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ABSTRACT 

Recognition and understanding of text in scene images is an important and challenging 

task. The importance can be seen in the context of tasks such as assisted navigation for the blind, 

providing directions to driverless cars, e.g. Google car, etc. Other applications include automated 

document archival services, mining text from images, and so on. The challenge comes from a 

variety of factors, like variable typefaces, uncontrolled imaging conditions, and various sources of 

noise corrupting the captured images. In this work, we study and address the fundamental problem 

of recognition of characters extracted from natural scene images, and contribute three holistic 

strategies to deal with this challenging task.  

Scene text recognition (STR) has been a known problem in computer vision and pattern 

recognition community for over two decades, and is still an active area of research owing to the 

fact that the recognition performance has still got a lot of room for improvement. Recognition of 

characters lies at the heart of STR and is a crucial component for a reliable STR system. Most of 

the current methods heavily rely on discriminative power of local features, such as histograms of 

oriented gradient (HoG), scale invariant feature transform (SIFT), shape contexts (SC), geometric 

blur (GB), etc. One of the problems with such methods is that the local features are rasterized in 

an ad hoc manner to get a single vector for subsequent use in recognition. This rearrangement of 

features clearly perturbs the spatial correlations that may carry crucial information vis-à-vis 

recognition. Moreover, such approaches, in general, do not take into account the rotational 

invariance property that often leads to failed recognition in cases where characters in scene images 
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do not occur in upright position. To eliminate this local feature dependency and the associated 

problems, we propose the following three holistic solutions:  

The first one is based on modelling character images of a class as a 3-mode tensor and then 

factoring it into a set of rank-1 matrices and the associated mixing coefficients. Each set of rank-

1 matrices spans the solution subspace of a specific image class and enables us to capture the 

required holistic signature for each character class along with the mixing coefficients associated 

with each character image. During recognition, we project each test image onto the candidate 

subspaces to derive its mixing coefficients, which are eventually used for final classification. 

The second approach we study in this work lets us form a novel holistic feature for 

character recognition based on active contour model, also known as snakes. Our feature vector is 

based on two variables, direction and distance, cumulatively traversed by each point as the initial 

circular contour evolves under the force field induced by the character image. The initial contour 

design in conjunction with cross-correlation based similarity metric enables us to account for 

rotational variance in the character image.  

Our third approach is based on modelling a 3-mode tensor via rotation of a single image. 

This is different from our tensor based approach described above in that we form the tensor using 

a single image instead of collecting a specific number of samples of a particular class. In this case, 

to generate a 3D image cube, we rotate an image through a predefined range of angles. This enables 

us to explicitly capture rotational variance and leads to better performance than various local 

approaches. 
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Finally, as an application, we use our holistic model to recognize word images extracted 

from natural scenes. Here we first use our novel word segmentation method based on image seam 

analysis to split a scene word into individual character images. We then apply our holistic model 

to recognize individual letters and use a spell-checker module to get the final word prediction.  

Throughout our work, we employ popular scene text datasets, like Chars74K-Font, 

Chars74K-Image, SVT, and ICDAR03, which include synthetic and natural image sets, to test the 

performance of our strategies. We compare results of our recognition models with several baseline 

methods and show comparable or better performance than several local feature-based methods 

justifying thus the importance of holistic strategies. 
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CHAPTER 1 
 

INTRODUCTION 

Scene text recognition (STR) is a natural extension to the well-established domain of 

document optical character recognition (OCR). While document OCR is almost a solved problem, 

its generalization, i.e. STR, is hard problem to solve. It has been an active area of research since 

early 2000s and still remains a challenge for pattern recognition community. Figures 1.1 and 1.2 

depict the difficulty associated with STR compared with document text recognition. 

 

 Figure 1.1: A typical document OCR system 

Although there are some partial solutions proposed by researchers over the years, the 

complex nature of the problem itself and the gap in performance compared with the human’s 

ability to recognize text, still propels interest in this domain. 
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 Figure 1.2: Scene text recognition system 
Source: End-to-end Scene Text Recognition (Wang et al., 2011) 

1.1 Problem Categories 

Natural scene text recognition is a challenging problem in computer vision, machine 

learning and image processing. Being a broad challenge and owing to the unique set of perspectives 

it can offer in terms of solutions, the problem has been conventionally broken up by the concerned 

research community into the following four sub problems: 

1. Cropped Character Recognition 

2. Cropped Word Recognition 

3. Scene Text Detection 

4. Full-image Scene Text Recognition 
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There is another related problem known as ‘word spotting’ proposed by (Wang et al., 2011) 

to recognize words in an image given a short lexicon pertaining to the image. Since the above 

mentioned problem areas present a broad scenario of research effort, in this dissertation we will 

explore the first two sub problems.  

We discuss our solutions to the cropped character recognition in Chapters 3 to 5. In Chapter 

7, we discuss our solution to the word recognition problem along with the aforementioned .word 

spotting problem. 

1.2 Motivation 

Our motivation to study character recognition in natural scene images comes from the 

following facts: 

1. STR is still an unsolved problem that has important applications  

2. Most current methods in STR rely on discriminative power of local features that are collected 

using complex processing and later rasterized in ad hoc manner. Moreover, rotations that 

commonly occur in scene characters are not generally taken care of. 

1.2.1 Importance of STR 

The importance of scene text recognition cannot be emphasized more given the application 

areas it can be utilized in. With the ubiquitous availability of digital cameras on mobile (handheld) 

devices, e.g. smartphones, there is a deluge of images that are taken by users on a daily basis. The 

image data floods online repositories. The question as to what can be done with such a humungous 
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information data arises naturally. One commercial aspect is the automated mining of such data for 

textual content. Other applications could be efficient image archival and image retrieval.  

Computer vision applications running on wearable devices, like glasses, are of tremendous 

interest. In the important domain of assisted navigation for visually impaired people, there are 

devices, e.g. OrCam† camera mounted on glasses etc., which could directly benefit from STR 

research. Other utilities of natural scene text recognition include and automatic reading of 

informational signs for automobile drivers or driverless cars, e.g. Google Car. 

1.2.2 Holistic Scene Character Recognition 

While STR community has mostly focused on solutions that are based on local feature 

descriptors, e.g. histogram of gradients (HoG), scale invariant feature transform (SIFT), shape 

contexts (SC), etc., we present a contrasting point of view: holistic features. The need for holistic 

solution arises from the fact that local features are collected via complex and computationally 

intensive means, e.g. sliding windows etc. Later on, these features are cast into a single vector 

through ad hoc rasterization that often perturbs local spatial correlations crucial for recognition 

task. Moreover, rotations in character images are generally ignored, thereby reducing the 

recognition performance. 

                                                 

† http://www.orcam.com 
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Our holistic solutions address these issues by avoiding ad hoc rasterization and taking care 

of image rotations. In Chapter 6, we discuss experiments that support our claim that holistic 

solutions are better than local feature based methods  

1.3 Scene Text Datasets 

The introduction of ICDAR03 reading competition (Lucas et al., 2003) and the associated 

dataset stirred up research interest in document recognition community and subsequently other 

researchers came forward and proposed their methods and/or datasets. For example (Weinman et 

al., 2009) used their sign reading dataset (WLM dataset), (de Campos et al., 2009) proposed 

Chars74K, and (Wang et al., 2011) came up with their Street View Text (SVT) dataset. More 

recently (Nagy et al., 2011) put forth NEOCR dataset and (Mishra et al, 2012a) proposed IIT5K 

dataset. 

As depicted in the Figures 1.3 and 1.4, which show sample images from popular natural 

scene text character datasets like Chars74K and ICDAR, the challenge for recognition is obvious. 

The images suffer from noise and exhibit low resolution, low contrast, variable typefaces, 

illumination effects, perspective distortions, and rotations. 
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 Figure 1.3 Sample images from different ICDAR & SVT datasets 

 

 

 Figure 1.4 Synthetic characters (top most row) from Chars74K-Font dataset, along with some 
random samples from Chars74K-Image 
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In the following we discuss the sources and some attributes of the popular STR datasets 

we used in our work. 

1.3.1 ICDAR03 Character Dataset 

The ICDAR03‡ robust character dataset contains 11,615 images of cropped scene 

characters and the dataset comes split into training and testing subsets. Characters have mostly 

been cropped from images of book titles, storefronts and signs and exhibit great variability in terms 

of resolution, contrast, illumination, color, etc. The test set has 5,340 images in total but those 

belonging to 62 classes (A-Z, a-z, and 0-9) are just 5,379. 

1.3.2 Chars74K Dataset 

As the name suggests, the Chars74K§ dataset originally has about seventy four thousand 

characters in two languages, English and Kannada. The English subset of Chars74K dataset, also 

known as Chars74-K-Img, consists of 12,503 characters. Characters have been cropped from 1,922 

images of advertisement signs and products from stores etc. This dataset doesn’t come split into 

training and testing sets, rather the authors give their proposed training and testing splits for 

comparison with their results. There is, however, a split between ‘GoodImg’ and ‘BadImg’ and as 

obvious from the names, the respective splits contain ‘good’ and less noisy (7,705 images) as well 

as ‘bad’ more noisy images (4,798 images) for a total of 12,503 images. 

                                                 

‡ http://www.iapr-tc11.org/mediawiki/index.php/ICDAR_2003_Robust_Reading_Competitions 
   
§ http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/ 
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The synthetic version of this dataset is known as Chars74K-Font consists of English 

alphabet generated in various typefaces for 62 character classes: ‘A’ to ‘Z’, ‘a’ to ‘z’, and digits 

‘0’ to ‘9’. The dataset consists of 62,992 images with 1,016 images per class. 

1.3.3 SVT-CHAR Dataset 

The SVT-CHAR dataset consists of 3,796 character images cut out and annotated by 

(Mishra et al., 2012) from cropped word images of the Street View Text (SVT) dataset. There is 

no training portion of SVT-CHAR and results are usually reported only using it as a test set. 

1.3.4 ICDAR03-Word Dataset 

The ICDAR03 word recognition test dataset contains 1,111 cropped images taken from a 

variety of sources: from indoor scenes, hallway signage, book covers, etc., to the outdoor signs 

and billboards. Researchers have used this dataset for both lexicon driven (word spotting) and 

general word recognition problems (sometimes called as open vocabulary word recognition). It is 

a challenging dataset and contains images with lot of noise, character distortions, occlusions, and 

low contrast. 

1.3.5 SVT Dataset 

The SVT** dataset consists of 647 words cropped from 250 scene images. The images are 

obtained from Google Street View and contain pictures of storefronts and other outdoor business 

                                                 

** http://vision.ucsd.edu/~kai/svt/ 
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signage. This, again, is a very challenging dataset and in additions to the usual noise and distortions 

in natural scene imagery, it also contains a lot of cropping artifacts which makes it harder to 

segment and recognize. 

 

 Figure 1.5: Sample images from SVT dataset for word recognition 

 

 Figure 1.6: Samples images from ICDAR03-Word test dataset 

1.4 Organization of the Dissertation 

The dissertation is organized as follows: Chapter 2 mentions the literature review relating 

to STR in general and scene character recognition in particular. We mention where our work fits 
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into the greater picture. Then in Chapter 3, we discuss our first strategy of holistic scene character 

recognition that is based on getting rank-1 tensor subspaces. Chapter 4 is devoted to our second 

holistic technique, which is based on evolving a circular active contour to get a novel feature 

vector. Chapter 5 is about making use of rank-1 decomposition of our image tensor which we form 

in a novel way from an individual character image. In Chapter 6, we compare our holistic approach 

with a popular local feature based approach, namely histogram of oriented gradients (HoG). We 

demonstrate through experiments that our method is better than HoG, especially when characters 

may appear in rotated positions.  

 As an application of our holistic recognition strategy, in Chapter 7 we experiment with the 

problem of word recognition in natural scene images. In this context, we propose a novel image 

word segmentation method based on image seam analysis. Our results show promise of better 

performance and justify our holistic character based recognition. 

 Finally, in Chapter 8 we conclude discussion of our contribution to the STR research and 

present prospects of future extensions and improvements. 
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CHAPTER 2 
 

RELATED WORK 

Since the introduction of ICDAR 2003 Robust Reading Competition and the associated 

challenge datasets (Lucas et al. 2003), the area of scene text recognition has seen an increase in 

research efforts to solve the various facets of the problem. Different solutions have been proposed 

for the sub-problems mentioned in Chapter 1. In the following, we take a chronological perspective 

of the development of several works in STR community, related specifically to scene character 

recognition (aka robust character recognition) and scene word recognition. 

Initially, some researchers integrated off-the-shelf OCR solutions to recognize characters 

segmented from natural scene images. (Chen and Yuille, 2004) used an adaptive version of 

Niblack’s binarization algorithm (Niblack, 1985) on the detected textual regions and then 

employed commercial OCRs for final recognition. Their reported results with a commercial OCR 

engine ABBYY (www.abbyy.com) were good for the dataset they had, which was especially 

collected from cameras mounted on blind people. However, later performance of ABBYY reported 

by (Wang and Belongie, 2010) and (de Campos et al., 2009) showed its limited utility on more 

challenging ICDAR and Chars74K datasets. 

