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1 ABSTRACT 

Quadratic spatial soliton interactions were investigated in this Dissertation. The first part 

deals with characterizing the principal features of multi-soliton generation and soliton self-

reflection. The second deals with two beam processes leading to soliton interactions and 

collisions. These subjects were investigated both theoretically and experimentally. 

The experiments were performed by using potassium niobate (KNBO3) and periodically 

poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for 

these experiments because of their large nonlinear coefficients and, more importantly, because 

the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The 

single soliton generation measurements, performed on KNBO3 by launching the fundamental 

component only, showed a broad angular acceptance bandwidth which was important for the 

soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation 

was observed for the first time. The influence on the multi-soliton patterns generated of the input 

intensity and beam symmetry was investigated. The combined experimental and theoretical 

efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton 

patterns. 

Another research direction pursued was intensity dependent soliton routing by using of a 
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specially engineered quadratically nonlinear interface within a periodically poled KTP sample. 

This was the first time demonstration of the self-reflection phenomenon in a system with a 

quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton 

routing and manipulation by engineered structures. 

A detailed investigation was conducted on two soliton interaction and collision processes. 

Birth of an additional soliton resulting from a two soliton collision was observed and 

characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 

30 degrees rotation, was measured in the experiments performed. The parameters relevant for 

characterizing soliton collision processes were also studied in detail. Measurements were 

performed for various collision angles (from 0.2 to 4 degrees), phase mismatch, relative phase 

between the solitons and the distance to the collision point within the sample (which affects 

soliton formation). Both the individual and combined effects of these collision variables were 

investigated. 

Based on the research conducted, several all-optical switching scenarios were proposed. 
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1 CHAPTER ONE: INTRODUCTION 
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1.1 Motivation 

Even though the work covered here is of fundamental research character the strong bonds 

with applications, or better to say potential applications, were in the background of the work. 

Optical solitons (Kerr [1, 2, 3, 4, 5], saturable Kerr [6, 7], photorefractive [8, 9, 10] and quadratic 

nonlinear systems [11, 12]) an interesting and intriguing consequence of nonlinear material 

properties, recently have attracted quite a lot of attention. Of great interest for the research field 

and the corresponding technology are Kerr and quadratic nonlinear systems. Ultrafast, “instant” 

material response makes these nonlinear systems unbeatable from the point of speed of 

“operation”. Within this “ultrafast” concept a special place belongs to the spatial solitons. 

Having particle-like behavior in the interactions and collisions, optical solitons offer great 

potential for performing ultrafast all-optical switching or even computations [13].  

 Among all of effects that optical solitons offer, soliton collisions are considered to be 

very promising as basic blocks for performing switching and/or computing operations. The 

concept is illustrated in Figure 1.1. The basic process, a single collision event, as shown in 

  
 



Figure 1.1a, relies on the fact that solitons change flavor (amount of red versus blue component, 

as shown on the schematic) in collisions. The solitons coming from the first stage of the 

interaction can be used in the next stage of the interactions as well. Eventually one could form a 

parallel sequential computational tool based on soliton collisions, as illustrated in Figure 1.1b. A 

number of solitons launched from the right side sequentially collide with the solitons coming 

from the left. Each previous stage of the interactions will influence the current one due to the 

changes in the solitons’ flavor. Obviously everything relies on the properties of a single collision 

process. Therefore, this work naturally concentrated on investigating this most basic building 

block and most important step.  

 

output solitons 

incident solitons 

b)a)  

Figure 1.1: Ultrafast computing schematic is shown. a) The basic computational operation 
consists of a single soliton collision process. The collision outcome is recognized based on the 
changes in two soliton components (red and blue) b) Realization of multiple collisions used as 
parallel sequential computational tool  
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1.2 Why quadratic solitons?  

Historically the science of optical solitons started soon after the experimental discovery of 

second harmonic generation (SHG), one of the first nonlinear processes in optics [14]. A 

theoretical explanation of the effect came soon afterward [15]. It was recognized in 1974 that 

processes leading to SHG can result in light self-confinement, leading to development of 

theoretical solutions named quadratic optical spatial solitons. However, almost at the same time 

as the development of the SHG story came the discovery of Kerr solitons (light self action in 

1964 [16] and optical solitons in 1968 [17] and 1973 [18]) leading the nonlinear optics 

community into this direction. Kerr solitons require only one spectral component or beam. 

Moreover, the incident Gaussian beam input is relatively close to the sech(x) type of the soliton 

solution supported in Kerr systems. Therefore one would expect those types of solitons to be 

experimentally “easy” to generate. Availability of analytical expressions for Kerr solitons was 

another attractive aspect [17]. The final result was a relatively fast development of Kerr soliton 

science and postponement of quadratic solitons’ development.    

A very brief development of the optical soliton science (considering χ(2) and χ(3) 

nonlinearities only) is given in Figure 1.2. There is a large gap, indicated on the time chart as 

well, between the theoretical predictions and a series of the experimental observations of optical 

solitons even though the first observation was reported by Bjorkholm and Ashkin in the 1970s 

[19], however they did not call the observed features solitons. 
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Figure 1.2: Simplified time line of χ(2) (bottom) and χ(3) (top) soliton research development. 

 

Also one could ask why was it necessary to go into “tedious” quadratic soliton research, at 

least considering optical switching and computation, if we already had some of the effects 

demonstrated within Kerr solitons research. An important reason definitely lies in the order of 

nonlinearity. Using χ(2) instead of χ(3) immediately implies at least an order of magnitude 

decrease in power requirements. Also, even though quadratic solitons are more complex to 

generate than Kerr solitons, they also inherently offer two component configurations by having 

confined into a single soliton fundamental and second harmonic beams. However, dealing with 

quadratic solitons brings some complications like laser bandwidth and material and configuration 

requirements. Those will be discussed in more details later. 
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1.3 Scope of research 

With the development of high power, ultrafast tunable laser systems, quadratic nonlinear 

crystals have become widely available for nonlinear optics experiments and spatial solitons have 

emerged as one of the most intriguing nonlinear effects. The research work discussed in this 

Dissertation concentrated on investigating quadratic spatial soliton generation and their 

interaction properties in bulk, (2+1)D systems. In order to later perform soliton interaction 

experiments a set of measurements on characterization of the soliton properties in the vicinity of 

NCPM was necessary. Multi-soliton generation occurred at high input intensities. This feature 

had not been previously reported in the quadratic soliton experiments in lithium niobate [12] and 

KTP [11] and the discovery stimulated extensive theoretical and experimental studies of the 

phenomena [20, 21, 22, 23]. This work is discussed in chapter 5.Another topic of the Dissertation 

research concentrated on soliton self-reflection which required a specially designed double-QPM 

PPKTP sample. The idea of intensity dependent beam routing, steering or simply reflecting dates 

back to the 1980s when intensity dependent reflection and transmission at an interface between 

two different Kerr media were experimentally investigated [24]. However in the experiments 

performed, the very small incident angles required dramatically limited the success of the 

experiment. On the other hand, the nonlinearity of a quadratic crystal can be modified in the 

sample fabrication process, finally resulting in a specially designed structure with modified 

nonlinear properties but completely unchanged linear properties. The idea of realizing soliton 

intensity dependent reflections in quadratic systems comes from the 1990s [25]. The first 

successful experimental realization of the phenomena is discussed in the Chapter 6 of this work. 

  
 



Soliton collisions are one of the most intriguing topics in the spatial soliton field. 

Quadratic spatial soliton collisions were previously performed in only a very limited number of 

configurations, typically discussing only 0 and π relative phase [26, 27, 28]. Very detailed 

relative phase scans of soliton collision results are discussed here. The collision processes were 

investigated for various conditions (soliton formation, phase mismatch and collision angle). In 

addition, the birth of an additional soliton in a two soliton interaction process was observed in a 

non-planar quadratic soliton collision configuration for the first time. The only reported similar 

case was in 1997 for photorefractive solitons [29]. The feature, as discussed in this Dissertation, 

has potential to be used for all optical switching. These topics are covered in chapters 7 and 8. 

In brief summary, this Dissertation is organized as follows. 

Chapter 2 provides a brief overview of the basic concepts of quadratic nonlinear systems. 

Starting from the basic nonlinear polarization, the parametric equations, second harmonic 

generation under various conditions and finally the details of phase matching techniques are 

discussed. Most of the basic mathematical formalism needed for the later discussions is given in 

this chapter as well.  

In Chapter 3 the laser system components are introduced and reviewed. The system 

consists of two units: a solid state laser and a tunable light conversion unit (OPG-OPA) pumped 

by the laser. The resulting tunable source OPG-OPA was used in the potassium niobate 

experiments and the Nd:YAG laser alone for the PPKTP experiments. The main features which 

facilitated the experiments, along with the drawbacks are discussed. Some of the evolving new 

system solutions, regarding the problems with the current laser, are introduced. 

 

6 

 
  
 



In Chapter 4 the theoretical basics of quadratic spatial solitons are given. In this chapter 

the spatial soliton concept is introduced and discussed along with the limiting Kerr soliton case. 

The main segments of the BPM numerical simulation tool are outlined. 

Chapter 5 is dedicated to the single input beam nonlinear processes in potassium niobate. 

The material system is introduced and the details of the experimental setup, light source and 

measurements conditions are given. The single soliton generation properties and conditions are 

discussed. Once the input intensity is increased enough, multiple solitons are generated as 

reported in this chapter. The dependence of the multi-soliton generation on the input beam 

intensity and shape is investigated. The various multi-soliton patterns observed in the experiment 

are shown and interpreted theoretically. Based on the reported measurements the necessary 

conditions for the other experiments discussed in this Dissertation were established. 

A periodically poled KTP sample, with a specially engineered quadratically nonlinear 

interface at the boundary between two quasi-phase-matched regions, was used to demonstrate 

intensity dependent reflections. The details of the experiments performed along with the results 

of the numerical simulations are given in Chapter 6. Some theoretical concepts on the self-

reflection phenomenon are also introduced. The chapter also deals with the general PPKTP 

properties, concentrating on the properties of the sample used in the experiments. The properties 

and sample design are given. 

Some general theoretical basics of quadratic soliton interactions and collisions are briefly 

introduced in Chapter 7. One whole section is dedicated to the experimental setup, discussing in 

detail the setup components. In fact the setup design was one of the most important factors in 

performing these soliton collision experiments. The work reported in this chapter was 
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concentrated on two configurations: nearly co-parallel solitons and solitons colliding at an angle 

of 0.90. The first configuration was sued to demonstrate fusion, repulsion and energy transfer 

processes. In the colliding section of the chapter the generation of an additional soliton upon 

collision is reported. Details on the additional soliton generation are given. Spiraling effects 

observed are reported in this chapter as well. The potential for applications of the observed 

effects is emphasized. 

Chapter 8 describes various detailed aspects of the soliton collision experiments 

performed in PPKTP. Because of the finite sample sizes used in spatial soliton experiments, 

namely only a few diffraction lengths, it was not clear what the optimum conditions for studying 

interactions were. The outcome of a collision process can depend on the distance of the collision 

from the input facet, even if the other experimental conditions are kept the same. The effect is 

related to the distance required for a soliton to form when only the fundamental component is 

inputted. There is a minimum distance needed to generate the required harmonic. In addition, the 

effects of phase mismatch were investigated. The chapter also contains an investigation of the 

dependence of the output distribution from the soliton on the collision angle. The effects of these 

soliton collision variables were investigated for various input phase differences between the 

propagating beams.  

 In chapter 9 the main results of this thesis are summarized. 
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2 CHAPTER TWO: INTRODUCTION TO QUADRATIC NONLINEAR 
PHENOMENA 

9 

 

2.1 Nonlinear Polarization 

One could say that in any optical system, no matter the complexity and number of the 

components involved, all possible outcomes can be predicted based on the Maxwell’s equations. 

This could be considered to be canonically true if one is searching for new fundamental roles that 

have the potential to forever change the way we see the world. Even though optics “cannot offer” 

this kind of challenge it definitely has its own hidden surprises. In addition it has a great 

advantage in being able to visually show behavior that in the other scientific domains and fields 

remain buried deep in the physical systems themselves and can be seen only as a cause of some 

other “macroscopic” property. 

Particularly interesting features in optics can be found in systems with nonlinear 

properties, as we will see in the following chapters. To introduce a basic nonlinear optics concept 

consider the nonlinear system polarization as a power series in electric field. Therefore the 

polarization can be written in the following way 
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Here,  are polarization and electric field respectively. The terms associated with 

 are the linear, second and third order susceptibility tensors, respectively. 

 are treated here as vector quantities while the optical susceptibilities ( ) are here 

considered in their most general form, as tensors. The second term (quadratic nonlinearity) in the 

equation is responsible for the most of the features discussed in this work. Because of the 

symmetry reasons associated with this term it can exist only in non-centrosymmetric mediums. 

On the other hand, the third term (third order nonlinearity) has no such limitations. However the 

influence of  on an optical system is an order of magnitude weaker than the quadratic term 

effects. Typically whenever a quadratic term is nonzero the effects of the third order 

susceptibility can be neglected to first order. The polarization, as described by (2.1), can now be 

inserted into the wave equation 
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After neglecting the higher order terms we are left with only linear and quadratic terms. 

Second harmonic generation (SHG), sum (SFG) and difference frequency generation (DFG) 

result from the quadratic nonlinear term. Historically SHG was among the first discovered 

nonlinear effects [1]. A theoretical explanation of the phenomena came in 1962 [2]. 
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2.2 SVEA and Second order processes 

Before going into a more detail discussion of the previously mentioned quadratic nonlinear 

terms, the slow varying envelope approximation (SVEA) will be introduced, a very important 

approach in the treatment of the nonlinear phenomenon. For a more detailed description of 

SVEA see ref. [3]. SVEA is a central point of the theoretical quadratic soliton approach in this 

work. It is based on the assumption that the propagating electric field envelope changes slowly 

with propagation distance z. In a more mathematical form this assumption is given as 
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Here z is propagation direction, the electric field is defined as 

))(exp(),,(),,( 0 tkzizyxEzyxE ω−=  and k is the corresponding wavevector. The details on the 

beam dynamics along x and y directions is not consider here although for large z the solution 

should become z independent and localized in x and y. This gives us the final form for SVEA 
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In principle most of the theoretical analyses in the quadratic soliton field are given within the 

scope of this equation. Of course once the applied electric field is strong enough to cause rapid 

changes in the electric field envelope with propagation through a nonlinear media, one has to use 

the full form Maxwell equations rather than SVEA. However, even in that case the SVEA 

approach is often a good starting point. 

  

  
 



Consider more closely the processes contained within the interaction of an optical field 

( E
r

 ) with a quadratic media, defined with )2(χ
t

. A two frequency component electric field in its 

simplest form can be written as 
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The resulting quadratic nonlinear polarization has several terms 
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Here the first two terms containing 2ω1,2 are the SHG terms (also called frequency doubling). 

They are followed by the SFG 21 ωω +  and DFG 21 ωω −  terms. The last bracket in the equation 

(2.6) is the so called optical rectification term (OR). The equation (2.6) is written as a scalar 

equation with the χ(n) considered being scalar material constants rather than tensors. However 

this simplification does not change the basic nature of the listed terms and their dependence on 

the individual frequencies. These terms can be easily extended to the tensor susceptibilities 

version of the equation (2.6). In principle the SHG is the most often used to double frequency of 

a light source in order to get a shorter wavelength output. In this way one can get for instance 

532nm output from a standard 1064nm Nd:YAG laser. 
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2.3 Up- and Down-conversion processes 

 In order to introduce a set of the coupled equations responsible for up and down- 

conversion processes, consider a nonlinear optical system with two beams in the system (see [3], 

[4] for more details). We call the beams fundamental beam (FW), frequency ω , and second 

harmonic (SH), optical frequency ω2 . The assumption is that the beams satisfy SVEA 

conditions. Therefore the evolution of the electric fields with propagation along z is given with 

the set of the coupled equations 
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=∇ and )2()(22 ωω kkkkk SHFW −=−=∆  is the so called, phase mismatch. If 

the phase mismatch is zero then the FW and SH waves have equal phase velocities.  depends 

on refractive index dispersion and therefore is wavelength, material temperature and propagating 

beam polarization dependent (in the case of anisotropic crystals, which is typically the case here). 

The first equation describes down- conversion and the second one up-conversion. In the process 

of up-conversion one 

k∆

ω2 photon (SH) is generated. In the down-conversion one ω2 and one ω  

photon generate one FW ω photon. Polarization information is implicitly included in the coupled 

equations through the coefficients. In its full form the quadratic nonlinear susceptibility 

tensor would be written as 

effd

).,,( 21 ωωωχ −ijk  Here the i,j,k stand for the resulting and the two 

incident electric field polarization directions, respectively. The same with the frequencies, ω  is 

  
 



the frequency of the resulting wave, while 2,1ω  are associated with the input waves. To make it 

easier to understand the nature of this notation assume that the two incident waves with 

frequencies 21  ,ωω are polarized along the x and y directions respectively. The resulting nonlinear 

polarization is given with )()(),,( 21210 ωωωωωχε yxixyi EEP −= where i can be x, y or z. Typically 

most of the susceptibility tensor elements are equal to zero so that only one polarization 

component is finally generated. Therefore it comes naturally to define the effective d coefficient 

(deff) as 

)(ˆ)(ˆ),,(
2
1)(ˆ 2121 ωωωωωχω eeedeff ×−×=
t   (2.8) 

Here the susceptibility tensor is sandwiched between the incident and resulting unit polarization 

vectors. deff quantifies the potential efficiency of the ongoing nonlinear process. A typical 

number for deff of “a good nonlinear material” is around 10pm/V, slightly varying with 

configurations (incident and resulting polarizations) and nonlinear media properties. 

The susceptibility tensor has two more properties that strongly influence nonlinear 

behavior. The concept of intrinsic permutation symmetry is contained in the following 

expression: ).,,(),,( 1221 ωωωχωωωχ −=− ikjijk  In addition to this intrinsic symmetry, a so called 

full permutation symmetry exists under a lossless media approximation. It implies 

).,,(),,(),,( 122121 ωωωχωωωχωωωχ −−=−−=− kijjkiijk  In fact this implies  that if a system 

consists of the same frequency components no matter if the process is SFG or DFG, the 

associated nonlinear parameter is the same. If these symmetry rules are applied to the coupled 

equations (2.7) , which simplifies equations (2.7) to  SH
eff

FW
eff dd =
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where eff
FW

d
k

c 2)/(ω
=Γ and . )2/(1 FWkD =

2.4 SHG versus phase mismatch 

Consider a system which for an input beam has a FW component only. With propagation 

some SH is generated due to the up-conversion. However, if the amount of generated SH is much 

smaller than the FW component, the system can be considered to be in the low depletion limit. 

Physically that means that the FW component remains essentially unchanged with propagation. 

From the point of the coupled system (2.9) that would mean that the right side of the first 

equation (down-conversion process) is negligible due to the small amount of the existing SH. 

Assuming further that the beams in the system are plane waves the diffraction terms from the 

right side of the equations automatically vanish. Therefore .)( constzEFW =  The generated SH 

intensity is given with 
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Here the sinc(x) function is defined as sinc(x)=sin(x)/x. Therefore, if the phase-mismatch k∆  is 

zero the intensity of the generated SH grows quadratically with the propagation distance z in the 

nonlinear media. On the other hand it has an oscillatory behavior if .0≠∆k  In addition, with 

larger  the period of the oscillations with propagation decreases. k∆
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Figure 2.1: (left) SH generation with propagation distance for various phase mismatch 
parameters is shown. (right) sinc2 type of behavior is numerically demonstrated for phase 
matching dependent SH generation after 10mm of propagation  through a SH generation medium 
in the weak conversion limit. 

