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ABSTRACT 

 

Passive coherent location (PCL) systems use signals of opportunity to perform traditional 

radar detection, targeting, and tracking functions. Traditionally these signals include FM radio, 

digital TV, GSM, and GPS because of their availability in most urban environments. A benefit of 

having an abundance of signals is the ability to choose which of those best meet the desired system 

intentions. For example, one may want to choose a digital TV signal over an FM radio signal due 

to its range resolution characteristics. This work presents a novel algorithm for characterizing 

commercial signals for use in a PCL system. By analyzing each signal’s ambiguity function in 

terms of amplitude, transmitter geometry, range and Doppler resolution, and sidelobe levels, a 

comparative evaluation can be made to decide which signals are best suited for an intended radar 

function. In addition, this research shows that multiple signals can be combined in the detection 

process to increase the probability of detection over that of a single signal.  Finally, this research 

investigates the geometric considerations for PCL systems in terms of bistatic radar geometry. The 

results show zones of linear and non-linear relationships between time delay, range, and Doppler 

frequency.  
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CHAPTER 1: INTRODUCTION 

 

Passive Bistatic Radar (PBR) and Passive Coherent Location (PCL) refer to a type of radar 

system that exploits radio frequency (RF) signals of opportunity emitted from a geographically 

separated non-cooperative transmission site [1], [2].  The signals used by PCL have traditionally 

included commercially broadcast FM and digital TV. These signals are broadcast over a large area 

to cover a specific area [1], [2]. Once the signal is received, it can be used to extract information 

about a potential target located near the passive receiving sensor and transmitter of opportunity 

[3]. A PCL system is ultimately a bistatic radar, and as such is subjected to the same challenges 

and more. The main challenges for implementing a high-performing PCL system are related to 

signal to noise ratio (SNR). Commercial broadcast FM radio and digital TV transmitters typically 

have effective radiated power (ERP) values from 10 kW up through 100 kW, far less than a 

traditional radar system. The antennas for these transmitters are also configured to radiate below a 

horizontal elevation to reach their intended subscribers. This creates a less than ideal situation for 

detecting air targets with these emissions. In an effort to overcome these challenges, this research 

presents several methods to ensure optimal performance of a PCL system.  
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1.1 Dissertation Objectives 

 

The specific research objectives of this research are as follows: 

• Develop a process for independent characterization and ranking of commercial broadcast 

signal features derived from the ambiguity function such as amplitude, range/Doppler 

resolution, peak-to-sidelobe ratio, integrated sidelobe ratio, and distance function 

measurements. 

 

• Create a technique for improving probability of detection by using multiple signals during  

the detection process 

 

• Derive geometric constraints for PCL systems in terms of bistatic angle, time delay, range, 

and Doppler frequency 

 

 

1.2 Dissertation Overview 

 

This dissertation is organized as follows. Chapter one has provided a brief introduction to 

this work, including specific research objectives. Chapter two presents an overview of PCL 

concepts and a brief history of the subject. Chapter three describes development of a prototype 
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PCL system and presents several data collection examples. Chapter four describes a proposed 

method for characterizing, evaluating, and ranking commercial signals of opportunity for PCL 

systems. Chapter five describes a new method for employing multiple commercial signals in a 

PCL system, for reducing the signal-to-noise-ratio (SNR) required per channel. Chapter six 

discusses geometric considerations for PCL systems and how the bistatic angle can affect the 

observed range delay and Doppler frequency. Chapter seven is a review of previous discussions 

with conclusions and recommended future work.  
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CHAPTER 2: OVERVIEW OF PASSIVE COHERENT 

LOCATION 
 

Passive Radar and Passive Coherent Location, or PCL, denote a method of detecting and 

tracking targets using non-cooperative signals of opportunity [1]. These signals traditionally 

include broadcast FM radio and digital TV [4], but research has also been performed using GPS 

[5] and cell phone signals [6]. PCL systems have become more popular because of their low cost 

and immunity to electronic jamming [4]. In addition, the rapid proliferation of signals of 

opportunity have created broad areas of coverage for passive radar systems.  This chapter presents 

an overview of PCL concepts and technology, and includes a brief history of how legacy PCL 

systems have evolved into modern radar systems.  

 

2.1 Passive Coherent Location History  

Passive radar has a storied history dating back to 1935 when the UK conducted the 

Daventry experiment [7]. Sir Watson Watt developed a bistatic radar experiment using a 6 MHz 

BBC transmitter to detect a bomber aircraft at a range of 8km. The aircraft was slow and large, 

with a wingspan of 75m. It flew a profile of several altitudes, giving Watt and his assistant an 

opportunity to measure fluctuations in the received signal with an oscilloscope [8].  
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Figure 2.1: Sketch of the Daventry Experiment. This figure was obtained from [8].  

 

Watt’s research on passive bistatic radar led him to become the Superintendent of the 

Bawdsey Research Station as part of England’s Air Ministry. His work later founded the 

development of the Chain Home Radar System installed along the east and south costs of England. 

The Chain Home was an installation of several radars designed as bistatic radar systems for 

strategic deployment of Royal Air Force (RAF) fighter aircraft [9].  The radars were transmitting 

a frequency of 20-30 MHz with 350 kW transmitter power, 20 µs pulse width, and pulse repetition 

frequency (PRF) of 12.5 or 25 Hz [9]. The PRF was synchronized with the frequency of the local 

power grid to minimize interference. The transmit antennas were designed to radiate a broad 

beamwidth pattern to illuminate a large area. The receive antenna arrays included orthogonal half-
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wave dipoles to measure both azimuth and elevation [10]. The transmit and receive antennas can 

be seen in figure 2.2.  

 

Figure 2.2: The British Chain Home Radar. This figure was obtained from [8] .  

 

In response to the British’s early warning radar system, the German’s developed and 

deployed the Klein Heidelberg passive radar system. Prior to the beginning of World War II, the 

Germans had collected signals from the Chain Home radar system, but initially determined it to 

be a navigation aid [9]. Once they realized it was a surveillance radar system, they began 

unsuccessful attempts to bomb or electronically jam the sites. The Germans recognized they 

needed an early warning radar system of their own that was not susceptible to jamming and mostly 

undetectable by British radar intercept receivers [9]. They began development of the world’s first 

passive radar system. Through much experimentation, the final design consisted of six receive-
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only sites along the west coast of France, The Netherlands, and Belgium [9]. The geographic 

configuration of Chain Home and one of the Klein Heidelberg systems can be seen in figure 2.3. 

Figure 2.4 shows the antenna of the Klein Heidelberg at Oostvoorne.  

 

Figure 2.3: Locations of the Chain Home radar system Along the South and East Coast of 

the UK and the Klein-Heidelberg passive radar system. This figure was obtained from [10].  
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Figure 2.4: Klein Heidelberg antenna at the Oostvoorne site. This figure was obtained from 

[10]. 

 

The Klein Heidelberg took advantage of the signal data collected from the Chain Home radar 

system. It used radar signal processing theory developed by Dipl.–Ing Wachter that 

exploited the bistatic nature of a passive radar system. The principle of operation as shown 

in figure 2.5 is based on the geometric relationship between transmitter, receiver, and target. 

Because locations of the Chain Home and Klein Heidelberg were known a priori, forty 
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different range sum measurements were made to produce individual ellipses. The radar 

operator would plot a radial line from the measured angle of arrival and measurements from 

the A-scope. The target location was determined to be at the intersecting point of the target 

bearing and corresponding ellipse. 

 

 

Figure 2.5: Klein Heidelberg theory of operation developed by Wachter. This figure was 

obtained from [11]. 

 

Moving forward 60 years to the 1990s, the NATO defense research group (DRG) began a 

study on passive and noise radar [8]. This study included using both commercial FM/TV signals 
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and non-cooperative pulsed signals as illuminators of opportunity. This seemed to create a 

resurgence in the development of PCL systems. Companies such as Thales, Selex, and Lockheed 

Martin developed and marketed commercial PCL systems which exploited FM and TV signals.  

 

 

Figure 2.6: Thales HA100 PCL System Antenna. This figure was obtained from [8]. 

 

 

Figure 2.7: Selex Aulos PCL System. This figure was obtained from [8]. 
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Figure 2.8: Lockheed Martin Silent Sentry PCL System. This figure was obtained from [8]. 

 

Modern PCL systems such as those shown in figures 2.6, 2.7, and 2.8 have been further 

developed to exploit digital broadcast signals. They provide an inexpensive, covert means of 

maintaining locations of aerial targets. These systems have been marketed as defense solutions, 

but have also been used in civilian applications. As passive radar sensor development continue to 

modernize, PCL systems may become an affordable, reliable alternative to traditional radar 

systems.  

  

2.2 Passive Coherent Location Concepts 

Passive Coherent Location (PCL) systems can be described as bistatic radar systems that 

exploit non-cooperative signals of opportunity to detect and track targets [12]. Research has been 

published describing PCL systems that exploit FM radio, digital television, cell phone, and HF 
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CODAR signals. Similar to traditional monostatic radar systems, PCL systems use a matched filter 

based on a signal’s ambiguity function for range and Doppler processing [13]. A typical PCL 

system relies on the use of two antennas, one to receive the direct-path signal of interest, the other 

as a surveillance channel. In processing, the direct-path signal is subtracted from the surveillance 

channel, leaving only potential target responses [14].  A threshold is then applied to the remaining 

signals in preparation for target detection. 

 

 

Figure 2.9: Passive Coherent Location Diagram of Operation. This figure was obtained 

from  [15]. 
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The following sections provide details on how PCL systems cooperate under several of the 

same constraints as bistatic radar. We will first discuss the bistatic radar equation, which lays the 

foundation for PCL principles of operation. We next discuss bistatic radar cross section and how 

it has advantages and disadvantages over monostatic radar. The discussion then focuses on PCL 

signal processing methods, signals of opportunity, and the ambiguity function. This chapter ends 

with a brief discussion on potential implementations of a PCL system in regards to selection of 

antennas and hardware.  

 

 

2.2.1 Bistatic Radar Equations 

The fact that PCL systems rely on transmitters of opportunity geographically separated 

from the receiver makes them bistatic radar systems. A diagram of two-dimensional bistatic 

geometry can be seen in the figure below. The diagram illustrates one of the main differences 

between monostatic and bistatic radar, which is the presence of two range paths and an incidence 

angle at the target.  
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Figure 2.10: Two Dimensional Bistatic Radar geometry. This figure was obtained from [3]. 

 

From [16], the bistatic radar equation in terms of signal to noise ratio can be seen below. 

This equation can be used to predict performance of a bistatic PCL system. 

 

𝑃𝑟

𝑃𝑛
=

𝑃𝑡𝐺𝑡

4𝜋𝑟1
2 ∗ 𝜎𝑏 ∗

1

4𝜋𝑟2
2 ∗

𝐺𝑟𝜆2

4𝜋
∗

1

𝑘𝑇0𝐵𝑠𝐹
∗ 𝐿𝑠                                         (2.1) 

Where: 

𝑃𝑟 = received signal power 
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𝑃𝑛 = receiver noise power 

𝑃𝑡 = transmit power 

𝐺𝑡 = transmit antenna gain 

𝑟1 = transmitter to target range 

𝜎𝑏 = target bistatic radar cross section 

𝑟2 = target to receiver range 

𝐺𝑟 = receive antenna gain 

𝜆 = signal wavelength 

𝐺𝑡 = transmit antenna gain 

𝑘 = Boltzmann′s constant 

𝑇0 = noise reference temperature 

𝐵𝑠 = receiver effective bandwidth 

𝐹 = receiver effective noise figure 

𝐿𝑠 = system losses (power ratio < 1) 

 

In order to accurately predict PCL system performance using the bistatic range equation, 

each parameter must be well understood. The transmit power 𝑃𝑡 can be significant for PCL systems 

operating in most urban areas. For example, the area of San Diego, California hosts several radio 
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stations with an effective radiated power of 100kW or less [17]. Broadcast digital television 

stations in the same region radiate 1 MW or less [18]. The radiation patterns for both is omni-

directional in the horizontal plane, with tailored beams in the vertical plane to avoid wasting 

energy. HF signals of interest in the region include Coastal Ocean Dynamics Applications Radar 

(CODAR) and HF chirp sounders which typically emit 50W or less [19].  

One advantage to bistatic radar systems is the increased potential for signal reflection due 

to bistatic geometry. PCL systems inherently take advantage of this concept by means of a 

receiver/antenna combination being installed separately from the transmitter of opportunity. One 

advantage of PCL systems is their inherent ability to take advantage of a target’s bistatic radar 

cross section (RCS), which is usually greater than the same target’s monostatic RCS [20]. This is 

dependent on signal frequency, aspect angel, and target geometry.  

 

Figure 2.11: Illustration of Bistatic Angle β. This figure was obtained from [21]. 
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Generic equations for bistatic scattering cross section are given below where R is the range 

between the target scatterer and receiving system. 

 

𝜎𝑏 =  lim
𝑅2→∞

4𝜋𝑅2
2 (

𝑃𝑜𝑤𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑤𝑎𝑣𝑒 𝑎𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑎𝑛𝑡𝑒𝑛𝑛𝑎

𝑃𝑜𝑤𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑎𝑟𝑔𝑒𝑡
)         (2.2) 

 

𝜎 =  lim
𝑅→∞

4𝜋𝑅2
2 |𝐸𝑆𝐶|

2

|𝐸𝑖𝑛|
2                                                 (2.3) 

 

According to [3], there are three regions for bistatic radar cross section which are defined 

by the bistatic angle. The first region is the pseudo-monostatic RCS region. The basis of this region 

is the Crispin and Siegal monostatic-bistatic equivalence theorem which states that the monostatic 

and bistatic RCS for smooth targets and small wavelengths is the same. This also describes the 

case in which the bistatic angle β is between 0 and 40-90°. The extents of the pseudo-monostatic 

region are influenced by the complexity of target structure. The reflection of more complex targets 

reduces the actual allowed bistatic angle for this region.  

