
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2017 

On Distributed Estimation for Resource Constrained Wireless On Distributed Estimation for Resource Constrained Wireless 

Sensor Networks Sensor Networks 

Alireza Sani 
University of Central Florida 

 Part of the Electrical and Computer Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Sani, Alireza, "On Distributed Estimation for Resource Constrained Wireless Sensor Networks" (2017). 
Electronic Theses and Dissertations, 2004-2019. 5684. 
https://stars.library.ucf.edu/etd/5684 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/266?utm_source=stars.library.ucf.edu%2Fetd%2F5684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/5684?utm_source=stars.library.ucf.edu%2Fetd%2F5684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


ON DISTRIBUTED ESTIMATION FOR RESOURCE CONSTRAINED WIRELESS SENSOR
NETWORKS

by

ALIREZA SANI
B.S. in Electrical Engineering, University of Tabriz, Tabriz, Iran, 2009
M.S. in Electrical Engineering University of Tehran, Tehran, Iran, 2012

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2017

Major Professor: Azadeh Vosoughi



© 2017 Alireza Sani

ii



ABSTRACT

We study Distributed Estimation (DES) problem, where several agents observe a noisy version

of an underlying unknown physical phenomena (which is not directly observable), and transmit a

compressed version of their observations to a Fusion Center (FC), where collective data is fused

to reconstruct the unknown. One of the most important applications of Wireless Sensor Networks

(WSNs) is performing DES in a field to estimate an unknown signal source. In a WSN battery

powered geographically distributed tiny sensors are tasked with collecting data from the field.

Each sensor locally processes its noisy observation (local processing can include compression,

dimension reduction, quantization, etc) and transmits the processed observation over communica-

tion channels to the FC, where the received data is used to form a global estimate of the unknown

source such that the Mean Square Error (MSE) of the DES is minimized.

The accuracy of DES depends on many factors such as intensity of observation noises in sensors,

quantization errors in sensors, available power and bandwidth of the network, quality of commu-

nication channels between sensors and the FC, and the choice of fusion rule in the FC. Taking

into account all of these contributing factors and implementing a DES system which minimizes

the MSE and satisfies all constraints is a challenging task. In order to probe into different aspects

of this challenging task we identify and formulate the following three problems and address them

accordingly:

• Consider an inhomogeneous WSN where the sensors’ observations is modeled linear with addi-

tive Gaussian noise. The communication channels between sensors and FC are orthogonal power-

and bandwidth-constrained erroneous wireless fading channels. The unknown to be estimated is a

Gaussian vector. Sensors employ uniform multi-bit quantizers and BPSK modulation. Given this

setup, we ask: what is the best fusion rule in the FC? what is the best transmit power and quan-

tization rate (measured in bits per sensor) allocation schemes that minimize the MSE? In order
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to answer these questions we derive some upper bounds on global MSE and through minimizing

those bounds, we propose various resource allocation schemes for the problem, through which we

investigate the effect of contributing factors on the MSE.

• Consider an inhomogeneous WSN with an FC which is tasked with estimating an scalar Gaus-

sian unknown. The sensors are equipped with uniform multi-bit quantizers and the communication

channels are modeled as Binary Symmetric Channels (BSC). In contrast to former problem the

sensors experience independent multiplicative noises (in addition to additive noise). The natural

question in this scenario is: how does multiplicative noise affect the DES system performance?

how does it affect the resource allocation for sensors, with respect to the case where there is no

multiplicative noise? We propose a linear fusion rule in the FC and derive the associated MSE in

closed-form. We propose several rate allocation schemes with different levels of complexity which

minimize the MSE. Implementing the proposed schemes lets us study the effect of multiplicative

noise on DES system performance and its dynamics. We also derive Bayesian Cramér-Rao Lower

Bound (BCRLB) and compare the MSE performance of our porposed methods against the bound.

As a dual problem we also answer the question: what is the minimum required bandwidth of the

network to satisfy a predetermined target MSE?

• Assuming the framework of Bayesian DES of a Gaussian unknown with additive and multi-

plicative Gaussian noises involved, we answer the following question: Can multiplicative noise

improve the DES performance in any case/scenario? the answer is yes, and we call the phenomena

as ’enhancement mode’ of multiplicative noise. Through deriving different lower bounds, such as

BCRLB, Weiss-Weinstein Bound (WWB), Hybrid CRLB (HCRLB), Nayak Bound (NB), Yatarcos

Bound (YB) on MSE, we identify and characterize the scenarios that the enhancement happens.

We investigate two situations where variance of multiplicative noise is known and unknown. We

also compare the performance of well-known estimators with the derived bounds, to ensure prac-

ticability of the mentioned enhancement modes.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

Distributed Estimation (DES) serves as one of the major and main applications in Wireless Sensor

Network (WSN)s, where large scale WSNs consisting of battery operated devices with limited

sensing, computation and communication capabilities are deployed over a sensing region to mon-

itor physical or environmental phenomenas. DES in WSNs can benefit many practices such as

surveillance [1], target tracking, fire detection, border protection and target localization [2,3]. The

vision is that once the sensors are deployed in the sensing field, each sensor makes a noisy measure-

ment which depends on the unknown parameter, processes locally its measurement and transmits

the relevant information to a common Fusion Center (FC). Having the collective information from

sensors, the FC is tasked with estimating the unknown parameter via fusing the received data.

The main challenges for designing a DES schemes in Wireless Sensor Networks (WSNS) can

be categorized as following: i) designing local encoders in sensors while taking into account the

practical limitations of sensors, ii) proposing optimal resource (power and rate) allocation meth-

ods for transmission of locally processed data to the FC, iii) designing optimal fusion rules in the

FC to estimate the unknown via fusing received data from sensors. Our proposed novel schemes

addressing the mentioned challenges, enable an accurate and robust estimation subject to practical

limitations such as network bandwidth and power constraints.

1.1 Centralized versus Distributed Estimation

In Centralized Estimation (CE), it is assumed that the observations data are transmitted to the FC

with full precision. The communication channels between the sensors and the FC are assumed

to be error-free (without power or bandwidth constraint on channels). Having all full precision

observations, the FC is tasked with making a global estimation of the unknown via fusing the col-
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lective data. Thus the quality and reliability of the global estimation depends on the number of

available observations, noise levels in sensors and fusion rule. This is more like the classic estima-

tion philosophy where it is assumed that all observations are available with full precision without

any further processing in a central unit, where a single estimator fuses the noisy observations to

produce an estimate of the unknown [4]. In practical WSNS there is limitations on transmit power

and bandwidth. Hence assuming to have the error-free full-precision observations in the FC is

not realistic. To address power and bandwidth limitations, it is desirable that the sensors locally

process (compress) their observations and then send their locally processed (compressed) observa-

tions to the FC. This is the core idea of DES. In contrast to CE, in DES framework, each sensors’

observations are locally compressed to few information bits, then the bits are transmitted via dig-

ital transmission schemes over error-free or erroneous channels to the FC. Next, the FC is tasked

with reliably estimating the unknown via fusing the received bits. Designing DES system involves

different challenges at sensor level, channel level and FC level. One needs to design: i) a local

processing unit (for instance a quantizer) at the sensors, considering the limitations of the sensors

and individual observation qualities, ii) a power allocation scheme taking into account the chan-

nel qualities and available power, iii) a global fusion rule in the FC to fuse the received data and

produce a reliable estimate of unknown.

In this thesis we study the DES in a WSN where the available bandwidth and/or power are limited.

Regarding the communication channels between the sensors and the FC, we consider both error-

free and erroneous channel models. As we mentioned earlier the sensors in WSNs have limited

sensing, computation and communication capabilities which are all integrated into a tiny electronic

board. Sensors are powered with batteries which usually are not replaceable. This motivates us

to study the problem where each sensor node in the network, quantizes its noisy observation to

few bits and transmits the bits via digital modulation schemes like Binary Phase Shift Keying

(BPSK) to the FC. Generally the received quantization levels (assuming a hard decoding at the
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FC, the quantization levels can be reconstructed by fusing the bits received from each sensor) are

not necessarily equal to the transmitted ones due to wireless channel errors. This implies that

the accuracy of estimation in the FC depends on the quality of transmission channels as well as

the quality of sensors’ observations, which should be taken into account in designing the DES

schemes. Thus in designing an optimal DES scheme, all system parameters associated with the

sensors’ observation model and also parameters corresponding to the communication channels

needs to be considered.

1.2 Literature Survey and Related Works

The research on DES problem for deterministic and random unknown parameters has a long

history and dates back to 1988 when Zhang and Berger [5] introduced the notion of estimation

via compressed information for an unknown deterministic scalar and formulated a novel prob-

lem by extending CE theory to the case in which the observations are transmitted to the FC

over bandwidth-constrained (otherwise error-free) orthogonal channels. Toby Berger and his col-

league’s work was followed by [6, 7]. Next, multi-terminal source coding was introduced in [8]

and studied further in [9–11] for DES of an unknown random scalar. Another inherently related

problem to DES, widely known as CEO problem was introduced in [12,13]. In quadratic Gaussian

CEO problem [13] a team of agents observes a Gaussian source, corrupted by independent additive

Gaussian noises. Agents communicate their coded messages over error-free channels to the CEO

(FC), that is tasked with estimating the Gaussian source with minimal Mean Square Error (MSE).

The authors conjectured a rate-distortion region, where the decay rate of the MSE is inversely

proportional to the total source coding rate of agents when the number of agents goes to infinity.

Later, [14] found the rate-distortion region explicitly for an arbitrary number of agents. These

works consider the problem from the information theoretic perspective, and build upon funda-
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mental assumptions that the sensors sample their observations continuously and use infinite-length

complex source codes (jointly typical sequences) to compress their samples into bits, and the FC

utilizes the best decoder (estimator), in terms of minimizing the MSE. These assumptions disre-

gard several key characteristics of WSN, including hardware complexity, computational capability,

power, and delay constraints.

On the other hand the distributed signal processing approaches towards DES are based on the

assumptions that the delay and computational complexity are low and each sensor makes only

few observations. Hence the proposed schemes in information theoretic works (including the rate

allocation schemes in [15–17]) cannot be directly applied to WSNS. However these information

theoretic works provide useful benchmarks for the latter approaches and insights for algorithmic

designs.

In particular, [18] designed optimal quantizers that maximize Bayesian Fisher information for es-

timating a random parameter. Assuming identical one-bit quantizers, [19, 20] found the minimum

achievable Cramér-Rao Lower Bound (CRLB) and the optimal quantizers for estimating a deter-

ministic parameter.

1.2.1 Bandwidth Constrained Distributed Estimation

The study of bandwidth-constrained DES has a long history in information theory [5–13, 21] and

signal processing [18–20,22–46] literature 1. The common assumption is to translate the bandwidth

constraint to limiting the number of bits per observation that a sensor can transmit to the FC, ren-

dering quantization and quantizer design a critical issue of DES. Focusing on studying the effect

of quantization and bandwidth constraint on DES problem, several works [18–20,22–44] assumed

1Note that wireless spectrum is a notoriously scarce resource and designing bandwidth constrained systems has
always been of great interest in both system [47–61] and antenna level [62–66].
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that the quantized versions of observations are transmitted to the FC on error-free channels. Early

works of Reibman [22, 23] discussed iterative algorithms to find local quantizers at each sensor to

optimize the Bayesian Fisher information for estimating an unknown random scalar. Considering

a network-wide bandwidth constraint, [67] investigated the trade-off between fine quantization of

observations of only a few sensors and coarse quantization of observations of as many sensors as

possible, as well as its effect on Fisher information. In [18] assuming that the joint distribution

of unknown and observations is available, the authors designed optimal quantizers that maximize

Bayesian Fisher information for estimating a random parameter. Assuming identical one-bit quan-

tizers, [19, 20] found the minimum achievable CRLB and the optimal quantizers for estimating a

deterministic parameter.

For some special cases of linear fusions [25, 26] established the optimal Minimum Mean Square

Error (MMSE) local quantizers. When estimating a deterministic unknown, the estimation ac-

curacy usually depends on the unknown itself, and makes it infeasible to design quantizers to be

optimal for all values of unknown. To circumvent this [27–29] considered a MinMax problem

which minimizes the maximum difference between Fisher information of quantized and unquanti-

fied observations. The authors in [30,31] formulated a MaxMin problem to maximize the minimum

asymptotic relative efficiency between Maximum Likelihood Estimator (MLE) based on quantized

and unquantized observations for a class of score-function quantizers. One-bit quantizers has at-

tracted the attention of many researchers for DES of a scalar deterministic parameter for several

years. For example in [35,36] the authors employed adaptive one-bit quantizers and in [32–34] they

used the fixed one-bit quantizers. We will discuss in Chapter 2 that in some scenarios one-bit quan-

tizers have a critical drawback that can deteriorate the estimation performance drastically. In [32] it

is shown that the value of optimal quantization threshold, assuming identical one-bit quantizers in

sensors, depends on the unknown parameter. To circumvent this, the authors in [33, 34] suggested

to divide the sensors in groups and assign fixed but distinct thresholds for these groups, hoping that
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some thresholds would be close the value of unknown parameter. In [35, 36] the authors proposed

adaptive quantizers such that each sensor adjusts its quantization threshold according to the earlier

transmission from other sensors. Universal DES schemes were first proposed by Luo in [37], in

which the distribution of additive observation noise is assumed to be unknown. He continued his

work in [38, 39] expanding the idea to inhomogeneous environments where sensors have different

Signal to Noise Ratio (SNR). Later, Giannakis and his colleague investigated the fixed one bit

quantizers for estimating a deterministic parameter and nonlinear observation models [40].

In some literature the researchers interpreted the bandwidth constraint as limiting the number of

real valued messages that a sensor can send per observation to the FC. For example in [41–44] the

authors discussed DES of an unknown deterministic [44] or random [41–43] vector. The sensors

make a vector observation and reduce its dimension by using a linear transformation and transmit

that to the FC, where a linear estimator is used to reconstruct the unknown vector.

Several researchers relaxed the assumption of communication channels being error free [68, 69].

For estimating a vector of deterministic parameters, [68] investigated an Expectation-Maximization

[4] algorithm and compared its MSE performance with CRLB, when sensors employ fixed and

identical multi-bit quantizers and the communication channels are modeled as Additive White

Gaussian Noise (AWGN). A related problem was studied by [69], where the FC employs a spa-

tial Best Linear Unbiased Estimator (BLUE) for field reconstruction and the MSE distortion is

compared with a posterior CRLB.

1.2.2 Power Constrained Distributed Estimation

As mentioned in earlier subsection, error-free channel assumption is widely adopted in many sig-

nal processing literature, however a near error-free and reliable communication can be achieved

at the cost of resource consuming channel coding and consequently increasing transmit power
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consumption. Such an increasing demand for power, exceeds the energy constraints of a typical

WSN. Fading channels and adverse channel qualities will worsen the challenge of power scarcity

of the network. Motivated by this many researchers studied power constrained and energy-efficient

DES problem, some examples are [70–78] for analog transmission and [79–89] digital transmis-

sion, over an AWGN Multiple Access Channel (MAC) [90–92]. Particularly for DES of a scalar

unknown [70, 73] proposed an optimal power allocation scheme on an orthogonal MAC, which

minimizes the MSE subject to total network power constraint. The authors in [72] explored DES

of an unknown vector with non-linear observation model and correlated additive noises and analog

transmission over an orthogonal MAC. Assuming a non-orthogonal coherent MAC and Amplify

and Forward (AF) transmission [71, 76] suggested optimal linear transformations at the sensors

subject to network power constraint in order to minimize the MSE distortion. In [78] a power allo-

cation scheme was proposed for minimizing the distortion outage probability of the WSN, subject

to total and individual power constraints. The FC employs Linear Minimum Mean Square Error

(LMMSE) estimator for estimating a Gaussian random parameter. The communication channels

are modeled as coherent MAC with fading.

The authors in [77] studied MSE minimization of DES of a random scalar subject to network

power constraint. The BLUE estimation rule is employed at the FC and communication channels

are modeled as coherent MAC. The authors also investigated the effect of correlated additive

noise on DES performance. From an information theoretic point of view in [93] Gastpar and his

colleagues probe into the trade-offs between the MSE distortion and power consumption for the

quadratic CEO problem on an AWGN MAC. Few studies [80,82,83] also exist on energy efficient

DES with digital transmission (sensors transmit quantized data to the FC).

The authors in [80] extended the studies in [33,34] to noisy channels. An optimal power allocation

scheme for M-ary Quadrature Amplitude Modulation (M-QAM) transmission was proposed in

[83] in oder to minimize the L2-norm of the transmission power vector of sensors subject to a target
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MSE distortion constraint, where the FC employs BLUE to reconstruct a scalar deterministic

unknown parameter. A converse problem was considered in [82], which minimized the MSE

subject to a network transmit power constraint.

For a homogeneous WSN, [79] investigated a bit and power allocation scheme that minimizes the

MSE, subject to a total transmit power constraint, when communication channels are modeled as

Binary Symmetric Channel (BSC). Note that [79] did not include a total bit constraint in its prob-

lem formulation. The authors in [84] proposed a resource allocation scheme for sensors in order

to minimize an upper bound on MSE of the LMMSE estimation of a scalar Gaussian parameter,

where sensors transmit via digital modulations on fading channels. The authors in [85] derived a

Fihser information matrix for DES of a Gaussian vector in a WSN with digital transmission and

total power constraint.

It is noteworthy to mention that the authors in [93] concluded that for estimating a scalar Gaussian

random unknown in a WSN with Independent and Identically Distributed (i.i.d) Gaussian addi-

tive observation noises and communication channels modeled as AWGN non-orthogonal coherent

MAC, the optimal transmission scheme is analog AF (in contrast to Quantize and Forward or

relaying techniques [94–98]). The optimality results however do not hold true for other channel

models. As a matter of fact in [99] the authors from an information theoretic point of view con-

tended that digital transmission is optimal in a WSN with orthogonal MAC between the sensors

and the FC, where the unknown parameter to be estimated is modeled as a Gaussian scalar. This

result and also the advantages of digital communication motivated us to employ the digital scheme

in our study in the succeeding Chapters.

Consensus algorithms for an ad-hoc WSN with no FC have been discussed in [100–103] . Note

that in this thesis we focus on WSNs with a FC, hence consensus algorithms are out of scope of

this thesis.
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Several literature [11,104–106] studied DES problem in hierarchal network structures, where sen-

sors are grouped in clusters. Each cluster has one cluster-head which acts as a local FC and collects

the information from sensors and forms a local estimate of the unknown parameter. All cluster-

heads transmit their local estimates to the global FC, where the global FC is tasked with estimating

the unknown parameter by fusing all collective data received from the cluster-heads. In this thesis

we focus on star topology with a single FC with connectivity to all sensors.

1.2.3 Distributed Estimation in Environments with Multiplicative Noise

The bulk of literature on DES considered an observation (sensing) model with only additive noise

[18,20,33,67–69,72,77,78,80,81,83,107–113], while some assumed that the statistical knowledge

of the additive observation noise is incomplete (referred to as noise model uncertainty) [33, 109].

One of the early works that considered multiplicative observation noise in a sensor array, is [114]

that proposed an approximate MLE for localizing a source, where the received signal is corrupted

by multiplicative observation noise. Later, CE with both multiplicative and additive observation

noises was studied in [115–118]. In particular [115] assumed that there is a bounded perturbation

in sensing/observation matrix, and proposed a linear MinMax estimator for estimation of a de-

terministic vector, that minimizes worst case MSE over all perturbations. In [116] assuming that

sensing matrix is random with known first and second order statistics, the authors proposed a linear

MinMAx estimator that minimizes the worst case MSE over all possible unknown deterministic

vectors to be estimated. In [117, 118] the authors studied Maximum Likelihood (ML) CE of a de-

terministic unknown vector with linear observation model where the mixing matrix is modeled as

a random Gaussian matrix with known second order statistics. In addition the CRLB was derived

in [118] and the effect of uncertainty in mixing matrix on the estimation performance was investi-

gated. The authors reported scenarios that for some specific values of the deterministic unknown
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parameter, randomness in model matrix may improve the MSE performance, however in most

cases the multiplicative observation noise exacerbates the estimation performance. Another re-

lated work is [119] which derived and analyzed the CRLB for estimation of a deterministic sparse

vector where both sensing matrix and measurement vector are corrupted with Gaussian noise.

Despite its great importance, few researchers have studied DES with both multiplicative and addi-

tive observation noises. DES with Gaussian multiplicative and additive observation noises, one-bit

quantizers at the sensors and MLE at the FC has been investigated very recently in [120, 121], re-

spectively, for vector and scalar unknown deterministic parameters. In [120] the authors reported

that the multiplicative noise exacerbates the performance of the MLE in most cases. However,

provided that the variance of additive observation noise is small compared to the energy of the

unknown parameter, some values of multiplicative noise variance may improve the MSE perfor-

mance for some special values of the deterministic unknown parameter. Similar studies have been

included in [121], where the authors also reported that employing binary quantizers with noniden-

tical nonzero thresholds in the sensors, improves the performance of MLE in comparison to the

case of zero thresholds for all sensors. These works rely on MLEs which require perfect knowl-

edge of Probability Density Function (PDF) of the model uncertainties which may not always be

justifiable.

As another quite related topic, some papers have reported similar enhancement effects for additive

observation noise, such that increasing the variance of additive noise can enhance the estimation

performance in some scenarios. For instance [122] reported a case with a special non-linear obser-

vation model, where increasing the additive noise intensity enhances the estimation accuracy of the

MMSE estimator. In [123] the authors derived the optimal distribution of the additive observation

noise that minimizes the CRLB for estimation of a scalar unknown parameter based on quantized

observations.
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We also note that most DES literature is focused on one-bit quantization [18, 20, 33, 72, 80, 107–

109, 121, 124], assuming that the dynamic range of the unknown parameter to be estimated is

equal to or less than that of the additive observation noise [109]. Interestingly, [33] argued that

there can be a significant gap between the CRLB performance based on one-bit quantization and

the clairvoyant benchmark (when unquantized observations are available at the FC), when the

dynamic range of the unknown is large with respect to the additive observation noise variance.

Also, [124] reported that in presence of the multiplicative observation noise, low power additive

observation noise can negatively impact the performance of MLE based on one-bit quantization.

The works in [33, 124] motivate us to consider DES based on multi-bit quantization in Chapters 4

and 5. Different from [33,124], we assume that either the distribution of the multiplicative noise is

unknown or it has a known distribution with unknown variance. We consider both error-free and

erroneous communication channel models, however we focus on the effect of the multiplicative

observation noise and multi-bit quantization errors on the estimation performance of DES.

1.3 Dissertation Organization and Contributions

Thanks to the collective efforts of many researchers significant progress has been made toward un-

derstanding of DES of a scalar unknown parameter with a linear observation model and additive

observation noise. The works on DES of an unknown vector are mainly concentrated on reducing

the dimensionality of observation vectors over error-free channels. The literature falls short of

studying DES of an unknown vector with correlated observation noises. These knowledge gaps

motivated us to study the DES of an unknown Gaussian vector with correlated additive noises

and digital communications on fading channels in Chapter 2. Assuming an inhomogeneous WSN

and power and bandwidth constrained wireless channels, we proposed various power and rate al-

location schemes with different levels of complexity. In contrast to the aforementioned works that
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considered either transmit power or bandwidth constraints, we consider DES subject to both total

transmit power and bandwidth constraints. From practical perspectives, having a total transmit

power constraint enhances energy efficiency in battery-powered WSNs. On the other hand placing

a cap on the total bandwidth can further improve energy efficiency because data communication is

a major contributor to the network energy consumption. We investigate the effects of observation

noise, quantization errors, fading and communication channel noises on estimation accuracy and

explore the trade-offs between transmit power, rate and estimation performance.

In Chapter 3 we derive an accurate closed-form approximation for Bayesian Cramér-Rao Lower

Bound (BCRLB) on MSE of a Bayesian DES in a heterogeneous WSN. It is axiomatic that

greatest lower bound2 under the MSE criterion is the MSE of MMSE estimator, however its

implementation is often not practical and calculating its MSE usually requires multiple integrations

which may be computationally infeasible [125]. Thus providing a closed-form expression for

BCRLB, or an alternative accurate approximation is always intriguing [126,127]. In Chapter 3 we

contribute to this topic by deriving a compact expression for the BCRLB. The unknown parameter

to be estimated is modeled as a Gaussian random variable with known mean and variance and the

observation model is linear with Gaussian additive noise. Each sensor separately quantizes its noisy

observation with a uniform multi-bit quantizer and transmits the bits to the FC, where the received

data is fused to estimate the unknown parameter. We take into account practical limitations of

sensors and assume that the sensing dynamic range of the sensors are limited. In sequel we provide

an easy-to-manipulate closed-form approximation for the BCRLB, which provides us a better

understanding of the behavior of the bound. The simulation examples verify the accuracy of our

proposed approximation. We also investigate the effect of sensing range of sensors, quantization

rates and additive noise variance on the BCRLB with simulation examples.

2Because it is attainable.
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In Chapter 4 we consider DES of a Gaussian source, corrupted by independent multiplicative

and additive observation noises, in a heterogeneous bandwidth-constrained network. Similar to

[33, 81], we choose the total number of quantization bits as the measure of network bandwidth.

Different from [121, 124], we assume that the distribution of the multiplicative observation noise

is unknown (observation model uncertainties) and only its mean and variance are known. To over-

come the limitations caused by the observation model uncertainties, the FC employs LMMSE

estimator to fuse the quantization bits received from the sensors over the orthogonal channels. We

consider both error-free and erroneousness communication channels, using BSC model. We fo-

cus on the effects of observation model uncertainties and quantization errors on the accuracy of

estimating the Gaussian source. We derive a closed-form expression for the MSE of the LMMSE

estimator and consider two system-level constrained optimization problems with respect to the

sensors’ quantization rates: i) we minimize the MSE given a network-wide bandwidth constraint,

and ii) we minimize the required network-wide bandwidth given a target MSE. To address these

two problems, we propose several rate allocation schemes. In addition, we compare the MSE per-

formance of the proposed schemes against the BCRLB. Note that focus of Chapter 4 is on investi-

gating the effect of multiplicative noise, observation model uncertainties and available bandwidth,

on the DES performance, which makes the Chapter different from energy efficient and power

constrained DES problems addressed in [68–71, 77, 78, 80, 82–84, 110–112, 128].

In Chapter 5 we explore lower bounds on the MSE of the Bayesian DES of a Gaussian unknown

parameter in a WSN, where both multiplicative and additive Gaussian noises are considered in the

observation model. To assess the Bayesian estimation performance bounds, and analyze their be-

haviors with respect to (w.r.t) multiplicative noise variance, two well-known Bayesian bounds from

Weiss-Weinstein (WW) family are derived for the problem in hand. First one is Weiss-Weinstein

Bound (WWB) [125] which is known to be the tightest bound of the family. The second one

is the Bayesian version of classical well-known CRLB (BCRLB) [129]. Analyzing the derived
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bounds we discover some scenarios that the multiplicative observation noise enhances the esti-

mation accuracy. We call the phenomena enhancement mode of the multiplicative noise. We

contend that in the enhancement mode as the variance of multiplicative noise increases the lower

bounds on the MSE of DES decreases which is an unintuitive result. In addition we derived the

WWB and BCRLB for the case that sensor measurements are separately quantized with uniform

quantizers at the senors and transmitted on error-free channels to the FC. Analyzing the latter

bounds we observe the enhancement mode of the multiplicative noise even for the case of quan-

tized observations. However for this case the quantization rate and additive noise variance need

to be large enough to generate enhancement mode. Afterwards we compare the MSE perfor-

mance of two well-known Bayesian estimators (i.e., MMSE and Maximum A Posterior (MAP)

estimators) with the derived bounds in different scenarios. The comparisons verify the existence of

enhancement modes for these estimators as-well, provided that the network size is large enough.

In sequel we consider the case where the variance of multiplicative noise is unknown. Model-

ing this unknown as a deterministic nuisance parameter we establish lower bounds on MSE of

the Bayesian DES. In particular, we characterize and analyze Hybrid Cramér-Rao Lower Bound

(HCRLB) [130, 131], Yatarcos Bound (YB) [132], Nayak Bound (NB) [133, 134] and recently

proposed Risk Unbiased Bound (RUB) [135] for different scenarios. According to the bounds the

enhancement mode can still occur in this case, however it needs larger network sizes, compared

with those of known multiplicative noise variance. Next we compare the MSE performance of

Minimum Mean Square Error-Maximum Likelihood (MMSE-ML) and Maximum A Posterior-

Maximum Likelihood (MAP-ML) with the bounds in various scenarios. The comparisons reveal

that although that the bounds may suggest existence of enhancement mode, according to MSE

performance of estimators there is no enhancement modes for the case of unknown multiplicative

noise variance.

The results in Chapter 5 for Bayesian DES are interestingly different from those reported in [120]
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[121] [118] for non-Bayesian DES. The reported improvements in [120] [121] [118] depend on

the value of the unknown parameter, which makes exploiting the enhancement modes elusive.