 

Figure 2.1 shows the calculated behavior of the SH generation with propagation distance 

for several different values of (left graph), and for a fixed propagation length the dependence 

on the phase mismatch (right graph). Obviously it is desirable to operate at small values of the 

phase mismatch to achieve an efficient SH generation. So far, only the low depletion limit was 

considered. However once the amount of converted FW becomes significant, depletion of FW 

has to be taken into account as well. The problem can be efficiently treated analytically at phase 

matching yielding a  dependence of the SH intensity increase and a  FW 

intensity decrease with propagation z. Here 

k∆

( PGlz /tanh ) ( )PGlz /sech

( ))0(/1 =Γ= zEl FWPG , representing a  FW 

intensity drop after propagation for a 

e/1

PGlz = distance through the SH generation medium. The 

non-phase matched case shows quite a complex behavior that can be described in the form of 
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Jacobi elliptic functions. The main features of the solution are that an increase in the input FW 

leads to a narrowing in bandwidth, an increase in SH generation side-lobes and an inward 

collapse of the side-lobes. Therefore it is very different from the low depletion behavior 

demonstrated in Figure 2.1(right side graph). 
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2.5 Large phase mismatch and effective Kerr approach 

 From the previous chapter it was shown that SHG is strongly influenced by the phase 

matching condition. Large phase mismatched configurations tend to generate low average 

intensity SH and with propagation this SHG undergoes very rapid intensity oscillations. 

Furthermore, the FW is never depleted significantly and one can solve the up-conversion 

equation from  (2.9) getting for the SH electric field 

.1)exp()( 2

k
kziEzE FWSH ∆

−∆
Γ=   (2.11) 

By substituting the calculated SH field into the down-conversion equation in (2.9) 
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Considering a large ∆k the conversions are very rapid and cos(∆kz)+isin(∆kz) averages out. 

Therefore the equation (2.12) becomes 
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This is a standard equation for a Kerr medium (third order nonlinear effect) with the difference 

  
 



that is both material and phase matching dependent, while in a real Kerr case it is only a 

material constant. Also, as can be seen from the definition of that it can be both positive and 

negative. Therefore, if one operates far from phase matching the system behaves as a Kerr 

medium with a tunable nonlinear coefficient. However the nonlinear coefficient drops with phase 

mismatch and higher intensity is required in order to get nonlinear effects at large phase 

mismatch.  

effn ,2

effn ,2
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2.6 Phase matching 

As discussed in details in the previous paragraphs, phase matching is a very important 

variable in quadratic nonlinear processes. Therefore it is important to know how to achieve a 

desired  value. From its definition k∆ ( )2()(2)2()(2 ωω )ωωω nn
c

kkk −=−=∆  it is obvious that 

because of material dispersion effects one cannot achieve )2()( ωω nn = . This is because in an 

isotropic medium far from a resonance phase matching cannot occur since only a single, 

monotonically decreasing, dispersion curve exists. However phase matching can be achieved 

under some specific conditions in uniaxial and biaxial crystals. This is so called birefringent 

phase matching. Another way would be to use a QPM (quasi-phase-matching) technique. For a 

review on the QPM technique see ref [5]. Birefringent phase matching and QPM techniques are 

not the only methods that can be used in satisfying 0=∆k  condition, however in this work only 

these two ways were used. 

  
 



2.6.1 Birefringent phase matching 

Birefringent phase matching relies on a correct combination between the beam 

polarizations and the orientation of the nonlinear medium in order to get .0=∆k  Historically this 

phase matching method was used in the first quadratic spatial soliton experimental observation 

[6]. In the simplest configuration, the so called Type I phase matching (Figure 2.2a), the FW and 

the SH are orthogonally polarized. Considering a uniaxial crystal and assuming an ordinary SH 

and an extraordinary FW, the phase matching can be achieved by tuning the incident beam angle. 

Technically this is realized by rotating the crystal itself. For this case the angle between the 

uniaxial crystal optical axis and the phase matching wavevector ( ) is given as: PMk

.
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)2()(
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0 ωω
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e

e
PM nn

nn
n
n
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−

=   (2.14) 

Obviously, the angle is completely determined by the material dispersion curves and fixed for a 

particular material by the choice of wavelength. In the same way one can consider a different 

configuration where the FW is ordinary and the SH extraordinary. The result for the PMθ  is 

almost identical.  

 Another birefringent phase matching configuration is the so called Type II phase 

matching (Figure 2.2b). Here the fact that two orthogonally polarized FW photons generate a 

single SH photon is used in manipulating k∆ . The equation [ ]),()(
2
1),2( 0 θωωθω ee nnn +=  

has to be satisfied in order to achieve the phase matching condition within a Type II 
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configuration if SH is an extraordinary wave, or [ ]),()(
2
1)2( 00 θωωω ennn +=  if it is an 

ordinary wave. In this work the Type I phase matching is used and therefore the details on the 

Type II configurations are not further discussed. 

 

Type I phasematching Type II phasematching 

λ1 λ1 λ2λ2

λ1 λ1
b) a) 

 

Figure 2.2: The birefringent phase matching configurations a) FW photons (λ1) are parallel b) 
orthogonal.  

 

NCPMCPM 
S(2ω) S(ω)S(2ω)

S(ω)

 2( ωk )
r

)(ωk
r

b)a)  

Figure 2.3: k vector ellipsoids are shown for the FW and the SH beam. a) Type I critical phase 
matching configuration (CPM) b) Type I noncritical phase matching (NCPM). Notice that in the 
NCPM the Pointing vectors (S(ω)for FW and S(2ω) for SH) are parallel while in the CPM case 
they are not. 
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wo major drawbacks usually connected with the birefringence phase matching 

ethod

 birefringent phase matching is noncritical phase matching 

 The t

m  are: a) sensitivity to temperature changes, which is especially prominent in the Type II 

configurations; and b) inability to take advantage of the largest terms of the )2(χ  nonlinear tensor 

which are usually the diagonal ones. 

 An important limiting case of

(NCPM). Within the phase matching concept the acceptance angle is defined as the deviation of 

the incident FW angle from the phase matching angle that still provides an efficient SHG. For 

the SHG response in Figure 2.1, the high conversion k∆  bandwidth extends to around 

π=∆± kL , where L is the SHG crystal length. Since )( θ∆∆k  is a function of θ∆ , where 

PMθθθ −=∆ , it is desirable to have a slow changing )( θ∆∆k  around the phase matching point 

0=∆θ . For a Type I configuration with an ordinary  wave the acceptance an SH gle is given with 

{ } ([ ] .2sin)()(
2

12
0

−
−≈∆ PMenn

L
c θωω
ω
π )θ   (2.15) 

The equation is valid as long as 0≠PMθ . In the case of noncritical phase matching ( 0=PMθ ) 

the index of refraction curves for the FW and the SH are tangential rather than crossed as they 

are for the critically phase matched configurations. Once the NCPM is achieved the acceptance 

angle changes to 

 ( ).)()(2 0 ωωω
πθ

ennL
c

−
≈∆   (2.16) 

Therefore typically NCPM has much wider acceptance angles. Another point is that in the 

NCPM configurations the wavevector directions are along the crystal axes and there is no spatial 

walk-off between the FW and the SH propagation directions (a consequence of their Pointing 

  
 



vectors being parallel). These two great advantages of NCPM make NCPM the most favorable 

configuration for performing the SHG and quadratic spatial soliton experiments [7]. 
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2.6.2 Temperature tuning and phase matching 

Material dispersion is always temperature dependent. Therefore it is possible by changing 

the ma

2.6.3 Quasi phase matching technique 

Another phase matching technique that is gradually becoming more popular is  quasi 

phase 

terial temperature to slightly shift the phase matching wavelength from its original “room 

temperature” phase matching value. This is a very common technique often used for fine tuning 

a configuration in the vicinity of its phase matching conditions. The tunable range is strongly 

material and phase matching type dependent. Typically Type II phase matching is an order of 

magnitude more sensitive to temperature changes than the NCPM configuration. 

matching (QPM). The technique was first suggested in 1962 [2], at the time of the 

discovery of SHG. However, because of the fabrication difficulties, the method was the first 

realized in 1980s [5]. It was based on artificial modification of the original nonlinear properties 

during the sample fabrication process.  
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Figure 2.4: a) A QPM sample is shown. The arrows indicate the domain orientation. Λ is the 
corresponding periodicity of the QPM structure. c indicates the optical axis of the crystal. The 
beams propagate along the x direction. The arrows associated with the beams indicate 
polarization directions. b) Periodic variation of deff along the sample is shown. It alternates 
between deff and - deff. c) The k(ω) and k(2ω) curves are shown. QPM translates one curve 
resulting in phase matching. Notice that the curves are tangential.  

 

The periodic structure shown in Figure 2.4 is a QPM. It has periodically flipped 

ferroelectric domains in the way indicated by the arrows. This can be achieved during the 

fabrication process by heating the sample to near the ferro-electric phase transition temperature 

(material dependent) and then applying a periodically patterned high voltage. After an 

appropriate period of time the applied voltage causes reorientation of the domains wherever the 

voltage is applied. After this process the domains remain identical except that the optical axes 

point in the opposite directions. The main challenge still remains the making of high quality 

sample, i.e. achieving uniformity across the sample and an unbroken QPM along the whole 

sample length. 

c)

  
 



 A mathematical background for the QPM technique is given in the following paragraph. 

Since d(x) changes periodically along the crystal we can decompose it into a Fourier series 

∑=
p

p ipKxdxd )exp()(          (2.17) 

Here K=2π/Λ. The coefficients dp can be easily found from (2.17) from the details of the d(x) 

dependence.  If we assume that the domains pointing upward and downward are of the same size, 

then only the odd terms in the series (2.17) remain. , where 

p=1,3,5,... . The right side of the equation (2.9) becomes 

)/()1(2 2/)1( πpdd p
effp

−−=

( )[ ]∑ +∆
p

Fp pKkiEd exp2 . Therefore if 

0~
=+∆=∆ pKkk  for a certain p the phase matching condition is satisfied. Because dp∝ p-1, one 

tends to achieve the phase matching condition for the smallest p values, primarily 1=p . Note 

that phase matching can be achieved at any desired wavelength. Therefore, the QPM technique 

makes available for nonlinear optics at convenient wavelengths materials which otherwise 

require using tunable laser systems. The most often used polarization configuration (with co-

polarized FW and SH), is the one shown in Figure 2.4a. This configuration is also sometimes 

called Type 0 phase matching configuration. Because at phase match the FW and the SH index 

of refraction curves are tangential (Figure 2.4c), this configuration satisfies NCPM conditions. It 

is also very beneficial to combine the QPM with the temperature tuning to get more variable 

system parameters. 
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3 CHAPTER THREE: LIGHT SOURCE 
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3.1 Picosecond Laser 

A commercial mode-locked picosecond Nd:YAG laser (EKSPLA PL2143A) was used as 

a light source in all of the experiments discussed in this work, either providing the laser beam for 

the experiments directly or serving as a pump laser for a tunable OPG-OPA. This unit is 

discussed in more detail in this chapter. 

 What follows is a brief overview of the working principles of the laser the schematic of 

which is reproduced in Fig. 3.1. A Nd:YAG rod (R1) pumped with the flash lamps enables the 

cavity to build up an oscillating optical field. The cavity is defined by a mirror M1 on the left 

side and a dye cell and a spherical mirror M5 on the right side.  The dye gives passive 

modelocking and is the component that requires the most frequent maintenance since the dye 

“age” is crucial for the laser output shot-to-shot energy stability. A single pulse of 25ps duration 

is formed and travels back and forth in the cavity. It is stabilized by two Pockels cells (PC1 and 

PC2). PC1 is modulated with a RF signal closely adjusted to the cavity round trip time. It works 

as a timed shutter forcing the oscillator to form a single pulse. This allows the oscillator to build 

  
 



up a low intensity stable oscillation for a well defined duration. Once the pulse is formed, the 

Pockels cell PC2 is activated, effectively working as a half wave plate. The polarization is 

flipped 900 causing a new cavity to be activated (whose left end is defined by the M2 mirror) 

once light is reflected by the polarizing beamsplitter P1. The previously formed pulse in the main 

cavity travels about 10 round trips in the new cavity gaining intensity until eventually the 

complete depletion of the population inversion occurs in the Nd:YAG rod. Once the pulse 

reaches a pre-set intensity it is extracted via Pockels cell PC3 and a polarizing beamsplitter P5. 

The pulse is further amplified in a double-pass Nd:YAG amplifier rod (R2). This amplified pulse 

passes through a BBO SHG crystal. Green 532nm (SHG beam) and 1064nm (original laser beam) 

light are separated by a sequence of polarization dependent beamsplitters. The 1064nm output 

can reach up to 25mJ and the 532 up to 11mJ. The output power can be controlled additionally 

by adjusting the timing of the amplifier rod flashlamp pumping. If pumping coincides with the 

pulse transit time the amplification is more efficient, resulting in higher output beam energy. The 

repetition rate is determined by the flashlamp’s pumping rate that can be set to be as high as 

10Hz.  

The laser has an additional option by which it is possible to obtain either 25ps (initial 

configuration) or 50ps pulses. Switching from one mode to the other is relatively easy to control 

by a flip-adjustable Fabry-Perot etalon placed between P2 and QWP2. Unfortunately both modes 

have roughly the same bandwidth (0.16nm in 25ps and 0.13nm in 50ps case), and therefore 

experiments based on variable bandwidth are not supported by the existing laser system. For a 

more detailed discussion on solid state laser working principles see ref. [1] 
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Figure 3.1: Schematic of the EKSPLA PL2143A Nd:YAG laser. The cavity is defined by mirror 
M1 on the left side and a dye cell and a spherical mirror M5 on the right side.  The dye gives 
passive modelocking and is the most frequently maintained part in the laser (since the dye “age” 
is crucial for the laser output energy). 

  

The laser described was far the best one in its category commercially available at time of 

purchase. Recently, however, some competing designs have appeared on the market. Those 

could eventually overcome the problems associated with this laser configuration. As already 

mentioned, one of the major problems is the use of dye as a saturable absorber which requires 

regular maintenance and reduces measurement accuracy over long time periods. In addition, the 

full dye change process requires several steps involving directly the laser cavity adjustment, 

resulting in a small, but noticeable change in the beam directionality. Since the laser beam is 

used as a pump for another tunable unit, this small directionality problem becomes a significant 

problem requiring a serious adjustment of the tunable unit. A solution to this problem, as pointed 

out by the Quantronix-Continuum picosecond lasers development team, is to use solid state 
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saturable absorbers. They are just as efficient as the dye saturable absorbers, more reliable and 

do not require maintenance.  

Another problem often associated with this laser is the low repetition rate. The company 

currently offers a version with a 50Hz repetition rate with indications that 200Hz could be 

reached in the near future. Higher repetition rates can be achieved only by using diode pumping 

instead of the flashlamp pumping used in the current laser design. However, moving toward the 

diode pumped design immediately cuts the output by an order of magnitude with a maximum 

output of 5mJ only. Most of the applications, in fact, do not require even a mJ output. However 

to pump a tunable unit one has to achieve a minimum pump power. Naturally the solution is to 

increase the conversion efficiency of the tunable sources to better than the 10-17% conversion 

currently achieved with the EKSPLA tunable source. 
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3.2 OPG-OPA tunable source 

The green 532nm output was used to pump an EKSPLA Optical Parametric Generator-

Amplifier (OPG-A) which is tunable from 680nm to 2300nm. The average output energy is 

wavelength dependent and typically higher than 0.2mJ. The output energy stability of the OPG-

A (usually around 10% rms) is mainly influenced by the pump laser stability (usually below 

1.5%). As seen from the schematic bellow (Figure 3.2) the input beam is divided into two beams, 

with the weaker one (15% of the input) making a double pass through an OPG crystal. The 

crystal is adjusted by automatic angle tuning to give a seed wavelength for an OPA crystal. Once 

the seed beam is created, the pump 532nm is filtered out and the seed is narrowed in bandwidth 

  
 



by passing it through a lens-grating-pinhole-lens system. Finally the seed beam and the stronger 

part of the pump are combined in the second BBO crystal working as an OPA. (For more details 

on the basic physics of the OPGs and the OPAs see refs. [2, 3].)  

 

 

Figure 3.2 Schematic of EKSPLA PG501VIR OPG-A. 

 

Naturally, the section where the seed and the pump are combined is very sensitive to the 

alignment. It determines the bandwidth stability, shot-to-shot energy stability and output beam 

profile. In fact, the above mentioned 0.5nm bandwidth is an average bandwidth measured over a 

number of laser shots. However, from the single shot measurements, performed by using of a 
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monochromator with a CCD camera at the output, the single shot OPG-OPA bandwidth was 

estimated to be around 0.2-0.3nm. 

The output beam profile and the beam divergence are determined by a number of factors, 

primarily by the pump laser beam divergence, the seed-pump alignment inside the OPG-A unit, 

the seed beam central wavelength versus OPA crystal orientation, etc. Therefore it is a very 

complex task to maintain the same quality of the OPG-A output beam over a long period of time. 

In order to solve this problem and to provide the long term stability of the output beam profile, 

directionality and divergence, it is necessary to use a special spatial filtering approach where an 

additional aperture is used. The aperture (2mm opening) was placed just before the spatial filter 

focusing lens. The aperture provided constant tunable laser source beam size which was of great 

importance for efficient operation of the spatial filter. The beam was focused down and spatially 

cleaned after passing through a 75µm pinhole. This two step procedure provided a laser beam 

with excellent beam profile quality (M2 laser beam coherence factor close to one). A drawback 

was the resultant shot-to-shot energy stability. Instead of the initial 10% rms the instability 

increased to 12% rms. LabView control of the experimental setups and the data acquisition was 

needed to avoid this problem. It provided simultaneous measuring of the camera images and all 

the setup detectors on a shot-to-shot basis. In this way the experimental errors were significantly 

reduced. 
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4 CHAPTER FOUR: BASICS OF QUADRATIC SPATIAL SOLITONS 
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4.1 The Concept of a spatial soliton  

 

 

Broadening by Diffraction

Narrowing through Nonlinear Effect

Lightwave with
Diffraction

Spatial Soliton

 

Figure 4.1: Propagation of light in a linear medium (top). Soliton propagation in a nonlinear 
medium (bottom) 

 

The nonlinear optics world is considerably different from the linear one, even at its very 

foundations. For instance, plane waves, the natural eigenmodes of a linear system, tend to show 

filamentation and beam-breakup if propagated in a nonlinear medium (quadratic systems [1, 2] 

and Kerr systems [3]). Moreover, the nonlinear system eigenmodes are the localized solutions 

  
 



called solitons. If constrained to CW beams and the spatial domain, one is interested in spatial 

solitons only. The spatial solitons maintain their transverse beam profiles while propagating in a 

nonlinear medium. In addition, they are stable against various small amplitude and/or phase 

perturbations. Moreover, they are robust, evolving even from inputs with parameters that are 

initially quite far from a soliton solution, as will be evident in the following chapters.  

To illustrate the basics of spatial soliton formation, a laser beam tightly focused onto a 

nonlinear medium is considered. The beam tends to broaden as a result of diffraction (Figure 

4.1a). The effect is governed by Maxwell equations and is a completely linear behavior. 

However, if the beam intensity is gradually increased, it starts to narrow due to nonlinear 

processes, as shown in Figure 4.1b. If the narrowing caused by the nonlinear effects cancels the 

broadening caused by the liner effects the beam propagates without changing of its transverse 

profile. If the feature is stable to perturbations it is called a spatial soliton. 

To get more insight into the basic features of solitons, the so called, Kerr solitons are 

considered first. Kerr soliton-like behavior can be recognized in quadratic nonlinear systems at 

large phase mismatch conditions, as introduced in section 2.5. Even though the main goal of this 

dissertation is to investigate the (2+1)D systems here a (1+1)D system is considered since Kerr 

systems do not support stable, soliton type of solutions in (2+1)D configurations. Considering a 

planar waveguide configuration with a Kerr nonlinearity, a laser beam launched into this 

structure will behave according to the following equation: 

),(),(),(),( 2
22

2

xzExzEinxzE
x

iDxzE
z

=
∂
∂

−
∂
∂       (4.1) 

 

32 

 
  
 



A solution of the equation (4.1) is of the form 
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Obviously, the x and z dependences are separated. Therefore, the wave propagates in the z 

direction without change of its transverse profile in the x direction. The nonlinear propagation 

does introduce an additional, nonlinear contribution to the phase. In addition, notice that the 

resulting field amplitude is fixed by the material constants and the beam spot size a. The soliton 

transverse shape is given by 1/cosh(x/a). The initially launched Gaussian beam shape has to 

evolve with the propagation into the soliton solution, requiring some propagation distance and 

radiation loss in the soliton formation process.  