Overall, the literature in natural scene character recognition is dominated by local feature-

based methods: These methods mainly focus on extracting a feature vector, e.g. a Histogram of 

oriented Gradients (HoG) (Dalal and Triggs, 2005) or some variant of it, from a character image 

and then using some classifier, e.g. Nearest Neighbor, SVM, Random Forests etc., to recognize 

the character. (de Campos et al., 2009) used various feature descriptors in addition to HoG, which 
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included Shape Contexts (SC), Scale Invariant Feature Transform (SIFT), Geometric Blur (GB), 

etc. in combination with bag-of-visual-words model. The results, however, showed a lot of room 

for improvement.  

(Donoser et al., 2008) used MSERs in conjunction with simple template matching to get 

initial character recognition results which were subsequently improved by exploiting web search 

engines to get final recognition results. (Weinman et al., 2009) used a probabilistic framework 

wherein they utilized Gabor filters in their similarity model to recognize characters in their dataset. 

(Smith et al, 2011) also used similarity constraints like (Wienman et al, 2009) but used a different 

approach to enforce the constraints via integer programming. (Wang and Belongie, 2010) showed 

better performance than (de Campos et al., 2009) by incorporating HoG features in conjunction 

with Nearest Neighbor classification.  

(Neumann and Matas, 2011) used maximally stable extremal regions (MSER) to create 

MSER mask and then got features along its boundary which they subsequently used in SVM for 

classification. (Mishra et al, 2012) used language cues in their hierarchical recognition scheme. 

(Yi et al, 2013) gave a thorough application of HoGs, both locally and globally, in conjunction 

with soft-assignment coding, max pooling, and SVMs to give better recognition performance. 

In addition to the above, unsupervised feature learning system has been proposed by 

(Coates et al., 2011) that utilizes a variant of K-means clustering to first build a dictionary then 

map all character images to a new representation in the dictionary. Unlike the methods mentioned 

above, their technique relied on using a lot of synthetic data to train their model.  
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The aforementioned methods rely, one way or the other, on ad hoc rasterization of feature 

vectors. We believe that using holistic methods would preserve the structural information of a 

character image which might be lost in rasterizing descriptors in a vector. In this context we put 

forth three holistic strategies.  

The first one is based on modelling character images as a 3-mode tensor and then factoring 

it into a set of rank-1 matrices and the associated mixing coefficients. Work on rank-1 

approximations of tensor has been extensively studied (Kolda and Bader, 2009) and has been 

applied to recognition tasks (face, action etc.) before, e.g. (Sun et al, 2011). However, its 

application to scene character recognition is novel and we draw upon the rank-1 tensor 

decomposition discussed in (Shashua and Levin, 2001) and modify it to adapt to the situation of 

scene character recognition.  

 The second approach we discuss in this work lets us form a novel holistic feature based on 

active contour model, also known as snakes. Active contour was proposed by (Kass et al, 1987) 

and mostly its application involved image segmentation and recognition. The use of active contour 

models in shape recognition is common but we are not aware of its application on scene text 

recognition. Motivated by our holistic feature paradigm, we constrain the shape of the initial 

contour to a circular design, which in conjunction with cross-correlation based similarity metric, 

enables us to account for rotational variance in the character image. The closest application to our 

method is (Yi and Tian, 2014) where the authors establish boundary points using discrete contour 

evolution during the process of finding character polygons as a first step in getting stroke 

configurations. Other than this, their approach quite different from ours.  
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Our third strategy is based on rank-1 tensor decomposition of a 3-mode image tensor. 

Compared with our first approach, this methods differs in the way we form tensor from a single 

image via rotation. The closest application to this is in (Tariq and Foroosh, 2015) where the authors 

use rank-1 decomposition for their image annotation problem. However, in their application, they 

discard the two spatial components of the factorization and retain just the temporal one. In our 

case, we retain the spatial components and use the holistic feature in image to class distance metric 

learning (I2CDML) framework for classification. 

Word recognition in natural scene images is a difficult problem. As mentioned in Chapter 

1, the problem has two aspects: word spotting (where a lexicon is provided for lookup) and the 

more general word recognition (also known as lexicon free or open vocabulary word recognition) 

For four to five years, researchers have come up with their ideas to solve both the versions of the 

problem by segmenting the input word image into individual characters. (Neumann and Matas, 

2011) used vertical projection profiles to get cues for possible character segments in their MSER 

based framework for word recognition. 

(Mishra et al., 2011) proposed an MRF model in an iterative graph cut framework to 

segment the foreground (text) from the background. (Field and Learned-Miller, 2012) proposed 

bilateral regression to segment and recognize words. Later, (Mishra et al., 2012a) used bottom up 

technique to segment word images along with top down cues from language models etc. to do the 

recognition task. 

We utilize and build upon the idea of image seams from content aware image resizing 

proposed in (Avidan and Shamir, 2007) to bring forth a novel segmentation technique for scene 
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word images. As part of the segmentation process, we recognize individual characters along the 

way. The final word recognition is then based on predicting the most probable word using the 

available spell checking system. Compared to more traditional approaches to segment characters, 

our method is quite simple yet efficient in that it doesn’t rely on sliding windows or other 

computational intensive modelling techniques, e.g. MRF model in (Mishra et al, 2011). 

In Chapters 3, 4, and 5, we discuss our holistic strategies in detail and provide its 

application to scene word recognition in Chapter 7. 
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CHAPTER 3 
 

RECOGNITION USING TENSOR SUBSPACE PROJECTION 

In this chapter we discuss our first holistic strategy based on getting rank-1 approximations 

of the character images stacked up in a 3-mode tensor. The rank-1 approximation of a 3-way tensor, 

e.g. an image cube or an action video, has been shown to be effective in image coding and face 

recognition in (Shashua and Levin, 2001). (Sun et al., 2011) have used it for action recognition. 

This chapter is based on our work that was published in the proceedings of the International 

Conference on Computer Vision Theory & Applications (VISAPP†† 2015). In the following 

sections, we start off with a brief discussion of tensor representation and rank-1 approximation of 

a 3-mode tensor and then give its novel application to our scene character recognition problem.  

3.1 Tensor Rank Problem 

Consider a set of character images {𝐴𝐴𝑖𝑖}, where 𝑖𝑖 = 1, … , 𝑑𝑑3 and the dimensions of images 

be 𝑑𝑑1× 𝑑𝑑2. Let the images be stacked together as slices of a tensor 𝑇𝑇 whose elements are 𝑇𝑇𝑔𝑔,ℎ,𝑖𝑖, 

where 𝑔𝑔 = 1, … ,𝑑𝑑1 & ℎ = 1, … , 𝑑𝑑2. 

The following expresses tensor 𝑇𝑇 as the sum of 𝑘𝑘 rank-1 tensors: 

𝑇𝑇 =  ∑ λ𝑚𝑚⊗ 𝑢𝑢𝑚𝑚⊗ 𝑣𝑣𝑚𝑚𝑘𝑘
𝑚𝑚=1      (3.1) 

                                                 

†† http://www.visapp.visigrapp.com 
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where 𝑢𝑢, 𝑣𝑣  are the basis vectors and λ represents the mixing coefficients. The problem of 

determining the smallest 𝑘𝑘 for which Equation 3.1 holds is called the tensor rank problem.  Figure 

3.1 illustrates the concept of rank-1 decomposition of T. For two-image tensor, polynomial time 

algorithms are available for low rank factorization. However, when the number of slices (or images 

in our case) of T are more than ‘2’ the problem of finding such a superposition of low rank tensors 

is NP-hard (Hazan et al., 2005). Various algorithms have been proposed to get the rank-1 factors 

of a multi-image (number of images >2) tensor depending upon how the solution space is 

constrained. For example, High-Order SVD (HOSVD) (Xianqian and Sidiropoulos, 2001) 

enforces orthogonality constraints among the basis vectors to get the higher order spectral 

decomposition. (Shashua and Levin, 2001) give algorithms to the effect of getting desirable SVD 

like extension to the multi-image tensor decomposition. 

 

 Figure 3.1: An image cube expressed as the sum of 'k' rank-1 matrices 
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3.2 Getting Rank-1 Matrices for an Image Tensor 

We modify the greedy algorithm given in (Shashua and Levin, 2001) to get the rank-1 

matrices of scene character image tensors. The iterative algorithm solves the following 

minimization problem to get the desired unit vectors (rank-1 elements) 𝑢𝑢𝑣𝑣𝑇𝑇 and the mixing scalar 

vector [λ1,…..,λp] associated with each image. 

∑ ‖𝐴𝐴𝑖𝑖 − λ𝑖𝑖𝑢𝑢𝑣𝑣𝑇𝑇‖𝐹𝐹2
𝑝𝑝
𝑖𝑖=1      (3.2) 

where 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑝𝑝 is the given set of images. The steps are summarized below: 

1. Create the matrix 𝑆𝑆 = ∑ 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖𝑇𝑇
𝑝𝑝
𝑖𝑖=1 and find the eigenvector corresponding to the largest 

eigenvalue. This becomes the unit vector 𝑢𝑢 and captures the spatial redundancy in the image set 

2. Using 𝑢𝑢 from above, get the eigenvector 𝑣𝑣 corresponding to the largest eigenvalue of the matrix 

𝑀𝑀𝑀𝑀𝑇𝑇, where the columns of 𝑀𝑀 are𝐴𝐴𝑖𝑖𝑇𝑇𝑢𝑢. Hence v captures the temporal aspect of character images, 

e.g. font variations etc. 

3. Next, find the scalar λ𝑖𝑖 associated with each image as the inner product: 𝑣𝑣𝑇𝑇𝐴𝐴𝑖𝑖𝑇𝑇𝑢𝑢 

4. Compute the residual image as: 

 𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖 − λ𝑖𝑖𝑢𝑢𝑣𝑣𝑇𝑇, replace it with the original image in the set and repeat the above steps until 

stopping criterion is met 

(Shashua and Levin, 2001) do iterative refinement of the vectors 𝑢𝑢 and 𝑣𝑣 in steps 1 and 2 

respectively, around the initially estimated location before computing the mixing scalar 
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coefficients. We avoid this because we empirically found that it exacerbates noise in scene 

character images and results in performance reduction. 

The stopping criteria in step 4 could be the residual falling below a specified threshold or 

pre-specifying the number of rank-1 elements. We use the latter one and the impact of it on 

performance is further discussed in Section 3.5.3. 

3.3 Recognition Framework for Rank-1 Tensor Subspace Projection 

Our framework for scene character recognition, as depicted in Figure 3.2, starts with 

preprocessing images, followed by tensor decomposition to extract ‘k’ rank-1 basis matrices that 

span the training images, projecting test images in each character class (subspace), and finally 

classifying the test image using inner product of mixing scalar vectors as a similarity measure. 

 

 Figure 3.2: Recognition framework based on rank-1 tensor subspace projection 
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3.3.1 Image Segmentation 

The cropped character images from natural scene datasets contain a lot of non-character 

structures and imperfect cropping artefacts that makes it difficult to effectively capture typeface 

and shape variations. Since the focus of our work is to demonstrate effectiveness of holistic 

recognition framework based on rank-1 tensor decomposition, we preprocess each image in 

training and testing sets to keep the images as noise free as possible. To this end we adopt 

binarization for image segmentation to reduce noise and extract, possibly only, character 

structures. This somehow lets us isolate the classification problem from the binarization problem. 

Binarization has been used before to segment textual information from natural scene 

images, e.g. see (Chen and Yuille, 2004), (Mishra et al. 2011), (Kita and Wakahara, 2010), (Field 

and Learned-Miller, 2013). Binarization of natural scene character images is a challenging 

problem in its own right. Therefore, for the purpose of this work, we employ a simple and novel 

combination of the methods of (Yokobayashi and Wakahara, 2005) and (Otsu, 1979) in an effort 

to segment each image to get textual foreground (in white). Using these methods, we get both the 

binary image and its inverted version (four images in total). For these binary images, we then 

perform a connected component analysis based on the observation that cropped characters mostly 

fall in the middle of the image. We consider any small pixel group as noise if its size is less than a 

small fraction (<5%) of the size of the largest central connected component. 
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 Figure 3.3: Sample segmentation of scene character images 

3.3.2 Size Normalization and Image Selection 

We then normalize each image following a convex-hull based method given by D’Errico‡‡. 

The intuition is the fact that convex hull contains an edge of a rectangle that bounds an image. We 

find the one that has the least perimeter. We then try to make the image upright by rotating the 

bounding rectangle so that its major axis is vertical. This somehow corrects the slant in the input 

image. Following this, we resize the image to 32 × 32 pixels. 

The four binary images from the above steps contain a potential candidate that we select 

as a correct binary image. In the case of training, we use a reference image of a class to decide on 

the correct binary image. The reference image we use is a character (for each class) in Arial font 

(more on this choice in section 3.4.3) centered in the image using ImageMagick§§. To get the 

‘correctly’ binarized image, we subtract each binary image from the reference image and pick the 

                                                 

‡‡ http://www.mathworks.com.au/matlabcentral/fileexchange/34767. Last visited: 10 December 2014 
§§ http://www.imagemagick.org 
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one with the least Frobenius norm. For testing we simply check segmentation for all reference 

images and select the one with the least Frobenius norm. Some results of preprocessing steps are 

shown in Figure 3.3. 

