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ABSTRACT 

In this thesis, Density Functional Theory (DFT) and Dynamical Mean-Field Theory 

(DMFT) approaches are applied to study the magnetic properties of transition metal 

nanosystems of different sizes and compositions. In particular, in order to take into 

account dynamical electron correlation effects (time-resolved local charge interactions), 

we have adopted the DFT+DMFT formalism and made it suitable for application to 

nanostructures. Preliminary application of this DFT+DMFT approach, using available 

codes, to study the magnetic properties of small (2 to 5-atom) Fe and FePt clusters 

provide meaningful results: dynamical effects lead to a reduction of the cluster magnetic 

moment as compared to that obtained from DFT or DFT+U (U being the Coulomb 

repulsion parameter). We have subsequently developed our own nanoDFT+DMFT code 

and applied it to examine the magnetization of iron particles containing10-147 atoms.  

Our results for the cluster magnetic moments are in a good agreement with 

experimental data. In particular, we are able to reproduce the oscillations in magnetic 

moment with size as observed in the experiments. Also, DFT+DMFT does not lead to 

an overestimation of magnetization for the clusters in the size range of 10-27 atoms 

found with DFT and DFT+U. On application of the nanoDFT+DMFT approach to 

systems with mixed geometry – Fe2O3 film, which are periodic (infinitely extended), in 

two directions, and finite in the third. Similar to DFT+U, we find that the surface atom 

magnetic moments are smaller compared to the bulk. However, the absolute values of 

the surface atoms magnetic moments are smaller in DFT+DMFT.  In parallel, we have 
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carried out a systematic study of magnetic anisotropy in bimetallic L10 FePt 

nanoparticles (20-484 atoms) by using two DFT-based approaches: direct and the 

torque method. We find that the magnetocrystalline anisotropy (MCA) of FePt clusters is 

larger than that of the pure Fe and Pt ones. We explain this effect by a large 

hybridization of 3d  Fe- and 5d Pt-atom orbitals, which lead to enhancement of the 

magnetic moment of the Pt atom, and hence to a larger magnetic anisotropy because of 

large spin-orbit coupling  of Pt atoms. In addition, we find that particles whose (large) 

central layer consists of Pt atoms, rather than Fe, have larger MCA due to stronger 

hybridization effects. Such ‘protected’ MCA, which does not require protective cladding, 

can be used in modern magnetic technologies.  
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CHAPTER 1 INTRODUCTION 

1.1 Strong electron-electron correlations and magnetism 

Strongly correlated materials, which contain active localized d- and f-electronic orbitals, 

remain at the forefront of condensed matter and material physics research. Electron-

electron correlations and the interplay between electronic, magnetic and structural 

degrees of freedom lead to incredibly rich phenomena[1]. Metal-insulator transition, 

heavy fermion phenomena, colossal magnetoresistance, and high temperature 

superconductivity take place in this class of systems with localized charge orbitals. 

From the perspective of basic science, these materials are fascinating precisely 

because of the richness of emergent phenomena due to high tenability of their 

properties (changing temperature, pressure, doping, etc.). The low-energy excitations in 

some of the materials are very different from the “standard” ones, demonstrating for 

example separation of charge and spin degrees of freedom and being genuinely 

collective in nature (for over-review of general properties of strongly correlated materials 

see, for example,[2]). In general, strong local interactions between the electrons in this 

type of bulk materials result in properties vastly different from those observed in the 

weakly-correlated systems. 

The case of strongly correlated nanostructures is even more interesting, due to 

possibility to tune their properties by changing the system size and geometry. In this 

way one can change the material properties, by making them different from the bulk and 

very small systems, like clusters and molecules. The comparable number of surface 
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and bulk atoms in the nanosystems allow to tune their properties, that include both 

surface and bulk features. The size-dependent evolution of the properties of 

nanostructures makes them very interesting from both theoretical and practical points of 

view.    

Changing chemical composition of correlated nanosystems is another way to tune their 

already rich properties. [3] Synergistic effect of different factors, such as size, shape 

and chemical composition, that lead to very unusual properties of nanomaterials, has 

led to their widespread applications in catalysis[4], nanoelectronics[5], biomedicine[6,7], 

etc. Properties of nanomagnets, in most of which strongly correlated effects play an 

important role, are one of most active areas of research in nanoscience. One of the 

main reasons for this is the dramatically enhanced magnetic moments in nanosized 

particles, of Fe, Co and Ni, [8] and magnetic anisotropy[9]  compared to the bulk values. 

These effects can be further enhanced in the case of nanoalloys. One of the major 

potential applications for magnetic nanoparticles is their use in data storage, triggered in 

particular by the discovery of spontaneous self-organization of magnetic FePt 

nanoparticles on a surface[10]. The underlying idea is to replace the comparatively 

large randomly oriented magnetic grains in conventional media with much smaller 

ferromagnetic nanoparticles, which may lead to a dramatic increase of the magneto-

recording density. FePt nanoparticles due to their magnetic hardness are currently 

identified as the material of choice in this technological area.   
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Magnetic nanoparticles show promise for other modern and future technological 

applications, as in magnetic resonance imaging techniques,[11] drug carries[12] and 

cancer therapy[13] in medicine, and energy-harvesting technologies [14].   

From the perspective of basic science, nanomaterials are fascinating precisely because 

their electronic and magnetic properties are quite different from their bulk counterparts, 

especially in the strongly correlated case. In order to explain these and predict new 

properties of correlated systems one needs to use suitable theoretical tools. In the case 

of nanostructures the situation gets even more complicated due to technical difficulties 

related to a large number of nonequivalent atoms in the system. Another complication 

comes from lack of knowledge of the exact structure of the particles in majority of cases, 

which constraints the theoretical studies of transition metal and other strongly correlated 

nanosystems in the empirical trial and error framework. In order to get rid of this 

difficulty, it is necessary to improve the techniques for generating interatomic potentials 

which will allow accurately prediction of particle structures by establishing the minimum 

energy configurations [10,15,16]. However, probably the most difficult task in correct 

description of the properties of strongly correlated nanostructures, similar to the bulk 

case, is accurately taking into account electron interaction effects. Standard DFT 

approaches, invoking the Local Density Approximation (LDA) and Generalized Gradient 

Approximation (GGA) are inappropriate, since the corresponding exchange-correlation 

(XC) potentials fail in the strongly correlated regime.[17] For example, GGA calculations 

predict bulk V2O3 to be metallic, whereas  experimentally it is found to be an 
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insulator[18]. Perhaps, the simplest way to take into account correlation effects beyond 

DFT is the DFT+U approximation[19]. In this approach one uses a phenomenological 

parameter U, which corresponds to the local on-site electron-electron repulsion energy. 

The U correction allows one to improve the DFT results in describing some properties of 

materials, such as the correct value of the bandgap. However, being essentially a 

mean-field approximation, DFT+U is not capable of reproducing many other properties 

of correlated systems. Some of the examples of failure of DFT+U include missing  

important peaks in the electronic spectral function[17] and wrong predictions of spin-

ordering temperatures [20].  

It has been shown during the last 10-15 years, that the majority of the deficiencies of the 

DFT+U solution can be overcome if one takes into account dynamical fluctuations, i.e. 

time-resolved electron-electron interactions. The corresponding theory, which takes into 

account temporal fluctuations but neglects the spatial ones (hence valid for systems 

with large atomic coordination number[21]), is called dynamical mean field theory 

(DMFT).[20,22,23] This theory combined with DFT (and called DFT+DMFT) allows one 

to reproduce majority of strongly correlated effects in most extended systems.[20] The 

details of the DFT+DMFT approach are given in Chapter 3. 

 In this thesis we present our generalization and applications of the DFT+DMFT 

formalism to study nanomagnets and demonstrate that it can be successfully used in 

this case as well.  
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1.2 Magnetism in extended systems 

Localized orbitals and magnetism In solids, the outer electrons experience an electric 

field produced by the inner electrons and nuclei, and depending on the value of the 

angular momentum and some other parameters, these electrons can be either 

”localized” or can move (be “itinerant”) in the presence of the field. In many transition 

metal systems the outer shell d-electrons are localized because of this effect. These 

localized electrons play crucial role in determining the magnetic properties of materials. 

Because of this importance of electron localization for magnetism, let us briefly 

formulate the criteria of localization in terms of the effective external potential, that 

consists of nuclei attraction and centrifugal repulsion terms, which acts on the electrons. 

The centrifugal part (potential for electrons moving around the nucleus) is defined by 

quantum mechanical angular momentum operator 𝐿 = √ℏ2𝑙(𝑙 + 1) (with 𝑙 being orbital 

angular momentum quantum number of electrons), and is equal to  
ℏ2𝑙(𝑙+1)

2𝑚𝑒𝑟2
 , where 𝑚𝑒 is 

the electron mass and r is the radius of the electronic “orbital”. The Coulomb attractive 

potential between electron and nucleus has the standard form and is equal to  −
𝑍∗𝑒2

4𝜋𝜖0𝑟
,  

where 𝑍∗ is the effective nuclear charge 𝑍∗ = 𝑍 − 𝜎 (𝜎 is the screening parameter).[24] 

Therefore, the effective potential for an electron moving around the nucleus is 

𝑉𝑒𝑓𝑓(𝑟) = −
𝑍∗𝑒2

4𝜋𝜖0𝑟
+
ℏ2𝑙(𝑙+1)

2𝑚𝑒𝑟2
.                                                (1.1)                                             

It follows from equation (1.1) that, the effective potential strongly depends on the value 

of the orbital momentum, which is one of the reasons for rather different orbital radius 
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for d- and f-electrons as compared to that for the s- and p-states. A typical case of the 

different orbital charge density and effective potential dependencies on the distance 

from the center of the ion are shown in Fig 1. As it follows from Fig. 1, the 3d-electron 

charge density has maxima much closer to the nucleus whereas for 4p- and 4s-

densities are further away.  

 

 

Figure 1: Radial dependencies of the charge density and effective potential a 3d 

transition metal atom with effective charge number Z*=10 (from Ref. [25]). 

 

In other words, the atomic charge density and potential showed in the Fig. 1 confirm the 

statement of more localized charge density behavior for the d-orbital, while the other 

two orbital charges can be regarded as itinerant. 
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The localized charge approximation can be used to analyze the magnetic properties of 

systems by using Hund’s rules applied to individual atoms. According to Hund, the  

states in the atom are filled by electrons first for one spin direction from largest to 

smallest (-L to L) value of the orbital momentum and  then backwards for opposite spins 

(L to -L). Such an approximation allows one to get a first-try estimation for the magnetic 

moments in many systems, however it does not lead to an accurate quantitative 

description of magnetism in most of materials, in particular due to strictly integer values 

of the magnetic moment. (in units of  Bohr magneton 𝜇𝐵). For example, in the case of 

Fe with 6 electrons in the 3d orbital and 2 electrons in 4s orbital, the Hund’s rules give 

the spin arrangement as given in Fig. 2  

 

Figure 2 : The schematic of spin configuration of 

Fe according to the Hund's rule. Arrows indicate 

the spin direction. 

 

Thus, the bulk Fe should have spin moment 4 𝜇𝐵, and similarly Co and Ni should have 

moments 3 𝜇𝐵 and 2 𝜇𝐵, respectively. However, the experimental values for the 

magnetic moments in Fe, Co and Ni are 2.216 𝜇𝐵, 1.715 𝜇𝐵 and 0.616 𝜇𝐵, 

correspondingly. [25] Inclusion of the orbital moments according to Hund’s rule gives 
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even higher magnetic moments of 6 𝜇𝐵, 6 𝜇𝐵 and 5 𝜇𝐵 for Fe, Co and Ni, respectively. 

This means that atomic model (localized electron) leads to a serious overestimation of 

the magnetic moments of the bulk transition metals, and one needs to go beyond it in 

order to describe the magnetism in a realistic manner.  

The band theory of magnetism.  An alternative to the local electron approximation is the 

band theory of magnetism, in which collective effects of many-electron system are taken 

into account. Due to inter-atomic hopping of electrons in solids (defined by overlap of 

the wave functions of electrons on different atoms) their electronic energy levels form 

bands of continuously filled states, which are described by the electron momentum 

vector k. Since the position of bands for opposite spin electrons may be shifted with 

respect to each other, one can have different number of spin up and spin down 

electrons in the system (states are filled beginning with lowest energy states). 

Therefore, one can explain the non-zero magnetic moment of the system also in terms 

of the band occupancies. This band theory was first applied to magnetic systems in mid-

1930-ies by Mott[26], Slater[27] and Stoner[28,29], in the framework later called the 

Stoner Model. A remarkable success of this model is its ability to describe the magnetic 

moments of the system with non-integer Bohr magneton numbers. The idea of non-

integer filled bands and how this result in continuous values for the magnetic moments 

can be obtained from Fig.3   
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Figure 3: The shaded region represent filled electronic band below the Fermi energy and the 

empty band above the Fermi are represented by un-shaded region. The center of majority and 

minority spin band are separated by exchange splitting ∆. The quantization direction is taken to be 

parallel to the external field. 

 

In the simplest case of zero temperature, all electronic states below the Fermi level are 

filled. Due to different position of the majority (spin-up) and minority (spin-down) bands 

with respect to the Fermi level, one can get a non-zero spin moment in the system. The 

moment is defined by difference of the number of majority and minority spins in the 

system:  

𝑁𝑒
↓−𝑁𝑒

↑ = ∫ 𝐷↓(𝐸)𝑑𝐸
𝐸𝐹

−∞
− ∫ 𝐷↑(𝐸)𝑑𝐸

𝐸𝐹

−∞
,                                                (1.2)                               

where 𝐷(𝐸) are the corresponding spin densities of states. More precisely, the magnetic 

moment is equal to 𝑚 = −2𝜇𝐵 〈𝑠𝑧〉 /ℏ, where 〈𝑠𝑧〉 is the average spin in units of ℏ (the 
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negative electron charge gives gyromagnetic ratio (-2) for electron). Then, the 

expectation value of electron spin towards the quantization axis-z can be written as  

𝑚 = −2𝜇𝐵 〈𝑠𝑧〉
1

ℏ
= 𝜇𝐵(𝑁𝑒

↑ − 𝑁𝑒
↓).                                                             (1.3)    

The Stoner model does not take into account the detailed dependence of the band 

energies on  the electronic wave vector k, which can be very complicated as discussed, 

for example, by Hoffmann[30] . Indeed, in general the wave-functions of the multi-orbital 

systems can be expanded in terms of the momentum-dependent functions proportional 

to different parts: the radial (𝑅𝑛,𝑙(𝑟)), orbital (𝑌𝑙.𝑚=|𝑙, 𝑚〉,  𝑙 and  𝑚 are orbital momentum 

and its projection) and spin (𝜒+ =↑, 𝜒− =↓), 

|𝜓𝑖(𝑘, 𝑟)〉 = |𝑅𝑛,𝑙(𝑟)〉|𝜑𝑖(𝑘)〉 = |𝑅𝑛,𝑙(𝑟)〉∑ [𝑐𝑖,𝑚(𝑘)|𝑙𝑚𝜒
+〉 ++𝑙

𝑚=−𝑙 𝑒𝑖,𝑚(𝑘)|𝑙𝑚𝜒
−〉]        (1.4) 

The equation (1.4) describes a band state in the presence of both exchange and spin-

orbit interaction and it is written in Slater-Koster tight binding formalism. [30] Obviously, 

the diagonalization of the Kohn-Sham equation with such a complex basis wave 

functions may lead to a rather nontrivial dependence of the energies on momenta.  

One most widely used band theoretical approach to study the ground state and the 

bandstructure of the materials is DFT, which we will discuss in detail later. The success 

of this theory is based in an approximate but efficient treatment of the interaction and 

other many-electron effects in terms of an effective one-electron exchange-correlation 

potential that depends on the total charge density. In the spin version of DFT, one deals 

with the spin dependent charge densities, which allow studying the magnetic properties 
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of the materials. In many cases, the spin and charge DOS obtained from the DFT 

bandstructrure  calculation is comparable to the experimental data, obtained for 

example by means of the angle-resolved photoemission spectroscopy (ARPES).[25] 

Unfortunately, as it was mentioned in the previous Subsection that, simple DFT-based 

(i.e. weakly-interacting electron) band theory is not capable to describe the electronic 

and magnetic properties of a large number of materials. Already in 1937 it was 

discussed by de Boer and Verwey[31] that the standard band theory cannot explain the 

insulating nature of many oxides. The same year  Mott[32] suggested that strong 

electron-electron correlations are responsible for insulating nature of these systems, 

which started a new branch of solid state theory called physics of strongly correlated 

electrons. In this theory the central parameter is the value of the local electron-electron 

repulsion U. In the cases in which U is comparable or larger than the electron kinetic 

energy (proportional to the bandwidth W) local interaction effects are dominating in 

defining properties of the systems.  

For typical metals with W~10-20eV, one can neglect effects of U (which is ~5eV) or 

less, while for correlated materials with narrow d- (~5eV) or f- (<5eV) bands one cannot 

avoid U in analyzing the properties of the system, and has to treat U and W on equal 

footing. Naturally, local interaction effects in these materials affect also their magnetism, 

in particular through the modification of the bandstructure.    
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1.3 Magnetism at the nanoscale 

Similar to the bulk, in the case of nanosystems role of itinerant (“band”) and localized 

(“atomic”) electronic states in magnetism can be very nontrivial, and often the interplay 

between these two types of states define the magnetism in nanomaterials. The analysis 

is even more complicated in the case of small structures, due to different properties of 

surface and “bulk” parts of the systems. To build a simplified phenomenological models 

for nanomagnetism one needs to distinguish contributions of these two types of states 

as well. Before proceeding with a summary on theoretical developments in the field of 

nanomagnetism, we start with some characteristic experimental results for these 

systems. 

The magnetic moments of clusters or nanoparticles can be determined, for example, in 

Stern-Gerlach experiments, in which clusters produced from a molecular beam, are 

allowed to travel through an inhomogeneous magnetic field. A typical Stern-Gerlach 

apparatus is shown in Fig. 4. 



13 

 

 

Figure 4: Schematics of Stern-Gerlach experiments. Inhomogeneous magnetic 

field is created between two uneven bar magnets. 

 

By measuring the deflection of the cluster trajectory in the field one can determine the 

magnetization of the cluster, M(B), along with the cluster mass by using the time-of-fly 

mass spectrometer.  The deflection of a cluster from its original trajectory due to the 

magnetic field is given by [8,33] 

𝑑 = 𝐾
𝑀(𝐵)

𝑚𝑣2
𝜕𝐵

𝜕𝑍
,                                                        (1.5) 

where 𝑣 is the velocity of the cluster that moves transverse to the field gradient 

𝜕𝐵

𝜕𝑍
 direction, 𝑚 is the mass of the cluster, and 𝐾 is the apparatus constant, defined by 

the device geometry. In the case of N-atom cluster approximated by a single 

ferromagnetic domain its total magnetic moment 𝜇𝑁 defines the cluster magnetization in 

the presence of the external field B in the following way (at B/kBT<<1): 
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 𝑀(𝐵) =
𝜇𝑁
2 𝐵

3𝐾𝐵𝑇
.                                                             (1.6) 

Equations (1.5) and (1.6) determine the total magnetic moment of a cluster 𝜇𝑁 as 

function of d, m and other experimentally measured parameters .  

The experimental results for the magnetic moments of Fe, Ni and Co clusters as 

function of their size[8,33-35] are presented in Fig.5. As it follows from this Figure, the  

average magnetic moment per atom �̅� of the clusters descreases to the bulk value[36] 

as the system size increases. It appear that the system approaches the bulk limit with 

about 600-700 atoms in the cluster. In general, however, the size- dependence of the 

magnetization of the clusters is not easy to understand. Since the surface atoms of the 

cluster have smaller coordination number compared to the “bulk” atoms, one cannot 

conclude that all atoms have the same magnetic moment �̅� =
𝜇𝑁

𝑁
. One also needs to 

consider the cluster symmetry, inter-atomic distances, electron correlation effects, etc., 

in order to properly describe the cluster magnetization. 
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Figure 5: Stern-Gerlach-type experiment data for the magnetic moment per atom for 

Fe, Co and Ni clusters of different sizes (From Ref. [34]). 

 

Below, we briefly mention some of the popular models to describe results in Fig.5 and 

other experimental data for nanomagnets.   

To explain the decreasing of magnetic moment of the systems with cluster size 

increasing,  Zhao et al.[37] proposed to use a tight-binding approximation. In their 
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analysis, they neglected the s- and p-orbital magnetic moments due to their mall values 

(less than 10% on total magnetization[38]). They have used the Friedel’s model[39] 

approximation for the rectangular 𝑑-band spin DOS for the electron at site 𝑖 with spin 𝜎. 

[40]: 

𝑁𝑖
𝜎(𝐸) = 5 𝑊𝑖

⁄  for −
1

2
𝑊𝑖 < 𝐸 − 𝐸𝑑

𝜎 <
1

2
𝑊𝑖                   (1.7) 

where 𝐸𝑑
𝜎 represents the center of energy of the corresponding band 𝑊𝑖, which is the 

same for spin-up and spin-down electrons. In their theory, the authors assumed that the 

d-band splitting in the cluster, defined by values of 𝐸𝑑
𝜎 for both spins, is same as that of 

the bulk. In the second-moment approximation, the tight-binding bandwidth is 

proportional to the square root of the effective coordination number 𝑍𝑖 [40]: 

𝑊𝑖 = 𝑊𝑏 (
𝑍𝑖
𝑍𝑏
⁄ )

1
2⁄

,                                                   (1.8) 

where 𝑊𝑏 and 𝑍𝑏 are the bandwidth and the coordination number of the corresponding 

bulk material. The local magnetic moment 𝜇 = ∫ [𝑁𝑖
↑(𝐸) − 𝑁𝑖

↓(𝐸)]𝑑𝐸
𝐸𝐹

−∞
 can be written 

with the help of equation (1.8) as 

𝜇𝑖 = {
(
𝑍𝑏

𝑍𝑖
)
1
2⁄

𝜇𝑏𝑢𝑙𝑘 ,     𝑖𝑓 𝑍𝑖 ≥ 𝑍𝑐

𝜇𝑑𝑖𝑚𝑒𝑟 ,                𝑖𝑓 𝑍𝑖 < 𝑍𝑐

                                     (1.9) 
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where 𝜇𝑏𝑢𝑙𝑘  and  𝜇𝑑𝑖𝑚𝑒𝑟  (> 𝜇𝑏𝑢𝑙𝑘 ) are the bulk and the dimer magnetizations and 𝑍𝑐 is 

the critical coordination number. In general, increasing the particle size leads to an 

increase of  𝑍𝑖, which on its turn leads to a decrease of the magnetic moment. Since in 

the case of very large particles  𝑍𝑖 = 𝑍𝑏 , one obtains the bulk magnetic moment for 

such structures. The average per atom magnetization �̅� =
𝜇𝑁

𝑁
 depends on the ratio of the 

numbers of surface and bulk atoms. Indeed, as it follows from equation (1.9) for the 

surface atoms 𝑍𝑖 is smaller, which reduces the average magnetization of the cluster in 

the case of many surface atoms. 

Jensen and Bennemann have developed several other phenomenological models to 

explain the size-dependence of magnetization in nanostructures. In Ref.[41] they 

proposed that the value of the magnetic moment of the cluster can be approximated by 

the following formula: 

�̅� = 𝜇𝑏 + (𝜇𝑠 − 𝜇𝑏)𝑁
−1 3⁄                                                    (1.10)  

where 𝜇𝑏 and 𝜇𝑠 are the magnetic moment of bulk and surface atoms, and N is the 

number of atoms in the cluster. This equation gives a decrease of the magnetization 

with cluster size towards bulk value 𝜇𝑏, but it cannot explain oscillations of the �̅� (𝑁) 

curve seen in experiments.[8,33-35] In order to explain these oscillations, one needs to 

take into account the magnetic properties of individual atoms and the geometry of 

clusters in more details.  
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One of the examples of the theory that includes these details is given in works [8,33,34]  

by Billas et al. To explain their experimental data, they assumed that the clusters were 

formed by several concentric atomic shells and the magnetic moment of the atoms in 

each shell depends on the distance from the shell to the center of the cluster. According 

to this model, the atoms in different shells 1, 2, 3, … were assigned different empirical 

values of magnetic moments 𝜇1, 𝜇2, 𝜇3, …. The last values for the magnetization  were 

assumed to be different for different chemical elements. . For example, for Ni the values 

are: 𝜇1 =1.2, 𝜇2=-0.4, 𝜇3=0.8… and for Fe:  these values are 𝜇1=3, 𝜇2=3.2, 𝜇3 =0, … (in 

units of 𝜇𝐵).[36]. According to the assumptions of the model, the atoms in the outermost 

shell has larger magnetization compared to the atoms in the inner shells. Unfortunately, 

this model also cannot reproduce the oscillation in the magnetization as found in the 

experiments.  

Jensen and Bennemann[41] proposed a different type of model that includes atomically-

resolved magnetization. According to their model, atoms in the cluster are arranged 

shell by shell, occupying sites with local fcc or bcc structure and assuming that the 

clusters can only have cubic, octahedral, cuboctahedral and spherical geometry. In 

addition to the assumption that different shells have different values of magnetization, 

they allowed the individual atoms in the outer most shell to have different values of 

magnetization. The magnetic moments obtained by using this model roughly 

reproduced the experimental minima for Fe cluster with the bcc structure, which 

suggests, that the oscillation of the magnetization might be related to the “crystal” 
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structure of the shells. For the outermost shell, it was assumed by Jensen et al. that the 

average magnetization is  

�̅�0 = 𝑋0(1 − 𝑋0)𝜇𝑎𝑡 + 𝑋0
2𝜇𝑠                                     (1.11) 

where 𝑋0 is the concentration of occupied sites (in the bcc, fcc,… configurations), 𝜇𝑎𝑡 is 

the free-atom magnetic moment, and  𝜇𝑠 is surface magnetic moment. The magnetic 

moment bellow the top shell was approximated by 

�̅�1 = (1 − 𝑋0)𝜇𝑠 + 𝑋0𝜇𝑏𝑢𝑙𝑘.                                                (1.12) 

From equation (1.12) it follows means that the magnetic moment of this shell is equal 

the surface moment if its atoms have no nearest neighboring atoms in the top shell. On 

the other hand, it has the bulk magnetic moment if it is completely covered by the top 

shell atoms. The magnetic moments of the 3rd shell and other shells inside the cluster 

were assumed to have the bulk value. From equation (1.10) - (1.12), one can obtain the 

following expression for value of the magnetic moment per atom:  

𝜇(𝑁) =
𝑁0�̅�0+𝑁1�̅�1+𝑁𝑏𝑢𝑙𝑘𝜇𝑏𝑢𝑙𝑘

𝑋0𝑁0+𝑁1+𝑁𝑏𝑢𝑙𝑘
                                         (1.13) 

where 𝑁0  is the number of sites in the topmost shell, 𝑁1 is number of sites in the 2nd 

shell and 𝑁𝑏𝑢𝑙𝑘 is the total number of atoms in the inner shells. The magnetic moment 

produced from equation (1.12) has minima near closed shell clusters and maxima near 

the half-filled shell clusters, i.e. the model allows one to describe the oscillation of 

magnetization to some degree of accuracy. 
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The phenomenological models based on the “itinerant” and localized electron scenario 

can explain to a rather limited extent the dependence of the cluster magnetization on 

number of atoms. Along with these studies numerous ab initio DFT investigations of the 

magnetic properties of nanostructures [36,42-44] were performed. In particular, some of 

the results demonstrated ability of DFT to reproduce the oscillations of the magnetic 

moments with increase of the cluster size.[45] On the other hand, in general the 

agreement of the DFT results with the experimental data on the absolute values of the 

magnetization is far from perfect. Similar to bulk, U correction (DFT+U) improves the 

results in some cases, though one is very far from the conclusion that the DFT+U is 

sufficient to describe magnetic nanosystems. One possible reason for the failure, one 

more time similar to the bulk, is neglect of dynamical fluctuation effects in the system.  

It has already been suggested by Florens[46] that DMFT, which takes dynamical 

fluctuations into account, can be used for the nanosystems when the average atomic 

coordination number in the cluster is large. His justification was based on the fact that in 

bulk materials with large coordination number DMFT was rather successful in most 

cases. It is important to note that in DMFT spatial fluctuations are neglected, which 

might be too crude approximation for small clusters. On the other hand, but since in 

majority of (not very small) clusters the number of bulk atoms is comparable to the 

number of surface atoms, one can expect DMFT to be valid in these case as well. 

Another argument in favor of validity of DMFT in nanocase is applicability of the theory 

to two dimensions, where the coordination number can be as low as four. [46] This fact 
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and the fact that in nanosystems one can barely have atoms with less than four 

neighbors (except a few atom-wide chains) suggest that DMFT should be a rather 

accurate approximation in the nanocase as well.   

In this thesis we perform a systematic study of the role of these effects in the magnetic 

properties of nanostructures. We developed a nanoDFT+DMFT approach and applied it 

first to small (2-5-atom) Fe [47] and FePt  [48] clusters by modifying available codes. 