 From a less mathematical point of view, the propagating beam induces a nonlinear index 

change in the region where it propagates. Based on equation (4.1), the induced index change 

comes from the nonlinear part and is 2
2 En∝ . Once the index is locally changed, a waveguide is 

generated. The waveguide takes the shape of the propagating beam so that the beam satisfies the 

waveguiding conditions. In that way the induced beam profile causes a small change in the 

waveguide itself, in the next iteration step. Therefore, the equation has to be self-consistently 

satisfied in the plane of the waveguide. The self-consistent solution is the one already given with 

(4.2). Therefore, it is clear that the soliton solution results from the self-guiding effect. In the 

case of quadratic nonlinear systems, different from Kerr systems, there is no index of refraction 

change involved in the self-guiding processes. The background for the self-guiding is in the up- 

and down- conversions, as experimentally demonstrated in the following chapters. 
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4.2 Introduction to quadratic spatial solitons 

Theoretically predicted in 1975 [4], quadratic spatial solitons were experimentally 

observed for the first time in a Type II phase-matched bulk KTP crystal [5]. Using the OPG-

OPA unit as a tunable laser source gives a unique opportunity to observe this type of phenomena 

under non-critically phase-matched conditions.  

The previous section discussed one of the aspects of quadratic solitons that can be 

obtained analytically. A limiting case of quadratic solitons with the very extensively investigated 

Kerr solitons has been identified. However, there is another analytical solution. Different from 

the Kerr case where the solitons have a sech(x) field profile, this additional solution (at a finite 

phase-mismatch) has sech2(x) behavior for both the FW and the SH. Moreover, the ratio between 

the two harmonics is finite, i.e. nonzero, given by 2/2/ =FWSH EE , under the conditions 

restricted to  [4, 6]. This gives 3)2(2 −=− FWSHFW kkka 3)/2)(2( −=− chdSHFW LLkksign π , 

where  is a characteristic diffraction length, )/( 2 λπ naLd = kLch ∆= /π  coherence length and a 

is beam width. However, for all other cases it is necessary to treat quadratic nonlinear systems 

numerically.  

A typical numerical method for solving the coupled equations system (2.9) is the beam 

propagation method (BPM), also known as the split step method.[7] It involves solving the linear 

and nonlinear propagation terms separately. A single propagation step is divided into the two 

half-steps. In the first half-step the nonlinear influence is neglected. The beams propagate under 

the linear effect (i.e. diffraction) only. An effective way to perform this step is by solving of the 

equation in Fourier transform space. During the second half-step the propagation is 

  
 



diffractionless and the coupled nonlinear equations are solved by using the 4th order Runge-Kutta 

solver [7]. The BPM formulated in this way is a very powerful tool for performing numerical 

soliton simulations. Another alternative would be to use a FDTD (finite difference time domain) 

approach [8]. However, the FDTD is exceptionally time and memory consuming. Therefore, it is 

not very suitable for investigating 2D quadratic systems with a typical propagation distance of 

around 10mm, which is exactly the main goal of this work.  

In Figure 4.2 is given an example of simulated (1+1)D quadratic soliton generation. Here 

the (1+1)D designates one transverse dimension and one time or propagation dimension. A 

Gaussian beam was used as the input field profile in the numerical simulations. Only the FW was 

launched. Choosing this input condition means starting very far from the soliton solution. 

However, this corresponds to a typical experimental environment. As indicated by the analytical 

solution given earlier, the FW and the SH components have comparable intensities in a steady-

state soliton. The missing SH in the simulations is generated due to the up-conversion process 

which occurs initially on propagation in the nonlinear medium. As can be seen in Figure 4.2a 

there are several strong intensity SH oscillations before a quasi stable solution is reached. Figure 

4.2b shows the FW intensity profile on propagation through the medium. Corresponding to the 

intensity SH conversions in Figure 4.2a there are several large oscillations along the soliton 

formation path shown in Figure 4.2b. Notice the significant amount of energy radiated from the 

vicinity of the second peak along the propagation path. The process of quadratic soliton 

generation is clearly nonadiabatic. In fact, by putting more energy into the system the radiated 

part grows larger. Therefore, a higher input FW power does not necessarily mean more efficient 

soliton generation. It is usually considered that an experimentally formed soliton is essentially 
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generated after several intensity oscillations (2-3). This occurs typically after about three 

diffraction lengths (3×lD is typically around 3-5mm in our case). In the next stage of the 

propagation the “soliton” undergoes small magnitude transverse profile adjustments followed by 

small magnitude intensity oscillations. 
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Figure 4.2: (1+1)D numerical simulations show the details of soliton generation. Only the FW 
beam is input into the nonlinear medium a) Peak intensity versus distance for both FW and SH is 
shown. b) Under the same conditions as in a) the FW intensity profile with propagation distance 
is shown. Notice the radiated energy from the second hump. A soliton is well formed after half 
of the propagation shown. 

  

Notice that both the FW and the SH are required in order to generate a soliton. This is very 

different from the effective Kerr case, where the SH component does not follow the FW 

dynamics and is almost negligible (but never zero) in magnitude. Based on the basic equations 

set (2.9) it is known that quadratic systems do not generate index of refraction change. Here the 

index of refraction point is understood from the Snell’s law aspect. For instance one could launch 

a probe beam of different wavelength and polarization such that it crosses the quadratic spatial 
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soliton path. Since the probe beam will not interact, no deflection occurs. Thus there is no 

indication of an index of refraction change associated with the quadratic soliton. Therefore, the 

physics behind the quadratic soliton formation differs from that in all other optical soliton 

systems.  

Intuitively it is clear that the narrowing can be associated with the SHG processes. To see 

this one can take a gaussian FW as an input beam (∼exp(-r2/w2)) and set ∆k=0 (phase-matching). 

In the up-conversion equation, describing conversion of the FW to the SH, the FW comes 

squared. Thus the generated SH is ∼exp(-2r2/w2), and hence narrower than the initial FW. This 

new SH and the remaining FW interact in the down-conversion process leading to narrowing of 

the FW ∼exp(-3 r2/w2). Therefore, narrowing can be induced by the conversion processes alone. 

Another important factor is the phase mismatch ∆k. The effect of the phase-matching factor is 

known as cascading. Further narrowing occurs if k∆  is positive (medium acts as a positive lens, 

giving a positive curvature to the wave-fronts). If negative, it effectively leads to defocusing and 

hence competes with the narrowing caused by the above mentioned “conversion narrowing”. 

Once the natural diffraction and the narrowing caused by the nonlinear effects are equal, (this is 

satisfied when the diffraction length  and the parametric gain length λπ /2
0 nwLD = ILpg Γ= /1  

are approximately equal) conditions for the creation of a soliton are satisfied. Even though the 

steady-state beam profiles are invariant under the propagation, the beams (FW and SH) continue 

to interact with each other. The photons exchange rate is now equally fast for up- and down-

conversion and hence effectively the net conversion is zero. Furthermore, with propagation a 

nonlinear phase rotation occurs. Here the phase rotation is understood as a phase change 
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associated with the quadratically nonlinear properties of the medium. Both FW and SH are 

gaining some phase change with the propagation, however in a soliton their phase difference is 

constantly zero even though their individual phases are changing with the propagation. For 

instance in the Kerr limit discussed above an analytical solution was given with equation  (4.2). 

For this particular solution the phase associated with the nonlinear process (nonlinear phase 

rotation) is given with . Mutually trapped into a quadratic spatial soliton, the FW 

and SH are in-phase and have constant phase across the beams [9]. 

)/exp( 2aDz−

In the previous paragraph the basics of spatial soliton generation were given. The system 

consisted of a FW launched into a nonlinear medium. This type of configuration is sometimes 

called the SHG regime configuration. Another experimentally explored configuration is the OPA 

configuration [10] where the SH is launched into a crystal. The conversion process follows either 

due to a small initial amount of FW launched along with the SH or from the quantum noise. This 

regime is not investigated here. Also, the previously discussed spatial solitons are bright spatial 

solitons, which constitute only one of the soliton categories. However, in this work only bright 

spatial solitons generated in the SHG regime are investigated and discussed.  
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5 CHAPTER FIVE: SPATIAL SOLITONS AND MULTI-SOLITONS 
PROPERTIES 

In this chapter the details of the soliton and multi-soliton generation are discussed. The 

potassium niobate (KNbO3) crystal configuration is particularly interesting since the noncritical 

birefringent phase matching can be achieved at room temperature at 983nm FW. In addition, the 

material has a very large nonlinear coefficient associated with this NCPM. Therefore it does not 

come as a surprise that KNbO3 solitons were demonstrated to have the lowest threshold for 

soliton generation among all birefringently phase matched materials. 
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5.1 Potassium niobate material properties 

Tunable laser systems, like the one described earlier, are an important technology in the 

development of soliton science. Particularly in the case of potassium niobate the most attractive 

features were expected to occur at ~983nm. KNbO3 is a biaxial crystal with a large, phase-

matchable quadratic nonlinear coefficient of 16 pm/V [1, 2]. The drawbacks are usually related 

to fabrication difficulties. A well-known problem is the fabrication of large quantities of KNbO3 

samples/devices with the same optical properties. Another problem particularly important for 

SHG is the relatively strong two photon absorption around 490nm [3].  

  
 



The crystal available from Peter Gunter’s group at ETH for the experiments was a crystal 

with the [010] cut. This can be used for noncritical, Type I, birefringent phase matching at 

≈983nm around room temperature (≈200C). Under room temperature conditions the KNbO3 can 

be non-critically, Type I, phase matched at both 983nm and 857nm for different cuts, and Type 

II phase matched at 1171, 1402 and 3172nm [1, 4]. At 983nm the non-critical phase matching 

occurs for the FW polarized along the crystal’s a-axis and the resulting SH along the c-axis. The 

propagation direction is along the b-axis (our current sample case). In this configuration deff=d13 

has a very high value of 16.4pm/V [1]. 
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5.2 Experimental setup 
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Figure 5.1: KNbO3 experimental setup. 

  
 



The experimental setup, as shown in Figure 5.1, was in fact the final design. The setup 

was initially used in the potassium niobate (KN) quadratic soliton generation and the threshold 

measurements. However, due to some complexities in the soliton generation, such as the 

formation of the multi-solitons, the same setup was later used to investigate the detailed multi-

soliton features. The OPG-OPA unit was tuned to have the output at around 983nm (the NCPM 

condition). Even though the output OPG-OPA beam was of a good quality (round and uniform 

after several meters of propagation), to make it more Gaussian-like and to achieve a higher 

degree of coherence (M2 close to one), spatial filtering was applied. In fact, the beam was first 

partially confined by a 1-2mm aperture. After passing through the aperture the beam was 

spatially filtered with a 75µm pinhole. The beam quality was improved but the energy stability 

slightly decreased (caused by the OPG-OPA’s pointing instability). To solve this issue, a 

LabView computer control was performed. In addition, the spatial filtering pinhole was used to 

control the beam ellipticity. That was a crucial element in investigating the multi-soliton features. 

The OPG-A unit provided up to 100GW/cm2 confined in a Gaussian shaped FW. A set halfwave 

plate-polarizer was used to control the beam energy and the polarization state (horizontal in this 

experiment). The FW only (983nm) was focused down on the input sample facet. For the three 

different configurations that were used, a 10cm planoconvex, 13cm doublet and a 8cm 

planoconvex focusing lenses produced beam sizes of 22, 16.4 and 18µm at the sample surface, 

respectively. Another lens imaged the output from the sample onto a CCD camera. To monitor 

the beam symmetry, an additional camera was used to capture the spatial profile of the input 

beam before it was focused down onto the sample. In that way the input beam asymmetry was 
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known. The detectors (input beam, output FW and output SH) and the cameras were 

synchronized and driven on a shot-to-shot basis by the LabView programs. 

Before arriving at this final setup design, several other possibilities were investigated. For 

example, a smaller beam spot size in the focal plane had been tested. However, it was found that 

the small input spot was not able to evolve into a quadratic soliton. The reason for that was that 

higher intensities are required for soliton formation and this increased the two photon absorption 

for the SH. Moreover, in order to achieve a better beam profile the output beam from the OPG-A 

was propagated for around 6 meters before it was focused down on the crystal. The resulting 

beam was very symmetric. However, it turned out that even small disturbances, like turning on 

and off the laser, could change the focusing plane position by about 50µm, which was at the 

tolerance limits of the alignment. In addition, the generated solitons would “wander” over about 

50µm in the crystal output plane. Since one of the main goals was to perform soliton collisions 

these problems were intolerable. Therefore the building of the setup as shown in Figure 5.1 was 

crucial. 
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5.3 The noncritical phase matching wavelength condition 

The OPG-OPA unit can be tuned with 0.1nm precision and it is important to note that a 

0.10C temperature change gives a 0.03nm change in the NCPM wavelength. For the given 

11.4mm KN sample the acceptance bandwidth is around 0.15nm.The multi-shot averaged 

measured bandwidth at 983nm is ≅0.5nm. As already mentioned in the Light source chapter, the 

single shot laser bandwidth is around 0.3nm and the OPG-OPA source has a shot-to-shot 

  
 



frequency jitter giving the 0.5nm average laser bandwidth. It is important to understand that with 

the 0.5nm single shot bandwidth, the nonlinear process would use only a fraction of the incident 

beam bandwidth resulting in a decreased nonlinear efficiency. On the other hand, a real 

bandwidth of 0.3nm would give an efficient usage of the laser beam. However, on a shot-to-shot 

basis it gives larger fluctuations, since some of the laser shots fall outside of the acceptable 

crystal bandwidth. Therefore, it is advantageous to use LabView in order to provide the single 

shot measurement control. The data, the input-output detectors readings and camera pictures, 

were taken simultaneously allowing the “bad laser shots” data to be rejected during the post-

measurement, manually accomplished, data processing. A primary reason for data rejection was 

a too low/high laser shot energy. 
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Figure 5.2: The schematic shows polarization direction of the incident wave (FW), the output 
waves polarizations (SH and FW) and the crystal axes a, b and c. b is the direction of 
propagation. The angle tuning was performed by rotating the crystal around c axis as indicated. 

 

To determine the NCPM wavelength, a relatively wide FW beam was launched into the 

sample. In this way a plane wave configuration was mimicked which is the ideal case for the 
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angle tuning measurements. The dependence of the SH generation versus wavelength is 

measured. The process is based on the SHG functional dependence on the phase-mismatch 

induced by the wavelength variation. By assuming the low depletion limit for the conversion, 

one expects to observe a dependence similar to Figure 2.1(right). The experimentally measured 

curve is shown in Figure 5.3. The source bandwidth, the shot-to-shot energy oscillations and the 

non-plane wave incident beam slightly influenced the shape of the measured curve. This 

measurement gave a very good estimation for the phase-matching wavelength.  
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Figure 5.3: A measurement of SHG versus OPG-OPA output wavelength is shown. Squares are 
measured data and the red line is the fitting curve.  

 

To determine the phase matching point even more accurately, SHG angle tuning 

measurements were performed. The crystal was rotated around its c-axis as shown in Figure 5.2. 
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For the NCPM case, just a single SHG peak was observed while for the off phase matching 

condition two peaks appeared symmetrically around the zero angle (Figure 5.4). The index of 

refraction curves for the FW and the SH are given at the source wavelength and illustrated in the 

insets. Once the wavelength is above the NCPM wavelength the SHG efficiency drops but still 

shows only a single peak SHG tuning curve. In this way, 983.7nm was estimated to be the 

NCPM wavelength. The large acceptance angle and the symmetry property of the parametric 

processes, caused by operating in vicinity of the NCPM, are expected to have an important 

influence on the soliton experiments. The measurements discussed in the following sections 

showed this very clearly. 
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Figure 5.4: SHG angle tuning curves are shown for critically phase-matched (left) and NCPM 
(right) configuration. The lines are guides for eyes. The insets illustrate index of refraction 
curves for FW and SH. The intersection type (crossed for CPM and tangential for NCPM) is 
indicated. 
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5.4 KN soliton threshold measurements 

Having defined all the necessary conditions for the efficient parametric processes, the next 

step was to launch the beam and to generate a soliton. The soliton generation typically starts with 

inputting the FW only. In the first few millimeters of the KNbO3 sample, the SH was created 

from the input FW, as given by the parametric processes (2.9) and illustrated in Figure 4.2. After 

the several amplitude oscillations indicative of the energy exchange processes which occur 

within the first two diffraction lengths, a soliton is largely established.  

 

 

Figure 5.5: From left to right: input beam at the focus, diffracted beam in air, diffracted beam 
after propagation through the sample, soliton at the output of the crystal. Note the small 
asymmetry of the input beam. 

 

A typical method for verifying soliton formation under the experimental conditions is to 

compare the input and the output beam sizes. Since approximately three diffraction lengths are 

required for the propagating beam to “stabilize” into a soliton, it is necessary to propagate the 

input beam for at least this distance to ensure soliton formation experimentally. The KNbO3 

  
 



sample used in the experiment was 11.4mm long which is equivalent to three diffraction lengths 

for an input beam of 22µm, and five diffraction lengths for a 16.5µm beam. By adjusting the 

input beam spot size the effective length for soliton propagation is determined accordingly. This 

is why most of the time the sample length in the literature is expressed in units of the diffraction 

length rather than the actual sample length. 

 

 

Figure 5.6: Top view picture of a soliton (picture taken by a CCD camera mounted above the 
KNbO3 sample). The dashed curves show the expected beam diffraction. 

 

Figure 5.5 shows a typical experimental outcome of a soliton generated after propagating 

through a three diffraction lengths long sample. As seen from the pictures the output beam is 

approximately the same size as the input beam. A top view picture of the soliton formation was 

taken by a sensitive CCD camera mounted above the sample (Figure 5.6). Unfortunately it was 

not possible to observe the beam completely free of the nonlinear effects (pure diffraction) 

because of the limited camera sensitivity. The observed pattern was caused by the spuriously 

scattered light. The CCD picture shows the soliton trajectory and the beam confinement. This 
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kind of observation required very special conditions: a) using a very sensitive CCD camera and b) 

very well controlled background light. Therefore, in the case of the periodically poled KTP 

(PPKTP) sample which will be introduced in detail in the following chapters, the top view 

measurements were not possible. This sample was phase-matchable at about 10 degrees 

centigrade above room temperature which required operation inside an oven and small thickness 

(0.5mm) of the PPKTP sample resulted in too much scattered light from the oven’s inner surface 

located right under the PPKTP sample.  
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Figure 5.7: Soliton threshold pulse energy versus the rotation angle of the crystal around the c-
axis (60 in angle corresponds to a 3.5π phase mismatch) 
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Once the imaging camera was calibrated to give a good estimate of the beam size, it was 

used to determine the soliton threshold versus the rotation angle of the crystal, see Figure 5.7. 

The Gaussian-shaped FW was focused down to a 22µm spot on the input crystal surface 

(resulting in three diffraction lengths for the soliton propagation). The minimum threshold was 

measured to be ≈0.27µJ which corresponds to ≈3GW/cm2 for a 22ps pulse and the given beam 

waist. This threshold is the lowest one reported to date for birefringent phase-matching, and is a 

direct consequence of the high value for deff. This is comparable to the value for quasi-phase-

matched LiNbO3 for which the soliton threshold value was reported to be as low as 1GW/cm2 [5]. 
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Figure 5.8: Normalized ratio of SH/FW output intensity versus phase mismatch for different 
input beam intensities. 
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The dependence of the soliton threshold on the external incidence angle is shown in 

Figure 5.7. The crystal was rotated around its c-axis which corresponds to rotation of the FW 

wave-vector in the b-a plane. The parametric processes have an enhanced bandwidth near NCPM 

and this was also expected in the soliton case. Here one can see that the soliton threshold 

increases slowly with the rotation and it is approximately uniform over a wide range of the 

incidence angles (≈140). The small asymmetry in the threshold curve about zero incidence angle 

is due to the ±10 uncertainty in the crystal cut and a small error in the crystal positioning (1-20).  

 

4 3 2 1 0 1 2 3 4
0

5

10

15

20

25

30

35
Input energy - 0.56 µJ      
       FW 
       SH

 Norm. Input (a.u.)

En
er

gy
, 1

0 
-2
 µ

J

Phase mismatch ∆kL, in π  units

 

Figure 5.9: Dependence of the soliton content on phase mismatch. 
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The spectral content (FW versus SH) of the generated solitons was measured also. The 

ratio SHG/FW changes by a factor of two going from 0 to 3.5π mismatch, but it stays almost 

constant when the input intensity increases from 1.4 to 3.6 times the single soliton threshold.  