3.3.3 Training 

For training, we stack the preprocessed images belonging to each character class to form a 

mode-3 tensor. For each tensor we then apply rank-1 decomposition with a specified number of 

rank-1 matrices and we keep this number same across all the classes. Hence, the output of training 

is the specified number of rank-1 matrices that form the subspace basis for each class along with 

a set of scalar coefficients yielding the mixing vector for each image in that class. Figure 3.2 top 

part illustrates the training process. The sensitivity of number of rank-1 elements to the accuracy 

on test data is discussed in Section 3.4.3 

3.3.4 Classification 

To classify a test image, we first preprocess it and then project it onto the rank-1 subspace 

of each character class. The projection here means to get inner product between the rank-1 factors 

and the test image to get the mixing coefficients by the expression: λ𝑖𝑖 = 𝑣𝑣𝑇𝑇𝐴𝐴𝑖𝑖𝑇𝑇𝑢𝑢; where λ𝑖𝑖 is the 

ith mixing coefficient and 𝐴𝐴𝑖𝑖 is the corresponding residual image. 

When  𝑖𝑖 = 1, 𝐴𝐴𝑖𝑖 = given test image. For  𝑖𝑖 ≥ 2,  𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖−1 − λ𝑖𝑖−1𝑢𝑢𝑣𝑣𝑇𝑇. In this way, we get 

62 vectors for each test image (one per each class). We then measure similarity of each test vector 

using the inner product with the training vectors of each class and record the maximum. The final 
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classification is given by taking the maximum over all classes. The process is illustrated in the 

bottom part of Figure 3.2. 

3.3.5 Computational Complexity 

At each step of the algorithm, we are dealing with 𝑆𝑆 samples of an image class, where each 

image is normalized to be 𝑛𝑛 × 𝑛𝑛 pixels. Creating self-similarity matrix 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖𝑇𝑇 is the most 

computationally extensive step in the algorithm that requires 𝑂𝑂(𝑛𝑛3) operations, where 𝐴𝐴𝑖𝑖 ∈ 𝑆𝑆.The 

algorithm then iteratively computes 𝐾𝐾 rank-1 elements for each class, which, depending upon the 

underlying implementation of the Eigen decomposition, would need 𝑂𝑂(𝑛𝑛3) in the worst case. 

Being greedy, the algorithm is guaranteed to converge in linear time to a local minimum (Shashua 

and Levin, 2001). The overall computational complexity turns out to be 𝑂𝑂(𝐶𝐶𝑛𝑛3) for generating 𝐾𝐾 

rank-1 subspaces from 𝑆𝑆 samples of a class, where 𝐶𝐶 = 𝑆𝑆𝐾𝐾 is a constant in our case. 

3.4 Experimental Evaluation 

We evaluated our approach on three popular scene character datasets Chars74K, ICDAR, 

and SVT-CHAR. We used various experimental settings to report our results on these datasets. 

We also compare our method with several baseline methods in scene character recognition. 

3.4.1 Datasets and Parameters 

We use ICDAR robust character dataset (ICDAR03), English subset of Chars74K-Img 

(Chars74K) and characters extracted from street view text dataset (SVT-CHAR) in the following 

experiments. 
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For all experiments, we report results using 500 rank-1 factors for tensor decomposition. 

The impact of this particular choice of rank-1 factors on accuracy is further discussed in Section 

3.4.3. 

3.4.2 Results 

In our first experiment, we used the whole ICDAR03 training set to get the rank-1 factors 

for each class of characters. The accuracy on the test set was 69% (see Table 3.1). In Figure 3.4, 

the lines parallel to the main diagonal of the confusion matrix reflect ambiguities due to character 

case, e.g. small case ‘c’ confused with ‘C’, etc. (Wang et al., 2012) reported accuracy of 83.9% on 

a modified version of the ICDAR03 test set, but they re-cropped all images for their experiments 

and their set contains 5,198 images, which is less than those in ICDAR03 test set. In Table 3.1, we 

also report our results on the training and test splits proposed by (de Campos et al., 2009) for 

Chars74K, viz., Chars74K-15, where the suffix ‘15’ specifies the number of training and test 

samples to be used for the experiment. 

 Table 3.1: Character recognition performance on ICDAR03 and Chars74K datasets 

Method ICDAR03 Chars74K-15 

GB+NN (de Campos et al., 2009) 41% 47.1% 

HoG+NN (Wang & Belongie 2010) 51.5% 58% 

SYNTH+FERNS (Wang et al., 2011) 52% 47% 

NATIVE+FERNS (Wang et al., 2011) 64% 54% 
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Our second experiment was on SVT-CHAR. Since this is just a test set, therefore, we 

formed its training by combining the training sets of ICDAR03 and the ‘GoodImg’ portion of the 

Chars74K dataset. We trained our factors on all 62 classes, to fairly compare our results with the 

reported ones, despite the fact that the SVT-CHAR does not contain any digit classes. We got 64% 

accuracy and the results are shown in second column of Table 3.2. 

 

 Figure 3.4: Confusion matrix for ICDAR03 test set. Numbers 1-62 show character classes A-Z, 
a-z,0-9. Lines parallel to the main diagonal show character confusions 

Method ICDAR03 Chars74K-15 

MSER(Neumann & Matas, 2011) 67% - 

Proposed RANK-1 69% 57.1% 
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 Table 3.2: Recognition performance on Chars74K-15 Test Split. 

Method Chars74K SVT-CHAR 

ABBYY FineReader 31% 15.4% 

GB+NN (de Campos et al., 2009) 54.3% - 

Method Chars74K SVT-CHAR 

HoG+SVM   (Mishra et. al., 2012) - 61.9% 

MSER  (Neumann & Matas, 2011) 71.6% - 

Proposed RANK-1 68.5% 64% 

 

In our third experiment, we used Chars74K-15 test split while training on all Chars74K but 

those images that are in the test set. Column 1 of Table 3.2 shows some improvement in accuracy 

as compared with other baseline methods and our earlier results given in Table 3.1. 

The above results clearly show that our approach does better if given more training 

samples, which prompted us to do another experiment with leave-random-one-out cross-validation 

(CV) setting. We show results in Table 3.3 for both Chars74K and ICDAR03. For ICDAR03 we 

combined training and testing sets to get one big set for CV. The results show median accuracy 

over 100 trials. The accuracy of 72.5% is the best result we are aware of on the whole Chars74K 

dataset (including both GoodImg & BadImg sets). On the other hand the results on ICDAR03 under 

this setting show improvement and further propound our observation. 
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 Table 3.3: Recognition performance using leave-random-one-out cross-validation (CV). 

Method ICDAR Chars74K 

Proposed RANK-1 + CV 76% 72.5% 

 

In Figure 3.5, we show some test samples from different datasets that our approach 

correctly recognized. The Figure 3.6 shows the cases where our method failed. Some images here 

are not even easy human observers to recognize correctly due to low contrast, shape ambiguities, 

noise etc. 

 

 Figure 3.5: Letters correctly recognized by our method 
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 Figure 3.6: Some of the characters that could not be correctly recognized due to shape 
ambiguities, low contrast, occlusion, imperfect cropping, large rotations etc. 

3.4.3 Discussion 

3.4.3.1 Case Sensitivity 

Cropped characters from natural scene images exhibit extreme shape similarities for some 

classes. We identified at least ten classes from English alphabet and two digit classes 0 and 1 that 

can become ambiguous in the absence of contextual clues. Consider Figure 3.7. It is extremely 

hard even for humans to distinguish between the pair of characters due to case similarity. Digit 

‘zero’ and ‘one’ are also sometimes confused with letter ‘O’, ‘I’, and ‘l (ell)’ due to shape 

similarities. We, however, don’t take into account digit and letter confusion and report only letter 

case insensitive accuracies in Table 3.4. 

Moreover, from a recognition standpoint, the case distinction is immaterial even if 

eventually we are to recognize words from characters, unless we use case information to mark 
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word boundaries. Table 3.4 shows that we get accuracy boost over our corresponding results in 

Tables 3.1 through 3.3. 

 

 Figure 3.7: Case ambiguities in natural scene characters. Top row shows upper case while the 
bottom row shows lower case letters from ICDAR03 dataset 

 Table 3.4: Recognition performance after removing case sensitivity 

Method ICDAR03 Chars74K-15 

Proposed RANK-1 80% 66% 

Proposed RANK-1 + CV 84% 78.7% 

Method Chars74K SVT-CHAR 

Proposed RANK-1 75.1% 73% 

 

3.4.3.2 Rank-1 Elements and Number of Samples 

We give number of rank-1 elements as input to the decomposition algorithm. Figure 3.8 

shows the effect of the choice of rank-1 elements on accuracy for ICDAR test set and Chars74K 

set when tested on the proposed test split by (de Campos et al., 2009). As noted in (Shashua and 
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Levin, 2001), addition of rank-1 elements helps capture temporal redundancies in the input image 

set that in our case occur due to font and shape changes. This eventually gets to increased accuracy. 

However, as shown in Figure 3.8, a point comes after which we get a kind of stagnation in 

accuracy. We, therefore, empirically fixed the number of rank-1 elements to ‘500’.  

As mentioned in Section 3.4.2 above, the number of training samples per class also played 

an important role in boosting accuracy on the test set. We empirically observed that unless we add 

good (or less noisy) images to the training set, the decomposition process would be affected by the 

presence of even a small number of noisy images.  This can be explained by the fact that as the 

number of less noisy images increases, the additive effect of noisy images is reduced and a good 

pattern of variation in character’s font and shape becomes available and is effectively captured in 

the spatial and temporal components of the rank-1 decomposition. This is the reason why we used 

just the ‘GoodImg’ part of Chars74K when we combined ICDAR03 and Chars74K to train for 

SVT-CHAR.  

To further demonstrate this fact, we plot in Figure 3.9 the accuracy gain with increasing 

number of training images for the character class ‘A’ (this trend is also true for all other character 

classes). The accuracy here represents performance measured on the test samples of ‘A’ from (de 

Campos et al., 2009) test split after training over different number of available training samples of 

character ‘A’ from Chars74K. We varied the sample count from ‘15’ (given in de Campos et al. 

training split) to ‘659’ (all samples of ‘A’ excluding the ‘15’ given in the test split). The plot 

validates our observation about gain in accuracy with the increase in number of samples for natural 

scene character recognition. 
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 Figure 3.8: Number of rank-1 elements vs. accuracy on ICDAR (shown in red) and Chars74K 
(shown in blue) 

3.4.3.3 Selection of Reference Image for Binarization 

We mentioned in section 3.3.1 under image segmentation that we used a reference image 

for each class produced in Arial font using imageMagick software. However, we didn’t elaborate 

further on our particular choice at that point and before we further discuss this, we should recall 

that the choice was made during segmentation process to select one binary image out of the 

available four. This situation of four binary images arose when we used two separate segmentation 

algorithms to produce a binary image and its complement. 

As mentioned before, binarization of scene character images is a hard problem in itself and 

choosing a particular binary output is not an easy task either. Our workaround for this situation 

was a heuristic that was based on our observation that characters generally fall in the center of the  
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 Figure 3.9: Accuracy vs number of training samples of ‘A’ from Chars74K dataset  

cropped image region and, therefore, any correct binary output should mostly appear in that central 

region too. 

Moreover, if we somehow put an occluding object, e.g. a synthetic character, in the central 

region of a candidate binary image, then probably the correct binarization would be the one that 

overlaps with the object the most.  We measured the overlap by subtracting the object from a 

candidate binary output image and taking the Frobenius norm of the difference. Hence, we came 

up with the idea of a ‘reference’ object in the form a synthetic image belonging to the class of the 

training image. For test cases, we simply tried synthetic ‘reference’ images from all 62 character 

classes and made the selection based on the overall minimum norm value.  
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While selecting the synthetic reference image, we only considered the font that captured 

the ‘basic’ shape of a character and choose ‘Arial’ which is a typeface without serifs. However, 

considering the fact that the datasets we are dealing with already contain a lot of noise and cropping 

artifacts, it turns out that the contribution of serif structures is really insignificant while taking the 

norm of the difference in case of selection of binary images. Moreover, this lack of serif structure 

making some letters ambiguous, e.g. I (capital eye) and l (small ell), is the concern of the 

recognition model. As an example, consider Figure 3.10 that depicts an input image from 

ICDAR03, two reference images in Arial and Times New Roman fonts, along with the four 

candidate binary images. If we look closely, we find that both reference images would output the 

correct binary image and that the presence or absence of serifs would not make any difference vis-

à-vis the selection of the correct binary image. 

.  

 Figure 3.10: Correct binary image selection. (Top row) Input image. (Middle row) Candidate 
binary images. (Bottom row) Reference images. Both reference images select the correct binary 

image (first from the left) 

Candidate  
Binary images 

Input image 

Reference images 
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Nevertheless, we re-ran experiments on our datasets to show the impact of serifs. For this 

experiment we used Times New Roman font to compare with our earlier results on Arial font in 

Table 3.1. The results of this comparison are shown in Table 3.5. Slight difference in accuracy 

may be attribute to noise in the datasets. Overall, the impact of a font having serifs is minimal. 

