC NC NC NC NC NC NC NC NC NC NC NC		Question 1 Relates to V Actual 2 4 2 2 2 3 4 2 1 3 4 2 2 4 4 2 2 4 4 4 2 4 4 4 4 4 4 4 4	1 PV Difference NC	Predicted 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Question 1: Relates to S Actual 3 4 2 5 4 4 4 4 4 4 4 4 4 5 5 5 5 5	2 St Difference 1 1 1 2 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	R	Question telates to 1 Actual 5 5 4 5 5 4 5 5 4 4 4 4 4 4 4 4 3 3 4	7 7 VV Difference NC		Question : Relates to 5 Actual 3 2 1 2 2 2 1 1 1 4 2 4 3	B B GG Difference NC	Predicted 4 3 3 4 3 4 3 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 3 4 4 2 4 3	Question 9 Relates to Ai Actual 2 2 5 5 1 2 1 2 1 4 4 2 1 1 1 2 3 3 4 4 4	R Difference 2 1 2 3 1 3 1 1 3 3 1 1 1 2 2 2 1 1 0 0 1 1	-	Question 1 Relates to 8 Actual 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 3	O Difference NC		Question 1 Relates to V Actual 2 4 2 2 3 2 3 4 2 1 3 2 1 3 4 2 1 3 3 2 4 3	1 IV Difference NC	Predicted 4 3 4 4 4 4 2 4 4 3 3 4 4 3 3 4 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 4 4 3 3 4 4 4 3 3 4 4 4 4 3 8 8 8 8	Question 1: Relates to S Actual 3 4 2 5 4 4 4 4 4 4 5 5 5 4 4 4 4 4 4 4 4	2 Si Difference 1 2 1 0 0 0 1 0 2 0 0 0 0 1 1 0 0 0 0 0
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17	R	Question telates to 1 Actual 5 5 4 5 4 5 5 4 4 5 5 4 4 4 4 4 4 4 4	7 VVV Difference NC		Question : Relates to S Actual 3 2 2 1 1 2 2 2 1 1 1 1 2 4 4 1 1 4 2 4 4 3 3 2 2	B B GG Difference NC	Predicted 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 2 4 4 3 3 2	Question 9 Relates to A Actual 2 2 2 5 1 1 2 1 1 4 4 2 1 1 1 2 3 3 4 4 4 4 4 2 2	R Difference 2 1 2 3 1 3 1 3 1 1 3 2 2 1 1 0 0 1 1 0 0	-	Question 1 Celates to S Actual 2 2 2 1 1 2 1 1 2 1 2 1 1 2 1 1 1 2 2 1 1 1 2 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1	0 O G G G G G G G G G G G G G G G G G G		Question 1 Relates to V Actual 2 4 2 2 2 2 3 3 4 2 2 1 1 3 2 2 4 3 2 2	1 // // // // // Difference NC	Predicted 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Question 12 Relates to S Actual 3 4 2 5 4 4 4 4 4 4 5 5 5 4 4 4 4 4 4 4 4	2 SI Difference 1 1 2 2 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
1 2 3 4 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18	R	Question telates to 1 Actual 5 5 5 4 5 5 4 5 5 4 4 5 5 5 4 4 4 4 4	7 VV Difference NC		Question relates to S Actual 3 2 2 1 1 1 1 1 2 4 4 1 3 3 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3	B B GG Difference NC N	Predicted 4 3 3 4 4 3 3 4 4 3 3 4 4 2 4 4 3 3 2 2 3 3	Question 9 Relates to A Actual Actual 2 2 2 5 1 1 2 1 1 4 4 2 1 1 1 2 2 1 1 1 4 4 2 2 3 3 4 4 4 2 3 3	R Difference 2 1 2 3 1 1 3 1 1 1 3 2 2 1 1 0 0 0 0	-	Question 1 Relates to S Actual Actual Actual 2 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 3 3 1 1 2 2 2	0 Difference NC		Question 1 Relates to V Actual 2 2 4 2 2 2 3 3 2 3 4 4 2 2 1 1 3 2 2 4 4 3 3 2 2 2 4 4 3 2 2 2 2 4 4 3 2 2 2 2	1 /V Difference NC	Predicted 4 3 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4	Question 1: Relates to S Actual Actual 3 4 2 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 Si Difference 1 1 2 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19	R	Question telates to \(\) Actual 5 \(5 \) 4 \(5 \) 5 \(4 \) 5 \(5 \) 4 \(4 \) 4 \(4 \) 4 \(4 \) 3 \(4 \) 3 \(2 \) 3 \(3 \)	7 VV Difference NC		Question relates to S Actual 3 2 1 2 2 2 1 1 1 1 2 4 4 1 4 2 4 4 3 2 2 3 3 4 4	B B GG Difference NC	Predicted 4 3 3 4 4 3 3 4 4 3 3 4 4 2 4 4 3 2 2 3 3 2 2	Question 9 Relates to A Actual 2 2 5 1 2 1 1 2 1 1 4 4 2 1 1 1 2 2 3 3 4 4 2 2 3 3 1 1	R Difference 2 1 2 3 1 3 1 1 3 2 1 1 0 0 1	-	Question 1 Polates to S Actual 2 2 2 2 1 2 2 1 1 2 2 2 1 2 2 1 1 2 2 1 1 2	O GG Difference NC		Question 1 Relates to V Actual 2 4 4 2 2 3 3 4 4 2 1 3 2 1 3 2 2 1 1 3 2 1 1	1 // // // // // // // // // // // // //	Predicted 4 3 4 4 4 4 3 4 4 4 4 3 4 4 4 4 4 4 4	Question 1: Relates to S Actual 3 4 2 5 4 4 4 4 4 4 5 5 5 4 4 4 4 4 4 4 4	2 SI Difference 1 1 2 2 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0
1 2 3 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20	R	Question telates to V Actual 5 5 5 4 5 5 4 5 5 4 4 4 4 4 4 4 4 4 3 3 2 2 3 3 3 3	7 VVV Difference NC		Question : Relates to S Actual 3 2 1 2 2 1 1 1 2 4 1 4 2 4 3 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 5 6 6 7 8 8 8 8 8 8 8 8 8	B B GG Difference NC	Predicted 4 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 4 3 3 4 4 4 4 3 3 4 4 4 4 4 4 3 4	Question 9 Relates to A Actual Actual 2 2 2 5 1 1 2 1 1 4 4 2 1 1 1 2 3 3 4 4 4 4 4 2 3 3 1 1 2 2	R Difference 2 1 2 3 1 1 3 1 1 1 3 2 2 1 1 0 0 0 0	-	Question 1 Relates to S Actual Actual 2 2 2 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2	O O O O O O O O O O O O O O O O O O O		Question 1 Relates to V Actual 2 2 4 2 2 2 3 3 2 3 4 4 2 2 1 1 3 2 2 4 4 3 3 2 2 2 4 4 3 2 2 2 2 4 4 3 2 2 2 2	1 // // // // // Difference NC	Predicted 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Question 1: Actual 3 4 2 5 5 4 4 4 4 4 4 5 5 5 4 3 3 4 4 4 4 4 4	2 St Difference 1 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 3 4 5 6 7 7 8 9 10 111 12 13 114 115 116 117 118 119 20 21	R	Question telates to \(\) Actual 5 \(5 \) 4 \(5 \) 5 \(4 \) 5 \(5 \) 4 \(4 \) 4 \(4 \) 4 \(4 \) 3 \(4 \) 3 \(2 \) 3 \(3 \)	77 VV Difference NC		Question Relates to S Actual 3 2 1 2 2 1 1 1 2 4 1 4 2 4 3 2 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2	B B GG Difference NC	Predicted 4 3 3 4 4 3 4 4 3 4 4 3 4 4 3 4 2 4 4 3 2 4 4 4 4	Question 9 Relates to A/Actual 2 2 5 5 1 1 2 1 1 4 4 2 2 3 3 1 1 2 5 5 5	R Difference 2 1 2 3 3 1 1 3 3 1 1 3 2 2 1 1 0 0 0 1 1 1 1 1 1	-	Question 1 Relates to S Actual 2 2 2 2 1 2 1 2 1 1 2 1 1 2 2 2 2 2 2	O GG Difference NC N		Question 1 Relates to V Actual 2 4 2 2 3 3 4 2 1 1 3 2 2 4 3 2 1 1 3 2 1 1 1 1	1 // Difference NC	Predicted 4 3 4 4 4 4 4 4 2 4 4 4 4 4 4 4 3 3 3 4 4 4 4	Question 1: Relates to S Actual 3 4 2 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 SI Difference 1 1 2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
1 2 3 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	R	Question telestes to to Actual 5 5 5 4 5 5 4 5 5 4 4 4 4 4 4 4 4 3 3 2 2 3 3 3 3 4 4	7 VV Difference NC		Question : Relates to S Actual 3 2 2 2 2 1 1 1 2 2 4 1 4 4 3 3 2 2 3 3 4 4 2 2 2 2 2	B B GG Difference NC	Predicted 4 3 3 4 3 4 3 4 3 4 3 4 3 2 4 3 2 3 4 3 3 4 3 4	Question 9 Relates to A Actual 2 2 5 5 1 2 2 1 1 4 4 2 2 1 1 1 2 2 3 4 4 4 2 2 3 1 1 2 5 5 3 3	R Difference 2 1 2 3 1 3 1 1 3 2 1 0 0 1 1 1 0 0 0	-	Question 1 Relates to S Actual 2 2 2 2 1 1 2 1 2 2 1 1 2 2 1 2 2 1 1 2	O O GG GG Difference NC		Question 1 Relates to V Actual 2 4 2 2 3 3 2 1 3 2 1 3 2 1 3 2 2 1 3 2 2 1 3 2 2 4 3 2 2 1 2 2 4 3 2 2 2 4 3 2 2 2 4 3 2 2 2 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 2	1 // // // // // // // // // // // // //	Predicted 4 3 4 4 4 4 4 2 4 4 4 3 3 4 4 4 4 3 3 3 4 4 4 3 3 3 4 4 3 3	Question 1: Actual 3 4 4 2 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 1 Difference 1 1 1 2 2 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0
1 2 3 4 4 5 6 6 7 8 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23	R	Question Actual 5 5 4 5 4 5 4 5 4 4 4 4 4 4 3 4 3 2 3 3 4 3	7 VVV Difference NC		Question Selates to Se	B B GG Difference NC	Predicted 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 3 4 4 3 3 3 3 3 3 4 4 3	Question 9 Relates to A/Actual 2 2 5 5 1 1 2 1 1 4 4 2 2 3 3 1 1 2 5 5 5	R Difference 2 1 2 3 3 1 1 3 3 1 1 3 2 2 1 1 0 0 0 1 1 1 1 1 1	-	Question 1 Relates to S Actual 2 2 2 2 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 2 2 2 3 1 2 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 3 3	O O O O O O O O O O O O O O O O O O O		Question 1 Relates to V Actual 2 4 4 2 2 3 3 2 1 3 4 2 1 1 3 2 2 1 1 2 1 1 2 4	1 // // // // Difference NC	Predicted 4 3 4 4 4 4 4 4 2 4 4 4 4 4 4 4 3 3 3 4 4 4 4	Question 1: Relates to S Actual 3 4 2 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 Sil Difference 1 1 2 1 0 0 0 1 1 0 0 0 2 0 0 0 1 1 0 0 0 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	R	Question telestes to to Actual 5 5 5 4 5 5 4 5 5 4 4 4 4 4 4 4 4 3 3 2 2 3 3 3 3 4 4	7 VV Difference NC		Question : Relates to S Actual 3 2 2 2 2 1 1 1 2 2 4 1 4 4 3 3 2 2 3 3 4 4 2 2 2 2 2	B B GG Difference NC	Predicted 4 3 3 4 3 4 3 4 3 4 3 4 3 2 4 3 2 3 4 3 3 4 3 4	Question 9 Relates to A Actual Actual 2 2 2 5 1 1 2 1 1 4 4 2 1 1 1 2 3 3 4 4 4 4 4 2 2 3 3 1 1 2 2 5 3 3 3 3 3 3	R Difference 2 1 2 3 1 1 3 1 1 3 1 1 0 0 0 0	-	Question 1 Relates to S Actual 2 2 2 2 1 1 2 1 2 2 1 1 2 2 1 2 2 1 1 2	O O GG GG Difference NC		Question 1 Relates to V Actual 2 4 2 2 3 3 2 1 3 2 1 3 2 1 3 2 2 1 3 2 2 1 3 2 2 4 3 2 2 1 2 2 4 3 2 2 2 4 3 2 2 2 4 3 2 2 2 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 4 4 3 2 2 2 2	1 // // // // // // // // // // // // //	Predicted 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Question 1: Actual 3 4 4 2 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 1 1 1 1 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0