The measurements done on the threshold and the spectral content of a single soliton 

around NCPM provide an excellent insight into the angular sensitivity of the soliton properties 

and are a good starting point for further research on multi-soliton generation and soliton 

collisions. Also, these measurements showed all the advantages provided by operating in vicinity 

of the NCPM. Later measurements on the PPKTP samples showed that the concept is generic.   

During the generation of the first KN solitons, under the conditions described earlier, 

mutisoliton generation was also observed. In fact it turned out to be “a problem” to generate a 

single soliton for intensities high above threshold. Hypothetically, if one considers the simplest 

possible scenario for which the input FW beam is cylindrically symmetric and the diffraction is 

assumed to be equal in both transverse beam directions, any increase in the input power should 

lead to a monotonic narrowing of the generated soliton. In fact, if two-photon-absorption (TPA) 

is not a dominant effect, the narrowing is the only effect expected to occur. 

In the experiments performed on the KNbO3 sample, increasing the input FW energy 

resulted in the creation of the multiple solitons. The first set of the measurements, just an 

extension of the single soliton threshold measurements, showed a multi-soliton alignment along 

the crystal a-axis (horizontal alignment) [6]. The more detailed discussion is given in the 

following section. 
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5.5 Multi-soliton generation in KN 

5.5.1 Physics of multi-soliton generation 

 

 

“strong” 
diffraction solitons from  

radiation 

“weak” 
 diffraction

Figure 5.10: Illustration of a multi-soliton generation scenario. Increased input beam intensity 
results in larger amount of light emitted into a radiation “ring”. Regions with higher intensities 
eventually lead to a collapse of parts of the ring into new solitons.  

 

Historically multiple soliton generation was observed for the first time in a KN soliton 

generation experiment [6] while trying to excite high intensity single solitons. The input beam 

profile was nearly round and at that time multi-soliton generation had not been considered at all 

as a possibility. The unusual nature of this effect inspired several detailed theoretical and 

experimental studies [7, 8, 9, 10, 11]. Some of these aspects are discussed in this chapter. 

Since at the time of the discovery of multi-soliton generation the beam shape (beam 

profile symmetry) was not considered to be an issue (namely, the beam was spatially filtered), 

the cause of the multi-soliton generation was assumed to be due to anisotropic diffraction [7]. 

  
 



For perfectly round input beams, multi-soliton generation is due to a combination of the different 

diffraction coefficients (i.e. along the a- and c-axes) associated with the propagation of radiation 

in an anisotropic crystal, and the generation of solitons by the inputting of the fundamental field 

only instead of the steady state soliton solution which consists of in-phase FW and SH fields at a 

specific amplitude ratio. Because the input is not matched to a steady state soliton, excess 

radiation is emitted in the form of rings as the required SH is generated and phase alignment 

takes place between the FW and SH. The resulting oscillations in the FW and SH intensity 

associated with this evolution process were shown previously in chapter 4, Figure 4.2. This 

radiation is emitted in the form of elliptical rings due to the anisotropic diffraction in the crystal. 

This concept is illustrated in Figure 5.10. Increases in the input beam intensity result in more 

radiation, mainly concentrated in a series of radiation rings, typically with one slowly diffracting 

ring carrying most of the emitted energy. As shown by Polyakov et. al. [7] the symmetry of the 

radiation ring from circular to elliptical is broken by the optical anisotropy (birefringence) of the 

material. Furthermore, if the incident beam itself is not circular but exhibits ellipticity, the 

resulting radiation ring becomes elliptical from this effect alone, for example in an optically 

isotropic medium. In an optically anisotropic material, this incident beam ellipticity can either 

enforce the ellipticity due to anisotropic diffraction, or tend to cancel it. This interference effect 

of course depends on the orientation of the incident beam ellipticity relative to the anisotropic 

diffraction. Since the symmetry in either case or a combination of the two is broken, it causes the 

formation of a higher intensity region in the ring which can potentially lead to the generation of 

additional solitons, as indicated in Figure 5.10. Note that the collapse of high intensity regions in 

the rings into additional solitons occurs due to the same physics that was described for single 
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soliton generation in Chapter 4. Again there is a trade-off between diffraction and beam collapse 

and sufficiently high intensity is needed in the ring to overcome diffraction. Because diffraction 

is the slowest along the minor axis of the ellipse, it is along this axis that the solitons 

preferentially form. 

Expressed in mathematical form the phenomenon is given as 
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Here Di,j are the coefficients associated with the diffraction parameters. For an isotropic case 

they are all equal and given with 1/(2kF) where kF is the propagation wavevector of the 

fundamental wave. The differences among the Di,j coefficients can be induced by i) incident 

beam ellipticity and/or ii) index anisotropy associated with the propagating beam wavevector 

directionality. As discussed above, depending on the experimental conditions, these two effects 

can compete or work together in order to support the multi-solitons. They already have equal 

influence for a beam with just 4% ellipticity, which is essentially an “unnoticeable” amount of 

ellipticity from an experimental point of view. In fact, the very detailed numerical calculations 

done for PPKTP [12] identified asymmetry in the beam shape as the dominant factor. Therefore, 

the beam ellipticity is most of the time the dominant effect. The numerical simulations showed a 

strong influence of the input beam shape on the multi-soliton generation, predicting dramatically 

changed output patterns even for only a few percent of ellipticity. 
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 The first extensive numerical and experimental efforts on understanding the multi-

solitons were concentrated on the PPKTP multi-solitons. As shown in the experiments and 

implied in the simulations, the multi-solitons have a tendency to align along a preferred axis in 

PPKTP [7, 8, 9]. Figure 5.10 was found to explain very well this phenomenon. 

5.5.2 Experimental observation of multi-solitons 

First introduced experimentally, later investigated theoretically and then again 

experimentally, multi-soliton generation turned out to be a complex topic. After several iterations 

between the experiments and theory a thorough picture of the multi-soliton generation process 

have been obtained. The current status on multi-solitons, at least considering the quadratic 

nonlinearity, is given on the following pages. 

 Soliton number and patterning (orientation) were investigated over a wide range of input 

intensities (from 3 to 40GW/cm2). Based on the numerical calculations the importance of the 

input beam shape has been identified [8]. Thus a spatial filter modification (the pinhole 

particularly) has been used in the experiments to gain control over the shape of the incident beam. 

 In the PPKTP system, investigated numerically and experimentally by Polyakov et. al. 

[9], the multi-solitons showed a very reproducible and regular behavior. The alignment strictly 

followed the beam asymmetry which was determined by the spatial filter alignment. When the 

input intensity exceeded a certain threshold, three well separated solitons were formed. A small 

jitter in their positions was observed at the sample output. Further input intensity increase 
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resulted in collapse back to one soliton generation. This soliton was sitting on significant 

background radiation (“bath” of radiation) which increased with further increases in the input 

beam intensity. The agreement between the experiment and the simulations was excellent in the 

PPKTP case. 

 If the system asymmetry (input beam ellipticity or diffraction anisotropy) is not 

considered with the intensity increase only one soliton, with progressively smaller width, is 

generated. Different from Kerr case which does not support soliton formation in (2+1)D systems 

(a self-focusing occurs for too high and a beam broadening for too low intensity), the quadratic 

nonlinear systems effectively behave as saturable nonlinear systems, therefore resulting in a 

soliton formation rather than self-focusing at high intensities.  

5.5.2.1 Number of solitons versus input intensity in KN 

In order to investigate the multi-soliton phenomena experimentally, two different input 

beam configurations, an elliptical and a cylindrically-symmetric beam (ellipticity measured to be 

less than 5%), were initially used. The results of experiments are shown in Figure 5.11 and 

Figure 5.12. In Figure 5.11 a “highly” elliptical beam was used while in Figure 5.12 a round, 

cylindrically -symmetric input beam was used. The input beams shown in the figures are the 

collimated beams at the output from the spatial filter. The intensity dependent output pattern was 

investigated. 
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≥50% one; 20% two
20% blurred spot one soliton 
(only 1 at 2 µJ) 90% two(two starts at 0.45µJ)

input beam input 0.3µJ input 0.83 µJ input 1.23µJ 

40% one, 30% two≥60% two and three 
(from 3 to 3.3µJ) three symmetric(from 2 to 3 µJ) 

input 2.2 µJ input 3.1µJ input 4.7 µJ input 4.6µJ

 

Figure 5.11: A collage of the output patterns is shown for the various input intensities. The input 
beam is “highly” elliptical. The additional captions above the pictures describe details of the 
statistical behavior of the output patterns. 

 

As seen in the experiments, different input beam intensities result in dramatic output 

pattern changes and the patterns behave chaotically and vary dramatically from shot-to-shot. 

Note that the pulse energy varies by 10% from shot-to-shot. Therefore, only the most dominant 

patterns are shown in the figures. The caption above each camera picture indicates the statistical 

character of the behavior. At around 3GW/cm2 a single clean soliton is generated. Steady two 

soliton generation is obtained at slightly higher intensities (around 4.5GW/cm2 for the highly 

elliptical configuration and 5.5 GW/cm2 for the symmetric one). Further intensity increase results 

in higher background radiation not captured by the soliton-like beams. Despite the high 
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transverse mobility of the solitons which are sitting on the top of the background radiation, in 

some intensity regimes the tendency of returning to a single soliton realization is clearly visible. 

If the intensity is above 30GW/cm2, which is around 10 times the single soliton threshold, the 

output patterns show more variety. In the elliptical input beam case the diversity of the observed 

patterns is more obvious. 

 

rarely three
40% one two 20% 
20 % two one 80% one soliton

input beam input 0.8 µJ input 0.4 µJ input 0.55µJ

40% one  30% three, 20% two
60 % “one” 30% blurred spot 40% one one (3 to 3.4µJ)
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input 3.3µJinput 1.7 µJ input 4.2 µJ input 4.4µJ 

Figure 5.12: A collage of the output patterns at various intensities for a symmetric, round input 
beam. The captions above the pictures describe the statistical character of the “chaotic” output 
patterns behavior. 

 

 Therefore, the output patterns show similar behavior in both the elliptical and the round-

symmetrical input beam configurations. The patterns vary in a similar fashion with input 

  
 



intensity variations. However, only a statistical approach can be applied in characterizing and 

investigating the patterns, partially due to the instabilities of OPG-OPA output. 

In order to understand better the multi-soliton generation features just discussed, CW 2D 

numerical calculations (results given in Figure 5.13(top)) were performed for symmetric input 

beams in anisotropic KN. The main effort was concentrated on determining the number of the 

generated solitons versus input intensity for the experimentally defined parameters. Also, the 

calculations were simplified by assuming anisotropic diffraction to be the only break-up 

mechanism. (Detailed discussion in reference [9] shows that the anisotropic diffraction and beam 

ellipticity mechanisms are mathematically almost equivalent.) 

The Figure 5.13(top) shows the run-off angles versus input intensity. Here the run-off 

angle corresponds to the propagation angle of the additional solitons relative to the original, 

central soliton. The solitons have a tendency to separate faster for larger run-off angles. Starting 

from low input intensities, the first threshold is the one that generates the single soliton. At 

higher input intensities, first two and then three solitons are generated. Finally, with the further 

increase, the number of solitons decreases back to one.  

It is important to know that the additional solitons are generated in phase with one 

another. Therefore their attractive forces increase as their intensities increase. Furthermore, the 

higher the intensity, the closer to the propagation axis the extra solitons form, as seen from the 

simulations. Both factors eventually lead to a collapse of the additional solitons resulting in 

single soliton generation again. 

 In a similar fashion to that for PPKTP, the simulations give aligned multi-solitons, but 

always aligned along the crystal axes. Although in most experiments it is the beam ellipticity that 
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governs the alignment direction, the evolution of soliton number with increasing input intensity 

predicted for dominant anisotropic diffraction is still valid. 

 

 

Figure 5.13: CW, 2D numerical calculations (upper) and pulsed experimental data (lower) for the 
number of solitons generated versus input FW beam intensity. Note the statistical character of 
the experimental data. 

 

A slightly asymmetric beam was used in order to experimentally investigate the effect of 

an elliptical input beam alone. A number of the output pattern outcomes were recorded and 

statistically processed which finally resulted in the Figure 5.13(lower) graph. Following the input 
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beam intensity increase, first a single soliton was observed. At higher input intensities two 

solitons appeared, initially aligned along the preferred direction determined by the small amount 

of the input beam asymmetry. 

 

asymmetric 
input beam 

a)

with prism no prism 

b)  

Figure 5.14: a) Schematic showing the Poro prism whose role is invert any input asymmetry in 
the input beam. b) Output from the KN sample for conditions in which two solitons are 
generated both without (left) and with (right) inverted beam asymmetry created by the Poro 
prism shown in a). 
 

The two solitons preferred orientation was verified by introducing a Poro prism (right 

angle prism) into the incident beam line shown in Figure 5.1. The prism affects the beam 

symmetry, as illustrated in Figure 5.14a. Due to a single reflection on the prism’s longer surface 
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the prism effectively inverts the symmetry of the incident beam. However, the beam 

directionality remains untouched. Since the beam is well collimated the prism does not introduce 

any aberrations or the beam size changes.  

In Figure 5.14b the outputs from the KN sample are shown with and without the prism in 

place, respectively. The input intensity conditions were adjusted to satisfy two soliton generation. 

The output patterns are obviously the mirror images. Therefore the output multi-soliton pattern 

orientation is determined by the input beam asymmetry. With further intensity increase (above 

7GW/cm2), the two generated solitons lost their preferred alignment direction.  

Very dynamic and chaotic output patterns appeared around 15GW/cm2. The soliton-like 

spots were no longer nicely shaped and the number of the spots was different from shot-to-shot, 

ranging from one to three. Therefore, the experiment gave just a rough statistical agreement with 

the theory, reflecting only the tendency of the theoretical predictions on the soliton number. The 

main features were recognizable, but there were significant deviations. Clearly some other 

effects beyond anisotropic diffraction and just elliptical input beams are important for the multi-

soliton dynamics and behavior in KN at the high intensities. 

5.5.2.2 Noise effects on the multi-soliton patterning 

Since the multi-soliton output patterns in KN varied from shot-to-shot and the OPG-OPA 

is well-known as a spatially and temporally noisy light source, more details of the influence of 

noise on multi-soliton generation were investigated. The intention was to estimate how 
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dramatically the output patterns can change under some nominally fixed conditions. To estimate 

the importance of the laser source’s noise alone, the incident beam was intentionally made 

slightly elliptical. In this case an efficient multi-soliton generation was achieved. It was 

dominated by the beam ellipticity and away from the unstable, almost symmetric input beam 

condition. 

 

 

8GW/cm2   

15GW/cm2   

30GW/cm2   

Figure 5.15: Three collages of output beam patterns obtained for peak input fundamental beam 
intensities of 8 GW/cm2, 15 GW/cm2 and 30 GW/cm2. Successive frames correspond to 
successive laser pulses at nominally (to within the laser shot-to-shot energy uncertainty) the 
same peak input intensity. 
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For the given configuration (i.e., a beam waist of ∼18µm), the single soliton threshold is 

about 2.7 GW/cm2 [6] and multi-soliton generation first appears with two soliton generation at 

∼5GW/cm2. Notice that the output multi-soliton patterns, shown in Figure 5.15, consist of 

irregularly shaped beams. Apparently for such a complex situation where several beams exist at 

the same time with the potential to interact, collide and merge, the 1 cm crystal was not long 

enough to allow all of the beams to completely evolve into solitons. 

 

983.5nm; 39GW/cm2
983.7nm; 15GW/cm2
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984.1nm; 36GW/cm2 983.9nm; 36GW/cm2

Figure 5.16: High power output patterns corresponding to nominally the same input beam shape 
are shown. The small difference in the FW wavelength just slightly influenced the phase-
matching condition (OPG/OPA bandwidth is ∼0.5nm). 

 

 

  
 



Figure 5.15 shows the output patterns for three different intensities 8, 15 and 30 GW/cm2. 

In each case there is a collage of the output patterns corresponding to successive laser pulses of 

nominally the same total energy. In Figure 5.15a (5 GW/cm2 peak intensity input), the dominant 

pattern consists of two localized beams aligned horizontally. The generation of two well-defined 

light spots is clearly visible. With an intensity increase the pattern starts to change, becoming 

more chaotic. For the FW inputs of ≈15 GW/cm2, i.e., 5 times the single soliton threshold, the 

output patterns are more complex, exhibiting 2-3 localized spots (Figure 5.15b). These high 

intensity beams are not aligned along a single line. They are sitting on a large intensity 

background. At even higher input intensities, of the order of 7-10 times the single soliton 

threshold (Figure 5.15c), the successive output patterns vary dramatically from shot-to-shot. The 

background is even more obvious. It has the ability to further destabilize the output pattern due 

to the increase in the solitons transverse mobility. Up to 5 non-collinear light spots are observed, 

however the most dominant pattern is the three beam configuration. Furthermore, the energy is 

usually concentrated in one of the soliton-like beams. 

Figure 5.16 shows a variety of interesting patterns observed experimentally, and the 

conditions under which they were obtained. The input beam symmetry was nominally the same. 

However, the patterns were generated at slightly different FW wavelengths. Considering the 

OPG/OPA bandwidth of ∼0.5nm the changes introduced by varying the FW wavelength are 

relatively small. In addition to changes in the phase mismatch (∆k>0 for λ>983.7nm), the 

OPG/OPA might produce slightly different “random” noise at the different wavelength settings 

which can seed some different output patterns. Notice the formation of the multi beam 
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configurations (up to 5 solitons) sitting on the high intensity background. Typically, as seen from 

Figure 5.15, in a multiple output beam situation one beam gains more total intensity than the 

others perhaps due to the multi beam interactions during the propagation through the 11mm 

sample. However, as shown here in Figure 5.16, multi-soliton outputs with quite uniformly 

distributed intensities over the beams are also possible. 

Also, it is important to point out that with increasing input intensity, the differences 

between the successive output patterns increased. That is an indication for spatio-temporal 

nonlinear dynamics mediated by both the spatial noise imprinted on the beam profiles and the 

temporal noise imprinted on the pulses. Minardi et. al. recently have shown that the spatio-

temporal dynamics generated in high power up- and down-conversion processes can lead to 

pulse break-up in time [13]. On the other hand, the high peak-power is associated with soliton 

and multi-soliton formation in the spatial domain. Combined together the temporal and the 

spatial dynamics result in spatio-temporal effects that might be responsible for the observations 

in the KN multi-soliton experiments. It is noteworthy that the multi-solitons generated in a 

PPKTP show the numerically expected behavior. Neglecting the differences between the PPKTP 

and the KN crystal systems, the major difference in the multi-soliton generation is in the light 

sources (1064nm laser light used in the PPKTP experiment and 983nm OPG-OPA beam in the 

KN experiment). Since the OPG-OPA output has at least an order of magnitude higher noise than 

the laser, it is reasonable to associate the KN multi-soliton behavior with the OPG-OPA noise. 

The FDTD simulations performed (Figure 5.17) show the output intensity distributions 

corresponding to a high power input beam after propagation though a quadratically nonlinear 

medium. A small amount of noise was added on the top of the input Gaussian shaped pulse in 
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both spatial and temporal domain. The x-t cut, given in Figure 5.17a, shows the realization of a 

combined temporal and spatial beam break up. A “virtual camera” positioned at the end of the 

sample integrates the signal in time, due to the camera response time. The pattern seen by the 

camera is shown as the 3D and contour intensity plots in Figure 5.17b. The intensity distribution 

corresponds qualitatively to the experimentally observed multi-soliton features.  

 

space 
a) 

time 

3D plot 

b) 

 

Figure 5.17: The FDTD simulations results show time-space dynamics of a laser pulse after 
propagation through a nonlinear medium. a) Shows intensity distribution of the pulse in a x-t cut. 
b) The output x-y cut intensity profile (averaged in time) is shown as a 3D plot and a contour 
plot. These correspond to the camera pictures. 
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In conclusion, quadratic nonlinear media support multi-soliton generation in the vicinity of 

NCPM at high input peak-powers. This was observed in the KN case just discussed. The output 

soliton patterns vary on shot-to-shot basis. The experimentally investigated properties just 

partially agree with the numerical simulation effects. The discrepancy is believed to be 

associated with the noise induced effects in the experiments performed. 
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6 CHAPTER SIX: QUADRATIC SOLITON SELF-REFLECTIONS IN 
PPKTP 

 

 

high power 

low power

Figure 6.1: Illustration of a self-refraction. A high power beam is reflected and a low power 
transmitted.   