 Table 3.5: Impact of Reference Font on Accuracy 

 

3.4.3.4 Pros and Cons 

Pros: 

1. The strategy avoids dependency on local features and capture holistic signature that describes 

an image class very well. 

2. The recognition framework is simple compared with the complex pipelines of the methods 

compared with in results. 

Cons: 

1. Images need to be somewhat aligned during pre-processing stage. We did it by making them 

upright before stacking them into the tensor. 

Method ICDAR03 Chars74K-15 

Proposed RANK-1 + Arial Font 69% 57.1% 

Proposed RANK-1+ Times New Roman Font 68.47% 57.3% 
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2. Noise needs to be taken care of to improve accuracy on the scene datasets. 

3.5 Conclusion 

We proposed a holistic approach to solve natural scene character recognition that avoids 

dependency on specific features. Our method is based on multi-image tensor decomposition 

similar to (Shashua and Levin, 2001) with modification as to the way we get rank-1 matrices for 

natural scene images that contain a lot of typeface variations and noise. Through our results we 

showed the potential of using image tensor decomposition to better capture shape and font 

variations in scene character images. We got better results than several baseline methods and 

achieved improved recognition performance on the datasets using leave-random-one-out cross-

validation, justifying thus our intuition of the importance of feature-independency and the benefit 

of preserving spatial correlations in recognition. 

Given better segmentation methods, the accuracy of our method could further be improved. 

Moreover, we can employ other tensor decomposition methods so that we don’t need to make a 

character upright before finding rank-1 matrices (see Chapter 5 for more details). 
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CHAPTER 4 
 

RECOGNITION BASED ON ACTIVE CONTOUR MODEL 

In the previous chapter, we discussed our first holistic strategy based on rank-1 matrices to 

recognize characters in the image patches cropped from natural scene images. However, in that 

strategy character rotation was handled in an ad hoc manner in the preprocessing step by making 

it upright based on a heuristic. In this chapter, we will discuss an approach based on active contour 

model that will be rotation invariant by its design and application. The contents in this chapter are 

based on our work that was published in the proceedings of International Conference on Computer 

Vision Theory and Applications (VISAPP*** 2016). 

Our contribution here is thus twofold: 

1. A novel feature vector based on active contour model 

2. Rotation invariance 

The use of active contour models in shape recognition is not new but we are not aware of 

its application specifically for the scene text recognition. The closest application we found was in 

(Yi and Tian, 2014) where the authors establish boundary points using discrete contour evolution 

during the process of finding character polygons as a first step in getting stroke configurations. 

Other than this, their approach quite different from ours.  

                                                 

*** http://www.visapp.visigrapp.com 
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  The results we get show that the proposed method effectively captures character shape 

variations occurring in natural scene images in a holistic manner thus avoiding the problems 

associated with techniques based on local image features. 

4.1 Motivation 

An active contour is a dynamic object (curve), which evolves to wrap around an object 

boundary. This idea of capturing object shape motivates us to use it to extract holistic feature for 

our character recognition problem. 

Active contour models have been used for image segmentation and shape description since 

long, e.g. see (Kass et al. 1987), (Xu and Prince, 1997), (Xu and Prince, 1998). In the following 

section, we first briefly recap the basics mostly following notations and derivations in (Ivins and 

Porrill, 2000) and then move on to give its novel application to deriving our holistic feature for 

characters synthetic or extracted from natural scene images. 

4.1.1 Basics 

Consider a 2D image. An active contour model can be described as a closed loop of points 

or pixels. It is also called a snake for its movement in image plane. Mathematically, a snake is a 

set of points in the image plane. It can be characterized by the following parametric curve: 

𝑢𝑢(𝑠𝑠) = �𝑥𝑥(𝑠𝑠),𝑦𝑦(𝑠𝑠)�     (4.1) 
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where, 𝑥𝑥  and 𝑦𝑦 are the coordinates of pixels and 𝑠𝑠 is the parameter. As described in (Ivins and 

Porrill, 2000), we can associate an energy functional 𝐸𝐸 with this curve (note that the curve is a 

loop in this case).  

𝐸𝐸(𝑢𝑢) = ∮𝑃𝑃(𝑢𝑢) + 𝛼𝛼(𝑠𝑠)|𝑢𝑢′|2 + 𝛽𝛽(𝑠𝑠)|𝑢𝑢′′|2 𝑑𝑑𝑠𝑠    (4.2) 

where, 𝑃𝑃(𝑢𝑢) is the external image energy (derived mainly from image gradients) and α and β are 

the internal curve parameters for tension and stiffness respectively.  

Assuming 𝛼𝛼(𝑠𝑠)= α, and 𝛽𝛽(𝑠𝑠) = β as constants, the minimization of Equation 4.2 can be 

done by satisfying two independent Euler equations in  𝑢𝑢 : 

𝜷𝜷𝑢𝑢′′′′ −  𝜶𝜶𝑢𝑢′′ =  −𝑑𝑑(𝑃𝑃)
𝑑𝑑𝑑𝑑

       (4.3) 

Following (Ivins and Porrill, 2000), the derivatives in Equation 4.3 can be approximated 

by finite differences as follows: 

𝜷𝜷(𝑥𝑥𝑠𝑠−2  −  4𝑥𝑥𝑠𝑠−1  +  6𝑥𝑥𝑠𝑠  −  4𝑥𝑥𝑠𝑠+1  +  𝑥𝑥𝑠𝑠+2 ) −  𝜶𝜶(𝑥𝑥𝑠𝑠+2  +  𝑥𝑥𝑠𝑠−2  −  2𝑥𝑥𝑠𝑠 ) =  𝑓𝑓𝑥𝑥 (𝑥𝑥,𝑦𝑦) (4.4) 

𝜷𝜷(𝑦𝑦𝑠𝑠−2  −  4𝑦𝑦𝑠𝑠−1  +  6𝑦𝑦𝑠𝑠  −  4𝑦𝑦𝑠𝑠+1  +  𝑦𝑦𝑠𝑠+2 ) −  𝜶𝜶(𝑦𝑦𝑠𝑠+2  +  𝑦𝑦𝑠𝑠−2  −  2𝑦𝑦𝑠𝑠 ) =  𝑓𝑓𝑦𝑦 (𝑥𝑥,𝑦𝑦) (4.5) 

 where 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are the components of image force (computed from gradients in ‘x’ and ‘y’ 

direction). To solve Equations 4.4 and 4.5, we use the semi-implicit method discussed in (Ivins 

and Porrill, 2000) where two sets of finite difference equations are formed to describe the x and y 

coordinates of the entire snake; these equations can be written in terms of a cyclic symmetric 

pentadiagonal banded matrix 𝐌𝐌 incorporating the constants α and β as follows: 
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𝐌𝐌. 𝐱𝐱 = 𝐟𝐟𝑥𝑥 (𝐱𝐱,𝐲𝐲)   ;  𝐌𝐌. 𝐲𝐲 = 𝐟𝐟𝑦𝑦 (𝐱𝐱,𝐲𝐲)     (4.6) 

where, 𝐱𝐱 and 𝐲𝐲 are vectors containing the x and y coordinates of all the snake elements; 𝐟𝐟𝑥𝑥 and 𝐟𝐟𝑦𝑦  

are the corresponding vectors of image forces acting on contour points. We can solve these 

equations iteratively by using a discrete and small time step ‘τ’ (we set τ = 1 for our experiments). 

The stiffness and tension constraints are applied at time t+1 after adjusting the snake according to 

the image forces at time t: 

𝐱𝐱𝑡𝑡+1 = (𝐌𝐌 + τ𝐈𝐈)−1. (𝐱𝐱𝑡𝑡 + τ𝐟𝐟𝑥𝑥(𝐱𝐱𝑡𝑡,𝐲𝐲𝑡𝑡)   (4.7) 

𝐲𝐲𝑡𝑡+1 = (𝐌𝐌 + τ𝐈𝐈)−1. (𝐲𝐲𝑡𝑡 + τ𝐟𝐟𝑦𝑦(𝐱𝐱𝑡𝑡, 𝐲𝐲𝑡𝑡)    (4.8) 

The matrix inversion in the above Equations 4.7 and 4. 8 is taken only once because they 

are composed of constant terms. Hence, the above iterative minimization provides for a fast way 

to solve the Equation (4.2).  

We compute the external image energy, 𝑃𝑃(𝑢𝑢), by taking a weighted combination of three 

factors: lines, edges, and corners. Thereafter, we compute the effects of external forces on each 

point of the contour by interpolation. The new coordinates of contour points are computed from 

Equations 4.7 and 4.8 above. To further expand the reach of image forces and let the snake enter 

concave regions, we also utilize gradient vector flow as mentioned in (Xu and Prince 1998). 

4.1.2 Feature Vector 

As we evolve the snake around character images and compute new coordinates of each 

point at each time step of the above iterative minimization, we compute the following: 
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∆𝑑𝑑𝑡𝑡 = �∆𝑥𝑥𝑡𝑡2 + ∆𝑦𝑦𝑡𝑡2              (4.9) 

∆𝜃𝜃𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑛𝑛−1  �∆𝑦𝑦𝑡𝑡
∆𝑥𝑥𝑡𝑡
�       (4.10) 

where, ∆𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1and ∆𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1. The quantities ∆𝑑𝑑𝑡𝑡 𝑡𝑡𝑛𝑛𝑑𝑑 ∆𝜃𝜃𝑡𝑡 represent the distance 

and angle increments respectively for each point (pixel) on the contour at time instant 𝑡𝑡. We 

accumulate the increments over the course of evolution for all points 𝑝𝑝 and concatenate to form 

our descriptor as follows: 

𝑓𝑓(𝑖𝑖𝑖𝑖) =  

⎝

⎜
⎛

(∑ ∆𝑑𝑑𝑡𝑡𝑛𝑛
𝑡𝑡=1 )𝑝𝑝1..

�∑ ∆𝑑𝑑𝑡𝑡𝑛𝑛
𝑡𝑡=1 �𝑝𝑝𝑚𝑚

�∑ ∆𝜃𝜃𝑡𝑡𝑛𝑛
𝑡𝑡=1 �𝑝𝑝1..

�∑ ∆𝜃𝜃𝑡𝑡𝑛𝑛
𝑡𝑡=1 �𝑝𝑝𝑚𝑚⎠

⎟
⎞     (4.11) 

where, 𝑓𝑓(𝑖𝑖𝑖𝑖) is the final feature vector, and 𝑛𝑛 is the number of iterations of the contour evolution. 

The size of the above feature vector is equal to twice the number of contour points 𝑖𝑖 (i.e., 2𝑖𝑖 

=125 × 2 = 250 in our experiments).  

The rotational invariance property of the above feature vector follows from its design (the 

initial contour is circular) and its use in conjunction with the cross-correlation similarity metric. 

4.2 Snake Based Character Recognition Framework 

Our framework for scene character recognition starts with pre-processing images, followed 

by training where we generate feature vector using active contour evolution , as depicted in Figure 
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4.1, for all training samples, and finally classification by getting the feature vector for each test 

image and computing similarity using cross-correlation. 

 

 Figure 4.1: Illustration of our framework for feature vector extraction. Outer loop shows the 
location of pixels in the initial contour and inner loops show the evolution of the initial contour 
after some iterations. (a) Contour evolution after 50 iterations (b) After 125 iterations (note the 

wrapping of contour around the character (c) Final contour after 200 iterations (d) Enlarged view 
of the points and computation of distance and angle increments 

4.2.1 Textual Foreground Extraction 

Segmentation of textual information from natural scene images is a challenging problem 

due to noise and distortions introduced mainly by uncontrolled imaging conditions. Many 

researchers have attempted to tackle it, e.g. see (Chen and Yuille, 2004), (Mishra et al. 2011), (Kita 

∆d = Distance increment  

∆θ = Angle increment  

‘∆d’ and ‘∆θ’ are computed from ‘x’ and ‘y’ 

       
(d) 
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and Wakahara, 2010), (Field and Learned-Miller, 2013). Since we are primarily concerned with 

the problem of character recognition, we adopt a simple heuristic based method to get the correct 

textual foreground (in white).  

To this end, we obtain two binary images: one from the output of Otsu’s method and the 

other by inverting it. At this point, we do a simple analysis of the skeleton by counting number of 

pixels of both images to get the correct segmented image. We then perform a connected component 

analysis based on the observation that cropped characters mostly fall in the middle of the image. 

We consider any small pixel group as noise if its size is less than a small fraction (<5%) of the size 

of the largest central connected component. The process is shown as a flow chart in Figure 4.2. 

 

 Figure 4.2: Segmentation of character images 

Image Inversion 

Skeletonization 

Input Image 

Binary Image-2 

Binary Image-1 
Otsu’s Binarization 

Skeletonization 

Skeleton Image-1 

Skeleton Image-2 

Selected Binary Image 

Pixel Count Analysis 

Final Segmented Image 

Connected Component Analysis 
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After segmentation, we normalize each image to have the size of  32 × 32 pixels. To make 

sure that curve evolution doesn’t start too close to the character boundary, we pad the image with 

a 16 × 16 frame of zeros. Hence the final size of the image becomes 64 × 64. 

