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ABSTRACT 

 This dissertation investigates the community structure of web-like networks (i.e., large, 

random, real-life networks such as the World Wide Web and the Internet). Recently, it has been 

shown that many such networks have a locally dense and globally sparse structure with certain 

small, dense subgraphs occurring much more frequently than they do in the classical Erdös-

Rényi random graphs. This peculiarity—which is commonly referred to as community 

structure—has been observed in seemingly unrelated networks such as the Web, email networks, 

citation networks, biological networks, etc. The pervasiveness of this phenomenon has led many 

researchers to believe that such cohesive groups of nodes might represent meaningful entities. 

For example, in the Web such tightly-knit groups of nodes might represent pages with a common 

topic, geographical location, etc., while in the neural networks they might represent evolved 

computational units.   

 The notion of community has emerged in an effort to formalize the empirical observation 

of the locally dense globally sparse topology of web-like networks. In the broadest sense, a 

community in a web-like network is defined as a group of nodes that induces a dense subgraph 

which is sparsely linked with the rest of the network. Due to a wide array of envisioned 

applications, ranging from crawlers and search engines to network security and network 

compression, there has recently been a widespread interest in finding efficient community-

mining algorithms. 

 In this dissertation, the community structure of web-like networks is investigated by a 

combination of analytical and computational techniques: First, we consider the problem of 

modeling the web-like networks. In the recent years, many new random graph models have been 
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proposed to account for some recently discovered properties of web-like networks that 

distinguish them from the classical random graphs. The vast majority of these random graph 

models take into account only the addition of new nodes and edges. Yet, several empirical 

observations indicate that deletion of nodes and edges occurs frequently in web-like networks. 

Inspired by such observations, we propose and analyze two dynamic random graph models that 

combine node and edge addition with a uniform and a preferential deletion of nodes, 

respectively. In both cases, we find that the random graphs generated by such models follow 

power-law degree distributions (in agreement with the degree distribution of many web-like 

networks). 

 Second, we develop a framework for evaluating the degree to which the fundamental 

nature of communities is captured by some relevant graph theoretic concepts. This framework 

consists in estimating the concentration in web-like networks of a subgraph proposed as 

definition of community using sampling techniques and then deducing the statistical significance 

of such concentration by contrasting with appropriately defined random graphs. We apply this 

methodology to investigate the suitability in defining community of two graph concepts—

alliances and near-cliques—and we also analyze the computational complexity of various 

community-mining problems under these definitions of community. Assuming the definition of 

community as a global defensive alliance, or a global offensive alliance we prove—using 

transformations from the dominating set problem—that finding optimal communities is an NP-

complete problem. 

 These and other similar complexity results coupled with the fact that many web-like 

networks are huge, indicate that it is unlikely that fast, exact sequential algorithms for mining 

communities may be found. To handle this difficulty we adopt an algorithmic definition of 
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community and a simpler version of the community-mining problem, namely: find the largest 

community to which a given set of seed nodes belong. We propose several greedy algorithms for 

this problem: The first proposed algorithm starts out with a set of seed nodes—the initial 

community—and then repeatedly selects some nodes from community’s neighborhood and pulls 

them in the community. In each step, the algorithm uses clustering coefficient—a parameter that 

measures the fraction of the neighbors of a node that are neighbors themselves—to decide which 

nodes from the neighborhood should be pulled in the community. This algorithm has time 

complexity of order 2
max( )O nd , where n  denotes the number of nodes visited by the algorithm 

and maxd  is the maximum degree encountered. Thus, assuming a power-law degree distribution  

this algorithm is expected to run in near-linear time. The proposed algorithm achieved good 

accuracy when tested on some real and computer-generated networks: The fraction of 

community nodes classified correctly is generally above 80% and often above 90% . 

 A second algorithm based on a generalized clustering coefficient, where not only the first 

neighborhood is taken into account but also the second, the third, etc., is also proposed. This 

algorithm achieves a better accuracy than the first one but also runs slower. Finally, a 

randomized version of the second algorithm which improves the time complexity without 

affecting the accuracy significantly, is proposed.  

 The main target application of the proposed algorithms is focused crawling—the 

selective search for web pages that are relevant to a pre-defined topic. 
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1. INTRODUCTION 

 With the dramatic growth of the World Wide Web (Web) and the Internet, the study of 

large, random networks has acquired new prominence. Recent empirical studies have shown 

statistical similarities between these two and other complex, real-life networks such as the 

network of phone calls, power-distribution networks, citation network, science-collaboration 

network, movie-actor collaboration network, the network of sexual contacts, neural networks, 

and various infrastructure networks [AB02, New03b, BFT01]. The term web-like is used in this 

dissertation to refer to the real-life networks cited above and others that are statistically similar. 

This term is preferred over the most widely used term scale-free because that the emphasis in 

this dissertation is not on any scale-free property of web-like networks. Viewed as large, random 

graphs in which birth and death of nodes and links are taking place, they differ from the classical 

Erdös-Rényi (ER) random graphs [ER59, ER60] in significant ways. Most notably, for many 

web-like networks the proportion of nodes with degree k  decreases as k γ−  (i.e., as a scale-free 

power-law) while in the  random graph n pG ,  this proportion follows approximately a Poisson 

distribution. Moreover, web-like networks exhibit a significantly greater degree of clustering 

than n pG , .  

 This dissertation is concerned with another recently discovered characteristic of web-like 

networks. This characteristic—known as the community structure—pertains to the fact that 

certain small, dense subgraphs occur in web-like networks much more frequently than they do in 

the  ER random graphs. Such dense subgraphs have been found in seemingly unrelated networks 

such as the Web [KRRT99, DKMR01], email networks [GDDG03], citation networks 

[ADDG04], biological networks [GN02, MSIK02], etc. The notion of community has emerged in 
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an effort to formalize these empirical findings. In the broadest sense, a community in a web-like 

network has been defined as a group of nodes that induces a dense subgraph which is sparsely 

linked with the rest of the network. A community has also been defined in graph-theoretic terms 

(e.g., complete bipartite subgraph [KRRT99], or defensive alliance [FLG00, HHH03, RCCL04])  

as well as algorithmically (e.g., the hubs-and-authorities communities produced by the HITS 

algorithm [Kle99]).  

 The pervasiveness of community structure in web-like networks, has led researchers to 

believe that such cohesive groups of nodes might represent meaningful entities. For example, in 

the Web such tightly-knit groups of nodes might represent pages with a common topic, 

geographical location, etc., while in the neural networks they might represent evolved 

computational units.   

 Currently, there is a widespread interest in finding efficient algorithms for mining 

communities. This interest stems from a wide array of envisioned applications for such 

algorithms, as outlined next: 

 a) Web applications: The ongoing rapid and apparently chaotic growth of the Web has 

posed unprecedented scaling and algorithmic challenges for Web-related applications such as 

crawlers and search engines [DG03, Hen03]. Two prominent such challenges are:  

• Increasing the coverage and maintaining the currency of search engine indices: It has 

been known for some time that search engines cover only a fraction of the Web. For 

instance, in 2000, no search engine covered more than  16%  of the Web and the top 11 

search engines combined covered about 50%  of the Web [LG00]. Exhaustive crawling 

is, in fact, becoming increasingly unattainable due to the huge size and dynamic 

content of the Web [CBD99, DG01b, Hen03]. To address such issues, focused (or, 
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topical) crawlers [CBD99, DCLG00, MPS04] have been proposed as an alternative to 

general-purpose crawlers. Guided by community-mining algorithms, such crawlers 

would selectively seek out pages that are relevant to a pre-defined topic, thereby 

improving the coverage and the currency of the indices. 

• Reducing the number and increasing the relevance of hyperlinks returned to a user 

query: A user searching the Web can be overwhelmed by the large number of results 

returned by a search engine. In addition, queries are often prone to ambiguity: some of 

the returned results are completely unrelated. The PageRank [PBMW98] algorithm 

took a first step to remedy these issues by assigning a prestige value to each web site 

and sorting the responses by the prestige value before returning them. Obviously, more 

needs to be done. For instance, if the search engine could group the responses along the 

lines of different topics1, then the user could quickly jump to the desired specific topic. 

This application calls for algorithms to cluster (a subgraph of) the Web into 

communities. 

 b) Network security: The design of algorithms for quarantining (containing) the 

propagation of cyber attacks has become an important research area for network security. 

Quarantining techniques, often consist in deploying software agents which can block the 

propagation of malicious code [DN03]. A major challenge is to select a subset of nodes in the 

network where these software agents may be deployed in order to maximize the efficiency of 

quarantining. Characterization of the community structure of a cyber-graph may be utilized to 

design efficient quarantining strategies, for example by deploying the software agents in the 

sparse regions of the cyber-graph. 

                                                 

1 A search-engine which does that can be found at http://clusty.com. 
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 c) Network compression: Due to the massiveness of many important real-life networks, 

the compression of networks has emerged as an important research problem [DL98, AM01, 

RG03, LDC04]. Recent compression techniques for the Web graph take into consideration some 

of the recently discovered properties of this network, including the community structure. For 

example, Raghavan and Garcia-Molina [RG03] have proposed a two-level scheme for 

representing the Web graph consisting of: (i) a set of lower-level graphs, each of which encodes 

the interconnections within a small subset of pages; and (ii) a top-level directed graph, consisting 

of “super-nodes” and “super-edges”. The grouping of web pages into super-nodes is guided by 

some empirical observations in the Web, such as domain locality—tendency of web pages to 

point more to other pages in the same domain—and the high probability that web pages with 

similar adjacency lists are topically related. Extending these ideas, one could argue that a better 

characterization of the community structure in the Web could lead to a more efficient method to 

group pages into super-nodes which, in turn, could improve the compression technique. 

 Besides the above applications of community-mining, there are numerous others such as 

automatic re-population of topic taxonomies with newer and more relevant pages [CDAR98], 

Web-filtering (e.g., identification of hate or pornographic websites) [DVGB03], selective 

advertising [RC02], assisting search engines in handling Web spamming  [FMN04], etc.  

 In this dissertation, the community structure in web-like networks is investigated by a 

combination of analytical and computational techniques:  

First, we consider the problem of modeling the web-like networks. In the recent years, many 

new random graph models have been proposed to account for the newly-discovered properties of 

such networks [DC05d]. The vast majority of these models take into account only the addition of 

new nodes and edges. Yet, several empirical observations indicate that the deletion of nodes and 
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edges occurs frequently in web-like networks [VPV02, BBKT04]. Inspired by such observations 

we propose and analyze two dynamic random graph models that combine node and edge addition 

with a uniform and a preferential deletion of nodes, respectively [DC05a, DC05c]. In both cases, 

we find that the random graphs generated by the proposed models follow power-law degree 

distributions (in agreement with the degree distribution of many web-like networks). 

 Second, we analyze the expected number of certain small subgraphs—such as defensive 

alliances on three and four nodes—in various random graphs models. Our findings show that 

while in the binomial random graph ,n pG  the expected density of such subgraphs is very close to 

zero, in some new dynamic random graph models it is much larger. These findings converge 

with the results we have obtained by computing the number of communities in some crawls of 

the Web [BCD05], via sampling. 

 Next, we investigate the computational complexity of community mining under various 

definitions of community. Assuming the definition of community as a global defensive alliance, 

or global offensive alliance [KHH04] we prove—using transformations from the dominating set 

problem [GJ79]—that finding optimal communities is an NP-complete problem. 

 These complexity results and similar ones obtained by other authors [FTT04], coupled 

with the fact that many web-like networks are huge, indicate that it is unlikely that fast, exact 

sequential algorithms for mining communities may be found. To handle this difficulty we adopt 

an algorithmic definition of community and a simpler version of the community-mining 

problem, namely: find the largest community to which a given set of seed nodes belong. We 

propose several greedy algorithms for this problem [DC05b]. The first proposed algorithm starts 

out with a set of seed nodes, and then repeatedly selects some nodes from community’s 

neighborhood and places them in the community. In each step, this algorithm uses clustering 
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coefficient [WS98]—a parameter that measures the fraction of the neighbors of a node that are 

neighbors themselves—to decide which nodes from the neighborhood should be pulled in the 

community. This algorithm has time complexity of order 2
max( )O nd , where n  is the number of 

nodes visited by the algorithm and maxd  is the maximum degree encountered. Thus, assuming a 

power-law degree distribution  this algorithm is expected to run in near-linear time. This 

conclusion is supported by our timing results. The proposed algorithm achieved good accuracy 

when tested on some real and computer-generated networks: the fraction of community nodes 

classified correctly is generally above 80% and often above 90% . 

 A second algorithm based on a generalized clustering coefficient, where not only the first 

neighborhood is taken into account but also the second, the third, etc., is also proposed. This 

algorithm achieves a better accuracy than the first one but also runs slower. Finally, a 

randomized version of the second algorithm which improves the time complexity without 

affecting the accuracy significantly, is proposed.  

1.1. Terminology and Basic Definitions  

 This dissertation adheres to the standard terminology of graph theory (e.g., [Deo74, 

Die00]). A description of all the symbols used in this dissertation is provided in the List of 

Symbols and some graph-theoretic concepts which have received substantial attention recently, 

are briefly discussed next.  

 Degree distribution and degree correlation: The degree distribution of a graph is the 

probability distribution function of the degree of a node chosen uniformly at random. The 

symbol γ  is used to denote the exponent of a power-law distribution—which arises frequently in 
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web-like networks. Degree correlation is a measure of the mixing patterns according to degree, 

i.e., it indicates whether high-degree nodes are linked more often to other high-degree nodes or 

to small-degree ones. Borrowing terminology from sociology and ecology, the networks where 

the former case is true have been called assortative, while the networks where the later case is 

true have been called disassortative [New03b]. Newman [New03a] has proposed using the 

Pearson correlation coefficient r  of the degrees at either end of a randomly chosen edge, to 

quantify the degree correlation of a network. This number would be positive for assortative 

networks and negative for disassortative ones. 

 Clustering coefficient: This parameter, which was first introduced by Watts and Strogatz 

[WS98], measures the fraction of the neighbors of a node that are neighbors themselves. 

Clustering coefficient has attracted substantial attention recently, in part due to the surprising 

discovery that in many web-like networks the value of this parameter is much higher than in the 

classical random graphs. The clustering coefficient of a node u  is given by   

no of edges between the neighbors of
( )

( 1) 2u u

u
C u

d d

.
=

− /
 

Note that this definition is not valid for nodes with degree less than two; the clustering 

coefficient of such nodes is usually taken to be zero.      

 Two different approaches have been proposed to extend the definition of clustering 

coefficient to the whole graph: The first approach proposes a parameter called the clustering 

coefficient of graph G  and denoted by ( )C G  which is given by  

( )
( )

v V
C v

C G
n

∈
=
∑

 

 The second approach proposes a parameter known as transitivity of the graph G  and 

denoted by ( )T G . This parameter was first proposed by Barrat and Weight [BW00] as an easier-
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to-compute approximation of the clustering coefficient of a small-world network [WS98] and is 

defined as  

3 number of triangles
( )

number of paths of length two
T G

×
=  

The factor of three in the numerator ensures that T  lies in the range [0 1], . Note that the 

definition of transitivity ( )T G , unlike that of clustering coefficient ( )C G , does not exclude the 

nodes with degree less than two.  

 Small-world property: The distance ( )d u v,  between two nodes u  and v  is the length of 

the shortest path between them. If such a path does not exist, then ( )d u v,  is taken to be ∞ . The 

average distance of a graph is given by  

( )
dist( )

( 1) 2

u v V
d u v

G
n n

, ∈
,

=
− /

∑
 

To avoid an infinite value, the average distance of a disconnected graph may be computed by 

first finding the average distance of each connected component separately and then taking the 

average of these values.  The diameter of a graph is defined as  

diam( ) max { ( )}u v VG d u v, ∈= ,  

 For a disconnected graph, the diameter may also be defined as the maximum of the 

diameters of its connected components. A graph is said to satisfy the small-world property if its 

diameter is of order (log )O n [WS98].  

 Connectedness and the giant component: An undirected graph is said to be connected if 

there is a path between every pair of nodes. A graph that is disconnected may be partitioned into 

connected components which are connected, pairwise-disjoint subgraphs. A graph is said to have 

a giant component [JKLP93] if it contains a connected component of size nε , for some 0ε > , 
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while all other components have size of order (log )O n . A graph is said to be k-connected, if 

every pair of nodes can be connected by at least k  edge-disjoint paths. A directed graph is said 

to be strongly connected if for every pair of nodes ,u v  there is a directed path from u  to v  and 

another one from v  to u . 

  Robustness: In order to function properly, many real networks such as the Internet or the 

energy power grids, must be connected. Hence, in many practical cases it is important to have a 

measure of the fraction of nodes of a connected network that must be removed in order to break 

the network into two or more components. This fraction has been called the robustness (or, 

resilience) of a network. The nodes may be removed randomly or based on some strategy. The 

former case corresponds to random network failures whereas the latter corresponds to failure due 

to malicious attacks. 

 In addition to the above parameters that have been studied widely in the context of web-

like networks, a few others have also received some attention: The spectra of a graph are the 

eigenvalues of its adjacency matrix; they can provide important information about the structure 

of the graph. The betweenness centrality or load of a node is defined as the number of shortest 

paths passing through that node; the betweenness of an edge is defined analogously.  

 Next, we provide a brief introduction to the notion of random graph, which plays a 

central role in this dissertation. 
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1.2. The Concept of Random Graph 

 A random graph model may be specified in two ways: (i) through an algorithmic 

definition; and (ii) through a formal, mathematical definition. These two methods are illustrated 

next by taking as an example the classical random graph model n pG , .  

 The first method consists of providing an algorithm (or, procedure) that generates an 

instance of the random graph n pG , . This procedure is defined as follows: First, enumerate the 

two-element subsets of the set [ ]n  as 1… M, ,  where ( 1) 2M n n= − / . Then, let 1 MX … X, ,  be 

independent Bernoulli random variables with parameter p  and join with an edge the pair of 

nodes in the thi  subset if and only if 1iX = .  

 The second method consists of explicitly defining the probability space n p,G , whose 

elements are random graphs with set of nodes [ ]V n= . One way of doing this, is the following 

[Die00]: Let 2[ ]V  be the set of 2-element subsets of V , i.e., 2[ ]V  is the set of all potential edges 

of an undirected, simple graph on V . For every potential edge 2[ ]e V∈ , let {0 1 }e e eΩ := ,  be a 

probability space for which the measure is specified as: ({1 })e e p:=P  and ({0 }) 1e e p:= −P . 

Then, the probability space n p,G  is defined as the product space of all the spaces eΩ :  

[ ]2n p ee V, ∈
:= Ω∏G  

Thus, formally an element of n p,G  is a map assigning to every 2[ ]e V∈  either 0e  or 1e , and the 

probability measure P  on n p,G  is the product measure of all the measures eP . In practice, each 

point n pω ,∈ G  is assumed to represent a graph on V  with edge set { ( ) 1 }ee eω| = . Each element 

of the space n p,G  is called a random graph on V  with edge-probability p .  
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 Example 1.1: Assume that 3n =  and 0.4p = . The potential edges of a simple graph 

on the nodes 1, 2, 3  may be enumerated as 1 2 3(1,2), (1,3), (2,3)e e e= = = . Figure 1.1 shows 

the elements of the space 3,0.4G  (in one-to-one correspondence with the simple graphs on three 

nodes) and the probability assigned to each these elements. As an illustration, the probability 

assigned to the element 
1 2 3

0 0 0e e e  of the space 3,0.4G  is: 

1 2 3 1 1 2 2 3 3
(0 0 0 ) (0 ) (0 ) (0 ) (.4)(.4)(.4) .064e e e e e e e e e= = =P P P P  

1 2 3
0 0 0e e e   

1 2 3
0 0 1e e e 1 2 3

0 1 0e e e                  
1 2 3

1 1 1e e e  

 

 

0.064      0.096     0.096                       0.216  

Figure 1.1: The elements of the binomial probability space 3,0.4G  

The probability assigned to each of the remaining elements of this space is obtained similarly. ■  

 Having defined the probability space of a random graph model, one can talk about such 

probabilistic concepts as events, random variables, moments, convergence, etc.  

 Events: Any set of graphs on [ ]V n=  is an event in n p,G . In particular, for every 2[ ]e V∈  

the set eA  of all graphs n pG ,  having e  as an edge is an event: the event that e  is an edge n pG , . It 

is straightforward to show that the events eA  are independent and occur with probability p  

([Die00], p. 231). As another example, let H  be a given graph of order n  and size m  and 

denote by HA  the event that H  is a subgraph of ,n pG . Since  HA  consists of those graphs in the 

space ,n pG  that contain all the m  edges of H , it follows that ( ) m
HA p=P .  

1 1 1 1 

3 2 3 2 3 2 3 2 
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 Random variables and moments: A random variable X  defined on the space ,n pG  is a 

function ,: n pX →G R . Thus, the graph parameters discussed earlier such as degree of a random 

node, average degree, degree correlation, average distance, diameter, robustness, clustering 

coefficient, etc., are examples of random variables on ,n pG . Ideally, one would like to know the 

probability distribution function of each such graph parameter. In practice, this is often difficult 

to achieve; in such cases one usually resorts to the study of the first and the second moments of 

these random variables. As an example, let X  denote the number of triangles—i.e., cycles of 

length three. It may be shown that ( ) 3( 1)( 2) 6X n n n p= − −E . This follows immediately 

from the following two observations: (i) each fixed triangle is a subgraph of ,n pG  with 

probability 3p ; (ii) there are ( 1)( 2)n n n− −  distinct three-element sequences with elements 

from [ ]n  and each triangle is specified by 6  of these sequences. 

 Asymptotics: Of particular interest in the study of random graph models is the asymptotic 

case n → ∞ . An event A  is said to happen asymptotically almost surely (a.a.s.) if ( ) 1A →P  

as n → ∞ . Let, for instance, eA  be the event that e  is not an edge of ,n pG , for some fixed 

2[ ]e V∈ . From an earlier observation if follows that ( ) 1eP A p= − . If ( ) 1p p n n= = , then the 

event  eA  happens a.a.s. 

 Critical functions: A graph property P  is formally defined as a set of graphs closed 

under isomorphism. For instance, the property “G  is connected” consists of all connected 

graphs. Given a graph property P , it is said that almost every (a.e.) graph has P , if 

,( ) 1n pG ∈ →PP  as n → ∞ . The most interesting cases in the study of the space ,n pG  arise 
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when ( )p p n=  is a decreasing function of n . A real function ( )t t n=  is called a critical (or, 

threshold) function for a graph property P , if  

( ),

0 if lim ( ) ( ) 0
lim

1 if lim ( ) ( ) .
n

n pn
n

p n t n
G

p n t n
→∞

→∞
→∞

⎧ =⎪⎪⎪∈ = ⎨⎪ = ∞⎪⎪⎩
PP  

In the next chapter, several other random graph models are discussed. 

1.3. Some Experimental Studies of Web-like Networks 

  We conclude Chapter 1 with a brief review of some empirical studies of the Web, the 

Internet and other selected web-like networks. 

 The Web: This network can be modeled as a graph at two different levels: At the web 

page level, nodes stand for web pages, while arcs stand for hyperlinks between web pages. At 

the web site level, nodes stand for web sites—which, generally, comprise many web pages. Two 

web sites are joined by an arc if and only if there is at least a pair of web pages—one in each web 

site—that are joined by an hyperlink. Unless otherwise indicated, the experimental results cited 

below relate to the graph model of the Web at the page level.  

 First, it has been found that both in- and out-degree of the Web graph follow power-law 

distributions with exponents 2.1  and 2.4 , respectively [DKMR01, BKMR00]. In terms of 

connectedness, it has been found that the Web has an interesting structure—called the “bow-tie” 

[BKMR00]—essentially consisting of a large strongly connected component (the core) and two 

other connected components that have only unidirectional links to and from the core, 

respectively. The size of connected and biconnected components follows a power-law 

distribution [BKMR00, AH01, DKMR01]. Further, the Web graph satisfies the “small-world” 
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property, i.e., it has a small diameter (e.g., the value 19 has been reported as an estimate for the 

diameter of the whole Web in [AJB99] and the value 28 as an estimate for the diameter of the 

strongly connected component in [BKMR00]). In addition, the Web graph has been found to 

contain large quantities of some signature subgraphs such as complete bipartite cores and 

webrings [KRRT99], certain subgraphs on 3 or 4 vertices (e.g., triples of nodes where each pair 

is linked with two arcs oriented in opposite directions) [MSIK02], etc. Finally, it has been shown 

that the Web displays a fractal-like self-similarity: certain sub-regions of the Web display the 

same characteristics as the Web itself [DKMR01]. This self-similarity is both distributional and 

structural and is displayed at various scales: First, if a subgraph induced by a sufficiently large 

set of web pages that form a thematically unified cluster (TUC)—a set of web pages sharing a 

common theme, such as content, geographical location, etc.—is fixed, then several parameters of 

that subgraph such as degree, or the size of connected components, follow power-law 

distributions. In addition, many such TUCs have a “bow-tie” structure and contain large numbers 

of small bipartite cores. Second, if the Web graph is modeled at the level of web sites, then the 

same structure and distributions are observed (with approximately the same constants). 