  

In this chapter the details of the first observation of the quadratic soliton self-reflections are 

given. A specially engineered quadratically nonlinear sample was used in order to demonstrate 

this soliton feature. If a low power beam propagates through the engineered structure (Figure 6.1) 

it passes through the interface between the periodic structures, however a high power soliton can 

reflect under a certain incident angle and input intensity conditions. The process is called self-
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reflection since the soliton beam itself is the cause for the reflection from the interface. More 

details are given bellow. 
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6.1 PPKTP sample properties 

As introduced in Chapter 2, QPM is a common technique used to achieve phase matching at 

any desired wavelength. In order to perform a soliton self-reflection experiment a 7.5mm long 

periodically poled potassium titanyl phosphate (PPKTP) crystal was fabricated. The sample 

consists of two identical QPM gratings dislocated laterally for half a period, as shown in Figure 

6.2. Even though QPM fabrication principles are well known, it was a challenging task to 

fabricate a sample with a double QPM structure which has a well defined boundary region 

between the QPM regions (Figure 6.2). The sample structure, as seen in the microscopic picture, 

is visible due to the etching procedure that was applied at the last stage of the fabrication. The 

channels in the structure are only one micron in depth and they do not influence the bulk sample 

properties. 

In the fabrication process a relatively low coercive field of 3.8-4.0kV/mm was used during 

the low temperature poling to minimize the natural tendency of the poled lines to expand, 

allowing two very closely spaced (few microns separation) grating structures to be fabricated 

without merging [1, 2].  A nominal 9µm poling period along the crystal’s a-axis gave a NCPM at 

1064nm at a temperature of ~360C  for propagation along the a-axis [1-3].  
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Figure 6.2: (left) PPKTP sample with a double QPM structure. The horizontal lines are the QPM 
domains. The vertical line is the interface between the two QPM regions. The thickness of the 
interface is 6µm. (right) a, b and c are the sample crystal axes. 

 

In order to initially determine the NCPM temperature a 40µm wide beam was launched into 

the sample. This slowly diffracting beam, 60µm wide at the end of the sample, was launched 

through one QPM region only. The sample temperature was controlled by a LabView driven, 

home made oven with a limited temperature stability of around 0.10C. The 1064nm FW launched 

from a Nd:YAG laser was used to generate the SH in the low depletion limit. The SHG 

efficiency as a function of the sample temperature is shown in Figure 6.3. The SHG efficiency 

corresponds well to the theoretical sinc2 dependence. However it does not reach zero at the first 

minimum since the FW beam is not a plane wave but rather a slowly diffracting beam with a 

distribution of wavevectors that contribute to the SHG. As the FW intensity increases the SHG 

QPM1 QPM2

 

c 
a

b

  
 



tuning curve broadens and becomes asymmetric. The intensity change is even more dramatic if a 

narrow input FW beam is used [4]. 

 

20 25 30 35 40 45 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
H

G
 in

te
ns

ity
 (a

.u
.)

Temperature (0C)

SHG versus temperature

 

Figure 6.3: SHG intensity as a function of the sample temperature. A 40µm wide beam was used. 
The input FW intensity was kept low in order to satisfy the low depletion limit condition. 

 

The mask used for the poling had a half period dislocation as shown above and the interface 

in the a-b plane was located approximately in the middle of the sample. The interface region 

extends laterally over approximately 3-6 micrometers.  

The fabricated sample was a state-of-the-art sample. In fact, this sample was the only good 

one out of the total eight of samples fabricated in the similar way. The problems associated with 

the other samples were the surface polishing quality, broken QPM poling lines, thick interface 

72 

 
  
 



regions, low SHG efficiency, etc.. In fact, the longer the sample the more difficult it is to 

fabricate the desirable properties. 

 

73 

 

 

Figure 6.4: Total output pulse energy (FW+SH) dependence on the input FW pulse energy is 
shown for a focused beam (∼18µm spot size). 

 

PPKTP is an attractive medium for its large angular bandwidth for soliton generation which 

means that the solitons remain essentially the same for small changes in the incident angle. This 

aspect is similar to the previously discussed wide KN soliton threshold bandwidth which is 

believed to be a direct consequence of working in the vicinity of NCPM. In PPKTP the NCPM is 
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realized by using co-polarized FW and SH and in this particular experiment the polarization was 

set along the c-axis thus using the d33 nonlinear coefficient. Furthermore, the high PPKTP 

effective nonlinearity pm/V5.9/2 33 == πddeff  (for a 50% poling duty cycle) allows soliton 

generation at intensities for which multi-photon absorption is low. In order to determine the 

effects of multi-photon absorption (particularly TPA) of the sample for a high intensity beam 

propagating through one of the QPM gratings, the total output energy was measured as a 

function of the input FW energy. A pyroelectric energy-meter, distinctive for its flat wavelength 

response, was used in the measurements. Figure 6.4 shows the measured dependence for the 

focused beam (18µm spot size), which was used in the soliton self-reflection experiment 

discussed in the following sections. The soliton energy regime used in these experiments was 

around 0.5-1 µJ/pulse ensuring that the multi-photon absorption effects were low, as seen in 

Figure 6.4.  

6.2 Theoretical background 

The basic optical phenomena of reflection and transmission at an interface between two 

media with different refractive indices are governed by the Fresnel laws. This feature is linear. 

Considering in addition nonlinear optics, the Kerr effect can perform an intensity modulation of 

the refractive index. Therefore, if two materials, with equal refractive indices but different Kerr 

properties form an interface, an intensity dependent reflection can occur [5]. The phenomenon 

does not follow the classical Fresnel reflection law [6]. However, the induced index change is 

relatively weak and can influence beam behavior only at a small incidence angle. In addition, the 
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materials forming the interface have to satisfy certain conditions on the nonlinear properties in 

order to show intensity-dependent effects. 

 A quadratic nonlinearity offers very different horizons in realizing intensity dependent 

reflection/transmission effects. The quadratic nonlinear properties can be modified by using the 

QPM technique, without introducing an index of refraction change. 

The possibilities resulting from using multiple QPM structures, shown in Figure 6.5, have 

been introduced and theoretically investigated by Clausen and Torner [7]. The multiple QPM 

region strategy in fact offers different configurations, as discussed in [7] and illustrated in Figure 

6.5. 
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Figure 6.5: Schematics of multiple QPM structures. The structure on the left (dislocation 
configuration) corresponds to the sample used in this work. 
 

Considering the dislocation case only, the two QPM gratings (the QPM basics were 

introduced in section 2.6.3), which are periodic along the z direction, modulate the nonlinearity 

as  
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where d(z,x) is the modulated material nonlinearity and q=π/Λ (Λ is the grating period). The 

soliton sample structure, shown in Figure 6.2, uses the d1 Fourier component, which equals 

2d33/π. Notice that the x direction dependence in (6.1) reflects the double QPM structure effect. 

The SVEA equations  (2.9) for the dislocation structure are given with 
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Here Λ= /0πθ z  models the transverse direction effects, and for the actual sample, the 

dislocation ( ) is given by  0z
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Effectively introducing the dislocation results in an additional )exp( πi±  phase in the coupled 

equations (6.2) for . Naturally the beam propagating through only one QPM, the left or the 

right one, does not see any additional effects since the additional phase can be “absorbed” by the 

SH electric field, by substituting 

0>x

)exp( θiEE SHSH −→ . 

 The numerical simulations, similar to [7], performed for a (1+1)D CW case by using a 

BPM tool, show a very dramatic intensity dependence of the reflectivity. The reflection occurs at 

the interface between the QPM structures. The simulation parameters corresponded to the 

experimental conditions.  
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Figure 6.6: The (1+1)D CW numerical simulation results of the reflectivity versus the input 
intensity for the double QPM structure (dislocation) shown in Figure 6.2. The insets show the 
output beam profiles for the two limiting intensities. The dashed line indicates the position of the 
interface.  

 

Figure 6.6 shows the numerical results. Here the reflectivity was calculated as a ratio of 

the reflected power to the total input power. The beam hits the boundary from its left side, 

according to the inset of Figure 6.6. Therefore on the left/right side of the boundary is the 

reflected/transmitted component of the beam. As seen on the graph the reflectivity is close to 

zero if the beam intensity is below a threshold and abruptly switches to one at the intensities over 

the threshold.  Solitons behave as “particles” and always attempt to remain complete. From this 

point, the sharp change in the reflectivity is a direct consequence of the spatial soliton behavior 

and thus solitons are ideal candidates for all-optical switching applications. 
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This intriguing numerically predicted intensity-dependent reflectivity behavior is based 

on the already mentioned additional phase factor effect in the conversion equations, which 

affects the soliton passing through the interface. A well formed soliton has its SH and the FW 

components locked in phase and it has a certain intensity distribution, which is defined by the 

input conditions. By passing through the boundary, the soliton features (SH and FW phase, 

intensity distributions, etc.) get perturbed. The interface effect can be described mathematically 

as an effective repulsive potential well effect (for more details see ref. [7]). 

The numerical simulations for the pulsed beam case are shown in Figure 6.7. The beam 

propagates from left to right and the interface is positioned as indicated in Figure 6.7a by the 

dashed line. A Gaussian intensity distribution is assumed for the pulses and the spatial beam 

profile corresponds to the experimental conditions. The peak intensity units correspond to the 

units used in Figure 6.6 for CW numerical simulations. The incidence angle to the interface is 

equal to the angle used in the experiment. At the 0.7 a.u. peak intensity (Figure 6.7a), the soliton, 

which is formed after propagation through the medium and before interacting with the interface, 

is completely transmitted and there is no deflection of the beam propagation direction. The beam 

starts to be influenced by the interface at 0.9 a.u. peak intensity, resulting in the beam profile 

changes at the output and a slight bending of the propagation direction toward the interface. 

However the beam is still efficiently transmitted.  

78 

 
  
 



peak intensity peak intensity 
0.7 a.u. 0.9 

79 

 

 

Figure 6.7: A (1+1)D numerical simulation of the FW beam component propagation through the 
dislocation configuration is shown. a,b,c & d correspond to increasing input intensities. Gaussian 
shaped pulses were assumed. The dashed line illustrates the interface position. 

 

If the input intensity exceeds the CW reflection threshold, the beam breaks into a 

reflected and a transmitted part. With further intensity increase, the reflected portion of the beam 

increases. As can be seen from the above simulations, in its interaction with the interface the 

beam propagates along the interface for some time which indicates that the reflection occurs after 
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a certain beam-interface interaction length and not instantly. The partial reflections occur due to 

the pulsed nature of the beam, where the time profile undergoes a reflection process which 

depends on the position in the temporal profile, as illustrated in Figure 6.8.  

 

 

Figure 6.8: Illustration of an intensity profile of a light pulse in which the transmitted (low 
intensity) and reflected (high intensity) portions of the pulse are identified. The reflections occur 
in the beam-dislocation interface interaction process under appropriate conditions.  

 

As a result of the pulsed nature and the partial reflections, the transition from complete 

transmission to an efficient reflection is a smooth function of intensity while in the CW case the 

change is very steep, as already discussed. 

6.3 Experimental setup and measurement conditions 

The 1064nm output from the EKSPLA laser was used as the light source in the experiment. 

The 1064 laser beam is the non-SHG-converted portion of the amplified laser output passed 

through a BBO SHG crystal. In order to decrease the M2 laser beam quality factor from 1.8 to 1-

1.1, where 1 means a perfectly Gaussian beam, it was necessary to use spatial filtering. The Si 
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detectors (1cm2 area diodes) were used for the FW and the SH energy measurements. Due to the 

low repetition rate of the laser a BoxCar system, LabView driven, was implemented for the data 

acquisition purposes. The BoxCar has a variety of options allowing sophisticated detector signal 

gating, integrating and averaging procedures. However, the “floating” offset of the integrated 

signals and the poor long term stability of the BoxCar synchronization with the laser trigger 

signal are two major drawbacks. However, it is the best and the only commercially available tool 

for multi-detector data collection using low repetition laser systems. 
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Figure 6.9: Schematic of the experimental setup. 

 

After some beam shaping optics the 1064nm, 25 ps laser beam pulses were focused into 

the 7.5mm long PPKTP sample. The spot size was around 16µm and therefore the sample was 
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effectively more than five diffraction lengths long. Only the FW was launched and the SH was 

generated in the usual up-conversion process from the propagating FW beam component. By 

changing the sample temperature, which was controlled by a home made oven, it was possible to 

tune the phase matching conditions over approximately π5±=∆kL  around the NCPM condition. 

The transverse sample position and the crystal orientation (angle) were controlled by the 

LabView driven 1µm precision translation and 0.010 precision rotation stages, allowing a precise 

control of the relative position between the beam and the interface. The beam was adjusted to hit 

the interface at around a 0.50 angle. By operating at a decreased sample temperature resulting in 

a 2.4π phase mismatch, the input beam was able to achieve the soliton state within a shorter 

propagation distance. Additionally, the phase mismatch suppressed the multi soliton generation 

effectively and made the soliton generation less sensitive to imperfections and irregularities in 

the QPM structures. The output from the sample was imaged on a Si CCD camera, which was 

computer-controlled and synchronized with the energy detectors. 

6.4 Experimental results 

In order to demonstrate experimentally the intensity-dependent reflections, the experimental 

setup from Figure 6.9 was used. The sample, precisely positioned with the motorized mico-

positioners, was tilted at ∼0.50, in this way determining the incidence beam angle onto the QPM 

interface plane. Initially, the successful generation of solitons in the two QPMs was verified by 

launching the laser beam separately into each single QPM region, far from the interface. The 

observed solitons were well formed at the output of the sample. The 2.4π phase mismatch was 
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used to generate solitons within a short propagation distance, to minimize the influence of the 

QPM imperfections and to decrease the probability of multi-soliton generation. 
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Figure 6.10: (right) Set of output patterns for an ~6GW/cm2 input beam intensity for several 
different sample positions relative to the propagation beam. (left) The beam direction was fixed. 
The sample scanning direction from left to right is illustrated. Only the interface is shown.  

 

The nonlinear reflections were found to occur at a 0.50 incidence angle at around 6GW/cm2 

input beam intensity. Figure 6.10 shows the output solitons for several different sample positions 

relative to the propagation beam. The beam’s incident direction was kept fixed and the sample 

was moved perpendicularly to it by a motorized, LabView controlled micropositioner.  
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For the sample’s initial position the beam propagated from the right of the interface and 

passed through one QPM region only. A soliton was formed (Figure 6.10a) and was observed at 

the output. As the sample was moved further for 42µm measurement, the beam started to interact 

with the interface. The observed output soliton was slightly deflected to the right. This could be 

understood as the beam’s tendency to escape from the vicinity of the interface in order to keep its 

integrity and eventually form a soliton. At the 60µm sample position, the beam hits the interface 

after around 4mm of propagation through the 7.5mm long sample. The soliton is well formed 

after this propagation and it is efficiently reflected from the interface back to the same QPM 

region. The reflected beam output is separated by 80µm from the initial non-deflected output 

point. However on the transmitted side, a wide, weak beam is observed as well, indicating that 

the beam is also partially transmitted. This is in agreement with the theoretical simulations 

(Figure 6.7) for a pulsed beam. For intermediate sample positions, not shown here, the beam 

pattern is irregular and mainly diffracted. The deflection of the reflected beam decreases when 

the sample is moved further and at the 100µm position the beam goes entirely through the 

sample without interacting with the interface. 

The measurements clearly show that the input beam has to propagate for several millimeters 

through the sample in order for the reflection to occur and obviously only solitons can reflect 

from the interface.  
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Figure 6.11: Soliton reflection for two sample positions separated by ~10µm. The beam direction 
was fixed. 

 

 In the experimental result shown in Figure 6.11, the sample was transversely shifted by 

around 10µm while the input beam direction was kept the same. Therefore the high intensity, 

well formed solitons (~6GW/cm2) hit the interface at the different positions. In case 1 / case 2 the 

soliton hits the interface after 4.5 / 5mm of propagation. The solitons are formed and reflected in 

both cases. However the soliton in case 2 is reflected around 20µm further from its transmission 

point than the soliton in case 1 as a result of the earlier reflection from the interface. 

In the intensity-dependent measurements the input beam incident angle was kept 0.50, 

corresponding to Figure 6.10 and Figure 6.11 conditions and the sample was positioned so that 

the beam propagates around 5mm before hitting the interface. In that way the solitons are well 

formed before they hit the interface. 
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Figure 6.12: Intensity-dependent output beam patterns are shown. The beam incidence angle was 
fixed at 0.50. 
 

At low intensities, around 2GW/cm2, the beam was completely transmitted. The 

transmitted beam is wide, has diffracted considerably and is far from a soliton solution. The 

output beam shape results from the low input intensity and the transfer through the 6µm thick 

interface. At around 3.5GW/cm2 a fraction of the input beam is reflected, defining the intensity 

threshold for the reflections. With a further intensity increase a larger fraction of the beam gets 

reflected, resulting for intensities higher than 6GW/cm2 an almost 90% reflectivity. There is no 

change in the reflected beam position with further intensity increase, in agreement with the 

simulations from Figure 6.7. 
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Figure 6.13: Reflectance versus the input beam intensity is shown, corresponding to the output 
pictures in Figure 6.12. 

 

 The intensity-dependent transition from total transmission to maximum reflection is 

shown in Figure 6.13 as a reflectance versus peak input intensity curve. The data represent the 

reflected/transmitted power ratio and correspond to the measured output patterns shown in 

Figure 6.12. From the graph shown in Figure 6.13 an intermediate intensity region, where both 

the transmission and the reflection occur, spreads over a range of 3GW/cm2. This feature is 

considered to be directly related to the pulsed nature of the input beam, as seen in the simulations 

as well. In order to get a steeper change of the reflectance, one has to perform an initial pulse 

shaping, making the pulse to be square-like. 
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 In conclusion, the intensity-dependent reflections were experimentally verified by using a 

specially engineered multi-region QPM sample. The reflections result from the perturbation of 

the soliton upon its interaction with the engineered interface. There is a good qualitative 

agreement between the experiments and the theoretical simulations. The feature could have 

potential applications for intensity dependent beam steering, all-optical switching and soliton 

guiding (due to multiple reflections). The experiments have opened new horizons for 

manipulating nonlinear properties and using the effects which they make possible. 
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7 CHAPTER SEVEN: POTASSIUM NIOBATE QUADRATIC SOLITON 
COLLISIONS 

This chapter is devoted to the most intriguing branch of all of spatial soliton science, namely 

soliton collisions and interactions. However, the discussion is concentrated on two dimensional, 

(2+1)D, quadratic spatial soliton collisions only. Two special cases, a “nearly collinear” 

configuration and a non-planar collision, were experimentally realized in a KN sample. These 

KN configurations are discussed both experimentally and theoretically. However the emphasis is 

on the experimental side since these were the first experiments to demonstrate in depth the 

features of two dimensional quadratic soliton collisions.  
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7.1 Theoretical background 

Spatial soliton collisions have been extensively investigated as they are one of the most 

intriguing of soliton features. For a review on the recent achievements in this field see ref. [1, 2, 

9, 11]. Considering a Kerr system, when solitons collide they either repel or attract, depending 

on their relative phase. However the soliton number is always conserved since Kerr systems are 

integrable [3, 4]. Another extensively explored category is the saturable-Kerr system, in 

particular photorefractive material systems which exhibit repulsion for a π phase difference 

  
 



between the input solitons in a fashion similar to Kerr, and fusion for in phase soliton 

interactions, a feature not observed in Kerr systems [5, 6]. 

Quadratic nonlinear systems, based on their collision properties, exhibit similar features to 

the saturable-Kerr systems. However, quadratic soliton collisions rely on  conversion processes, 

a property which is inherently different from the index change based processes in Kerr and 

saturable-Kerr systems. For interactions between two quadratic solitons the nonlinear terms are 

given by: 
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where a and b are the field amplitude components (FW and SH) for two interacting solitons. In 

the above equations the cross terms (ab type of field products) are responsible for the 

interactions. According to ref. [7] the following set of the coupled equations describes the 

individual soliton FW and SH processes: 
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Here the interaction cross terms are contained in theΦs.  

