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ABSTRACT 

A unified study on the hot carrier reliability of the Pseudomorphic High Electron 

Mobility Transistor (PHEMT) is carried out through Sentaurus Device Simulation, measurement, 

and physical analyses. A trade study of devices with four various geometries are evaluated for 

DC and RF performance. The trade-off of DC I-V characteristics, transconductance, and RF 

parameters versus hot carrier induced gate current is assessed for each device. Ambient 

temperature variation is also evaluated to observe its impact on hot carrier effects. 

A commercial grade PHEMT is then evaluated and measured to demonstrate the 

performance degradation that occurs after a period of operation in an accelerated stress regime—

one hour of high drain voltage, low drain current stress. This stress regime and normal operation 

regime are then modeled through Sentaurus. Output characteristics are shown along with stress 

mechanisms within the device. 

Lastly, a means of simulating a PHEMT post-stress is introduced. The approach taken 

accounts for the activation of dopants near the channel. Post-stress simulation results of DC and 

RF performance are then investigated. 
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CHAPTER 1: INTRODUCTION 

The Pseudomorphic High Electron Mobility Transistor (PHEMT) has established itself as 

a high performance transistor for today’s wireless handsets and military RF (Radio Frequency) 

communication systems. The inherent structure of the PHEMT permits low noise, low on-

resistance, high power, and high frequency operation [1]. 

The reliability of the PHEMT is a subject matter that has been studied by several authors, 

[2-9] and continues to be important due to the high demands of military and commercial 

applications for low power consumption, high efficiency and superb performance, for the 

duration of the use of these devices. It is therefore important to understand the physical 

mechanisms involved behind the reliability of PHEMT devices. 

It is within the scope of this work to cover reliability from various stand points. Two 

popular methods of evaluating reliability include high temperature and high electrical stress, 

including temperatures up to 150 degrees Celsius as well as large DC biases and large RF 

signals. The purpose of this work is to expose the physical behavior and output characteristics of 

stress, through device modeling of arbitrarily designed PHEMT devices, and observe the 

behavior from a reliability point of view. 

The stresses that will be analyzed will correlate to various DC bias points. Output 

characteristics will be observed in terms of DC voltages and currents. In order to investigate the 

physical behavior, cross sections of the PHEMT at corresponding DC bias points and 

temperatures will be observed, through Sentaurus TCAD (Technology Computer Aided Design). 

Furthermore, RF parameters, including small signal parameters (S-parameters), will be measured 

against reliability. Mechanisms for reliability will be analyzed and assessed throughout. 
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Motivation 

To reiterate, the goal of this work is to analyze and evaluate the PHEMT for DC and RF 

performance and for reliability. Using an understanding of reliability from several sources [1-9], 

a unified study on the reliability of the PHEMT is put forth. Specifically, reliability will be 

assessed in terms of DC stress only, not large signal RF stress. More so, it is highly important to 

observe the physical stress mechanisms within the PHEMT to help one assess its true reliability. 

Method of Analysis 

TCAD device simulation, mixed-mode simulation, and measurements are carried out in 

this study. Simulations and measurements separately provide quantitative, definitive results. 

Correlating measurements to simulation are done on a relative scale (without exact matching). 

The following methodology is takes place throughout this work: Chapter 2 introduces the 

PHEMT and its basics; Chapter 3 addresses the reliability concerns of the PHEMT; Chapter 4 

describes the simulation of the PHEMT through Sentaurus TCAD, and showcases the physical 

mechanisms involved in hot carrier reliability, including ambient temperature effects, as well; 

Chapter 5 introduces a trade-study of several devices to show how geometry changes can affect 

DC and RF performance and reliability; Chapter 6 describes and analyzes an experiment used to 

show the effects of DC stress on a PHEMT’s DC characteristics and RF characteristics. A 

simulation is then performed to exhibit what a stressed device may observe versus and device 

operating in so-called ―normal‖ mode; In Chapter 7, a simulation of post-stress is introduced. 

This is based on the physical outputs observed from a stressed PHEMT, consistent with the 

measurements found in Chapter 6 as well as other groups’ findings. Chapter 8 summarizes the 

work and suggests future work for this topic.  
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CHAPTER 2: PHEMT BASICS 

In order to gain an understanding, a brief review of PHEMT device physics and operation 

is presented here. The strength of a PHEMT is its ―high electron mobility.‖ While high doping 

provides high amounts of carriers, it also causes plenty of scattering/friction forces, thus 

offsetting the increase of mobility. The PHEMT solves the problem of MESFETS (Metal 

Semiconductor Field Effect Transistor) (plagued by high doping effects) by introducing a high 

electron concentration in the channel without high dopants. The result is little scattering/friction 

along with high mobility. 

Gate control is achieved through a shottky barrier, interfacing with the epitaxial structure 

of the PHEMT (similar to a MESFET). This metal-semiconductor contact produces a depletion 

region which extends deep into the device to a point that is determined by the doping, the depth 

between the shottky interface and the channel, and the gate bias. Designing accordingly produces 

a desired threshold voltage. 