Depending the enhancements to be upon on values of unknown makes it elusive to exploit the

enhancement modes. On the other hand our reported enhancement mode does not depend on the

values of the unknown parameter and therefore is more convenient to assess and characterize. The

reported improvements in [120] [121] [118] are also expected to be maximum for a special value

of the multiplicative noise variance. In contrast our reported enhancement mode in Chapter 5 is es-

sentially different from that of these papers, such that increasing the multiplicative noise variance

improves the estimation accuracy unboundedly till the MSE reaches zero. The authors in [120]

and [121] also argued that enhancement mode occurs when the variance of additive observation

noise is small in comparison to the energy of the unknown parameter. In contrast our results sug-

gest that for the Bayesian DES, the enhancement mode is more likely to happen for larger additive

noise variances. Furthermore for the case of quantized observations, according to our results there

is no enhancement mode for binary quantizers in Bayesian DES, in contrast [120] and [121] re-

ported some scenarios where the presence of the multiplicative noise may improve the MSE or

estimation performance when sensors employ binary quantizers.
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CHAPTER 2: DISTRIBUTED VECTOR ESTIMATION FOR POWER-

AND BANDWIDTH-CONSTRAINED WIRELESS SENSOR NETWORKS

We consider the MSE of a Gaussian vector with a linear observation model in an inhomoge-

neous WSN, in which a FC reconstructs the unknown vector using a linear estimator. Sensors

employ uniform multi-bit quantizers and BPSK modulation, and they communicate with the FC

over orthogonal power- and bandwidth-constrained wireless channels. We study transmit power

and quantization rate (measured in bits per sensor) allocation schemes that minimize the MSE.

In particular, we derive two closed-form upper bounds on the MSE in terms of the optimization

parameters and propose “coupled” and “decoupled” resource allocation schemes that minimize

these bounds. The proposed schemes enables us to find the best resource allocation (i.e., power

and bit) in extreme cases where (i) we have scarce total transmit power and ample total band-

width and (ii) we have plentiful total transmit power and scarce total bandwidth. We show that the

bounds are good approximations of the simulated MSE and that the performance of the proposed

schemes approaches the clairvoyant CE when the total transmit power or bandwidth is very large.

We investigate how the power and rate allocations and overall estimation accuracy are dependent

on the sensors’ observation qualities and channel gains and on the total transmit power and band-

width constraints. Our simulations corroborate our analytical results and demonstrate the superior

performance of the proposed algorithms.

The remainder of this chapter is organized as follows. Section 2.1 introduces our system model and

establishes our optimization problem. In Section 2.2, we derive two closed-form upper bounds,Da

and Db, on the MSE corresponding to the linear estimator at the FC in terms of the optimization

parameters (i.e., transmit power and quantization rate per sensor). In Section 2.3, we propose “cou-

pled” resource allocation schemes that minimize these bounds using the iterative ellipsoid method.
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This method conducts a multi-dimensional search to find the quantization rate vector. In Section

2.4, we propose “decoupled” resource allocation schemes, which rely on a one-dimensional search

to find the quantization rates. Section 2.7 discusses our numerical results. Section 2.8 concludes

this chapter.

2.1 System Model and Problem Statement

We consider a WSN with K spatially distributed inhomogeneous sensors. Each sensor makes

a noisy observation, which depends on an unobservable vector of random parameters θ, locally

processes its observation, and transmits a summary of its observation to a FC over erroneous

wireless channels. The FC is tasked with estimating θ via fusing the collective received data from

sensors (see Fig. 2.1). We assume that θ=[θ1, ..., θq]
T ∈Rq is zero-mean Gaussian with covariance

matrix Cθ =E{θθT }. Let random scalar xk denote the noisy observation of sensor k. We assume

the following linear observation model:

xk = aTk θ + nk, k = 1, ..., K, (2.1)

where ak=[ak1, ..., akq]
T ∈Rq is a known observation gain vector. We assume that the observation

noise vector n = [n1, ..., nK ]T is zero-mean Gaussian with covariance Cn and that n and θ are

uncorrelated. Define observation vector x = [x1, ..., xK ]T and matrix A = [a1, ..., aK ]. Suppose

that Cx =E{xxT} and Cxθ =E{xθT} represent the covariance matrix of x and cross-covariance

matrix of x and θ, respectively. It is easy to verify that

Cxθ = ATCθ, Cx = ATCθA + Cn.
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Figure 2.1: system model

Sensor k employs a uniform quantizer with Mk quantization levels and quantization step size

∆k to map xk into a quantization level mk ∈ {mk,1, ...,mk,Mk
}, where mk,i = (2i−1−Mk)∆k

2
for

i = 1, ...,Mk. Considering our observation model, we assume that xk almost surely lies in the

interval [−τk, τk] for some reasonably large value of τk, i.e., the probability p(|xk| ≥ τk) ≈ 0.

Consequently, we let ∆k = 2τk
Mk−1

. These imply that the quantizer maps xk as the following: if

xk ∈ [mk,i − ∆k

2
,mk,i + ∆k

2
], then mk = mk,i; if xk ≥ τk, then mk = τk; and if xk ≤ −τk,

then mk = −τk. Following quantization, sensor k maps the index i of mk,i into a bit sequence

of length Lk = log2Mk and finally modulates these Lk bits into Lk BPSK modulated symbols

[79]. Sensors send their symbols to the FC over orthogonal wireless channels, where transmission

is subject to both transmit power and bandwidth constraints. The Lk symbols sent by sensor k

experience flat fading with a fading coefficient hk and are corrupted by a zero-mean complex

Gaussian receiver noise wk with variance σ2
wk

. We assume that wks are mutually uncorrelated and

that hk does not change during the transmission of Lk symbols. Let Pk denote the transmit power

corresponding to Lk symbols from sensor k, which we assume is distributed equally among Lk

symbols. Suppose that there are constraints on the total transmit power and bandwidth of this

network, i.e.,
∑K

k=1 Pk≤Ptot and
∑K

k=1 Lk≤Btot.

To describe the estimation operation at the FC, let m̂k denote the recovered quantization level
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corresponding to sensor k, where in general m̂k 6=mk due to communication channel errors. The

FC first processes the received signals from the sensors individually to recover the transmitted

quantization levels. In the absence of knowledge of the joint distribution of m̂ks and θ, the FC

resorts to a linear estimator [77, 82] to form the estimate θ̂ using m̂1, ..., m̂K . The linear estimator

has a low computational complexity [136], and only requires knowledge of A and second-order

statistics Cθ and Cn to estimate θ. Let D0 =E{(θ̂−θ)(θ̂−θ)T} denote the error correlation matrix

corresponding to this linear estimator, whose i-th diagonal entry, [D0]i,i, is the MSE corresponding

to the i-th entry of vector θ. We choose D0 = tr(D0) as our MSE distortion metric [4]. Our goal

is to find the optimal resource allocation scheme, i.e., quantization rate Lk and transmit power Pk

∀k, that minimizes D0. In other words, we are interested in solving the following optimization

problem:

minimize
Lk,Pk, ∀k

D0({Lk, Pk}Kk=1) (2.2)

s.t.
K∑
k=1

Lk ≤ Btot,
K∑
k=1

Pk ≤ Ptot, Lk ∈ Z+, Pk ∈ R+, ∀k.

2.2 Characterization of MSE

We wish to characterize D0 in terms of the optimization parameters {Lk, Pk}Kk=1. For this pur-

pose, we take a two-step approach [83]: in the first step, we assume that the quantization levels

transmitted by the sensors are received error free at the FC. Based on the error-free transmission

assumption, we characterize the MSE due to observation noises and quantization errors. In the

second step, we take the contribution of wireless communication channel errors on the MSE into

account. This approach provides us with an upper bound on D0, which can be expressed in terms

of {Lk, Pk}Kk=1. Define vector m = [m1, ...,mK ]T , which includes the transmitted quantization
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levels for all sensors, and vector m̂=[m̂1, ..., m̂K ]T , which consists of the recovered quantization

levels at the FC. Let

θ̌=Gm, where G=E{θmT}(E{mmT})−1. (2.3)

Note that θ̌ is the LMMSE estimator if the FC had received the transmitted quantization levels

without errors [4]. Having m̂, the FC employs the same linear operator G to obtain the linear

estimate θ̂=Gm̂. To characterize the MSE, we define covariance matrices D1 =E{(θ̌ − θ)(θ̌ −

θ)T} and D2 =E{(θ̂ − θ̌)(θ̂ − θ̌)T}. One can verify that

D0 = D1 + D2 + 2E{(θ̌ − θ)(θ̂ − θ̌)T},

or equivalently,

D0 = D1 +D2 + 2E{(θ̌ − θ)T (θ̂ − θ̌)},

where D1 = tr(D1) and D2 = tr(D2). Applying the Cauchy-Schwarz inequality and using the fact

that (x+ y)2≤2(x2 + y2) for x, y≥0, we establish an upper bound on D0 as follows:

D0 ≤ (
√
D1 +

√
D2)2 ≤ 2(D1 +D2) = 2D. (2.4)

Note that the upper bound on D0 in (2.4) consists of two terms: the first term 2D1 represents the

MSE due to observation noises and quantization errors, whereas the second term 2D2 is the MSE

due to communication channel errors. In other words, the contributions of observation noises and

quantization errors in the upper bound are decoupled from those of communication channel errors.

Relying on (2.4), in the remainder of this section, we derive two upper bounds onD, denoted asDa

and Db in Sections 2.2.1 and 2.2.2, respectively, in terms of {Lk, Pk}Kk=1. Although Da is a tighter

bound than Db, its minimization demands a higher computational complexity. Leveraging on the

20



expressions of Da and Db derived in this section, in Sections 2.3 and 2.4, we propose two distinct

schemes, which we refer to as “coupled” and “decoupled” schemes, to address the optimization

problem formulated in (2.2) when D0 is replaced with Da or Db.

2.2.1 Characterization of First Bound Da

Recall that D=D1+D2 in (2.4). In the following, we first derive D1. Deriving an exact expression

for D2 remains elusive. Hence, we derive an upper bound on D2, represented as Dupb2 . Let Da =

D1+Dupb2 . Based on (2.4), we have D0 ≤ 2D ≤ 2Da.

• Derivation of D1 in Da: Because θ̌ is the LMMSE estimator of θ given m, D1 is the corre-

sponding error covariance matrix. Consequently, D1 = tr(D1) is [4]

D1 = tr(Cθ − E{θmT}(E{mmT})−1E{θmT}T ), (2.5)

where E{θmT} and E{mmT} are cross-covariance and covariance matrices, respectively. To

find these matrices, we need to delve into the statistics of quantization errors. For sensor k, let the

difference between observation xk and its quantization level mk, i.e., εk =xk −mk, be the corre-

sponding quantization noise. In general, εks are mutually correlated and are also correlated with

xks. However, in [137], it is shown that when correlated Gaussian random variables are quantized

with uniform quantizers of step sizes ∆ks, quantization noises can be approximated as mutually

independent random variables that are uniformly distributed in the interval [−∆k

2
, ∆k

2
] and are also

independent of quantizer inputs. In this chapter, because the θ and nks in (2.1) are assumed to be

Gaussian, xks are correlated Gaussian that are quantized with uniform quantizers of quantization

step sizes ∆ks. Hence, εks are approximated as mutually independent zero-mean uniform random

variables with variance σ2
εk

=
∆2
k

12
that are also independent of xks (and thus independent of θ and
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nks). These imply that E{θmk}=E{θ(xk − εk)}=Cθak. Therefore,

E{θmT}=CθA=CTxθ. (2.6)

Additionally, it is straightforward to verify that

E{mmT}=ATCθA+Cn+Q = Cx+Q, (2.7)

whereQ=diag(σ2
ε1
, . . . , σ2

εK
). Substituting (2.6) and (2.7) into (2.3) and (2.5) yields

G = CTxθ(Cx+Q)−1, (2.8)

D1 = tr(Cθ)−tr(CTxθ(Cx+Q)−1Cxθ). (2.9)

• Derivation of Dupb2 in Da: By substituting θ̌ = Gm and θ̂ = Gm̂ into D2, we obtain D2 =

GMGT , where we define matrix M=E{(m̂−m)(m̂−m)T}. Because communication channel

noises are mutually uncorrelated, E{(m̂i −mi)(m̂j −mj)}=0 for i 6=j. Hence, M is a diagonal

matrix, whose k-th entry, [M]k,k=E{(m̂k−mk)
2}, depends on the employed modulation scheme,

channel gain |hk|, channel noise variance σ2
ωk

, value of τk, transmit power Pk, and quantization rate

Lk. For our system model depicted in Section 5.1, in which sensors utilize BPSK modulation, we

obtain (see Appendix A.1)

[M]k,k ≤ (
4τ 2
kLk
3

)exp(−γkPk
Lk

) = uk, (2.10)

where γk= |hk|2
2σ2
ωk

is the Channel to Noise Ratio (CNR) for sensor k. Because M and D2 are semi-

positive definite matrices, i.e., M� 0,D2� 0, the bound in (2.10) can provide us with an upper

bound on D2 = tr(D2). Let M′ = diag(u1, ..., uK). Because M′−M�0 and GM′GT �0, we
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find that [138]

D2 = tr(GMGT ) ≤ tr(GM′GT ) = D2
upb, (2.11)

A remark follows regarding D1 and Dupb2 .

• Remark 1: Note that D1 in (2.9) only depends on quantization rates Lks through the variances

of quantization noises εks in Q. However, Dupb2 in (2.11) depends on transmit powers Pks through

M′, as well as Lks through M′ and Q in G. Hence, we derive the upper bound Da=D1 +Dupb2

in terms of the optimization parameters {Lk, Pk}Kk=1.

2.2.2 Characterization of Second Bound Db

Recall from Section 2.2.1 that Da=D1+Dupb2 , where D0≤2D≤2Da. Note that both D1 and Dupb2

involve the inversion of matrix Cx+Q, incurring a high computational complexity that increases

with K. For large K, such a matrix inversion required to find the optimal resource allocation (see

Section 2.3.1) is burdensome. To reduce the computational complexity, in this section, we derive

upper bounds on D1 and Dupb2 , which are represented as Dupb1 and Duupb2 , respectively, that do not

involve such a matrix inversion. Let Db=Dupb1 +Duupb2 . Based on (2.4), we have D0≤2D≤2Da≤

2Db.

•Derivation ofDupb1 inDb: To find an upper bound onD1 in (2.9), we use the following inequality

[72]:

tr(ETF−1E) ≥ (tr(ETE))2

tr(ETFE)
, (2.12)

where E is arbitrary and F� 0. Recall that Q is a diagonal matrix with non-negative entries, i.e.,

Q�0. Additionally, Cx�0 because it is a covariance matrix. These imply that Q+Cx�0 [138].

Applying (2.12) to (2.9), we obtain

D1≤ tr(Cθ)−
(tr(CTxθCxθ))2

tr(CTxθ(Cx+Q)Cxθ)
= Dupb1 . (2.13)
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• Derivation of Duupb2 in Db: To find an upper bound on Dupb2 in (2.11), we take the following

steps:

Dupb2

(a)
=

K∑
k=1

λk(G
TGM′)

(b)

≤
K∑
k=1

λk(G
TG)λk(M′)

(c)

≤ λmax(G
TG)

K∑
k=1

λk(M′) = λmax(G
TG)

K∑
k=1

uk, (2.14)

where (a) in (2.14) is obtained using the facts that tr(EF) = tr(FE) for arbitrary E,F with

matching sizes and tr(E) =
∑

k λk(E) =
∑

k[E]k,k for a square matrix E with eigenvalues λks,

(b) is found using Theorem 9 in [139], and (c) is true because λk(GTG) ≤ λmax(G
TG) for

∀k. Next, we derive an upper bound on λmax(GTG) in (2.14). Using G in (2.8), we find that

GTG= (Cx+Q)−1CxθCTxθ(Cx+Q)−1. Note that (Cx+Q)−1 and CxθCTxθ are symmetric matrices.

Therefore,

λmax(G
TG)

(d)
= ||GTG||2≤ [||(Cx+Q)−1||2]2||CxθCTxθ||2

= [λmax((Cx+Q)−1)]2λmax(CxθCTxθ)
(e)
= [

1

λmin(Cx+Q)
]2λmax(CxθCTxθ) (2.15)

(f)

≤ [
1

λmin(Cx) + min
k

(σ2
εk

)
]2λmax(CxθCTxθ) = λ̃.

(d) holds due to the norm equality [140], (e) is true because λmax(E−1)= 1
λmin(E)

for an invertible

E, and (f) is obtained because for E,F� 0, Weyl’s inequality [140] states that λmin(E + F)≥

λmin(E) + λmin(F). Additionally, λmin(Q)=min
k

(σ2
εk

). Combining (2.14) and (2.15), we obtain

Dupb2 ≤ λ̃
K∑
k=1

uk=Duupb2 .

A remark follows regarding Dupb1 and Duupb2 .
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• Remark 2: Note that Dupb1 in (2.13) only depends on Lks through the variances of quantization

noises εks inQ. However, Duupb2 depends on Pks through uks, as well as Lks through uks and σ2
εk

s

in λ̃. Hence, we derive the upper bound Db = Dupb1 +Duupb2 in terms of {Lk, Pk}Kk=1. Proposition

1 summarizes the upper bounds Da and Db on D0.

• Proposition 1: Da and Db are1

D0≤ 2Da ≤ 2Db

Da =D1 +Dupb2 = tr(Cθ)−tr(CTxθ(Cx+Q)−1Cxθ) + tr(GM′GT )

Db =Dupb1 +Duupb2 = tr(Cθ)−
(tr(CTxθCxθ))2

tr(CTxθ(Cx+Q)Cxθ)
+ λ̃

K∑
k=1

uk

2.3 “Coupled” Scheme for Resource Allocation

Thus far, we have established that D0≤2D≤2Da≤2Db, where Da and Db are derived in Sections

2.2.1 and 2.2.2 in terms of {Lk, Pk}Kk=1. In this section, we address the optimization problem for-

mulated in (2.2) when D0 is replaced with Da (in Section 2.3.1) or Db (in Section 2.3.3). Note that

(2.2) is a Mixed Integer Nonlinear Programming (MINLP) problem with exorbitant computational

complexity [141]. To simplify the problem, we temporarily relax the integer constraint on Lks and

allow them to be positive numbers, i.e., we consider

minimize
Lk,Pk, ∀k

D0({Lk, Pk}Kk=1) (2.16)

s.t.
K∑
k=1

Lk ≤ Btot,
K∑
k=1

Pk ≤ Ptot, Lk, Pk ∈ R+, ∀k.

1 When correlated channels are considered, the non-diagonal entries of matrix M′ are [M′]i,j =

8τ2[Q(ϑi, ϑj ; ρ
c
i,j) − Q(ϑi, ϑj ;−ρci,j)], i 6= j, where ϑi =

√
2γiPi
Li

, ρci,j is the correlation coefficient between wi
and wj , and Q(., .; .) is the two-dimensional Q-function. However, this does not lead to closed-form solutions for the
following resource allocation schemes.
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We propose the “coupled” scheme to solve the relaxed problem in (2.16), where the objective

function is replaced with Da or Db. In Section 2.3.2, we discuss a novel approach to migrate from

relaxed continuous Lks to integer Lks solutions.

2.3.1 Coupled Scheme for Minimizing Da

The quintessence of this “coupled” scheme is as follows. We replace D0 with Da in (2.16) and

decompose the relaxed problem into two sub-problems (SP1) and (SP2), as follows:

(SP1) given{Lk}Kk=1, minimize
Pk, ∀k

Da({Pk}Kk=1) (2.17)

s.t.
K∑
k=1

Pk ≤ Ptot, Pk ∈ R+, ∀k,

(SP2) given{Pk}Kk=1, minimize
Lk, ∀k

Da({Lk}Kk=1) (2.18)

s.t.
K∑
k=1

Lk ≤ Btot, Lk ∈ R+, ∀k.

We iterate between solving these two sub-problems until we reach the solution [142].

• Solving (SP1) Given in (2.17): Considering Remark 1, we note that only Dupb2 in Da depends

on Pks. Hence, we replace the objective function in (2.17) with Dupb2 . Because Dupb2 is a jointly

convex function of Pks (see Appendix A.2), we use the Lagrange multiplier method and solve

the corresponding Karush-Kuhn-Tucker (KKT) conditions to find the solution. Substituting uk of

(2.10) into M′ and noting thatG does not depend on Pks, we rewrite (SP1) as follows:

given{Lk}Kk=1, minimize
Pk, ∀k

K∑
k=1

αkLk exp(−γkPk
Lk

) (2.19)

s.t.
K∑
k=1

Pk ≤ Ptot, Pk ∈ R+, ∀k,

where αk=(4τ 2
k/3)||gk||2 and ||gk||2 is the squared Euclidean norm of the k-th column of G. Let
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L({Lk, Pk, µk}Kk=1, λ) be the Lagrangian for (2.19), where µk and λ are the Lagrange multipliers.

The corresponding KKT conditions are as follows:

∂L
∂Pk

= −αkγkexp(−γkPk
Lk

)− µk + λ = 0, ∀k,

Pkµk = 0, µk ≥ 0, Pk ≥ 0, ∀k,

λ(
K∑
k=1

Pk − Ptot) = 0, λ ≥ 0,
K∑
k=1

Pk ≤ Ptot.

Because Dupb2 is a decreasing function of Pks and Ptot (see Appendix A.2), solving (2.19) for Pks,

we find that

Pk = [
Lk
γk

ln(
γkαk
λ∗

)]+, ∀k, (2.20)

where [x]+ = max(0, x),
∑K

k=1 Pk = Ptot, and lnλ∗ is

lnλ∗ = (
∑
k/∈I

Lk
γk

)−1[−Ptot +
∑
k/∈I

Lk
γk

ln(γkαk)]. (2.21)

Set I = {k :Pk = 0, k= 0, ..., K} in (2.21) as the set of inactive sensors: sensors whose Lk = 0 or

γkαk<λ
∗, where γk is the CNR of sensor k and αk depends on the parameters of the observation

model. Eq. (2.20) indicates that Pk depends on both sensor observation and communication chan-

nel qualities through γk and αk. Additionally, sensor k with a larger Lk is allocated a larger Pk.

For the asymptotic regime of large Ptot, we substitute (2.21) into (2.20) and obtain the following:

Pk =
LkPtot

γk
∑

k/∈I
Lk
γk

, ∀k. (2.22)

Eq. (2.22) implies that in this asymptotic regime, Pk is proportional to Lk
γk

. When Lks are equal, a

sensor with a smaller CNR is allotted a larger Pk (inverse of water filling). When γks are equal,
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a sensor with a larger Lk is assigned a larger Pk. Regarding the solution in (2.20), two remarks

follow.

• Remark 3: For sensor k, we examine how Pk varies as γk changes for a given Lk. We obtain the

following:
∂Pk
∂γk

=
Lk
γ2
k

(1− ln(
γkαk
λ∗

)), ∀k. (2.23)

Examining (2.23) shows that when γkαk < eλ∗, as γk increases, Pk increases (water filling). In

contrast, when γkαk>eλ∗, as γk increases, Pk decreases (inverse of water filling).

•Remark 4: For sensors i, j, we examine how Pi, Pj are related to γi, γj . Suppose that Li=Lj =L

and αi = αj = α. When eλ∗

α
< γj < γi, then Pi < Pj (inverse of water filling). In contrast, when

γj<γi<
eλ∗

α
, then Pi>Pj (water filling).

• Solving (SP2) Given in (2.18): Finding a closed-form solution for this problem remains elusive

due to the non-linearity of the cost function and the fact that the inequality constraint on Lks is

not necessarily active. Let F = {Lk :
∑K

k=1 Lk ≤Btot, Lk∈ R+,∀k} be the feasible set of (SP2).

To solve (SP2), we use a modified version of the ellipsoid method [143, 144]. This cutting-plane

optimization method is the generalized form of the one-dimensional bisection method for higher

dimensions, and it is theoretically efficient with guaranteed convergence [143]. The description of

the method follows. Suppose that the solution of (SP2) is contained in an initial ellipsoid ε0 with

center L′(0) and shaped by matrix S(0)�0. The definition of ε0 is as follows:

ε0 ={z : (z− L′(0))TS(0)−1
(z− L′(0))≤1}.

For ε0, we choose a sphere that contains F , with center L′(0) = Btot
2

[1, ..., 1], radius Btot
2

√
K, and

thus S(0) = (Btot
√
K

2
)IK . Essentially, this method uses gradient evaluation at iteration i to discard

half of εi and to form εi+1 with center L′(i+1), which is the minimum volume ellipsoid covering

the remaining half of εi. Note that εi+1 can be larger than εi in diameter; however, it is proven that
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the volume of εi+1 is smaller than that of εi and center L′(i) eventually converges to the solution of

(SP2). To elaborate this method, suppose that at iteration i, we have ellipsoid εi with center L′(i)

and shaped by matrix S(i). Ellipsoid εi+1 at iteration i + 1 is obtained by evaluating the gradient

∇(i), defined below. When L′(i) ∈ F , then ∇(i) is the gradient of the objective function (so-

called objective cut) evaluated at L′(i). When L′(i) /∈F , then ∇(i) is the gradient of the inequality

constraint that is being violated (so-called feasibility cut) evaluated at L′(i). The update steps are

as follows:

εi+1 = εi ∩ {z :∇(i)T (z− L′(i)) ≤ 0},

L′(i+1) = L′(i) − 1

K + 1
S(i)∇̃(i), ∇̃(i) =

∇(i)

√
∇(i)TS(i)∇(i)

,

S(i+1) =
K2

K2 − 1
(S(i) − 2

K + 1
S(i)∇̃(i)∇̃(i)TS(i)),

in which

∇(i) =


∇(i)
oc , if

∑K
k=1 L

′(i)
k ≤ Btot, L

′(i)
k ∈ R+, ∀k,

∇(i)
sfc, if

∑K
k=1 L

′(i)
k > Btot, L

′(i)
k ∈ R+, ∀k,

∇(i)
nfc if L

′(i)
j ≤ 0, for some j ∈ {1, ..., K},

where∇(i)
oc ,∇(i)

sfc and∇(i)
nfc are the objective cut, rate-sum constraint feasibility cut and nonnegative

rate feasibility cut, respectively, evaluated at L′(i):

∇(i)
oc = [

∂Da
∂L1

|
L1=L

′(i)
1
, ...,

∂Da
∂LK

|
LK=L

′(i)
K

]T , (2.24)

∇(i)
sfc = [

∂(
∑K

j=1 Lj)

∂L1

|
L1=L

′(i)
1
, ...,

∂(
∑K

j=1 Lj)

∂LK
|
LK=L

′(i)
K

]T , (2.25)

∇(i)
nfc = [

−∂Lj
∂L1

|
L1=L

′(i)
1
, ...,
−∂Lj
∂LK

|
LK=L

′(i)
K

]T . (2.26)
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After some mathematical manipulations and using the fact that ∂E
−1

∂x
= −E−1 ∂E

∂x
E−1, we find that

∂Da
∂Lk
∀k in (2.24) is equal to the following:

tr(G[
∂Q

∂Lk
− ∂Q

∂Lk
(Cx+Q)−1M′+

∂M′

∂Lk
−M′(Cx+Q)−1 ∂Q

∂Lk
]GT ),

in which ∂Q
∂Lk

and ∂M′

∂Lk
are all-zero matrices, except for one non-zero element in each matrix

[ ∂Q
∂Lk

]k,k =
∂σ2
εk

∂Lk
= −2 ln 2 τ2k 2Lk

3(2Lk−1)3
and [∂M

′

∂Lk
]k,k = ∂uk

∂Lk
=

4τ2k
3

exp(−γkPk
Lk

)[1 + γkPk
Lk

]. Furthermore,

∇(i)
sfc in (2.25) is a vector of all ones, and ∇(i)

nfc in (2.26) is a vector of all zeros and −1 for its j-th

entry.

As the stopping criterion, we check whether
√
∇(i)TS(i)∇(i) < ε, where ε is a predetermined error

threshold, or whether the number of iterations exceeds a predetermined maximum Imax. Fig. 2.2

illustrates the above ellipsoid method for K = 2 sensors, where the feasible set F is the triangle

with the hatch pattern.

In a nutshell, we have analytically solved (SP1) and provided an iterative ellipsoid method with

guaranteed convergence to address (SP2). With these results, we address the problem in (2.16)

when D0 is replaced with Da. Let vectors Lc=[Lc1, ..., L
c
K ],Pc=[P c

1 , ..., P
c
K ] denote the solutions

to (2.16). We take an iterative approach that switches between solving (SP1) and (SP2) until we

converge to vectors Lc and Pc [142]. As the stopping criterion, we check whether the decrease

in Da in two consecutive iterations is less than a predetermined error threshold η or whether the

number of switches between solving (SP1) and (SP2) exceeds a predetermined maximum Jmax.