 The results of the interaction can be understood in very simple terms by considering only 

0 and π relative phase between the interacting solitons. The cross terms, contained in Φ, are 
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given by 
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where the upper (plus) and lower (minus) sign correspond to the 0 and π relative phase cases, 

respectively. All terms add together at the 0 relative phase and contribute to an increase in the 

nonlinear conversion processes in the overlap region and therefore to an increase in the soliton 

component’s amplitudes. Thus the solitons are attracted to each other, eventually collapsing into 

one. In the case of a π relative phase, the destructive interference due to Φ results in the 

separation of the soliton centroids. Therefore the solitons repel. More details and discussions on 

the physical background for the phase dependent collision effects are given in ref. [7]. 
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7.2 KN experimental setup 

In order to perform the experimental investigations on quadratic spatial soliton collisions an 

11mm KN sample was used. Despite the complications related to using the OPG-OPA as a 

tunable laser source, it was desirable to operate at 983nm, in the vicinity of a potassium niobate 

NCPM condition. In this case the colliding solitons can be generated under identical conditions 

due to the ultrawide acceptance bandwidth. Also at NCPM the tolerance on the initial conditions 

is an order of magnitude better than for the critically phase matched configurations giving much 

better control over the experimental conditions. 
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Figure 7.1: KN soliton collisions experimental setup. 

 

The experimental setup for performing the soliton collisions in KN is shown in Figure 7.1. 

The spatially filtered output from the OPG-OPA is divided into two beams, each meant to 

generate a soliton. The beams are focused down to the 18µm spots after being combined at a 

beamsplitter (BS). The solitons are formed upon propagation through the KN sample. The output 

was imaged onto a Si CCD camera. The delay line, in Figure 7.1, provided temporal overlap 

between the 25ps pulses. The relative phase between the solitons was controlled by tilting a 

~50µm thick glass plate. The glass plate tilt was calibrated by measuring fringes at the output 

CCD camera in order to relate the tilt to the phase change introduced. If the plate was tilted at 

450 relative to the beam propagation direction, around 2.5 degrees additional tilt provided a 2π 

phase change. In order to determine a collision angle, the separations and positions of the non-

interacting beams were recorded at both the input and the output from the sample. The phase 
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shifter, the CCD camera and the energy detectors were synchronized on a shot-to-shot basis by 

using a computer with LabView software for control and data acquisition. In fact, a full 2π 

relative phase scan of a collision process, generating several hundred CCD pictures and energy 

data charts, takes only several tens of seconds. In this way the phase jitter influence, caused by 

the air flow for instance, was minimized to a negligible level. 
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7.3 Nearly collinear configuration  

This section gives details of experimental observations of soliton interactions for a nearly 

collinear configuration. The sample was kept at “room” temperature and the wavelength was set 

around 983nm in order to achieve NCPM. The initial separation between the beams was around 

50µm and they were launched at a small relative angle of 0.170 resulting in a 30µm separation at 

the output from the crystal. It was favorable to launch the beams at a small given angle in order 

to provide enough propagation length for the beams to form the solitons before they start to 

interact with each other and also to bring them closer together in the second half of the crystal so 

that they can perform the interactions efficiently. 
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Figure 7.2: a) The schematic of the nearly parallel configuration used in the experiment b) 
illustration of the solitons in interaction and  c) the experimentally observed output patterns as a 
function of the relative input phase between the solitons for the nearly co-parallel case. The 
output with no interaction is also given in order to show the soliton separation at the output in the 
absence of an interaction. 

 

 Figure 7.2 shows a set of the output patterns, realized at the KN sample output, and their 

dependence on the relative phase between the solitons. As shown there, the pattern changes 

dramatically with the phase. Single soliton output is realized at the 0 phase, as expected from the 

theoretical analysis and the above discussion. The solitons attract and with the propagation 

collapse and finally form a single soliton. The single soliton is well formed in this configuration, 

as seen in Figure 7.2 (0 phase). However, generally the fusion process requires some propagation 

distance in order to realize and it is configuration dependent which determines whether at the 
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sample output a complete or a partial fusion occurs.  
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ifference which results in well separated 

solitons

Another limiting case occurs at π phase d

 (Figure 7.2). Compared with the non-interacting case shown on the right-hand-side in 

Figure 7.2, the soliton’s separation increased by almost three times due to the repulsion 

interaction effects. In the intermediate regime between 0 and π, two unequal intensity beams are 

observed at the output. The beams are separated by nearly the same distance as for the π phase 

difference case. Initially carrying equal intensities the solitons undergo energy exchange 

processes during the interactions. The energy flow direction is phase dependent and, according to 

the output pictures, it is anti-symmetric around zero phase. The observed features are in 

agreement with the theoretically known behavior.  
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Figure 7.3: Intensity ratio (weaker soliton/stronger soliton) versus relative phase difference for 
the nearly co-parallel soliton configuration. 
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In order to explore the energy transfer between the solitons for the measurements given in 

Figure 

 good control of the experimental conditions because of both the Labview 

control

7.4 Birth of a soliton 

The soliton interactions discussed in the ction all took place with soliton 

traje

7.2, it is convenient to define the ratio between the weaker and the stronger soliton 

intensities. Figure 7.3 shows this ratio as a function of the relative phase difference between the 

solitons. The zero value in the graph at 0 phase difference indicates a single soliton output 

(fusion) and the ratio equal to unity around the π phase, indicates the existence of two equally 

strong solitons. 

The very

 and the insensitivity of the experimental conditions to perturbations in the vicinity of 

NCPM, resulted in a precisely performed characterization of the phase effects associated with the 

soliton interaction processes. 

previous se

ctories in a common plane. The configuration of interest investigated next is shown in 

Figure 7.4. This interaction geometry is unique because of its non-planar character with a center 

to center separation of around 10µm in the vertical direction. The inputted beams were 

“collided” (i.e. underwent strong interaction) after about 5mm of propagation at a 0.90 collision 

angle between the beams. Usually angles smaller than 0.60 are considered to be “small” collision 

angles and they typically result in behavior similar to the “nearly parallel” case discussed 

previously. For angles which are larger than 1.40, large collision angles, only energy exchange 

processes are expected from simulations. The current configuration corresponds to the 

  
 



intermediate regime of the collisions. The individual solitons were generated at ~4.5GW/cm2, 

while the soliton threshold for the given conditions was ~3GW/cm2.  
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solitons are collided in the middle of the sample. 

output pattern if the solitons interact. 

The output distribution when there is no interaction between the propagating solitons is 

 

Figure 7.4: The schematic of a two soliton collision process in a non-planar configuration. The 

 

 

Figure 7.5: a) The output distribution if there is no interaction between the solitons and b) An
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given in Figure 7.5a. This result is achieved by displacing the delay line so that the 25ps long 
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t beam 

tensit

pulses no longer overlap in time. For the configuration given in Figure 7.4b, a three soliton 

output pattern was observed when the two propagating solitons interacted with each other. The 

output solitons were tilted at the sample output relative to the solitons in the non-interacting 

output pattern. This is considered to be a direct consequence of the initial non-planar 

configuration. In fact, the solitons perform a small rotation due to the initial angular momentum 

associated with the input geometry. Similar spiraling effects were observed previously in a Type 

II configuration [8, 9]. As can be seen from the figure above, an additional soliton is generated in 

the collision process. This was observed for the first time in quadratic nonlinear systems. The 

effect of generating an additional soliton from a two soliton interaction was previously observed 

only in photorefractive systems [10] and that was conducted under similar collision angle 

conditions. Therefore the birth of a soliton seems to be a generic soliton collision effect 

occurring around 0.90 collision angles in a non-planar geometry. According to the observed 

output solitons (Figure 7.5b) the intensity is distributed uniformly over the three output solitons. 

This three soliton feature was found experimentally to be sensitive to the configuration details, 

favoring a higher intensity middle soliton at higher input beam intensities. The multi-soliton 

output is also sensitive to the choice of collision angle as well. For smaller angles the middle 

soliton was more prominent while at larger angles the middle soliton intensity decreased along 

with a loss of the net rotation. In fact even for the coplanar case a third soliton was observed 

when the other parameters (the angle and the intensity) were kept the same. Numerical 

simulations of the collisions produced results in good agreement with the measurements. 

 In order to perform a full relative phase scan, the collision angle and the inpu

in ies which led to the stable three soliton features were optimized. Figure 7.6shows a set of 

  
 



the output pictures when the relative phase between the input solitons was varied. The pictures 

correspond to the configuration shown in Figure 7.4and are rotated for 900 relative to the pictures 

in Figure 7.5. As can be seen from the scan, the additional soliton which is generated at 0 relative 

phase and is centered between two side solitons, shifts towards one side and finally merges with 

a side soliton as the relative phase difference increases. At π phase difference a two soliton 

output is observed although the limited sample length hindered the soliton regeneration after the 

collision process.  

 

 

Figure 7.6:  Set of output pictures as a function of the relative phase between the colliding 

0 π 2π 

phase 

three separated three separated 
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solitons. The regions around 0 and 2π relative phase show the three soliton output patterns, as 

CW numerical simulations were performed by using a BPM code developed for quadratic 

liton

indicated. 

 

 

so  problems. The simulation conditions were set to correspond to the experimental 

parameters. As shown in Figure 7.7, at 0 relative phase three solitons are observed and only two 

  
 



solitons at π relative phase. This is in good qualitative agreement with the experimental 

measurements. The simulations showed the same type of sensitivity to the initial conditions such 

as collision angle, intensity etc. as observed experimentally. Even for the optimum configuration 

the simulations still favored the central soliton, as can be seen for the 0 phase case in Figure 7.7. 

The simulations also indicated the possibility of five coplanar solitons to be generated within a 

single collision process. However the range of conditions needed to observe those were very 

restricted, even more limited than those for the current configuration. 

 

π phase 0 phase 

 

Figure 7.7: BPM CW numerical simulations. 
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Figure 7.8: The graph shows the dependence on the relative phase difference between the 
solitons of the intensity of the beam passing through the slit placed at the crystal output, as 
shown on the right side picture.. 

 

 Using the fact that there is a well defined phase range around 0 relative phase where three 

solitons are formed at the output from the sample, one can realize all optical switching. By 

placing a slit at the output of the crystal, as shown in Figure 7.8(right), only the central soliton is 

transmitted to the detector. The graph in Figure 7.8(left) shows the intensity of the beam passing 

the slit versus the relative phase difference between the colliding solitons. Clearly, the intensity 

is high within a range of almost π around zero phase. Since it is usually possible to control the 

phase within such tolerances, the properties of this collision configuration could be used as an 

AND gate if one can keep the relative phase around zero. On the other hand there is a relatively 
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fast change in the intensity as the phase increases beyond around 0.7π, opening the switching 

possibilities in this direction as well. 

 In conclusion, quadratic soliton interactions and collisions were investigated in potassium 

niobate. The experiments performed showed that the relative phase between the solitons can 

dramatically influence the output patterns. In the parallel configuration fusion, energy transfer 

and repulsion were observed, as expected from theory. The relative phase was scanned with an 

impressive π/20 precision. Collisions at 0.90 relative angle resulted in partial fission for the in-

phase solitons (three solitons output) and two solitons for the π relative phase. The additional 

soliton generation effect could find applications in all-optical switching. 
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8 CHAPTER EIGHT: PPKTP QUADRATIC SOLITON COLLISIONS 

The previous chapter has discussed some aspects of quadratic soliton collision processes. 

Because of the relatively large two photon absorption (TPA) at the SH wavelength,[3] KN has a 

tendency to form solitons composed mainly of the FW. In addition, using the OPG-OPA as a 

light source introduced a significant amount of experimental noise due to the shot-to-shot pulse 

energy variations and the jitter in the beam’s directionality. On the other hand, PPKTP does not 

suffer from these problems and still has a large effective nonlinear coefficient (9.5pm/V). 

Therefore PPKTP is attractive for performing a detailed experimental analysis of collision 

processes. 
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8.1 Experimental conditions 

The experimental setup was organized in a similar way to the KN setup. However, the 

Nd:YAG laser was used as a light source rather than OPG-OPA as in the KN experiment. The 

1064nm laser beam was spatially filtered, divided into two beams by a 50:50 beamsplitter, 

passed through a delay line, a relative phase control stage and energy control elements. The two 

beams were then combined by another 50:50 beamsplitter and focused down by a 10cm focal 

  
 



length lens L1 (Figure 8.1). Each arm generated a single soliton in the 10mm long PPKTP 

sample. The PPKTP sample used in this experiment has the same properties as the one 

introduced in section 6.1 except that the current sample used only one QPM region. After the two 

beams interacted in the sample and exited through the output facet, the resulting pattern was 

imaged onto a CCD camera by another lens L2 (4cm focal length).  

 

spatial filter 
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Figure 8.1: PPKTP soliton collisions experimental setup. 
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A new section introduced into the current setup, compared to the KN soliton collision 

experimental setup, is the branch used to image the beam’s spatial intensity distribution via lens 

L1 onto the camera. The two “flip” mirrors, 1 and 2, are used to detour the beam. Mirror 1 

reflects the beam away from the sample so that the focal plane can be imaged onto the CCD 

camera. However, the images of the beam profiles in the focal plane, when imaged through lens 

L2 and through the “detoured” beam path (via lens L3) are different in size as a consequence of 

the different imaging magnifications in the two paths. Therefore, the beam profiles obtained 

through the lens L3 required calibration. Also, the configuration, as shown in Figure 8.1, was 

limited by the camera size (“output window size”) to collision angles below 0.70. In order to 

observe large angle collisions (up to ~30) the camera was moved closer. 
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8.2 Collision processes and soliton formation 

In any experiment with a fundamental beam only as the input, the required SH and hence 

the solitons are generated after some propagation distance. Therefore an experimental realization 

of a soliton collision process can be dependent on the physical collision point inside the sample.  

The beam geometry for investigating beam collisions at the different stages of soliton 

formation is shown in Figure 8.2. The angle was kept around 0.40, which is a relatively small 

angle and for which efficient fission was expected for the in-phase case. The sample temperature 

was set to correspond to NCPM and the input beam intensities, around 3.3GW/cm2, were kept 

slightly above the soliton threshold (~3GW/cm2). The higher the input intensity, the shorter the 

distance usually required for soliton formation. Thus by operating just above threshold, it was 

  
 



expected that phenomena connected with incomplete soliton formation would be exaggerated 

and amenable to investigation. In order to vary the collision point and still maintain the desired 

collision angle, it was necessary to go through a time consuming input beam alignment 

procedure for each particular configuration. In addition, even if the collision angle is kept the 

same, a small misalignment (of ~5µm out of the propagation plane) can cause the beams to 

propagate in the slightly different planes (non-planar configuration) resulting in spiraling effects.  
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Figure 8.2: Beam geometries for observing the dependence of the collision process on distance 
into the sample. 

 

The output patterns from the camera shown in Figure 8.3 illustrate the effects of the soliton 

formation process on the collision results. In the text the “collision point” phrase designates the 

distance from the front facet of the sample to the position where the collision virtually occurs 

(Figure 8.2).  
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0 π/4 π/2 3π/4 collision point  
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Figure 8.3: Phase dependent output from the collision processes, performed under the different 
collision conditions, is shown. 
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The results for three collision points, 4.1, 5.2 and 6.6mm, are shown. Clearly there are 

dramatic changes in the output associated with changes in the relative phase, similar to that 

observed in the KN collision experiments discussed in Chapter 7. The 00 relative phase case 

usually shows a collapse into a single, high intensity beam and around π usually two, largely 

separated beams result from the collisions. One clear difference between the three configurations 

investigated is the beam shapes. The output beams are much smaller in size in the 6.6mm case. 

In fact, the output beams generated in the 4.1 and 5.2mm configurations are not well formed 

solitons. For example, in the 4.1 and 5.2mm cases with 00 phase difference, a beam leaves the 

collision with sufficient intensity to eventually evolve into a soliton. However, at π relative phase, 

the output beams are barely visible for the 4.1mm case. Notice also the variations in the output 

beam separation at 3π/4, π/2, 5π/4 and 3π/2 relative phases. This effect, revealed also in the 

simulations, is believed to be a consequence of premature interactions. In fact the input beams 

interfere with each other soon after entering the crystal, resulting in quasi-linear effects. The 

evolving beams, not yet having formed solitons, are strongly influenced by the interference 

fringes. For the 6.6mm configuration, over the whole relative phase range the output solitons are 

well formed, leading to clean collision results. Clearly, there is a required propagation distance 

before the beams collide in order to perform “soliton” collisions and, under for current input 

intensity and beam size conditions, this distance is around 6mm. 

 

108 

 
  
 



0 π/4 π/2 3π/4 
collision point  

109 

 

 

 

Figure 8.4: Relative phase dependent output from the collision processes performed for the 
collisions centered at distances of 7.5 and 11mm from the input facet, respectively. The sample 
length is 10mm. 

 

Figure 8.4 shows the phase dependence of the “output” from collision processes that 

occurred at the 7.5mm and 11.6mm collision point. Note that in the 11.6 case the solitons 
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“collide” after passing through the crystal. The angle was kept around 0.40. The collisions show 

fusion around the 00 phase, as expected, especially for the 11.6 mm case in which the beams are 

“pointed” so that they will approximately cross at the output facet. Two equally intense beams 

(solitons) are observed at π relative phase indicating that the interaction “turns on” through the 

soliton’s evanescent tails even before the individual solitons centroids “collide”. Also, in the 

range from π/2 to 3π/2 where two soliton outputs were observed, the soliton’s output positions 

do not change significantly with phase but the energy they carry reflects the phase changes more 

or less as expected from theory. This is a very different behavior from the large beam repulsion 

observed in the quasi-linear 4.1mm case.  

 From the numerical simulations performed (the 11.6mm case is shown in Figure 8.5) it is 

clear that the solitons interact over a large propagation distance. In fact for the simulation outputs 

shown, the interactions take place over almost 5mm of the soliton’s propagation path. Therefore 

in experiments performed on the 10mm long sample the soliton interactions are still in progress, 

even at the output of the sample, slightly influencing the output solitons. The observed 

simulation output pictures are qualitatively in agreement with the experiments.  
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8.3 

 

Figure 8.5: CW BPM 2D numerical simulations of the collision processes. The solitons are 
generated slightly above their threshold and collide at a 0.40 angle. The collision point is at 
11.6mm, corresponding to the experimental results in Figure 8.4. The pictures show the 
propagation along a 20mm long sample, which is twice the length of the actual sample. The 
white vertical dashed line indicates the rear surface of the actual sample. 
 

Collisions and phase mismatch 

From the meticulously performed soliton collision experiments discussed in the above 

section it is clear that the “collision” point, and therefore the initial and final solitons formed, can 

strongly influence the output of a collision process. On the other side the phase mismatch 

influences both the conversion and soliton generation processes. In fact the longest propagation 

distance for a soliton to fully form is required at phase matching. In order to form a soliton 

within a shorter propagation distance one has to go to a phase mismatched configuration. 
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However, the threshold intensity required for the soliton generation increases and the generated 

solitons do not have necessarily the same FW/SH ratio as the ones generated at PM. Therefore 

the soliton interactions change as the phase mismatch changes. In order to investigate the effects 

of phase mismatch on the collision processes the soliton collisions were performed under 

nominally the same conditions except for the different sample temperatures. The collision angle 

was set at 0.40, the input beam intensities were kept around 1.7 times the soliton threshold for a 

given phase mismatch (the threshold is phase-mismatch dependent) and the collision point was 

chosen to be 5.2mm. The intensities used in these measurements were set to be higher than the 

ones previously used (section 8.2) in order to reduce the distance required for soliton formation. 

 Figure 8.6 shows the output soliton patterns achieved at both PM and phase mismatch, 

respectively. At PM the output pictures correspond well to the previous results shown in Figure 

8.4. However the output is different for the phase mismatch case. At 00 relative phase, fusion 

occurs and the generated soliton is surrounded by an enhanced radiation pattern (bath) relative to 

the PM case. As the phase changes to π/3 the second soliton appears, which is different from the 

PM case where at π/3 the second beam was barely visible. Around the π relative phase condition 

both cases again show similar behavior. Between π/2 and π phase the energy exchange processes 

still occur. However the intensity ratio between the output solitons is smaller for the mismatched 

case suggesting that weaker soliton interactions occur in this configuration. 
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Figure 8.6: Output intensity distributions at different relative phases for the PM and the 3.5π 
mismatched configurations. The collision point was 5.2mm, the collision angle 0.40, ∆kL ~ 0 
(top) and 3.5π (bottom). 
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Figure 8.7: Input beam energy, ~1.7 × soliton threshold, as a function of the phase mismatch 
(sample temperature). The phase matching temperature is at 43.60 C. 