The next region is known as the bistatic RCS region. This area of bistatic operation 

describes the condition in  which the bistatic and monostatic RCS begin to disagree. From [3], Kell 

identifies three sources for bistatic RCS divergence from the monostatic condition. The first source 

is a “change in relative phase between discrete scattering centers” [3]. The second source is from 

reflected energy levels fluctuating due to target geometry. The third source is complete 
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disappearance of reflected energy from previously visible scattering centers. The second two 

sources describe changes in aspect angle with respect to the target, transmitter, and receiver.  

The third bistatic RCS region  

For a forward scatter condition, that in which the bistatic angle is 180°, the equation can be 

simplified to   

 𝜎𝑏 =
4𝜋𝑅2

𝜆2                                                         (2.4) 

 

In the forward scatter region, target reflections are potentially increased. This concept is described 

by Babinet’s principle, which states that forward scatter from an energy absorbing target acts as 

an identically sized  aperture [12]. Figure 2.9 below illustrates variations in the bistatic angle and 

bistatic radar cross section for varying frequencies in a forward scatter condition.  
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Figure 2.12: Variations of bistatic RCS and bistatic angle for a 10m2 target versus 

frequency. This figure was obtained from [12]. 

 

The PCL receiver hardware and antenna also contribute to the bistatic radar equation by 

providing signal gain through antenna characteristics and signal processing gain. However both 

the receiver and antenna induce noise into the equation. For example, the noise figure of a receiver 

is increased as its bandwidth increases, the same can be said for an antenna.  These gains and losses 

must be properly identified to accurately predict PCL system performance.  

By rearranging terms of the bistatic radar equation in 2.1, adding terms such as integration 

time 𝑡0 and solving for bistatic range, the expression can be seen in the equation below [3]: 
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(𝑅𝑇 , 𝑅𝑅)𝑚𝑎𝑥 = (
𝑃𝑡𝑡0𝐺𝑡𝐺𝑟𝜆2𝜎𝑏

(4𝜋3)𝑘𝑇0(
𝑆

𝑁
)𝐵𝑠𝐿𝑠

)

1

2

                                                (2.5)      

                                                 

Where the term (𝑅𝑇𝑅𝑅)𝑚𝑎𝑥 describes the maximum distance in which the signal is transmitted, 

reflected from an object, and received by a receiver geographically separated from the transmitter.  

Another useful visualization of bistatic radar performance is calculation of ovals of Cassini. 

These shapes illustrate the maximum detection range for a bistatic radar system taking into account 

signal to noise ratio and assuming a constant radar cross section. If we let constant K represent the 

bistatic radar equation constant given in equation (2.2): 

 

𝐾 =
𝑃𝑇𝐺𝑇𝐺𝑅𝜆2𝜎𝐵

4𝜋3𝑘𝑇𝑠𝐵𝑠𝐿𝑠
                                                              (2.6) 

We can then re-write equation (2.2) as  

(𝑅𝑇𝑅𝑅)𝑚𝑎𝑥
2 = 𝐾

(
𝑆

𝑁
)

𝑚𝑖𝑛

⁄                                                         (2.7)    

Next we convert 𝑅𝑇 and 𝑅𝑅 into polar coordinates: 

𝑅𝑇
2 = (𝑟2 +

𝐿2

4
) + 𝑟𝐿𝑐𝑜𝑠(𝜃)                                                  (2.8) 

And 
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𝑅𝑅
2 = (𝑟2 +

𝐿2

4
) + 𝑟𝐿𝑐𝑜𝑠(𝜃)                                                  (2.9) 

Combining equations (2.5) and (2.6) results in  

(𝑅𝑇𝑅𝑅)2 = (𝑟2 +
𝐿2

4
)

2

− 𝑟2𝐿2 cos2 𝜃                                              (2.10) 

 

Where the term L is the baseline length between transmitter and receiver, and angle θ is 

the incident angle at the target between transmit and receive beams. Rearranging terms in equation 

(2.4) and solving for constant signal to noise ratio yields 

 

(
𝑆

𝑁
) =

𝐾

(𝑟2 +
𝐿2

4 )
2 − 𝑟2𝐿2 cos2 𝜃                                                       (2.11) 

 

Equation (2.8) can be used to plot ovals of Cassini for constant SNR and RCS, and can be 

seen in Figure 2.10. 
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Figure 2.13: Ovals of Cassini for Constant SNR. This figure was taken from [22]. 

 

From Figure 2.10 it can be seen that there are three distinct regions of bistatic radar 

operation: 

1. One oval (co-site): 𝐿 < 2√𝐾,  

2. Two ovals (transmitter/receiver centered):  𝐿 > 2√𝐾 

3. Lemniscate: 𝐿 = 2√𝐾 

When the target is located between the transmitter and receiver, the bistatic angle β = 180°. 

This orientation is known as forward scatter [3] for both target and clutter reflections. For this 
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condition, target and clutter scattering differ greatly from those of other bistatic geometries, also 

negatively affecting precision of range and Doppler measurements. From [22], it is noted that 

normal bistatic radar operation is excluded from 10°-20° from the forward scattering condition. 

This information can be used for optimal placement of the receiving antenna in a PCL system, and 

will be discussed in further detail in Chapter 6. 

 

2.2.2 PCL Signals of Opportunity and Expected Performance 

There has been a fair amount of research on PCL systems using various signals. Through 

a search of conference proceedings, journal articles, and textbooks, it seems that broadcast FM 

radio and digital television are the most common illuminators of opportunity for PCL.  However 

other signals such as GSM, HF CODARs and Sounders, and GPS have been used. This section 

will highlight the benefits and challenges for various signals that have been used for PCL. Table 

2-1 below highlights signals parameters for several different signals often used for PCL. 
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Table 2-1: Parameters for PCL Signals of Opportunity [12]. 

 

 

One of the most commonly used signals for PCL is broadcast FM radio. The FM radio 

band in the United States occupies the electromagnetic spectrum from 88 to 108 MHz. The 

effective radiated power from each transmit sites varies, but on average can be measured in the 

San Diego area at 100kW [17]. Each channel is allocated 200 kHz of bandwidth, however the 

actual bandwidth varies with signal content and typically occupies no more than 100 kHz [14]. As 

mentioned in [13] and [23], FM radio channel bandwidth varies with the type of content. For 

example the bandwidth of a radio station with mostly speech content will exhibit poor ambiguity 

while an FM station with jazz or similar fast temp music will have a more defined ambiguity 

function. This means that the best possible range resolution for a radio signal will be 750m at 

200kHz bandwidth. A more reasonable figure for range resolution would be 1500-3000m for the 

case of 50-100 kHz bandwidth. This concept can be seen in the figures below.  
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Figure 2.14: Ambiguity function for BBC radio. This figure was taken from [23]. 

 

 

Figure 2.15: Ambiguity function for a FM radio 98.8 MHz in San Diego, CA.  

 

Another useful signal for PCL is broadcast digital television. Digital television signals in 

the United States use the Advanced Television Systems Committee (ATSC) standard. The signal 

has a 6MHz bandwidth, and modulation depends on transmission medium. For broadcast digital 
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TV signals the waveform modulation is 8-level vestigial sideband (VSB). For PCL signal 

processing we’re not concerned with modulation content, but the modulation artifacts play a role 

in the ambiguity function. In an ATSC broadcasting stream, there exists repetitive signals that help 

the 8-level VSB receiver locate and demodulate the signal. These “helper” signals include the 

ATSC pilot, segment sync, and field sync. In the figure below, the ambiguity function for ATSC 

station 494 MHz exhibits evidence of the sync signals along the range axis at zero Doppler. 

Another artifact of the sync lines can be seen in the Doppler axis as sidelobes at zero time delay 

(range). The expected range resolution for a 6 MHz ATSC signal is 25m.  

 

 

Figure 2.16: Ambiguity function for TV Station 494 MHz in San Diego, CA.  

 

Other signals used for PCL experiments have included GSM cell phone signals [24][25] 

and GPS [26] [5]. The GSM based passive radar in [25] was able to exploit the 935-960 MHz 

GSM signal is Singapore to detect sea targets out to a range of 1km and air targets at 3.5km. The 
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low detection distance was cited due to low power of local tower-based GSM transmitters. The 

work in [24] gives more information on GSM signals near the Warsaw University on the Polish 

coast of the Baltic Sea. The paper lists GSM transmitter power at 100W or less with a bandwidth 

of 200kHz. A similar issue of using low-power emitters for PCL is documented in [5], which cites 

GPS power received at the earth’s surface is typically -160dB. Using an aerial target RCS of 

20dBsm, the authors suggest using a GPS signal for PCL is plausible. However they also 

mentioned that the expected signal is 18-22dB below the expected clutter. A final mention of GPS 

for PCL is  in [26], in which the author provides further information on the 1.2 and 1.5 GHz signal. 

They also provide a link budget study which results in an expected received power density of GPS 

signals to be −117dBW/m2. They further assume a target with 0.1 m2 RCS 100m from the PCL 

receiver, which results in an expected power of -178 dBW. One final conclusion is that the receiver 

capable of performing PCL with GPS signals would need a sensitivity of -160 dBW. 

One final signal set of discussion for consideration in PCL is HF coastal ocean dynamics 

applications radar (CODAR) and HF sounders. HF CODARs are typically used for ocean current 

measurements, and are prevalent along United States Pacific, Atlantic, and Gulf of Mexico 

coastlines. The signal frequency depends on the specific emitter, but generally occupies 25-100 

kHz of bandwidth between 3-30 MHz. The waveform is frequency modulated continuous wave 

(FMCW). The ambiguity function for an HF CODAR operated by Scripps Institute of 

Oceanography can be seen in the figure below. The signal is at 17.6 MHz with a bandwidth of 75 

kHz.  
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Figure 2.17: Ambiguity function for HF CODAR at 17.6 MHz in San Diego, CA.  

 

Another group of  HF signals of interest are HF sounders, which are typically used for monitoring 

sky-wave HF radars that reflect off of the ionosphere. They are also FMCW waveforms in the HF 

frequency band. Because of the small bandwidths, these HF signals give less than ideal range 

resolutions on the order of kilometers.  

 

2.2.3 PCL Signal Processing 

This section describes the signal processing necessary in a PCL system to detect targets.  

Much like monostatic radar, PCL signal processing relies on sufficient signal to noise ratios to 

detect targets. This can be difficult when relying on commercial non-cooperative, geographically 

separated transmitters with power lower than typical monostatic radars. Another similarity to 

monostatic radar is the process for determining range and Doppler frequency of a target, which 

will be discussed later in this section. One major difference between monostatic radar and PCL 

processing is the necessity for adaptive cancellation. Because PCL systems rely on a direct-path 

antenna and receiver, that signal must be removed from the surveillance channel before potential 
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targets can be identified. Much of this section will be dedicated to describing the different methods 

used to suppress unwanted signals. 

The first step in PCL signal processing involves adaptively filtering the signal of 

opportunity being exploited. This is necessary due to the unwanted reference channel signal being 

present in the surveillance channel, likely at a higher amplitude than the target reflection. 

According to [14], cross-correlation processing would suppress the direct-path signal and restrict 

it to the zero range and Doppler bin. However this would not be sufficient to remove all unwanted 

signal content in the sidelobes.  This paper also mentions that the amount of direct path signal that 

can be found in the surveillance channel is up to 90dB greater than the surveillance signal. Another 

mention of adaptive cancellation in PCL systems is in [27], which indicates the ratio of direct 

signal to detection signal in the surveillance channel is -74.9dB. The paper goes on to discuss that 

by using a least-mean-squares filter, they can recover approximately 45dB by suppressing the 

direct path signal. This concept is illustrated in the figure below. 
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Figure 2.18: Adaptive Cancellation Diagram. This figure was obtained from [14]. 

 

There are many recursive adaptive signal processing algorithms similar to the least-mean-

squares (LMS) approach, and several papers reviewed for this work indicate use of the LMS filter 

[28][29][30][31].  The LMS filter is categorized as a stochastic gradient method because it 

continuously updates the filter statistics. However in the case of PCL, both the signal and 

interference are measured and quantified. The research in [32] and [33] outline several potential 

methods for interference cancellation in PCL systems with experimental data for each.  

Once the direct path signal has been suppressed to sufficient level, detection of potential 

targets can begin. In order to determine range of a potential target, a PCL system uses the bistatic 

radar range equation which can be seen below.  
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𝑅𝑅 =
(𝑅𝑇+𝑅𝑅)2−𝐿2

2(𝑅𝑇+𝑅𝑅+𝐿𝑠𝑖𝑛𝜃𝑅)
                                                    (2.12) 

𝑅𝑅 = range from target to receiver 

𝑅𝑡 = range from target to transmitter 

𝐿 = baseline length 

𝜃𝑅 = angle between receiver and target 

 

The bistatic range relationship takes into account the distance from transmitter to target 

and target to receiver, as well as the bistatic angles formed by those objects. For a PCL system to 

determine accurate range of a target, it must know when a signal was transmitted. For this reason 

PCL systems typically rely on a reference antenna focused on the transmitter to provide waveform 

timing information. This will be further discussed later in this section. 