Drain and source contacts are made through high doping of silicon or other dopants. 

Note, that in the TCAD simulations used in this study the metal contacts extend deep into the 

channel, only to permit ohmic contact (see Chapter 4). 

Other characteristics include a passivation layer using an oxide such as Si3N4, and a 

substrate and spacer material. In the case of this study, GaAs is the substrate material and 

AlGaAs is the spacer material.  
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Device Structure 

Figure 1 shows a basic PHEMT structure. It is comprised of a GaAs susbtrate, an InGaAs 

channel, AlGaAs setback (undoped) and spacer (doped) layer, and GaAs cap/access region layer. 

It is passivated with Si3N4. The doping of each layer, shown is consistent with the TCAD 

simulations introduced in Chapter 4. 

 
Figure 1: Basic PHEMT structure 
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Notice that the structure of Figure 1 is symmetrical. This is not always the case, but 

throughout this study will be evaluated in such a manner. Particularly, during the trade-study of 

devices (Chapter 5), each geometry change will be a symmetrical one. 

 
Figure 2: Bandgap diagram of PHEMT 

Figure 2 above shows the bandgap diagram associated with the materials implemented in 

a PHEMT, from the metal gate (leftmost side) to the GaAs substrate (rightmost side). Based on 

this structure, a heterojunction is formed between the AlGaAs (undoped) layer and the InGaAs 

layer, which forms a two-dimensional electron gas (2DEG). This 2DEG is a layer of high 

electron concentration and no doping (ideally). The lattice mismatch between InGaAs and 

AlGaAs, in fact creates a higher density of electrons for a given space [1]. 



6 

 

 

 
Figure 3: Large signal equivalent circuit 

The PHEMT is not a perfect transistor, however. Figure 3 above shows the large signal 

equivalent circuit of the PHEMT. Parasitics exist that may degrade DC and high frequency 

performance. From [1], the effect of the parasitics are shown in Equations (2.1)-(2.5). 

                       (2.1) 

                      (2.2) 

                             (2.3) 
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     (2.4) 

                        (2.5) 

Through a device trade study in the following sections, one will observe the effect of 

geometry changes, as well as biasing conditions of the PHEMT. For example, as 

oxide/passivation size changes, capacitance could increase, resulting in a decrease of fT. In 

general, to achieve high universal performance, each of the aforementioned parasitics should be 

reduced (except for gmi—the intrinsic transconductance of the device). 
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CHAPTER 3: RELIABILITY CONCERNS OF THE PHEMT 

Due to the nature of the PHEMT structure, reliability concerns exist in terms of long term 

and short term repeatable performance. The PHEMT suffers from several well known ―flaws‖ in 

its design. This includes the following. (1) InGaAs’s small bandgap. This induces the first point 

of breakdown in the devices; (2) The AlGaAs spacer layer. This material is prone to DX traps 

which have been known to degrade DC performance and cause threshold voltage, VT, shifts [1-

8]; (3) The shottky interface: If an oxide is present in between the gate metal and AlGaAs spacer 

layer, charges may become trapped, causing VT shifts as well [2]. Additionally, metal 

interdiffusion (or gate metal sinking) may also occur if stressed to long. 

The first aspect, the InGaAs channel’s small bandgap raises the most concern, as this is 

the starting point of impact ionization. Impact ionization is caused by high electric fields that 

induce electron-hole pairs to be created which in turn create more electron hole pairs (an 

exponentially increasing process). 

Impact ionization is essentially the dominant mechanism behind the reliability of a 

PHEMT. This is due to the following: high sudden amounts of current, as well as expected (or 

unexpected) higher power dissipation, which may burn out a device. 

The high sudden amount of current merits discussion and has been the scope of many a 

researcher’s work [2-8]. This current arises from impact ionization due to a high drain voltage. 

The becomes composed with what has become known as ―hot carriers,‖ ―hot electrons,‖ or ―hot 

holes‖. The hot carriers are the ―offspring‖ of impact ionization and are cause for several types 

of degradation mechanisms, including the following: Gate current, negative charge removal 

(hole trapping in DX centers or hole compensation) in the AlGaAs spacer layer, trapping in the 
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passivation layer, and charge trapping at the interface of the gate shottky barrier and possible 

activation of planar dopants [5]. The last two have scantily been reported by other work. The rest 

have become well known mechanisms for degradation. 

Temperature reliability also raises another concern. A high temperature environment is 

known to degrade performance of electrical components in general, and immediately. The 

PHEMT fairs no differently. In this study, temperature is observed through self-heating and by 

adjusting the ambient temperature of the device in simulation. Its effect on DC stress is observed. 

It will be shown that higher temperatures in fact cause less hot carrier DC stress (whether it is 

due to self-heating or ambient temperature changes). 