 The Internet: The Internet can also be modeled at two levels: microscopic and 

macroscopic. In the Microscopic Internet graph, nodes stand for routers and hosts, while edges 

represent communication links. The Macroscopic Internet graph can be thought of as a 

contraction of the Microscopic Internet graph: here, each node represents an autonomous system 

(which incorporates a number of routers). Two nodes in the Macroscopic Internet graph are 

adjacent if there is at least one pair of routers (belonging to different autonomous systems) that 

can communicate. Both of these graphs have a power-law degree distribution [FFF99, GT00]. 

Further, it has been shown [YJB02] that the Macroscopic Internet graph has clustering 
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coefficient between 0.18 and 0.3 and average distance between 3.70 and 3.77. Similar values for 

clustering coefficient and average distance were found by another study [VPV02] where some 

additional parameters, such as node betweenness and degree correlations were also studied.  

 Next, we summarize the salient properties of some other web-like networks. Many of 

these networks are more naturally modeled as undirected graphs, while others as directed graphs. 

For each network below we have indicated what the nodes and edges (arcs) represent. For a more 

elaborate description of these networks and additional examples the reader is referred to the 

surveys [DM02, AB02, New03b].  

• Citation network: nodes – published articles; arcs – citations of one article from another.  

• Food-web network: nodes – species; arcs – prey/predator relationships.  

• Movie-actors network: nodes – actors; edges – collaboration in a movie.  

• Neural networks: nodes – neurons; edges – synaptic connections.  

• Peer-to-peer networks: nodes – computers; edges – file-sharing between computers  

• Phone-call network: nodes – phone numbers; arcs – completed calls during a fixed period  

• Science collaboration network: nodes – scientists; edges – collaboration between 

scientists  

• Word co-occurrences network: nodes – words; edges – co-occurrence of words in 

consecutive positions or one word apart in a sentence.  

 Table 1.1 summarizes the known properties of these networks. From the data in this table 

one can observe three common characteristics of web-like networks: (1) the average distance is 

generally small i.e., these networks satisfy the small-world property; (2) the clustering coefficient 

is significantly greater than zero; and (3) the degree distribution generally follows a power-law 

with exponent that falls between 2 and 3 (in the case of directed networks the same is true for 
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both in- and out-degrees). Furthermore, the networks shown in Table 1.1 and many other web-

like networks are sparse i.e., the number of edges is of the same order as the number of nodes 

(or, put differently, their average degree is small).  

 

Table 1.1: Some parameters of selected real-world networks 

Network n  m  ( )d G  dist( )G  γ  T  r  

Peer-to-peer 880 1296 1.47 4.28 2.1 0.011 −0.366 

Citation 783339 6716198 8.57 − 3.0/− −  

Math collab. 253339 496489 3.92 7.57 − 0.34 0.12 

Movie actors 449913 25516482 113.43 3.48 2.3 0.78 0.208 

Phone calls 647 10×  680 10×  3.16 − 2.1 − − 

Word co-occ. 460902 617 10×  70.13 − 2.7 0.44 − 

Marine food 135 598 4.43 2.05 − 0.23 −0.263 

Neural netw. 307 2359 7.68 3.97 − 0.28 −0.226 

A – sign indicates that data is not available 

 

 It is natural to ask that all mathematical models of web-like networks should, at the very 

least, satisfy the properties above. Several new random graph models displaying these properties 

have been discovered recently. We discuss these models in the next chapter. 
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2. RANDOM GRAPH MODELS 

 The ubiquity and the increasing importance of web-like networks have spawned a truly 

cross-disciplinary research aimed at understanding their fundamental properties and functions.  

 Two groups of questions are of main interest: First, we would like to know the graph 

structure of these networks. Some of the simplest questions that may be asked for each network 

are: Is it sparse or dense? What does its degree sequence look like? How many connected 

components does the network have, and what are their sizes? If a network is connected, how 

robust is it, i.e., what fraction of nodes must be removed to break the network into disconnected 

components? What is the typical distance between two nodes? etc. Second, we need to 

understand how the structure of these networks affects the behavior of dynamic processes that 

occur on them. For instance, we would like to know how social networks facilitate or constrain 

the spread of diseases, or how the properties of the Internet can be exploited to devise efficient 

strategies for containing the spread of viruses and worms, etc. Answering such questions 

precisely has proven to be hard because virtually all web-like networks are dynamic, i.e., their 

sets of nodes and edges change continuously due to the birth of new nodes and edges or due to 

the death of existing ones and because these networks are generally enormous.  

 Given such dynamic and massive structures, is there any hope for researchers to gain 

some insight into their function and structural properties? The key to answering this question has 

turned out to be the use of nondeterministic methods. In particular, an iterative interplay between 

experimental data and modeling—where both data and models are statistical in nature—has 

emerged as a promising tool in advancing our understanding of web-like networks. This 

interplay unfolds as follows: first, a small number of experimentally found properties of real 

networks are used as the basis for the design of a mathematical model that displays all of these 
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properties; next, this model is investigated analytically to obtain additional properties; finally, the 

newly-derived properties are validated against the real-world data and the whole process is 

repeated in order to obtain models that are as accurate as possible. Correct models of web-like 

networks serve two major purposes: (i) first, they can provide an insight into the basic processes 

responsible for the structure of such networks; and (ii) they can be used as tested to study the 

behavior of dynamic processes occurring on web-like networks and the performance of various 

network algorithms.   

 Nondeterministic models of networks can be traced back to the 1950’s with the 

introduction of the classical random graphs n mG ,  by Erdös and Rényi [ER59, ER60] and n pG ,  by 

Gilbert [Gil59]. For several decades, these random graphs have been studied intensively both for 

their theoretical interest and as the only sensible and rigorous approach in modeling large, 

random, real-life networks. During those years, detailed topological data on web-like networks 

was generally unavailable and the computational power to analyze such networks was 

insufficient. Therefore, a comparison between real networks and the classical random graph n pG ,  

was difficult. In recent years, the situation has changed: the computerization of data acquisition 

(e.g., obtaining the structure of the Web via crawling), as well as the availability of high 

computational power and efficient algorithms have allowed researchers to carry out experiments 

on large data sets extracted from real-life networks. The results of these experiments have made 

it clear that classical random graphs differ significantly from web-like networks, especially in the 

(a) degree distribution; (b) clustering coefficient; and (c) community structure, as explained in 

Chapter 1.  

 Beginning with the small-world model by Watts and Strogatz [WS98] and the 

preferential attachment model by Barabási et al. [BAJ99], many new random graph models have 
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been defined and studied in the recent years in an effort to explain these new empirical findings. 

Currently, the work in this area is growing rapidly and may be grouped into three main 

categories: (1) experimental study of real networks; (2) analysis of the new random graph models 

using heuristic and/or rigorous techniques; and (3) design of new network algorithms. The 

surveys by Dorogovtsev and Mendes [DM02] and Albert and Barabási [AB02] summarized the 

initial work in the field. Bollobás and Riordan [BR03b] surveyed the initial rigorous 

mathematical results in this area. The list of 429 references in the more recent survey by 

Newman [New03b] is an indicator of the rapid growth of the field. A number of books [Bar02, 

Buc02, Wat03, DM03, BFS03] have also appeared on this topic.  

 This chapter is devoted to the discussion of various random graph models and some 

techniques for analyzing them. Random graph models may be classified into two groups: (1) 

static (also known as explicit or off-line); and (2) dynamic (also known as recursive or on-line). 

The difference between the two groups may be explained as follows: In a static model, the set of 

nodes is fixed at the beginning of the algorithm that defines it (the set of edges may change). The 

random graph n pG , , described in the previous chapter, is an example of a static model. On the 

other hand, in a dynamic model, the sets of both nodes and edges may change during the course 

of the defining algorithm. Several examples of dynamic random graph models—which have 

emerged as more likely candidates for modeling web-like networks accurately—will be 

presented in this chapter. However, for completeness, we first provide a short discussion of three 

static models: (i) the classical random graphs; (ii) the small-world graphs; and (iii) the random 

graphs with given degree distribution. 
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2.1. Static Random Graphs 

Classical random graphs 

 The definition of random graph model n pG ,  (known as the binomial model) was shown in 

Section 1.2. There is an equivalent model, known as the uniform model and denoted by n mG ,  

[ER59, ER60], which is formally defined as follows: Let ,n m�G  be the set of all undirected, simple 

and labeled graphs of order n  and size m ; this set clearly has ( )Mm  elements, where 

( 1) 2M n n= − . To turn ,n mG  into a probability space, each of its elements is assigned a 

probability of ,1 n mG .  Any element of the probability space ,n m�G  is called a (uniform) random 

graph and is denoted by ,n mG . 

 Example 2.1: Assume that 4n =  and 5m = . It follows that 6M =  and 

( )4,5
6
5

6= =G . The elements of the space  4,5G  are shown in Figure 2.1, below: 

Figure 2.1. The elements of the uniform probability space 4,5G . 

Each of these six elements is assigned a probability of 16  in the probability space 4,5�G .■  

 Additional examples and further discussion of classical random graphs at an introductory 

level may be found in [BBSR05].  
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 The following algorithm generates a random graph ,n mG : Beginning with n  isolated 

nodes, add one by one m  edges chosen independently, uniformly at random (avoiding self-loops 

and parallel edges).  

 It has been shown that the random graphs ,n pG  and ,n mG  are essentially the same for 

m pM=  [Bol79]. Thus, choosing one of these two models to work with is a matter of 

convenience.  

 Many papers and a number of books have been written on classical random graphs. The 

book by Palmer [Pal85] is a gentle introduction to the area; the book by Bollobás [Bol85] 

provides an in-depth analysis of the properties of random graphs and the book by Janson et al. 

[JLR00] is a comprehensive treatment that also includes the major recent developments.  

  Next, we describe by informal arguments some of the most salient properties of n pG ,  and 

compare them with the corresponding properties of web-like networks. First, consider the degree 

distribution of n pG , . Let v  be a node selected uniformly at random from n pG ,  and denote by 

( )kP  the probability distribution function of the random variable ( )d v . Since each of the 

remaining 1n −  nodes of n pG ,  can independently be a neighbor of v  with probability p , it 

follows that ( )d v  has a binomial distribution with parameters ( 1)n −  and p , i.e., 

( ) ( ) (1 )k n kn

k
k p p −= −P . This distribution is clearly quite different from the power-law degree 

distribution observed in many web-like networks.  

 Next, consider the clustering coefficient of n pG , . The expected number of neighbors of a 

node v  that are neighbors themselves is ( 1) 2v vd d p− / , i.e., the expected clustering coefficient of 

each node is p . Therefore, ( ) ( )( ) ( )n p n pC G p d G n, ,= = /E E , implying that the clustering 
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coefficient of n pG ,  becomes vanishingly small when n  grows very large with the average degree 

( )n pd G ,  remaining constant. In fact, it has been observed the clustering coefficient of many web-

like networks is 210 - 310  times larger than the clustering coefficient of a classical random graph 

of the same order [AB02].  

 Now, consider the degree correlation defined as the Pearson correlation coefficient r  of 

the degrees at either end of a randomly chosen edge. Since the edges of n pG ,  are placed 

independently of the degrees of the two ends, it follows that 0r = . On the other hand, a number 

of web-like networks have been found to have nonzero degree correlations (Table 1.1).   

 Having pointed out some differences between classical random graphs and web-like 

networks, we note that n pG ,  has an important property in common with web-like networks: In 

many ranges of p , n pG ,  satisfies the small-world property, e.g., [Bur74, Bol90, Luc98, CL01].  

 

Small-world graphs 

 Watts and Strogatz [WS98] analyzed the following interpolation between regular and 

random graphs. Consider n  nodes 1 nv … v, ,  which are spread equidistantly along the curve of a 

ring. Assume that each node is linked with an edge to each of its k  nearest neighbors on either 

side (Figure 2.2(a)). The resulting graph is called the k-nearest neighbor regular lattice [WS98] 

(it is the same as the Harary graph 2 ,k nH , which is the smallest k-connected simple graph of 

order n  and size nk ).  Now, pick any node iv  and perform the following rewiring procedure for 

each of the k  edges incident on iv  in the clockwise sense: with probability p , reattach this edge 

so that it joins iv  to a node chosen uniformly at random among the remaining 1n −  nodes 

(disallowing parallel edges); with probability 1 p−  leave the edge in place. The procedure 
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above is repeated by moving clockwise around the ring, considering each node in turn until one 

lap is completed. This construction, known as the WS rewiring algorithm, allows one to "tune" 

the graph between regularity ( 0p = ) and disorder ( 1p = ) and thereby to study the region 

0 1p≤ ≤ . An illustration of small-world graph is shown in Figure 2.2.  

  

   

(a) (b) (c) 

Figure 2.2. A small-world random graph with 8, 2n k= =  and (a) 0p = ; (b) 0.5p = ; (c) 

1.p =  

 Newman and Watts [NW99] introduced a slightly-different version of the small-world 

model—the edge-addition algorithm—where new edges are repeatedly added between random 

pairs of nodes, instead of existing edges being rewired.  

 It should be mentioned that the random graph obtained at the end of the WS procedure 

with 1p =  is not the same as n mG , , because after the rewiring has been completed, every node 

of the resulting random graph will have degree at least k . A better understanding of the 

relationship between the small-world model and the classical random graph model may be 

achieved by looking at the mathematical definition of small-world model: Let , ,n k pG  denote the 

probability space of the small-world model (after the rewiring has been completed) with 

parameters ,n k  and p . The following example shows that the uniform random graph space 
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,n nkG , and the small-world graph space , ,1n kG , differ both in the number of their elements and in 

the probabilities they assign to equal graphs. 

 Example 2.2: Consider the small-world probability space 4,1,1G . It is straightforward to 

enumerate all possible graphs that may arise during the WS edge-rewiring procedure by using a 

tree, as shown in Figure 2.3(a). Each level of this tree depicts the rewiring of the edges of a 

single node (shown encircled). The number to the left of each graph denotes the probability that 

this graph will arise during the WS procedure. By completing the last two levels of the tree in 

Figure 2.3(a) one may see that the space 4,1,1G  has  14  elements. Furthermore, the  probabilities 

associated with these elements are obtained, respectively, by dividing 

9,15,10,10,10,12,6,12,6,12,18,12,6,6  by 144 . On the other hand the classical random graph 

space 4,4G  consists of 15  graphs, each with an assigned probability of 115 .  

 

 

 

 

(a) (b) 

Figure 2.3. (a) Enumeration of the elements of the space 4,1,1G ; (b) The single graph that belongs 

to the space 4,4G  but not to the space 4,1,1G . 

It is easy to verify that the graph shown in Figure 2.3(b) is the only graph that belongs to 4,4G  but 

not to 4,1,1G .■  
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 Watts and Strogatz [WS98] looked at two properties of the small-world model—the 

average distance and the clustering coefficient—for 0 1p≤ ≤ . Their findings may be 

summarized as follows: 

 (i) Total order, 0p = : The average distance of k-nearest neighbor lattice grows as 4n k/  

i.e., linearly with n  and hence this graph does not display the small-world property. Further, the 

clustering coefficient of this graph is asymptotically close to 3 4/ , i.e., the graph is highly 

clustered.  

 (ii) Total disorder, 1p = :  In this case, it was demonstrated experimentally that the 

average distance of the resulting graph grows logarithmically with n , i.e., the graph has the 

small-world property. Further, the clustering coefficient in this case approaches zero as n → ∞ .  

 (iii) From order to disorder, 0 1p< < : The above two extreme cases indicate that large 

average distance is associated with large clustering coefficient, and small average distance with 

small clustering coefficient. Surprisingly, it was found [WS98] that there is a wide range of p  

(0.01 0.1p< < ) where the average distance is small whereas the clustering coefficient is large. 

The above authors proposed the term “small-world network" to refer to networks that have small 

average distance and large clustering coefficient. The explanation offered for the small-world 

phenomenon is that only a few rewired edges are sufficient to decrease the average distance 

significantly without affecting much the clustering coefficient. It turned out that this fact had 

been know in the random graph community long before Watts and Strogatz rediscovered it (see 

[BR02]). However, the paper by Watts and Strogatz drew a lot of attention and many additional 

papers on the properties of small-world networks have been published (e.g., [BA99b, NW99, 

BW00, MN00, NMW00, Kle00, AKS02]).  
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 Despite the fact that, for appropriate values of p , the small-world random graph model 

exhibits two of the salient properties of web-like networks, it was observed [BW00] that for all 

values of p , the degree distribution is essentially a binomial one and hence it differs 

substantially from the power-law degree distribution of web-like networks.  

 

Random graphs with given degree distribution 

 A sequence of positive integers 1 2( , )nd d … d= , ,D  is said to be graphic if there is a graph 

having D  as degree sequence. Characterizations of graphic sequences have been known for 

many years (e.g., [EG60, Hak62]). Given a graphic sequence D , denote by ΩD  the set of all 

graphs with set of nodes [ ]n  and degree sequence D . A random graph with degree sequence D  

is a graph chosen uniformly at random from ΩD .   

 Example 2.3: Consider the degree sequence {2,2,1,1,2,2} . It may be seen that there are 

only two simple graphs on 6 nodes having this degree sequence. These graphs are shown in 

Figure 2.4: 

  

Figure 2.4. The two simple graphs on 6  nodes having degree sequence {2,2,1,1,2,2} . 

Hence, the probability space {2,2,1,1,2,2}Ω  consists of these two graphs each associated with a 

probability of 0.5 .■  

 Because it is difficult to design an algorithm that generates random graphs with given 

degree sequence, it has become standard to work instead with random configurations on a given 
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degree sequence and use some lemmas that allow one to translate the results from one model to 

the other. The configuration model was introduced by Bender and Canfield [BC78] and refined 

by Bollobás [Bol85]. The following procedure generates a random configuration with n  nodes 

on the degree sequence 1( )nd … d= , ,D : (1) form a set L  containing id  copies of node i  for 

1i … n= , , , (2) choose a random matching of the elements of L . Each configuration represents 

an underlying multigraph (i.e., a graph with self-loops and parallel edges) whose edges are 

defined by the pairs in the matching.  

 A slightly different model—random graphs with given expected degrees—was proposed 

by Chung and Lu [CL02]. Given a degree sequence 1( )nd … d= , ,D  a random graph from this 

family may be generated by carrying out the following steps: (i) Begin with n  isolated nodes; 

and (ii) Join each pair of nodes ( , )i j  independently with an edge with probability proportional to 

i jd d . 

 The notion of random graph with given degree sequence may be extended to that of a 

random graph with a given degree distribution: Given an arbitrary discrete probability 

distribution ( )kP , a random graph on n  nodes having ( )kP  as degree distribution, may be 

obtained by generating a random graph with degree sequence consisting of ( )i nP  nodes of 

degree i , for 1, ,i n= … .  

 Molloy and Reed [MR95] derived the following result about random graphs with given 

degree distribution: Let 0 1 …λ λ, ,  be a given distribution. If 
1

( 2) 0kk
k k λ

≥
− >∑ , then a random 

graph G  with the given degree distribution, a.s. has a giant component. Otherwise, if 

1
( 2) 0kk
k k λ

≥
− <∑  then a.s. all the connected components of G  are of size less than 
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(log )O n .  In a sequel paper [MR98], the same authors analyzed the size of the giant component 

in the case when 
1

( 2) 0kk
k k λ

≥
− >∑ . 

 Motivated by the empirical observations of power-law degree distribution in some web-

like networks, Aiello et al. [ACL01], proposed and analyzed a model of random graphs with 

given power-law degree distribution. By applying the results of [MR95, MR98] and other 

techniques these authors obtained the expected distribution of the size of connected components 

in such random graphs.  

 Newman et al. [NSW01] proposed a method for analyzing random graphs with given 

degree distribution based on the formalism of generating functions [Wil90]. Among other things, 

they re-derived the result of [MR95] cited earlier and showed how their technique may be also 

applied to directed and bipartite graphs.  

 Cohen et al. studied the robustness of random graphs with given power-law degree 

distribution under random node removal [CEBH00] and intentional attack [CEBH01]. A similar 

study was carried out by Callaway et al. in [CNSW00]. Schwartz et al. [SCBB02] studied the 

robustness of directed random graphs with given degree distribution, while Cooper and Frieze 

[CF04] studied the size of the strongly connected component in such graphs. 

 Chung and Lu have investigated some asymptotic properties of graphs with given 

expected degrees.  In [CL02] they studied the connected components, in [CL03] the average 

distance, and with Vu in [CLV03] the spectra, of such graphs. 

 Random graphs with given degree distribution and their variants provide a convenient 

tool for modeling web-like networks. However, these models do not provide any insight into the 

elementary processes responsible for the structure or the evolution of web-like networks. 



29 

 Next, we turn to the main topic of this chapter: the dynamic random graph models. These 

models not only generate random graphs that display the known properties of web-like networks, 

but also highlight some basic mechanisms that can potentially explain the evolution of such 

networks.  

2.2. Dynamic Random Graphs 

 A dynamic random graph model is broadly defined as a discrete-time graph process 

1{ ( )}t t t tG V E ≥,  where 1G  is a fixed, small graph and for all 1t > , the graph 1tG +  is obtained by 

making small changes to the graph tG , according to some stochastic rules. Unless otherwise 

indicated, it will be assumed that each node is labeled with the time-step during which it is born, 

i.e., {1 } [ ]tV … t t= , , = .  

 The underlying stochastic rule employed in virtually all dynamic random graph models 

has been some form of either preferential attachment [BA99a] or copying [KKRS00]. The ideas 

behind these two stochastic rules are explained next. 

 Preferential attachment: In the context of dynamic random graph models this rule was 

introduced by Barabási and Albert [BA99a]. It turned out that this stochastic rule has a long 

history and has been previously used in various other fields such as economics and biology 

[Mit04]. It can be explained as follows: Let 1t +  be the only node and 1te +  the only edge added 

at ( 1)tht +  time-step of a dynamic random graph model. Assume that 1te +  is incident on the 

node 1t +  while the other end of 1te +  is chosen at random from the set of existing nodes tV  

based on some probability measure 1 [0 1]t tV+ : → ,P , where 1( )t s+P  denotes the probability of 

node s  being chosen. Such a probability measure is called a preferential attachment rule if 
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1( )t s+P  is proportional to the degree ( )td s  of node s  in the graph tG . A dynamic random graph 

model which is based on a preferential attachment rule, is called a preferential attachment model.  

 Copying: This rule was introduced by Kumar et al. [KKRS00].  It defines a directed 

dynamic random graph model as follows: Let again 1t +  and 1te +  be the only node and the only 

directed arc, respectively, added at ( 1)tht +  step and assume that node 1t +  is the tail of arc 

1te + . Let ts V∈  be a node selected uniformly at random—referred to as the prototype of node 

1t + . According to the copying rule, with probability p  the head of 1te +  is chosen uniformly at 

random from tV , whereas with probability 1q p= −  it is taken to be the head of the arc having 

the prototype node s  as tail (i.e., it is copied from the prototype s ). The intuition behind this 

model comes from Web authoring: When an author decides to create a new web page, the author 

is likely to have some topic in mind. The choice of prototype represents the choice of the topic 

while copying reflects the intuition that a new web page about the topic will probably link to 

many pages that are already linked-to by existing other web pages, but it will probably also link 

to some new pages. 

 We have classified the dynamic random graph models according to two criteria:  

 (i) Preferential attachment vs. copying models: First, we have distinguished between the 

models that are based on some form of preferential attachment rule and those that are based on 

some form of copying. 

 (ii) Birth-only vs. birth-death models: Second, we have distinguished between the models 

in which only the addition of nodes and edges takes place (birth-only) and the models were both 

addition and deletion of nodes and edges takes place (birth-death). 
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 With this classification scheme in mind, we are now ready to list the major dynamic 

random graph models of web-like networks. Note that the vast majority of these models fall in 

the category of birth-only, preferential attachment models. 

 

Birth-only preferential attachment models 

 

 Barabási-Albert (BA) model [BA99a]. The procedure that generates a BA random graph, 

can be described as follows: Beginning with 0ε  isolated nodes, in each time-step a new node and 

0ε ε≤  new edges are added. The ε  new edges are all incident on the new node. The other end 

of each new edge is chosen based on the following preferential attachment rule: 

1

( )
( ) for 1 .

2
t

t

d s
s s t

tε+ = ≤ ≤P              (2.1) 

There are two problems with the definition of this model: First, it starts out with a set 1V  of 

isolated nodes. Hence, for every node 1s V∈ , the probability 1( )sP  is equal to zero and thus the 

process can’t get started. This difficulty may be sidestepped by using different approaches such 

as: (1) beginning with a small graph with non-isolated nodes (see LCD model below); and (2) 

modifying the preferential attachment rule (7) (see DM-1 model below). Another problem with 

the BA model is that it does not allow self-loops and parallel arcs. This restriction prevents the ε  

new edges from being added independently, which in turn makes the model difficult to analyze.  