We formulated a test of the combined DFT+DMFT approach to study the physical 

properties of real finite system, in which electron-electron correlation effect has to be 

taken into account. As already mentioned correlation effects play an important role in 

the magnetism of transition metal particles. For example, it was shown that inclusion of 

U into DFT for the Fe dimer leads to significant changes of the values of the Kohn-

Sham energies, and hence to a change of the system magnetic moment[49]. The 

magnetism of small clusters is also very sensitive to the structure geometry. It was 

shown experimentally[50] that Fe3 cluster undergoes Jahn-Teller distortion. Rollmann et 

al.[51] applied DFT to analyze possible Jahn-Teller distorted configurations of the Fe3 

clusters. In our analysis, we used some of these distorted cluster structures in our 

nanoDFT+DMFT calculations in order to understand the interplay between the 

correlation and distortion effects and their role in the magnetism of Fe clusters. We 

found that in most clusters DMFT correction leads to a decrease of the magnetic 

moments obtained by using the DFT or DFT+U approaches, and that the obtained 

results for the magnetization are in reasonable agreement with available experimental 
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data [52]. Thus, dynamical fluctuation effects (time-resolved on-site electron-electron 

interaction) result in softening of the magnetic state.  

Inspired by this result which suggest that DMFT is able to produce meaningful results 

even for extremely small clusters, we applied the approach to study the magnetic 

properties of small bimetallic FePt clusters of 2 to 5 atoms with different chemical 

compositions[48]. Small bimetallic clusters are excellent systems to understand 

fundamental interactions and their variation with particle size and compositions 

(interplay of 3d- and 5d-states in the magnetism), as they are large enough to show the 

complex behavior and small enough to be treated with accurate theories. FePt clusters 

are of special interest, because of their high magnetic anisotropy [43,53-56]. The 

interplay of the Fe and Pt states in the magnetism maybe highly nontrivial. For example, 

DFT calculations by Boufala et al.[53]  showed that both Fe and Pt atoms experience 

enhancement of the magnetic moments when coupled together (in dimer and larger 

clusters). Similar to the Fe case, we have found that DFT+DMFT significantly reduced 

the cluster magnetization compared to DFT or DFT+U. Increase of the number of Pt 

atoms in the 5-atom FePt clusters lead to a decrease of the magnetization. However, 

contrary to the case of bulk we have found pure Pt5 clusters to be magnetic. 

We extended the nanoDFT+DMFT approach, developed our own code, and applied it to 

the case of larger (up to 147-atom) Fe clusters.[57] The calculations performed with our 

code showed that contrary to DFT and DFT+U, DFT+DMFT is able to reproduce 

important oscillations in magnetization for several regions of cluster sizes. Overall, the 
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DFT+DMFT results for the magnetic moments were found to be in much better 

agreement with experiment [36,58] as compared to other two approaches. One of the 

reasons for this is strong modification of the electronic spectrum after inclusion of the 

dynamical effects, in particular presence of new peaks in the DOS. 

We also extended the nanoDFT+DMFT approach to another type of nanosystem -  

hematite 𝐹𝑒2𝑂3 thin film with (001) surface. Bulk 𝐹𝑒2𝑂3 is a narrow band-gap insulator 

(gap ~2𝑒𝑉). The system is anti-ferromagnetic below temperature 995 K. This oxide is 

considered as an efficient support for catalytic applications, corrosion, lubrication [59,60] 

and magnetic properties of materials, catalysis and geochemical process.[61,62] In 

general the thin-film structures, being finite in one and extended in two directions, 

combine properties of both finite and extended systems. The electronic and magnetic 

states on the surface is another interesting question in this case. In particular, it is very 

important to understand how dynamical effects modify the surface properties of this 

antiferromagnet. The structure of the surface of the 𝐹𝑒2𝑂3 surface were studied both 

experimentally [63-65] and theoretically [64,66-68]. Most of this studies result in the 

conclusion that the lowest surface of the system has (001) structure with Fe-atom 

termination. In particular, the DFT+U calculations by Kiejna et al.[66] show that at low 

oxygen pressure the Fe-terminated structure (with Fe-O3-Fe-ordering) is more stable 

than the other structures.  In the case of the bulk system, spin DFT strongly 

underestimated values for the bandgap and the magnetic moments.[68] On the other 

hand, the DFT+U calculations improve the result for the magnetization, but fail to 
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describe the metal-insulator transition (MIT)[69-71] The LDA+DMFT is able to 

reproduce  the MIT in bulk 𝐹𝑒2𝑂3,[72] [73] which suggest this approach to be also 

appropriate for films and nanoparticles. Our DFT+DMFT results show that dynamical 

effects lead to several interesting properties of the system, including surface states and 

nontrivial magnetism.  

Finally, we performed a theoretical investigation of the Magneto-Crystalline Anisotropy 

(MCA) of L10 FePt bulk system and nanoparticles that consist of alternating layers of Fe 

and Pt atoms, by using the direct and torque DFT approaches. L10 thin films and 

nanoparticles are promising candidates for ultra-high density magnetic storage media 

due to their high corrosion resistance and excellent intrinsic magnetic properties.[10] 

Since FePt alloys shows large perpendicular MCA(on the order of 1 meV/atom[74]) as 

compared to various ferromagnetic metals and it can suppress superparamagnetism in 

nanoscale particle[75], it is a good candidate for anotechnological applications 

mentioned above. It has other advantages as compared to other rare earth transition 

metal compounds with high MCA, such as 𝑁𝑑2𝐹𝑒14𝐵 and 𝑆𝑚𝐶𝑜5 [76], being much less 

ductile and chemically inert.[9] In this work we perform a theoretical investigation of 

MCA of L10 FePt clusters of size 20 to 484 atoms. The clusters studied have 4(5), 3(4), 

2(3) and 1(2) layers of 𝐹𝑒(𝑃𝑡) atoms and vice versa. Our results obtained with both 

direct and torque methods show that in this type of layered magnetic system the MCA is 

caused mainly by the large SOC of the 5d-electrons in the Pt atoms. On the other hand 

the role of the 3d-electrons in the Fe atoms is mainly in the exchange splitting of the Pt 
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sub-lattice (see also Refs. [77-79]). We demonstrated that in the case of systems with 

large central layer of Pt atoms one can expect rather large (5meV/atom) anisotropy. The 

advantage of particles with such “encapsulated” anisotropy is that one does not need to 

cover them in order to protect the magnetic properties. We also performed detailed 

studies of the electronic structures of different atoms in the clusters in order to quantify 

a complex contribution of both 3d- and 5d-electronic states from both types of atoms to 

high MCA of the system. These results confirm one more time that one can expect very 

rich physics by tuning the chemical composition, size and geometry of the system.   

In the next Chapter, we discuss the main ab initio approaches to study the electronic 

and magnetic properties of materials, including their successes and limitations.  
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CHAPTER 2 AB-INITIO APPROACHES TO STUDY THE ELECTRONIC AND 
MAGNETIC PROPERTIES OF MATERIALS  

2.1 Density Functional Theory (DFT) 

To understand different properties of materials one needs to know their electronic 

structure. DFT approach has been used for a long time for this purpose.  

To derive the basic DFT equations, let us begin with the Schrodinger’s equation for 

system of many electrons and nuclei: 

�̂�Ψ(r) = 𝐸Ψ(r),                                   (2.1)                                                                         

where �̂� is the Hamiltonian operator: 

�̂� = �̂�𝑒 + �̂�𝑁 + �̂�𝑒−𝑒 + �̂�𝑁−𝑁 + �̂�𝑒−𝑁 .                (2.2)                                                                 

In Eq. (2.2), �̂�𝑒 and �̂�𝑁 are is the kinetic energy operators of electrons and ions, �̂�𝑒−𝑒 is 

the electron-electron interaction operator, �̂�𝑁−𝑁 is the corresponding nucleus-nucleus 

repulsion interaction term, and �̂�𝑒−𝑁 is the electrostatic electron-nucleus attraction 

operator. In terms of the electron and nucleus coordinates these parts of the 

Hamiltonian can be written as: 

 �̂�𝑒 = −
1

2
∑ ∇𝑖

2
𝑖 ,  �̂�𝑒−𝑁 = ∑ [∑ 𝑉(𝑅𝐼 − 𝑟𝑖)𝐼 ]𝑖 , and �̂�𝑒−𝑒 = ∑ ∑

1

𝑟𝑖−𝑟𝑗
𝑗>𝑖𝑖 ,        (2.3)                  

and similar for the remaining two terms.  
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 In Eq. (2.1), Ψ is the wave function and 𝐸 is the eigen-energy of the system. In the case 

of a system with N-nuclei, and n-electrons, the wave function Ψ is a function of both 

electronic and nuclei coordinate:  

Ψ = Ψ(𝑟1, 𝑟2, …………𝑟𝑛;  𝑅1, 𝑅2, ……… . 𝑅𝑁),                                                   

i.e. it depends on 3n+3N variables, which makes obtaining the solution very 

complicated. Thus in order to describe the system properties one needs to make some 

approximations.  

2.1.1 The Born-Oppenheimer approximation  

Due to smaller mass, electrons move much faster than the nuclei. Thus, electrons 

rapidly adjust themselves to the change in nucleus coordinates and one can decouple 

the electronic and nucleus degrees of freedom in solving Eq. (2.1): 

 Ψ(𝑟1, 𝑟2, …………𝑟𝑛;  𝑅1, 𝑅2, ……… . 𝑅𝑁) = ∑ Λ𝜈(𝑅)𝜈 Φ𝜈,(𝑟1, 𝑟2, …………𝑟𝑛)          (2.4)     

where, Φ is the wave function of electrons for a fixed set of nucleus coordinates R. In 

this case, the Schrodinger equation for the electronic part of the system can be written 

as: 

𝐻𝑒Φ(𝑟1, 𝑟2, …………𝑟𝑛) = 𝐸𝜈 
𝑒Φ(𝑟1, 𝑟2, …………𝑟𝑛)                                            (2.5)      

where 

𝐻𝑒 = �̂�𝑒 + �̂�𝑁 + �̂�𝑒−𝑒 + �̂�𝑒−𝑁      (2.6) 

and  
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�̂�𝑁−𝑁 =
1

2
∑

𝑍𝐼𝑍𝐽

𝑅𝐼𝐽
𝐼≠𝐽                                                    (2.7)     

(𝑍𝐼  is the nucleus (ion) charge). 

After one obtains the solution of Eq. (2.6), one can calculate new positions of the ions 

by finding the minimum for energy of the system: 

 𝐸𝐵𝑂 =
1

2
∑

𝑍𝐼𝑍𝐽

𝑅𝐼𝐽
𝐼≠𝐽 + 𝐸𝑒(𝑅)                                                                          (2.8)                   

The procedure is repeated until the converged solution for the electronic and ionic 

system is obtained. This algorithm forms the basis of the Born-Oppenheimer 

approximation (BOA). Despite the great simplification of the BOA, one still needs to take 

care of a huge number of electronic degrees of freedom in the Schrödinger equation, 

i.e. one need to properly take into account many-electron effects.  

2.1.2 Hartree and Hartree-Fock approximation  

In the simplest approximation, proposed by Hartree [80],  it is assumed that the 

electrons don’t interact with each other, so the many-electron wave function can be 

approximated by a product of single-electron orbitals: 

𝜓(𝑟1, 𝑟2, …………𝑟𝑛) = 𝜑1(𝑟1)𝜑2(𝑟2)………𝜑𝑛(𝑟𝑛).                         (2.9)                               

In this case, Eq. (2.6) reduces to the following equation:  

[−
1

2
∇𝑖
2 + ∑ 𝑉(�⃗⃗�𝐼 − 𝑟𝑖)𝐼 + ∑ ∫|𝜑𝑗(𝑟𝑗)|

2 1

|𝑟𝑗−𝑟𝑖|
𝑑𝑟𝑗𝑗≠𝑖 ] 𝜑𝑖(𝑟𝑖) = 휀𝜑𝑖(𝑟𝑖),            (2.10)                
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which can be rather easily solved numerically.   

The third term in the square brackets in Equation (2.10) is an electrostatic potential 

experienced by the electron in the 𝑖𝑡ℎ state due to the other electrons. Thus, the 

problem reduces to one-electron equations, which can be solved self-consistently, for 

example by using an iterative procedure.  

In the Hartree approximation, Equation (2.10), the electrons are interacting with each 

other only via the effective field; direct interactions between electrons are missing. Also, 

due to fermionic nature of electrons, their wave function must satisfy certain properties, 

missing in the Hartree approximation. Namely, the fermion wave function must be anti-

symmetric with respect to interchanging each-pair of electrons: 

𝜓(𝑟1, 𝑟2, … , … , 𝑟𝑗 , … , 𝑟𝑘, … , 𝑟𝑛) = −𝜓(𝑟1, 𝑟2, … , … , 𝑟𝑘, … , 𝑟𝑗, … , 𝑟𝑛).                   (2.11)                

The property can be satisfied if one writes the electron wave function in the form of 

Slater determinant: 

𝜓(𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ , … . , 𝑟𝑛⃗⃗⃗⃗ ) =
1

√𝑛!‖

‖

𝜑𝛼(𝑟1⃗⃗⃗ ⃗)𝜑𝛽(𝑟1⃗⃗⃗ ⃗)… . 𝜑𝜐(𝑟1⃗⃗⃗ ⃗)

𝜑𝛼(𝑟2⃗⃗⃗⃗ )𝜑𝛽(𝑟2⃗⃗⃗⃗ ) … . 𝜑𝜐(𝑟2⃗⃗⃗⃗ )
………………………… . .
……………………………
𝜑𝛼(𝑟𝑁⃗⃗⃗⃗⃗)𝜑𝛽(𝑟𝑁⃗⃗⃗⃗⃗) … . 𝜑𝜐(𝑟𝑁⃗⃗⃗⃗⃗)

‖

‖
.                                                 (2.12)      

Indeed, changing two electrons is equivalent to change of two columns in the Slater 

matrix, which correspond to change of the sign of the determinant. Also, such a wave 

function satisfies the Pauli exclusion principle, according to which one cannot have two 

electrons in the same state: determinant of the matrix with two or more equal columns is 



30 

 

zero. This approximation is called the Hartree-Fock (HF) approximation. In the HF 

approximation the one-electron equation is: 

[−
1

2
∇𝑖
2 + ∑ 𝑉(�⃗⃗�𝐼 − 𝑟𝑖)𝐼 ] 𝜑𝜆(𝑟𝑖) + [∑ ∫𝜑𝜇

∗(𝑟𝑗)
1

|𝑟𝑗−𝑟𝑖|
𝜑𝜇(𝑟𝑗)𝑑 𝑟𝑗𝜇 ] 𝜑𝜆(𝑟𝑖) −

[∑ ∫𝜑𝜇
∗(𝑟𝑗)

1

|𝑟𝑗−𝑟𝑖|
𝜑𝜆(𝑟𝑗)𝑑 𝑟𝑗𝜇 ] 𝜑𝜇(𝑟𝑖) = 휀𝜑𝜆(𝑟𝑖)                                         (2.13)                  

The last term on the left hand side of the equation describes the exchange interaction 

effects. As according to Pauli exclusion principle same-spin electrons cannot occupy the 

same state, it leads to a constraint in the electron motion, or an effective electron-

electron interaction.   In most cases, the HF approximation is much more accurate than 

the Hartree approximation. Exchange interaction deals with same-spin electrons, 

forbidding them to be in the same state (site, momentum and so on). However, different 

spin electrons can occupy the same state, which in particular is the case of two 

electrons occupying the same orbital, which in the case of localized orbitals may lead to 

large increase of their (Coulomb interaction) energy. The part of the electron energy 

beyond the HF approximation is called correlation energy. While in typical metallic and 

semiconductor systems the latter is rather small, in strongly correlated materials it can 

be very large, and one needs to make further approximations to include this part of the 

interaction in the effective Hamiltonian. In any event, the solution of the HF equation is 

rather expensive, because of their many-particle character. Therefore, it would be 

desirable to reduce the many-electron problem to a single-electron one. 
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2.1.3 LDA Approximation  

Such an effective theory, called DFT, was constructed by Kohn, Hohenberg and 

Sham[81]. In this theory, all effects of electron-electron interaction are described by an 

effective potential that depends on the local electron charge density. Solution of the 

corresponding one-electron equation with the interaction term described by this 

potential has made possible the description of a large number of ground-state 

properties of many materials in a rather accurate way. Let us summarize here the main 

ideas that led to the development of DFT.   

One can begin with writing the equation for the total energy of the system: 

𝐸 = ∫ Ψ∗(𝑟1, 𝑟2, … , 𝑟𝑛)�̂�Ψ(𝑟1, 𝑟2, … , 𝑟𝑛)𝑑𝑟1𝑑𝑟2…
∞

−∞
𝑑𝑟𝑛.                               (2.14)              

The last equation suggests that the energy is functional of the many-electron wave 

function. Since kinetic and potential parts of the electron energies are also defined by 

this wave function, one can say that the wave function determines all physical 

properties of the multi-electron system.  Thus, for given external (ion) potential and 

number of electrons in the system, one can obtain in principle the many-electron wave 

function, which determines the ground-state properties of the system. Thus, one can 

come to the idea that knowledge of the electron density in the system is sufficient to 

complete the description of its properties. In particular, all electron-electron interaction 

effects can be incorporated in an effective density-dependent exchange-correlation (XC) 

potential. This potential together with kinetic energy operator and the ion potential can 
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be used in the effective one-electron equation, and the solution of this equation can be 

used to describe the ground-state properties of the system. In 1964 Honeberg and Kohn 

showed how that this external potential can be obtained from the local electron density 

by formulating two theorems.[81] In the first theorem, they stated that “The external 

potential 𝑣(𝑟) is determined, within a trivial additive constant, by the electron 

density 𝑛(𝑟) ”. Namely, the total ground state energy of the system can be written in 

terms of the density only, 

𝐸[𝑛(𝑟)] = 𝑇[𝑛] + 𝑉𝑒𝑥𝑡[𝑛] + 𝑉𝑒−𝑒[𝑛]= 𝐹𝐻𝐾[𝑛] + 𝑉𝑒𝑥𝑡[𝑛],                          (2.15)                        

where 𝐹𝐻𝐾[𝑛] is the Hohenberg-Kohn functional. The second Hohenberg Kohn theorem 

states that ”For any trial electron density �̃�(𝑟) such that ∫ �̃�(𝑟)𝑑𝑟 = 𝑁 (total number of 

electrons), gives energy always higher than the ground state energy of the system,” i. e. 

𝐸0[𝑛] ≤ 𝐸𝑣𝑒𝑥𝑡[�̃�]. The part of the potential in equation (2.15) can now be written as 

𝑉𝑒𝑥𝑡[𝑛] = ∫𝑛(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟  (2.16)                                                           

and 

𝑉𝑒−𝑒[𝑛] = ∫
𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟𝑑𝑟′ + �̃�𝑥𝑐[𝑛]                   (2.17)                                                          

The first integral term in equation (2.17) is the classical electrostatic (Hartree) 

interaction, and  �̃�𝑥𝑐[𝑛] is the XC energy of the system. Comparing Eqs. (2.16) and 

(2.17), one can come to the conclusion that the effective potential for the one-electron 

problem has the following form:  
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𝑣𝑒𝑓𝑓(𝑟) = 𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝐻(𝑟) +
𝛿�̃�𝑥𝑐

𝛿𝑛(𝑟)
.                                                                     (2.18)      

Next, since the kinetic energies of the non-interacting 𝑇𝑠 and interacting 𝑇 systems 

electron are not the same, one can include the correction due to this difference into the 

expression for the XC energy of the interacting system (see Eq. (2.15)): 𝐸𝑥𝑐[𝑛] =

�̃�𝑥𝑐[𝑛] + (𝑇[𝑛] − 𝑇𝑠[𝑛]). Mapping the many-body and single-electron problems one can 

finally arrive at the following effective one-electron equation: 

[−
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝑟)]𝜑𝑖 = 휀𝑖𝜑𝑖,                                                                         (2.19)             

where the effective potential depends self-consistently on the charge density: 

𝑛(𝑟) = ∑ |𝜑𝑖(𝑟)|
2

𝑖 .                                                                                 (2.20)                    

Equation (2.19) and (2.20) are the key of DFT, and are known as Kohn-Sham 

equations[82]. The solution of these equations allows one to obtain a physical quantity – 

electron charge density, which defines the many-electron wave function and ground 

state properties of the system. It must be stressed that the physically meaningful 

quantity is only the charge density. The single-electron Kohn-Sham orbitals can be 

interpreted as electron wave functions only to a very limited extent, though one can use 

them for the Slater determinant to construct an approximate many-electron wave 

function. In order to use these equations one needs to know the expressions for the 

exchange and correlation parts of the XC potential.  
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The exchange part of the potential can be obtained from the HF exchange part of the 

energy in Eq. (2.13), by using the free-electron wave functions (𝜑𝑘(𝑟) =
1

√𝑉
𝑒𝑖𝑘𝑟), and 

performing the momentum integration (momentum representation) up to the Fermi 

value. 

Since the Fermi momentum is uniquely connected with the electron density, one can 

obtain the following expression for the exchange part of the energy: 

 휀𝑋
ℎ𝑜𝑚 = −(

81

64
)
1
3⁄

𝑛
1
3⁄ (𝑟).                                                                    (2.21)                

The correlation part of the interaction is very difficult to calculate exactly, even for the 

homogeneous electron gas. The only accurate results available so far are the cases of 

very high and low electron densities. For intermediate densities one needs to make 

approximations. One of the approximations for the correlation part of the energy 

proposed by Perdew & Zunger[83] (still in the homogeneous gas approximation) is: 

휀𝐶
ℎ𝑜𝑚 = {−0.1423(1 + 1.0529√𝑟𝑠 + 0.3334𝑟𝑠)

−1
; 𝑟𝑠 ≥ 1

−0.0480 + 0.0311𝑙𝑛𝑟𝑠 + 0.002𝑟𝑠𝑙𝑛𝑟𝑠;  𝑟𝑠 < 1
                                (2.22)    

where 𝑟𝑠 = (
4𝜋𝑛(𝑟)

3⁄ )

−1 3⁄

. 

In general the above expressions for the energy form the Local Density Approximation 

(LDA), in which all exchange and correlation effects in the system are described by the 

local charge density: 
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𝐸𝑋𝐶[𝑛(𝑟)] = ∫ 휀𝑥𝑐
ℎ𝑜𝑚[𝑛(𝑟)]𝑛(𝑟) 𝑑𝑟.                                          (2.23)                                  

This approximation, being in many cases more accurate than the HF one[84], give often 

results in a good agreement with experiment. For example the results for the bulk 

crystal lattice parameters are often differ only by 1~2% from the experimental data. On 

the other hand, the LDA XC functional being a smooth function of density fails to 

describe systems with charge distributions that significantly deviate from the 

homogeneous one. In this case naturally, one may try to include charge gradient 

corrections into the functional. 

2.1.4 Generalized Gradient Approximation (GGA)  

The corresponding approach is called GGA.  In this approximation, the expression for 

the XC energy can be written as:  

𝐸𝑋𝐶[𝑛] = ∫𝑛(𝑟)휀𝑋𝐶
ℎ𝑜𝑚[𝑛(𝑟)]𝐹𝑋𝐶[𝑛(𝑟), ∇𝑛(𝑟), ∇

2𝑛(𝑟)……… ]𝑑𝑟,                (2.24)                         

where 𝐹𝑋𝐶 is the XC factor that depends on the charge density and its derivatives. For 

example in the fourth-order approximation by Gross and Dreizler[85] the exchange part 

of this  function reads as: 

𝐹𝑋(𝑝, 𝑞) = 1 +
10

81
𝑝 +

146

2025
𝑞2 −

73

405
𝑞𝑝 + 𝒪(∇𝑛6),                      (2.25)                      

where 𝑝 =
|∇𝑛|2

4(3𝜋2)
2
3⁄ 𝑛
8
3⁄
 is the square of the reduced density gradient, and 

𝑞 =
∇2𝑛

4(3𝜋2)
2
3⁄ 𝑛
5
3⁄
  is the reduced Laplacian of the density.  
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In the case of slowly-varying densities, the second-order gradient expansion of the XC 

energy has the following general form: 

𝐸𝑋𝐶[𝑛] = ∫𝐴𝑋𝐶[𝑛]𝑛(𝑟)
4
3⁄ 𝑑𝑟 + 𝐶𝑋𝐶[𝑛] |∇𝑛(𝑟)|

2 𝑛(𝑟)
4
3⁄⁄ 𝑑𝑟                       (2.26)       

The last expression has to satisfy some exact conditions, such as normalization, 

negativity of the exchange hole density and the cancellation of the self-interaction of the 

hole. It was shown by Perdew in 1985 [86]  that imposing the above conditions on the 

form of the XC energy leads  to a significant improvement of the results. Following this 

work, a number of different modifications of the expression for the XC potential were 

proposed. PBE [87] and PW91[88] are among the most successful GGA 

approximations, which in many cases significantly improve the LDA results. 

2.1.5 Spin Density Functional Theory 

To study a magnetic system with different densities of the spin-up and spin-down 

electrons, one needs to formulate a spin DFT with the XC that depends on both spin 

densities, and which is often referred as Local Spin-Density Approximation (LSDA). The 

total electron charge density in the systems in this case is the sum of spin up and spin 

down densities: 𝑛(𝑟) = 𝑛↑(𝑟) + 𝑛↓(𝑟), and one needs to solve a system of Kohn-Sham 

equations for  each spin component:   

[−
1

2
∇2 + 𝑉𝑒𝑓𝑓

𝜎(𝑟)] 𝜑𝑖
𝜎(𝑟) = 휀𝑖

𝜎𝜑𝑖
𝜎(𝑟),                                            (2.27)                    

where the index 𝜎 represents spin (↑ 𝑜𝑟 ↓) and 
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𝑉𝑒𝑓𝑓
𝜎(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟) +

𝛿�̃�𝑥𝑐[𝑛
↑,𝑛↓]

𝛿𝑛(𝑟)
.                                               (2.28)                 

Since the XC functional depends on spin-up and spin-down densities separately, it is 

equivalent to dependence on two linear combinations of these functions: the total 

charge density 𝑛(𝑟) = 𝑛↑(𝑟) + 𝑛↓(𝑟) and magnetization 

 𝑚(𝑟) = 𝜇𝐵 (𝑛
↑(𝑟) − 𝑛↓(𝑟))                                                          (2.29)                       

Equation for exchange and correlation parts of the XC energy in the spin DFT are 

generally chosen in the form of non-spin polarized functional with substitution of total 

density by the spin density: 𝑛(𝑟) → 𝑛𝜎(𝑟): 

𝐸𝑋
𝜎−𝐺𝐺𝐴 =

1

2
∑ ∫𝐹𝑋(2𝑛𝜎 , |2∇𝑛𝜎|)𝑑𝑟
2
𝜎=1 ,                                 (2.30)                                    

and  

𝐸𝑐
𝜎−𝐺𝐺𝐴 = ∫𝐹𝑐(𝑛, 𝜉, |∇𝑛|)𝑑𝑟.                                                      (2.31)                             

2.1.6 Limitation of DFT for Strongly Correlated Systems 

DFT is a successful approximation for the study of ground state electronic structures, 

but for many materials with narrow bands the homogeneous electron gas expression for 

XC energy is not sufficient, and often leads to wrong results. For example, the Mott 

insulator phase in many transition metal oxides[31] with partially filled d-orbitals, for 

example 𝑁𝑖𝑂 [89], cannot  be explained by standard DFT. DFT often predicts these 

materials to be metallic.[90] The reason for the failure is lack of proper expression for 
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the correlation part of the XC potential for systems with strong local Coulomb 

repulsion.[31,47,91,92] 

Another reason for failure of the L(S)DA potentials and their extensions in the strongly 

correlated regimes is strong self-interaction energy. Indeed each electron experiences 

an artificial potential created by itself and described by charge- (spin-) dependent XC 

potential. Since this potential strongly depends on the charge- (spin-) density, the effect 

will be significant in the case of strongly localized orbitals that create such large ‘self-

interaction’ potentials. One of the results of this “residual self-interaction” is systematical 

underestimation of the energy gap in insulators and semiconductors[93]. 

Another effect of this self-interaction is the inability of LSDA to produce correct charge 

orderings. Inhomogeneous charge distribution corresponding to a charge ordered state 

is unstable in LSDA, due to increased self-interaction on sites with large charge 

densities. For example, for magnetite Fe3O4, LSDA calculations give metallic state 

without charge ordering in contrast to the experimentally observed charge- ordered 

insulating ground state[94,95].  