Effects of Stress 

 Several authors have evaluated the reliability of the PHEMT through various stress 

techniques. This section briefly describes and reports the results observed by them. 

Depending on the specific type of PHEMT, bias points, and stress endured (along with 

the duration of the stress), hot carrier degradation can cause varying effects. This includes a 

negative shift in VT [2,5,7,8], a negative (horizontal) shift of the transconductance (gm) bell curve 

[2,5,8], a negative (vertical) peak shift of the gm bell curve [3,4], and a drain current increase 

[2,5,7,8]. 

On the other hand, a drain current decrease has also been reported [3-6], as well as an 

increase of the peak transconductance [7]. Canali et. al, even reports a device that shows no 

significant change whatsoever post stress (for their given stress condition) [7]. 

In this work, DC stress measurements are carried out and reported. They are consistent 

with some of the aforementioned authors’ findings [2,5,7,8]. Specifically, after a period of stress, 



10 

 

in high drain voltage (VDS) low drain current (IDS) (relative to normal operation), drain current is 

found to increase while S21 (small-signal gain) decreases, once the bias is returned back to the 

normal mode bias points (the initial pre-stress gate and drain voltages).  
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CHAPTER 4: EVALUATING THE PHEMT THROUGH TCAD 

Taking into account the reliability concerns addressed in the previous section, it is the 

scope of this work to evaluate the mechanisms involved in reliability. Through TCAD device 

simulation one can observe the following: impact ionization, hole current density, electron 

current density, and lattice temperature. These are the four essential mechanisms when 

evaluating expected reliability within a device and will be assessed in detail. 

Figure 4 shows the basic PHEMT structure used and simulated throughout this study. As 

can be seen, it contains all of the basic properties of the PHEMT, as shown in Figure 1, and 

possesses the same bandgap properties of Figure 2. The doping and mole fractions are listed. 

Note that just above the InGaAs channel, the AlGaAs layer is undoped—this is the setback layer 

and permits high mobility with little to no scattering effects from impurity dopants. 

 
Figure 4: PHEMT structure from TCAD 

Characterization of the PHEMT in TCAD 

In order to evaluate the PHEMT under DC conditions, Sentaurus Workbench permits a 

DC simulation. This includes IDS vs. VGS, used to obtain VT for a given VDS and a curve trace to 
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see a family of curves for IDS vs. VDS. Table 1 shows a list of the DC characteristics, including 

Ron, and two VT for this single PHEMT device. 

Table 1: Extracted DC values for a PHEMT from Sentaurus Workbench 

VTgm (V) VTi (V) RDSON (ohms) 

-0.944 ( VD=1.5 V ) -1.093 ( VD=1.5 V ) 0.056 

-0.983 ( VD=3 V ) -1.212 ( VD=3 V ) -- 

 

The device in Figure 4 was designed arbitrarily to achieve the shown threshold voltages. 

This was done through adjusting the depletion layer width of the shottky barrier, by choosing 

appropriate spacer doping and depth (between the gate and the InGaAs layer). 

Equations (4.1)-(4.4) describes the basic operation for a MESFET, which behaves 

identically to the PHEMT, where µn is the mobility of the channel, CS is the capacitance of the 

metal-semiconductor depletion region (similar to an oxide in a metal-oxide-semiconductor), W is 

the width of the device, VGS is the gate-source voltage applied to the gate, VOFF is the turn-off 

gate voltage, L is the channel length, Vbi is the built in potential of the shottky metal-

semiconductor interface (usually around 0.9V), Vpo is the pinchoff voltage of the channel, ΔEc is 

the conduction band energy, q is the elemental electron charge. ND is the doping (of the AlGaAs 

layer in this case) and d is the vertical distance from the gate to the channel. Notice that VOFF is 

dependent on both the spacing and doping of the AlGaAs layer. These equations will later help 

describe the physical change that occurs within a PHEMT after stress. 

                             (4.1) 

                            (4.2) 

                            (4.3) 
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                        (4.4) 

Simulations of the PHEMT 

The type of simulations that are performed for the single PHEMT include the following: 

DC curve trace (varying VGS and ramping VDS to observe the drain current) and a DC curve trace 

(same as above) with increasing temperatures. In the next section, multiple devices with varying 

geometries will be evaluated and compared to showcase impact ionization and hot carrier effects 

for similar biasings. 

RF performance for each of the devices at a similar drain voltage (6 volts) while 

sweeping VGS, will be evaluated through observing s-parameters, maximum stable gain (MSG), 

and maximum available gain (MAG). They will each be correlated to varying hot carrier effects 

for each bias point. This will introduce figure of merits based on gate (hole) current vs. MAG 

and MSG. 

These figures of merit could prove useful for device engineers and monolithic microwave 

integrated circuit (MMIC) designers, giving them a reliability measure, such as hot carriers 

versus immediate performance measure (S21, MSG, and/or MAG). 