The analysis of responses is shown in Table 21. The distribution of actual responses is consistent with percentage of participants expected to agree/disagree with media format of training scenario. The scenario provide was very active in content and the expectation was that people with active learning style preferences would agree that the format provided met their

learning needs. The reflective learners on the other hand would tend to disagree. The same expectation held true for participants with sensing and intuitive learning style preferences.

Table 21: Response Analysis

Actual Responses	Frequency	Percentage	Percentage	Actual Percentage Active or Reflective	Actual Percentage Sensing or Intuitive
Strongly Disagree	34	22.67%	29.33% Disagree	24% Reflective	16% Intuitive
Disagree	46	30.67%	29.55% Disagree	24 /0 Reflective	1070 Intuitive
Neutral	30	20.00%	70.66% Agree		
Agree	31	20.67%	or Neutral	76% Active	84% Sensing
Strongly Agree	9	6.00%	or Neutral		
Totals	150	100.00%			
			Distribution of actual r	esponses are consister	nt with percentage
Predicted Responses	Frequency	Percentage	expected to agree/disa	agree with media forma	t of training scenario.
Strongly Disagree	0	0.00%			
Disagree	44	29.33%	Scenario was heavily	active in content and th	e expectation was
Neutral	71	47.33%	that people with active	learning style preferen	ces would agree with
Agree	35	23.33%	the format and reflecti	ve learners would disag	ree. The same
Strongly Agree	0	0.00%	expectation held true f	for sensing and intuitive	learners.
Totals	150	100.00%			

Structural Equation Modeling

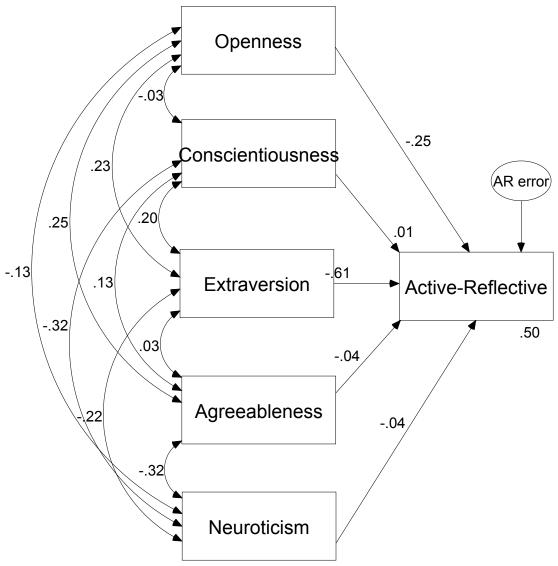


Figure 4: SEM Model for Active-Reflective (Group A - AMOS)

The model shown in Figure 4 was generated using the structural equation modeling tool, AMOS 5.0.1 (Build 5152). The advantage of using AMOS is that a multivariate analysis can be easily be conducted that evaluates the strength of the paths (or relationships). This is more comprehensive since AMOS examines all the interactions between variables. The diagram

shows that the path (relationship) between extraversion and active-reflective has a correlation coefficient of -0.61 indicating an inverse relationship between these variables. This coefficient tells us that as extraversion goes up one standard deviation, active-reflective goes down by 0.61 standard deviations. A path is significant at the 95% confidence level when the absolute value of the critical ratio (C.R.) shown in Table 22 is > 1.96. Both extraversion and openness have significant relationships with active-reflective. This comparable to the regression analysis conducted earlier.

Table 22: Regression Weights: (Group A - AR model from AMOS)

	Estimate	S.E.	C.R.	P	Label
Active-Reflective < Openness	048	.016	-2.900	.004	par_1
Active-Reflective < Neuroticism	008	.013	626	.532	par_11
Active-Reflective < Agreeableness	008	.016	483	.629	par_12
Active-Reflective < Conscientiousness	.003	.015	.203	.839	par_13
Active-Reflective < Extraversion	115	.016	-7.153	***	par_14

The comparative fit index (CFI) for the Group AR structural equation model in Figure 4 is 1.000. CFI values can range from 0.1 and a CFI close to 1.000 indicates a good fit (Bentler, 1990). Fifty percent (50%) of the effect on AR was accounted for by the five factors in this model.

The model shown in Figure 5 shows the strongest path between a Five Factor Model variable and sensing-intuitive is the correlation of 0.47 between openness and SI. In Table 23, only the critical ratio for openness exceeds 1.96 and is therefore the only variable with a significant correlation at the 95% confidence level.

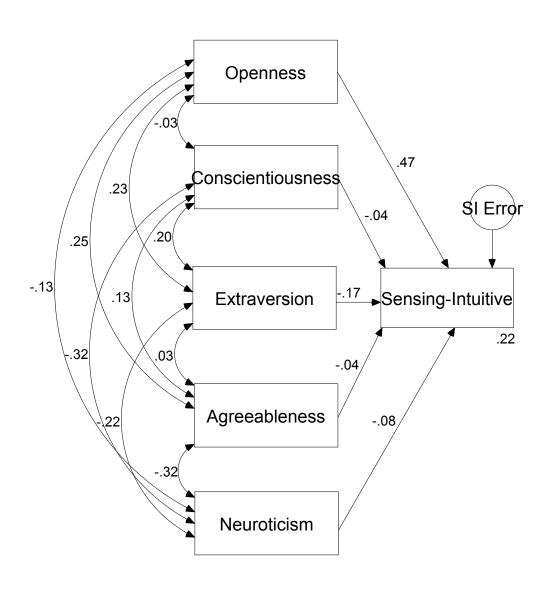


Figure 5: SEM Model for Sensing-Intuitive (Group A - AMOS)

The CFI for the SI model in Figure 5 is 1.000 indicating a good fit. Approximately 22% of the effect on SI was accounted for by the five factors in this model.

Table 23: Regression Weights: (Group A - SI model from AMOS)

	Estimate	S.E.	C.R.	P	Label
Sensing-Intuitive < Extraversion	034	.022	-1.562	.118	
Sensing-Intuitive < Agreeableness	008	.022	367	.714	
Sensing-Intuitive < Neuroticism	015	.018	871	.383	
Sensing-Intuitive < Conscientiousness	009	.021	440	.660	
Sensing-Intuitive < Openness	.097	.022	4.368	***	

CHAPTER FIVE: THESIS SUMMARY, RESEARCH CONCLUSIONS, LESSONS LEARNED AND SUGGESTED FUTURE RESEARCH

Chapter Five Summary

This chapter reviews the objectives of the thesis including motivations, processes, findings and conclusions. Limitations of the scope and testing methods are also discussed along with lessons learned and future research.

Thesis Summary

This thesis evaluated the relationship between personality preferences and learning style preferences in regard to ITS selection of media. "From the human-computer interaction point of view a careful examination is necessary of how to adapt the learning environment to the learner's goal and capability" (Oppermann, 1997). This thesis examined methods of predicting the media needs of learners that interact with ITS.

Thesis Limitations

Focusing on the direct effects of learning styles on media selection and personality preferences as predictors of learning style allowed this researcher to examine and experimentally establish learning style and personality preference relationships without the additional complexities of addressing student goals and knowledge gaps. This should be the goal of future research, but was not part of this research.

Conclusions

The null hypothesis that "there is no dependency between personality preference variables and learning style preference variables" was partly rejected based on the results of the

correlation study of variables of the Big Five Personality Test and the Index of Learning Style for the sample population and measurement tools (Microsoft Excel data analysis package and AMOS) selected. Highly significant correlations between the personality preferences, openness and extraversion, were established for both the active-reflective and sensing-intuitive learning style preferences. Specifically, there is a dependent relationship between extraversion and the active-reflective scale and openness and the sensing-intuitive scale. The significance of these relationships is at $p \le 0.01$. The sub null hypotheses for these cases are rejected in favor of the alternative hypothesis.

The sub null hypotheses for the following cases are rejected, but not in favor of the alternative hypothesis:

- relationship between sensing-intuiting learning preferences and extraversion
- relationship between visual-verbal learning preferences and extraversion
- relationship between visual-verbal learning preferences and openness
- relationship between sequential-global learning preferences and openness

The results were highly significant, but due to the limited number of significant results a viable predictive model could not be realized. The lack of a predictive model limits the ability to accept the alternative hypothesis.