Determining a target’s Doppler frequency in a PCL system involves knowing the 

transmitter and receiver locations, as well as the frequency of the transmitted signal. Assuming 

both the transmitter and receiver systems are stationary, a target’s bistatic doppler is given by the 

relationship below. 

𝑓𝐵 = (
2𝑉

𝜆
) cos 𝛿 cos (

𝛽

2
)                                                  (2.13) 

𝑓𝐵 = target bistatic doppler 

𝑉 = target velocity 
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𝛿 = target aspect angle 

𝛽 = bistatic angle 

In practice, a cross-correlation scheme may be implemented to determine range and 

Doppler of a potential target. This concept was taken from [14] and can be seen in figure 2.19 

below. The idea is that the signals from both the reference and surveillance channels are cross-

correlated, resulting in a spike at the target’s range and Doppler frequency. However before this 

can happen, multiple copies of the reference channel are duplicated at different Doppler-shifted 

frequencies. If a target is present, the correlation properties of the surveillance channel and 

Doppler-shifted reference channel create a strong correlation peak corresponding to the target’s 

range and velocity.   

 

Figure 2.19: Cross Correlation to determine range and doppler. This figure was obtained 

from [14] 
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2.2.4 PCL Ambiguity Function 

The ideas in this section describing the ambiguity function and data collection for PCL 

were originally published in [34]. The ambiguity function is a useful tool for determining the 

behavior of a signal with respect to sidelobe levels, channel bandwidth, and resolution in both 

range and Doppler [35]. It is typically used in traditional radar waveform applications as a measure 

of capabilities in terms of object detection, rejection of clutter, range and Doppler resolution, 

accuracy of measurements, and overall ambiguity [4] [15]. However in passive radar systems, 

several of these features can be determined in near real-time through calculation of a signal’s 

ambiguity function. To increase the chances of detection and discrimination of closely-spaced 

targets, a radar waveform designer defines qualitative traits as range resolution, peak-to-sidelobe 

ratio, and integrated sidelobe ratio [13].   

 

The calculation of an ambiguity function is performed by passing a waveform through its 

own matched filter. In the case of passive radar, we define this as autocorrelation because we 

correlate a signal of interest with itself.  For the monostatic case, the ambiguity function is defined 

in [24] as    

 

|𝛸(𝜏, 𝑓)2| =  |∫ 𝑠𝑡(𝑡)𝑠𝑡
∗(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓𝑡𝑑𝑡

∞

−∞
|

2
                                     (2.14) 
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where 𝑋(𝜏, 𝑓) is the ambiguity function dependent on time delay (τ) and Doppler frequency 

(f), and s(t) represents a complex baseband signal.  

In  [36], Tsao formulates a different equation for the bistatic case, making the argument that 

time delay and Doppler frequency are not linear functions of range and velocity because of 

geometric considerations. His proposed ambiguity function is  

 

|𝛸(𝑅𝑅𝐻, 𝑅𝑅𝑎, 𝑉𝑎, 𝜃𝑅 , 𝐿|2                                                          (2.15) 

 

= |∫ 𝑓(𝑡 − 𝜏𝑎(𝑅𝑅𝑎, 𝜃𝑅 , 𝐿))𝑓′( (𝑡

− 𝜏𝑎(𝑅𝑅𝑎, 𝜃𝑅 , 𝐿))𝑒𝑥𝑝[−𝑗(𝜔𝐷𝐻(𝑅𝑅𝐻, 𝑉𝐻, 𝜃𝑅 , 𝐿) − 𝜔𝐷𝐴(𝑅𝑅𝑎, 𝑉𝑎, 𝜃𝑅 , 𝐿))𝑡]𝑑𝑡|
2

   

which incorporates bistatic range, angles, and radial velocities from the positions of both the 

transmitter and receiver. Tsao also shows through simulation that the bistatic ambiguity function 

shape is dependent on the bistatic geometry, meaning that range and Doppler resolutions will also 

vary. Taking into account bistatic geometry is important for characterizing situations when tracking 

or searching for a target, or when using multiple geographically separated transmitters of 

opportunity. For this section we rely on the monostatic ambiguity function calculation due to the 

fact that we are not performing target detection, only analyzing a signal based on its autocorrelation 

function. 
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The most obvious characteristic when searching for useful signals is amplitude. The 

amplitude of the calculated ambiguity function can be increased by lengthening the coherent 

processing interval (CPI). It can be seen in Figure 3 below that doubling the number of samples 

used in the autocorrelation increases the amplitude by 3dB. The disadvantage of increasing the CPI 

is the chance that a fast moving target will migrate through range bins quicker than a detection can 

be made. 

 

 

Figure 2.20: Comparison of increasing ambiguity function amplitude for 1000, 10,000, 

20,000, 30,000, and 40,000 samples  

 

Another feature that must be studied is the leakage of direct path signal into the surveillance 

channel. For this reason we can use an adaptive filter to cancel the unwanted signal. However at 

some azimuths within 90° of the transmit location, it may be difficult to remove the direct path 

signal without physical isolation between receive antennas.     
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Another feature that can be derived from the ambiguity function is range resolution. The 

range resolution τ for a given signal of opportunity is determined by the relationship given in (3): 

 

𝛥𝑅 =
𝑐

2𝐵
                                                                 (2.16) 

 

where c equals the speed of light and B is the signal bandwidth. For example, the majority 

of FM radio channels are allocated 200 kHz of bandwidth. This corresponds to a relative range 

resolution of 750 meters. However in reality most FM channels do not use all 200 kHz of bandwidth 

constantly, so the range resolution will vary in time with respect to modulation of the channel. 

Results presented in [9] illustrate this concept.  

The Doppler resolution in a PCL system is largely dependent on the frequency of the signal 

and is given by the relationship 

𝛥𝑓 =
2𝑣

𝑐
∗ 𝑓𝑐                                                             (2.17) 

 

The Doppler resolution is also dependent on the modulation content of the signal. 

Depending on the application, a more realistic approach may be to consider integration time ti 

instead of frequency. In that case we can use the relationship from [24] seen below for velocity 

resolution calculation. 

𝛥𝑣 =
2𝜆

𝑡𝑖
=

2𝑐

𝑡𝑖𝑓
                                                                   (2.18) 
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The sidelobe levels of the ambiguity function will indicate a signals ability to resolve a 

target response in both the range and Doppler dimensions. Two metrics we will use to characterize 

a signal’s abilities are peak to sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR). PSLR 

shows a signals ability to resolve targets with various amplitude responses in the same range bin. 

ISLR indicates a signal’s ability to resolve multiple targets in the same range cell. The equations 

for PSLR and ISLR are given below [37]: 

 

𝑃𝑆𝐿𝑅 =
1

𝐴0
2 max{𝐴𝑛

2 } , 𝑛 ≠ 0                                                          (2.19) 

 

𝐼𝑆𝐿𝑅 =
1

𝐴0
2 ∑ {𝐴𝑛

2 }𝑁
𝑛=1                                                                   (2.20) 

 

The first set of ambiguity functions for analysis are from the local HF CODAR. The 

calculated ambiguity function for these signals are presented in Figures 4 and 5. The 5.3 MHz 

CODAR signal has a bandwidth of 25 kHz, compared to the 17.6 MHz signal bandwidth of 75 kHz. 

This means that the 17.6 MHz CODAR will have a better range resolution (2 km) compared to the 

5.3 MHz signal (6 km). Also, by using the HF signals, we are able to resolve target velocities 

between approximately 6 and 28 m/s.  
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Figure 2.21: Ambiguity function for HF CODAR at 5.3 MHz in San Diego, CA.  

 

 

Figure 2.22: Ambiguity function for HF CODAR at 17.6 MHz in San Diego, CA.  

 

The next set of signals collected were broadcast FM radio signals. The ambiguity functions 

for two FM radio signals can be seen in Figures 6 and 7.  Both of these channels are allocated 200 

kHz bandwidth, however the most we observed was roughly 100 kHz. This corresponds to a range 

resolution span of 750-1500m.     
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Figure 2.23: Ambiguity function for FM Radio 98.8 MHz in San Diego, CA.  

 

 

Figure 2.24: Ambiguity function for FM Radio 101.5 MHz in San Diego, CA.  

 

The last set of collected signals were broadcast HDTV channels. The ambiguity functions 

can be seen in Figures 8 and 9. The allocated bandwidth of an HDTV channel is 6 MHz. This 

corresponds to a best possible range resolution of 25m.   
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Figure 2.25: Ambiguity function for HDTV Station 494 MHz in San Diego, CA.  

 

Figure 2.26: Ambiguity function for HDTV Station 500 MHz in San Diego, CA.  

 

Table II summarizes the characteristics of each collected signal. It can be seen that the main 

driver for range and Doppler resolution for this signal set is frequency.    
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Table 2-2: Comparison of PCL signals’ ambiguity functions.  

Features 5.3 

(HF) 

17.6 

(HF) 

98.8 

(FM) 

101.5 

(FM) 

495 

(HDTV) 

500 

(HDTV) 

Range 

Resolution 

(m) 

6000 2000 750 750 25 25 

Velocity 

Resolution 

(m/s)  

28.3 5.88 1.52 1.48 0.30 0.3 

PSLR 

(range 

dimension) 

.97 .95 1.25 1.23 1.17 1.19 

ISLR 

(range 

dimension) 

0.9 0.89 1.43 1.45 1.52 1.53 

 

  

2.2.5 PCL Hardware and Antennas 

This section describes the necessary hardware to perform PCL processing using methods 

described previously in this chapter. Relying on the fact that PCL requires at least two antennas, 

and that we are interested in resolving targets in time, frequency, and spatial domains, the antenna 

network must have a somewhat directional quality. This could be a circular array to direction-find 

the target or two directional antennas with sufficient gain to discriminate targets.  

The antenna requirement for a PCL system can vary with the intended application. Several 

commercial PCL systems such as those from Thales, Selex, and Lockheed Martin use a circular 

array [8] for 360 degree coverage. Other experimental systems such as the ones described in [28] 

and [38] utilize two directional antennas with high directivity. The circular array would be more 

suitable for an operational PCL system in which full coverage was desired. This would allow for 

a more broad selection of transmitters and surveillance area.  
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The receiver system for performing PCL has several requirements based on a literature 

search and prior experience designing and building a PCL system. A first requirement is the ability 

to tune to the appropriate frequency, while adequately filtering out of band signals.  Several papers 

including [31] and [39] describe the use of commercial software defined radios as a receiver 

system. Others such as [40] and [41] outline the design of specialized receivers and processors for 

PCL.  
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CHAPTER 3: PCL DATA COLLECTION AND ANALYSIS 
 

In this chapter we present several recorded signals including HF CODAR, FM radio, and 

HDTV and their corresponding ambiguity functions. We will individually analyze each one to 

illustrate the effects each signal has on target detection capabilities. Features to be examined 

include range, Doppler resolution, peak side-lobe level ratio (PLSR) and integrated sidelobe ratio 

(ISLR). Lastly, we demonstrate a target response within an implemented PCL system. Parts of this 

chapter were previously published by Johnson et al in [34]. 

The scenario geometry for the proposed PCL system is depicted in Fig. 1. The collection 

site is located on the cliffs of Point Loma peninsula, located in San Diego.  The sets of transmitted 

signals and their locations are also depicted in the figure. The first set of signals to be captured are 

from two local, high-frequency (HF) coastal ocean dynamics applications radars (CODAR) 

controlled by Scripps Institute of Oceanography. These signals were recorded at 5.3 (SDSL) and 

24 MHz (SDPL). The second signals came from the FM Radio Stations 98.8 and 101.5 MHz, which 

are located 25 miles southeast of the collection site. The Effective Radiated Power for both is 50 

kW and each has an omni-directional pattern. The broadcast TV stations at 497 MHz and 500MHz 

are located 18 miles directly east of the collection site which has a broadcast ERP of 355 and 

328kW, respectively. At the collection site, two directional antennas were utilized. One antenna 

was pointed toward 135° (SE) and the other toward 80° (ENE). Collections were performed in clear 

weather conditions during the daytime. 
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Figure 3.1: PCL geometry for signal collection in San Diego, CA. Map data taken from 

2016 INEGI, SIO, NOAA, U.S. Navy, NGA, GEBCO, 2016 Google, USGS. 

 

3.1 Prototype PCL System 

The data for this section was collected using two software defined radios (SDR) and a pair 

of matched log-periodic antennas. The SDRs were GPS synchronized during RF data collection. 

Figure 3.2 shows the schematic for signal collection ad PCL processing using one signal. Figure 

3.3 illustrates the hardware schematic used for multiple signal PCL processing.  
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For the signal collections, we utilized two Channel Master CM3016 log periodic antennas 

with a 75 Ohm balun (300-75 ohms), matched to 50 Ohms (Pasternak). The matched Antennas were 

then connected to an SDR Ettus URSP N210 with a Basic RX daughterboard and GPS. The SDRs 

were connected via gigabit Ethernet to a Linux PC (Ubuntu 14.04) and GPS antenna. A python/C++ 

script acted as a trigger synchronizing the GPS and the PC clock. The triggered collections were 

stored on the PC for post processing, See Table 3-1 for Hardware and software specifications. 

 

 

Figure 3.2: Experimental PCL system block diagram – one signal. 
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Figure 3.3: Experimental PCL system block diagram-three signals. 

 

 

The selected sample rate for the synchronous FM collections were 2.4 mega samples per 

second at FM frequencies of 101.1 MHz and Bandwidth of 2.4MHz, the durations of collections 

ranged from 20-30 seconds. 
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Table 3-1: Experimental PCL system hardware and software. 

