
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

Analyzing The Community Structure Of Web-like Networks: Analyzing The Community Structure Of Web-like Networks:

Models And Algorithms Models And Algorithms

Aurel Cami
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Cami, Aurel, "Analyzing The Community Structure Of Web-like Networks: Models And Algorithms" (2005).
Electronic Theses and Dissertations, 2004-2019. 536.
https://stars.library.ucf.edu/etd/536

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236296112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/536?utm_source=stars.library.ucf.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

 ANALYZING THE COMMUNITY STRUCTURE OF WEB-LIKE NETWORKS: MODELS
AND ALGORITHMS

by

AUREL CAMI
B.S. University of Tirana, 1995;

B.S. Middle East Technical University, 1999

Major Professor: Narsingh Deo

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Fall Term
2005

 ii

ABSTRACT

 This dissertation investigates the community structure of web-like networks (i.e., large,

random, real-life networks such as the World Wide Web and the Internet). Recently, it has been

shown that many such networks have a locally dense and globally sparse structure with certain

small, dense subgraphs occurring much more frequently than they do in the classical Erdös-

Rényi random graphs. This peculiarity—which is commonly referred to as community

structure—has been observed in seemingly unrelated networks such as the Web, email networks,

citation networks, biological networks, etc. The pervasiveness of this phenomenon has led many

researchers to believe that such cohesive groups of nodes might represent meaningful entities.

For example, in the Web such tightly-knit groups of nodes might represent pages with a common

topic, geographical location, etc., while in the neural networks they might represent evolved

computational units.

 The notion of community has emerged in an effort to formalize the empirical observation

of the locally dense globally sparse topology of web-like networks. In the broadest sense, a

community in a web-like network is defined as a group of nodes that induces a dense subgraph

which is sparsely linked with the rest of the network. Due to a wide array of envisioned

applications, ranging from crawlers and search engines to network security and network

compression, there has recently been a widespread interest in finding efficient community-

mining algorithms.

 In this dissertation, the community structure of web-like networks is investigated by a

combination of analytical and computational techniques: First, we consider the problem of

modeling the web-like networks. In the recent years, many new random graph models have been

 iii

proposed to account for some recently discovered properties of web-like networks that

distinguish them from the classical random graphs. The vast majority of these random graph

models take into account only the addition of new nodes and edges. Yet, several empirical

observations indicate that deletion of nodes and edges occurs frequently in web-like networks.

Inspired by such observations, we propose and analyze two dynamic random graph models that

combine node and edge addition with a uniform and a preferential deletion of nodes,

respectively. In both cases, we find that the random graphs generated by such models follow

power-law degree distributions (in agreement with the degree distribution of many web-like

networks).

 Second, we develop a framework for evaluating the degree to which the fundamental

nature of communities is captured by some relevant graph theoretic concepts. This framework

consists in estimating the concentration in web-like networks of a subgraph proposed as

definition of community using sampling techniques and then deducing the statistical significance

of such concentration by contrasting with appropriately defined random graphs. We apply this

methodology to investigate the suitability in defining community of two graph concepts—

alliances and near-cliques—and we also analyze the computational complexity of various

community-mining problems under these definitions of community. Assuming the definition of

community as a global defensive alliance, or a global offensive alliance we prove—using

transformations from the dominating set problem—that finding optimal communities is an NP-

complete problem.

 These and other similar complexity results coupled with the fact that many web-like

networks are huge, indicate that it is unlikely that fast, exact sequential algorithms for mining

communities may be found. To handle this difficulty we adopt an algorithmic definition of

 iv

community and a simpler version of the community-mining problem, namely: find the largest

community to which a given set of seed nodes belong. We propose several greedy algorithms for

this problem: The first proposed algorithm starts out with a set of seed nodes—the initial

community—and then repeatedly selects some nodes from community’s neighborhood and pulls

them in the community. In each step, the algorithm uses clustering coefficient—a parameter that

measures the fraction of the neighbors of a node that are neighbors themselves—to decide which

nodes from the neighborhood should be pulled in the community. This algorithm has time

complexity of order 2
max()O nd , where n denotes the number of nodes visited by the algorithm

and maxd is the maximum degree encountered. Thus, assuming a power-law degree distribution

this algorithm is expected to run in near-linear time. The proposed algorithm achieved good

accuracy when tested on some real and computer-generated networks: The fraction of

community nodes classified correctly is generally above 80% and often above 90% .

 A second algorithm based on a generalized clustering coefficient, where not only the first

neighborhood is taken into account but also the second, the third, etc., is also proposed. This

algorithm achieves a better accuracy than the first one but also runs slower. Finally, a

randomized version of the second algorithm which improves the time complexity without

affecting the accuracy significantly, is proposed.

 The main target application of the proposed algorithms is focused crawling—the

selective search for web pages that are relevant to a pre-defined topic.

 v

ACKNOWLEDGMENTS

 I would like to thank my advisor, Professor Narsingh Deo, for introducing me to the

beautiful area of random graphs, and for his continued mentorship and encouragement. Without

his support this dissertation would not have been possible. I would also like to thank the

members of my research committee, professors Ronald Dutton, Charles Hughes, Sheau-Dong

Lang and Gary Richardson for their help and advice during the process of writing the

manuscript.

 I wish to thank my fellow graduate students in the Center for Parallel Computation,

especially Hemant Balakrishnan, for many stimulating discussions and insightful comments. I

am indebted to the faculty and the staff of the Computer Science Department for providing the

environment and the resources which made this effort possible.

 Special thanks are due to my wife Besa for her love and support, my parents Bilbil and

Re for their faith and inspiration, and my daughter Iris whose smile makes everything

worthwhile.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES.. x

LIST OF SYMBOLS ... xi

1. INTRODUCTION .. 1

1.1. Terminology and Basic Definitions .. 6

1.2. The Concept of Random Graph .. 10

1.3. Some Experimental Studies of Web-like Networks ... 13

2. RANDOM GRAPH MODELS... 17

2.1. Static Random Graphs .. 20

2.2. Dynamic Random Graphs... 29

2.3. Some Techniques for Analyzing Dynamic Random Graphs.. 42

3. PROPOSED BIRTH-DEATH DYNAMIC RANDOM GRAPH MODEL.......................... 58

3.1. Number of Nodes.. 60

3.2. Number of Edges .. 62

3.3. Degree Distribution in the First Neighborhood of the Deleted Node........................... 64

3.4. Degree Distribution... 66

4. THE NOTION OF COMMUNITY .. 70

4.1. Some Graph-Theoretic Problems Related to Community-Mining 70

4.2. Graph-theoretic Definitions of Community.. 72

4.3. Computational Complexity of Community Mining.. 76

5. COUNTING COMMUNITIES IN WEB-LIKE NETWORKS.. 85

 vii

5.1. Subgraph Counting in Dynamic Random Graph Models ... 85

5.2. Counting Communities by Trawling .. 92

5.3. Estimating the Density of Communities by Sampling.. 94

6. EXISTING ALGORITHMS FOR COMMUNITY MINING .. 107

6.1. Algorithms Based on Hierarchical Clustering .. 107

6.2. Algorithms Based on Spectral Analysis ... 110

6.3. Algorithms based on Flows .. 115

6.4. Other community-mining algorithms ... 120

7. PROPOSED ALGORITHMS FOR COMMUNITY MINING .. 122

7.1. Description of the Algorithms .. 122

7.2. Experimental Results .. 126

8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS.. 134

APPENDIX: WEB RESOURCES AND SOFTWARE TOOLS ... 137

LIST OF REFERENCES.. 142

 viii

LIST OF FIGURES

Figure 1.1: The elements of the binomial probability space 3,0.4G ... 11

Figure 2.1. The elements of the uniform probability space 4,5G 20

Figure 2.2. A small-world random graph with 8, 2n k= = and (a) 0p = ; (b) 0.5p = ; (c)

1.p = ... 23

Figure 2.3. (a) Enumeration of the elements of the space 4,1,1G ; (b) The single graph that

belongs to the space 4,4G but not to the space 4,1,1G 24

Figure 2.4. The two simple graphs on 6 nodes having degree sequence {2,2,1,1,2,2} 26

Figure 2.5. A realization of the LCD model. .. 33

Figure 2.6. Two realizations of KR-1 model: (a) 0 4α = . ; (b) 3α = 34

Figure 2.7. Two realizations of the DM-2 model: (a) 0 5α = . ; (b) 4α = 35

Figure 2.8. A realization of BB model.. 36

Figure 2.9. A realization of the KR-2 model. ... 37

Figure 2.10. Evolution of degree in the BA model... 45

Figure 2.11. Log-log plot of the degree distribution in the BA model. .. 46

Figure 2.12. Log-log plot of the degree distribution in the BB model. .. 48

Figure 2.13. Log-log plot of the degree distribution in the KR-1 model with 0.2α = 56

Figure 3.1. A small graph illustrating the probability distribution used in the preferential

deletion model... 59

Figure 3.2. Growth in the number of nodes of graph tG with the number of steps t , for three

different values of the birth probability p 61

 ix

Figure 3.3. Growth in the number of edges of graph tG with the number of steps t , for three

different values of the birth probability p . .. 64

Figure 3.4. The expected number of neighbors of degree k of a node chosen for deletion. 65

Figure 3.5. Log-log plot of the cumulative degree distribution of the graph generated by the

preferential deletion model. .. 69

Figure 4.1. Construction of an instance of GDA from an instance of DS. 80

Figure 4.2. A graph G ′ , a global defensive alliance S ′ in G ′ (nodes surrounded by squares)

and a non-component node (surrounded by a circle) that has only one neighbor in S ′

which is a component node. .. 82

Figure 7.1. A graph consisting of two complete graphs 10K plus an edge that links them

together: (a) initial configuration (b) after one step of the algorithm FIND-

COMMUNITY. .. 126

Figure 7.2. Discovering the two communities of Zachary’s karate club network: (a) Node 1

(white) is chosen as the seed for the first community; (b) The white nodes represent the

community found by the algorithm; (c) Node 34 (white) is chosen as the seed for the

second community; (d) The white nodes represent the community found by the

algorithm. .. 127

Figure 7.3. Fraction of correctly classified nodes versus the ratio in

out

d
d 130

Figure 7.4. Fraction of correctly classified nodes versus the relative size of the set of seed

nodes. .. 131

Figure 7.5. Robustness of the algorithm to different sets of seed nodes. 131

 x

LIST OF TABLES

Table 1.1: Some parameters of selected real-world networks .. 16

Table 5.1: Number of feasible permutations for the best-, average-, and worst-case sample

inputs ... 100

Table 5.2: Some parameters of the FOLDOC network .. 102

 xi

LIST OF SYMBOLS

Graphs and random graphs

()C u The clustering coefficient of node u

()C G The clustering coefficient of graph G

iC A cycle of length i

,i jC A bipartite core

() ud u d, The degree of node u

() ()d u d u− +, The in- and out-degree of node u

()td u The degree of node u in the graph tG

() ()t td u d u− +, The in-degree and out-degree of node u in the graph tG

()d u w, The distance between nodes u and w

dist()G The average distance of graph G

diam()G The diameter of graph G

()d G The average degree of graph G

td The average degree of graph tG
(1)
td The average degree of a random neighbor of a random node

()DV A, A directed graph with set of nodes V and set of arcs A

n p,G The probability space of the binomial random graph model

n m,G The probability space of the uniform random graph model

,n k p,G The probability space of the small-world random graph model

tG The tht probability space of a dynamic random graph model

()GV E, An undirected graph with set of nodes V and set of edges E

n pG , A binomial random graph; random element of the space n p,G

n mG , A uniform random graph; random element of the space n m,G

 xii

, ,in outn c d dG , A random graph with known community structure

()t t tG V E= , The tht random graph in a dynamic random graph model

nK The complete graph

i jK , The complete bipartite graph

m The number of edges (size) of a graph

tm The number of edges of graph tG

M The maximum size of a simple graph, i.e., (1) 2M n n= −

n The number of nodes (order) of a graph

tn The number of nodes of graph tG

t kN , The number of nodes of degree k in the graph tG

(1)
,t kN The number of degree k neighbors of the node chosen for deletion in step t

t k t kN N− +
, ,, The number of nodes of in-degree (out-degree) k in the graph tG

it C
N , The number of cycles of length i in the graph tG

it P
N , The number of paths of length i in the graph tG

i jt KN ,, The number of complete bipartite subgraphs i jK , in the graph tG

iP A path of length i

(,)r u w The distance in a metric space between two points ,u w

()tR w A quantity used in the LCD random graph model

t Variable denoting the time-step in dynamic random graphs

()T G The transitivity of graph G

ΩD The set of graphs with degree sequence D
2[]V The set of all potential edges of a simple graph

nW The wheel graph on n nodes

Probability

a.a.s. Asymptotically almost surely

 xiii

a.e. Almost every

()B p Bernoulli distribution

(,)Bi n p Binomial distribution
2(,)N μ σ Normal (Gaussian) distribution

pdf Probability distribution function of a random variable

()XE The expectation of random variable X

AI The indicator function of event A

()t uP The probability of selecting node u at time t

()AP The probability of event A

()kP The (asymptotic) pdf of a parameter of a random graph

()t kP The degree distribution of a parameter of the graph tG

()t w k,P The distribution of the degree of node w in the graph tG

r The Pearson correlation coefficient

Parameters of random graph models and special symbols

α Exponent of the degree in the KR-1 model

γ The exponent of a power-law distribution i.e., ()k k γ−∼P

Γ The gamma function; () (1)!n nΓ = −

() kak aδ δ− = The Kronecker delta function

∂ Partial derivative

ε The number of new edges added in each step

λ The initial attractiveness in the DM-1 model
μ The initial attractiveness for outgoing arcs

sη The fitness of node s in the BB model
p q, Parameters denoting probability in some random graph models

 xiv

Asymptotics

()n na O b= Big O

()n na b= Θ Same order of magnitude

n na b∼ Asymptotic equality

1

1. INTRODUCTION

 With the dramatic growth of the World Wide Web (Web) and the Internet, the study of

large, random networks has acquired new prominence. Recent empirical studies have shown

statistical similarities between these two and other complex, real-life networks such as the

network of phone calls, power-distribution networks, citation network, science-collaboration

network, movie-actor collaboration network, the network of sexual contacts, neural networks,

and various infrastructure networks [AB02, New03b, BFT01]. The term web-like is used in this

dissertation to refer to the real-life networks cited above and others that are statistically similar.

This term is preferred over the most widely used term scale-free because that the emphasis in

this dissertation is not on any scale-free property of web-like networks. Viewed as large, random

graphs in which birth and death of nodes and links are taking place, they differ from the classical

Erdös-Rényi (ER) random graphs [ER59, ER60] in significant ways. Most notably, for many

web-like networks the proportion of nodes with degree k decreases as k γ− (i.e., as a scale-free

power-law) while in the random graph n pG , this proportion follows approximately a Poisson

distribution. Moreover, web-like networks exhibit a significantly greater degree of clustering

than n pG , .

 This dissertation is concerned with another recently discovered characteristic of web-like

networks. This characteristic—known as the community structure—pertains to the fact that

certain small, dense subgraphs occur in web-like networks much more frequently than they do in

the ER random graphs. Such dense subgraphs have been found in seemingly unrelated networks

such as the Web [KRRT99, DKMR01], email networks [GDDG03], citation networks

[ADDG04], biological networks [GN02, MSIK02], etc. The notion of community has emerged in

2

an effort to formalize these empirical findings. In the broadest sense, a community in a web-like

network has been defined as a group of nodes that induces a dense subgraph which is sparsely

linked with the rest of the network. A community has also been defined in graph-theoretic terms

(e.g., complete bipartite subgraph [KRRT99], or defensive alliance [FLG00, HHH03, RCCL04])

as well as algorithmically (e.g., the hubs-and-authorities communities produced by the HITS

algorithm [Kle99]).

 The pervasiveness of community structure in web-like networks, has led researchers to

believe that such cohesive groups of nodes might represent meaningful entities. For example, in

the Web such tightly-knit groups of nodes might represent pages with a common topic,

geographical location, etc., while in the neural networks they might represent evolved

computational units.

 Currently, there is a widespread interest in finding efficient algorithms for mining

communities. This interest stems from a wide array of envisioned applications for such

algorithms, as outlined next:

 a) Web applications: The ongoing rapid and apparently chaotic growth of the Web has

posed unprecedented scaling and algorithmic challenges for Web-related applications such as

crawlers and search engines [DG03, Hen03]. Two prominent such challenges are:

• Increasing the coverage and maintaining the currency of search engine indices: It has

been known for some time that search engines cover only a fraction of the Web. For

instance, in 2000, no search engine covered more than 16% of the Web and the top 11

search engines combined covered about 50% of the Web [LG00]. Exhaustive crawling

is, in fact, becoming increasingly unattainable due to the huge size and dynamic

content of the Web [CBD99, DG01b, Hen03]. To address such issues, focused (or,

3

topical) crawlers [CBD99, DCLG00, MPS04] have been proposed as an alternative to

general-purpose crawlers. Guided by community-mining algorithms, such crawlers

would selectively seek out pages that are relevant to a pre-defined topic, thereby

improving the coverage and the currency of the indices.

• Reducing the number and increasing the relevance of hyperlinks returned to a user

query: A user searching the Web can be overwhelmed by the large number of results

returned by a search engine. In addition, queries are often prone to ambiguity: some of

the returned results are completely unrelated. The PageRank [PBMW98] algorithm

took a first step to remedy these issues by assigning a prestige value to each web site

and sorting the responses by the prestige value before returning them. Obviously, more

needs to be done. For instance, if the search engine could group the responses along the

lines of different topics1, then the user could quickly jump to the desired specific topic.

This application calls for algorithms to cluster (a subgraph of) the Web into

communities.

 b) Network security: The design of algorithms for quarantining (containing) the

propagation of cyber attacks has become an important research area for network security.

Quarantining techniques, often consist in deploying software agents which can block the

propagation of malicious code [DN03]. A major challenge is to select a subset of nodes in the

network where these software agents may be deployed in order to maximize the efficiency of

quarantining. Characterization of the community structure of a cyber-graph may be utilized to

design efficient quarantining strategies, for example by deploying the software agents in the

sparse regions of the cyber-graph.

1 A search-engine which does that can be found at http://clusty.com.

4

 c) Network compression: Due to the massiveness of many important real-life networks,

the compression of networks has emerged as an important research problem [DL98, AM01,

RG03, LDC04]. Recent compression techniques for the Web graph take into consideration some

of the recently discovered properties of this network, including the community structure. For

example, Raghavan and Garcia-Molina [RG03] have proposed a two-level scheme for

representing the Web graph consisting of: (i) a set of lower-level graphs, each of which encodes

the interconnections within a small subset of pages; and (ii) a top-level directed graph, consisting

of “super-nodes” and “super-edges”. The grouping of web pages into super-nodes is guided by

some empirical observations in the Web, such as domain locality—tendency of web pages to

point more to other pages in the same domain—and the high probability that web pages with

similar adjacency lists are topically related. Extending these ideas, one could argue that a better

characterization of the community structure in the Web could lead to a more efficient method to

group pages into super-nodes which, in turn, could improve the compression technique.

 Besides the above applications of community-mining, there are numerous others such as

automatic re-population of topic taxonomies with newer and more relevant pages [CDAR98],

Web-filtering (e.g., identification of hate or pornographic websites) [DVGB03], selective

advertising [RC02], assisting search engines in handling Web spamming [FMN04], etc.

 In this dissertation, the community structure in web-like networks is investigated by a

combination of analytical and computational techniques:

First, we consider the problem of modeling the web-like networks. In the recent years, many

new random graph models have been proposed to account for the newly-discovered properties of

such networks [DC05d]. The vast majority of these models take into account only the addition of

new nodes and edges. Yet, several empirical observations indicate that the deletion of nodes and

5

edges occurs frequently in web-like networks [VPV02, BBKT04]. Inspired by such observations

we propose and analyze two dynamic random graph models that combine node and edge addition

with a uniform and a preferential deletion of nodes, respectively [DC05a, DC05c]. In both cases,

we find that the random graphs generated by the proposed models follow power-law degree

distributions (in agreement with the degree distribution of many web-like networks).

 Second, we analyze the expected number of certain small subgraphs—such as defensive

alliances on three and four nodes—in various random graphs models. Our findings show that

while in the binomial random graph ,n pG the expected density of such subgraphs is very close to

zero, in some new dynamic random graph models it is much larger. These findings converge

with the results we have obtained by computing the number of communities in some crawls of

the Web [BCD05], via sampling.

 Next, we investigate the computational complexity of community mining under various

definitions of community. Assuming the definition of community as a global defensive alliance,

or global offensive alliance [KHH04] we prove—using transformations from the dominating set

problem [GJ79]—that finding optimal communities is an NP-complete problem.

 These complexity results and similar ones obtained by other authors [FTT04], coupled

with the fact that many web-like networks are huge, indicate that it is unlikely that fast, exact

sequential algorithms for mining communities may be found. To handle this difficulty we adopt

an algorithmic definition of community and a simpler version of the community-mining

problem, namely: find the largest community to which a given set of seed nodes belong. We

propose several greedy algorithms for this problem [DC05b]. The first proposed algorithm starts

out with a set of seed nodes, and then repeatedly selects some nodes from community’s

neighborhood and places them in the community. In each step, this algorithm uses clustering

6

coefficient [WS98]—a parameter that measures the fraction of the neighbors of a node that are

neighbors themselves—to decide which nodes from the neighborhood should be pulled in the

community. This algorithm has time complexity of order 2
max()O nd , where n is the number of

nodes visited by the algorithm and maxd is the maximum degree encountered. Thus, assuming a

power-law degree distribution this algorithm is expected to run in near-linear time. This

conclusion is supported by our timing results. The proposed algorithm achieved good accuracy

when tested on some real and computer-generated networks: the fraction of community nodes

classified correctly is generally above 80% and often above 90% .

 A second algorithm based on a generalized clustering coefficient, where not only the first

neighborhood is taken into account but also the second, the third, etc., is also proposed. This

algorithm achieves a better accuracy than the first one but also runs slower. Finally, a

randomized version of the second algorithm which improves the time complexity without

affecting the accuracy significantly, is proposed.

1.1. Terminology and Basic Definitions

 This dissertation adheres to the standard terminology of graph theory (e.g., [Deo74,

Die00]). A description of all the symbols used in this dissertation is provided in the List of

Symbols and some graph-theoretic concepts which have received substantial attention recently,

are briefly discussed next.

 Degree distribution and degree correlation: The degree distribution of a graph is the

probability distribution function of the degree of a node chosen uniformly at random. The

symbol γ is used to denote the exponent of a power-law distribution—which arises frequently in

7

web-like networks. Degree correlation is a measure of the mixing patterns according to degree,

i.e., it indicates whether high-degree nodes are linked more often to other high-degree nodes or

to small-degree ones. Borrowing terminology from sociology and ecology, the networks where

the former case is true have been called assortative, while the networks where the later case is

true have been called disassortative [New03b]. Newman [New03a] has proposed using the

Pearson correlation coefficient r of the degrees at either end of a randomly chosen edge, to

quantify the degree correlation of a network. This number would be positive for assortative

networks and negative for disassortative ones.

 Clustering coefficient: This parameter, which was first introduced by Watts and Strogatz

[WS98], measures the fraction of the neighbors of a node that are neighbors themselves.

Clustering coefficient has attracted substantial attention recently, in part due to the surprising

discovery that in many web-like networks the value of this parameter is much higher than in the

classical random graphs. The clustering coefficient of a node u is given by

no of edges between the neighbors of
()

(1) 2u u

u
C u

d d

.
=

− /

Note that this definition is not valid for nodes with degree less than two; the clustering

coefficient of such nodes is usually taken to be zero.

 Two different approaches have been proposed to extend the definition of clustering

coefficient to the whole graph: The first approach proposes a parameter called the clustering

coefficient of graph G and denoted by ()C G which is given by

()
()

v V
C v

C G
n

∈
=
∑

 The second approach proposes a parameter known as transitivity of the graph G and

denoted by ()T G . This parameter was first proposed by Barrat and Weight [BW00] as an easier-

8

to-compute approximation of the clustering coefficient of a small-world network [WS98] and is

defined as

3 number of triangles
()

number of paths of length two
T G

×
=

The factor of three in the numerator ensures that T lies in the range [0 1], . Note that the

definition of transitivity ()T G , unlike that of clustering coefficient ()C G , does not exclude the

nodes with degree less than two.

 Small-world property: The distance ()d u v, between two nodes u and v is the length of

the shortest path between them. If such a path does not exist, then ()d u v, is taken to be ∞ . The

average distance of a graph is given by

()
dist()

(1) 2

u v V
d u v

G
n n

, ∈
,

=
− /

∑

To avoid an infinite value, the average distance of a disconnected graph may be computed by

first finding the average distance of each connected component separately and then taking the

average of these values. The diameter of a graph is defined as

diam() max { ()}u v VG d u v, ∈= ,

 For a disconnected graph, the diameter may also be defined as the maximum of the

diameters of its connected components. A graph is said to satisfy the small-world property if its

diameter is of order (log)O n [WS98].

 Connectedness and the giant component: An undirected graph is said to be connected if

there is a path between every pair of nodes. A graph that is disconnected may be partitioned into

connected components which are connected, pairwise-disjoint subgraphs. A graph is said to have

a giant component [JKLP93] if it contains a connected component of size nε , for some 0ε > ,

9

while all other components have size of order (log)O n . A graph is said to be k-connected, if

every pair of nodes can be connected by at least k edge-disjoint paths. A directed graph is said

to be strongly connected if for every pair of nodes ,u v there is a directed path from u to v and

another one from v to u .

 Robustness: In order to function properly, many real networks such as the Internet or the

energy power grids, must be connected. Hence, in many practical cases it is important to have a

measure of the fraction of nodes of a connected network that must be removed in order to break

the network into two or more components. This fraction has been called the robustness (or,

resilience) of a network. The nodes may be removed randomly or based on some strategy. The

former case corresponds to random network failures whereas the latter corresponds to failure due

to malicious attacks.

 In addition to the above parameters that have been studied widely in the context of web-

like networks, a few others have also received some attention: The spectra of a graph are the

eigenvalues of its adjacency matrix; they can provide important information about the structure

of the graph. The betweenness centrality or load of a node is defined as the number of shortest

paths passing through that node; the betweenness of an edge is defined analogously.

 Next, we provide a brief introduction to the notion of random graph, which plays a

central role in this dissertation.

10

1.2. The Concept of Random Graph

 A random graph model may be specified in two ways: (i) through an algorithmic

definition; and (ii) through a formal, mathematical definition. These two methods are illustrated

next by taking as an example the classical random graph model n pG , .

 The first method consists of providing an algorithm (or, procedure) that generates an

instance of the random graph n pG , . This procedure is defined as follows: First, enumerate the

two-element subsets of the set []n as 1… M, , where (1) 2M n n= − / . Then, let 1 MX … X, , be

independent Bernoulli random variables with parameter p and join with an edge the pair of

nodes in the thi subset if and only if 1iX = .

 The second method consists of explicitly defining the probability space n p,G , whose

elements are random graphs with set of nodes []V n= . One way of doing this, is the following

[Die00]: Let 2[]V be the set of 2-element subsets of V , i.e., 2[]V is the set of all potential edges

of an undirected, simple graph on V . For every potential edge 2[]e V∈ , let {0 1 }e e eΩ := , be a

probability space for which the measure is specified as: ({1 })e e p:=P and ({0 }) 1e e p:= −P .

Then, the probability space n p,G is defined as the product space of all the spaces eΩ :

[]2n p ee V, ∈
:= Ω∏G

Thus, formally an element of n p,G is a map assigning to every 2[]e V∈ either 0e or 1e , and the

probability measure P on n p,G is the product measure of all the measures eP . In practice, each

point n pω ,∈ G is assumed to represent a graph on V with edge set { () 1 }ee eω| = . Each element

of the space n p,G is called a random graph on V with edge-probability p .

11

 Example 1.1: Assume that 3n = and 0.4p = . The potential edges of a simple graph

on the nodes 1, 2, 3 may be enumerated as 1 2 3(1,2), (1,3), (2,3)e e e= = = . Figure 1.1 shows

the elements of the space 3,0.4G (in one-to-one correspondence with the simple graphs on three

nodes) and the probability assigned to each these elements. As an illustration, the probability

assigned to the element
1 2 3

0 0 0e e e of the space 3,0.4G is:

1 2 3 1 1 2 2 3 3
(0 0 0) (0) (0) (0) (.4)(.4)(.4) .064e e e e e e e e e= = =P P P P

1 2 3
0 0 0e e e

1 2 3
0 0 1e e e 1 2 3

0 1 0e e e
1 2 3

1 1 1e e e

0.064 0.096 0.096 0.216

Figure 1.1: The elements of the binomial probability space 3,0.4G

The probability assigned to each of the remaining elements of this space is obtained similarly. ■

 Having defined the probability space of a random graph model, one can talk about such

probabilistic concepts as events, random variables, moments, convergence, etc.

 Events: Any set of graphs on []V n= is an event in n p,G . In particular, for every 2[]e V∈

the set eA of all graphs n pG , having e as an edge is an event: the event that e is an edge n pG , . It

is straightforward to show that the events eA are independent and occur with probability p

([Die00], p. 231). As another example, let H be a given graph of order n and size m and

denote by HA the event that H is a subgraph of ,n pG . Since HA consists of those graphs in the

space ,n pG that contain all the m edges of H , it follows that () m
HA p=P .

1 1 1 1

3 2 3 2 3 2 3 2

12

 Random variables and moments: A random variable X defined on the space ,n pG is a

function ,: n pX →G R . Thus, the graph parameters discussed earlier such as degree of a random

node, average degree, degree correlation, average distance, diameter, robustness, clustering

coefficient, etc., are examples of random variables on ,n pG . Ideally, one would like to know the

probability distribution function of each such graph parameter. In practice, this is often difficult

to achieve; in such cases one usually resorts to the study of the first and the second moments of

these random variables. As an example, let X denote the number of triangles—i.e., cycles of

length three. It may be shown that () 3(1)(2) 6X n n n p= − −E . This follows immediately

from the following two observations: (i) each fixed triangle is a subgraph of ,n pG with

probability 3p ; (ii) there are (1)(2)n n n− − distinct three-element sequences with elements

from []n and each triangle is specified by 6 of these sequences.

 Asymptotics: Of particular interest in the study of random graph models is the asymptotic

case n → ∞ . An event A is said to happen asymptotically almost surely (a.a.s.) if () 1A →P

as n → ∞ . Let, for instance, eA be the event that e is not an edge of ,n pG , for some fixed

2[]e V∈ . From an earlier observation if follows that () 1eP A p= − . If () 1p p n n= = , then the

event eA happens a.a.s.