The two models developed to predict learning style preferences had an error rate of ≤ 20%. This was far superior to guessing (50% error rate) or selecting one variable (i.e. active learning style) for every participant (30-49% error rate).

Lessons Learned

A more complex methodology could be undertaken with a larger participant pool. This would allow for refined subgroups while still maintaining the numbers needed for adequate statistical power. For example, subgroups in this study were male or high school graduate or age < 30. Larger sample populations would allow subgroup dyads or triads like male high school graduate age < 30 to be part of the study.

Future Research

A more expansive study should be undertaken to provide a larger validation group and additional refinement of the models developed in this thesis. Given additional time and resources, a more complex analysis could be pursued that includes methods to evaluate and predict student goals, knowledge gaps, motivation, values, trust and other variables critical to the learning process. The impact or effect size of implementing these strategies should be addressed in future research.

APPENDIX A: INSTITUTIONAL REVIEW BOARD (IRB) LETTER

August 25, 2006

Dear Mr. Sottilare:

The University of Central Florida's Institutional Review Board (IRB) received your protocol IRB #06-3718 entitled "Modeling the influences of personality preferences on the selection of instructional strategies in intelligent tutoring systems." The IRB Chair reviewed the study on 8/24/2006 and did not have any concerns with the proposed project. The Chair has indicated that under federal regulations (Category #4, research involving the collection or study of existing data, documents, pathological specimens or diagnostic specimens, if these sources are publicly available or if the information is recorded by the investigator in such a manner that subjects cannot be identified, directly or through identifiers linked to the subjects) this research is exempt from further review by our IRB, so an approval is not applicable and a renewal within one year is not required.

Please accept our best wishes for the success of your endeavors. Should you have any questions, please do not hesitate to call me at 407-823-2901.

Cordially,

Barbara Ward

Barbara Ward, CIM UCF IRB Coordinator (IRB00001138, FWA00000351, Exp. 5/13/07)

Copies: IRB File

Michael Proctor, Ph.D.

BW/jt

APPENDIX B: INDEX OF LEARNING STYLES (ILS) QUESTIONNAIRE AND LICENSE FOR USE

Copyright © 1991 North Carolina State University (Authored by <u>Richard M. Felder and Barbara A. Soloman</u>). Reprinted by permission of North Carolina State University

This appendix includes the ILS questionnaire, a license for use at educational institutions for educational purposes and an ILS sample report. In compliance with the license, a copyright is posted above.

Index of Learning Styles

LICENSE FOR USE AT EDUCATIONAL INSTITUTIONS FOR EDUCATIONAL PURPOSES

This license relates to the "Index of Learning Styles" and associated documentation (ILS questionnaire, scoring key, report form, and "Learning Styles and Strategies" handout, collectively referred to as "Material"). Permission is hereby granted, free of charge, to use the Material without restriction, including without limitation the rights to use, copy, and distribute copies of the Material for the internal use of your institution for teaching, advising, staff development, and/or research, subject to the following conditions:

1. The copyright notice,

Copyright © 1991 North Carolina State University (Authored by Richard M. Felder and Barbara A. Soloman). Reprinted by permission of North Carolina State University

must be included in all copies of substantial portions of the Material.

- 2. The Material will not be distributed outside your institution, or used within the institution for any purposes but teaching, advising, staff development, and research.
- 3. The material is provided "as is," without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the material or the use or other dealings in the material.

ILS Questionnaire Directions

For each of the 44 questions below, select either "a" or "b" to indicate your answer. Please choose only one answer for each question. If both "a" and "b" seem to apply to you, choose the one that applies more frequently.

1)	I understand something better after I
	(a) try it out.
	(b) think it through.
2)	I would rather be considered
	(a) realistic.
	(b) innovative.
3)	When I think about what I did yesterday, I am most likely to get
	(a) a picture.
	(b) words.
4)	I tend to
	(a) understand details of a subject but may be fuzzy about its overall structure.
	(b) understand the overall structure but may be fuzzy about details.
5)	When I am learning something new, it helps me to
	(a) talk about it.
	(b) think about it.
6)	If I were a teacher, I would rather teach a course
	(a) that deals with facts and real life situations.
	(b) that deals with ideas and theories.

- 7) I prefer to get new information in
 - (a) pictures, diagrams, graphs, or maps.
 - (b) written directions or verbal information.
- 8) Once I understand
 - (a) all the parts, I understand the whole thing.
 - (b) the whole thing, I see how the parts fit.
- 9) In a study group working on difficult material, I am more likely to
 - (a) jump in and contribute ideas.
 - (b) sit back and listen.
- 10) I find it easier
 - (a) to learn facts.
 - (b) to learn concepts.
- 11) In a book with lots of pictures and charts, I am likely to
 - (a) look over the pictures and charts carefully.
 - (b) focus on the written text.
- 12) When I solve math problems
 - (a) I usually work my way to the solutions one step at a time.
 - (b) I often just see the solutions but then have to struggle to figure out the steps to get to them.
- 13) In classes I have taken
 - (a) I have usually gotten to know many of the students.
 - (b) I have rarely gotten to know many of the students.

14) In reading nonfiction, I prefer
(a) something that teaches me new facts or tells me how to do something.
(b) something that gives me new ideas to think about.
15) I like teachers
(a) who put a lot of diagrams on the board.
(b) who spend a lot of time explaining.
16) When I'm analyzing a story or a novel
(a) I think of the incidents and try to put them together to figure out the themes
(b) I just know what the themes are when I finish reading and then I have to go
back and find the incidents that demonstrate them.
17) When I start a homework problem, I am more likely to
(a) start working on the solution immediately.
(b) try to fully understand the problem first.
18) I prefer the idea of
(a) certainty.
(b) theory.
19) I remember best
(a) what I see.
(b) what I hear.

(b) give me an overall picture and relate the material to other subjects.

20) It is more important to me that an instructor

(a) lay out the material in clear sequential steps.

21) I prefer to study				
(a) in a study group.				
(b) alone.				
22) I am more likely to be considered				
(a) careful about the details of my work.				
(b) creative about how to do my work.				
23) When I get directions to a new place, I prefer				
(a) a map.				
(b) written instructions.				
24) I learn				
(a) at a fairly regular pace. If I study hard, I'll "get it."				
(b) in fits and starts. I'll be totally confused and then suddenly it all "clicks."				
25) I would rather first				
(a) try things out.				
(b) think about how I'm going to do it.				
26) When I am reading for enjoyment, I like writers to				
(a) clearly say what they mean.				
(b) say things in creative, interesting ways.				
27) When I see a diagram or sketch in class, I am most likely to remember				
(a) the picture.				
(b) what the instructor said about it.				

- 28) When considering a body of information, I am more likely to
 - (a) focus on details and miss the big picture.
 - (b) try to understand the big picture before getting into the details.
- 29) I more easily remember
 - (a) something I have done.
 - (b) something I have thought a lot about.
- 30) When I have to perform a task, I prefer to
 - (a) master one way of doing it.
 - (b) come up with new ways of doing it.
- 31) When someone is showing me data, I prefer
 - (a) charts or graphs.
 - (b) text summarizing the results.
- 32) When writing a paper, I am more likely to
 - (a) work on (think about or write) the beginning of the paper and progress forward.
 - (b) work on (think about or write) different parts of the paper and then order them.
- 33) When I have to work on a group project, I first want to
 - (a) have "group brainstorming" where everyone contributes ideas.
 - (b) brainstorm individually and then come together as a group to compare ideas.

(b) imaginative.				
35) When I meet people at a party, I am more likely to remember				
(a) what they looked like.				
(b) what they said about themselves.				
36) When I am learning a new subject, I prefer to				
(a) stay focused on that subject, learning as much about it as I can.				
(b) try to make connections between that subject and related subjects.				
37) I am more likely to be considered				
(a) outgoing.				
(b) reserved.				
38) I prefer courses that emphasize				
(a) concrete material (facts, data).				
(b) abstract material (concepts, theories).				
39) For entertainment, I would rather				
(a) watch television.				
(b) read a book.				
40) Some teachers start their lectures with an outline of what they will cover. Such				
outlines are				
(a) somewhat helpful to me.				
(b) very helpful to me.				

34) I consider it higher praise to call someone

(a) sensible.

- 41) The idea of doing homework in groups, with one grade for the entire group,
 - (a) appeals to me.
 - (b) does not appeal to me.
- 42) When I am doing long calculations,
 - (a) I tend to repeat all my steps and check my work carefully.
 - (b) I find checking my work tiresome and have to force myself to do it.
- 43) I tend to picture places I have been
 - (a) easily and fairly accurately.
 - (b) with difficulty and without much detail.
- 44) When solving problems in a group, I would be more likely to
 - (a) think of the steps in the solution process.
 - (b) think of possible consequences or applications of the solution in a wide range of areas.

A sample report for the ILS is shown in Figure 6 below.

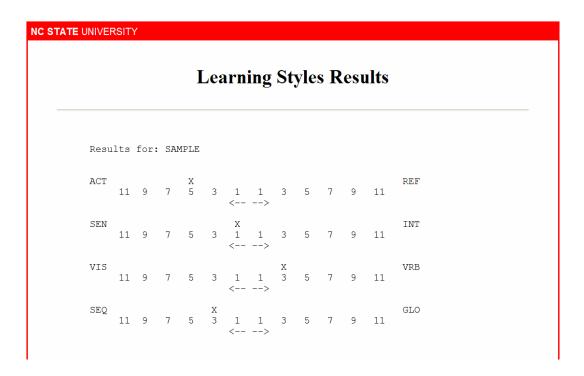


Figure 6: Sample Learning Style Results from ILS

APPENDIX C: TRAINING SCENARIO FOR THE EXPERIMENTATION PROCESS

In lieu of creating a large number of scenarios to match every conceivable learning style preference combination, the experiment for this thesis will provide a single scenario that is purposely biased to provide:

- high active content: action-focused, learn-by-doing activities like making selections and completing activities using mouse action vice reflective activities like keeping a journal
- high sequential content: media includes structured, orderly and linear information like
 steps in a process vice random and holistic data
- high sensing content: media includes concrete facts and observed data vice theories or models
- high visual content: media includes movies, graphs, charts, text or symbols vice verbal stimulation.