The “a-coupled” algorithm summarizes the steps described above, guaranteeing that Da decreases

in each iteration j. A remark follows regarding the “a-coupled” algorithm.
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(a) L′(i)∈F⇒∇(i) =∇(i)
oc , update εi with

center L′(i) to εi+1 with center L′(i+1)

(b) L′(i) /∈ F because L
′(i)
1 + L

′(i)
2 >

Btot ⇒ ∇(i) =∇(i)
sfc, update εi with center

L′(i) to εi+1 with center L′(i+1)

(c) L′(i) /∈ F because L′(i)1 < 0⇒∇(i) =

∇(i)
nfc, update εi with center L′(i) to εi+1

with center L′(i+1)

Figure 2.2: Modified ellipsoid method for constrained optimization problem
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Data: System parameters defined in Section 5.1
Result: Continuous solutions for optimization parameters Lc=[Lc1, ..., L

c
K ],Pc=[P c

1 , ..., P
c
K ]

initialization;
j = 0, Lc(0) = Btot

2
[1, ..., 1], Pc(0) =[0, ..., 0]

while 1 do
Q(j) = diag(

τ21

3(2L
c(j)
1 −1)2

, ...,
τ2K

3(2
L
c(j)
K −1)2

)

G(j)=CTxθ(Cx+Q(j))−1 as defined in (2.8)

α
(j)
k =(4τ 2

k/3)||g(j)
k ||2, ∀k

λ(j) = exp((
∑

k/∈I
L
c(j)
k

γk
)−1[−Ptot +

∑
k/∈I

L
c(j)
k

γk
ln(γkα

(j)
k )]) as defined in (2.21)

P
c(j)
k = [

L
c(j)
k

γk
ln(

γkα
(j)
k

λ(j)
)]+, ∀k, as defined in (2.20)

- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
Modified ellipsoid method

- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
modified ellipsoid method initialization;
i = 0, L′(0) = Btot

2
[1, ..., 1], S(0) =(Btot

√
K

2
)I

while 1 do
L′(i+1) = L′(i) − 1

K+1
S(i)∇̃(i)

S(i+1) = K2

K2−1
(S(i) − 2

K+1
S(i)∇̃(i)∇̃(j)TS(i))

i = i+ 1
if
√
∇(i+1)TS(i+1)∇(i+1) < ε ∨ i > Imax then
break

end
end
- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
Lc(j+1) = L′(i+1)

j = j + 1
if Da(Pc(j),Lc(j))−Da(Pc(j−1),Lc(j−1)) < η ∨ j > Jmax then

break
end

end
Algorithm: “a-coupled” algorithm for minimizing Da

• Remark 5: Implementing the ellipsoid method requires a K-dimensional search. Moreover, in

the inner loop where L′(i) ∈ F , we have ∇(i) =∇(i)
oc , which requires inversion of Cx+Q. In the

outer loop, inversion of Cx+Q is required to update α(j)
k .
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2.3.2 Migration from Continuous to Integer Solutions for Rates

We describe an approach for migrating from continuous solution Lc to integer solution Ld. Let X

be the index set of sensors with discretized quantization rates. Initially, X is an empty set. We

consider two scenarios: (i)
∑

j∈X L
d
j+
∑

j /∈X L
c
j<Btot and (ii)

∑
j∈X L

d
j+
∑

j /∈X L
c
j =Btot. When

case (i) occurs, it means that minimizing Da has not been negatively impacted by a bandwidth

shortage. Hence, we discretize the rate of sensor j with the smallest Lcj because this sensor is

more likely to be the weakest player in the network in the sense that it has the least contribution to

Da. We round Lcj “up” or “down”, depending on which one yields a smaller Da, and consider the

discretized Ldj as a fixed and final value. When case (ii) occurs, it is very likely that minimizing

Da has been negatively impacted by a bandwidth shortage and that some sensors were imposed

smaller rates compared with an unlimited Btot scenario. Note that in case (ii), rounding up the

rate of any sensor would enforce decreasing the rates of some other sensors. Hence, we should

discretize in a way such that the positive impact of rounding up a rate on Da would dominate the

negative effect of decreasing the rates of some other sensors on Da. Therefore, we discretize the

rate of sensor j with the largest Lcj because this sensor is more likely to be the strongest player in

the sense that it has the greatest contribution toDa. We round Lcj “up” and consider the discretized

Ldj as a fixed and final value. After each discretization, we need to update X and the available

bandwidth to Btot−
∑

j∈X L
d
j and apply the “a-coupled” algorithm to reallocate Ptot among all

sensors and Btot−
∑

j∈X L
d
j among those sensors with continuous valued rates. We continue this

procedure until X includes all sensors. To see the algorithmic view of discretization process see

the Appendix A.5.
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2.3.3 Coupled Scheme for Minimizing Db

Similar to Section 2.3.1, in this section, we consider two sub-problems, which we refer to as (SP3)

and (SP4). They are similar to (2.17) and (2.18), with the difference that Da is replaced by Db.

Solutions to (SP3) and (SP4) follow.

• Solving (SP3): Considering Remark 2, we note that only Duupb2 in Db depends on Pks. Hence,

we replace the objective function in (SP3) with Duupb2 . Because Duupb2 is a jointly convex function

of Pks (see Appendix A.2), we use the Lagrange multiplier method and solve the corresponding

KKT conditions to find the solution. Additionally, Duupb2 is a decreasing function of Pks and Ptot

(see Appendix A.2). Therefore, solving (SP3) for Pks, we find that

Pk = [
Lk
γk

ln(
γkτ

2
k

µ∗
)]+, ∀k, where

K∑
k=1

Pk = Ptot, (2.27)

lnµ∗= (
∑
k/∈J

Lk
γk

)−1[−Ptot +
∑
k/∈J

Lk
γk

ln(γkτ
2
k )]. (2.28)

Set J ={k :Pk = 0, k= 0, ..., K} in (2.28) as the set of inactive sensors: sensors whose Lk = 0 or

γkτ
2
k <µ∗. Note that for the asymptotic regime of large Ptot, we have the same power allocation

policy as in (2.22).

• Solving (SP4): We apply the modified ellipsoid method that we used for (SP2) to solve (SP4).

The feasible set F and the update steps are similar, with the following difference: the gradient

of the objective function ∇(i)
oc changes, and rather than ∂Da

∂Lk
, ∂Db
∂Lk

needs to be derived. However,

∂Db
∂Lk

=
∂Dupb1

∂Lk
+
∂Duupb2

∂Lk
, where

∂Dupb1

∂Lk
=
−(tr(CTxθCxθ))2tr(CTxθ

∂Q
∂Lk
Cxθ)

(tr(CTxθ(Cx+Q)Cxθ))2
,
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∂Duupb2

∂Lk
=


λ̃ ∂uk
∂Lk

, if k /∈ A,

λ̃ [ ∂uk
∂Lk
−

2
∂σ2εk
∂Lk

∑K
j=1 uj

λmin(Cx)+σ2
εk

], if k ∈ A,

in which set A= {k : k = argmin
i

(σ2
εi

)}, λ̃ is defined in (2.15), and ∂Q
∂Lk

, ∂uk
∂Lk

are given in Section

2.3.1. Having the solutions for (SP3) and (SP4), we can address the problem in (2.16) when D0

is replaced with Db utilizing an iterative algorithm similar to the “a-coupled” algorithm outlined

in Section 2.3.1, which we call the “b-coupled” algorithm, and a discretization approach similar

to Section 2.3.2. In contrast to the “a-coupled” algorithm, the “b-coupled” algorithm does not

require matrix inversion, although implementing the modified ellipsoid method still requires a K-

dimensional search.

2.4 “Decoupled” Scheme For Resource Allocation

In Section 2.3, we proposed two iterative coupled schemes that minimize Da and Db. In both

schemes, we resorted to the iterative modified ellipsoid method to find Lks because finding a

closed-form solution for Lks remained elusive. We recall the discussion at the beginning of Sec-

tion 2.2, which indicates thatD1 (and its boundDupb1 ) represent the MSE due to observation noises

and quantization errors, whereas D2 (and its bounds Dupb2 ,Duupb2 ) are the MSE due to communi-

cation channel errors. Leveraging on this decoupling of the contributions of observation noises

and quantization errors from those of communication channel errors, we propose a “decoupled”

scheme to minimize these decoupled contributions separately and to find the optimization parame-

ters {Lk, Pk}Kk=1 in closed-form expressions, thereby eliminating the computational burden of the

modified ellipsoid method for conducting a K-dimensional search and finding the Lc vector. Sim-

ilar to Section 2.3, we start with the “decoupled” scheme to solve the relaxed problem by allowing

Lks to be positive numbers.
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2.4.1 Decoupled Scheme for Minimizing Da

The essence of the “decoupled” scheme is to solve the following two sub-problems in a sequential

order:

(SP5) minimize
Lk, ∀k

D1({Lk}Kk=1) (2.29)

s.t.
K∑
k=1

Lk ≤ Btot, Lk ∈ R+, ∀k,

(SP6) given {Lk}Kk=1, minimize
Pk, ∀k

Dupb2 ({Pk}Kk=1) (2.30)

s.t.
K∑
k=1

Pk ≤ Ptot, Pk ∈ R+, ∀k.

In contrast to Section 2.3, there is no iteration between (SP5) and (SP6). After solving (SP5) and

(SP6), we take a similar approach to Section 2.3.2 to migrate from continuous to integer solutions

for Lks.

• Solving (SP5): We minimize Dupb1 in (SP5) rather than D1 because it yields a closed-form

solution for Lks given in (2.33). In Section 2.4.2, we discuss minimizing Da=D1+Dupb2 when we

substitute (2.33) into D1 and (2.20), (2.21), (2.33) into Dupb2 . Considering (2.13), we realize that

minimizing Dupb1 is equivalent to minimizing tr(CTxθQCxθ) =
∑K

k=1 δkσ
2
εk

, where δk which is the

squared Euclidean norm of the k-th row of Cxθ. Because
∑K

k=1 δkσ
2
εk

is a jointly convex function

of Lks (see Appendix A.3), we use the Lagrange multiplier method and solve the corresponding

KKT conditions to find the solution. Additionally,
∑K

k=1 δkσ
2
εk

is a decreasing function of Lks and

Btot (see Appendix A.3). Therefore, solving (SP5) in (2.29) for Lks and using the approximation

2Lk−1≈2Lk , we obtain

Lk = [log2(

√
τ 2
k δk2 ln 2

3ν∗
)]+, ∀k where

K∑
k=1

Lk=Btot, (2.31)
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ν∗=
2 ln 2

3
[4−Btot

K∏
k=1

δkτ
2
k ]

1
K . (2.32)

By substituting (2.32) into (2.31), one can verify that

Lk=

[
Btot

K
+ log2

(√
δkτ 2

k

(
∏K

i=1 δiτ
2
i )

1
K

)]+

, ∀k. (2.33)

Examining (2.33), we note that the first term inside the bracket is common among all sensors,

whereas the second term differs among sensors and depends on δk, τk. For τk = τ, ∀k, a sensor

k with a larger δk (i.e., better observation quality) is allocated a larger Lk. Note that because

Dupb1 does not capture communication channel errors, Lk in (2.33) is independent of the sensor

communication channel quality. This is different from the solution of (SP2) in (2.18), where Lks

depend on both sensor observation and communication channel qualities.

• Solving (SP6): Similar to (SP1) in (2.17), the objective function in (2.30) is a jointly convex

function of Pks and also decreases as Pks and Ptot increase (see Appendix A.2). Indeed, solving

(SP6) yields the same solution as that of (SP1), provided in (2.20) and (2.21).

2.4.2 Does Depleting Btot always reduce Da?

To answer this question, we consider the solution in (2.33) for the asymptotic regime of large Btot.

For large Btot, we have Lk ≈ Btot
K
, ∀k, i.e., we should equally distribute Btot among sensors. In

situations whereBtot is large and the communication channel quality of sensor k is poor (i.e., small

γk due to small channel gain |hk| or small Pk due to low Ptot), the solution in (2.33) can lead to a

large value for Da because sending a large number of bits Lk over poor quality channels increases

communication channel errors and thus Dupb2 .
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Figure 2.3: D1,Dupb2 ,Da versus Btot (measured in bits)

This observation suggests that we should perhaps first find Bopt (for Bopt<Btot), where Bopt de-

pends on channel gains and Ptot, and then distribute Bopt among sensors to control the growth of

Dupb2 in Da. In fact, when we substitute (2.33) into D1 and (2.20), (2.21), (2.33) into Dupb2 , we find

thatD1 is a decreasing function ofBtot, whereasDupb2 is an increasing function ofBtot. AsBtot→0,

D1 approaches its maximum value tr(Cθ), i.e., trace of covariance of unknowns, whereasDupb2 goes

to zero. However, asBtot→∞,D1 approaches its minimum value d0 = tr(Cθ)− tr(CTxθC−1
x Cxθ), i.e.,

clairvoyant CE where unquantized sensor observations are available at the FC, whereas Dupb2 in-

creases unboundedly (see Appendix A.4). This trade-off suggests that there should be a value Bopt

that minimizes Da. Fig. 2.3 illustrates D1,Dupb2 ,Da versus Btot for two values P 1
tot, P

2
tot, where

P 2
tot ≥ P 1

tot. Fig. 2.3 shows that Bopt
2 ≥B

opt
1 . This observation can be explained as follows. Note

that D1 is independent of Ptot, whereas Dupb2 decreases as Ptot increases (Appendix A.2 shows that
∂Dupb2

Pk
≤ 0 ∀k, and thus, ∂Dupb2

Ptot
≤ 0). Hence, as Ptot increases, we can transmit a larger number of

bits, i.e., larger Bopt, without incurring an increase in communication channel errors.

Motivated by these facts, we propose the “a-decoupled” algorithm. This algorithm starts by initi-
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Figure 2.4: Behavior of “a-decoupled” algorithm

ating Bopt = 1 and increasing the value of Bopt by one bit at each iteration, where the maximum

number of iterations is Btot. At iteration i, we find L(i)
k s using (2.33) and P (i)

k s using (2.20), (2.21),

substitute these L(i)
k , P

(i)
k s into Da, and check whether the decrease in Da in two consecutive iter-

ations is less than zero, i.e., Da({L(i)
k , P

(i)
k }Kk=1) − Da({L(i−1)

k , P
(i−1)
k }Kk=1)< 0. If this inequality

holds for i<Btot, we let Bopt = i and find the solution for Lks using (2.33) and Pks using (2.20),

(2.21), when Btot is substituted with Bopt. Otherwise, we let Bopt= Btot and find the solution for

Lks using (2.33) and Pks using (2.20), (2.21) (see appendix A.6 for an algorithmic view). Finally,

we take the approach in Section 2.3.2 to migrate from continuous to integer solutions for rates and

find the corresponding powers.

Fig. 2.4 illustrates the behavior of the “a-decoupled” algorithm and in particular howBopt,D1,Dupb2 ,

Da vary as Ptot increases. Note that as Ptot increases, Bopt remains constant for certain (long) in-

tervals and increases for some other (short) intervals of Ptot values. The behavior of Bopt versus

Ptot also dictates the behavior ofD1,Dupb2 ,Da. For the Ptot intervals where Bopt is fixed,D1 is also

fixed because it is independent of Ptot, whereas Dupb2 and thus Da decrease as Ptot increases. For
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the Ptot intervals whereBopt increases,D1 decreases andDupb2 increases (Appendix A.4 shows that

∂D1

∂Btot
≤ 0 and ∂Dupb2

∂Btot
≥ 0). Particularly, the multiple peaks for Dupb2 occur at the exact points where

we have a one bit increase in Bopt. Consider the first peak in Dupb2 . As Ptot increases from 7 dB

to 8 dB, one would correctly expect to observe that Dupb2 decreases. However, because Bopt also

increases from 2 bits to 3 bits and ∂Dupb2

∂Btot
≥ 0, it appears that Dupb2 increases as Ptot increases from

7 dB to 8 dB. A similar justification holds for the other peaks in Dupb2 . Overall, as Ptot increases,

Da decreases because the decrease in D1 when Bopt increases dominates the increase in Dupb2 . A

remark follows regarding the modified “a-decoupled” algorithm.

• Remark 6: The modified “a-decoupled” algorithm requires only a one-dimensional search to

find Bopt and thus Lks (2.33), as opposed to the K-dimensional search required by the modified

ellipsoid method in the “a-coupled” algorithm. Additionally, finding Bopt at most requires Btot

number of iterations, and no switching between solving (SP5) and (SP6) is needed.

2.4.3 Decoupled Scheme for Minimizing Db

Note that the “a-decoupled” algorithm still requires inversion of matrix Cx + Q to calculate αk

and find Pk using (2.20), (2.21). To eliminate this matrix inversion, we propose minimizing Duupb2

rather than Dupb2 . Because Duupb2 is a jointly convex function of Pks (see Appendix A.2), substitut-

ing Lks of (2.33) into Duupb2 and minimizing it with respect to Pks, we reach the solution provided

in (2.27), (2.28). Let the “b-decoupled” algorithm be the one that minimizes Dupb1 and Duupb2 sep-

arately in Db. This algorithm is very similar to the “a-decoupled” algorithm described in Section

2.4.2, with the difference that when finding Bopt, at iteration i, we find L(i)
k s using (2.33) and P (i)

k s

using (2.27), (2.28), substitute these L(i)
k , P

(i)
k s into Db, and check whether the decrease in Db in

two consecutive iterations is less than zero. After finding Bopt, we find the solution for Lks using

(2.33) and Pks using (2.27), (2.28). The behavior of the “b-decoupled” algorithm and in particular
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howBopt,Dupb1 ,Duupb2 ,Db vary as Ptot increases is similar to the “a-decoupled” algorithm depicted

in Fig. 2.4 and is omitted due to the redundancy.

2.5 Complexity Comparison of Algorithms

We discuss the computational complexity of the “a-coupled”, “b-coupled”, “a-decoupled”, and

“b-decoupled” algorithms.

• “a-coupled” algorithm: in this algorithm, we switch between solving (SP1) and (SP2) until it

reaches the stopping criteria. Suppose that the algorithm converges after Ia iterations. In each

iteration, we use (2.20) to solve (SP1) and the modified ellipsoid method to solve (SP2). When

employing the matrix inversion algorithms in [145], the complexity of finding Pks via (2.20) is

O(K2.37) because we need to calculate αks and G, which involve calculating (Cx+Q)−1. The

complexity order of the ellipsoid method is O(K2) [143]. Thus, the overall complexity order of

the “a-coupled” algorithm is O(Ia(K
2.37 + K2)). In our simulations, we find that Ia ≈ 6 for

K = 20.

• “b-coupled” algorithm: the computational complexity of this algorithm is very similar to that of

the “a-coupled” algorithm because the algorithm iterates between solving (SP3) and (SP4) until it

reaches the solution. Suppose that the algorithm converges after Ib iterations. No matrix inversion

is involved for solving (SP3), and the complexity of finding Pks via (2.27) is O(K) because the

complexity order of finding ln µ∗ in (2.28) is O(K). Hence, the overall complexity order of the

“b-coupled” algorithm is O(Ib(K
2 +K)). For K = 20, we find Ib ≈ 6.

• “a-decoupled” algorithm: the structures of the “decoupled” algorithms are different from those

of the “coupled” algorithms. These algorithms include a one-dimensional search over Btot to find

Bopt (where 0≤Bopt≤Btot). Starting with Bopt = 1 and increasing the value of Bopt by one bit,

41



for each candidate of Bopt, we need (i) to find Pks via (2.20), which has a complexity order of

O(K2.37), and (ii) to calculate Da, which involves finding (Cx+Q)−1 that is found in (i). Thus, the

overall complexity order of the “a-decoupled” algorithm isO(BoptK2.37), and in the worst case, it

is O(BtotK
2.37).

• b-decoupled” algorithm: the computational complexity of this algorithm is very similar to that

of the “a-decoupled” algorithm, with a difference. In this algorithm, for each candidate of Bopt,

we calculate Db rather than Da. We note that finding Db does not require a matrix inversion and

that the complexity order of calculating Db is O(K). Hence, the overall complexity order of the

“b-decoupled” algorithm is O(BoptK).

2.6 Discussion on Observation Model

Adopting the linear observation model has several precedents in the distributed estimation literature

[70, 72, 73, 76, 77, 83]. We note that, regardless of the specific observation model that the system

designer may adopt, our proposed algorithms only need Cx and Cθx to find the resource allocations.

As an example for nonlinear observation, consider xk=sk+nk, k = 1, ..., K,, where sk∼N (0, σ2
k)

and θ= [θ1, ..., θq]
T are jointly Gaussian. The covariance of sk and θi is Cov(sk, θi) = σkσθiρ

s
k,θi

and Cov(sk, sl) = σkσlρ
s
k,l. One can employ the well-known “spatial correlation model” in [146]

[147] to define the correlation coefficients as ρsk,θi = exp(−(
dk,θi
ν1

)ν2) and ρsk,l = exp(−(
dk,l
ν1

)ν2),

where dk,θi is the distance between sensor k and source θi, dk,l is the distance between sensors k

and l, ν1>0 is a parameter that controls how the spatial correlation changes with the distance, and

0<ν2<2 is a roughness factor.
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2.7 Numerical and Simulation Results

In this section, through simulations, we corroborate our analytical results. Additionally, we in-

vestigate the effects of observation noise correlation and size of the network on the upper bounds

and simulated MSE and examine the tightness of the bounds. Without loss of generality and for

the simplicity of the resource allocation presentation, we first consider a small network of K = 3,

Cθ = [1 (
√

2/2); (
√

2/2) 2], a1 = [1 1]T , a2 = [0.6 0.6]T , a3 = [0.4 0.4]T , σ2
wk

= 1, hk = 1, uncorre-

lated observation noises with the covariance matrix Cn=diag(1, 1, 1) for all algorithms. “CS” and

“DS” in the legends of the figures indicate the continuous solutions and discrete solutions of the

algorithms, respectively.
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Figure 2.5: “a-coupled” algorithm {10 log10(Pk)}3
k=1 vs. Ptot
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Figure 2.6: “a-coupled” algorithm {Lk}3k=1 vs. Ptot

Figs. 2.5 and 2.6 illustrate {10 log10(Pk)}3
k=1 and {Lk}Kk=1 vs. Ptot, respectively, for the “a-

coupled” algorithm and Btot = 30, 3 bits. Figs. 2.5.a and 2.6.a for Btot = 30 bits (abundant

bandwidth) show that as Ptot increases, both the power and rate allocation approach a uniform

allocation. This is in agreement with (2.22). When Ptot is small, only sensor 1 is active. As Ptot

increases, sensors 2 and 3 become active in sequential order. Figs. 2.5.b and 2.6.b for Btot = 3

bits (scarce bandwidth) show that only sensor 1 is active and P1 =Ptot. Overall, these observations

imply that the power and rate allocation depends on both Ptot and Btot, e.g., when we have plenti-

ful Ptot and scarce Btot, only the sensor with the largest observation gain is active. Moreover, the

uniform power and rate allocation is near optimal when we have ample Ptot and Btot.

Figs. 2.7 and 2.8 depict {10 log10(Pk)}3
k=1 and {Lk}Kk=1 vs. Ptot, respectively, for the “a-decoupled”

algorithm and Btot = 30, 3 bits. Similar to the “a-coupled” algorithm, we observe that when both

Ptot and Btot are abundant, the uniform power and rate allocation is near optimal. This result is in

agreement with (2.22) and (2.33).
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Figure 2.7: “a-decoupled” algorithm {10 log10(Pk)}3
k=1 vs. Ptot

However, when Btot is scarce, the power and rate allocation is far from being uniform. In fact,

when Ptot is ample, (2.22) indicates that Pk is proportional to Lk. Additionally, when Btot is

scarce, (2.33) states that Lks and consequently Pks are not uniformly distributed. These results

indicate that the power and rate allocation is affected by the sensors’ observation qualities and

channel gains, as well as both Ptot and Btot. There are two slight differences between the “a-

coupled” and “a-decoupled” algorithms: (i) for Btot = 30 bits (ample bandwidth), sensors 2 and

3 become active at smaller Ptot values in the “a-decoupled” algorithm, and (ii) for Btot = 3 bits

(scarce bandwidth), the “a-decoupled” algorithm ultimately activates all sensors as Ptot increases,

whereas the “a-coupled” algorithm only activates sensor 1. Note that for scarce bandwidth, even

when Ptot is very large, the power and rate allocation in “a-decoupled” algorithm is non-uniform.
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Figure 2.8: “a-decoupled” algorithm {Lk}Kk=1 vs. Ptot

Figs. 2.9 and 2.10 depict {10 log10(Pk)}3
k=1 and {Lk}Kk=1 vs. Btot, respectively, for the “a-coupled”

algorithm and Ptot = 16, 30 dB. The observations in these figures are in full agreement with the

former ones. In particular, for Ptot = 30 dB (large power), when Btot is small, only sensor 1 is

active. As Btot increases, sensors 2 and 3 also become active in a way such that the power and rate

allocation approaches uniformity for large Btot. However, for Ptot=16 dB, only sensor 1 is active

and P1 =Ptot.

Figs. 2.11 and 2.12 illustrate {10 log10(Pk)}3
k=1 and {Lk}Kk=1 vs. Btot, respectively, for the

“a-decoupled” algorithm and Ptot = 16, 30 dB. While the behaviors of the “a-coupled” and “a-

decoupled” algorithms have similarities, they have the following differences: (i) for Ptot = 30 dB,

sensors 2 and 3 become active at a smaller Btot value in the “a-decoupled” algorithm, and (ii)

for Ptot = 16 dB, the “a-decoupled” algorithm ultimately activates all sensors as Btot increases,

whereas the “a-coupled” algorithm only activates sensor 1.
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Figure 2.9: “a-coupled” algorithm {10 log10(Pk)}3
k=1 vs. Btot
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Figure 2.10: “a-coupled” algorithm {Lk}Kk=1 vs. Btot

Note that for Ptot = 16 dB, even when Btot is very large, the power and rate allocation in the “a-

decoupled” algorithm is non-uniform. This is because Bopt <Btot in this case, and according to

(2.33), (2.20), (2.21), the power and rate allocation would be non-uniform.
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Figure 2.13: Da and Db vs. Ptot for all algorithms

In Fig. 2.13, we plot Da when implementing the “a-coupled” and “a-decoupled” algorithms and

Db when implementing the “b-coupled” and “b-decoupled” algorithms vs. Ptot for Btot=30, 3 bits.

We observe that the “a-coupled” and “b-decoupled” algorithms perform the best and the worst,

respectively. Furthermore, the algorithms outperform uniform resource allocation (except for the

“b-decoupled” algorithm whenBtot=3 bits and 13<Ptot<18 dB). For small Ptot, the performance

of each algorithm does not change as we decrease Btot= 30 bits to Btot= 3 bits. This observation

can be explained as follows. For small Ptot, the communication channels cannot support reliable

transmission of a large number of bits. Hence, the algorithms allocate few bits to sensors, and

increasing Btot does not improve the performance. Another observation is that for Btot = 30 bits

(plentiful bandwidth) and large Ptot, the performance of all algorithms reaches the clairvoyant

benchmark d0, whereas for Btot = 3 bits (scarce bandwidth) and large Ptot, there is a persistent

gap with d0 for each algorithm due to quantization errors, and the “a-coupled” and “b-decoupled”

algorithms perform the best and the worst, respectively.
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Figure 2.14: Simulated MSE vs. Ptot for all algorithms

Fig. 2.14 depicts the Monte Carlo simulated MSE when the “a-coupled”, “b-coupled”, “a-decoupled”

and “b-decoupled” algorithms are implemented for power and rate allocation vs. Ptot for Btot =

30, 3 bits. Similar observations to those of Fig. 2.13 are made, with a few differences: (i) the “b-

coupled” algorithm outperforms the “a-decoupled” algorithm in very low Ptot, and (ii) the simu-

lated MSE obtained by the “b-coupled”, “a-decoupled”, and “b-decoupled” algorithms approaches

the same value for Btot=3 bits and large Ptot. The reason is perhaps that the discretized quantiza-

tion rates are the same for these algorithms, and according to (2.22), for large Ptot, the Pks of these

algorithms become identical.

Fig. 2.15 depicts Da when implementing the “a-coupled” and “a-decoupled” algorithms and Db

when implementing the “b-coupled” and “b-decoupled” algorithms vs. Btot for Ptot = 30, 16 dB.

The bowl-shaped curves for uniform resource allocation are caused by the same phenomena that

we explained in Fig. 2.3. Avoiding this effect is the reason why we find Bopt ≤ Btot in the “a-

decoupled” and “b-decoupled” algorithms.
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Figure 2.15: Da and Db vs. Btot for all algorithms

Fig. 2.16 depicts the simulated MSE when the “a-coupled”, “b-coupled”, “a-decoupled” and “b-

decoupled” algorithms are implemented for power and rate allocation vs. Btot for Ptot=30, 16 dB.

We make similar observations and conclusions to those that we made for Fig. 2.14. For Ptot = 30

dB and large Btot, the performance of all algorithms reaches the clairvoyant benchmark d0. How-

ever, for Ptot = 16 dB and large Btot, there is a persistent gap with d0 for each algorithm due to

communication channel errors. When comparing Figs. 2.15 and 2.16, we note that the behavior of

the bounds Da and Db vs. Btot is very similar to that of the simulated MSE.

Effect of observation noise correlation: To investigate the effect of observation noise correla-

tion on the resource allocation and the MSE upper bounds, we provide a numerical example with

Cn = [1 .5 .3; .5 1 0.2; .3 0.2 1]. Fig. 2.17 presents {10 log10(Pk)}3
k=1 vs. Ptot for the “a-coupled”

algorithm and Btot=30 bits for both uncorrelated and correlated observation noises.
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Figure 2.16: Simulated MSE vs. Btot for all algorithms
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k=1 vs. Ptot, Btot = 30 bits, K = 3

52



In Fig. 2.18, we plot Da when implementing the “a-coupled” and “a-decoupled” algorithms vs.