 

 Figure 8.7 shows the input beam pulse energies, corresponding approximately to 1.7 

times the solitons threshold, that were used in characterizing the soliton collision features at the 

different phase mismatch temperatures, described below. The steeper slope at the higher 

temperatures is a consequence of a negative phase mismatch and therefore the well-known 

higher threshold intensity requirement in order to generate the solitons [4]. 
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Figure 8.8: The output soliton distributions at different sample temperatures (phase mismatch) 
for a π phase difference between the solitons. The intensities correspond to the values from 
Figure 8.7. 

 

An output pattern data set for the collision processes performed under similar conditions 

but at different phase mismatch is shown in Figure 8.8. Only the π relative phase outputs are 

shown, since they best represent the trends in the soliton interaction outputs. The solitons are 

well formed prior to collision in all of the configurations except for the significant radiation (the 

vertical fringes on the pictures) that occurs at the larger negative phase mismatch (T>TPM). The 

output pictures show significant differences in the soliton separation with temperature. Clearly 

the separation is the smallest for the phase matched configuration. 
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Table 8.1: Data on the dependence of the sample temperature on output soliton separation. The 
data corresponds to the measurements in Figure 8.8. 

Sample Temperature (0C) Input pulse energy (µJ) Soliton separation (µm) 

27 1.25 30 

33 1.00 27.8 

43.6 (PM) 0.85 22.9 

44 0.92 26.4 

46 0.9 30 

48 0.97 30.8 

50 1.00 39.5 

 

 The data on the soliton separation along with the pulsed beam energies used in the 

measurements is summarized in Table 8.1. The separation ranges from ~23µm at the phase 

matching to ~39µm at T=500C. In fact, both the input intensity and the separation increase with 

increasing phase mismatch. However, the measured soliton separation of ~40µm at the sample 

temperature of 500C deviates significantly from the trends in the table. Moreover at T=480C 

which corresponds to a relatively small change in phase-mismatch the measured distance is 

almost 10µm smaller. There are at least two possible explanations for this deviation at large 

negative phase-mismatch, the soliton formation process and the increased background radiation. 

As the magnitude of the large negative phase mismatches increases, progressively more SH is 

needed to form a stable soliton. Thus it is possible that the solitons are not well formed at the 

given intensities for such a large negative phase mismatch, thus leading to a different behavior 
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relative to collisions that take place at the lower sample temperatures. However, according to the 

output picture in Figure 8.8 (for T=500C) the solitons seem to be relatively well-formed. But 

there is clearly a high intensity background consisting of vertical fringes. Because of this 

background the transverse soliton mobility is increased, which can strongly influence the final 

distribution of the solitons. Note that in the 500C result, the fringe separations are larger and that 

the solitons appear to be “pulled apart” by the fringes on which they “sit”. This is believed to be 

more dominant effect than the soliton formation itself. 
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Figure 8.9: Soliton separation as a function of phase mismatch ∆kL. The separation was 
measured at a π relative phase difference between the input solitons. The dotted line is only a 
guide for the eyes, not a fit. 
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 The graph given in Figure 8.9 shows in more detail the behavior of soliton separation 

versus the absolute value of phase mismatch. The graph is based on both the positive and the 

negative ∆kL measurements, combined together. The measurements were taken at 0.40 collision 

angle with the collision point around 6.5mm. The conditions are similar to those used in Table 

8.1 and Figure 8.8. The separations are measured at π phase. As seen from the graph, and given 

in Table 8.1 as well, the solitons have the smallest separation for the phase matching case. At 2π 

phase mismatch the separation distance reaches an apparent “saturation” value and with further 

increase in |∆kL| it only oscillates around this stable value (in this particular case ~30µm). The 

oscillations seem to exhibit a regular periodicity (π) reminiscent of the usual SHG sinc2 behavior 

found in non-solitonic SHG generation efficiency curves. However, the SHG sinc2 dependence 

reaches its minimum when the curve from Figure 8.9 reaches its maximum. 

 In Figure 8.10 the soliton’s output separation as a function of the relative phase between 

the fundamental beams at the input is shown for a number of phase mismatch configurations.  

The collision angle was ~0.40 and the collisions occurred after ~6mm of the propagation through 

the PPKTP sample. The intensities used in the experiment correspond to the values given in 

Figure 8.7. The solitons are well-separated around the π phase case and the soliton fusion occurs 

around 00 phase difference, as seen from the curves in the graphs below. They are in good 

agreement with the output patterns observed in Figure 8.6. The small variations of the nearly flat 

response around π phase (typically 3-5µm variations) occur quite consistently in the data shown 

in Figure 8.10. However, the measured patterns vary slightly over the range phase mismatch 

studied, showing even smaller magnitude oscillations for some of the measurements performed 
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under slightly different conditions. In order to deduce the soliton separation values the intensity 

distribution patterns had to be retrieved from the pictures. The separations were estimated based 

on the peak-to-peak separations extracted from the intensity distributions allowing around 5-10% 

error in the values. Also, if there is some radiation pattern at the sample output in the vicinity of 

the output solitons, the estimated values are less accurate especially for the 00 relative phase 

region because it becomes difficult to judge if the pattern surrounding the strong central soliton 

is only a radiation field or a remnant of the input soliton. In addition, in spite of the fact that the 

solitons collide at the same angle and equal propagation distances, the output patterns (including 

the background radiation) change slightly with the phase mismatch and from shot-to-shot. In 

some cases solitons were observed to perform small spiraling (the 440C case in Figure 8.8). 

When the spiraling occurs, the interactions are not exactly coplanar. Therefore the estimated 

distances can deviate slightly from the expected ones. 

 Considering the shapes of the curves in Figure 8.10, the T=270C and 330C show a 

relatively flat top behavior followed by a sharp drop around 0 phase. On the other side of the 

phase match (negative ∆kL), i.e. at T=460C,  a “bell shaped” top with a small dip at π relative 

phase is obtained. However, even on PM where fusion occurs, the decrease in the separation at 

00 relative phase is quite abrupt. The solitons with a relative phase close to 00 undergo strong 

energy transfer along their propagation. If the energy transfer is strong enough the solitons 

eventually collapse into one and the remaining energy is either captured by the existing soliton or 

it appears as radiation. If the solitons do not fuse they propagate along approximately the same 

paths as those for the π phase case.  
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Figure 8.10: Soliton separation versus relative phase difference for various sample temperatures 
(and hence phase mismatch). The measured data were deduced from output distributions of the 
type given in Figure 8.8. The data set range was extended to -2π to 2π from its original range 
from 0 to 2π. 
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 As indicated in the plots above, the range of relative input fundamental phases for which 

fusion (00 separation) occurs decreases as the phase mismatch increases, which is believed to be 

an indication of weaker interaction processes. This is in agreement with the increase observed in 

the absolute separation between the output solitons as the phase mismatch is increased when the 

relative phase between the input beams is kept at π. Both sets of measurements suggest 

weakening of the soliton interaction strength with increasing absolute phase mismatch. 

Unfortunately the difficulties in clean soliton generation at large negative phase mismatch (T > 

460C) limited investigation of these features in that region. However, the behavior at T=460C is 

similar to that for ∆kL>0, indicating suppression of the fusion effect at negative phase mismatch. 

Altogether, the phase difference region in which efficient fusion occurs decreases by about a 

factor of two from phase-match (43.60C) to phase mismatch at T=330C and it occurs only in the 

close proximity of 00 relative phase at T=270C, as shown in Figure 8.10. 

 In order to compare the soliton separation measurements performed for the four 

∆kL cases, the data from Figure 8.10 were combined into a single graph, shown in Figure 8.11. 

Clearly, the separation between the solitons increases with increasing phase mismatch. 

Comparing the curves, the T=460C case not only shows clearly some of the phase matching 

features (similar shape) but also some of the large phase mismatch features (significantly larger 

soliton separation around the π phase than for the PM). 

The region where fusion occurs and the change associated with ∆kL are clearly 

delineated in Figure 8.11. However the details of the features depend on a number of parameters 

such as the collision point and/or the collision angle, especially for the range over which fusion 
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occurs. In addition, if the input beams are not equal in intensity, the measured curves become 

asymmetric, showing monotonic drop/rise in the soliton separation when going from smaller to 

higher phase difference. However the abrupt changes at 0 separation (fusion) still occur. All of 

the discussed features are valid for angles below the collision angle where three solitons appear 

(around 0.90 according to the observed features in the KN case). 
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Figure 8.11: Soliton separation as a function of the relative phase between the input fundamental 
beams at various phase matching conditions. The separation 0µm indicates fusion and a single 
soliton output. The phase mismatch ∆kL of 3.5π, 2.2π, 0 and 0.5π corresponds to the 
temperature 270, 330, 43.60 and 460C, respectively.  
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8.4 Soliton collisions at wide angles 

It is known from the theoretical considerations that at large collision angles solitons only 

exchange energy and they cannot perform fusion. Very limited experimental investigations for 

the large collision angles have been previously reported (section 7.4 on the KN birth of a soliton). 

When the collision angle increases, even the energy transfer is expected to decrease, eventually 

resulting in the negligible interaction effects except for small lateral shifts.. 

  

 

Figure 8.12: Illustration of the dependence of the effective interaction length on the collision 
angles. 
 

The decrease in the interactions at large collision angles is simply due the very limited 

propagation distance over which interactions occur before the soliton pulses pass through each 

other (see Figure 8.12). The phenomena is somewhat more complicated than just interaction 

length effects because of the reduction in the generation efficiency of the SH components of the 

soliton with increasing relative angles (and hence phase mismatch). However it is known from 

  
 



experiments in KN and PPKTP [1, 2] that the soliton generation acceptance bandwidth can be 

several degrees wide in vicinity of a NCPM. Therefore the collision effects are expected to be 

mainly dependent on the effective interaction time between the solitons, as already mentioned.  

 Detailed discussions on the small collision angle case and changes in phase match have 

already been discussed in the preceding section. The discussion in this section concentrates on an 

experimental investigation of the dependence of the collision processes on changes in the 

collision angle. The initial experimental setup used to perform the small collision angle 

measurements in sections 8.2 and 8.3, as given in Figure 8.1, was limited by the acceptance 

angle of the imaging system. In fact the imaging system magnification was very useful for 

providing excellent resolution and the ability to observe details of the PPKTP sample output 

patterns. However, for that configuration the full camera window size corresponded to only 

around 80µm at the sample output. It limited the collision angles to smaller than ~0.70. To 

perform the experiments with larger collision angles the camera-imaging lens distance was 

shortened more than two times. In order for the image to fit into the camera window, an 

additional lens in the “detour” section was used to image the lens L1 focal plane,. Another lens, 

∼15cm focal length, was placed close to the camera, making the final image 13 times smaller. 

  The variation in collision angle experiments had similar alignment issues to those 

performed on the dependence of collision point on the output patterns that was discussed in 

section 8.2. In addition, large collision angles required widely separated beams (up to 5mm) on 

the focusing lens (lens diameter ~12mm). This required an additional translation stage for the 

focusing lens to provide equal alignment for both beams. 
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Figure 8.13: Collage of output patterns showing the differences between the collision processes 
that occur at different collision angles. The phase difference is indicated with the numbers on the 
left side. The term angle is used for the collision angle and it is given in degrees. The collision 
point is designated as distance and given in mm. 

 

A set of collision experiments at several different collision angles was performed in the 1 cm 

long PPKTP sample under similar conditions to those in sections 8.2 and 8.3 experiments. The 
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sample temperature was kept at 270C (~3.5π), and in order to operate with positive phase 

mismatch and to generate solitons within short propagation distance in the crystal, the input 

beam energies were kept around 1.4µJ which is slightly lower than two times the single soliton 

threshold at the given phase mismatch. The angle was varied from ~0.2-50. As mentioned above, 

in order to perform the measurements for the different configurations, the imaging system was 

modified and therefore the experimentally measured soliton patterns were observed with 

different magnifications (~13 times smaller) at the output.  

The measurements corresponding to five different collision angles (0.2, 0.35 1.1, 3.2 and 4.2 

degrees) are shown in Figure 8.13. The numbers on the left side indicate the relative phase 

difference between the initially launched beams. In the figure the results for only a few selected 

phase differences are depicted. Full size scans for the 0.20 and 0.350 angles show similar features 

to Figure 8.6. As seen from the above figure the output pattern changes dramatically from small 

to large collision angles. The fusion and the inter-soliton energy transfer processes are clearly 

visible at small angles. As the angle increases to 1.10, the phase dependence decreases 

significantly. At 00 and 2π relative phase the two beams tend to attract, and as seen from the 

figure they collapse towards each other. The resulting beam is elongated and due to the “poor” 

picture resolution (imaging system) it is not clear if the beams only attract or they already fused. 

Typically at small relative angles the solitons colliding around 4-6mm of propagation at the 00 

phase difference fuse very efficiently, generating a well shaped final soliton. However the 

process at an angle of 1.10 and at 00 phase appears to be different, indicating that perhaps the 

solitons do not fuse and the pattern observed is influenced by the resolution of the imaging 
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system. At other phase differences the solitons go through the energy exchange processes but 

their efficiency is significantly smaller than for the small collision angle case. While the weaker 

soliton carries around 25% of the total energy for the 0.350 case at the π/2 relative phase, it 

contains almost 45% of the total energy for the 1.10 case.  
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Figure 8.14: Dependence of the output soliton separation on relative phase difference between 
the propagating solitons measured at various collision angles. ∆kL = 3.5π. 

 

At the 3.20 and 4.20 collision angles, the propagating solitons essentially pass through each 

other, independent of the relative phase. The small changes in the relative solitons’ intensities 

(fluctuations below 7%) observed in the output pattern are rather stochastic and do not reflect 

any significant interactions.  
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A summary of dependence of the output soliton separation on the collision angle is shown in 

Figure 8.14. Three characteristic curves are shown. For the 0.350 collision angle curve, 

essentially small collision angle behavior, as expected, is observed. Fusion occurs in the region 

around 00 relative phase and repulsion in a wide range around π phase difference. The soliton 

collisions at large angles 1.10 and 3.20 show very different behavior. For the 1.10 case there is 

still a significant drop in the soliton separation at 00 relative phase, indicating that the interaction 

processes still influence the output solitons. The soliton separation achieves approximately a 

constant value (~100µm) in the very large region of the relative phase. The asymmetric shape is 

believed to be associated with the data processing procedure that is limited by the imaging 

system magnification and resolution. For the 3.20 configuration the interaction processes have 

negligible influence on the colliding solitons due to the short interaction distance. The curve is 

featureless with only small stochastic oscillations around approximately constant 320µm soliton 

separation. 

In conclusion to this chapter, a very extensive experimental investigation on quadratic 

soliton collisions was performed in a PPKTP crystal. The collision processes were investigated 

for various phase mismatches, collision angles and collision points. In addition, the relationship 

between the collision processes and the relative phase between the solitons was investigated. The 

carefully designed soliton collision experimental setup provided detailed information on the 

influence of the relative phase. In order to characterize the collision processes the output beam 

distributions at the sample’s exit surface were monitored. The recorded patterns and the data 

extracted from them indicated a weakening of the interaction processes with increase in the 
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phase mismatch. In addition, at larger collision angles, the interaction efficiency decreased due to 

reduced interaction length and finally vanished at around 30 angles, as expected.  

 

129 

 
  
 



9 CHAPTER NINE: SUMMARY AND CONCLUSION 

This Dissertation dealt with detailed investigations of quadratic soliton interactions. In the 

world of spatial solitons the interaction processes are one of the most intriguing effects, revealing 

in their full spectrum of effects the special nature of spatial solitons. The work was concentrated 

around the experimental observations of the quadratic soliton effects and phenomena in KN and 

periodically poled KTP (PPKTP). The corresponding numerical simulations supported well the 

experimental observations and measurements performed. Four different topics were covered 

within the manifold of quadratic soliton interactions: multi-soliton generation and related 

processes, soliton self-reflection and interactions with a specially engineered quadratically 

nonlinear interface, two soliton beam interactions and collisions in a birefringent medium and 

soliton collisions in PPKTP. In fact, prior to this research work, observations of quadratic soliton 

interactions and collisions were reported for only a few special geometries. 

The experimental observation of multi-soliton generation, discussed in Chapter 5 of this 

Dissertation, was reported for the first time in quadratic nonlinear systems. It followed and 

utilized single soliton threshold measurements performed on a 1cm long KN sample in vicinity 

of NCPM. The multiple solitons were generated from a nearly cylindrically symmetric input 

beam at high intensities, exceeding several times the single soliton threshold. Up to five soliton-
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like beams were observed at the sample’s output facet. This experimental observation inspired a 

detail theoretical investigation of the parametric soliton processes. In the explored case of the 

KN multi-solitons, the laser beam noise played an important role in generating the output soliton 

distributions which changed on a shot-to-shot basis. The numerical simulations showed good 

qualitative agreement with the experimentally observed multi-soliton features. 

In the chapter 6 on soliton self-reflection, intensity dependent interactions with a specially 

engineered nonlinear interface were reported. Launched at almost grazing angles of 0.50, a low 

intensity diffracting beam passed through a dislocated QPM interface while a high intensity 

(soliton) beam (~6GW/cm2) was efficiently reflected from the interface achieving around a 

60µm lateral shift relative to its transmission position. The interface influences parametric 

processes and thus disturbs an incident propagating soliton and eventually leads to the soliton 

reflection. Incomplete reflection efficiencies occurred as a consequence of the pulsed nature of 

the incident laser beams. In fact, there is a 3GW/cm2 intensity window where both transmitted 

and reflected beams were observed simultaneously. This feature is in very good agreement with 

the numerically generated output patterns. An abrupt transmission-reflection change could be 

accessible with a CW input or of if the pulses were initially square shaped in time. Additional 

measurements in which the incident beam intercepted the boundary at various propagation 

distances after entering the sample were performed. They proved that self-reflection only occurs 

after the beam has evolved into a soliton for the standard conditions in which only the 

fundamental component of the soliton is launched into the sample. In fact, if a beam hits the 

interface in its early stages of propagation, the soliton is not yet formed and for all input beam 

intensities only transmission occurs. The experiments performed demonstrated the basic concept 
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and identified the potential of QPM engineered structures for soliton routing and manipulation. 

Experimental measurements on two beam interaction processes in NCPM potassium niobate 

were reported for two configurations in Chapter 7. The impact of the phase difference between 

the solitons on the collisions was investigated with a precision far superior to that in previously 

reported measurements. For nearly co-propagating solitons colliding in a plane, fusion at 00 

relative phase and repulsion at π phase difference occurred, in excellent agreement with theory. 

For other relative phases, energy transfer processes were observed. For a non-planar 

configuration with the solitons colliding at 0.90 angle, spiraling about a common axis of up to 30 

degrees was measured. This effect resulted from the non-planar character of the collision 

geometry and indicated conservation of angular momentum associated with the common axis. 

Furthermore, an additional soliton was generated in the two soliton collision process. In fact, the 

additional soliton was centered between the outer solitons at 00 relative phase and shifted with 

increasing phase difference towards one of the outer solitons, finally merging with it in vicinity 

of π relative phase. At π a two soliton output was observed and the solitons showed an increased 

spiraling rate. The phase scan indicated the existence of a large range of relative input phases 

where three solitons occur. This feature could be useful for ultrafast all-optical switching. The 

ratio of the second harmonic to the fundamental components of the output solitons underwent 

only small energy changes (around 10%) with relative phase. 