 Critical functions: A graph property P is formally defined as a set of graphs closed

under isomorphism. For instance, the property “G is connected” consists of all connected

graphs. Given a graph property P , it is said that almost every (a.e.) graph has P , if

,() 1n pG ∈ →PP as n → ∞ . The most interesting cases in the study of the space ,n pG arise

13

when ()p p n= is a decreasing function of n . A real function ()t t n= is called a critical (or,

threshold) function for a graph property P , if

(),

0 if lim () () 0
lim

1 if lim () () .
n

n pn
n

p n t n
G

p n t n
→∞

→∞
→∞

⎧ =⎪⎪⎪∈ = ⎨⎪ = ∞⎪⎪⎩
PP

In the next chapter, several other random graph models are discussed.

1.3. Some Experimental Studies of Web-like Networks

 We conclude Chapter 1 with a brief review of some empirical studies of the Web, the

Internet and other selected web-like networks.

 The Web: This network can be modeled as a graph at two different levels: At the web

page level, nodes stand for web pages, while arcs stand for hyperlinks between web pages. At

the web site level, nodes stand for web sites—which, generally, comprise many web pages. Two

web sites are joined by an arc if and only if there is at least a pair of web pages—one in each web

site—that are joined by an hyperlink. Unless otherwise indicated, the experimental results cited

below relate to the graph model of the Web at the page level.

 First, it has been found that both in- and out-degree of the Web graph follow power-law

distributions with exponents 2.1 and 2.4 , respectively [DKMR01, BKMR00]. In terms of

connectedness, it has been found that the Web has an interesting structure—called the “bow-tie”

[BKMR00]—essentially consisting of a large strongly connected component (the core) and two

other connected components that have only unidirectional links to and from the core,

respectively. The size of connected and biconnected components follows a power-law

distribution [BKMR00, AH01, DKMR01]. Further, the Web graph satisfies the “small-world”

14

property, i.e., it has a small diameter (e.g., the value 19 has been reported as an estimate for the

diameter of the whole Web in [AJB99] and the value 28 as an estimate for the diameter of the

strongly connected component in [BKMR00]). In addition, the Web graph has been found to

contain large quantities of some signature subgraphs such as complete bipartite cores and

webrings [KRRT99], certain subgraphs on 3 or 4 vertices (e.g., triples of nodes where each pair

is linked with two arcs oriented in opposite directions) [MSIK02], etc. Finally, it has been shown

that the Web displays a fractal-like self-similarity: certain sub-regions of the Web display the

same characteristics as the Web itself [DKMR01]. This self-similarity is both distributional and

structural and is displayed at various scales: First, if a subgraph induced by a sufficiently large

set of web pages that form a thematically unified cluster (TUC)—a set of web pages sharing a

common theme, such as content, geographical location, etc.—is fixed, then several parameters of

that subgraph such as degree, or the size of connected components, follow power-law

distributions. In addition, many such TUCs have a “bow-tie” structure and contain large numbers

of small bipartite cores. Second, if the Web graph is modeled at the level of web sites, then the

same structure and distributions are observed (with approximately the same constants).

 The Internet: The Internet can also be modeled at two levels: microscopic and

macroscopic. In the Microscopic Internet graph, nodes stand for routers and hosts, while edges

represent communication links. The Macroscopic Internet graph can be thought of as a

contraction of the Microscopic Internet graph: here, each node represents an autonomous system

(which incorporates a number of routers). Two nodes in the Macroscopic Internet graph are

adjacent if there is at least one pair of routers (belonging to different autonomous systems) that

can communicate. Both of these graphs have a power-law degree distribution [FFF99, GT00].

Further, it has been shown [YJB02] that the Macroscopic Internet graph has clustering

15

coefficient between 0.18 and 0.3 and average distance between 3.70 and 3.77. Similar values for

clustering coefficient and average distance were found by another study [VPV02] where some

additional parameters, such as node betweenness and degree correlations were also studied.

 Next, we summarize the salient properties of some other web-like networks. Many of

these networks are more naturally modeled as undirected graphs, while others as directed graphs.

For each network below we have indicated what the nodes and edges (arcs) represent. For a more

elaborate description of these networks and additional examples the reader is referred to the

surveys [DM02, AB02, New03b].

• Citation network: nodes – published articles; arcs – citations of one article from another.

• Food-web network: nodes – species; arcs – prey/predator relationships.

• Movie-actors network: nodes – actors; edges – collaboration in a movie.

• Neural networks: nodes – neurons; edges – synaptic connections.

• Peer-to-peer networks: nodes – computers; edges – file-sharing between computers

• Phone-call network: nodes – phone numbers; arcs – completed calls during a fixed period

• Science collaboration network: nodes – scientists; edges – collaboration between

scientists

• Word co-occurrences network: nodes – words; edges – co-occurrence of words in

consecutive positions or one word apart in a sentence.

 Table 1.1 summarizes the known properties of these networks. From the data in this table

one can observe three common characteristics of web-like networks: (1) the average distance is

generally small i.e., these networks satisfy the small-world property; (2) the clustering coefficient

is significantly greater than zero; and (3) the degree distribution generally follows a power-law

with exponent that falls between 2 and 3 (in the case of directed networks the same is true for

16

both in- and out-degrees). Furthermore, the networks shown in Table 1.1 and many other web-

like networks are sparse i.e., the number of edges is of the same order as the number of nodes

(or, put differently, their average degree is small).

Table 1.1: Some parameters of selected real-world networks

Network n m ()d G dist()G γ T r

Peer-to-peer 880 1296 1.47 4.28 2.1 0.011 −0.366

Citation 783339 6716198 8.57 − 3.0/− −

Math collab. 253339 496489 3.92 7.57 − 0.34 0.12

Movie actors 449913 25516482 113.43 3.48 2.3 0.78 0.208

Phone calls 647 10× 680 10× 3.16 − 2.1 − −

Word co-occ. 460902 617 10× 70.13 − 2.7 0.44 −

Marine food 135 598 4.43 2.05 − 0.23 −0.263

Neural netw. 307 2359 7.68 3.97 − 0.28 −0.226

A – sign indicates that data is not available

 It is natural to ask that all mathematical models of web-like networks should, at the very

least, satisfy the properties above. Several new random graph models displaying these properties

have been discovered recently. We discuss these models in the next chapter.

17

2. RANDOM GRAPH MODELS

 The ubiquity and the increasing importance of web-like networks have spawned a truly

cross-disciplinary research aimed at understanding their fundamental properties and functions.

 Two groups of questions are of main interest: First, we would like to know the graph

structure of these networks. Some of the simplest questions that may be asked for each network

are: Is it sparse or dense? What does its degree sequence look like? How many connected

components does the network have, and what are their sizes? If a network is connected, how

robust is it, i.e., what fraction of nodes must be removed to break the network into disconnected

components? What is the typical distance between two nodes? etc. Second, we need to

understand how the structure of these networks affects the behavior of dynamic processes that

occur on them. For instance, we would like to know how social networks facilitate or constrain

the spread of diseases, or how the properties of the Internet can be exploited to devise efficient

strategies for containing the spread of viruses and worms, etc. Answering such questions

precisely has proven to be hard because virtually all web-like networks are dynamic, i.e., their

sets of nodes and edges change continuously due to the birth of new nodes and edges or due to

the death of existing ones and because these networks are generally enormous.

 Given such dynamic and massive structures, is there any hope for researchers to gain

some insight into their function and structural properties? The key to answering this question has

turned out to be the use of nondeterministic methods. In particular, an iterative interplay between

experimental data and modeling—where both data and models are statistical in nature—has

emerged as a promising tool in advancing our understanding of web-like networks. This

interplay unfolds as follows: first, a small number of experimentally found properties of real

networks are used as the basis for the design of a mathematical model that displays all of these

18

properties; next, this model is investigated analytically to obtain additional properties; finally, the

newly-derived properties are validated against the real-world data and the whole process is

repeated in order to obtain models that are as accurate as possible. Correct models of web-like

networks serve two major purposes: (i) first, they can provide an insight into the basic processes

responsible for the structure of such networks; and (ii) they can be used as tested to study the

behavior of dynamic processes occurring on web-like networks and the performance of various

network algorithms.

 Nondeterministic models of networks can be traced back to the 1950’s with the

introduction of the classical random graphs n mG , by Erdös and Rényi [ER59, ER60] and n pG , by

Gilbert [Gil59]. For several decades, these random graphs have been studied intensively both for

their theoretical interest and as the only sensible and rigorous approach in modeling large,

random, real-life networks. During those years, detailed topological data on web-like networks

was generally unavailable and the computational power to analyze such networks was

insufficient. Therefore, a comparison between real networks and the classical random graph n pG ,

was difficult. In recent years, the situation has changed: the computerization of data acquisition

(e.g., obtaining the structure of the Web via crawling), as well as the availability of high

computational power and efficient algorithms have allowed researchers to carry out experiments

on large data sets extracted from real-life networks. The results of these experiments have made

it clear that classical random graphs differ significantly from web-like networks, especially in the

(a) degree distribution; (b) clustering coefficient; and (c) community structure, as explained in

Chapter 1.

 Beginning with the small-world model by Watts and Strogatz [WS98] and the

preferential attachment model by Barabási et al. [BAJ99], many new random graph models have

19

been defined and studied in the recent years in an effort to explain these new empirical findings.

Currently, the work in this area is growing rapidly and may be grouped into three main

categories: (1) experimental study of real networks; (2) analysis of the new random graph models

using heuristic and/or rigorous techniques; and (3) design of new network algorithms. The

surveys by Dorogovtsev and Mendes [DM02] and Albert and Barabási [AB02] summarized the

initial work in the field. Bollobás and Riordan [BR03b] surveyed the initial rigorous

mathematical results in this area. The list of 429 references in the more recent survey by

Newman [New03b] is an indicator of the rapid growth of the field. A number of books [Bar02,

Buc02, Wat03, DM03, BFS03] have also appeared on this topic.

 This chapter is devoted to the discussion of various random graph models and some

techniques for analyzing them. Random graph models may be classified into two groups: (1)

static (also known as explicit or off-line); and (2) dynamic (also known as recursive or on-line).

The difference between the two groups may be explained as follows: In a static model, the set of

nodes is fixed at the beginning of the algorithm that defines it (the set of edges may change). The

random graph n pG , , described in the previous chapter, is an example of a static model. On the

other hand, in a dynamic model, the sets of both nodes and edges may change during the course

of the defining algorithm. Several examples of dynamic random graph models—which have

emerged as more likely candidates for modeling web-like networks accurately—will be

presented in this chapter. However, for completeness, we first provide a short discussion of three

static models: (i) the classical random graphs; (ii) the small-world graphs; and (iii) the random

graphs with given degree distribution.

20

2.1. Static Random Graphs

Classical random graphs

 The definition of random graph model n pG , (known as the binomial model) was shown in

Section 1.2. There is an equivalent model, known as the uniform model and denoted by n mG ,

[ER59, ER60], which is formally defined as follows: Let ,n mG be the set of all undirected, simple

and labeled graphs of order n and size m ; this set clearly has ()Mm elements, where

(1) 2M n n= − . To turn ,n mG into a probability space, each of its elements is assigned a

probability of ,1 n mG . Any element of the probability space ,n mG is called a (uniform) random

graph and is denoted by ,n mG .

 Example 2.1: Assume that 4n = and 5m = . It follows that 6M = and

()4,5
6
5

6= =G . The elements of the space 4,5G are shown in Figure 2.1, below:

Figure 2.1. The elements of the uniform probability space 4,5G .

Each of these six elements is assigned a probability of 16 in the probability space 4,5G .■

 Additional examples and further discussion of classical random graphs at an introductory

level may be found in [BBSR05].

21

 The following algorithm generates a random graph ,n mG : Beginning with n isolated

nodes, add one by one m edges chosen independently, uniformly at random (avoiding self-loops

and parallel edges).

 It has been shown that the random graphs ,n pG and ,n mG are essentially the same for

m pM= [Bol79]. Thus, choosing one of these two models to work with is a matter of

convenience.

 Many papers and a number of books have been written on classical random graphs. The

book by Palmer [Pal85] is a gentle introduction to the area; the book by Bollobás [Bol85]

provides an in-depth analysis of the properties of random graphs and the book by Janson et al.

[JLR00] is a comprehensive treatment that also includes the major recent developments.

 Next, we describe by informal arguments some of the most salient properties of n pG , and

compare them with the corresponding properties of web-like networks. First, consider the degree

distribution of n pG , . Let v be a node selected uniformly at random from n pG , and denote by

()kP the probability distribution function of the random variable ()d v . Since each of the

remaining 1n − nodes of n pG , can independently be a neighbor of v with probability p , it

follows that ()d v has a binomial distribution with parameters (1)n − and p , i.e.,

() () (1)k n kn

k
k p p −= −P . This distribution is clearly quite different from the power-law degree

distribution observed in many web-like networks.

 Next, consider the clustering coefficient of n pG , . The expected number of neighbors of a

node v that are neighbors themselves is (1) 2v vd d p− / , i.e., the expected clustering coefficient of

each node is p . Therefore, () ()() ()n p n pC G p d G n, ,= = /E E , implying that the clustering

22

coefficient of n pG , becomes vanishingly small when n grows very large with the average degree

()n pd G , remaining constant. In fact, it has been observed the clustering coefficient of many web-

like networks is 210 - 310 times larger than the clustering coefficient of a classical random graph

of the same order [AB02].

 Now, consider the degree correlation defined as the Pearson correlation coefficient r of

the degrees at either end of a randomly chosen edge. Since the edges of n pG , are placed

independently of the degrees of the two ends, it follows that 0r = . On the other hand, a number

of web-like networks have been found to have nonzero degree correlations (Table 1.1).

 Having pointed out some differences between classical random graphs and web-like

networks, we note that n pG , has an important property in common with web-like networks: In

many ranges of p , n pG , satisfies the small-world property, e.g., [Bur74, Bol90, Luc98, CL01].

Small-world graphs

 Watts and Strogatz [WS98] analyzed the following interpolation between regular and

random graphs. Consider n nodes 1 nv … v, , which are spread equidistantly along the curve of a

ring. Assume that each node is linked with an edge to each of its k nearest neighbors on either

side (Figure 2.2(a)). The resulting graph is called the k-nearest neighbor regular lattice [WS98]

(it is the same as the Harary graph 2 ,k nH , which is the smallest k-connected simple graph of

order n and size nk). Now, pick any node iv and perform the following rewiring procedure for

each of the k edges incident on iv in the clockwise sense: with probability p , reattach this edge

so that it joins iv to a node chosen uniformly at random among the remaining 1n − nodes

(disallowing parallel edges); with probability 1 p− leave the edge in place. The procedure

23

above is repeated by moving clockwise around the ring, considering each node in turn until one

lap is completed. This construction, known as the WS rewiring algorithm, allows one to "tune"

the graph between regularity (0p =) and disorder (1p =) and thereby to study the region

0 1p≤ ≤ . An illustration of small-world graph is shown in Figure 2.2.

(a) (b) (c)

Figure 2.2. A small-world random graph with 8, 2n k= = and (a) 0p = ; (b) 0.5p = ; (c)

1.p =

 Newman and Watts [NW99] introduced a slightly-different version of the small-world

model—the edge-addition algorithm—where new edges are repeatedly added between random

pairs of nodes, instead of existing edges being rewired.

 It should be mentioned that the random graph obtained at the end of the WS procedure

with 1p = is not the same as n mG , , because after the rewiring has been completed, every node

of the resulting random graph will have degree at least k . A better understanding of the

relationship between the small-world model and the classical random graph model may be

achieved by looking at the mathematical definition of small-world model: Let , ,n k pG denote the

probability space of the small-world model (after the rewiring has been completed) with

parameters ,n k and p . The following example shows that the uniform random graph space

24

,n nkG , and the small-world graph space , ,1n kG , differ both in the number of their elements and in

the probabilities they assign to equal graphs.

 Example 2.2: Consider the small-world probability space 4,1,1G . It is straightforward to

enumerate all possible graphs that may arise during the WS edge-rewiring procedure by using a

tree, as shown in Figure 2.3(a). Each level of this tree depicts the rewiring of the edges of a

single node (shown encircled). The number to the left of each graph denotes the probability that

this graph will arise during the WS procedure. By completing the last two levels of the tree in

Figure 2.3(a) one may see that the space 4,1,1G has 14 elements. Furthermore, the probabilities

associated with these elements are obtained, respectively, by dividing

9,15,10,10,10,12,6,12,6,12,18,12,6,6 by 144 . On the other hand the classical random graph

space 4,4G consists of 15 graphs, each with an assigned probability of 115 .

(a) (b)

Figure 2.3. (a) Enumeration of the elements of the space 4,1,1G ; (b) The single graph that belongs

to the space 4,4G but not to the space 4,1,1G .

It is easy to verify that the graph shown in Figure 2.3(b) is the only graph that belongs to 4,4G but

not to 4,1,1G .■

1
2

1
2

1
4

1
4

1
6

1
6

1
6

25

 Watts and Strogatz [WS98] looked at two properties of the small-world model—the

average distance and the clustering coefficient—for 0 1p≤ ≤ . Their findings may be

summarized as follows:

 (i) Total order, 0p = : The average distance of k-nearest neighbor lattice grows as 4n k/

i.e., linearly with n and hence this graph does not display the small-world property. Further, the

clustering coefficient of this graph is asymptotically close to 3 4/ , i.e., the graph is highly

clustered.

 (ii) Total disorder, 1p = : In this case, it was demonstrated experimentally that the

average distance of the resulting graph grows logarithmically with n , i.e., the graph has the

small-world property. Further, the clustering coefficient in this case approaches zero as n → ∞ .

 (iii) From order to disorder, 0 1p< < : The above two extreme cases indicate that large

average distance is associated with large clustering coefficient, and small average distance with

small clustering coefficient. Surprisingly, it was found [WS98] that there is a wide range of p

(0.01 0.1p< <) where the average distance is small whereas the clustering coefficient is large.

The above authors proposed the term “small-world network" to refer to networks that have small

average distance and large clustering coefficient. The explanation offered for the small-world

phenomenon is that only a few rewired edges are sufficient to decrease the average distance

significantly without affecting much the clustering coefficient. It turned out that this fact had

been know in the random graph community long before Watts and Strogatz rediscovered it (see

[BR02]). However, the paper by Watts and Strogatz drew a lot of attention and many additional

papers on the properties of small-world networks have been published (e.g., [BA99b, NW99,

BW00, MN00, NMW00, Kle00, AKS02]).

26

 Despite the fact that, for appropriate values of p , the small-world random graph model

exhibits two of the salient properties of web-like networks, it was observed [BW00] that for all

values of p , the degree distribution is essentially a binomial one and hence it differs

substantially from the power-law degree distribution of web-like networks.

Random graphs with given degree distribution

 A sequence of positive integers 1 2(,)nd d … d= , ,D is said to be graphic if there is a graph

having D as degree sequence. Characterizations of graphic sequences have been known for

many years (e.g., [EG60, Hak62]). Given a graphic sequence D , denote by ΩD the set of all

graphs with set of nodes []n and degree sequence D . A random graph with degree sequence D

is a graph chosen uniformly at random from ΩD .

 Example 2.3: Consider the degree sequence {2,2,1,1,2,2} . It may be seen that there are

only two simple graphs on 6 nodes having this degree sequence. These graphs are shown in

Figure 2.4:

Figure 2.4. The two simple graphs on 6 nodes having degree sequence {2,2,1,1,2,2} .

Hence, the probability space {2,2,1,1,2,2}Ω consists of these two graphs each associated with a

probability of 0.5 .■

 Because it is difficult to design an algorithm that generates random graphs with given

degree sequence, it has become standard to work instead with random configurations on a given

1

2 3

4

5 6

1

2 3

4

5 6

27

degree sequence and use some lemmas that allow one to translate the results from one model to

the other. The configuration model was introduced by Bender and Canfield [BC78] and refined

by Bollobás [Bol85]. The following procedure generates a random configuration with n nodes

on the degree sequence 1()nd … d= , ,D : (1) form a set L containing id copies of node i for

1i … n= , , , (2) choose a random matching of the elements of L . Each configuration represents

an underlying multigraph (i.e., a graph with self-loops and parallel edges) whose edges are

defined by the pairs in the matching.

 A slightly different model—random graphs with given expected degrees—was proposed

by Chung and Lu [CL02]. Given a degree sequence 1()nd … d= , ,D a random graph from this

family may be generated by carrying out the following steps: (i) Begin with n isolated nodes;

and (ii) Join each pair of nodes (,)i j independently with an edge with probability proportional to

i jd d .

 The notion of random graph with given degree sequence may be extended to that of a

random graph with a given degree distribution: Given an arbitrary discrete probability

distribution ()kP , a random graph on n nodes having ()kP as degree distribution, may be

obtained by generating a random graph with degree sequence consisting of ()i nP nodes of

degree i , for 1, ,i n= … .

 Molloy and Reed [MR95] derived the following result about random graphs with given

degree distribution: Let 0 1 …λ λ, , be a given distribution. If
1

(2) 0kk
k k λ

≥
− >∑ , then a random

graph G with the given degree distribution, a.s. has a giant component. Otherwise, if

1
(2) 0kk
k k λ

≥
− <∑ then a.s. all the connected components of G are of size less than

28

(log)O n . In a sequel paper [MR98], the same authors analyzed the size of the giant component

in the case when
1

(2) 0kk
k k λ

≥
− >∑ .

 Motivated by the empirical observations of power-law degree distribution in some web-

like networks, Aiello et al. [ACL01], proposed and analyzed a model of random graphs with

given power-law degree distribution. By applying the results of [MR95, MR98] and other

techniques these authors obtained the expected distribution of the size of connected components

in such random graphs.

 Newman et al. [NSW01] proposed a method for analyzing random graphs with given

degree distribution based on the formalism of generating functions [Wil90]. Among other things,

they re-derived the result of [MR95] cited earlier and showed how their technique may be also

applied to directed and bipartite graphs.

 Cohen et al. studied the robustness of random graphs with given power-law degree

distribution under random node removal [CEBH00] and intentional attack [CEBH01]. A similar

study was carried out by Callaway et al. in [CNSW00]. Schwartz et al. [SCBB02] studied the

robustness of directed random graphs with given degree distribution, while Cooper and Frieze

[CF04] studied the size of the strongly connected component in such graphs.

 Chung and Lu have investigated some asymptotic properties of graphs with given

expected degrees. In [CL02] they studied the connected components, in [CL03] the average

distance, and with Vu in [CLV03] the spectra, of such graphs.

 Random graphs with given degree distribution and their variants provide a convenient

tool for modeling web-like networks. However, these models do not provide any insight into the

elementary processes responsible for the structure or the evolution of web-like networks.

29

 Next, we turn to the main topic of this chapter: the dynamic random graph models. These

models not only generate random graphs that display the known properties of web-like networks,

but also highlight some basic mechanisms that can potentially explain the evolution of such

networks.

2.2. Dynamic Random Graphs

 A dynamic random graph model is broadly defined as a discrete-time graph process

1{ ()}t t t tG V E ≥, where 1G is a fixed, small graph and for all 1t > , the graph 1tG + is obtained by

making small changes to the graph tG , according to some stochastic rules. Unless otherwise

indicated, it will be assumed that each node is labeled with the time-step during which it is born,

i.e., {1 } []tV … t t= , , = .

 The underlying stochastic rule employed in virtually all dynamic random graph models

has been some form of either preferential attachment [BA99a] or copying [KKRS00]. The ideas

behind these two stochastic rules are explained next.

 Preferential attachment: In the context of dynamic random graph models this rule was

introduced by Barabási and Albert [BA99a]. It turned out that this stochastic rule has a long

history and has been previously used in various other fields such as economics and biology

[Mit04]. It can be explained as follows: Let 1t + be the only node and 1te + the only edge added

at (1)tht + time-step of a dynamic random graph model. Assume that 1te + is incident on the

node 1t + while the other end of 1te + is chosen at random from the set of existing nodes tV

based on some probability measure 1 [0 1]t tV+ : → ,P , where 1()t s+P denotes the probability of

node s being chosen. Such a probability measure is called a preferential attachment rule if

30

1()t s+P is proportional to the degree ()td s of node s in the graph tG . A dynamic random graph

model which is based on a preferential attachment rule, is called a preferential attachment model.

 Copying: This rule was introduced by Kumar et al. [KKRS00]. It defines a directed

dynamic random graph model as follows: Let again 1t + and 1te + be the only node and the only

directed arc, respectively, added at (1)tht + step and assume that node 1t + is the tail of arc

1te + . Let ts V∈ be a node selected uniformly at random—referred to as the prototype of node

1t + . According to the copying rule, with probability p the head of 1te + is chosen uniformly at

random from tV , whereas with probability 1q p= − it is taken to be the head of the arc having

the prototype node s as tail (i.e., it is copied from the prototype s). The intuition behind this

model comes from Web authoring: When an author decides to create a new web page, the author

is likely to have some topic in mind. The choice of prototype represents the choice of the topic

while copying reflects the intuition that a new web page about the topic will probably link to

many pages that are already linked-to by existing other web pages, but it will probably also link

to some new pages.

 We have classified the dynamic random graph models according to two criteria:

 (i) Preferential attachment vs. copying models: First, we have distinguished between the

models that are based on some form of preferential attachment rule and those that are based on

some form of copying.

 (ii) Birth-only vs. birth-death models: Second, we have distinguished between the models

in which only the addition of nodes and edges takes place (birth-only) and the models were both

addition and deletion of nodes and edges takes place (birth-death).

31

 With this classification scheme in mind, we are now ready to list the major dynamic

random graph models of web-like networks. Note that the vast majority of these models fall in

the category of birth-only, preferential attachment models.

Birth-only preferential attachment models

 Barabási-Albert (BA) model [BA99a]. The procedure that generates a BA random graph,

can be described as follows: Beginning with 0ε isolated nodes, in each time-step a new node and

0ε ε≤ new edges are added. The ε new edges are all incident on the new node. The other end

of each new edge is chosen based on the following preferential attachment rule:

1

()
() for 1 .

2
t

t

d s
s s t

tε+ = ≤ ≤P (2.1)

There are two problems with the definition of this model: First, it starts out with a set 1V of

isolated nodes. Hence, for every node 1s V∈ , the probability 1()sP is equal to zero and thus the

process can’t get started. This difficulty may be sidestepped by using different approaches such

as: (1) beginning with a small graph with non-isolated nodes (see LCD model below); and (2)

modifying the preferential attachment rule (7) (see DM-1 model below). Another problem with

the BA model is that it does not allow self-loops and parallel arcs. This restriction prevents the ε

new edges from being added independently, which in turn makes the model difficult to analyze.

The next two models are rigorous versions of the BA model:

 LCD model [BRST01]. This model, defined by Bollobás et al. [BRST01], takes its name

from the fact that it can be analyzed via Linearized Chord Diagrams (the definition of this

construct has been omitted since we do not use it in this dissertation; see [BRST01]). The LCD

model defines two related graph processes: one where a single edge is added and another where

32

several edges are added, in each step. The single-edge version is defined as follows: Beginning

with an empty graph, or with a graph consisting of one node and a self-loop, in each step, a node

together with an edge incident on the new node, are added. The other endpoint of the new edge

is chosen based on the following preferential attachment rule:

1

()
for 1

2 1()
1

for 1
2 1

t

t

d s
s t

ts
s t

t

+

⎧⎪⎪ ≤ ≤ ;⎪⎪ +⎪= ⎨⎪⎪ = + .⎪⎪ +⎪⎩

P (2.2)

The multi-edge version is defined in the same way as the single-edge one except that in each

time-step, ε edges incident on the new node are added. These edges are added one by one,

counting the previous edges as well as the ’outward half’ of the edge being added, as already

contributing to the degrees. The reason for this precise rule is that it yields the following

equivalent procedure for defining the multi-edge version of LCD model: First, run the procedure

for the single-edge version on a sequence of tε nodes and then contract each group of ε

consecutive nodes into super-nodes. The advantage of having this alternative definition is that

many results for the multi-edge version may be obtained by deriving them first for the single-

edge one—which is easier to analyze—and then converting to the multi-edge version.

 Figure 2.5 shows a realization of LCD model with 100t = and 1ε = . Note that a few

nodes have high degree (e.g., (2) 14, (5) 9d d= =) while most of the nodes have small degree—

the hallmark of a power-law degree distribution. Furthermore, the labels of the high-degree

nodes are small, illustrating the so called "rich-gets-richer" phenomenon observed in the

preferential attachment models.

33

1

2

3
4

5

67

8

9

10

1112
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83
84

85

86

87

88

89

90 91

92

93

94

95

96

97

98

99

100

Pajek

Figure 2.5. A realization of the LCD model.

 The degree distribution in the models BA and LCD follows a power-law with exponent

equal to 3 (see Section 2.3). Since in many web-like networks this exponent varies between 2

and 3, many parameterized forms of preferential attachment, aiming to generate exponents that

fall in this range, have been proposed. Some of these models are shown next:

 Dorogovtsev-Mendes-1 (DM-1) model [DMS00]. This model was introduced by

[DMS00] and was also studied by [KRR01, BO04]. Beginning with an empty graph, in each

time-step, a new node and ε arcs are added. The ε arcs introduced at step (1)t + are attached

as follows: For each arc, the tail is chosen uniformly at random among the (1)t + existing nodes

(i.e., the new node is included in the selection), while the head is chosen via a preferential

attachment rule based on in-degree. To avoid the first problem in the BA model, the DM-1

model employs a shifted linear preferential attachment rule given by

()1

()
()

()
t

t
t

tj V

d s
s

d j
λ

λ

−

+ −

∈

+
=

+∑
P (2.3)

34

for 1 s t≤ ≤ . The term 0λ > is called the initial attractiveness of nodes. The DM-1 model

permits parallel arcs and self-loops in order to avoid the second problem with the BA model

mentioned earlier.

 Krapivsky-Redner-1 (KR-1) model [KR01]. The preferential attachment rule in the KR-1

model is non-linear in ()td s and is given by

()
1

()
()

t

t
t

tj V

d s
s

d j

α

α+

∈

=
∑

P (2.4)

for 1 s t≤ ≤ . Krapivsky and Redner [KR01] discovered that for the KR-1 model with 1α ≠ ,

the asymptotic degree distribution of tG does not follow a power-law. Figure 2.6 shows two

realizations of KR-1 model with 100t = . It is visually clear that neither of these two graphs is

likely to have a power-law degree distribution.

1

2

3

4
5

6

7

8

9

10

11
12

13

1415

16

17
18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
50

51

52
53

54

55

56

57

58

59

60

61
62

63

64

65

66
67

68

69

7071

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92
93

9495

96

97

98

99

100

Pajek

1
2

3

4

5

6
7

8
9

10

11
12

13
14

15
16

17
18

19

20

21 22 23 24 25 26 27 28 29 30 31 32
33

34
35

36
37

38
39

40
41

42
43

44
45

46

47

48

49

50

51

52

53

54

55

56

57
58

59
60

61
62

63
64

65
66

67
68

69
70717273747576777879808182

83
84

85
86

87
88

89
90

91
92

93
94

95

96

97

98

99

100

Pajek

(a) (b)

 Figure 2.6. Two realizations of KR-1 model: (a) 0 4α = . ; (b) 3α = .