The next two models are rigorous versions of the BA model: 

 LCD model [BRST01]. This model, defined by Bollobás et al. [BRST01], takes its name 

from the fact that it can be analyzed via Linearized Chord Diagrams (the definition of this 

construct has been omitted since we do not use it in this dissertation; see [BRST01]). The LCD 

model defines two related graph processes: one where a single edge is added and another where 
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several edges are added, in each step. The single-edge version is defined as follows: Beginning 

with an empty graph, or with a graph consisting of one node and a self-loop, in each step, a node 

together with an edge incident on the new node, are added.  The other endpoint of the new edge 

is chosen based on the following preferential attachment rule:  

1

( )
for 1

2 1( )
1

for 1
2 1

t

t

d s
s t

ts
s t

t

+

⎧⎪⎪ ≤ ≤ ;⎪⎪ +⎪= ⎨⎪⎪ = + .⎪⎪ +⎪⎩

P             (2.2) 

The multi-edge version is defined in the same way as the single-edge one except that in each 

time-step, ε  edges incident on the new node are added. These edges are added one by one, 

counting the previous edges as well as the ’outward half’ of the edge being added, as already 

contributing to the degrees. The reason for this precise rule is that it yields the following 

equivalent procedure for defining the multi-edge version of LCD model: First, run the procedure 

for the single-edge version on a sequence of tε  nodes and then contract each group of ε  

consecutive nodes into super-nodes. The advantage of having this alternative definition is that 

many results for the multi-edge version may be obtained by deriving them first for the single-

edge    one—which is easier to analyze—and then converting to the multi-edge version.  

 Figure 2.5 shows a realization of LCD model with 100t =  and 1ε = . Note that a few 

nodes have high degree (e.g., (2) 14, (5) 9d d= = ) while most of the nodes have small degree—

the hallmark of a power-law degree distribution. Furthermore, the labels of the high-degree 

nodes are small, illustrating the so called "rich-gets-richer" phenomenon observed in the 

preferential attachment models. 
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Figure 2.5. A realization of the LCD model. 

 

 The degree distribution in the models BA and LCD follows a power-law with exponent 

equal to 3 (see Section 2.3). Since in many web-like networks this exponent varies between 2 

and 3, many parameterized forms of preferential attachment, aiming to generate exponents that 

fall in this range, have been proposed. Some of these models are shown next: 

 Dorogovtsev-Mendes-1 (DM-1) model [DMS00]. This model was introduced by 

[DMS00] and was also studied by [KRR01, BO04]. Beginning with an empty graph, in each 

time-step, a new node and ε  arcs are added. The ε  arcs introduced at step ( 1)t +  are attached 

as follows: For each arc, the tail is chosen uniformly at random among the ( 1)t +  existing nodes 

(i.e., the new node is included in the selection), while the head is chosen via a preferential 

attachment rule based on in-degree. To avoid the first problem in the BA model, the DM-1 

model employs a shifted linear preferential attachment rule given by 

( )1

( )
( )

( )
t

t
t

tj V

d s
s

d j
λ

λ

−

+ −

∈

+
=

+∑
P                (2.3) 
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for 1 s t≤ ≤ . The term 0λ >  is called the initial attractiveness of nodes. The DM-1 model 

permits parallel arcs and self-loops in order to avoid the second problem with the BA model 

mentioned earlier.   

 Krapivsky-Redner-1 (KR-1) model [KR01]. The preferential attachment rule in the KR-1 

model is non-linear in ( )td s  and is given by 

( )
1

( )
( )

t

t
t

tj V

d s
s

d j

α

α+

∈

=
∑

P                  (2.4) 

for 1 s t≤ ≤ . Krapivsky and Redner [KR01] discovered that for the KR-1 model with 1α ≠ , 

the asymptotic degree distribution of tG  does not follow a power-law. Figure 2.6 shows two 

realizations of KR-1 model with 100t = . It is visually clear that neither of these two graphs is 

likely to have a power-law degree distribution. 
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(a) (b) 

 Figure 2.6. Two realizations of KR-1 model: (a) 0 4α = . ; (b) 3α = . 

 Dorogovtsev-Mendes-2 (DM-2) model [DM00a]. This model was inspired by a 

phenomenon observed in citation networks: old papers are generally cited less than new ones. In 
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order to incorporate this idea of aging of nodes, the preferential attachment rule is changed as 

follows: 

1

1

( )( )
( )

( )( )
t
tt

tj

d s t s
s

d j t j

α

α

−

+ −

=

−
=

−∑
P           (2.5) 

Here ( )t s−  denotes the age of node s  at time t . Figure 2.7 shows two realizations of this 

model with two different values of the parameter α . In Section 2.3, it is shown that, for the DM-

2 model, the degree distribution of tG  follows asymptotically a power-law with exponent that 

can become arbitrary large depending on the value of parameter α .   
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(a) (b) 

Figure 2.7. Two realizations of the DM-2 model: (a) 0 5α = . ; (b) 4α = . 

 

 Bianconi-Barabasi (BB) model [BB01]. In this model, each node s  is associated at the 

time of its birth with a random “fitness” coefficient, sη , that remains constant. Fitness 

coefficients are drawn independently from a probability distribution ( )f x . The preferential 

attachment rule may be modified in various ways to incorporate the fitness of nodes. The case 

considered in [BB01] is the one where fitness has a multiplicative effect on the degree, as 

follows: 
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1
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P                (2.6) 

for 1 s t≤ ≤ . Ergün and Rodgers [ER02] have studied alternative ways of incorporating fitness 

coefficients, e.g., the case where fitness has an additive effect on the degree. A realization of BB 

model is depicted in Figure 2.8.  
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Figure 2.8. A realization of BB model. 

 

 In Section 2.3, it will be seen that degree distribution of this model follows a power-law 

with a logarithmic correction.  

 In the dynamic models discussed so far, each time-step adds a new node and one or more 

new edges—all incident on the new node. However, in real networks new edges might also be 

added between existing nodes (e.g., hyperlinks are often added from an existing web page to 

another existing web page). The following model incorporates this idea: 

 Krapivsky-Redner-2 (KR-2) model [KR03]. In the KR-2 model, beginning with an 

isolated node, the growth in the network happens due to two distinct processes:  
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• With probability p , a new node and a new arc emanating from this node are added. The 

head of the new arc is chosen according to a shifted linear preferential attachment rule based 

on in-degree: 

1

( )
( )

( )
t

t
t

tj V

d s
s

d j
λ

λ

−

+ −

∈

+
=

+∑
P                (2.7) 

• With probability 1q p= − , a new arc is created between two existing nodes. The tail of 

this new arc is chosen based on out-degree while the head is chosen based on in-degree; 

more specifically, the probability that an arc is added between an existing node 1s  and 

another existing node 2s  is given by  

[ ][ ]
[ ][ ]

2 1
1 1 2

( ) ( )
( )

( ) ( )
t

t t
t

t ti j V

d s d s
s s

d j d i

λ μ
λ μ

− +

+ − +

, ∈

+ +
, =

+ +∑
P        (2.8) 

where 0λ >  and 1μ >− .  

 The preferential attachment rule given by the above equation is called bilinear [KR03]. A 

realization of the KR-2 model is shown in Figure 2.9.   
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Figure 2.9. A realization of the KR-2 model.  
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 In addition to the models given above, numerous other birth-only, preferential attachment 

models have been proposed [DM01a, YJBT01, ACL02, CF03, BBCR03, BBBC03, Vaz03, 

BO04, FFV04, BBPV04a, BBPV05]. All these models have been shown to generate graphs with 

power-law degree distribution. 

 

Birth-only copying models 

 Kumar-et-al. (KKRS) model [KKRS00]. This model specifies a directed random graph 

and is parameterized by a copy factor (0 1)p ∈ ,  and a constant out-degree 1d ≥ . In each time-

step 1t + , one new node and d  new arcs having this node as tail, are added. The heads of the 

new arcs are chosen as follows: First, a node s—the  prototype—is selected uniformly at 

random from tV . Next, with probability p , the head of thi  new arc is chosen uniformly at 

random from tV , whereas with probability 1 p−  this head is taken to be the head of the thi  arc 

leaving the prototype s .   

 Kumar et al. [KKRS00] have defined another version of the copying model, called 

exponential growth copying. This version has four parameters: (i) the growth factor p ; (ii) the 

self-loop factor α ; (iii) the tail copy factor 'α ; and (iv) the out-degree factor d . Beginning with 

a single node which has α  directed self-loops, the number of nodes added during the ( 1)tht +  

step is tpn . Thus, the graph 1tG +  will have 1(1 )tp ++  nodes. The number of arcs added in each 

step is ( ) td pnα+ . Each new nodes is born with α  self-loops; this accounts for tpnα  new arcs. 

The remaining tdpn  new arcs are attached according to the following rules: For each new node 

tu V∈ , and each arc directed into u  in the graph tG , a new arc directed into u  is added during 

( 1)tht +  step. The tail of each new arc is chosen as follows: (a) with probability 1 'α−  it is 
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chosen uniformly at random from the tpn  new nodes; and (b) with probability 'α  it is chosen at 

random from the 1tpn −  nodes created in the previous step according to a linear preferential 

attachment rule based on out-degree. 

 MFCS model [Ald04]. Aldous [Ald04] proposed a metric copying framework for defining 

dynamic random graph models. In this framework nodes are assumed to be points in a metric 

space, i.e., there is some real-valued distance ( , )r u w  defined between any two nodes ,u w . The 

graph tG  is constructed by adding one new node t  to the graph tG and (1) for each arc ij  in the 

graph 1tG − , a copied arc tj  is created with probability ( ( , ))p r t i ; (2) for each node (1 )i i t≤ < , 

a new arc ti  is created with probability ( ( , ))p r t i . Here, : [0, ) [0,1]p ∞ →  is assumed to be a 

real-valued function. Aldous [Ald04], studied the asymptotic properties of a particular metric 

copying model—the mean field simple copying (MFCS) model—in which distances of the metric 

space are assumed to be random numbers drawn from an exponential distribution and the 

function p  is given by: ( ) min(1, ), 0xp x e xλαλ −= ≤ < ∞ , where α  and λ  are parameters of 

the model. Aldous found that MFCS model displays some of the properties of web-like 

networks: a power-law degree distribution, an average distance that grows logarithmically with 

the order of the graph, and a high density of certain subgraphs such as complete bipartite graphs. 

 

Birth-death models 

 Only a few birth-death dynamic models have been studied so far. To the best of our 

knowledge, all these models are based on preferential attachment. Three such models are shown 

next: 
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 Dorogovtsev-Mendes-3 (DM-3) model [DM00c]. In this model, a new node and a new 

edge are added in each step according to a linear preferential attachment rule (as in the BA 

model). In addition, ε  existing edges chosen uniformly at random are deleted. 

 Cooper-Frieze-Vera, Chung-Lu (CFV-CL) model [CFV04, CL04]. This model was 

introduced independently by Cooper et al. [CFV04] and Chung and Lu [CL04]. It combines the 

birth of nodes and edges with a uniform deletion of both nodes and edges as follows: 

• With probability 1p , a new node and ε  new edges incident on it are added. The other 

ends of the new edges are chosen at random from existing nodes based on a linear 

preferential attachment rule. 

• With probability 2p , ε  new edges are added.  The probability that a new edge is added 

between two existing nodes is proportional to the product of their degrees. 

• With probability 3p , a new node chosen uniformly at random and all edges incident on it 

are deleted. 

• With probability 4 1 2 31p p p p= − − − , ε  edges chosen uniformly at random are 

deleted. 

 Flaxman-et-al (FFV) model [FFFV04]. This model combines addition of nodes and 

edges with an “adversarial” deletion of nodes: In each time-step t , a new node and ε  new edges 

incident on it are added. The other ends of the new edges are chosen based on linear preferential 

attachment. After the edges are added, an “adversary” may delete up to tδ  nodes, where δ  is a 

constant. 

 Deo-Cami (DC) model [DC05]. In the DC model, the birth of nodes and edges is 

combined with a preferential deletion of nodes that favors the deletion of small-degree nodes. 

The motivation for this type of deletion comes from the Web and the Internet where it has been 
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observed that small-degree nodes die more frequently that high-degree ones [BBKT04, VPV02]. 

Beginning with a single node with a self-loop, in each step of this model either one of the 

following  two processes can happen: 

• With probability p , a new node and a new edge incident on it are added. The other end of 

the new edge is chosen based on preferential attachment. 

• With probability 1q p= − , an existing node and all the edges incident on it are deleted. 

The node deleted during ( 1)tht +  step is chosen based on the following distribution: 

1 2

( )
( )

2
t t

t
t t

n d u
u

n m+

−
=

−
P                   (2.9) 

 Before passing to the techniques for analyzing the dynamic models, it would be 

instructive to look at the nature of probability spaces associated with dynamic models. For 

concreteness, let us focus on the LCD model: 

  The procedure that generates an instance of the random graph tG  for the LCD model, 

described earlier in this section, suggests the following inductive definition of the probability 

space tG : The space 1G  contains a single element—the graph 1
1G  consisting of a single node and 

a self-loop. The probability measure 1P  of the space 1G  assigns a probability of 1 to the graph 

1
1G . Given the space 1G , the two elements  1

2G  and 2
2G  of the space 2G  are obtained by adding a 

new node to the graph 1
1G  together with a new edge which either joins nodes 1 and 2 (with 

probability 2/3) or is a self-loop of node 2 (with probability 1/3). Hence the probability measure 

2P  is defined by ( ) ( )1 2
2 2 2 22 3 1 3G G= , =P P . It is now easy to see that 1t t t−| |=| |G G , 

therefore the probability space tG  has t!  elements. Given the definition of the probability 

measure 1t−P  on 1t−G , the probability measure tP  is obtained by applying: 
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( ) ( ) ( )
( 1)

1 1
1

, 1, , !
t

k k i i
t t t t t

i

G G G G k t
− !

− −
=

= | =∑ …P P P  (2.10) 

 Typically, one is concerned with asymptotic properties of the space tG , as t → ∞ . The 

above inductive definition of tG  suggests that to study the probability space tG  one should take 

into account all the probability spaces kG  for k t< . In other words, it is to be expected that in 

order to derive results about tG , one should resort to the use of difference equations. In fact, such 

equations arise on a regular basis during the analysis of dynamic random graphs, as shown in the 

next section.  

2.3. Some Techniques for Analyzing Dynamic Random Graphs 

 The techniques for analyzing dynamic random graph models can be broadly divided into 

two groups: (1) heuristic; and (2) rigorous. The techniques belonging to the first group allow one 

to quickly obtain approximate result. However, such results have to be constantly checked by 

other methods or numerical simulations. The techniques in the second group are mathematically 

rigorous and thus produce exact results. However applying them requires considerably more 

effort than applying the heuristic techniques. This section is devoted to the heuristic techniques

for analyzing the dynamic random graph models.

 

Degree distribution 

We begin with a detailed discussion of three heuristic techniques that have been widely used to 

analyze the degree distribution of several models: (A) the continuous method; (B) the master 

equation method; and (C) the rate equation method.  
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 (A) The continuous method: This method has been used by several authors such as 

Barabasi et al. [BAJ99, BB01] and Dorogovtsev and Mendes [DM01B]. There are two main 

steps involved:  

 Step1: Let the random variable ( )td s  denote the degree in tG  of an arbitrary node s , 

1 s t≤ ≤ . Initially, an expression for ( )td s  in terms of t , is obtained by deriving and solving a 

differential equation. One of the key assumptions of the continuous method is that the degree 

( )td s  may be approximated by its expected value. This approximation—known as the mean-field 

approach—means that for each node s , the pdf  ( )t s k,P  of the random variable ( )td s  is highly 

concentrated around its mean i.e., ( )( )( ) ( )t ts k k d sδ, ≈ −EP . In addition, it is often assumed that 

it is safe to work in the continuous domain (as the length of the time-step tends to zero). 

The mean-field assumption implies that  

( ) ( ) ( ) ( )( )1 1( ) ( ) ( ) ( ) ( ) ( )t t t t t td s d s d s d s d s d s+ +Δ = − ≈ − = ΔE E E  

i.e., the change ( )( )td sΔ  may also approximated by its expected value. Note that ( )( )td sΔ  

denotes the number of edges that link with node s  during the ( 1)tht + step. Assuming that edges 

are added independently, it follows that  ( )( )td sΔ  is a binomial random variable with parameters 

ε—the number of edges added in each step—and 1( )tp s+= P . Thus, ( )( ) 1( ) ( )t td s sε +Δ =E P . 

Switching to the continuous domain, we get the following differential equation: 

1

( )
( )t

t

d s
s

t
ε +

∂
= .

∂
P                    (2.11) 

 Step2: Having found a solution of Equation (2.11), the following approach is proposed in 

[BAJ99] to obtain ( )t kP : first, find the cumulative density function ( )tF k  of ( )td s  by using the 

formula ( )( ) ( )t tF k d s k= <P  and then derive ( )t kP  by differentiating ( )tF k  with respect to k . 
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This approach is not very appealing, since it requires the differentiation of a discrete cumulative 

density function! A better method, proposed in [DM01b], is to use the law of total probability as 

follows: 

( ) ( )

( )

0

0

0

( ) ( )

1
( )

1
( ( )) ,

t

t t

t

t

t

t

k d v k v s v s ds

d s k ds
t

k d s ds
t

δ

= = | = =

= =

= −

∫

∫

∫

P P P

P     (2.12) 

where the last equality follows from mean-field assumption.  

 Next, we show how the continuous method can be applied to obtain the degree 

distribution for three dynamic random graph models: (i) BA model; (ii) BB model; and (iii) DM-

1 model. 

(i) Degree distribution in the BA model: The following derivation is similar to that in [BAJ99]. 

Step 1: Recall that the preferential attachment rule in the BA model is given by 

1

( ) ( )
( )

( ) 2
t

t t
t

tj V

d s d s
s

d j tε+

∈

= = .
∑

P              (2.13) 

Therefore, substituting for 1( )t s+P  in Equation (2.11) we get:  

( ) ( )
2

t td s d s
t t

∂
= .

∂
                          (2.14) 

The solution of the linear differential Equation (2.14) with the boundary condition ( )sd s ε=  

(each node is born with degree ε ) is:  

( )1 2
( ) fort

td s t ssε
/

= ≥ .              (2.15) 

Figure 2.10 shows that there is a good agreement between the simulation data and the prediction 

of Equation (2.15). This figure depicts the evolution of the degree of nodes born during the time-

steps 5 and 30. The lines correspond to the analytical prediction of Equation (2.15) while the data 
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points to the simulation of the BA model. The simulation results are averaged over 30 

realizations of the BA model with 100,000t = .  
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Figure 2.10. Evolution of degree in the BA model. 

Note that the average degree of the graph tG  is asymptotically given by: 

0

2
( ) 2 as .t

t
d G t

t
ε

ε
ε

= → → ∞
+

 

Step 2: For simplicity we consider the case 0 1ε = .  

2 2

1 2

0

( )

2 2

3 3

1
( ) ( )

1

1 1
1

2 2
as .

1

t

t

t

d s
s s t k

k k t s ds
t

t

t
t

t k k

ε

δ ε

ε ε

⎛ ⎞/ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∂
∂ = /

= − /
+

⎡ ⎤
⎢ ⎥

= − ⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

= → → ∞
+

∫P

       (2.16) 

Thus, the linear preferential attachment rule, leads to a power-law asymptotic degree distribution 

with exponent 3γ = . Figure 2.11 compares the result of Equation (2.16) with the data obtained 

by simulating the BA model.  The three data sets correspond, left to right, to the cases 

1, 3,ε ε= =  and 5ε =  while the line is the plot of the function 3k− .  
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Figure 2.11. Log-log plot of the degree distribution in the BA model. 

(ii) The degree distribution in the BB model: The following derivation is taken from [BB01]. 

 Step 1: The differential equation becomes  

 

1

( ) ( )
( )

( )
t s t

t
i ti

d s d s
s

t d i
η

ε ε
η+

∂
= = .

∂ ∑
P          (2.17) 

In the continuous limit, the normalization coefficient ( )t i ti
A d iη= ∑  may be written as 

0
( )

t

t s tA d s dsη= .∫ Note that since 0 1sη< < , it follows that 
0

( ) 2
t

t tA d s ds t< =∫ . Conjecturing 

that tA  grows linearly with t  as tA Ct=  and substituting for tA  in Equation (2.17) we obtain:  

( ) ( )t s td s d s
t Ct

η
ε

∂
=

∂
                (2.18) 

The solution of Equation (2.18) with boundary condition ( )sd s ε=  is  

( )( )
s
C

t
td s s

η

ε= .                    (2.19) 

By comparing equations (2.15) and (2.19), it may be seen that they differ only in that the 

exponent of t s/  in the latter is a function of fitness, whereas in the former it is a constant. This 

multi-scaling phenomenon arises because of the introduction of competition in the network. If 
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the pdf ( )f x  of the fitness coefficient is known, the constant C  can be found from the following 

equation: 

[ ] ( )
0

( ) ( )
max

t txd s ds f x dx A Ct
η

= =∫ E  

which by using Equation (2.19) becomes  

0
( ) 1

max x
f x dx

C x

η
=

−∫                (2.20) 

Step 2: Let’s obtain ( )k ηP  in the case 0 1ε ε= = : 

0

( )

1

1
( ) ( ( ) )

1

1 1
1

1
as

s
C

t
C

t

k

d s
s s tk

C

P k t s ds
t

t

C
t

k

η

η

η

η δ ε

η

− /

∂
∂ =

+ /

= − /
+

⎡ ⎤
⎢ ⎥= − ⎢ ⎥+ ⎢ ⎥⎣ ⎦

→ → ∞.

∫

 

Consider, as examples, two special cases of the fitness pdf ( )f x :  (i) If ( ) ( 1)f x xδ= −  (all 

nodes have the same fitness 1), than the fitness model reduces to the previous BA model, as 

expected; (ii) In the case of a uniform distribution 

1 if 0 1
( )

0 otherwise

x
f x

⎧ ≤ ≤⎪⎪= ⎨⎪⎪⎩
 

it may be determined, by solving Equation (2.20), that 1 225C ∗ = . . Then, ( )kP  is obtained by  

1

1 10

1 1
( )

(log )C x C

C
k dx

x k k k
∗ ∗

∗

+ / += ≈∫P .         (2.21) 

Thus, in the case of a uniform fitness distribution, the BB model has a power-law distribution 

with exponent 2 225γ = .  and a logarithmic correction. Figure 2.12 shows that there is a good 

match between the simulation data and the analytical prediction given by Equation (2.21).  
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Figure 2.12. Log-log plot of the degree distribution in the BB model. 

(iii) The degree distribution in the DM-2  model: The following derivation appears in [DM01b]. 

 Step 1: The differential equation becomes  

( ) ( )( )
for 0

( )( )
t t

ti

d s d s t s
t d i t i

α

α α
−

−

∂ −
= ≥ .

∂ −∑
    (2.22) 

The boundary condition is ( ) 1sd s = , because each node is born with degree one. This equation 

is difficult to solve for an arbitrary α  and thus we can’t proceed as in the previous two cases.  

It may be shown (see [DM01b]) that if ( ) ( )td s s t β/∼ , then the asymptotic degree distribution 

follows a power-law with exponent γ , where  

( 1) 1γ β − = .                            (2.23) 

Based on the just stated result, the solution of Equation (2.22) is searched in the form  

( ) ( )td s f s t= / .                        (2.24) 

Now, let s tξ = / . Then Equation (2.22) becomes  

1

0

ln ( ) 1
(1 ) ,

( )(1 )

d f
d f d

α

α

ξ
ξ ξ

ξ ζ ζ ζ−
− − =

−∫
     (2.25) 

and (1) 1f = . To proceed, we solve for β  in  
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ln ( )
(1 )

d f
d

α ξ
ξ ξ β

ξ
− − = ,                (2.26) 

and replace the left-hand side of Equation (2.25) with the obtained value of β . By doing so and 

then solving for α  it is found that  

1 2 (1 ln2)β α≈ / − −                    (2.27) 

Step 2:  As already pointed out, the degree-distribution in this case must follow a power-law 

whose exponent may be obtained directly plugging the value of β  into Equation (2.23) to get  

3 4(1 ln2)γ α≈ + − .                       (2.28) 

Thus, the introduction of aging of nodes, changes the exponent of the power-law of the degree 

distribution, and can lead to very large exponents.  

 

(B) The master equation method 

 This method was introduced by Dorogovtsev et al. [DMS00]. In contrast with the 

continuous method, here no assumption is made about the distribution ( )t s k,P . Furthermore, the 

calculations are done mostly in the discrete domain and thus the results are more accurate. The 

method can be outlined as follows:  

 Step 1: First, determine the degree distribution ( )tP s k,  of an arbitrary node s , i.e., the 

probability that the degree of node s  in the graph tG  is k . 

 Step 2: Then, the degree distribution ( )t kP  of the graph tG  is determined as follows:  

1

1
( ) ( )

t

t t
s

k s k
t =

= ,∑P P                     (2.29) 

The derivations using the master equation method are quite lengthy, and therefore we show the 

application of this method only for the case of DM-1 model.   
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(i) The degree distribution in the DM-1 model: The following derivation is taken from [DMS00].  