Another set of soliton collision experiments was performed in NCPM PPKTP and was 

discussed in Chapter 8. Because of the stability of the laser source which was used in the 

experiment, it proved possible to investigate the details of the collision processes for the first 
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time. The output intensity patterns were explored for solitons colliding at different distances 

from the input crystal facet, showing that the collisions require a certain stage of soliton 

formation (propagation distance) before the collisions exhibited soliton characteristics. If 

collided in early stages of beam propagation, the solitons are not well formed and the resultant 

parametric processes are strongly affected by the effects of linear interference which eventually 

completely disabled soliton formation. Influence of the phase mismatch on the collisions was 

investigated at a 0.40 collision angle. As expected, the soliton interaction strength decreased with 

increasing phase mismatch. This was most evident in the measurements of output soliton 

separation at π phase difference. Observed was a minimum in the soliton separation at the phase 

matching. The range of relative input phases for which fusion occurs decreased with increasing 

phase mismatch as well. In addition, the dependence on collision angle was investigated. Found 

experimentally was that the fusion phenomena occurred only for angles smaller than 1.20. The 

energy transfer processes, clearly present at a 1.10 collision angle, gradually diminish with 

increasing collision angle and almost completely vanish at 3.20. 

The research performed on quadratic spatial solitons and their interactions was an extensive 

investigation that covered the basic concepts and yielded an important set of information on 

quadratic nonlinear systems. Most of the cases reported discussed first time observations of 

phenomena and, while some of the results have already influenced the fields of soliton science 

and nonlinear optics, others are believed to have potential to do so in the future. The collision 

experiments performed gave a deep insight into soliton collision phenomena in quadratically 

nonlinear materials and should prove invaluable in future experiments in quadratic array systems. 

Further improvements and innovations in QPM fabrication technology are expected to provide 
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new capabilities for engineering of some more exotic schemes that could eventually lead to new 

soliton guiding and routing processes in specially engineered structures. 

Overall, the author believes that the work reported in this Dissertation extends the horizons 

of the spatial soliton field and is an extensive and important contribution to the soliton 

community.  

 

134 

 
  
 



10 LIST OF REFERENCES 

Chapter 1: 

1. Barthelemy, S. Maneuf and C. Froehly, Opt. Comm. 55, 210 (1985). 

2. S. Maneuf and F. Reynaud, Opt. Comm. 66, 325 (1988). 

3. J. U. Kang, G. I. Stegeman, J. S. Aitchison and N. Akhmediev, Phys. Rev. Lett. 76, 3699 

(1996). 

4. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. 

Vogel and P. W. Smith, Opt. Lett. 15, 471 (1990). 

5. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, E. Ostrovskaya and N. 

Akhmediev, J. Opt. Soc. Am. B 14, 3032 (1997). 

6. W. Torruellas, B. Lawrence and G. I. Stegeman, Electr. Lett. 32, 2092 (1996). 

7. V. Tikhonenko, J. Christou, B. Luther-Davis, Phys, Rev. Lett. 76, 2698 (1996). 

8. G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. Sharp 

and R. R. Neurganaonkar, Phys. Rev. Lett. 76, 2698 (1996). 

9. M. Taya, M. Bashaw, M. M. Fejer, M. Segev and G. C. Valley, Phys. Rev. A 52, 3095 

(1995). 

10. M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sanchez-Mondragon, S. Stepanov and V. 

135 

 
  
 



Vysloukh, Appl. Phys. Lett. 64, 408 (1994). 

11. W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. van Stryland, G.I. Stegeman, L. Torner and 

C.R. Menyuk, “Observation of Two-Dimensional Spatial Solitary Waves in a Quadratic 

Medium”, Phys. Rev. Lett. 74, 5036 (1995). 

12. R. Schiek, Y. Baek and G. I. Stegeman, “One-dimensional spatial solitary waves due to 

cascaded second-order nonlinearities in planar waveguides”, Phys. Rev. E, 53, 1138 (1996) 

13. E. S. Barrekette, G. W. Stroke, Y, E, Nesterikihin and W. E. Kock, “Optical information 

processing”, vol. 2, Plenum Press, New York, London, p. 452 (1978). 

14. P.A. Franken, A.E. Hill, C.W. Peters and G. Weinreich, “Generation of Optical Harmonics”, 

Phys. Rev. Lett. 7, 118 (1961). 

15. J.A. Armstrong, N. Bloembergen, J. Ducuing and P.S. Pershan, “Interaction between light 

waves in a dielectric ”, Phys. Rev. 127, 1918 (1962) 

16. R. Y. Chiao, E. Garmire and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964). 

17. V. E. Zakharov, Sov. Phys. JETP 26, 994 (1968). 

18. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973). 

19. J. E. Bjorkholm and A. Ashkin, Phys Rev. Lett. 32, 129 (1974). 

20. Sergey Polyakov, Roman Malendevich, Ladislav Jankovic, George Stegeman, Christian 

Bosshard and Peter Gunter, “Effects of Anisotropic Diffraction on Quadratic Multi Soliton 

Excitation in Non-critically Phase-matched Crystals”, Opt. Lett., 27, 1049 (2002). 

21. Silvia Carrasco, Sergey Polyakov, Hongki Kim, Ladislav Jankovic, George I. Stegeman, 

Juan P. Torres, Lluis Torner, Mordechai Katz, “Observation of multiple soliton generation 

mediated by amplification of asymmetries”, Phys. Rev. E, 67, 046616 (2003). 

136 

 
  
 



22. Sergey Polyakov, Ladislav Jankovic, Hongki Kim, George Stegeman, Silvia Carrasco, Lluis 

Torner and Mordechai Katz, “Properties of Quadratic Multi-Soliton Generation Near Phase-

Match in Periodically Poled Potassium Titanyl Phosphate”, Optics Express, 11, 1328 (2003). 

23. Sergey Polyakov, Hongki Kim, Ladislav Jankovic, George Stegeman and Mordechai Katz, 

“Weak Beam Control of Multi-Quadratic-Soliton-Generation”, Opt. Lett., 28, 1451 (2003). 

24. P. W. Smith and W. J. Tomlinson, “Experimental studies at a nonlinear interface”, IEEE J. 

Quant. Electron., QE-20, 30 (1984) 

25. A. E. Kaplan, “Hysteresis reflection and refraction by a nonlinear boundary – a new class of 

effects in nonlinear optics”, JETP Lett., 24, 114 (1977) [Pis’ma Zh. Eksp. Tero. Fiz., 24, 132 

(1976)] 

26. Y. Baek, R. Schiek and G.I. Stegeman, G. Baumann and W. Sohler, ”Interactions between 

one-dimensional quadratic solitons“, Opt.Lett., 22, 1550 (1997). 

27. B. Constantini, C. De Angelis, A. Barthelemy, B. Bourliaguet and V. Kermene, “Collisions 

between type II two-dimensional quadratic solitons“, Opt. Lett., 23, 424 (1998). 

28. C. Simos, V. Couderc and A. Barthelemy, “Experimental observation of phase-controlled 

three-dimensional interactions between two quadratic spatial solitons: scattering, fusion and 

spiraling”, Techn. Digest of 2002 Nonlinear Guided Waves and Their Applications, (Opt. 

Soc. Am., Washington, 2002), NLWB2. 

29. W. Krolikowski and S. A. Holstrom, “Fusion and birth of spatial solitons upon collision”, 

Opt. Lett., 22, 369 (1997). 

 

 

137 

 
  
 



Chapter 2: 

1. P.A. Franken, A.E. Hill, C.W. Peters and G. Weinreich, “Generation of Optical Harmonics”, 

Phys. Rev. Lett. 7, 118 (1961). 

2. J.A. Armstrong, N. Bloembergen, J. Ducuing and P.S. Pershan, “Interaction between light 

waves in a dielectric ”, Phys. Rev. 127, 1918 (1962) 

3. R. Boyd, Nonlinear Optics, New York, Academic Press, 1992. 

4. Y.R. Shen, The Principles of Nonlinear Optics, New York, Wiley, 1984. 

5. M.M. Fejer, G.A. Magel, D.H. Jundt and R.L. Byer, J. Quantum Electron. vol 28, 2631 

(1992) 

6. W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. van Stryland, G.I. Stegeman, L. Torner and 

C.R. Menyuk, “Observation of Two-Dimensional Spatial Solitary Waves in a Quadratic 

Medium”, Phys. Rev. Lett. 74, 5036 (1995). 

7. Roman Malendevich, Ladislav Jankovic, Sergey Polyakov, Russell Fuerst, George Stegeman, 

Christian Bosshard and Peter Gunter, “Two-dimensional type I quadratic spatial solitons in 

KNbO 3 near noncritical phase matching”, Opt. Lett. 27, 631 (2002). 

 

Chapter 3: 

1. William T. Silfvast, “Laser Fundamentals”, Cambridge University Press (1996). 

2. R. Boyd, Nonlinear Optics, New York, Academic Press, 1992. 

3. Y.R. Shen, The Principles of Nonlinear Optics, New York, Wiley, 1984. 

 

 

138 

 
  
 



Chapter 4: 

1. H. Fang, R. Malendevich, R. Schiek and G.I. Stegeman, “Spatial modulational instability in 

one-dimensional lithium niobate slab waveguides“, Opt. Lett. 25, 1786 (2000). 

2. R. Schiek, H. Fang, R. Malendevich and G.I. Stegeman, “Measurement of Modulational 

Instability Gain of Second-Order Nonlinear Optical Eigenmodes in a One-Dimensional 

System“, Phys. Rev. Lett., 86, 4528 (2001). 

3. Roman Malendevich, Ladislav Jankovic, George Stegeman and J. Stewart Aitchison, 

“Spatial modulation instability in a Kerr slab waveguide”, Opt. Lett. 26, 1879 (2001). 

4. Y. Karamzin and A. Sukhorukov, Sov. Phys. JETP 41, 414 (1976); Zh. Eksp. Teor Fiz. 68, 

834 (1975). 

5. W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. van Stryland, G.I. Stegeman, L. Torner and 

C.R. Menyuk, “Observation of Two-Dimensional Spatial Solitary Waves in a Quadratic 

Medium”, Phys. Rev. Lett. 74, 5036 (1995). 

6. K. Hayata and M. Koshiba, Phys. Rev. Lett. 71, 3275 (1993). 

7. William H. Press, Brian P. Flannery, Saul A. Teukolsky and William T. Vetterling, 

Numerical recopies in C, Cambridge University Press, page 710 (2001).  

8. Kenji Kawano and Tsutomu Kitoh, Introduction to optical waveguide analysis, New York, 

Wiley-Interscience Publication, page 165 and 233, 2001. 

9. Gaetano Assanto and George I. Stegeman, “Simple physics of quadratic solitons”, Opt. 

Express, 10, 388 (2002). 

10. P. Di Trapani, G. Valiulis W. Chinaglia and A. Andreoni, ” Two-Dimensional Spatial 

Solitary Waves from Traveling-Wave Parametric Amplification of the Quantum Noise”, 

139 

 
  
 



Phys. Rev. Lett. 80, 265 (1998). 

 

Chapter 5: 

1. Biaggio et al., “Refractive indices orthorhombic KNbO3. II. Phase-matching configuration 

for nonlinear-optical interactions”, JOSA B 9, 507 (1992)  

2. V.G. Dmitriev, G.G. Gourzadayan and D.N. Nikogosyan, Handbook of Nonlinear Optical 

Crystals, Springer-Verlag, Berlin, 1997. 

3. A.D. Ludlow, H.M. Nelson and S.D. Bergeson, “Two-photon absorption in potassium 

niobate”, JOSA B, 18, 1813 (2001) 

4. B. Zysset et al., “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature 

dependence”, JOSA B, 9, 380 (1992) 

5. R. Schiek, Y. Baek and G. I. Stegeman, “One-dimensional spatial solitary waves due to 

cascaded second-order nonlinearities in planar waveguides”, Phys. Rev. E, 53, 1138 (1996) 

6. Roman Malendevich, Ladislav Jankovic, Sergey Polyakov, Russell Fuerst, George Stegeman, 

Christian Bosshard and Peter Gunter, “Two-dimensional type I quadratic spatial solitons in 

KNbO 3 near noncritical phase matching”, Opt. Lett. 27, 631 (2002). 

7. Sergey Polyakov, Roman Malendevich, Ladislav Jankovic, George Stegeman, Christian 

Bosshard and Peter Gunter, “Effects of Anisotropic Diffraction on Quadratic Multi Soliton 

Excitation in Non-critically Phase-matched Crystals”, Opt. Lett., 27, 1049 (2002). 

8. Silvia Carrasco, Sergey Polyakov, Hongki Kim, Ladislav Jankovic, George I. Stegeman, 

Juan P. Torres, Lluis Torner, Mordechai Katz, “Observation of multiple soliton generation 

mediated by amplification of asymmetries”, Phys. Rev. E, 67, 046616 (2003). 

140 

 
  
 



9. Sergey Polyakov, Ladislav Jankovic, Hongki Kim, George Stegeman, Silvia Carrasco, Lluis 

Torner and Mordechai Katz, “Properties of Quadratic Multi-Soliton Generation Near Phase-

Match in Periodically Poled Potassium Titanyl Phosphate”, Optics Express, 11, 1328 (2003). 

10. Sergey Polyakov, Hongki Kim, Ladislav Jankovic, George Stegeman and Mordechai Katz, 

“Weak Beam Control of Multi-Quadratic-Soliton-Generation”, Opt. Lett., 28, 1451 (2003). 

11. L. Jankovic, H. Kim, S. Polyakov, G.I. Stegeman, C. Bosshard and P. Gunter, "Interactions 

of Quadratic Spatial Solitons in Noncritically Phase-Matched KNbO3", Laser Physics, 14, 

264 (2004). 

12. W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. van Stryland, G.I. Stegeman, L. Torner and 

C.R. Menyuk, “Observation of Two-Dimensional Spatial Solitary Waves in a Quadratic 

Medium”, Phys. Rev. Lett. 74, 5036 (1995). 

13. S. Minardi, J. Yu, G. Blasi, A. Varanavicius, G. Valiulis, A. Berzanskis, A. Piskarskas, P. Di 

Trapani, “Red solitons: Evidence of spatiotemporal instability in chi((2)) spatial soliton 

dynamics”, Phys. Rev. Lett., 91, No. 123901 (2003). 

 

Chapter 6: 

1. H. Fang, R. Malendevich, R. Schiek and G.I. Stegeman, “Spatial modulational instability in 

one-dimensional lithium niobate slab waveguides“, Opt. Lett. 25, 1786 (2000). 

2. R. Schiek, H. Fang, R. Malendevich and G.I. Stegeman, “Measurement of Modulational 

Instability Gain of Second-Order Nonlinear Optical Eigenmodes in a One-Dimensional 

System“, Phys. Rev. Lett., 86, 4528 (2001). 

3. Roman Malendevich, Ladislav Jankovic, George Stegeman and J. Stewart Aitchison, 

141 

 
  
 



“Spatial modulation instability in a Kerr slab waveguide”, Opt. Lett. 26, 1879 (2001). 

4. Hongki Kim, Ladislav Jankovic, George Stegeman, Silvia Carrasco, Lluis Torner, David 

Eger, Mordechai Katz, “Quadratic spatial solitons in periodically poled KTiOPO4”, Opt. 

Lett., 28, 640 (2003). 

5. P. W. Smith and W. J. Tomlinson, “Experimental studies at a nonlinear interface”, IEEE J. 

Quant. Electron., QE-20, 30 (1984) 

6. A. E. Kaplan, “Hysteresis reflection and refraction by a nonlinear boundary – a new class of 

effects in nonlinear optics”, JETP Lett., 24, 114 (1977) [Pis’ma Zh. Eksp. Tero. Fiz., 24, 132 

(1976)]. 

7. C. B. Clausen and L. Torner, “Spatial switching of quadratic solitons in engineered quasi-

phase-matched structures”, Opt. Lett., 24, 7 (1999) 

 

Chapter 7: 

1. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: Universality 

and diversity” Science, 286,1518 (1999). 

2. M. Segev and G. Stegeman, “Self-trapping of optical beams: Spatial solitons”, Phys. Today 

51, 42 (1998). 

3. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel and P. 

W. E. Smith, “Experimental observation of spatial soliton interactions”Opt. Lett., 16, 15 

(1991). 

4. M. Shalaby, F. Reynaud and A. Barthelemy, “Experimental observation of spatial soliton 

interactions with a Pi/2 relative phase difference”Opt. Lett., 17, 778 (1992). 

142 

 
  
 



5. M.F. Shih and M. Segev, “Incoherent collisions between two-dimensional bright steady-

state photorefractive spatial screening solitons”Opt. Lett., 21, 1538 (1996). 

6. M. Shih, Z. Chen, T. H. Coskun and D. N. Christodoulides, “Incoherent collisions between 

one-dimensional steady-state photorefractive screening solitons”, Appl. Phys. Lett., 69, 4151 

(1996). 

7. Gaetano Assanto and George I. Stegeman, “Simple physics of quadratic solitons”, Opt. 

Express, 10, 388 (2002). 

8. C. Simos, V. Couderc and A. Barthelemy, “Experimental observation of phase-controlled 

three-dimensional interactions between two quadratic spatial solitons: scattering, fusion and 

spiraling”, Techn. Digest of 2002 Nonlinear Guided Waves and Their Applications, (Opt. 

Soc. Am., Washington, 2002), NLWB2. 

9. Christos Simos, Vincent Couderc, Alain Barthelemy and Alexander V. Buryak, J. Opt. Soc. 

Am. B 20, 2133 (2003). 

10. W. Krolikowski and S. A. Holstrom, “Fusion and birth of spatial solitons upon collision”, 

Opt. Lett., 22, 369 (1997). 

11. G. I. Stegeman, L. Jankovic, H. Kim, S. Polyakov, S. Carrasco, L. Torner, C. Bosshard, P. 

Gunter, M. Katz, D. Eger, “Generation of, and interactions between, quadratic spatial 

solitons in non-critically-phase-matched crystals “, J. Nonlinear Opt. Phys. 12, 447 (2003). 

 

Chapter 8: 

1. Roman Malendevich, Ladislav Jankovic, Sergey Polyakov, Russell Fuerst, George Stegeman, 

Christian Bosshard and Peter Gunter, Opt. Lett. 27, 631 (2002). 

143 

 
  
 



2. Hongki Kim, Ladislav Jankovic, George Stegeman, Silvia Carrasco, Lluis Torner, David 

Eger, Mordechai Katz, “Quadratic spatial solitons in periodically poled KTiOPO4”, Opt. 

Lett., 28, 640 (2003). 

3. A.D. Ludlow, H.M. Nelson and S.D. Bergeson, “Two-photon absorption in potassium 

niobate”, JOSA B, 18, 1813 (2001) 

4. G. I. Stegeman, D. J. Hagan and L. Torner, Opt. Quantum Electron. 28, 1691 (1996). 

144 

 
  
 


	Quadratic Spatial Soliton Interactions
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	Motivation
	Why quadratic solitons?
	Scope of research

	CHAPTER TWO: INTRODUCTION TO QUADRATIC NONLINEAR PHENOMENA
	Nonlinear Polarization
	SVEA and Second order processes
	Up- and Down-conversion processes
	SHG versus phase mismatch
	Large phase mismatch and effective Kerr approach
	Phase matching
	Birefringent phase matching
	Temperature tuning and phase matching
	Quasi phase matching technique


	CHAPTER THREE: LIGHT SOURCE
	Picosecond Laser
	OPG-OPA tunable source

	CHAPTER FOUR: BASICS OF QUADRATIC SPATIAL SOLITONS
	The Concept of a spatial soliton
	Introduction to quadratic spatial solitons

	CHAPTER FIVE: SPATIAL SOLITONS AND MULTI-SOLITONS PROPERTIES
	Potassium niobate material properties
	Experimental setup
	The noncritical phase matching wavelength condition
	KN soliton threshold measurements
	Multi-soliton generation in KN
	Physics of multi-soliton generation
	Experimental observation of multi-solitons
	Number of solitons versus input intensity in KN
	Noise effects on the multi-soliton patterning



	CHAPTER SIX: QUADRATIC SOLITON SELF-REFLECTIONS IN PPKTP
	PPKTP sample properties
	Theoretical background
	Experimental setup and measurement conditions
	Experimental results

	CHAPTER SEVEN: POTASSIUM NIOBATE QUADRATIC SOLITON COLLISION
	Theoretical background
	KN experimental setup
	Nearly collinear configuration
	Birth of a soliton

	CHAPTER EIGHT: PPKTP QUADRATIC SOLITON COLLISIONS
	Experimental conditions
	Collision processes and soliton formation
	Collisions and phase mismatch
	Soliton collisions at wide angles

	CHAPTER NINE: SUMMARY AND CONCLUSION
	LIST OF REFERENCES