 Dorogovtsev-Mendes-2 (DM-2) model [DM00a]. This model was inspired by a

phenomenon observed in citation networks: old papers are generally cited less than new ones. In

35

order to incorporate this idea of aging of nodes, the preferential attachment rule is changed as

follows:

1

1

()()
()

()()
t
tt

tj

d s t s
s

d j t j

α

α

−

+ −

=

−
=

−∑
P (2.5)

Here ()t s− denotes the age of node s at time t . Figure 2.7 shows two realizations of this

model with two different values of the parameter α . In Section 2.3, it is shown that, for the DM-

2 model, the degree distribution of tG follows asymptotically a power-law with exponent that

can become arbitrary large depending on the value of parameter α .

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4647

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91
92

93 94

95

96

97

9899

100

Pajek

1
2

3
4

5
6

7

8

9

10

11
12

13

14

1516

17

18

19

20

21
22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37
38

39

4041

42

43

44

45

46

47

4849

50

51

52

53

54

55

56

57

58 59

60

61

6263

64
65

66
67 68

69

70

71

72

73 74

75

76

77
78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Pajek

(a) (b)

Figure 2.7. Two realizations of the DM-2 model: (a) 0 5α = . ; (b) 4α = .

 Bianconi-Barabasi (BB) model [BB01]. In this model, each node s is associated at the

time of its birth with a random “fitness” coefficient, sη , that remains constant. Fitness

coefficients are drawn independently from a probability distribution ()f x . The preferential

attachment rule may be modified in various ways to incorporate the fitness of nodes. The case

considered in [BB01] is the one where fitness has a multiplicative effect on the degree, as

follows:

36

1

1

()
()

()
s t
tt

j tj

d s
s

d j

η
η

+

=

=
∑

P (2.6)

for 1 s t≤ ≤ . Ergün and Rodgers [ER02] have studied alternative ways of incorporating fitness

coefficients, e.g., the case where fitness has an additive effect on the degree. A realization of BB

model is depicted in Figure 2.8.

1

23

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61 62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

8182

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Pajek

Figure 2.8. A realization of BB model.

 In Section 2.3, it will be seen that degree distribution of this model follows a power-law

with a logarithmic correction.

 In the dynamic models discussed so far, each time-step adds a new node and one or more

new edges—all incident on the new node. However, in real networks new edges might also be

added between existing nodes (e.g., hyperlinks are often added from an existing web page to

another existing web page). The following model incorporates this idea:

 Krapivsky-Redner-2 (KR-2) model [KR03]. In the KR-2 model, beginning with an

isolated node, the growth in the network happens due to two distinct processes:

37

• With probability p , a new node and a new arc emanating from this node are added. The

head of the new arc is chosen according to a shifted linear preferential attachment rule based

on in-degree:

1

()
()

()
t

t
t

tj V

d s
s

d j
λ

λ

−

+ −

∈

+
=

+∑
P (2.7)

• With probability 1q p= − , a new arc is created between two existing nodes. The tail of

this new arc is chosen based on out-degree while the head is chosen based on in-degree;

more specifically, the probability that an arc is added between an existing node 1s and

another existing node 2s is given by

[][]
[][]

2 1
1 1 2

() ()
()

() ()
t

t t
t

t ti j V

d s d s
s s

d j d i

λ μ
λ μ

− +

+ − +

, ∈

+ +
, =

+ +∑
P (2.8)

where 0λ > and 1μ >− .

 The preferential attachment rule given by the above equation is called bilinear [KR03]. A

realization of the KR-2 model is shown in Figure 2.9.

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Pajek

Figure 2.9. A realization of the KR-2 model.

38

 In addition to the models given above, numerous other birth-only, preferential attachment

models have been proposed [DM01a, YJBT01, ACL02, CF03, BBCR03, BBBC03, Vaz03,

BO04, FFV04, BBPV04a, BBPV05]. All these models have been shown to generate graphs with

power-law degree distribution.

Birth-only copying models

 Kumar-et-al. (KKRS) model [KKRS00]. This model specifies a directed random graph

and is parameterized by a copy factor (0 1)p ∈ , and a constant out-degree 1d ≥ . In each time-

step 1t + , one new node and d new arcs having this node as tail, are added. The heads of the

new arcs are chosen as follows: First, a node s—the prototype—is selected uniformly at

random from tV . Next, with probability p , the head of thi new arc is chosen uniformly at

random from tV , whereas with probability 1 p− this head is taken to be the head of the thi arc

leaving the prototype s .

 Kumar et al. [KKRS00] have defined another version of the copying model, called

exponential growth copying. This version has four parameters: (i) the growth factor p ; (ii) the

self-loop factor α ; (iii) the tail copy factor 'α ; and (iv) the out-degree factor d . Beginning with

a single node which has α directed self-loops, the number of nodes added during the (1)tht +

step is tpn . Thus, the graph 1tG + will have 1(1)tp ++ nodes. The number of arcs added in each

step is () td pnα+ . Each new nodes is born with α self-loops; this accounts for tpnα new arcs.

The remaining tdpn new arcs are attached according to the following rules: For each new node

tu V∈ , and each arc directed into u in the graph tG , a new arc directed into u is added during

(1)tht + step. The tail of each new arc is chosen as follows: (a) with probability 1 'α− it is

39

chosen uniformly at random from the tpn new nodes; and (b) with probability 'α it is chosen at

random from the 1tpn − nodes created in the previous step according to a linear preferential

attachment rule based on out-degree.

 MFCS model [Ald04]. Aldous [Ald04] proposed a metric copying framework for defining

dynamic random graph models. In this framework nodes are assumed to be points in a metric

space, i.e., there is some real-valued distance (,)r u w defined between any two nodes ,u w . The

graph tG is constructed by adding one new node t to the graph tG and (1) for each arc ij in the

graph 1tG − , a copied arc tj is created with probability ((,))p r t i ; (2) for each node (1)i i t≤ < ,

a new arc ti is created with probability ((,))p r t i . Here, : [0,) [0,1]p ∞ → is assumed to be a

real-valued function. Aldous [Ald04], studied the asymptotic properties of a particular metric

copying model—the mean field simple copying (MFCS) model—in which distances of the metric

space are assumed to be random numbers drawn from an exponential distribution and the

function p is given by: () min(1,), 0xp x e xλαλ −= ≤ < ∞ , where α and λ are parameters of

the model. Aldous found that MFCS model displays some of the properties of web-like

networks: a power-law degree distribution, an average distance that grows logarithmically with

the order of the graph, and a high density of certain subgraphs such as complete bipartite graphs.

Birth-death models

 Only a few birth-death dynamic models have been studied so far. To the best of our

knowledge, all these models are based on preferential attachment. Three such models are shown

next:

40

 Dorogovtsev-Mendes-3 (DM-3) model [DM00c]. In this model, a new node and a new

edge are added in each step according to a linear preferential attachment rule (as in the BA

model). In addition, ε existing edges chosen uniformly at random are deleted.

 Cooper-Frieze-Vera, Chung-Lu (CFV-CL) model [CFV04, CL04]. This model was

introduced independently by Cooper et al. [CFV04] and Chung and Lu [CL04]. It combines the

birth of nodes and edges with a uniform deletion of both nodes and edges as follows:

• With probability 1p , a new node and ε new edges incident on it are added. The other

ends of the new edges are chosen at random from existing nodes based on a linear

preferential attachment rule.

• With probability 2p , ε new edges are added. The probability that a new edge is added

between two existing nodes is proportional to the product of their degrees.

• With probability 3p , a new node chosen uniformly at random and all edges incident on it

are deleted.

• With probability 4 1 2 31p p p p= − − − , ε edges chosen uniformly at random are

deleted.

 Flaxman-et-al (FFV) model [FFFV04]. This model combines addition of nodes and

edges with an “adversarial” deletion of nodes: In each time-step t , a new node and ε new edges

incident on it are added. The other ends of the new edges are chosen based on linear preferential

attachment. After the edges are added, an “adversary” may delete up to tδ nodes, where δ is a

constant.

 Deo-Cami (DC) model [DC05]. In the DC model, the birth of nodes and edges is

combined with a preferential deletion of nodes that favors the deletion of small-degree nodes.

The motivation for this type of deletion comes from the Web and the Internet where it has been

41

observed that small-degree nodes die more frequently that high-degree ones [BBKT04, VPV02].

Beginning with a single node with a self-loop, in each step of this model either one of the

following two processes can happen:

• With probability p , a new node and a new edge incident on it are added. The other end of

the new edge is chosen based on preferential attachment.

• With probability 1q p= − , an existing node and all the edges incident on it are deleted.

The node deleted during (1)tht + step is chosen based on the following distribution:

1 2

()
()

2
t t

t
t t

n d u
u

n m+

−
=

−
P (2.9)

 Before passing to the techniques for analyzing the dynamic models, it would be

instructive to look at the nature of probability spaces associated with dynamic models. For

concreteness, let us focus on the LCD model:

 The procedure that generates an instance of the random graph tG for the LCD model,

described earlier in this section, suggests the following inductive definition of the probability

space tG : The space 1G contains a single element—the graph 1
1G consisting of a single node and

a self-loop. The probability measure 1P of the space 1G assigns a probability of 1 to the graph

1
1G . Given the space 1G , the two elements 1

2G and 2
2G of the space 2G are obtained by adding a

new node to the graph 1
1G together with a new edge which either joins nodes 1 and 2 (with

probability 2/3) or is a self-loop of node 2 (with probability 1/3). Hence the probability measure

2P is defined by () ()1 2
2 2 2 22 3 1 3G G= , =P P . It is now easy to see that 1t t t−| |=| |G G ,

therefore the probability space tG has t! elements. Given the definition of the probability

measure 1t−P on 1t−G , the probability measure tP is obtained by applying:

42

() () ()
(1)

1 1
1

, 1, , !
t

k k i i
t t t t t

i

G G G G k t
− !

− −
=

= | =∑ …P P P (2.10)

 Typically, one is concerned with asymptotic properties of the space tG , as t → ∞ . The

above inductive definition of tG suggests that to study the probability space tG one should take

into account all the probability spaces kG for k t< . In other words, it is to be expected that in

order to derive results about tG , one should resort to the use of difference equations. In fact, such

equations arise on a regular basis during the analysis of dynamic random graphs, as shown in the

next section.

2.3. Some Techniques for Analyzing Dynamic Random Graphs

 The techniques for analyzing dynamic random graph models can be broadly divided into

two groups: (1) heuristic; and (2) rigorous. The techniques belonging to the first group allow one

to quickly obtain approximate result. However, such results have to be constantly checked by

other methods or numerical simulations. The techniques in the second group are mathematically

rigorous and thus produce exact results. However applying them requires considerably more

effort than applying the heuristic techniques. This section is devoted to the heuristic techniques

for analyzing the dynamic random graph models.

Degree distribution

We begin with a detailed discussion of three heuristic techniques that have been widely used to

analyze the degree distribution of several models: (A) the continuous method; (B) the master

equation method; and (C) the rate equation method.

43

 (A) The continuous method: This method has been used by several authors such as

Barabasi et al. [BAJ99, BB01] and Dorogovtsev and Mendes [DM01B]. There are two main

steps involved:

 Step1: Let the random variable ()td s denote the degree in tG of an arbitrary node s ,

1 s t≤ ≤ . Initially, an expression for ()td s in terms of t , is obtained by deriving and solving a

differential equation. One of the key assumptions of the continuous method is that the degree

()td s may be approximated by its expected value. This approximation—known as the mean-field

approach—means that for each node s , the pdf ()t s k,P of the random variable ()td s is highly

concentrated around its mean i.e., ()()() ()t ts k k d sδ, ≈ −EP . In addition, it is often assumed that

it is safe to work in the continuous domain (as the length of the time-step tends to zero).

The mean-field assumption implies that

() () () ()()1 1() () () () () ()t t t t t td s d s d s d s d s d s+ +Δ = − ≈ − = ΔE E E

i.e., the change ()()td sΔ may also approximated by its expected value. Note that ()()td sΔ

denotes the number of edges that link with node s during the (1)tht + step. Assuming that edges

are added independently, it follows that ()()td sΔ is a binomial random variable with parameters

ε—the number of edges added in each step—and 1()tp s+= P . Thus, ()() 1() ()t td s sε +Δ =E P .

Switching to the continuous domain, we get the following differential equation:

1

()
()t

t

d s
s

t
ε +

∂
= .

∂
P (2.11)

 Step2: Having found a solution of Equation (2.11), the following approach is proposed in

[BAJ99] to obtain ()t kP : first, find the cumulative density function ()tF k of ()td s by using the

formula ()() ()t tF k d s k= <P and then derive ()t kP by differentiating ()tF k with respect to k .

44

This approach is not very appealing, since it requires the differentiation of a discrete cumulative

density function! A better method, proposed in [DM01b], is to use the law of total probability as

follows:

() ()

()

0

0

0

() ()

1
()

1
(()) ,

t

t t

t

t

t

t

k d v k v s v s ds

d s k ds
t

k d s ds
t

δ

= = | = =

= =

= −

∫

∫

∫

P P P

P (2.12)

where the last equality follows from mean-field assumption.

 Next, we show how the continuous method can be applied to obtain the degree

distribution for three dynamic random graph models: (i) BA model; (ii) BB model; and (iii) DM-

1 model.

(i) Degree distribution in the BA model: The following derivation is similar to that in [BAJ99].

Step 1: Recall that the preferential attachment rule in the BA model is given by

1

() ()
()

() 2
t

t t
t

tj V

d s d s
s

d j tε+

∈

= = .
∑

P (2.13)

Therefore, substituting for 1()t s+P in Equation (2.11) we get:

() ()
2

t td s d s
t t

∂
= .

∂
 (2.14)

The solution of the linear differential Equation (2.14) with the boundary condition ()sd s ε=

(each node is born with degree ε) is:

()1 2
() fort

td s t ssε
/

= ≥ . (2.15)

Figure 2.10 shows that there is a good agreement between the simulation data and the prediction

of Equation (2.15). This figure depicts the evolution of the degree of nodes born during the time-

steps 5 and 30. The lines correspond to the analytical prediction of Equation (2.15) while the data

45

points to the simulation of the BA model. The simulation results are averaged over 30

realizations of the BA model with 100,000t = .

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

time

de
gr

ee

v 5
d5
v 30
d30

Figure 2.10. Evolution of degree in the BA model.

Note that the average degree of the graph tG is asymptotically given by:

0

2
() 2 as .t

t
d G t

t
ε

ε
ε

= → → ∞
+

Step 2: For simplicity we consider the case 0 1ε = .

2 2

1 2

0

()

2 2

3 3

1
() ()

1

1 1
1

2 2
as .

1

t

t

t

d s
s s t k

k k t s ds
t

t

t
t

t k k

ε

δ ε

ε ε

⎛ ⎞/ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∂
∂ = /

= − /
+

⎡ ⎤
⎢ ⎥

= − ⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

= → → ∞
+

∫P

 (2.16)

Thus, the linear preferential attachment rule, leads to a power-law asymptotic degree distribution

with exponent 3γ = . Figure 2.11 compares the result of Equation (2.16) with the data obtained

by simulating the BA model. The three data sets correspond, left to right, to the cases

1, 3,ε ε= = and 5ε = while the line is the plot of the function 3k− .

46

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

k
P

(k
)

Figure 2.11. Log-log plot of the degree distribution in the BA model.

(ii) The degree distribution in the BB model: The following derivation is taken from [BB01].

 Step 1: The differential equation becomes

1

() ()
()

()
t s t

t
i ti

d s d s
s

t d i
η

ε ε
η+

∂
= = .

∂ ∑
P (2.17)

In the continuous limit, the normalization coefficient ()t i ti
A d iη= ∑ may be written as

0
()

t

t s tA d s dsη= .∫ Note that since 0 1sη< < , it follows that
0

() 2
t

t tA d s ds t< =∫ . Conjecturing

that tA grows linearly with t as tA Ct= and substituting for tA in Equation (2.17) we obtain:

() ()t s td s d s
t Ct

η
ε

∂
=

∂
 (2.18)

The solution of Equation (2.18) with boundary condition ()sd s ε= is

()()
s
C

t
td s s

η

ε= . (2.19)

By comparing equations (2.15) and (2.19), it may be seen that they differ only in that the

exponent of t s/ in the latter is a function of fitness, whereas in the former it is a constant. This

multi-scaling phenomenon arises because of the introduction of competition in the network. If

47

the pdf ()f x of the fitness coefficient is known, the constant C can be found from the following

equation:

[] ()
0

() ()
max

t txd s ds f x dx A Ct
η

= =∫ E

which by using Equation (2.19) becomes

0
() 1

max x
f x dx

C x

η
=

−∫ (2.20)

Step 2: Let’s obtain ()k ηP in the case 0 1ε ε= = :

0

()

1

1
() (())

1

1 1
1

1
as

s
C

t
C

t

k

d s
s s tk

C

P k t s ds
t

t

C
t

k

η

η

η

η δ ε

η

− /

∂
∂ =

+ /

= − /
+

⎡ ⎤
⎢ ⎥= − ⎢ ⎥+ ⎢ ⎥⎣ ⎦

→ → ∞.

∫

Consider, as examples, two special cases of the fitness pdf ()f x : (i) If () (1)f x xδ= − (all

nodes have the same fitness 1), than the fitness model reduces to the previous BA model, as

expected; (ii) In the case of a uniform distribution

1 if 0 1
()

0 otherwise

x
f x

⎧ ≤ ≤⎪⎪= ⎨⎪⎪⎩

it may be determined, by solving Equation (2.20), that 1 225C ∗ = . . Then, ()kP is obtained by

1

1 10

1 1
()

(log)C x C

C
k dx

x k k k
∗ ∗

∗

+ / += ≈∫P . (2.21)

Thus, in the case of a uniform fitness distribution, the BB model has a power-law distribution

with exponent 2 225γ = . and a logarithmic correction. Figure 2.12 shows that there is a good

match between the simulation data and the analytical prediction given by Equation (2.21).

48

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

k

P
(k

)

f1
data
data3

Figure 2.12. Log-log plot of the degree distribution in the BB model.

(iii) The degree distribution in the DM-2 model: The following derivation appears in [DM01b].

 Step 1: The differential equation becomes

() ()()
for 0

()()
t t

ti

d s d s t s
t d i t i

α

α α
−

−

∂ −
= ≥ .

∂ −∑
 (2.22)

The boundary condition is () 1sd s = , because each node is born with degree one. This equation

is difficult to solve for an arbitrary α and thus we can’t proceed as in the previous two cases.

It may be shown (see [DM01b]) that if () ()td s s t β/∼ , then the asymptotic degree distribution

follows a power-law with exponent γ , where

(1) 1γ β − = . (2.23)

Based on the just stated result, the solution of Equation (2.22) is searched in the form

() ()td s f s t= / . (2.24)

Now, let s tξ = / . Then Equation (2.22) becomes

1

0

ln () 1
(1) ,

()(1)

d f
d f d

α

α

ξ
ξ ξ

ξ ζ ζ ζ−
− − =

−∫
 (2.25)

and (1) 1f = . To proceed, we solve for β in

49

ln ()
(1)

d f
d

α ξ
ξ ξ β

ξ
− − = , (2.26)

and replace the left-hand side of Equation (2.25) with the obtained value of β . By doing so and

then solving for α it is found that

1 2 (1 ln2)β α≈ / − − (2.27)

Step 2: As already pointed out, the degree-distribution in this case must follow a power-law

whose exponent may be obtained directly plugging the value of β into Equation (2.23) to get

3 4(1 ln2)γ α≈ + − . (2.28)

Thus, the introduction of aging of nodes, changes the exponent of the power-law of the degree

distribution, and can lead to very large exponents.

(B) The master equation method

 This method was introduced by Dorogovtsev et al. [DMS00]. In contrast with the

continuous method, here no assumption is made about the distribution ()t s k,P . Furthermore, the

calculations are done mostly in the discrete domain and thus the results are more accurate. The

method can be outlined as follows:

 Step 1: First, determine the degree distribution ()tP s k, of an arbitrary node s , i.e., the

probability that the degree of node s in the graph tG is k .

 Step 2: Then, the degree distribution ()t kP of the graph tG is determined as follows:

1

1
() ()

t

t t
s

k s k
t =

= ,∑P P (2.29)

The derivations using the master equation method are quite lengthy, and therefore we show the

application of this method only for the case of DM-1 model.

50

(i) The degree distribution in the DM-1 model: The following derivation is taken from [DMS00].

 Step 1: The normalization constant in Equation (2.3) can be found as follows

()
1 1

() () (1)
t t

t t
j j

d j t d j t t a tλ λ λ ε ε− −

= =

+ = + = + = + ,∑ ∑ (2.30)

where a λ ε= / . The number of arcs that link into node s during each time-step, is a binomial

random variable with parameters ε and ()t ss W=P . Hence, the probability that the node s will

receive exactly l new incoming arcs out of the total ε new arcs added during each step, is

()() () (1)l l
s s s

l
B l W W ε

ε
ε −, = − . (2.31)

Now, 1()t s k+ ,P may be found by conditioning on the in-degree of s at time t :

()

()

1
0

0

0

() () ()

() (1) ()

1 ().
(1) (1)

m

t s t
l

l l
s s t

l

l l

t
l

l

l

s k B l s k l

W W s k l

k l a k l a
s k l

a t a t

ε
ε

εε

ε

ε

ε

ε ε
ε ε

+
=

−

=

−

=

, = , , −

= − , −

⎡ ⎤ ⎡ ⎤− + − +⎢ ⎥ ⎢ ⎥= − , −⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

∑

∑

∑

P P

P

P

 (2.32)

Note that 0()s ks k δ, =P since nodes are born with in-degree zero.

 Step 2: We sum both sides of Equation (2.32) for 1s = to t . Denoting the left hand side

summation by LHS and the right hand side by RHS we have

1
1

1

1 1
1

1 1

1 0

()

() (1)

(1) () (1)

(1) ()

t

t
s

t

t t
s

t t

t k

LHS s k

s k t k

t k t k

t P k δ

+
=

+

+ +
=

+ +

+

= ,

= , − + ,

= + − + ,

= + −

∑

∑

P

P P

P P

The summation RHS is a little more complicated. By using the expansion

51

()
0

(1) (1)k k

k
k

x x
ε

ε
ε

=

− = −∑ (2.33)

and after some algebra (see [DMS00]) we get the following expression for RHS:

1
() (1) ()

(1) 1t t

k a k a
t k k O t

a a
ε ε⎡ ⎤+ − +⎢ ⎥− + − + /⎢ ⎥+ +⎣ ⎦
P P P

Now, equating LHS and RHS we obtain the following equation:

1 0

1
(1) () () () (1) ()

(1) 1t t t t k

k a k a
t k t k k k O t

a a
ε ε

δ+

+ − +
+ − + − − = + /

+ +
P P P P P

or,

() 0

1
() () (1) ()

(1) 1t t t k

k a k a
t k k k O t

a a
ε ε

δ
+ − +

Δ + − − = + /
+ +

P P P P

Switching to the continuous domain yields:

0

1
[()] () (1) ()

(1) 1k t t k

k a k a
t t k k O t
t a a

ε ε
δ

∂ + − +
+ − − = + /

∂ + +
P P P P

or

0

() 1
() () (1) ()

(1) 1
t

t t t k

k k a k a
t k k k O t
t a a

ε ε
δ

∂ + − +
+ + − − = + /

∂ + +
P P P P P

 Finally, assuming that the stationary probabilities () ()tk k→∞=P P exist, we obtain the

difference equation

() () 0(1) (1) 1 (1) for 0ka k a k k a k a kε ε δ+ + + − − + − = + ≥ .P P (2.34)

 Dorogovtsev et al. [DMS00] have used the method of generating functions to solve

Equation (2.34). Here, we apply the formula given in Appendix B; indeed, the solution of

Equation (2.34) can be obtained directly in terms of gamma functions as:

[(1) 1] ()
() (1)

() [2 (1)]
a k a

k a
a k a

ε ε
ε ε

Γ + + Γ +
= +

Γ Γ + + +
P

52

In the limit k → ∞ we get

() (2)ak k− +∼P (2.35)

i.e., the degree distribution follows a power-law with exponent 2 2aγ λ ε= + = + / .

If 1a = , which implies λ ε= (the BA model), we get:

[2] () (1)
()

() [3] ()(1)(2)
k

k
k k k k

ε ε ε ε
ε ε ε ε ε

Γ + Γ + +
= = .

Γ Γ + + + + + + +
P

(C) The rate equation method

 This method was introduced by Krapivsky et al. [KRR01, KR03]. We begin with an

overview of how this technique may be used to obtain degree distribution.

 Let t kN , be the number of nodes of degree k in the graph tG . The method proceeds in

steps:

 Step 1: Derive a differential equation that relates ()t kN ,E to its rate of change. This is

called the rate equation; this equation is actually a family of differential equations, one for each

0k ≥ .

 Step 2: Solve the first few cases of the rate equation e.g., for 1 2k = , . Often, it turns out

that the rate equation is a first-order linear differential equation and thus a closed form solution

may be easily obtained. Furthermore, for every fixed k , the solution has the form

() ()t kN k t, =E P where () ()tk k→∞=P P denotes the asymptotic degree distribution.

 Step 3: Substitute ()k tP for ()t kN ,E in the rate equation. This substitution yields a first-

order linear difference equation on ()kP . Such equations can also be easily solved (Appendix B);

thus a closed-form expression for the degree distribution ()kP is obtained.

53

As an example, we show next the derivation of the degree distribution in the KR-1 model.

(i) Degree distribution in the KR-1 model: The following derivations are taken from [KR01].

 Step 1: To get the rate equation, consider how ()t kN ,E changes between time-steps t

and (1)t + . We can write:

() () (),(1) , (1)[]t k t k k t k kN N N, − → → +Δ = −E E E

where ,(1)t k kN − → is the number of nodes whose degree changes from (1)k − to k , and , (1)t k kN → +

is the number of nodes whose degree changes from k to 1k + , during the (1)tht + step. Note

that ,(1)t k kN − → and , (1)t k kN → + are Bernoulli random variables with parameters

()
()

()
()

, 1 ,

, ,

(1)
and

t k t k

t j t jj j

N k N k

j N j N

α α

α α

− −

∑ ∑
E E

E E

respectively. Therefore denoting the normalization constant by (), ,t t jj
M j Nα

α =∑ E we get

() () () (),(1) , 1 , (1) ,
, ,

(1)
,t k k t k t k k t k

t t

k k
N N N N

M M

α α

α α
− → − → +

−
= =E E E E

Hence, the rate equation can be written as

() () (), 1 , 1
,

1
(1) .t k

t k t k k
t

N
k N k N

t M
α α

α

δ,
−

∂ ⎡ ⎤= − − +⎢ ⎥⎣ ⎦∂

E
E E

The last term accounts for the addition of a new node with degree one, in each step.

 Step 2: Let us solve the rate equation for 1 2k = , . First, note that (),0 ,t t jj
M N=∑ E is

the expected total number of nodes of the graph tG . Hence, the rate of change of ,0tM is 1

(because one new node is added in each step). It follows that: ,0 0,0tM t M t= + = . Similarly,

54

we have that (),1 , () 2t t j t t
j v

M j N d v m= = =∑ ∑E . The rate of change of ,1tM is 2 (one edge is

added in each step), and as a result ,1 0,12 2tM t M t= + = . Next, we consider three separate

cases: (a) 1α = (the linear case); (b) 1α < (the sub-linear case), and (c) 1α > (the super-

linear case).

(a) The linear case 1α = : Replacing for ,1tM in the rate equation we get:

• For 1k = the rate equation becomes

() (),1 ,1 1
2

t tN N

t t

∂
+ = .

∂

E E

 Its solution is (),1 2 3 2 3tN t C t t= / + / → /E , i.e., on average, two-thirds of the nodes

 will have degree 1as t → ∞ .

• For 2k = the rate equation becomes

() (),2 ,2 1
3

t tN N

t t

∂
+ =

∂

E E

 Its solution is asymptotically (),2 6tN t→ /E . Based on the solutions for 1,2k = , it is

 assumed that ()t kN ,E is linear in t : () ()t kN t k, = .E P

 Step 3: Substituting for ()t kN ,E in the rate equation we get the homogeneous first-order

linear difference equation

(1) () for 1
3
k

k k k
k

+ = , ≥ .
+

P P

with initial condition 2(1) 3=P , whose solution is

4
()

(1)(2)
k

k k k
= .

+ +
P

55

Note that this is essentially the same result as the one obtained for the BA model using either the

continuous or master equation method.

(b) The sub-linear case 1α < : First, note that

() ()
() ()

, 0 , , ,

,1 , , ,

t t j t j t
j j

t t j t j t
j j

M N j N M

M j N j N M

α
α

α
α

= ≤ =

= ≥ =

∑ ∑

∑ ∑

E E

E E

Therefore for any 1α < :

,0 , ,1 2t t tt M M M tα= ≤ ≤ =

In the limit t → ∞ we can write , ()tM tα μ α= where the function ()μ α has yet to be

determined (we only know that 1 () 2μ α≤ ≤ and (0) 1 (1) 2μ μ= , =). Now, repeat the steps

followed in the linear case. Replace ,tM tα μ= in the rate equation and solve the first few cases:

• For 1k = the rate equation becomes:

() (),1 ,1 1t tN N

t tμ

∂
+ = .

∂

E E

 The asymptotical solution of the differential equation above is 1,1tN tμ
μ+= .

• For 2k = the rate equation is:

() (),2 ,22 1
1

t tN N

t t

α

μ μ

∂
+ = .

∂ +

E E

 and its solution is (),2 (1)(2)tN tα
μ

μ μ+ +=E .

 Step 3: Generalizing, we let () ()t kN t k, =E P . After substituting in the rate equation, the

following homogeneous first-order linear difference equation is obtained:

56

(1)
() (1) 0

k k
k k

α αμ
μ μ
+ −

− − = .P P

Its solution is immediately obtained as:

()() ()1 2

1
()

1 1 1 k

k
k α α α

μ μ μα

μ
= .

+ + +
P

 In [KR01] it is argued that the asymptotic behavior of ()kP in this case does not follow a

power-law but rather a stretched exponential. Our numerical simulations shown in Figure 2.13

are in good agreement with this conclusion.

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

k

P
(k

)

f1
alpha=0.2
f2

Figure 2.13. Log-log plot of the degree distribution in the KR-1 model with 0.2α = .