Increasing Drain Voltage Stress for a Given Gate Voltage 

To first evaluate hot carrier stress on a PHEMT, a simple drain voltage sweep is 

performed for a set gate voltage. It is well known that as drain voltage increase, electric field 

within the device increases and causes impact ionization. This is the process where secondary 

electrons and holes gain enough energy to become free and in turn collide with other electron 

hole pairs, freeing even more electrons and holes. Figure 5 showcases this effect for an increase 

of drain-source voltages for 3, 6 and 9 volts at a gate-source bias of -0.8 volts. A cross section of 
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the device is shown at 9 volts (left) while the cutline to the right is shown to the right for each 

drain voltage (3 ,6 ,9)—for each case, as drain voltage increases, so does the height of the 

cutlines. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 5: Increasing drain voltage stress (VDS = 3 ,6 ,9 V) for a given gate bias (VGS = 

-0.8 V) showing (a) impact ionization, (b) hole current density, (c) electron current density, 

(d) lattice temperature. 

These plots showcase the physical mechanisms involved that determine reliability. Notice 

that as impact ionization increases, so does hole current (flowing towards the gate), electron 

current (flowing upwards and rightwards toward the drain). Recall the discussions of Chapter 3. 

As hole current increases, more DX traps become compensated by holes, causing VT shifts. 

Electrons become trapped in the passivation, shifting current behavior and performance. Also, 

lattice temperature increases. If the drain voltage is set to high, these ―hot carriers‖ can 

exponentially increase and burn out the device. 

Ambient Temperature Effects 

Any electronic device may become exposed to temperatures other than room temperature, 

such as in harsh fluctuating space environments, seen by satellites. It is the purpose of this work 

to observe what occurs within a PHEMT for a given bias, at various ambient temperatures, from 

a reliability point of view. 

Figure 6 shows the I-V characteristics of the PHEMT of Figure 4 for various 

temperatures (300K, 350K, and 400K). As the device becomes more ―on‖ (VGS increases), the 
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saturation current begins to decrease for a given temperature. Additionally, impact ionization 

decreases, causing less hot carriers, including gate hole current. 
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Figure 6: Ambient temperature effects on DC characteristics 

Figure 7 below shows the corresponding device cross sections and stress mechanisms at 

300K (left) and 400K (right) for VGS = -0.8 V and VDS = 6 V. Observe the decrease in electron 

current density, hole current density, and impact ionization. It can be said that DC stress at room 

temperatures provides worst-case conditions for hot-carrier reliability. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 7: Corresponding cross sections for VGS = -0.8 V and VDS = 6 V at ambient 

temperatures of 300K (left) and 400K (right) showing (a) electron current density, (b) hole 

current density, (c) impact ionization, and (d) lattice temperature. 
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CHAPTER 5: DEVICE TRADE STUDY 

After observing the physical mechanisms of a single device, it is the scope of this work to 

assess and attempt to improve the reliability of the PHEMT by adjusting its geometric properties. 

Figure 8 shows a PHEMT and indicates the device geometry change taking place. Table 2 

describes each of the TCAD structures that are implemented in this study.  

 
Figure 8: PHEMT adjusted for trade-study 

 

Table 2: List of TCAD PHEMT structures 

Device L_oxide (µm) X_length (µm) Notes 

D1 0.24 1.0 Base device 

D2 0.44 1.2 L_Oxide increase with X_length increase 

D3 0.24 0.8 X_Length decrease 

D4 0.44 0.8 L_Oxide increase with X_length decrease 

 

To evaluate reliability, the devices (D1 through D4) with different gate-drain lengths (cell 

pitches) and oxide/passivation lengths are simulated under DC operation. A certain geometry 
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will permit a higher ―breakdown voltage‖ and therefore should handle higher drain voltage 

before breakdown, i.e. generation of secondary hole and electron current, or hot carriers. The 

goal of this work is not to improve breakdown voltage, but to observe how a ―more reliable‖ 

device fairs under DC operation and RF operation versus a ―less reliable‖ device. ―Reliability‖ is 

analyzed in a vivid, qualitative manner and in a quantitative manner. Gate current will be used as 

a measure for evaluating hot carrier effects. Several authors have used gate current as a means 

for assessing breakdown in a device. Basically, a sudden increase of gate current (for a given 

VGS) is an indication of impact ionization within a PHEMT device [3]. 

 

 
Figure 9: Devices D1, D2, D3, D4 

Figure 9 shows the devices as simulated in Sentaurus. Notice the range in cell pitch and 

gate recess lengths (the depths remain the same). As used in Chapter 4, TCAD device cross 

sections will also be analyzed in the same manner so as to observe the distribution of hot holes, 

hot electrons, and impact ionization. 
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Observing Stress 

While stress is not simulated in this section, a fair prediction of which type of device may 

fair better can be made, from a reliability stand point. A post-stress device will be simulated in 

Chapter 7 based on measurements observed in Chapter 6 and one group’s observations and 

physical explanation [5]. 