4.2.2 Getting Snake Features 

For training, we take individual images of each class and pre-process them. For each image, 

we envelope the character with a circular contour (radius of contour is fixed at 30 pixels) centered 

on the image and sampled uniformly with 125 points.  The contour is then evolved towards the 

character and for each point on it, we accumulate direction (angle) and distance, until the character 

boundary is reached. The two quantities (direction and distance) are then concatenated and 

normalized to form a feature vector containing 250 elements. 

Figure 4.1 illustrates the process of extracting the feature vector for a random image in the 

training process. The sensitivity of results for different parameter settings is discussed in Section 

4.3.3. 

4.2.3 Classification 

To classify a test image, we first pre-process it and then compute its feature vector by 

evolving a circular contour towards it. We then employ Nearest Neighbor classifier to find the 

class of the test image by measuring similarity of the test vector with each of the training vectors 

using the cross-correlation metric and recording the maximum. The final classification is given by 

taking the maximum over all classes. 
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4.2.4 Computational Complexity 

The most important step in the feature extraction phase is the curve evolution, where we 

deal with 𝑁𝑁 contour points laid out in a circle and each one is described with 𝑥𝑥 and 𝑦𝑦 coordinates. 

So we have 2𝑁𝑁 individual quantities to take care of while evolving the contour. Each movement 

of the contour depends on computing external and internal forces acting on each point. Luckily, 

the iterative optimization method we used in modelling snake evolution uses cyclic pentadiagonal 

matrix, which can be inverted in 𝑂𝑂(𝑁𝑁) steps instead of 𝑂𝑂(𝑁𝑁3). Moreover, by assuming the contour 

parameters 𝛼𝛼 and 𝛽𝛽  to be constant, we need just one computation involving matrix inversion. 

Finally, we iterate over 𝑔𝑔 evolution steps to get the snake to its terminal shape. Since in our 

implementation 𝑔𝑔 is fixed beforehand, the final runtime complexity turns out to be 𝑂𝑂(𝑔𝑔𝑁𝑁). 

4.3 Experimental Evaluation 

We evaluated our approach using various popular character datasets and performed 

experiments using different settings to report our results on the datasets. We also compare our 

method with several baseline methods. 

4.3.1 Datasets and Parameters 

We use Chars 74K-Font, Chars74K-Img (Chars74K), and the ICDAR (ICDAR03) datasets 

in the following experiments. 

For all experiments, we fixed the parameters 𝛼𝛼 and 𝛽𝛽 to the value of 0.05, the number of 

iterations to 200, the radius of initial contour to 30 pixels. This parameter setting yield good results 

across all datasets. Further discussion on this setting is deferred until Section 4.3.3.  
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4.3.2 Results 

In our first experiment, we randomly picked 15 samples from Chars74K-Font dataset, each 

for training and testing to make fair comparison with the results of de Campos et al. The results 

are shown in Table 4.1. The second column of Table 4.1 presents interesting results when training 

on synthetic fonts and testing on Chars74 test split proposed in (de Campos et al., 2009). Here 

also, we show better performance than the reported method. 

 Table 4.1: Character recognition performance on Chars74K-Font dataset & Chars74K-15 Test 
Split 

 

In our second experiment, we used the whole ICDAR03 training set to get features for each 

class of characters. The accuracy on the test set was 62% (see Table 4.2). Although, the accuracy 

is better than or as well as other baseline methods, yet it is lower than the rank-1 tensor method 

discussed in the previous chapter. The possible reasons for this lower accuracy will be discussed 

later in section 4.3.3. However, we get better results (about 2%) on Chars74K-15 than before. This 

may be attributed to presence of more rotated images in Chars74K dataset than ICDAR03 and our 

system being better dealing with it than the rank-1 method. 

  

Method Chars74K-Font Chars74K-15 Test Split 

GB+NN (de Campos et al., 2009) 69.71% 47.16% 

Proposed Active Contour 71% 56% 
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 Table 4.2: Character recognition performance on ICDAR03 and Chars74K-15 datasets 

Method ICDAR03 Chars74K-15 

GB+NN (de Campos et al., 2009) 41% 47.09% 

HoG+NN (Wang & Belongie 2010) 51.5% 58% 

SYNTH+FERNS (Wang et al., 2011) 52% 47% 

NATIVE+FERNS (Wang et al., 2011) 64% 54% 

Stroke Configuration(Yi and Tian, 2014) 62.8% 60% 

Proposed Active Contour 62% 59% 

 

Our third experiment was to test the performance of Chars74K-15 test split on a modified 

training set (using all training samples but those in the test split) as per de Campos et al. The results 

are reported in Table 4.3. 

 Table 4.3: Recognition performance on Chars74K-15 Test Split 

Method Chars74K-15 Test Split 

ABBYYFineReader (www.abbyy.com) 31% 

GB+NN(de Campos et al., 2009) 54.3% 

Proposed Active Contour 61.5% 

 

The difference in results of Table 4.2 (2nd column) and Table 4.3 clearly show, as observed 

before in Chapter 3, that the number of training samples in the former (15 in this case) can be 

increased  to  better capture the variation in test samples. Hence, as before, we did another 
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experiment with leave-random-one-out cross-validation (CV) setting. We show results in Table 

4.4 for both Chars74K and ICDAR. 

  For ICDAR, we combined training and testing sets of ICDAR03 to get one big set for CV. 

For Chars74K, as mentioned before, the data already comes without training and testing splits. The 

results in Table 4.4 show median accuracy over 100 trials. 

 Table 4.4: Recognition performance using leave-random-one-out cross-validation (CV). 

Method ICDAR Chars74K 

Proposed Active Contour + CV 65% 62% 

 

4.3.3 Discussion 

4.3.3.1 Parameter Sensitivity 

In Figure 4.3, we show how the accuracy changes with respect to the snake’s parameter 

values. The parameters α and β are internal smoothness coefficients and control how the contour 

behaves as it evolves over the given generations. The parameter α represents tensile behavior of 

the contour while β represents stiffness. Here we assume α = β.  

To estimate the values of the parameters, we perform experiment on the Chars74K-Font 

dataset and compute accuracy over different values of α and β spread over an arithmetic scale from 

0.001 to 0.01. We found that the best accuracy occurs at α = β = 0.05. Hence, we used this value 

throughout our experiments. 
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 Figure 4.3: Snake internal parameters’ sensitivity estimated on Chars74K-Font dataset. We 
assume parameters α=β in this case and the best value occurs at α = β = 0.05 

 

4.3.3.2 Accuracy 

Our system performed better than several baseline methods. However, in comparison with 

our rank-1 tensor approach, the accuracy of the active contour based method is lower. Table 4.5 

below shows the comparison of the accuracy values for the two methods on ICDAR and Chars74K 

datasets. The possible reasons are as below: 

  

  

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y 
(%

)

Parameter (×10-2)



49 
 

 Table 4.5: Comparison of performance of our rank-1 and active contour based approaches 

Method ICDAR03 Chars74K-15 

Proposed RANK-1 69% 57.1% 

Proposed Active Contour 62% 59% 

Method ICDAR Chars74K 

Proposed RANK-1 + CV 76% 72.5% 

Proposed Active Contour + CV 65% 62% 

 

1. Noise 

Among other factors, the noise in the images influenced the results the most. This is 

obvious from the results shown in Table 4.1 where our system performed reasonably well on the 

synthetic Chars74K-Font dataset because of the absence of many noisy artifacts from the images. 

This situation helped contour evolution get a good feature descriptor for an image. Although we 

did segment the text in pre-processing step, yet we find that that the performance improvement 

can be achieved only if a more elaborate algorithm is used for segmentation/noise removal. 

2. Classifier 

Choice of the classifier may also have played a role in lowering the accuracy. In the case 

of our rank-1 tensor method, we project a test image using the subspace of a class and then record 

the difference (similarity) between mixing coefficients of the test image and each members of that 
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class. While in active contour method, we used 1-Nearest Neighbor classifier. Hence to improve 

performance, more robust classifiers would help. 

4.3.3.3 Pros and Cons 

Pros: 

1. Rotation invariant feature design help us avoid extra (sometimes erroneous) step of making a 

character upright in the preprocessing stage. 

2. Our novel feature effectively captures intra-class variations in scene characters via simple and 

intuitive way compared with costly local feature based recognition pipelines, e.g. (Yi and Tian, 

2014). 

Cons: 

1. Contour evolution is sensitive to the presence of noise and other cropping artifacts that are 

present in natural scene datasets. To minimize this, we used binary segmentation but it’s still a 

performance bottleneck. 

2. Some character classes in English alphabet are rotationally symmetric, e.g. ‘M’ and ‘W’. This 

introduces ambiguity in classification. It should, however, be noted that any system that claims to 

take care of rotational invariance in this context, would suffer from this inherent problem. 
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4.4 Conclusion 

In this chapter, we put forth a novel feature to holistically solve natural scene character 

recognition problem based on the active contour model. We managed to mitigate the issue of 

rotational variance in the previous rank-1 method with our direction and distance tracking of 

circular contour points. Through our results we showed the potential of using our feature to better 

capture rotation and font variations in scene character images than various local feature based 

methods (more on this in Chapter 6). We got better results than several baseline methods and 

achieved improved recognition performance on the datasets using leave-random-one-out cross-

validation, and, thus, showed the importance of holistic features in the context of feature-

independency and preservation of spatial correlations in recognition.  

In the next chapter, we discuss another holistic feature that combines the strengths of our 

rank-1 and active contour based features. 
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CHAPTER 5 
 

RECOGNITION USING RANK-1 TENSOR DECOMPOSITION 

In Chapter 3, we discussed the factorization of a 3-mode image tensor by varying certain 

aspects of the algorithm proposed by (Shashua and Levin, 2001). Therein, we stacked preprocessed 

images of a class from the datasets into a tensor. Although it makes sense to put all training samples 

of a class into a single tensor and then decompose it, yet given the drastic variations in typeface 

and other aspects of character images from one slice of the tensor to the next, we observed that 

this introduces quite a bit noise in the temporal component of the rank-1 elements (vector ‘v’) of a 

single class. This chapter is based on our work that was accepted in the IEEE International 

Conference on Image Processing (ICIP††† 2016). 

5.1 Modifying the Way to Compose Image Tensors 

To ameliorate the performance bottleneck for the aforementioned reason, we propose to 

compose an image tensor from a single image. For action recognition, as in (Sun et al, 2011), the 

third dimension is the temporal axis of the videos. In our case, we can ‘create’ temporal dimension 

by successively rotating a given image through predefined range of angles. This would not only 

make the frame to frame transitions smooth but also could take care of the rotation variance to 

some degree. 

                                                 

††† 2016.ieeeicip.org 
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In conjunction with the above, we intend to utilize a better variant of the nearest neighbor 

classifier to account for the accuracy slump discussed in Chapter 4. 

The method in (Tariq and Foroosh, 2015) also uses rank-1 tensor decomposition based on 

Tucker for automatic image annotation problem but unlike our method, the authors only use one 

temporal vector for getting context of an image, discarding the vectors that encode spatial 

information of the image for their problem. Rank-1 decomposition based on Tucker method is also 

used by (Sun et al, 2011) for action recognition.  

In this chapter, we discuss a novel approach to form the 3-mode tensor by rotating the given 

training/test image through a range of angles. The resulting tensor is then decomposed using rank-

1 Tucker decomposition (Kolda and Bader, 2009) to get holistic feature descriptor for the character 

image. We use image-to-class distance metric learning (Wang et al., 2010) to train and then test 

the images in popular scene text datasets. The results we get show the effectiveness of the proposed 

method to capture character shape variations occurring in natural scene images in a holistic 

manner, thus avoiding the problems associated with ad hoc rasterisation of local image features 

5.2 Tensor Representation and Rank-1 Decomposition 

Our motivation to use holistic approach is to do away with the dependency on local 

features. Tensors afford a natural and holistic representation for videos, images, etc. and have 

successfully been used in the context of image and video understanding, e.g. see (Shashua and 

Levin, 2001), (Tariq and Foroosh, 2015), (Sun et al., 2011) etc. In the following, we first describe 

our novel tensorial representation for characters cropped from natural scene images following the 
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notations in (Kolda and Bader, 2009). We then discuss the distance metric learning algorithm used 

in our method. 

As mentioned in Chapter 3, a tensor can be thought of as a multi-dimensional array. An N-

way tensor (Nth order or mode) is an element of the tensor product of N vector spaces, each of 

which has its own coordinate system (Kolda and Bader, 2009). As we already know that an image 

stack (or cube) can also be considered a 3-mode tensor 𝒯𝒯𝒯𝒯ℝ𝑈𝑈×𝑉𝑉×𝑊𝑊, with U, V being spatial 

dimensions and W the temporal dimension. While the temporal dimension is well defined for 

videos, it is not so obvious for a single image.  