(c) The super-linear case 1α > . In this case, a different approach may be followed to analyze

the degree distribution:

 The probability that each of the first t nodes will be a neighbor of the initial node is:

t
t t

α

α +

Hence, the probability that this pattern continues indefinitely is

1
1 1

1
1t t

t
t t t

α

α α

∞ ∞

−
= =

= =
+ +∏ ∏P

57

It may be shown that: (a) for 2α ≤ , 0=P ; and (b) for 2α > , 0>P . Thus, for 2α > , all but

a finite number of nodes are connected to a single node. This phenomenon is called “gelation”

and the central node is called the "gel" (see Figure 2.6(b)).

 To determine the degree distribution for any 1 2α< < , the asymptotic form of ,tM α is

needed. Skipping the details (see [KR01]), the result is that for 1 2α< < , the degree

distribution changes an infinite number of times as follows: for 1
1

ε ε
ε εα+

−< < the number of

nodes with degree larger than ε is finite, while for k ε≤ () (1)
,

k k
t kN t α− −→E .

(ii) The degree distribution in the KR-2 model: Krapivsky and Redner [KR03] have showed, by

applying the rate equation as shown above, that for the KR-2 model the in-degree follows a

power-law of the form

2
1() pk
k λ

−
+→P (2.36)

while the out-degree follows a power-law of the form

1 11
1() q pqk
k μ− −

+
+ +→P (2.37)

Furthermore, the joint in- and out-degree distribution is asymptotically given by:

1

2 1(,)
()
i j

i j C
i j

λ μ

λ

−

+=
+

P (2.38)

This result provides evidence that in- and out-degree distributions are not independent (there is

no factorization of the form 1 2i jγ γ).

58

3. PROPOSED BIRTH-DEATH DYNAMIC RANDOM GRAPH MODEL

 As stated in the previous chapter, dynamic random graph models that combine birth and

death (addition and deletion of nodes and edges) have been studied much less than the birth-only

models: Dorogovtsev and Mendes [DM00b] studied a model which interleaves the addition of

nodes and edges with a uniform deletion of edges. Chung and Lu [CL04] and Cooper et al.

[CFV04], independently, studied a dynamic model that combines the addition of nodes and

edges with a uniform deletion of both nodes and edges. A similar model with a uniform deletion

of nodes appeared in [DC05a]. These birth-death models have been found to generate graphs

with power-law degree distribution.

 In this chapter, we investigate a dynamic random graph model which interleaves addition

of nodes and edges with a preferential deletion of nodes that favors deletion of small-degree

nodes. The results derived in this chapter appeared first in [DC05c]. This type of node deletion

has been chosen in light of the evidence that the small-degree nodes of some web-like networks,

such as the Web and the Internet, die much more frequently than the high-degree ones [BBKT04,

VPV02].

 The birth-death with preferential deletion analyzed in this chapter is defined as follows:

Let the graph 1G consists of a single node with a self-loop. In each discrete time-step 1t + ,

0t > , either one of the following two processes can take place:

 (a) Birth process: with probability p , a new node is added, together with a new edge

incident on it. The other end-node u of the new edge is chosen preferentially from among all the

existing nodes based on a linear preferential attachment [BAJ99] rule:

59

1

() ()
[] .

() 2
t

t t
t

t t
w V

d u d u
u

d w m+

∈

= =
∑

P (3.1)

 (b) Death process: with probability 1q p= − , a node u is chosen for deletion along

with all the edges incident on this node in tG . To make small-degree nodes more likely

candidates for deletion than the higher-degree ones, node u is chosen according to the following

probability distribution:

1 2

()
[]

2
t t

t
t t

n d u
u

n m+

−
=

−
P . (3.2)

Note that the numerator of the ratio in the right-hand side of Equation (3.2) subtracts the degree

of node u from the number of nodes in the graph tG . Therefore, the value assigned by equation

(3.2) will be larger for small-degree nodes than for higher-degree ones. The division by 2 2t tn m−

ensures that the values lie between 0 and 1. Naturally, there exist other alternative probability

distributions that may achieve the same effect, such as:

1

2 ()
[]

2 (1)
t t

t
t t

m d u
u

m n+

−
=

−
P .

The distribution in Equation (3.2) was chosen primarily because it was more convenient to work

with.

 4(1) 13

3(3) (5) 13

2(4) 13

1(2) 13

=

= =

=

=

P

P P

P

P

Figure 3.1. A small graph illustrating the probability distribution used in the preferential deletion

model.

5

4

2

1

1

60

 As an illustration, a graph with deletion probabilities assigned to its nodes according to

Equation (3.2) is given in Figure 3.1.

 It is assumed that p is greater than q so that the graph continues to grow. There is a

caveat to the two rules (a) and (b): If during some step 0t > the number of nodes in tG

becomes zero, then the process rewinds, i.e., the graph 1tG + will consist of a single node with a

self-loop. However, as shown in the next section, this case occurs extremely rarely, and thus it

may be ignored. In analogy with preferential attachment [BAJ99], the death process defined

above is called preferential deletion.

3.1. Number of Nodes

 First, let us look at [0]tn =P —the probability that the number of nodes becomes zero

after some step 0t > . This event could occur only if t is even and exactly 2t death processes

have taken place during steps 1, ,t… (note that the starting graph 1G may be seen as the result of

a birth process). Thus:

[] ()2 2 1
0 2 ,

2 (1)
t t t

t t

t
n q p O pq O

t ε

⎛ ⎞ ⎡ ⎤⎟⎜ ⎡ ⎤⎟ ⎢ ⎥⎜= ≤ = =⎟⎜ ⎢ ⎥⎣ ⎦⎟ ⎢ ⎥⎟⎜ +⎝ ⎠ ⎣ ⎦
P

for some 0ε > . Since the probability of reaching an empty graph decreases exponentially with

the number of steps, it is assumed that 0tn > for all 0t > . Hence, for all 0,t >

1 ,t tn n X+ = + where X is a discrete random variable equal to 1 with probability p and equal

to 1− with probability q . As a result, the conditional expectation of 1tn + with tG fixed is

[] []1 |t t tn G n X+ = +E E . (3.3)

61

By taking the expectations of both sides in Equation (3.3) we obtain

for1[] [] (), 1.t tn n p q t+ = + − >E E

Solving this first-order linear difference equation with initial condition 1[] 1,n =E yields:

[] () 2tn p q t q= − +E , (3.4)

which implies that [] [()]tn p q t= Θ −E . Figure 3.2 shows a comparison of the values of tn

predicted by Equation (3.4) with those obtained by simulating the preferential deletion model.

Figure 3.2. Growth in the number of nodes of graph tG with the number of steps t , for three

different values of the birth probability p .

 In this figure, the solid lines correspond to the analytical prediction of Equation (3.4)

while the data points correspond to the simulation result. To obtain these data points, for each

value of p and t shown in Figure 3.2 the number of nodes was computed by averaging over 30

realizations of the model. The analytical prediction and simulation results agree very well, as

seen in Figure 3.2.

[]tnE

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10000 20000 30000 40000 50000

p = 0.6

p = 0.75

p = 0.9

 t

62

3.2. Number of Edges

 The approach followed in this section is similar to that of Section 3.1. With tG fixed, the

number of edges after the th(1)t + step may be expressed as 1 1t t tm m Y+ += + , where 1tY + is a

random variable specified by

1 ,
2

1 with probability

()
with probability , 0.

2
t t t k

t t

p

Y q n k N
k k

n m
+

⎧⎪⎪⎪⎪= −⎨⎪− ≥⎪⎪ −⎪⎩

Thus,

2
, ,

1 , 2 2
0 0 0

[|] ,
2 2

t k t kt
t t t k

tk k kt t t t t

kN k Nn k
Y G p q kN p q q

n m n d n m+
≥ ≥ ≥

−
= − = − +

− − −∑ ∑ ∑E

which implies that

2
, ,

1 2
0 0

[] [] .
2

t k t k
t t

tk kt t t

kN k N
m m p q q

n d n m+
≥ ≥

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= + − + ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦

∑ ∑E E E E (3.5)

We continue by evaluating the two expectations multiplied by q in Equation (3.5). First, we

have

, ,

0 0

2t k t kt t

t t tk kt t t t

kN kNn m
n d n d n n d≥ ≥

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦ ⎣ ⎦
∑ ∑E E E

Second,

2 2
, ,

0 0

1
()

t k t k

t tk kt t t t

k N k N

n n d n d n≥ ≥

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
∑ ∑E E .

Now, using the approximation

()
2 2

2,
2

0

8
2 ,t k t

t

k t t

k N m
d

n n≥

≈ ≈∑

63

and then substituting it into Equation (3.5) we get

2

1 2

2 8
[] [] ,

()
t t

t t
t tt t t

m m
m m p q

n d n n d+

⎛ ⎞⎡ ⎤ ⎡ ⎤⎟⎜ ⎢ ⎥ ⎢ ⎥⎟= + − −⎜ ⎟⎜ ⎢ ⎥ ⎢ ⎥⎟⎜ − −⎝ ⎠⎣ ⎦ ⎣ ⎦
E E E E

or, equivalently

2
1 2

2 4
[] 1 [] [] ,

[] [()]t t t
t tt t t

q q
m m m p

n d n n d+

⎛ ⎞⎟⎜ ⎟− − − =⎜ ⎟⎜ ⎟⎜ − −⎝ ⎠
E E E

E E
 (3.6)

which is a non-linear difference equation. Methods for solving such equations are known only

for a few special cases (these methods are usually based on transformations that convert non-

linear equations into linear ones). To the best of our knowledge Equation (3.6) does not fall into

any of the special cases. Therefore, we search for a solution of the form [] ,tm tε=E where ε is

a constant that does not depend on t . Substituting into Equation (3.6) and taking the limits as

t → ∞ we get:

(1)a pε+ = (3.7)

where 2 ()a q p q= − . Hence:

(),p p qε = − (3.8)

i.e., [] [()]tm p p q t= Θ −E . To verify the result of Equation (3.8), we computed the number of

edges by simulating the model. The simulation results are shown in Figure 3.3. The solid lines in

this figure correspond to the analytical prediction for the number of edges tm while the data

points correspond to simulation results. Again, for each value of p and t the number of edges of

tG was computed by averaging over 30 realizations of the model. The two data sets are in very

good agreement.

64

 A direct consequence of Equations (3.4) and (3.8) is that the average degree of tG tends

to 2p as t → ∞ .

[]tmE

0

5000

10000

15000

20000

25000

30000

35000

40000

10000 20000 30000 40000 50000

p = 0.6
p = 0.75
p = 0.9

 t

Figure 3.3. Growth in the number of edges of graph tG with the number of steps t , for three

different values of the birth probability p .

3.3. Degree Distribution in the First Neighborhood of the Deleted Node

 Before turning our attention to the degree distribution in tG , we need to evaluate one

more quantity, namely the expectation of (1)
,t kN —the number of degree k nodes adjacent to the

node chosen for deletion during step t .

 This expectation is computed by conditioning on the node chosen for deletion. Indeed,

with tG fixed, one may write

(1) (1) (1) (1)
, , , ,2

() 1 1
| () () () ()

2 ()
t t t

t t
k t t t k t k t k t

t tu V u V u Vt t t t t

n d u
N G N u N u N u d u

n m n d n n d∈ ∈ ∈

−⎡ ⎤ = = −⎣ ⎦ − − −∑ ∑ ∑E (3.9)

Next, note that

(1)
, ,()

t

t k t k
u V

N u kN
∈

=∑ (3.10)

65

and

,
(1)
, , , ,

1 1

() ()
t k

t

N k

t k t k i j t
u V i j

N u d u d
∈ = =

=∑ ∑∑ (3.11)

Here , , ,k i j td denotes the degree of the thj neighbor of the thi node of degree k after step t . It

may be approximated by the average degree (1)
td of a random neighbor of a random node. This

quantity is related to td by the identity (1)
2t td d≈ . Substituting into Equation (3.9) we get

, , ,(1)
,

2 2
| 1 ,

()

t tt k t k t k
t k t

t t tt t t t t

kN kN d kN d
N G

n d n n d n d n

⎡ ⎤
⎡ ⎤ ⎢ ⎥≈ − = −⎣ ⎦ ⎢ ⎥− − − ⎣ ⎦

E

and finally, by taking the expectations of both sides in the last equation we obtain

(1)
, ,

1 2 t t

t k t k
tt

d n
N k N

n d

⎡ ⎤−⎢ ⎥⎡ ⎤ ⎡ ⎤≈ ⎢ ⎥⎣ ⎦⎣ ⎦ −⎢ ⎥⎣ ⎦
E E E (3.12)

Equation (3.12) was also verified numerically. The results are shown in Figure 3.4 where the

solid line corresponds to the prediction of Equation (3.12) while the data points were computed

by averaging over 1000 realizations of our model with 40,000t = and 0.8p = . The values of

(1)
,[]t kNE in Figure 3.4 are shown in a normalized form after having been divided by the degree of

the node chosen for deletion.

(1)
,t kN⎡ ⎤

⎣ ⎦E

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Predicted
Simulated

 k

Figure 3.4. The expected number of neighbors of degree k of a node chosen for deletion.

66

3.4. Degree Distribution

 Next, we turn to the degree distribution of the graph tG . By analyzing the change in ,t kN

between the tht and (1)tht + steps we get

1, , 1[] [] ,t k t k kN N pA qB pδ+ = + + +E E (3.13)

where

, 1 ,

, 1 ,

1
(1) [] [] ,

2 []

{(1) [] [2] [(1) (1 2)] []}.
[()]

t k t k
t

t tt k t t t k
tt t

A k N k N
m
q

B k N n d k n k d N
n n d

−

+

⎡ ⎤= − −⎣ ⎦

= + − − + −
−

E E
E

E E E
E

 -

 Term A in Equation (3.13) reflects the expected change in ,t kN due to the birth process.

The expression for term A was derived using standard techniques (e.g., [KR03]), and hence the

details have been omitted.

 Term B reflects the expected change in ,t kN due to deletion. Its derivation takes into

account the result of Section 3.3. Let us examine, for instance, the derivation of the term

,[(1) (1 2)] [] [()]t tt t k t tk n k d N n n d+ − −E E - , which reflects the expected drop in ,t kN due to a

deletion. The deletion of a node can cause ,t kN to decrease in two different ways: (i) if a node of

degree k is deleted; or (ii) if the deleted node is adjacent to one or more nodes of degree k . The

expected drop due to deletion of a node of degree k is 2
,[]() [2]t k t t tN n k n m− −E E .

Furthermore, the result of Equation (3.12) implies that the expected drop due to deletion of a

node which has one or more neighbors of degree k is 2
,[](2) [(2)]tt k t t tk N n d n m− −E E . Adding

these two drop terms yields the expected overall drop due to deletion in the number of nodes of

67

degree k . In a similar fashion, one may also derive the expected increase in ,t kN due to a

deletion.

 The last term in Equation (3.13) comes from the fact that the degree of a newly-born

node is always one.

 We search for a solution to Equation (3.13) of the form ,[]t k kN a t=E . Substituting for

,[]t kNE and taking the limits as t → ∞ , we get the following second-order, linear difference

equation with non-constant coefficients:

2 1 12 (2) [2 (1)(2 1)] 2 () , 0.k k k kq k a p k q a ka p p q kδ+ +− + + + + + − = − ≥ (3.14)

 To solve Equation (3.14) we have used the method of Laplace as described in [Jor65].

Consider first the homogeneous equation which has the form
2

0

() 0,i i k i
i

k aα β +
=

+ =∑ with

0 0 1 1 2 21, 0, 2 1, 3, 2 , 4 .q q qα β α β α β= − = = + = = − = −

Following Laplace’s method, it is assumed that the solution of the homogenous equation is of the

form:

1 () ,
b
k

k

a

a t v t dt−=∫ (3.15)

where the function ()v t and the limits of integration ,a b are yet to be determined. As shown in

[Jor65], the relation

1

()i
i i

i
i

t idv
v t

β α

α +

−
= ∑

∑
 (3.16)

68

must hold for any difference equation of the type under consideration. Furthermore, the limits of

integration ,a b are to be chosen among the roots of the function ()k i
it v t tα∑ . In the present

case, Equation (3.16) becomes

2

2 4
.

1 (1 2) 2
dv p pt
v q t qt

−
=

− + + −

By integrating both sides of the preceding equation we get:

22 2 1 2 ()
() (1) (2 1)

p p p q p q
v t t tq

− −
= − − .

The roots of ()k i
it v t tα∑ are 0, 1, and 1 2q . It follows that the two independent solutions of

Equation (3.13) are

2
1

2 2 1 2 ()(1) 1

0

(1) (2 1) ,
p p p q p qk

ka t t tq dt
− −−= − −∫

and

2
1/2

2 2 1 2 ()(2) 1

0

(1) (2 1) .
q

p p p q p qk
ka t t tq dt

− −−= − −∫

By carrying out the first integration we get:

()1 2 2 1(1) p p

ka k
− − −⎡ ⎤

=Θ ⎢ ⎥⎢ ⎥⎣ ⎦
. (3.17)

Note that as p increases from 0.5 to 1 , the ratio 2 2 1p p − decreases from ∞ to 2 . Thus,

asymptotically the degree distribution of tG follows a power-law with exponent that varies

between 3 (for 1p =) and ∞ (for 0.5p =). In the case when 1p = this result agrees with

previous well-known results [BAJ99, BRST01]. On the other hand, for values of p significantly

smaller than 1 the exponent of the power-law becomes too big compared to the exponents

69

observed for many web-like networks (which usually lie in the range between 2 and 3

[New03b]).

 The second integral (2)
ka may be shown to diverge as k → ∞ , and is thus irrelevant.

 The plot in Figure 3.5 shows a comparison between the analytical prediction given by

Equation (3.17) and the data obtained by simulating our model, with 0.8p = .

'()kP

100 101 102
10-5

10-4

10-3

10-2

10-1

100

 k

Figure 3.5. Log-log plot of the cumulative degree distribution of the graph generated by the

preferential deletion model.

 The cumulative distribution '() ()
i k

k i
≥

= ∑P P has been plotted instead of the distribution

()kP itself in order to reduce the statistical noise in the tail of the distribution. As seen, there is a

good agreement between the data obtained from the simulation results and the analytical

prediction.

 The result derived in this chapter reinforces our view that dynamic models of web-like

networks are robust in the sense that a power-law degree distribution is obtained for a wide range

of stochastic rules that control such models.

70

4. THE NOTION OF COMMUNITY

 This chapter aims to formalize the meaning of community. Before giving formal

definitions of community, we review some classical combinatorial optimization problems that

have the same flavor as community mining.

4.1. Some Graph-Theoretic Problems Related to Community-Mining

 Minimum cuts and graph partitioning. Let A B, form a partition of the set of nodes of a

graph ()G V E= , . An edge-cut ()A B, in G is the set of all edges with one end in A and the

other end in B . The min-cut problem refers to finding the edge-cut with minimum cardinality.

This problem is NP-hard [GJ79] an the two main heuristic algorithms for solving this problem

are: the spectral bisection method [Fie73], which is based on the eigenvectors of the graph

Laplacian, and the Kernighan-Lin algorithm [KL70], which improves on an initial division of the

graph using a greedy strategy. It should be mentioned that the restricted version of the min-cut

problem known as the -s t min-cut—where s and t are two fixed nodes and each of the two

partitions must contain exactly one of them—can be solved in polynomial time (e.g., using the

max-flow/min-cut algorithm of Ford and Fulkerson). Graph partitioning is a generalization of

the min-cut problem which refers to partitioning the set of nodes of a graph G into two or more

partitions such that the number of edges having their ends in different partitions is minimal. This

problem is usually solved by a repeated application of the bisection method.

 Maximum clique. Any complete subgraph of a graph G is called a clique of G . A clique

is said to be maximal if it is not properly contained in any other clique. A maximum clique is a

clique of maximum size. The problem of finding the clique number of a graph (the size of a

71

maximum clique) as well as the problem of finding a maximum clique are NP-hard [GJ79]. In

addition, some theoretical results indicate that it is difficult to find approximation algorithms that

guarantee to find cliques of size within a factor of the maximum clique size [FGLS91]. Therefore

the problem of finding a maximum clique is usually attacked by approximation or heuristic

algorithms; a comparative survey of such algorithms is given in [Pel01].

 It is interesting to note that some clique-related problems that are difficult to solve for

arbitrary graphs become easy in the case of random graphs. For instance, it is known that a.a.s

the clique number of a binomial random graph 1
2,n

G is either ()f n⎢ ⎥⎣ ⎦ or ()f n⎡ ⎤⎢ ⎥ where

() (2 log)f n n= Θ [AS92]. Several polynomial-time algorithms are known to find a.a.s a clique

of size (log)nΘ , that is a clique of roughly half the size of the largest one. On the other hand, no

polynomial-time algorithms are known to find a.a.s a clique of size (1)lognε+ for a fixed

0ε > . The situation improves in a related random graph model, namely 1
2, ,n kG , which is

obtained by first generating a random graph 1
2,n

G , then selecting k random nodes from this graph

and forcing them to be a clique by adding edges as needed. Among other results, it has been

shown that for every 0ε > there is a polynomial-time algorithm to find a hidden clique on k

nodes in 1
2, ,n kG , provided that k nε≥ [AKS98].

 The study of the performance of combinatorial algorithms in random graphs is known as

the algorithmic random graph theory; the major results in this area have been surveyed in a

paper by Frieze and McDiarmid [FM97].

 Alliances. The concept of alliance has been introduced to graph theory by Kristiansen et

al. [KHH04]. To date, many types of alliances in graphs have been defined. Some of them are

reviewed next.

72

 Let ()G V E= , be a graph and v a node in this graph. The open neighborhood of v is

defined as the set () { () }N v u u v E= | , ∈ , while the closed neighborhood of v is the set

[] () { }N v N v v= ∪ . For a subset S of V the open and closed neighborhoods are defined as

() ()v SN S N v∈= ∪ and [] ()N S N S S= ∪ , respectively. The boundary of a set of nodes S is

defined as the set []S N S S∂ = − .

 A set of nodes S is called a defensive alliance if [] []N v S N v S| ∩ | ≥ | − | for every

node v S∈ and an offensive alliance if [] []N v S N v S| ∩ | ≥ | − | for every []v N S S∈ − . As it

turns out the idea of defensive alliance has appeared in some earlier publications prior to being

given the name defensive alliance in [KHH04]: Flake et al. [FLG00] defined a Web community

as a set of web sites C in which every member at least as many neighbors inside C as outside

it; the book by Wasserman and Faust [WF94] which deals with the analysis of social networks

also studies groups of nodes with similar properties as a defensive alliance.

 A set of nodes S is called a powerful alliance if it is both a defensive and an offensive

alliance. A defensive (offensive, powerful) alliance S is said to be global if it is also a

dominating set. Several papers [HHH03, HHK04, BDH04] have initiated the study of

mathematical properties of alliances.

4.2. Graph-theoretic Definitions of Community

 This section gives two definitions of community: (i) -p alliance (Definition 4.1); and (ii)

- -near cliqueα (Definition 4.2). The first definition was proposed Flake et al. [FTT04] and is a

generalization of the concept of defensive alliance.

73

 The second definition of community— - -near cliqueα —is a new concept proposed in

this dissertation.

 Definition 4.1. Let [0 1]p ∈ , . A -p alliance in a graph (,)G V E= is defined as a subset

of nodes pC satisfying the property () ()p pN u C p N u C∩ ≥ − for every node pu C∈ . A

-p alliance pC is called minimal if no proper subset of pC forms a -p alliance , minimum if pC

has the smallest cardinality among all -p alliances , and global if it dominates the graph G .

 The parameter p in the definition of community as a -p alliance quantifies the strength

of a community: If 0p = , then any set of nodes would be a -p alliance . At the other extreme, if

1p = , then a -p alliance is the same as a defensive alliance.

 It turns out that several community-mining problems are NP-hard under the definition of

community as a -p alliance (Section 4.3). Therefore it becomes necessary to investigate the

existence of alternative definitions of community which render community-mining amenable to

polynomial-time algorithms. The Definition 4.2 shown next aims to achieve exactly that.

 Definition 4.2. Let [0 1]α ∈ , . An - -near cliqueα is defined as a subset of nodes Cα such

that the clustering coefficient of each node in the induced subgraph []GCα is greater than or

equal to α . An - -near cliqueα Cα is called maximal if no proper superset of Cα is an

- -near cliqueα . A maximum - -near cliqueα is one that has maximum cardinality.

 The parameter α in the definition of community as an - -near cliqueα quantifies again

the strength of relationship among the nodes of a community: If 0α = , then every subset of

nodes forms an - -near cliqueα and only V forms a maximal - -near cliqueα ; If 1α = , then

only the nodes of a clique would satisfy the definition of an - -near cliqueα (Proposition 4.1).

74

 Note that implicit in Definitions 4.1 and 4.2 is the requirement that the subgraph induced

by the nodes of a -p alliance or an - -near cliqueα be connected.

 Example 4.1: The following examples show the largest value of α for which some well-

known graphs form an - -near cliqueα .

• The complete graph nK is an - -near cliqueα for 1α = .

• The k -nearest neighbor lattice, 2k = . This graph is an - -near cliqueα for 1
2α = .

• The complete bipartite graph ,m nK is not an - -near cliqueα for any 0α > . ■

 Proposition 4.1 gives some basic properties of - -near cliquesα .

Proposition 4.1. The following properties hold:

a) If a set S forms an - -near cliqueα then it would form ' - -near cliqueα for all 'α α< .

b) If a subset of nodes S of a graph G is an 1- -near clique then the induced subgraph []G S

is a clique.

c) If the set of nodes of a graph G forms an - -near cliqueα then ()C G α≥ .

Proof. Trivial.

 Note that the two definitions of community given above are quite different from each

other. First, while the definition of a community C as an - -near cliqueα involves only the

nodes of C and the edges with both ends in C , the definition as a -p alliance involves the

nodes of C , the edges with both ends in C and the edges with only one end in C . Second,

75

under the definition of community as an - -near cliqueα only the problems about maximal

communities are interesting (any triangle would be a 1- -near clique), while under the definition

of a community as a -p alliance only the problems about minimal communities are interesting

(the set of nodes of the graph itself is a 1-alliance). This asymmetry between the two definitions

of community implies differences in the ranges of applications that suits each of them; we will

return to this point in Section 4.3.

 Having defined the concept of community, we return to the definition of community

mining. This problem may be posed in at least two different versions, as shown in Definition 4.3

and 4.4:

 Definition 4.3. Let ()G V E= , be a graph and S a subset of V . The community-mining

problem 1P is defined as the problem of finding a maximal (minimal) community in G which

contains (is contained in) the set of nodes S .

 Definition 4.4. Let ()G V E= , be a graph. The community-mining problem 2P is

defined as the problem of finding a partition of the set of nodes V into two or more subsets such

that each subset is a community in G .

 Thus in the problem 1P the goal is to find a single community which satisfies certain

requirements, while in the problem 2P the goal is to find all communities.

76

4.3. Computational Complexity of Community Mining

 In view of the definitions of community in Section 4.2, it is natural to ask whether there

exist polynomial-time algorithms to solve the community-mining problems 1P and 2P . The

answer to this question makes up the topic of the present section.

 In order to highlight the applications that better suit the various definitions of community

and community-mining, next we present some Web-application scenarios each of which boils

down to a specific version of community mining. For each of the subsequent scenarios we

discuss the computational complexity of the community-mining problem arising in that scenario.

Scenario 1: Clustering the responses to a user query by a search engine

 Consider the following procedure for clustering the responses by a search engine to a user

query:

• Send a query on a pre-defined topic to a search engine, say Google.

• Let the set of many of the top responses returned by the search engine, say the first

10,000 , be denoted by R .

• Construct the subgraph induced by R in the Web graph; call this the context graph 1G of

the given query.

• Solve the community-mining problem 2P on the graph 1G . The solution to this problem

is expected to partition the set of nodes of the context graph into two or more partitions—

each representing a subtopic of the query’s topic.

77

 Assuming the definition of community as a -p alliance with 1
2p ≥ , the problem

described in Scenario 1 is NP-hard. This conclusion follows directly from the fact that the

following decision problem:

Given: An undirected, weighted graph (,)G V E w= , , a real number 1 2p ≥ / , and

positive integer k .

Question: Can the nodes of G be partitioned into k disjoint sets 1 ,kV …V, , such that for

all iV and iu V∈ , () ()
iv V v V
w u v p w u v

∈ ∈
, ≥ ,∑ ∑ ?

is NP-complete—a result obtained by Flake et al. [FTT04] by using a transformation from

BALANCED PARTITION [GJ79].

 The computational complexity of the problem described in Scenario 1 is open under the

definition of community as an - -near cliqueα .

Scenario 2: Dominating community

 The procedure below shows a method for extracting a small “strong” community from a

larger one by selecting a subset of nodes of the large community that satisfies the definition of

community:

• Let the set of web pages that belong to a broad topic be denoted by S . This set may be

obtained for example using a topic directory such as Yahoo! or Open Directory.

• Construct the subgraph of the Web graph induced by S . Call this graph the context graph

2G .

• Solve the minimal community-mining problem 1P on the context graph 2G .

78

 The solution to this problem is expected to find a subset of nodes that is of high-quality,

or central to the broad topic at hand.

 Assuming a definition of community as a global -p alliance with 1p = , the

computational complexity of this problem has been analyzed in [CBDD04] where it was

proved—using transformations from the DOMINATING SET (DS) problem [GJ79]—that the

problems of finding a minimum global defensive (offensive, powerful) alliance are NP-hard.

 To explain the idea of the transformations used in [CBDD04], we show the details of the

proof for the case of global defensive alliance; the complete proofs for the case of offensive and

powerful alliance may be found in [CBDD04].

 The decision version of the problem of finding a minimum global defensive alliance is:

GLOBAL DEFENSIVE ALLIANCE (GDA):

Given: A graph ()GV E, and a positive integer K V≤| |.

Question: Is there a global defensive alliance in G of size K or less?

Theorem 4.1. GDA is NP-Complete.

Proof.

 The GDA problem is clearly in the set NP. Let [()]I G V E K= , , be any instance of DS.

We need to construct an instance [()]I G V E K′ ′ ′ ′ ′= , , of GDA such that G has a dominating set

of size K or less if and only if G ′ has a global defensive alliance of size K ′ or less.

 First, let us describe a procedure to construct the graph G ′ : Initially let G G′ = . Then,

for each non-isolated node iv V∈ , add () 1G id v − components 1 () 1G ii i d vC … C, , −, , to G ′ . Each

79

component i jC , consists of two nodes and two edges as follows:

 ({ } {() ()})i j i j i j i i j i j i jC a b v a a b, , , , , ,= , , , , , .