The four devices of Figure 9, corresponding to Table 2, will each be evaluated for stress 

and DC and RF performance. Figure 10 shows the I-V curves for all of the devices. Observe the 

difference in current as well as corresponding on-resistance. The device with the largest cell-

pitch also observes the highest on resistance (as shown in the linear region of Figure 10(b)). 
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Figure 10: I-V characteristics of devices D1, D2, D3, and D4 for VGS = -1.2V, -0.8V, 

-0.4V, and 0 V showing (a) the high drain voltage region where impact ionization occurs 

and (b) a zoomed in view of the linear resistive region. 

Figure 11 shows IDS , gm, and IGS vs. VGS  for all of the devices. Observe the difference in 

drain current (at higher gate voltages), peak transconductance, and peak hole current. It is easily 

observed that the device with the highest peak transconductance also possesses the highest peak 

gate current (the reason for the peak in the gate current will be explained later). Furthermore, this 

suggests that at high drain voltages, the impact ionization current could very well contribute to 

the transconductance of a device. 
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Figure 11: Drain current, gate current, and transconductance versus gate-source 

voltage for VDS = 6 V 

 

 

 
Figure 12: Devices D1, D2, D3, D4-hole current density 

Figure 12 shows the hole current density for each of the devices. Notice that they 

correspond directly to the higher gate current as shown in Figure 11. This is the main 
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degradation mechanism that is responsible for the VT shifts and gm shifts, observed by authors 

and later in Chapter 6. A higher hole current density within the device would translate to higher 

expectation of a VT shift during operation for a given bias. Due to the DX traps becoming 

compensated by holes. 

 

 
Figure 13: Devices D1, D2, D3, D4-electron current density 

Figure 13 shows the electron current density, with focus on the gate-drain access region. 

Recall, that as electrons become trapped in this region, the electric field at the channel is 

decreased due to a shift of the electric field distribution. This is known as ―breakdown walkout.‖ 

It can be said that for a given bias and approximately the same drain current, the devices with 

higher electron density at the gate-drain access region would expect to see an increase in 

breakdown voltage throughout operating life. i.e. it is possible that the device will continue to 

degrade at a decreasing rate. 
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Figure 14: Devices D1, D2, D3, D4-impact ionization rate 

Figure 14 shows the impact ionization rates for each device. This is the mechanism 

responsible for secondary holes and electrons, from which gate current rapidly increases and 

gate-drain access region adjacent electrons increase as well. Observe that the peak of impact 

ionization is occurring just at/near the InGaAs channel region. This is due to the high population 

of electrons as well as the relatively small bandgap of InGaAs. 

Table 3 shows the peak impact ionization rates for each device. Notice the consistence in 

hole current as impact ionization increases. Impact ionization is directly dependent on the 

electric fields and electrostatic potentials within a device. It is shown that these are consistent as 

well. 
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Table 3: Impact ionization values for each device 

 D1 D2 D3 D4 

Impact Ionization (cm
-3

/s) 8.477×10
28 

8.200×10
28

 8.015×10
28

 7.938×10
28

 

Electric Field (V/cm) 564123 561646 548088 546538 

Electrostatic Potential (V) 3.61447 3.60027 3.5782 3.56938 

 

RF and S-parameters 

In this section, the trade-study is continued with a focus now on the RF parameters. The 

small signal RF performances of each device in this work are observed. This includes S21, MSG, 

MAG, fT, and fmax. 

Figure 15 shows the small signal gain, S21, of each of the devices for varying gate 

voltages, at a set drain voltage of 6 volts, and frequencies of 1 and 10 GHz. Observe the effect 

that frequency has on S21. D2, which shows a maximum gain at VGS = 0.7 V for 1 GHz, degrades 

the most as frequency hits 10 GHz. 

-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

VGS

 1 GHz

 10 GHz

 D1

 D2

 D3

 D4

S
1

1
 (

d
B

)

-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
 1 GHz

 10 GHz

 D1

 D2

 D3

 D4

S
2

2
 (

d
B

)

VGS  



26 

 

-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25
 1 GHz

 10 GHz

 D1

 D2

 D3

 D4

S
1

2
 (

d
B

)

VGS

-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
 1 GHz

 10 GHz

 D1

 D2

 D3

 D4

S
2

1
 (

d
B

)

VGS  
Figure 15: S-parameters of each device for 1 and 10 GHz at VDS = 6 V 

In an RF amplifier, whether it be a low noise amplifier or high power amplifier, high gain 

is a desirable characteristic. It is therefore worth evaluating the tradeoff between ―high gain 

capability‖ and ―reliability.‖ Two important values to an RF amplifier designer include 

maximum available gain (MAG) and maximum stable gain (MSG). Figure 16 shows this for 1 

and 10 GHz at VDS = 6 V for a range of VGS. 
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Figure 16: MAG and MSG at (a) 1 GHz and (b) 2GHz, and (c) corresponding DC 

gate current 

Summary of Device Trade Study 

One can deduce that the device (D1) with the highest hole current may not be as reliable 