Ptot for Btot = 30 bits for both uncorrelated and correlated observation noises. For correlated

noises, we observe that more resources are allocated to sensor 1 and that less resources are allotted

to sensors 2 and 3 compared with those of uncorrelated noises. This result is intuitively expected

because the observation noise of sensor 1 is highly correlated to those of sensors 2 and 3, implying

that observation x1 is highly correlated to x2 and x3. Combined with the fact that sensor 1 has

the largest observation gain, we conclude that because we have more information about x1 (more

resources are allocated to sensor 1), we need less information about x2, x3 (less resources are al-

located to sensors 2 and 3) in this example. Consistent with the classical literature [4] (correlation

leads to a higher MSE), we observe that the upper bounds have larger values for correlated ob-

servation noises. When Ptot is small, because only the sensor with the largest observation gain is

active, correlation between observation noises does not affect the values of the upper bounds.

Effect of network size and spatially correlated noises: We consider K = 20 sensors ran-

domly deployed in a 20 × 20 field. Assuming a Cartesian coordinate system with the origin at

the center of the field, two unknown sources are deployed at coordinates (−5, 0) and (5, 0). We

adopt the observation model in Section 2.6 with ν1 = 10, ν2 = 1 and σsk = 1,∀k. We also assume

correlated observation and communication channel noises based on the same spatial model, i.e.,

Cov(ni, nj) =σniσnjexp(−(
di,j
β1

)β2) and Cov(wi, wj) =σwiσwjexp(−(
di,j
ζ1

)ζ2), with β1 = 1, β2 = 1,

ζ1 =0.1, and ζ2 =1.
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Figure 2.19: Da and Db vs. Ptot for all algorithms for K = 20

Fig. 2.19 depicts the results that are analogous to those of Fig. 2.13 for Btot = 120, 10 bits. We

can infer similar conclusions as for Fig. 2.13, except for two differences: (i) for Btot = 30 bits

(large bandwidth) and large Ptot, all upper bounds converge to d0 = tr(Cθ) − tr(CTxθC−1
x Cxθ) when

K= 3, whereas for Btot= 120 bits (large bandwidth) and large Ptot, Db of the “b-coupled” and“b-

decoupled” algorithms converge to d′0 = tr(Cθ)−
(tr(CTxθCxθ))2

tr(CTxθCxCxθ)
, d′0>d0 when K=20. This is due to

the larger difference between D1 and Dupb1 in K=20 compared with that of K=3. As Btot→∞,

we find thatD1→d0 andDupb1 →d′0 and that the difference d′0−d0 increases asK increases. (ii) The

gap between Db of the “b-coupled” and “b-decoupled” algorithms and Da of the “a-coupled” and

“a-decoupled” algorithms are larger when K = 20. This observation can be justified as follows.

Compared with Da, Db captures less statistical information about the observation model of the

network. While λ̃ in Duupb2 = λ̃
∑K

k=1 uk summarizes some of the statistical information embedded

inG=CTxθ(Cx+Q)−1, Dupb2 holds all the information embedded inG.
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Figure 2.20: Simulated MSE vs. Ptot for all algorithms for K = 20

Furthermore, we minimize Dupb1 in the “b-decoupled” algorithm (while we minimize D1 in the “a-

decoupled” algorithm), which leads to a further loss of statistical information embedded in Cx. As

K increases, this statistical information loss becomes more significant, and thus, the gap between

Db and Da increases.

Fig. 2.20 plots results that are analogous to those of Fig. 2.14 for K = 20. Similar comments can

be made as those for Fig. 2.14. Note that in contrast to Fig. 2.19, the simulated MSE of all four

algorithms in Fig.2.20 converge to d0 for Btot = 30 bits (large bandwidth) and large Ptot (recall

that d0 is also the MSE benchmark corresponding to estimating θ using unquantized observations

xks). Figs. 2.14 and 2.20 show the simulated MSE for all the proposed algorithms for K= 3 and

K=20, respectively. As expected, the “a-coupled” and “a-decoupled” algorithms outperform the

“b-coupled” and “b-decoupled” algorithms.
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Figure 2.21: Simulated MSE and Da vs. Ptot for the “a-coupled” and “a-decoupled” algorithms
for K = 3
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Figure 2.22: Simulated MSE and Da vs. Ptot for the “a-coupled” and “a-decoupled” algorithms
for K = 20

Furthermore, comparing Figs. 2.14 and 2.20, we observe that as K increases, the performance

gap between these algorithms becomes larger.

Discussion on the tightness of the bounds: To highlight the tightness of the upper bounds and the

implication over the true network performance when the proposed allocation schemes are utilized,

we consider the same network of K = 20 with the specified spatial correlated noises. Figs. 2.21
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and 2.22 depict the simulated MSE and Da when the “a-coupled” and “a-decoupled” algorithms

are applied for resource allocation for K = 3 and K = 20, respectively. We observe that when

active sensors can quantize with rates Lk > 1 bit (i.e., when bandwidth is not scarce and Ptot is

large enough), Da is very tight. However, when bandwidth is scarce or Ptot is small, such that

active sensors cannot quantize at rates larger than one, Da is not very tight.

Regarding Db, Figs. 2.23 and 2.24 depict the simulated MSE and Db when the “b-coupled” and

“b-decoupled” algorithms are applied for resource allocation for K = 3 and K = 20, respectively.

We observe that for K = 3, when active sensors can quantize with rates Lk> 1 bit (i.e., Btot = 30

bits and Ptot≥20 dB), the bound Db is very tight.

However, for K = 20, even when active sensors can quantize with rates Lk > 1 bit, Db is not as

tight as Da (compare Figs. 2.22 and 2.24). This observation is due to the fact that, compared

with Da, Db captures less statistical information about the observation model of the network. As

K increases, this statistical information loss becomes more significant, and thus, Db becomes less

tight, compared with Da for K = 20.
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Figure 2.23: Simulated MSE andDb vs. Ptot for the “b-coupled” and “b-decoupled” algorithms for
K = 3

57



0 5 10 15 20 25 30 35
Ptot

0

0.5

1

1.5

2

2.5

3

Si
m
ul
at
ed

M
SE

an
d
up

pe
r
bo

un
ds

Db, “b-coupled”

MSE ,“b-coupled”

Db, “b-decoupled”

MSE ,“b-decoupled”

d0

Btot = 10 (bits)

Btot = 120 (bits)

Figure 2.24: Simulated MSE andDb vs. Ptot for the “b-coupled” and “b-decoupled” algorithms for
K = 20

2.8 Conclusions

We considered the DES of a Gaussian vector with a known covariance matrix and linear observa-

tion model, in which the FC is tasked with reconstruction of the unknowns using a linear estima-

tor. Sensors employ uniform multi-bit quantizers and BPSK modulation, and they communicate

with the FC over power- and bandwidth-constrained channels. We derived two closed-form upper

bounds on the MSE in terms of the optimization parameters (i.e., transmit power and quantization

rate per sensor). Each bound consists of two terms: the first term is the MSE due to observation

noises and quantization errors, and the second term is the MSE due to communication channel

errors. We proposed “coupled” and “decoupled” resource allocation schemes that minimize these

bounds. The “coupled” schemes utilize the iterative modified ellipsoid method to conduct a K-

dimensional search and find the quantization rate vector, whereas the “decoupled” ones rely on a

one-dimensional search to find the quantization rates. Our simulations show that when Ptot and

Btot are not too scarce, the bounds are good approximations of the actual MSE. Through simula-

tions, we verified the effectiveness of the proposed schemes and confirmed that their performance

approaches the clairvoyant CE for large Ptot and Btot (Ptot ≈ 25 dB, Btot ≈ 30 bits). Our results
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indicate that resource allocation is affected by the sensors’ observation qualities, channel gains,

and by Ptot and Btot, e.g., two WSNs with identical conditions and Ptot (Btot) and different Btot

(Ptot) require two different power (rate) allocations. Additionally, a greater number of bits and

more transmit power are allotted to sensors with better observation qualities.
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CHAPTER 3: CLOSED FORM APPROXIMATION FOR CRAMÉR RAO

LOWER BOUND FOR DISTRIBUTED ESTIMATION WITH

QUANTIZED OBSERVATIONS

In this chapter we derive the corresponding BCRLB for DES of an unknown Gaussian random

variable with known mean and variance, where observation model is linear with Gaussian additive

noise. The sensors have limited dynamic sensing range and individual observations are separately

quantized in sensors via uniform quantizers. In sequel we provide an accurate closed-form ap-

proximation for BCRLB expression which provides us with better understanding of its behavior.

Afterwards through simulation examples we study the behavior of BCRLB with respect to dy-

namic sensing range of sensors, variance of additive noise and quantization rates. The simulations

corroborate accuracy of proposed approximations.

3.1 System Model and Problem Statement

We consider a WSN of K spatially distributed sensors and a FC, where the network is tasked

with estimating a realization of a zero mean Gaussian source θ, with known variance σ2
θ , i.e.,

θ ∼ N (0, σ2
θ). Each sensor makes a noisy observation of θ. In particular, we model the observation

xk at sensor k as:

xk = θ + nk, for k = 1, ..., K, (3.1)

where nk’s are additive noises that are uncorrelated with each other and θ. We assume nk ∼

N (0, σ2
nk

). Each sensor transmits its quantized observation over an error-free communication

channel to the FC, where collective received data are fused to estimate θ. Error-free communi-

cation channel model has been adopted before in [33, 37, 81, 121, 148] in the context of DES.
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Suppose sensor k has a sensing dynamic range of [−τk, τk] and employs a uniform quantizer with

Mk levels and boundaries {ζk,1, ..., ζk,Mk+1}, where ζk,(Mk/2)+1 = 0, ζk,i+1 − ζk,i = ∆k ,
2τk
Mk−1

for i ∈ {1, ..Mk} (and ∆k is the quantizer step size for sensor k). Sensor k maps its observation xk

into a quantization level mk ∈ {mk,1, ...,mk,Mk
} such that if xk lies in the interval [ζk,i, ζk,i+1] then

xk is mapped into mk,i where mk,i =
ζk,i+ζk,i+1

2
. Next, sensor k maps mk into a binary sequence

of length rk = log2Mk (bits) and transmits this sequence to the FC. We refer to rk as quantization

rate of sensor k.

Letm = [m1, ...,mK ]T denote the vector of quantized observations of all sensors. One can verify

that the log-likelihood function of quantized observations satisfies the regularity condition, i.e.,

E{∂lnp(m,θ)
∂θ

} = 0. Let F denote the Fisher information based on m. Recall the MSE of any

Bayesian estimator of θ based onm is at least as large as the BCRLB based onm, i.e., the inverse

of F , where F is:

F = −E{∂
2lnp(m, θ)

∂2θ
} = −E{∂

2lnp(m|θ)
∂2θ

} − E{∂
2lnp(θ)
∂2θ

}. (3.2)

Our goal is to derive the BCRLB for any Bayesian estimator of random variable θ, based on

quantized observations. In sequel we employ some approximations which leads us to insightful

closed-form expressions for the BCRLB that enable us to find a better understanding of the bound

behavior w.r.t. the variations of noise variances and quantization rates.

3.2 Bayesian Cramér Rao Lower Bound

We start with finding the second term in (3.2). For θ ∼ N (0, σ2
θ) it is easy to verify that the

second term E{∂
2lnp(θ)
∂2θ

} = − 1
σ2
θ
. Next we characterize the first term in (3.2). Since nk’s are

all uncorrelated Gaussian and hence independent mk’s conditioned on θ are independent and
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lnp(m|θ) =
∑K

k=1 lnp(mk|θ). This allows us to write the first and second derivatives of the log-

likelihood function as the following:

∂lnp(m|θ)
∂θ

=
K∑
k=1

1

p(mk|θ)
∂p(mk|θ)

∂θ
(3.3)

∂2lnp(m|θ)
∂2θ

=

=Fa︷ ︸︸ ︷
K∑
k=1

1

p(mk|θ)
∂2p(mk|θ)

∂2θ
−

K∑
k=1

1

p2(mk|θ)
(
∂p(mk|θ)

∂θ
)2

︸ ︷︷ ︸
=Fb

. (3.4)

From (3.4) we find that the first term in (3.2) is equal to −E{Fa} + E{Fb}. Next we find E{Fa}

and E{Fb}. Let Sk,i(θ) , p(mk = mk,i|θ) = Pr{ζk,i ≤ θ + nk ≤ ζk,i+1|θ} and Hk,i(θ) ,
∂Sk,i(θ)

∂θ
.

We have E{Fa} = 0 since:

E{Fa} =
K∑
k=1

E{ 1

p(mk|θ)
∂2p(mk|θ)

∂2θ
} =

K∑
k=1

∫
p(θ)

Mk∑
i=1

Sk,i(θ)

p(mk = mk,i|θ)
∂2p(mk = mk,i|θ)

∂2θ
dθ =

K∑
k=1

∫
p(θ)


∂2(

=1︷ ︸︸ ︷
Mk∑
i=1

Sk,i(θ))

∂2θ


dθ = 0
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For E{Fb} we have:

E{Fb} =
K∑
k=1

E{ 1

p2(mk|θ)
(
∂p(mk|θ)

∂θ
)2} = (3.5)

K∑
k=1

∫
p(θ)

Mk∑
i=1

(Hk,i(θ))
2

Sk,i(θ)
dθ

To obtain E{Fb} in (3.5) we need to characterize Sk,i(θ) and Hk,i(θ). One can show that:

Sk,i(θ) = Φ(
ζk,i+1 − θ
σnk

)− Φ(
ζk,i − θ
σnk

) (3.6)

Hk,i(θ) =
1

σnk

[
φ(
ζk,i − θ
σnk

)− φ(
ζk,i+1 − θ
σnk

)

]
(3.7)

where Φ(.) is the standard normal Cumulative Distribution Function (CDF) and φ(.) is the standard

normal PDF. Combining all above we obtain F in (3.2) as:

F =
K∑
k=1

Mk∑
i=1

E{
H2
k,i(θ)

Sk,i(θ)
}+

1

σ2
θ

. (3.8)

where the expressions for Sk,i(θ) and Hk,i(θ) are given in (3.6) and (3.7), and Sk,i(θ) > 0,∀θ.

Note that the integral corresponding to the expectation in (3.8) does not render to a closed-form. In

the following, we provide two approximations for this expectation, that lead into two closed-form

expressions of F , corresponding to binary (coarse) quantizers and high rate (fine) quantizers at

sensors. Our simulations verify that these two approximate closed-forms are very close to actual

F values.
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F ≈
K∑
k=1

Mk∑
i=1

(ζk,i+1 − ζk,i)(σ4
θ + σ2

nk
σ2
θ + σ2

nk
ζ2
k,i)

σ2
nk

(σ2
θ + σ2

nk
)5/2

φ(
ζk,i√

σ2
θ + σ2

nk

)

+
1

σ2
θ

(3.9)

3.2.1 BCRLB closed-form approximation

Suppose sensors employ binary quantizers with rk = 1, i.e., sensor k transmits the sign of its

observations to the FC, mk = sign(xk) where mk = 1 for xk ≥ 0 and mk = −1 otherwise.

Therefore, the quantizer boundaries are ζk,1 = −∞, ζk,2 = 0, ζk,3 = +∞. One can verify the

following for binary quantizers:

H2
k,i(θ)

Sk,i(θ)
=

φ2( θ
σnk

)

σ2
nk

Φ( θ
σnk

)Φ( −θ
σnk

)
. (3.10)

Using the Chernoff bound for CDF as an approximation [149], we can approximate the denumer-

ator in (3.10) as Φ( θ
σnk

)Φ( −θ
σnk

) ≈ 0.25e
− θ2

2σ2nk . Substituting this approximation in (3.10) and doing

some integral math we obtain:

E{
H2
k,i(θ)

Sk,i(θ)
} ≈ 2

πσnk
√
σ2
nk

+ σ2
nk

(3.11)

For large quantization rates rk’s (small step sizes ∆k’s given τk’s) we can use second order Taylor

approximation for Sk,i(θ) and Hk,i(θ):

Sk,i(θ) ≈ (
ζk,i+1 − ζk,i+1

σnk
)φ(

ζk,i − θ
σnk

)
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Hk,i(θ) ≈ (
(ζk,i+1 − ζk,i)(ζk,i − θ)

σ3
nk

)φ(
ζk,i − θ
σnk

)

substituting the above approximations in (3.8) and taking some tedious integral calculus steps we

obtain the closed-form expression for the F in (3.9).

Remark 1: Consider (3.9) when rk → ∞, in this case the internal sum can be interpreted as a

Riemann Sum which must converge to following integral1:

γ =

∫ τk

−τk

[
σ2
θ

σ2
nk

(σ2
θ + σ2

nk
)3/2

+ σ2
nk
α2

]
φ(

α√
σ2
θ + σ2

nk

)dα =

2Φ( τk√
σ2
θ+σ2

nk

)− 1

σ2
nk

−
2τkφ( τk√

σ2
θ+σ2

nk

)

(σ2
θ + σ2

nk
)3/2

. (3.12)

If we relax the simplifying assumption of xk ∈ [−τk, τk] and let τk → +∞, it is easy to verify that

γ in (3.12) goes to 1
σ2
nk

and renders the sum in (3.9) into the Fisher information corresponding to

centralized estimation of θ, where the FC has access to (unquantized) full precision observations

xk’s, i.e., F cv =
∑K

k=1
1
σ2
k

+ 1
σ2
θ

[129]. The expression in right side of equation (3.12) can also be

interpreted as Fisher information associated to sensor k where the sensor’s sensing dynamic range

is confined to [−τk, τk] and the observation xk that lies within this range is available at the FC with

full precision (no quantization).

1The function f(x) = (a+ bx2)φ(cx) for a, b 6= ±∞ and c > 0 is a Riemann-Integrable function.
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3.3 Simulation Results

In this section, with simulated examples, we demonstrate the behavior of F and its inverse the

BCRLB with respect to different system parameters and also illustrate the accuracy of the two pro-

posed approximations of F . Without loss of generality we consider a homogeneous network where

the variances of observation noises and quantization rates are equal, i.e., σ2
nk

= σ2
n, rk = r, ∀k.

We let K = 20 and σ2
θ = 1.

Fig. 3.1 depicts F , associated with expression in (3.12) shown as F cv(τ) in the figure versus the

ratio λ = τ/
√
σ2
θ + σ2

n, where sensors have a limited sensing dynamic range 2 of [−τ, τ ] and no

quantization is performed. We observe for τ > 3.5
√
σ2
θ + σ2

n (λ > 3.5), F cv(τ) converges to

clairvoyant benchmark F cv for various values of σ2
n. In other words, from practical point of view

the information loss (in terms of increasing MSE) is negligible, if we choose a sensor with sensing

dynamic range larger than 3.5
√
σ2
θ + σ2

n. Based on this observation we set τ = 3.5
√
σ2
θ + σ2

n to

produce Fig. 3.2.

Fig. 3.2 compares the actual BCRLB and the proposed approximations associated with expres-

sions in (3.11) and (3.9) (for r = 1 and r ≥ 2 respectively), versus σ2
n. As can be seen the

approximation for r = 1 is satisfactory and for r ≥ 2, as r increases the approximation becomes

more accurate, such that for r = 4 it is very accurate.

2Since θ and the additive noises are Gaussian, we can assume xk lies in a bounded interval with a high probability,
i.e., xk ∈ [−τk, τk] for a reasonably large value of τk, thus intuitively if sensing range of sensor is large enough there
is almost no information loss due to limited/definite sensing range, we will demonstrate this intuition by analytical and
simulation results.
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Figure 3.2: CRLB and proposed approximation for different values of quantization rate
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3.4 Conclusions

In this chapter we derived the BCRLB for DES of a Gaussian source where the individual obser-

vations at the sensors are separately quantized with uniform quantizers and sensors have limited

sensing dynamic range. The observation model is assumed to be linear with additive Gaussian

noise. We provided closed-form approximations for the BCRLB and studied the behavior of the

BCRLB and the two corresponding approximations as quantization rates, variances of additive

observation noises and sensing dynamic range of sensors vary. The simulation results corroborate

the accuracy of the proposed approximations and verify that increasing the variance of the additive

observation noise always degrades the estimation accuracy and increasing the quantization rates

always improves the estimation accuracy. Our simulation results also illustrate that for a Bayesian

Gaussian linear model, provided that the sensing dynamic range of sensors stays larger than 3.5

times the standard deviation of observations the information loss (in terms of increasing MSE) is

negligible, in other words we can limit observations larger than 3.5 times the standard deviation

of observations into a confined limited range, without noticeable degradation in the estimation

accuracy.
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CHAPTER 4: ON DISTRIBUTED LINEAR ESTIMATION IN

MULTIPLICATIVE NOISE ENVIRONMENT AND OBSERVATION

MODEL UNCERTAINTIES

In this chapter we consider DES of a Gaussian source in a heterogeneous bandwidth constrained

WSN. Similar to [33, 81], we choose the total number of quantization bits as the measure of

network bandwidth. The observations of the sensors is corrupted by independent multiplicative

and additive observation noises, with incomplete statistical knowledge of the multiplicative noise.

Actually we assume that the distribution of the multiplicative observation noise is unknown and

only its mean and variance are known (observation model uncertainties). For multi-bit quantizers,

we derive the closed-form MSE expression for the linear LMMSE estimator at the FC. For both

error-free and erroneous (modeled as BSC) orthogonal communication channels, we consider two

system-level constrained optimization problems with respect to the sensors’ quantization rates: in

(P1) we minimize the MSE given a network bandwidth constraint, and in (P2) we minimize

the required network bandwidth given a target MSE. To address these two problems we propose

several rate allocation methods named as longest root to leaf path, greedy and integer relaxation

methods. We also derive the BCRLB and compare the MSE performance of our proposed methods

against the BCRLB. Our results corroborate that, for low power multiplicative observation noises

and adequate network bandwidth, the gaps between the MSE of our proposed methods and the

BCRLB are negligible, while the performance of other methods like individual rate allocation

and uniform is not satisfactory.
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4.1 System Model and Problem Statement

We consider a WSN with K spatially distributed heterogeneous sensors and a FC, where the

FC is tasked with estimating a realization of a Gaussian source θ ∼ N (0, σ2
θ), via fusing the

collective received data from all sensors. Each sensor makes a noisy observation of θ, where

both multiplicative and additive observation noises are involved. Let xk denote the scalar noisy

observation of θ at sensor k. We assume the following observation model:

xk = hkθ + nk, for k = 1, ..., K, (4.1)

where hk and nk are multiplicative and additive observation noises, respectively. Also hk, nk,

θ are uncorrelated. We assume nk ∼ N (0, σ2
nk

), E{hk} = 1 ∀k, and1 var(hk) = σ2
hk

. Sensor

k employs a uniform quantizer with Mk quantization levels and quantization step size ∆k. The

quantizer maps xk into a quantization level mk ∈ {mk,1, ...,mk,Mk
}, where mk,i = (2i−1−Mk)∆k

2

for i = 1, ...,Mk. We assume xk lies in the interval [−τk, τk] almost surely, for some reasonably

large value of τk, and we let ∆k = 2τk
Mk−1

. These imply that the uniform quantization mapping rule

can be described as the following: if xk ∈ [mk,i − ∆k

2
,mk,i + ∆k

2
], then mk = mk,i, if xk ≥ τk,

then mk = τk, and if xk ≤ −τk, then mk = −τk. Following quantization, sensor k maps the

index i of mk,i into a bit sequence of length rk = log2Mk and sends rk bits to the FC. Sensors

transmit over orthogonal bandwidth-constrained error-free communication channels. Error-free

communication channel model has been used before in several classical works on DES, examples

are [18,20,33,67,72,81,107,150]. In Section 4.6 we extend our analytical results to the case where

these channels are modeled as independent BSCs with different error probabilities. To capture

the network bandwidth constraint we assume
∑K

k=1 rk ≤ Btot. In the absence of knowledge of

1For the general case E{hk}= µk we can scale xk and obtain x′k = h′kθ + n′k, where x′k = xk/µk, h′k = hk/µk,
n′k = nk/µk, E{h′k} = 1, var(h′k) = σ2

hk
/µ2

k, n′k ∼ N (0, σ2
nk
/µ2

k). Thus without loss of generality, we assume
E{hk}=1,∀k.
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joint distribution of mk’s and θ, we resort to the LMMSE estimator [4] to form the estimate

θ̂ = Gm at the FC, where G is the 1 × K linear estimation operator and m = [m1, ...,mK ]T

is the vector of transmitted quantization levels for all sensors. The LMMSE estimator has a low

computational complexity and only requires the knowledge of moments E{θmT} and E{mmT}

to form θ̂. Let D = E{(θ − θ̂)2} denote the MSE corresponding to the LMMSE estimator,

where D depends on rk ∀k. We consider two system-level constrained optimization problems

with respect to optimization variables rk ∀k. In the first problem, we minimize D subject to the

network bandwidth constraint. In the second problem, we minimize the total number of transmitted

bits subject to the constraint on D. In other words, we are interested to solve the following two

constrained optimization problems:

(P1) minimize
rk ∀k

D({rk}Kk=1) (4.2)

s.t.
K∑
k=1

rk ≤ Btot, rk ∈ Z+, ∀k,

(P2) minimize
rk ∀k

K∑
k=1

rk (4.3)

s.t. D({rk}Kk=1) ≤ D0, rk ∈ Z+, ∀k,

where D0 is the pre-determined upper bound on D.

4.2 Characterizing MSE for LMMSE estimator

We wish to characterize D in terms of the optimization variables {rk}Kk=1. From [4] we have:

θ̂ = Gm where G=E{θmT}(E{mmT})−1, (4.4)
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D = σ2
θ − E{θmT}(E{mmT})−1E{θmT}T ). (4.5)

To find E{θmT} and E{mmT} in (4.4), (4.5) we need to delve into statistics of the quantization

errors.

• Characterizing E{θmT} and E{mmT}: For sensor k, let the difference between observation

xk and its quantized version mk, i.e., εk = xk−mk, be the corresponding quantization error. In

general, εk’s are mutually correlated and also are correlated with xk’s. However, in [137] it is

shown that, when highly correlated Gaussian random variables are coarsely quantized with uniform

quantizers of step sizes ∆k’s, quantization errors can be approximated as mutually independent

random variables, that are uniformly distributed in the interval [−∆k

2
, ∆k

2
], and are also independent

of quantizer inputs. Here, since θ and nk’s in (5.1) are Gaussian, conditioned on hk’s observations

xk’s are correlated Gaussian that are quantized with uniform quantizers of quantization step sizes

∆k’s. Thus εk’s are approximated as mutually independent zero mean uniform random variables

with variance σ2
εk

=
∆2
k

12
, that are also independent of xk’s (and hence independent of θ and nk’s).

Using the aforementioned assumptions and approximations for the quantization errors, kth element

of E{θmT} becomes:

E{θmk} = Ehk{E{θmk|hk}} = Ehk{E{θ(xk − εk)|hk}}

= Ehk{hkE{θ2}+ E{nk}E{θ} − E{εk}E{θ}} = σ2
θ . (4.6)
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Hence we have E{θmT} = σ2
θ1

T , where 1 = [1, ..., 1]T . Similarly, for (k, l)th element of

E{mmT} we have:

E{mkml} = Ehk,hl{E{mkml|hk, hl}} = (4.7)

Ehk,hl{E{(hkθ + nk − εk)(hlθ + nl − εl)|hk, hl}}
(a)
=

Ehk,hl{hkhlE{θ2}+ E{nknl}+ E{εkεl}}=

Ehk,hl{hkhl}E{θ2}+ E{nknl}+ E{εkεl} ,

where for (a) we have used the assumptions that (i) nk’s and θ are uncorrelated, (ii) εk’s and θ are

uncorrelated (iii) nk’s and εk’s are uncorrelated. Having (4.7), and noting that hk’s are uncorrelated

with unit means, we reach:

E{mkml} =


σ2
θ + σ2

k + σ2
εk
, if k = l

σ2
θ , if k 6= l ,

where σ2
k = σ2

θσ
2
hk

+ σ2
nk

. Consequently matrix E{mmT} can be written as the following:

E{mmT } = σ2
θ11T + diag(

1

α1

, ...,
1

αK
) , (4.8)

where α−1
k =σ2

k + σ2
εk

. Applying matrix inversion Lemma [4] to (4.8) we find:

[(E{mmT})−1]k,l =


αk −

α2
k

σ−2
θ +

∑K
k=1 αk

, if k = l

− αkαl
σ−2
θ +

∑K
k=1 αk

, if k 6= l .

Proposition 1 summarizes the expressions for θ̂,D in (4.4), (4.5).

Proposition 1. The LMMSE estimator θ̂ and its corresponding MSE D, based on the quantized
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observations {mk}Kk=1 are:

θ̂ =
K∑
k=1

ckmk where ck =
αk

σ−2
θ +

∑K
k=1 αk

,

D =
1

σ−2
θ +

∑K
k=1 αk

. (4.9)

Examining (4.9), we note that αk represents the contribution of sensor k in reducing the overall

MSE at the FC. Also, αk can be viewed as an indicator for the quality of received message from

sensor k: the larger αk is, the more reliable is the received message. It is easy to verify that αk is

increasing in rk and decreasing in σ2
k.

Remark 1: When all observations xk’s are available at the FC with full precision (so-called CE),

the LMMSE estimator would be θ̆ =
∑K

k=1 bkxk, where bk =
σ−2
k

σ−2
θ +

∑K
k=1 σ

−2
k

, with its corre-

sponding MSE Dc = 1

σ−2
θ +

∑K
k=1 σ

−2
k

. This clairvoyant estimator can be used as our performance

benchmark, since D > Dc.