In other words the node i ja , of the component i jC , is connected to the root iv as well as to the

other node i jb , of this component. We say that the components 1 () 1i j G iC j d v, , ≤ ≤ − are

rooted at iv . Letting

 { 1 () 1} { 1 () 1}
i iv i j i v i j iA a j d v B b j d v, ,= | ≤ ≤ − , = | ≤ ≤ − ,

i i

i i

S v S v
v S v S

A A B B
∈ ∈

= , = ,∪ ∪

and

 V VA A B B= , = ,

the graph G ′ is completely specified by

 V V A B′ = ∪ ∪ ,

 {() () }
i i

i

i i j i j i j i j v i j v
v V

E E v a a b a A b B, , , , ,
∈

⎛ ⎞⎟⎜ ⎟′ = ∪ , , , | ∈ , ∈ .⎜ ⎟⎜ ⎟⎜⎝ ⎠
∪

 In the remainder of the proof, we shall refer to the nodes (edges) of components i jC , as

component nodes (edges), to distinguish them from the nodes (edges) of V . Let Q be the total

number of components i jC , . To complete the construction of the instance I ′ we let

K K Q′ = + . Figure 4.1 shows an example of the application of this procedure. Both graphs G

(on the left) and 'G (on the right) are shown in Figure 4.1. The component nodes are represented

by empty circles and component edges are represented by dotted lines. The total number of

components in this example is 7Q = .

80

Figure 4.1. Construction of an instance of GDA from an instance of DS.

 Note that (() 1) 2
i

G iv V
Q d v E V

∈
= − = | | − | |∑ . Therefore, the construction of G ′ can

be accomplished in linear time.

 To complete the proof of Theorem 4.1, it remains to show that G has a dominating set of

size K or less if and only if G ′ has a global defensive alliance of size K ′ or less.

 First, suppose that S V⊆ is a dominating set in G with S K| |≤ . Let

 S V SS S A B −′ = ∪ ∪

Note that S is a subset of S ′ . Furthermore, for each node iv S∈ , S ′ contains all the nodes

1 () 1G ii i d va … a, , −, , . Finally, for each node jv S∉ , S ′ contains all the nodes 1 () 1G jj j d vb … b, , −, , . These

observations together with Lemma 1 imply that I ′ is a YES instance of GDA problem.

Lemma 4.1. S ′ is a global defensive alliance in G ′ with size K ′ or less.

Proof.

S ′ contains all nodes of S as well as one node from each component i jC , . Therefore,

81

 S S Q K Q K′ ′| |=| | + ≤ + = .

 Furthermore, S ′ dominates V (since S is a dominating set in G and S S ′⊆), and, it

also dominates all the components i jC , (because S ′ contains exactly one node from every such

component). Thus, S ′ is a dominating set in G ′ .

 Finally, S ′ is a defensive alliance in G ′ . To see this, first note that every node

iv S V′∈ ∩ , has exactly () 1G id v − neighbors 1 () 1G ii i d va … a, , −, , in the set S ′ . Since iv can have

at most ()G id v neighbors outside S ′ (which happens only if all the neighbors of iv in V are

outside S ′), the defensive alliance property is satisfied for iv . Furthermore, each node i ja S, ′∈

has exactly one neighbor inside S ′ (the “root” node iv) and exactly one neighbor outside (the

node i jb ,), thus it satisfies the defensive alliance property. Finally, each node i jb S, ′∈ has degree

one in G ′ , therefore it satisfies the defensive alliance property. �

 Conversely, suppose that S ′ is a global defensive alliance in G ′ with K ′ or less nodes.

We need to find a set S V⊆ of size K or less that forms a dominating set in G . Let us begin

with the following simple observation:

Observation 4.1. S ′ contains at least Q component nodes.

Proof.

S ′ is a dominating set in G ′ , hence it contains at least one node from each component i jC , .�

An immediate corollary of Observation 4.1 is that

82

 S V K Q K′ ′| ∩ |≤ − = .

Since the set S V′ ∩ has size at most K , this set may be considered as a first candidate for a

dominating set in G . However, S V′ ∩ does not necessarily form a dominating set in G ,

because there might exist a node ()iv V S V′ ′∈ − ∩ which has no neighbor in S V′ ∩ (see

Figure 4.2).

Figure 4.2. A graph G ′ , a global defensive alliance S ′ in G ′ (nodes surrounded by squares) and

a non-component node (surrounded by a circle) that has only one neighbor in S ′ which is a

component node.

Such a node, iv wouldn’t be dominated by S V′ ∩ . We say that iv is a component-dominated

node. Now, let D ′ be the set of component-dominated nodes i.e.,

 { () has no neighbor in }i iD v V S V v V S′ ′ ′ ′= ∈ − ∩ | ∩ .

 Note that the nodes of D ′ are the only ones among the nodes of V that are not

dominated by S V′ ∩ . Hence, the set ()S D V′ ′∪ ∩ must form a dominating set in G . The next

lemma, which is a strengthened version of Observation 1, implies that S K′| |≤ .

83

Lemma 4.2. S ′ contains at least Q D ′+ | | component nodes.

Proof.

Consider an arbitrary node iv D ′∈ . There must be a node i ja , such that i ja S, ′∈ (because S ′ is

a dominating set and iv does not have any neighbor in S V′ ∩). Now, the node i jb , must also be

in S ′ , because otherwise the defensive alliance property would be violated for i ja , . Hence, for

every node iv D ′∈ there exists at least one component i jC , with both nodes in S ′ . This implies

that, in total, there are D ′| | components with both nodes contained in S ′ . The remaining

Q D ′− | | components, must each have at least one node in S ′ because S ′ is a dominating set.

Therefore, the number of component nodes in S ′ is at least 2 D Q D′ ′| | + − | |, that is

Q D ′+ | |.�

Now, let

 ()S S D V′ ′= ∪ ∩ .

From Lemma 4.1 it follows that S K| |≤ . Since, as argued earlier, S is also a dominating set in

G , it follows that, I is a YES instance of DS. �

Scenario 3: Focused crawling

 As mentioned in Chapter 1, focused aims to discover web pages related to a pre-defined

topic. The search for such pages is selective in the sense that only some search paths that are

deemed relevant are followed. Focused crawling may be performed on-line or off-line. In the on-

line version of focused crawling, the graph structure of the relevant portion of the Web is not

know beforehand but is obtained during the search; in the off-line version, the graph structure of

84

the relevant portion of the Web is obtained first and the subset of nodes relevant to the given

topic—i.e., the community—is found subsequently.

 The following procedure gives a method to perform off-line focused crawling:

• Send a query on a pre-defined topic to a search engine, say Google.

• Let the set of a few of the top responses returned by the search engine, say the first 200 ,

be denoted by R .

• Construct the graph that consist of the nodes of R as well as all the neighborhoods of R

up to a certain depth k (this graph is constructed by the following the forward links

contained in the visited pages as well as the backward links that may be obtained using tools

such as Connectivity Server [BBHK98]). Call this the context graph 2G of the given query.

• Select manually a few nodes from the set R , say 10 or 20 , that form a community.

Denote the set of the seed-nodes by S .

• Solve the maximal community-mining problem 1P with the graph 2G and the set S as

inputs.

 The solution to this problem is expected to produce a set of web pages related to the

given topic. This procedure may be used, for example, to refresh the indices of a topic directory.

 The computational complexity of this problem has not been determined assuming the

definition of community as an - -near cliqueα . Several polynomial time approximation

algorithms for this problem are given in Chapter 7.

85

5. COUNTING COMMUNITIES IN WEB-LIKE NETWORKS

 In order to evaluate the correctness of different definitions of community, it is helpful to

analyze the density (or, concentration) of communities in random graph models and in real web-

like networks. Random graph models may be analyzed using techniques of the random graph

theory, while real networks may be investigated through sampling.

 In the following sections we discuss some recent techniques for determining analytically

the expected number of simple subgraphs in the dynamic random graph models as well as a

technique for estimating the concentration of various subgraphs in large networks. Then we

present the results of our extensive sampling experiments to estimate the concentration of

alliances or near-cliques in real-life web-like networks.

5.1. Subgraph Counting in Dynamic Random Graph Models

LCD model

 Assume that S is a fixed graph that can be a subgraph of tG in the single-edge version of

the LCD model (Section 2.2). In other words, we assume that (i) S has set of nodes () []V S n⊆ ;

(ii) S does not have any self-loops; and (iii) for every node ()i V S∈ , there is at most one edge

ij with j i< .

 What is the probability that S is a subgraph of tG ? The answer to this question was first

obtained by Bollobas and Riordan [BR04]; the outline of the proof in [BR04] is shown next.

 First, let us introduce some notation. Since the graph tG in the single-edge version of

LCD is a tree, we use the notation tT instead of tG . For each node i t≤ of S let ()tR i be the

86

number of nodes j t> such that ()ij E S∈ . In other words ()tR i is the number of edges of S

coming into node i after time t . Let tS be the subgraph of S induced by edges ij with i j t, ≤ .

Next, let (1)SC t + be the number of edges ()ij E S∈ with i t j t≤ , > . Finally, let

 I{ ()} ()
() ()

[()]
t t

t

t ij E T t R i
ij E S i V S i t

X d i∈
∈ ∈ , ≤

= ∏ ∏

Here IA is the indicator function of event A and [] (1) (1)rn n n n r= + − + denotes the

rising factorials. Let’s analyze the definition of tX : First note that 0 1X = . The first product will

be 1 if and only if () ()t tE S E T⊂ . The second product will be one if tS S= , that is, if there are

no nodes or edges of S coming after time t . Therefore, for t sufficiently large (at least as large

as the largest node in S), tX is the indicator variable of the event { }tS T⊂ and hence

E()t tXλ = is the quantity we wish to calculate. The following lemma establishes a recurrence

relation for tλ :

Lemma 5.1. Let 0t ≥ . If there exists an edge { 1} ()k t E S, + ∈ with k t≤ , then

 1 1

1
(1)

2 1t t tR t
t

λ λ+ += + !
−

Otherwise,

 1 1

(1)
(1) 1

2 1
S

t t t

C t
R t

t
λ λ+ +

⎛ ⎞+ ⎟⎜= + ! + ⎟⎜ ⎟⎜⎝ ⎠−

Proof:

 Letting

 I
1

1

{ ()} 1 ()
() ()

[()]
t t

t

ij E T t R i
ij E S i V S i t

Y d i
+

+

∈ +
∈ ∈ , ≤

= ∏ ∏

and noting that
11 (1) 1[(1)] (1)

tt R t td t R t
++ + ++ = + !, we can write 1 1(1)t tX R t Y+ += + ! .

First, consider the case when there is no edge { 1} ()k t E S, + ∈ . In this case, it can be verified

87

that: (1) 1t tS S+ = ; (2) For each 1 ()tf V S+ ∉ with i t≤ , 1() ()t tR i R i+ = ; and (3)

I I
1{ ()} { ()}t tij E T ij E T+∈ ∈= . As a result

 I{ ()} 1 ()
() ()

[()]
t t

t

ij E T t R i
ij E S i V S i t

Y d i∈ +
∈ ∈ , ≤

= ∏ ∏

i.e., Y is the same as tX with ()td i replaced by 1()td i+ .

Fix tT (and hence tX). Let 1tf + be the random variable denoting the parent of 1t + . There are

two possibilities: If 1 ()tf V S+ ∉ , then tY X= . Otherwise, 1() () 1t td j d j+ = + , which implies

 1 () ()

() ()
[()] [()]

()t t

t t
t R j t R j

t

d j R j
d j d j

d j+

+
=

and thus for a fixed j

()
()
t

t t
t

R j
Y X X

d j
− =

It follows that

()E P 1
()

()

()

()
[]

()

() ()
() 2 1

()
2 1

(1)
2 1

t
t t t t t

j V S j t t

t t
t

j V S j t t

t
t

j V S j t

S
t

R j
Y X T X f j T

d j

R j d j
X
d j t

X
R j

t

C t
X

t

+
∈ , ≤

∈ , ≤

∈ , ≤

− | = = |

=
−

=
−

+
=

−

∑

∑

∑

Taking expectations once more, we get the second result of the Lemma 5.1.

 Now, turn to the first case, i.e., when there exists an edge { 1} ()k t E S, + ∈ . In this case

1 { 1}t tS S k t+ = ∪ , + . Since 1{ 1} tk t T +, + ∈ , it follows that

 I I
1

1

{ ()} { ()}
() ()

t t

t t

ij E T ij E T
ij E S ij E S

+

+

∈ ∈
∈ ∈

= .∏ ∏ (5.1)

88

Furthermore, for i t i k≤ , ≠ we can write 1 1() () () ()t t t td i d i R i R i+ += , = , while

1 1() () 1 () () 1t t t td k d k R k R k+ += + , = − . From these equalities we derive that

11 () ()

() ()

1
[()] [()]

()t tt R i t R i
i V S i t i V S i tt

d i d i
d k++

∈ , ≤ ∈ , ≤

=∏ ∏ (5.2)

Observing that 1tf k+ = with probability () 2 1td k t/ − , and using Equations (5.1), (5.2) we get

that ()t tY X d k= / with probability () 2 1kd t t/ − . Taking conditional expectations we get

 E ()
[]

() 2 1 2 1
t t t

t
t

X d k X
Y T

d k t t
| = =

− −

and taking expectations in the last equation we get the first result of Lemma 5.1. �

 Theorem 5.1 gives closed-form expressions for ()P nS T⊂ , derived by using the

recurrence relation of Lemma 5.1. In this theorem, ()V S+ denotes the set of nodes of S that

have outgoing arcs, and ()V S− the set of nodes of S that have incoming arcs.

Theorem 5.1. Let S be a possible subgraph of nT . Then

 ()P
() () ()

1 ()
() 1

2 1 2 1
S

n S
i V S i V S i V S

C i
S T d i

i i− + +

−

∈ ∈ ∉

⎛ ⎞⎟⎜⊂ = ! + ⎟⎜ ⎟⎜⎝ ⎠− −∏ ∏ ∏

 ()P
2

() () ()

1 ()
() exp

2
S

n S
i V S ij E S i V S

C i
S T d i O

ij i−

−

∈ ∈ ∈

⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⊂ = ! ⎜ ⎟⎟⎜ ⎜ ⎟⎟⎟⎜⎜ ⎟⎝ ⎠⎝ ⎠
∑∏ ∏

Triangles and Transitivity

 By applying Theorem 5.1, it is relatively straightforward to derive expressions for the

expected number of triangles and paths of length two in tG for the case of LCD model. Denoting

89

by
3,t CN the number of triangles in tG , the following theorem holds:

Theorem 5.2. Let 1ε ≥ be fixed. Then

 ()E
3

3
,

(1)(1)
(log)

48t CN t
ε ε ε− +∼

 Similarly, let
2,t PN denote the number of paths of length two in tG . The following

theorem holds:

Theorem 5.3. Fix 1 0ε δ≥ , > . Then:

2,

(1) (1)
(1) log (1) log

2 2t Pt t N t t
ε ε ε ε

δ δ
+ +

− ≤ ≤ +

 The proofs for the last two theorems appear in [BR04]. An immediate corollary of the

previous two theorems is that the expected value of the transitivity of graph tG is given by

 E
21 (log)

[()]
8t

t
T G

t
ε−∼

Paths and Cycles

 Theorem 5.4 and 5.5 appear in [BR04]. Let , lt C
N denote the number of cycles of length

l in tG . Then

Theorem 5.4. Let 3l ≥ . Then

 ()E ,() () log
l

ll
t CN tε= Θ

90

 A similar result was independently derived by Bianconi et al. [BC03, Bia04]. Now, let

, kt P
N denote the number of paths of length k in tG .

Theorem 5.5. Suppose ()k k t= satisfies () logk t t α/ → where 0 eα< < . Then

 ()E
1 log()

, logk

e

t P

t
N

t

α α+ /⎛ ⎞⎟⎜ ⎟= Θ⎜ ⎟⎜ ⎟⎜⎝ ⎠

Furthermore, if () log logk t t x t= + where () (log)x x t o t= = , then

2

2
2

,

1
()

2 2 logk

x
t P

t
E N e

tπ
− /=

as t → ∞ .

 Note that the second statement of the theorem means that the distribution of the path

lengths is asymptotically normal with mean and variance logt .

COPY model

 Consider now the COPY model of Kumar et al. [KKRT00] which was described in

Section 2.2. This model was partly motivated by a desire to account for the large number of

complete bipartite subgraphs found empirically in the Web graph (see Section 5.2). Kumar et al.

[KKRT00] showed that the number of complete bipartite subgraphs in the COPY model is also

large. This result in stated in Theorem 5.6.

Theorem 5.6. Let
,, i dt KN denote the number of complete bipartite subgraphs i dK , at time t .

Then, for logi t≤

,, ()
i d

i
t KN te−= Ω

91

Proof.

 Consider the node vτ born at time tτ ≤ . Call this node a leader if at least one of its

neighbors is chosen uniformly at random and a duplicator if all of its neighbors are copied from

some other node. It is easy to notice that { }()P is a leader 1 (1)dvτ α= − − and

{ }()P is a duplicator (1)dvτ α= − . Assume that vτ is a leader and consider the sequence of

epochs 2(2] (2 4] (]t… tτ τ τ τ, , , , , , . Let (],2A τ τ be the event that at least one node born during the

epoch (],2τ τ chooses vτ as prototype. Then:

 (]P ,2
1

1
() 1 1 1 2A

τ

τ τ
τ τ τ′=

⎛ ⎞⎟⎜≥ − − ≈ /⎟⎜ ⎟⎜⎝ ⎠′+∏

The same is true for all other epochs (2 4] (2]… t tτ τ, , , / , . Hence, the expected number of

duplicators of vτ up to time t is (ln())t τΩ / . Note, that a (ln{ })d tK τ,Ω / forms between the

duplicators of tv and its neighbors. Now, suppose that logi t≤ and let iteτ −= . The preceding

arguments imply that the expected number of duplicators of vτ is i . Hence, for each of the nodes

1 ite
v … v −, , there is at least one d iK , and thus ()

i d

t i
KN te

,

−= Ω . �

 In the same paper, Kumar et al. [KKRT00] proved that the expected number of complete

bipartite cliques in some other models (including a growing uniform random graph model and a

random graph with given degree distribution) is very small.

92

5.2. Counting Communities by Trawling

 In this section, the Web is considered as a directed graph and the notation ,i jC is used to

denote a bipartite core—i.e., a directed graph on i j+ nodes that contains at least one complete

bipartite graph ,i jK as a subgraph.

 Kumar et al. [KRRT99] used a number of empirical observations to devise an efficient

procedure for extracting bipartite cores from a subgraph of the Web with approximately 200

million web pages. The problem of enumerating the small subgraphs of a large, web-like graph is

now commonly referred to as trawling—a term first used in [KKRT99]. Note that a trawling

algorithm must take into account the fact that the data that represents the web-like network

generally would not fit in main memory. The trawling methodology devised by Kumar et al. is

called elimination-generation. The input to the elimination-generation trawling algorithm is a

subgraph of the Web obtained via crawling and stored in disk as an edge-list. The algorithm

performs several passes over the data. During each pass, it writes a modified version of the

dataset to disk for the next pass. It also collects some metadata which resides in main memory

and serves as state in the next pass. Passes over the data are interleaved with sort operations,

which constitute the bulk of the processing cost. Two processes, elimination and generation, are

interleaved between passes.

 Elimination: There are many necessary conditions for a node to be in a bipartite core.

Take as an example 4 4C , : Any node with in-degree three or less can not participate on the right

of a 4 4C , . Likewise, nodes with out-degree three or smaller cannot participate on the left side of a

4 4C , . Thus edges that are directed into such nodes can be pruned from the graph. These

necessary conditions are called elimination filters.

93

 Generation: Generation is counterpoint to elimination. Nodes that barely qualify for

potential membership in a i jC , can be easily verified to either belong in such a core or not.

Consider again 4 4C , : Let u be a node of in-degree exactly four. Then, u belongs to a 4 4C , if and

only if the four nodes that point to it have a neighborhood intersection of size at least 4 . This can

be verified cheaply. A generation filter is a procedure that identifies barely-qualifying nodes, and

for all such nodes, either outputs a core or proves that such a core does not exist. Regardless of

the outcome, the node can be pruned since all potential interesting cores containing it have

already been enumerated.

 The sorting of edges by the first (or the second) node, is essential so that filtering can be

applied in a single scan. Details of how this can be implemented may be found in [KKRT99].

After an elimination/generation pass, the remaining nodes have fewer neighbors than before in

the residual graph, which may present new opportunities during next pass. Depending on the

filters, one of two things will eventually happen: (1) all the nodes will be removed until nothing

is left; and (2) after several passes, the benefits of "elimination/generation" tail off as fewer and

fewer nodes are eliminated at each phase. In the experiment by Kumar et al. [KKRT99] the

second phenomenon dominates. Running the trawling algorithm on a crawl of the Web with 200

million Web pages, Kumar et al. found over 100,000 bipartite cores, some being as large as

6 9C , . Interestingly, even the smallest identified cores (3 3C , and 3 5C ,) were topically focused on

an identifiable theme in 96% of the sampled examples. Hence, the identified cores were usually

topically focused and so specific that they were often not part of any preexisting portal hierarchy.

This last point is important because it means that cores are “natural” in the sense that they are

self-organized, and not an artifact of a single individual entity.

94

5.3. Estimating the Density of Communities by Sampling

 This section begins by discussing a sampling algorithm devised by Kashtan et al.

[KIMA04]. Then it describes a proposed improvement to this algorithm and finally presents

several experimental results obtained by applying the improved sampling algorithm to a large

web-like network.

Sampling Algorithm

 The sampling procedure proposed by Kashtan et al. [KIMA04] is shown in Algorithm 5.1

below:

Algorithm 5.1: SUBGRAPH-DENSITY

Input: (,)GV E : an undirected graph
 SampleSize : an integer
 NumberOfSamples : an integer
 Type : the type of subgraph being sampled
Output: An estimate for the density of subgraphs of type Type in G

1. real: , ,SubgraphWeight TotalWeight P

2. graph: (,)S S SG V E
3. 0Weight =
4. FOR 1i = TO NumberOfSamples DO
5. GENERATE-RANDOM-SAMPLE (, , SG SampleSize G)
6. P =GET-PROBABILITY-SAMPLE(, , SG SampleSize G)
7. 1TotalWeight TotalWeight P= +

8. IF (IS-OF-TYPE(,SG Type)) THEN

9. 1SubgraphWeight SubgraphWeight P= +
10. END IF
11. END FOR
12. RETURN /SubgraphWeight TotalWeight

95

 As seen, the procedure SUBGRAPH-DENSITY generates a user-specified number of

random samples (subgraphs) and for each generated sample checks if it is of a given type. The

output of this procedure is an estimate for the density of subgraphs of type Type on

SampleSize nodes. Here, the density of a subgraph of type T and size S is defined as the ratio

of the number of subsets of nodes of cardinality S that induce subgraphs of type T with the

number of all connected subgraphs on S nodes. Key to the procedure SUBGRAPH-DENSITY

are the functions GENERATE-RANDOM-SAMPLE which is called to generate a random

subgraph (,)S S SG V E and GET-PROBABILITY-SAMPLE which determines the probability that

the sampling procedure generates a specific subgraph SG .

 Algorithm 5.2 shows the pseudo-code for the procedure GENERATE-RANDOM-

SAMPLE. This procedure starts out by selecting an edge e uniformly at random from the graph

G and then constructs a tree with SampleSize nodes and 1SampleSize − edges. The first edge

of this tree is the edge e and the rest of the tree is constructed by selecting at each step

2, ,i SampleSize= … an edge uniformly at random from the neighborhood of the tree

constructed up to the step 1i − . Example 5.1 illustrates the idea of the procedure GENERATE-

RANDOM-SAMPLE.

 Example 5.1. Consider the graph in Figure 5.1 and assume hat the first edge

Figure 5.1. A graph on five nodes.

96

is chosen uniformly at random to be the edge (2,5) .Then the second edge will be selected

uniformly at random from the set {(1,2),(2,3),(3,5),(4,5)} . Suppose that (2,3) is chosen as the

second edge. Then the third edge will be selected uniformly at random fro the set {(1,2),(4,5)} ,

etc.

Algorithm 5.2: GENERATE-RANDOM-SAMPLE

Input: (,)GV E : an undirected graph
 SampleSize : an integer
Output: (,)S S SG V E : a random sample

1. edge: e
2. (,)e u v= ← a randomly chosen edge from G
3. { , }SV u v= , { }SE e=
4. ({edges incidenton } {edges incidenton v}) { }L u e= ∪ −

5. 1i =
6. WHILE i SampleSize< DO
7. (,)e u v= ← a randomly chosen edge from L ; assume ,S Su V v V∈ ∉

8. { }S SV V v← ∪
9. { }SE E e= ∪
10. {edges incidenton } {edgeswith both ends in }SL L v V= ∪ −

11. IF L = ∅ THEN
12. GO TO Step 2
13. ELSE
14. 1i i= +
15. END IF
16. END WHILE
17. RETURN SG

 Of course, not every tree on SampleSize nodes in the graph G has the same probability

of being generated. As a result it is necessary to compute for each generated tree the probability

that the sampling procedure would generate that specific tree. Algorithm 5.3 shows the pseudo-

97

code for a procedure that computes the probability that the sampling procedure GENERATE-

RANDOM-SAMPLE will generate a specific fixed tree.

Algorithm 5.3: GET-PROBABILITY-SAMPLE

Input: (,)GV E : an undirected graph
 SampleSize : an integer
 (,)S S SG V E : a subgraph of G that may be generated by the sampling
 procedure GENERATE-RANDOM-SAMPLE
Output: P : probability that the sampling procedure generates SG

1. array: (1,)l SampleSize
2. 0P =
3. FOR EACH permutation σ of the set SE DO
4. FOR 2i = TO SampleSize DO
5. []l i = size of set L before selecting the thi edge during a sampling of

 subgraph SG in the sequence specified by σ
6. END FOR
7. 1

| |p E=

8. FOR 2i = TO SampleSize DO
9. 1* []p p l i=

10. END FOR
11. P P p= +
12. END FOR
13. RETURN P

 The computation in the procedure GET-PROBABILITY-SAMPLE is illustrated in

Example 5.2, below:

 Example 5.2: Consider the graph G show in Figure 5.2 and the subgraph 'G induced by

edges (3,5),(5,6) and (6,8) . What is the probability that the sampling procedure GENERATE-

RANDOM-SAMPLE will generate 'G as a sample? To compute this probability, first we

compute for each fixed permutation of the set of edges {(3,5),(5,6),(6, 8)} the probability that

98

the sampling procedure will generate these three edges in the sequence specified by the fixed

permutation and then we add these individual probabilities together.

Figure 5.2. A graph with eight nodes and ten edges.

 It is easy to see that for two of the six permutations—that is, for the permutations

(3,5),(6,8),(5,6) and (6,8),(3,5),(5,6)—this probability is zero because it is not possible to

generate this triple of edges by using our sampling procedure in the sequence specified by any of

these two permutations. On the other hand, the probabilities for the remaining four permutations

are as follows:

• for (3,5),(5,6),(6,8) , 1 1 1 1
10 4 6 240p = × × =

• for (6,8),(5,6),(3,5) , 1 1 1 1
10 4 4 160p = × × =

• for (5,6),(3,5),(6,8) , 1 1 1 1
10 4 6 240p = × × =

• for (5,6),(6,8),(3,5) , 1 1 1 1
10 4 4 160p = × × =

By adding these four probabilities together we find that the probability that our sampling

procedure will generate the subgraph 'G is 5240 .

99

Proposed Improvement of the Sampling Procedure

 As indicated in Example 5.2, for a given a tree (,)S S SG V E which is a subgraph of a graph

G , only some of the permutations of the set of edges SE will specify sequences in which it is

possible to generate SG . We say that a particular permutation σ of the edges of set SE is

feasible if it is possible that the sampling procedure generates the edges of SG in the sequence

specified by σ . Consider, for instance, the subgraph induced by the edges

1 2 3{ (3,5), (5,6), (6,8)}e e e= = = in the graph shown in Figure 5.2. Among the six possible

permutations of these three edges, two are not feasible (permutations 1 3 2{ , , }e e e and 3 1 2{ , , }e e e)

while the remaining four are feasible.

 It may be seen that a permutation σ of the set 1 1{ , , }S SampleSizeE e e −= … is feasible if and

only if the subgraph induced by the edges (1) (), , je eσ σ… is connected for all

1, , 1j SampleSize= −… .

 This observation indicates that the for-loop in Line 3 of the procedure GET-

PROBABILITY-SAMPLE does not need to iterate over all permutations of the set SE but only

over all feasible permutations.

 How much is the performance of the procedure GET-PROBABILITY-SAMPLE

improved by applying this change? In order to answer this question we consider first the best and

the worst inputs for the improved procedure GET-PROBABILITY-SAMPLE. It may be seen

that the worst-case input is a tree of diameter one consisting of a node u to which all other nodes

are linked with an edge (i.e., a star graph). Every permutation of this tree is feasible and thus the

number of feasible permutations is (1)!SampleSize − . On the other hand, the best-case input is

a path of length 1SampleSize − . In this case it is easy to see that the number of feasible

100

permutations is 22SampleSize− . In order to estimate the average number of feasible permutations for

a random sample, we used simulation. Table 5.1 shows the average number of feasible

permutations for trees with 5, ,10… nodes (in the 3rd column). For a fixed number of nodes, the

values shown in the 3rd column of Table 5.1 were averaged over 100 runs. For comparison, this

table also shows the number of feasible permutations for the best case (2nd column) and worst

case (4th column). As seen, the average case is much closer to the best case than it is to the worst

case.

Table 5.1. Number of feasible permutations for the best-, average-, and worst-case sample inputs.

SampleSize 22SampleSize− Average (1)!SampleSize −

5 8 14 24

6 16 47 120

7 32 185 720

8 64 1041 5040

9 128 5397 40320

10 256 43330 362880

 We applied the improved sampling procedure SUBGRAPH-DENSITY to study the

density of near-cliques in a large real-life web-like network. The obtained results are presented

next.

101

Case study: FOLDOC Network

 The real-life data set that was used in our sampling experiments is the network

representation of Free OnLine Computing Dictionary (FOLDOC). FOLDOC is a searchable

dictionary of terms related to computing such as acronyms, jargon, programming languages,

tools, architecture, operating systems, networking, theory, conventions, standards, companies,

projects, products, history, etc.

 The dictionary has been growing since 1985 and now contains over 13000 definitions

totaling nearly five megabytes of text. Entries of this dictionary cross-reference each other and

related resources elsewhere on the net. The nodes in the network representation of FOLDOC

represent terms. An arc (,)u v means that the term v is used to describe the meaning of term u .

 The graph representation of FOLDOC network was obtained from the web site of the

network visualization tool Pajek (see Appendix A). This graph has 13356 nodes and 120238

directed arcs. For convenience, we converted this directed graph into an undirected graph by

ignoring the orientation of arcs. We then merged the parallel arcs formed as a result of this

process, thereby reducing the number of edges to 91465 . All experiments discussed next refer to

this undirected version of the FOLDOC network.