(and consistent in performance) as the device with the lowest hole current (D4), for a large bias 
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range—due to DX traps and/or activation of planar dopants [5]. Furthermore, it is impressive to 

see that the most reliable device (D4) possesses highest maximum available gains (both MSG 

and MAG) at 1 GHz and 10 GHz, for the largest range of biasing. Table 4 summarizes the results 

of the trade study with a figure of merit for DC and RF characterization: gm/|IGS|, MAG/|IGS|, 

MSG/|IGS|. Choosing the bias point of VGS = -0.6 V and VDS = 6 V, each device observes it’s 

maximum gate (hole) current. From this trade study, an MMIC or device designer, can equally 

weigh gate current against desired performance, and assess according. Also, it appears that to 

achieve a wide bias range of low hole current, one must have a higher ratio of gate recess 

(vertical) distance to cell pitch (horizontal) (see Figure 17) [1]. 

Table 4: Summary of trade study exhibiting gm/IGS, MAG/IGS, and MSG/IGS at peak 

gate current (VGS = -0.6 V and VDS = 6 V)  

Freq. - - - 1 GHz 1 GHz 10 GHz 10 GHz 

Device gm (S) IGS max 
(Amperes) 

gm/|IGS| 
(S/Amperes) 

MAG/|IGS| 
(dB/Amperes) 

MSG/|IGS| 
(dB/Amperes) 

MAG/|IGS| 
(dB/Amperes) 

MSG/|IGS| 
(dB/Amperes) 

D1 5.64E-04 -1.24E-05 4.54E+01 3.94E+06 4.95E+06 3.83E+06 4.85E+06 
D2 5.62E-04 -1.20E-05 4.69E+01 4.97E+06 6.55E+06 5.05E+06 6.26E+06 
D3 5.37E-04 -1.10E-05 4.88E+01 4.86E+06 6.07E+06 4.78E+06 5.94E+06 
D4 5.22E-04 -1.04E-05 5.03E+01 6.87E+06 8.92E+06 7.03E+06 8.50E+06 

 

 
Figure 17: Geometry of the passivation layer of a PHEMT 
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CHAPTER 6: STRESS MEASUREMENT RESULTS AND ANALYSIS 

In order to gain a true understating of hot carrier effects, it is worthwhile to investigate 

the results of stressing a commercial grade PHEMT, used for handsets etc. A PHEMT device 

with evaluation board (power matched for 1.85 GHz), was provided courtesy of RFMD. A one 

hour stress scheme was implemented to observe it effect on DC and RF performance. Table 5 

describes the normal operation mode and the stress regime. A stress was introduced in the 

following way: high drain voltage and low drain current for one hour. 

Table 5: Normal operation and stress mode for experiment 

 VGG VDD IDD 

Operation mode  -0.43724 V  5.0568 V  423 mA 

Stress mode -0.9868 V  11.19 V  98 mA 

 

Figure 18 shows the evaluation board and device along with the measurement equipment. 

A brass block was shaped and mounted underneath the PCB for heat dissipation. A Rohde & 

Schwarz vector network analyzer was used for s-parameter measurements. The DC bias is 

provided by two power supplies for both gate and drain voltages (DK Precision and HP, 

respectively). Voltages were monitored by an HP digital multimeter, while drain current was 

digitally monitored by the HP supply. 
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Figure 18: PHEMT evaluation board and measurement setup 

 

Table 6 shows the DC characteristics measured throughout the experiment—before, 

during, and after stress. Notice that after the stress begins, the drain current, slowly decreases. 

This can be attributed to the ―breakdown walkout‖ effect from which hot electrons formed by 

impact ionization, enter the gate-drain access region oxide, causing a decrease in the peak 

electric field above the channel. The effect is that impact ionization is in fact decreasing with 

stress time. 
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Table 6: Log of stress measurement results – before, during and after stress 

Time (p.m.) VGG (V) VDD (V) IDD (mA) Notes 

7:41 -0.4372 5.056 399 Initial Test: operating point 

7:56 -0.4372 5.0565 399 15 minute burn-in 

7:59 -0.9868 11.19 98 Stress mode initialization (one hour) 

8:05 -0.9867 11.191 96  

8:11 -0.9867 11.191 95  

8:16 -0.9865 11.191 94  

8:22 -0.98667 11.191 93  

8:36 -0.986(67~73) 11.191 91  

9:00 -0.98672 11.191 90 End of stress 

9:08 -0.4372 2.93 398-399 Post-stress: Initial adjustment for same IDD 

9:12 -0.465 5.0561 397-398 Post-stress: Adjusted VGS to obtain pre-stress 
current, for same VDS 