HARDWARE 

Device Model 

Software Defined Radio (2) USRP N210/BasicRx/GPS 

Antenna (2) Channel Master, CM3016 

PC (2) – Lu Intel NUC i7 

Matching Pads (2) 75-50 Pasternak 

GPS Antennas (2) GPS-00464 (Sparkfun) 

Cables (2) RG-9 Coax Cable 

SOFTWARE  

GNU RADIO, C, Python, OCTAVE, MATLAB 

OS: Ubuntu 14.04 

 

Once the data were collected for all signals of interest, analysis was performed with post-

processing methods including calculation and analysis of each signal’s ambiguity function. 

In order to verify potential target information, another software defined radio was used to 

capture automatic dependent surveillance broadcast (ADS-B) information from aircraft in the San 

Diego area. The ADS-B feed provides information such as altitude, speed, heading, position, and 

other identifying features such as carrier and flight number. A sample of ADS-B data is shown in 

the figure below. The data is decoded using commercially available software and displayed on 

Google Maps.  
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Figure 3.4: ADS-B data captured in San Diego, CA. Map data taken from 2017 Google. 

 

 To obtain information on signals of opportunity, data were captured from several sources. 

For HF CODAR and Sounder data including transmit sites, frequencies, radiated power, and 

coverage, data were recorded from the website at [19]. For similar information on FM radio signals, 

data were captured from the website at [17]. Further information on FM radio and digital TV 

transmitters was found at [42].  

 

3.2 PCL Signal Collection and Ambiguity Function Analysis 

 

The ambiguity function is used in traditional radar waveform applications as a measure of 

capabilities in terms of object detection, rejection of clutter, range and Doppler resolution, accuracy 
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of measurements, and overall ambiguity [1, 12]. However in passive radar systems, several of these 

features can be determined in near real-time through calculation of a signal’s ambiguity function. 

To increase the chances of detection and discrimination of closely-spaced targets, a radar waveform 

designer defines qualitative traits as range resolution, peak-to-sidelobe ratio, and integrated sidelobe 

ratio [13].   

 

The calculation of an ambiguity function is performed by passing a waveform through its 

own matched filter. In the case of passive radar, we define this as autocorrelation because we 

correlate a signal of interest with itself.  For the monostatic case, the ambiguity function is defined 

in [15] as    

 

|𝛸(𝜏, 𝑓)2| =  |∫ 𝑠𝑡(𝑡)𝑠𝑡
∗(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓𝑡𝑑𝑡

∞

−∞
|

2
                                   (3.1) 

 

where 𝑋(𝜏, 𝑓) is the ambiguity function dependent on time delay (τ) and Doppler frequency 

(f), and s(t) represents a complex baseband signal.  

 

In  [6], Tsao formulates a different equation for the bistatic case, making the argument that 

time delay and Doppler frequency are not linear functions of range and velocity because of 

geometric considerations. His proposed ambiguity function is  
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|𝛸(𝑅𝑅𝐻, 𝑅𝑅𝑎, 𝑉𝑎, 𝜃𝑅 , 𝐿|2                                                           (3.2) 

 

= |∫ 𝑓(𝑡 − 𝜏𝑎(𝑅𝑅𝑎, 𝜃𝑅 , 𝐿))𝑓′( (𝑡

− 𝜏𝑎(𝑅𝑅𝑎, 𝜃𝑅 , 𝐿))𝑒𝑥𝑝[−𝑗(𝜔𝐷𝐻(𝑅𝑅𝐻, 𝑉𝐻, 𝜃𝑅 , 𝐿) − 𝜔𝐷𝐴(𝑅𝑅𝑎, 𝑉𝑎, 𝜃𝑅 , 𝐿))𝑡]𝑑𝑡|
2

   

(3.3) 

which incorporates bistatic range, angles, and radial velocities from the positions of both the 

transmitter and receiver. Tsao also shows through simulation that the bistatic ambiguity function 

shape is dependent on the bistatic geometry, meaning that range and Doppler resolutions will also 

vary. Taking into account bistatic geometry is important for characterizing situations when tracking 

or searching for a target, or when using multiple geographically separated transmitters of 

opportunity. For this section, we rely on the monostatic ambiguity function calculation due to the 

fact that we are not performing target detection, only analyzing a signal based on its autocorrelation 

function. 

The most obvious characteristic when searching for useful signals is amplitude. The 

amplitude of the calculated ambiguity function can be increased by lengthening the coherent 

processing interval (CPI). It can be seen in Figure 3.5 below that doubling the number of samples 

used in the autocorrelation increases the amplitude by 3dB. The disadvantage of increasing the CPI 
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is the chance that a fast moving target will migrate through range bins quicker than a detection can 

be made. 

 

Figure 3.5: Comparison of increasing ambiguity function amplitude for 1000, 10,000, 

20,000, 30,000, and 40,000 samples. 

 

 

3.3 PCL System Target Detection Experiments 

The PCL system described in sections 3.1 and 3.2 was used to detect commercial airline 

traffic landing at San Diego International Airport (SAN). The map in figure 3.6 below shows the 

geometry of the prototype PCL system, FM radio transmitter location, antenna boresights, and flight 

path of aircraft. Note the transmitter location was chosen based on its ideal geometry for PCL target 

detection, which will be discussed in Chapter 4.  
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Figure 3.6: PCL experiment geometry. Map data taken from 2016 INEGI, SIO, NOAA, 

U.S. Navy, NGA, GEBCO, 2016 Google, USGS. 

 

The predicted SINR plots are shown in figure 3.7. This illustrates the concepts of ovals of 

Cassini mentioned in Chapter 2. From the figure, it can be seen that the highest levels of SINR are 

in locations near the FM transit tower and the PCL system.  
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Figure 3.7: SINR map for San Diego PCL collection. Map data taken from 2016 INEGI, 

SIO, NOAA, U.S. Navy, NGA, GEBCO, 2016 Google, USGS. 

 

Prior to attempted detection of targets, the bistatic radar equation was used to predict the 

received power levels from targeted aircraft. The parameters in the table below indicate parameters 

of the PCL system, FM and digital TV transmitters, and assumptions for losses and target RCS. The 

FM radio and TV data were taken from [17]. Assumed target RSC data were taken from [3]. The 

target range estimate was taken from ADS-B flight data. 
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Table 3-2: Calculated values using the bistatic radar equation. 

 
𝑷𝒕𝐆𝐭 

(dB) 

𝑮𝒓 

(dB) 

𝝀𝟐 𝝈𝟏 

(dBsm) 

𝑹𝒕 𝑹𝒓 Cable Loss 
(dB) 

𝑷𝒓 (dB) 

FM 91.1 

MHz 

50 30 11 16 30km 25km 2 -24.2 

TV 497 

MHz 

49 30 0.4 16 30km 25km 4.5 -41.1 

 

 

The target detection for an aircraft landing at San Diego International airport using FM radio 

station 91.1 MHz can be seen in figures 3.8 and 3.9 below.  

 

 

Figure 3.8: Range/Doppler response for aircraft landing at San Diego International 

Airport using FM 91.1 MHz. 
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Figure 3.9: Range/Doppler response for aircraft landing at San Diego International 

Airport using FM 91.1 MHz. 

 

The target detection for an aircraft landing at San Diego International airport using digital TV 

station 497 MHz can be seen in figures 3.10 and 3.11 below.  
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Figure 3.10: Range/Doppler response for aircraft landing at San Diego International 

Airport using digital TV 497 MHz. 

 

 

Figure 3.11: Range/Doppler response for aircraft landing at San Diego International 

Airport using digital TV 497 MHz. 
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Once actual data were received for this experiment, they were recorded in table 3-3 and 

compared to the theoretical data from table 3-2. The reason for discrepancies between actual and 

calculated received power is due to actual system and atmospheric losses as well as actual versus 

assumed target radar cross section. 

 

Table 3-3: Actual values for PCL target detection. 

 
Bandwidth 𝒕𝒊 Surveillance Channel 

𝑮𝒂𝒊𝒏 = 𝑩𝒕𝒊 (dB) 
Power 

Received (dB) 
Power Expected 

(dB) 

FM 91.1 50kHz 25ms 31 -28.7 -24.2 

TV 476 6MHz 1ms 37.8 -46.3 -41.1 

 

This experiment was a demonstration of the designed and developed prototype PCL 

system that will be used for experiments in chapters 4, 5, and 6. This shows that this prototype 

PCL system can collect FM radio and digital TV signals and detect targets within theoretical 

expectations. 
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CHAPTER 4: GEOMETRIC CONSIDERATIONS FOR PCL 

SYSTEMS 
 

In [43], Jackson defines the geometry for bistatic radar systems and mentions several 

advantages and disadvantages due to the geometry. He discusses the derivations for constant range 

and echo power, effects of beamwidth on range resolution cells and pulse repetition frequency 

(PRF), and the problem of using separated transmitters and receivers to detect targets. He 

concludes that the main driver of bistatic system performance is the angle between the transmitter, 

target, and receiver. 

In [36], [44] and [45], Tsao et al discuss geometric considerations for a bistatic radar system 

using a Gaussian pulsed waveform. He gives a mathematical formulation for bistatic range and 

Doppler calculation. He goes beyond the traditional bistatic range and Doppler equations to 

include geometric relationships between transmitter, receiver, and airborne targets. He further 

defines his method for detecting a target using his formulated bistatic ambiguity function with 

several examples.  

Following Tsao, Chen et al expand on the bistatic ambiguity function in [46] to include 

examples of a square pulse. He experimented with multiple geometries between transmitter, 

receiver, and target to illustrate the non-linear effects of bistatic geometry on range and Doppler.  

In this chapter, we expand on this previous work to further define the bistatic ambiguity 

function for PCL systems. The novelty of this approach is the fact that PCL systems generally rely 

on continuous wave (CW) signals, as opposed to pulsed signals shown by Tsao and Chen. We 

formulate mathematical relationships that show linear and non-linear detection zones for range and 



59 

 

Doppler. We also show the ambiguity function for several cases in which the bistatic angle is 

varied. Finally we present a graphical representation of linear and non-linear regions for 

relationships between bistatic range, angle, and Doppler frequency. 

 

4.1 Range Ambiguity of PCL Systems 

In a monostatic radar system an object’s range (R) is a linear relationship to the radar 

signal’s two-way propagation time delay, τ.  

                                        𝜏 =
2𝑅

𝑐
                                                  (4.1) 

As shown in Figure 2, for the bistatic case, geometry between transmitter, receiver, and 

target must be considered.  

 

 

Figure 4.1: Two-Dimensional Bistatic Radar Geometry [3] 
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As a result, the relationship between time delay and range becomes non-linear due to the 

addition of several terms. In the following discussions, we speak of linear and non-linear terms. 

The linear case describes bistatic time delay 𝜏𝑏 as it varies linearly with range R, baseline L and 

angle θ. The non-linear case is the condition in which the terms beneath the radical become 

dominant, resulting in a non-linear relationship between 𝜏𝑏 and the remaining terms.  

 

                     𝜏𝑏 =
𝑅𝑅+√𝑅𝑅

2+𝐿2+2𝑅𝑅𝐿 𝑠𝑖𝑛𝜃

𝑐
                                                      (4.2) 

  

The bistatic range equation consists of a linear term, R, and a non-linear term under the 

radical that includes R, baseline length L, and the angle θ. It can be seen that as the angle θ changes, 

the relationship between range and time delay become more complex. 

 

To define the location of each zone we will analyze the deviation of time delay as a function of 𝑅 

∈ [0,∞] and 𝜃 ∈[−
π

2
,

π

2
].  

 

For 𝜃 = −
𝜋

2
:                                                                                                           (4.3) 

𝜏𝑏 =

( 𝑅 + √𝑅2 + 𝐿2 + 2. 𝑅. 𝐿. sin (−
𝜋
2) )

𝑐
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=
( 𝑅 + √𝑅2 + 𝐿2 − 2. 𝑅. 𝐿 )

𝑐
 

 

=
( 𝑅 + √(𝑅 − 𝐿)2 )

𝑐
=

( 𝑅 + |𝑅 − 𝐿|)

𝑐
 

 

   𝑖𝑓 𝑅 < 𝐿 ⇒ 𝜏 𝑏   =
𝐿

𝑐
 

 

𝑖𝑓 𝑅 ≥ 𝐿 ⇒ 𝜏 𝑏   =
2. 𝑅 − 𝐿

𝑐
 

 

 

In this case where R is greater than L, the target is located between the transmitter and 

receiver, and will most likely not be detected. If R is greater than L, the delay 𝜏𝑏 is a linear function 

of R, and the resulting ambiguity function is similar to the monostatic case. 

 

For 𝜃 = 0:                                                                                                            (4.4)                                                                                                                                        

𝜏𝑏 =
( 𝑅 + √𝑅2 + 𝐿2 + 2. 𝑅. 𝐿. sin(0) )

𝑐
 

=
( 𝑅 + √𝑅2 + 𝐿2 )

𝑐
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For the case in which 𝜃 = 0, it can be seen that the time delay has two regions. If 𝑅 ∈ [0, 𝐿] 

the nonlinear term under the radical is dominant, but if 𝑅 ∈ [𝐿, ∞[ the linear term R will be 

dominant. 