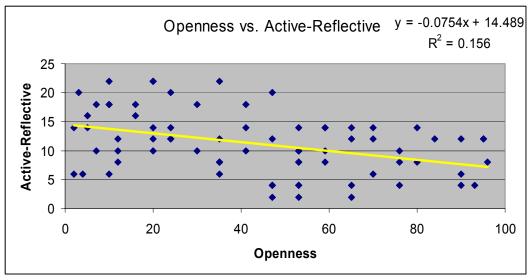
Based on these learning style preferences, a training aid for learning how to solve "sudoku" number puzzles will be used as the training scenario for this experiment. The primary basis for designing this training scenario is the "Solve Sudoku (Without even thinking!)" webpage (Instructables, 2006). It is highly sequential and focused on data (numbers and grid positions). The information provided in the instructions is very factual and applied to solving a specific problem. The instructions are highly visual and provide good active content. Some additional interaction will be added to increase the active content.

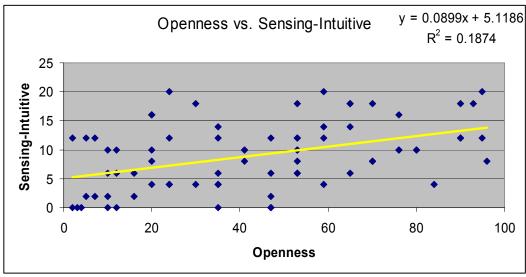
APPENDIX D: MEDIA FEEDBACK SURVEY

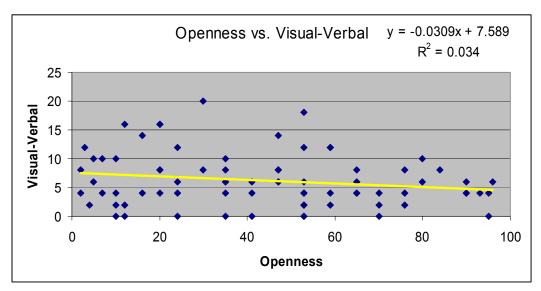
Questions for the media feedback survey were based on the eight factors in the ILS factor analysis and responses are on the 5 point - Likert scale. For each media feedback survey, questions were provided in rotating order so there were no ordering effects or bias.

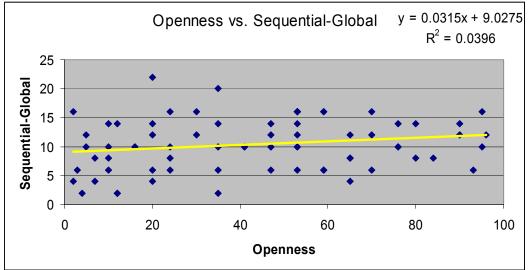
1. The information presented was too abstract. [relates to SI scale] Strongly Disagree Disagree Neutral Agree Strongly Agree 2. The information provided had the right amount of detail. [Sequential-Global scale] Strongly Disagree Disagree Neutral Strongly Agree Agree 3. There was not enough time to complete the task [relates to Active-Reflective scale] Strongly Disagree Disagree Neutral Agree Strongly Agree 4. It was easy to remember the text presented. [relates to Visual-Verbal scale] Strongly Disagree Disagree Neutral Agree Strongly Agree 5. The task was too structured. [relates to SI scale] Strongly Disagree Disagree Neutral Agree Strongly Agree 6. The task would have been more interesting if I worked in a group. [relates to AR scale] Strongly Disagree Disagree Neutral Strongly Agree Agree 7. It was easy to remember the pictures presented. [Visual Verbal scale] Strongly Disagree Disagree Neutral Agree Strongly Agree 8. The course jumped into the process too quickly without explaining the concept first. [relates to Sequential-Global scale] Strongly Disagree Disagree Neutral Strongly Agree Agree 9. It took too long to get started with the task. [Active-Reflective scale] Strongly Disagree Strongly Agree Disagree Neutral Agree

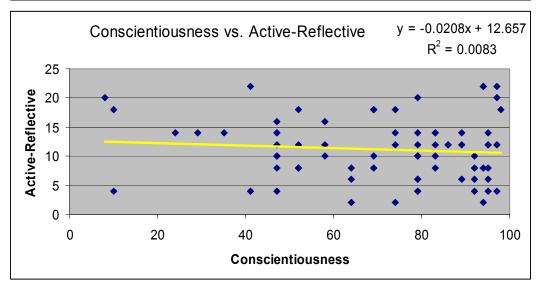
10. The presentation seemed disjointed. [Sequential-Global scale]					
	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
11.	There was too much t	text in the prese	entation. [Visua	l Verbal scale]	
	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree
12. I enjoyed the material presented in this course. [relates to SI scale]					
	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree

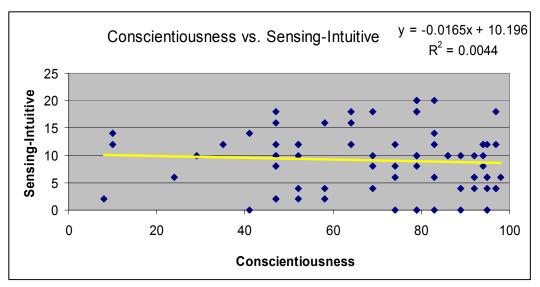

APPENDIX E: DEMOGRAPHICS SURVEY

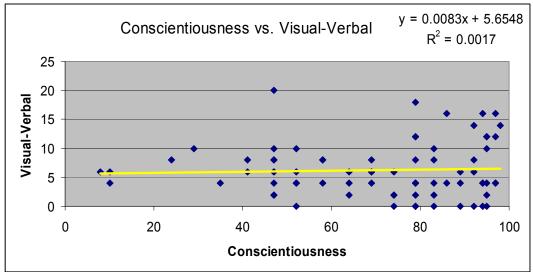

1.	Your age is:
2.	Your are: (circle one) a. male b. female
3.	The highest level of education you have completed is: (circle one) a. Less than 12 years b. High School c. Bachelors Degree d. Masters Degree e. Doctoral Degree
4.	If you are a University of Central Florida student, which college do you attend? (circle one) a. Arts & Humanities b. Biomedical Sciences c. Burnett Honors College d. Business Administration e. Education f. Engineering & Computer Science g. Health & Public Affairs h. Hospitality Management i. Optics & Photonics j. Sciences k. Other l. Not Applicable

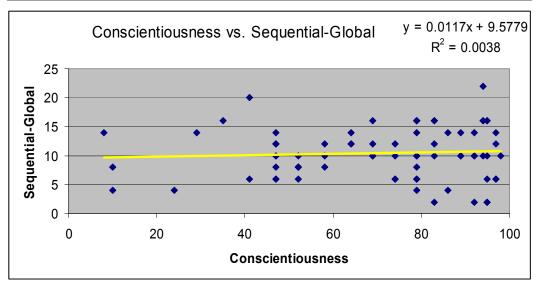

- 5. If you are working fulltime, what is your occupation? (circle one)
 - a. Management, business and financial operations
 - b. Professional (engineers and scientists)
 - c. Professional (legal)
 - d. Professional (health)
 - e. Professional (education)
 - f. Service or Sales
 - g. Administrative
 - h. Farming
 - i. Construction
 - j. Installation
 - k. Production (fabricators, manufacturers, processors)
 - 1. Transportation
 - m. Armed Forces
 - n. Not applicable

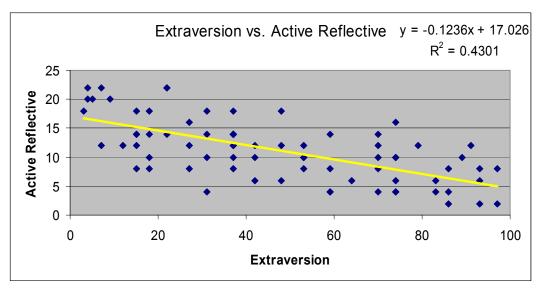

APPENDIX F: SCATTER DIAGRAMS WITH LINEAR TRENDLINES

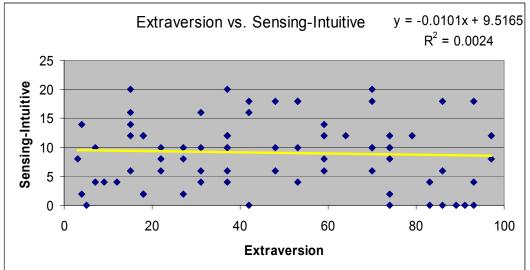

This appendix contains the scatter diagrams and associated trend lines for the points plotted for each independent-dependent variable pair for the Group A data collected. The regression equations are noted on each diagram along with the correlation coefficient.