 First, we computed several global parameters of the FOLDOC graph. The values of these

parameters are shown in Table 5.2. Notice that this network satisfies the salient properties of

web-like networks: it has a power-law degree distribution (Figure 5.3) with exponent 3γ = , a

small average distance (dist() 5.85G =) and a large value of clustering coefficient

(() 0.3379C G =).

102

Table 5.2. Some parameters of the FOLDOC network.

Parameter Value

n 13356

m 91465

min ()d v 2

max ()d v 728

()d G 13.697

dist()G 5.85
γ 3.0

min ()C v 0

max ()C v 1

()C G 0.3379

'()kP

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

 k

Figure 5.4. Log-log plot of the cumulative degree distribution of the FOLDOC network.

103

A) Some examples of communities discovered through sampling

 First we used the sampling procedure to determine if subgraphs with high values of

clustering coefficient consist of nodes with related meaning. Figures 5.4 and 5.5 show two

subgraphs with high values of clustering coefficient that were found during sampling.

Figure 5.4. A sampled graph on six nodes. Minimum clustering coefficient is 0.5 and average

clustering coefficient is 0.8 .

 In the first example it may be seen that all the terms except one (“compactness

preserving”) are indeed closely-related terms. The graph in the second example consists of nodes

that belong to two different communities. This is an interesting example which highlights the

idea that groups of nodes that satisfy the definition of - -near cliqueα for large values of

parameter α might be unions of nodes from several communities.

 The two examples given in Figures 5.4 and 5.5 are representative of the groups of nodes

with high clustering coefficient that we inspected visually by using Pajek visualization tool. It

should be mentioned that in some cases the nodes of a sample with high clustering coefficient

104

did not seem to be related to each-other. However, the reason for this unexpected result was

traced back to errors in the input graph FOLDOC.

Figure 5.5. A sampled graph on ten nodes. The average clustering coefficient of this graph is

0.7 .

B) Density of - -near cliquesα

 Second, we used the sampling procedure to determine the density of - -near cliquesα .

The results of these sampling experiments are shown in Figure 5.6. This figure shows the density

of subgraphs with six nodes and with minimum clustering coefficient in the range [), 2i i + for

0, , 8i = … . The densities were computed after one, two, …, five thousand samples were taken.

For clarity the density values for the range [)0,0.2 have been omitted from Figure 5.6 because

they were always greater then 0.99 , that is much larger than the values corresponding to the

other four ranges.

 Figure 5.6 indicates that after 30000 samples the density values converge. This

observation agrees with the convergence results in [KIMA04] were it was noticed that the

densities for many types of small subgraphs will converge after 5000 50000− samples.

105

M
in

 D
en

si
ty

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

[0.2,0.4)
[0.4,0.6)
[0.6,0.8)
[0.8.1]

 Number of Samples/1000

Figure 5.6. The density of subgraphs with six nodes versus the minimum clustering coefficient in

these subgraphs.

Figure 5.7 shows the density of subgraphs with six nodes and with average clustering coefficient

in those ranges. In this case, for clarity, the density values for the bottom range [)0,0.2 have

been omitted because they are too small compared to the values for the other three ranges. Again

after 30000 samples the density values appear to converge.

106

A
vg

 D
en

si
ty

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

[0.2,0.4)
[0.4,0.6)
[0.6,0.8)
[0.8,1)

 Number of Samples/1000

Figure 5.7. The density of subgraphs with six nodes versus the average clustering coefficient in

these subgraphs.

 The sampling experiments presented in this section show that sampling is a very useful

tool for (1) visually inspecting groups of the nodes that satisfy a certain definition of community,

and (2) for investigating the density of various types of community.

107

6. EXISTING ALGORITHMS FOR COMMUNITY MINING

 Recently, several community-mining algorithms spanning a wide spectrum of techniques

have been proposed. These algorithms are surveyed next.

6.1. Algorithms Based on Hierarchical Clustering

 The algorithms in this group employ the technique of hierarchical clustering, which is

essentially based on the computation of certain measures of “similarity” between distinct nodes

and may be performed in either a bottom-up or a top-down fashion. An agglomerative

hierarchical clustering algorithm begins with each node in a separate cluster, and then iteratively

pulls together the two clusters that are the most similar, in a bottom-up fashion,. Two measures

of similarity borrowed from the field of bibliometrics—bibliographic and co-citation coupling—

have been used in some community-mining agglomerative clustering algorithms [HKKS04,

BD05].

 In contrast with agglomerative clustering, a divisive clustering algorithm follows a top-

down approach to iteratively identify pairs of adjacent nodes that are most “dissimilar”, and

remove the edge(s) between them. Usually, the iteration ends when the graph breaks into

disconnected components, which then represent the desired clusters. A measure of similarity

proposed by Girvan and Newman [GN02], called the “edge betweenness”—the number of

shortest paths passing through an edge—has gained some popularity due do its intuitive appeal

and simplicity. This algorithm provides a good illustration of the divisive clustering techniques

and therefore it is described in detail next.

 Recall that the load, or betweenness, of a node v in an undirected graph is defined as the

108

number of shortest paths passing through v . Similarly, the load of an edge e is defined as the

number of shortest paths passing through e . The intuition behind the Girwan-Newman algorithm

is that in a network with communities, the edges between communities can be thought as

forming "bottlenecks" in the sense that most shortest paths will go through them. Therefore

removing the edges with the highest load should split the network into natural communities.

 The pseudocode of the procedure by Girwan and Newman [GN02] is shown in

Algorithm 6.1, below.

Algorithm 6.1: GIRWAN-NEWMAN

Input: G = (V, E) : an undirected graph
Output: C : a “dendrogram” of communities

13. edge: e
14. WHILE E ≠ ∅ DO
15. e ← MAX-LOAD-EDGE (G)
16. remove e from G
17. END

 The main loop of the algorithm is very simple: in each step, the edge with the highest

load is found and removed from the graph. The procedure MAX-LOAD-EDGE is called to find

the edge with the highest load. In turn, MAX-LOAD-EDGE calls SINGLE-SOURCE-NODE-

LOAD from each node. Algorithm 6.2 shows the pseudocode for SINGLE-SOURCE-NODE-

LOAD which is implemented by a simple modification of Breadth-First Search (BFS) proposed

in [GN02].

 The time complexity of procedure SINGLE-SOURCE-NODE-LOAD is of order

()O m n+ because it involves a single run of BFS. Algorithm 6.3 shows the pseudocode for the

MAX-LOAD-EDGE procedure. The MAX-LOAD-EDGE calls SINGLE-SOURCE-NODE-

109

LOAD for each node and therefore its time complexity is of order ()O mn . Finally, the

GIRWAN-NEWMAN algorithm calls MAX-EDGE-LOAD after the removal of each edge, and

thus its time complexity is of order 2()O m n , which is prohibitively slow for analyzing large

web-like networks.

Algorithm 6.2: SINGLE-SOURCE-NODE-LOAD
Input: G = (V, E) : an undirected graph
 s V∈ : a node
Output: the BFS tree and the load for each node

1. array: d, load
2. ()d s ← 0
3. ()load s ← 1
4. FOR ALL nodes i adjacent to s DO
5. () 1d i ←
6. () 1load i ←
7. END FOR
8. REPEAT
9. FOR ALL nodes j adjacent to one of i DO
10. IF j has not been assigned a distance THEN
11. () () 1d j d i= +
12. () ()load j load i=
13. END IF
14. IF j has already been assigned a distance AND () () 1d j d i= + THEN
15. () () ()load j load j load i← +
16. END IF
17. END FOR
18. UNTIL there are no nodes that have been assigned distances but whose neighbors have not

been assigned distances
19. RETURN d , load

 Another measure of similarity, called the “edge clustering coefficient”—the analog of the

node clustering coefficient (see Section 1.1)—was proposed by Radichi et al. [RCCL04].

Castellano et al. [CCLP04] combined a divisive clustering technique with a formal definition of

110

a community as a group of nodes where each member has more neighbors inside the group than

outside it (i.e., a defensive alliance).

Algorithm 6.3: MAX-EDGE-LOAD
Input: (,)G V E= : an undirected graph
Output: the edge with the highest load

1. array: load
2. FOR ALL e E∈ DO
3. () 0load e ←
4. END FOR
5. FOR ALL s V∈ DO
6. T ← SINGLE-SOURCE-NODE-LOAD(G s,)
7. D ← depth(T)
8. FOR ALL nodes i at level 1D − neighboring leaf t DO
9. () () ()load i t load i load t, ← /
10. END FOR
11. FOR 2l D= − DOWNTO 0 DO
12. FOR ALL edges ()i j, such that j is at level l AND
13. i at an upper level DO
14.

lower than
() [1 ()](() ()

k i
load i j load k i load i load j, ← + , /∑

15. END FOR
16. END FOR
17. END FOR
18. RETURN an edge with maximum load

 Clustering algorithms produce groups of nodes that are densely linked with each other

while being sparsely linked with the rest of the nodes. However, these algorithms have

considerable time demand, which limits their application to networks of moderate size.

6.2. Algorithms Based on Spectral Analysis

 This section discusses some global methods that essentially consider all edges of a graph

111

to decide on the similarity between two nodes. First, let us recall some definitions from linear

algebra:

 Any non-singular n n× matrix M can be represented as summation of vector outer-

products:

1

k
T

i i i
i

M λ
=

= ∑ r l

where il and ir are, respectively, the thi left and right eigenvectors of M and iλ is the thi

eigenvalue of M . The matrix M has all of the following properties:

1

,

,

for all

0, for

.

i i i

T
i i i

T T T
i i i i i i

T
i j

i i

M

M

i

i j

λ

λ

λ λ +

=

=

= = ,

= ≠

≥

r r

l l

l l r r r l

l r

 The eigenvalues and eigenvectors form the spectrum of a matrix. If the spectrum of a

matrix is full (i.e., it contains n distinct eigenvectors), then either the left or the right

eigenvectors can be used as a basis to express any n -dimensional vector. If M is symmetric,

then the left and right eigenvectors of M are identical.

 Probably, the most famous algorithm that uses spectral techniques is PageRank

[PBMW98]. The main objective of this algorithm was to remedy the “abundance problem"

inherent in broad search engine queries. To achieve this objective, PageRank assigns to each web

site a measure of prestige which is independent of any information need or query. In simple

terms, the prestige of a web site is proportional to the sum of prestige scores of pages linking to

it.

112

 The earliest applications of spectral techniques for mining communities are Kleinberg’s

HITS (Hypertext Induced Topic Search) algorithm [Kle99] and its variations [BH98, DH99].

HITS algorithm is described next. The intuition behind this algorithm comes from the

observation that, as in the academic literature where some publications initiate new ideas, while

others consolidate and survey significant research, the Web includes two flavors of prominent

web pages: authorities, which contain definitive high-quality information, and hubs, which are

comprehensive lists of links to authorities. Every page is to some extent both a hub and an

authority, but these properties are graded. Thus, every page v has two distinct measures of merit,

its hub score []h u and its authority score []a v .

 HITS operates in two phases. In the first phase a subgraph of the Web that is specific to a

query q is constructed as follows: The query q is sent to a search engine and the web pages that

constitute the top, say 200, responses from the search engine are said to form the root set R . The

base set qV is constructed by adding to the root set R all the web pages v , such that for some

u R∈ , at least one of the two arcs uv and vu is an arc of the Web. Arcs that connect web pages

from the same web site are eliminated because they are considered “nepotistic". The set of the

remaining arcs is denoted by qE . This process constructs a query-specific subgraph

()q q qG V E= , .

 In the second phase, the hub and authority scores for all nodes in qV are computed.

Collectively, the scores of all the nodes are written as vectors a and h . The authority score of a

page is proportional to the sum of hub scores linking to it, and conversely, its hub score is

proportional to the authority scores of the pages to which it links. Assuming that A is the

adjacency matrix of qG , this translates to the following pair of equations:

113

.

TA

A

= ,

=

a h

h a

 The method of power iteration may be used to solve this system of equations, as shown

in pseudocode in Algorithm 6.4. It is a well-known fact of linear algebra that using the power

iteration shown in Algorithm 6.4, the vector h will converge to the principal eigenvector of

TAA while the vector a will converge to the principal eigenvector of TA A . The error after i

iterations, is proportional to 2 1()iO λ λ| / | . This procedure tends to be fast for power-law graphs

which often have the property 1 2λ λ [CL03]. Typically, runs with several thousand nodes and

links “converge" in 20 to 30 iterations, in the sense that the rankings of hubs and authorities

stabilize.

Algorithm 6.4: HITS-SCORES
Input: (,)G V E= : an undirected graph
 a, h : vectors
Output: “authority” and “hub” scores of all nodes

1. (1 1)…← , ,a
2. (1 1)T…← , ,h
3. WHILE h and a change significantly DO
4. A←h a
5. 1 []h v

h h v←|| || = ∑l

6. h← /h h l
7. TA←a h
8. 1 []a v

a a v←|| || = ∑l

9. a← /a a l
10. END WHILE

HITS communities

 If the query q that serves as input to HITS is ambiguous (e.g., “jaguar") or polarized

114

(e.g., “abortion"), the set qV R− will contain a few almost disconnected communities. In each

community there may be dense bipartite subgraphs. In such cases, a few of the highest-order

eigenvectors found by HITS will reveal authorities and hubs in the largest near-bipartite

component. The highest-order eigenvectors can also be found using an iterative method as

follows: Given an n n× matrix M (say, TM A A=) for which we wish to find k top

eigenvectors, we initialize an n k× matrix X with positive entries. Let ()X i be the thi column

of X . The iteration steps are shown in Algorithm 6.5, below.

Algorithm 6.5: HIGHER-ORDER-EIGENVECTORS
Input: :M n n× matrix
 :X k n× matrix
Output: k top-ranked eigenvalues

1. WHILE X does not converge DO
2. X MX←
3. FOR 1i … k= , , DO
4. FOR 1 1j … i= , , − DO
5. () () [() ()] ()X i X i X i X j X i← −
6. END FOR
7. normalize ()X i to unit 2L norm
8. END FOR
9. END WHILE

 By computing the k top-ranked eigenvalues, each node will be assigned k hub scores

and k authority scores. These scores can be used to discover densely linked communities on the

Web. Indeed, by plotting each node as a point in a k dimensional space using its hub or

authority scores one can discover points that are close to each other, say by visualization. For

example, for 2k = , it was found [Kle99] that the pages of the base set belonging to the query

“abortion", split into two communities along pro-choice and pro-life camps.

115

 Capocci et al. [CSCC04] and Donetti and Muñoz [DM04] have also proposed

community-mining algorithms based on spectral techniques.

 The advantage of spectral methods is that they are elegant and often produce good

results. However, these methods, too, are not applicable to very large networks due to their time

complexity (at least quadratic in the order of the graph).

6.3. Algorithms based on Flows

 The well-known max-flow/min-cut algorithm by Ford and Fulkerson lies at the heart of

some recent methods for mining Web communities proposed by Flake et al. [FLG00, FLGC02].

The basic algorithm proposed by these authors, aims to discover the community to which a given

set of web pages belongs. This problem is cast into an s-t network flow problem by first

constructing a graph G that contains all the neighborhoods of the seed pages up to a certain

depth, and then adding two artificial nodes: a source node that links to each seed page with an

edge of infinite capacity, and a sink node which links to every node of the graph with an edge of

capacity α—a parameter of the algorithm. The community containing the seed pages is then

obtained by running a modified version of the max-flow/min-cut algorithm.

 This subsection begins by describing the s-t maximum flows and minimum cuts and the

Ford-Fulkerson algorithm for solving the s-t maximum flow problem. Then, it continues with a

description of the algorithms by Flake et al. mentioned earlier.

Maximum Flows and Minimum Cuts

 While flows and cuts are well-defined for both directed and undirected graphs, we restrict

the attention to undirected graphs to simplify the presentation. Note that any directed graph can

116

be converted into an undirected graph by ignoring the arc orientations. Let ()G V E= , be an

undirected graph, and let c f, be two non-negative, real-valued functions, where ()c u v, denotes

the capacity of the edge ()u v, and ()f u v, denotes the flow along the edge (,)u v . By convention,

if the edge ()u v, is not present, it is assumed that () 0c u v, = . Given two nodes, s and t , the s -

t maximum flow problem is to find the maximum flow that can be routed from s to t while

obeying the constraint () ()f e c e≤ for every edge e . Ford and Fulkerson’s “max-flow/min-cut”

theorem, proves that the value of maximum flow of a graph is identical to the value of a minimum

cut that separates s and t . This result can be stated as follows: Let the maximum flow value

between s and t be represented as ()f s t, . Denote the edge cut that separates s and t by

()C s t E, ⊆ . Removing the cut set ()C s t, from E will leave at least two connected components:

one that contains s and the other that contains t . Then the maximum flow has the following

relationship to the cut set:

() ()

() ()
u v C s t

f s t c u v
, ∈ ,

, = , .∑

 The meaning of functions ()c ⋅ and ()f ⋅ may be generalized so that their arguments range

over sets of nodes. In this case ()C S T, will be the edge-cut set of minimum capacity separating

the nodes of S from the nodes of T , and ()f S T, is the maximum flow or minimum cut value

between the two sets.

 Many polynomial-time algorithms exist for solving the s -t maximum flow problem; the

authoritative book on this topic is [AMO93]. Algorithm 6.6 shows the pseudocode for the

augmenting path algorithm—the simplest known s -t maximum flow algorithm. The procedure

operates on a residual network, which is a data structure used to keep track of edge capacities,

both used and available. The residual network ()R V E ′= , of graph G has two directed edges

117

for every undirected edge in E , i.e., for every ()u v E, ∈ , the set E ′ will contain both ()u v, and

()v u, .

Algorithm 6.6: MAX-FLOW
Input: (,)G V E= : a weighted graph
 ,s t : nodes
Output: the residual network of G

1. R ← residual network of G
2. WHILE R contains a directed path from s to t DO
3. Identify the shortest augmenting path P , from s to t
4. { () () }min r u v u v Pδ ← , | , ∈
5. FOR ALL ()u v P, ∈ DO
6. () ()r u v r u v δ, ← , −
7. () ()r v u r u v δ, ← , +
8. END FOR
9. END WHILE
10. RETURN R

 The residual capacities in R are initialized by () () ()r u v r v u c u v, = , = , for all

()u v E, ∈ . The residual network R is said to have an augmenting path, from s to t , if there

exists a path connecting these two nodes such that each directed edge along the path has a non-

zero residual capacity. Line 4 of Algorithm 6.6, identifies the smallest capacity value along the

path P . Lines 5 8– remove the available capacity from the residual network along the path; if

()r u v, becomes zero, the edge (,)u v is treated as no longer being available. This way, the

procedure simply forces flow from s to t , until no more flow can be passed. Finally, when there

are no more paths from s to t , the residual network R is returned, at line 10 . The network R

contains sufficient information to easily find the s -t minimum cut or maximum flow of G . The

residual network can also be used to find a connected component that contains s ; this fact will

be used in the following algorithms.

 Algorithm 6.7 shows the pseudocode of the algorithm by Flake et al. [FLG00, FLGC02]

118

aimed at finding the community of a given set of web sites. Its input is a graph G , a set of

“seed” web sites S , and a single parameter α , explained below.

Algorithm 6.7: FLAKE-et-al-1
Input: (,)G V E= : weighted graph
 S : set of nodes
 α : real number
Output: the community that contains S

1. { }V V s tα ← ∪ ,
2. {() } {() }E E v t v V s u u Sα ← ∪ , | ∈ ∪ , | ∈
3. FOR ALL v V∈ DO
4. ()c v t α, ←
5. END FOR
6. FOR ALL u S∈ DO
7. ()c s u, ← ∞
8. END FOR
9. (,)G V Eα α α←
10. MAX-FLOW()R G s tα← , ,
11. X ← Nodes of the smallest component containing the source s in R
12. RETURN { }X s−

 This algorithm creates a new graph Gα with two artificial nodes s and t . The source

node s is connected with infinite capacity to all pages in the seed set S . The sink node t is

connected to all original nodes with capacity α . After constructing the graph Gα , the procedure

calls MAX-FLOW as a subroutine and returns the portion of the resulting residual graph R that

remains connected to s . This connected component is guaranteed to be a defensive alliance,

provided that the algorithm has not terminated with the trivial cut that separates the nodes of S

from the rest of the graph. The main theoretical result about this algorithm is connected with the

parameter α and is given in Theorem 6.1.

119

 Theorem 6.1. Let X be a community found by Algorithm 6.7. For any pair of node-sets

P and Q such that P Q X∪ = and P Q∩ = ∅ the following bounds hold:

 () ()
()

f X V X f P Q
V X min P Q

α
, − ,

≤ ≤
| − | | |,| |

.

 The proof of Theorem 6.1 may be found in [FTT04]. This theorem shows that the

parameter α serves as an upper-bound for the inter-community edge capacity, and a lower-

bound for the intra-community edge capacity. Thus, the algorithm simultaneously guarantees that

community nodes are relatively densely linked to one another but relatively sparsely connected

to non-community nodes. The bounds given in Theorem 6.1 show how to use α to tune the size

and the number of identified communities. A small choice of α , say close to zero, can yield just

one community that comprises the entire graph. A large value for α , say

()
1 ()

u v E
c u vα

, ∈
= + ,∑ will yield n singleton communities. The main disadvantage of

Algorithm 6.7 is that it will fail to find an existing community that does not obey the bounds

given in Theorem 6.1. Algorithm 6.8 and 6.9 use Algorithm 6.7 as a subroutine.

Algorithm 6.8: FLAKE-et-al-2
Input: S : set of nodes
 k : integer
Output: an approximate community containing the set S

1. WHILE number of iterations is less than desired DO
2. G ← a crawl from S of depth k
3. Sα ←| |
4. X ← FLAKE-et-al-1(G S α, ,)
5. rank the nodes of X by the number of neighbors they have inside X
6. add the highest ranked non-seed nodes of X to S
7. END WHILE
8. RETURN X

120

 Algorithm 6.8 uses a fixed-depth crawl to calculate an approximate community and then

uses the “strongest" members in the community to serve as the seeds for the next iteration. This

algorithm is appropriate when only a small portion of the graph can be contained in memory.

 Algorithm 6.9 aims to find all the communities in a graph. It is only appropriate when the

whole graph fits in main memory.

Algorithm 6.9: FLAKE-et-al-3
Input: G : graph
 α : real
Output: a clustering of G into communities

1. array: ClusterLabel
2. S V←
3. WHILE there is a node s S∈ DO
4. X ← FLAKE-et-al-1({ }G s α, ,)
5. FOR ALL v X∈ DO
6. ClusterLabel (v) s←
7. END FOR
8. S S X← −
9. END WHILE
10. RETURN ClusterLabel

6.4. Other community-mining algorithms

 A few additional algorithms that do not fall under any of the preceding categories have

also been proposed. For example, Newman [New04] proposed a greedy algorithm that optimizes

“modularity”—a measure of the quality of a partition into communities. Alternative strategies for

optimizing the same measure were proposed in [CNM04]. Greco et al. [GGZ04] modeled web

communities as bipartite graphs (where hubs links to authorities) and then analyzed the expected

121

growth of such communities by using tools from random graph theory. Based on the results of

this analytical work, these authors developed an algorithm for mining such communities. Finally,

Bagrow and Bollt [BB05] proposed a local, greedy, community-mining algorithm based on

degree.

122

7. PROPOSED ALGORITHMS FOR COMMUNITY MINING

 In Chapter 4, two versions of community-mining—(i) partitioning into communities and

(ii) seed growth—were defined. In Chapter 6 we saw that many algorithms—employing

techniques ranging from hierarchical clustering to spectral partitioning and network flows—have

been proposed for the former version. On the other hand, relatively little attention has been

devoted to the latter version of the problem.

 This chapter proposes some greedy, best-first algorithms for the seed-growth version of

the community-mining problem.

7.1. Description of the Algorithms

 The community-mining algorithms described in this section are designed with several

considerations in mind. First, the main target application for this algorithm is focused crawling

[CBD99, DCLG00, MPS04]. In order to be suitable for such an application, the algorithm has to

begin with a small set of seed-nodes and then expand by searching their neighborhood. Second,

the objective is to discover a group of nodes that are densely linked among them while being

sparsely linked with the rest of the network. Under these considerations, the clustering

coefficient is a reasonable parameter to guide the search because: (i) a group of nodes having a

large clustering coefficient must necessarily have a high density of links; and (ii) there is

evidence that regions of several web-like networks that have high clustering coefficient consist

of nodes that share some common theme [EM02]. It remains to explore the extent to which it is

possible to discover densely-linked groups of nodes via a greedy strategy that favors the nodes

123

which have a high clustering coefficient with respect to the community nodes. This idea is

analyzed in the remainder of the chapter.

 Algorithm 7.1 shows the pseudo-code for the FIND-COMMUNITY procedure. This

procedure takes as inputs a graph G , a set S of seed-nodes and a threshold value α . Although

many web-like networks are directed, here for simplicity we assume that G is an undirected

graph. Beginning with C S= , the algorithm FIND-COMMUNITY grows the community C by

repeatedly searching for “valuable” nodes in the neighborhood of C .

Algorithm 7.1: FIND-COMMUNITY

Input: (,)G V E= : an undirected graph
 S : the set of “seed” nodes
 α : real (threshold)
Output: C : a set of nodes representing a community that contains S

1. C S=
2. 1N = First neighborhood of C
3. 2N = Second neighborhood of C
4. REPEAT
5. ,I L = FILTER-NEIGHBORHOOD 1 2(, , ,)G C N N
6. C C I= ∪
7. 1N = {First neighborhood of I } ∩ 2N
8. 2N = {First neighborhood of 1N } – C
9. UNTIL 1N or 2N becomes very small
10. RETURN C

 These “valuable” nodes are found by calling the procedure FILTER-NEIGHBORHOOD

(Algorithm 7.2). This procedure partitions the nodes of the first neighborhood 1N of C into two

subsets: the set I , which consists of the nodes that will be included in the community (called

internal nodes), and the set L , which consists of the non-community (or, leaf) nodes.

124

Algorithm 7.2: FILTER-NEIGHBORHOOD

Input: (,)G V E= : a graph
 C : community obtained so far
 1N : the first neighborhood of C
 2N : the second neighborhood of C
 α : threshold
Output: I : a subset of 1N ; internal nodes to be included in C
 L : complement of I in 1N ; leaf nodes, not to be expanded

1. I = ∅ , L = ∅
2. FOR ALL nodes v in 1N DO
3. 0 1 2[(), (), ()]C v C v C v = COMPUTE-CC 1 2(, , , ,)G v C N N ;
4. IF 0 2() ()C v C v α− ≥ OR 1 2() ()C v C v α− ≥ THEN
5. { }I I v= ∪
6. ELSE
7. { }L L v= ∪
8. END FOR
9. RETURN ,I L

 The most critical and time-consuming computation of the procedure FILTER-

NEIGHBORHOOD lies in Line 3, namely, in the call to the procedure COMPUTE-CC. This

procedure is called for each node v in the first neighborhood 1N and returns three scores: (i)

0()C v —the clustering coefficient of node v with respect to the subgraph induced by C v+ ; (ii)

1()C v —the clustering coefficient of node v with respect to the subgraph induced by 1N v+ ;

and (iii) 2()C v —the clustering coefficient of node v with respect to the subgraph induced by

2N v+ .

 Here, it is assumed that the clustering coefficient of a node v is computed by a brute-

force method, i.e., by counting the number of edges between the neighbors of v (other options,

such as randomized approximations are considered later in this chapter).

125

 The decision whether v will be an internal or a leaf node is made in Line 4 of procedure

FILTER-NEIGHBORHOOD. The criterion is simple: if node v is more tightly clustered to the

nodes of C or 1N than it is to the nodes of 2N by a value greater than or equal to the threshold

α , then v is added to the set I , otherwise it is added to the set L . In all the experimental results

presented later, the parameter α was fixed at 0.05 —a value which was empirically found to

yield good results. To keep the pseudo-code simple we have omitted the treatment of nodes with

degree less than two (for which the clustering coefficient is undefined). These nodes are handled

following the same reasoning as in Line 4 of FILTER-NEIGHBORHOOD. For example, if a

node w of C has a single neighbor in 1N and no neighbor in 2N then it is added to I ; the

remaining cases are handled similarly. FILTER-NEIGHBORHOOD algorithm runs until the first

or second neighborhoods become very small. The stopping criterion used in our experiments

was 1| | 1N ≤ or 2| | 2N ≤ .

 As a first illustration, Figure 7.1 shows how the FIND-COMMUNITY algorithm

performs in a trivial case: a graph consisting of two cliques 10K joined by an edge. Two nodes

(nodes 1 and 6 , shown in white in Figure 7.1(a)) were selected as seeds uniformly at random

from the first 10K . The first neighborhood of the seed nodes (nodes shown in grey in Figure

7.1(a)) is 1 = {2, 3, 4, 5, 7, 8, 9, 10}N while the second neighborhood 2N consists of all the

nodes of the second 10K (shown in black in Figure 7.1(a)). It one step (i.e., one execution of

Lines 3-7) of FIND-COMMUNITY, all the nodes of the first 10K are classified as community

nodes (shown in white in Figure 7.1(b)).

126

 (a) (b)

Figure 7.1. A graph consisting of two complete graphs 10K plus an edge that links them together:

(a) initial configuration (b) after one step of the algorithm FIND-COMMUNITY.

7.2. Experimental Results

 We implemented the FIND-COMMUNITY algorithm and tested its performance on

several real and computer-generated networks. The implementation was done in C++ using the

software library LEDA2 and the testing was carried out on a Linux box. The results of our

experiments are shown next.

a) Zachary’s karate club network

 The first network we used to test the FIND-COMMUNITY algorithm, is the Zachary’s

karate club network [Zac77]—a real-life network with 34 nodes and two communities, which

has become a frequently-used benchmark for community-mining algorithms. The nodes of this

127

network represent the members of a karate club at an American university, while the edges

represent their social interactions. Zachary’s network is known to consist of two different

communities of nodes, each corresponding to the club members that where sided with one of the

two club leaders during a dispute (see e.g., [GN03] for a more detailed description of this

network). Figure 7.2 shows the performance of our algorithm in discovering each of the two

communities of this network, beginning in each case from a single seed-node (the highest-degree

node).

 (a) (b)

 (c) (d)

Figure 7.2. Discovering the two communities of Zachary’s karate club network: (a) Node 1

(white) is chosen as the seed for the first community; (b) The white nodes represent the

2 Available from http://www.algorithmic-solutions.com/enleda.htm

128

community found by the algorithm; (c) Node 34 (white) is chosen as the seed for the second

community; (d) The white nodes represent the community found by the algorithm.