Proposition 2. In a network with homogeneous sensors, i.e., σ2
k = σ2, ∀k, and all sensors quan-

tize their observations with identical quantizers of step size ∆, the MSE gap between two linear

estimators θ̂ and θ̆ is:

D −Dc =
K∆2

12(K + σ−2
θ (σ2 + σ2

ε ))(K + σ−2
θ σ2)

≤ ∆2

12K
. (4.10)

Based on (4.10), if ∆ → 0, then D → Dc. Additionally, if K → ∞, then D → Dc even for large

∆. These conclusions still hold true in a network with heterogeneous sensors, where sensor k

quantizes with step size of ∆k. If (max∆k)→ 0, then αk → σ−2
k and according to (4.9), D → Dc.

On the other hand, according to (4.9) and noting that αk > 0 for active sensors, MSE always
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decreases as the number of active sensors increases. Thus as K →∞ , we have D → Dc → 0.

4.3 Solving Constrained Problem (P1)

Since the optimization variables rk’s are integer and D is a non-linear function of rk’s, (P1)

is a Non Linear Integer Programming (NLIP) problem and is NP-hard. Even if the inequality

constrain holds with equality, i.e.,
∑K

k=1 rk = Btot, solving (P1) requires a brute-force evaluation

over
(
K+Btot−1

K−1

)
choices. For K = 50 and Btot = 60 bits, the number of evaluations would be

in the order of 1031. The following lemmas help us find strategies that reduce the computational

complexity required for solving (P1).

Lemma 1. Minimizing D in (4.9), is equivalent to maximizing
∑K

k=1 αk with the same constraints

as in (4.2).

Proof. Since σ−2
θ > 0, it is axiomatic.

Lemma 2. Suppose {r∗k}Kk=1 is the optimal solution to (P1). Then
∑K

k=1 r
∗
k = Btot.

Proof. Note αk is a function of rk through σ2
εk

=
∆2
k

12
=

τ2k
3(2rk−1)2

. It is easy to verify that ∂D
∂rk
≤ 0

and D is a decreasing function of rk’s. Thus the optimal solution satisfies the network bandwidth

constraint, i.e.,
∑K

k=1 r
∗
k = Btot.

Lemma 3. Without loss of generality, suppose sensors are sorted2 such that σ2
1 ≤ σ2

2 ≤ ... ≤ σ2
K .

Then the optimal solution satisfies r∗i ≥ r∗j for i < j.

Proof. Suppose {rk}Kk=1 is the optimal solution, such that ri < rj for i < j. Also, suppose

{r′k}Kk=1 is a solution of (P1), which is not necessarily optimal, such that r′k = rk for k 6= i, j and

2We assume sorted sensors throughout this work for all scenarios.
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r′i = rj, r
′
j = ri. Consider the following:

K∑
k=1

αk(r
′
k)−

K∑
k=1

αk(rk) =

=δ1︷ ︸︸ ︷
K∑

k 6=i,j

αk(rk)−
K∑
6=i,j

αk(rk)

+

=δ2︷ ︸︸ ︷
1

σ2
i + τ2

3(2rj−1)2

− 1

σ2
i + τ2

3(2ri−1)2

+

=δ3︷ ︸︸ ︷
1

σ2
j + τ2

3(2rj−1)2

− 1

σ2
j + τ2

3(2ri−1)2

> 0 .

One can verify δ1 = 0, δ2 > 0, δ3 > 0, thus
∑K

k=1 αk(r
′
k)>

∑K
k=1 αk(rk). According to (4.9), the

MSE associated with {r′k}Kk=1 should be less than that of the optimal solution {rk}Kk=1, which is

a contradiction. In this proof, we assumed τk = τ, ∀k, although the proof is still valid for unequal

τk’s, provided that τi≤τj , which is satisfied if we choose τ 2
k ∝ var(xk)=σ2

θ + σ2
k.

In the next subsections, we propose four methods for solving (P1): A) Longest Root to Leaf Path

(LRLP) method, which is optimal with less computational complexity than that of brute force, B)

greedy method, C) integer relaxation method, D) Individual Rate Allocation (IRA) method. The

suboptimal B), C), D) methods have moderate to low computational complexity.

4.3.1 LRLP Method

We view (P1) as the problem of finding the longest “root to leaf” path in a weighted directed

binary tree, where there is a constraint on the number of edges from “root to leaf” [151]. In fact

our objective function
∑K

k=1 αk can be viewed as the length of the path to be maximized, where

the constraint on the number of edges is
∑K

k=1 rk ≤ Btot. Fig. 4.1 demonstrates the problem

for K = 3 and Btot = 5 bits. The nodes are tagged with indices of sorted sensors and visiting
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node k is translated to “allocating one bit to sensor k”. The edge3 weight wk(r) is the weight of the

edge entering node k and r is the number of prior visits of node k, i.e., wk(r)=αk(r+1)−αk(r)=

αk(number of bits allocated to sensor k so far+1)−αk(number of bits allocated to sensor k so far).

For instance, the green path in Fig. 4.1 is associated with the rate allocation [r1, r2, r3] = [3, 2, 0],

and the corresponding objective function value is
∑K

k=1 αk = w1(1)+w1(2)+w2(0)+w2(1) =

α1(3)+α2(2).
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Figure 4.1: LRLP method

To solve (P1), one needs to construct the associated binary tree with structures conforming to

lemmas 2 and 3, then uses a search algorithm, such as Depth First Search (DFS) [151] to dis-

cover all possible “root to leaf” paths, and choose the path that results in the maximum objective

function value. For K = 3 and Btot = 5 bits, Fig. 4.1 shows there exist 5 “root to leaf” paths,

all conforming to lemmas 2 and 3, corresponding to 5 distinct rate allocation among 3 sensors

[r1, r2, r3] ∈ {[5, 0, 0], [4, 1, 0], [3, 2, 0], [3, 1, 1], [2, 2, 1]}. We recognize these as different parti-

tions of the integer number 5, with 3 or fewer addends [152], i.e., the number of possible “root to

3For definition of weight wk(0), we consider αk(0)=0.
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leaf” paths in a binary tree constructed as explained, conforming to lemmas 2 and 3, and charac-

terizing (P1), is equal to the number of solutions to the following equation:

r1 + r2 + ...+ rK = Btot (4.11)

s.t. r1 ≥ r2 ≥ ... ≥ rK rk ∈ Z+ .

Although the number of ways one can partition an integer number does not have a closed form

formula, the literature [152] provides some useful asymptotic formulas or recurrence relations.

Suppose qk(n) is the number of solutions to (4.11), then we have the recurrence relation qk(n) =

qk−1(n) − qk(n − k), with q0(n) = 0 , qk(1) = 1 [152]. For K = 50 and Btot = 60 bits, qK(Btot)

is in the order of 106, which is much smaller than that of brute force 1031. The computational

complexity of this method is still high for very large networks, e.g., K ≥ 100, and hence its

application is most beneficial for finding the optimal solution of small to moderate size networks.

4.3.2 Greedy Method

Recall from Lemma 1 that the maximum reduction in D corresponds to the maximum increase in∑K
k=1 αk(rk). Hence, our proposed greedy method in each iteration allocates one bit to the sensor

that guarantees the maximum increase in
∑K

k=1 αk(rk), i.e., in each iteration the algorithm loads

one bit on sensor k∗ where k∗=argmax
k

Ik(rk) =argmax
k

(αk(rk + 1)−αk(rk)). The iteration ends

when all Btot bits are allocated to the sensors. Following algorithm illustrates the details:

For K = 3 and Btot = 5 bits, Fig. 4.2 shows the accepted decisions by the greedy method at each

iteration/decision epoch with green arrows and the rejected decisions with red arrows. Note that

the initial point is always rk = 1, rk = 0 for k = 2, ..., K, since the first bit is always allocated to

sensor 1 (for sorted sensors sensor 1 has the largest αk or smallest σ2
k).
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Data: Btot, {τk}Kk=1, {σ2
k}Kk=1

Result: rate allocation {r∗k}Kk=1

initialization;
r1 = 1, rk = 0 for k = 2, ..., K, S = {1, 2}
for i = 1 : Btot do

k∗ = argmax
k∈S

(αk(rk + 1)− αk(rk))

rk∗ = rk∗ + 1
S = {k|rk < rk−1} ∪ {1}

end
Algorithm: greedy method for rate allocation in (P1)
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Figure 4.2: Greedy method

The second bit can be allocated to either sensor 1 or sensor 2, i.e., k∗ = argmax
k∈{1,2}

(αk(rk + 1) −

αk(rk)), this is equivalent to making the decision w1(1)
k∗=1

≷
k∗=2

w2(0) (look at the weights on the

edges in Fig. 4.2). The sequence of green arrows in Fig.4.2, 1 → 1 → 2 → 1 → 3 is associated

with the rate allocation [r1, r2, r3] = [3, 1, 1].

In the following, we look at the computational complexity of the greedy method in two cases: case

(a)Btot ≤ K, in this case the first bit has to be allocated to sensor 1, the second bit can be allocated

to either sensor 1 or sensor 2. In general the ith bit, for 1 ≤ i ≤ Btot, can be allocated to one of

at most i sensors (sensor 1,..., sensor i). In other words, in the ith decision epoch, greedy method
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should find the best sensor among eligible candidates in set S = {k|k ≤ i, rk < rk−1}∪{1}, where

S has a maximum of i elements. Thus allocating Btot bits among K sensors needs calculation of

Ik(rk) = αk(rk + 1) − αk(rk) for at most 2 + 3 + ... + Btot = (
B2
tot+Btot

2
) − 1 times. Case (b)

Btot>K, adopting a reasoning similar to case (a), in this case allocation of the first K bits needs

at most (K
2+K
2

)− 1 calculations. Each of the remaining Btot−K bits can be allocated to one of at

most K sensors, leading into (Btot −K) ×K number of calculations at most. Hence, the overall

number of evaluations at most would be (K
2+K
2

) − 1 + (Btot −K) ×K ≈ K(Btot −K/2). For

K=50 and Btot=60 bits, where Btot>K, the number of evaluations would be in order of 103.

Remark 2: In the absence of a powerful FC, the proposed greedy algorithm can be implemented

in a distributed way, assuming sensors can broadcast and hear the broadcast messages by other

sensors. Sensor k calculates the value Ik(rk) = αk(rk + 1) − αk(rk), and broadcasts the value.

Hearing all Ij, j 6= k, sensor k increases rk by one if it has the largest Ik among all sensors. Doing

the mentioned process for Btot times would complete the rate allocation.

4.3.3 Integer Relaxation Method

Convex relaxation for solving combinatorial optimization problems such as (P1) is a rather old

technique, that has been widely used in research and applied to a variety of applications [153].

Relaxing the integer constraint on rk’s and letting them be positive numbers and using lemmas 1

and 2, we consider the following relaxed problem:

(P′1) maximize
rk ∀k

K∑
k=1

αk(rk) (4.12)

s.t.
K∑
k=1

rk = Btot, rk ∈ R+, ∀k.
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The Lagrangian for (P′1) is:

L({rk, µk}Kk=1, λ) =
K∑
k=1

αk(rk)− µkrk + λ(
K∑
k=1

rk −Btot).

In the following we apply the first order KKT necessary optimality conditions for (P′1) which

generate a closed-form solution for rk’s. Afterwards, we prove that the obtained solution satisfies

the second order sufficient optimality conditions.

• Necessary Optimality Conditions

After solving the KKT conditions corresponding to (4.12), we find:

r†k=0.5

[
log2

(
τ 2
k (λ† − σ2

k −
√
λ†2 − 2λ†σ2

k)
−1

)
− log23

]+

(4.13)

where [x]+ = max(0, x) and λ† in (4.13) is the solution to following equation:

g(λ, {σ2
k, τ

2
k}K

†

k=1) =
K†∏
k=1

τ−2
k (λ− σ2

k −
√
λ2 − 2λσ2

k) = T , (4.14)

in which K† = max{k|λ† > 2σ2
K† , r

†
k > 0}, and T = 4−Btot3−K

† . Consider a new equation

which is obtained by replacing K† in (4.14) with M . The new equation, which we refer to as

(4.14′), does not necessarily have a real solution for λ, such that λ > 2σ2
M for any value of

M ∈ {2, 3, ..., K}. In order to find the requirements for (4.14′) to yield a real solution for λ,

we present the following Lemma and ensuing discussion. For simplicity, we drop the parameters

{σ2
k, τ

2
k}Mk=1 in g(λ, {σ2

k, τ
2
k}Mk=1) and indicate it as g(λ,M).

Lemma 4. The function g(λ,M) is a decreasing function of λ, for λ > 2σ2
M .

Proof. Consider g(λ,M) =
∏M

k=1 gk(λ), where gk(λ) = τ−2
k (λ − σ2

k −
√
λ2 − 2λσ2

k). We can
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verify that gk(λ)’s are strictly decreasing in λ, because dgk(λ)
dλ

= 1 − λ−σ2
k√

λ2−2λσ2
k

< 0. Since all

gk(λ)’s are strictly decreasing and positive, i.e., gk(λ) > 0, ∀k, we conclude that g(λ,M) is a

strictly decreasing function in λ.

Having Lemma 4, we consider two scenarios that occur when solving g(λ,M) = T : case (i) when

T ≤ g(λ)|λ=σ2
M

, in this case according to Lemma 4 we have a unique real solution for λ; case (ii)

when T > g(λ)|λ=σ2
M

, in this case there is no real solution for λ. Hence we need to increase the

value of g(λ)|λ=σ2
M

to reach T . The only way to accomplish this is decreasing the number of active

sensors that contribute to g(λ)|λ=σ2
M

and deactivating sensors with largest σ2
k values, until we find

a real solution for λ or only one active sensor remains. In other words, solving (4.14′) in case (ii)

translates into obtaining the set of active sensors A = {1, 2, ..., K†} and allocating Btot among

these active sensors.

Remark 3: The solution in (4.13) can be implemented in a distributed fashion. FC solves (4.14)

and broadcasts λ†. Each sensor calculates its own r†k using λ† via (4.13). If a sensor finds its rate

to be zero or a non-real value, it means that the sensor must be inactive. The integer relaxation

method has a very low computational complexity, since it requires finding the root of the monotonic

function in (4.14) once and, and then calculating the rates via (4.13) for a maximum of K times.

We can find an approximate closed form solution for (4.14) under the special condition when

(λ − σ2
k)

2 is large compared to σ4
k. Rewriting the function gk(λ) = τ−2

k [λ − σ2
k − ((λ − σ2

k)
2 −

σ4
k)

1/2] and keeping only the first two terms in the binomial expansion of the term ((λ − σ2
k)

2 −

σ4
k)

1/2, we obtain gk(λ) ≈ σ4
k

2τ2k (λ−σ2
k)
≈ σ4

k

2τ2kλ
. Substituting the approximation in (4.14), we reach∏

k gk(λ) ≈
∏

k 2−1σ4
kτ
−2
k λ−1, based on which the Lagrange multiplier can be approximated as

λ† ≈ 1.5 η2 4
Btot
K† , where η =

∏
k σ

2
kτ
−1
k . Substituting the approximation for λ† in (4.13) gives the

following:

r†k ≈
[
Btot

K†
+ log2(η

τk
σ2
k

)

]+

. (4.15)

82



Examining (4.15), we note that first term inside the bracket is common among active sensors and

can be perceived as average rate, whereas the second term (which depends on τk, σ2
k) differs

among active sensors, such that an active sensor with a larger ratio τk
σ2
k

is allocated a larger r†k.

Consistent with the assumption in the proof of Lemma 3, suppose τk = κvar(xk) = κ(σ2
θ + σ2

k).

Interestingly, the second term in (4.15) takes the form log2(κη(1 +
σ2
θ

σ2
k
)), where the ratio σ2

θ

σ2
k
, can be

viewed as the observation SNR in (5.1). We consider two scenarios: (i) high observation SNR: the

quantization rates are large (fine quantization) and less sensors become active for a given Btot. (ii)

low observation SNR: the quantization rates are smaller (coarse quantization) and more sensors

become active for the same Btot value, compared with that of scenario (i). Substituting (4.15) in

(4.9) and after some simplifications we establish the bound D ≤ Dc(1 +
σ2
K†

4
−Btot
K†

3η2
).

• Sufficient Optimality Conditions

The objective and equality constraint functions in (4.12) are twice differentiable. Hence, the second

order sufficient optimality conditions for the solution in (4.13) and (4.14) to be strict minimum for

(P′1) are [154, p.301, proposition 3.2.1]:

−yT
(
∇2
rL({rk, µk}Kk=1, λ)|λ=λ†

rk=r†k ∀k

)
y > 0, ∀y 6= 0

with [∇(
∑
k∈A

r†k −Btot)]
Ty = 0, (4.16)

where ∇2
rL({rk, µk}Kk=1, λ) is the Hessian matrix of the Lagrangian in (4.13), and ∇(

∑
k∈A r

†
k −

Btot) is the gradient of the equality constraint in (4.12), both evaluated at the solution in (4.13) and

(4.14). It is easy to verify that the Hessian matrix is diagonal with entries:

[∇2
rL({rk, µk}Kk=1, λ)]k,k = σ2

εk
(ln4)2

=β︷ ︸︸ ︷
σ2
εk
− σ2

k

(σ2
k + σ2

εk
)3
,∀k. (4.17)
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Noting that the denominator in (4.17) and σ2
εk

(ln4)2 are positive numbers we probe into β evaluated

at the solution in (4.13):

β† = (σ2
εk
− σ2

k) = λ† − 2σ2
k −

√
λ†2 − 2λ†σ2

k < 0. (4.18)

The inequality in (4.18) is true, because β (which is a function of λ†) is decreasing in λ† and

noting that λ† > 2σ2
K† in (4.18), we have Sup

k,λ†
(λ† − 2σ2

k −
√
λ†2 − 2λ†σ2

k) = 0. Therefore[
∇2
rL({rk, µk}Kk=1, λ)|λ=λ†

rk=r†k ∀k

]
k,k

< 0 ∀k, confirming that the sufficient optimality conditions in

(4.16) are satisfied.

• Migration to Integer Solution

We describe an approach for migrating from the continuous solution in (4.13) to an integer solution

satisfying the integer constraint [155–157] in (4.2). We round the rates to nearest integers. In case

the rounding violates the bandwidth constraint, we reduce the smallest rate by one, because this

sensor is more likely to be the weakest player in the network (in the sense that it has the least

contribution toD) until the bandwidth constraint is satisfied. Although rounding the rates to nearest

integers may sounds trivial [155–157], our simulation results corroborate that the performance

loss is negligible, while at the same time it keeps the rate allocation scheme simple and easily

implementable.

4.3.4 IRA Method

Examining (4.10) closely we realize that allocating Btot among sensors in order to minimize D

presents a trade-off between the number of active sensors and quantization accuracy. If Btot is

distributed among only few sensors, we can have fine quantization, i.e., small K and small ∆. On

the other hand, if Btot is distributed among many sensors, we can only have coarse quantization,
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i.e., large K and large ∆. Consider a network with homogeneous sensors σ2
k = σ2,∀k. Given Btot,

there exists an optimal number of active sensors Kopt, associated with an optimal quantization rate

ropt, where Koptropt =Btot. Thus the maximization of
∑K

k=1 αk =Kα, where we substitute K =

Btot/r, reduces to the following one dimensional simple search for ropt in the set Sh={1, ..., Btot}:

ropt = argmin
r∈Sh

{r(σ2 + τ 23−1(2r − 1)−2)}, (4.19)

and consequentlyKopt =
⌊
Btot
ropt

⌋
. Modifying the solution in (4.19) for heterogeneous networks, we

reach the following:

rsoptk = argmin
r∈Sk

{r(σ2
k + τ 2

k3−1(2r − 1)−2)}, (4.20)

in which S1 ={1, ..., Btot}, Sk={1, ..., Btot −
∑k−1

i=1 r
sopt
i } for k=2, ..., K, Ksopt=max {k| Sk 6=

{0}}, rsoptk and Ksopt are the rates and number of active sensors, respectively. Note that the so-

lution in (4.20) is integer and unique (since the objective function in (4.20) is convex for r > 0).

The drawback of the proposed rate allocation method is that for large Btot, all Btot bits may not

be allocated to sensors, i.e.,
∑Ksopt

k=1 rsoptk < Btot, causing the solution in (4.20) to deviate from

the optimal solution according to Lemma 2. This method is similar to the one in [81], with the

difference that starting from sensor 1, we update and reduce the search domain, i.e., Sk for the next

sensor. This accelerates the rate allocation process. Additionally, search domain reduction in some

scenarios would help to use all Btot bits by activating more sensors with coarse quantizers though.

The proposed method exhibits a moderate computational complexity, since it only requires solving

(4.20) for a maximum ofK times and it is almost fully distributed [81]. Note that efficient heuristic

methods with low levels of complexity have been used in other engineering fields [158–160].
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4.4 Solving Constrained Problem (P2)

Different from (P1), satisfying the MSE constraint D({rk}Kk=1) ≤ D0 in (P2) enforces the num-

ber of active sensors to exceed a minimum number Kmin. Lemma 5 provides Kmin.

Lemma 5. To satisfy the the constraint D({rk}Kk=1) ≤ D0 we need at least Kmin active sensors,

where Kmin = min{K|
∑K

k=1 σ
−2
k > D′0 = D0

−1 − σ−2
θ }.

Proof. Considering (4.9) and the definition of αk’s, we find that D({rk}Kk=1) ≤ D0 is equivalent

to
∑K

k=1 αk ≥ D′0 = D0
−1 − σ−2

θ . Thus (P2) is equivalent to minimizing
∑K

k=1 rk such that∑K
k=1 αk ≥ D′0 and rk ∈ Z+, ∀k. Since αk > 0, ∀k, we can increase

∑K
k=1 αk =

∑K
k=1( 1

σ2
k+σ2

εk

),

via increasing the number of active sensors, until the MSE constraint is satisfied. This implies

that the minimum number of active sensors can be found by letting σ2
εk

= 0,∀k, i.e., Kmin =

min{K|
∑K

k=1 σ
−2
k > D′0}.

In the following we propose three methods for solving (P2): A) greedy method, B) integer relax-

ation method, C) IRA method. We obtain these methods via applying some modifications to the

proposed methods in section 4.3.

4.4.1 Greedy Method

According to Lemma 5, we need at least Kmin active sensors. Therefore, we initiate the algorithm

with rk = 1 for k ∈ {1, ..., Kmin} and let rk = 0 otherwise, and go through the greedy method

until the MSE constraint is satisfied.
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Data: D0, σ
2
θ , {τk}Kk=1, {σ2

k}Kk=1

Result: rate allocation {r∗k}Kk=1

initialization;
rk = 1 for k ∈ {1, ..., Kmin} o.w. rk = 0, S = {1, Kmin + 1}, D′0 = D0

−1 − σ−2
θ ,

d =
∑Kmin

k=1 αk(rk)
while d < D′0 do

k∗ = argmax
k∈S

(αk(rk + 1)− αk(rk))

rk∗ = rk∗ + 1
d = d− αk∗(rk∗ − 1) + αk∗(rk∗) S = {k|rk < rk−1} ∪ {1}

end
Algorithm: greedy method for rate allocation in (P2)

4.4.2 Integer Relaxation Method

Let (P′2) be the corresponding relaxed problem of (P2). Solving the first order KKT necessary

optimality conditions for (P′2) yields a similar solution to (4.13) as the following:

r‡k=0.5

[
log2

(
τ 2
k (λ‡ − σ2

k −
√
λ‡2 − 2λ‡σ2

k)
−1

)
− log23

]+

(4.21)

One can show that the objective function, i.e.,
∑K

k=1 rk is a strictly increasing function of αk’s.

Hence, the optimal solution to (P′2) must satisfy the MSE constraint as equality, i.e.,
∑K

k=1 αk =

D′0. Using the MSE equality constraint we find that λ‡ in (4.21) is the solution to the following

equation:

f(λ, {σ2
k}K

‡

k=1) =
K‡∑
k=1

1

λ−
√
λ2 − 2λσ2

k

= D′0 , (4.22)

where K‡ = max{k|k ≥ Kmin, λ
‡ > 2σ2

K‡ , r
‡
k > 0}. Similar to what we did for the solution

in (4.13), one can verify that the solution in (4.21) satisfies the second order sufficient optimality

conditions in [154, p.301, proposition 3.2.1]. Note that (4.22) does not necessarily have a real
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solution for λ. We first let K‡ = K, i.e., the largest possible value for K‡ in the feasible set

F = {Kmin, ..., K} and solve (4.22). If there is no real solution for λ we decrease the number of

active sensors by one, i.e., K‡ = K − 1, and solve (4.22). We continue reducing the number of

active sensors one by one until we reach a real solution for λ‡ or K‡ = Kmin (the smallest possible

value for K‡ in the feasible set). Even when K‡ = Kmin it is still possible that solving (4.22)

does not yield a real solution for λ‡. Since f(λ, {σ2
k}

Kmin
k=1 ) is an increasing function of λ, this

scenario would occur when D′0 < f(λ, {σ2
k}

Kmin
k=1 )|λ=2σ2

Kmin
. In this scenario we let λ‡ = 2σ2

Kmin
.

Substituting λ‡ = 2σ2
Kmin

in (4.21) and then r‡k’s in
∑Kmin

k=1 αk, we obtain:

Kmin∑
k=1

αk =

(
Kmin∑
k=1

1

λ−
√
λ2 − 2λσ2

k

)
|λ=2σ2

Kmin
> D′0 ,

implying that the MSE constraint is met. Using similar approximation that led us to (4.15), we can

approximate (4.21) as:

r‡k ≈

[
log2(

τk
σ2
k

) + log2

(√
K‡

3(
∑K

k=1 σ
−2
k −D′0)

)]+

. (4.23)

Equation (4.23) shows as target MSE approaches its feasible minimum, i.e., asD0 → 1

σ−2
θ +

∑K
k=1 σ

−2
k

and D′0 →
∑K

k=1 σ
−2
k , the rates r‡k’s become very large, i.e., r‡k →∞.

4.4.3 IRA Method

Following a similar reasoning to the one provided in Section 4.3.4 for a homogeneous network and

recalling the discussion on satisfying the MSE constraint as equality in Section 4.4.2, we conclude

that, given D′0, there exists an optimal number of active sensors Kopt, associated with an optimal

quantization rate ropt, where Koptα(ropt) = D′0 and our problem is to minimize Koptropt subject to
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this MSE equality constraint. This optimization problem for a heterogeneous network, reduces to

almost the same as in (4.20), with a difference that the search domain includes any positive integer

number, i.e.,

rsoptk = argmin
r∈Z+

{r(σ2
k + τ 2

k3−1(2r − 1)−2)}, (4.24)

Ksopt = min{k|Kmin ≤ k ≤ K,
k∑
i=1

αi(ri) ≥ D′0}. (4.25)

Note that there is no need to solve (4.24) for all sensors, since the rate allocation continues only

till we find Ksopt in (4.25).

4.5 BCRLB

We derive the BCRLB for any Bayesian estimator of θ based on quantized observations {mk}Kk=1.

Assuming that the regularity condition is satisfied, i.e., E{∂lnp(m,θ)
∂θ

} = 0 [4] we write the Fisher

information:

F=−E{∂
2lnp(m, θ)

∂2θ
}=−E{∂

2lnp(m|θ)
∂2θ

}−E{∂
2lnp(θ)
∂2θ

}. (4.26)

Assuming that mk’s conditioned on θ are independent, i.e., lnp(m|θ) =
∑K

k=1 lnp(mk|θ), the first

and second derivatives of the log-likelihood function become:
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∂lnp(m|θ)
∂θ

=
K∑
k=1

1

p(mk|θ)
∂p(mk|θ)

∂θ
,

∂2lnp(m|θ)
∂2θ

=

=Fa︷ ︸︸ ︷
K∑
k=1

1

p(mk|θ)
∂2p(mk|θ)

∂2θ

−
K∑
k=1

1

p2(mk|θ)
(
∂p(mk|θ)

∂θ
)2

︸ ︷︷ ︸
=Fb

.

In the following, we find E{Fa},E{Fb}. We have:

E{Fa}=
K∑
k=1

∫
p(θ)

∂2(

=1︷ ︸︸ ︷
Mk∑
i=1

sk,i(θ))

∂2θ
dθ = 0,

E{Fb}=
K∑
k=1

∫
p(θ)

Mk∑
i=1

1

sk,i(θ)
(ṡk,i(θ))

2dθ ,

where sk,i(θ)=p(mk = mk,i|θ)= p{mk,i − ∆k

2
≤ hkθ + nk ≤ mk,i + ∆k

2
|θ} and ṡk,i(θ)=

∂sk,i(θ)

∂θ
.