 

For 𝜃 =
𝜋

2
: :                                                                                                            (4.5)                                                                                                                                        

 

𝜏𝑏 =

( 𝑅 + √𝑅2 + 𝐿2 + 2𝑅𝐿 sin (
𝜋
2) )

𝑐
 

 

=
( 𝑅 + √𝑅2 + 𝐿2 + 2𝑅𝐿 )

𝑐
 

 

=
( 𝑅 + √(𝑅 + 𝐿)2 )

𝑐
      =

( 𝑅 + 𝑅 + 𝐿)

𝑐
 

 

𝜏𝑏 =
(2𝑅 + 𝐿)

𝑐
 

 

The figure below shows the variation of time delay as a function of 𝑅 ∈ [0, 𝐿] for different 

values of θ ∈ [-90ᵒ, 90ᵒ] in steps of 5°. 
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Figure 4.2: Variations of Time Delay as Functions of R and θ 

 

Figure 4 illustrates the three zones calculated from Equation 2. The first zone for θ ∈ [20ᵒ, 

90ᵒ] is a linear zone for all values of 𝑅 ∈ [0, ∞]. This zone is similar to the general condition of a 

monstatic radar measuring range related to time delay. The second zone for θ ∈ [-45ᵒ, 15ᵒ] is linear 

for R > L, but non-linear for 𝑅 ∈ [0, 𝐿]. The third zone is a non-detection zone for 𝑅 ∈ [0, 𝐿], but 

the relationhip becomes linear for R > L.  
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Figure 4.3: Visualization of linear and non-linear range/time delay zones due to bistatic 

geometry. 

 

4.2 Doppler Ambiguity of PCL Systems 

In a monostatic radar system the Doppler shift is a constant value for a target with constant 

speed, given by the equation below. 

𝑓𝑑 = ±
2.𝑣

𝑐
 𝑓0𝑐𝑜𝑠𝜃                                                            (4.6) 

For the bistatic case, the formula includes terms for the range R, baseline L, and angle θ.  

 

𝑓𝑑 = ±
2𝑓0

𝑐
(𝑣. 𝑐𝑜𝑠Φ√

1

2
+

𝑅+𝐿.𝑠𝑖𝑛𝜃

2√𝑅2+𝐿2+2.𝑅.𝐿.𝑠𝑖𝑛𝜃
)                                                (4.7) 

The figure below shows the variation of Doppler shift with the target position residing at 

𝑅 ∈ [0, 𝐿] and θ ∈ [-90ᵒ, 90ᵒ].  
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Figure 4.4: Variations of Doppler shift as a function of R and θ. 

 

 

From calculations of Equation (4), we establish three major zones. The first zone is a linear 

region for θ ∈ [30ᵒ, 90ᵒ] in which Doppler shift is non-linear for R ≤ L, and becomes linear for R 

> L. If θ = 90°, the Doppler shift is constant for all values of R. The second zone is for θ ∈ [-90ᵒ, 

30ᵒ]. In this zone we have two areas, a linear area for R ≤ L and a non-linear area for R > 1.25L. If 

θ = -90°, the Doppler shift has two constant values: 

𝑓𝑑 = {
0  𝑖𝑓  𝑅 ≤  𝐿  
𝑐𝑡𝑒   𝑖𝑓 𝑅 > 𝐿

 

The following figure illustrates the two zones previously described. 
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Figure 4.5: Visualization of linear and non-linear doppler zones due to bistatic geometry. 

 

 

4.3 Bistatic Effects on the Ambiguity Function 

It can be inferred from the last two sections that range and Doppler frequency are dependent 

on the geometry of bistatic systems. As a result, the bistatic ambiguity function is affected. By 

using Tsao’s derivation of the bistatic ambiguity function in [36] and [44], we can visualize the 

effects of linear and non-linear geometric zones. The bistatic ambiguity function relationship is 

shown in equation 5.  
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|𝛸(𝑅𝑅𝐻, 𝑅𝑅𝑎, 𝑉𝑎, 𝜃𝑅 , 𝐿|2                                                                                             (4.8) 

= |∫ 𝑓(𝑡 − 𝜏𝑎(𝑅𝑅𝑎, 𝜃𝑅 , 𝐿))𝑓′( (𝑡

− 𝜏𝑎(𝑅𝑅𝑎, 𝜃𝑅 , 𝐿))𝑒𝑥𝑝[−𝑗(𝜔𝐷𝐻(𝑅𝑅𝐻, 𝑉𝐻, 𝜃𝑅 , 𝐿) − 𝜔𝐷𝐴(𝑅𝑅𝑎, 𝑉𝑎, 𝜃𝑅 , 𝐿))𝑡]𝑑𝑡|
2

 

Using the relationships defined in the previous sections and Tsao’s bistatic ambiguity 

function formula, we show the bistatic ambiguity functions for two angles. The first ambiguity 

function shown in Figure 7 is for θ = 60°. It can be seen that range axis is capable of high resolution, 

while the Doppler axis has a wider shape. The next ambiguity function in Figure 8 is for θ = 89°. 

In contrast to the previous instance, the Doppler axis exhibits high resolution, while the range axis 

has become indiscernible.   

 

 

 

Figure 4.6: Bistatic ambiguity function for θ=60°. 
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Figure 4.7: Bistatic ambiguity function for θ=89°. 

 

 

4.4 PCL Geometry Experiment 

In an effort to prove the concepts presented in this chapter, an experiment was arranged to 

show changes in a signal’s ambiguity function and target response as a target migrates towards the 

San Diego International airport. Figure 4.8 indicates locations of the PCL system, target flight 

path, antenna boresights, and FM radio tower location in San Diego, CA.  
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Figure 4.8: Geometry for bistatic ambiguity function experiments. Map data taken from 

2016 INEGI, SIO, NOAA, U.S. Navy, NGA, GEBCO, 2016 Google, USGS. 

 

Using ADS-B flight data, it was possible to estimate the bistatic angle. The following 

figures illustrate the progression of a target towards the San Diego airport, with data captured at 

bistatic angles of 60, 70, 80, and 85 degrees.  
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Figure 4.9: Target range/Doppler response for bistatic angle =60°. 

 

 

Figure 4.10: Target range/Doppler response for bistatic angle =70°. 
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Figure 4.11: Target range/Doppler response for bistatic angle =80°. 

 

 

Figure 4.12: Target range/Doppler response for bistatic angle =85°. 
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From these figures it can be illustrated that the concepts mentioned previously in this 

chapter hold true for this experiment. The initial target response at 60° indicate smearing in the 

Doppler axis and poor resolution on the range axis. This effect seems to grow exponentially as we 

reach angles of 80° and 85°, where the resolution is lowered by approximately 400% in the range 

dimension.  

In this chapter we have shown that geometric considerations for bistatic PCL systems can 

have dramatic effects on range and Doppler relationships. There are certain bistatic angles for the 

transmitter, target, and receiver that force an unpredictable condition of the ambiguity function in 

which velocity and range cannot be surmised by traditional equations. We have also shown a 

graphical representation of the linear and non-linear zones, which could be useful when planning 

and implementing a PCL system. Finally, an experiment provided proof that range and Doppler 

ambiguity worsen at bistatic angles that approach 90°. 
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CHAPTER 5: PCL SIGNAL CHARACTERIZATION  
 

A passive radar system can be thought of as an atypical radar system, performing traditional 

radar processing functions by exploiting co-located cooperative or non-cooperative transmitters of 

opportunity. The general premise is that broadcasted signals that are reflected off of objects can 

be received and processed to detect and track objects of interest. These signals of opportunity have 

traditionally included FM radio [47][39], DAB/DVB [48], GSM [24], and GPS [5], among several 

others. The passive radar receiving sub-system can be in either a bistatic or multi-static 

configuration. For this section, only the bistatic case will be considered. The receiver is typically 

designed for operation with a specific signal set or frequency range of interest. Using current 

technology, a fairly wideband receiving system could be realized using several antennas, tuners, 

and channelized receivers, each optimized for a particular frequency band. This type of system 

would give access to a large number of signals present in the electromagnetic spectrum (EMS) at 

any given time. This chapter begins to address the enhanced capabilities of such a system to 

analyze the EMS, determine a useful set of signals, and employ them for passive detection and 

tracking. Portions of this chapter were previously published by Johnson et al in [34]. 

 

Recent work by Griffiths [35] has illustrated the dynamic nature of ambiguity functions 

calculated for FM radio and DVB signals. One reason for this is the dynamic modulation content 

of the signal, as well as any signal specific anomalies such as the sync pulses in typical digital TV 

signals. If a passive radar system were designed to operate only on a single signal or frequency, it 

could prove to be unreliable. For this reason it is important to have the flexibility to employ any 

broadcast channel to achieve the best detection capability. This chapter presents a novel approach 
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to characterize those signals present in the EMS based on features of its ambiguity function. The 

goal is to provide a method of signal selection for PCL that is more effective than choosing signals 

based solely on received signal strength.  

5.1 Ambiguity Function Characteristics 

In traditional radar systems, a transmit waveform is chosen based on its capabilities in 

regards to object detection, range and Doppler resolution, accuracy of measurements, rejection of 

clutter, and overall ambiguity [49]. Several of these features can be determined through calculation 

of a signal’s ambiguity function (AF). The authors in [37] define qualitative traits for a signal’s 

ambiguity function as range resolution, peak-to-sidelobe ratio, and integrated sidelobe ratio. 

Following this criteria increases the chances of detection and discrimination of closely-spaced 

targets. 

The calculation of an ambiguity function is performed by passing a waveform through its 

own matched filter. For the monostatic case, the ambiguity function is defined in [13] as    

|𝛸(𝜏, 𝑓)2| =  |∫ 𝑠𝑡(𝑡)𝑠𝑡
∗(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓𝑡𝑑𝑡

∞

−∞
|

2
                                 (5.1) 

 

where 𝑋(𝜏, 𝑓) is the ambiguity function dependent on time delay (τ) and Doppler frequency (f), 

and s(t) represents a complex baseband signal. Figures 5.1 and 5.2 illustrate the ambiguity function 

for an ideal rectangular pulse of unit amplitude and pulse width equal to 5 x 10−5 .  
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Figure 5.1: Ambiguity Function for an Ideal Rectangular Pulse. 

 

For the bistatic case, Tsao [36] formulates a different equation, making the argument that 

geometry plays an important role due to the fact that time delay and doppler frequency are not linear 

functions of range and velocity, respectively. His proposed ambiguity function is  

|𝛸(𝑅𝑅𝐻, 𝑅𝑅𝑎, 𝑉𝑎, 𝜃𝑅 , 𝐿|2                                                           (5.2) 

= |∫ 𝑓(𝑡 − 𝜏𝑎(𝑅𝑅𝑎, 𝜃𝑅 , 𝐿))𝑓′( (𝑡

− 𝜏𝑎(𝑅𝑅𝑎, 𝜃𝑅 , 𝐿))𝑒𝑥𝑝[−𝑗(𝜔𝐷𝐻(𝑅𝑅𝐻, 𝑉𝐻, 𝜃𝑅 , 𝐿) − 𝜔𝐷𝐴(𝑅𝑅𝑎, 𝑉𝑎, 𝜃𝑅 , 𝐿))𝑡]𝑑𝑡|
2
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which incorporates bistatic range, angles, and radial velocities from the positions of both the 

transmitter and receiver. Tsao also shows through simulation that the bistatic ambiguity function 

shape is dependent on the bistatic geometry, meaning that range and Doppler resolutions will vary 

with geometry. Taking into account bistatic geometry is important for characterizing situations 

when tracking or searching for a target, or when using multiple geographically separated 

transmitters of opportunity. However for the case of characterizing a signal prior to any targeting 

functions, assuming a single transmit site, we are confident in relying on the traditional monostatic 

equation for creating the ambiguity function.  

Another determining factor of an ambiguity function’s shape in both the monostatic and 

bistatic case is the signal bandwidth [35]. For example, a broadcast FM radio channel’s assigned 

spectrum bandwidth is ~200kHz. At any instant in time, the actual channel bandwidth will vary 

based on the modulation content. Results presented in [23] show that signals with content such as 

plain speech are worse performers than that of jazz or rock music for this reason. This is the 

motivation for using the ambiguity function as an indication of a signal’s usefulness to passive 

target detection. An experimental collection of FM radio signal 91.1 MHz illustrates the concept of 

a dynamic ambiguity function due to changes to the channel’s modulation and noise content and 

can be seen in the figures below. Figure 5.2 indicates a moderately clean channel with little noise, 

most likely a bandwidth approaching the channel maximum of 200 kHz. The ambiguity function in 

figure 5.3 shows a degraded ambiguity function of the same signal. This may indicate change in 

channel content to commercial or other speech broadcast that occupies far less bandwidth than that 

of figure 5.2. 
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Figure 5.2: Ambiguity Function for FM 91.1 MHz. 

 

 

Figure 5.3: Ambiguity Function for FM 91.1 MHz. 

 



78 

 

When choosing a signal for PCL, the system operator should be aware of expected signal 

parameters for each signal set potentially used for PCL. The table below shows expected 

performance of HF, FM radio, and digital TV signals for PCL.  

 

Table 5-1: Notable signal features for PCL [35]. 

 

 

 

5.2 Autonomous Evaluation of the Ambiguity Function 

We are interested in characterizing signals for use in a passive radar system by following 

the previously mentioned criteria of range and doppler resolution, sidelobe levels, and signal-to-

noise-ratio (SNR), all determined autonomously from the ambiguity function. We will also 

experiment with distance metric functions to evaluate similarity between a pre-defined ideal 

ambiguity function and those calculated from collected signals. For this section, we will bound 

this problem to HF, broadcast FM, and digital TV signals (VHF/UHF frequencies).  