2.2 DFT+U method 

In strongly correlated materials electrons spend a significant amount of time in regions 

where the presence of other particles makes them experience strong Coulomb 

repulsion, thus making their motion correlated. The local correlation effects are 

especially important in the case of narrow-band materials, in which the kinetic energy of 

electrons is of the order of or smaller than the local repulsion energy U. The most 
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straightforward way to include these correlation effects in DFT is through the DFT+U 

approximation. In this approach, one uses DFT results for the bandstructure as input for 

the “non-interacting” electron part of the phenomenological Hubbard lattice Hamiltonian 

that takes into account effects of local electron-electron repulsions.[19] The solution of 

the lattice problem results in corrected expression for the energy of the system: 

𝐸𝐿𝐷𝐴+𝑈[𝑛(𝑟)] = 𝐸𝐿𝐷𝐴[𝑛(𝑟)] + 𝐸𝐻𝑢𝑏[𝑛𝑚𝑚′
𝐼𝜎 ] − 𝐸𝐿𝐷𝐴𝑐[𝑛

𝐼𝜎],                         (2.32)                

where 𝐸𝐻𝑢𝑏[𝑛𝑚𝑚′
𝐼𝜎 ] is the Hubbard (electron interaction) part of the energy, and 

𝐸𝐿𝐷𝐴𝑐[𝑛
𝐼𝜎] is the LDA part of the correlation energy part which is subtracted in order to 

avoid double counting of the correlation effects already (rather poorly) incorporated in 

the 𝐸𝐿𝐷𝐴[𝑛(𝑟)]; 𝑛𝑚�́�
𝐼𝜎 = 𝑐𝑚

𝜎+𝑐𝑚′
𝜎  are the two-electron operators on the Hubbard site 𝐼 with 

the total local spin densities 𝑛𝐼𝜎 = ∑ 𝑛𝑚𝑚
𝐼𝜎

𝑚 . Eq. (2.32) can be easily transformed to: 

𝐸𝐿𝐷𝐴+𝑈 = 𝐸𝐿𝐷𝐴 +∑ [
𝑈

2
∑ 𝑛𝑚

𝐼𝜎𝑛�́�
𝐼�́�

𝑚,𝜎≠�́�,�́� −
𝑈

2
𝑛𝐼(𝑛𝐼 − 1)]𝐼 .                               (2.33)             

Minimization of the functional (2.33) leads to new atomic charge distribution and to new 

orbital energies:  

𝜖𝑚𝜎
𝐼 =

𝜕𝐸𝐿𝐷𝐴+𝑈

𝜕𝑛𝑚
𝐼𝜎 = 𝜖𝑚𝜎

0𝐼 + 𝑈 (
1

2
− 𝑛𝑚

𝐼𝜎),                                               (2.34) 

where 𝜖0 is the orbital energy obtained from LDA calculations. From the expression on 

the right hand side of Equation (2.34) one can immediately see that in the case of non-

zero U, there is a gap ~U between occupied and unoccupied states in the system, 

which is the essence of the LDA+U approximation.  
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In the case of magnetic systems, one also needs to include the exchange coupling J in 

Equation (2.33). Another limitation for the values of U of the approximation above is that 

U is not rotationally invariant of the magnetic quantum number 𝑚 . To remove these 

deficiencies, Anisimov et al.[96,97] proposed an effective Hamiltonian: 

𝐸𝐻𝑢𝑏[{𝑛𝑚�́�
𝐼 }] =

1

2
∑ {⟨𝑚,𝑚′′|𝑉𝑒𝑒|𝑚

′, 𝑚′′′⟩𝑛𝑚𝑚′
𝐼𝜎 𝑛𝑚′′𝑚′′′

𝐼−𝜎 + (⟨𝑚,𝑚′′|𝑉𝑒𝑒|𝑚
′, 𝑚′′′⟩ −{𝑚},𝜎,𝐼

⟨𝑚,𝑚′′|𝑉𝑒𝑒|𝑚
′′′, 𝑚′⟩)𝑛𝑚𝑚′

𝐼𝜎 𝑛𝑚′′𝑚′′′
𝐼𝜎 },                                                            (2.35)            

𝐸𝐿𝐷𝐴𝑐[{𝑛
𝐼}] = ∑ {

𝑈

2
𝑛𝐼(𝑛𝐼 − 1) −

𝐽

2
[𝑛𝐼↑(𝑛𝐼↑ − 1) + 𝑛𝐼↓(𝑛𝐼↓ − 1)]}𝐼                    (2.36) 

where 𝐽 is exchange energy parameter and 𝑉𝑒𝑒 is the Coulomb interaction between two 

𝑑 electrons occupying on the same site. The corresponding matrix elements can be 

expanded in spherical basis: 

⟨𝑚,𝑚′′|𝑉𝑒𝑒|𝑚
′, 𝑚′′′⟩ = ∑ 𝑎𝑘(𝑚,𝑚

′, 𝑚′′, 𝑚′′′)𝐹𝑘𝑘 ,                                         (2.37)        

where 0 ≤ 𝑘 ≤ 2𝑙, 𝑙 being the angular momentum number of electron (l=2 in the 𝑑-

orbital case), and  

𝑎𝑘(𝑚,𝑚
′, 𝑚′′, 𝑚′′′) =

4𝜋

2𝑘+1
∑ ⟨𝑙𝑚|𝑌𝑘𝑞|𝑙𝑚

′⟩𝑘
𝑞=−𝑘 ⟨𝑙𝑚′′|𝑌𝑘𝑞

∗ |𝑙𝑚′′′⟩                     (2.38)          

are the Clebsch-Gordon coefficients. Parameters 𝐹𝑘 describe the strength of the 

interaction between electrons. In particular,  

𝑈 =
1

(2𝑙+1)2
∑ ⟨𝑚,𝑚′|𝑉𝑒𝑒|𝑚,𝑚

′⟩𝑚,𝑚′ = 𝐹0                                      (2.39)                           

and  
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𝐽 =
1

2𝑙(2𝑙+1)
∑ ⟨𝑚,𝑚′|𝑉𝑒𝑒|𝑚

′, 𝑚⟩𝑚≠𝑚′,𝑚′ =
𝐹2+𝐹4

14
.                                         (2.40)              

The values of 𝑈 and  𝐽 can be determined empirically, by fitting it to experimental data, 

or by LDA calculation.[98] For example, Cococcioni and Gironcoli[90] computed U by 

using constrained-density-functional theory as 

𝑈 =
𝜕2𝐸[{𝑞𝐼}]

𝜕(𝑞𝐼)2
−
𝜕2𝐸𝐾𝑆[{𝑞𝐼}]

𝜕(𝑞𝐼)2
,                                                                          (2.41)             

where 𝐸[{𝑞𝐼}] is the energy functional for the localized orbital level that depends on the 

orbital charge 𝑞𝐼 in the case of the Hubbard model, and  𝐸𝐾𝑆[{𝑞𝐼}] is the same quantity 

in the case of  the Kohn-Sham system. Once the values of 𝑈 and  𝐽 are obtained, 

parameters 𝐹0, 𝐹2 and 𝐹4 can be calculated by using equations (2.39) and (2.40). 

Another equation needed to calculate this coefficient is relation between 𝐹2 and 𝐹4, 

which in the case of d-electrons is 
𝐹4

𝐹2
= 0.625. 

In many cases, DFT+U lead to a dramatic improvement of the DFT solution, especially 

in reproducing their energy gaps. On the other hand, it also fails in many cases. For 

example, the fact that NiO is an insulator both above and below the Neel temperature 

cannot be explained by DFT+U. The multiplicity of 4f- and 5f-orbitals in actinide series 

elements also cannot be reproduced by this approach. One of the reasons for this is the 

static (HF) nature of the DFT+U approximation, which neglects fluctuations, including 

dynamical effects.  Before proceeding with the summary of the main features of DMFT, 

which takes these effects into account, we briefly describe another alternative to the 
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DFT+U approach to include the correlation effects into the analysis of the properties of 

the systems – the GW approximation.  

2.3 GW approximation  

In this approach the effects of long-range Coulomb interaction between electrons are 

included in a perturbative manner. GW, originally applied to calculate the excited state 

properties of bulk materials gives in  many cases superior results for the band structure 

than DFT.[99] In this approach one calculates the one-electron Green’s function 

(propagator) 𝐺(𝑟, 𝑟′; 𝑡, 𝑡′), [100] which corresponds to the probability of having an 

electron at site 𝑟 at a time 𝑡 assuming that  was one at 𝑟′ at an initial time 𝑡′. The total 

energy, electronic density, density of states, electronic excitations and other properties 

of the material can be obtained from the solution for this Green’s function.[98] The 

presence of other electrons significantly modifies the spectrum of properties of the 

electron under consideration. In particular they lead to a screening of the electron-

electron interaction and shift the electron energy levels, described by the electron self-

energy function Σ . The Green’s function and the self-energy are related via a 

Schrödinger-like equation, which has the following form in the energy domain: 

[𝜖 − ℎ(𝑟) − 𝑉(𝑟)]𝐺(𝑟, 𝑟′; 𝜖) − ∫Σ(𝑟, 𝑟′′; 𝜖) 𝐺(𝑟′′, 𝑟′; 𝜖)𝑑𝑟′′ = 𝛿(𝑟 − 𝑟′).           (2.42)          

In eq. (2.42) ℎ(𝑟) = −(ℏ
2

2𝑚⁄ )∇2 − ∑ Znv(r, Rn)n  is the “free”-electron part of the 

Hamiltonian (Zn and Rn is the charge and positions of the nth nucleus), 
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 𝑉(𝑟) = ∫𝑣(𝑟, 𝑟′)𝑛(𝑟′) 𝑑𝑟′ with 𝑣(𝑟, 𝑟′) = 𝑒
2

|𝑟 − 𝑟′|⁄  is the Hartree interaction part that 

depends on the charge density 𝑛(𝑟) = 〈𝜓†(𝑟)𝜓(𝑟)〉 = −𝑖ℏ𝐺(𝑟, 𝑡; 𝑟, 𝑡 + Δ) (∆→ 0+).  

The Green’s function can be derived from an exact Green’s function of a reference 

system via Dyson’s equation 

𝐺(𝑟, 𝑟′; 𝜖) = 𝐺0(𝑟, 𝑟
′; 𝜖) + ∬𝐺0(𝑟, 𝑟1; 𝜖)∆Σ (𝑟1, 𝑟2; 𝜖)𝐺(𝑟2, 𝑟

′; 𝜖)𝑑𝑟1𝑑𝑟2            (2.43)        

where ∆Σ(𝑟1, 𝑟2; 𝜖) = Σ(𝑟1, 𝑟2; 𝜖) − 𝑣2(𝑟1, 𝑟2) with 𝑣2(𝑟1, 𝑟2) is the interaction potential of the 

reference system, 𝑣2 = 0 if the reference system is non-interacting. The expression for 

the non-interacting Green’s function  

𝐺0(𝑟, 𝑟
′; 𝜖) = ∑

𝜑𝑛(𝑟)𝜑𝑛
∗ (𝑟)

𝜖− 𝑛
𝑛 ,                                                                        (2.44)           

where 𝜑𝑛(𝑟) and 휀𝑛 are single particle wave-functions and eigen-energies, can be 

obtained from DFT calculations. In order to calculate the electron self-energy, a 

complex function that includes the static and dynamical interactions in the system, 

Hedin[101] suggested in 1965 the use of an approximation which became known latter 

as GW. In this approximation, one only includes the first-order term in the expansion of 

the self-energy of screened Coulomb interaction 𝑊: 

Σ𝐺𝑊(𝑟, 𝑟
′; 𝑡) = 𝑖𝐺(𝑟, 𝑟′; 𝑡)𝑊(𝑟, 𝑟′; 𝑡),                                                                (2.45)          

or in energy domain: 

Σ𝐺𝑊(𝑟, 𝑟
′; 𝐸) = 𝑖 ∫𝐺(𝑟, 𝑟′; 𝐸 + 𝐸′)𝑊(𝑟, 𝑟′; 𝐸)𝑑𝐸′.                                 (2.46)                      
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One can derive the corresponding equation for 𝑊(𝑟, 𝑟′; 𝐸) in terms of the one-loop 

polarization: 

𝑃(𝑟, 𝑟′; 𝐸) = −𝑖 𝐺(𝑟, 𝑟′; 𝐸)𝐺(𝑟′, 𝑟; 𝐸).                                                                  (2.47)        

The equation for the screened interaction has the following form: 

𝑊(𝑟, 𝑟′; 𝐸) = 𝑣2(𝑟, 𝑟
′) +∬𝑊(𝑟, 𝑟1; 𝐸)𝑃(𝑟1, 𝑟2; 𝐸)𝑣2(𝑟2, 𝑟

′)𝑑𝑟1 𝑑𝑟2,                 (2.48)    

where 𝑣2(𝑟1, 𝑟2) is the interaction potential of the reference system (equal zero in the 

case of non-interacting reference system).The set of equations (2.45), (2.46), (2.47) and 

(2.48) known as Hedin’s equations[101], can be solved iteratively.  

Assuming the “non-interacting” system to be the Hartree one (Σ = 0), the lowest-order 

in W expansion of the equations above gives:  

𝑃0(1,2) = −𝑖𝐺(1,2)𝐺(2,1)                                                           (2.49)            

𝑊(1,2) = 𝑣(1,2) + ∫𝑊(1,3)𝑃0(3,4)𝑣(4,2)𝑑(3,4)                                 (2.50)     

Σ(1,2) = 𝑖𝐺(1,2)𝑊(1+, 2)                                                 (2.51)                           

where   𝑃0  is the non-interacting polarization function. These equations form the basis 

of the approach known as the GW approximation. Despite its successes, especially in 

describing the material bandstructure, [99,102] GW is still either unfeasible or incapable 

of describing many properties of correlated materials, including magnetism.  It is for 

these reasons that the DMFT approximation is often used. Below we begin with a 

description of the main features of this better theory. 
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CHAPTER 3:  DFT+DMFT APPROACH 

3.1 Introduction 

In recent years, DMFT has become a widely-used technique to study strongly correlated 

materials. As it was mentioned above, it succeeded the DFT+U approach,[19,97] which 

being a static mean field approximation neglected many important processes in  

systems, such as time-resolved local interactions (Fig. 6).  

 

 

Figure 6: Schematics of electrons in a lattice. Over time a lattice sites 

can be unoccupied, occupied or doubly occupied by electrons. These 

dynamical processes which results in time-resolved electron-electron 

interactions are taken into account in DMFT. 

 

In the DMFT approximation, the temporal fluctuation of electrons is taken into account 

through the frequency-dependence of the electron self-energy, while the spatial-

dependence of self-energy is neglected. Thus the exact solution can be obtained only 
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for infinite dimensional system or systems with infinite coordination number.[22] 

However, this approximation appears to be very good for many 2D and 3D materials. 

[23] DMFT was successfully extended to incorporate electron-phonon interaction[103], 

multilayered systems[104,105], non-equilibrium[106,107] phenomena, etc.  Most 

importantly, the DMFT method was combined with DFT. [21],[20,108] In DFT+DMFT, 

the structure of the system and non-correlated band of electron subsystem are obtained 

from DFT calculations[21,109] and correlation effects are taken into account as the next 

step by solving the effective Hubbard model problem. 

Dynamical effects are responsible for many unusual properties in many bulk Transition 

Metal (TM) systems. When correlations are not extremely large (kinetic energy and U 

are of the same order), as in the case of many bulk TMs, DFT+U can lead to wrong 

results. For example, it predict a non-existing magnetic phase in plutonium,[110] while 

DMFT calculations give the non-magnetic ordering in agreement with experiment.[111]     

In general, one can identify three different regimes of correlation effects in which a 

particular theoretical approach is appropriate: weakly-correlated systems (DFT), 

strongly correlated systems (DFT+DMFT), and very strongly correlated systems 

(DFT+U), as shown in Fig. 7. The regime with intermediate values of the Coulomb 

repulsion is the most challenging and interesting, particularly for nanosystems as the 

competition between the kinetic and potential (Coulomb repulsion) energies may lead to 

a variety of exotic novel phenomena both in the ground and excited states. Since 
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temporal fluctuations are expected to play a role here, DMFT seems to be the most 

promising. 

 

 

Figure: 7 A Schematics representation for three different electron correlation regimes and the 

methodology appropriate for their theoretical description: weakly correlated (top, DFT), strongly 

correlated (bottom, DFT+U), intermediate correlation in which Coulomb repulsion and the onsite 

hopping are at the same range in energy (DFT+DMFT). The smooth curves represent typical 

charge distributions for these cases. 

 

3.2 Basics of DMFT  

In the DMFT approximation, one solves an effective Hubbard model problem of strongly 

correlated electrons. The Hubbard model is a simple model of interacting electrons in a 

solid. It was introduced by Hubbard, Gutzwilller and Kanamori in 1963.[112-114] The 

model Hamiltonian can be written as:  
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𝐻 = −∑ 𝑡𝑖𝑙;𝑗𝑚𝑐𝑖𝜎𝑙
† 𝑐𝑗𝜎𝑚𝑖,𝑗,𝜎,𝑙,𝑚 + ∑ 𝑈𝜎,𝜎′

𝑙𝑚 𝑛𝑖𝜎𝑙𝑛𝑗𝜎′𝑚𝑖,𝑗,𝜎,𝜎′,𝑚 ,                           (3.1)                     

where 𝑐𝑖𝜎𝑙
†

 is the creation operator of an electron at site 𝑖 with spin 𝜎; 𝑙 are other 

quantum numbers (orbital momentum, band number etc), and 𝑐𝑗𝜎𝑚 is the annihilation 

operator of an electron at site 𝑗. 𝑛𝑖𝜎𝑙 = 𝑐𝑖𝜎𝑙
† 𝑐𝑖𝜎𝑙 is the number operator at site  𝑖, 𝑡𝑖𝑙;𝑗𝑚 is 

the electron hopping matrix elements, describing hopping of electrons from a site 𝑖 

(state 𝑙 ) to a site 𝑗 (state 𝑚 ). The first term describes the kinetic processes in the 

system. 𝑈𝜎,𝜎′
𝑙𝑚  is the local Coulomb repulsion matrix, that describes the Coulomb 

repulsion energies for electrons with different quantum numbers. The hopping 

parameters are usually obtained by fitting with the experimental band structure with 

typically only nearest-neighbor and next nearest-neighbor elements taken into account.  

The Coulomb repulsion parameters U can be obtained from DFT calculations self-

consistently for each site and each orbital as discussed is chapter 2 or can be 

parameterized. At  
𝑈

𝑡
= 0 the Hubbard model describes the system of Bloch electrons 

with the dispersion 𝜖𝑘 = ∑ 𝑒𝑖𝑘(𝑅𝑖−𝑅𝑗)𝑡𝑖𝑗𝑖,𝑗 . Similar properties of the system will take place 

in the case of weakly-interacting electrons at U/t<<1. When 
𝑈

𝑡
≫ 1 the Hubbard model 

describes the Mott insulator states, and can be reduced to a simplified Heisenberg spin 

model. For 
𝑈

𝑡
~1 no simplification can be made and one needs to solve the Hubbard 

model numerically with DMFT. 

 We now present the system of DMFT equations and describe how it can be solved self-

consistently. More details can be found in Ref. [23]. The main idea of DMFT is in 
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mapping the many-site problem on to a single-site one (since the self-energy is site-

independent all sites are equivalent). The singled-out site is treated as an impurity in the 

bath of all other lattice electrons (Fig. 8).  

 

 

Figure 8: One site (the red) is singled out and all the other 

site is represented as bath by the shaded line. The red site 

is represented as an impurity on the lattice. 

 

The hopping parameter for each site of the lattice is usually obtained by fitting with the 

experimental band structure, and only the nearest neighboring and next nearest 

neighboring hopping are consider for simplicity. Properties of the system described by 

the Hamiltonian in equation (3.1) can be studied by finding the time-ordered single-

electron Green’s function 

𝐺𝑖𝜎𝑙;𝑗𝜎′𝑚(𝑡, 𝑡
′) = −𝑖 〈𝑇𝑐𝑖𝜎𝑙(𝑡)𝑐𝑗𝜎′𝑚

† (𝑡′)〉,                                    (3.2)      

where  𝑇𝑐𝑖𝜎𝑙(𝑡)𝑐𝑗𝜎′𝑚
† (𝑡′) = 𝜃(𝑡 − 𝑡′)𝑐𝑖𝜎𝑙(𝑡)𝑐𝑗𝜎′𝑚

† (𝑡′) − 𝜃(𝑡′ − 𝑡)𝑐
𝑗𝜎′𝑚
† (𝑡′)𝑐𝑖𝜎𝑙(𝑡). This 
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Green’s function is connected with the electron self-energy that defines the spectrum of 

interacting electrons, via the Dyson equation in frequency representation: 

𝐺𝑖𝜎𝑙;𝑗𝜎′𝑚(𝜔,𝜔
′) = 𝐺0𝑖𝜎𝑙;𝑗𝜎′𝑚(𝜔) + ∑ 𝐺𝑖𝜎𝑙;𝑖1𝜎′𝑚

0 (𝜔)Σ𝑖1𝜎𝑙;𝑖2𝜎′𝑚(𝜔)𝐺𝑖2𝜎𝑙;𝑗𝜎′𝑚(𝜔)𝑖1𝑖2   (3.3) 

where 𝐺0𝑖𝜎𝑙;𝑗𝜎′𝑚(𝜔) is the Green’s function of non-interacting electrons (at U=0). In the 

DMFT approximation the self-energy is local in space and site-independent, which is 

equivalent to Σ𝜎𝑙(k, 𝜔) = Σ𝜎𝑙(𝜔). Indeed, k-independent self-energy corresponds to the 

case when only local matrix elements are nonzero, and all other non-diagonal part 

vanishes in real space, for homogeneous case, 

Σ𝑖𝜎𝑙;𝑗𝜎′𝑚(𝜔) = 𝛿𝑖𝜎𝑙;𝑗𝜎′𝑚Σ(ω).  (3.4) 

In the non-homogeneous case (atoms are nonequivalent), the self-energy bears the site 

index: 

Σ𝑖𝜎𝑙;𝑗𝜎′𝑚(𝜔) = 𝛿𝑖𝜎𝑙;𝑗𝜎′𝑚Σ𝑖𝜎𝑙(ω).  (3.5) 

In the reduced single-site problem, one is interested only in the local (one-site) Green’s 

function (still corresponding to the many-body problem): 

𝐺𝜎𝑙(𝜔) = ∫
𝑑k

(2𝜋)𝑑
(

1

𝜔− (k)+𝜇−Σ(𝜔)
)
𝜎𝑙;𝜎𝑙

≡ 𝐺𝑙𝑜𝑐 𝜎𝑙(𝜔),  (3.6) 

where 𝜇 is the chemical potential of the system and 휀(k) is the band-energy matrix 

obtained usually from DFT or DFT+U calculation.  
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To find the expression for the effective bath field, we use the path integral approach. To 

begin, we write the partition function in terms of one the fermionic Grassmann variables 

𝜓∗, 𝜓 [23,115]: 

𝑍 = ∫∏ 𝑑𝜓∗𝑑𝜓𝑒−𝐴[𝜓
∗,𝜓]

𝑖𝜎   (3.7) 

where  

𝐴[𝜓,𝜓∗] = ∫ 𝑑𝜏(∑ 𝜓𝑖𝜎
∗ 𝜕𝜏𝜓𝑖𝜎𝑖,𝜎 − ∑ 𝑡𝑖,𝑗𝜓𝑖𝜎

∗ 𝜓𝑗𝜎𝑖.𝑗.𝜎 − 𝜇∑ 𝜓𝑖𝜎
∗ 𝜓𝑖𝜎𝑖,𝜎 + 𝑈∑ 𝑛𝑖↑𝑛𝑖↓𝑖 )

𝛽

0
  (3.8)  

is the action functional of the Hubbard system. For the singe (impurity) site 𝑞, the action 

can be calculated as: 

1

𝑍𝑒𝑓𝑓
𝑒−𝐴𝑞 =

1

𝑍
∫∏ 𝑑𝜓∗𝑑𝜓𝑒−𝐴[𝜓

∗,𝜓]
𝑖≠𝑞,𝜎 .  (3.9) 

The total partition function in equation (3.7) can now be rewritten in terms of the impurity 

action  𝐴0 that comes from the rest of the system and the interaction part that connects 

the impurity with rest of the lattice ∆𝐴: 

𝑍 = ∏ ∫𝑑𝜓𝑞𝜎
† 𝑑𝜓𝑞𝜎𝑒

−𝐴𝑞 ∫∏ 𝑑𝜓𝑖𝜎
† 𝑑𝜓𝑖𝜎𝑒

−(𝐴0+∆𝐴).𝑖≠𝜎𝜎   (3.10) 

To find Z, one can expand the exponents in power series, using: 

𝑍 = ∏ ∫𝑑𝜓𝑞𝜎
† 𝑑𝜓𝑞𝜎𝑒

−𝐴𝑞[1−〈∆𝐴〉
0+

1

2!
〈∆𝐴2〉0− ……]

𝜎 .  (3.11) 

Only even power of ∆𝐴 terms contribute to Z. In particular, one can use:  

〈∆𝐴2〉0 = ∫ ∫ 𝑑𝜏1𝑑𝜏2∑ 𝑡𝑖𝑞𝑖,𝑗≠𝑞,𝜎
𝛽

0

𝛽

0
𝑡𝑞𝑗𝜓𝑞𝜎

† (𝜏1)〈𝑇𝜓𝑖𝜎(𝜏1)𝜓𝑖′𝜎
† (𝜏2)〉𝜓𝑞𝜎(𝜏2)  
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= ∫ ∫ 𝑑𝜏1𝑑𝜏2∑ 𝑡𝑖𝑞𝑖,𝑗≠𝑞,𝜎
𝛽

0

𝛽

0
𝑡𝑞𝑗𝜓𝑞𝜎

† (𝜏1)𝐺𝑖𝑗
0 (𝜏1 − 𝜏2)𝜓𝑞𝜎(𝜏2)  (3.12) 

The higher-order terms can be written as a power of single particle Green’s function, so 

from equation (3.9) one can write the effective action as 

𝐴𝑒𝑓𝑓 =

𝐴𝑞 + ∑ ∑ ∑ ∫𝑑𝜏𝑖1 ……𝑗1…𝑗𝑛𝑖1…𝑖𝑛
∞
𝑛=1 𝑑𝜏𝑗𝑛𝑡𝑖1𝑞…… . 𝑡𝑖𝑛𝑞𝑡𝑞𝑗1 …… . 𝑡𝑞𝑗𝑛 ×

𝜓𝑞𝜎
† (𝜏𝑖1)…𝜓𝑞𝜎

† (𝜏𝑖𝑛)𝜓𝑞𝜎(𝜏𝑗1)…𝜓𝑞𝜎(𝜏𝑗𝑛) × 𝐺𝑖1…𝑗𝑛(𝜏𝑖1 …𝜏𝑗𝑛).  (3.13) 

By setting 𝑡𝑖𝑗 =
𝑡𝑖𝑗

√𝑑
 , to use the same scale  for thee kinetic and potential energies, one 

can write the effective action in the DMFT approximation, at 𝑑 → ∞, as: 

𝐴𝑒𝑓𝑓[𝜓, 𝜓
∗, 𝒢−1] = −∫ 𝑑𝜏 ∫ 𝑑𝜏′ ∑ 𝜓0𝜎

∗ (𝜏)𝒢−1(𝜏 − 𝜏′)𝜓0𝜎(𝜏
′)𝜎

𝛽

0

𝛽

0
+ 𝑈∫ 𝑑𝜏𝑛0↑(𝜏)

𝛽

0
𝑛0↓(𝜏)

 (3.14)  

where 𝒢−1(𝜏1 − 𝜏2) = −(
𝜕

𝜕𝜏
− 𝜇) 𝛿𝜏1,𝜏2 − ∑ 𝑡𝑖𝑞𝑖𝑗 𝑡𝑞𝑗𝐺𝑖𝑗

0 (𝜏1 − 𝜏2) is the dynamical mean-

field, which takes into account all the effects of the rest of the system with sites ≠ 0 on 

the impurity site. The local Green’s function can now be written as 

𝐺𝑙𝑜𝑐(𝜔) = ∫𝑑𝜓𝑑𝜓
∗𝜓𝜎𝑙𝜓𝜎′𝑚

∗ 𝑒−𝐴𝑒𝑓𝑓[𝜓,𝜓
∗,𝒢−1].  (3.15) 

This problem is equivalent to the problem of the single site coupled to the bath 

described by the mean field 𝒢𝜎𝑙;𝜎′𝑚(𝜔). Since the impurity and many-particle problems 

are equivalent, one assumes that the local Green’s functions (3.6) and (3.15) are equal 

to each other. This allows one to write the Dyson equation that connects the lattice local 

Green’s function, electron-self energy and the bath field: 
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𝐺−1(𝜔) = 𝒢−1(𝜔) − Σ(𝜔)  (3.16) 

The set of DMFT equations (3.6), (3.15) and (3.16) can be to solved self-consistently.  