To complete the derivations of F we need to characterize sk,i(θ) and ṡk,i(θ). Combining all above

and recalling θ ∼ N (0, σ2
θ), we obtain:

F =
1

σθ

K∑
k=1

Mk∑
i=1

∫
(ṡk,i(θ))

2

sk,i(θ)
φ(

θ

σθ
)dθ +

1

σ2
θ

, (4.27)

where φ(.) is the standard normal PDF. Equation (5.29) is true for arbitrarily distributed hk’s with

E{hk} = 1 ∀k, and var(hk) = σ2
hk

. When hk’s are Gaussian we have (for non-Gaussian hk’s see
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appendix B.2):

sGk,i(θ) = Φ(
ζk,i+1 − θ√
θ2σ2

hk
+ σ2

nk

)− Φ(
ζk,i − θ√
θ2σ2

hk
+ σ2

nk

),

where ζk,i=mk,i − ∆k

2
, ζk,i+1 =mk,i + ∆k

2
are the quantizer boundaries, and Φ(.) is the CDF of a

standard normal random variable. Deriving ṡGk,i(θ) is straightforward and reduces to subtraction of

two scaled standard normal PDFs.

4.6 Extension to Erroneous Channels

To obtain our results so far we have focused on error-free communication channel model, i.e., the

quantization bits from the sensors are available at the FC, to feed the LMMSE estimator. The

results can be extended to independent BSCs with different error probabilities pk. Suppose sensor

k uses Binary Natural Coding (BNC) to code its quantized message mk, that is sent through a

BSC with error probability pk, and m̂k is the corresponding recovered quantization level at the

FC, where in general m̂k 6= mk, due to channel errors.

4.6.1 LMMSE Estimator and its corresponding MSE

The LMMSE estimator and its MSE would have the same forms as in (4.4) and (4.5), with the

difference that vector m is replaced with vector m̂. We characterize E{θm̂k} and E{m̂km̂l} as

the following:

E{θm̂k} = E{E{θm̂k|θ,mk}} = E{θE{m̂k|mk}}. (4.28)

91



With BNC of bit sequences and BSC model we have E{m̂k|mk} = (1 − 2pk)mk [161]. Thus

(4.28) reduces to E{θm̂k} = (1 − 2pk)E{θmk}, where E{θmk} is characterized in (4.6). For

E{m̂km̂l}, k 6= l and k = l we have:

E{m̂km̂l} = E{E{m̂km̂l|θ,mk,ml}}
(a)
=

E{E{m̂k|mk}E{m̂l|ml}} = (1− 2pk)(1− 2pl)E{mkml},

E{m̂2
k} = E{E{m̂2

k|mk}}
(b)
= gkE{m2

k}+Rk, (4.29)

where (a) in (4.29) is obtained using the facts that (i) given mk,ml then m̂k, m̂l are independent,

(ii) given θ, then mk,ml are uncorrelated (since nk, nl, hk, hl are all uncorrelated). And gk =

(1− pk)rk−1(1 + pk(rk− 5)) and Rk=(4/3)(1− pk)rk−1pkτ
2
k (2rk + 1)(2rk − 1)−1. To obtain (b) in

(4.29) we assume at most one bit in a sequence of rk bits can be flipped due to the channel errors

(roughly speaking pk � r−1
k ). This is a reasonable assumption noting that for a poor channel

with pk ≈ 0.1 and typical quantization rates of rk ≤ 6, flipping more than one bit in an rk-bit

sequence is unlikely [161]. Note that E{mkml} and E{m2
k} in (4.29) are characterized in (4.7).

Having (4.28), (4.29), the LMMSE estimator and its corresponding MSE are characterized for

BSC model.

4.6.2 BCRLB and Fisher Information Expressions

To find F based on m̂k’s, we need to find the counterpart of (5.28), where m is replaced with m̂.

For independent BSC model, m̂k’s conditioned on θ would be independent, leading to lnp(m̂|θ) =∑K
k=1 lnp(m̂k|θ). Following similar steps as in Section 4.5, we find new Fa to be zero. New Fb can

be found by replacing p(mk = mk,i|θ) with p(m̂k = mk,i|θ) in the derivations. All that remains is
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to characterize:

p(m̂k = mk,i|θ) =

Mk∑
j=1

ejik p(mk = mk,j|θ),

where eijk is the probability of receiving level mk,i, while level mk,j is transmitted from sensor

k. Note that eijk can be found in terms of pk, i.e., ejik = (pk)
n(j,i,rk)(1 − pk)

rk−n(j,i,rk), where

n(j, i, rk) is the Hamming distance between BNC representations of mk,j =
∑rk

l=1 bk,j,l2
rk−l and

mk,i =
∑rk

l=1 bk,i,l2
rk−l. To sum up, F becomes:

F = σ−1
θ

K∑
k=1

Mk∑
i=1

∫ (∑Mk

j=1 e
ji
k ṡk,j(θ)

)2(∑Mk

j=1 e
ji
k sk,j(θ)

) φ(
θ

σθ
)dθ + σ−2

θ .

4.7 Numerical and Simulation Results

In this section, we corroborate our analytical results with numerical simulations. These results val-

idate the accuracy of our analysis and illustrate the effectiveness and superiority of the proposed

rate allocation schemes. We consider networks of sizes K= 5, 10, 50 and conduct simulations for

over 105 observation channels with randomly generated {σ2
nk
, σ2

hk
}Kk=1 and depict the average per-

formance for all rate allocation methods (greedy, integer relaxation (relaxed), IRA, Order Aware

(OA) uniform, and uniform). We generate σ2
nk

such that E{σ2
nk
}=1 or E{σ2

nk
}=kn. To investigate

the effect of multiplicative observation noise variance on the network dynamics and performance,

we let E{σ2
hk
}=kh=0.1, 1, 2, 4 to indicate low, moderate, high, and very high multiplicative noise

variance.
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Figure 4.3: Analytical and simulated MSE of greedy vs. Btot
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Figure 4.4: MSE of different rate allocation methods vs. Btot for K = 5

Figs. 4.3a and 4.3b compare the analytical MSE in (4.9) and simulated MSE for K = 10, 50,

when greedy method is employed4. The simulations are conducted for hk’s drawn from Gaussian,

uniform, and Laplacian distributions. We observe that the analytical MSE is a good approxima-

tion of simulated MSE for almost all scenarios, and the approximation accuracy improves as K

increases and/or kh decreases. Also, except for small K and very high kh, the distribution of hk

has negligible effect on the approximation accuracy.

4 Integer relaxation and IRA exhibit similar results, and the plots are omitted, for the sake of saving space.
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Figure 4.5: MSE performance for different allocation schemes for K = 50

Figs. 4.4 and 4.5 compares the analytical MSE for different methods for K = 5, 50 and kh =

0.1, 1, 2. We observe the MSE performance gap between uniform (including OA uniform), and

greedy and integer relaxation are remarkable. AsBtot increases, the performance of greedy, integer

relaxation, uniform, OA uniform approaches that of the clairvoyant centralized estimation. How-

ever, there is a persistent gap between the performance of IRA and the clairvoyant case, even for

large Btot. The performance of greedy and integer relaxation are almost the same for all scenarios.

Similar observations are valid for K=50 and the plots are omitted due to lack of space. For large

K and small kh the performance of the individual rate allocation competes with greedy and integer

relaxation methods, however, for small K or high kh it loses the competition. On the other hand,

when Btot is relatively small compared to K, greedy, integer relaxation, and IRA have the same

performance. As expected, we observe larger kh (larger K) leads to a larger (smaller) MSE for all

methods.

Fig. 4.6 and 4.7 depicts the MSE performance of different methods and the associated BCRLB

for K= 5, 50, where hk’s are drawn from Gaussian distribution for BCRLB. The σ2
nk

’s and σ2
hk

’s

are independently generated with Chi-Square distribution σ2
hk
∼χ2(kh), σ2

nk
∼χ2(1).
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Figure 4.6: MSE and CRLB vs. Btot for K = 5

For kh = 1 (moderate multiplicative noise), there is a noticeable gap between the MSE and the

associated BCRLB for all methods, whereas for kh=0.1 (low noise) and large Btot, this gap tends

to be very small. This is in agreement with the result that the MSE of MMSE estimator for a

Gaussian linear observation model achieves the BCRLB [4]. In fact, for kh = 0 the observation

model in (5.1) becomes the linear Gaussian model xk = θ + nk and when Btot→∞, LMMSE

estimator in (4.4) becomes MMSE estimator, which achieves the BCRLB. Similar observations

are valid for K=50 and the plots are omitted due to lack of space.
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Figure 4.7: MSE and CRLB for proposed schemes for K = 50

Figs. 4.8a and 4.8b depict the number of active sensors versus Btot for all methods and K=10, 50.

For kh = 2 (high noise) more sensors become active to reduce the noise effect, by averaging over

observations coming from more sensors, leading to smaller quantization rates (coarser quantiza-

tion). On the other hand, for hk = 0.1 (low noise) less sensors become active, leading to larger

quantization rates (finer quantization). These observations illustrate the trade-off mentioned in

explanations following (4.15) and in subsection 4.3.4. Note that greedy and integer relaxation

methods activate fewer sensors, compared with those of IRA and uniform methods, and still pro-

vide better MSE performance (see also Fig. 4.4 and 4.5).
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Figure 4.8: Number of active sensors vs. Btot

Figs. 4.9a and 4.9b illustrate the average quantization rates of active sensors versus Btot for all

methods and K= 10, 50. For kh = 2 (high noise) the average quantization rates are smaller (more

active sensors with coarser quantization). On the other hand, for hk = 0.1 (low noise) the aver-

age quantization rates are larger (less active sensors with finer quantization). These observations

illustrate the trade-off mentioned in explanations following (4.15) and in subsection 4.3.4.
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Figure 4.9: Average quantization rate of active sensors vs. Btot
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Figure 4.10: required bandwidth versus a target MSE for different allocation schemes for K = 5

Fig. 4.10 and 4.11 illustrates the required bandwidth, i.e., sum of quantization rates
∑K

k=1 rk

versus a target MSE (to be satisfied), for all methods and K= 5, 50. Note that greedy and integer

relaxation methods require much less bandwidth to achieve the target MSE, compared with those

of IRA, uniform, and OA uniform. Similar observations are valid for K=5 and the plot is omitted

due to lack of space. These figures (excluding IRA) show that, more bandwidth is required to (i)

satisfy a smaller target MSE, (ii) satisfy a fixed target MSE for larger kh, (iii) satisfy a fixed target

MSE for smaller K. In some sub-figures the required bandwidth for some target MSE values are

left blank, since the target MSE is not achievable for that particular network setting. Note that

IRA method is different from greedy and integer relaxation methods, since it is blind to target

MSE and K value (see (4.24),(4.25)), i.e., the assigned quantization rates are independent of the

target MSE and K value and the number of active sensors is kept at minimum, such that the target

MSE is satisfied. For illustrative purposes, consider a large and easy-to-be-satisfied MSE target,

such that it lies in the interval [0.7, 1]. Such a target MSE most likely can be satisfied with one

active sensor (see Figs. 4.12a, 4.12b), and one bit (see Fig. 4.13) in greedy and integer relaxation

methods. However, since IRA is blind to the target MSE, it assigns a quantization rate to the only

active sensor, according to the observation channel quality σ2
1 , that is likely to be larger than one

bit (in fact, the smaller kh is, the larger rk is).
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Figure 4.11: Required bandwidth of different rate allocation methods vs. target MSE for K = 50
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Figure 4.12: Number of active sensors vs. target MSE

Figs. 4.12a and 4.12b depict the number of active sensors when the target MSE is met for all

methods and K = 10, 50. Note that greedy and integer relaxation methods activate fewer sen-

sors to satisfy the target MSE, compared with those of IRA and uniform and OA uniform. For

kh = 2 (high noise), all methods require more active sensors to satisfy the target MSE (similar

observations to those of Fig.4.8).
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Figure 4.13: Quantization rate of active sensors vs. target MSE

Figs. 4.13a and 4.13b illustrate the average quantization rates of active sensors versus target MSE,

for all methods and K=10, 50. Similar conclusions to those for Fig. 4.11 can be made here. Note

that IRA loses the competition to uniform methods for large target MSE values. These figures

show that, larger average quantization rate is required to (i) satisfy a smaller target MSE, (ii)

satisfy a fixed target MSE for larger kh, (iii) satisfy a fixed target MSE for smaller K (compare

the average rate of all algorithms except IRA in Fig. 4.13). In the figures the average quantization

rates for some target MSE values are left blank, since the target MSE is not attainable for that

particular network setting. Combining the observations from Figs. 4.11, 4.12, 4.13, we conclude

that IRA method is not suitable to address (P2). To show the effect of erroneous communication

channels [149, 162], Fig. 4.14 depicts the analytical and simulated MSE and compare them with

BCRLB for p = 10−1, 10−2, 10−4, K = 50, and kh = 1, when greedy method is employed. As

expected, the analytical MSE is very accurate unless for large error probability p = 0.1 (this is

expected since to derive (4.29), we assume pk � r−1
k , which is not true for p = 0.1).
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Figure 4.14: MSE and CRLB of greedy vs. Btot for K = 50

• Comparison with Rate Distortion (R-D) Bound in [15]: As we mentioned in chapter 1, DES and

the quadratic Gaussian CEO problem are different and hence the R-D bounds in [14–16] are less

relevant to the problem in hand. Interestingly, our simulations show that in some scenarios, even

the BCRLB based on multi-bit quantization can reach the R-D bound in [15]. Fig. 4.15 compares

the BCRLB based on one-bit and multi–bit quantization with the R-D bound for different K and

kn.

We use the R-D bound in [15] given below, which is for a heterogeneous network with limited

number of agents:

R(D) = 0.5

log2(
σ2
θ

D

K̃∏
k=1

(
K̃

σ2
nk

( 1
D̃(K̃)

− 1
D

)
))

+

, (4.30)

where D̃(K̃)=(σ−2
θ +σ−2

n1
+...+σ−2

nK̃
)−1 and K̃ is the largest value that satisfies K̃

σ2
n
K̃

−( 1
D̃(K̃)
− 1
D

)≥0.

Note that the gap between the R-D bound and the BCRLB based on multi-bit quantization is not

persistent: as Btot increases for a fixed K, the gap fades away and the latter approaches the former.
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Figure 4.15: R-D and BCRLB for K=5, 50 and σ2
θ = 1

• One-bit MLE and MAP vs. Multi-bit LMMSE: As we mentioned earlier in literature review,

there is a significant gap between the CRLB performance based on one-bit quantization and the

clairvoyant benchmark (unquantized observations are available at the FC), when the dynamic

range of θ is large with respect to σ2
nk

[33]. To illustrate this, Fig. 4.16 plots classical CRLB

= (
(ṡk,i(θ))

2

sk,i(θ)
)−1 versus θ in a homogeneous network with σ2

n=1, assuming θ∈ [−4, 4]. correspond-

ing to one bit [121] and two bit quantization. We observe the classical CRLB corresponding to

two bit quantization is significantly better than that of one bit quantization, when θ is larger than

σ2
n. One expects similar observation holds when we compare MSE of MLE corresponding to one

bit and two bit quantization.
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Figure 4.16: CRLB correspoding to one bit and two bit quantizers

In Appendix B.1 we provide an analytical reason for the poor performance of CRLB and MLE

based on one bit quantization. When PDF of θ is known a priori, MAP estimator can be used

instead of MLE. Figs. 4.17 and 4.18 plot MSE of one-bit MLE, one-bit MAP, and the proposed

multi-bit LMMSE estimators, as well as the associated (one-bit and multi-bit) CRLBs and R-D

for a heterogeneous network of size K = 50 versus kn and Btot, respectively. As expected, in all

cases the proposed multi-bit LMMSE outperforms one-bit MLE and one-bit MAP. Fig. 4.17 also

shows that for small σ2
n one-bit MLE and one-bit MAP perform poorly. Also, as σ2

θ becomes larger

the performance gap between one-bit MLE, one-bit MAP and the proposed multi-bit LMMSE

increases significantly, as expected from our analysis in Section B.1.

104



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
kn

10-3

10-2

10-1

100

101

C
R
L
B

an
d
M
S
E

one bit - CRLB
multi bit - CRLB
multibit LMMSE
one bit MAP
one bit MLE
R-D bound

(a) σ2
h = 0, σ2

θ = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
kn

10-3

10-2

10-1

100

101

C
R
L
B

an
d
M
S
E

one bit - CRLB
multi bit - CRLB
multibit- LMMSE
one bit - MAP
one bit - MLE
R-D bound

(b) σ2
h = 0, σ2

θ = 8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
kn

10-2

10-1

100

101

C
R
L
B

an
d
M
S
E

one bit - CRLB
multi bit - CRLB
multi bit - LMMSE
one bit - MLE
one bit - MAP

(c) σ2
h 6= 0, σ2

θ = 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
kn

10-2

10-1

100

101

C
R
L
B

an
d
M
S
E

one bit - CRLB
multi bit - CRLB
multi bit - LMMSE
one bit - MLE
one bit - MAP

(d) σ2
h 6= 0, σ2

θ = 8

Figure 4.17: Performance comparison of one-bit and multi-bit estimation vs. kn, with K =
50, Btot = 50, θmax = 2σθ
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4.8 Conclusions

We considered DES of a Gaussian source in a heterogeneous bandwidth constrained WSN, where

the source is corrupted by independent multiplicative and additive observation noises, with in-

complete statistical knowledge of the multiplicative noise. For uniform multi-bit quantizers, we

derived the closed-form MSE expression for the LMMSE estimator at the FC, and verified the

accuracy of our derivations via simulations. For both error-free and erroneous communication

channels (using BSC model) we proposed several rate allocation methods to (i) minimize the

MSE given a network bandwidth constraint, and (ii) minimize the required network bandwidth

given a target MSE. We also derived the BCRLB and compared the MSE performance of our

proposed methods against the BCRLB. Our results corroborate that, for low power multiplicative

observation noises and adequate network bandwidth, the gaps between the MSE of our proposed

methods and the BCRLB are negligible, while the performance of other methods like IRA in [81],

and uniform is not satisfactory. Through analysis and simulations, we showed that one-bit MLE

and one-bit MAP in the literature have poor performance, when the realizations of unknown is

large (compared with the observation noise variances), whereas our proposed multi-bit LMMSE

significantly outperforms estimators based on one-bit quantization.
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CHAPTER 5: NOISE ENHANCEMENT IN BAYESIAN DISTRIBUTED

ESTIMATION

In this chapter we investigate the problem of Bayesian DES of an unknown Gaussian source in

a WSN with a FC. Gaussian multiplicative and additive noise environments are supposed to be

present. Assuming that first and second order statistics of multiplicative noise is available and

known, we derive the WWB and BCRLB for two cases: i) full precision observations of sensors

are available in the FC, ii) only quantized version of observations are available in the FC. For both

cases we report and characterize scenarios that according to the bounds, presence of multiplicative

noise can enhance the estimation accuracy. We call this phenomena enhancement mode of multi-

plicative noise. We compare the MSE performance of MMSE estimator and MAP estimator with

WWB and BCRLB bounds and characterize the enhancement modes according to MSE perfor-

mance of the estimators. In sequel we consider the case that variance of multiplicative noise is

unknown, considering the variance of the noise as a nuisance deterministic parameter, we derive

three well-known bounds: HCRLB, NB and RUB to assess the performance limits of DES for

this case. According to the bounds the enhancement modes are more scarce in comparison to the

case that the variance of noise is known. Through simulation we demonstrate different examples

of multiplicative noise enhancing the DES accuracy according to the bounds. We compare MSE

performance of MMSE-ML and MAP-ML estimators with HCRLB, NB and RUB for the case

that variance of multiplicative noise is unknown. According to the MSE of these estimators, there

is no enhancement mode for this case, and multiplicative noise can not enhance the estimation

when its variance is unknown.
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5.1 System Model and Problem Statement

We consider a network with K spatially distributed sensors and a FC, where the FC is interested

in estimating a realization of a random unknown source θ ∈ Θ = [−∞,∞] with Gaussian dis-

tribution θ ∼ N (0, σ2
θ), via fusing the collective received data from all sensors. Note that θ is

not directly observable. Instead each sensor independently observes a noisy version of θ, where

both multiplicative and additive observation noises are involved. Let xk denote the scalar noisy

observation of θ at sensor k. We assume the following observation model1:

xk = hkθ + nk, for k = 1, ..., K, (5.1)

where hk and nk are multiplicative and additive observation noises, respectively. Also, θ, hk, nk

are all uncorrelated.

For sake of presentation, we assume multiplicative hk’s and additive nk’s noises are i.i.d, i.e.,

nk ∼ N (0, σ2
n) , hk ∼ N (1, σ2

h), ∀k 2. We define vector x = [x1, ..., xK ]T ∈ Ω = [−∞,+∞]K

that includes all sensors’ observations. The sensors are not allowed to convene before transmitting

to the FC. We focus on comprehending the effects of observation noises on the estimation accu-

racy and assume that the communication channels between the sensors and the FC are error-free.

Error-free communication channel model has been used before in several classical works on DES,

examples are [18–20, 33, 81]. Having received data from all sensors, the FC employs a Bayesian

1The observation model in (5.1) is general and can be used for wireless communication systems with fading channel
model and multiple receiver antennas [163–165], as well as sensing systems which observation model has a multiplica-
tive sensing matrix with random perturbations.

2All derivations in this work can be easily re-derived for the case which the variance of additive and multiplicative
noises are different across the sensors. For the general case E{hk} = µk, we can scale xk and obtain x′k = h′kθ+ n′k,
where x′k = xk/µk, h′k = hk/µk, n′k = nk/µk, with E{h′k} = 1, var{h′k} = σ2

h/µ
2
k, n′k ∼ N (0, σ2

n/µ
2
k). Thus

without loss of generality, we assume E{hk} = 1,∀k
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estimator to reconstruct θ and form θ̂. Let MSE= E{(θ̂ − θ)2} denote the corresponding MSE.

We study the achievable lower bounds on the MSE and in particular we investigate the effect of

multiplicative noise on the bounds. We unearth some scenarios in which the presence of multi-

plicative noise can enhance the DES accuracy, via decreasing the achievable lower bounds on the

MSE. We characterize the mentioned scenarios as enhancement modes of multiplicative noise and

compare those with the case that there is no multiplicative noise.

5.2 Lower Bounds on MSE

We investigate the effect of multiplicative noise on DES performance in two cases/frameworks: a)

known variance for multiplicative noise, i.e., σ2
h is known b) unknown variance for multiplicative

noise, i.e., σ2
h is unknown. In order to investigate the first case/framework and characterize the

effect of multiplicative noise on achievable bounds we focus on deriving and probing into two

well-known Bayesian bounds: i) WWB [125] which is known to be the tightest bound of the Weiss

and Weinstein family and ii) BCRLB [129]. In order to investigate the second case/framework we

focus on deriving and characterizing hybrid bounds such as well-known HCRLB (first introduced

in [130] and build on [131]), NB [133, 134], and more recently proposed RUB [135].

5.2.1 Lower bound on the MSE for known σ2
h

5.2.1.1 WWB

General form of WWB on the MSE of any Bayesian estimator is given in [125] as following:

WWB = sup
t,s

t2e2µ(s,t)

eµ(2s,t) + eµ(2−2s,−t) − 2eµ(s,2t)
, (5.2)
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where s ∈ [0, 1], t is chosen on the parameter support and µ(s, t) is given as:

µ(s, t) = ln
∫

Θ

∫
Ω

ps(x, θ + t)

ps−1(x, θ)
dxdθ . (5.3)

The integral in (5.3) can be re written as following:

µ(s, t) = ln
∫

Θ

ps(θ + t)

ps−1(θ)

∫
Ω

ps(x|θ + t)

ps−1(x|θ)
dx︸ ︷︷ ︸

=J

dθ . (5.4)

J in (5.4) is an K dimensional integral, we delve into characterizing it. From now on we assume

s = 0.5 (since the optimum of (5.2) happens in s = 0.5 [125]), and drop the s argument in µ(s, t).

Since hk’s and nk’s are uncorrelated Gaussian random variables, the xk’s conditioned on θ are

independent Gaussian random variables, consequently we have:

p(x|θ) =
K∏
k=1

p(xk|θ) =
e
− ||x−1θ||2

2(θ2σ2
h
+σ2n)

[2π(θ2σ2
h + σ2

n)]
−K
2

, (5.5)

where 1 = [1, ..., 1]T . Substituting (5.5) in J and doing tedious math, we obtain:

J =
e
− Kt2

4(σ20+σ
2
t )

(2π)
K
2 (σ2

0σ
2
t )

K
4

∫
Ω

e−a||x−1b||
2

dx︸ ︷︷ ︸
=(
√

π
a

)K

, (5.6)

where σ2
0 = θ2σ2

h + σ2
n, σ2

t = (θ + t)2σ2
h + σ2

n, a =
(σ2

0+σ2
t )

4σ2
0σ

2
t

, and some b 6= ±∞, where the integral

in (5.6) is independent of b. The definite integral in (5.6) is expressible in closed-form because

it can be related to integral of an K dimensional joint Gaussian pdf with mean vector of 1b and

covariance matrix of (2a)−1I (I is identity matrix) over the support Ω.
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Substituting (5.6) in (5.4) and doing some clean up, we get:

µ(t) = C(t) + ln

∫
Θ

(√
σ2

0σ
2
t

σ2
0 + σ2

t

)K
2

e
− (θ+0.5t)2

2σ2
θ

− Kt2

4(σ20+σ
2
t ) dθ

 , (5.7)

where C(t) = ln( 2
K
2√

2πσ2
θ

) − t2

8σ2
θ
. As can be seen we were able to reduce the K + 1 dimensional

integral in (5.3) into a one dimensional one in (5.7). Note that the integral in (5.7) can not be

expressed in closed-form, however it can easily be calculated with numerical methods since the

integrand is an smooth function with no singularities. After calculating µ(t) we need to do a

one dimensional maximization over t (look at (5.2)). Note that µ(t) is an even function (look at

appendix C.1 for the proof) and it also decays rapidly to zero, thus we confined the search domain

to t ∈ [0, 4σθ] without any performance degradation.

5.2.1.2 BCRLB

In this subsection we derive the BCRLB for any estimator of θ in (5.1) based on observation

vector x. The Cramér Rao theorem [129] states that the MSE of any estimator is larger or equal

to the inverse of the Fisher information. Assuming that regularity conditions is satisfied, i.e.,

E{∂lnp(x,θ)
∂θ

} = 0 [4, 166], we write the Fisher information as:

F=−Ex,θ{
∂2lnp(x, θ)

∂2θ
}=

−Eθ{ Ex|θ{
∂2lnp(x|θ)

∂2θ
}︸ ︷︷ ︸

∗

}−Eθ{
∂2lnp(θ)
∂2θ

} . (5.8)

The expression mentioned with ∗ in (5.8) can be perceived as negative of Fisher information for

the case of estimating deterministic θ based on observation vector x. Note that the observations

in (5.1), conditioned on θ are jointly Gaussian random variables, so based on results for general
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Gaussian case in [4, 3.9] we can write:

Ex|θ{
∂2lnp(x|θ)

∂2θ
} = −

[
∂u(θ)

∂θ

]T
Σ−1(θ)

[
∂u(θ)

∂θ

]
−

0.5 trace

[(
Σ−1(θ)

∂Σ(θ)

∂θ

)2
]
, (5.9)

where u(θ) = Ex|θ{x|θ} = 1θ and Σ = Ex|θ{xxT |θ} = (θ2σ2
h + σ2

n)I. Substituting these

expressions in (5.9) and doing a tedious cleaning up, we obtain:

Ex|θ{
∂2lnp(x|θ)

∂2θ
} = −Kσ2

n + θ2σ2
h + 2θ2σ4

h

(σ2
n + σ2

hθ
2)2

. (5.10)

Next we need to take the expectation of expression in (5.10) with respect to distribution of θ:

Eθ{Ex|θ{
∂2lnp(x|θ)

∂2θ
}} =∫ ∞

−∞
−K σ2

n + θ2σ2
h + 2θ2σ4

h√
2πσ2

θ(σ
2
n + σ2

hθ
2)2
e
−θ2

2σ2
θ dθ, (5.11)

through ponderous and dull integral mathematics the definite integral in (5.11) can be expressed in

closed-form. Substituting the closed-form expression into the (5.8) and replacing E{∂
2lnp(θ)
∂2θ

} =

σ−2
θ , the complete expression for Bayesian Fisher information can be written as:

F = K

(
√

2πe
σ2n
σ2
θ
σ2
h Φ(− σn

σθσh
)(
σ2
n + σ2

θ + σ2
θσ

2
h

σnσ3
θσh

)− 1

σ2
h

)
+

1

σ2
θ

, (5.12)

where Φ(.) is the CDF of a standard normal random variable, i.e., Φ(x) =
∫ x
−∞

1√
2π
e−

t2

2 dt.

In order to delve into dynamics of Fisher information in (5.12) as a function of σh, we re ar-
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range/formulate/write that as in (5.13), where z , σh and α , σn/σθ. Existing the term z/α

in Fisher expression (which is indicated with ∗ in (5.13)), can causes the Fisher to be increased

with increasing z, which is totally unintuitive. We characterize such phenomena as enhancement

mode of multiplicative noise and we will dig into/illustrate its details through numerical examples

in section 5.5.