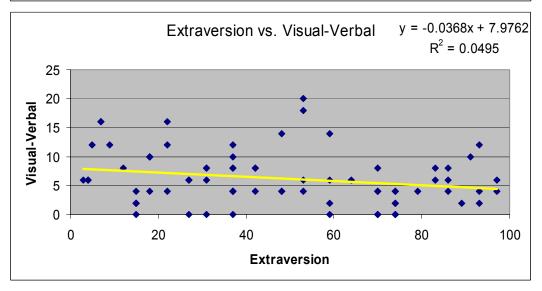


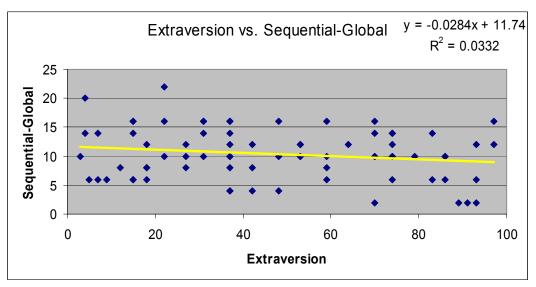


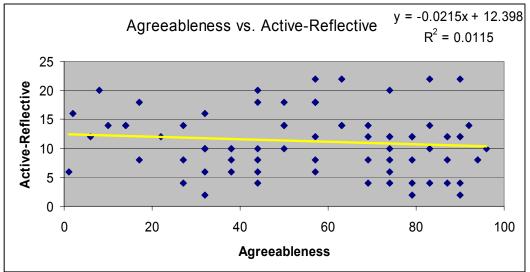


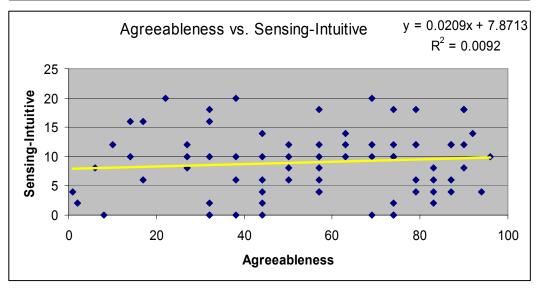


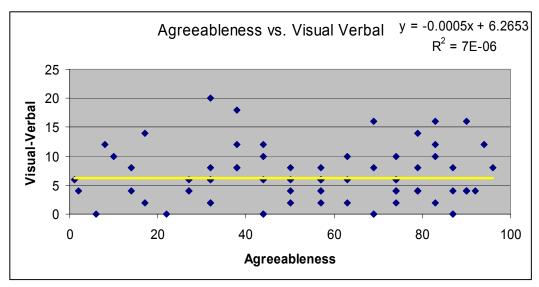


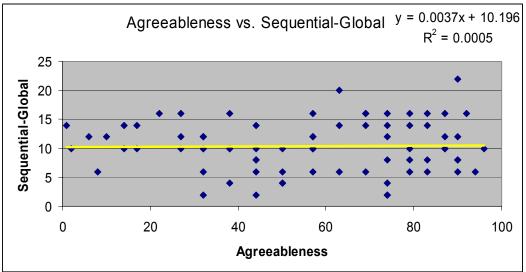


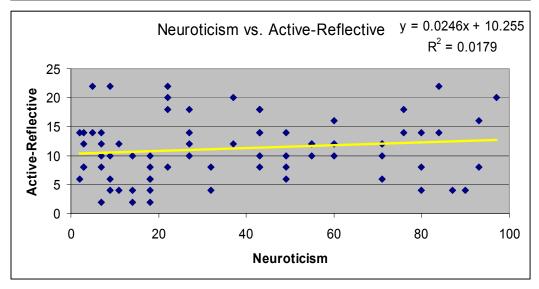


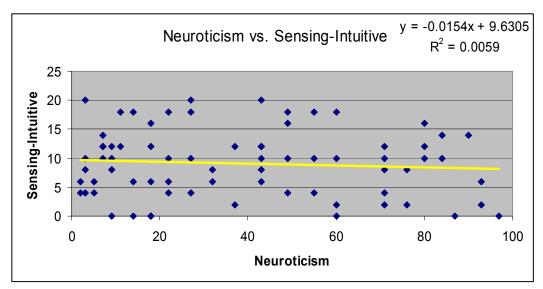


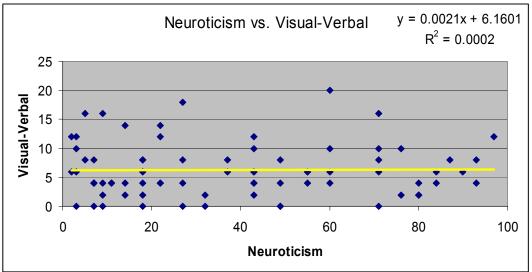


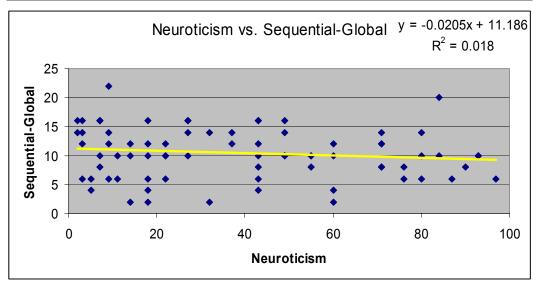












APPENDIX G: REGRESSION ANALYSIS AND SIGNIFICANCE TESTING RESULTS

SUMMARY OUTPUT F	OR ALL of GROUP A where A	AR is predicted by	/ E			
Peares	sion Statistics					
Multiple R		Correlation between	een AR and	E is signifi	cant at p = 0.001	
R Square	0.430125316				от р	
Adjusted R Square	0.422318813					
Standard Error	4.014052965					
Observations	75					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	887.7786519	887.7787	55.09834	1.70048E-10	
Residual	73	1176.221348	16.11262			
Total	74	2064				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	17.02555287	0.911466535	18.6793	1.58E-29	15.20900146	18.84210429
Extraversion	-0.123632277	0.01665569	-7.42283	1.7E-10	-0.15682704	-0.090437513

SUMMARY OUTPUT F	OR ALL of GROUP A where	SI is predicted by	0			
Regres	sion Statistics					
Multiple R	0.432839549	Correlation between	en SI and	O is signific	cant at p = 0.001	
R Square	0.187350075					
Adjusted R Square	0.176217885					
Standard Error	5.214844785					
Observations	75					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	457.6737523	457.6738	16.82958	0.00010511	
Residual	73	1985.206248	27.19461			
Total	74	2442.88				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	5.118575543	1.129742259	4.530746	2.25E-05	2.86700094	7.370150145
Openness	0.089913431	0.021917346	4.102387	0.000105	0.046232195	0.133594668

SUMMARY OUTPUT F	OR ALL of GROUP A whe	re VV is predicted	d by E			
Regressio	n Statistics					
Multiple R		Correlation betwe	en VV and	E is NOT signifi	cant at p = 0.05	
R Square	0.049544536					
Adjusted R Square	0.036524598					
Standard Error	4.552315313					
Observations	75					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	78.85904642	78.85905	3.80528203	0.054930041	
Residual	73	1512.820954	20.72357			
Total	74	1591.68				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	7.97624321	1.033689167	7.716288	4.79965E-11	5.916102274	10.03638415
Extraversion	-0.036847267	0.018889126	-1.95071	0.054930041	-0.074493265	0.000798732
SUMMARY OUTPUT FO	OR ALL of GROUP A where	SG is predicted h	nv O			
		OO 13 prodicted t				
	ion Statistics			10: 110= 1		
Multiple R			ween SG an	a O is NOT sign	ificant at p = 0.05	
R Square	0.03959590					
Adjusted R Square	0.02643968					
Standard Error	4.31615664					
Observations	Ī	75				
ANOVA						
	df	SS	MS	F	Significance F	
Regression		1 56.0678040			0.0869894	4
Residual		73 1359.93219				
Total		['] 4 141	6			
	Coefficients	Standard Erro	r t Ctot	Duelus	Lower 050/	Unner 050/
Intereset	Coefficients 9.02746754			P-value 1.11502E-14	Lower 95% 7.16391281	Upper 95% 1 10.8910222
Intercept Openness	0.03147047			_	-0.00468305	
Openness	0.03147047	0.01014021	1 1.734041	0.00090944	-0.00406303	4 0.0070240
SUMMARY OUTPUT FO	R Subgroup Age <30 where	e AR is predicted	by E			
Regressi	on Statistics					
Multiple R		Correlation between	en AR and	E is significant a	t p = 0.001 for Su	bgroup Age <3
R Square	0.372067323					
Adjusted R Square	0.353039061					
Standard Error	3.812534356					
Observations	35					
	df	SS	MS	F	Significance F	
ANOVA			MS 284.2169			
ANOVA Regression	df	284.2169131		131 19.553404		
ANOVA Regression Residual Total	df 1	284.2169131 479.6688011	284.21691	131 19.553404		
ANOVA Regression Residual	df 1 33 34	284.2169131 479.6688011 763.8857143	284.2169° 14.535418	131 19.553404 322	0.000100156	
ANOVA Regression Residual	df 1 33	284.2169131 479.6688011 763.8857143 Standard Error	284.21691	131 19.553404 322 <i>P-value</i>	0.000100156	Upper 95%

SUMMARY OUTPUT	FOR Subgroup Age <30 where	e SI is predicted b	y E				
Regres	ssion Statistics						
Multiple R	0.341481474	Correlation between	en SI and E is	NOT significant	at p = 0.05 for S	Subgroup Age	<30
R Square	0.116609597						
Adjusted R Square	0.089840191						
Standard Error	3.963947095						
Observations	35						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	68.4465016	68.4465016	4.356077086	0.044678652		
Residual	33	518.524927	15.71287657				
Total	34	586.9714286					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lo
Intercept	10.46569035		8.12960744			13.08483576	_
Extraversion	-0.053819814	0.02578662	-2.087121723	0.044678652	-0.106283128	-0.0013565	-(

SUMMARY OUTPUT F	OR Subgroup Age <30 wh	nere VV is predic	ted by N				
Regressio	on Statistics						
Multiple R	0.311388826	Correlation between	en VV and N is	NOT significan	t at p = 0.05 for	Subgroup Age	<30
R Square	0.096963001						
Adjusted R Square	0.069598244						
Standard Error	3.530696792						
Observations	35						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	44.17080263	44.17080263	3.543353203	0.068627048		
Residual	33	411.3720545	12.46581983				
Total	34	455.5428571					
	0#	Cts and and Fansa	4.04-4	Divistor	1 050/	11 0E0/	
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lowe
Intercept	7.091931147	1.117131804	6.348338774	3.47346E-07	4.8191076	9.364754693	4.
Neuroticism	-0.040959572	0.021759464	-1.882379665	0.068627048	-0.085229569	0.003310425	-0.08

SUMMARY OUTPUT	FOR Subgroup Age <30 where	SG is predicted b	у А				
Regre	ssion Statistics						
Multiple R	0.14328183	Correlation between	een SG and A is	NOT significar	at $p = 0.05$ for	Subgroup Age	<30
R Square	0.020529683						
Adjusted R Square	-0.009151236						
Standard Error	4.003036847						
Observations	35						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	11.0836824	11.0836824	0.691679489	0.411571555		
Residual	33	528.8020319	16.024304				
Total	34	539.8857143					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lowe
Intercept	10.79276605	1.523923396	7.082223479	4.15353E-08	7.692318135	13.89321397	7.69
Agreeableness	-0.022712464	0.027309378	-0.831672705	0.411571555	-0.078273854	0.032848927	-0.07