 

 Figure 5.1: Illustration of Tucker decomposition of a 3-mode image tensor 𝒯𝒯. 𝒫𝒫,𝒬𝒬,ℛ are the 
resulting vectors and 𝒮𝒮is the scalar 

To get around this issue, we propose a novel way to form a 3-mode tensor for an image by 

taking its rotations over a predefined range of angles ( 1 ≤ 𝜃𝜃 ≤ 180 in our case) to create the 

‘temporal’ or 3rd dimension. Before the formation of tensor for a train/test image, we first pre-
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𝒬𝒬 

𝒫𝒫 

𝒯𝒯 

𝒮𝒮 
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process it to segment its foreground textual content. To this end, we adopt the segmentation method 

in Chapter 4 and then resize the resulting image into 32 × 32 pixels. 

Tucker decomposition (Kolda and Bader, 2009) is then applied to project the image tensor onto its 

modes. In general, for a tensor 𝒯𝒯𝒯𝒯ℝ𝑈𝑈×𝑉𝑉×𝑊𝑊, the Tucker decomposition approximates it as follows: 

𝒯𝒯 ≈ 𝒮𝒮 ×1 𝒫𝒫 ×2 𝒬𝒬 ×3 ℛ = ∑ ∑ ∑ 𝑠𝑠𝑥𝑥𝑦𝑦𝑥𝑥𝑝𝑝𝑥𝑥𝑍𝑍
𝑥𝑥=1 ∘ 𝑞𝑞𝑦𝑦 ∘𝑌𝑌

𝑦𝑦=1 𝜌𝜌𝑥𝑥    𝑋𝑋
𝑥𝑥=1   (5.1) 

where, 𝒫𝒫𝒯𝒯ℝ𝑈𝑈×𝑋𝑋, 𝒬𝒬𝒯𝒯ℝ𝑉𝑉×𝑌𝑌, and ℛ𝒯𝒯ℝ𝑊𝑊×𝑍𝑍 are the orthogonal factor matrices, 𝒮𝒮𝒯𝒯ℝ𝑋𝑋×𝑌𝑌×𝑍𝑍is the core 

tensor and the operator ×𝑖𝑖 denotes multiplication between a tensor and a vector in mode-i of that 

tensor. 𝑝𝑝𝑥𝑥, 𝑞𝑞𝑦𝑦, 𝜌𝜌𝑥𝑥 and 𝑠𝑠𝑥𝑥𝑦𝑦𝑥𝑥 in the expression after equality in Equation 5.1 represent, respectively,  

the components (columns) of the factor matrices 𝒫𝒫,𝒬𝒬,ℛ and the elements of core tensor 𝒮𝒮. 

When using the Tucker decomposition, if we let X=Y=Z= 𝐾𝐾, where 𝐾𝐾 < min (𝑈𝑈,𝑉𝑉,𝑊𝑊), 

then the tensor 𝒮𝒮𝒯𝒯ℝ𝐾𝐾×𝐾𝐾×𝐾𝐾 can be thought as a compressed version of 𝒯𝒯 (Kolda and Bader, 2009). 

We set 𝐾𝐾 = 1 to get rank-1 decomposition that yields three vectors 𝒫𝒫,𝒬𝒬,ℛ and a scalar 𝒮𝒮. We 

concatenate the three vectors to get our final feature descriptor for each train/test image. 

5.3 Image-to-Class Distance Metric Learning 

To classify the character images based on our holistic feature, we use a variant of image-

to-class distance metric learning (I2CDML) proposed by (Wang et al., 2010). The image-to-class 

distance effectively takes into account large intra-class variations, like in the case of scene 

characters.  
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In the following, we use the notations and problem formulation sequence in (Wang et al., 

2010) to make the description of the classifier clear. 

Let an image 𝑋𝑋𝑖𝑖 which is represented by a feature vector 𝑓𝑓𝑖𝑖𝒯𝒯ℝ𝑑𝑑. To compute I2C distance 

to a candidate class 𝑐𝑐, we find the nearest neighbor (NN) of 𝑓𝑓𝑖𝑖 in 𝑐𝑐, denoted as 𝑓𝑓𝑖𝑖𝑐𝑐. The original 

I2C distance is then defined as follows: 

𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡(𝑋𝑋𝑖𝑖, 𝑐𝑐) =  ‖ 𝑓𝑓𝑖𝑖 −𝑓𝑓𝑖𝑖𝑐𝑐‖2       (5.2) 

We then learn Mahalanobis metric 𝑀𝑀𝑐𝑐𝒯𝒯ℝ𝑑𝑑×𝑑𝑑for each class and replace the original I2C distance 

in Equation 5.2 by the following: 

𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡(𝑋𝑋𝑖𝑖, 𝑐𝑐) = (𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑐𝑐)𝑇𝑇𝑀𝑀𝑐𝑐(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑐𝑐)    (5.3) 

Given a test image represented by its feature vector 𝑓𝑓𝑡𝑡, we find the NN in a candidate class 

𝑐𝑐, denoted by 𝑓𝑓𝑡𝑡𝑐𝑐, and classify it using the following: 

𝐶𝐶𝐶𝐶𝑡𝑡𝑠𝑠𝑠𝑠𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶 =
arg𝑖𝑖𝑖𝑖𝑛𝑛

𝑐𝑐𝒯𝒯{1,2, … 𝑐𝑐}(𝑓𝑓𝑡𝑡 − 𝑓𝑓𝑡𝑡𝑐𝑐)𝑇𝑇𝑀𝑀𝑐𝑐(𝑓𝑓𝑡𝑡 − 𝑓𝑓𝑡𝑡𝑐𝑐)     (5.4) 

To learn the metrics for each class, the idea proposed in (Wang et al., 2010) is to make the 

distance of an image 𝑋𝑋𝑖𝑖 from its true belonging class 𝑝𝑝 should be smaller than to any other (non-

belonging) class 𝑛𝑛: 

𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡(𝑋𝑋𝑖𝑖,𝑛𝑛) − 𝐷𝐷𝑖𝑖𝑠𝑠𝑡𝑡(𝑋𝑋𝑖𝑖,𝑝𝑝) ≥ 1      (5.5) 
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The objective function is, therefore, composed of two terms: regularization and error. For 

the regularization term, all positive distances need to be minimized, while keeping all negative 

distances away from the positive ones by a large margin (analogous to the SVM). Following (Wang 

et al., 2010), a slack variable 𝜉𝜉 is introduced in the error term to allow for soft margin. Hence, the 

whole optimization problem can be formulated as: 

𝑖𝑖𝑖𝑖𝑛𝑛
𝑀𝑀1,𝑀𝑀2, , , ,𝑀𝑀𝐶𝐶

𝑂𝑂(𝑀𝑀1,𝑀𝑀2, , , ,𝑀𝑀𝐶𝐶) = (1 − 𝜆𝜆)∑ �𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖
𝑝𝑝�

𝑇𝑇
𝑀𝑀𝑝𝑝�𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖

𝑝𝑝�𝑖𝑖,𝑝𝑝→𝑖𝑖 + 𝜆𝜆∑ 𝜉𝜉𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖,𝑝𝑝→𝑖𝑖,𝑖𝑖→𝑖𝑖  

 (5.6) 

𝑠𝑠𝑢𝑢𝐶𝐶𝑠𝑠𝐶𝐶𝑐𝑐𝑡𝑡 𝑡𝑡𝑡𝑡:  

∀𝑖𝑖,𝑝𝑝,𝑛𝑛: (𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑖𝑖)𝑇𝑇𝑀𝑀𝑖𝑖(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑖𝑖) − �𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖
𝑝𝑝�

𝑇𝑇
𝑀𝑀𝑝𝑝�𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖

𝑝𝑝�  ≥ 1 − 𝜉𝜉𝑖𝑖𝑝𝑝𝑖𝑖   

∀𝑖𝑖,𝑝𝑝,𝑛𝑛: 𝜉𝜉𝑖𝑖𝑝𝑝𝑖𝑖 ≥ 0       

∀𝑐𝑐: 𝑀𝑀𝑐𝑐 ≻ 0        

The optimization problem in Equation 5.6 is an instance of semi-definite program (SDP) 

and we use the gradient descent based implementation provided in (Wang et al., 2010) to solve it 

and get the metrics 𝑀𝑀𝑐𝑐 for each of our character class. 

5.4 Computational Complexity 

The rank-1 tensor decomposition strategy we use is based on the popular method called 

Tucker decomposition. The algorithmic implementation that we used for Tucker decomposition 

algorithm is based on alternating least square (ALS). It’s an iterative algorithm that is not 
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guaranteed to converge at a global minimum. If, however, it converges, it takes (𝑁𝑁) , where 𝑁𝑁 is 

the number of iterative steps. 

5.5 Experimental Evaluation 

We evaluated our approach with various character datasets and performed experiments 

using different settings to report our results on those datasets. We also compare our method with 

several baseline methods. 

5.5.1 Datasets and Parameters 

The datasets we use in the following experiments are ICDAR03 and Chars74K. As in the 

previous chapter, we use its both versions, synthetic (Chars74K-Font) and English subset 

(Chars74K-Img). 

For all experiments, we fixed the parameters for I2CDML following the implementation 

in (Wang et al., 2010): 𝜆𝜆 =0.95, α (this parameter controls the convergence speed to find 𝑀𝑀𝑐𝑐) is 

increased by a factor of 1.01 if the objective function decreases and is decreased by a factor of 0.5 

if it increases. The maximum number of iterations in the optimization is fixed to 500. 

5.5.2 Results  

In the first experiment, we used Chars74K-Font synthetic font dataset. We randomly 

picked 15 samples each for training and testing to make fair comparison with the results in (de 

Campos et al., 2009). The results are shown in Table 5.1. The second column of this table presents 

interesting results when training on synthetic fonts and testing on Chars74K-Image test split 
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proposed in (de Campos et al., 2009). Here also, we show better performance than the reported 

method. 

 Table 5.1: Recognition performance on Chars74K-Font dataset & Chars74K-15 Test Split. 

Method Chars74K-Font Chars74K-15 

Test Split 

GB+NN (de Campos et al., 2009) 69.71% 47.16% 

Proposed Rank-1 Decomp. 73% 56% 

 

 

 Figure 5.2: Confusion matrix for ICDAR03 test set. Numbers 1-62 show character classes A-Z, 
a-z,0-9. Lines parallel to the main diagonal show character confusions 
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In our second experiment, we used the whole ICDAR03 training set to get features for each 

class of characters. The accuracy on the test set came out to be 70% (see Table 5.2) and one of the 

reasons for misclassifications is case ambiguity among character classes. In Figure 5.2, the lines 

parallel to the main diagonal of the confusion matrix reflect these ambiguities, e.g. small case ‘c’ 

confused with ‘C’, etc.  In Table 5.2, we also report our results on the training and test splits 

proposed by (de Campos et al., 2009) for Chars74K, viz., Chars74K-15, where the suffix ‘15’ 

specifies the number of training and test samples to be used for the experiment. 

 Table 5.2: Character recognition performance on ICDAR03 and Chars74K-15 datasets. 

Method ICDAR03 Chars74K-15 

GB+NN (de Campos et al., 2009) 41% 47.09% 

HoG+NN (Wang and Belongie, 2010) 51.5% 58% 

SYNTH+FERNS (Wang et al. 2011) 52% 47% 

NATIVE+FERNS (Wang et al. 2011) 64% 54% 

Stroke Config.(Yi and Tian, 2014) 62.8% 60% 

Our Tensor+NN 69% 57.1% 

Proposed Rank-1 Decomp. 70% 59% 

 

Our third experiment was to test the performance of Chars74K-15 test split on a modified 

training set (using all training samples but those in the test split) as per (de Campos et al., 2009). 

The results are reported in Table 5.3 below. 
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 Table 5.3: Performance on Chars74K-15 Test Split 

Method Chars74K-15 Test Split 

ABBYY FineReader 

(www.abbyy.com) 
31% 

GB+NN (de Campos et al., 2009) 54.3% 

Our Tensor+NN 68.5% 

Proposed Rank-1 Decomp. 69% 

 

The difference in results of Table 5.2 (2nd column) and Table 5.3 clearly show that the 

number of training samples in the former (15 in this case) is not sufficient to capture the variation 

in test samples. Hence, we were prompted to do another experiment with leave-random-one-out 

cross-validation (CV) setting. We show results in Table 5.4 for both Chars74K and ICDAR. 

For ICDAR, we combined training and testing segments from ICDAR03 robust character 

dataset to get one big set for the cross-validation experiment. For Chars74K, as mentioned before, 

the data already comes without training and testing splits; so we just used it as such. The results in 

Table 5.4 show median accuracy over 100 trials.  

 Table 5.4: Recognition performance using leave-random-one-out cross-validation (CV). 

Method ICDAR Chars74K 

Proposed Rank-1 Decomp. 79% 74% 
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5.5.3 Discussion 

5.5.3.1 Accuracy 

In Table 5.5 we show recognition performance of our rank-1 tensor decomposition strategy 

in comparison with our other holistic strategies. The performance of our current approach is better 

than the previous ones because it combines the powers of both the previous strategies. 