F =
K
√

2π

σ2
θ

e
α2

2z2 Φ(−α
z

) (
α + α−1

z
+

z

α︸︷︷︸
∗

) +
1−K
σ2
θ

. (5.13)

Remark 1: In case that there is no multiplicative noise, i.e., z → 0+, the Fisher information in

(5.13) goes to F cv = K
σ2
n

+ 1
σ2
θ
, which is considered as the clairvoyant Fisher information for general

Linear Gaussian model [129]. On other hand when multiplicative noise intensity goes to infinity,

i.e., z → +∞, the Fisher information in (5.13) goes to infinity as well, meaning that multiplicative

noise pushes the minimum achievable MSE to zero. Technically speaking when multiplicative

noise is in enhancement mode, the more intense gets the noise the more enhancement we get till it

reach the maximum of 1
F cv
− 0 = (F cv)−1 enhancement in the MSE.

Lemma 6. For the observation model in (5.1) with no multiplicative noise, i.e., σ2
h = 0, (which

reduces to general linear Gaussian model, i.e., xk = θ + nk, ∀k), the WWB bound reduces

to clairvoyant BCRLB, i.e., WWB = (F cv)−1. In other word for the case that there is no

multiplicative noise there is no need to calculate WWB bound because it is as tight as BCRLB.

Proof. For σ2
h = 0 we have σ2

0 = σ2
t = σ2

n, and it is easy to verify that the expression in (5.7)

reduces to:

µ(t) = −t
2

8
(
K

σ2
n

+
1

σ2
θ

) ,
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and the WWB for this case is as following:

WWB = sup
t

t2e
− t

2

4
( K
σ2n

+ 1

σ2
θ

)

2(1− e
− t2

2
( K
σ2n

+ 1

σ2
θ

)
)

. (5.14)

Taking the derivative of the function in (5.14) with respect to t and finding its zeros, easily reveals

that it has a unique zero/solution in t = 0, thus we have:

WWB = sup
t

t2e
− t

2

4
( K
σ2n

+ 1

σ2
θ

)

2(1− e
− t2

2
( K
σ2n

+ 1

σ2
θ

)
)

= lim
t→0+

t2e
− t

2

4
( K
σ2n

+ 1

σ2
θ

)

2(1− e
− t2

2
( K
σ2n

+ 1

σ2
θ

)
)

(a)
= (

K

σ2
n

+
1

σ2
θ

)−1 = (F cv)−1 ,

the calculation of the limit in (a) is easy to verify with L′Hôpital′s rule [167].

Lemma 7. For the observation model in (5.1) with multiplicative noise, i.e., σ2
h > 0, the WWB is

strictly tighter than the BCRLB, i.e., WWB > F−1.

Proof. Since WWB ≥ F−1 [125], and WWB 6= F−1, so WWB > F−1.
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Ex,θ

[
(σ̂2
h − σ2

h)2 (σ̂2
h − σ2

h)(θ̂ − θ)
(σ̂2
h − σ2

h)(θ̂ − θ) (θ̂ − θ)2

]
≥

−Eθ
 Ex|η

 ∂2lnp(x|η)
∂2σ2

h

∂2lnp(x|η)
∂σ2

h∂θ

∂2lnp(x|η)
∂θ∂σ2

h

∂2lnp(x|η)
∂2θ


︸ ︷︷ ︸

=G

+

[
0 0

0 ∂2lnp(θ)
∂2θ

]


−1

(5.15)

5.2.2 Lower bounds on the MSE for unknown σ2
h

For the case that the value of σ2
h is not available, we assume that to be as a deterministic3 nuisance

parameter, while we are interested in estimating random θ. It is dealing with the situation where

we have an unknown vector to be estimated defined as η , [θ, σ2
h]
T , where the unknown vector

consist of both random and deterministic parameters. To address such an estimation problem, the

HCRLB first has been presented in context of a specific application in [130] and formulated as a

general tool in [131]. The attractiveness of HCRLB stems from the fact that it provides a matrix

lower bound on the MSE of both the deterministic and random parameters. Other bounds that

address the same issue are YB [132], NB [133,134] and RUB [135]. We will argue that the RUB

is tighter than former ones for the problem in hand.

5.2.2.1 HCRLB

According to [131], the HCRLB matrix for estimating η can be formulated as in (5.15), where σ̂2
h

and θ̂ are estimators for σ2
h and θ. Note that conditioned on η the vector of observations x form a

jointly Gaussian vector, consequently after some tedious mathematical operations the elements of

matrix G , [g11, g12; g21, g22] can be written (refer to results for general Gaussian case in [4, 3.9])

3 It is prevalent/common to consider the channel gain to be stochastic with deterministic statistics [135, 168, 169].
An example of modeling channel as stochastic with unknown statistics can be found in [170]. Note that modeling the
unknown σ2

h as a random variable is another way of looking into problem, however it requires a prior full information
on distribution of σ2

h, which does not sound a rationale assumption.
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as following:

g11 =
−Kθ4

2(θ2σ2
h + σ2

n)2
, g22 =

−K(σ2
n + θ2σ2

h + 2θ2σ4
h)

(σ2
n + σ2

hθ
2)2

,

g12 = g21 =
−Kθ3σ2

h

(θ2σ2
h + σ2

n)2
, (5.16)

accordingly the HCRLB in (5.15) can be written as following:

HCRLB =


 Eθ{g11} Eθ{g12}

Eθ{g21} Eθ{g22}+ Eθ{∂
2lnp(θ)
∂2θ

}



−1

=
1

Eθ{g11}(Eθ{g22}+ Eθ{∂
2lnp(θ)
∂2θ

})− (Eθ{g12})2
× Eθ{g22}+ Eθ{∂

2lnp(θ)
∂2θ

} −Eθ{g12}

−Eθ{g21} Eθ{g11}}

 .

Thus we conclude that the HCRLB bound for estimator θ̂ is obtained as following:

Ex,θ{θ̂ − θ}2 ≥ HCRLB =

Eθ{g11}

Eθ{g11}(Eθ{g22}+ Eθ{∂
2lnp(θ)
∂2θ

})− (Eθ{g12})2
. (5.17)

According to (5.16) one can easily verify that Eθ{g12} = 0, because g12 is an odd function of θ so

the expectation of that with respect to Gaussian distribution with zero mean is always zero. Thus

HCRLB in (5.17) reduces to:
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HCRLB =
1

Eθ{g22}+ Eθ{∂
2lnp(θ)
∂2θ

}
. (5.18)

According to definition of g22 in (5.16) and comparing it to (5.10), (5.11) and noting Eθ{∂
2lnp(θ)
∂2θ

} =

σ−2
θ , we conclude that expression of HCRLB in (5.18) is same as the expression for BCRLB in

(5.12).

Remark 2: For the observation model of (5.1), the HCRLB for estimating θ for the case of un-

known multiplicative noise variance σ2
h, is equal to the BCRLB for the case of known σ2

h. Thus

the well known HCRLB does not yields any new information on estimation performance for the

model in (5.1) in comparison to BCRLB4.

5.2.2.2 YB

According to [132] the YB for the model in (5.1) can be established as following:

Ex,θ{(θ̂ − θ)2} ≥ Y B =[
Ex{

∂θ̂MMSE(x, σ2
h)

∂σ2
h

}

]2

H−1 , (5.19)

where θ̂MMSE(x, σ2
h) is the MMSE estimator of unknown θ (assuming σ2

h is known), i.e., θ̂MMSE(x, σ2
h) =

E{θ|x;σ2
h}, and H is the Fisher information with respect to deterministic unknown σ2

h.

4Note that this is true for zero mean θ. On the other hand for the case of E{θ} 6= 0 , we have E{g12} 6= 0 so (5.17)
does not reduce to (5.18).
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Lemma 8. For the observation model in (5.1) we have following equality:

Ex{
∂θ̂MMSE(x, σ2

h)

∂σ2
h

} = 0.

Proof. Refer to appendix C.2.

Having the result in lemma 8 and without digging into deriving H in (5.19) we conclude that YB

is always zero for the system model in (5.1). Thus the YB is not a useful bound for the problem in

hand.

5.2.2.3 NB

According to [133, 134] the NB for the model in (5.1) can be formulated as following:

Ex,θ{(θ̂ − θ)2} ≥ NB =

Ex,θ{(θ̂MMSE(x, σ2
h)− θ)2}+ Y B.

As stated in lemma 8 the YB is equal to zero, so the NB reduces to the MSE of optimal MMSE

estimator assuming that σ2
h is known. In other word NB states that the lower bound on MSE for

observation model in (5.1) with unknown σ2
h is equal to the MSE of the MMSE estimator of θ,

with known σ2
h. In numerical examples we will see that for adequate number of sensors NB will

decrease as multiplicative noise gets stronger.

5.2.2.4 RUB

According to [135] the RUB for the model in (5.1) can be written as in (5.20) or as in (5.21).
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RUB = Ex,θ{(θ̂MMSE(x, σ
2
h)− θ)

2} +(
Ex{(

∂θ̂MMSE(x,σ2h)

∂σ2
h

)2}
)3

Ex{(
∂θ̂MMSE(x,σ2

h
)

∂σ2
h

)2}Ex{(
∂2θ̂MMSE(x,σ2

h
)

∂2σ2
h

+
∂θ̂MMSE(x,σ2

h
)

∂σ2
h

∂lnp(x,σ2
h
)

∂σ2
h

)2} −
(
Ex{(

∂2θ̂MMSE(x,σ2
h
)

∂2σ2
h

+
∂θ̂MMSE(x,σ2

h
)

∂σ2
h

∂lnp(x,σ2
h
)

∂σ2
h

)
∂θ̂MMSE(x,σ2

h
)

∂σ2
h

}
)2

(5.20)

RUB = NB +

( Ex{d2(x, σ2
h)} )3

Ex{d2(x, σ2
h)} Ex{e2(x, σ2

h)} − (Ex{d(x, σ2
h)e(x, σ

2
h)})

2 , (5.21)

where

d(x, σ2
h) =

∂θ̂MMSE(x, σ2
h)

∂σ2
h

e(x, σ2
h) =

∂2θ̂MMSE(x, σ2
h)

∂2σ2
h

+ d(x, σ2
h)
∂lnp(x, σ2

h)

∂σ2
h

,

for derivations of d(x, σ2
h) see appendix C.2, we omitted the derivations for e(x, σ2

h) because it is

very straight forward and similar to what we did in appendix C.2.

Note that the RUB is valid for Risk Unbiased (RU) estimators [135]. An estimator θ̂, for the model

in 5.1 is considered to be RU provided that it satisfies following:

Ex,θ{( θ̂ − θ̂MMSE(x, σ2
h) )

∂θ̂MMSE(x, σ2
h)

∂σ2
h

} = 0.

Lemma 9. RUB is always tighter than NB.

Proof. the second term in (5.21) is always positive because (i) the term in nominator is positive
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since it is expectation of a positive function. (ii) the term in denominator is positive according to

Cauchy- Schwartz inequality E{d2}E{e2} ≥ (E{de})2.

5.3 Estimation Schemes

5.3.1 Estimation Schemes for known σ2
h

5.3.1.1 MMSE estimator

For the case of known σ2
h we can employ MMSE estimator. This estimator can be derived by

calculating two one dimensional integrals as following (see Appendix C.2 for details):

θ̂MMSE = E{θ|x} =

+∞∫
−∞

e
−||x−1θ||2

2v(θ2)
− θ2

2σ2
θ

(θ2σ2
h+σ2

n)
K
2

dθ

+∞∫
−∞

θe
−||x−1θ||2

2v(θ2)
− θ2

2σ2
θ

(θ2σ2
h+σ2

n)
K
2

dθ

. (5.22)

The integrals in (5.22) do not have closed-form solutions, however those are easily calculated with

numerical methods.
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5.3.1.2 MAP estimator

The MAP estimator for the model in (5.1) can be written as following:

θ̂MAP = argmax
θ

[lnp(x|θ) + lnp(θ)]
(a)
=

argmax
θ

[Kln(θ2σ2
h + σ2

n) +
||x− 1θ||2

θ2σ2
h + σ2

n

+
θ2

σ2
θ

], (5.23)

where (a) can be verified noting that the vector x conditioned on unknown θ, has a joint Gaussian

distribution with mean vector of θ1, and covariance matrix of (θ2σ2
h + σ2

n)I. Taking the derivative

of a posteriori distribution in (5.23) and finding its zeros, provide us with following equation for

MAP estimator:

(
σ4
h

σ2
θK

)θ5 + (σ4
h +

2σ2
hσ

2
n

σ2
θK

)θ3 + (S̄σ2
h)θ

2 +

((θ2σ2
h + σ2

n)− V̄ σ2
h +

σ4
n

σ2
θK

)θ − S̄σ2
n = 0, (5.24)

where S̄ = (x′1)/K = (
∑K

k=1 xk)/K, V̄ = (||x||2)/K. The zero of the equation in (5.24) which

maximizes the posteriori distribution in (5.23), is the MAP estimator. Note that for large K the

MAP estimator reduces to Bayesian MLE estimator with ML derivative as following:

σ4
h θ

3 + S̄σ2
h θ

2 + (θ2σ2
h + σ2

n − V̄ σ2
h)θ − S̄σ2

n = 0.
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5.3.2 Estimation Schemes for unknown σ2
h

For the case that σ2
h is unknown, we employ the well-known MMSE-ML and MAP-ML estima-

tors [171]. For these estimators, first we find the ML estimate of unknown σ2
h, afterwards having

the estimate of σ2
h we use the MMSE and MAP estimators in (5.22) and (5.23) respectively to form

the MMSE-ML and MAP-ML estimates for θ for case of unknown σ2
h. It is proved in [171] that

MMSE-ML and MAP-ML estimators are RU and asymptotically converge to MMSE estimator

in probability, i.e.,

lim
K→+∞

E{(θ̂MMSE−ML − θ̂MMSE)(
∂θ̂MMSE(x, σ2

h)

∂σ2
h

)} = 0

lim
K→+∞

E{|θ̂MMSE−ML − θ̂MMSE|} = 0 .

The results in above equalities are valid for θ̂MAP−ML estimator as well [171]. Having observation

vector x, the ML equation for estimating σ2
h, is as following (luckily the zeros of a cubic function

can be derived in closed form):

θ3 − 3S̄θ2 + (2S̄2 + V̄ )θ − S̄ × V̄ = 0, (5.25)

for details of derivation of (5.25) look at appendix C.3.
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5.4 Extension of Derivations of WWB and BCRLB to the Case of Quantized Observations

Suppose the scalar observations xk’s in (5.1) are separately quantized via uniform quantizers in

sensors with fixed step size of ∆. The quantizers have M quantization levels with boundaries

{ζ1, ..., ζM+1}. The observation xk is mapped into the quantization level mk, where it belongs

to one of M quantization levels, i.e., mk = {l1, ..., lM}. The mapping function is like xk ∈

[ζi, ζi+1) → mk = li. Assuming that with very high probability xk lies in the interval [−τ, τ ] for

a reasonably large value of τ , we consider the step size of the quantizers to be ∆ = 2τ
M−1

. The

boundaries are set as ζ1+(M/2) = 0 and ζi+1 − ζi = ∆ for i ∈ {1, ...,M}. The quantization levels

are set as li = ζi+ζi+1

2
. The quantized observations can be mapped into a binary sequence of length

r = log2M (bits) and transmitted to the FC. We refer to r as quantization rate. We define m =

[m1, ...,mK ]T as vector of received quantized observations in the FC, wheremk ∈ ω = {l1, ..., lm}

, and m ∈ Ω′ = ωK .

5.4.1 WWB derivation for quantized observations

The counterpart of (5.3) for the case of quantized observations named as µq(t) can be formulated

as following:

µq(t) = ln
∫

Θ

∑
m∈Ω′

p0.5(m, θ + t)

p−0.5(m, θ)
dθ

µq(t) = ln
∫

Θ

p0.5(θ + t)

p−0.5(θ)

∑
m∈Ω′

p0.5(m|θ + t)

p−0.5(m|θ)︸ ︷︷ ︸
=J ′

dθ . (5.26)
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Since hk’s and nk’s are uncorrelated Gaussian random variables, and quantizers in sensors are

independent, the mk’s conditioned on θ are independent, so p(m|θ) =
∏

k p(mk|θ), where:

p(mk = li|θ) = p(ζi ≤ hkθ + nk < ζi+1|θ) =

Φ(
ζi+1 − θ√
θ2σ2

h + σ2
n

)− Φ(
ζi − θ√
θ2σ2

h + σ2
n

)︸ ︷︷ ︸
,Pi(θ)

.

For brevity we drop the θ argument in Pi(θ) and represent it as Pi. We also define P ′i , Pi(θ + t).

Then p(mk = li) can be written as following:

p(mk|θ) = P
δ[mk−l1]
1 × ... × P δ[mk−lM ]

M

p(m|θ) = P
∑
k δ[mk−l1]

1 × ... × P
∑
k δ[mk−lM ]

M ,

where δ[.] is the discrete delta function. Accordingly we can write:

p0.5(m|θ + t)

p−0.5(m|θ)
=[

{P1P
′
1}

∑
k δ[mk−l1] ... {PMP ′M}

∑
k δ[mk−lM ]

]1/2
=

[
K∏
k=1

M∏
i=1

{PiP ′i}δ[mk−li]
]1/2

. (5.27)

Having (5.27), it is easy to verify that the K dimensional sum in J ′ can be decoupled into multi-

plication of K independent one dimensional sum as following:

J ′ =
∑
m1∈ω

M∏
i=1

{PiP ′i}
δ[m1−li]

2

︸ ︷︷ ︸
=
∑M
i=1

√
PiP ′i

×...×
∑
mK∈ω

M∏
i=1

{PiP ′i}
δ[mM−li]

2

︸ ︷︷ ︸
=
∑M
i=1

√
PiP ′i

.
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One can verify that each summation in above formula reduces to
∑M

i=1

√
PiP ′i , thus we have

J ′ = [
∑M

i=1

√
PiP ′i ]

K , consequently the K + 1 dimensional sum-integral in (5.26) reduces to

following one dimensional integral:

µq(t) = Cq(t) + ln
∫ +∞

−∞
e
− (θ+0.5t)2

2σ2
θ [

M∑
i=1

√
PiP ′i ]

Kdθ ,

where Cq(t) = ln( 1√
2σ2
θ

) − t2

8σ2
θ
. The function µq(t) is an even function w.r.s to t (see Appendix

C.1 for details), thus the WWB can be found by a one dimensional search for maximum of µq(t)

in the interval [0, 4σ2
θ ].

5.4.2 BCRLB derivation for quantized observations

Parallel to subsection 5.2.1.2 we can derive the BCRLB based on quantized observation vector m.

Assuming that the regularity condition is satisfied, i.e., E{∂lnp(m,θ)
∂θ

} = 0 [4], we write the Fisher

information for quantized observations as following:

Fq=−E{
∂2lnp(m, θ)

∂2θ
}=

−E{∂
2lnp(m|θ)
∂2θ

}−E{∂
2lnp(θ)
∂2θ

}. (5.28)
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Assuming that mk’s conditioned on θ are independent, i.e., lnp(m|θ) =
∑K

k=1 lnp(mk|θ), the first

and second derivatives of the log-likelihood function become:

∂lnp(m|θ)
∂θ

=
K∑
k=1

1

p(mk|θ)
∂p(mk|θ)

∂θ
,

∂2lnp(m|θ)
∂2θ

=

=Fa︷ ︸︸ ︷
K∑
k=1

1

p(mk|θ)
∂2p(mk|θ)

∂2θ

−
K∑
k=1

1

p2(mk|θ)
(
∂p(mk|θ)

∂θ
)2

︸ ︷︷ ︸
=Fb

.

In the following, we find E{Fa},E{Fb}. We have:

E{Fa}=K

∫
p(θ)

∂2(

=1︷ ︸︸ ︷
M∑
i=1

Pi(θ))

∂2θ
dθ = 0,

E{Fb}=K

∫
p(θ)

M∑
i=1

1

Pi(θ)
(Ṗi(θ))

2dθ,

where Ṗi(θ) = ∂Pi(θ)
∂θ

(Deriving Ṗi(θ) is straightforward and reduces to subtraction of two scaled

standard normal PDFs). Combining all above and recalling θ ∼ N (0, σ2
θ), we obtain:

Fq =
K√
2πσ2

θ

M∑
i=1

∫
(Ṗi(θ))

2

Pi(θ)
e
− θ2

2σ2
θ dθ +

1

σ2
θ

. (5.29)

Note that we managed to reduce the K + 1 dimensional sum-integral in (5.28) to sum of M one

dimensional integral in (5.29).
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5.5 Simulation Results

In this section we illustrate the behavior of various lower bounds derived in previous sections with

numerous numerical simulations. We demonstrate the existence of the so called enhancement mode

of multiplicative noise and characterize the scenarios that it can enhance the DES performance.

We also probe into effect of enhancement mode on performance of well-known estimators such as

MMSE, MAP, MMSE-ML, MAP-ML and compare their performance’s with associated lower

bounds. We consider networks of different sizes i.e., K = 10, 20, 50, 100, and different additive

noise variances i.e., σ2
n = 0.5, 1, 2, to investigate the effect of those on enhancement modes. The

Monte-Carlo simulations were executed on 106 unknown and noise realizations to produce the

MSE performance of different estimators.

Fig. 5.1 depicts the WWB and BCRLB vs known σ2
h for different values of σ2

n. Apparently for

σ2
h = 0 the WWB and BCRLB are equal (see lemma 6), and as σ2

h increases WWB tends to be a

tighter bound (see lemma 7). The enhancement modes are marked with arrows.
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Figure 5.1: WWB and BCRLB vs known σ2
h
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As can be seen the enhancement modes tend to start with smaller σ2
h’s with larger σ2

n’s. It is also

observable that for a fixed value of σ2
h, more enhancement is happening for larger σ2

n.

Fig. 5.2 depicts the WWB and BCRLB vs known σ2
h for different values of quantization rate

(r), and different additive noise variance σ2
n. For small quantization rates, i.e., r = 1, 2, the gap

between WWB and BCRLB is more than the case of r = 3, 4. Note that there is no enhancement

modes for some scenarios, for instance for small quantization rates (r = 1, 2 -Fig. 5.2 a,b).
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Figure 5.2: WWB and BCRLB vs σ2
h for different quantization rates (r) and different σ2

n
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For r = 3, there is no enhancement mode for σ2
n = 0.5 (this is in agreement to the observation we

made in Fig. 5.1, where the enhancement modes were bolder for larger σ2
n and weaker for smaller

σ2
n), but for σ2

n = 1, 2 in the same case we notice enhancement modes. As r increases the behaviors

of bounds get alike the ones in Fig. 5.1, for instance for r = 4 we notice the enhancement modes

for all values of σ2
n in the figure.

Fig. 5.3 compares the behavior of WWB and BCRLB vs known σ2
h, for σ2

n = 1 and different

quantization rate values (r = 1, 2, 3, 4) with clairvoyant benchmarks. It can be seen that how

the increase in quantization rate can change the behavior of the bounds turning the bounds from

increasing w.r.t σ2
h to decreasing w.r.t σ2

h (for instance compare the behavior of cases r = 1 and

r = 4). As r increases the gap between bounds for quantized observation cases and the clairvoyant

benchmark decrease (compare the case of r = 4 and clairvoyant benchmarks). Clairvoyant bounds

are indicated with (cv) in the legends.
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Figure 5.3: Comparison of quantized bounds and clairvoyant benchmark, σ2
n = 1
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Fig. 5.4 compares the MSE performance of MMSE and MAP estimators with WWB vs known

σ2
h, for σ2

n = 1 and different network sizes of of K = 20, 50, 100. For performance comparison

we just kept the tighter bound (WWB) and omitted the BCRLB (see Lemma 7). As can be seen

provided that number of sensors K, is large enough, the enhancement mode happens for these es-

timators. For instance for K = 100 the enhancement mode is apparent in the figure, on the other

hand there are no enhancement modes for same estimators for case of K = 20, despite the fact

that WWB suggest that there is an enhancement mode. Thus in practice we need more sensors

than that of suggested by lower bounds like WWB to see the enhancement effect of multiplicative

noise in estimators. Note that for σ2
h = 0 the MSE of MMSE and MAP estimators both reach the

WWB bound.
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Figure 5.4: Performance of MMSE and MAP estimator
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For the case of unknown σ2
h, Fig. 5.5 compares the three lower bounds of HCRLB, NB and

RUB vs unknown σ2
h for a small network of size K = 10 and different values of σ2

n = 0.5, 1, 2.

Obviously RUB is tighter than NB (see Lemma 9). As can be seen HCRLB suggests existence

of enhancement modes however it is not trustworthy and realistic since according to Remark 2

HCRLB is equal to BCRLB for the problem (BCRLB is representing bound for the case of

known σ2
h), thus for realistic assessment, we need to focus on NB and RUB which are tighter and

reflect better on the case of unknown σ2
h.
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Figure 5.5: comparison of HCRLB and NB and RUB vs unknown σ2
h, for K = 10 and different σ2

n

values

Fig. 5.6 compares the three lower bounds of HCRLB, NB and RUB vs unknown σ2
h and σ2

n = 1,

for different network sizes of K = 10, 50, 100. As can be seen the enhancement mode in this case

happens only for large network size ofK = 100. This in contrast with the case of known σ2
h in Fig.

5.1 where enhancement mode happens for all network sizes (Fig. 5.7 demonstrates this phenomena

with more details). Another observation in Fig. 5.6 is that for small network sizes like K = 10 the

RUB is apparently tighter than NB, however as network size increase (for instance K = 50, 100

in the Figure), the gap between RUB and NB almost vanishes.
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Figure 5.7: comparison of WWB and RUB vs known and unknown σ2
h, for σ2
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network size K

Fig. 5.7 compares the tightest bounds associated with two cases of known and unknown σ2
h, for

σ2
n = 1 and different network sizes of K = 20, 50, 100. As can be seen the bounds suggest that

the enhancement for the case of known σ2
h happens for all network sizes, however for the case of
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unknown σ2
h the network size must be large enough to give rise to enhancement phenomena.

Fig. 5.8 compares the MSE performance of two estimation schemes of MMSE-ML and MAP-

ML with the RUB (RUB is tighter than other two bounds HCRLB and NB, so omitted those in

this figure and just kept the tightest one, see lemma 9) for a network of size K = 20 and different

additive noise variances σ2
n = 0.5, 1, 2. The plots are vs unknown σ2

h. As can be seen there is no

enhancement mode for this network size according to the RUB and MSE of estimators.
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Figure 5.8: Performance of MMSE-ML and MAP-ML estimator, for network size K = 20

Fig. 5.9 compares the MSE performance of MMSE-ML and MAP-ML with RUB for σ2
n = 1

and different network sizes of K = 10, 50, 100. The plots are vs unknown σ2
h. As can be seen

according to the MSE performance of estimators, we notice no enhancement modes, despite the

fact that according to the RUB there is enhancement mode for large networks like K = 100. In

other words for the case of unknown σ2
h we can not enjoy the enhancement modes with practical

estimators like MMSE-ML and MAP-ML even with large network sizes. This is in contrast

with the case of known σ2
n (look at Fig. 5.4), where provided that network size is large enough

we can enjoy the enhancement mode for estimators like MMSE and MAP. Fig.5.10 clarifies this
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phenomena by comparing the MSE of mentioned estimators in two cases of known and unknown

σ2
h. As can be seen according to MSE of estimators, there is no enhancement mode for case of

unknown σ2
h (MMSE-ML, MAP-ML) even for large network sizes like K = 100. On the other

hand for case of known σ2
h, provided that network size is large enough, the estimators can enjoy

the enhancement mode of multiplicative noise, for instance look at MSE of MMSE and MAP for

K = 100.
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Figure 5.9: Performance of MMSE-ML and MAP-ML estimator, for σ2
n = 1 and different network

size K = 10, 50, 100
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5.6 Conclusions

We considered DES of a Gaussian unknown parameter with zero mean and known variance, in a

WSN where an FC is tasked with estimating the unknown parameter. Assuming that the variance

of multiplicative noise is known, we derived the WWB and BCRLB for the case that full precision

observations are available in the FC and also the case that only quantized version of observations

are available in the FC. We analyzed the bounds and studied the effect of multiplicative noise on

DES performance. The analytical and simulation results led us to the conclusion that presence of

multiplicative noise in some scenarios can aid the estimation and decreases the MSE. In addition,

simulation examples verifies existence of enhancement modes according to MSE metric of MMSE

and MAP estimators. In sequel we dug into a situation that variance of multiplicative noise is

unknown. Considering the unknown variance as a deterministic nuisance parameter, we derived

the HCRLB, NB and RUB to investigate the effect of multiplicative noise. The bounds predicts
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existence of enhancement modes for some rare cases, however comparing the MSE performance

of MMSE-ML and MAP-ML and the bounds reveals that there is no enhancement modes of

multiplicative noise with unknown variance.
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CHAPTER 6: CONCLUSION AND FUTURE WORK DIRECTIONS

In this thesis we studied the effects of several factors, including correlated additive observation

noises, multiplicative observation noises, quantization schemes, communication channel qualities,

network bandwidth and power constraints and fusion rules on the performance of DES in WSNs.

We characterized the effects of two main contributing factors on the MSE: i) observation qual-

ity (dependent on observation noises and quantization errors) ii) communication channel quality

(dependent on channel fading and additive noise).

In the following, we summarize chapters 2-5, present our main contributions and provide some

ideas for future works.