9:14 -0.4642 5.0568 399  

9:30 -0.46426 5.0568 399  

9:33 -0.4372(4~8) 5.0568 422-423 Post-stress with same VGS and VDS as pre-stress 

9:38 0.4372(5~7) 5.0568 423 5 minute burn-in 

9:48 0.4372(29~32) 5.0568 423 15 minute burn-in 

 

Once the stress ends (9:00 p.m.), an attempt to bias the device to the original VGG and VDD 

is made by first biasing the gate, then by increasing the drain voltage. However, due to the stress, 

a higher current is now seen for the same VGG and VDD. At 9:12 p.m, the device is biased at the 

pre-stress VDD, but with VGG adjusted for the pre-stress IDD. Between 9:12 p.m and 9:30 p.m. it is 

shown that VGG had to be decreased (more negatively biased) to achieve the same pre-stress IDD 

and VDD. 

Lastly, between 9:38 p.m and 9:48 p.m. the device was biased to the original pre-stress 

VGG and VDD. The current was shown to increase by 24mA (6.015%). 
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Figure 19: S21 stress experiment results: (a) before and  after stress, biased at pre-

stress VGG and VDD, (b) before and  after stress, biased at pre-stress IDD and VDD, and (c) 

beginning and end of stress operation VGG and VDD, 

Figure 19 shows the S21 post-stress results, compared to the pre-stress results. Notice the 

downward shift of S21 in Figure 19(a). Despite the DC drain current increase, S21 gain has 

decreased. This can be attributed to the decrease of gm. In fact, gm and S21 are closely related 

through the following relationship: 

            .            (6.1) 

From Equation 6.1, it is expected that a decrease of gm would cause a decrease of S21. 

Figure 20 shows, qualitatively, what has occurred. Notice the leftward shift of the gm and IDS 

curves for a given VGS, V1. It is safely assumed that for this device, V1 lies to the right of the 

peak transconductance. Therefore, a leftward shift causes a decrease in gm, whereas if V1 had 

been to the left of the peak transconductance, gm and consequently S21 would have increased. 

Meanwhile, IDS increases regardless. 
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Figure 19(b) shows that the effect of stress can be nearly completely compensated by 

adjusting VGG so as to achieve the same IDD. In circuit operation, this would require a gate 

compensation circuit, adding an additional complexity. Figure 19(c) shows S21 at the beginning 

and end of the stress regime. Notice the slight decrease at frequencies nearing the peak S21 gain. 

 
Figure 20: Qualitative effect of hot carrier stress on drain current and 

transconductance 
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Simulation of the Stress Regime versus Normal Operation 

In order to gain physical insight into the mechanisms involved in the stress scheme versus 

the normal operation mode, two relative simulations were performed in Sentaurus. Figure 21 

shows the bias points of the two modes, showcasing the drain current and hole current for the 

specific gate and drain biases. 
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Figure 21: Simulation of stress mode (VDS = 10 V) versus normal mode (VDS = 5 V) 

Observing the two bias points, the idea is to show how the device is sustaining operation 

for the following conditions (as approximately implemented in the previously described 

experiment): IDS(stress mode) = 1/4 × IDS(normal operation) and VDS(stress mode) = 2 × VDS(normal operation). 

Specifically, VDS(stress mode) = 10 V and VDS(normal operation)= 5 V. 

Figure 22 below showcases the physical mechanism of both operating regimes. Notice 

that  the stress regimes sees a more negative gate voltage and therefore observes a lower electron 

current, lower temperature, even lower impact ionization, but higher hole current! This 
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introduces an important concept; hot hole current, i.e. gate current is dependent not only on VDS 

but also VGS. As VGS increases, the biasing begins to pull holes towards the gate through the 

shottky interface (similarly to a diode on the verge of becoming forward biased). 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 22: Simulation of stress regime versus normal operation showing (a) electron 

current density, (b) lattice temperature, (c) impact ionization, and (d) hole current density 

Note on Self-Heating 

As a device sustains high electric field and high current, it begins to self-heat. As current 

increases for a given drain voltage, self-heating increases and begins to affect an important 

aspect in regards to reliability, impact ionization. When temperature increases, impact ionization 

begins to decrease for a given drain voltage. 

The effect of self heating for a given drain voltage, with a sweeping gate voltage 

produces a dip in hole current. This is due to an increase in carriers along with an increase in 

lattice temperature, as shown in Figure 23. Observe that as IDS increases (by increasing VGS) the 

lattice temperature increases. Moreover, at a certain point, the lattice temperature begins to cause 

a decrease in impact ionization. This is the effect of self-heating. When ambient temperatures are 

changed, the effect is offset accordingly. 
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Figure 23: Self heating of the PHEMT, showing (a) IDS and IGS vs. VGS and the 

corresponding (b) lattice temperature and (c) impact ionization for VGS = -0.6 V (left) and - 

VGS = 0.3 V (right) at VDS = 6 V 
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CHAPTER 7: POST-STRESS SIMULATION AND RESULTS 

Several degradation mechanisms exist for the PHEMT. In this work, it is our interest to 

model the observed changes from measurements found in this work and measurements found 

from other authors [5,7]. This is done through implementing a physical change that is believed to 

occur after a PHEMT undergoes DC stress: The activation of planar dopants near and just above 

the channel [5]. 