 Step 1: The normalization constant in Equation (2.3) can be found as follows  

( )
1 1

( ) ( ) (1 )
t t

t t
j j

d j t d j t t a tλ λ λ ε ε− −

= =

+ = + = + = + ,∑ ∑           (2.30) 

where a λ ε= / . The number of arcs that link into node s  during each time-step, is a binomial 

random variable with parameters ε  and ( )t ss W=P . Hence, the probability that the node s  will 

receive exactly l  new incoming arcs out of the total ε  new arcs added during each step, is  

( )( ) ( ) (1 )l l
s s s

l
B l W W ε

ε
ε −, = − .           (2.31) 

Now, 1( )t s k+ ,P  may be found by conditioning on the in-degree of s  at time t : 

( )

( )

1
0

0

0

( ) ( ) ( )

( ) (1 ) ( )

1 ( ).
(1 ) (1 )

m

t s t
l

l l
s s t

l

l l

t
l

l

l

s k B l s k l

W W s k l

k l a k l a
s k l

a t a t

ε
ε

εε

ε

ε

ε

ε ε
ε ε

+
=

−

=

−

=

, = , , −

= − , −

⎡ ⎤ ⎡ ⎤− + − +⎢ ⎥ ⎢ ⎥= − , −⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

∑

∑

∑

P P

P

P

 (2.32) 

Note that 0( )s ks k δ, =P  since nodes are born with in-degree zero.  

 Step 2: We sum both sides of Equation (2.32) for 1s =  to t . Denoting the left hand side 

summation by LHS and the right hand side by RHS we have 

1
1

1

1 1
1

1 1

1 0

( )

( ) ( 1 )

( 1) ( ) ( 1 )

( 1) ( )

t

t
s

t

t t
s

t t

t k

LHS s k

s k t k

t k t k

t P k δ

+
=

+

+ +
=

+ +

+

= ,

= , − + ,

= + − + ,

= + −

∑

∑

P

P P

P P

 

The summation RHS is a little more complicated. By using the expansion  
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( )
0

(1 ) ( 1)k k

k
k

x x
ε

ε
ε

=

− = −∑                   (2.33) 

and after some algebra (see [DMS00]) we get the following expression for RHS: 

1
( ) ( 1) ( )

(1 ) 1t t

k a k a
t k k O t

a a
ε ε⎡ ⎤+ − +⎢ ⎥− + − + /⎢ ⎥+ +⎣ ⎦
P P P  

Now, equating LHS and RHS we obtain the following equation:  

1 0

1
( 1) ( ) ( ) ( ) ( 1) ( )

(1 ) 1t t t t k

k a k a
t k t k k k O t

a a
ε ε

δ+

+ − +
+ − + − − = + /

+ +
P P P P P  

or,  

( ) 0

1
( ) ( ) ( 1) ( )

(1 ) 1t t t k

k a k a
t k k k O t

a a
ε ε

δ
+ − +

Δ + − − = + /
+ +

P P P P  

Switching to the continuous domain yields:  

0

1
[ ( )] ( ) ( 1) ( )

(1 ) 1k t t k

k a k a
t t k k O t
t a a

ε ε
δ

∂ + − +
+ − − = + /

∂ + +
P P P P  

or  

0

( ) 1
( ) ( ) ( 1) ( )

(1 ) 1
t

t t t k

k k a k a
t k k k O t
t a a

ε ε
δ

∂ + − +
+ + − − = + /

∂ + +
P P P P P  

 Finally, assuming that the stationary probabilities ( ) ( )tk k→∞=P P  exist, we obtain the 

difference equation  

( ) ( ) 0(1 ) ( 1 ) 1 (1 ) for 0ka k a k k a k a kε ε δ+ + + − − + − = + ≥ .P P   (2.34) 

 Dorogovtsev et al. [DMS00] have used the method of generating functions to solve 

Equation (2.34). Here, we apply the formula given in Appendix B; indeed, the solution of 

Equation (2.34) can be obtained directly in terms of gamma functions as: 

[( 1) 1] ( )
( ) (1 )

( ) [ 2 ( 1) ]
a k a

k a
a k a

ε ε
ε ε

Γ + + Γ +
= +

Γ Γ + + +
P  
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In the limit k → ∞  we get  

( ) (2 )ak k− +∼P                             (2.35) 

i.e., the degree distribution follows a power-law with exponent 2 2aγ λ ε= + = + / .  

If 1a = , which implies λ ε=  (the BA model), we get:  

[ 2] ( ) ( 1)
( )

( ) [ 3] ( )( 1)( 2)
k

k
k k k k

ε ε ε ε
ε ε ε ε ε

Γ + Γ + +
= = .

Γ Γ + + + + + + +
P  

 

(C) The rate equation method 

 This method was introduced by Krapivsky et al. [KRR01, KR03]. We begin with an 

overview of how this technique may be used to obtain degree distribution. 

 Let t kN ,  be the number of nodes of degree k  in the graph tG . The method proceeds in 

steps:  

 Step 1: Derive a differential equation that relates ( )t kN ,E  to its rate of change. This is 

called the rate equation; this equation is actually a family of differential equations, one for each 

0k ≥ .  

 Step 2: Solve the first few cases of the rate equation e.g., for 1 2k = , . Often, it turns out 

that the rate equation is a first-order linear differential equation and thus a closed form solution 

may be easily obtained. Furthermore, for every fixed k , the solution has the form 

( ) ( )t kN k t, =E P  where ( ) ( )tk k→∞=P P  denotes the asymptotic degree distribution.  

 Step 3: Substitute ( )k tP  for ( )t kN ,E  in the rate equation. This substitution yields a first-

order linear difference equation on ( )kP . Such equations can also be easily solved (Appendix B); 

thus a closed-form expression for the degree distribution ( )kP  is obtained.  
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As an example, we show next the derivation of the degree distribution in the KR-1 model. 

 

(i) Degree distribution in the KR-1 model: The following derivations are taken from [KR01].  

 Step 1: To get the rate equation, consider how ( )t kN ,E  changes between time-steps t  

and ( 1)t + . We can write: 

( ) ( ) ( ),( 1) , ( 1)[ ]t k t k k t k kN N N, − → → +Δ = −E E E  

where ,( 1)t k kN − →  is the number of nodes whose degree changes from ( 1)k −  to k , and , ( 1)t k kN → +  

is the number of nodes whose degree changes from k  to 1k + , during  the ( 1)tht +  step. Note 

that ,( 1)t k kN − →  and , ( 1)t k kN → +  are Bernoulli random variables with parameters  

( )
( )

( )
( )

, 1 ,

, ,

( 1)
and

t k t k

t j t jj j

N k N k

j N j N

α α

α α

− −

∑ ∑
E E

E E
 

respectively. Therefore denoting the normalization constant by ( ), ,t t jj
M j Nα

α =∑ E   we get  

( ) ( ) ( ) ( ),( 1) , 1 , ( 1) ,
, ,

( 1)
,t k k t k t k k t k

t t

k k
N N N N

M M

α α

α α
− → − → +

−
= =E E E E  

Hence, the rate equation can be written as  

( ) ( ) ( ), 1 , 1
,

1
( 1) .t k

t k t k k
t

N
k N k N

t M
α α

α

δ,
−

∂ ⎡ ⎤= − − +⎢ ⎥⎣ ⎦∂

E
E E  

The last term accounts for the addition of a new node with degree one, in each step.  

 Step 2: Let us solve the rate equation for 1 2k = , . First, note that ( ),0 ,t t jj
M N=∑ E  is 

the expected total number of nodes of the graph tG . Hence, the rate of change of ,0tM  is 1 

(because one new node is added in each step). It follows that: ,0 0,0tM t M t= + = . Similarly, 
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we have that ( ),1 , ( ) 2t t j t t
j v

M j N d v m= = =∑ ∑E . The rate of change of ,1tM  is 2 (one edge is 

added in each step), and as a result  ,1 0,12 2tM t M t= + = . Next, we consider three separate 

cases: (a) 1α =  (the linear case); (b) 1α <  (the sub-linear case), and (c) 1α >  (the super-

linear case). 

(a) The linear case 1α = : Replacing for ,1tM  in the rate equation we get: 

• For 1k =  the rate equation becomes  

( ) ( ),1 ,1 1
2

t tN N

t t

∂
+ = .

∂

E E
 

 Its solution is ( ),1 2 3 2 3tN t C t t= / + / → /E , i.e., on average, two-thirds of the  nodes 

 will have degree 1as t → ∞ .  

• For 2k =  the rate equation becomes  

( ) ( ),2 ,2 1
3

t tN N

t t

∂
+ =

∂

E E
 

 Its solution is asymptotically ( ),2 6tN t→ /E . Based on the solutions for 1,2k = , it is 

 assumed that ( )t kN ,E  is linear in t : ( ) ( )t kN t k, = .E P  

 Step 3: Substituting for ( )t kN ,E  in the rate equation we get the homogeneous first-order 

linear difference equation  

( 1) ( ) for 1
3
k

k k k
k

+ = , ≥ .
+

P P  

with initial condition 2(1) 3=P , whose solution is  

4
( )

( 1)( 2)
k

k k k
= .

+ +
P  
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Note that this is essentially the same result as the one obtained for the BA model using either the 

continuous or master equation method. 

  

(b) The sub-linear case 1α < : First, note that  

( ) ( )
( ) ( )

, 0 , , ,

,1 , , ,

t t j t j t
j j

t t j t j t
j j

M N j N M

M j N j N M

α
α

α
α

= ≤ =

= ≥ =

∑ ∑

∑ ∑

E E

E E
 

Therefore for any 1α < : 

,0 , ,1 2t t tt M M M tα= ≤ ≤ =  

In the limit t → ∞  we can write , ( )tM tα μ α=  where the function ( )μ α  has yet to be 

determined (we only know that 1 ( ) 2μ α≤ ≤  and (0) 1 (1) 2μ μ= , = ). Now, repeat the steps 

followed in the linear case. Replace ,tM tα μ=  in the rate equation and solve the first few cases:  

• For 1k =  the rate equation becomes:  

( ) ( ),1 ,1 1t tN N

t tμ

∂
+ = .

∂

E E
 

 The asymptotical solution of the differential equation above is 1,1tN tμ
μ+= .  

• For 2k = the rate equation is:  

( ) ( ),2 ,22 1
1

t tN N

t t

α

μ μ

∂
+ = .

∂ +

E E
 

 and its solution is ( ),2 ( 1)( 2 )tN tα
μ

μ μ+ +=E . 

 Step 3: Generalizing, we let ( ) ( )t kN t k, =E P . After substituting in the rate equation, the 

following homogeneous first-order linear difference equation is obtained:  
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( 1)
( ) ( 1) 0

k k
k k

α αμ
μ μ
+ −

− − = .P P  

Its solution is immediately obtained as: 

( )( ) ( )1 2

1
( )

1 1 1 k

k
k α α α

μ μ μα

μ
= .

+ + +"
P  

 In [KR01] it is argued that the asymptotic behavior of ( )kP  in this case does not follow a 

power-law but rather a stretched exponential. Our numerical simulations shown in Figure 2.13 

are in good agreement with this conclusion.   
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Figure 2.13. Log-log plot of the degree distribution in the KR-1 model with 0.2α = . 

(c) The super-linear case 1α > . In this case, a different approach may be followed to analyze 

the degree distribution:  

 The probability that each of the first t  nodes will be  a neighbor of the initial node is:  

t
t t

α

α +
 

Hence, the probability that this pattern continues indefinitely is  

1
1 1

1
1t t

t
t t t

α

α α

∞ ∞

−
= =

= =
+ +∏ ∏P  
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It may be shown that: (a) for 2α ≤ , 0=P ; and (b) for 2α > , 0>P . Thus, for 2α > , all but 

a finite number of nodes are connected to a single node. This phenomenon is called “gelation” 

and the central node is called the "gel" (see Figure 2.6(b)).  

 To determine the degree distribution for any 1 2α< < , the asymptotic form of ,tM α  is 

needed. Skipping the details (see [KR01]), the result is that for 1 2α< < , the degree 

distribution changes an infinite number of times as follows: for 1
1

ε ε
ε εα+

−< <  the number of 

nodes with degree larger than ε  is finite, while for k ε≤  ( ) ( 1)
,

k k
t kN t α− −→E .  

 

(ii) The degree distribution in the KR-2 model: Krapivsky and Redner [KR03] have showed, by 

applying the rate equation as shown above, that for the KR-2 model the in-degree follows a 

power-law of the form  

2
1( ) pk
k λ

−
+→P                   (2.36) 

while the out-degree follows a power-law of the form 

1 11
1( ) q pqk
k μ− −

+
+ +→P            (2.37) 

Furthermore, the joint in- and out-degree distribution is asymptotically given by: 

1

2 1( , )
( )
i j

i j C
i j

λ μ

λ

−

+=
+

P          (2.38) 

This result provides evidence that in- and out-degree distributions are not independent (there is 

no factorization of the form 1 2i jγ γ ). 
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3. PROPOSED BIRTH-DEATH DYNAMIC RANDOM GRAPH MODEL 

 As stated in the previous chapter, dynamic random graph models that combine birth and 

death (addition and deletion of nodes and edges) have been studied much less than the birth-only 

models: Dorogovtsev and Mendes [DM00b] studied a model which interleaves the addition of 

nodes and edges with a uniform deletion of edges. Chung and Lu [CL04] and Cooper et al. 

[CFV04], independently, studied a dynamic model that combines the addition of nodes and 

edges with a uniform deletion of both nodes and edges. A similar model with a uniform deletion 

of nodes appeared in [DC05a]. These birth-death models have been found to generate graphs 

with power-law degree distribution.  

 In this chapter, we investigate a dynamic random graph model which interleaves addition 

of nodes and edges with a preferential deletion of nodes that favors deletion of small-degree 

nodes. The results derived in this chapter appeared first in [DC05c]. This type of node deletion 

has been chosen in light of the evidence that the small-degree nodes of some web-like networks, 

such as the Web and the Internet, die much more frequently than the high-degree ones [BBKT04, 

VPV02].  

 The birth-death with preferential deletion analyzed in this chapter is defined as follows: 

Let the graph 1G  consists of a single node with a self-loop. In each discrete time-step 1t + , 

0t > , either one of the following two processes can take place: 

 (a) Birth process: with probability p , a new node is added, together with a new edge 

incident on it. The other end-node u  of the new edge is chosen preferentially from among all the 

existing nodes based on a linear preferential attachment [BAJ99] rule: 
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1

( ) ( )
[ ] .

( ) 2
t

t t
t

t t
w V

d u d u
u

d w m+

∈

= =
∑

P            (3.1)         

 (b) Death process: with probability 1q p= − , a node u  is chosen for deletion along 

with all the edges incident on this node in tG . To make small-degree nodes more likely 

candidates for deletion than the higher-degree ones, node u  is chosen according to the following 

probability distribution:  

1 2

( )
[ ]

2
t t

t
t t

n d u
u

n m+

−
=

−
P .   (3.2) 

Note that the numerator of the ratio in the right-hand side of Equation (3.2) subtracts the degree 

of node u  from the number of nodes in the graph tG . Therefore, the value assigned by equation 

(3.2) will be larger for small-degree nodes than for higher-degree ones. The division by 2 2t tn m−  

ensures that the values lie between 0 and 1. Naturally, there exist other alternative probability 

distributions that may achieve the same effect, such as: 

1

2 ( )
[ ]

2 ( 1)
t t

t
t t

m d u
u

m n+

−
=

−
P . 

The distribution in Equation (3.2) was chosen primarily because it was more convenient to work 

with.  
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Figure 3.1. A small graph illustrating the probability distribution used in the preferential deletion 

model. 
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 As an illustration, a graph with deletion probabilities assigned to its nodes according to 

Equation (3.2) is given in Figure 3.1.  

 It is assumed that p  is greater than q  so that the graph continues to grow. There is a 

caveat to the two rules (a) and (b): If during some step 0t >  the number of nodes in tG  

becomes zero, then the process rewinds, i.e., the graph 1tG +  will consist of a single node with a 

self-loop. However, as shown in the next section, this case occurs extremely rarely, and thus it 

may be ignored. In analogy with preferential attachment [BAJ99], the death process defined 

above is called preferential deletion.  

3.1. Number of Nodes 

 First, let us look at [ 0]tn =P —the probability that the number of nodes becomes zero 

after some step 0t > . This event could occur only if t  is even and exactly 2t  death processes 

have taken place during steps 1, ,t…  (note that the starting graph 1G  may be seen as the result of 

a birth process). Thus: 

[ ] ( )2 2 1
0 2 ,

2 (1 )
t t t

t t

t
n q p O pq O

t ε

⎛ ⎞ ⎡ ⎤⎟⎜ ⎡ ⎤⎟ ⎢ ⎥⎜= ≤ = =⎟⎜ ⎢ ⎥⎣ ⎦⎟ ⎢ ⎥⎟⎜ +⎝ ⎠ ⎣ ⎦
P  

for some 0ε > . Since the probability of reaching an empty graph decreases exponentially with 

the number of steps, it is assumed that 0tn >  for all 0t > . Hence, for all 0,t >  

1 ,t tn n X+ = +  where X  is a discrete random variable equal to 1  with probability p  and equal 

to 1−  with probability q . As a result, the conditional expectation of 1tn +  with tG  fixed is  

[ ] [ ]1 |t t tn G n X+ = +E E .                 (3.3) 
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By taking the expectations of both sides in Equation (3.3) we obtain  

for1[ ] [ ] ( ), 1.t tn n p q t+ = + − >E E  

Solving this first-order linear difference equation with initial condition 1[ ] 1,n =E  yields: 

[ ] ( ) 2tn p q t q= − +E , (3.4)    

which implies that [ ] [( ) ]tn p q t= Θ −E . Figure 3.2 shows a comparison of the values of tn  

predicted by Equation (3.4) with those obtained by simulating the preferential deletion model.  

 

 

Figure 3.2. Growth in the number of nodes of graph tG  with the number of steps t , for three 

different values of the birth probability p .   

 

 In this figure, the solid lines correspond to the analytical prediction of Equation (3.4) 

while the data points correspond to the simulation result. To obtain these data points, for each 

value of p  and t  shown in Figure 3.2 the number of nodes was computed by averaging over 30 

realizations of the model. The analytical prediction and simulation results agree very well, as 

seen in Figure 3.2. 
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3.2. Number of Edges 

 The approach followed in this section is similar to that of Section 3.1. With tG  fixed, the 

number of edges after the th( 1)t +  step may be expressed as 1 1t t tm m Y+ += + , where 1tY +  is a 

random variable specified by 

1 ,
2

1 with probability

( )
with probability , 0.

2
t t t k

t t

p

Y q n k N
k k

n m
+

⎧⎪⎪⎪⎪= −⎨⎪− ≥⎪⎪ −⎪⎩

 

Thus,  

2
, ,

1 , 2 2
0 0 0

[ | ] ,
2 2

t k t kt
t t t k

tk k kt t t t t

kN k Nn k
Y G p q kN p q q

n m n d n m+
≥ ≥ ≥

−
= − = − +

− − −∑ ∑ ∑E  

which implies that 

2
, ,

1 2
0 0

[ ] [ ] .
2

t k t k
t t

tk kt t t

kN k N
m m p q q

n d n m+
≥ ≥

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= + − + ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦

∑ ∑E E E E               (3.5) 

We continue by evaluating the two expectations multiplied by q  in Equation (3.5).  First, we 

have 

, ,

0 0

2t k t kt t

t t tk kt t t t

kN kNn m
n d n d n n d≥ ≥

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦ ⎣ ⎦
∑ ∑E E E  

Second,  

2 2
, ,

0 0

1
( )

t k t k

t tk kt t t t

k N k N

n n d n d n≥ ≥

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
∑ ∑E E . 

Now, using the approximation 

( )
2 2

2,
2

0

8
2 ,t k t

t

k t t

k N m
d

n n≥

≈ ≈∑  
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and then substituting it into Equation (3.5) we get 

2

1 2

2 8
[ ] [ ] ,

( )
t t

t t
t tt t t

m m
m m p q

n d n n d+

⎛ ⎞⎡ ⎤ ⎡ ⎤⎟⎜ ⎢ ⎥ ⎢ ⎥⎟= + − −⎜ ⎟⎜ ⎢ ⎥ ⎢ ⎥⎟⎜ − −⎝ ⎠⎣ ⎦ ⎣ ⎦
E E E E  

or, equivalently 

2
1 2

2 4
[ ] 1 [ ] [ ] ,

[ ] [ ( )]t t t
t tt t t

q q
m m m p

n d n n d+

⎛ ⎞⎟⎜ ⎟− − − =⎜ ⎟⎜ ⎟⎜ − −⎝ ⎠
E E E

E E
                 (3.6) 

which is a non-linear difference equation. Methods for solving such equations are known only 

for a few special cases (these methods are usually based on transformations that convert non-

linear equations into linear ones). To the best of our knowledge Equation (3.6) does not fall into 

any of the special cases. Therefore, we search for a solution of the form [ ] ,tm tε=E  where ε  is 

a constant that does not depend on t .  Substituting into Equation (3.6) and taking the limits as 

t → ∞  we get: 

(1 )a pε+ =          (3.7) 

where 2 ( )a q p q= − . Hence:  

( ),p p qε = −                (3.8) 

i.e., [ ] [ ( ) ]tm p p q t= Θ −E . To verify the result of Equation (3.8), we computed the number of 

edges by simulating the model. The simulation results are shown in Figure 3.3. The solid lines in 

this figure correspond to the analytical prediction for the number of edges tm  while the data 

points correspond to simulation results. Again, for each value of p  and t  the number of edges of 

tG  was computed by averaging over 30 realizations of the model. The two data sets are in very 

good agreement. 
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 A direct consequence of Equations (3.4) and (3.8) is that the average degree of tG  tends 

to 2p  as t → ∞ . 
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                                     t  

Figure 3.3. Growth in the number of edges of graph tG  with the number of steps t , for three 

different values of  the birth probability p .  

3.3. Degree Distribution in the First Neighborhood of the Deleted Node 

 Before turning our attention to the degree distribution in tG , we need to evaluate one 

more quantity, namely the expectation of (1)
,t kN —the number of degree k  nodes adjacent to the 

node chosen for deletion during step t .   

 This expectation is computed by conditioning on the node chosen for deletion. Indeed, 

with tG  fixed, one may write 

(1) (1) (1) (1)
, , , ,2

( ) 1 1
| ( ) ( ) ( ) ( )

2 ( )
t t t

t t
k t t t k t k t k t

t tu V u V u Vt t t t t

n d u
N G N u N u N u d u

n m n d n n d∈ ∈ ∈

−⎡ ⎤ = = −⎣ ⎦ − − −∑ ∑ ∑E    (3.9) 

Next, note that  

(1)
, ,( )

t

t k t k
u V

N u kN
∈

=∑             (3.10)         
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and 

,
(1)
, , , ,

1 1

( ) ( )
t k

t

N k

t k t k i j t
u V i j

N u d u d
∈ = =

=∑ ∑∑                 (3.11) 

Here , , ,k i j td  denotes the degree of the thj neighbor of the thi  node of degree k  after step t . It 

may be approximated by the average degree (1)
td  of a random neighbor of a random node. This 

quantity is related to td  by the identity (1)
2t td d≈ . Substituting into Equation (3.9) we get 

, , ,(1)
,

2 2
| 1 ,

( )

t tt k t k t k
t k t

t t tt t t t t

kN kN d kN d
N G

n d n n d n d n

⎡ ⎤
⎡ ⎤ ⎢ ⎥≈ − = −⎣ ⎦ ⎢ ⎥− − − ⎣ ⎦

E  

and finally, by taking the expectations of both sides in the last equation we obtain 

(1)
, ,

1 2 t t

t k t k
tt

d n
N k N

n d

⎡ ⎤−⎢ ⎥⎡ ⎤ ⎡ ⎤≈ ⎢ ⎥⎣ ⎦⎣ ⎦ −⎢ ⎥⎣ ⎦
E E E           (3.12) 

Equation (3.12) was also verified numerically. The results are shown in Figure 3.4 where the 

solid line corresponds to the prediction of Equation (3.12) while the data points were computed 

by averaging over 1000 realizations of our model with 40,000t = and 0.8p = . The values of 

(1)
,[ ]t kNE  in Figure 3.4 are shown in a normalized form after having been divided by the degree of 

the node chosen for deletion.  

(1)
,t kN⎡ ⎤

⎣ ⎦E
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Figure 3.4. The expected number of neighbors of degree k  of a node chosen for deletion.  
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3.4. Degree Distribution 

 Next, we turn to the degree distribution of the graph tG . By analyzing the change in ,t kN  

between the tht  and ( 1)tht +  steps we get 

1, , 1[ ] [ ] ,t k t k kN N pA qB pδ+ = + + +E E            (3.13) 

where 

, 1 ,

, 1 ,

1
( 1) [ ] [ ] ,

2 [ ]

{( 1) [ ] [ 2 ] [( 1) (1 2 )] [ ]}.
[ ( )]

t k t k
t

t tt k t t t k
tt t

A k N k N
m
q

B k N n d k n k d N
n n d

−

+

⎡ ⎤= − −⎣ ⎦

= + − − + −
−

E E
E

E E E
E

 -  
 

 Term A  in Equation (3.13) reflects the expected change in ,t kN  due to the birth process. 