 
Typical ERP Frequency 

Range 

Maximum 

Channel 

Bandwidth 

Best 

Possible 

Range 

Resolution 

Best Possible Velocity 

Resolution (𝒕𝒊 = 𝟏𝒔) 

HF 10’s kW 3-30 MHz 20 kHz 7500 m 20 m/s 

FM 

Radio 

50-100kW 88-108 MHz 200 kHz 750 m 6 m/s 

HDTV 50-100kW 470-890 MHz 6 MHz 30 m 0.67 m/s 
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Our first task is to collect a set of signals and calculate their ambiguity functions. Using 

software defined radios, two signals were collected for a duration of 250ms. Each signal’s 

ambiguity function was generated using an integration time of 500ms. Figures 5.3 and 5.4 below 

show the calculated ambiguity function for a collected broadcast (analog) FM signal operating at 

91.1 MHz. Figures 5.5 and 5.6 show the calculated ambiguity function for a collected broadcast 

(digital) TV signal operating at 497 MHz.  
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Figure 5.4: Calculated Ambiguity Function for FM Radio Station 91.1 MHz 
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Figure 5.5: Calculated Ambiguity Function for Digital TV Station 497 MHz 
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Next, we smooth the data using an FIR filter and implement a computationally efficient 

peak-finding algorithm for locating the index and value of the main peak and sidelobes. The peak-

finding algorithm creates a function parallel to the actual AF and determines the locations of peak 

values using a comparative difference function. Starting at the index of the max value of the main 

lobe, this algorithm makes a comparative note of which indexes the original function is increasing 

in time. Also at each iteration, it calculates the difference between the two functions. When the 

difference is greater than zero, the function is increasing, less than zero indicates the function is 

decreasing. The algorithm notes the index at which this change occurs and declares presence of a 

peak value. Figure 5.7 below illustrates this concept, and in this case, the function starts at t = 0. 

At t = 1, the “peak finder” function is enabled, tracking the original function delayed by one time 

sample.  

 

 

Figure 5.6: Peak Finding Algorithm Illustration. 
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Once identified, the peak values are used to calculate the peak-to-sidelobe-ratio (PSLR) 

using the following equation from [37], where 𝐴𝑛 is the amplitude of the nth sidelobe and 𝐴0is the 

peak. This metric will be used for determining the signal’s ability to detect two targets with various 

amplitudes in the range dimension only.  

𝑃𝑆𝐿𝑅 =
1

𝐴0
2 max{𝐴𝑛

2 } , 𝑛 ≠ 0                                                               (5.3) 

In addition, we can also calculate the integrated sidelobe ratio (ISLR), where N equals the number 

of sidelobes in the ambiguity function’s range dimension. The ISLR will be used to characterize a 

signal’s detection capability when multiple targets are in the same range profile. 

𝐼𝑆𝐿𝑅 =
1

𝐴0
2 ∑ {𝐴𝑛

2 }𝑁
𝑛=1                                                            (5.4) 

Next, the range and Doppler resolution metrics are evaluated. We assume that the main 

lobe of the ambiguity function is the largest peak identified by the peak-finding algorithm that is 

nearest to the origin, and the -3dB width of the main lobe defines the resolution. Also, due to 

channel modulation, it is expected that the range resolution will change in time. Conversely the 

Doppler resolution is a function of integration time, which will remain constant.  

One final measure used to evaluate the ambiguity function was through the use of distance 

metric functions. In preparation for a proper comparison, it is necessary to normalize each 

ambiguity function. Our approach was to identify the minimum value, then scale the entire 

function to make that value equal to zero. Next, we can generate an ideal ambiguity function, 

which is widely considered to be a single large spike at range and Doppler equal to zero. This large 

spike and the lack of sidelobes indicates a perfect correlation between two functions. In practice 
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however, it was found that a tall cube was a more reasonable approach. This is due to the varying 

geometry of the ambiguity function matrix resulting from different sample sizes. In addition, a 

cube allows for a shape equivalent to the main lobe width at the -3dB points to be generated. The 

height of the cube was determined by the amplitude of the ambiguity function for each signal. 

Additionally, the rest of the matrix values are uniform, calculated by averaging the noise floor of 

the normalized ambiguity function. The ideal ambiguity function generated for the previously 

mentioned FM signal is shown in Figure 5.8.  

 

Figure 5.7: Ideal Ambiguity Function Calculated for the Collected FM Signal 91.1 MHz. 

 

The first distance metric applied to this problem is known as the sum of absolute difference 

method, which is simply the absolute value of the difference between two points as shown in (5).  

                𝑑𝑆𝐷(𝑝, 𝑞) =  ∑ ‖𝑝𝑖 − 𝑞𝑖‖𝑛
𝑖=1                                                  (5.5) 
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The results in Figure 5.9 show the error between the ideal ambiguity function and that for 

the collected FM signal. 

 

Figure 5.8: Error Calculated using the Absolute Difference Method. 

 

The second distance metric used was the mean-squared error performed between each point of the 

ideal and actual ambiguity functions, calculated using the equation (6) with results shown in Figure 

5.10. 
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Figure 5.9: Error Calculated using the Mean Squared Error Method. 

 

Table 5-2 summarizes the findings from analyzing the FM radio and TV signals. It can be seen 

that through analysis of the ambiguity function, signals can be characterized in preparation for 

evaluation and ranking.    
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Table 5-2: Comparison between Collected FM Radio and TV Signals. 

 Analog FM 

Radio 

Station 91.1 

MHz 

Digital TV 

Station  497 

MHz 

Signal Strength -40 -45 

Delay Resolution 360m 48m 

Doppler Resolution 1 Hz 1 Hz 

PSLR (range 

dimension) 

1.23 1.21 

ISLR (range 

dimension) 

1.48 1.51 

Distance Metric   

(Sum of Absolute 

Difference Method) 

8.05 x107 7.93 x107 

Distance Metric   

(Mean Square 

Error Method) 

8.54 x108 6.73 x108 

 

5.3 Ambiguity Function Evaluation and Characterization Experiments 

In order to demonstrate and prove effectiveness of the proposed PCL signal ambiguity 

function characterization method, an experiment was conducted using six signals of opportunity 

in the San Diego, CA area. Using the prototype PCL system described in chapter 2, two signals 

were collected from HF band, FM radio band, and digital TV band. The signals were chosen based 

on their respective transmitter locations in reference to the PCL system and expected target 

location. Autocorrelation was performed on each signals, resulting in ambiguity functions which 

can be seen in the following figures.  
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Figure 5.10: Ambiguity function for HF Sounder 5.3 MHz. 

 

 

Figure 5.11: Ambiguity function for HF CODAR 17.6 MHz. 
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Figure 5.12: Ambiguity function for FM radio 98.8 MHz. 

 

 

Figure 5.13: Ambiguity function for FM radio 101.5 MHz. 
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Figure 5.14: Ambiguity function for digital TV station 494 MHz. 

 

 

Figure 5.15: Ambiguity function for digital TV station 500 MHz. 

 

Following realization of each ambiguity function, the autonomous characterization and 

evaluation algorithm was implemented. The results are captured in the table below.  



91 

 

Table 5-3: Results of autonomous signal characterization. 

Features 5.3 (HF) 17.6 (HF) 91.1 (FM) 101.5 (FM) 497 (DTV) 500 (DTV) 

Signal Strength 
(dBm) 

-72 -67 -40 -41 -45 -42 

Range Resolution 
(m) 

15000 12000 1500 2800 25 25 

Velocity Resolution 
(km/s) 

128 11.6 0.433 0.349 0.0147 0.0144 

PSLR (range 
dimension) 

0.97 0.95 1.25 1.17 1.17 1.19 

ISLR (range 
dimension) 

0.9 0.89 1.43 1.45 1.52 1.53 

Distance Metric 4.05 𝑥109 3.22 𝑥109 8.54 𝑥108 6.73 𝑥108 6.88 𝑥107 5.43 𝑥107 

 

In this case, the presence of three signal types shows the variety of signal parameters one 

could expect. It is obvious from the results that digital TV signals would most likely always be 

chosen over HF and FM radio signals for PCL. Looking at each signal set (HF, FM, and digital 

TV), the value of autonomous characterization becomes more apparent. For example, if a PCL 

system operator were to arbitrarily choose FM radio 101.5 MHz, he will most likely achieve less 

than ideal results compared to the potential use of FM radio 91.1 MHz.  

The next experiment uses only FM radio signals captured from a transmitter tower in 

Tijuana, Mexico. The experiment geometry can be seen in figure 5.16. The resulting ambiguity 

functions can be seen in figures 5.17, 5.18, and 5.19. 
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Figure 5.16: Experiment geometry for collection of Tijuana FM radio signals. Map data 

taken from 2016 INEGI, SIO, NOAA, U.S. Navy, NGA, GEBCO, 2016 Google, USGS. 

 

 

Figure 5.17: Ambiguity function for FM radio 91.1 MHz. 
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Figure 5.18: Ambiguity function for FM radio 98.9 MHz. 

 

 

Figure 5.19: Ambiguity function for FM radio 99.7 MHz. 
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The output of the autonomous signal characterization algorithm applied to FM radio 

stations 91.1, 98.9, and 99.7 can be seen in table 5.4 

 

Table 5-4: Results of autonomous signal characterization. 

Features 91.1 98.9 99.7 

Signal Strength (dBm) -43 -47 -46 

Range Resolution (m) 2100 2100 2100 

Velocity Resolution 
(km/s) 

6 6 6 

PSLR (range 
dimension) 

8.48 10.38 10.12 

ISLR (range dimension) 15.01 15.17 13.89 

Distance Metric 0.001887 0.001931 0.001895 

 

This experiment indicates that for a PCL system, FM radio signal 91.1 MHz is superior 

based on its range and Doppler resolution, low sidelobe levels, and overall low noise and 

interference in the channel as indicated by the distance metric. This is another example that 

illustrates the superiority of this method over choosing signals based solely on amplitude. 

One final experiment for the autonomous signal characterization method involved 

recording signals transmitted from San Diego, CA. According to concepts presented in chapter 4, 
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these transmitters are not ideal for detecting targets landing at San Diego International Airport. 

However for experimental purposes, these signals were collated solely for analysis of their 

ambiguity functions. The experiment geometry can be seen in figure 5.20  below, followed by 

calculated ambiguity functions for FM radio stations 93.3, 97.3, and 101.5 MHz (figures 5.21 – 

5.23). 

 

 

Figure 5.20: Experiment geometry for collection of San Diego FM radio signals. Map 

data taken from 2016 INEGI, SIO, NOAA, U.S. Navy, NGA, GEBCO, 2016 Google, USGS. 
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Figure 5.21: Ambiguity function for FM radio 93.3 MHz. 

 

 

Figure 5.22: Ambiguity function for FM radio 97.3 MHz. 
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Figure 5.23: Ambiguity function for FM radio 101.5 MHz. 

 

The results of this experiment can be seen in table 5-5. It can be seen that FM radio signal 

93.3 MHz is the superior signal for PCL based on its features derived from the ambiguity function. 
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Table 5-5: Results of autonomous signal characterization. 

Features 101.5 97.3 93.3 

Signal Strength 
(dBm) 

-42 -42 -41 

Range Resolution 
(m) 

2700 2100 2100 

Velocity Resolution 
(km/s) 

6 6 6 

PSLR (range 
dimension) 

7.95 11.93 7.16 

ISLR (range 
dimension) 

15.39 18.99 15.63 

Distance Metric 0.002222 0.002038 0.001882 

 

 

5.4 Ambiguity Function Evaluation and Characterization Conclusions 

This section presents a novel method for characterizing a signal through features obtained 

by autonomously evaluating its ambiguity function. We have established the need for such a 

technology by describing a passive detection system capable of employing many signals and the 

need to rank those signals. With that motivation, we have developed an intelligent method for 

determining the range and Doppler resolution, SNR, and sidelobe levels. This method considers 

features such as resolution, PSLR, ISLR, and metrics derived from employing distance functions. 

The next step of this research will expand this work taking into account the bistatic ambiguity 

function developed by Tsao [36]. Although it is not considered in the scope of this work, it will be 



99 

 

beneficial for scenarios in which a target is present and multiple geographically separated 

transmitters exist. We also plan to define another qualitative measure of a signal by analyzing 

changes in its ambiguity function over time. As signal strength and modulation changes, the signal 

quality reflected in the ambiguity function will change as well.    
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CHAPTER 6: PCL MULTI-SIGNAL DETECTION 
 

Passive coherent location (PCL) and passive bistatic radar (PBR) describe target detection 

and ranging systems capable of exploiting existing third party transmitters [3]. A passive radar 

system is cheaper to be implemented, lighter in weight, and requires far less power than a 

traditional active radar system. For those reasons, passive radar systems have received increasing 

interest among academic, industry, and government research over the last several years. However, 

the design of PCL systems is also faced with a number of challenges. Specifically, some 

transmitters usually employ omnidirectional antennas to cover a wide area, which might bring 

strong direct signals, clutter, and multi-path signals into the surveillance channel. In addition, the 

locations and waveforms used by the transmitters are no longer under control. All of those factors 

and others influence the detection capabilities of passive radar systems, and at the same time, these 

systems often require additional measures to improve the detection capacity which is a crucial 

factor in the success and reputation of this technology. 