 In the case of discovering the first community with node 1 as seed, all except two nodes

were classified correctly (Figure 7.2(a, b)). In the case of discovering the second community

with node 34 as seed all but three nodes were classified correctly (Figure 7.2(c, d)).

b) Random graphs with known community structure

 Next, we tested the algorithm extensively on a family of random graphs with known

community structure. This family of random graphs has also been used frequently to test

community-mining algorithms, e.g., [NG03, BB05]. A random graph from this family is

characterized by the following parameters: (1) n—the number of nodes; (2) c—the number of

communities; (3) ind —the expected number of neighbors of a node within its community; (3)

outd —the expected number of neighbors of a node outside its community. The following

algorithm generates an instance of such a random graph , , ,in outn c d dG :

1. Let nCommunitySize c=

2. Let in
in

d
p

CommunitySize
= and out

out

d
p

n CommunitySize
=

−

3. Partition the set of nodes into c communities of equal size (it is assumed that n is evenly

divided by c)

4. For each pair of nodes (,)u v , independently, do the following:

a) if u and v belong to the same community, join them with an edge with probability

inp

129

b) otherwise, join them with an edge with probability outp

 While testing the FIND-COMMUNITY algorithm, we focused on three main questions:

(1) How does the accuracy of the algorithm—measured as the fraction of nodes classified

correctly—change while the ratio in

out

d
d increases? (2) What is the impact of the size of the set

of seed nodes on the accuracy of the algorithm? (3) How robust is the algorithm to different sets

of seed nodes?

 To investigate these questions we carried out a number of experiments. The following

scenario was common to all them: While keeping the rest of the parameters fixed, the parameter

of interest was changed in small increments and for each case a random graph with known

community structure was generated; A fraction of the nodes in the first community of this

random graph was randomly chosen as the set of seed-nodes; The FIND-COMMUNITY

algorithm was run with the generated random graph and seed-nodes as input; The fraction of

nodes classified correctly by the algorithm was computed.

 The performance of the FIND-COMMUNITY algorithm with respect to the questions

above is described next.

Accuracy versus in

out

d
d

 Figure 7.3, shows how the accuracy of the algorithm changes with the ratio in

out

d
d for

two random graphs with 16,384 nodes and with 4 and 32 communities, respectively. In this

experiment, ind is kept fixed at 32 while dout is changed from 4 to 28 in increments of 4 (i.e., the

130

ratio in

out

d
d changes from 0.125 to 0.875). In both cases, the set of seed nodes, consisted of 5%

of the nodes of the first community, selected uniformly at random. As seen in Figure 7.3, the

fraction of correctly classified nodes changed from nearly 0.9 (when 4ind =) to nearly 0.7

(when 28ind =).

Accuracy versus the size of the set of seed-nodes

 Figure 7.4, shows the impact of the relative size of the set of seed nodes on the accuracy

of the algorithm. In this case, two random graphs with 16,438 nodes and with 8 and 32

communities, respectively, were generated. In both cases 32ind = while 8outd = .

0
0.2

0.4
0.6
0.8

1
1.2

0.125 0.25 0.375 0.5 0.625 0.75 0.875

din/dout

fra
ct

io
n

co
rr

ec
t

4 communities

32 communities

Figure 7.3. Fraction of correctly classified nodes versus the ratio in

out

d
d .

 The size of the set of seed nodes was changed from 2% of community size to 20% of the

community size. In the case of the graph with 32 communities, the fraction of correctly classified

nodes changed from nearly 90% to almost 99%. In the other case, when only 8 communities

were present, this fraction was smaller than in the first case, but always greater than 83%.

131

0

0.2

0.4

0.6

0.8

1

1.2

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

|S|/|C|

fra
ct

io
n

co
rre

ct

8 communities
32 communities

Figure 7.4. Fraction of correctly classified nodes versus the relative size of the set of seed nodes.

Accuracy versus the set of seed-nodes

 Figure 7.5, illustrates the robustness of the algorithm to different sets of seeds. In this

experiment, we generated a random graph with 16,384 nodes, with 8 communities, and with din =

32, dout = 8. The FIND-COMMUNITY algorithm was executed ten times with this graph as

input. For each run, a new set S was generated by selecting 5% of the nodes of the first

community uniformly at random. As seen in Figure 7.5, the fraction of nodes classified correctly

changed very little—it was always between 95% and 96.5%.

0.945

0.95

0.955

0.96

0.965

0.97

1 2 3 4 5 6 7 8 9 10

run

fra
ct

io
n

co
rr

ec
t

8 communities

Figure 7.5. Robustness of the algorithm to different sets of seed nodes.

132

 In summary, the fraction of nodes classified correctly by the FIND-COMMUNITY

algorithm was generally above 80% and often above 90% when tested on random graphs with

known community structure. Furthermore, the algorithm achieves good accuracy with only a

small fraction (about 1%) of community nodes as seeds and the performance varies little with the

set of seed nodes.

 However, several issues need to be addressed before this algorithm can be usefully

applied in practice. First, more extensive testing needs to be done especially with data from real

networks such as Web crawls. Second, a rigorous method needs to be developed to evaluate the

quality of the communities produced by this algorithm. Third, in order to mine large

communities (in the order of tens of thousands of nodes), the speed of the algorithm needs to be

improved (without compromising its accuracy). One could consider randomizing the

COMPUTE-CC procedure, perhaps in combination with using a generalized clustering

coefficient, where not only the first neighborhood is taken into account but also the second, the

third, etc. Another option would be to parallelize the algorithm. Investigating these questions as

well as applying this algorithm to mine the communities of some web-like networks, remain as

topics of our current and future research.

Time complexity

 It is difficult to obtain an exact expression for the time complexity of FIND-

COMMUNITY in terms of the order and size of the graph G. However, assuming that the

number of nodes visited by this algorithm (internal plus leaf nodes) is n and that the maximum

133

degree encountered is maxd , it is easy to see that the time complexity is of order 2
max()O nd ,

because the procedure COMPUTE-CC takes 2
max()O d time for each node.

 Thus, FIND-COMMUNITY algorithm would have practical value only if maxd is small,

or if the degree of most encountered nodes is small. It is reasonable to expect that this algorithm

would run in near-linear time in the number of visited nodes, if the input is a web-like network

which is known to follow a power-law degree distribution.

134

8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

 In this dissertation we investigated the community structure in web-like networks.

Motivated by simple processes existent in web-like networks, we proposed two birth-death

dynamic random graph models of such networks. Both models were found to posses a

power-law degree distribution, in agreement with many real web-like networks. Our

modeling studies suggest that preferential deletion of nodes is likely to be a key mechanism

in the evolution of web-like networks.

 Due to a wide array of potential applications, community mining in web-like networks

has attracted the attention of researchers from many fields. Several graph theoretic

definitions, generally motivated by empirical observations, have appeared in literature.

However, a formal evaluation of the appropriateness of various definitions of community has

been lacking. To address this issue, we developed a framework for evaluating the suitability

of a particular definition of community. This framework consists in estimating through

sampling techniques the concentration in web-like networks of a subgraph proposed as

definition of community and then deducing the statistical significance (z-score) of the

concentration by contrasting with appropriately defined random graphs. We applied this

methodology to evaluate two graph concepts—alliance and near-clique. Essentially, an

alliance is a group of nodes with high minimum alliance coefficient (ratio of the number of

neighbors of a node inside the group to the number of neighbors outside), while near-clique

is a group of nodes with high minimum clustering coefficient (fraction of pairs of neighbors

of a node that are neighbors themselves). We found that the concentration was generally

higher for near-cliques than for alliances. Furthermore, the occurrence of near-cliques was

statistically more significant (as indicated by higher z-scores) than the occurrence of

135

alliances. These results suggest that near-clique is a better characterization of community

than alliance. More importantly, the proposed framework may be applied to discover

additional graph parameters that are essential in characterizing community.

 Assuming the definition of community as alliance or near-clique, we analyzed the

computational complexity of various community-mining problems. The results we derived

together with other results that have recently appeared in literature show that several

community-mining problems are hard to solve in general graphs. In particular, the problem

of partitioning a given graph into subsets of nodes, each forming a community, is NP-hard.

Due to these hardness results, we concentrated on the easier problem of finding the maximal

community that contains a given set of seed nodes. This version of community mining is

suitable for applications such as focused crawling—the selective search for web pages on a

given topic. We devised several fast, greedy community-mining algorithms based on

clustering coefficient and generalized versions of this parameter. The performance of the

proposed algorithms was evaluated experimentally in several benchmark networks and it was

found that they are very effective in mining alliances and near-cliques.

 The future research agenda spans all three lines of investigation discussed above. First,

despite the significant progress toward designing an accurate model of web-like networks,

we are still far from having a comprehensive understanding of the basic processes

responsible for the evolution of complex networks. We intend to deepen the research into the

role of preferential deletion of nodes in the evolution of networks. Of particular interest is to

understand the impact of this process on degree-correlation and clustering coefficient.

Further, it would be desirable to tune the parameters that control the relative rates of birth

and death, for instance by deriving the critical probability for the emergence of the giant

136

component in a birth-death model with a preferential deletion of nodes. These problems may

be attacked using essentially the same tools of random graph theory that where employed in

the dissertation.

 Second, the proposed framework for evaluating community definitions will be applied to

discover other parameters that are essential in characterizing community. Additional insight

into these parameters may be achieved by investigating the evolution of communities

experimentally (looking at network data over time) and analytically (in dynamic random

graph models). Some natural parameters that we intend to investigate are average distance,

degree correlation and the entropy of degree distribution. Complementary to the problem of

finding graph theoretic characterizations of community is that of devising techniques to tie

the statistical significance of concentration (high z-scores) with function (topic, theme) on

specific networks, such as the Web. These techniques would necessarily be ad-hoc and

dictated by the nature of the network. For instance, in the Web one can use existing text-

based techniques to evaluate the degree to which groups that occur in statistically significant

concentration are topically related.

 Finally, many algorithmic questions remain open as well. We will investigate the

performance of various fast greedy algorithms that attempt to find optimal communities

satisfying the parameter constrains identified using the techniques discussed in the previous

paragraph. A related problem to which we intend to devote efforts and which has immense

theoretical and practical interest is to determine whether it is easier to solve hard community-

mining instances in the dynamic random graph models.

137

APPENDIX

WEB RESOURCES AND SOFTWARE TOOLS

138

 The following list contains some pointers to recently offered courses on data mining and

complex networks which have overlapping content with this dissertation.

1. The Structure of Information Networks (Cornell): Kleinberg.
http://www.cs.cornell.edu/Courses/cs685/2002fa/

2. Algorithmic Aspects of Computer Networks (Boston University): Byers.
http://www.cs.bu.edu/fac/byers/courses/591/S02/cs591.html

3. Internet Algorithmics (Brown): Goodrich.
http://www.cs.brown.edu/courses/cs195-3/

4. Algorithms for Indexing and Search (Carnegie Mellon): Blelloch, Lafferty, Miller.
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-s99/www/readings

5. Networks and Complexity in Social Systems (Columbia): Watts.
http://www.columbia.edu/itc/sociology/watts/w3233/

6. Scaling in Networks (Columbia): Lazar.
http://comet.columbia.edu/courses/elen_e9701/2001/overview.html

7. Algorithms at the End of the Wire (Harvard): Mitzenmacher.
http://www.eecs.harvard.edu/~michaelm/CS222/class.html

8. Hypertext retrieval and mining (IIT Bombay): Chakrabarti.
http://www.cse.iitb.ac.in/~soumen/teach/cs610s2001/

9. Complex Human Networks Reading Group (MIT): Pentland, Clarkson, Choudhury.
http://web.media.mit.edu/~tanzeem/cohn/CoHN.htm

10. Advanced Algorithms in Data Mining (Penn State): Zha.
http://www.cse.psu.edu/~zha/CSE597/administria.html

11. Web Protocols, Principles, and Applications (Polytechnic): Suel.
http://cis.poly.edu/cs912/

12. Information Retrieval, Discovery, and Delivery (Princeton): LaPaugh.
http://www.cs.princeton.edu/courses/archive/spring02/cs435/

13. Data Mining (Stanford): Ullman.
http://www-db.stanford.edu/~ullman/mining/mining.html

http://www.cs.cornell.edu/Courses/cs685/2002fa/
http://www.cs.bu.edu/fac/byers/courses/591/S02/cs591.html
http://www.cs.brown.edu/courses/cs195-3/
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-s99/www/readings
http://www.columbia.edu/itc/sociology/watts/w3233/
http://comet.columbia.edu/courses/elen_e9701/2001/overview.html
http://www.eecs.harvard.edu/~michaelm/CS222/class.html
http://www.cse.iitb.ac.in/~soumen/teach/cs610s2001/
http://web.media.mit.edu/~tanzeem/cohn/CoHN.htm
http://www.cse.psu.edu/~zha/CSE597/administria.html
http://cis.poly.edu/cs912/
http://www.cs.princeton.edu/courses/archive/spring02/cs435/
http://www-db.stanford.edu/~ullman/mining/mining.html

139

14. Information Retrieval and Distributed Databases (Stanford): Raghavan.
http://www-db.stanford.edu/cs347.2001.spring/

15. Seminar in Data Mining and Search (Tel Aviv): Fiat.
http://www.cs.tau.ac.il/~fiat/datamine/dm.htm

16. Recommender Systems (Virginia Tech): Ramakrishnan.
http://people.cs.vt.edu/~ramakris/Courses/CS6604-RS/

17. Advanced Topics in Data Mining (UC Irvine): Smyth.
http://www.ics.uci.edu/~smyth/courses/ics280/

18. Networks and Complexity (UC Irvine): White.
http://eclectic.ss.uci.edu/~drwhite/Anthro179a/SocialDynamics02.html

19. Advanced algorithms in data mining (U. Helsinki): Mannila.
http://www.cs.helsinki.fi/u/mannila/aadm

20. Graph Mining and Link Analysis Reading Group (U. Maryland): Getoor, Lu.
http://www.cs.umd.edu/~qinglu/summer02-reading.htm

21. Scaling, Power Laws, and Small World Phenomena in Networks (U. Mass.): Towsley.
http://www-net.cs.umass.edu/cs691s/

22. Peer-to-Peer and Application-Level Networking (U. Mass.): Kurose, Levine, Towsley.
http://www-net.cs.umass.edu/cs791n/

23. Practicum in Data Mining (U. Texas): Ghosh.
http://www.lans.ece.utexas.edu/course/ee380l/2002sp/index_prac.shtml

24. Machine Learning for Text Analysis (U. Wisconsin): Craven.
http://www.cs.wisc.edu/~craven/cs838-f00.html

http://www-db.stanford.edu/cs347.2001.spring/
http://www.cs.tau.ac.il/~fiat/datamine/dm.htm
http://people.cs.vt.edu/~ramakris/Courses/CS6604-RS/
http://www.ics.uci.edu/~smyth/courses/ics280/
http://eclectic.ss.uci.edu/~drwhite/Anthro179a/SocialDynamics02.html
http://www.cs.helsinki.fi/u/mannila/aadm
http://www.cs.umd.edu/~qinglu/summer02-reading.htm
http://www-net.cs.umass.edu/cs691s/
http://www-net.cs.umass.edu/cs791n/
http://www.lans.ece.utexas.edu/course/ee380l/2002sp/index_prac.shtml
http://www.cs.wisc.edu/~craven/cs838-f00.html

140

 The following web sites provide data sets for various web-like networks:

1. http://webgraph-data.dsi.unimi.it/

This web site provides several data sets obtained by crawling the Web. These data sets are

very large; for instance the most recent data set provided is obtained by a 2004 crawl of the

.it domain performed by UbiCrawler. The graph contains 41.3 Mpages and 1.15 Glinks. The

data sets are stored in compressed format; several tools in Java are provided to handle the

data.

2. http://vlado.fmf.uni-lj.si/pub/networks/data/

This web site provides numerous data sets for real networks. The data for some of the

networks used in our experiments was obtained from this web site.

Some Software Tools

LEDA

 LEDA is a C/C++ library that implements various advanced data structures, including

graphs. This library is commercial software distributed by Algorithmic Solution Software GmbH

and is available at http://algorithmic-solutions.com/. LEDA has been used heavily to implement

most algorithms discussed in this dissertation.

http://webgraph-data.dsi.unimi.it/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://algorithmic-solutions.com/

141

PAJEK

 PAJEK is a tool for visualizing networks. We found this tool useful in our experiments

with random graph models and during the testing of community-mining algorithms discussed in

the dissertation. The software may be freely downloaded at http://vlado.fmf.uni-

lj.si/pub/networks/pajek/

UCFBOT

 UcfBot is a high-performance general-purpose Web crawler developed in the Center for

Parallel Computation of the Computer Science Department at UCF. The details of the

architecture, implementation and capabilities of this crawler are discusses in [BCD00].

MERSENNE TWISTER Pseudo-Random Number Generator

 Mersenne Twister (MT) is a recent pseudo-random number generator developed by

Matsumoto and Nishimura [MN98]. This generator has been shown to generate sequences of

high quality and has been found to be up to four times faster than the standard rand() function

C/C++. The version MT19937 of this generator—which has been used in all our experiments—

has a period of 199372 1− . Implementations of MT in various languages may be found freely at

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

142

LIST OF REFERENCES

[AAS03] G. Adami, P. Avesani and D. Sona. Clustering documents in a web directory. In
Proceedings of the 5th ACM International Workshop on Web Information and Data
Management (WIDM '03), pp. 66-73, 2003.

[AH01] L. A. Adamic and B. A. Huberman. The Web's hidden order. Commun. ACM, vol.

44(9), pp. 55-60, 2001.

[AM01] M. Adler and M. Mitzenmacher. Towards compressing Web graphs. In Proceedings

of the Data Compression Conference (DCC 2001), pp. 203-212, 2001.

[AMO93] R. K. Ahuja, T. L. Magnanti and J. B. Orlin. Network flows: Theory, algorithms and

applications, Englewood Cliffs, NJ: Prentice Hall, 1993.

[ACL01] W. Aiello, F. Chung and L. Lu. A random graph model for power law graphs.

Experiment. Math., vol. 10(1), pp. 53-66, 2001.

[ACL02] W. Aiello, F. Chung and L. Lu. Random evolution in massive graphs. In Handbook

of Massive Data Sets, vol. 4, Massive Comput., J. Abello, P. M. Pardalos, and M. G.
Resende, (Eds.). Dordrecht: Kluwer Acad. Publ., pp. 97-122, 2002.

[AJB99] R. Albert, H. Jeong and A.-L. Barabási. Diameter of the World Wide Web. Nature,

vol. 401, pp. 130-131, 1999.

[AB00] R. Albert and A. L. Barabási. Topology of evolving networks: local events and

universality. Physical Review Letters, vol. 85(24), pp. 5234-5237, 2000.

[AHB00] R. Albert, J. Hawoong and A. L. Barabási. Error and attack tolerance of complex

networks. Nature, vol. 406(6794), pp. 378-382, 2000.

[AB02] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of

Modern Physics, vol. 74(1), pp. 47-97, 2002.

[Ald04] D. J. Aldous. A tractable complex network model based on the stochastic mean-field

model of distance. Complex networks (Lecture Notes in Phys. Vol.650), pp. 51-87,
2004.

[AKS02] E. Almaas, R. V. Kulkarni and D. Stroud. Characterizing the structure of small-

world networks. Physical Review Letters, vol. 88(9), art. no. 098101, 2002.

[AS92] N. Alon and J. Spencer. The probabilistic method. New York, NY: Wiley, 1992.

[AKS98] N. Alon, M. Krivelevich and B. Sudakov. Finding a large hidden clique in a random

graph. Random Structures & Algorithms, vol. 13(3-4), pp. 457-466, 1998.

143

[ACDL03] E. Amitay, D. Carmel, A. Darlow, R. Lempel and A. Soffer. The connectivity sonar:

detecting site functionality by structural patterns. In Proceedings of the 14th ACM
Conference on Hypertext and Hypermedia (HYPERTEXT '03), pp. 38-47, 2003.

[AHS96] P. Arabie, L. J. Hubert and G. de Soete. Clustering and classification. Singapore; NJ:

World Scientific, 1996.

[ADDG04] A. Arenas, L. Danon, A. Diaz-Guilera, P. M. Gleiser and R. Guimera. Community

analysis in social networks. European Physical Journal B, vol. 38(2), pp. 373-380,
2004.

[BB05] J. Bagrow and E. Bollt. A Local Method for Detecting Communities. Online Article,

2005.

[BCD05] H. Balakrishnan, A. Cami and N. Deo. UcfBot - A High-Performance Web Crawler.

University of Central Florida, School of Computer Science, Technical Report CS-
TR-05-08, 2005.

[BFS03] P. Baldi, P. Frasconi and P. Smyth. Modeling the Internet and the Web: Probabilistic

Methods and Algorithms: John Wiley & Sons, 2003.

[BBKT04] Z. Bar-Yossef, A. Z. Broder, R. Kumar and A. Tomkins. Sic transit gloria telae:

towards an understanding of the web's decay. In Proceedings of the 13th
International Conference on World Wide Web (WWW'04), pp. 328-337, 2004.

[BA99a] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,

vol. 286(5439), pp. 509-512, 1999.

[BAJ99] A.-L. Barabási, R. Albert and H. Jeong. Mean-field theory for scale-free random

networks. Physica A: Statistical Mechanics and its Applications, vol. 272(1-2), pp.
173-187, 1999.

[BAJ00] A.-L. Barabási, R. Albert and H. Jeong. Scale-free characteristics of random

networks: the topology of the world-wide web. Physica A: Statistical Mechanics and
its Applications, vol. 281(1-4), pp. 69-77, 2000.

[BRV01] A.-L. Barabási, E. Ravasz and T. Vicsek. Deterministic scale-free networks. Physica

A: Statistical Mechanics and its Applications, vol. 299(3-4), pp. 559-564, 2001.

[Bar02] A.-L. Barabási. Linked: the New Science of Networks. Cambridge, MA: Perseus

Pub., 2002.

[BMBB04] A. L. Barabási, M. A. de Menezes, S. Balensiefer and J. Brockman. Hot spots and

universality in network dynamics. European Physical Journal B, vol. 38(2), pp. 169-
175, 2004.

144

[BW00] A. Barrat and M. Weigt. On the properties of small-world network models.

European Physical Journal B, vol. 13(3), pp. 547-560, 2000.

[BBPV04a] A. Barrat, M. Barthélemy, R. Pastor-Satorras and A. Vespignani. The architecture of

complex weighted networks. Proceedings Of The National Academy Of Sciences Of
The United States Of America, vol. 101(11), pp. 3747-3752, 2004.

[BA99b] M. Barthélemy and L. A. N. Amaral. Small-World networks: evidence for a

crossover picture. Physical Review Letters, vol. 82(15), pp. 3180-3183, 1999.

[BBPV04b] M. Barthélemy, A. Barrat, R. Pastor-Satorras and A. Vespignani. Velocity and

hierarchical spread of epidemic outbreaks in scale-free networks. Physical Review
Letters, vol. 17, art. no. 178701, 2004.

[BBPV05] M. Barthélemy, A. Barrat, R. Pastor-Satorras and A. Vespignani. Characterization

and modeling of weighted networks. Physica A: Statistical Mechanics and its
Applications, vol. 346(1-2), pp. 34-43, 2005.

[BC78] E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs with

given degree sequences. J. Combinatorial Theory Ser. A, vol. 24(3), pp. 296-307,
1978.

[BBBC03] N. Berger, B. Bollobás, C. Borgs, J. Chayes and O. Riordan. Degree distribution of

the FKP network model. In Automata, Languages and Programming, vol. 2719,
Lecture Notes in Computer Science, J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G.
J. Woeginger, (Eds.). Berlin: Springer-Verlag, pp. 725-738, 2003.

[BH98] K. Bharat and M. R. Henzinger. Improved algorithms for topic distillation in a

hyperlinked environment. In Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
'98), pp. 104-111, 1998.

[BCHR01] K. Bharat, B.-W. Chang, M. R. Henzinger and M. Ruhl. Who Links to Whom:

Mining Linkage between Web Sites. In 2001 IEEE International Conference on
Data Mining (ICDM '01): IEEE Computer Society, pp. 51-58, 2001.

[BGS03] M. Bianchini, M. Gori and F. Scarselli. PageRank and Web communities. In

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI
2003), pp. 365-371, 2003.

[BB01] G. Bianconi and A. L. Barabási. Competition and multiscaling in evolving networks.

Europhysics Letters, vol. 54(4), pp. 436-442, 2001.

[BC03] G. Bianconi and A. Capocci. Number of loops of size h in growing scale-free

networks. Physical Review Letters, vol. 7, art. no. 078701, 2003.

145

[Bia04] G. Bianconi. Number of cycles in off-equilibrium scale-free networks and in the

Internet at the autonomous system level. European Physical Journal B, vol. 38(2),
pp. 223-230, 2004.

[BMV05] G. Bianconi, M. Marsili and F. Vega-Redondo. On the non-trivial dynamics of

complex networks. Physica A: Statistical Mechanics and its Applications, vol.
346(1-2), pp. 116-122, 2005.

[BF01] T. Bohman and A. Frieze. Avoiding a giant component. Random Structures

Algorithms, vol. 19(1), pp. 75-85, 2001.

[BPSR05] T. Bohman, O. Pikhurkho, B. Sudakov, A. Rucinski, N. Wormald, M. Molloy, D.

Achlioptas and A. Frieze. Eight lectures on Random Graphs: Talks given at a joint
MAA-AMS meeting in Atlanta, Georgia, January 3-4, 2005. Online Article, 2005.

[Bol79] B. Bollobás. Graph theory: an introductory course. New York: Springer Verlag,

1979.

[Bol85] B. Bollobás. Random graphs. London: Academic Press, 1985.

[Bol90] B. Bollobás. The diameter of random graphs. IEEE Trans. Inform. Theory, vol.

36(2), pp. 285-288, 1990.

[BRST01] B. Bollobás, O. Riordan, J. Spencer and G. Tusn�?dy. The degree sequence of a

scale-free random graph process. Random Structures Algorithms, vol. 18(3), pp. 279-
290, 2001.

[BBCR03] B. Bollobás, C. Borgs, J. Chayes and O. Riordan. Directed scale-free graphs. In

Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
132-139, 2003.

[BR03a] B. Bollobás and O. Riordan. Robustness and vulnerability of scale-free random

graphs. Internet Math., vol. 1(1), pp. 1-35, 2003.

[BR03b] B. Bollobás and O. M. Riordan. Mathematical results on scale-free random graphs.

In Handbook of Graphs and Networks: From the Genome to the Internet, S.
Bornholdt and H. G. Schuster, (Eds.). Weinheim: Wiley-VCH, pp. 1-34, 2003.

[BR04] B. Bollobás and O. Riordan. The diameter of a scale-free random graph.

Combinatorica, vol. 24(1), pp. 5-34, 2004.

[BR04] B. Bollobás and O. Riordan. Coupling scale-free and classical random graphs.

Internet Math., vol. 1(2), pp. 215-225, 2004.

[BS91] R. A. Botafogo and B. Shneiderman. Identifying aggregates in hypertext structures.

146

In Proceedings of the 3rd annual ACM conference on Hypertext (HYPERTEXT '91),
pp. 63-74, 1991.

[BDH04] R. C. Brigham, R. D. Dutton and S. T. Hedetniemi. A sharp lower bound on the

powerfull alliance number of Cm \sq Cn. Congressum Numerantium, vol. 167, pp.
57-63, 2004.

[BKMR00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A.

Tomkins and J. Wiener. Graph structure in the Web. Computer Networks, vol. 33(1-
6), pp. 309-320, 2000.

[Buc02] M. Buchanan. Nexus: small worlds and the groundbreaking science of networks.

New York: W.W. Norton, 2002.

[BO04] P. G. Buckley and D. Osthus. Popularity based random graph models leading to a

scale-free degree sequence. Discrete Mathematics, vol. 282(1-3), pp. 53-68, 2004.

[Bur74] J. D. Burtin. Extremal metric characteristics of a random graph I. Theo. Verojatnost.

i Primenen., vol. 19, pp. 740-754, 1974.

[BFT01] B. Bush, C. Files and D. Thompson. Empirical Characterization of Infrastructure

Networks. Los Alamos National Laboratory, Technical Report LA-UR-01-5784,
2001.

[CRZM03] P. Calado, B. Ribeiro-Neto, N. Ziviani, E. Moura and I. Silva. Local versus global

link information in the Web. ACM Trans. Inf. Syst., vol. 21(1), pp. 42-63, 2003.

[CPV04] G. Caldarelli, R. Pastor-Satorras and A. Vespignani. Cycles Structure and Local

Ordering in Complex Networks. European Physical Journal B, vol. 38, pp. 183-186,
2004.

[CNSW00] D. S. Callaway, M. E. J. Newman, S. H. Strogatz and D. J. Watts. Network

robustness and fragility: percolation on random graphs. Physical Review Letters, vol.
25, art. no. 5468, 2000.

[CHKN01] D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. Newman and S. H. Strogatz.

Are randomly grown graphs really random? Physical Review. E (Statistical,
Nonlinear, And Soft Matter Physics), vol. 4, part 1, art. no. 041902, 2001.

[CBDD05] A. Cami, C. Lisetti and M. Sierhuis. Towards the Simulation of a Multi-Level Model

of Human Emotions. In Proceedings of the AAAI 2004 Spring Symposium, TR SS-04-
02, pp. 5-9, 2004.

[CBDD05] A. Cami, H. Balakrishnan, N. Deo and R. D. Dutton. On the complexity of some

global alliance problems. Journal of Combinatorial Mathematics and Combinatorial
Computing (submitted), 2005.

147

[CSCC05] A. Capocci, V. D. P. Servedio, G. Caldarelli and F. Colaiori. Detecting communities

in large networks. Physica A: Statistical and Theoretical Physics, vol. 352(2-4), pp.
669-676, 2005.

[CCLP04] C. Castellano, F. Cecconi, V. Loreto, D. Parisi and F. Radicchi. Self-contained

algorithms to detect communities in networks. European Physical Journal B, vol.
38(2), pp. 311-319, 2004.

[CDAR98] S. Chakrabarti, B. Dom, R. Agrawal and P. Raghavan. Scalable feature selection,

classification and signature generation for organizing large text databases into
hierarchical topic taxonomies. The VLDB Journal, vol. 7(3), pp. 163-178, 1998.

[CDGK99] S. Chakrabarti, B. E. Dom, D. Gibson, R. Kumar, P. Raghavan, S. Rajagopalan and

A. Tomkins. Topic distillation and spectral filtering. Artificial Intelligence Review,
vol. 13(5-6), pp. 409-435, 1999.

[CBD99] S. Chakrabarti, M. van den Berg and B. Dom. Focused crawling: a new approach to

topic-specific Web resource discovery. Computer Networks, vol. 31(11-16), pp.
1623-1640, 1999.