SUMMARY OUTPUT F	FOR Subgroup Age 30+ wher	e AR is predicted	by E				
Regres	sion Statistics						
Multiple R		Correlation betw	veen AR and F	is significant at	p = 0.001 for Su	ibaroup Age 3	30+
R Square	0.449482258		loon / ar and E	is significant at	0.001 101 00	ibg.oup / igo o	,,,
Adjusted R Square	0.434994949						_
Standard Error	4.194447288						
Observations	4.134447200						
OBSCIVACIONS		<u>/ </u>					
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	545.8512541	545.851254	1 31.0259315	9 2.21331E-0	6	
Residual	38	668.5487459	17.5933880	5			
Total	39	1214.4	1				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95	%
Intercept	16.75293635						
Extraversion	-0.128363102						
LXII dVel Slott	-0.120303102	0.023043037	-3.37003200	1 2.21331L-0	0 -0.17301330	2 -0.001710	02
SUMMARY OUTPUT F	OR Subgroup Age 30+ where	e SI is predicted I	by O				
D	-: 04-4:-4:						-
	sion Statistics	Correlation between	oon Cl and C :-	oignificant et a	- 0 001 for Cub	aroup Ass 00	
Multiple R		Correlation betwe	een Si and O is	significant at p	= 0.001 for Sub	group Age 30	+
R Square	0.308546151						+
Adjusted R Square	0.290349998						+
Standard Error	5.733195655						+
Observations	40						+
ANOVA							+
	df	SS	MS	F	Significance F		
Regression	1	557.3577679	557.3577679	16.95666859	0.000198752		Т
Residual	38	1249.042232	32.86953242				T
Total	39	1806.4					I
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	L
Intercept	4.076461747					7.435770675	_
Openness	0.12905385		4.117847567		0.065609085		_
•							
SUMMARY OUTPUT	FOR Subgroup Age 30+ whe	ere VV is predicte	ed by O				
Dograna	ion Statistics						
Multiple R	ion Statistics	Correlation between	on \/\/ and \/\ io	s significant et	n = 0.05 for Sub	aroun Ago 20)+
· ·		orrelation between	en vv and O is	signineant at p) – 0.05 101 SUD	group Age 30) T
R Square	0.137444561						
Adjusted R Square	0.114745733						
Standard Error	4.951006327						
Observations	40						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	148.4263812	148.4263812	6.055139268	0.018522996		
Residual	38	931.4736188	24.51246365				
Total	39	1079.9	IL 10000				
	Coefficients	Ctanaland Funan	4 04-4	P-value	Lower 95%	Upper 95%	6
	Coefficients	Standard Error	t Stat	P-value	LOWEI 9576	Opper 307	_
Intercept	10.00360973	1.433017753	6.980799581	2.6109E-08	7.102616853		

	R Subgroup Age 30+ where S	p	,				
	on Statistics						
Multiple R		Correlation betwe	en SG and E is	NOT significan	nt at p = 0.05 for	Subgroup	Age 30
R Square	0.073093452						
Adjusted R Square	0.048701174						
Standard Error	4.5262649						
Observations	40						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	61.39119021	61.39119021	2.996581668	0.091553849		
Residual	38	778.5088098	20.48707394				
Total	39	839.9					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 98	5% Lo
Intercept	13.24761606	1.457344174	9.090245321	4.51384E-11	10.29737691		
Extraversion	-0.043048307	0.024868123	-1.731063739	0.091553849	-0.093391192	0.007294	1579 -0
SUMMARY OUTPUT FO	OR Subgroup Male where AF	R is predicted by	E				
D	C4-4:-4:						
Multiple R	ion Statistics	Correlation bet	Woon AD and E	io cianificant	ot n = 0.001 for	Cubarous	Molo
R Square	0.67278327		ween AR and E	: is significant	at p = 0.001 101	Subgroup	iviale
	0.452637326						
Adjusted R Square Standard Error	4.266232499						
		_					
Observations	51						
ANOVA							
	df	SS	MS	F	Significano		
Regression	1	_			099 6.37857	E-08	
Residual	49			74			
Total	50	1629.33333	3				
	Coefficients	Standard Error	t Stat	P-value	Lower 95	5% Upj	per 95%
Intercept	17.52276698	1.14118789	2 15.354848	31 2.33626E	-20 15.2294		816068
Extraversion	-0.136354694	0.02142073	9 -6.3655456	16 6.37857E	-08 -0.17940	1255 -0.0	933081
OUR MAN DV OUTDUT E	2D 0 d Mala ud 0	1 in	. 0				
SUMMARY OUTPUT FO	OR Subgroup Male where S	i is predicted by					
Regressi	ion Statistics						
Multiple R	0.378266267	Correlation bet	ween SI and C) is significant	at p = 0.01 for	Subgroup	Male
R Square	0.143085369)					
Adjusted R Square	0.125597315	5					
Standard Error	5.241244721						
Observations	51						
ANOVA							
	df	SS	MS	F	Significand	ce F	
Regression							
Residual	49						
Total	50						
	Coefficients	Standard Erro		P-value			per 95%
Intercept	5.642533538						595860
Openness	0.075785467	0.02649470	2.8604006	96 0.006202	139 0.022	5424 0.12	290285

Regression	n Statistics						
Multiple R	0.152849143 <mark>(</mark>	Correlation between	en VV and E is	NOT significar	t at $p = 0.05$ for	Subgroup Ma	ile
R Square	0.02336286						
Adjusted R Square	0.00343149						
Standard Error	4.943343148						
Observations	51						
ANOVA							_
	df	SS	MS	F	Significance F		
Regression	1	28.64378302	28.64378302	1.172165293	0.284255937	,	
Residual	49	1197.395433	24.43664148				
Total	50	1226.039216					
	Coefficients	Standard Error	t Stat	P-value	Lower 059/	Upper 059/	_
Intercent	Coefficients 3 7.415870891	Standard Error 1.32231034	5.608268093	9.33723E-07	Lower 95% 4.758590387	Upper 95% 10.07315	
Intercept Extraversion							
Extraversion	-0.026872318	0.02482051	-1.082665827	0.284255937	-0.076750969	0.0230063	34
SUMMARY OUTPUT FO	R Subgroup Male where SG	is predicted by C	,				L
Rearessi	on Statistics						H
Multiple R		Correlation between	een SG and C i	s NOT significa	nt at p = 0.05 for	Subgroup Mal	le
R Square	0.01422514			g		g p	
Adjusted R Square	-0.005892715						T
Standard Error	4.748117498						H
Observations	51						
ANOVA							H
	df	SS	MS	F	Significance F		T
Regression	1	15.94108196	15.94108196	0.7070903	0.40449631		T
Residual	49		22.54461978				T
Total	50	1120.627451					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	L
Intercept	9.116746953	2.091592293	4.358759105	6.68747E-05	4.913537424	13.31995648	
Conscientiousness	0.024264167	0.028855456	0.840886615	0.40449631	-0.033723008	0.082251342	-
SUMMARY OUTPUT FO	R Subgroup Male where SG	is predicted by F					
		producted by L					
	on Statistics						L
Multiple R		Correlation between	een SG and E is	NOT significar	nt at p = 0.05 for	Subgroup Male	•
R Square	0.020633131						
Adjusted R Square	0.000646052						1
Standard Error	4.732659859						1
Observations	51						-
ANOVA							
	df	SS	MS	F	Significance F		1
Regression	1		23.12205348	1.032323507	0.314604328		1
Residual Total	49 50		22.39806934				H
Total	50	1120.021431					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	L
Intercept	11.88024661	1.265954007	9.384421976	1.58849E-12	9.336218326	14.42427489	
							-

SUMMARY OUTPUT	FOR Subgroup Female where	AR is predicted by	y E				
Regres	ssion Statistics						
Multiple R	0.623497861	Correlation between	en AR and	E is signif	icant at p = 0.01	for Subgroup F	emale
R Square	0.388749582						
Adjusted R Square	0.360965472						
Standard Error	3.463828054						
Observations	24						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	167.875028	167.875	13.9918	0.001133169		
Residual	22	263.9583054	11.9981				
Total	23	431.8333333					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower
Intercept	15.82998381	1.491732826	10.61181	4.05E-10	12.73631596	18.92365166	12.73
Extraversion	-0.09673471	0.025861018	-3.74056	0.001133	-0.150367236	-0.043102184	-0.150

SUMMARY OUTPUT	FOR Subgroup Female where	SI is predicted by	/ O			
Regres	ssion Statistics					
Multiple R	0.548432132	Correlation between	een SI and O is	significant at p	o = 0.01 for Subg	roup Female
R Square	0.300777803					
Adjusted R Square	0.268994976					
Standard Error	5.264468182					
Observations	24					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	262.2782446	262.2782446	9.463532064	0.005522664	
Residual	22	609.7217554	27.71462524			
Total	23	872				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	3.989495798	1.951309092	2.044522734	0.053050573	-0.057275917	8.036267514
Openness	0.123716153	0.040216084	3.076285433	0.005522664	0.04031301	0.207119296

SUMMARY OUTPUT FO	OR Subgroup Female whe	ere VV is predicte	d by E			
Regression	n Statistics					
Multiple R	0.424333912	Correlation between	en VV and E is	significant at p	o = 0.05 for Subg	roup Female
R Square	0.180059269					
Adjusted R Square	0.142789235					
Standard Error	3.689984482					
Observations	24					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	65.78165284	65.78165284	4.831207624	0.038767168	
Residual	22	299.5516805	13.61598548			
Total	23	365.3333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	9.408963696	1.589129394	5.920829185	5.8632E-06	6.113307507	12.70461989
Extraversion	-0.060553838	0.027549507	-2.198000824	0.038767168	-0.117688079	-0.003419597

SUMMARY OUTPUT FO	OR Subgroup Female where	SG is predicted b	y O						
Regress	sion Statistics								
Multiple R		Correlation betw	veen SG and	O is NOT sign	ificar	nt at p = 0.0	5 for Su	ubgroup	Fema
R Square	0.107914625			_		-			
Adjusted R Square	0.06736529								
Standard Error	3.320039301								
Observations	24								
ANOVA									
	df	SS	MS	F	Sian	ificance F			
Regression	1			2.661316751		117049403			
Residual	22								
Total	23								
	Coefficients	Standard Error	t Stat	P-value	Lo	ver 95%	Uppei	95%	Lowe
Intercept	7.90765056			1.82456E-06		355552101		974902	
Openness	0.041374883			0.117049403		011223347		973114	
OURMANN OUTPUT 5	OD 0	h AD : "	-4-41- 5						
SUMMARY OUTPUT F	OR Subgroup High School w	here AR is predi	cted by E						
Regress	sion Statistics								
Multiple R		Correlation bet	ween AR and	d E is significa	nt at	p = 0.01 fo	r Subgr	oup Hi	gh Sch
R Square	0.392395126								
Adjusted R Square	0.351888135								
Standard Error	4.736676873								
Observations	17								
ANOVA									
ANOVA	df	SS	MS	F		Significand	20 E		
Regression	1				3250	0.00713			
Residual	15				3233	0.00713	1043		
Total	16			076					
	0#:-:	Cts and and France		District		1 05	.0/		0.50/
	Coefficients	Standard Error		P-valu	_	Lower 95		Upper:	
Intercept Extraversion	18.15408865 -0.133251317					14.21423 -0.22450		22.093 0.0419	
LAUGUSION	-0.100201011	0.04201230	5 -5.11241	0.00713	1045	-0.22430	1321	0.0413	31113
SUMMARY OUTPUT FO	OR Subgroup High School who	ere SI is predicte	d by O						
Regressi	on Statistics								
Multiple R	0.434457147	Correlation between	en SI and O i	s NOT significa	nt at	p = 0.05 for	Subgro	oup Hig	h Scho
R Square	0.188753013								
Adjusted R Square	0.13466988								
Standard Error	3.933718166								
Observations	17								
ANOVA									
	df	SS	MS	F		nificance F			
Regression	1	54.00556787	54.00556787	3.490053257	0	.081397963			
Residual	15		15.47413861						
Total	16	286.1176471							
	Coefficients	Standard Error	t Stat	P-value	10	wer 95%	Uppe	r 95%	Lowe
	Coefficients	Stariuaru Error	t Olai	I Value					
Intercept	4.503624196	1.825786466			_	.612050072		198321	0.61