Before describing a possible iterative algorithm, let us briefly discuss the physical 

meaning of the mapping of the many-body problem on the impurity one. This mapping 

corresponds to mapping the Hubbard model on the Anderson Impurity Model (AIM) with 

the Hamiltonian: 

𝐻𝐴 = ∑ (𝜖0 − 𝜇)𝑐0𝜎
† 𝑐0𝜎 + 𝑈𝜎 𝑛0↑𝑛0↓ + ∑ 𝑉k(𝑐k𝜎

† 𝑐0𝜎 + 𝑐0𝜎
† 𝑐k𝜎)k,𝜎 + ∑ 𝜖k

𝑏
k,𝜎 𝑐k𝜎

† 𝑐k𝜎  (3.17) 

where 𝜖0 and 𝜖k
𝑏 are the energy levels of the impurity (one level) and bath electrons 

(many levels), and 𝑉k is the hybridization between the bath and impurity electrons. [23] 

In the AIM at U=0 one can find the impurity Green’s function exactly: 

𝐺𝑖𝑚𝑝(𝜔) =
1

𝜔−𝜖0+𝜇−∆𝜔
,  (3.18)  

where  

∆𝜔 = ∑
|𝑉k|

2

𝜔−𝜖k
𝑏 ,k,σ   (3.19) 

is the hybridization function which is equivalent to the effective bath field 𝒢−1 in action 

(3.14) (both functions represents the local impurity Green’s function at U=0).  

The steps of iterative solution of the DMFT equations (3.6), (3.15) and (3.16) can be as 

follows: 

 Choose and initial self-energy Σ(𝜔); 
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 Calculate the local Green’s function from equation (3.6) with adjusted 

value of the chemical potential so that the total numbers of electrons in the 

system remain conserved; 

 Calculate the dynamical mean-field 𝒢(𝜔) from equation (3.16); 

 Use the dynamical mean-field to solve the impurity problem (3.15) to find 

the new local Green’s function; 

 Find the new self-energy from equation (3.16) by using the new Green’s 

function and the dynamical mean-field; 

 Continue iteration until the self-energy is converged.  

Once the Green’s function is found, one can calculate different physical quantities, such 

as the density of electrons for each orbital and spin: 

𝑛𝜎𝑙 = −∫
𝑑𝜔

2𝜋
∫

𝑑k

(2𝜋)𝑑
𝐼𝑚𝐺𝜎𝑙;𝜎𝑙(𝜔).  (3.20)  

The most difficult part in the above is the impurity problem (3.15). There are several 

different types of approaches (solvers) available, for example, one based on the exact 

Quantum Monte Carlo (QMC). The Hirsh-Fye version of QMC solver[116] can be used 

with rather modest computational resources, but it works well only at high enough 

temperatures.[17] Another version of QMC algorithm is Projective QMC, in which the 

zero- temperature limit is considered analytically to get the exact ground state of the 

system.[117] The most promising QMC approach, however, is the Continuous-Time 

QMC (CT-QMC) which does not use discretization of time. It can work with expansion 
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series of U[118], or perturbative hybridization of V[119], and allows one to avoid several 

problems related to other QMC methods, while at the same time being computationally 

faster. The Numerical Renormalization Group (NRG), Exact Diagonalization Method 

(ED) and Iterative Perturbation Theory (IPT) are some other approaches to solve the 

impurity problem beyond QMC. In our study, we used the Hirsch-Fye QMC approach 

(as implemented in the LISA code) for small clusters, and the IPT approximation (in our 

own code) for larger systems. The details of the IPT approximation will be given in 

Section 3.4. 

3.3 Application of DMFT to nanosystems  

It was suggested by Florens[46] that when the average coordination number in the 

system is large, DMFT should be a good approximation even for finite systems. In 

majority of nanostructures and large molecules the average coordination number is 

close to the bulk value (except, probably, chains), therefore one can expect DMFT to 

work well for transition metal nanoparticles as well. In finite systems, one needs to use a 

generalized nonhomogeneous DMFT approach, since different sites are non-equivalent. 

In this case, the electron self-energy can be approximated by local, but site-dependent 

function (equation (3.5)). The nonhomogeneous DMFT approach was proposed in Refs. 

[104,105]. Some of the sites might be equivalent, as in the case of the dimer, an 

equilateral triangle, etc. In general, though, one can have many non-equivalent sites 

which make the solution rather slow. Example of a system with several nonequivalent 

sites is shown in Fig. 9. 
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Figure 9: Mapping the many-body to impurity problem in a non-homogeneous case. Two non-

equivalent impurity sites in the case of 9-atom structure. One needs to solve the impurity 

problem separately for each of them (central atom is another non-equivalent site). 

 

One can justify the DMFT approximation in the nanocase following Florens’ 

suggestion[46] as follows. The properties of a given site can be obtained from the 

solutions for the rest of sites. For simplicity, we consider here a core-shell type of 

nanoparticle in Fig. 10. Sites 0 and 1 form an impurity with respect to sites 2. One can 

solve the problem for sites 2 with missed sites 0 and 1 (cavity). Then one can calculate 

the effect of sites 2 (bath) on sites 1. Next, knowing the solution for sites 1 one can use 

it as the bath for site 0. Similarly, one can proceed in the case of larger particles.  
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Figure 10: Different shells of atoms used for cavity solution of the DMFT problem. 

 

To derive the DMFT equations for non-homogeneous case we followed Nolting and 

Potthoff [104,105]. In this case the electron Green’s function has size 2 × 𝑁 ×𝑀 (2-spin, 

N-sites and M-orbital variables). Equation (3.4) now becomes: 

𝐺𝑖𝜎,𝑙;𝑖𝜎,𝑙
−1 =

(

 
 

𝜔 + 𝜇 − Σ1(ω) 𝑡12     𝑡13 …      … 𝑡1𝑁
𝑡21 𝜔 + 𝜇 − Σ2(ω)     𝑡23 …      … 𝑡2𝑁
𝑡31 𝑡32     𝜔 + 𝜇 − Σ3(ω) …      … 𝑡3𝑁
…………  ………     ………… … … …

𝑡𝑁1 𝑡𝑁2     𝑡𝑁3 …      … 𝜔 + 𝜇 − ΣN(ω))

 
 

 (3.21) 

where we have assumed that for a nonhomogeneous system the self-energy is local in 

space, but it is site-dependent Σ𝑖𝜎𝑙;𝑗𝜎′𝑚(𝜔) = 𝛿𝜎;𝜎′𝛿𝑖;𝑗𝛿𝑙;𝑚Σ𝑖𝜎𝑙(𝜔) .The matrix in equation 

(3.21) corresponds to the case of one orbital per site. In the case of multi-orbital system, 

the self-energy depends on orbital and spin indexes. The problem can be mapped on 

the impurity problem, similar to periodic systems, which gives in general  2 × 𝑁 ×𝑀 

impurity problems with the dynamical mean-fields 𝒢𝑖𝜎𝑙;𝑖𝜎𝑙(𝜔). The other two equations 

(3.15) and (3.16) remain the same as in the homogeneous case: 
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𝐺𝑖𝜎,𝑙;𝑖𝜎,𝑙
−1 (𝜔) = 𝒢𝑖𝜎,𝑙;𝑖𝜎,𝑙

−1 (𝜔) − Σ𝑖𝜎,𝑙(𝜔)              (3.22) 

and 

𝐺𝑖𝜎,𝑙;𝑖𝜎,𝑙(𝜔) = ∫𝑑𝜓𝑑𝜓
∗𝜓𝑖𝜎𝑙𝜓𝑖𝜎𝑙

∗ exp (−∫ 𝑑𝜏 ∫ 𝑑𝜏′
𝛽

0
∑ 𝜓𝑖𝜎,𝑙

∗ (𝜏)𝒢𝑖𝜎,𝑙;𝑖𝜎,𝑙
−1 (𝜏 − 𝜏′)𝜎

𝛽

0
𝜓𝑖𝜎,𝑙(𝜏

′) +

𝑈𝑖,𝑙 ∫ 𝑑𝜏𝑛𝑖↑𝑙(𝜏)𝑛𝑖↓𝑙(𝜏)
𝛽

0
).  (3.23) 

Similar, to the periodic case, one can solve the set of DMFT equations for 

nonhomogeneous systems (3.21)-(3.23) by using the following iterative procedure: 

 Choose the initial self-energies Σ𝑖𝜎,𝑙(𝜔) for each site, orbital and spin; 

 Find the corresponding local Green’s function 𝐺𝑖𝜎,𝑙;𝑖𝜎,𝑙(𝜔) by inverting the 

matrix in equation (3.21) and extracting the diagonal elements 𝐺𝑖𝑖(𝜔); 

 Calculate the dynamical mean-field 𝒢𝑖𝜎,𝑙;𝑖𝜎,𝑙(𝜔)for each site, orbital and spin 

by using equation (3.22) 

 Use  𝒢𝑖𝜎,𝑙;𝑖𝜎,𝑙(𝜔) to solve the impurity problems in Equation (3.23); 

 Find new self-energies by using equation (3.22); 

 Continue iterations until Σ𝑖𝜎,𝑙(𝜔) converged with desired accuracy. 

The flow chart of the nonhomogeneous-DFT+DMFT code is presented in Fig. 11. In 

both the homogeneous and non-homogeneous cases, the problem can be solved for 

each frequency which makes it easy to parallelize. In the case of large nanoparticles, 

one needs to invert rather large matrices Eq. (3.21) which makes the calculation 

challenging, though as our studies show one can analyze 100-atom systems in a rather 

short time scale.  
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Figure 11: Flow chart of nonhomogeneous nanoDFT+DMFT formalism. 

 

3.4 Iterated Perturbation Theory (IPT) Approximation 

In this Subsection, we give details of the multi-orbital IPT (MO-IPT) approximation for 

the single-impurity problem which we used in our nanoDFT+FMFT code. To be more 

precise, the MO-IPT approximation is related to the expression for the self-energy, not 

impurity Green’s function. The final result for the impurity Green’s function can be 

obtained by using this self-energy and the bath mean-field in the Dyson equation (3.22). 

The advantage of the IPT solution is its speed, which is very important in the nanocase 

where one needs to solve   many 2 × 𝑁 ×𝑀 impurity problems. In this case, the QMC, 
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CT-QMC and other Monte-Carlo calculations are very slow, especially at low 

temperatures.[120] The Exact Diagonalization solver works well at low temperature, but 

it cannot be used when one has more than ~12 bath site.[121]  

The IPT solver is based on the second order-perturbation theory (in U) solution of the 

impurity problem. It is physically transparent, computationally non-expensive, and  

found to give satisfactory solutions for a range of correlations from weak to strong.[17] 

As it follows from the results displayed in Fig.12, the IPT solution of the one-band 

problem includes, metallic, insulating and intermediate phases at different values of U, 

in agreement with more accurate solutions.       

Let us present the expressions for the IPT self-energy in different cases. 

Half-filled case (n=1/2): The IPT self-energy is expressed in terms of 2nd order 

expansion of Coulomb parameter U for a given bath field 𝒢: 

Σ(𝑖𝜔𝑛) = 𝑈𝑛 + 𝑈
2 ∫ 𝑑𝜏𝑒𝑖𝜔𝑛𝜏𝒢(𝜏)3

𝛽

0
+ 𝒪(𝑈3),  (3.24) 

or in the Matsubara frequency representation (with frequencies 𝜔𝑛 = 𝜋T(2n + 1), n −

integer  [122]) 

Σ(𝑖𝜔𝑛) = 𝑈𝑛 − 𝑈
2𝑇2∑ 𝒢(𝑖Ω1)Ω1,Ω2 𝒢(𝑖Ω2)𝒢(𝑖Ω1 + 𝑖Ω2 − 𝑖𝜔𝑛).  (3.25) 

After the solution (3.25) found, one can obtain the real-frequency self-energy by 

performing analytical continuation 𝑖𝜔𝑛 → 𝜔 + 𝑖𝛿 (we used Pade approximation[123] for 
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this, see Appendix B). The Matsubara-frequency calculations are much faster as 

compared to the real-frequency ones.  

As was mentioned above, Metal-Insulator Transition (MIT) can be successfully 

described correctly by this approach as shown in Fig.12, in which the spectral function 

𝐴(𝜔) = −
1

𝜋
𝐼𝑚𝐺(𝜔) is plotted for various values of U for a half-filled Hubbard 

system.[23] For small U’s, the spectral function is similar to the bare lattice density of 

states. As the values of U increase, a narrow quasi-particle peak appears at the Fermi 

level, called Abrikosov-Suhl resonance. The two additional peaks as we see in Fig. 12 

at values of ±𝑈 frequency correspond to lower and upper Hubbard bands. It is worth 

mentioning here that IPT not only reproduces MIT, but it also can reproduces exactly 

the atomic limit ∪→ ∞. Thus both limiting cases ∪→ 0 and ∪→ ∞ can be obtained from 

IPT.[23] 
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Figure 12: Spectral density of the infinite-dimensional one-band Hubbard 

model obtained using the IPT approximation for values of U=t, 2t, 2.5t, 3t 

and 4t (from top to bottom). Picture taken from [23]. 

 

Arbitrary filling: The  generalized the IPT expression for the self-energy at arbitrary 

filling[124] is: 

Σ(𝜔) = 𝑈𝑛 +
𝐴Σ0

(2)
(𝜔)

1−𝐵Σ0
(2)
(𝜔)

  (3.26) 

where Σ0
(2)(𝜔) is the second-order self-energy Equation (3.23). This approximation was 

proposed to satisfy some exact properties of the self-energy, including the large-

frequency 

Σ(𝜔) = 𝑈𝑛 + 𝑈2𝑛(1 − 𝑛)
1

𝜔
+ 𝒪 ((

1

𝜔
)
2

) .  (3.27) 
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and large-U limits: [124] 

Σ𝑎𝑡𝑜𝑚𝑖𝑐(𝜔) = 𝑈𝑛 +
𝑛(1−𝑛)𝑈2

𝜔−𝜖𝑓−(1−𝑛)𝑈−𝑖𝜂
  (3.28) 

where 𝑛 = ∫ 𝑑𝜔𝐼𝑚𝐺𝑙𝑜𝑐(𝜔)
0

−∞
 is the physical particle number.  

This leads to the following expressions for the A and B 

𝐴 =
𝑛(1−𝑛)

𝑛0(1−𝑛0)
  (3.29) 

𝐵 =
(1−2𝑛)𝑈−𝜇+�̃�

𝑛0(1−𝑛0)𝑈2
,  (3.30)   

𝜇 is the chemical potential of the bath problem and 𝑛0 = −
1

𝜋
∫𝑑𝜔𝐼𝑚𝒢(𝜔 + 𝑖0) is the 

fictitious density for the particle in the bath. 

There are different possibilities for the choices of  𝜇 as suggested by Potthoff et. al.[125] 

In this thesis we put 𝜇 = 𝜇. 

For the nonhomogeneous systems, the expression for the self-energy is very similar to 

Eq. (3.23), except the self-energy depends on each site, orbital and spin: 

Σ𝑖𝜎𝑙(𝜔) = 𝑈𝑛𝑖𝜎𝑙 +
𝐴𝑖𝜎𝑙Σ𝑖𝜎𝑙

(2)
(𝜔)

1−𝐵𝑖𝜎𝑙Σ𝑖𝜎𝑙
(2)
(𝜔)
,  (3.31) 

where Σ𝑖𝜎𝑙
(2)(𝜔) = 𝑈2 ∫ 𝑑𝜏 exp(𝑖𝜔𝑛𝜏) 𝒢𝑖𝜎𝑙

3 (𝜏)
𝛽

0
 in the Matsubara frequency representation, 

and  

𝐴𝑖𝜎𝑙 =
𝑛𝑖𝜎𝑙(1−𝑛𝑖𝜎𝑙)

𝑛𝑖𝜎𝑙0(1−𝑛𝑖𝜎𝑙0)
,  (3.32) 
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𝐵𝑖𝜎𝑙 =
(1−2𝑛𝑖𝜎𝑙)𝑈𝑖𝜎𝑙−𝜇+�̃�

𝑛𝑖𝜎𝑙0(1−𝑛𝑖𝜎𝑙0)𝑈𝑖𝜎𝑙
2,  (3.33) 

where 𝑛𝑖𝜎𝑙 = ∫ 𝑑𝜔𝐼𝑚𝐺𝑖𝜎𝑙;𝑖𝜎𝑙(𝜔)
0

−∞
 is the number of real physical particles with site, orbital 

and spin indexes and 𝑛𝑖𝜎𝑙0 = −
1

𝜋
∫𝑑𝜔𝐼𝑚𝒢𝑖𝜎𝑙;𝑖𝜎𝑙(𝜔 + 𝑖0) is the fictitious particle density of 

the impurity bath. 

3.5 DFT+DMFT code for nanosystems  

The first step of the combined DFT+DMFT approach, as suggested by Anisimov et al. 

[21] (see also Refs.[20,108] and the references therein), is to calculate the electronic 

structure using DFT. The “non-correlated” quasi-particle characteristics such as band 

structure, density of states, projected density of states, and position of d-band center 

are all obtained from DFT. In the second step, one finds the parameters for the Hubbard 

Hamiltonian Eq. (3.1): the hopping parameters 𝑡𝑖𝑙;𝑗𝑚 and the onsite Coulomb repulsion 

parameters U.  

The hopping parameters are equal to the matrix elements of the non-interaction Kohn-

Sham Hamiltonian with respect to the localized atomic-orbital wave functions: 

𝑡𝑖𝑗𝛼𝛽 = ∫𝑑r𝜓𝛼
∗(r+Ri) (−

∇2

2𝑚
+ 𝑉𝑎𝑡𝑜𝑚𝑖𝑐(𝑟))𝜓𝛽(r+Rj)  (3.34) 

where Ri and Rj represent site index and 𝛼, 𝛽 represents orbital and other quantum 

numbers index. To determine the hopping between different orbitals on different atoms 

we used the Slater-Koster approximation[126] (for details, see Appendix A). The values 
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of U were used as parameters, though as it was discussed in the DFT+U part, the 

values of U can be in principle obtained from DFT calculations. 

In the third step, the set of DMFT equations is solved to find the electron Green’s 

function and different properties of the correlated system. To take into account 

correlation effects from the first stage in some case, we performed DFT+U calculations 

instead of DFT (to obtain the relaxed nanoparticles).  

In case of finite systems the formalism of DFT+DMFT is basically same as for the 

extended system, but in the nanocase it is more convenient to solve the problem in real 

space representation. The schematic of DFT+DMFT approach is presented in Fig. 13. 

 

 

Figure 13: The steps of nanoDFT+DMFT approach are 

shown schematically here. Figure taken from ref [127]. 
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In the next Chapter, we present our results of application of the nanoDFT+DMFT 

formalism on the cases of small (2-5-atom) Fe and FePt clusters and Fe (10-147-atoms) 

nanosystems.    
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CHAPTER 4 APPLICATION OF NANO-DFT+DMFT TO NANOMAGNETISM 

In this chapter, we present our nanoDFT+DMFT  results for the magnetic properties of 

small (2-5-atom) Fe and FePt clusters as well as larger Fe particles of nanosize (up to 

147 atoms). We begin with the Computational details for the DFT part of the simulations 

and with the results for the bulk bcc Fe and proceed with the case of clusters and 

nanosystems.  

4.1 Details of preliminary DFT calculations 

To obtain the lattice parameter of bcc bulk iron and structural relaxation of small Fe and 

FePt clusters we used the spin-polarized DFT approach as implemented in the VASP 

code.[128] In describing the electronic exchange and correlation effects, we used the 

spin-polarized GGA with the PW91 functional[88] and the spin interpolation proposed by 

Vosko et al.[129] For the ionic relaxations, we employed the conjugate-gradient 

algorithm.  To describing the electron-ion interactions, we used the projector 

augmented-wave (PAW)[130] formalism. To take the correlation effects into account in 

a more consistent way we relaxed the structures for every value of U used in the 

consequent DMFT calculations.  For bulk calculations we used 12x12x12 k-points 

sampling in the Brillouin zone. The configurations of small clusters were obtained by 

relaxing random initial configurations with bulk interatomic distances.  

In the case of Fe10-Fe147 particles, the spin polarized-DFT methods as implanted in the 

Quantum Espresso Code[131] was used for relaxation with the PBE [87] version of the 

XC potential. For all cluster relaxation cutoff-energy for the plane-wave expansion was 
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450 eV and structures were relaxed until the atomic forces converged to less than 

0.01eV/Å.  A cubic simulation box was used during relaxation to isolate the freestanding 

clusters in such a way that the minimum distance between each cluster and its periodic 

images in all three directions be larger than 12Å. This is done to minimize the possibility 

of electric field interaction between a cluster and its images. Calculations were 

performed at only one (Γ) point in the Brillouin zone. To choose the initial structure of 

larger Fe nanoparticles we proceeded as follows: the initial Fe19-Fe147 cluster structures 

were chosen from the Cambridge Cluster Database[132] with the  global minimum 

energy obtained by using Finnis-Sinclair pair-potentials[133] with bulk inter-atomic 

distances. For smaller clusters we proceeded as follows. The initial structures of the 

Fe18 cluster were obtained by removing one of the 19 atoms from the relaxed Fe19 

cluster, relaxing the corresponding structure, and choosing the minimum energy 

configuration. Similarly, we proceeded with smaller clusters, 𝐹𝑒𝑛 → 𝐹𝑒𝑛−1, down to Fe10 

system.  

4.2 Warm-up: Magnetism in bulk iron 

To test the accuracy of the IPT approximation to solve the DMFT impurity problem, we 

first applied our code to calculate the DOS of the bcc bulk Fe. The spin-DFT with LDA 

or GGA XC is able to describe the lattice structure and the magnetism in the bulk Fe, 

but it fails in the case of electronic spectrum of the system.[134] In particular, the 

experimentally-observed Hubbard satellite peak at -7eV below the Fermi 



69 

 

energy[135,136] cannot be reproduced with LDA or GGA.[134] The results of our  DFT, 

DFT+U and DFT+DMFT calculations of the DOS of bulk Fe are shown in figure 14. 

(a) 

 

(b) 

 

Figure 14: (a) Photoelectron spectra of bulk Fe taken at a photon energy of 54 eV on 

resonance for three different angles, shows a satellite peak at ~-7 eV.(figure taken 

from [136]),(b) Calculated DOS of bulk Fe obtained with different method: spin-DFT 

(red dotted line), DFT+U (green solid line) and DFT+DMFT (black line). DFT+DMFT 

curve clearly reveals a satellite peak at ~-7 eV (inset is showing the satellite peak with 

high resolution). 

 

Other DFT+DMFT calculations with more computationally expensive impurity solvers, 

for example the spin-polarized T-matrix fluctuation exchange solver (SPTF),[134] is also 

capable of reproducing this peak. Here, taking the example of bulk Fe, we 
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demonstrated that much computationally-cheaper IPT solver is also capable of correctly 

describing the properties of transition metal systems. Since in the case of nanoparticles 

the computational cost is an issue, we use the IPT solver in most cases of our analysis.  

4.3 Small transition metal clusters  

Theoretical study of small clusters is very important due to several reasons. One of 

them is in getting a useful insight about the quantum confinement in systems, which are 

difficult to study in experiments. Another reason is necessity to understand the growth 

dynamics of large nanoparticles and thin films. Such an understanding can be also 

obtained from the properties of small clusters. Magnetism of these systems is another 

hot area of research. It was found experimentally that the magnetic moment per atom in  

Fe, Co and Ni clusters has an oscillatory dependence on the number of atoms in the 

cluster.[33] Understanding of the electronic and other properties of small transition 

clusters may also help to resolve the mystery of this oscillatory behavior. Deep 

understanding of the properties of small clusters will also help to predict the effects of 

their interaction with substrates (such small clusters are highly reactive). Indeed, most 

of the experimental studies on small magnetic clusters are performed in the case of 

particles on a substrate [137-139], and the role of the substrate in the system 

magnetism needs to be taken into account. The accuracy of standard (DFT) 

approaches used to study TM clusters may be questionable in many cases, due to their 

over-simplified treating of the electron-electron correlation effects. In the systems with 

reduced dimensionality, the effects of local electron-electron interaction on the d- and f-
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orbitals, are even more important than in the bulk due to confinement effects (electrons 

‘meet more often’ in small systems).  In this chapter, we use a reliable nanoDFT+DMFT 

approach to study the role of the correlation effects in the magnetic properties of Fe and 

FePt clusters.  

The DFT and DFT+U (relaxation) part of the calculations were performed by using 

VASP code (details are given in section 4.1). The DMFT calculations in the case of 

small particles were performed by using the LISA code[20] with the Hirsch–Fye QMC 

impurity solver.[116] Since this code is applicable to periodic systems, we assumed that 

every cluster occupies a site on a two-dimensional lattice. In this case, the (2-5-atom) 

system may be regarded as one large multi-orbital “superatom” with the number of 

orbitals equal to the product of the number of atoms and the number of orbitals in the 

atom. We used a large lattice constant 20Å, in order to minimize the effects of images 

on the cluster magnetization. The hopping parameters for the for the s- and d-electrons  

in the Hubbard Hamiltonian were obtained from the relaxed structure (inter-atomic 

distances) by using the Slater–Koster matrix approximation.[126,140] (for details, see 

Appendix A). In Slater-Koster approximation, the hopping parameters are defined by the 

interatomic distances, orbital orientations and their charge radii (except s-orbital). In 

particular, the values for the d-orbital radius rd were approximated by the Muffin–Tin-

orbital values 0.864 Å (Fe) and 1.116 Å (Pt) atoms.[140]. The values for the Coulomb 

repulsion U were chosen as parameters, and the calculations were performed for Us 

from 0eV to 5eV (with the bulk Fe value U=2.3eV as a reference number). In the case of 
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iron clusters, we rescaled the hopping parameters by a factor of 0.367 in order to 

reproduce the average experimental value for the spin-up and spin-down bandwidth in 

the bulk material. One may regard rescale of hopping as a change in the value of the 

Coulomb repulsion U, since the physical properties of the systems are mainly defined 

by the ratio between the hopping parameters and U. To make the calculations 

consistent, we have used the same renormalization also for the FePt clusters. In the 

DMFT calculations for such a periodic system of clusters, we allowed a weak (0.1eV) 

inter-cluster (“inter-site”) hopping to achieve faster convergence. To generate 

ferromagnetic spin ordering, a weak staggered external magnetic field was also used. 

The DMFT calculations appear to become slower value of U (T) increases (decreases). 

However, the magnetic properties of the system are practically temperature-

independent at temperatures much lower than values of kinetic energy (hopping) and 

Coulomb repulsion U, that define the other energy scales in the system. Therefore, in 

our DMFT calculations, we used such temperatures, as an approximation for the 𝑇 → 0 

case.  

4.3.1 Iron clusters 

The problem of magnetism in small Fe clusters has been widely studied by using DFT 

(see, e.g.,[36])  and more recently DFT + U approaches[42,44,49]. Though rather 

limited, the available experimental data on such systems [52,141,142] allows one to test 

the accuracy of different numerical approaches. In general, it appears that DFT and 
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DFT+U often give over-estimated values for the cluster magnetic moments, which might 

be a result of over-simplified treatment of the effects of electron correlations. 

 

 

Figure 15: The DFT+U (U=2.3eV) optimized structure of Fe 2-5 atoms clusters (The 

corresponding bond lengths (in Å) are shown in blue). 

 

As mentioned above, the relaxation of the systems was performed by including the 

correlation effects through the DFT+U approximation. For this purpose, we used the 

bulk Fe value of Coulomb repulsion parameter U = 2.3 eV. The obtained relaxed 

structures have the geometry shown in Fig. 15. In the dimer case, we obtained the bond 

length 1.99 Å, which is in good agreement with the experimental estimations 1.87 Å 

[141] and 2.02 Å [142]. The average bondlengths for larger clusters are larger than 

these values but smaller than the nearest-neighbor inter-atomic distance in bulk Fe, 

2.49 Å. In the trimer case, the lowest-energy configuration is an equilateral triangle with 

2.24 Å sides, and in the Fe4 and Fe5 clusters cases we find a single-sided pyramid (two 

sides 2.37 Å and others 2.39 Å, 2.42 Å, 2.43 Å and 2.44 Å) and a bi-pyramid (four sides 
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2.37 Å, two sides 2.47 Å, and others 2.36 Å, 2.40 Å and 2.41 Å) to be the ground-state 

configurations.  

Our DFT+U calculations resulted in values of the magnetization per atom much larger 

than the bulk value 2.2μB, even in the U=0eV (DFT) case. As can be seen from the 

results plotted in Fig. 16, the magnetization grows with increasing U, reaching a 

saturated value at some critical value of the Coulomb repulsion 𝑈𝑐𝑟~1 − 3 𝑒𝑉. The value 

of  𝑈𝑐𝑟 depend on the cluster size in a non-trivial way.  

 

 

Figure 16: DFT+U results for the magnetization of 

the clusters at different values of U.  

 

Indeed, since the average inter-atomic distance 𝑑𝑎𝑣 increases as N increases, one 

might expect decreasing 𝑈𝑐𝑟 with increasing N (due to the decrease in hopping 

amplitude). On the other hand, growth of the average coordination number with 

increase of N should lead to an increase of 𝑈𝑐𝑟. Therefore, there is no simple 

quantitative explanation of how  𝑈𝑐𝑟 depends on N.  
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The DFT+DMFT calculations give rather different results for the magnetization of small 

Fe clusters. In particular, in the case of Fe3 and Fe4 clusters, one gets a significant 

reduction of the magnetic moment with respect to the DFT+U values. The results of our 

DFT+U and DFT+DMFT calculations are also presented in the figure 17. One can get 

similar results for other clusters as well. As it follows from this figure, dynamical effects 

play an important role even at rather small values of U, leading to a significant reduction 

of the cluster magnetization. 