The expression for term A  was derived using standard techniques (e.g., [KR03]), and hence the 

details have been omitted. 

 Term B  reflects the expected change in ,t kN  due to deletion. Its derivation takes into 

account the result of Section 3.3. Let us examine, for instance, the derivation of the term 

,[( 1) (1 2 )] [ ] [ ( )]t tt t k t tk n k d N n n d+ − −E E -  , which reflects the expected drop in ,t kN  due to a 

deletion. The deletion of a node can cause ,t kN  to decrease in two different ways: (i) if a node of 

degree k  is deleted; or (ii) if the deleted node is adjacent to one or more nodes of degree k . The 

expected drop due to deletion of a node of degree k  is 2
,[ ]( ) [ 2 ]t k t t tN n k n m− −E E . 

Furthermore, the result of Equation (3.12) implies that the expected drop due to deletion of a 

node which has one or more neighbors of degree k  is 2
,[ ]( 2 ) [( 2 )]tt k t t tk N n d n m− −E E . Adding 

these two drop terms yields the expected overall drop due to deletion in the number of nodes of 
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degree k . In a similar fashion, one may also derive the expected increase in ,t kN  due to a 

deletion. 

 The last term in Equation (3.13) comes from the fact that the degree of a newly-born 

node is always one.  

 We search for a solution to Equation (3.13) of the form ,[ ]t k kN a t=E . Substituting for 

,[ ]t kNE  and taking the limits as t → ∞ , we get the following second-order, linear difference 

equation with non-constant coefficients: 

2 1 12 ( 2) [2 ( 1)(2 1)] 2 ( ) , 0.k k k kq k a p k q a ka p p q kδ+ +− + + + + + − = − ≥    (3.14) 

 To solve Equation (3.14) we have used the method of Laplace as described in [Jor65]. 

Consider first the homogeneous equation which has the form 
2

0

( ) 0,i i k i
i

k aα β +
=

+ =∑  with 

0 0 1 1 2 21, 0, 2 1, 3, 2 , 4 .q q qα β α β α β= − = = + = = − = −  

Following Laplace’s method, it is assumed that the solution of the homogenous equation is of the 

form:  

1 ( ) ,
b
k

k

a

a t v t dt−=∫   (3.15) 

where the function ( )v t  and the limits of integration ,a b are yet to be determined. As shown in 

[Jor65], the relation  

1

( )i
i i

i
i

t idv
v t

β α

α +

−
= ∑

∑
       (3.16) 
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must hold for any difference equation of the type under consideration. Furthermore, the limits of 

integration ,a b  are to be chosen among the roots of the function ( )k i
it v t tα∑ . In the present 

case, Equation (3.16) becomes 

2

2 4
.

1 (1 2 ) 2
dv p pt
v q t qt

−
=

− + + −
 

By integrating both sides of the preceding equation we get: 

22 2 1 2 ( )
( ) ( 1) (2 1)

p p p q p q
v t t tq

− −
= − − . 

The roots of ( )k i
it v t tα∑ are 0, 1, and 1 2q . It follows that the two independent solutions of 

Equation (3.13) are 

2
1

2 2 1 2 ( )(1) 1

0

( 1) (2 1) ,
p p p q p qk

ka t t tq dt
− −−= − −∫  

and 

2
1/2

2 2 1 2 ( )(2) 1

0

( 1) (2 1) .
q

p p p q p qk
ka t t tq dt

− −−= − −∫  

By carrying out the first integration we get: 

( )1 2 2 1(1) p p

ka k
− − −⎡ ⎤

=Θ ⎢ ⎥⎢ ⎥⎣ ⎦
.            (3.17) 

Note that as p  increases from 0.5  to 1 , the ratio 2 2 1p p −  decreases from ∞  to 2 . Thus, 

asymptotically the degree distribution of tG  follows a power-law with exponent that varies 

between 3  (for 1p = ) and ∞  (for 0.5p = ). In the case when 1p =  this result agrees with 

previous well-known results [BAJ99, BRST01]. On the other hand, for values of p  significantly 

smaller than 1  the exponent of the power-law becomes too big compared to the exponents 
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observed for many web-like networks (which usually lie in the range between 2  and 3  

[New03b]).  

 The second integral (2)
ka  may be shown to diverge as k → ∞ , and is thus irrelevant. 

 The plot in Figure 3.5 shows a comparison between the analytical prediction given by 

Equation (3.17) and the data obtained by simulating our model, with 0.8p = .  
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Figure 3.5. Log-log plot of the cumulative degree distribution of the graph generated by the 

preferential deletion model. 

 The cumulative distribution '( ) ( )
i k

k i
≥

= ∑P P  has been plotted instead of the distribution 

( )kP  itself in order to reduce the statistical noise in the tail of the distribution. As seen, there is a 

good agreement between the data obtained from the simulation  results and the analytical 

prediction. 

 The result derived in this chapter reinforces our view that dynamic models of web-like 

networks are robust in the sense that a power-law degree distribution is obtained for a wide range 

of stochastic rules that control such models.  
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4. THE NOTION OF COMMUNITY 

 This chapter aims to formalize the meaning of community. Before giving formal 

definitions of community, we review some classical combinatorial optimization problems that 

have the same flavor as community mining. 

4.1. Some Graph-Theoretic Problems Related to Community-Mining 

 Minimum cuts and graph partitioning. Let A B,  form a partition of the set of nodes of a 

graph ( )G V E= , .  An edge-cut ( )A B,  in G  is the set of all edges with one end in A  and the 

other end in B . The min-cut problem refers to finding the edge-cut with minimum cardinality. 

This problem is NP-hard [GJ79] an the two main heuristic algorithms for solving this problem 

are: the spectral bisection method [Fie73], which is based on the eigenvectors of the graph 

Laplacian, and the Kernighan-Lin algorithm [KL70], which improves on an initial division of the 

graph using a greedy strategy. It should be mentioned that the restricted version of the min-cut 

problem known as the -s t  min-cut—where s  and t  are two fixed nodes and each of the two 

partitions must contain exactly one of them—can be solved in polynomial time (e.g., using the 

max-flow/min-cut algorithm of Ford and Fulkerson). Graph partitioning is a generalization of 

the min-cut problem which refers to partitioning the set of nodes of a graph G  into two or more 

partitions such that the number of edges having their ends in different partitions is minimal. This 

problem is usually solved by a repeated application of the bisection method.  

 Maximum clique. Any complete subgraph of a graph G  is called a clique of G . A clique 

is said to be maximal if it is not properly contained in any other clique. A maximum clique is a 

clique of maximum size. The problem of finding the clique number of a graph (the size of a 
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maximum clique) as well as the problem of finding a maximum clique are NP-hard [GJ79]. In 

addition, some theoretical results indicate that it is difficult to find approximation algorithms that 

guarantee to find cliques of size within a factor of the maximum clique size [FGLS91]. Therefore 

the problem of finding a maximum clique is usually attacked by approximation or heuristic 

algorithms; a comparative survey of such algorithms is given in [Pel01].  

 It is interesting to note that some clique-related problems that are difficult to solve for 

arbitrary graphs become easy in the case of random graphs. For instance, it is known that a.a.s 

the clique number of a binomial random graph 1
2,n

G  is either ( )f n⎢ ⎥⎣ ⎦  or ( )f n⎡ ⎤⎢ ⎥  where 

( ) (2 log )f n n= Θ  [AS92]. Several polynomial-time algorithms are known to find a.a.s a clique 

of size (log )nΘ , that is a clique of roughly half the size of the largest one. On the other hand, no 

polynomial-time algorithms are known to find a.a.s a clique of size (1 )lognε+  for a fixed 

0ε > . The situation improves in a related random graph model, namely 1
2, ,n kG , which is 

obtained by first generating a random graph 1
2,n

G , then selecting k  random nodes from this graph 

and forcing them to be a clique by adding edges as needed. Among other results, it has been 

shown that for every  0ε >  there is a polynomial-time algorithm to find a hidden clique on k  

nodes in 1
2, ,n kG , provided that k nε≥  [AKS98].  

 The study of the performance of combinatorial algorithms in random graphs is known as 

the algorithmic random graph theory; the major results in this area have been surveyed in a 

paper by Frieze and McDiarmid [FM97]. 

 Alliances. The concept of alliance has been introduced to graph theory by Kristiansen et 

al. [KHH04]. To date, many types of alliances in graphs have been defined. Some of them are 

reviewed next.  
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 Let ( )G V E= ,  be a graph and v  a node in this graph. The open neighborhood of v  is 

defined as the set ( ) { ( ) }N v u u v E= | , ∈ , while the closed neighborhood of v  is the set 

[ ] ( ) { }N v N v v= ∪ . For a subset S  of V  the open and closed neighborhoods are defined as  

( ) ( )v SN S N v∈= ∪  and [ ] ( )N S N S S= ∪ , respectively. The boundary of a set of nodes S  is 

defined as the set [ ]S N S S∂ = − .  

 A set of nodes S  is called a defensive alliance if [ ] [ ]N v S N v S| ∩ | ≥ | − | for every 

node v S∈  and an offensive alliance if [ ] [ ]N v S N v S| ∩ | ≥ | − | for every [ ]v N S S∈ − . As it 

turns out the idea of defensive alliance has appeared in some earlier publications prior to being 

given the name defensive alliance in [KHH04]: Flake et al. [FLG00] defined a Web community 

as a set of web sites C  in which every member at least as many neighbors inside C  as outside 

it; the book by Wasserman and Faust [WF94] which deals with the analysis of social networks 

also studies groups of nodes with similar properties as a defensive alliance.  

 A set of nodes S  is called a powerful alliance if it is both a defensive and an offensive 

alliance. A defensive (offensive, powerful) alliance S  is said to be global if it is also a 

dominating set. Several papers [HHH03, HHK04, BDH04] have initiated the study of 

mathematical properties of alliances.  

4.2. Graph-theoretic Definitions of Community 

 This section gives two definitions of community: (i) -p alliance  (Definition 4.1); and (ii) 

- -near cliqueα (Definition 4.2). The first definition was proposed Flake et al. [FTT04] and is a 

generalization of the concept of defensive alliance.  
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 The second definition of community— - -near cliqueα —is a new concept proposed in 

this dissertation.  

 Definition 4.1. Let [0 1]p ∈ , . A -p alliance  in a graph ( , )G V E=  is defined as a subset 

of nodes pC  satisfying the property ( ) ( )p pN u C p N u C∩ ≥ −  for every node pu C∈ . A 

-p alliance  pC  is called minimal if no proper subset of  pC  forms a -p alliance , minimum if pC  

has the smallest cardinality among all -p alliances , and global if it dominates the graph G . 

 The parameter p  in the definition of community as a -p alliance  quantifies the strength 

of a community: If 0p = , then any set of nodes would be a -p alliance . At the other extreme, if 

1p = , then a  -p alliance  is the same as a defensive alliance.  

 It turns out that several community-mining problems are NP-hard under the definition of 

community as a -p alliance  (Section 4.3). Therefore it becomes necessary to investigate the 

existence of alternative definitions of community which render community-mining amenable to 

polynomial-time algorithms. The Definition 4.2 shown next aims to achieve exactly that.   

 Definition 4.2. Let [0 1]α ∈ , . An - -near cliqueα  is defined as a subset of nodes Cα  such 

that the clustering coefficient of each node in the induced subgraph [ ]GCα  is greater than or 

equal to α . An - -near cliqueα  Cα  is called maximal if no proper superset of Cα  is an 

- -near cliqueα . A maximum - -near cliqueα  is one that has maximum cardinality.  

 The parameter α  in the definition of community as an - -near cliqueα  quantifies again 

the strength of relationship among the nodes of a community: If 0α = , then every subset of 

nodes forms an - -near cliqueα  and only V  forms a maximal - -near cliqueα ; If 1α = , then 

only the nodes of a clique would satisfy the definition of an - -near cliqueα  (Proposition 4.1). 
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 Note that implicit in Definitions 4.1 and 4.2 is the requirement that the subgraph induced 

by the nodes of a -p alliance  or an - -near cliqueα  be connected. 

 Example 4.1: The following examples show the largest value of α  for which some well-

known graphs form an - -near cliqueα . 

• The complete graph nK  is an - -near cliqueα  for 1α = . 

• The k -nearest neighbor lattice, 2k = . This graph is an - -near cliqueα  for 1
2α = . 

• The complete bipartite graph ,m nK  is not an - -near cliqueα  for any 0α > . ■  

 

 Proposition 4.1 gives some basic properties of - -near cliquesα . 

Proposition 4.1. The following properties hold: 

a) If a set S forms an - -near cliqueα  then it would form ' - -near cliqueα  for all 'α α< . 

b) If a subset of nodes S  of a graph G  is an 1- -near clique  then the induced subgraph [ ]G S  

is a clique. 

c) If the set of nodes of a graph G  forms an - -near cliqueα  then ( )C G α≥ . 

Proof. Trivial. 

 

 Note that the two definitions of community given above are quite different from each 

other. First, while the definition of a community C  as an - -near cliqueα  involves only the 

nodes of C  and the edges with both ends in C , the definition as a -p alliance  involves the 

nodes of C , the edges with both ends in C  and the edges with only one end in C . Second, 
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under the definition of community as an - -near cliqueα  only the problems about maximal 

communities are interesting (any triangle would be a 1- -near clique ), while under the definition 

of a community as a -p alliance  only the problems about minimal communities are interesting 

(the set of nodes of the graph itself is a 1-alliance ). This asymmetry between the two definitions 

of community implies differences in the ranges of applications that suits each of them; we will 

return to this point in Section 4.3. 

 Having defined the concept of community, we return to the definition of community 

mining. This problem may be posed in at least two different versions, as shown in Definition 4.3 

and 4.4: 

 Definition 4.3. Let ( )G V E= ,  be a graph and S  a subset of V . The community-mining 

problem 1P  is defined as the problem of finding a maximal (minimal) community in G  which 

contains (is contained in) the set of nodes S .  

 Definition 4.4. Let ( )G V E= ,  be a graph. The community-mining problem 2P  is 

defined as the problem of finding a partition of the set of nodes V  into two or more subsets such 

that each subset is a community in G . 

 Thus in the problem 1P  the goal is to find a single community which satisfies certain 

requirements, while in the problem 2P  the goal is to find all communities. 
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4.3. Computational Complexity of Community Mining 

 In view of the definitions of community in Section 4.2, it is natural to ask whether there 

exist polynomial-time algorithms to solve the community-mining problems 1P  and 2P . The 

answer to this question makes up the topic of the present section.  

 In order to highlight the applications that better suit the various definitions of community 

and community-mining, next we present some Web-application scenarios each of which boils 

down to a specific version of community mining. For each of the subsequent scenarios we 

discuss the computational complexity of the community-mining problem arising in that scenario. 

 

Scenario 1: Clustering the responses to a user query by a search engine 

 Consider the following procedure for clustering the responses by a search engine to a user 

query: 

• Send a query on a pre-defined topic to a search engine, say Google. 

• Let the set of many of the top responses returned by the search engine, say the first 

10,000 ,  be denoted by R . 

• Construct the subgraph induced by R  in the Web graph; call this the context graph 1G  of 

the given query. 

• Solve the community-mining problem 2P  on the graph 1G . The solution to this problem 

is expected to partition the set of nodes of the context graph into two or more partitions—

each representing a subtopic of the query’s topic. 
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 Assuming the definition of community as a -p alliance  with 1
2p ≥ , the problem 

described in Scenario 1 is NP-hard. This conclusion follows directly from the fact that the 

following decision problem: 

Given: An undirected, weighted graph ( , )G V E w= , , a real number 1 2p ≥ / , and 

positive integer k .  

Question: Can the nodes of G  be partitioned into k  disjoint sets 1 ,kV …V, ,  such that for 

all iV  and iu V∈ , ( ) ( )
iv V v V
w u v p w u v

∈ ∈
, ≥ ,∑ ∑ ?   

is NP-complete—a result obtained by Flake et al. [FTT04] by using a transformation from 

BALANCED PARTITION [GJ79].  

 The computational complexity of the problem described in Scenario 1 is open under the 

definition of community as an - -near cliqueα .  

 

Scenario 2:  Dominating community 

 The procedure below shows a method for extracting a small “strong” community from a 

larger one by selecting a subset of nodes of the large community that satisfies the definition of 

community:   

• Let the set of web pages that belong to a broad topic be denoted by S . This set may be 

obtained for example using a topic directory such as Yahoo! or Open Directory. 

• Construct the subgraph of the Web graph induced by S . Call this graph the context graph 

2G . 

• Solve the minimal community-mining problem 1P  on the context graph 2G .  
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 The solution to this problem is expected to find a subset of nodes that is of high-quality, 

or central to the broad topic at hand. 

 Assuming a definition of community as a global -p alliance  with 1p = , the 

computational complexity of this problem has been analyzed in [CBDD04] where it was 

proved—using transformations from the DOMINATING SET (DS) problem [GJ79]—that the 

problems of finding a minimum global defensive (offensive, powerful) alliance are NP-hard.  

 To explain the idea of the transformations used in [CBDD04], we show the details of the 

proof for the case of global defensive alliance; the complete proofs for the case of offensive and 

powerful alliance may be found in [CBDD04].  

 

 The decision version of the problem of finding a minimum global defensive alliance is: 

GLOBAL DEFENSIVE ALLIANCE (GDA):  

Given: A graph ( )GV E,  and a positive integer K V≤| |.  

Question: Is there a global defensive alliance in G  of size K  or less?   

 

Theorem 4.1. GDA is NP-Complete.  

Proof.  

 The GDA problem is clearly in the set NP. Let [ ( ) ]I G V E K= , ,  be any instance of DS. 

We need to construct an instance [ ( ) ]I G V E K′ ′ ′ ′ ′= , ,  of GDA such that G  has a dominating set 

of size K  or less if and only if G ′  has a global defensive alliance of size K ′  or less.  

 First, let us describe a procedure to construct the graph G ′ : Initially let G G′ = . Then, 

for each non-isolated node iv V∈ , add ( ) 1G id v −  components 1 ( ) 1G ii i d vC … C, , −, ,  to G ′ . Each 



79 

component i jC ,  consists of two nodes and two edges as follows:  

 ({ } {( ) ( )})i j i j i j i i j i j i jC a b v a a b, , , , , ,= , , , , , .  

In other words the node i ja ,  of the component i jC ,  is connected to the root iv  as well as to the 

other node i jb ,  of this component. We say that the components 1 ( ) 1i j G iC j d v, , ≤ ≤ −  are 

rooted at iv . Letting  

 { 1 ( ) 1} { 1 ( ) 1}
i iv i j i v i j iA a j d v B b j d v, ,= | ≤ ≤ − , = | ≤ ≤ − ,  

 
i i

i i

S v S v
v S v S

A A B B
∈ ∈

= , = ,∪ ∪  

and  

 V VA A B B= , = ,  

the graph G ′  is completely specified by  

 V V A B′ = ∪ ∪ ,  

 {( ) ( ) }
i i

i

i i j i j i j i j v i j v
v V

E E v a a b a A b B, , , , ,
∈

⎛ ⎞⎟⎜ ⎟′ = ∪ , , , | ∈ , ∈ .⎜ ⎟⎜ ⎟⎜⎝ ⎠
∪  

 In the remainder of the proof, we shall refer to the nodes (edges) of components i jC ,  as 

component nodes (edges), to distinguish them from the nodes (edges) of V . Let Q  be the total 

number of components i jC , . To complete the construction of the instance I ′  we let 

K K Q′ = + . Figure 4.1 shows an example of the application of this procedure. Both graphs G  

(on the left) and 'G  (on the right) are shown in Figure 4.1. The component nodes are represented 

by empty circles and component edges are represented by dotted lines. The total number of 

components in this example is 7Q = . 
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Figure 4.1. Construction of an instance of GDA from an instance of DS.  

 Note that ( ( ) 1) 2
i

G iv V
Q d v E V

∈
= − = | | − | |∑ . Therefore, the construction of G ′  can 

be accomplished in linear time.  

  

 To complete the proof of Theorem 4.1, it remains to show that G  has a dominating set of 

size K  or less if and only if G ′  has a global defensive alliance of size K ′  or less.  

 First, suppose that S V⊆  is a dominating set in G  with S K| |≤ . Let  

 S V SS S A B −′ = ∪ ∪  

Note that S  is a subset of S ′ . Furthermore, for each node iv S∈ , S ′  contains all the nodes 

1 ( ) 1G ii i d va … a, , −, , . Finally, for each node jv S∉ , S ′  contains all the nodes 1 ( ) 1G jj j d vb … b, , −, , . These 

observations together with Lemma 1 imply that I ′  is a YES instance of GDA problem.  

 

Lemma 4.1.  S ′  is a global defensive alliance in G ′  with size K ′  or less.  

Proof.  

S ′  contains all nodes of S  as well as one node from each component i jC , . Therefore,  
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 S S Q K Q K′ ′| |=| | + ≤ + = .  

 Furthermore, S ′  dominates V  (since S  is a dominating set in G  and S S ′⊆ ), and, it 

also dominates all the components i jC ,  (because S ′  contains exactly one node from every such 

component). Thus, S ′  is a dominating set in G ′ .  

 Finally, S ′  is a defensive alliance in G ′ . To see this, first note that every node 

iv S V′∈ ∩ , has exactly ( ) 1G id v −  neighbors 1 ( ) 1G ii i d va … a, , −, ,  in the set S ′ . Since iv  can have 

at most ( )G id v  neighbors outside S ′  (which happens only if all the neighbors of iv  in V  are 

outside S ′ ), the defensive alliance property is satisfied for iv . Furthermore, each node i ja S, ′∈  

has exactly one neighbor inside S ′  (the “root” node iv ) and exactly one neighbor outside (the 

node i jb , ), thus it satisfies the defensive alliance property. Finally, each node i jb S, ′∈  has degree 

one in G ′ , therefore it satisfies the defensive alliance property. � 

  

 Conversely, suppose that S ′  is a global defensive alliance in G ′  with K ′  or less nodes. 

We need to find a set S V⊆  of size K  or less that forms a dominating set in G . Let us begin 

with the following simple observation:  

 

Observation 4.1.  S ′  contains at least Q  component nodes.  

Proof.  

S ′  is a dominating set in G ′ , hence it contains at least one node from each component i jC , .�   

 

An immediate corollary of Observation 4.1 is that  
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 S V K Q K′ ′| ∩ |≤ − = .  

Since the set S V′ ∩  has size at most K , this set may be considered as a first candidate for a 

dominating set in G . However, S V′ ∩  does not necessarily form a dominating set in G , 

because there might exist a node ( )iv V S V′ ′∈ − ∩  which has no neighbor in S V′ ∩  (see 

Figure 4.2).    

 

 

Figure 4.2. A graph G ′ , a global defensive alliance S ′  in G ′  (nodes surrounded by squares) and 

a non-component node (surrounded by a circle) that has only one neighbor in S ′  which is a 

component node. 

 

Such a node, iv  wouldn’t be dominated by S V′ ∩ . We say that iv  is a component-dominated 

node. Now, let D ′  be the set of component-dominated nodes i.e.,  

 { ( ) has no neighbor in }i iD v V S V v V S′ ′ ′ ′= ∈ − ∩ | ∩ .  

 Note that the nodes of D ′  are the only ones among the nodes of V  that are not 

dominated by S V′ ∩ . Hence, the set ( )S D V′ ′∪ ∩  must form a dominating set in G . The next 

lemma, which is a strengthened version of Observation 1, implies that S K′| |≤ .  
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Lemma 4.2.  S ′  contains at least Q D ′+ | |  component nodes.  

Proof.  

Consider an arbitrary node iv D ′∈ . There must be a node i ja ,  such that i ja S, ′∈  (because S ′  is 

a dominating set and iv  does not have any neighbor in S V′ ∩ ). Now, the node i jb ,  must also be 

in S ′ , because otherwise the defensive alliance property would be violated for i ja , . Hence, for 

every node iv D ′∈  there exists at least one component i jC ,  with both nodes in S ′ . This implies 

that, in total, there are D ′| |  components with both nodes contained in S ′ . The remaining 

Q D ′− | |  components, must each have at least one node in S ′  because S ′  is a dominating set. 

Therefore, the number of component nodes in S ′  is at least 2 D Q D′ ′| | + − | |, that is 

Q D ′+ | |.� 

Now, let  

 ( )S S D V′ ′= ∪ ∩ .  

From Lemma 4.1 it follows that S K| |≤ . Since, as argued earlier, S  is also a dominating set in 

G , it follows that, I  is a YES instance of DS. � 

 

Scenario 3: Focused crawling 

 As mentioned in Chapter 1, focused aims to discover web pages related to a pre-defined 

topic. The search for such pages is selective in the sense that only some search paths that are 

deemed relevant are followed. Focused crawling may be performed on-line or off-line. In the on-

line version of focused crawling, the graph structure of the relevant portion of the Web is not 

know beforehand but is obtained during the search; in the off-line version, the graph structure of 
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the relevant portion of the Web is obtained first and the subset of nodes relevant to the given 

topic—i.e., the community—is found subsequently.  