SUMMARY OUTPUT FO	R Subgroup High School	where VV is pred	dicted by E					
Regression	Statistics							
Multiple R		Correlation between	en VV and E is	NOT significan	t at p	= 0.05 for 9	Subaroup Hiah	School
R Square	0.131012082						g - g	
Adjusted R Square	0.073079554							
Standard Error	2.787431493							
Observations	17							
ANOVA								
	df	SS	MS	F	Sign	ificance F		
Regression	1	17.57103217	17.57103217	2.261459783	0.1	153390604		
Residual	15	116.5466149	7.769774326					
Total	16	134.1176471						
	0 55 1			5 /		0.507	050/	
Intercent		Standard Error	t Stat	P-value		ver 95%	Upper 95%	Lower
Intercept	6.693264388	1.087764676	6.153228297	1.84747E-05		374747438	9.011781339	4.374
Extraversion	-0.037887817	0.025194465	-1.503815076	0.153390604	-0.0	091588581	0.015812948	-0.091
SUMMARY OUTPUT FO	R Subgroup High School v	vhere SG is predi	cted by E					
Rearessia	on Statistics							
Multiple R		33 Correlation bet	ween SGand F	is NOT significa	ant at	p = 0.05 for	Subaroup Hia	h Schoo
R Square	0.01517303			J. To . Digitifico	arre Git	P 0.00 101	Cabg. Jup 1119	031100
Adjusted R Square	-0.05048209							
Standard Error	4.12975613							
Observations	1	7						
ANOVA								
	df	SS	MS	F	Sig	nificance F		
Regression		1 3.9414195	3.94141958	0.23110208	1 0	.637644224		
Residual	1	5 255.823286	3 17.05488575	5				
Total	1	6 259.764705	59					
	Coefficients	Standard Erro	r t Stat	P-value	10	ower 95%	Upper 95%	Lower
Intercept	9.27541232					.840382754		
Extraversion	0.01794433		05 0.480730778				0.097505412	
SUMMARY OUTPUT FO	R Subgroup Bachelors v	here AR is predi	cted by E					
Regressi	on Statistics							
Multiple R		04 Correlation b	etween AR and	E is significan	nt at n	= 0 001 for	Subgroup Ba	chelors
R Square	0.3385216		othoon / ii cana	_ io oigiiiiodii	at p	0.001 101	Cabgroup Da	0110/013
Adjusted R Square	0.3178504							
Standard Error	3.7374947							
Observations		34						
ANOVA								
	df	SS	MS	F		Significand	e F	
Regression		1 228.7609	599 228.7609		8628	0.00030		
Residual		32 447.003						
Total		33 675.7647		7.00				
	Coefficients	Standard En		P-valu		Lower 95		
Intercept	Coefficients 15.252619					Lower 95 12.1436		95% L 15901

Regressi	ion Statistics						Г
Multiple R		Correlation between	en SI and O is	significant at r	o = 0.01 for Subo	roup Bachelor	s
R Square	0.236885254						
Adjusted R Square	0.213037918						Г
Standard Error	5.272606797						Г
Observations	34						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	276.1524681	276.1524681	9.933405367	0.003512569		
Residual	32	889.6122378	27.80038243				Г
Total	33	1165.764706					F
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	L
Intercept	4.098490222	1.703078504	2.406518674	0.022052433	0.629435769	7.567544676	
Openness	0.097264989	0.03086082	3.151730535	0.003512569	0.034403609	0.160126369	

SUMMARY OUTPUT	FOR Subgroup Bachelors v	where VV is predi	cted by E				
Regressi	ion Statistics						
Multiple R	0.131200727	Correlation between	en VV and E is	NOT significar	at $p = 0.05$ for	Subgroup Bac	helors
R Square	0.017213631						
Adjusted R Square	-0.013498443						
Standard Error	4.546540709						
Observations	34						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	11.58578602	11.58578602	0.560484149	0.459532996		
Residual	32	661.4730375	20.67103242				
Total	33	673.0588235					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lowe
Intercept	6.967392798	1.856695413	3.752577159	0.000698029	3.185431205	10.74935439	3.18
Extraversion	-0.022491534	0.030042593	-0.748654893	0.459532996	-0.083686241	0.038703173	-0.08

SUMMARY OUTPUT F	OR Subgroup Bachelors where	e SG is predicted	by O				
Regress	sion Statistics						
Multiple R	0.350680835	Correlation between	een SG and O i	s significant at	p = 0.05 for Sub	group Bachelo	rs
R Square	0.122977048						
Adjusted R Square	0.095570081						
Standard Error	4.394018927						П
Observations	34						F
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	86.63371355	86.63371355	4.487072474	0.042011668		
Residual	32	617.8368747	19.30740233				Г
Total	33	704.4705882					I
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	L
Intercept	6.98173838	1.419290205	4.919176048	2.51305E-05	4.090741286	9.872735475	,
Openness	0.05447855	0.025718403	2.118271105	0.042011668	0.002091922	0.106865179	

SUMMARY OUTPUT F	OR Subgroup Masters+ where	AR is predicted b	y E				
Regres	sion Statistics						
Multiple R	0.664592962	Correlation between	een AR and E is	significant at p	= 0.001 for Sub	group Masters+	-
R Square	0.441683805						
Adjusted R Square	0.416305796						
Standard Error	4.046884611						
Observations	24						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	285.0332822	285.0332822	17.40419461	0.000396566		
Residual	22	360.3000512	16.37727505				
Total	23	645.3333333					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	L
Intercept	17.35263096	1.593736346	10.88801859	2.51192E-10	14.04742053	20.65784139	
Extraversion	-0.129717817	0.031093719	-4.171833483	0.000396566	-0.194202311	-0.065233322	-(

SUMMARY OUTPUT F	OR Subgroup Masters+ where	SI is predicted b	y O				
Regress	sion Statistics						
Multiple R	0.343565157	Correlation between	een SI and O is	NOT significat	nt at p = 0.05 for	Subgroup Mas	ters+
R Square	0.118037017						
Adjusted R Square	0.077947791						
Standard Error	5.90742513						
Observations	24						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	102.7512233	102.7512233	2.944357557	0.100228889		
Residual	22	767.7487767	34.89767167				
Total	23	870.5					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lowe
Intercept	7.345173407	2.321934147	3.163385756	0.004503807	2.529771545	12.16057527	2.52
Openness	0.075803189	0.044176592	1.715913039	0.100228889	-0.015813552	0.167419931	-0.01

SUMMARY OUTPUT I	FOR Subgroup Masters+ w	here VV is predic	ted by O			
Regressi	ion Statistics					
Multiple R	0.438947521	Correlation between	een VV and O is	significant at p	0 = 0.05 for Subg	roup Masters+
R Square	0.192674926					
Adjusted R Square	0.155978332					
Standard Error	5.139594515					
Observations	24					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	138.6938342	138.6938342	5.250485223	0.031883153	
Residual	22	581.1394991	26.41543178			
Total	23	719.8333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	11.53909461	2.020135633	5.712039539	9.57946E-06	7.349585232	15.72860399
Openness	-0.088068897	0.038434642	-2.291393729	0.031883153	-0.16777755	-0.008360243

SUMMARY OUTPUT FO	OR Subgroup Masters+ where	SG is predicted l	hy O				
COMMUNICI COTT CTT C	or oubgroup musicis - whore	oo is predicted i	by C				
Regress	ion Statistics						
Multiple R	0.096956702	Correlation between	en SG and O i	s NOT significa	nt at p = 0.05 for	Subgroup Mas	sters
R Square	0.009400602			J			
Adjusted R Square	-0.035626643						
Standard Error	4.026140625						
Observations	24						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	3.384216756	3.384216756	0.208775865	0.652208179		
Residual	22	356.6157832	16.20980833				
Total	23	360					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lou
Intercept	11.38208237	1.58248868	7.192520564	3.29418E-07	8.100198198	14.66396655	8.1
Openness	0.013756979	0.03010807	0.456919977	0.652208179	-0.048683404	0.076197361	-0.0
SHMMADY OUTDUT FO	OR Subgroup Masters+ where	SC is prodicted	by E				
SOMMAKT COTFOTTC	on Subgroup Masters · where	s 30 is predicted	by L				
Regress							
	ion Statistics						
		Correlation between	een SG and E i	s NOT significa	nt at p = 0.05 for	Subgroup Mas	sters.
Multiple R		Correlation between	een SG and E i	<mark>s NOT significa</mark>	nt at p = 0.05 for	Subgroup Ma	sters:
	0.208143911	Correlation between	een SG and E i	s NOT significa	nt at p = 0.05 for	⁻ Subgroup Mas	sters [.]
Multiple R R Square	0.208143911 0.043323888	Correlation between	een SG and E i	s NOT significa	nt at p = 0.05 for	Subgroup Mas	sters
Multiple R R Square Adjusted R Square	0.208143911 0.043323888 -0.00016139	Correlation between	een SG and E i	s NOT significa	nt at p = 0.05 for	Subgroup Mas	sters
Multiple R R Square Adjusted R Square Standard Error	0.208143911 0.043323888 -0.00016139 3.95660208	Correlation between	een SG and E i	s NOT significa	nt at p = 0.05 for	Subgroup Mas	sters
Multiple R R Square Adjusted R Square Standard Error Observations	0.208143911 0.043323888 -0.00016139 3.95660208	Correlation between	een SG and E i	s NOT significa	nt at p = 0.05 for	Subgroup Mas	sters
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	0.208143911 0.043323888 -0.00016139 3.95660208 24					Subgroup Mas	sters
Multiple R R Square Adjusted R Square Standard Error Observations	0.208143911 0.043323888 -0.00016139 3.95660208 24	SS	MS	F	Significance F	Subgroup Mas	sters
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	0.208143911 0.043323888 -0.00016139 3.95660208 24 df	SS 15.59659963	<i>MS</i> 15.59659963	F	Significance F	Subgroup Mas	sters
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	0.208143911 0.043323888 -0.00016139 3.95660208 24 df 1 22	SS 15.59659963 344.4034004	<i>MS</i> 15.59659963	F	Significance F	Subgroup Mass	
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	0.208143911 0.043323888 -0.00016139 3.95660208 24 df 1 22 23	SS 15.59659963 344.4034004 360	MS 15.59659963 15.65470002	F 0.99628863	Significance F 0.329062909		Low 1