 

  

 

 

Figure 17: DFT(GGA)+U (blue line) and DFT+DMFT (red line) results for the 

magnetic moment per atom in the Fe3 and Fe4 cluster as function of U.  

 

The conclusions above are confirmed also by the results summarized in Table 1. In this 

Table, we present results for cluster magnetization as a function of the number of atoms 

at U = 2.3 eV (for more details see Ref.[47,48]). Once again, the DFT+U calculations 

tend to overestimate cluster magnetic moments and dynamical effects in general lead to 

a reduction of the magnetization. Both methods are not able to reproduce accurately the 
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experimental values of the magnetization, which is overestimated by DFT+U and 

somewhat underestimated by DFT+DMFT. The experimental values of magnetization 

for the selected small clusters were used here to test the DFT+DMFT approach in the 

limiting case. Several others, including DFT [43,143-145], approaches also give the 

magnetization values within (quite large) experimental error bars, which are quite large. 

[52] However, while the DFT+DMFT is not expected to accurately describe magnetism 

in such small clusters, our results clearly demonstrate that the approach gives 

reasonable results even in such limiting case (with small inter-atomic coordination 

number – the case where applicability of DMFT was under question for a long time). 

One may  expect  the accuracy of DMFT approximation  to dramatically increase in the 

case of larger clusters which will make it superior over DFT and DFT+U, what was 

confirmed by our further studies.  

 

Table 1: The magnetization per atom as function of the number of atoms in the case of small 

Fe clusters at U = 2.3 eV. Theoretical DFT+U and DFT+DMFT results and the experimental 

data[52] are shown. 

N DFT+U (in µ
B
) DFT+DMFT (in µ

B
) Experiment (in µ

B
) 

2 4.00 2.03 3.25 ± 0.50  

3 3.33 2.22 2.70 ± 0.33 

4 4.00 1.84 2.70 ± 0.80 

5 3.60 1.98 3.16 ± 0.33 
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The results in Table 1 are compared to the results obtained by different approaches by 

other authors in Fig.18.  As follows from our calculations, in general the DFT + U 

approach overestimates the value of the magnetization for most of the clusters in 

comparison with many other calculations and available experimental estimations. This 

overestimation is especially pronounced in the case U=4eV.  

 

 

Figure 18: The DFT+U and DFT+DMFT results for the magnetization of iron 

clusters of different sizes with different numbers of atoms at U=4eV. The 

experimental data and theoretical results obtained within other approaches are 

also presented. Here LCGTO-KS stand for Linear Combination of Gaussian 

Type Kohn Sham Orbital. 

 

Except for the case of the dimer, DFT+DMFT results are in a good agreement with 

experimental data, much better than the DFT+U and some of the DFT calculations. 
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We complete our analysis on the small iron clusters by studying the role of dynamical 

effects in cluster magnetization by considering the case of Jahn–Teller distorted iron 

trimers under the GGA +U and GGA + DMFT approaches. The used structures were 

obtained by GGA + U  in[42]. As it was shown in this work, the trimer with Jahn–Teller 

distortion has lower energy as compared to clusters with higher symmetry, and the 

distortion often leads to a reduction of the cluster magnetic moment.  

 

Table 2: The cluster geometry and the magnetization of Fe3 clusters for different values of U. 

The results for both symmetric and  the Jahn–Teller-distorted clusters, obtained within the GGA 

+ U [42], are presented. The magnetization was calculated within GGA+U and GGA + DMFT 

approximations. 𝑑1 − 𝑑3 are inter-atomic distances (in Å). In the last column, the relative 

energies of different structures are shown.[42] 

U 
(eV) 

𝑑1 𝑑2 𝑑3 Magnetization (in 𝜇𝐵 ) 𝐸 (meV) 

DFT+U DFT+DMFT 

1.0 2.151 2.253 2.316 3.33 1.44 0 

2.264 2.264 2.412 4.00 1.52 14 

1.5 2.266 2.266 2.431 4.00 1.57 0 

2.152 2.257 2.327 3.33 1.51 27 

 

The DFT+U and DFT+DMFT results for the trimer magnetization in cases of different 

values of U (1.0 and 1.5 eV) are presented in Table 2. As it follows from the Table 2, 

inclusion of the dynamical effects does not change qualitatively the geometric 

dependence of the DFT+U magnetization of the distorted clusters, but the magnitude of 
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the magnetic moments is much smaller in the DFT+DMFT case. Inclusion of the local 

charge interactions through DFT+U leads to a soft of the orbital energy levels [42], 

which on its turn leads  to a change of the cluster magnetic moment. Significantly lower 

values of the DFT+DMFT magnetization suggest that the orbital position and/or 

occupancy may be dramatically changed (through the electron self-energy) when the 

dynamical effects are taken into account. 

4.3.2 FePt clusters 

Magnetic properties of small FePt clusters are also an important theoretical problem 

especially because of a high MCA of the FePt systems. Though, the number of 

theoretical works dealing with small FePt systems is more limited compared to the Fe 

case.[53,56] One of the reasons for this is lack of experimental data for these systems. 

Thus, a systematic ab initio analysis of these systems, including the evolution of their 

properties with size, is very important from both theoretical and practical points of view.  

In general, the magnetic bimetallic clusters are of special interests for several reasons. 

In particular, it is important to understand how the addition of  localized (5d-) states of 

the nonmagnetic metal element affects the magnetic properties of the “magnetic” atoms 

with different (3d-) localized orbitals. As we mentioned above, the choice of FePt was 

motivated not only from the point of view of fundamental physics, but from several 

practical reasons. 

We considered two types of the FePt clusters: the dimer and the tetramer, with different 

chemical compositions. The analysis of dimer allows one to perform a deep qualitative 
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analysis (due to simplicity of the structure) of the role of the 3d and 5d orbitals in 

magnetism of the system. The tetramers were chosen mostly to analyze the 

dependence of magnetism on the chemical composition of the TM clusters.  

Contrary to the Fe clusters, it was found that the geometry of the FePt clusters strongly 

depends on the value of U. In our studies we chose the relaxed structures obtained with 

DFT+U approach with characteristic value of U=4eV. The optimized cluster geometry in 

this case is presented in Fig. 19.  

 

 

 

Figure 19: Optimized cluster geometry for FePt obtained with DFT+U at U=4eV. Red 

sphere corresponds to Fe atom and brown sphere corresponds to Pt atom. Bondlength (in 

Å) for each for each pair of atoms are also shown (blue numbers). Top panel (except 

dimer) shows 3D structures and the planer structures are shown in the bottom. 
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For majority of the tetramer structures, the planar configurations have lower energy. 

Namely, the relative energies for the planar and 3D tetramers are: Fe1Pt3 – planar: 

−0.13 eV, 3D: 0 eV; Fe2Pt2 – planar: −0.63 eV, 3D: 0 eV; Fe3Pt1 – planar: 0 eV, 3D: 

−0.13 eV. This is a surprising result, especially including the fact that the average bond 

length is longer in the planar systems, as compared to the 3D ones. On the other hand, 

longer bondlength result in stronger electron localizations, which increase the role of the 

correlation effects.  

The DFT+U results for the magnetization of Fe and FePt dimers at different values of U 

are presented in Fig. 20. This Figure  shows that the magnetization is almost U-

independent in the FePt case (the value of the magnetization 2μB per atom is in 

agreement with other DFT calculations [53]), but it experiences a  sharp increase at U ∼ 

3 eV in the case of the Fe2 system.  

 

 

Figure 20: DFT+U results for the magnetization at 

different values of U for the Fe and FePt dimer. 
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This result can be explained in the following way.  The bondlength increases with 

increasing U. Since the  value of U~3 eV is a typical critical value for the Mott transition 

in bulk TM systems and the change of the cluster magnetization is rather sharp at this 

point, one may speculate the presence of some kind of transition at this U in the case of 

clusters as well. Weak dependence of the magnetization on U in the FePt cluster can be 

explained by a weaker hybridization of the Fe and Pt  d-orbitals, as compared to the 

hybridization of the Fe atom orbitals in the Fe2 case  due to a larger energy mismatch in 

the FePt system even at U=0eV. Therefore, increasing U which leads to an increase of 

the bond length does not lead to significant charge redistribution (localization) in the 

FePt system. The DFT+U calculations give much larger bondlength for the FePt dimer: 

2.29 Å vs. 1.99Å in the Fe2 system. These results were obtained at U = 2.3 eV, and with 

U increasing the bondlength increases for both systems. For instance, at U=4eV the 

FePt bondlength is  2.34 Å (one can also get the value 2.2 Å in the case U = 0 eV[53]). 

The role of the correlation effects in the spectral properties of the dimers was analyzed 

also by calculating the positions of the s- d-state peaks as functions of U for Fe2 and 

FePt systems (Fig. 21). The distance between the spin-down peaks (two red lines) and 

spin-up d-orbital peaks (top blue solid line) significantly increases when U changes from 

2 eV to 3 eV for iron dimer, which suggests that the probability of migration of electron 

between different spin-orbitals, which decreases the average magnetization, is low at 

large Us.  
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Figure 21: DFT+U results for the positions of the s- and d-energy peaks 

in the DOS of the Fe2 and FePt clusters at different values of U. 

 

This may explain the magnetization jump in Fig. 20. In the case of FePt cluster, there is 

no such sharp change between the energy differences for these states (the 

corresponding dashed lines in Fig.21), and therefore, the magnetization does not 

change significantly as U increases. Another notable effect of U in the case of FePt 

cluster is change of the positions of the d-orbital spin-up and spin-down energies when 

U increases from 2 eV to 3 eV. 

For the case of  tetramers, we have performed DFT+U and DFT+DMFT studies of the 

U-dependence of the magnetization for two types of systems with bulk and planar 

configurations  on the example of Fe3Pt (Fig. 22). Our DFT+U results show an increase 
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of the magnetization at large values of U in the 3D structures. This is an expected 

result, since the correlation effects in the 3D structures are more sensitive to the 

distance between the atoms as compared to the planar ones (where the correlation 

effects are significant even at small U’s due to large inter-atomic distances).  

(a) 

 

(b) 

 

Figure 22: DFT+U vs DMFT results for the magnetization of the Fe3Pt clusters (shown in 

Fig. 18) as a function of U in the case of 3D (a) and planar (b) geometries 

 

The reduction of magnetization due to dynamical effects, taken into account in the 

DMFT in Fe3Pt is much larger than in the case of pure iron four-atom cluster (Fig. 

15(b)). Indeed, substitution of an iron atom by a platinum one, leads to an increase 

(decrease) of the corresponding bondlength (hopping parameter). This happens 

because of a larger spatial extension of the 5d-orbitals. As a result, the average time of 

the orbital occupancy decreases, which leads to a decrease of the magnetization. 
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Figure 23: DFT+U vs DMFT results for the 

magnetization of the four atom iron–platinum clusters 

as function of the number of iron atoms at U = 4 eV 

 

The dependence of DFT+U and DFT+DMFT magnetization on the chemical 

composition of the FePt tetramers is presented in Fig. 23. Naturally, the “staggered” 

mean-field DFT+U calculations show a fast increase of the magnetization with 

increasing of the number of “more magnetic” Fe atoms. On the other hand, the 

DFT+DMFT calculations show that the magnetization of the bimetallic clusters is rather 

small and almost composition-independent, suggesting that the hybridization effects are 

dominant even in the case of large U’s. Interestingly, the DFT magnetization of the 

Fe2Pt2 cluster [53], ~2μB, is much closer to our DFT+U result than to the DFT+DMFT 

one. This suggests that the DFT energy levels in the system are well separated, and 
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inclusion of U does not affect significantly the orbital hybridization (U typically leads 

even to a larger separation between the atoms). On the other hand, the dynamical 

effects may lead to a significant change of the system spectrum, and hence its 

magnetization, even in the case of strongly localized orbitals. 

4.4 Fe nanoparticles 

After we have successfully applied DFT+DMFT approach to small Fe and FePt clusters, 

we proceeded with the case of larger, 10-147-atoms, Fe nanoparticles. The DFT-

relaxed geometries of the studied cluster and the atomic magnetic moments for different 

clusters are presented in the Fig. 24 

 

 

Figure 24: Relaxed structures of the Fe10-Fe147 clusters. Different colors 

correspond the values of the atom magnetization shown on the right (in µB). 
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In general, the surface atoms have much higher magnetization, which increases with 

decreasing cluster size. Smaller magnetic moments of inside atoms can be explained 

by their larger coordination number. High coordination assumes the ferromagnetism of 

more itinerant-like type, similar to the bulk. Indeed, the values of magnetic moments of 

the inside atoms are of order of the bulk value (~2.2muB). In some cases (Fe55, Fe110 

and Fe147), we found a local anti-ferromagnetic order inside the clusters (shown in pink). 

The antiferromagnetic ordering disappears with including U correction in DFT+U. This 

again suggests that the magnetic properties of the central part of the system is basically 

of the itinerant type (with U making the system more of atomic type, suppressing the 

kinetic processes). In order to better understand the nature of the magnetic ordering in 

the clusters we also analyzed the bondlength distribution in different systems.  The 

results are presented in figure 25. 
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Figure 25: The bondlength distribution in the Fe10-Fe147 clusters. The red line indicates the 

bulk Fe lattice constant and the blue dashed line is the average bondlength of each cluster. 

 

As it follows from Fig.25, the average bondlength changes non-monotonously with the 

cluster size. Surprisingly, the average bond length is the most different from the bulk 

value in the case of large 55- and 75- and 100-atom clusters. The bondlength value is 

closest to that for bulk systems in icosahedral Fe55 and Fe147 structures. Though the 

corresponding bondlengths are a little bit smaller than that for the bulk, opposite to the 

case of Fe45, Fe75, Fe90, Fe100 and Fe110. Very short, below 2 Å, values of some of the 

bondlengths in the 10 and 11-atom clusters might be the reason why DFT and other 

approaches fail to describe correct magnetic moment in this cluster. Since there is no 

simple correlation between the magnetization and the average bondlength in different 
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clusters, it is quite possible that the simple Heisenberg exchange picture is not sufficient 

to describe the magnetism in these particles. 

 

 

Figure 26: The number of nearest neighbor atom distribution for different clusters (at the 

cut-off radius 3.0 Å). In the brackets we show the average number of nearest neighbors 

per atom. 

 

 

There is also no one-to-one correspondence between the number of nearest neighbors 

and magnetization, as it follows From Fig. 26. This suggests that the simple itinerant 

(Stoner) picture of the ferromagnetism is also not sufficient to describe the magnetic 

properties of the Fe particles. In fact, one would expect the increase of the number of 

nearest neighbors would lead to an enhancement of band-type effects (with the "band" 



90 

 

splitting more pronounced in clusters with higher atomic coordination), and hence larger 

magnetic moments, which is not the case. 

 

After structural relaxation, we have obtained the parameters for the effective Hubbard 

model solved in DFT+U and DFT+DMFT. Namely, the energies for s- and d- orbitals for 

spin-up and spin down-states 휀𝑙,↑ and 휀𝑙,↓ and also the inter-atomic and the inter-orbital 

hopping parameters 𝑡
𝑖𝑗

𝑙𝑖,𝑙𝑗
 were obtained using the Slater-Koster approximation (for 

details, see Appendix A). We complemented these values with the value of the local 

Coulomb repulsion energy U=2.3eV, appropriate for the bulk iron system. 

 

To solve the problem of correlated electrons, we turned to DFT+DMFT using our nano-

DMFT code (particulars described in chapter 3). One virtue of the code is that it works 

for several hundred atoms with modest computational resources. The results for the 

magnetic moment per atom obtained using the three theoretical approaches and the 

experimental data are presented Fig. 27.  Several conclusions can be made from these 

results. The first is that DFT+DMFT gives overall the best agreement with experimental 

data. 
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Figure 27: The DFT, DFT+U, and DFT+DMFT and the 

experimental data [34,58] for the magnetization per atom in the 

Fe clusters. More detailed results for smaller clusters are 

showing in the inset.  

 

 Next, only DFT+DMFT displays the peak in the magnetization observed in experiments 

for Fe14. Although the numerical value of the magnetic moment (∼3.3µB) obtained by 

DFT and DFT+U for this cluster is in better agreement with the experimental result 

(∼3.4 µB), these two techniques find Fe13 to have higher magnetic moment (∼3.4 µB ) 

than Fe14, in disagreement with experiments (∼2.55 µB). In the Fe15 case, DFT and 

DFT+U also overestimate the magnetization, while DFT+DMFT result is in a good 
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agreement with experimental data.  Here again DFT+DMFT does better to describe 

large oscillations in the magnetization for Fe45 and Fe55 particles. In particular, DFT 

predicts the magnetization to be larger for Fe45, while DFT+U find a smaller change 

(increase) in magnetization between Fe45 and Fe55. For the clusters larger than 55 

atoms both  DFT+DMFT and DFT+U give similar results. In general, DFT+DMFT results 

are in better agreement with experiments, particularly in depicting the oscillatory 

dependence of the moments on the particle size. DFT results deviate the most from the 

experimental values, especially in the case of large 110- and 147-atom clusters, which 

in part can be explained by artificial core anti-ferromagnetism obtained in only with DFT.  

DFT+U tend to overestimate the magnetic moments for small clusters. For small, Fe10, 

Fe11 and Fe12, clusters none of the approaches reproduces the high value for the 

magnetization, though the DFT+DMFT reproduces a local magnetization peak for Fe12. 

 

For a deeper understanding of the oscillation of magnetization, including the origin of 

the peaks at some values of N, we compared the DFT, DFT+U and DFT+DMFT 

spectral functions for Fe14, Fe55, Fe13 and Fe45 clusters (Fig. 28). The spectral function 

for spin-up electrons obtained with the DFT+U was found to be essentially the same as 

the DFT one but shifted to lower energies. The spectral density for the spin-down 

curves was found to be very similar in both DFT and DFT+U cases. Since the spin-up 

orbitals are typically fully occupied, the change of the magnetization with U is basically 

defined by the change of the spin-down density of states.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 28: The DFT, DFT+U and DFT+DMFT spin-up (positive) and spin-down 

(negative) densities of states (arbitrary units) of the (a) Fe14, (b) Fe55, (c) Fe13 and (d) 

Fe45 clusters. The Fermi energy corresponds to 𝜔 = 0. 

 

We found that the dynamical fluctuations taken into account in DFT+DMFT lead to a 

modification of the DFT+U density of states, in a way that recovers the DFT results. 

Reduction of the clusters magnetization obtained with DFT+DMFT may indicate that the 

orbital position (through static shift of energy levels resulting from the self-energy 
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correction) and/or their occupancy (due to the frequency dependence of the self-energy) 

may significantly change when dynamical effects are taken into account. What is even 

more important that the DFT+DMFT give new orbitals (due to the frequency-

dependence of the self-energy), as it follows from Fig. 28, that can significantly affect 

the value of the magnetization. Importantly, in the 14- and 55-atom clusters with the 

local peak for the magnetization, the DFT+DMFT spin-down density of states is strongly 

localized around the zero-level for all orbitals (Fig.28 (a) and (b)), distinctly from other 

clusters. For example, in the case of 13- and 45-atom clusters the spin-down DOS 

(Fig.28 (c) and (d)) is significantly more spread then the DOS of the corresponding 

“neighbor” 14- and 55-atom clusters. This ‘universal-localization’ of DOS might be 

responsible for the large magnetization for these clusters. One can explain the 

increased magnetization by a smearing effect, when d-orbitals become magnetically 

equivalent, which might be a result of higher cluster symmetry. In fact, the DFT and 

DFT+U peaks in magnetization in the 55-atom case are often ascribed to symmetry 

effects. 

For a more quantitative picture on the results on the cluster magnetization obtained by 

three different approximations (DFT, DFT+U and DFT+DMFT) together with the 

corresponding experimental data we summarize them in Table 3.  
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Table 3: The DFT, DFT+U, and DFT+DMFT and the experimental results [34,58] for the 

magnetization (in µB) per atom in the Fe clusters. 

N DFT DFT+U DFT+DMFT Experiment 

10 3.00 3.00 2.60 4.62±0.4 

11 3.17 3.13 2.58 4.80±0.2 

12 3.16 3.17 2.92 5.12±0.0 

13 3.40 3.40 2.79 2.55±0.3 

14 3.30 3.31 3.05 3.40±0.1 

15 3.26 3.14 2.77 2.72±0.1 

16 3.12 3.13 2.92 2.90±0.05 

17 3.06 3.09 2.87 2.86±0.1 

18 3.11 3.11 2.92 2.95 ± .00 

19 3.05 3.06 2.94 2.92±0.01 

27 2.83 3.11 2.98 2.90±0.1 

45 2.83 2.97 2.84 2.70±0.1 

55 2.73 3.05 3.06 3.10±0.07 

75 2.82 3.02 2.99 2.93±0.05 

90 2.71 3.02 2.88 2.85 ± 0.05 

100 2.67 2.95 2.93 2.95±0.07 

110 2.33 2.94 3.33 3.2±0.08 

147 1.99 2.93 2.89 2.82±0.1 

 

From Fig. 28 and Table 3 one can find the following general trends in magnetization of 

different size clusters obtained with the different approximations:  

(1) Small clusters (10–19 atoms) 
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DFT+DMFT give smaller magnetization than in DFT and DFT+U, and the 

magnetization produced by DFT and DFT+U are very similar. In this small 

clusters the spin-up (fully-occupied) and spin-down DOS are already have large 

separation in DFT approximation. In the DFT+U approximation the spin DOS 

separation increases by very small amount which does not lead to any change of 

magnetization.  

(2) Large clusters (55–147 atoms) 

DFT+DMFT results for the magnetization are closer to the experimental data 

comparing to the DFT results. DFT+U results for magnetization are also pretty 

similar to the DFT+DMFT ones, except the Fe110 case. In this case, DFT+DMFT 

slightly overestimate the magnetization and the DFT+U give an underestimated 

result with respect to the experimental data.  Similarity of DFT+U and 

DFT+DMFT results for the 55-147 clusters may be explained by large average 

bondlength in the clusters (see Fig. 25) that leads to strong electron localization, 

making the dynamical  effects suppressed. This suggests that fluctuation effects 

are less dramatic for this particular size of particles. For Fe110 and Fe147 the 

averaged magnetization obtained from the DFT approximation are much smaller 

than that the DFT+U, DFT+DMFT and experimental results because as was 

mentioned above, as it follows from the DFT calculations some of the central 

atoms are in anti-ferromagnetically ordered with respect to the surface atoms 

(see Fig. 24).  

(3) The ‘intermediate size’ particles (27–45 atoms) 
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The DFT+DMFT gives better agreement with experiments compared to DFT and 

DFT+U, and the values of the magnetization obtained by all three approaches 

are rather different. 

  

The success of DFT+DMFT approach for reproducing oscillation of magnetization with 

cluster size suggest that the delicate balance of local repulsion and hopping processes 

taken into account by DMFT is important for obtaining the correct values of the 

magnetic moments. It must also be mentioned that simple pictures based on the relation 

between the magnetization and the bondlength and number of nearest neighbor 

distributions in the clusters (the Heisenberg exchange and itinerant-(Stoner-) pictures of 

the ferromagnetism, respectively)  have limited application when one tries to deal with 

understanding of the size-dependence of nanoparticle magnetization. To get a more 

complete understanding of this complex phenomenon, one need to take into account 

the local and itinerant effects more accurately, this is done by the DFT+DMFT 

approach. Indeed, similar to DFT this approach is capable to describe itinerant 

phenomena (through the hopping and dynamical fluctuation processes) and similar to 

DFT+U it takes into account the effects of strong local electron-electron interactions, 

which lead to behavior closer to an atomic type.  

 

It is also important to stress that further experimental work to clarify the geometry of the 

clusters considered in this work needs to be done. In order to understand how our 
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results are structure-dependent, we used several different configurations for Fe11–Fe19 

structures in the DFT+U and DFT+DMFT calculations. The results are shown in Fig. 29.  

 

  

Figure 29: Magnetization per atom versus the cluster size in the case of DFT+U 

(a), DFT+DMFT (b) calculations for clusters with different configurations. The 

experimental data[58] are also presented. 

 

In practice all cases (except very small Fe11 and Fe12 clusters), the DFT+DMFT results 

are very similar, and much closer to the experimental data as compared to the DFT+U 

results.  These results suggest the reliability of the DFT+DMFT approximation in the 

case of magnetic nanoclusters. 

4.5 Conclusions 

In this Chapter, we analyzed importance of the correlation effects in the electronic and 

magnetic properties of TM nanostructures. We have shown that similar to the bulk 

systems, correlation effects in nanosystems need to be taken into account beyond DFT 
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or DFT+U.  In the case of small Fe and FePt clusters, we found that dynamical 

correlation effects lead to a significant decrease of the magnetization with respect to 

DFT+U results. There are two reasons for this: first, the time-dependence of the orbital 

occupancy taken into account in the DMFT approach leads to a significant decrease of 

the magnetization relative to “the staggered” DFT+U spins. Second, the level of 

occupancy of orbitals are changed with respect to the Fermi energy due to the 

frequency-dependence of the spin-resolved electron self-energy and hence the 

magnetization. The chemical composition, geometry and local Coulomb repulsion 

dependencies of the magnetization were also analyzed. In particular, we found that 

similar to the bulk, to get the same nanoparticle magnetization from DFT+U and 

DFT+DMFT one needs to use a larger value of U in the latter. Stronger electronic 

screening effects in DMFT might be one of the reasons for this. We get same level of 

agreement with the experimental data with DFT+DMFT as in the case of DFT+U.  

We have extended DFT+DMFT formalism to study electronic and magnetic properties of 

larger nanoparticles and applied the approach to study magnetic properties of Fe 

nanoparticles of size up to 147 atoms using our own code with the generalized IPT 

impurity solver. The DFT+DMFT results for the magnetic moments of 10-147-atom iron 

nanoparticles  shows that in most cases the inclusion of dynamical correlations results 

is in overall better agreement with experiment[34,58] comparing to other approaches. 

This is to our knowledge the first demonstration that DFT+DMFT applied to 

experimentally realizable magnetic nanoparticles can produce accurate results. The 

methodology should have multiple applications as it can be readily applied to larger 
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(several-hundred atom). The computational speed of the developed code is such that 

the total computational time of the DFT+DMFT calculations is comparable to the 

corresponding time for the DFT calculations. 

After successful application of the nanoDFT+DMFT approach to clusters and 

nanoparticles, we extended the formalism on the case of films – systems with mixed 

geometry (infinite/periodic in two and finite in one direction). In the next Chapter, we 

present the results of the nanoDFT+DMFT studies of the electronic and magnetic 

properties of a Fe2O3(001) film.  
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CHAPTER 5 APPLICATION OF DFT+DMFT TO Fe2O3 (001) FILMS 

There are several types of iron oxides (FeO, Fe3O4, α-Fe2O3, β-Fe2O3 etc.) in nature, 

which are used in different applications, such as catalysis, electrochemistry, 

magnetization, biomedical science, ceramics and environmental applications.[146-151]. 

Hematite, for examples, is considered as an efficient support for catalytic applications, 

corrosion and lubrication.[59,60] It is also used as a natural pigment in the manufacture 

of red, brown, and black colors and their admixtures,[152] in magnetic devices and for 

suppression of greenhouse gases by oxidizing CO to form CO2 [153]. To understand 

properties of the system and to control these and predict other applications one needs a 

very detailed knowledge about the structural and electronic properties of bulk and 

surfaces of Fe2O3. There have thus been several theoretical studies on these systems 

using DFT and DFT+U methods in recent years.[71,154-156]  

The case of a film is more complex, since the hematite (001) surface can have five 

different types of termination: two Fe-terminated and three O-terminated surfaces.[63] 

Moreover, Wang et al.[64] on the basis of DFT and STM studies showed that two 

different surface terminations can coexist on single crystalline ∝ −𝐹𝑒2𝑂3 (001) films in 

high (10-3 mbar) oxygen pressure. By interpreting the STM images within resonant 

tunneling theory Eggleston et al. concluded that the O-terminated surface must be the 

lowest-energy surface under oxygen pressure conditions.[65] A possibility of the surface 

reconstruction of 𝐹𝑒2𝑂3 was analyzed in Ref. [157], where it was found that the surface 

can consist of coexisting islands of Fe and FeO. 
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The first principle DFT studies by Kiejna et al.[66] suggest that a Fe-terminated 

structure in the form of Fe-O3-Fe- is more stable than the other terminations.  In another 

recent DFT+U study these authors demonstrated a possibility of coexistence of the Fe 

and O termination in one surface super-lattice.[67] All the above results suggest that 

one needs more studies to come to a definite conclusion for the structure of the lowest-

energy hematite surface. In this work we analyze the case of (001) Fe-terminated 

surface, as the most often studied system.  