[CJPP02] S. Chakrabarti, M. M. Joshi, K. Punera and D. M. Pennock. The structure of broad

topics on the web. In Proceedings of the 11th International Conference on World
Wide Web (WWW'02), pp. 251-262, 2002.

[CL01] F. Chung and L. Lu. The diameter of sparse random graphs. Adv. in Appl. Math., vol.

26(4), pp. 257-279, 2001.

[CL02] F. Chung and L. Lu. Connected components in random graphs with given expected

degree sequences. Ann. Comb., vol. 6(2), pp. 125-145, 2002.

[CL03] F. Chung and L. Lu. The average distance in a random graph with given expected

degrees. Internet Math., vol. 1(1), pp. 91-113, 2003.

[CLV03] F. Chung, L. Lu and V. Vu. Spectra of random graphs with given expected degrees.

Proc. Natl. Acad. Sci. USA, vol. 100(11), pp. 6313-6318, 2003.

[CL04] G. F. Chung and L. Lu. Coupling online and offline analyses for random power law

graphs. Internet Math., vol. 1(4), pp. 409-461, 2004.

[CNM04] A. Clauset, M. E. J. Newman and C. Moore. Finding community structure in very

large networks. Phys. Rev. E, vol. 70, art. no. 066111, 2004.

[CEBH00] R. Cohen, K. Erez, D. Ben-Avraham and S. Havlin. Resilience of the Internet to

random breakdowns. Physical Review Letters, vol. 85(21), pp. 4626-4628, 2000.

148

[CEBH01] R. Cohen, K. Erez, D. Ben-Avraham and S. Havlin. Breakdown of the Internet under
intentional attack. Physical Review Letters, vol. 86(16), pp. 3682-3685, 2001.

[Coo02] C. Cooper. Classifying special interest groups in web graphs. Randomization and

approximation techniques in computer science, vol. 2483, pp. 263-275, 2002.

[CF03] C. Cooper and A. Frieze. A general model of web graphs. Random Structures

Algorithms, vol. 22(3), pp. 311-335, 2003.

[CF04] C. Cooper and A. Frieze. The size of the largest strongly connected component of a

random digraph with a given degree sequence. Combin. Probab. Comput., vol. 13(3),
pp. 319-337, 2004.

[CFV04] C. Cooper, A. Frieze and J. Vera. Random deletions in a scale free random graph

process. Internet Math., vol. 1(4), pp. 463-483, 2004.

[DH99] J. Dean and M. R. Henzinger. Finding related pages in the World Wide Web. In

Proceedings of the 8th International Conference on World Wide Web (WWW '99),
pp. 1467-1479, 1999.

[DVGB03] L. Denoyer, J.-N. Vittaut, P. Gallinari, S. Brunessaux and S. Brunessaux. Structured

multimedia document classification. In Proceedings of the 2003 ACM Symposium on
Document Engineering (DocEng '03), pp. 153-160, 2003.

[Deo74] N. Deo. Graph theory with applications to engineering and computer science.

Englewood Cliffs, N.J.: Prentice-Hall Inc., 1974.

[DL98] N. Deo and B. Litow. A structural approach to graph compression. In Proceedings of

the MFCS Workshop on Communication, pp. 91-101, 1998.

[DLP00] N. Deo, B. Litow and P. Gupta. Modeling the Web: Linking Discrete and

Continuous. In Proceedings of the Summer Computer Simulation Conference 2000,
Vancouver, Canada, pp. 395-400, 2000.

[DG01a] N. Deo and P. Gupta. Graph-theoretic Web algorithms: An overview. Lecture Notes

in Computer Science, vol. 2026, pp. 91-102, 2001.

[DG01b] N. Deo and P. Gupta. Sampling the Web Graph with Random Walks. Congressus

Numerantium, vol. 149, pp. 143-154, 2001.

[DZN02] N. Deo, Y. Zhang and Z. Nikoloski. Estimating the Independence Number of a Large

Random Graph. Congressus Numerantium, vol. 159, pp. 95-111, 2002.

[DG03] N. Deo and P. Gupta. Graph-theoretic analysis of the world wide web: new

directions and challenges. Mat. Contemp., vol. 25, pp. 49-69, 2003.

149

[DN03] N. Deo and Z. Nikoloski. The game of cops and robbers on graphs: a model for
quarantining cyber attacks. Congressus Numerantium, vol. 162, pp. 193-215, 2003.

[DC05a] N. Deo and A. Cami. A birth-death dynamic model of web-like networks. In

Proceedings of the 43rd Annual ACM Southeast Conference, vol. 2, art. no. 2-26,
2005.

[DC05b] N. Deo and A. Cami. A greedy community-mining algorithm based on clustering

coefficient. In Proceedings of the 36th Southeastern International Conference on
Combinatorics, Graph Theory, and Computing (Congressus Numerantium, vol. 168),
(accepted), 2005.

[DC05c] N. Deo and A. Cami. Preferential deletion in dynamic models of web-like networks.

Information Processing Letters (submitted), 2005.

[DC05d] N. Deo and A. Cami. A survey of dynamic models of web-like networks. Networks

(submitted), 2005.

[DB02] Z. Dezso and A.-L. Barabási. Halting viruses in scale-free networks. Physical

Review. E, Statistical, Nonlinear, And Soft Matter Physics, vol. 5, part 2, art. no.
055103, 2002.

[Die00] R. Diestel. Graph theory, 2nd ed. New York: Springer, 2000.

[DCLG00] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles and M. Gori. Focused Crawling

Using Context Graphs. In Proceedings of the 26th International Conference on Very
Large Data Bases (VLDB '00), pp. 527-534, 2000.

[DKMR01] S. Dill, R. Kumar, K. S. McCurley, S. Rajagopalan, D. Sivakumar and A. Tomkins.

Self-similarity in the Web. In Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB '01), pp. 69-78, 2001.

[DM00a] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks with aging of sites.

Physical Review E (Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics), vol. 62(2), pp. 1842-1845, 2000.

[DM00b] S. N. Dorogovtsev and J. F. F. Mendes. Scaling behaviour of developing and

decaying networks. Europhysics Letters, vol. 52(1), pp. 33-39, 2000.

[DMS00] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin. Structure of growing

networks with preferential linking. Physical Review Letters, vol. 85(21), pp. 4633-
4636, 2000.

[DM01a] S. N. Dorogovtsev and J. F. F. Mendes. Effect of the accelerating growth of

communications networks on their structure. Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics), vol. 2, part 1-2, art. no. 025101, 2001.

150

[DM01b] S. N. Dorogovtsev and J. F. F. Mendes. Scaling properties of scale-free evolving

networks: Continuous approach. Physical Review E: Statistical, Nonlinear, and Soft
Matter Physics, vol. 5, part 1-2, art. no. 056125/1, 2001.

[DMS01b] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin. Giant strongly connected

component of directed networks. Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics), vol. 2, art. no. 025101, 2001.

[DMS01a] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin. Anomalous percolation

properties of growing networks. Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics), vol. 6, art. no. 066110, 2001.

[DGM02] S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes. Ising model on networks with

an arbitrary distribution of connections. Physical Review E (Statistical, Nonlinear,
and Soft Matter Physics), vol. 1, art. no. 016104/1, 2002.

[DM02] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks. Advances in Physics,

vol. 51(4), pp. 1079-1187, 2002.

[DGMS03] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes and A. N. Samukhin. Spectra of

complex networks. Physical Review E (Statistical, Nonlinear, and Soft Matter
Physics), vol. 4, art. no. 46109, 2003.

[DM03] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks: from biological nets

to the Internet and WWW. Oxford: Oxford University Press, 2003.

[DMS03] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin. Metric structure of random

networks. Nuclear Physics B, vol. 653(3), pp. 307-338, 2003.

[DGMS04] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes and A. N. Samukhin. Random

networks: eigenvalue spectra. Physica A: Statistical Mechanics and its Applications,
vol. 338(1-2), pp. 76-83, 2004.

[EK02] V. M. Eguíluz and K. Klemm. Epidemic threshold in structured scale-free networks.

Physical Review Letters, vol. 89(10), art. no. 108701/1-4, 2002.

[EHPK03] V. M. Eguíluz, E. Hernandez-Garcia, O. Piro and K. Klemm. Effective dimensions

and percolation in hierarchically structured scale-free networks. Physical Review. E
(Statistical, Nonlinear, And Soft Matter Physics), vol. 5, part 2, art. no. 055102,
2003.

[Ela99] S. Elaydi. An introduction to difference equations, 2nd ed. New York: Springer,

1999.

[ER59] P. Erdös and A. Rényi. On random graphs I. Publ. Math. Debrecen, vol. 6, pp. 290-

151

297, 1959.

[EG60] P. Erdös and T. Gallai. Graphs with Prescribed Degrees of Vertices. Mat. Lapok, vol.

11, pp. 264-274, 1960.

[ER60] P. Erdös and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat.

Kutató Int. Közl., vol. 5, pp. 17-61, 1960.

[ER02] G. Ergün and G. J. Rodgers. Growing random networks with fitness. Physica A, vol.

303(1-2), pp. 261-272, 2002.

[FFF99] M. Faloutsos, P. Faloutsos and C. Faloutsos. On power-law relationships of the

Internet topology. Computer Communication Review, vol. 29(4), pp. 251-262, 1999.

[FDBV01] I. J. Farkas, I. Derenyi, A. L. Barabási and T. Vicsek. Spectra of "real-world" graphs:

beyond the semicircle law. Physical Review. E (Statistical, Nonlinear, And Soft
Matter Physics), vol. 2, part 2, art. no. 026704, 2001.

[FGLS91] U. Feige, S. Goldwasser, L. Lovász, S. Safra and M. Szegedy. Approximating clique

is almost NP-complete. In Proceedings of the 32nd Annual Symposium on
Foundations of Computer Science, pp. 2-12, 1991.

[FMN04] D. Fetterly, M. Manasse and M. Najork. Spam, damn spam, and statistics: using

statistical analysis to locate spam web pages. In Proceedings of the 7th International
Workshop on the Web and Databases (WebDB '04), pp. 1-6, 2004.

[Fie73] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., vol. 23, pp. 298-305,

1973.

[FPK89] P. Flajolet, D. E. Knuth and B. Pittel. The first cycles in an evolving graph. Discrete

Math., vol. 75(1-3), pp. 167-215, 1989.

[FLG00] G. W. Flake, S. Lawrence and C. L. Giles. Efficient identification of web

communities. In Proceedings of the 6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD'00), pp. 150-160, 2000.

[FLGC02] G. W. Flake, S. Lawrence, C. L. Giles and F. M. Coetzee. Self-organization and

identification of Web communities. Computer, vol. 35(3), pp. 66-71, 2002.

[FTT04] G. W. Flake, R. Tarjan and K. Tsioutsiouliklis. Graph Clustering and Minimum Cut

Trees. Internet Math., vol. 1(4), pp. 385-408, 2004.

[FFV05] A. Flaxman, A. Frieze and J. Vera. Adversarial Deletion in a Scale Free Random

Graph Process. In Proceedings of the ACM-SIAM Symposium on Doscrete
Algorithms (SODA '05), pp. 287-292, 2005.

152

[FFV04] A. D. Flaxman, A. M. Frieze and J. Vera. A geometric preferential attachment model
of networks. Algorithms and Models for the Web-Graph. Third International
Workshop, WAW 2004. Proceedings (Lecture Notes in Computer Science Vol. 3243),
pp. 44-55, 2004.

[FM97] A. Frieze and C. McDiarmid. Algorithmic Random Graph Theory. Random

Structures & Algorithms, vol. 10, pp. 5-42, 1997.

[FHJS02] A. Fronczak, J. A. Holyst, M. Jedynak and J. Sienkiewicz. Higher Order Clustering

Coefficients in Barabasi-Albert Networks. Physica A, vol. 316, pp. 688-694, 2002.

[GJ79] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory

of NP-completeness. San Francisco: W. H. Freeman, 1979.

[GKR98] D. Gibson, J. Kleinberg and P. Raghavan. Inferring Web communities from link

topology. In Proceedings of the 9th ACM Conference on Hypertext and Hypermedia
(HYPERTEXT '98), pp. 225-234, 1998.

[Gil59] E. N. Gilbert. Random graphs. Ann. Math. Statist., vol. 30, pp. 1141-1144, 1959.

[GN02] M. Girvan and M. E. J. Newman. Community structure in social and biological

networks. In Proceedings of the National Academy Of Sciences of the USA, pp.
7821-7826, 2002.

[GFLB01] E. J. Glover, G. W. Flake, S. Lawrence, W. P. Birmingham, A. Kruger, C. L. Giles

and D. M. Pennock. Improving category specific Web search by learning query
modifications. In Proceedings of the 2001 Symposium on Applications and the
Internet, pp. 23-32, 2001.

[GLGB01] E. J. Glover, S. Lawrence, M. D. Gordon, W. P. Birmingham and C. L. Giles. Web

search-your way. Communications of the ACM, vol. 44(12), pp. 97-102, 2001.

[GKK01] K.-I. Goh, B. Kahng and D. Kim. Spectra and eigenvectors of scale-free networks.

Physical Review. E, Statistical, Nonlinear, And Soft Matter Physics, vol. 5, part1, art.
no. 051903, 2001.

[GOJK02] K.-I. Goh, E. Oh, H. Jeong, B. Kahng and D. Kim. Classification of scale-free

networks. Proceedings Of The National Academy Of Sciences Of The United States
Of America, vol. 99(20), pp. 12583-12588, 2002.

[GKK03] K.-I. Goh, B. Kahng and D. Kim. Packet transport and load distribution in scale-free

network models. Physica A: Statistical Mechanics and its Applications, vol. 318(1-
2), pp. 72-79, 2003.

[GT00] R. Govindan and H. Tangmunarunkit. Heuristics for Internet map discovery. In

Proceedings of the IEEE INFOCOM 2000. Conference on Computer

153

Communications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064), pp. 1371-1380, 2000.

[GGZ04] G. Greco, S. Greco and E. Zumpano. Web communities: models and algorithms.

World Wide Web, vol. 7(1), pp. 59-82, 2004.

[GDDG03] R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt and A. Arenas. Self-similar

community structure in a network of human interactions. Physical Review. E:
Statistical, Nonlinear, And Soft Matter Physics, vol. 6, art. no. 065103, 2003.

[GD02] P. Gupta and N. Deo. Analysis of graph-theoretic models for the world wide web.

Proceedings of the Thirty-third Southeastern International Conference on
Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2002), vol. 158, pp.
99-107, 2002.

[GD03] P. Gupta and N. Deo. Diameter of a random graph and its implications for the web

graph. Congressus Numerantium, vol. 160, pp. 109-116, 2003.

[Hak62] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear

graph. J. Soc. Indust. Appl. Math., vol. 10, pp. 496-506, 1962.

[HHH03] T. W. Haynes, S. T. Hedetniemi and M. A. Henning. Global defensive alliances in

graphs. Electron. J. Combin., vol. 10, pp. Research Paper 47, 13 (electronic), 2003.

[Hen03] M. R. Henzinger. Algorithmic challenges in web search engines. Internet Math., vol.

1(1), pp. 115-123, 2003.

[HKKS04] J. Hopcroft, O. Khan, B. Kulis and B. Selman. Tracking evolving communities in

large linked networks. In Proceedings of the National Academy Of Sciences Of The
USA, pp. 5249-5253, 2004.

[HZ03] J. Hou and Y. Zhang. Utilizing hyperlink transitivity to improve web page clustering.

In Proceedings of the 14th Australasian Database Conference on Database
Technologies 2003 (CRPITS'17), pp. 49-57, 2003.

[IK04] N. Imafuji and M. Kitsuregawa. Finding Web communities by maximum flow

algorithm using well-assigned edge capacities. IEICE Transactions on Information
and Systems, vol. E87-D(2), pp. 407-415, 2004.

[IMKZ03] S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv and U. Alon. Subgraphs in random

networks. Physical Review. E: Statistical, Nonlinear, And Soft Matter Physics, vol.
2, art. no. 026127, 2003.

[JKLP93] S. Janson, D. E. Knuth, T. Łuczak and B. Pittel. The birth of the giant component.

Random Structures Algorithms, vol. 4(3), pp. 231-358, 1993.

154

[JLR00] S. Janson, T. Łuczak and A. Ruciński. Random graphs. New York: John Wiley,
2000.

[Jor65] C. Jordan. Calculus of finite differences, 3rd ed. New York, NY: Chelsea Publishing

Company, 1965.

[JN03] P. Juyong and M. E. J. Newman. Origin of degree correlations in the Internet and

other networks. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),
vol. 2, art. no. 26112, 2003.

[KIMA04] N. Kashtan, S. Itzkovitz, R. Milo and U. Alon. Efficient sampling algorithm for

estimating subgraph concentrations and detecting network motifs. Bioinformatics
(Oxford, England), vol. 20(11), pp. 1746-1758, 2004.

[KL70] B. W. Kerrnighan and S. Lin. An efficient heuristic for graphs. Bell Systems Tech. J.,

vol. 49, pp. 291-307, 1970.

[Kes63] M. Kessler. Bibliographic coupling betweeb scientific papers. American

Documentation, vol. 14, pp. 10-25, 1963.

[Kle00] J. Kleinberg. The small-world phenomenon: an algorithmic perspective. In

Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 163-
170, 2000.

[KKRR99] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan and A. S. Tomkins. The

web as a graph: measurements, models, and methods. Computing and combinatorics
(Tokyo, 1999), vol. 1627, pp. 1-17, 1999.

[KE02a] K. Klemm and V. M. Eguíluz. Growing scale-free networks with small-world

behavior. Physical Review. E, Statistical, Nonlinear, And Soft Matter Physics, vol. 5,
part 2, art. no. 057102, 2002.

[KE02b] K. Klemm and V. M. Eguíluz. Highly clustered scale-free networks. Physical

Review. E, Statistical, Nonlinear, And Soft Matter Physics, vol. 3, part 2a, art. no.
036123, 2002.

[KR01] P. L. Krapivsky and S. Redner. Organization of growing random networks. Physical

Review. E, Statistical, Nonlinear, And Soft Matter Physics, vol. 63(6, part 2), art. no.
066123, 2001.

[KRR01] P. L. Krapivsky, G. J. Rodgers and S. Redner. Degree distributions of growing

networks. Physical Review Letters, vol. 86(23), pp. 5401-5404, 2001.

[KR03] P. L. Krapivsky and S. Redner. Rate equation approach for growing networks.

Statistical Mechanics of Complex Networks. 18th Sitges Conference, pp. 3-22, 2003.

155

[BBHK98] Krishna Bharat, Andrei Broder, Monika Henzinger, P. Kumar and S.
Venkatasubramanian. The Connectivity Server: fast access to linkage information on
the Web. Computer Networks and ISDN Systems, vol. 30(1-7), pp. 469-477, 1998.

[KHH04] P. Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi. Alliances in graphs. J.

Combin. Math. Combin. Comput., vol. 48, pp. 157-177, 2004.

[KRRT99] R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. Trawling the Web for

emerging cyber-communities. Computer Networks, vol. 31(11-16), pp. 1481, 1999.

[KRRS00] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins and E. Upfal.

Stochastic models for the Web graph. In Proceedings of the 41st Annual Symposium
on Foundations of Computer Science, pp. 57-65, 2000.

[KMS04] R. Kumar, U. Mahadevan and D. Sivakumar. A graph-theoretic approach to extract

storylines from search results. In KDD '04: Proceedings of the 2004 ACM SIGKDD
international conference on Knowledge discovery and data mining: ACM Press, pp.
216-225, 2004.

[LG00] S. Lawrence and C. L. Giles. Accessibility of information on the web. Intelligence,

vol. 11(1), pp. 32-39, 2000.

[LPFK01] S. Lawrence, D. M. Pennock, G. W. Flake, R. Krovetz, F. M. Coetzee, E. Glover, F.

A. Nielsen, A. Kruger and C. L. Giles. Persistence of Web references in scientific
research. Computer, vol. 34(2), pp. 26-31, 2001.

[LD04] B. Litow and N. Deo. Graph Compression and Zeros of Polynomials. Information

Processing Letters, vol. 92, pp. 39-44, 2004.

[LDC04] B. Litow, N. Deo and A. Cami. Compression of Vertex Transitive Graphs. In

Proceedings of the 35th Southeastern International Conference on Combinatorics,
Graph Theory and Computing (Congressus Numerantium, vol. 167), pp. 161-173,
2004.

[Luc98] T. Łuczak. Random trees and random graphs. Random Structures & Algorithms, vol.

13, pp. 485-500, 1998.

[MW97] B. D. McKay and N. C. Wormald. The degree sequence of a random graph. I. The

models. Random Structures & Algorithms, vol. 11(2), pp. 97-117, 1997.

[MPS04] F. Menczer, G. Pant and P. Srinivasan. Topical web crawlers: Evaluating adaptive

algorithms. ACM Trans. Inter. Tech., vol. 4(4), pp. 378-419, 2004.

[MSIK02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon. Network

motifs: simple building blocks of complex networks. vol. 298(5594), pp. 824-827,
2002.

156

[MSIK02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon. Network

motifs: simple building blocks of complex networks. Science, vol. 298(5594), pp.
824-827, 2002.

[MIKL04] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer

and U. Alon. Superfamilies of evolved and designed networks. Science, vol.
303(5663), pp. 1538-1542, 2004.

[Mit04] M. Mitzenmacher. A brief history of generative models for power law and lognormal

distributions. Internet Math., vol. 1(2), pp. 226-251, 2004.

[MR95] M. Molloy and B. Reed. A critical point for random graphs with a given degree

sequence. Random Structures Algorithms, vol. 6(2-3), pp. 161-179, 1995.

[MR98] M. Molloy and B. Reed. The size of the giant component of a random graph with a

given degree sequence. Combin. Probab. Comput., vol. 7(3), pp. 295-305, 1998.

[MN00] C. Moore and M. E. Newman. Exact solution of site and bond percolation on small-

world networks. Physical Review. E, Statistical Physics, Plasmas, Fluids, And
Related Interdisciplinary Topics, vol. 62(5, part b), pp. 7059-7064, 2000.

[NMW00] M. E. Newman, C. Moore and D. J. Watts. Mean-field solution of the small-world

network model. Physical Review Letters, vol. 84(14), pp. 3201-3204, 2000.

[New01] M. E. Newman. Clustering and preferential attachment in growing networks.

Physical Review. E: Statistical, Nonlinear, And Soft Matter Physics, vol. 2, part 2,
art. no. 025102, 2001.

[NSW01] M. E. Newman, S. H. Strogatz and D. J. Watts. Random graphs with arbitrary degree

distributions and their applications. Physical Review. E, Statistical, Nonlinear, And
Soft Matter Physics, vol. 64(2, part 2), art. no. 026118, 2001.

[NW99] M. E. J. Newman and D. J. Watts. Renormalization group analysis of the small-

world network model. Phys. Lett. A, vol. 263(4-6), pp. 341-346, 1999.

[New03a] M. E. J. Newman. Mixing patterns in networks. Physical Review. E (Statistical,

Nonlinear, And Soft Matter Physics), vol. 2, part 2, art. no. 026126, 2003.

[New03b] M. E. J. Newman. The structure and function of complex networks. SIAM Review,

vol. 45(2), pp. 167-256, 2003.

[New04] M. E. J. Newman. Fast algorithm for detecting community structure in networks.

Physical Review. E, Statistical, Nonlinear, And Soft Matter Physics, vol. 69(6, part
2), art. no. 066133, 2004.

157

[PBMW98] L. Page, S. Brin, R. Motwani and T. Winograd. The Pagerank citation ranking:
Bringing order to the web. Stanford Digital Library Technologies Project, Technical
Report 1998.

[PS00] C. R. Palmer and J. G. Steffan. Generating network topologies that obey power laws.

In Proceedings of the Globecom'00 - IEEE Global Telecommunications Conference.
Conference Record (Cat. No.00CH37137), pp. 434-438, 2000.

[Pal85] E. M. Palmer. Graphical evolution. New York: Wiley, 1985.

[Pel01] M. Pelillo. Heuristics for maximum clique and independent set. In Encyclopedia of

optimization, vol. 2, C. A. Floudas and P. M. Pardalos, (Eds.): Kluwer Academic
Publishers, pp. 411-423, 2001.

[PFLU00] A. Popescul, G. W. Flake, S. Lawrence, L. H. Ungar and C. L. Giles. Clustering and

identifying temporal trends in document databases. In Proceedings of the IEEE
Advances in Digital Libraries 2000, pp. 173-182, 2000.

[RCCL04] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto and D. Parisi. Defining and

identifying communities in networks. In Proceedings of the National Academy Of
Sciences Of The USA, pp. 2658-2663, 2004.

[RG03] S. Raghavan and H. Garcia-Molina. Representing Web graphs. In Proceedings of the

19th International Conference on Data Engineering (Cat. No.03CH37405), pp. 405-
416, 2003.

[RC02] A. Ranganathan and R. H. Campbell. Advertising in a pervasive computing

environment. In Proceedings of the 2nd International Workshop on Mobile
Commerce (WMC '02), pp. 10-14, 2002.

[RC02] A. Ranganathan and R. H. Campbell. Advertising in a pervasive computing

environment. In Proceedings of the 2nd International Workshop on Mobile
Commerce (WMC '02), pp. 10-14, 2002.

[RK02] P. K. Reddy and M. Kitsuregawa. An approach to relate the Web communities

through bipartite graphs. In Proceedings of the 2nd International Conference on Web
Information Systems Engineering, pp. 301-310, 2002.

[SW04] T. Schank and D. Wagner. Approximating the clustering coefficient and transitivity.

University of Karlsruhe, Technical Report 2004-9, 2004.

[SCBB02] N. Schwartz, R. Cohen, D. Ben-Avraham, A. L. Barabási and S. Havlin. Percolation

in directed scale-free networks. Physical Review. E (Statistical, Nonlinear, And Soft
Matter Physics), vol. 1, part 2, art. no. 015104, 2002.

[Sma73] H. Small. Co-citation in the scientific literature: A new measure of the relationship

158

between two documents. J. Am. Soc. for Inf. Sci., vol. 24(4), pp. 265-269, 1973.

[SAK02] G. Szabó, M. Alava and J. Kertész. Shortest paths and load scaling in scale-free

trees. Physical Review. E, Statistical, Nonlinear, And Soft Matter Physics, vol. 66(2,
part 2), art. no. 026101, 2002.

[SAK03a] G. Szabó, M. Alava and J. Kertész. Structural transitions in scale-free networks.

Physical Review. E, Statistical, Nonlinear, And Soft Matter Physics, vol. 5, Part 2,
art. no. 056102, 2003.

[SAK03b] G. J. Szabó, M. Alava and J. Kertész. Geometry of minimum spanning trees scale-

free networks. Physica A, vol. 330(1-2), pp. 31-36, 2003.

[TOSK03] T. Tomiyama, R. Ohgaya, A. Shinmura, T. Kawabata, T. Takagi and M. Nikravesh.

Concept-based Web communities for Google TM search engine. In Proceedings of
the 12th IEEE International Conference on Fuzzy Systems (Cat. No.03CH37442),
pp. 1122-1128, 2003.

[VPV02] A. Vazquez, R. Pastor-Satorras and A. Vespignani. Large-scale topological and

dynamical properties of the Internet. Physical Review. E (Statistical, Nonlinear, And
Soft Matter Physics), vol. 6, part 2, art. no. 066130, 2002.

[Vaz03] A. Vazquez. Growing Networks with Local Rules: Preferential Attachment,

Clustering Hierarchy and Degree Correlations. Physical Review E (Statistical,
Nonlinear, And Soft Matter Physics), vol. 67, art. no. 056104, 2003.

[WF94] S. Wasserman and K. Faust. Social network analysis: methods and applications.

Cambridge; New York: Cambridge University Press, 1994.

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of 'small-world' networks.

Nature, vol. 393(6684), pp. 440-442, 1998.

[Wat03] D. J. Watts. Six degrees: the science of a connected age. New York, NY: W.W.

Norton, 2003.

[Wil90] H. S. Wilf. generatingfunctionology. Boston: Academic Press, 1990.

[WH04] F. Wu and B. Huberman. Finding communities in linear time: a physics approach.

European Physical Journal B, vol. 38(2), pp. 331-338, 2004.

[WCS04] K.-J. Wu, M.-C. Chen and Y. Sun. Automatic topics discovery from hyperlinked

documents. Inf. Process. Manage., vol. 40(2), pp. 239-255, 2004.

[YJB02] S.-H. Yook, H. Jeong and A.-L. Barabási. Modeling the Internet's large-scale

topology. Proceedings Of The National Academy Of Sciences Of The United States
Of America, vol. 99(21), pp. 13382-13386, 2002.

159

[YJBT01] S. H. Yook, H. Jeong, A. L. Barabási and Y. Tu. Weighted evolving networks.

Physical Review Letters, vol. 86(25), pp. 5835-5838, 2001.

[Zac77] W. W. Zachary. An information flow model for conflict and fission in small groups.

Journal of Anthropological Research, vol. 3, pp. 452-473, 1977.

[ZD03] Y. Zhang and N. Deo. Expected Value of the Diameter of a Random Graph.

Congressus Numerantium, vol. 161, pp. 211-221, 2003.

	Analyzing The Community Structure Of Web-like Networks: Models And Algorithms
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS
	1. INTRODUCTION
	1.1. Terminology and Basic Definitions
	1.2. The Concept of Random Graph
	1.3. Some Experimental Studies of Web-like Networks

	2. RANDOM GRAPH MODELS
	2.1. Static Random Graphs
	2.2. Dynamic Random Graphs
	2.3. Some Techniques for Analyzing Dynamic Random Graphs

	3. PROPOSED BIRTH-DEATH DYNAMIC RANDOM GRAPH MODEL
	3.1. Number of Nodes
	3.2. Number of Edges
	3.3. Degree Distribution in the First Neighborhood of the Deleted Node
	3.4. Degree Distribution

	4. THE NOTION OF COMMUNITY
	4.1. Some Graph-Theoretic Problems Related to Community-Mining
	4.2. Graph-theoretic Definitions of Community
	4.3. Computational Complexity of Community Mining

	5. COUNTING COMMUNITIES IN WEB-LIKE NETWORKS
	5.1. Subgraph Counting in Dynamic Random Graph Models
	5.2. Counting Communities by Trawling
	5.3. Estimating the Density of Communities by Sampling

	6. EXISTING ALGORITHMS FOR COMMUNITY MINING
	6.1. Algorithms Based on Hierarchical Clustering
	6.2. Algorithms Based on Spectral Analysis
	6.3. Algorithms based on Flows
	6.4. Other community-mining algorithms

	7. PROPOSED ALGORITHMS FOR COMMUNITY MINING
	7.1. Description of the Algorithms
	7.2. Experimental Results

	8. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
	APPENDIX: WEB RESOURCES AND SOFTWARE TOOLS
	LIST OF REFERENCES