However, there are many techniques to overcome PCL detection limitations. One such 

method is frequency diversity, which is a simple technique that significantly improves detection 

performance for PCL under adverse weather conditions [1]. It is based on two or more 

conventional radar transceivers which are combined through a common antenna, in a multiplexed 

arrangement on the same RF transmission channel. Some advantages of frequency diverse radars 

are [2] more received total power, greater continuity of detection, reduced RCS fluctuations, and 

lessened effects of clutter. 
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Besides frequency diversity, the use of a radar sensor network or multiple receivers has 

advantages compared to a single radar system in improving the system sensitivity, reducing 

obscuration effects and vulnerability as well as increasing the detection performances [2]. In this 

section, we present and simulate a PCL architecture in which we achieve frequency diversity with 

a multi-sensor configuration. It is shown that through these methods, we realize improved target 

detection by enhancing the probability of detection, as well as a reduced required SNR per channel. 

We also show an experiment in which a binary detection scheme was applied a three-channel PCL 

system. The designed system is based on a multi-channel receiver, which uses commercial 

broadcast channels (including FM Radio, VHF TV, and digital TV channels) for target detection.  

 

6.1 Traditional Binary Detection Methods 

 

Binary integration is the final step of a detection process, which follows coherent or non-

coherent integration [49].  The output of binary integration is one of two choices, which for radar 

purposes are “target present” and “no target present”. It is also known that each decision of target 

present or not present will have a probability if detection and probability of false alarm.  According 

to [49], there are two methods for binary detection. The first method known as the cumulative 

detection, can be used when the probability of detection and probability of false alarm are equal 

across multiple systems or channels for non-fluctuating (Swerling 0) targets. The binary 

probability of detection for a Swerling 0 target is given by the following equation. 

𝑃𝐵𝐷 = 1 − (1 − 𝑃𝐷)𝑁                                                       (6.1) 
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This relationship shown in [49] also notes that the “1 of N” rule reduces the required signal to 

noise ratio to achieve a desired probability of detection. One critical note about cumulative 

detection is that this rule holds true for probability of false alarm as well.  

𝑃𝐵𝐹𝐴 = 1 − (1 − 𝑃𝐹𝐴)𝑁                                                      (6.2) 

This means that by increasing the number of systems or channels N, both expressions for 𝑃𝐵𝐷 and 

𝑃𝐵𝐹𝐴 increase.  

The author in [49] asserts that a better scheme for binary detection is the M of N method, 

in which a target is declared if a detection is made in M systems or channels out of N trials. To 

determine the ideal value of M, the author in [50] derives the equation below. 

𝑀𝑜𝑝𝑡 = 10𝑏𝑁𝑎                                                          (6.3) 

Values are also listed for a and b given different ranges of N. As an approximation, the following 

equation is also given. 

𝑀𝑜𝑝𝑡 = 1.5√𝑁                                                           (6.4) 

 

The author in [50] also gives a set of relationships for signal to noise ratio required to achieve a 

certain probability of detection, given N channels. Figure 6.1 note fig call outs for other 

fgis in this chapter are missing! shows the probability of detection 𝑃𝑑  as a function of 

SNR and 𝑃𝑓𝑎 = 10−6  with different values of N for non-fluctuating targets (Swerling 0). This 

figure was created using the equation below. 
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𝑃𝑑 = 𝑒
−

𝑉𝑡
(1+𝑆𝑁𝑅)

 
                                                             (6.5) 

 

 

Figure 6.1: Variations of Probability of Detection versus SNR for N channels for 𝑃𝑓𝑎 =

10−6  for a Swerling 0 target. 

 

In an effort to show the value for M of N detection in multi-channel PCL systems, an 

experiment was conducted using three FM radio signals. The experiment geometry is shown below 

Fig call out. The FM signals are transmitted out of Tijuana, Mexico, potential targets are landing 

at San Diego International Airport, which provides ideal geometry for linear range and Doppler 

relationships. Target data was verified by a live ADS-B feed.  



104 

 

 

Figure 6.2: Multi-channel PCL experiment geometry. Map data taken from 2016 INEGI, 

SIO, NOAA, U.S. Navy, NGA, GEBCO, 2016 Google, USGS. 

 

Three trials were setup so that the SNR could be varied for each set of FM signals detecting a 

target. Assuming a non-fluctuating or slowly fluctuating target (Swerling 0, 1), from [49] the 

optimum M was calculated to be 2.59, rounded up to 3.   

𝐹𝑜𝑟 𝑁 = 3, 𝑀𝑜𝑝𝑡𝑖𝑚𝑢𝑚 = 1.5√𝑁 = 2.59                                        (6.6) 

The initial experiment’s SNR was recorded as 16dB. Once this data was recorded, further noise 

was added via simulation in Matlab.  



105 

 

 

 

Figure 6.3: Multi-channel PCL target detection with SNR=16dB. 
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Figure 6.4: Multi-channel PCL target detection with SNR=6dB. 
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Figure 6.5: Multi-channel PCL target detection with SNR= - 6dB. 

 

The results of this experiment indicate that the optimal M of N criteria that was calculated 

is in agreement with actual results. Detections were made for M=N=3 for SNR equal to 16dB and 

6dB. For the experiment with SNR=-6dB, detections were made in 2 out of three channels, not 

meeting optimum M requirement of 2.59 (3). This case resulted in a missed detection. However 

Monte Carlo trials are necessary to increase confidence in this method.   

 

6.2 Passive Coherent Location Binary Detection Algorithm Conclusions 

In this section it has been shown that traditional methods for binary integration can be 

applied to multi-channel PCL systems. Theoretically the required SNR per channel can be reduced 



108 

 

by employing multiple signals. The experiment also shows that M of N detection is potentially a 

solution for combining detections from multiple channels to increase confidence in the system. 

However this idea needs to be further proven with Monte Carlo trials for complete assurance in 

this method.  
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 
 

This work has produced several innovations for PCL systems. The first material presented 

in this work expands bistatic radar relationships to address geometric considerations. This chapter 

illustrates the area in which a bistatic PCL system can operate with linear relationships in time 

delay, target range, and Doppler frequency. It was also shown that large areas of non-linear zones 

exist in which the expected values o target range and velocity will likely not be realized in these 

areas. 

Secondly, we have developed a novel method for characterizing and evaluating signals of 

opportunity. With an overwhelming number of signals in an urban environment, our algorithm 

enables a PCL system to decide which signal set is best for a specific application. The signal 

characterization method takes into account amplitude, bandwidth, sidelobe ratios, and includes a 

distance metric comparison with an ideal ambiguity function. The output of this characterization 

over iterations on multiple channels is compiled into a best to worst listing of available signals.  

The final innovation we presented was the concept of using multiple signals to increase 

signal to noise ratio for target detection. Following the first concept of identifying, characterizing, 

and evaluating multiple signals, we can use those best suited for an application in concert to 

improve target detection capability. Through the use of a modified binary integration scheme 

7.1 Future Work 

Future work will focus on adaptive processing for PCL detection. Limitations still exist 

with PCL systems that make them less attractive than traditional active radar. The main challenges 
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of PCL detection still remain, which revolve around low signal to noise ratios due to unstable 

commercial transmitters and interference.  In this vein, current state-of-the-art methods for 

monostatic radar may potentially have use in passive bistatic systems. Techniques such as Space 

Time Adaptive Processing (STAP), adaptive filtering, and modern thresholding techniques will be 

inserted into the prototype PCL system for proof of concept. 

Another future improvement in PCL is establishing one’s own transmitter of opportunity. 

For example, if a transmitting system were to be established and the PCL system had knowledge 

of the waveform, a reference channel would no longer be needed. This concept could be expanded 

to a moving transmitter platform that relays time, space, and position information, along with 

waveform details.  
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APPENDIX A: PCL MATLAB CODE 
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Matlab Code for Data Collection from Ettus N210 SDR 

 

usrp210=findsdru; 

%usrp_ip=usrp210.IPAddress; 

usrp_ip1='192.168.10.201'; 

usrp_ip2='192.168.10.202'; 

decimation=4; 

bandwidth=1e8/(decimation); %Total bandwidth 

FC=501e6; %Center Frequency 

gain=30; 

N_samples=1024; 

hSDRu1 = comm.SDRuReceiver(usrp_ip1,... 

    'DecimationFactor', decimation,... 

    'Gain',gain,... 

    'SampleRate',1e8/decimation, ... 

    'FrameLength',N_samples, ... 

    'EnableBurstMode',true,... 

    'OverrunOutputPort',true,... 

    'OutputDataType', 'double',... 

    'CenterFrequency',FC); 

hSDRu2 = comm.SDRuReceiver(usrp_ip2,... 

    'DecimationFactor', decimation,... 

    'Gain',gain,... 

    'SampleRate',1e8/decimation, ... 

    'FrameLength',N_samples, ... 

    'EnableBurstMode',true,... 

    'OverrunOutputPort',true,... 

    'OutputDataType', 'double',... 

    'CenterFrequency',FC); 
 

Matlab Code for PCL FM Channel Evaluation 

function [CH]=Channel_Evaluation(y,Fs) 

load('filterCoef.mat'); 

yf = filter(Num,1,y); 

AF=my_code1(yf,yf); 

RC=abs(xcorr(yf,yf).^2); 

k=max(size(AF))-1; 

p=(k/2)+1; 

DC=abs(AF(:,p)); 

M=max(RC); 

RC=RC./M; 

DC=DC./M; 
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pksr=findpeaks(abs(RC)); 

for i=1:length(pksr) 

    if pksr(i)>0.9 

        pksr(i)=0; 

    end  

end 

MPr=max(pksr); 

SLLr=10.*log10(1/MPr); 

pksd=findpeaks(abs(DC)); 

l=0; 

for i=1:length(pksd) 

    if pksd(i)>0.9 

        pksd(i)=0;         

    end  

end 

MPd=max(pksd); 

SLLd=10.*log10(1/MPd); 

MPdr=max(MPr,MPd); 

AFR=abs(AF)/M; 

k1=size(AFR); 

s=0; 

for j=1:k1(1) 

    for n=1:k1(2) 

        if AFR(j,n)>MPdr 

            AFR(j,n)=0; 

            s=s+1; 

        end 

    end 

end 

Nmean=sum(sum(AFR))/(k1(1).*k1(2)); 

p=((length(RC)-1)/2); 

q=0; 

for i=p-250:p+250 

    if RC(i)>0.5 

        q=q+1;         

    end  

end 

RR=q.*3e8/(2.*Fs); 

CH=[SLLr,SLLd,M,RR,Nmean]; 
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Matlab Code for PCL FM Channel Selection 

  

function []=Channel_Selection(CH1,CH2,CH3) 

CHM=[CH1;CH2;CH3]; 

TM=CHM; 

DM=zeros(3,5); 

[M g]=max(TM(:,1)); 

DM(g,1)=1; 

[M g]=max(TM(:,2)); 

DM(g,2)=1; 

[M g]=max(TM(:,3)); 

DM(g,3)=1; 

[m g]=min(TM(:,4)); 

DM(g,4)=1; 

[m g]=min(TM(:,5)); 

DM(g,5)=1; 

  

K1=sum(DM(1,:)); 

K2=sum(DM(2,:)); 

K3=sum(DM(3,:)); 

if (K1>K2)&&(K1>K3) 

    'channel 1 is the best' 

else 

   if (K2>K1)&&(K2>K3) 

    'channel 2 is the best' 

   else  

    'channel 3 is the best' 

   end 

end 
 

 

 

Matlab Code for PCL Multi-Channel Processing 

function varargout = MULTIRADIO(varargin) 

% MULTIRADIO MATLAB code for MULTIRADIO.fig 

%      MULTIRADIO, by itself, creates a new MULTIRADIO or raises the existing 

%      singleton*. 

% 

%      H = MULTIRADIO returns the handle to a new MULTIRADIO or the handle to 

%      the existing singleton*. 

% 

%      MULTIRADIO('CALLBACK',hObject,eventData,handles,...) calls the local 
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%      function named CALLBACK in MULTIRADIO.M with the given input arguments. 

% 

%      MULTIRADIO('Property','Value',...) creates a new MULTIRADIO or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before MULTIRADIO_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to MULTIRADIO_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help MULTIRADIO 

  

% Last Modified by GUIDE v2.5 19-Dec-2016 14:49:33 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @MULTIRADIO_OpeningFcn, ... 