It is known that DFT with simple XC potentials cannot be used to study hematite 

systems, because this oxides system is strongly correlated.[158] Indeed, the spin LDA 

or GGA  fail to reproduce the correct ground state properties of many TM oxides, 

including high  magnetic moments of Fe atoms and the spectral gap in bulk 

hematite.[68] The DFT+U improve the value of the magnetization in bulk Fe2O3, but 

cannot explain the MIT (with volume/temperature change) in this system.[69-71] The 

LDA+DMFT approach was used to describe the MIT, accompanied by the high- to low- 

spin transition, and succeeded in this.[72,73] Thus, to obtain the most complete 

understanding of physics of hematite films one needs to use a DFT+DMFT approach.   

5.1 Computational Details 

The optimized initial structures for bulk and surface Fe2O3 were provided by Adam 

Kiejna group (U. Wroclaw, Poland).[66,67] To calculate the magnetic moments, we 

performed self-consistent force (SCF) calculation by spin-polarized DFT as 

implemented in the VASP package [128]. The XC potential was approximated by the 
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GGA functional by Vosko et al. [129] The DFT+U calculations were performed by using 

the method  implemented in VASP by Dudarev et al[159] with values of U=3 and 6 eV 

for the d-orbitals of the Fe atoms. The DMFT part of the calculations was performed by 

using our nanoDFT+DMFT code with the IPT impurity solver.  

5.2 Bulk Fe2O3 

To test the validity of the DMFT approximation, we performed simulations bulk Fe2O3 for 

which a large amount of experimental data available. Bulk hematite is  

thermodynamically the most stable structure among all iron oxides and is the most 

common form of crystalline iron oxide.[160] The crystal structure of hematite is of the 

corundum type with space group 𝑅3𝑐 (each hexagonal unit cell contain six formula 

units). Fig. 30 shows two unit cell of bulk Fe2O3. There are two sub-layer of Fe atoms 

which are spaced approximately by one-third and two-thirds the distance between 

oxygen layers. The oxygen anions form a hexagonal close-packed sub-lattice with two-

thirds of the total number of six-fold coordinated sites occupied by ferric cations. Fe2O3 

has hexagonal unit cell with lattice parameters 𝑎 = 5.034Å, 𝑐 = 13.75Å.[161] The top 

view and side view of a unit cell of bulk Fe2O3 is shown in the Fig. 30. We note that 

there are two types of pairs of Fe atoms, which are characterized by a short Fe-Fe 

distance (type A) and by a larger distance (type B) along the (001) direction. Hematite 

exhibits different magnetic properties at different temperatures. In particular,  it exhibits 

antiferromagnetism below the Neel temperature of 950K[162] and weak ferrimagnetism 

below  260K.[163] The antiferromagnetic ground state of bulk hematite was found in 
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DFT study by Nelson et al. [164] They found that strong hybridization of the oxygen and 

iron states are responsible for the antiferromagnetism. Thus, the antiferromagnetism 

can be obtained already on the DFT level, which makes our analysis more consistent, 

where we consider DFT results as the input for DMFT calculations.  

(a) 

 

 

 

 

Figure 30: Schematic illustration of the (a) top view of 2x2 unit cell and (b) side view of a 2x2 

unit cell of bulk Fe2O3. Arrows indicate directions of magnetization of individual Fe atoms 

(shown in red). Oxygen atoms are shown in blue. There are two sorts of pairs of Fe atoms 

along the (001) direction, one (denoted as type A) with a short and the other (type B) with a 

larger Fe-Fe distance. 

 

Magnetic moments of Fe atoms in the unit cell of hematite can have three different 

types of antiferromagnetic arrangements: (i) AF++-- (++-- state means that Fe atoms 

belonging to short distance pairs (distance type A), have opposite magnetic moment, 
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while Fe atoms belonging larger distance pairs (distance type B) have equal magnetic 

moments. Fig. 30(b)), (ii) AF+-+- and (iii) AF+--+. The magnetic structure (AF++--) 

shown in Fig. 30 corresponds to the lowest-energy spin arrangement with magnetic 

moments 3.4 µB obtained by GGA.[71] Other higher energy magnetic orderings, 

together with the summary on the lattice parameters, magnetic moment and energy 

differences is presented in Table 4. 

Table 4: Theoretical results for the structural parameters and magnetic moments of bulk Fe2O3 

with different magnetic configurations along with experimental data. (NM means the non-

magnetic configuration) 

Magnetic 
State 

Functional Energy 
(meV) 

Magnetic 
moment μ

B
 

c/a 
ratio 

Fe-Fe(A) 
(in Å ) 

Fe-Fe(B) 
(in Å ) 

AF++-- GGA[71] 0 3.44 2.77 2.941 4.006 

LSDA[165] 0 3.72    

HF[166] 0 4.74 2.70 2.877 4.033 

This study GGA  3.47 2.73 2.915 3.981 

AF +-+- GGA[71] 211 3.38 2.76 2.959 3.958 

LSDA[165] 190 2.80    

AF+--+ GGA[71] 224 3.45 2.69 2.803 4.000 

LSDA[165] 204 3.74    

FM++++ GGA[71] 388 2.60 2.85 2.689 4.380 

LSDA[165] 489 3.73    

HF[166] 37     

NM GGA[71] 680  2.83 2.761 4.280 

Expt. (Ref. [167])  4.12 2.73 2.896 3.977 
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We also performed DFT+U calculations and found that DFT+U can give the values of 

the magnetic moments and of the bandgap, in a better agreement with experiments 

than DFT results. The atomic-projected DOS for the spin up and down states for 

different atoms is plotted in Fig. 31. 

 

 

 

 

Figure 31: DOS for bulk Fe2O3 projected on Fe (green line), O(blue line) and total (red 

dotted line) in (a) DFT and (b) DFT+U (U=5 eV) approximation. 

 

The bandgap obtained from the DFT approach is 0.35 eV and the magnetic moment is 

3.47 µB, which is not in agreement with the experimental bandgap (1.9-2.2 eV [168] and 

4.12 µB [169],correspondingly). DFT also gives incorrect position of Fe 3d-bands with 

respect to the O 2p-bands, which give a very small energy bandgap. The bandgap 

under DFT+U study is 1.82 eV and the magnetic moment is 4.14 µB in good agreement 

with experiments. As it was mentioned above, though DFT+U corrects the DFT 
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bandgap for bulk Fe2O3 it fails to capture the MIT in the system due an overestimation 

of local Coulomb repulsion effects. In studies by other authors, it was shown that the 

bandgap in Fe2O3 increases almost linearly with the values of U [164] and that U=5 eV 

gives the experimental value for the gap. Parameterization of U values sometimes 

creates confusion on what values of U to choose for a system. In this study with 

DFT+DMFT approach, we found that at U=6 eV the exact bandgap is reproduced for 

the bulk Fe2O3. In this work we do not consider the problem of the MIT, focusing on the 

insulating phase. Our results for the DOS of the bulk Fe2O3 obtained within DFT, 

DFT+U and DFT+DMFT is shown in Fig. 32. 

 

 

Figure 32: DOS of bulk Fe2O3 obtained with DFT (black 

dotted line), DFT+U (blue line) and DFT+DMFT (red line). 
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As it follows from Fig. 32 that the band-gap of bulk Fe2O3 in DFT+DMFT approach (2.0 

eV) is in good agreement with the experimental bandgap (1.9-2.2 eV [168]). The value 

of bandgap and magnetic moment of bulk Fe2O3 in DFT, DFT+U and DFT+DMFT along 

with experimental data are presented in Table 5. 

Table 5: Magnetic moment and bandgap of bulk Fe2O3 in three (DFT, DFT+U and DFT+DMFT) 

approaches along with experimental data. 

 Magnetic moment 
(in µB) 

Bandgap 
(in eV) 

DFT 3.47 0.35 

DFT+U 4.14 1.82 

DFT+DMFT 3.98 2.0 

Expt. 4.12[169] 1.9-2.2[168] 

 

 As we can see from Table 5 that DFT+DMFT  with IPT solver can reproduces 

experimental data for bulk the bulk Fe2O3,  this suggest that the IPT is a good 

approximation for the film of Fe2O3 as well. 

5.3 Fe2O3 (001) film 

The unit cell of the Fe2O3 (001) film we studied is shown in Fig.33. The interatomic 

distances for this structure have the following values. The surface Fe-O bond length 

perpendicular to the surface plane is 1.82 Å, shorter than the normal bond length in the 

bulk (1.940 Å), and the Fe-O distances vary from 1.82 to 2.14 Å. The short Fe-Fe 
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distance is 2.89 Å and the bond from the top O to the top Fe located at the surface is 

1.94 Å, while the long Fe-Fe distance is 3.79 Å and O-O has decreased from 2.92 Å in 

the bulk to 2.88 Å in the surface. These numbers are in a good agreement with results 

of other theoretical studies (see, for example, Ref. [164] and references therein).  

(a) 

 

(b) 

 

 

Figure 33: Schematics of a 2x2 unit cell of iron terminated Fe2O3 (001) surface 

we used in our studies: (a) side view and (b) top view. Iron and oxygen atoms 

and shown in red and blue colors, correspondingly. The orange circles in (b) 

indicate the top layer atoms. 

 

Similar to the bulk, Fe2O3 (001) surface is also antiferromagnetically ordered.[164]  We 

have used the same antiferromagnetic order of Fe atoms in the unit cell as in the bulk 

case. The magnetic moment of the bulk Fe atoms in the film is found to be 3.56 µB and 
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for the surface atom this value is 3.38 µB within the DFT approximation. The DFT+U 

calculations give the values 3.97µB and 3.91µB, respectively. The surface atom has 

slightly reduced magnetic moment compared to the bulk atoms in both DFT and DFT+U 

approximation. This can be explained by the difference in coordination numbers 

between surface and bulk atoms, which leads to different orbital hybridization for these 

Fe-atoms (3d-) and surrounding O (2p-) electrons, which in turn affects the magnetic 

moments. 

 

 

 

 

Figure 34: DFT (a) and DFT+U (b) results for the total spin DOS for different atoms in the Fe2O3 

(001) film (at U=6 eV). Results for Fe and O atoms are shown in green and blue colors, and the 

total spin DOS is shown by red dotted line.  

 

The atomic spin DOS of the hematite film obtained with DFT and DFT+U approaches 

are shown in Fig. 34 (d-orbitals for Fe and p-orbitals for O atoms). Similar to the bulk 

case, our calculations show that DFT gives a small bandgap and the bandgap 
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increased to 1.0 eV at U=3 eV and to 1.7eV at U=6 eV (shown in the Fig. 34). There is 

large contribution to the total DOS near the Fermi energy from the 3d-electrons of the 

Fe atoms, suggesting that the correlation effects are important in the film as well.  

The DFT, DFT+U and DFT+DMFT results for the DOS of the film are shown in Fig. 35. 

As it follows form the last two figures, DFT+U increases the DFT bandgap, similar to the 

bulk Fe2O3.[164]  

 

 

Figure 35: Total DOS of the Fe2O3 (001) film obtained with DFT (black 

dotted line), DFT+U (U=3 eV), DFT+U (U=6 eV) (blue broken line) (pink 

dashed line) and DMFT with U=3 eV (solid green line) and U=6 eV (solid 

red line).  
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As it follows from Fig. 35, there is no bandgap in the DFT+DMFT DOS at U= 3eV, while 

U=6 eV gives 1.7eV bandgap. As we mentioned above, similar result was found by 

Kunes et al, in the case of bulk Fe2O3 [73] 

To study the properties of the hematite surface in more detail, we analyzed the 

projected DOS for each d-orbital of the surface and bulk Fe atoms obtained with the 

DFT+DMFT approach. As it follows from Fig. 36, surface atoms have an extra satellite 

peak for spin-down dxz- and dyz-electrons at 2 eV of energy (indicating by an arrow in 

Fig. 36(a)). 

 

 

Figure 36 The spin- and orbital-projected DOS for the Fe bulk 

(black) and surface (red) atoms in Fe2O3 (001) film at U=6eV. 
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This satellite peak is absent for the bulk atom and also for the surface atom in DFT+U 

case. In addition to possible optical applications (~2eV excitations in the visible range), 

this state may also affect the magnetic properties of the film. Namely, it can lead to a 

significant change of the surface spin moments (through larger unoccupied densities of 

the spin-down states on the surface), which might explain smaller magnetization of 

surface atoms in comparison with the bulk ones (3.94 µB vs 3.98 µB). Also, due to 

different spin and orbital moments of the surface and bulk atoms, one can expect 

different MCA for these atoms. However, this question requires additional studies.  

Table 6 showed the value of magnetic moment (of bulk and surface atoms) and 

bandgap of Fe2O3 film in DFT, DFT+U and DFT+DMFT approaches. 

 

Table 6: Magnetic moments and bandgap of Fe2O3 film system in DFT, DFT+U and 

DFT+DMFT approaches 

Approach Magnetic moment 
(in µ

B
) 

Bandgap  
(in eV) 

Bulk atom Surface atom 

DFT 3.56 3.38 0.3 

DFT+U(U=3eV) 3.90 3.85 1.0 

DFT+U(U=6eV) 3.97 3.91 1.7 

DFT+DMFT(U=3eV) 3.93 3.89 0.0 

DFT+DMFT(U=6eV) 3.98 3.94 1.6 
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It is clear from Table 6 that surface Fe atom have less magnetic moments than  bulk Fe 

atom in all three approximations, However, the absolute values of the surface atoms 

magnetic moments are smaller in DFT+DMFT 

5.4 Conclusions  

Detail investigation of electronic properties of both the bulk and (001) film of Fe2O3 was 

performed under DFT, DFT+U and DFT+DMFT approximation. Similar to bulk case, we 

have found a gap in the spectrum of the film. We have performed a detailed study of the 

surface states of the Fe atoms, and found a large satellite peak around 2eV above the 

Fermi level. These states lead to a difference of the magnetic moments of the surface 

and bulk atoms of the film, and may affect other properties of the system, like the 

magnetic anisotropy.  More detailed experimental studies of the Fe2O3 films may help in 

better understanding of these and other magnetic properties of the system, including the 

role of correlation effects in hematite with different geometries. 

After presenting the results on the magnetic moments of nanoparticles and films, in the 

next Chapter we analyze another important magnetic property of nanoparticles - 

magneto-crystalline anisotropy on the example of FePt systems.   
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CHAPTER 6 AB-INITIO STUDY OF MAGNETOCRYSTALINE ANISOTROPY OF FePt 
NANOSYSTEMS 

It is known for a long time, that even in absence of the external magnetic field the 

magnetic moments of the particles tends to align themselves to the direction which 

minimizes the magneto-static energy of the system. This direction is called the direction 

of easy magnetization. The magnetic anisotropy shows the directional dependence of 

internal energy of magnetic material under spontaneous magnetization. Rotation of 

magnetization vector from the direction of easy magnetization is possible only by 

applied field. In other words, this magnetic energy is direction dependent and is called 

magnetic anisotropic energy (MAE) (see Fig. 12). Since this energy have the same 

symmetry as the crystal axis, MAE is also called magnetocrystaline anisotropy (MCA). 

MCA is an intrinsic property of the system, related to the atomic-scale interactions, and 

basically defined by interaction of the magnetic moments with the crystal field. There is 

another type of anisotropy, called shape anisotropy, which can be related to the energy 

of the sample in its own demagnetizing field. In this thesis we study only MCA.  

The origin of MCA comes from the Spin-Orbit Coupling (SOC) in the system. The 

electric field from neighboring atoms restricts the orbital motion of electrons in the solid. 

Therefore, the electrons cannot be freely oriented by a magnetic field in the solid. The 

spin and orbital moments of the electron also interact strongly with each other. As a 

result, when an external magnetic field orients the spin of one electron, it immediately 

affects its orbital moment, which in its turn interacts with orbital moments of neighboring 
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atoms, and then the spins of neighboring atoms interact with their orbital moments and 

so on.  

 

 

Figure 37: Schematic representation of the 

MCA, which is the difference between 

magnetic energy in two different directions. 

 

In this way the directional character of orbits communicate with spins: the electron spin 

is coupled with the orbital moment which in turn is coupled with the crystal field. There 

are many different methods to calculate MCA of a system.  For instance, Solovyev et 

al.[78] used scalar relativistic Green’s function technique in real space, and showed that 

in lowest order perturbation theory with respect to the spin-orbit interaction (SOI) the 

MCA can be expressed in simplified form. Bruno[170] formulated tight-binding approach 

to calculate the MCA with taking SOC into account. In this thesis, we study MCA by two 
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different approaches; the direct approach and the torque approach [171,172]. We 

describe these approaches in more detail below. 

6.1 The direct and torque spin DFT approaches 

6.1.1 The direct approach  

In the direct approach the value of MCA is determined by comparing the total energy of 

the system for two different orientation of magnetization (Fig. 12). For 3d TM elements 

with weak SOC, one can apply the “force theorem”[173] and calculate MCA by 

comparing band energy between two magnetic orientation, as  

𝑀𝐶𝐴 = 𝐸(↑) − 𝐸(→) = ∑ 휀𝑖(↑)𝑜𝑐𝑐′ − ∑ 휀𝑖(→)𝑜𝑐𝑐′′   (6.1)  

where, 휀𝑖 is the band energy of the 𝑖𝑡ℎ state and the arrow in the parentheses denote 

the direction of magnetization it is usually the direction parallel and perpendicular to the 

surface of a film, and for nanoparticles it is parallel to xy-plane and along z-axis. The 

band energies in Equation (6.1) can be calculated by using spin-polarized DFT with 

SOC taken into account, since MCA is a ground-state property of the system. The 

magnetization can set towards two specific directions by using non-collinearity of spin 

arrangement in the system. The sum in equation (6.1) gives usually a large number (on 

the order of hundreds of eV), whereas the MCA is on the order of few meV, i.e. MCA is 

a small number coming from the difference of two large numbers and one need to be 

very careful about the convergence of the calculation when determining the Khon-Sham 

energy of the system. In fact, one needs to use very fine K-point mesh in the reciprocal 

space to get the integration accurate. A very small convergence criterion of energy is 
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also required in the SCF cycle, which makes the calculations more computationally 

demanding. The direct method may give contradictory results if one does not use 

sufficient number of integration points. For example, Gay and Richter[174] predicted  

that in the case of monolayer Fe the easy axis to be perpendicular to the plane with the 

anisotropy energy of -0.4 meV/atom. On the other hand,  Karas et at.[175] found easy 

axis along the plane of the Fe layer and the value of anisotropy to be 3.4 meV/atom.  

6.1.2 The Torque Method 

Wang et al.[171] proposed a new approach of calculating MCA for systems having 

uniaxial symmetry, which is independent of the validity of force theorem and which does 

not require the magnetostatic energy of a system to be calculated in two different 

directions with very high accuracy. 

To describe the method let us begin with the expression for the total energy of a uniaxial 

system, which can be written as: 

𝐸(𝜃) = 𝐸0 + 𝐾2𝑠𝑖𝑛
2(𝜃) + 𝐾4𝑠𝑖𝑛

4(𝜃),  (6.2) 

where 𝜃 is the angle between the direction of magnetization and surface normal, 𝐾2 and 

𝐾4 are anisotropy constant of the system. The torque 𝑇(𝜃) of the system is defined as 

the angular derivatives of the total energy: 

𝑇(𝜃) ≡
𝑑𝐸(𝜃)

𝑑𝜃
= 𝐾2 sin(2𝜃) + 2𝐾4 sin(2𝜃) 𝑠𝑖𝑛

2(𝜃).  (6.3)  

Since the MCA is by definition, 
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𝑀𝐶𝐴 = 𝐸(𝜃 = 90°) − 𝐸(𝜃 = 0°)  

= 𝐾2 + 𝐾4 = 𝑇(𝜃 = 45
°),  (6.4)  

one can obtain it from the result for the torque of a system at an angle of 45° between 

surface normal and the direction of magnetization. 

The next question which one may ask is how to calculate the torque in DFT? According 

to spin DFT theory with SOC (separating the Kohn-Sham band energy and double 

counting terms) the total energy is 

𝐸[𝑛𝜎(𝜃); 𝜃] = ∑ 𝜖[𝑛𝜎(𝜃); 𝜃]𝑜𝑐𝑐 + 𝐸′[𝑛𝜎(𝜃)],  (6.5) 

where 𝐸′ is the double counting term and the total energy depends on 𝜃 both through 

the SOC part and angular part of the Hamiltonian. The energy deviation can be written 

as: 

𝐸[𝑛𝜎(𝜃 + 𝛿𝜃); 𝜃 + 𝛿𝜃] − 𝐸[𝑛𝜎(𝜃); 𝜃] = {𝐸[𝑛𝜎(𝜃 + 𝛿𝜃); 𝜃 + 𝛿𝜃] − 𝐸[𝑛𝜎(𝜃); 𝜃 + 𝛿𝜃]}  

+{𝐸[𝑛𝜎(𝜃); 𝜃 + 𝛿𝜃] − 𝐸[𝑛𝜎(𝜃); 𝜃]} = 𝒪[𝛿𝜃
2] + ∑ 𝜖[𝑛𝜎(𝜃); 𝜃 + 𝛿𝜃]𝑜𝑐𝑐 − ∑ 𝜖[𝑛𝜎(𝜃); 𝜃]𝑜𝑐𝑐   

=
1

ΩBZ
∫ 𝛿𝜖(k)𝑑k+

1

ΩBZ
∫ 𝜖(k)𝑑k =

1

ΩBZ
∫𝛿𝜖(k)𝑑k+

𝜖𝐹

ΩBZ
∫𝑑k =

1

ΩBZ
∫𝛿𝜖(k)𝑑k,  (6.6) 

where ΩBZ is the volume of the Brillouin zone. Now having equation (6.6) in mind, we 

can write torque as, 

𝑇(𝜃) = ∑ ⟨𝜓𝑖,𝑘
𝑆𝑂|

𝜕𝐻𝑆𝑂

𝜕𝜃
|𝜓𝑖,𝑘
𝑆𝑂⟩𝑜𝑐𝑐 ,     𝐻𝑆𝑂 = ∑ 𝜉(𝑟𝑖)�̂�𝒊. �̂�𝒊𝑖   (6.7) 
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where we have used the Feynman-Hellman theorem. The product of angular 

momentum  �̂�𝒊 = −𝑖ri × ∇ and spin operators in polar coordinates can be written as: 

�̂�𝒊. �̂�𝒊 = 𝑠𝑛 (𝑙𝑧𝑐𝑜𝑠𝜃 +
1

2
𝑙+𝑒

−𝑖𝜑𝑠𝑖𝑛𝜃 +
1

2
𝑙−𝑒

𝑖𝜑𝑠𝑖𝑛𝜃)  

+
1

2
𝑠+(−𝑙𝑧𝑠𝑖𝑛𝜃 − 𝑙+𝑒

−𝑖𝜑𝑠𝑖𝑛2(𝜃 2⁄ ) + 𝑙−𝑒
𝑖𝜑𝑐𝑜𝑠2(𝜃 2⁄ )) +

1

2
𝑠−(−𝑙𝑧𝑠𝑖𝑛𝜃 + 𝑙+𝑒

−𝑖𝜑𝑐𝑜𝑠2(𝜃 2⁄ ) − 𝑙−𝑒
𝑖𝜑𝑠𝑖𝑛2(𝜃 2⁄ )).  (6.8) 

now by taking derivative of the last equation with respect to 𝜃 and substituting it into 

equation (6.7), one can easily find the torque of the system.  Wang et al.[171] showed 

that the calculation in the torque approach does not depends on the validity of MCA 

force theorem[173], though if it is applicable it can makes the calculation much simpler. 

The advantage of torque method over the direct approach is that the calculations are 

very fast, because one does not need to do the self-consistent calculations that include 

the SOC. Also, the case of torque approach one does not need very high precision for 

the convergence of the SCF calculations. 

We considered the cases of L10 FePt bulk alloy, FePt dimer and L10 FePt nanoparticles 

with different sizes and compositions. The chemically ordered L10 FePt structure can be 

obtained by annealing the fcc structure of FePt alloy or by depositing it on substrate 

above the L10 ordering temperature[176,177]. This structure has alternating Fe and Pt 

planes along (001) direction, which is also the easy axis of magnetization. This type of 

structure does not have the cubic symmetry as one of the symmetries of the system. 

The MCA in this FePt structures mainly comes from the contribution of the Pt (5𝑑 
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element) atoms with a large SOC. On the other hand, the Fe (3𝑑 element) atoms 

provide the exchange splitting of the Pt sub-lattice.[77,78,178] More precisely, the 

hybridization of Fe orbitals cause spin polarization of Pt atoms and as a results enhance 

the MCA due to strong SOC in the Pt atoms. 

At high temperatures, an fcc solid solution of Fe-Pt is observed in A1 phase. Below 

1573K alloys with close number of Fe and Pt atoms shows disorder-order transition with 

formed L10 ordered phase. The condition to create L10 phase is 35-55% of Pt 

concentration at temperatures 973k-1573k.[9] The L10 phase can also be produced by 

chemical synthesis of nanoparticles.[10] Alternating monolayer deposition of Fe and Pt 

can reduce the onset temperature of L10 phase.[179] Another way to obtain L10 phase 

experimentally is by annealing alternating multi-layers of Fe and Pt.[9] 

To support theoretical studies, some experimental measurements by using X-ray 

Magnetic Circular Dichroism Spectroscopy (XMCD), X-ray Absorption spectra (XAS) 

were used to confirm the enhancement of MCA of different free and supported 

clusters.[137,180,181] 

There are several available theoretical results on MCA of FePt nanoparticles. In 

particular, Cyrille et al.[182] studied a size and shape dependent magnetic properties of 

L10 FePt clusters (with central plane filled with Fe atoms) by a tight binding approach. 

Błonski and Hafner[183]  performed ab initio DFT calculations of the magnetic 

anisotropy of supported nanostructures. Fernandez-Seivane and Ferrer[55]  studied 
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impact of the magnetic anisotropy on the geometry and magnetic ordering in small (up 

to 7 atom-) clusters. 

Here in this thesis we perform a theoretical investigation of MCA of much larger L10 

FePt clusters of size 30, 38, 71, 79, 114, 132, 140, 230, 386 and 484 atoms and also 

the pure Fe and Pt clusters of same size. The clusters studied have 1(2), 2(3), 3(4) and 

4(5) layers of Fe (Pt) atoms. The electronic structural and magnetic properties (including 

the orbital moments) of each atom in each of these configurations are also examined. 

This allows us to get a deeper understanding of the magnetic properties of FePt 

nanoparticles and about the suitable size for practical applications.   

6.2 Computational Details 

 Ab initio spin-polarized DFT approach implemented in the VASP code[128] is used for 

the structural relaxation of the nanoparticles. For the ionic relaxation, we employed the 

conjugate gradient algorithm and the electron-ion interaction was described by the 

projector augmented-wave (PAW)[130] formalism. The spin-polarized GGA with the 

PW91 functional[88] is used to describe the electronic XC effect as the spin 

interpolation proposed by Vosko et al.[129] . We used the relativistic version PW91 in 

the non-collinear mode of VASP [184,185] since it is essential for the calculation with 

SOC. 

The bulk FePt L10 structure was constructed by replacing every alternating layer of fcc 

Fe with Pt atoms in (001) direction. This types of structure can be explained in terms of 

a pseudo-cell inside the primitive cell, as indicated in the Fig. 38 the lattice parameter of 
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the primitive cell a is related to the parameter of pseudo-cell 𝑎∗ by 𝑎 = 𝑎∗√2), This L10 

ordering induces a contraction along the (001) direction of the lattice, which reduces the 

ratio 𝑐
∗

𝑎∗⁄  , from the fcc value √2 ≈ 1.41 to 1.363.   

Figure 38. The crystal structure of bulk FePt L10 (Fe atoms in red and Pt in 

gray). Different parameters are related as: 𝒄 = 𝒄∗ and 𝒂 = 𝒂∗√𝟐, where 𝒄∗ and 

𝒂∗ are the lattice parameters of the primitive cell and c and a are the 

corresponding parameters of the pseudo-cell (see the text for their values) 

 

A chemical re-ordering in the unit cell is occurs due to the lattice distortion. For the initial 

structure lattice parameters, we used the experimental values for bulk powder 𝑎∗=2.72Å 

and 𝑐
∗

𝑎∗⁄ = 1.36.[186] (𝑎∗=2.72Å and 𝑐
∗

𝑎∗⁄ = 1.36), and then relaxed the structure 

using the DFT approach described above. 
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Simulations in the cases of dimer and nanoparticles were performed by putting them 

inside a cubic simulation box. Size of the simulation box is chosen in such way that the 

distance between cluster and its periodic images is at least 12Å in all three directions to 

minimize the interaction between the periodic images. The calculations were performed 

by using only one (Γ) point in the Brillouin zone. The energy cutoff was chosen to be 

450eV and we allowed the ions to relax until the force convergence reached 0.01 eV/Å. 

The initial geometry of each size of the cluster was obtained by cutting the relaxed bulk 

FePt L10 structure.  The MCA of the relaxed FePt L10 nanoparticles were calculated by 

using the direct approach and also by the torque method [171,172] as discussed in the 

previous Section. 