6.1 Conclusions

In Chapter 2, we considered the DES of a Gaussian vector with a known covariance matrix and

linear observation model, in which the FC is tasked with reconstructing the unknowns vector using

a linear estimator. Sensors employ uniform multi-bit quantizers and BPSK modulation, and com-

municate with the FC over power- and bandwidth-constrained channels. We derived two closed-

form upper bounds on the MSE in terms of the optimization parameters (i.e., transmit power and

quantization rate per sensor). Each bound consists of two terms: the first term is the MSE due

to observation noises and quantization errors, and the second term is the MSE due to communi-

cation channel errors. We proposed “coupled” and “decoupled” resource allocation schemes that

minimize these bounds. The “coupled” schemes utilize the iterative modified ellipsoid method to

conduct a K-dimensional search and find the quantization rate vector, whereas the “decoupled”

ones rely on a one-dimensional search to find the quantization rates. Our simulations show that
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when Ptot and Btot are not too scarce, the bounds are good approximations of the actual MSE.

Through simulations, we verified the effectiveness of the proposed schemes and confirmed that

their performance approaches the clairvoyant CE for large Ptot and Btot (Ptot≈ 25 dB, Btot≈ 30

bits). Our results indicate that resource allocation is affected by the sensors’ observation qualities,

channel gains, and by Ptot and Btot, e.g., two WSNs with identical conditions and Ptot (Btot) and

different Btot (Ptot) require two different power (rate) allocations. Additionally, more quantization

rate and transmit power are allotted to sensors with better observation qualities.

In Chapter 3, we derived the BCRLB for DES of a Gaussian random variable where the individual

observations in sensors are separately quantized with uniform quantizers and sensors have limited

sensing dynamic range. The observation model is assumed to be linear with additive Gaussian

noise. In sequel we provided closed-form approximations for the BCRLB and studied the behav-

ior of the BCRLB and corresponding approximations as quantization rates, variances of additive

observation noises and sensing dynamic range of sensors vary. The simulation results corroborate

the accuracy of the proposed approximations and verify that increasing the variance of the addi-

tive observation noise always degrades the estimation accuracy and increasing the quantization

rates always improves the estimation accuracy. Our simulation results illustrate that for a Gaussian

linear model provided that the dynamic sensing range of sensors stays larger than 3.5 times the

standard deviation of the sensors’ observations the information loss (in terms of increasing MSE)

is negligible, in other word we can limit observations larger than 3.5 times the standard deviation

of observations into a confined limited range, without noticeable degradation in the estimation

performance.

In Chapter 4, we considered DES of a Gaussian source in a heterogeneous bandwidth constrained

WSN, where the source is corrupted by independent multiplicative and additive observation noises,

with incomplete statistical knowledge of the multiplicative noise. For uniform multi-bit quantiz-

ers, we derived the closed-form MSE expression for the LMMSE estimator at the FC, and verified
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the accuracy of our derivations via simulations. For both error-free and erroneous communication

channels (modeled as BSC) we proposed several rate allocation methods to (i) minimize the MSE

given a network-wide bandwidth constraint, and (ii) minimize the required network-wide band-

width given a target MSE. We also derived the BCRLB and compared the MSE performance

of our proposed methods against the bound. Our results corroborate that, for low power multi-

plicative observation noises and adequate network-wide bandwidth, the gaps between the MSE of

our proposed methods and the BCRLB are negligible, while the performance of other methods

like IRA [81], and uniform is not satisfactory. Through analysis and simulations, we showed that

one-bit MLE and one-bit MAP in the literature have poor performance, when the realizations of

unknown parameter is large compared with the additive observation noise variances, whereas our

proposed multi-bit LMMSE significantly outperforms the estimators based on one-bit quantiza-

tion.

In Chapter 5, we considered DES of a Gaussian unknown parameter with zero mean and known

variance in a WSN where the FC is tasked with estimating the unknown parameter. Assuming

that the variance of multiplicative noise is known, we derived the WWB and BCRLB for the

case that full precision observations are available in the FC and also the case that only quantized

version of observations are available in the FC. We analyzed the bounds and studied the effect of

multiplicative noise on the DES performance. The analytical and simulation results led us to the

conclusion that the presence of multiplicative observation noise in some scenarios can improve the

estimation accuracy and decrease the MSE. In addition, simulation examples based on the MSE

of MMSE and MAP estimators verify the existence of enhancement modes. In sequel we studied

a situation where the variance of the multiplicative observation noise is unknown. Modeling the

unknown variance as a deterministic nuisance parameter, we derived the HCRLB, NB and RUB

to investigate the effect of the multiplicative observation noise. The bounds predict the existence

of enhancement modes for some special cases, however comparing the MSE performance of the
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MMSE-ML and MAP-ML estimators and the bounds reveals that there is no enhancement modes

due to multiplicative noise when its variance is unknown.

6.2 Future Work Directions

Based on our contributions in this thesis, one may extend the work in the following directions:

6.2.1 Fusion Rules based on channel outputs

In this thesis we assumed that the FC first recovers the transmitted quantization levels and then

feeds these levels into the estimator to reconstruct the unknown parameter. One can extend the

work to the case where the FC feeds the channel outputs directly to the estimator 1. That would be

interesting to quantify the MSE distortion reduction provided by using channel outputs directly to

feed the estimators, as opposed to using the recovered quantization levels..

6.2.2 Effect of Correlated Multiplicative Noise on DES Design and Performance

In Chapters 4 and 5, we assumed the multiplicative observation noises across sensors are indepen-

dent. The assumption helped us to provide a closed-form expression for the MSE of the corre-

sponding LMMSE estimator and closed-form solutions for optimal rate allocation. That would be

interesting to extend the results to the case of correlated multiplicative observation noises to assess

the effect of correlation on the system performance and rate allocation scheme.

1For example suppose uk is a Pulse Amplitude Modulated (PAM) symbol, sent from sensor k to the FC, where
uk = mk

√
Pk. The received signal at the FC would be yk = hkuk+wK . Assuming perfect Channel State Information

(CSI), the FC finds the messages as zk = yk
hk
√
Pk

.
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APPENDIX A: APPENDIX FOR CHAPTER 2
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A.1 Finding Upper Bound on E{(m̂k −mk)
2}

Suppose that the bit sequence representations of mk and m̂k are (bk,1, ..., bk,Lk) and (b̂k,1, ..., b̂k,Lk),

respectively, i.e.,mk=∆k(0.5−2Lk−1+
∑Lk

j=1 bk,j2
Lk−j) and m̂k=∆k(0.5−2Lk−1+

∑Lk
j=1 b̂k,j2

Lk−j).

Therefore,

E{(m̂k −mk)
2} = ∆2

kE{(
Lk∑
j=1

2Lk−j(bk,j − b̂k,j))2}

(a)

≤ ∆2
kLk(4

Lk)

Lk∑
j=1

4−j E{(bk,j − b̂k,j)2}︸ ︷︷ ︸
=pe

(b)
= pe∆

2
kLk(4

Lk)
1− (1/4)Lk

3
(c)
<

4peLkτ
2
k

3

(d)

≤ exp(−γkPk
Lk

)
4Lkτ

2
k

3

where (a) comes from Cauchy’s inequality (
∑

j αjβj)
2 ≤ (

∑
j α

2
j )(
∑

j β
2
j ) for arbitrary αj, βjs

and the fact that (bk,j − b̂k,j)2 is a Bernoulli random variable with success probability pe, (b) is due

to the sum of a geometric series, (c) is found using the definition of ∆k and 1 − (1/4)Lk < 1, and

(d) is obtained because pe=Q(
√

2γkPk
Lk

) and Q(x) ≤ exp(−x2

2
).

A.2 Properties of Dupb2 and Duupb2

One can verify the following:

∂Dupb2

∂Pk
= −αkγkexp(−γkPk

Lk
) ≤ 0, ∀k

∂2Dupb2

∂Pk∂Pl
=


0, if k 6= l

αkγ
2
k

Lk
exp(−γkPk

Lk
)≥0, if k = l
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These facts imply that Dupb2 is a decreasing function of Pks and Ptot as well as a jointly convex

function of Pks. Similarly,

∂Duupb2

∂Pk
= λ̃[

∂M′

∂Pk
]k,k=−λ̃(

4τ 2
kγk
3

)exp(−γkPk
Lk

)≤0, ∀k

∂2Duupb2

∂Pk∂Pl
=


0, if k 6= l

λ̃(
4τ2kγ

2
k

3Lk
)exp(−γkPk

Lk
)≥0, if k = l

These facts imply that Duupb2 is a decreasing function of Pks as well as a jointly convex function of

Pks.

A.3 Properties of
∑K

k=1 δkσ
2
εk

One can verify the following:

∂(
∑K

k=1 δkσ
2
εk

)

∂Lk
=−2 ln 2 δkτ

2
k2Lk

3(2Lk − 1)3
≤0, ∀k

∂2(
∑K

k=1 δkσ
2
εk

)

∂Lk∂Ll
=


0, if k 6= l

(ln 2)2δkτ
2
k2Lk+1(1+2Lk+1)

3(2Lk−1)4
≥0, if k = l

These facts imply that
∑K

k=1 δkσ
2
εk

is a decreasing function of Lks as well as a jointly convex

function of Lks.
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A.4 More Properties on D1 and Dupb2

• D1 is a decreasing function of Btot: after some mathematical manipulations, one can show that

∂D1

∂Btot

= tr(G
∂Q

∂Btot

GT ) =
K∑
k=1

[
∂Q

∂Btot

]k,k||gk||2≤0,

where after substituting (2.33) intoQ, we find that [ ∂Q
∂Btot

]k,k=− 2 ln 2τ2k2Lk

3(2Lk−1)3K
≤0. Similarly, one can

show that ∂Dupb1

∂Btot
≤ 0. As Btot→ 0, [Q]k,k→∞, i.e., all eigenvalues of (Cx + Q) go to infinity.

Consequently, due to Weyl’s inequality [140], all eigenvalues of (Cx +Q)−1 go to zero. Because

(Cx +Q)−1 is a diagonalizable matrix, this means that (Cx +Q)−1 goes to an all-zero matrix and

D1→ tr(Cθ). However, as Btot→∞, [Q]k,k→0, and thus, D1→d0 = tr(Cθ)−tr(CTxθC−1
x Cxθ).

• Dupb2 is an increasing function of Btot: after some mathematical manipulations, one can verify

that:

∂Dupb2

∂Btot

= tr(G
∂M′

∂Btot

GT ) + tr(G(B + BT )GT ), (A.1)

where B=−( ∂Q
∂Btot

)(Cx+Q)−1M′. Substituting (2.33) into M′, we find that [ ∂M
′

∂Btot
]k,k = ∂uk

∂Btot
=

4τ2k
3K

exp(−γkPk
Lk

)[1 + γkPk
Lk

]≥ 0. Hence, G ∂M′

∂Btot
GT � 0, and the first term in (A.1) is non-negative.

Next, we show that the second term in (A.1) is also non-negative, and hence, ∂D
upb
2

∂Btot
≥ 0. Because

GTG and B+BT are symmetric matrices andGTG�0, by using inequality (2) of [172] we obtain

tr(G(B + BT )GT )= tr(GGT (B + BT )) ≥ λmin(GGT )tr(B + BT )
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where λmin(GGT )≥0. Furthermore,

tr(B + BT ) = 2tr(B) = 2tr(M′(− ∂Q

∂Btot

)(Cx+Q)−1)

(e)

≥ 2λmin(M′(− ∂Q

∂Btot

))tr((Cx+Q)−1)
(f)

≥ 0 ,

in which (e), (f) above are found because M′(− ∂Q
∂Btot

) and (Cx+Q)−1 are symmetric and positive

definite matrices. Similarly, one can show that ∂Duupb2

∂Btot
≥ 0. As Btot→ 0, [M′]k,k→ 0 and G,GT

go to all-zero matrices, and therefore, Dupb2 → 0. However, as Btot → ∞, [M′]k,k → ∞ and

G→CTxθC−1
x , and therefore, Dupb2 →∞.
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A.5 Rate Discretization Algorithm

Data: Lc & all the data required for running Algorithm “a-coupled”
Result: Discretized Quantization Rates and Ascociated Power Allocation
initialization;
L = Lc

U = {1, ..., K}
X = ∅ % set of sensor indices with discretized rates
while |X | < |U| do

if
K∑
j=1

Lj < Btot then

m = argmin
j /∈X

(Lj) ;

else
m = argmax

j /∈X
(Lj) ;

end

Lur = L + [0, ...,

mth place︷ ︸︸ ︷
dLme − Lm, ..., 0]T

Llr = L + [0, ..., bLmc − Lm︸ ︷︷ ︸
mth place

, ..., 0]T

if Dupb(P,Lur) ≥ Dupb(P,Llr) then

L = L + [0, ...,

mth place(fixed)︷ ︸︸ ︷
dLme − Lm , ..., 0]T ;

else
L = L + [0, ..., bLmc − Lm︸ ︷︷ ︸

mth place(fixed)

, ..., 0]T ;

end
X ← (X ∪ {m})
Btot ← (Btot − Lm)

- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
Apply the Algorithm “a-coupled” to reallocate power to all sensors and reallocate rates to
sensors with indices in the set (U − X )
- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -

end
Algorithm: Discretizing Quantization Rates
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A.6 “a-decoupled” algorithm

Data: System Parameters defined in system model
Result: Continuoes solution for quantization rates and transmission powers
initialization;
Bopt = 1
- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -

for i = 1 : Btot do
B(i) = i

Lk = B(i)

K
+ log2

(√
δkτ

2
k∏K

j=1 δjτ
2
j

)
γk = |hk|2

2σ2
ωk
Lk

, αk=τ 2
k (4Lk/3)

∑q
i=1([G]ik)

2

λ = (

∏
k/∈I

K

k=1

(γkαk)(1/γk)

ePtot
)
( 1∑
k/∈I

K

k=1

1
γk

)

Pk = [ 1
γk

log(γkαk
λ

)]+, k = 1, ..., K

Dupb(i) = 2(D1(L,P) +Dupb2 (L,P))

if i > 1 & Dupb(i) < Dupb(i−1) then
Bopt = B(i)

end
- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
Final rate and power allocation based on Bopt:

Loptk = Bopt

K
+ log2

(√
δkτ

2
k∏K

j=1 δjτ
2
j

)
γoptk = |hk|2

2σ2
ωk
Loptk

, αoptk =τ 2
k (4Loptk /3)

∑q
i=1([G]ik)

2

λopt = (

∏
k/∈I

K

k=1

(γoptk αoptk )
(1/γ

opt
k

)

ePtot
)

( 1∑
k/∈I

K

k=1

1

γ
opt
k

)

P opt
k = [ 1

γoptk

log(
γoptk αoptk

λopt
)]+, k = 1, ..., K

end
Algorithm: A-Decoupled

A.7 Ellipsoid Method is Guaranteed to Converge

We consider Ellipsoid method iterative updating formula (2.24) in general form of x(i+1) = x(i) +

pS(i), where x(i) is the optimization variable in iteration i, p is the step size and S(i) is the ’update

direction’ of algorithm. We also assume that the objective function [of optimization] is F (x). Ac-
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cording to (prop .. ref bertsekas) if objective F (x) and S(i) satisfy following conditions, then the

Ellipsoid method will converge to KKT conditions/stationary point of problem.

1) F (x) ≥ 0

2)∇F must be Lipschitz Continuous. i.e ||∇F (x)−∇F (y)|| ≤ K1||x− y|| ∀x,y ∈ Rn

3) ||S(i)|| ≥ K2||∇F (x(i))||

4) S(i)T∇F (x(i)) ≤ −K3||S(i)||2

For condition 1, it is obvious that our objective function Dupb is always nonnegative because it

is an upper bound on MSE metric. For the Ellipsoid method we have S(i) = −A(i)∇̃(i) =

−( A(i)
√
∇(i)TA(i)∇(i)

)∇(i). For ease of representation we introduce z(i) =
√
∇(i)TA(i)∇(i). The matrix

A(i) which describes the ellipsoid in each iteration is a positive definite (p.d) matrix, so (A(i))−1 is

also a p.d matrix. Suppose that we choose a positiveK3 in a way such thatK3 ≤ λmin((A(i))−1) ∀i

then we have (A(i))−1 −K3I ≥ 0 ∀i, having this we can follow:

K3||S(i)||2 ≤ (S(i))T (A(i))−1S(i) =
−(S(i))T∇F

z(i)
. (A.2)

If we choose K ′3 = K3 inf(z(i)) , (K ′3 ≥ 0 because z(i) ≥ 0 and K3 ≥ 0) then we have

(S(i))T∇F ≤ −K ′3||S(i)||2, so condition 4 is satisfied.

For condition 5 we can easily follow that z(i)(A(i))−1S(i) = −∇F and taking norm from both

sides we have the inequality |z(i)| ||A(i))−1|| ||S(i)|| ≥ ||∇F ||, having the inequality and choos-

ing K2 = 1

Sup(|z(i)|) ||A(i))−1||
, it can easily followed ||S(i)|| ≥ K2||∇F ||.

on condition 2) : For a twice continuously differentiable function (It is easy to verify that the ob-

jective function in (2.18) is twice continuously differentiable function.), Lipschitz Continuity con-

dition can be replaced with following simple condition: The set {x|F (x) ≤ c} must be bounded

for every c ∈ R. If we assume that Dmin = minimum(Dupb({Lk}Kk=1)) given {Pk}Kk=1. Then the

set {L|D(L)1 + D(L)upb2 ≤ c,Dmin ≤ c ≤ ∞} is bounded. For proving this lets assume that the
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set is not bounded, so at least one of Li goes to infinity (Li → ±∞), having this we can easily

show that Dupb2 → ±∞ (because D2
upb =

∑K
k=1 uk||gk||2 and ui → ±∞ when Li → ±∞, while

||gk||2 > 0) and that is a contradiction which leaves us with the result that the set is bounded.
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B.1 On one-bit MLE

For a homogeneous network, the likelihood function corresponding to one bit quantization is

L(θ) =
∑K

k=1 lnΦ(yk
θ
v(θ)

), where v(θ) =
√
θ2σ2

h + σ2
n and yk = sign(hkθ + nk). Therefore, the

one-bit MLE is θ̂ML= argmax
θ∈[−θmax,θmax]

L(θ). We have:

L̇(θ) =
∂L

∂θ
=

=la(θ)︷ ︸︸ ︷
σ2
n

v2(θ)
φ(

θ

v(θ)
)

=lb(θ)︷ ︸︸ ︷[
N+

Φ( θ
v(θ)

)
− N−

Φ( −θ
v(θ)

)

]
, (B.1)

where N+ and N− are number of +1’s and−1’s in all yk’s, respectively, and N++N−=K. Since

la(θ) > 0, the solution of lb(θ) = 0 is θ̂ML. However, in some cases this equation has no solution

in [−θmax, θmax] and L(θ) is strictly monotonic. One instance is when both multiplicative and

additive noises are very small, such that all yk’s are equal to +1 almost surely, i.e., N+ =K,N−=

0, and hence θ̂ML = θmax. This poor performance of MLE for low power noises is unintuitive.

Below, we provide an analytical explanation for this. Let Ps denote the probability of L(θ) being

strictly monotonic (i.e., the probability of lb(θ) > 0 ∨ lb(θ) < 0). We find:

Ps =

[
ΦK−q(

θ

v(θ)
) + ΦK−q(

−θ
v(θ)

)

]
(B.2)

×
q∑
i=0

(
Φi(

θ

v(θ)
)Φq−i(

−θ
v(θ)

)

)
,

where q =
⌊
Φ( −θmax

v(θmax)
)
⌋

. Interestingly, Ps is an even function of |θ|
σn

and can get very close to one,

plot of Ps versus |θ|
σn

is depicted in Fig. B.1. In fact, when |θ|
σn

is large enough MLE becomes

independent of yk’s and realization of θ, i.e., θ̂ML = ±θmax, leading to poor estimation perfor-

mance. The larger is the dynamic range of θ (compared with σ2
n), the larger is the estimation error

of one-bit MLE.
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Figure B.1: Ps with σ2
n = 1, θmax = 5

When PDF of θ is known a priori, MAP can be used instead of MLE, where θ̂MAP =argmax[L(θ)+

ln(σ−1
θ φ( θ

σθ
))], i.e., θ̂MAP is the solution of L̇(θ) = θ

σ2
θ
. As we discussed before, in some cases L̇(θ)

becomes almost independent of yk’s and realization of θ, leading to poor estimation performance.

Figs. B.2.a and B.2.b depict Mont Carlo averages of θ̂ML and θ̂MAP versus realizations of θ for

σ2
n=1, σ2

h=0.1, 1, K=5, 50. These figures show that as the realization of θ becomes large enough,

the estimates become more inaccurate, i.e., θ̂ML approaches ±θmax and θ̂MAP gets independent of

θ realization, and is determined1 by σ2
θ , σ2

h, K, causing severe estimation errors.

1In contrast to θ̂ML, our simulations suggest, provided that θmax > 3σθ, θ̂MAP does not depend on θmax in these
cases.
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Figure B.2: θ̂ML and θ̂MAP vs. realizations of θ
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B.2 Fisher information for non Gaussian Multiplicative Noise

• Uniform distribution: Suppose hk’s are uniformly distributed with unit mean and variance σ2
hk

,

i.e hk ∼ U(ak, bk) with ak + bk = 2 and (bk−ak)2 = 12σ2
hk

. Consider xk = hkθ+nk, conditioned

on θ, has the following PDF:

fxk|θ(x|θ) =


Φ(

x−akθ
σnk

)−Φ(
x−bkθ
σnk

)

θ(bk−ak)
, if θ 6= 0

1
σnk

φ( x
σnk

), if θ = 0

Thus we can follow:

sUk,i(θ) = p{ζk,i ≤ xk ≤ ζk,i+1|θ} =

∫ ζk,i+1

ζk,i

f(xk|θ)dxk ,

where ζk,i = mk,i − ∆k

2
and ζk,i+1 = mk,i + ∆k

2
. Using normal integrals in [173] we can write

sUk,i(θ) as following:

sUk,i(θ) =



σnk
θ(bk−ak)

[Ψ(ζak,i+1, ζ
a
k,i)−Ψ(ζbk,i+1, ζ

b
k,i)+

ψ(ζak,i+1, ζ
b
k,i+1)− ψ(ζak,i, ζ

b
k,i)], if θ 6= 0

Φ(
ζk,i+1

σnk
)− Φ(

ζk,i
σnk

), if θ = 0

,

where ζak,i(θ) = ζak,i =
ζk,i−akθ
σnk

, ζbk,i(θ) = ζbk,i =
ζk,i−bkθ
σnk

and Ψ(y, z) = yΦ(y) − zΦ(z) and

ψ(y, z) = φ(y)− φ(z).

• Laplace distribution: Suppose hk’s have Laplace distributions with unit mean and scale parameter

of b (variance of hk is σ2
hk

= 2b2), i.e fhk(x) = 1
2b
e
−|x−1|

b , consider xk = hkθ+ nk, conditioned on
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θ, has the following PDF:

fxk|θ(x|θ) =


e
x−θ
|θ|b Φ(− x−θ

σnk
+νk)+e

−x−θ|θ|b Φ( x−θ
σnk

+νk)

2|θ|b e−
ν2
k
2

, if θ 6= 0

1
σnk

φ( x
σnk

), if θ = 0

,

where νk = −σnk
|θ|b . Using the integrals in [173] we can obtain:

sLk,i(θ) = p{ζk,i ≤ xk ≤ ζk,i+1|θ} =

Ω(ζ′k,i,ζ
′
k,i+1,νk)−Ω(−ζ′k,i,−ζ

′
k,i+1,νk)

2 e−
ν2
k
2

+

Φ(ζ ′k,i+1)− Φ(ζ ′k,i), if θ 6= 0

Φ(
ζk,i+1

σnk
)− Φ(

ζk,i
σnk

), if θ = 0

,

where Ω(y, z, t) = etyΦ(y + t)− etzΦ(z + t), and ζ ′k,i =
ζk,i−θ
σnk

.
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C.1 µ(t) and µq(t) are even functions of t

• on µ(t):

Note that C(t) in (5.7) is an even function. For the integral in (5.7) we substitute θ = −θ′ and

replace t with −t, then we have: σ′20 = θ′2σ2
h + σ2

n , σ′2t = (−θ′ − t)2σ2
h + σ2

n = (θ′ + t)2σ2
h + σ2

n

and

∫ ∞
−∞

( √
σ′20 σ

2
t

σ′20 + σ′2t

)K
2

e
− (−θ′−0.5t)2

2σ2
θ

− Kt2

4(σ′20 +σ′2t ) dθ′ =

∫ ∞
−∞

(√
σ2

0σ
2
t

σ2
0 + σ2

t

)K
2

e
− (θ+0.5t)2

2σ2
θ

− Kt2

4(σ20+σ
2
t ) dθ , (C.1)

the equality in (C.1) is axiomatic with substituting θ′ = θ.

• on µq(t):

Noting that: (i) Φ(−α) = 1 − Φ(α), (ii) quantizer boundaries are symmetric around zero, i.e.,

ζi = −ζM+2−i for i ∈ {1, ...,M + 1}. it is easy to verify following:

[Pi(θ)P
′
i ]|t=−tθ=−θ′ = [Pi(θ)Pi(θ + t)]|t=−tθ=−θ′ = Pi(θ

′)P ′i ,

thus replacing t with −t and changing the integration variable from θ to −θ′ in (5.28) one can

verify µq(−t) = µq(t).
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C.2 Proof for lemma 8

The MMSE estimator of θ can be written as following:

θ̂MMSE(x, σ2
h) =

q(x, σ2
h)

p(x, σ2
h)
, (C.2)

where q(x, σ2
h) and p(x, σ2

h) (the joint distribution observation vector x), are formulated as follow-

ing:

p(x, σ2
h) =

+∞∫
−∞

p(x|θ)p(θ)dθ =

1√
(2π)K+1σ2

θ

+∞∫
−∞

e
− ||x−1θ||2

2v(θ2)
− θ2

2σ2
θ

v(θ2)
K
2

dθ ,

q(x, σ2
h) =

+∞∫
−∞

θp(x|θ)p(θ)dθ =

1√
(2π)K+1σ2

θ

+∞∫
−∞

θe
− ||x−1θ||2

2v(θ2)
− θ2

2σ2
θ

v(θ2)
K
2

dθ ,

where v(θ2) = θ2σ2
h + σ2

n . The partial derivative of the estimator in (C.2) with respect to σ2
h can

be written as following:
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∂θ̂MMSE(x, σ2
h)

∂σ2
h

=

∂q(x,σ2
h)

∂σ2
h
p(x, σ2

h)−
∂p(x,σ2

h)

∂σ2
h
q(x, σ2

h)

(p(x, σ2
h))

2
. (C.3)

It is easy to derive the partial derivatives in (C.3) as following:

∂p(x, σ2
h)

∂σ2
h

=
1√

(2π)K+1σ2
θ

×

+∞∫
−∞

θ2e
− ||x−1θ||2

2v(θ2)
− θ2

2σ2
θ (||x− 1θ||2 −Kv(θ))

v(θ2)
K
2

dθ ,

∂q(x, σ2
h)

∂σ2
h

=
1√

(2π)K+1σ2
θ

×

+∞∫
−∞

θ3e
− ||x−1θ||2

2v(θ2)
− θ2

2σ2
θ (||x− 1θ||2 −Kv(θ))

v(θ2)
K
2

dθ. (C.4)

Changing the variables for integration in (C.4) as θ = −θ′ and replacing x = −x one can verify

that :

p(−x, σ2
h) = p(x, σ2

h), q(−x, σ2
h) = −q(x, σ2

h),

∂p(−x, σ2
h)

∂σ2
h

=
∂p(x, σ2

h)

∂σ2
h

,
∂q(−x, σ2

h)

∂σ2
h

= −∂q(x, σ
2
h)

∂σ2
h

. (C.5)
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Based on (C.5) it is easy to verify that:

∂θ̂MMSE(−x, σ2
h)

∂σ2
h

p(−x, σ2
h) = −∂θ̂MMSE(x, σ2

h)

∂σ2
h

p(x, σ2
h),

then we can continue:

Ex{
∂θ̂MMSE(x, σ2

h)

∂σ2
h

} =

∫
Ω

∂θ̂MMSE(x, σ2
h)

∂σ2
h

p(x, σ2
h)dx

=
(a)
−
∫

Ω

(−1)2K ∂θ̂MMSE(x, σ2
h)

∂σ2
h

p(x, σ2
h)dx , (C.6)

where (a) is established with changing the integration variable as x = −x. Based on the equality

in (C.6) we can easily conclude that Ex{
∂θ̂MMSE(x,σ2

h)

∂σ2
h

} = 0. �

C.3 Derivation of MLE for σ2
h in (5.25)

Writing the ML function of σ2
h for model in (5.1) and taking the derivative of that w.r.s to σ2

h and

equaling that to zero yields following solution for MLE of σ2
h:

σ̂2
hML =

V̄ − σ2
n

θ2
− 2S̄

θ
+ 1, (C.7)

doing the same for finding the MLE of θ we reach following equation, where its zero that maximize

the likelihood function is the MLE of θ:

σ4
h θ

3 + S̄σ2
h θ

2 + (θ2σ2
h + σ2

n − V̄ σ2
h)θ − S̄σ2

n = 0. (C.8)
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Jointly solving (C.7) and (C.8) we obtain following equation (the equation in (5.25)), where it’s

positive zero is the MLE for σ2
h:

θ3 − 3S̄θ2 + (2S̄2 + V̄ )θ − S̄ × V̄ = 0.
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