 Table 5.5: Comparison of performance of our three holistic methods 

Method ICDAR03 Chars74K-15 

Proposed RANK-1 69% 57.1% 

Proposed Active Contour 62% 59% 

Proposed Rank-1 Decomp. 70% 59% 

Method ICDAR Chars74K 

Proposed RANK-1 + CV 76% 72.5% 

Proposed Active Contour + CV 65% 62% 

Proposed Rank-1 Decomp. + CV 79% 74% 

 

5.5.3.2 Pros and Cons 

Pros: 

1. Smooth frame to frame transitions of rotated copies of a single image gives a better feature 

descriptor compared with abrupt frame changes of our earlier rank-1 approach. 



63 
 

2. Unlike our rank-1 approach, we don’t need to make the image upright before stacking up in 

tensor. 

3. The recognition pipeline is simple and intuitive compared with those using local features. 

Cons: 

1. Binarization is still a performance bottleneck. 

2. Some rotationally symmetric characters, e.g. ‘M’ and ‘W’ become ambiguous when rotated 

through 180 degrees. 

5.6 Conclusion 

In this chapter, we discussed a novel holistic solution to the problem of natural scene 

character recognition based on rank-1 tensor decomposition. Compared with Chapter 3, where we 

stacked all image samples of a class to form an image tensor, we make a tensor per image by 

stacking together rotated versions of the same image. This way, we were not only able to make 

frame to frame transitions in the tensor smooth but also captured rotation invariance. For each 

training/testing image, we formed a 3-mode tensor of rotated instances of the image and then 

decompose the tensor using rank-1 Tucker decomposition to get our holistic feature. For 

classification purpose, we use I2CDML framework to be able to better cope with large intra-class 

variations than the Nearest Neighbor classifier. Through our results we showed the potential of 

using our approach to better capture shape and font variations that occur in scene text images. We 

got better results than several baseline methods and achieved improved recognition performance 

on the datasets using leave-random-one-out cross-validation. In the next chapter, we would 
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compare all our holistic approaches with a local feature descriptor and in Chapter 7, we would 

incorporate our character level solution to word images. 
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CHAPTER 6 
 

HOLISTIC APPROACH IS BETTER THAN LOCAL 

In Chapters 3 through 5, we primarily discussed three holistic strategies to recognize 

characters cropped from natural scene images. Although our results on popular scene character 

datasets showed better or comparable performance to methods based on local features, in this 

chapter, we will make an explicit comparison between our holistic strategies and top of the line 

local feature based approach, namely Histograms of Oriented Gradients (HoG), to support our 

claim that holistic strategy is better than local and that it should be a part of a reliable scene 

character recognition framework. 

The reason we pick HoG is that it is extensively used by researchers in the scene text 

recognition community since it was first proposed by (Dalal and Triggs, 2005). It’s the underlying 

feature descriptor for many scene character recognition methods, e.g. (de Campos et al., 2009), 

(Wang and Belongie, 2010), (Wang et al., 2011), (Yi et al., 2013) etc. 

6.1 Datasets for Comparison 

We use Chars74K-Font and SYN-10 datasets for the purpose of comparison between 

holistic and local features. For training, we use Chars74K-Font dataset, which, as previously 

mentioned in chapter 1, is a synthetic dataset of English alphabet. For testing, we use our synthetic 

dataset (SYN-10), which utilizes ten (10) common fonts in English in different styles. The images 

in SYN-10 are generated using imageMagick 6.0 software. We also introduce 10 random rotations 
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and shear deformations (for each image in a specific font) to mimic some distortions found in 

natural scene images. Hence, we have 6,200 test synthetic test images in total for 62 classes. 

The reason we use synthetic datasets is to be able to better control image quality in order 

to highlight quality of the feature vectors for the two approaches. Through our experiment and 

results, we show the comparative advantage of using our holistic strategy over local features like 

the HoG. 

6.2 Training and Testing 

For training, we extract both HoG and our holistic tensor and active contour based features 

for synthetic characters in Chars74K-Font dataset. In the case of HoG, we use the implementation 

given by Piotr Dollar‡‡‡ with the following configuration to extract the features: the image is 

spatially divided into 8 × 8 cells over which the spatially weighted histograms of gradients are 

computed over  9 orientation bins. The block size used is  2 × 2  and for each histogram, four L2 

block normalizations are computed from adjacent histograms (except at the boundary). We collect 

and concatenate (rasterize) the normalized values of histograms into the final feature descriptor. 

In the case of our holistic features, we adopt the same procedures and parameters as 

described in training sub-sections of Chapters 3, 4 and 5. 

                                                 

‡‡‡ https://github.com/pdollar/toolbox 
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For testing, we extract respective features from the test images in SYN-10 and use the 

nearest neighbor classifier along with dot product as the similarity metric. 

 

 Figure 6.1: Sample images for SYN-10 Test Set 

Figure 6.2 shows two images of the digit ‘1’ under different random orientations. For the 

purpose of quick visual comparison between our holistic features and those from the HoG, we plot 

the respective graphs of features in Figure 6.2 and 6.3. The figures clearly show that difference in  

 

 Figure 6.2: Local features (HoG) for the two images from SYN-10 dataset. 
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 Figure 6.3: Holistic features for the two images in Figure 6.2:  
(Left) Active contour based (Right) Rank-1 tensor decomposition based 

 

6.3 Experimental Evaluation 

We evaluated our proposed holistic techniques on the test dataset and compared the 

performance with a representative local feature model, namely histogram of gradients (HoG). The 

comparison has been carefully done under the same test conditions, vis-à-vis image preprocessing 

and classification. Datasets of synthetic fonts are chosen for training and testing so as to eliminate 

the impact of noise. As shown in Table 6.1, where we give random rotations and shears to the test 

images, our holistic approaches outperform HoG by about 12 to 16%. The results show the mean 

accuracy score of 10 trials. 

It is interesting to note that in the second rows of the Tables 6.1 and 6.2 where we allow 

HoG to take advantage of color information in the test image, the results still do not show any 

improvement. In Table 6.2, we restrict test images to an upright position. In this case, HoG 

performs better than its performance with the rotated versions of the same images. However, 
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results in both tables clearly show that compared with HoG, our holistic methods are consistent in 

performance and considerably invariant to rotations.  

 Table 6.1: Recognition performance of local (HoG) vs proposed holistic features with random 
test image rotations 

Method SYN-10 

HoG + Binarization 44.5% 

HoG + Color 39.1% 

Proposed Rank-1 56% 

Proposed Active Contour 58.7% 

Proposed Rank-1 Decomp. 60% 

  

 Table 6.2: Recognition performance of local (HoG) vs proposed holistic features without test 
image rotations 

Method SYN-10 

HoG + Binarization 58.2% 

HoG + Color 53.42% 

Proposed Rank-1 62% 

Proposed Active Contour 59.3% 

Proposed Rank-1 Decomp. 61.6% 

 

6.4 Conclusion 

In this chapter, we presented a simple but insightful comparison between holistic and local 

features in the context of scene character recognition. To make a fair comparison between the two 
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types of features, we carefully controlled the training and test conditions. We used synthetic fonts 

for training and testing to eliminate the impact of noise. We preprocessed and classified the images 

in the same manner so as to only highlight the impact of feature quality on the recognition 

performance. In the end, our results clearly support the narrative that holistic is better than the 

local and that such a strategy should be a part of a reliable scene character recognition framework. 

In the next chapter we will apply our holistic models of character recognition to the cropped word 

recognition problem. 
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CHAPTER 7 
 

WORD RECOGNITION IN NATURAL SCENE IMAGES 

Up until now, we explored different holistic strategies for recognizing characters harvested 

from natural scene images. We would now like to extend the idea to recognize words cropped from 

natural scenes. In this chapter, we describe our approach to solve the cropped word recognition 

problem that utilizes our previously discussed holistic character recognition models. The main idea 

behind our strategy is to segment a word based on character recognition. In other words, we want 

to split a given word image into individual characters while using a recognition model to guide the 

segmentation process. 

The notion of word segmentation is not new to the document OCR community where in 

most cases vertical projection profiles would do the work for a given scanned document image. 

However, the problem of word segmentation for scene words is very hard due to variable typefaces 

(regular as well as custom fonts) and noisy imaging conditions.  

Considering the application aspect of scene word recognition, the problem has two aspects: 

1. Open vocabulary word recognition (or simply word recognition) 

2. Lexicon driven word recognition (aka word spotting) 

In the case of word spotting, we a given a list of text labels for a cropped word image and 

the task is to pick the label that matches the most with the input image. While the former problem 

category is general and forms a part of full-image (aka end-to-end) scene text recognition, the latter 



72 
 

is important in case we already have some prior information available, e.g. a list for grocery 

shopping. 

During the previous four to five years, researchers have put forth ideas to solve both 

versions of the problem. One popular strategy is to first segment the input word image into 

individual characters and then recognize individual characters.  

(Neumann and Matas, 2011) used vertical projection profiles to get cues for possible 

character segments in their MSER based framework for word recognition. (Mishra et al., 2011) 

proposed an MRF model in an iterative graph cut framework to segment the foreground (text) from 

the background. (Field and Learned-Miller, 2012) proposed bilateral regression to segment and 

recognize words. Later, (Mishra et al., 2012a) used bottom up technique to segment word images 

along with top down cues from language models etc. to do the recognition task. 

We utilize and build upon the idea of image seams from content aware image resizing 

proposed in (Avidan and Shamir, 2007) to come up with a novel segmentation technique for scene 

word images. As part of the segmentation process, we recognize individual characters along the 

way. The final word recognition is then based on predicting the most probable word using the 

available spell checking system. Compared to more traditional approaches to segment characters, 

our method is quite simple and efficient in that it doesn’t rely on sliding windows or other 

computational intensive modelling techniques, e.g. MRF model in (Mishra et al, 2011). 
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7.1 Image Seam Analysis  

Before moving forward with our strategy, it’s worthwhile to recap the background of 

context aware image resizing problem (Avidan and Shamir, 2007). The goal is to find a set of 

pixels that cross image extents (width or height) and have a low visual significance. Hence, if such 

a set of pixels is found and removed from the image, there will be very little impact on the overall 

appearance of the image. Avidan and Shamir term such a set of pixels as an image seam and define 

it as follows: 

Let 𝐼𝐼 be an 𝑛𝑛 × 𝑖𝑖 image, a vertical seam 𝒔𝒔𝑥𝑥 consisting of  𝑛𝑛 pixels is the 8-connected path 

from top to the bottom of the image, is defined as: 

𝒔𝒔𝑥𝑥 = {𝑠𝑠𝑖𝑖𝑥𝑥}𝑖𝑖=1𝑖𝑖 = {(𝑥𝑥(𝑖𝑖), 𝑖𝑖)}𝑖𝑖=1𝑖𝑖  , 𝑠𝑠. 𝑡𝑡.∀𝑖𝑖 |𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖 − 1) ≤ 1|   (7.1) 

where, 𝑥𝑥 is a mapping from [1, …𝑛𝑛] → [1, …𝑖𝑖]. 

The pixels on the seam 𝒔𝒔𝑥𝑥 would be: 

𝐼𝐼𝑠𝑠 = {𝐼𝐼(𝒔𝒔𝑥𝑥)}𝑖𝑖=1𝑖𝑖      (7.2) 

Given an energy function, 𝐸𝐸, Avidan and Shamir define the optimal seam 𝒔𝒔∗as follows: 

 𝒔𝒔∗ = min
𝑠𝑠
𝐸𝐸(𝒔𝒔) = min

𝑠𝑠
∑ 𝐸𝐸(𝐼𝐼(𝑠𝑠𝑖𝑖))𝑖𝑖
𝑖𝑖      (7.3) 

The optimal seam can easily be found by the following dynamic programming formulation: 

𝑀𝑀(𝑖𝑖, 𝑠𝑠) = 𝐸𝐸(𝑖𝑖, 𝑠𝑠) + min (𝑀𝑀(𝑖𝑖 − 1, 𝑠𝑠 − 1),𝑀𝑀(𝑖𝑖 − 1, 𝑠𝑠),𝑀𝑀(𝑖𝑖 − 1, 𝑠𝑠 + 1)) (7.4) 
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For image energy, we use magnitude of image gradients as a simple energy function: 

𝐸𝐸(𝐼𝐼) = �𝜕𝜕(𝐼𝐼)
𝜕𝜕𝑥𝑥
� + �𝜕𝜕(𝐼𝐼)

𝜕𝜕𝑦𝑦
�     (7.5) 

Figure 7.1 shows partial segmentation of a word image from ICDAR03 dataset using the 

concept of image seams. In the next section, we describe our algorithm for a complete 

segmentation of a given word image. 