6.3 Magnetic anisotropy of the bulk FePt system  

We have obtained very close values of lattice parameters for the bulk FePt L10 system 

to the reported in experiments (𝑎∗=2.72Å and 𝑐
∗

𝑎∗⁄ = 1.36): the in-plane 

parameter  𝑎∗=2.74Å, and the ratio of parameters 𝑐
∗

𝑎∗⁄ = 1.37. The magnetic moment 

values are also in a good agreement with experimental numbers for Fe (2.90 𝜇𝐵) and (Pt 

(0.34 𝜇𝐵).[186] Namely, we have obtained the following values for the magnetization:  

2.85𝜇𝐵 for the Fe atoms and 0.36𝜇𝐵 for the Pt atoms. Though bulk Pt is nonmagnetic, as 

it follows from our calculations it has a finite magnetic moment in the FePt alloy; also the 

magnetic moment of Fe atoms in FePt is much larger than in bulk Fe. One can explain 

this enhancement by the hybridization between the Fe- and Pt-atom orbitals. As can be 
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seen in Fig. 39, the hybridization causes a broadening of the 𝑑-bands, which results in a 

shift of the minority spin DOS across the Fermi level. This shift leads to a finite 

magnetization of the Pt atoms and large value of the magnetization of Fe atoms. 

 

 

Figure 39: Spin- and orbital-projected DOS for different cases: 

(a) bulk Fe, (b) bulk Pt, (c) Fe atom in the L10 FePt and (d) Pt 

atom in L10 FePt.(e)  Spin-projected DOS for bulk L10 FePt. 

 

The density of states (DOS) of bulk L10 FePt is plotted in Fig. 39, where we also present 

the projected DOS for the Fe and Pt atoms, which is similar to the one reported in 

theoretical studies by Barreteau et al. [182] Our direct DFT calculations give MCA to be 

2.22meV per FePt pair, in agreement with experimental data.[187] This result gives us a 

confidence that our results in the nanocase are reliable as well. We attribute the large 

MCA to the large SOC of Pt atoms and to the increase in orbital moment owing to the 



126 

 

strong hybridization of their 5d orbitals with the 3d orbitals of Fe. The hybridization 

breaks the symmetry of the system in the two perpendicular directions, which results 

also in different values of the free energy in these directions.[77] It is important to 

mention that it was reported earlier that the anisotropy in the disorder phase of bulk 

FePt is order of magnitude smaller than that in the L10  ordered phase.[9] Thus, the L10 

structure is important for the high MCA.  

6.4 Magnetic anisotropy of the Fe, Pt and FePt dimers 

To gain more insight into the nature of possible MCA in the nanoparticles, we also 

considered the case of pure Fe, pure Pt, and FePt dimers. For the latter, we obtained a 

dimer bondlength of 2.184Å without SOC taken into account, and 2.172 Å with SOC. 

Therefore, we conclude that SOC does not play an important role in determining the 

geometry of this system, in agreement with the results of Ref. [36].  Fe2 turns out to 

exhibit very small anisotropy owing to the relatively small SOC of the Fe atom (81.6 

meV) and the SOC of the Pt atom is nearly 7 times larger (544 meV)[188], and in Pt2 

the spin and orbital momenta each differ in the two directions (along the axis of the 

dimer and perpendicular to it), leading to the MCA of Pt2 larger than that of FePt and 

Fe2 dimers. The high SOC of Pt atom and relatively large orbital moment in Pt2 together 

account for the fact that the MCA of the platinum dimer greatly exceeds those of the 

other two. The MCA of the mixed FePt dimer is |10.37| meV, between those of the two 

iron and platinum monometallic cases |0.07| and |55.94| meV, respectively.  Table 5 in 

company with Fig. 40 gives details of the results of our analysis.  In the FePt dimer, the 
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total magnetic moment of the Fe atom is 3.22𝜇𝐵 and that of the Pt atom - 0.58𝜇𝐵. The 

large magnetic moment of Fe can be attributed to the 3𝑑-Fe - to the 5𝑑-Pt atom charge 

transfer, which creates a polarization and an extra “hole charge” on the Fe atom.[53] 

This MCA value is higher in FePt system, compared to Fe2, because the values of both 

the spin and orbital momenta are larger in the FePt dimer.  

 

 

Figure 40. DOS of (a) Fe atom in the Fe2, (b) Pt atom in the Pt2 and (c) of the Fe 

and Pt atoms in the FePt dimer. The solid (red) line corresponds to DOS of Fe 

atoms and the doted (blue) to the DOS of the Pt atoms. The dashed green lines 

indicate the position of the HOMO levels of the dimers.  

 

 In all three cases, the easy axis of magnetization coincides with the direction of highest 

orbital momentum, in agreement with Bruno[170] (See Table 7). The negative value of 

MCA in FePt dimer means the easy axis of magnetization is perpendicular to the dimer 

axis in this case.  
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Table 7: MCA energy (in meV) and the spin and orbital moments of dimers (Fe, Pt and FePt) in 

different magnetization directions. 

Dimer  Spin Moment (µB) Orbital Moment (µB) 

(((µB) 

MCA 

(meV)   (100) 

direction 

(001) 

direction 

(100) 

direction 

(001) 

direction 

E100-E001 

Fe2  

 

This work 

 

 

5.99 5.99 0.32 0.16   0.07 

 
GGA[189] 5.84 5.84 0.32 0.16 0.3 

LDA[190] 6.00 6.00 1.89 0.89 32 

GGA[53] 6.00 6.00 0.25 0.10 0.5 

Pt2  

 

This work 1.89 1.38 2.74 0.80 55.94 

GGA[189] 1.88 1.34 2.74 0.80 46.3 

LDA[191] 1.90 1.65 2.40 1.20 220.0 

GGA[53] 1.80 1.70 2.40 0.80 75.00 

FePt   This work 4.16 4.26 0.36 0.41 -10.37 

GGA[53] 4.30 4.30 0.2 0.40  
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The projected DOS for the 𝑑 orbitals of the Fe and Pt atoms in the dimers are shown in 

Fig.41. As follows from this figure, the majority spin orbitals have zero occupancy at the 

HOMO level, but the minority spin states are present there.  

 

 

Figure 41. Projected DOS for the d orbitals for the Fe and Pt 

atoms in different dimers. The dashed lines highlight the 

HOMO level in each case. 

 

This suggests that the hybridization-induced orbital charges are defined by the charge 

transfer for the spin-down electrons only. Therefore, the anisotropy and the 

magnetization of the dimers are generated by the minority spins as well. 
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Figure 42. Orbital moment anisotropy (OMA) vs MCA of three dimers. 

The arrows indicate the direction of the easy axes for magnetization – 

perpendicular to the dimer axis for FePt and parallel for Fe2 and Pt2. 

 

As it shown in Fig. 42, the MCA is proportional to the change of orbital momentum in 

two different directions; the comparatively small value of MCA for Fe2 is due to its small 

SOC constant. Large SOC constant and relatively large orbital moment of Pt2 results in 

a large MCA in this system.  On the other hand, the intermediate value of MCA in the 

FePt dimer is caused by mutual tempering of each atom of the other’s SOC and by 

intermediate value of the orbital moment (between those of Fe2 and of Pt2). 

6.5 Magnetic anisotropy of L10 nanoparticles 

The high MCA of bulk L10 FePt alloy has raised an interest in the magnetic properties of 

FePt nanoparticles, and several important results have been obtained. For instance, 

Muller et al. predicted theoretically that the L10 phase is not thermodynamically 
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stable[192], and another study, by Jarvi et al.[193] showed that the structure may alter, 

disrupting the original atomic order. Moreover, several experimental studies support the 

existence of a minimum size below which the L10 order can no longer be 

achieved.[194,195] Other studies have shown the migration of Pt atoms towards the 

surface in smaller particles.[196,197] However, concerning feasibility of applications of 

the FePt nanoparticles more detailed and systematic studies are necessary to get more 

definitive answers.  

Some experimental results are very encouraging. Namely, it is known in general that the 

magnetic properties of nanoparticles depend on the size, shape and the way of 

synthesizing.[9] Gas-phase particles can in fact exhibit lower MCA than perfectly-

ordered bulk L10 alloys, because (i) their internal structure may not be perfect L10, and 

individual particles can become multiply-intertwined, (ii) the Pt atoms may tend to 

migrate towards the surface,[196,197] or (iii) an inhomogeneous alloying may be 

present from the beginning, as indicated by the EXAFS measurements by Antoniak et 

al.[198] The enhancement of surface-to-volume ratio (and hence the size) of a 

nanoparticle plays a significant role in its MCA. For example, the crystal symmetry-

dependent quenching of the orbital magnetic moments disappears for all surface atoms 

of nanoparticles, thereby enhancing their orbital moments relative to those of bulk or 

core atoms[199] (Antioniak’s XMCD measurements have confirmed this for surface Fe 

atoms in L10 FePt nanoparticles[200]). 

The structures of the clusters considered in our analysis are shown in Fig. 43.   
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Figure 43. Clusters of the twenty L10 FePt nanoparticles under comparative study here. Dark 

(red) and light (gray) balls represent Fe and Pt atoms, respectively. The clusters whose central 

layer is composed of Pt atoms are presented in (a), and the clusters with central layer 

composed of Fe atoms are presented in (b). 

 

The values of MCA for these clusters obtained with both direct and torque methods are 

presented in Fig. 44. 
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Figure 44: The light (white striped) bars represent MCA energy calculated by the direct 

approach and the dark (magenta crossed) bars indicate results under the torque approach. 

 

The results for MCA calculated with the direct and torque methods agree well except for 

the smallest clusters (Fe18Pt12 and Fe12Pt18), for both of which the direct method gives 

higher MCA. One might expect that the torque method is not very accurate in the case 

of such small clusters, since torque calculations presuppose uniaxial symmetry of the 

system, and smaller clusters lose their symmetry upon relaxation.  However, since there 

are no experimental values for MCA for such clusters, it is difficult to judge which 

method is more accurate for these systems. The overall agreement of the results for 

(many-atom) nanosystems by using these two different approaches is encouraging, 
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because the direct approach is much more computationally demanding. One definite 

conclusion comes from our calculations is that those nanoparticles with a larger number 

of Pt atoms have larger MCA than their counterparts with a larger number of Fe atoms. 

Our calculations also show that the atoms inside the clusters have smaller magnetic 

moments than the surface atoms. As an example, the magnetic moments of Fe72Pt68 

and Fe68Pt72 clusters are shown in Fig. 45.  The green arrow in Fig. 45(a) indicates the 

line through which we calculate the magnetic moment. In Fig. 45(b), the red line with 

solid circles represents the magnetization of Fe atoms in the middle layer of Fe72Pt68 

and the blue line with open circles represents the magnetization of Pt atoms in the 

middle layer of Fe68Pt72. It is clear from the Fig. 45(b) that the outer atoms in the cluster 

have larger magnetization than the inner atoms.  This can be explained by a smaller 

number of neighbors for the exterior atoms. 

 

 

 

 

Figure 45: Magnetic moment of atoms at different positions in the central layer of the 

clusters. The green arrows in (a) indicate the atomic rows for which we plot the 

magnetization in Fig. b).   
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Though the Pt atoms in the bulk show zero magnetic moment, in the case of 

nanoparticles the moment is nonzero. The magnetic moments of the Fe atoms in the 

FePt clusters are higher than the moments of the bulk Fe atoms. The magnetization of 

the atoms inside the clusters is smaller than the magnetization of the outside atoms.  

These differences (between magnetization of atoms in pure bulk and in composite 

clusters, and between that of the interior and exterior atoms within the clusters of the 

same size) are due to the orbital hybridization of the Pt and Fe atoms. Because of the 

lower number of neighbors of the surface atoms,  the spread of the corresponding Fe 

3d- and Pt 5d-peaks in the DOS is smaller comparing to the bulk atoms, which leads to 

a larger unoccupied spin-down DOS, and hence larger magnetic moment of the surface 

atoms. The projected DOS for the atoms at different positions in the clusters are 

presented in Fig. 46. 
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(a) 
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(b) 

 

Figure 46: Projected DOS for the atoms at different positions in the (a) Fe20Pt18 and 

(b) Fe18Pt20 clusters. The values of the magnetic moment per atom in each layer m 

are also given. 
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It is clear from Fig. 46 that the projected DOS for the Pt atoms within the interior and at 

the periphery of the Fe18Pt20 cluster differ significantly, and the main contribution to this 

difference comes from the less-filled spin-down dx
2
-y

2 orbital in the case of the inside Pt 

atoms. This difference of projected DOS leads to a significant difference in the orbital 

moments of the inside and periphery atoms and hence to a high MCA.  In the case of 

“flipped” cluster Fe20Pt18, the difference in the orbital occupancies between the inner and 

the periphery atoms is small for both Fe and Pt atoms. This difference leads to higher 

MCA per atom for bi-pyramidal structures with large central Pt layer as compared to the 

cuboctahedral ones.[201,202]  For example, we get an MCA per atom 1.14 meV for the 

Fe64Pt68 versus 0.86 meV reported in Ref.[201] for the 147 atom cuboctahedral L10 

FePt cluster. This difference can be traced to the larger percentage of Pt atoms in the 

center of the cluster in the bi-pyramidal structure as compared to the cuboctahedral 

one.  
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Table 8: The magnetic moments, orbital moments, and MCA of clusters along the parallel and 

perpendicular to the (001) direction of the cluster. 

       Magnetic Moment (µB) Orbital  Moment (µB) MCA (meV)  

 mx mz lx lz MCA=(Ex-Ez) 

Fe12Pt18  46.74 46.26 2.283 2.037 84.60  

Fe18Pt12  62.33 62.03 2.14 2.54 47.60 

Fe18pt20  68.16 68.06 3.31 2.97 94.37 

Fe20Pt18  72.76 72.75 3.30 3.09 20.01 

Fe32Pt39  117.18 115.19 5.86 4.46 154.28 

Fe39Pt32  134.18 134.14 5.39 5.22 34.15 

Fe39Pt40  133.57 132.46 5.74 5.17 81.05 

Fe40Pt39  137.26 136.53 6.13 5.63 71.82 

 Fe50Pt64  175.97 175.67 7.95 6.91 170.11 

Fe64Pt50  213.24 213.44 8.52 7.91 33.33 

Fe64Pt68  214.84 214.76 9.64 8.24 155.90 

Fe68Pt64  232.88 232.64 10.08 9.11 75.06 

Fe68Pt72  233.90 231.71 10.59 10.06 142.80 

Fe72Pt68  242.69 242.95 10.15 10.51 73.65 

Fe
98

Pt
132

 350.02 350.78 16.90 14.57 349.38 

Fe
132

Pt
98

 452.21 451.98 15.86 13.42 340.99 

Fe
162

Pt
224

 583.97 583.97 28.11 23.63 659.77 

Fe
224

Pt
162

 722.66 722.07 27.47 26.32 320.27 

Fe
260

Pt
224

 870.00 870.21 36.10 33.38 454.44 

Fe
224

Pt
260

 773.98 773.94 34.581 30.38 725.53 
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The spin moment and orbital moment were calculated by taking SOC into account. As 

Table 8 makes it clear, the total magnetic moment does not change significantly as the 

direction of the magnetization shifts from the parallel to the perpendicular one, contrary 

to the orbital moment. The change in value of orbital moment is such that, the easy (z-) 

axis of magnetization is always along the direction of its lower value.  This finding does 

not follow Bruno’s prediction,[170] according to which the easy axis of magnetization 

always coincides with the direction of the highest orbital moment. On the other hand, 

the direction of easy magnetization for dimers (Table 7) follows the Bruno’s prediction. 

Thus, as our calculations show, there is change of the direction of easy magnetization 

upon the cluster size increase in the FePt system. 

In general, the values of MCA also depend on the magnitude of the difference in the 

values of the x- and z-components of the orbital moments per atom, ∆l=lx-lz.  Indeed, 

Table 8 shows that for the majority of clusters the anisotropy is proportional to ∆l. For 

the clusters of the same size, the anisotropy is higher in the clusters with higher SOC 

per atom (Pt atoms in this case).  On the other hand, it is not easy to explain in simple 

terms the dependence of MCA on clusters composition. 
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The MCA of different layers of atoms within the clusters was also studied. Fig. 47 shows 

the results for the 38-atom clusters, as an example. 

 

 

Figure 47: MCA of different layers of atoms in the 

four clusters consisting of 38 atoms. Dark (red) 

corresponds to Fe and light (gray) to Pt atoms. 

 

As it follows from this Figure, the cluster has much higher MCA when the central plane 

consists of Pt atoms and the adjoined layers are built from Fe atoms.  This conclusion is 

valid for all clusters studied in this thesis. The effect can be attributed to the 

hybridization of Pt 5d- and Fe 3d-orbitals. Namely, the orbital moment of Pt atom 

increases because of this hybridization (In the example above, the Pt atom in the 

Fe20Pt18 cluster shows an orbital moment of 0.11 𝜇𝐵 but in Fe18Pt20 its orbital moment 

increases to 0.145 𝜇𝐵). This increase in the orbital moments, along with high SOC of the 

Pt atoms, increases the MCA of the central Pt layer in the cluster. The values of the 

orbital moments of the Pt atoms in the Fe18Pt20 cluster are much higher than in Pt38 
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system(0.02 𝜇𝐵), and then the moment of Fe atoms in Fe38 (0.06 𝜇𝐵), Fe20Pt18 (0.06 𝜇𝐵) 

and Fe18Pt20 (0.04 𝜇𝐵).  The same pattern holds for all sizes of clusters we studied in 

this thesis.   

Since the widths of the part of the d-bands that contribute to SOC are much smaller 

than the total width of the d-bands as a whole, the MCA can be explained by a simple 

perturbation theory in d-orbital occupancy. In this case, all the majority spin states are 

completely occupied (see Fig. 48), so all the empty states belong to the minority spins 

only and MCA is defined by the minority band. There are two possible types of the SO 

interactions in these systems: the coupling between the occupied spin-down and 

unoccupied spin-down states and the coupling between the occupied spin-up and 

unoccupied spin-down states. The MCA energy can be calculated by using the following 

formula:[192]  

𝐸𝑋 − 𝐸𝑍~𝜉
2∑

|⟨𝑜|�̂�𝒛|𝑢⟩|
2
−|⟨𝑜|�̂�𝒙|𝑢⟩|

2

𝑢− 𝑜
𝑜,𝑢   (6.9) 

where 𝜉 is the spin-orbit coupling constant, 〈o| and 〈u| are the occupied and unoccupied 

minority spin states, respectively, and �̂�𝒛 and �̂�𝒙 are the z- and x-components of the 

angular momentum operators. The orbital occupancies of both empty and filled states of 

both spin arrangements for Fe20Pt18 cluster are shown in Fig. 48 and Table 9. By using 

equation (6.9) and values from Table 9 we find that for the Fe atom in the 1st layer of 

Fe20Pt18 𝐸𝑥 − 𝐸𝑧 = 0.24𝜉
2, for the atoms in the 3rd layer (exterior) of Fe20Pt18 this value 
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is 𝐸𝑥 − 𝐸𝑧 = 0.17𝜉
2 and for the atoms in the 3rd layer(interior) of Fe20Pt18 one gets 

𝐸𝑥 − 𝐸𝑧 = 0.08𝜉
2. 

 

 

 

 

Figure 48: Projected DOS for the Fe atom (a) in the 1st layer, (b) on the edge of 3rd layer 

and (c) in the interior of the 3rd layer of the Fe20Pt18 cluster. 
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The contribution of SOC is lower by half for 3rd-layer exterior atoms than that of the 1st-

layer atoms (all of which are on the cluster’s surface), and this contribution for the 3rd-

layer interior atom is lower by one-third than that of the 1st-layer atoms. Next, in the 3rd-

layer of Fe20Pt18 there 12 atoms (4 interior, 8 exterior) and if one assumes that each 

interior and exterior atom gives the same contribution to the MCA, one obtains that the 

anisotropy for the 1st layer is 2.5 times greater than that for the 3rd layer. The DFT 

calculations give the value 3 for this quantity (see Fig. 47). The discrepancy between 

the estimated and DFT results may take place due to simplicity of the estimation used. 

In particular, for more accurate estimation, the differences in hybridization for the 

orbitals on each individual atom need to be taken into account.  

Table 9. The d orbitals occupancy of different atoms in the 1st and 3rd Fe layers in the Fe20Pt18 

cluster. 

Projected 
d-orbitals 

1st-layer atom (all 
exterior) 

3rd-layer atom 
(exterior) 

3rd-layer atom 
(interior) 

𝑑𝑥2−𝑦2 0.51 0.45 0.45 

𝑑𝑥𝑦 0.29 0.17 0.25 

𝑑𝑥𝑧, 𝑑𝑦𝑧 0.30 0.10 0.16, 0.13 

𝑑𝑧2  0.18 0.28 0.28 

 

6.6: Thermal effects and the stability of magnetism 

All the calculations above correspond to the case of zero temperature. For the potential 

applications of FePt nanoparticles in the magnetic storage of data one needs to take 
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into account the temperature effects. In particular, it is possible that the direction of 

magnetization of small nanoparticles can be unstable at room temperature, thus making 

them unsuitable for memory storage. Usually, the magnetic stability time of magnetic 

particles (defined by the probability of “climbing” of the system over the energy barrier) 

is estimated by using the Arrhenius law[203]. According to this law, the stability time is 

defined by the (large value) ratio of the anisotropy energy to the thermal energy. In 

particular, for the stability time T = 25 years, one needs 

𝐾𝑉

𝑘𝐵𝑇
= 𝑙𝑛 (𝑇 𝑇0

⁄ ) ≥ 41.  (6.10) 

In the last Equation, K is the anisotropy energy per unit volume, V is the volume of the 

system, and 𝑇0 is the attempt time for the system to climb the anisotropy barrier. We 

have used 𝑇0 = 10
−9𝑠𝑒𝑐 in our calculations. With the largest value of the anisotropy   

KV= 725 meV obtained for the Fe224Pt260 cluster in our calculations, one gets 

𝐾𝑉

𝑘𝐵𝑇
=  28,   (6.11)     

i.e. the total anisotropy energy of our largest nanoparticle is not large enough for 25 

year magnetic stability. To get the desired ratio of the energies 41, one needs the 

anisotropy energy for the particle to be approximately 1060 meV. This means that to 

use the FePt nanoparticles in the magnetic storage devices their size needs to be larger 

than 484-atom structures. To estimate the desired size, we extrapolated our results for 

the MCA on the case of larger systems. As it follows from Fig. 44, for the clusters with 

fixed number of layers the MCA scales almost linearly with the number of Pt atoms in 
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the cluster. The corresponding linear extrapolation in the case of 5-layer clusters with Pt 

as central layer is shown in Fig. 49. 

 

 

Figure 49: MCA as a function of the number of Pt atoms in 

the five-layer L10 FePt clusters with Pt as the central layer. 

 

As it follows from Fig. 49, the L10 clusters that has central Pt layer with approximately 

350 Pt atoms have the desired value of MCA 1060 meV. The corresponding number of 

Fe atoms for this type of structure is approximately 270. Thus, our estimation shows 

that the L10 Fe270Pt350 and larger particles should have sufficiently large MCA to be 

used in practical applications in the magnetic storage technologies. It is important to 

mention that for other applications, for example MRI, where the stability of the 
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magnetization, not magnetic anisotropy, is important, one can use smaller 

nanoparticles.[204] 

To understand better the thermal properties of the FePt clusters, one needs to calculate 

the temperature dependence of the magnetization M(T).  The large numbers of the 

unknown exchange parameters in the nanoparticle makes this problem very difficult to 

solve exactly. Below, we perform an estimated analysis of how the magnetization varies 

with temperature for different sizes and shapes of nanoparticles, by using an effective 

spin model for the subsystem of the Fe atoms.  

Namely, the thermal-averaged magnitude of the spin can be calculated as 

〈𝑆〉 = 𝑆𝐵𝑆(𝑥)                                                                            (6.12) 

where  

𝐵𝑠(𝑥) = (
(2𝑆+1)

2𝑆
) 𝑐𝑜𝑡ℎ (

(2𝑆+1)𝑥

2𝑆
) − (

1

2𝑆
) 𝑐𝑜𝑡ℎ (

𝑥

2𝑆
)                                         (6.13) 

is the Brillouin function and its argument 

 𝑥 =
𝑔𝜇𝐵𝑆𝐻𝑒𝑓𝑓

𝑘𝐵𝑇
                                                                        (6.14) 

is the ratio of the magnetic energy to the thermal energy. In Eq. (6.14) 𝑔 is the 

gyromagnetic ratio, S is the spin, 𝐻𝑒𝑓𝑓 is the effective magnetic field, and 𝜇𝐵 is the Bohr 

magneton. 
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For a body centered cubic structure of bulk Fe 𝐻𝑒𝑓𝑓 = 8𝐽〈𝑆〉 where,  𝐽 is the exchange 

constant and <S> is the thermal averaged magnitude of the spin. The coefficient 8 is the 

number of the nearest-neighbor atoms in the bulk iron system. 

The exchange constant 𝐽 can be estimated from the value of the critical temperature 𝑇𝑐.   

Near T = Tc the Brillouin function in equation (6.14) is 

𝐵(𝑥) ≈  (
𝑆+1

3𝑆
) 𝑥.  (6.15) 

From equations (6.12) with (6.15) one gets 

𝐽 =
3𝑘𝑇𝑐

8𝑔𝜇𝐵𝑆(𝑆+1)
 ,                                 (6.16) 

where for Tc one can use the experimental value for the bulk iron 1043 K. 

The standard mean-field theory of exchange cannot be applied to nanoparticles, since 

the system contains many non-equivalent atoms and the effective field is site-

dependent. Therefore, we use a self-consistent local-mean-field magnetic model[205] in 

our analysis. We present the steps of the calculations in this approach on the example 

of the Fe20Pt18 cluster.   

We label each Fe atom in the nanoparticle by a number, as shown in Fig. 50.  
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Figure 50: Schematic representation of the 

Fe20Pt18 cluster in the local mean-field model. 

 

Then, we calculate the effective field for each spin, by taking into account the nearest-

neighbor exchange coupling. Two types of coupling are identified: 

1) In-plane nearest-neighbor coupling with the exchange constant 𝐽 

2) Out-of-plane nearest-neighbor coupling with the exchange constant 𝐽𝑝 

For example, the effective field that acts on spin 1 in Fig. 50 can be written as 

𝐻1 = 𝐽(〈𝑆2〉 + 〈𝑆3〉) + 𝐽𝑝〈𝑆8〉 , (6.17) 

here 〈𝑆𝑛〉 is the thermal averaged magnitude of the spin at site 𝑛. Then, one can write 

the effective field equation for each of the site in the cluster: 
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〈𝑆𝑛〉 = 𝑆𝑛𝐵(𝑥𝑛),  (6.18) 

The site-dependent functions 𝑥𝑛 are 

 𝑥𝑛 =
𝑔𝑛𝜇𝐵𝑆𝑛(〈𝑆𝑛〉𝐻𝑛+𝐻0)

𝐾𝑇
. (6.19) 

We solved the corresponding set of coupled equations for <Sn> (n changes from 1 to 

number of Fe atoms in the cluster) iteratively by starting from an initially chosen values 

for <Sn>.    

The following parameters were used in the calculations: µB = 9.27 x 10-21 erg-Gauss, 

Boltzmann’s constant is k = 1.38 x 10-16 erg/Kelvin, gyromagnetic ratio g = 2, exchange 

coupling J = 1.455 x 106 Oe (bulk values of Fe), and spin S = 1. To help orient the 

moments in desired direction and speed up the convergence of our calculations we 

used a small external magnetic field Ho = 100 Oe. We used two different values for the 

perpendicular coupling 𝐽𝑝;  𝐽𝑝 = 𝐽 and   𝐽𝑝 = 0.5𝐽 to see how the coupling between 

different planes of Fe atoms affects the results. 

In Fig. 51 we present our results for the Fe20Pt18 and Fe39Pt40 clusters. The critical 

temperatures of the particles are substantially smaller than the critical temperature of 

bulk Fe (𝑇𝑐 = 1043𝐾).  However, the magnetic moments at room temperature are still 

substantially large. We attribute the reduction in Tc to the reduced coordination number 

of the Fe atoms in the FePt clusters as compared to the bulk Fe. For the larger clusters 

one might expect smaller effect of the reduced coordination, because the percentage of 

atoms at the surfaces and edges is decreasing with the increasing the particle size. 
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Indeed, the value of Tc is larger for the Fe39Pt40 particle comparing to the Fe20Pt18 one. 

We obtained higher values of the critical temperature for larger value of the 

perpendicular coupling, as expected.   This trend is consistent with the experimental 

data showing that larger FePt nanoparticles have a higher Tc.[206]  

In Fig. 51(b) we presented the thermal average values of spin at different sites of the 

cluster at Jp = 0.5J. As it follows from Fig. 51(b), there are only three unique types of the 

Fe sites for the Fe20Pt18 and six unique sites for the Fe39Pt40 clusters due to symmetry 

of the configurations. It is important to mention that the magnetic moments at the 

different sites are quite different even for moderate temperatures, and the thermal 

averaged values for spins at the center sites are significantly larger as compared to the 

outer surfaces and edges sites for a wide temperature range. 
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Figure 51: (a) Averaged spin as a function of temperature for 

Fe20Pt18 (top) and Fe39Pt40 (bottom) clusters; (b) averaged spin for 

non-equivalent sites in Fe20Pt18 (top) and Fe39Pt40 (bottom) clusters.  