 The following procedure gives a method to perform off-line focused crawling: 

• Send a query on a pre-defined topic to a search engine, say Google. 

• Let the set of a few of the top responses returned by the search engine, say the first 200 ,  

be denoted by R . 

• Construct the graph that consist of the nodes of R  as well as all the neighborhoods of R  

up to a certain depth k  (this graph is constructed by the following the forward links 

contained in the visited pages as well as the backward links that may be obtained using tools 

such as Connectivity Server [BBHK98]). Call this the context graph 2G  of the given query. 

• Select manually a few nodes from the set R , say 10  or 20 , that form a community. 

Denote the set of the seed-nodes by S . 

• Solve the maximal community-mining problem 1P  with the graph 2G  and the set S  as 

inputs.  

 The solution to this problem is expected to produce a set of web pages related to the 

given topic.  This procedure may be used, for example, to refresh the indices of a topic directory. 

 

 The computational complexity of this problem has not been determined assuming the 

definition of community as an - -near cliqueα .  Several polynomial time approximation 

algorithms for this problem are given in Chapter 7. 
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5. COUNTING COMMUNITIES IN WEB-LIKE NETWORKS 

 In order to evaluate the correctness of different definitions of community, it is helpful to 

analyze the density (or, concentration) of communities in random graph models and in real web-

like networks. Random graph models may be analyzed using techniques of the random graph 

theory, while real networks may be investigated through sampling.  

 In the following sections we discuss some recent techniques for determining analytically 

the expected number of simple subgraphs in the dynamic random graph models as well as a 

technique for estimating the concentration of various subgraphs in large networks. Then we 

present the results of our extensive sampling experiments to estimate the concentration of 

alliances or near-cliques in real-life web-like networks. 

5.1. Subgraph Counting in Dynamic Random Graph Models 

LCD model 

 Assume that S  is a fixed graph that can be a subgraph of tG  in the single-edge version of 

the LCD model (Section 2.2). In other words, we assume that (i) S  has set of nodes ( ) [ ]V S n⊆ ; 

(ii) S  does not have any self-loops; and (iii) for every node ( )i V S∈ , there is at most one edge 

ij  with j i< .  

 What is the probability that S  is a subgraph of tG ? The answer to this question was first 

obtained by Bollobas and Riordan [BR04]; the outline of the proof in [BR04] is shown next.  

 First, let us introduce some notation. Since the graph tG  in the single-edge version of 

LCD is a tree, we use the notation tT  instead of tG . For each node i t≤  of S  let ( )tR i  be the 
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number of nodes j t>  such that ( )ij E S∈ . In other words ( )tR i  is the number of edges of S  

coming into node i  after time t . Let tS  be the subgraph of S  induced by edges ij  with i j t, ≤ . 

Next, let ( 1)SC t +  be the number of edges ( )ij E S∈  with i t j t≤ , > . Finally, let  

 I{ ( )} ( )
( ) ( )

[ ( )]
t t

t

t ij E T t R i
ij E S i V S i t

X d i∈
∈ ∈ , ≤

= ∏ ∏  

Here IA  is the indicator function of event A  and [ ] ( 1) ( 1)rn n n n r= + − +"  denotes the 

rising factorials. Let’s analyze the definition of tX : First note that 0 1X = . The first product will 

be 1 if and only if ( ) ( )t tE S E T⊂ . The second product will be one if tS S= , that is, if there are 

no nodes or edges of S  coming after time t . Therefore, for t  sufficiently large (at least as large 

as the largest node in S ), tX  is the indicator variable of the event { }tS T⊂  and hence 

E( )t tXλ =  is the quantity we wish to calculate. The following lemma establishes a recurrence 

relation for tλ :  

Lemma 5.1.  Let 0t ≥ . If there exists an edge { 1} ( )k t E S, + ∈  with k t≤ , then  

 1 1

1
( 1)

2 1t t tR t
t

λ λ+ += + !
−

 

Otherwise,  

 1 1

( 1)
( 1) 1

2 1
S

t t t

C t
R t

t
λ λ+ +

⎛ ⎞+ ⎟⎜= + ! + ⎟⎜ ⎟⎜⎝ ⎠−
 

Proof: 

  Letting  

 I
1

1

{ ( )} 1 ( )
( ) ( )

[ ( )]
t t

t

ij E T t R i
ij E S i V S i t

Y d i
+

+

∈ +
∈ ∈ , ≤

= ∏ ∏  

and noting that 
11 ( 1) 1[ ( 1)] ( 1)

tt R t td t R t
++ + ++ = + !,  we can write 1 1( 1)t tX R t Y+ += + ! .  

First, consider the case when there is no edge { 1} ( )k t E S, + ∈ . In this case, it can be verified 
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that: (1) 1t tS S+ = ; (2) For each 1 ( )tf V S+ ∉  with i t≤ , 1( ) ( )t tR i R i+ = ; and (3) 

I I
1{ ( )} { ( )}t tij E T ij E T+∈ ∈= . As a result  

 I{ ( )} 1 ( )
( ) ( )

[ ( )]
t t

t

ij E T t R i
ij E S i V S i t

Y d i∈ +
∈ ∈ , ≤

= ∏ ∏  

i.e., Y  is the same as tX  with ( )td i  replaced by 1( )td i+ .  

Fix tT  (and hence tX ). Let 1tf +  be the random variable denoting the parent of 1t + . There are 

two possibilities: If 1 ( )tf V S+ ∉ , then tY X= . Otherwise, 1( ) ( ) 1t td j d j+ = + , which implies  
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Taking expectations once more, we get the second result of the Lemma 5.1.  

 Now, turn to the first case, i.e., when there exists an edge { 1} ( )k t E S, + ∈ . In this case 

1 { 1}t tS S k t+ = ∪ , + . Since 1{ 1} tk t T +, + ∈ , it follows that  

 I I
1

1

{ ( )} { ( )}
( ) ( )

t t

t t

ij E T ij E T
ij E S ij E S

+

+

∈ ∈
∈ ∈

= .∏ ∏           (5.1) 
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Furthermore, for i t i k≤ , ≠  we can write 1 1( ) ( ) ( ) ( )t t t td i d i R i R i+ += , = , while 

1 1( ) ( ) 1 ( ) ( ) 1t t t td k d k R k R k+ += + , = − . From these equalities we derive that  

 
11 ( ) ( )

( ) ( )

1
[ ( )] [ ( )]

( )t tt R i t R i
i V S i t i V S i tt

d i d i
d k++

∈ , ≤ ∈ , ≤

=∏ ∏        (5.2) 

 

Observing that 1tf k+ =  with probability ( ) 2 1td k t/ − , and using Equations (5.1), (5.2) we get 

that ( )t tY X d k= /  with probability ( ) 2 1kd t t/ − . Taking conditional expectations we get  

 E ( )
[ ]

( ) 2 1 2 1
t t t

t
t

X d k X
Y T

d k t t
| = =

− −
 

and taking expectations in the last equation we get the first result of Lemma 5.1.  � 

 

 Theorem 5.1 gives closed-form expressions for ( )P nS T⊂ , derived by using the 

recurrence relation of Lemma 5.1. In this theorem, ( )V S+  denotes the set of nodes of S  that 

have outgoing arcs, and ( )V S−  the set of nodes of S  that have incoming arcs.  

Theorem 5.1.  Let S  be a possible subgraph of nT . Then  
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Triangles and Transitivity 

 By applying Theorem 5.1, it is relatively straightforward to derive expressions for the 

expected number of triangles and paths of length two in tG  for the case of LCD model. Denoting 
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by 
3,t CN  the number of triangles in tG , the following theorem holds: 

Theorem 5.2.  Let 1ε ≥  be fixed. Then  

 ( )E
3

3
,

( 1)( 1)
(log )

48t CN t
ε ε ε− +∼  

 

 Similarly, let 
2,t PN  denote the number of paths of length two in tG . The following 

theorem holds: 

Theorem 5.3.  Fix 1 0ε δ≥ , > . Then:  

 
2,

( 1) ( 1)
(1 ) log (1 ) log

2 2t Pt t N t t
ε ε ε ε

δ δ
+ +

− ≤ ≤ +  

  

 The proofs for the last two theorems appear in [BR04]. An immediate corollary of the 

previous two theorems is that the expected value of the transitivity of  graph tG  is given by 

 E
21 (log )

[ ( )]
8t

t
T G

t
ε−∼  

 

Paths and Cycles 

 Theorem 5.4 and 5.5 appear in [BR04].  Let , lt C
N  denote the number of cycles of length 

l  in tG . Then  

Theorem 5.4.  Let 3l ≥ . Then  

 ( )E ,( ) ( ) log
l

ll
t CN tε= Θ  
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 A similar result was independently derived by Bianconi et al. [BC03, Bia04]. Now, let 

, kt P
N  denote the number of paths of length k  in tG .  

Theorem 5.5.  Suppose ( )k k t=  satisfies ( ) logk t t α/ →  where 0 eα< < . Then  

 ( )E
1 log( )

, logk

e

t P

t
N

t

α α+ /⎛ ⎞⎟⎜ ⎟= Θ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

Furthermore, if ( ) log logk t t x t= +  where ( ) (log )x x t o t= = , then  

 
2

2
2

,

1
( )

2 2 logk

x
t P

t
E N e

tπ
− /=  

as t → ∞ .  

 Note that the second statement of the theorem means that the distribution of the path 

lengths is asymptotically normal with mean and variance logt .  

 

 

COPY model 

 Consider now the COPY model of Kumar et al. [KKRT00] which was described in 

Section 2.2. This model was partly motivated by a desire to account for the large number of 

complete bipartite subgraphs found empirically in the Web graph (see Section 5.2). Kumar et al. 

[KKRT00] showed that the number of complete bipartite subgraphs in the COPY model is also 

large. This result in stated in Theorem 5.6.  

Theorem 5.6. Let 
,, i dt KN  denote the number of complete bipartite subgraphs i dK ,  at time t . 

Then, for logi t≤   

 
,, ( )
i d

i
t KN te−= Ω  
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Proof.  

 Consider the node vτ  born at time tτ ≤ . Call this node a leader if at least one of its 

neighbors is chosen uniformly at random and a duplicator if all of its neighbors are copied from 

some other node. It is easy to notice that { }( )P is a leader 1 (1 )dvτ α= − −  and 

{ }( )P is a duplicator (1 )dvτ α= − . Assume that vτ  is a leader and consider the sequence of 

epochs 2( 2 ] (2 4 ] ( ]t… tτ τ τ τ, , , , , , . Let ( ],2A τ τ  be the event that at least one node born during the 

epoch ( ],2τ τ  chooses vτ  as prototype. Then: 

 ( ]P ,2
1

1
( ) 1 1 1 2A

τ

τ τ
τ τ τ′=

⎛ ⎞⎟⎜≥ − − ≈ /⎟⎜ ⎟⎜⎝ ⎠′+∏  

The same is true for all other epochs (2 4 ] ( 2 ]… t tτ τ, , , / , . Hence, the expected number of 

duplicators of vτ  up to time t  is (ln( ))t τΩ / . Note, that a (ln{ })d tK τ,Ω /  forms between the 

duplicators of tv  and its neighbors. Now, suppose that logi t≤ and let iteτ −= . The preceding 

arguments imply that the expected number of duplicators of vτ  is i . Hence, for each of the nodes 

1 ite
v … v −, ,  there is at least one d iK ,  and thus ( )

i d

t i
KN te

,

−= Ω . � 

 In the same paper, Kumar et al. [KKRT00] proved that the expected number of complete 

bipartite cliques in some other models (including a growing uniform random graph model and a 

random graph with given degree distribution) is very small.  
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5.2. Counting Communities by Trawling 

 In this section, the Web is considered as a directed graph and the notation ,i jC  is used to 

denote a bipartite core—i.e., a directed graph on i j+  nodes that contains at least one complete 

bipartite graph ,i jK  as a subgraph.  

 Kumar et al. [KRRT99] used a number of empirical observations to devise an efficient 

procedure for extracting bipartite cores from a subgraph of the Web with approximately 200  

million web pages. The problem of enumerating the small subgraphs of a large, web-like graph is 

now commonly referred to as trawling—a term first used in [KKRT99]. Note that a trawling 

algorithm must take into account the fact that the data that represents the web-like network 

generally would not fit in main memory. The trawling methodology devised by Kumar et al. is 

called elimination-generation. The input to the elimination-generation trawling algorithm is a 

subgraph of the Web obtained via crawling and stored in disk as an edge-list. The algorithm 

performs several passes over the data. During each pass, it writes a modified version of the 

dataset to disk for the next pass. It also collects some metadata which resides in main memory 

and serves as state in the next pass. Passes over the data are interleaved with sort operations, 

which constitute the bulk of the processing cost. Two processes, elimination and generation, are 

interleaved between passes.  

 Elimination: There are many necessary conditions for a node to be in a bipartite core. 

Take as an example 4 4C , : Any node with in-degree three or less can not participate on the right 

of a 4 4C , . Likewise, nodes with out-degree three or smaller cannot participate on the left side of a 

4 4C , . Thus edges that are directed into such nodes can be pruned from the graph. These 

necessary conditions are called elimination filters.  
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 Generation: Generation is counterpoint to elimination. Nodes that barely qualify for 

potential membership in a i jC ,  can be easily verified to either belong in such a core or not. 

Consider again 4 4C , : Let u  be a node of in-degree exactly four. Then, u  belongs to a 4 4C ,  if and 

only if the four nodes that point to it have a neighborhood intersection of size at least 4 . This can 

be verified cheaply. A generation filter is a procedure that identifies barely-qualifying nodes, and 

for all such nodes, either outputs a core or proves that such a core does not exist. Regardless of 

the outcome, the node can be pruned since all potential interesting cores containing it have 

already been enumerated.  

 The sorting of edges by the first (or the second) node, is essential so that filtering can be 

applied in a single scan. Details of how this can be implemented may be found in [KKRT99]. 

After an elimination/generation pass, the remaining nodes have fewer neighbors than before in 

the residual graph, which may present new opportunities during next pass. Depending on the 

filters, one of two things will eventually happen: (1) all the nodes will be removed until nothing 

is left; and (2) after several passes, the benefits of "elimination/generation" tail off as fewer and 

fewer nodes are eliminated at each phase. In the experiment by Kumar et al. [KKRT99] the 

second phenomenon dominates. Running the trawling algorithm on a crawl of the Web with 200  

million Web pages, Kumar et al. found over 100,000  bipartite cores, some being as large as 

6 9C , . Interestingly, even the smallest identified cores ( 3 3C ,  and 3 5C , ) were topically focused on 

an identifiable theme in 96%  of the sampled examples. Hence, the identified cores were usually 

topically focused and so specific that they were often not part of any preexisting portal hierarchy. 

This last point is important because it means that cores are “natural” in the sense that they are 

self-organized, and not an artifact of a single individual entity. 
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5.3. Estimating the Density of Communities by Sampling 

 This section begins by discussing a sampling algorithm devised by Kashtan et al. 

[KIMA04]. Then it describes a proposed improvement to this algorithm and finally presents 

several experimental results obtained by applying the improved sampling algorithm to a large 

web-like network. 

 

Sampling Algorithm  

 The sampling procedure proposed by Kashtan et al. [KIMA04] is shown in Algorithm 5.1 

below: 

Algorithm 5.1: SUBGRAPH-DENSITY 

Input:    ( , )GV E : an undirected graph 
  SampleSize : an integer 
  NumberOfSamples : an integer 
  Type : the type of subgraph being sampled 
Output: An estimate for the density of subgraphs of type Type  in G  
 
1. real: , ,SubgraphWeight TotalWeight P   

2. graph: ( , )S S SG V E  
3. 0Weight =  
4. FOR 1i =  TO  NumberOfSamples  DO 
5.  GENERATE-RANDOM-SAMPLE ( , , SG SampleSize G ) 
6.  P =GET-PROBABILITY-SAMPLE( , , SG SampleSize G ) 
7.  1TotalWeight TotalWeight P= +  

8.  IF (IS-OF-TYPE( ,SG Type )) THEN 

9.   1SubgraphWeight SubgraphWeight P= +  
10.  END IF  
11. END FOR 
12. RETURN /SubgraphWeight TotalWeight  
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 As seen, the procedure SUBGRAPH-DENSITY generates a user-specified number of 

random samples (subgraphs) and for each generated sample checks if it is of a given type. The 

output of this procedure is an estimate for the density of subgraphs of type Type  on 

SampleSize  nodes. Here, the density of a subgraph of type T  and size S  is defined as the ratio 

of the number of subsets of nodes of cardinality S  that induce subgraphs of type T  with the 

number of all connected subgraphs on S  nodes. Key to the procedure SUBGRAPH-DENSITY  

are the functions GENERATE-RANDOM-SAMPLE which is called to generate a random 

subgraph ( , )S S SG V E  and GET-PROBABILITY-SAMPLE which determines the probability that 

the sampling procedure generates a specific subgraph SG .  

 Algorithm 5.2 shows the pseudo-code for the procedure GENERATE-RANDOM-

SAMPLE. This procedure starts out by selecting an edge e  uniformly at random from the graph 

G  and then constructs a tree with SampleSize  nodes and 1SampleSize −  edges. The first edge 

of this tree is the edge e  and the rest of the tree is constructed by selecting at each step 

2, ,i SampleSize= …  an edge uniformly at random from the neighborhood of the tree 

constructed up to the step 1i − . Example 5.1 illustrates the idea of the procedure GENERATE-

RANDOM-SAMPLE. 

 Example 5.1. Consider the graph in Figure 5.1 and assume hat the first edge  

Figure 5.1. A graph on five nodes. 
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is chosen uniformly at random to be the edge (2,5) .Then the second edge will be selected 

uniformly at random from the set {(1,2),(2,3),(3,5),(4,5)} . Suppose that (2,3)  is chosen as the 

second edge. Then the third edge will be selected uniformly at random fro the set {(1,2),(4,5)} , 

etc.  

 

Algorithm 5.2: GENERATE-RANDOM-SAMPLE 

Input:    ( , )GV E : an undirected graph 
  SampleSize : an integer 
Output: ( , )S S SG V E : a random sample  
 
1. edge: e  
2. ( , )e u v= ←  a randomly chosen edge from G  
3. { , }SV u v= , { }SE e=  
4. ({edges incidenton } {edges incidenton v}) { }L u e= ∪ −  

5. 1i =  
6. WHILE i SampleSize<  DO 
7.  ( , )e u v=  ←  a randomly chosen edge from L ; assume ,S Su V v V∈ ∉  

8.  { }S SV V v← ∪  
9.  { }SE E e= ∪  
10.  {edges incidenton } {edgeswith both ends in }SL L v V= ∪ −  

11.  IF L = ∅  THEN 
12.   GO TO Step 2 
13.  ELSE 
14.   1i i= +  
15.  END IF 
16. END WHILE 
17. RETURN SG  

 

  Of course, not every tree on SampleSize  nodes in the graph G  has the same probability 

of being generated. As a result it is necessary to compute for each generated tree the probability 

that the sampling procedure would generate that specific tree. Algorithm 5.3 shows the pseudo-
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code for a procedure that computes the probability that the sampling procedure GENERATE-

RANDOM-SAMPLE will generate a specific fixed tree. 

  

Algorithm 5.3: GET-PROBABILITY-SAMPLE 

Input:    ( , )GV E : an undirected graph 
  SampleSize : an integer 
  ( , )S S SG V E : a subgraph of G  that may be generated by the sampling  
          procedure GENERATE-RANDOM-SAMPLE 
Output: P : probability that the sampling procedure generates SG  
 
1. array: (1, )l SampleSize  
2. 0P =  
3. FOR EACH  permutation σ  of the set SE  DO  
4.  FOR 2i =  TO SampleSize  DO 
5.   [ ]l i = size of set L  before selecting the thi  edge during a sampling of  

          subgraph SG  in the sequence specified by σ  
6.  END FOR 
7.  1

| |p E=  

8.  FOR 2i =  TO SampleSize  DO 
9.   1* [ ]p p l i=  

10.  END FOR 
11.  P P p= +  
12. END FOR 
13. RETURN P  

 

 The computation in the procedure GET-PROBABILITY-SAMPLE is illustrated in 

Example 5.2, below: 

 Example 5.2: Consider the graph G  show in Figure 5.2 and the subgraph 'G  induced by 

edges (3,5),(5,6)  and (6,8) . What is the probability that the sampling procedure GENERATE-

RANDOM-SAMPLE will generate 'G  as a sample? To compute this probability, first we 

compute for each fixed permutation of the set of edges {(3,5),(5,6),(6, 8)}  the probability that 
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the sampling procedure will generate these three edges in the sequence specified by the fixed 

permutation and then we add these individual probabilities together. 

Figure 5.2. A graph with eight nodes and ten edges. 

  

 It is easy to see that for two of the six permutations—that is, for the permutations 

(3,5),(6,8),(5,6)  and (6,8),(3,5),(5,6)—this probability is zero because it is not possible to 

generate this triple of edges by using our sampling procedure in the sequence specified by any of 

these two permutations. On the other hand, the probabilities for the remaining four permutations 

are as follows: 

• for (3,5),(5,6),(6,8) , 1 1 1 1
10 4 6 240p = × × =  

• for (6,8),(5,6),(3,5) , 1 1 1 1
10 4 4 160p = × × =  

• for (5,6),(3,5),(6,8) , 1 1 1 1
10 4 6 240p = × × =  

• for (5,6),(6,8),(3,5) , 1 1 1 1
10 4 4 160p = × × =  

By adding these four probabilities together we find that the probability that our sampling 

procedure will generate the subgraph 'G  is 5240 .  
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Proposed Improvement of the Sampling Procedure 

 As indicated in Example 5.2, for a given a tree ( , )S S SG V E  which is a subgraph of a graph 

G , only some of the permutations of the set of edges SE  will specify sequences in which it is 

possible to generate SG . We say that a particular permutation σ  of the edges of set SE  is 

feasible if it is possible that the sampling procedure generates the edges of SG  in the sequence 

specified by σ . Consider, for instance, the subgraph induced by the edges 

1 2 3{ (3,5), (5,6), (6,8)}e e e= = =  in the graph shown in Figure 5.2. Among the six possible 

permutations of these three edges, two are not feasible (permutations 1 3 2{ , , }e e e  and  3 1 2{ , , }e e e ) 

while the remaining four are feasible. 

 It may be seen that a permutation σ  of the set 1 1{ , , }S SampleSizeE e e −= …  is feasible if and 

only if the subgraph induced by the edges (1) ( ), , je eσ σ…  is connected for all 

1, , 1j SampleSize= −… .  

 This observation indicates that the for-loop in Line 3 of the procedure GET-

PROBABILITY-SAMPLE does not need to iterate over all permutations of the set SE  but only 

over all feasible permutations.  

 How much is the performance of the procedure GET-PROBABILITY-SAMPLE 

improved by applying this change? In order to answer this question we consider first the best and 

the worst inputs for the improved procedure GET-PROBABILITY-SAMPLE. It may be seen 

that the worst-case input is a tree of diameter one consisting of a node u  to which all other nodes 

are linked with an edge (i.e., a star graph). Every permutation of this tree is feasible and thus the 

number of feasible permutations is ( 1)!SampleSize − . On the other hand, the best-case input is 

a path of length 1SampleSize − . In this case it is easy to see that the number of feasible 
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permutations is 22SampleSize− . In order to estimate the average number of feasible permutations for 

a random sample, we used simulation. Table 5.1 shows the average number of feasible 

permutations for trees with 5, ,10…  nodes (in the 3rd column). For a fixed number of nodes, the 

values shown in the 3rd column of Table 5.1 were averaged over 100 runs. For comparison, this 

table also shows the number of feasible permutations for the best case (2nd column) and worst 

case (4th column). As seen, the average case is much closer to the best case than it is to the worst 

case. 

 

Table 5.1. Number of feasible permutations for the best-, average-, and worst-case sample inputs. 

SampleSize  22SampleSize−  Average  ( 1)!SampleSize −  

5  8  14  24  

6  16  47  120  

7  32  185  720  

8  64  1041  5040  

9  128  5397  40320  

10  256  43330  362880  

 

 We applied the improved sampling procedure SUBGRAPH-DENSITY to study the 

density of near-cliques in a large real-life web-like network. The obtained results are presented 

next. 
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Case study: FOLDOC Network 

 The real-life data set that was used in our sampling experiments is the network 

representation of Free OnLine Computing Dictionary (FOLDOC).  FOLDOC is a searchable 

dictionary of terms related to computing such as acronyms, jargon, programming languages, 

tools, architecture, operating systems, networking, theory, conventions, standards, companies, 

projects, products, history, etc.  

 The dictionary has been growing since 1985 and now contains over 13000 definitions 

totaling nearly five megabytes of text. Entries of this dictionary cross-reference each other and 

related resources elsewhere on the net. The nodes in the network representation of FOLDOC 

represent terms. An arc ( , )u v  means that the term v  is used to describe the meaning of term u .  