The setback layer (between the 2DEG & delta doping) was given a doping of 3e17/cm
3
, 

6e17/cm
3
, 9e17/cm

3
, and 12e17/cm

3
 (it was previously undoped). This is the area closest to peak 

impact ionization and large hole currents. It is believed that these hot carrier stress mechanisms 

are responsible for ―activating‖ the planar doping just above the channel. 

First, observe the effect of this post-stress simulation on drain current and 

transconductance. Figure 24(a) shows the observed changes for IDS while Figure 24(b) shows the 

observed changes for gm. 
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(b) 

Figure 24: Simulation of post-stress effect on (a) IDS and (b) gm 

Observe the leftward shifts of the drain current and transconductance curve. This is a well 

known characteristic found after stress and was also seen in the post-stress measurement of 

Chapter 6. Figure 24(b) also shows a slight increase of peak transconductance. This is consistent 

with the findings of [5,7] and believed to be present in the measurements of Chapter 6 (note that 

gm was not physically measured). 

The IDS increase/shift and and peak gm increase/shift can be correlated to Equations (4.1)-

(4.4) (repeated here for convenience as Equations (7.1)-(7.4)). Since the effective doping, ND, is 

increasing, VOFF decreases (requires a more negative gate voltage to turn off). This causes an 

leftward shift and increase in ID for a given VGS and increase in the peak transonductance, gm, for 

a given VGS. 
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                             (7.1) 

                            (7.2) 

                            (7.3) 

                        (7.4) 

Next, observe the effect of post stress on fT and fmax, as shown in Figure 25. Recall 

Equations (2.3) and (2.4). The effect that post-stress has on transconductance, almost linearly 

transfers over to fT and fmax. This post-stress mechanism hence serves as a predictive indicator of 

what to expect for fT and fmax and can be attributed to the large signal model of the PHEMT (see 

Chapter 4). 

 

 

-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

10

15

20

25

30

35

40

45

50

55

VGS


f T

/f
Tf T

0.0

0.1

0.2

0.3

0.4

0.5

 stress 1

 stress 2

 stress 3

 stress 4

- - - - fresh

 
(a) 



42 

 

-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

40

60

80

100

120

140

160

 stress 1

 stress 2

 stress 3

 stress 4

- - - - fresh

f m
a

x

VGS

-0.4

-0.2

0.0


f m

a
x
/f

m
a

x

 
(b) 

Figure 25: Simulation of post-stress effect on (a) fT and (b) fmax 

 

 

To observe the effects of stress on RF performance (and transconductance), Figure 26 

and 27 show the stress deltas where ΔX/X = (Xstress - Xunstressed)/Xunstressed . 
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Figure 26: Post stress simulation of ΔIDS/IDS dependence for (a) Δgm/gm , (b) 

Δfmax/fmax ,and (c) ΔfT/fT 

Notice the variation, based on the bias points. As stress increases, and current increases, a 

given change of current will yield a linear change in gm, fmax and fT. 
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Figure 27: Post stress simulation of Δgm/gm dependence for (a) Δfmax/fmax ,and (b) 

ΔfT/fT. 

Similarly, for gm, notice the variation of Δfmax/fmax and ΔfT/fT in Figure 27. As stress 

increases, and gm changes (at a given VGS), it will yield a linear change in fmax and fT. This is 

expected. However, as frequency increases, this change is no longer linear for a given bias of VGS 

= -0.4 V, as shown in Figure 28. S21 is shown to not be linear dependent at VGS = -0.8 V, as 

frequency increases. 
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Figure 28: Post-stress simulation of Δgm/gm dependence for ΔS21/S21  
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CHAPTER 8: CONCLUSIONS 

 

Summary of Work 

In this work, a comprehensive and unified study has been carried out on the hot carrier 

reliability of the PHEMT. This included the following: (1) Investigation of hot carrier 

mechanisms; (2) Trade study of four various device geometries; (3) Ambient Temperature 

effects on stress; (4) Experimental measurements of stress and the observed effect on VT, IDS, and 

S21; (5) Simulation of a stress regime versus normal regime through TCAD; (6) Simulation of 

post stress for various levels of stress, as well as analysis and predictive effect on several 

parameters (IDS, gm, fT, and fmax). 

Future Work 

To facilitate a more applicable and hands-on study for industry, obtaining control of 

process and fabricating devices with various geometries would need to be in order. Further, it 

would be worthwhile to perform high power DC curve tracing measurements (to observe IGS, and 

gm directly from measurement). Also, large signal RF stress should be the next mechanism 

evaluated. 
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