                   'gui_OutputFcn',  @MULTIRADIO_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before MULTIRADIO is made visible. 

function MULTIRADIO_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to MULTIRADIO (see VARARGIN) 



116 

 

  

% Choose default command line output for MULTIRADIO 

  

  

  

global ABORT 

global USRPDETECTION 

ABORT=false; 

  

% RADIOS ADDRESS USRP IPs 

handles.usrp_ip1='192.168.10.2'; 

handles.usrp_ip2='192.168.10.202'; 

  

handles.usrp_ip3='192.168.10.200'; 

handles.usrp_ip4='192.168.10.201'; 

  

handles.usrp_ip5='192.168.10.202'; 

handles.usrp_ip6='192.168.10.203'; 

  

  

% handles.usrp_ip7=''; 

% handles.usrp_ip8=''; 

  

% Center Frequencies 

handles.FM_FC=92.5e6; %FM Center Frequency 

handles.UHF_FC=497e6; %UHF Center Frequency 

handles.VHF_FC=294e6; %VHF Center Frequency 

handles.HF_FC=17.4E6; % HF Center Frequency 

  

  

% FM PARAMATERS  

handles.FM_decimation=250; 

handles.FM_bandwidth=1e8/(handles.FM_decimation); %Total bandwidth 

handles.FM_gain=27; 

handles.FM_N_samples=1024; 

handles.FM_DopplerFreqMin=-50; 

handles.FM_DopplerFreqMax=50; 

handles.FM_alfa=handles.FM_bandwidth/(2) 

  

  

% UHF PARAMATERS  

handles.UHF_decimation=80; 

handles.UHF_bandwidth=1e8/(handles.UHF_decimation); %Total bandwidth 

handles.UHF_gain=27; 
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handles.UHF_N_samples=1024; 

handles.UHF_DopplerFreqMin=-50; 

handles.UHF_DopplerFreqMax=50; 

handles.UHF_alfa=handles.UHF_bandwidth/(2) 

  

% VHF PARAMATERS  

handles.VHF_decimation=80; 

handles.VHF_bandwidth=1e8/(handles.VHF_decimation); %Total bandwidth 

handles.VHF_gain=27; 

handles.VHF_N_samples=1024; 

handles.VHF_DopplerFreqMin=-50; 

handles.VHF_DopplerFreqMax=50; 

handles.VHF_alfa=handles.VHF_bandwidth/(2) 

  

% HF PARAMATERS  

handles.HF_decimation=400; 

handles.HF_bandwidth=1e8/(handles.HF_decimation); %Total bandwidth 

handles.HF_gain=27; 

handles.HF_N_samples=1024; 

handles.HF_DopplerFreqMin=-50; 

handles.HF_DopplerFreqMax=50; 

handles.HF_alfa=handles.HF_bandwidth/(2) 

  

  

  

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

  

  

  

  

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes MULTIRADIO wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 
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function varargout = MULTIRADIO_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in RUN. 

function RUN_Callback(hObject, eventdata, handles) 

% hObject    handle to RUN (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global ABORT; 

usrp210=findsdru; 

  

  

% FM BLOCK 

handles.hSDRu1 = comm.SDRuReceiver(handles.usrp_ip1,... 

    'DecimationFactor', handles.FM_decimation,... 

    'Gain',handles.FM_gain,... 

    'SampleRate',1e8/handles.FM_decimation, ... 

    'FrameLength',handles.FM_N_samples, ... 

    'EnableBurstMode',true,... 

    'OverrunOutputPort',true,... 

    'OutputDataType', 'double',... 

    'CenterFrequency',handles.FM_FC); 

  

handles.hSDRu2 = comm.SDRuReceiver(handles.usrp_ip2,... 

    'DecimationFactor', handles.FM_decimation,... 

    'Gain',handles.FM_gain,... 

    'SampleRate',1e8/handles.FM_decimation, ... 

    'FrameLength',handles.FM_N_samples, ... 

    'EnableBurstMode',true,... 

    'OverrunOutputPort',true,... 

    'OutputDataType', 'double',... 

    'CenterFrequency',handles.FM_FC); 

  

% UHF BLOCK 

handles.hSDRu3 = comm.SDRuReceiver(handles.usrp_ip3,... 

    'DecimationFactor', handles.UHF_decimation,... 
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    'Gain',handles.UHF_gain,... 

    'SampleRate',1e8/handles.UHF_decimation, ... 

    'FrameLength',handles.UHF_N_samples, ... 

    'EnableBurstMode',true,... 

    'OverrunOutputPort',true,... 

    'OutputDataType', 'double',... 

    'CenterFrequency',handles.UHF_FC); 

  

handles.hSDRu4 = comm.SDRuReceiver(handles.usrp_ip4,... 

    'DecimationFactor', handles.UHF_decimation,... 

    'Gain',handles.UHF_gain,... 

    'SampleRate',1e8/handles.UHF_decimation, ... 

    'FrameLength',handles.UHF_N_samples, ... 

    'EnableBurstMode',true,... 

    'OverrunOutputPort',true,... 

    'OutputDataType', 'double',... 

    'CenterFrequency',handles.UHF_FC); 

  

  

% HF BLOCK 

handles.hSDRu5 = comm.SDRuReceiver(handles.usrp_ip5,... 

    'DecimationFactor', handles.HF_decimation,... 

    'Gain',handles.HF_gain,... 

    'SampleRate',1e8/handles.HF_decimation, ... 

    'FrameLength',handles.HF_N_samples, ... 

    'EnableBurstMode',true,... 

    'OverrunOutputPort',true,... 

    'OutputDataType', 'double',... 

    'CenterFrequency',handles.HF_FC); 

  

handles.hSDRu6 = comm.SDRuReceiver(handles.usrp_ip6,... 

    'DecimationFactor', handles.HF_decimation,... 

    'Gain',handles.HF_gain,... 

    'SampleRate',1e8/handles.HF_decimation, ... 

    'FrameLength',handles.HF_N_samples, ... 

    'EnableBurstMode',true,... 

    'OverrunOutputPort',true,... 

    'OutputDataType', 'double',... 

    'CenterFrequency',handles.HF_FC); 

  

  

  

%%%%% UHF BLOCK 

% handles.hSDRu5 = comm.SDRuReceiver(handles.usrp_ip7,... 
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%     'DecimationFactor', handles.UHF_decimation,... 

%     'Gain',handles.UHF_gain,... 

%     'SampleRate',1e8/handles.UHF_decimation, ... 

%     'FrameLength',handles.UHF_N_samples, ... 

%     'EnableBurstMode',true,... 

%     'OverrunOutputPort',true,... 

%     'OutputDataType', 'double',... 

%     'CenterFrequency',handles.UHF_FC); 

%  

% handles.hSDRu6 = comm.SDRuReceiver(handles.usrp_ip8,... 

%     'DecimationFactor', handles.UHF_decimation,... 

%     'Gain',handles.UHF_gain,... 

%     'SampleRate',1e8/handles.UHF_decimation, ... 

%     'FrameLength',handles.UHF_N_samples, ... 

%     'EnableBurstMode',true,... 

%     'OverrunOutputPort',true,... 

%     'OutputDataType', 'double',... 

%     'CenterFrequency',handles.UHF_FC); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

t_FM=1/handles.FM_N_samples:1/handles.FM_N_samples:1; 

DopplerFreq_FM=handles.FM_DopplerFreqMin:1:handles.FM_DopplerFreqMax; 

  

t_UHF=1/handles.UHF_N_samples:1/handles.UHF_N_samples:1; 

DopplerFreq_UHF=handles.FM_DopplerFreqMin:1:handles.UHF_DopplerFreqMax; 

  

t_HF=1/handles.HF_N_samples:1/handles.HF_N_samples:1; 

DopplerFreq_HF=handles.HF_DopplerFreqMin:1:handles.HF_DopplerFreqMax; 

  

  

FM_Freq=linspace(handles.FM_FC-

handles.alfa,handles.FM_FC+handles.alfa,handles.FM_N_samples); 

UHF_Freq=linspace(handles.UHF_FC-

handles.alfa,handles.UHF_FC+handles.alfa,handles.UHF_N_samples); 

HF_Freq=linspace(handles.HF_FC-

handles.alfa,handles.HF_FC+handles.alfa,handles.HF_N_samples); 

  

% % % % t_UHF=1/handles.UHF_N_samples:1/handles.UHF_N_samples:1; 

% % % % 

DopplerFreq_UHF=handles.UHF_DopplerFreqMin:1:handles.UHF_DopplerFreqMax; 
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i=0; 

  

while ABORT==false; 

        % Just add one more tab per additional set 

        USRPDATA= [step(handles.hSDRu1), step(handles.hSDRu2),step(handles.hSDRu3), 

step(handles.hSDRu4),step(handles.hSDRu5), step(handles.hSDRu6)]; 

        USRP1DATA_FM  = USRPDATA(:,1)'; 

        USRP2DATA_FM  = USRPDATA(:,2)'; 

        USRP1DATA_UHF = USRPDATA(:,3)'; 

        USRP2DATA_UHF = USRPDATA(:,4)'; 

        USRP1DATA_HF  = USRPDATA(:,5)'; 

        USRP2DATA_HF  = USRPDATA(:,6)'; 

         

%%% ASSUMING doppler freq range same accross bands          

        for p=1:(2*handles.FM_DopplerFreqMax+1) 

            dopplerUSRP1_FM=exp(-2*pi*1i*DopplerFreq_FM(p).*t_FM); 

            g_FM=USRP1DATA_FM.*dopplerUSRP1_FM; 

            dopplerUSRP3_UHF=exp(-2*pi*1i*DopplerFreq_UHF(p).*t_UHF); 

            g_UHF=USRP3DATA_UHF.*dopplerUSRP3_UHF 

            dopplerUSRP5_HF=exp(-2*pi*1i*DopplerFreq_HF(p).*t_HF); 

            g_HF=USRP5DATA_HF.*dopplerUSRP5_HF 

            handles.DETECT_FM(p,:)=xcorr(g_FM,USRP2DATA_FM); 

            handles.DETECT_UHF(p,:)=xcorr(g_UHF,USRP4DATA_FM); 

            handles.DETECT_HF(p,:)=xcorr(g_HF,USRP6DATA_FM); 

            pause (0.5) 

            handles.currentdata=abs(handles.DETECT_FM); 

            axes(handles.axes1) 

            mesh(handles.currentdata),view(2) 

            handles.currentdata=abs(handles.DETECT_UHF); 

            axes(handles.axes2) 

            mesh(handles.currentdata),view(2) 

            handles.currentdata=abs(handles.DETECT_HF); 

            axes(handles.axes3) 

            mesh(handles.currentdata),view(2) 

        end 

        i=i+1; 

        pause(0.5) 

end 

             

             

             

handles.output = hObject; 

% Update handles structure 

guidata(hObject, handles);              
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% --- Executes on button press in ABORT. 

function ABORT_Callback(hObject, eventdata, handles) 

% hObject    handle to ABORT (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global ABORT; 

ABORT=true; 

  

  

% --- Executes on button press in ANALYSIS. 

function ANALYSIS_Callback(hObject, eventdata, handles) 

% hObject    handle to ANALYSIS (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global ANALYSIS; 

ANALYSIS=true; 

 
 

Matlab Code for PCL Geometry 

% R=((c.*t).^2-L.^2)./(2.*(t.*c+L.*sin(d))); 

%v=(c.*fd)./(2.*f0.*(sqrt(0.5+((R1+L.*sin(d))./(2.*(sqrt(R1.^2+L.^2+2.*R1.*L.*sin(d)))))))); 

N=1:10001; 

c=3e8; 

Fs=2.4e6; 

R=N.*3e8/Fs; 

tet=-90:1:90; 

d=tet.*pi/180; 

L=1000000; 

for i=1:181 

    to(i,:)=((R+sqrt(R.^2+L.^2+2.*L.*R.*sin(d(i)))))/c; 

   

fd(i,:)=(101.1e6.*(2.*1.*(sqrt(0.5+((R+L.*sin(d(i)))./(2.*(sqrt(R.^2+L.^2+2.*R.*L.*sin(d(i)))))))

))./c); 

end 

  

for i=1:5:180 

plot(R,to(i,:)) 

hold on 

end 

To=to.*Fs; 

nn=round(To); 
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mm=nn-min(nn(1,:)); 

for i=1:10001 

kk(10002-i)=-mm(2,i); 

end 

fd2=-50; 

for p=1:101 

ff=fd2.*fd(2,:); 

jj=ff.*t; 

d1=exp(-2*pi*1i*jj); 

g=y.*d1; 

T(p,:)=cross_corr(y,g,mm(2,:)); 

fd2=fd2+1; 

end 

for p=1:101 

ff=fd2.*fd(2,:); 

jj=ff.*t; 

d1=exp(-2*pi*1i*jj); 

g=y.*d1; 

Tf(p,:)=cross_corr(y,g,kk); 

fd2=fd2+1; 

end 

ss=[Tf T]; 

fd1=-50:1:50; 

cg=max(max(T)); 

N1=-10000:1:10001; 

R1=N1.*3e8/Fs; 

mesh(R1/1000,fd1,abs(T/cg)) 
 

 

 

Matlab Code for LMS Filter 

function e = LMS2(ref,det,mu) 

N = max(length(ref)); % number of data samples 

w = ones(1,N); % initialize filter coefficient vector 

for n = 1:10000 

  w1 = w.*ref; % filter output 

  e = det - w1; % error 

  w = 0.1.*w + mu*sign(ref).*e(n); % update filter coefficients 

end 
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Matlab Code for Range Doppler Response 

 

function AF=my_code(ref,det) 

AF=zeros(1001,8193); 

t=0.0:1/4096:1; 

fd=-50:0.1:50; 

  

for p=1:1001 

    d=exp(-2*pi*1i*fd(p).*t); 

    g=ref.*d; 

    AF(p,:)=(x_cross_fft(g,det)).^2; 

end 

  

 

Matlab Code for Cross Correlation Processing 

 
 

%   Cross-correlation by Using FFT final  

function c=x_cross_fft(ref,det) 

N=max(size(ref)); 

d=zeros(1,N); 

%ref1=[ref,d]; 

%det1=[det,d]; 

R=fft(ref); 

D=fft(det); 

C=conj(R).*D; 

c=fftshift(ifft(C)); 
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APPENDIX B: FM RADIO SIGNAL COVERAGE  
  



126 

 

All coverage patterns listed in Appendix B were taken from [17]. 

 

 

Figure B-1: Signal Coverage for FM Radio 107.3 MHz  
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Figure B-2: Signal Coverage for FM Radio 91.1 MHz  
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Figure B-3: Signal Coverage for FM Radio 101.5 MHz  
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Figure B-4: Signal Coverage for FM Radio 93.3 MHz  
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Figure B-5: Signal Coverage for FM Radio 97.3 MHz  
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Figure B-6: Signal Coverage for FM Radio 98.9 MHz  
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Figure B-7: Signal Coverage for FM Radio 99.7 MHz  
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