 The graph representation of FOLDOC network was obtained from the web site of the 

network visualization tool Pajek (see Appendix A). This graph has 13356  nodes and 120238  

directed arcs. For convenience, we converted this directed graph into an undirected graph by 

ignoring the orientation of arcs. We then merged the parallel arcs formed as a result of this 

process, thereby reducing the number of edges to 91465 . All experiments discussed next refer to 

this undirected version of the FOLDOC network. 

 First, we computed several global parameters of the FOLDOC graph. The values of these 

parameters are shown in Table 5.2. Notice that this network satisfies the salient properties of 

web-like networks: it has a power-law degree distribution (Figure 5.3) with exponent 3γ = , a 

small average distance (dist( ) 5.85G = ) and a large value of clustering coefficient 

( ( ) 0.3379C G = ). 
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Table 5.2. Some parameters of the FOLDOC network. 

Parameter Value 

n  13356  

m  91465  

min ( )d v  2  

max ( )d v  728  

( )d G  13.697  

dist( )G  5.85 
γ  3.0  

min ( )C v  0  

max ( )C v  1  

( )C G  0.3379  
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Figure 5.4. Log-log plot of the cumulative degree distribution of the FOLDOC network. 
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A) Some examples of communities discovered through sampling 

 First we used the sampling procedure to determine if subgraphs with high values of 

clustering coefficient consist of nodes with related meaning. Figures 5.4 and 5.5 show two 

subgraphs with high values of clustering coefficient that were found during sampling.  

 

 

Figure 5.4. A sampled graph on six nodes. Minimum clustering coefficient is 0.5  and average 

clustering coefficient is 0.8 .  

 

 In the first example it may be seen that all the terms except one (“compactness 

preserving”) are indeed closely-related terms. The graph in the second example consists of nodes 

that belong to two different communities. This is an interesting example which highlights the 

idea that groups of nodes that satisfy the definition of - -near cliqueα  for large values of 

parameter α  might be unions of nodes from several communities. 

 The two examples given in Figures 5.4 and 5.5 are representative of the groups of nodes 

with high clustering coefficient that we inspected visually by using Pajek visualization tool. It 

should be mentioned that in some cases the nodes of a sample with high clustering coefficient 



104 

did not seem to be related to each-other. However, the reason for this unexpected result was 

traced back to errors in the input graph FOLDOC.  

 

 

Figure 5.5. A sampled graph on ten nodes. The average clustering coefficient of this graph is 

0.7 . 

 

B) Density of - -near cliquesα  

 Second, we used the sampling procedure to determine the density of - -near cliquesα . 

The results of these sampling experiments are shown in Figure 5.6. This figure shows the density 

of subgraphs with six nodes and with minimum clustering coefficient in the range [ ), 2i i +  for 

0, , 8i = … . The densities were computed after one, two, …, five thousand samples were taken. 

For clarity the density values for the range [ )0,0.2  have been omitted from Figure 5.6 because 

they were always greater then 0.99 , that is much larger than the values corresponding to the 

other four ranges. 

 Figure 5.6 indicates that after 30000  samples the density values converge. This 

observation agrees with the convergence results in [KIMA04] were it was noticed that the 

densities for many types of small subgraphs will converge after 5000 50000−  samples. 
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Figure 5.6. The density of subgraphs with six nodes versus the minimum clustering coefficient in 

these subgraphs. 

 

Figure 5.7 shows the density of subgraphs with six nodes and with average clustering coefficient 

in those ranges. In this case, for clarity, the density values for the bottom range [ )0,0.2  have 

been omitted because they are too small compared to the values for the other three ranges. Again 

after 30000  samples the density values appear to converge. 
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Figure 5.7. The density of subgraphs with six nodes versus the average clustering coefficient in 

these subgraphs. 

 

 The sampling experiments presented in this section show that sampling is a very useful 

tool for (1) visually inspecting groups of the nodes that satisfy a certain definition of community, 

and (2) for investigating the density of various types of community. 
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6. EXISTING ALGORITHMS FOR COMMUNITY MINING  

 Recently, several community-mining algorithms spanning a wide spectrum of techniques 

have been proposed. These algorithms are surveyed next.  

6.1. Algorithms Based on Hierarchical Clustering 

 The algorithms in this group employ the technique of hierarchical clustering, which is 

essentially based on the computation of certain measures of “similarity” between distinct nodes 

and may be performed in either a bottom-up or a top-down fashion. An agglomerative 

hierarchical clustering algorithm begins with each node in a separate cluster, and then iteratively 

pulls together the two clusters that are the most similar, in a bottom-up fashion,. Two measures 

of similarity borrowed from the field of bibliometrics—bibliographic and co-citation coupling—

have been used in some community-mining agglomerative clustering algorithms [HKKS04, 

BD05].  

 In contrast with agglomerative clustering, a divisive clustering algorithm follows a top-

down approach to iteratively identify pairs of adjacent nodes that are most “dissimilar”, and 

remove the edge(s) between them. Usually, the iteration ends when the graph breaks into 

disconnected components, which then represent the desired clusters. A measure of similarity 

proposed by Girvan and Newman [GN02], called the “edge betweenness”—the number of 

shortest paths passing through an edge—has gained some popularity due do its intuitive appeal 

and simplicity. This algorithm provides a good illustration of the divisive clustering techniques 

and therefore it is described in detail next.  

 Recall that the load, or betweenness, of a node v  in an undirected graph is defined as the 
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number of shortest paths passing through v . Similarly, the load of an edge e  is defined as the 

number of shortest paths passing through e . The intuition behind the Girwan-Newman algorithm 

is that in a network with communities, the edges between communities can be thought as 

forming "bottlenecks" in the sense that most shortest paths will go through them. Therefore 

removing the edges with the highest load should split the network into natural communities.  

 The pseudocode of the procedure  by Girwan and Newman [GN02] is shown in 

Algorithm 6.1, below.  

 

Algorithm 6.1: GIRWAN-NEWMAN 

Input:    G = (V, E) : an undirected graph 
Output: C : a “dendrogram” of communities 
 
13. edge: e  
14. WHILE E ≠ ∅  DO 
15.  e ←  MAX-LOAD-EDGE (G )  
16.  remove e  from G  
17. END   

 

 The main loop of the algorithm is very simple: in each step, the edge with the highest 

load is found and removed from the graph. The procedure MAX-LOAD-EDGE is called to find 

the edge with the highest load. In turn, MAX-LOAD-EDGE calls SINGLE-SOURCE-NODE-

LOAD from each node. Algorithm 6.2 shows the pseudocode for SINGLE-SOURCE-NODE-

LOAD which is implemented by a simple modification of Breadth-First Search (BFS) proposed 

in [GN02].  

 The time complexity of procedure SINGLE-SOURCE-NODE-LOAD is of order 

( )O m n+  because it involves a single run of BFS. Algorithm 6.3 shows the pseudocode for the 

MAX-LOAD-EDGE procedure. The MAX-LOAD-EDGE calls SINGLE-SOURCE-NODE-
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LOAD for each node and therefore its time complexity is of order ( )O mn .  Finally, the 

GIRWAN-NEWMAN algorithm calls MAX-EDGE-LOAD after the removal of each edge, and 

thus its time complexity is of order 2( )O m n , which is prohibitively slow for analyzing large 

web-like networks. 

 

Algorithm 6.2: SINGLE-SOURCE-NODE-LOAD 
Input:    G = (V, E) : an undirected graph 
  s V∈ : a node 
Output: the BFS tree and the load for each node 
 
1. array: d, load 
2. ( )d s ←  0  
3. ( )load s  ←  1  
4. FOR ALL nodes i  adjacent to s  DO 
5.  ( ) 1d i ←   
6.  ( ) 1load i ←   
7. END FOR 
8. REPEAT 
9.  FOR ALL nodes j  adjacent to one of i  DO 
10.   IF j  has not been assigned a distance THEN 
11.    ( ) ( ) 1d j d i= +  
12.    ( ) ( )load j load i=   
13.   END IF 
14.   IF j  has already been assigned a distance AND ( ) ( ) 1d j d i= +  THEN 
15.    ( ) ( ) ( )load j load j load i← +  
16.   END IF 
17.  END FOR 
18. UNTIL there are no nodes that have been assigned distances but whose neighbors have not 

been assigned distances 
19. RETURN d , load   

 

 Another measure of similarity, called the “edge clustering coefficient”—the analog of the 

node clustering coefficient (see Section 1.1)—was proposed by Radichi et al. [RCCL04]. 

Castellano et al. [CCLP04] combined a divisive clustering technique with a formal definition of 
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a community as a group of nodes where each member has more neighbors inside the group than 

outside it (i.e., a defensive alliance). 

 

Algorithm 6.3: MAX-EDGE-LOAD 
Input:    ( , )G V E= : an undirected graph 
Output: the edge with the highest load 
 
1. array: load  
2. FOR ALL e E∈  DO 
3.  ( ) 0load e ←   
4. END FOR  
5. FOR ALL s V∈  DO 
6.  T ←  SINGLE-SOURCE-NODE-LOAD(G s, ) 
7.  D ←  depth(T )  
8.  FOR ALL nodes i  at level 1D −  neighboring leaf t  DO  
9.   ( ) ( ) ( )load i t load i load t, ← /  
10.  END FOR 
11.  FOR 2l D= −  DOWNTO 0  DO 
12.   FOR ALL edges ( )i j,  such that j  is at level l  AND 
13.           i  at an upper level  DO 
14.    

lower than
( ) [1 ( )]( ( ) ( )

k i
load i j load k i load i load j, ← + , /∑     

15.   END FOR 
16.  END FOR 
17. END FOR  
18. RETURN an edge with maximum load 

 

 Clustering algorithms produce groups of nodes that are densely linked with each other 

while being sparsely linked with the rest of the nodes. However, these algorithms have 

considerable time demand, which limits their application to networks of moderate size. 

6.2. Algorithms Based on Spectral Analysis 

 This section discusses some global methods that essentially consider all edges of a graph 
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to decide on the similarity between two nodes. First, let us recall some definitions from linear 

algebra:  

 Any non-singular n n×  matrix M  can be represented as summation of vector outer-

products:  
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M λ
=
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where il  and ir  are, respectively, the thi  left and right eigenvectors of M  and iλ  is the thi  
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 The eigenvalues and eigenvectors form the spectrum of a matrix. If the spectrum of a 

matrix is full (i.e., it contains n  distinct eigenvectors), then either the left or the right 

eigenvectors can be used as a basis to express any n -dimensional vector. If M  is symmetric, 

then the left and right eigenvectors of M  are identical.  

 Probably, the most famous algorithm that uses spectral techniques is PageRank 

[PBMW98]. The main objective of this algorithm was to remedy the “abundance problem" 

inherent in broad search engine queries. To achieve this objective, PageRank assigns to each web 

site a measure of prestige which is independent of any information need or query. In simple 

terms, the prestige of a web site is proportional to the sum of prestige scores of pages linking to 

it.  
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 The earliest applications of spectral techniques for mining communities are Kleinberg’s 

HITS (Hypertext Induced Topic Search) algorithm [Kle99] and its variations [BH98, DH99]. 

HITS algorithm is described next. The intuition behind this algorithm comes from the 

observation that, as in the academic literature where some publications initiate new ideas, while 

others consolidate and survey significant research, the Web includes two flavors of prominent 

web pages: authorities, which contain definitive high-quality information, and hubs, which are 

comprehensive lists of links to authorities. Every page is to some extent both a hub and an 

authority, but these properties are graded. Thus, every page v  has two distinct measures of merit, 

its hub score [ ]h u  and its authority score [ ]a v .  

 HITS operates in two phases. In the first phase a subgraph of the Web that is specific to a 

query q  is constructed as follows: The query q  is sent to a search engine and the web pages that 

constitute the top, say 200, responses from the search engine are said to form the root set R . The 

base set qV  is constructed by adding to the root set R  all the web pages v , such that for some 

u R∈ , at least one of the two arcs uv  and vu  is an arc of the Web. Arcs that connect web pages 

from the same web site are eliminated because they are considered “nepotistic". The set of the 

remaining arcs is denoted by qE . This process constructs a query-specific subgraph 

( )q q qG V E= , .  

 In the second phase, the hub and authority scores for all nodes in qV  are computed. 

Collectively, the scores of all the nodes are written as vectors a  and h . The authority score of a 

page is proportional to the sum of hub scores linking to it, and conversely, its hub score is 

proportional to the authority scores of the pages to which it links. Assuming that A  is the 

adjacency matrix of qG , this translates to the following pair of equations:  
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.

TA

A

= ,

=

a h

h a
 

 The method of power iteration may be used to solve this system of equations, as shown 

in pseudocode in Algorithm 6.4. It is a well-known fact of linear algebra that using the power 

iteration shown in Algorithm 6.4, the vector h  will converge to the principal eigenvector of 

TAA  while the vector a  will converge to the principal eigenvector of TA A . The error after i  

iterations, is proportional to 2 1( )iO λ λ| / | . This procedure tends to be fast for power-law graphs 

which often have the property 1 2λ λ�  [CL03]. Typically, runs with several thousand nodes and 

links “converge" in 20 to 30 iterations, in the sense that the rankings of hubs and authorities 

stabilize.  

 

Algorithm 6.4: HITS-SCORES 
Input:    ( , )G V E= : an undirected graph 
  a, h : vectors 
Output: “authority” and “hub” scores of all nodes 
 
1. (1 1)…← , ,a   
2. (1 1)T…← , ,h   
3. WHILE h  and a  change significantly DO 
4.  A←h a   
5.  1 [ ]h v

h h v←|| || = ∑l   

6.  h← /h h l   
7.  TA←a h   
8.  1 [ ]a v

a a v←|| || = ∑l   

9.  a← /a a l     
10. END WHILE  

 

HITS communities 

 If the query q  that serves as input to HITS is ambiguous (e.g., “jaguar") or polarized 
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(e.g., “abortion"), the set qV R−  will contain a few almost disconnected communities. In each 

community there may be dense bipartite subgraphs. In such cases, a few of the highest-order 

eigenvectors found by HITS will reveal authorities and hubs in the largest near-bipartite 

component. The highest-order eigenvectors can also be found using an iterative method as 

follows: Given an n n×  matrix M  (say, TM A A= ) for which we wish to find k  top 

eigenvectors, we initialize an n k×  matrix X  with positive entries. Let ( )X i  be the thi  column 

of X . The iteration steps are shown in Algorithm 6.5, below.  

 

Algorithm 6.5: HIGHER-ORDER-EIGENVECTORS 
Input:    :M n n×  matrix 
  :X k n×  matrix 
Output: k  top-ranked eigenvalues 
 
1. WHILE X  does not converge DO 
2.  X MX←   
3.  FOR 1i … k= , ,  DO 
4.   FOR 1 1j … i= , , −  DO  
5.    ( ) ( ) [ ( ) ( )] ( )X i X i X i X j X i← −   
6.   END FOR 
7.   normalize ( )X i  to unit 2L  norm 
8.  END FOR 
9. END WHILE    

 

 By computing the k  top-ranked eigenvalues, each node will be assigned k  hub scores 

and k  authority scores. These scores can be used to discover densely linked communities on the 

Web. Indeed, by plotting each node as a point in a k  dimensional space using its hub or 

authority scores one can discover points that are close to each other, say by visualization. For 

example, for 2k = , it was found [Kle99] that the pages of the base set belonging to the query 

“abortion", split into two communities along pro-choice and pro-life camps.  
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 Capocci et al. [CSCC04] and Donetti and Muñoz [DM04] have also proposed 

community-mining algorithms based on spectral techniques. 

 The advantage of spectral methods is that they are elegant and often produce good 

results. However, these methods, too, are not applicable to very large networks due to their time 

complexity (at least quadratic in the order of the graph). 

6.3. Algorithms based on Flows 

 The well-known max-flow/min-cut algorithm by Ford and Fulkerson lies at the heart of 

some recent methods for mining Web communities proposed by Flake et al. [FLG00, FLGC02]. 

The basic algorithm proposed by these authors, aims to discover the community to which a given 

set of web pages belongs. This problem is cast into an s-t network flow problem by first 

constructing a graph G that contains all the neighborhoods of the seed pages up to a certain 

depth, and then adding two artificial nodes: a source node that links to each seed page with an 

edge of infinite capacity, and a sink node which links to every node of the graph with an edge of 

capacity α—a parameter of the algorithm. The community containing the seed pages is then 

obtained by running a modified version of the max-flow/min-cut algorithm. 

 This subsection begins by describing the s-t maximum flows and minimum cuts and the 

Ford-Fulkerson algorithm for solving the s-t maximum flow problem. Then, it continues with a 

description of the algorithms by Flake et al. mentioned earlier.  

 

Maximum Flows and Minimum Cuts 

 While flows and cuts are well-defined for both directed and undirected graphs, we restrict 

the attention to undirected graphs to simplify the presentation. Note that any directed graph can 
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be converted into an undirected graph by ignoring the arc orientations. Let ( )G V E= ,  be an 

undirected graph, and let c f,  be two non-negative, real-valued functions, where ( )c u v,  denotes 

the capacity of the edge ( )u v,  and ( )f u v,  denotes the flow along the edge ( , )u v . By convention, 

if the edge ( )u v,  is not present, it is assumed that ( ) 0c u v, = . Given two nodes, s  and t , the s -

t  maximum flow problem is to find the maximum flow that can be routed from s  to t  while 

obeying the constraint ( ) ( )f e c e≤  for every edge e . Ford and Fulkerson’s  “max-flow/min-cut” 

theorem, proves that the value of maximum flow of a graph is identical to the value of a minimum 

cut that separates s  and t . This result can be stated as follows: Let the maximum flow value 

between s  and t  be represented as ( )f s t, . Denote the edge cut that separates s  and t  by 

( )C s t E, ⊆ . Removing the cut set ( )C s t,  from E  will leave at least two connected components: 

one that contains s  and the other that contains t . Then the maximum flow has the following 

relationship to the cut set:  

 
( ) ( )

( ) ( )
u v C s t

f s t c u v
, ∈ ,

, = , .∑  

 The meaning of functions ()c ⋅  and ()f ⋅  may be generalized so that their arguments range 

over sets of nodes. In this case ( )C S T,  will be the edge-cut set of minimum capacity separating 

the nodes of S  from the nodes of T , and ( )f S T,  is the maximum flow or minimum cut value 

between the two sets.  

 Many polynomial-time algorithms exist for solving the s -t  maximum flow problem; the 

authoritative book on this topic is [AMO93]. Algorithm 6.6 shows the pseudocode for the 

augmenting path algorithm—the simplest known s -t  maximum flow algorithm. The procedure 

operates on a residual network, which is a data structure used to keep track of edge capacities, 

both used and available. The residual network ( )R V E ′= ,  of graph G  has two directed edges 
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for every undirected edge in E , i.e., for every ( )u v E, ∈ , the set E ′  will contain both ( )u v,  and 

( )v u, . 

Algorithm 6.6: MAX-FLOW 
Input:    ( , )G V E= : a weighted graph 
  ,s t : nodes 
Output: the residual network of G  
 
1. R ←  residual network of G   
2. WHILE R  contains a directed path from s  to t  DO 
3.  Identify the shortest augmenting path P , from s  to t   
4.  { ( ) ( ) }min r u v u v Pδ ← , | , ∈   
5.  FOR ALL ( )u v P, ∈  DO 
6.   ( ) ( )r u v r u v δ, ← , −   
7.   ( ) ( )r v u r u v δ, ← , +   
8.  END FOR 
9. END WHILE 
10. RETURN R     

 

 The residual capacities in R  are initialized by ( ) ( ) ( )r u v r v u c u v, = , = ,  for all 

( )u v E, ∈ . The residual network R  is said to have an augmenting path, from s  to t , if there 

exists a path connecting these two nodes such that each directed edge along the path has a non-

zero residual capacity. Line 4  of Algorithm 6.6, identifies the smallest capacity value along the 

path P . Lines 5 8–  remove the available capacity from the residual network along the path; if 

( )r u v,  becomes zero, the edge ( , )u v  is treated as no longer being available. This way, the 

procedure simply forces flow from s  to t , until no more flow can be passed. Finally, when there 

are no more paths from s  to t , the residual network R  is returned, at line 10 . The network R  

contains sufficient information to easily find the s -t  minimum cut or maximum flow of G . The 

residual network can also be used to find a connected component that contains s ; this fact will 

be used in the following algorithms.  

 Algorithm 6.7 shows the pseudocode of the algorithm by Flake et al. [FLG00, FLGC02] 
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aimed at finding the community of a given set of web sites. Its input is a graph G , a set of 

“seed” web sites S , and a single parameter α , explained below.  

 

Algorithm 6.7: FLAKE-et-al-1 
Input:    ( , )G V E= : weighted graph 
  S : set of nodes 
  α : real number 
Output: the community that contains S  
 
1. { }V V s tα ← ∪ ,   
2. {( ) } {( ) }E E v t v V s u u Sα ← ∪ , | ∈ ∪ , | ∈   
3. FOR ALL v V∈  DO 
4.  ( )c v t α, ←  
5. END FOR 
6. FOR ALL u S∈  DO 
7.  ( )c s u, ← ∞   
8. END FOR 
9. ( , )G V Eα α α←   
10. MAX-FLOW( )R G s tα← , ,   
11. X ←  Nodes of the smallest component containing the source s  in R   
12. RETURN { }X s−     

 

 This algorithm creates a new graph Gα  with two artificial nodes s  and t . The source 

node s  is connected with infinite capacity to all pages in the seed set S . The sink node t  is 

connected to all original nodes with capacity α . After constructing the graph Gα , the procedure 

calls MAX-FLOW as a subroutine and returns the portion of the resulting residual graph R  that 

remains connected to s . This connected component is guaranteed to be a defensive alliance, 

provided that the algorithm has not terminated with the trivial cut that separates the nodes of S  

from the rest of the graph. The main theoretical result about this algorithm is connected with the 

parameter α  and is given in Theorem 6.1.  
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 Theorem 6.1.  Let X  be a community found by Algorithm 6.7. For any pair of node-sets 

P  and Q  such that P Q X∪ =  and P Q∩ = ∅  the following bounds hold: 

 ( ) ( )
( )

f X V X f P Q
V X min P Q

α
, − ,

≤ ≤
| − | | |,| |

. 

  

 The proof of Theorem 6.1 may be found in [FTT04]. This theorem shows that the 

parameter α  serves as an upper-bound for the inter-community edge capacity, and a lower-

bound for the intra-community edge capacity. Thus, the algorithm simultaneously guarantees that 

community nodes are relatively densely linked to one another but relatively sparsely connected 

to non-community nodes. The bounds given in Theorem 6.1 show how to use α  to tune the size 

and the number of identified communities. A small choice of α , say close to zero, can yield just 

one community that comprises the entire graph. A large value for α , say 

( )
1 ( )

u v E
c u vα

, ∈
= + ,∑  will yield n  singleton communities. The main disadvantage of 

Algorithm 6.7 is that it will fail to find an existing community that does not obey the bounds 

given in Theorem 6.1. Algorithm 6.8 and 6.9 use Algorithm 6.7 as a subroutine.  

 

Algorithm 6.8: FLAKE-et-al-2 
Input:    S : set of nodes 
  k : integer 
Output: an approximate community containing the set S  
 
1. WHILE number of iterations is less than desired DO 
2.  G ←  a crawl from S  of depth k  
3.   Sα ←| |  
4.  X ←  FLAKE-et-al-1(G S α, , )  
5.  rank the nodes of X  by the number of neighbors they have inside X   
6.  add the highest ranked non-seed nodes of X  to S   
7. END WHILE 
8. RETURN X     
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 Algorithm 6.8 uses a fixed-depth crawl to calculate an approximate community and then 

uses the “strongest" members in the community to serve as the seeds for the next iteration. This 

algorithm is appropriate when only a small portion of the graph can be contained in memory.   

 Algorithm 6.9 aims to find all the communities in a graph. It is only appropriate when the 

whole graph fits in main memory.  

 

Algorithm 6.9: FLAKE-et-al-3 
Input:    G : graph 
  α : real 
Output: a clustering of G  into communities 
 
1. array: ClusterLabel  
2. S V←  
3. WHILE there is a node s S∈  DO 
4.  X ←  FLAKE-et-al-1( { }G s α, , )  
5.  FOR ALL v X∈  DO 
6.    ClusterLabel  (v ) s←   
7.  END FOR 
8.  S S X← −  
9. END WHILE  
10. RETURN ClusterLabel     

 

6.4. Other community-mining algorithms 

 A few additional algorithms that do not fall under any of the preceding categories have 

also been proposed. For example, Newman [New04] proposed a greedy algorithm that optimizes 

“modularity”—a measure of the quality of a partition into communities. Alternative strategies for 

optimizing the same measure were proposed in [CNM04].  Greco et al. [GGZ04] modeled web 

communities as bipartite graphs (where hubs links to authorities) and then analyzed the expected 
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growth of such communities by using tools from random graph theory. Based on the results of 

this analytical work, these authors developed an algorithm for mining such communities. Finally, 

Bagrow and Bollt [BB05] proposed a local, greedy, community-mining algorithm based on 

degree. 
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7. PROPOSED ALGORITHMS FOR COMMUNITY MINING 

 In Chapter 4, two versions of community-mining—(i) partitioning into communities and 

(ii) seed growth—were defined. In Chapter 6 we saw that many algorithms—employing 

techniques ranging from hierarchical clustering to spectral partitioning and network flows—have 

been proposed for the former version. On the other hand, relatively little attention has been 

devoted to the latter version of the problem. 