 

Figure 7.1: (Left) Sample word image from ICDAR03 dataset. (Right) Image seam, shown in 

yellow, guiding the word segmentation 

7.2 Word Segmentation & Recognition using Image Seams 

Having known what a seam is, we are ready to give our heuristic algorithm to segment and 

recognize a cropped scene word image from a dataset into individual characters. Ours is a recursive 

algorithm that tries to split a word image into two partitions based on the location of the image 

seam. At each recursive step, the algorithm computes the width 𝑊𝑊 of the region from the bounding 

box of the image. It also determines the maximum width of the connected components 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥.  We 

determine whether to binary split the image or not based on whether 𝑊𝑊 > 1.5 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥 as used in 

(Neumann and Matas, 2011). Whenever 𝑊𝑊 falls within this threshold, i.e. 𝑊𝑊 ≤ 1.5 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥 the 
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algorithm attempts to recognize the content of the image and returns a confidence score. If the 

score is above a threshold value 𝜌𝜌𝑟𝑟 (more on this in Section 7.3.2), the character corresponding to 

the maximum score is returned. Otherwise, the algorithm attempts to partition the image assuming 

that the characters contained therein are somehow connected.  

Our word recognition framework is illustrated in Figure 7.2 and an example (with actual 

steps of the segmentation and recognition process) is shown in Figure 7.3. 

 

 Figure 7.2: Our scene word recognition framework. The preprocessed input image goes through 
Seam Segmentation module where seam analysis is done with the help of Character Recognition 

module (based on our holistic model). The output character string is then fed to the Spell 
Checking module to get the final Word Label 

Input Image 
Preprocessing Seam Segmentation 

Character 
Recognition 

Spell Checking 

Word Label  

 

Character 
String 
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 Figure 7.3: Seam segmentation and recognition process for an ICDAR03 dataset word 

We begin by preprocessing the word image and converting it into a binary image using our 

algorithm described in Chapter 4. Then our algorithm for word segmentation works as follows: 

1. Compute the width 𝑊𝑊 of the region from the bounding box of the image 

2. Compute 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥 from the connected component analysis of the image region 

3. Compare 𝑊𝑊 and 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥 

a. If 𝑊𝑊 > 1.5 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥, proceed as follows: 

E 

𝑠𝑠 = 𝐸𝐸𝐴𝐴𝐸𝐸𝑇𝑇𝐸𝐸 

T H 

A R 
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Get the image partitions, 𝑖𝑖𝑖𝑖1& 𝑖𝑖𝑖𝑖2 using image seams and then recursively call 

the algorithm to get two strings 𝑠𝑠1, 𝑠𝑠2 and return the concatenation in 𝑠𝑠 

b. If 𝑊𝑊 ≤ 1.5 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥 

Compute the area of image and if it’s less than 5% of the bounding box, ignore it 

and return an empty string in 𝑠𝑠. Else proceed as follows: 

i. Recognize the image and get the character 𝑐𝑐 and 𝜌𝜌, the recognition confidence 

value. 

ii. If 𝜌𝜌 ≥ 𝜌𝜌𝑟𝑟, return 𝑐𝑐 in 𝑠𝑠 

iii. If 𝜌𝜌 < 𝜌𝜌𝑟𝑟, proceed as follows: 

Get the image partitions, 𝑖𝑖𝑖𝑖1& 𝑖𝑖𝑖𝑖2 using image seams and then recursively 

call the algorithm to get two strings 𝑠𝑠1, 𝑠𝑠2 and return the concatenation in 𝑠𝑠 

4. Input the string of characters  𝑠𝑠 to a spell-checker module§§§ to get a list of predicted words and 

select the top choice or the one with the minimum edit distance from a given lexicon (if available). 

The last step of the algorithm attempts to auto-correct the predicted word. This can be quite 

useful in cases where some letters may not have been correctly recognized by the character 

                                                 

§§§ We use the spell checker available with Microsoft Word application 
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recognition step which could be due to ambiguity in character shape, e.g. ‘I’ (capital eye) and ‘l’ 

(small ell)  in typefaces, or due to potentially bad segmentation. 

7.3 Computational Complexity 

Two main steps in our recursive algorithm that impact its running time are: connected 

component analysis and seam analysis. At each level of recursion, where the given word is 

analyzed for splitting into two images, we do connected components processing which takes at 

most 𝑂𝑂(𝑛𝑛𝑖𝑖) computations where 𝑛𝑛 the number of rows is and 𝑖𝑖 is the number of columns. The 

approximate number of binary seam splits we expect to perform can be bounded from above by  

 𝑂𝑂(𝐶𝐶𝑡𝑡𝑔𝑔 𝑊𝑊
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

+ 1), where 𝑊𝑊 is the width of the bounding box and 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥 is the maximum width of 

a connected component in the image box. 

For each seam split, we use dynamic programming, which in our case can takes 𝑂𝑂(𝑛𝑛𝑖𝑖) 

operations. Hence, the total time complexity turns out to be 𝑂𝑂(𝑛𝑛𝑖𝑖(𝐶𝐶𝑡𝑡𝑔𝑔 𝑊𝑊
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

+ 1)). 

7.4 Experimental Evaluation 

We evaluated our word recognition framework for two scenarios: open vocabulary word 

recognition and word spotting. For both cases, we report results on two popular scene word 

datasets, namely ICDAR03 and SVT. We used our binary segmentation method discussed in 

Chapter 4 for preprocessing and for character recognition, we used our Rank-1 feature from 

Chapter 3, along with all the relevant training parameters. For all experiments, we used the 

recognition threshold parameter  𝜌𝜌𝑟𝑟 = 0.75 and 𝜌𝜌𝑟𝑟 = 0.7 for ICDAR03 and SVT respectively. 
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The parameter was computed to give best results on respective word spotting datasets for a lexicon 

of 50 words. 

7.4.1 Datasets 

We use SVT and ICDAR03-Word datasets for all our experiments. In order to make fair 

comparisons with previous results on the ICDAR03-Word, we used the experimental criteria laid 

out in (Wang et al., 2011) that ignores word images containing non-alphanumeric characters or the 

ones that have two or less characters in it. This brings the number of images from 1,111 to 859. 

As mentioned before, the SVT dataset was proposed to introduce the problem of word 

spotting. Therefore, it contains a small lexicon of about 50 words including the word image to be 

recognized. ICDAR03-Word dataset is not specific for word spotting. Therefore, (Wang et al., 

2011) proposed to use two sub-versions of ICDAR03, namely ICDAR03 (50) and ICDAR03 

(FULL), for the problem to be cast as word spotting problem. The suffix ‘50’ refers to 50 random 

words plus the ground truth for the image. While ‘FULL’ refers to the fact that the lexicon is made 

of all the ground truths from the dataset. 

7.4.2 Results and Discussion 

We report the results for word spotting on ICDAR03 (50), ICDAR03 (FULL), and SVT in 

Table 7.1. We compare with other baseline methods using word segmentation for recognition. Our 

recognition accuracy, which is the average of 50 trials, for the word spotting case compares 

favorably with the other approaches and we get our best result on ICDAR (50) at 80.5%. 
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 Table 7.1: Recognition performance on Word Spotting problem 

Method ICDAR03 (50) ICDAR03 (FULL) SVT 

(Wang et al., 2011) 73% 62% 57% 

(Field and Learned-Miller, 2012) 79.47% 73.43% 54.2% 

Proposed Seam Segmentation 80.5% 70% 52.6% 

 

The performance drop for SVT dataset in Table 7.1 is partly due to the fact that images 

contain a lot of cropping artifacts (especially segments of nearby characters/words).  

  For the open vocabulary problem, we use ICDAR03-Word test set to compare our approach 

with the related methods. Following the experiments of (Mishra et al., 2012b), we show results on 

a subset of this dataset, which, as before, is created by removing all non-alphanumeric characters 

and all words having two or less characters in them in Table 7.2. As in (Mishra et al, 2012b), the 

results are presented with case sensitivity ignored. Our results demonstrate comparable 

performance with other methods. 

 Table 7.2: Recognition performance on open vocabulary word recognition problem 

Method ICDAR03-Word 

(Mishra et al., 2012b) 57.92% 

(Field and Learned-Miller, 2013) 62.76% 

Proposed Seam Segmentation 60.2% 
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 To analyze the impact of recognition threshold parameter 𝜌𝜌𝑟𝑟 on the word recognition 

accuracy, we performed experiments on ICDAR03 and SVT datasets for word spotting problem. 

Figure 7.4 shows the variation in performance over a range of values of the parameter. Initially, 

the accuracy increases by increasing the value of parameter, which is quite intuitive. However, the 

trend breaks at points, 𝜌𝜌𝑟𝑟 = 0.75 for ICDAR03 and 𝜌𝜌𝑟𝑟 = 0.7 for SVT, where the accuracy starts 

to get down. The reason is that as the recognition threshold increases, the system becomes more 

and more sensitive and specific towards the learned character model from the character recognition 

system and begins to reject hypotheses. This results in over-segmentation because now the seam 

must segment an otherwise potential character candidate. For SVT, the threshold is lower than 

ICDAR03 due to the fact that the cropped dataset contain a lot of noisy artifacts. 

  

Figure 7.4: Accuracy vs Recognition threshold 𝜌𝜌𝑟𝑟 for ICDAR05(50) and SVT datasets 
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 Figure 7.5:Some images from ICDAR03 & SVT that our system could recognize correctly  
(Top row) and could not recognize correctly (Bottom row) 

7.4.3 Pros and Cons 

Pros: 

1. A simple and intuitive way to segment/recognize scene word image. Compared with competing 

methods, it doesn’t require forming complex structure, MRF (Mishra et al, 2011) or CRF (Field 

and Learned-Miller, 2013). 

2. Unlike vertical projection profiles (Neumann et al, 2011), our system can handle overlapping 

characters very well. 

3. It brings the powers of holistic character recognition to word recognition. 

Cons: 

1. In the presence of noise, the system sometimes over segments the characters. This, however, 

can be remedied to some extent by post-processing in the spell-checker module. 
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2. The post-processing spell-checker we used is based on limited MS Word lexicon, which for 

proper nouns, e.g. names of businesses on storefronts or related signage, is not well equipped. For 

this we would need a more powerful post-processor. 

7.5 Conclusion 

In this chapter we presented a novel technique to segment a word image from challenging 

datasets like ICDAR03-Word and SVT. Our method used the concept of image seams in 

conjunction of our holistic character recognition strategy to segment and recognize words in a 

cropped image. We tackled the misclassifications due to noise and other text occlusions by 

incorporating spell-checking module in the final output of a word label. 

 We experimented with both lexicon driven and open vocabulary scenarios of cropped word 

recognition and our results demonstrate the potential of a promising line of work in this context. 

We noticed that our results could be improved by better binarization of the input image, which is 

a problem in its own right. Moreover, we intend to utilize more powerful web search based system 

to correct the recognized string in place of spell-checking module. 
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CHAPTER 8 
 

CONCLUSION 

8.1 Significance of our work 

In this work, we have highlighted the importance of holistic features in the context of 

recognition of characters extracted from natural scene images and compared the performance of 

holistic approaches with more prevalent local feature bases methods. STR community has devoted 

its efforts more on local features and have yet to harness the power of holistic features effectively 

into STR systems. Our results clearly demonstrate the significance of holistic features and bring 

home the fact that reliable systems should incorporate holistic local recognition. 

To recap, we put forth three strategies to recognize words extracted from natural scene 

images, aka text in the wild. The first one was based on modelling character images of a class as a 

3-mode tensor and then factoring it into a set of rank-1 matrices and the associated mixing 

coefficients. Each set of rank-1 matrices span the solution subspace of a specific image class thus 

capturing the required class signature which, along with the mixing coefficients, is used for final 

character recognition. 

 The second approach we studied in this work lets us form a novel holistic feature for 

character recognition based on active contour model, also known as snakes. Our feature vector is 

based on two variables, direction and distance, cumulatively traversed by each point as the initial 

circular contour evolves under the force field induced by the character image. The initial contour 



85 
 

design in conjunction with cross-correlation based similarity metric enables us to account for 

rotational variance in the character image.  

 Our third approach was based on modelling a 3-mode tensor via rotation of a single image. 

This method is a different from our first approach above in that we form the tensor based on a 

single image instead of collecting a specific number of samples of a particular class. Here we do 

rotation through a predefined range of angles which enables us to better capture rotational variance 

in the scene character images as demonstrated by our results. This ultimately leads to better 

performance than the local approaches. 

Finally, as an application, we used our character based recognition model to recognize 

word images extracted from natural scenes. Here we first introduced our novel segmentation 

method based on image seam analysis to split a word into individual character images. We then 

applied our holistic models to recognize individual letters and then use a spell-checker to get a 

plausible candidates for the word in the original image. 

 Our rigorous and extensive experiments on popular scene datasets like Chars74K-Font, 

Chars74K-Image, SVT and ICDAR03, and the results demonstrated comparable or better 

performance than several local features based methods (e.g. HoG, SIFT etc.) justifying our 

intuition about the importance of holistic strategies in scene text recognition (STR). 

8.2 Future Work 

 STR is a hard problem and still an active area of research and experimentation. There is 

still a lot of room for researchers to solve different aspects of this problem and to seek solutions 
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that are comparable with human performance. In the context of our work on scene characters and 

cropped word recognition, we propose possible future directions/extensions as follows: 

1. Better approaches toward segmentation of textual content from background to boost accuracy 

of recognition 

2. Combining holistic with local features in a robust recognition framework 

3. Development of scene text detector module that will help make complete scene text reader 

application 
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