LIST OF REFERENCES

- Ahn, H. and Picard, R. (2006). "Affective Cognitive Learning and Decision Making: The Role of Emotions," The 18th European Meeting on Cybernetics and Systems Research (EMCSR 2006), April 18-19, 2006, Vienna, Austria.
- Anderson J.R. (1983). The Architecture of Cognition. Harvard University Press, Cambridge, Massachusetts.
- Anderson J. and Reiser B. (1985). The Lisp Tutor. Byte, vol.10, pp.159-75.
- Anderson, J. (1993). Rules of the Mind. Lawrence Erlbaum Associates, Mahwah, NJ, USA.
- Beck, J., Stern, M., and Haugsjaa, E. (1996) Applications of AI in Education, ACM Crossroads.
- Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238-246.
- Browne, G. and Jermey, J. (2001). Website Indexing 1st Edition. Auslib Press, Blackwood, South Australia, Australia.
- Capuano, N., Marsella, M., Salerno, S. (2000). ABITS: An Agent Based Intelligent Tutoring System for Distance Learning. Proceedings of the International Workshop on Adaptive and Intelligent Web-Based Education Systems. ITS 2000, Montreal, Canada.
- Clancey, W. and Letsinger, R. (1981). Tutoring Rules for Guiding a Case Method Dialog. In Proceedings of the Sixth IJCAI, Vancouver, B.C., Morgan-Kaufmann, San Mateo, California, pp. 829-835.
- Coffield, F., Moseley, D., Hall, E. and Ecclestone, K. (2004) Learning styles and pedagogy in post-16 learning a systematic and critical review. Learning and Skills Research Centre, UK.
- Corbett, A., Koedinger, K., and Anderson, J. (1997). Intelligent Tutoring Systems, Chapter 37 of <u>Handbook of Human-Computer Interaction</u>, Second, Completely Revised Edition by M. Helander, T. K. Landauer, P. Prabhu (Editors). Elsevier Science B. V
- Felder, R. and Spurlin, J. (2005) Applications, Reliability and Validity of the Index of Learning Styles. TEMPUS Publications, UK.
- Felder, R. and Soloman, B. (2006). Index of Learning Styles (ILS) Questionnaire. North Carolina State University. http://www.engr.ncsu.edu/learningstyles/ilsweb.html accessed October 23, 2006
- Fleming, N. (2001). Teaching and learning styles: VARK strategies. Christchurch, New Zealand.

- Fleming, N.D. & Mills, C. (1992) Helping students understand how they learn. The Teaching Professor, Vol. 7 No. 4, Magma Publications, Madison, Wisconsin, USA.
- Funderstanding.com (2006). Constructivism. http://www.funderstanding.com/constructivism.cfm
- Gardner, H. (1999). Intelligence Reframed: Multiple Intelligences for the 21st Century. Basic Books, New York, NY, USA
- Hafner, K. (2004). "Software Tutors Offer Help and Customized Hints". The New York Times (September 16, 2004), New York, NY, USA.
- Harvey, R J (1996) Reliability and Validity, in MBTI Applications. A.L. Hammer, Editor. Consulting Psychologists Press: Palo Alto, CA. p. 5-29.
- Holt P., Dubs S., Jones M. and Greer J. (1991). The State of Student Modelling. Student Modelling: The Key to Individualised Knowledge-Based Instruction. Greer J.E. and McCalla G.I. (Eds), Nato ASI Series.
- Howard, P.J. and Howard, J.M. (2004). The Big Five Quickstart: An Introduction to the Five-Factor Model of Personality for Human Resource Professionals, Center for Applied Cognitive Studies (CentACS), Charlotte, North Carolina, USA
- Hunt, S. and Paajanen, G. (2003). The value of uncommon variance: designing personality selection measures for multi-dimensional predictor and criteria spaces. In Proceedings of the 19th Conference of the Society for Industrial and Organizational Psychology, Orlando, Florida, USA.
- Instructables.com (2006). "Solve Sudoku (Without even thinking!)". http://www.instructables.com/id/EJLUBKN48JEPD7QXGR/?ALLSTEPS accessed October 23, 2006
- John, O.D. (U.C. Berkeley) and Atof Inc.(2003), The Big Five Personality Test, http://www.outofservice.com/bigfive/ accessed October 23, 2006
- Kashihara, A., Sugano, A., Matsumura, K., Hirashima, T. and Toyoda, J. (1994). A Cognitive Load Application Approach to Tutoring. In Proceedings of the Fourth International Conference on User Modeling, pp. 163-168.
- Keefe, J.W. (1979) Learning style, An overview, in J.W. Keefe (ed.), Student learning styles: Diagnosing and prescribing programs, NASSP.
- Kolb, D.A. (1984) Experiential Learning: Experience as the Source of Learning and Development Prentice-Hall Inc., New Jersey.

- Kroeger, O. (2001), Otto Kroeger Associates (OKA) Myers-Briggs Type Indicator (MBTI) Qualifying Workshop, Fairfax, VA, USA.
- Lehman, J., Laird, J. and Rosenbloom, P. (2006) A Gentle Introduction to SOAR, an Architecture for Human Cognition: 2006 Update. University of Michigan, Department of Electrical Engineering and Computer Science.
- Lane, H., Core, M., Gomboc, D., Solomon, S., van Lent, M., Rosenberg, M. (2006) Reflective Tutoring for Immersive Simulation. 8th International Conference on Intelligent Tutoring (Jhongil, Taiwan, June 26th-30th).
- Liegle J., Woo H. (2000). Developing Adaptive Intelligent tutoring Systems: A framework and its implementations.
- Litzinger, T.A., Lee, S.H., Wise, J.C., and Felder, R.M. (2005) "A Study of the Reliability and Validity of the Felder-Soloman Index of Learning Styles," Proceedings, 2005 ASEE Annual Conference, American Society for Engineering Education, June 2005.
- Loftin, B., Mastaglio, T., and Kenney, P. (2004), Outstanding Research Issues in Intelligent Tutoring Systems, study commissioned by the Research Development and Engineering Command (RDECOM), Orlando, Florida, USA under contract N61339-03-C-0156. http://www.mymicsurveys.com/site/files/pub 4.pdf
- McCrae, R. R. and Costa, P. T. (1989) Reinterpreting the Myers-Briggs Type Indicator From the Perspective of the Five-Factor Model of Personality. Journal of Personality, 57(1):17-40.
- Mitchell D.P. (1994). Learning style: a critical analysis of the concept and its assessment. In R Hoey (ed.) Design for learning: aspects of educational technology. London: Kogan Page
- Montgomery, S.M. "Addressing Diverse Learning Styles Through the Use of Multimedia," Frontiers in Education 25th Annual Conference Proceedings, IEEE Cat. No. 95CH35867, No. 1-4, 1995, Atlanta, GA, pp. 3a2.13-3a2.21, 1995.
- Myers, I.B., McCaulley, M.H., Quenk, N.L. and Hammer, A.L. (1998), MBTI Manual: A Guide to the Development and Use of the Myers-Briggs Type Indicator® Third Edition, p. 171, Consulting Psychologists Press, Palo Alto, CA, USA.
- Ong, J. and Ramachandran, S. (2006) Intelligent Tutoring Systems: The What and the How. Learning Circuits.
- Oppermann, R., Rossen R. and Kinshuk (1997): Adaptability and Adaptivity in Learning Systems. In: A. Behrooz (ed.): Knowledge Transfer (Vol. II). Proceedings on Knowledge Transfer, July 14 16, 1997 in London, UK, London: Pace, pp. 173 179. ISBN 1 900427 15 X.

- Picard, R., (2006) Affective Computing. MIT Media Laboratory Vision and Modeling Group. http://vismod.media.mit.edu/vismod/demos/; http://affect.media.mit.edu/
- Price L. and Richardson, J. (2003). Meeting the challenge of diversity: a cautionary tale about learning styles. In C Rust (ed) Improving student learning theory and practice 10 years on. Oxford: Oxford Centre for Staff and Learning Development, Oxford Brookes University.
- Rodrigues, M., Novais, P., and Santos, M.F. (2005). Future Challenges in Intelligent Tutoring Systems A Framework. In Proceedings of the Third International Conference on Multimedia and Information & Communication Technologies in Education, Cáceres, Spain.
- Roll, I., Baker, R., Aleven, V., McLaren, B. and Koedinger, K. (2005). Modeling Students' Metacognitive Errors in Two Intelligent Tutoring Systems. In Proceedings of the Tenth International Conference on User Modeling, Edinburgh, Scotland.
- Rosati, P.A., and Felder, R.M. (1995) "Engineering Student Responses to an Index of Learning Styles," Proceedings, 1995 ASEE Conference Exposition, Washington, D.C.: American Society for Engineering Education
- Ryder, J., Santarelli, T., Scolaro, J., Hicinbothom, J. and Zachary, W. (2000) Comparison of Cognitive Model Uses in Intelligent Training Systems. In Proceedings of IEA2000/HFES2000 (pp. 2-374 to 2-377). Santa Monica, CA, USA: Human Factors Society.
- Shute, V.J. and R. Glaser, A large-scale evaluation of an intelligent discovery world. Interactive Learning Environments, 1990.
- Wikipedia (2006a). Learning: http://en.wikipedia.org/wiki/Learning accessed August, 8 2006
- Wikipedia (2006b). Learning Styles: http://en.wikipedia.org/wiki/Learning_styles accessed August, 8 2006
- Wikipedia (2006c). Preference: http://en.wikipedia.org/wiki/Preference accessed August, 8 2006
- Wikipedia (2006d). Big Five Personality Traits: http://en.wikipedia.org/wiki/Big_five_personality_traits#Hiatus_in_research accessed August, 8 2006
- Woolf, B. 1992. AI in Education. Encyclopedia of Artificial Intelligence, Shapiro, S., ed., John Wiley & Sons, Inc., New York, pp. 434-444.
- Zywno, M. (2003) "A Contribution to Validation of Score Meaning for Felder-Soloman's Index of Learning Styles," Proceedings, 2003 ASEE Annual Conference, American Society for Engineering Education, June 2003.