 This chapter proposes some greedy, best-first algorithms for the seed-growth version of 

the community-mining problem.  

7.1. Description of the Algorithms 

 The community-mining algorithms described in this section are designed with several 

considerations in mind. First, the main target application for this algorithm is focused crawling 

[CBD99, DCLG00, MPS04]. In order to be suitable for such an application, the algorithm has to 

begin with a small set of seed-nodes and then expand by searching their neighborhood. Second, 

the objective is to discover a group of nodes that are densely linked among them while being 

sparsely linked with the rest of the network. Under these considerations, the clustering 

coefficient is a reasonable parameter to guide the search because: (i) a group of nodes having a 

large clustering coefficient must necessarily have a high density of links; and (ii) there is 

evidence that regions of several web-like networks that have high clustering coefficient consist 

of nodes that share some common theme [EM02]. It remains to explore the extent to which it is 

possible to discover densely-linked groups of nodes via a greedy strategy that favors the nodes 
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which have a high clustering coefficient with respect to the community nodes. This idea is 

analyzed in the remainder of the chapter.  

 Algorithm 7.1 shows the pseudo-code for the FIND-COMMUNITY procedure. This 

procedure takes as inputs a graph G , a set S  of seed-nodes and a threshold value α . Although 

many web-like networks are directed, here for simplicity we assume that G  is an undirected 

graph. Beginning with C S= , the algorithm FIND-COMMUNITY grows the community C  by 

repeatedly searching for “valuable” nodes in the neighborhood of C . 

 

Algorithm 7.1: FIND-COMMUNITY 

Input:    ( , )G V E= : an undirected graph 
  S  : the set of “seed” nodes  
  α  : real (threshold)  
Output: C : a set of nodes representing a community that contains S  
 
1. C S=  
2. 1N = First neighborhood of C  
3. 2N = Second neighborhood of C  
4. REPEAT  
5.  ,I L = FILTER-NEIGHBORHOOD 1 2( , , , )G C N N  
6.  C C I= ∪  
7.  1N = {First neighborhood of I } ∩  2N  
8.  2N  = {First neighborhood of 1N } – C  
9. UNTIL  1N  or 2N  becomes very small 
10. RETURN C  

 

 These “valuable” nodes are found by calling the procedure FILTER-NEIGHBORHOOD  

(Algorithm 7.2). This procedure partitions the nodes of the first neighborhood 1N  of C  into two 

subsets: the set I , which consists of the nodes that will be included in the community (called 

internal nodes), and the set L , which consists of the non-community (or, leaf) nodes. 
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Algorithm 7.2: FILTER-NEIGHBORHOOD 

Input:      ( , )G V E= : a graph 
  C  : community obtained so far  
  1N  : the first neighborhood of C  
  2N : the second neighborhood of C   
  α  : threshold   
Output:  I  : a subset of 1N ; internal nodes to be included in C 
  L  : complement of I  in 1N ;  leaf nodes, not to be expanded  
 
1. I = ∅ ,  L = ∅  
2. FOR ALL nodes v  in 1N  DO  
3.  0 1 2[ ( ), ( ), ( )]C v C v C v = COMPUTE-CC 1 2( , , , , )G v C N N ; 
4.    IF 0 2( ) ( )C v C v α− ≥   OR  1 2( ) ( )C v C v α− ≥  THEN 
5.   { }I I v= ∪  
6.  ELSE 
7.   { }L L v= ∪  
8. END FOR 
9. RETURN ,I L  

  

 The most critical and time-consuming computation of the procedure FILTER-

NEIGHBORHOOD lies in Line 3, namely, in the call to the procedure COMPUTE-CC. This 

procedure is called for each node v  in the first neighborhood 1N  and returns three scores: (i) 

0( )C v —the clustering coefficient of node v  with respect to the subgraph induced by C v+ ; (ii) 

1( )C v —the clustering coefficient of node v  with respect to the subgraph induced by 1N v+ ; 

and (iii) 2( )C v —the clustering coefficient of node v  with respect to the subgraph induced by 

2N v+ .  

 Here, it is assumed that the clustering coefficient of a node v  is computed by a brute-

force method, i.e., by counting the number of edges between the neighbors of v  (other options, 

such as randomized approximations are considered later in this chapter).  
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 The decision whether v  will be an internal or a leaf node is made in Line 4 of procedure 

FILTER-NEIGHBORHOOD. The criterion is simple: if node v  is more tightly clustered to the 

nodes of C  or 1N  than it is to the nodes of 2N  by a value greater than or equal to the threshold 

α , then v  is added to the set I , otherwise it is added to the set L . In all the experimental results 

presented later, the parameter α  was fixed at 0.05 —a value which was empirically found to 

yield good results. To keep the pseudo-code simple we have omitted the treatment of nodes with 

degree less than two (for which the clustering coefficient is undefined). These nodes are handled 

following the same reasoning as in Line 4 of FILTER-NEIGHBORHOOD. For example, if a 

node w  of  C  has a single neighbor in 1N  and no neighbor in 2N  then it is added to I ; the 

remaining cases are handled similarly. FILTER-NEIGHBORHOOD algorithm runs until the first 

or second neighborhoods become very small. The stopping criterion used in our experiments 

was 1| | 1N ≤  or 2| | 2N ≤ . 

  As a first illustration, Figure 7.1 shows how the FIND-COMMUNITY algorithm 

performs in a trivial case: a graph consisting of two cliques 10K  joined by an edge. Two nodes 

(nodes 1  and 6 , shown in white in Figure 7.1(a)) were selected as seeds uniformly at random 

from the first 10K . The first neighborhood of the seed nodes (nodes shown in grey in Figure 

7.1(a)) is 1  = {2, 3, 4, 5, 7, 8, 9, 10}N  while the second neighborhood 2N  consists of all the 

nodes of the second 10K  (shown in black in Figure 7.1(a)). It one step (i.e., one execution of 

Lines 3-7) of FIND-COMMUNITY, all the nodes of the first 10K  are classified as community 

nodes (shown in white in Figure 7.1(b)). 
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           (a)                (b) 

Figure 7.1. A graph consisting of two complete graphs 10K  plus an edge that links them together: 

(a) initial configuration (b) after one step of the algorithm FIND-COMMUNITY. 

 

7.2. Experimental Results 

 We implemented the FIND-COMMUNITY algorithm and tested its performance on 

several real and computer-generated networks. The implementation was done in C++ using the 

software library LEDA2 and the testing was carried out on a Linux box. The results of our 

experiments are shown next. 

 

a) Zachary’s karate club network 

 The first network we used to test the FIND-COMMUNITY algorithm, is the Zachary’s 

karate club network [Zac77]—a real-life network with 34  nodes and two communities, which 

has become a frequently-used benchmark for community-mining algorithms. The nodes of this 



127 

network represent the members of a karate club at an American university, while the edges 

represent their social interactions. Zachary’s network is known to consist of two different 

communities of nodes, each corresponding to the club members that where sided with one of the 

two club leaders during a dispute (see e.g., [GN03] for a more detailed description of this 

network).  Figure 7.2 shows the performance of our algorithm in discovering each of the two 

communities of this network, beginning in each case from a single seed-node (the highest-degree 

node).  

 

  

        (a)          (b) 

  

         (c)           (d)    

Figure 7.2. Discovering the two communities of Zachary’s karate club network: (a) Node 1 

(white) is chosen as the seed for the first community; (b) The white nodes represent the 

                                                                                                                                                             

2 Available from http://www.algorithmic-solutions.com/enleda.htm 
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community found by the algorithm; (c) Node 34 (white) is chosen as the seed for the second 

community; (d) The white nodes represent the community found by the algorithm. 

 

 In the case of discovering the first community with node 1 as seed, all except two nodes 

were classified correctly (Figure 7.2(a, b)). In the case of discovering the second community 

with node 34 as seed all but three nodes were classified correctly (Figure 7.2(c, d)). 

 

b) Random graphs with known community structure 

 Next, we tested the algorithm extensively on a family of random graphs with known 

community structure. This family of random graphs has also been used frequently to test 

community-mining algorithms, e.g., [NG03, BB05]. A random graph from this family is 

characterized by the following parameters: (1) n—the number of nodes;  (2) c—the number of 

communities; (3) ind —the expected number of neighbors of a node within its community; (3) 

outd —the expected number of neighbors of a node outside its community. The following 

algorithm generates an instance of such a random graph , , ,in outn c d dG : 

1. Let nCommunitySize c=  

2. Let in
in

d
p

CommunitySize
=   and  out

out

d
p

n CommunitySize
=

−
 

3. Partition the set of nodes into c  communities of equal size (it is assumed that n is evenly 

divided by c ) 

4. For each pair of nodes ( , )u v , independently, do the following: 

a) if u  and v  belong to the same community, join them with an edge with probability 

inp  
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b) otherwise, join them with an edge with probability outp  

 

 While testing the FIND-COMMUNITY algorithm, we focused on three main questions: 

(1) How does the accuracy of the algorithm—measured as the fraction of nodes classified 

correctly—change while the ratio in

out

d
d  increases? (2) What is the impact of the size of the set 

of seed nodes on the accuracy of the algorithm? (3) How robust is the algorithm to different sets 

of seed nodes? 

 To investigate these questions we carried out a number of experiments. The following 

scenario was common to all them: While keeping the rest of the parameters fixed, the parameter 

of interest was changed in small increments and for each case a random graph with known 

community structure was generated; A fraction of the nodes in the first community of this 

random graph was randomly chosen as the set of seed-nodes; The FIND-COMMUNITY 

algorithm was run with the generated random graph and seed-nodes as input; The fraction of 

nodes classified correctly by the algorithm was computed.  

 The performance of the FIND-COMMUNITY algorithm with respect to the questions 

above is described next. 

 

Accuracy versus in

out

d
d  

 Figure 7.3, shows how the accuracy of the algorithm changes with the ratio in

out

d
d  for 

two random graphs with 16,384 nodes and with 4 and 32 communities, respectively. In this 

experiment, ind  is kept fixed at 32 while dout is changed from 4 to 28 in increments of 4 (i.e., the 
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ratio in

out

d
d  changes from 0.125 to 0.875). In both cases, the set of seed nodes, consisted of 5% 

of the nodes of the first community, selected uniformly at random. As seen in Figure 7.3, the 

fraction of correctly classified nodes changed from nearly 0.9 (when 4ind = ) to nearly 0.7 

(when 28ind = ). 

 

Accuracy versus the size of the set of seed-nodes 

 Figure 7.4, shows the impact of the relative size of the set of seed nodes on the accuracy 

of the algorithm. In this case, two random graphs with 16,438 nodes and with 8 and 32 

communities, respectively, were generated. In both cases 32ind =  while 8outd = . 
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Figure 7.3. Fraction of correctly classified nodes versus the ratio in

out

d
d . 

 The size of the set of seed nodes was changed from  2% of community size to 20% of the 

community size. In the case of the graph with 32 communities, the fraction of correctly classified 

nodes changed from nearly 90% to almost 99%. In the other case, when only 8 communities 

were present, this fraction was smaller than in the first case, but always greater than 83%. 
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Figure 7.4. Fraction of correctly classified nodes versus the relative size of the set of seed nodes. 

Accuracy versus the set of  seed-nodes 

 Figure 7.5, illustrates the robustness of the algorithm to different sets of seeds. In this 

experiment, we generated a random graph with 16,384 nodes, with 8 communities, and with din = 

32, dout = 8. The FIND-COMMUNITY algorithm was executed ten times with this graph as 

input. For each run, a new set S was generated by selecting 5% of the nodes of the first 

community uniformly at random. As seen in Figure 7.5, the fraction of nodes classified correctly 

changed very little—it was always between 95% and 96.5%. 
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Figure 7.5. Robustness of the algorithm to different sets of seed nodes. 



132 

 

 In summary, the fraction of nodes classified correctly by the FIND-COMMUNITY 

algorithm was generally above 80% and often above 90% when tested on random graphs with 

known community structure. Furthermore, the algorithm achieves good accuracy with only a 

small fraction (about 1%) of community nodes as seeds and the performance varies little with the 

set of seed nodes.  

 However, several issues need to be addressed before this algorithm can be usefully 

applied in practice. First, more extensive testing needs to be done especially with data from real 

networks such as Web crawls. Second, a rigorous method needs to be developed to evaluate the 

quality of the communities produced by this algorithm. Third, in order to mine large 

communities (in the order of tens of thousands of nodes), the speed of the algorithm needs to be 

improved (without compromising its accuracy). One could consider randomizing the 

COMPUTE-CC procedure, perhaps in combination with using a generalized clustering 

coefficient, where not only the first neighborhood is taken into account but also the second, the 

third, etc. Another option would be to parallelize the algorithm. Investigating these questions as 

well as applying this algorithm to mine the communities of some web-like networks, remain as 

topics of our current and future research. 

 

Time complexity  

 It is difficult to obtain an exact expression for the time complexity of FIND-

COMMUNITY in terms of the order and size of the graph G. However, assuming that the 

number of nodes visited by this algorithm (internal plus leaf nodes) is n  and that the maximum 
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degree encountered is maxd , it is easy to see that the time complexity is of order 2
max( )O nd , 

because the procedure COMPUTE-CC  takes 2
max( )O d  time for each node.  

 Thus, FIND-COMMUNITY algorithm would have practical value only if maxd  is small, 

or if the degree of most encountered nodes is small.  It is reasonable to expect that this algorithm 

would run in near-linear time in the number of visited nodes, if the input is a web-like network 

which is known to follow a power-law degree distribution.  
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8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 In this dissertation we investigated the community structure in web-like networks. 

Motivated by simple processes existent in web-like networks, we proposed two birth-death 

dynamic random graph models of such networks. Both models were found to posses a 

power-law degree distribution, in agreement with many real web-like networks. Our 

modeling studies suggest that preferential deletion of nodes is likely to be a key mechanism 

in the evolution of web-like networks. 

 Due to a wide array of potential applications, community mining in web-like networks 

has attracted the attention of researchers from many fields. Several graph theoretic 

definitions, generally motivated by empirical observations, have appeared in literature. 

However, a formal evaluation of the appropriateness of various definitions of community has 

been lacking. To address this issue, we developed a framework for evaluating the suitability 

of a particular definition of community. This framework consists in estimating through 

sampling techniques the concentration in web-like networks of a subgraph proposed as 

definition of community and then deducing the statistical significance (z-score) of the 

concentration by contrasting with appropriately defined random graphs. We applied this 

methodology to evaluate two graph concepts—alliance and near-clique. Essentially, an 

alliance is a group of nodes with high minimum alliance coefficient (ratio of the number of 

neighbors of a node inside the group to the number of neighbors outside), while near-clique 

is a group of nodes with high minimum clustering coefficient (fraction of pairs of neighbors 

of a node that are neighbors themselves). We found that the concentration was generally 

higher for near-cliques than for alliances. Furthermore, the occurrence of near-cliques was 

statistically more significant (as indicated by higher z-scores) than the occurrence of 
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alliances. These results suggest that near-clique is a better characterization of community 

than alliance. More importantly, the proposed framework may be applied to discover 

additional graph parameters that are essential in characterizing community.  

  Assuming the definition of community as alliance or near-clique, we analyzed the 

computational complexity of various community-mining problems. The results we derived 

together with other results that have recently appeared in literature show that several 

community-mining problems are hard to solve in general graphs. In particular, the problem 

of partitioning a given graph into subsets of nodes, each forming a community, is NP-hard. 

Due to these hardness results, we concentrated on the easier problem of finding the maximal 

community that contains a given set of seed nodes. This version of community mining is 

suitable for applications such as focused crawling—the selective search for web pages on a 

given topic. We devised several fast, greedy community-mining algorithms based on 

clustering coefficient and generalized versions of this parameter. The performance of the 

proposed algorithms was evaluated experimentally in several benchmark networks and it was 

found that they are very effective in mining alliances and near-cliques.  

 The future research agenda spans all three lines of investigation discussed above. First, 

despite the significant progress toward designing an accurate model of web-like networks, 

we are still far from having a comprehensive understanding of the basic processes 

responsible for the evolution of complex networks. We intend to deepen the research into the 

role of preferential deletion of nodes in the evolution of networks. Of particular interest is to 

understand the impact of this process on degree-correlation and clustering coefficient. 

Further, it would be desirable to tune the parameters that control the relative rates of birth 

and death, for instance by deriving the critical probability for the emergence of the giant 
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component in a birth-death model with a preferential deletion of nodes. These problems may 

be attacked using essentially the same tools of random graph theory that where employed in 

the dissertation. 

 Second, the proposed framework for evaluating community definitions will be applied to 

discover other parameters that are essential in characterizing community. Additional insight 

into these parameters may be achieved by investigating the evolution of communities 

experimentally (looking at network data over time) and analytically (in dynamic random 

graph models). Some natural parameters that we intend to investigate are average distance, 

degree correlation and the entropy of degree distribution. Complementary to the problem of 

finding graph theoretic characterizations of community is that of devising techniques to tie 

the statistical significance of concentration (high z-scores) with function (topic, theme) on 

specific networks, such as the Web. These techniques would necessarily be ad-hoc and 

dictated by the nature of the network. For instance, in the Web one can use existing text-

based techniques to evaluate the degree to which groups that occur in statistically significant 

concentration are topically related.  

 Finally, many algorithmic questions remain open as well. We will investigate the 

performance of various fast greedy algorithms that attempt to find optimal communities 

satisfying the parameter constrains identified using the techniques discussed in the previous 

paragraph. A related problem to which we intend to devote efforts and which has immense 

theoretical and practical interest is to determine whether it is easier to solve hard community-

mining instances in the dynamic random graph models.  
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APPENDIX 

 

 

WEB RESOURCES AND SOFTWARE TOOLS 
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 The following list contains some pointers to recently offered courses on data mining and 

complex networks which have overlapping content with this dissertation. 

 

1. The Structure of Information Networks (Cornell): Kleinberg. 
http://www.cs.cornell.edu/Courses/cs685/2002fa/ 

2. Algorithmic Aspects of Computer Networks (Boston University): Byers. 
http://www.cs.bu.edu/fac/byers/courses/591/S02/cs591.html 

3. Internet Algorithmics (Brown): Goodrich.             
http://www.cs.brown.edu/courses/cs195-3/ 

4. Algorithms for Indexing and Search (Carnegie Mellon): Blelloch, Lafferty, Miller.  
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-s99/www/readings  

5. Networks and Complexity in Social Systems (Columbia): Watts.  
http://www.columbia.edu/itc/sociology/watts/w3233/  

6. Scaling in Networks (Columbia): Lazar.  
http://comet.columbia.edu/courses/elen_e9701/2001/overview.html  

7. Algorithms at the End of the Wire (Harvard): Mitzenmacher.  
http://www.eecs.harvard.edu/~michaelm/CS222/class.html  

8. Hypertext retrieval and mining (IIT Bombay): Chakrabarti.  
http://www.cse.iitb.ac.in/~soumen/teach/cs610s2001/  

9. Complex Human Networks Reading Group (MIT): Pentland, Clarkson, Choudhury.  
http://web.media.mit.edu/~tanzeem/cohn/CoHN.htm  

10. Advanced Algorithms in Data Mining (Penn State): Zha.  
http://www.cse.psu.edu/~zha/CSE597/administria.html  

11. Web Protocols, Principles, and Applications (Polytechnic): Suel.             
http://cis.poly.edu/cs912/  

12. Information Retrieval, Discovery, and Delivery (Princeton): LaPaugh.  
http://www.cs.princeton.edu/courses/archive/spring02/cs435/  

13. Data Mining (Stanford): Ullman.               
http://www-db.stanford.edu/~ullman/mining/mining.html  

http://www.cs.cornell.edu/Courses/cs685/2002fa/
http://www.cs.bu.edu/fac/byers/courses/591/S02/cs591.html
http://www.cs.brown.edu/courses/cs195-3/
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-s99/www/readings
http://www.columbia.edu/itc/sociology/watts/w3233/
http://comet.columbia.edu/courses/elen_e9701/2001/overview.html
http://www.eecs.harvard.edu/~michaelm/CS222/class.html
http://www.cse.iitb.ac.in/~soumen/teach/cs610s2001/
http://web.media.mit.edu/~tanzeem/cohn/CoHN.htm
http://www.cse.psu.edu/~zha/CSE597/administria.html
http://cis.poly.edu/cs912/
http://www.cs.princeton.edu/courses/archive/spring02/cs435/
http://www-db.stanford.edu/~ullman/mining/mining.html
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14. Information Retrieval and Distributed Databases (Stanford): Raghavan.                 
http://www-db.stanford.edu/cs347.2001.spring/  

15. Seminar in Data Mining and Search (Tel Aviv): Fiat.  
http://www.cs.tau.ac.il/~fiat/datamine/dm.htm  

16. Recommender Systems (Virginia Tech): Ramakrishnan.  
http://people.cs.vt.edu/~ramakris/Courses/CS6604-RS/  

17. Advanced Topics in Data Mining (UC Irvine): Smyth.  
http://www.ics.uci.edu/~smyth/courses/ics280/  

18. Networks and Complexity (UC Irvine): White.                
http://eclectic.ss.uci.edu/~drwhite/Anthro179a/SocialDynamics02.html  

19. Advanced algorithms in data mining (U. Helsinki): Mannila.  
http://www.cs.helsinki.fi/u/mannila/aadm  

20. Graph Mining and Link Analysis Reading Group (U. Maryland): Getoor, Lu.  
http://www.cs.umd.edu/~qinglu/summer02-reading.htm  

21. Scaling, Power Laws, and Small World Phenomena in Networks (U. Mass.): Towsley. 
http://www-net.cs.umass.edu/cs691s/  

22. Peer-to-Peer and Application-Level Networking (U. Mass.): Kurose, Levine, Towsley. 
http://www-net.cs.umass.edu/cs791n/  

23. Practicum in Data Mining (U. Texas): Ghosh.  
http://www.lans.ece.utexas.edu/course/ee380l/2002sp/index_prac.shtml  

24. Machine Learning for Text Analysis (U. Wisconsin): Craven.  
http://www.cs.wisc.edu/~craven/cs838-f00.html  

 

 

 

 

 

 

 

http://www-db.stanford.edu/cs347.2001.spring/
http://www.cs.tau.ac.il/~fiat/datamine/dm.htm
http://people.cs.vt.edu/~ramakris/Courses/CS6604-RS/
http://www.ics.uci.edu/~smyth/courses/ics280/
http://eclectic.ss.uci.edu/~drwhite/Anthro179a/SocialDynamics02.html
http://www.cs.helsinki.fi/u/mannila/aadm
http://www.cs.umd.edu/~qinglu/summer02-reading.htm
http://www-net.cs.umass.edu/cs691s/
http://www-net.cs.umass.edu/cs791n/
http://www.lans.ece.utexas.edu/course/ee380l/2002sp/index_prac.shtml
http://www.cs.wisc.edu/~craven/cs838-f00.html
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 The following web sites provide data sets for various web-like networks: 

 

1. http://webgraph-data.dsi.unimi.it/ 

This web site provides several data sets obtained by crawling the Web. These data sets are 

very large; for instance the most recent data set provided is obtained by a 2004 crawl of the 

.it domain performed by UbiCrawler. The graph contains 41.3 Mpages and 1.15 Glinks. The 

data sets are stored in compressed format; several tools in Java are provided to handle the 

data. 

 

2. http://vlado.fmf.uni-lj.si/pub/networks/data/  

This web site provides numerous data sets for real networks. The data for some of the 

networks used in our experiments was obtained from this web site.  

 

 

Some Software Tools  

 

LEDA  

 LEDA is a C/C++ library that implements various advanced data structures, including 

graphs. This library is commercial software distributed by Algorithmic Solution Software GmbH 

and is available at http://algorithmic-solutions.com/. LEDA has been used heavily to implement 

most algorithms discussed in this dissertation.  

 

http://webgraph-data.dsi.unimi.it/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://algorithmic-solutions.com/
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PAJEK 

 PAJEK is a tool for visualizing networks. We found this tool useful in our experiments 

with random graph models and during the testing of community-mining algorithms discussed in 

the dissertation. The software may be freely downloaded at http://vlado.fmf.uni-

lj.si/pub/networks/pajek/  

 

UCFBOT 

 UcfBot is a high-performance general-purpose Web crawler developed in the Center for 

Parallel Computation of the Computer Science Department at UCF. The details of the 

architecture, implementation and capabilities of this crawler are discusses in [BCD00]. 

 

MERSENNE TWISTER Pseudo-Random Number Generator 

 Mersenne Twister (MT) is a recent pseudo-random number generator developed by 

Matsumoto and Nishimura [MN98]. This generator has been shown to generate sequences of 

high quality and has been found to be up to four times faster than the standard rand() function 

C/C++. The version MT19937 of this generator—which has been used in all our experiments—

has a period of 199372 1− . Implementations of MT in various languages may be found freely at 

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html. 

 

 

 

 

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
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