The results in Fig. (b) Correspond to Jp = 0.5J. 

 

Despite simplicity of the model one can get a rather general idea about the thermal 

properties of FePt nanoparticles.  

6.7: Molecular Dynamics (MD) and the stability of L10 structures 

To check the stability of the L10 configurations, we performed ab-initio molecular 

dynamic (MD) simulations for the Fe18Pt20 and Fe20Pt18 clusters. The clusters were 

heated to 1000k with 3.0 fs in 5000 steps with micro-canonical ensemble (NVE), and 
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there was no symmetry imposed during the MD calculations. We took five minimum 

energy seeds for each of the clusters from the heating curve and allowed them to cool 

to 0 K with the temperature step of 300K. Finally, we took the resulting 0K structures as 

the initial structures and relaxed them within spin-polarized DFT.   

The results of those MD simulations are presented in Fig. 52 

 

 

Figure 52: Relaxed structures of five minimum energy seeds from MD simulation 

for (a) Fe18Pt20 and (b) Fe20Pt18 clusters. ∆𝑬 represent the energy of the cluster 

with respect to the energy of the perfect L10 structure of the same size. 
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Most of the structures in Fig.52 have lower energy than the perfect L10 structures 

presented in Fig. 43. This means that for such small clusters the L10 phase is not stable 

at high temperatures. Indeed, in the experiments[207] a transition from the disordered 

A1 to ordered L10 phase was observed at temperature around 500˚C, and it was found 

that the ordered phase started to generate on the surface of the nanoparticles and 

propagated towards the center of the structure. The complete ordering was observed for 

few minutes at a temperature of 600˚C. The size of the nanoparticles was less than 

3nm. It was also found that the magnetic anisotropy of these disordered nanoparticles is 

much smaller than that of the ordered L10 nanoparticles, as can be seen from Table 10. 

It is worth mentioning here that the Str1 of the Fe18Pt20 is very close to the L10 structure 

as shown in Fig. 52, and it has anisotropy energy much higher than other disorder 

structures, and in all cases the L10 structures have much higher anisotropy than the 

disordered structures with same chemical composition, suggesting the special magnetic 

properties of the L10 systems. 
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Figure 53: Bondlength distribution of (a) Fe18Pt20 and (b) Fe20Pt18 clusters. Str-0 

represents perfect L10 cluster and Str-1 to Str-5 represent the relaxed structures obtained 

from the MD simulations. 

 

The bondlength distribution of 38 atoms clusters are presented in Fig. 53. As it follows 

from this Figure, the bondlength distribution of the L10 structures is rather confined, 

contrary to the MD-relaxed systems. This suggests that after annealing the L10 structure 

got melted and it relaxed with structures completely different from the L10 type. This 

feature is clear also from the Fig. 53 that the Fe and Pt atoms are completely mixed up. 
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Table 10. MCA for different structures of 38-atoms FePt clusters. 

Structures  
MCA(meV) 
Fe18Pt20 

MCA(meV) 
Fe20Pt18 

L10  94.00 24.00 

Str1  65.51 0.97 

Str2  8.74 9.11 

Str3  5.71 3.58 

Str4  3.10 13.51 

Str5  -11.18 10.51 

 

The relation between the structure and MCA of FePt nanoparticles is not well 

understood so far. For example, 147-atom cuboctahedral FePt clusters encapsulated 

into Cu-, Au-, and Al matrices were studied theoretically in Ref. [51], as an alternative 

type of system. It was found in this paper that, contrary to our findings, the surface 

atoms have larger MCA than the bulk ones. Our results for the FePt bi-pyramidal 

nanoparticles suggest that one can avoid necessity to protect the MCA by 

encapsulating the particles, since the large MCA region in the bi-pyramidal structures is 

mostly located in the center of the particles. 

6.8 Conclusions 

The magnetic properties of L10 nanoparticles as a function of particle sizes (from 30 to 

484 atoms) and compositions (i.e., consisting of pure Fe and Pt atoms and of 
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alternating planes of Fe and Pt atoms) are studied systematically. The MCA of L10 FePt 

nanoparticles are found to be higher than the bulk system. This high MCA can be 

explained by the hybridization of the 5𝑑(𝑃𝑡) orbitals with 3𝑑(𝐹𝑒) orbitals in the layered 

FePt nanoparticles. Clusters with the central Pt layer atoms are found have much larger 

anisotropy than those with the central Fe layer. The explanation for this is that the 

central layer has more atoms than other layers in the cluster, and when these atoms are 

of high orbital moment – Pt atoms hybridizing with the Fe atoms below and above – the 

system as a whole exhibits higher anisotropy than when is central layer consists of Fe 

atoms, whose orbital moment, in hybridizing with the Pt atoms above and below, is 

markedly lower. To preserve MCA for practice applications one can eliminate the needs 

of capping in this case since the nanoparticles with bi-pyramidal structure studied in this 

thesis possess MCA mostly at the (large) central Pt layer. We extrapolate that five-

layered L10 FePt nanoparticles with approximately 700 atoms can be expected to be 

useful in magnetic recording applications at room temperatures. The theoretical results 

obtained in our studies can help in experimental search of better candidates for 

magnetic applications that exploit MCA.  The relation between the structure and MCA is 

not yet completely understood for FePt and other binary alloys in general. For example, 

the surface atoms was found to have larger MCA in 147-atom cuboctahedral FePt 

clusters encapsulated into Cu-, Au-, and Al in Ref.[201,202]. Another consideration is 

the particular role of electron-electron correlation in these systems. This was found to 

be important for small Fe and FePt clusters [47,48] and invite further study.  

In the next Chapter, we give a summary of the results presented in this thesis. 
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CHAPTER 7 SUMMARY 

In this thesis we studied the magnetic properties of TM nanosystems by taking into 

account the effects of strong electron-electron correlation within DFT+DMFT approach.  

For this purpose we formulated a nanoDFT+DMFT approach and developed a 

numerical code, which was used in the calculations. We demonstrated that the 

correlation effects play an important role in these systems, and in order to take them 

properly into account one needs to go beyond the DFT+U approximation. Indeed, in the 

last case, important physical processes – time-resolved orbital occupancies – are 

ignored, which lead to oversimplified description of the materials with results in some 

cases very different from the experimental data. More explicitly, the following results 

were obtained. 

In small Fe and FePt clusters, we found that dynamical correlation effects lead to a 

significant decrease of the magnetization with respect to DFT+U results. This can be 

explained by the following reasons. The time-dependence of the orbital occupancy 

taken into account in the DMFT approach leads to a significant decrease of the 

magnetization relative to “the staggered” DFT+U case. Also, the frequency-dependence 

of the self-energy can lead to a shift of the energy levels with respect to the Fermi 

energy, and hence to a change of the level occupancy and magnetization. The 

geometry, chemical composition, and local Coulomb repulsion dependencies of the 

magnetization of the clusters were also analyzed. We have found that correlation effects 

play a very important role in small clusters. 
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In the case of larger 10-147-atom, Fe nanoparticles, we have found that inclusion of the 

dynamical effects through DFT+DMFT results in overall better agreement between the 

theoretical and experimental [34,58] results for the magnetic moments. In particular, it 

was shown that contrary to DFT and DFT+U, DFT+DMFT is capable to describe 

oscillations of the magnetization per atom as function of the cluster size observed 

experimentally. We demonstrated that DFT+DMFT applied to experimentally realizable 

nanoparticles can produce accurate results. The methodology should have multiple 

applications, including larger (several-hundred atom systems). It can be readily applied 

to systems containing up to several hundred atoms. The computational speed of the 

developed code is such that the total computational time of the DFT+DMFT calculations 

is of the same order of magnitude as the corresponding time for the DFT calculations. 

We analyzed also the electronic and magnetic properties of the (001) film of Fe2O3, 

paying a special attention to the properties of the surface.  We found that, similar to 

bulk, there is a gap in the spectral function due to the strong electron-electron 

correlation in the system. The reduced magnetization of the surface atoms compared to 

the bulk atom is explained to be the effects of extra peaks in the projected DOS of some 

orbital, which can be obtained only with DFT+DMFT. The surface electronic and 

magnetic states are rather different from the bulk ones which might also have some 

applications in the magnetic technologies.  

Finally we analyzed magnetic anisotropy of TM nanoparticles and presented results for 

L10 FePt nanoparticles of size up to 484 atoms. We find that nanoparticles have much 

higher magnetic moments and MCA than do bulk atoms.  This is due to the fact that the 
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MCA arises from the orbital moment coupled with the spin moment and that in the bulk 

the system orbital moments are almost quenched, whereas in small clusters the orbital 

moments of the system’s atoms are considerably enhanced. We propose that this 

explains why it is that (as earlier studies have shown) the hybridization of the 5𝑑(𝑃𝑡) 

orbitals with 3𝑑(𝐹𝑒) orbitals produces a high magnetic anisotropy for layered FePt 

nanoparticles. We also find that clusters with Pt atoms as the central layer have much 

larger anisotropy than those in which the central layer consists of Fe atoms. The 

explanation for this is that the central layer has more atoms than other layers in the 

cluster, and when these atoms are of high orbital moment – Pt atoms hybridizing with 

the Fe atoms below and above – the system as a whole exhibits higher anisotropy than 

when is central layer consists of Fe atoms, whose orbital moment, in hybridizing with 

the Pt atoms above and below, is markedly lower.  In contrast to the cuboctahedral 

case, bi-pyramidal nanoparticles possess MCA mostly at the (large) central Pt layer.  

This fact may eliminate the need to cap them in order to preserve MCA.  We hope that 

our results can help experimentalists in search of (larger) high-density nanoparticles 

exploitable in recording devices. Meanwhile, a deeper analysis of the electronic 

structure of these systems including the effects of strong electron correlations with 

localized d-orbitals needs to be performed. 
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APENDIX A: SLATER-KOSTER METHOD FOR CALCULATING HOPPING MATRIX 
ELEMENTS 
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To derive the general formula for the hopping parameters in the Slater-Koster 

approximation[126], and use it for the s-, p- and d-orbitals, we begin with the 

Schrödinger Equation for an electron with angular-momentum quantum number 𝑙 that 

moves in the central (ion) field: 

 −
ℏ2∇2

2𝑚
𝜓(𝑟) + 𝑣(𝑟)𝜓(𝑟) = 휀𝜓(𝑟),                  (A.1) 

where 𝜓(𝑟) is the particle wave-function,  휀 is its eigen-energy and 𝑣(𝑟) is the central 

potential. For a spherically symmetric potential, the electronic wave-function can be 

decomposed into a product of the radial 𝑅𝑙(𝑟)  and spherical  𝑌𝑙
𝑚(𝜃, 𝜙), parts. In the 

expression for the last, spherical harmonic, function 𝑙 and 𝑚 are the quantum numbers 

of the angular momentum and its projection, 𝜃 is the angle of the electron vector radius 

with respect to the 𝑍-axis and 𝜙 is the azimuthal angle. For the 𝑠 −  and 𝑝 −states, the 

angular number 𝑙 is zero and 1, respectively and for the 𝑑-states 𝑙=2. 𝑚, which is also 

called the magnetic quantum number, can have values  −𝑙 ≤ 𝑚 ≤ 𝑙 .The harmonics for 

different orbitals are shown in Fig. 54 
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Figure 54: Schematic representation for possible angular harmonics of the 

electron wave functions in the atomic s-, p- and d-states. 

 

The radial part of the wave function in equation (A.1) satisfies the following equation: 

−
ℏ2

2𝑚

1

𝑟2
𝜕

𝜕𝑟
𝑟2

𝜕

𝜕𝑟
𝑅𝑙(𝑟) + 𝑉(𝑟)𝑅𝑙(𝑟) +

ℏ2𝑙(𝑙+1)

2𝑚𝑟2
𝑅𝑙(𝑟) = 휀𝑙𝑅𝑙(𝑟).       (A.2) 

The solution of Equation (A.2) gives one the radial-dependence of the wave function, 

which will be needed to calculate hopping matrix elements. The elements (coupling) 

between two 𝑑 states |𝑑⟩ and |𝑑′⟩  on different atoms can be written in the second-order 

perturbation theory expansion as  

⟨𝑑′|𝐻|𝑑⟩ = ∑
⟨𝑑,|𝐻|𝑘⟩⟨𝑘|𝐻|𝑑⟩

𝑑− 𝑘
𝑘 ,                                               (A.3)       
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Where k numerates all possible states, which can be expanded in the spherical 

harmonics (in volume Ω): 

 |𝑘⟩ =
1

√Ω
∑ (2𝑙 + 1)𝑖𝑙𝑗𝑙(𝑘𝑟)𝑙 (

4𝜋

2𝑙+1
)
1
2⁄

𝑌𝑙
0(𝜃, 𝜙).                                      (A.4) 

The 𝑗𝑙(𝑘𝑟) are Bessel function solutions of equation (A.2) at 𝑉(𝑟) = 0. 

The atomic functions are orthogonal to the metallic states: 

⟨𝑘|−
ℏ2

2𝑚
∇2 + 𝑉𝑎|𝑑⟩ = 휀𝑑⟨𝑘|𝑑⟩ = 0.  (A.5) 

(where 𝑉𝑎 is the atomic potential). In fact the potential experienced by electrons in solids 

is different from the atomic potential  

𝑉(𝑟) − 𝑉𝑎(𝑟) =  𝛿𝑉,  (A.6) 

Therefore, the hybridization (overlap) of the metallic and atomic states is defined by this 

difference of the potentials (for details, see Ref. [208]): 

 ⟨𝑘|𝐻|𝑑⟩ = ⟨𝑘|𝛿𝑉|𝑑⟩ = ⟨𝑘|𝛿𝑉 − ⟨𝑑|𝛿𝑉|𝑑⟩|𝑑⟩,                                      (A.7) 

or 

⟨𝑘|𝐻|𝑑⟩ =
−4𝜋

√Ω
𝑌𝑙
𝑚(𝜃𝑘, 𝜙𝑘)𝑒

−𝑖𝑘.𝑟𝑗 ∫ 𝑗2(𝑘𝑟)(𝛿𝑉 − ⟨𝑑|𝛿𝑉|𝑑⟩)𝑅2(𝑟)𝑟
2𝑑𝑟,   (A.8)  

where 𝑟𝑗 the position of nucleus.  
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The approximate evaluation of the integral in the last equation can be performed and 

the result defined in terms of an effective orbital radius 𝑟𝑑 (d-orbital used to be specific): 

𝑟𝑑
3/2 = −

1

3
√
4𝜋

3

𝑚

ℏ2
∫ 𝑟4(𝛿𝑉(𝑟) − ⟨𝑑|𝛿𝑉|𝑑⟩)𝑅2(𝑟)𝑑𝑟,                            (A.9) 

which gives 

⟨𝑘|𝐻|𝑑⟩ = √
4𝜋𝑟𝑑

3

3Ω

ℏ2𝑘2

𝑚
𝑌2
𝑚(𝜃𝑘, 𝜙𝑘)𝑒

−𝑖𝑘.𝑟𝑗 .                              (A.10)                

The last expression needs to be substituted in Equation (A.3), which gives the hopping 

parameters in terms of the atomic radius 𝑟𝑑 and the distance between two nuclei for the 

𝑑 −states, 𝑑 = 𝑟𝑗(𝑑) − 𝑟𝑗(𝑑
′). 

For d-orbitals, one gets: 

𝑉𝑑𝑑𝑚 =
4𝜋𝑟𝑑

3

3Ω

Ω

(2𝜋)3
∫ (

ℏ2𝑘2

𝑚
)
2
𝑌𝑙
𝑚∗(𝜃,𝜙)𝑌𝑙

𝑚(𝜃,𝜙)𝑒𝑖𝑘𝑑𝑐𝑜𝑠𝜃

𝑑− 𝑘
𝑑3𝑘 ≝ 𝜂𝑑𝑑𝑚

ℏ2𝑟𝑑
3

𝑚𝑑5
.           (A.11)            

From the analysis of Harrison and Froyen,[208]  one can obtain the numerical values of 

different coefficients 𝜂: 

𝜂𝑑𝑑𝜎 = −
45

𝜋
, 𝜂𝑑𝑑𝜋 =

30

𝜋
, 𝜂𝑑𝑑𝛿 = −

15

2𝜋
 .         (A.12)                                                                       

(corresponding to 𝑚 = 0, 1 𝑎𝑛𝑑 2, respectively). 

In the similar way, one can obtain the transition elements between the s- and p-

states[209]:  
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𝑉𝑙𝑙′𝑚 = 𝜂𝑙𝑙′𝑚 (
ℏ2

𝑚𝑑2
),                                                                         (A.13) 

with 

 𝜂𝑠𝑠𝜎 = −
9𝜋2

64
,                                                                                   (A.14) 

 𝜂𝑠𝑝𝜎 = 3
3
2⁄
𝜋2

64
,  

 𝜂𝑝𝑝𝜎 =
3𝜋2

16
, 

 𝜂𝑝𝑝𝜋 = −
3𝜋2

32
. 

In the case of different position of two atoms (as shown in Fig: 55), orbital orientation 

can have any possible form.  Follow Slater and Koster’s [126], one can obtain general 

expression for the hopping matrix elements by using the expressions for matrix element 

V and vector 𝑑 = [𝑙, 𝑚, 𝑛]𝑑 that connects two atoms ( 𝑙, 𝑚, 𝑛 are the unit vector 

components). The following notations are used below: the matrix element for the 

hopping between the states 𝑥𝑦 to 𝑦𝑧 separated by distance 𝑑 is called 𝐸𝑥𝑦,𝑦𝑧 and is 

expressed in terms of 𝑉𝑑𝑑𝜎, 𝑉𝑑𝑑𝜋, 𝑉𝑑𝑑𝛿, 𝑙, 𝑚 and 𝑛. The results are given in the Table-A1. 
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Figure 55: Schematic presentation of the interatomic matrix elements 

between s, p and d-states  

 

Table-A1, The Slater-Koster hopping matrix elements for the s-, p- and d-orbitals at 

different relative positions of two atoms. The position between atoms is characterized by 

vector  𝑑 = [𝑙,𝑚, 𝑛]𝑑, where [𝑙, 𝑚, 𝑛] is the unit vector.[126]  Only independent matrix 

elements are given. Other matrix elements can be obtained from them by axis 

permutations (𝑛 ↔ 𝑚, etc.). 

𝐸𝑠,𝑠 = 𝑉𝑠𝑠𝜎  

𝐸𝑠,𝑥 = 𝑙𝑉𝑠𝑝𝜎  
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𝐸𝑥,𝑥 = 𝑙
2𝑉𝑝𝑝𝜎 + (1 − 𝑙

2)𝑉𝑝𝑝𝜋  

𝐸𝑥,𝑦 = 𝑙𝑚𝑉𝑝𝑝𝜎 − 𝑙𝑚𝑉𝑝𝑝𝜋  

𝐸𝑥,𝑧 = 𝑙𝑛𝑉𝑝𝑝𝜎 − 𝑙𝑛𝑉𝑝𝑝𝜋  

𝐸𝑠,𝑥𝑦 = √3𝑙𝑚𝑉𝑠𝑑𝜎  

𝐸𝑠,𝑥2−𝑦2 =
1

2
√3(𝑙2 −𝑚2)𝑉𝑠𝑑𝜎  

𝐸𝑠,3𝑧2−𝑟2 = [𝑛
2 −

1

2
(𝑙2 +𝑚2)𝑉𝑠𝑑𝜎  

𝐸𝑥,𝑥𝑦 = √3𝑙
2𝑚𝑉𝑝𝑑𝜎 +𝑚(1 − 2𝑙

2)𝑉𝑝𝑑𝜋  

𝐸𝑥,𝑦𝑧 = √3𝑙𝑚𝑛𝑉𝑝𝑑𝜎 + 2𝑙𝑚𝑛𝑉𝑝𝑑𝜋  

𝐸𝑥,𝑧𝑥 = √3𝑙
2𝑛𝑉𝑝𝑑𝜎 + 𝑛(1 − 2𝑙

2)𝑉𝑝𝑑𝜋  

𝐸𝑥,𝑥2−𝑦2 =
1

2
√3𝑙(𝑙2 −𝑚2)𝑉𝑝𝑑𝜎 + 𝑙(1 − 𝑙

2 +𝑚2)𝑉𝑝𝑑𝜋  

𝐸𝑦,𝑥2−𝑦2 =
1

2
√3𝑚(𝑙2 −𝑚2)𝑉𝑝𝑑𝜎 −𝑚(1 + 𝑙

2 −𝑚2)𝑉𝑝𝑑𝜋  

𝐸𝑧,𝑥2−𝑦2 =
1

2
√3𝑛(𝑙2 −𝑚2)𝑉𝑝𝑑𝜎 − 𝑛(𝑙

2 −𝑚2)𝑉𝑝𝑑𝜋  

𝐸𝑥,3𝑧2−𝑟2 = 𝑙[𝑛
2 −

1

2
(𝑙2 +𝑚2)𝑉𝑝𝑑𝜎 − √3𝑙𝑛

2𝑉𝑝𝑑𝜋  

𝐸𝑦,3𝑧2−𝑟2 = 𝑚[𝑛
2 −

1

2
(𝑙2 +𝑚2)𝑉𝑝𝑑𝜎 − √3𝑚𝑛

2𝑉𝑝𝑑𝜋  



169 

 

𝐸𝑧,3𝑧2−𝑟2 = 𝑛[𝑛
2 −

1

2
(𝑙2 +𝑚2)𝑉𝑝𝑑𝜎 + √3𝑛(𝑙

2 +𝑚2)𝑉𝑝𝑑𝜋  

𝐸𝑥𝑦,𝑥𝑦 = 3𝑙
2𝑚2𝑉𝑑𝑑𝜎 + (𝑙

2 +𝑚2 − 4𝑙2𝑚2)𝑉𝑑𝑑𝜋 + (𝑛
2 + 𝑙2𝑚2)𝑉𝑑𝑑𝛿  

𝐸𝑥𝑦,𝑦𝑧 = 3𝑙𝑚
2𝑛𝑉𝑑𝑑𝜎 + 𝑙𝑛(1 − 4𝑚

2)𝑉𝑑𝑑𝜋 + 𝑙𝑛(𝑚
2 − 1)𝑉𝑑𝑑𝛿  

𝐸𝑥𝑦,𝑧𝑥 = 3𝑙
2𝑚𝑛𝑉𝑑𝑑𝜎 +𝑚𝑛(1 − 4𝑙

2)𝑉𝑑𝑑𝜋 +𝑚𝑛(𝑙
2 − 1)𝑉𝑑𝑑𝛿  

𝐸𝑥𝑦,𝑥2−𝑦2 =
3

2
𝑙𝑚(𝑙2 −𝑚2)𝑉𝑑𝑑𝜎 + 2𝑙𝑚(𝑚

2 − 𝑙2)𝑉𝑑𝑑𝜋 +
1

2
𝑙𝑚(𝑙2 −𝑚2)𝑉𝑑𝑑𝛿  

𝐸𝑦𝑧,𝑥2−𝑦2 =
3

2
𝑚𝑛(𝑙2 −𝑚2)𝑉𝑑𝑑𝜎 −𝑚𝑛[1 + 2(𝑙

2 −𝑚2)]𝑉𝑑𝑑𝜋 +𝑚𝑛[1 +
1

2
(𝑙2 −𝑚2)]𝑉𝑑𝑑𝛿  

𝐸𝑧𝑥,𝑥2−𝑦2 =
3

2
𝑛𝑙(𝑙2 −𝑚2)𝑉𝑑𝑑𝜎 + 𝑛𝑙[1 − 2(𝑙

2 −𝑚2)]𝑉𝑑𝑑𝜋 − 𝑛𝑙[1 −
1

2
(𝑙2 −𝑚2)]𝑉𝑑𝑑𝛿  

𝐸𝑥𝑦,3𝑧2−𝑟2 = √3𝑙𝑚 [𝑛
2 −

1

2
(𝑙2 +𝑚2)] 𝑉𝑑𝑑𝜎 − 2√3𝑙𝑚𝑛

2𝑉𝑑𝑑𝜋 +
1

2
√3𝑙𝑚(1 + 𝑛2)]𝑉𝑑𝑑𝛿  

𝐸𝑦𝑧,3𝑧2−𝑟2 = √3𝑚𝑛 [𝑛
2 −

1

2
(𝑙2 +𝑚2)] 𝑉𝑑𝑑𝜎 + √3𝑚𝑛(𝑙

2 +𝑚2 − 𝑛2)𝑉𝑑𝑑𝜋 −
1

2
√3𝑚𝑛(𝑙2 +

𝑚2)]𝑉𝑑𝑑𝛿  

𝐸𝑧𝑥,3𝑧2−𝑟2 = √3𝑙𝑛 [𝑛
2 −

1

2
(𝑙2 +𝑚2)] 𝑉𝑑𝑑𝜎 + √3𝑙𝑛(𝑙

2 +𝑚2 − 𝑛2)𝑉𝑑𝑑𝜋 −
1

2
√3𝑙𝑛(𝑙2 +

𝑚2)]𝑉𝑑𝑑𝛿  

𝐸𝑥2−𝑦2𝑥2−𝑦2 =
3

4
(𝑙2 −𝑚2)2𝑉𝑑𝑑𝜎 + [𝑙

2 +𝑚2 − (𝑙2 −𝑚2)2]𝑉𝑑𝑑𝜋 + [𝑛
2 +

1

4
(𝑙2 −𝑚2)2] 𝑉𝑑𝑑𝛿  

𝐸𝑥2−𝑦2,3𝑧2−𝑟2 =
1

2
√3(𝑙2 −𝑚2) [𝑛2 −

1

2
(𝑙2 +𝑚2)] 𝑉𝑑𝑑𝜎 + √3𝑛

2(𝑚2 − 𝑙2)𝑉𝑑𝑑𝜋 +
1

4
√3(1 +

𝑛2)(𝑙2 −𝑚2)𝑉𝑑𝑑𝛿  
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𝐸3𝑧2−𝑟2,3𝑧2−𝑟2 = [𝑛
2 −

1

2
(𝑙2 +𝑚2)]

2

𝑉𝑑𝑑𝜎 + 3𝑛
2(𝑙2 +𝑚2)𝑉𝑑𝑑𝜋 +

3

4
(𝑙2 +𝑚2)2𝑉𝑑𝑑𝛿  
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APPENDIX B: PADE APPROXIMATION  
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To solve the DMFT equations for the self-energy Σ and Green function 𝐺 in real 

frequency representation is rather complicated problem. The self-energy Σ(𝑖𝜔𝑛) and 

Green function 𝐺(𝑖𝜔𝑛) in the DMFT formalism are usually calculated by using the 

imaginary (Matsubara) frequency representation, for fermions  𝑖𝜔𝑛 = 𝑖2𝜋𝑇(2𝑛 + 1), n 

are integers. Then, to get the spectral function and other physical quantities, one needs 

to know the Green function and self-energy for real frequencies, for which it is 

necessary to perform an analytical continuation of the results by using 𝑖𝜔𝑛 → 𝜔 + 𝑖𝛿. 

There are different ways to perform such a continuation. We use probably the most 

popular one, based on the Pade approximation [123]. 

The main idea of the Pade approximation is the following. Let us assume that we know 

the values u of a function C of complex variable z, at M points 𝑧𝑖(𝑖 = 1,2……… ,𝑀): 

𝐶𝑁(𝑧𝑖) = 𝑢𝑖.  (B.1) 

In order to extend the function to any other value of the variable z, Pade proposed to 

approximate it in terms of fractional expansion in complex variable z: 

𝐶𝑁(𝑧) =
𝑎1

1+
𝑎2(𝑧−𝑧2)

1+⋯.
𝑎𝑁(𝑧−𝑧𝑁−1)

1

                                                                    (B.2) 

(N is the order of expansion). 

Indeed, this function automatically satisfies 𝐶𝑁(𝑧𝑖) = 𝑢𝑖 . Using these results, one can 

write down M complex equations that connect the unknown parameters  𝑎1𝑡𝑜 𝑎𝑁 with 

values 𝑢𝑖. 
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The solution for the coefficients 𝑎𝑖 can be obtained by the recursion procedure as 

follows.  

1. Define 

𝑎1 = 𝑔1(𝑧1), 𝑎2 = 𝑔2(𝑧2), 𝑎3 = 𝑔3(𝑧3) ,………….., 𝑎𝑁 = 𝑔𝑁(𝑧𝑁),                 (B.3)  

where  𝑔1(𝑧1) = 𝑢1, 𝑔1(𝑧2) = 𝑢2, 𝑔1(𝑧3) = 𝑢3, ………… , 𝑔1(𝑧𝑁) = 𝑢𝑁 .           (B.4) 

2. It can be shown that the unknown parameters  𝑎𝑖 are equal to 𝑔𝑖(𝑧𝑖), The values 

for 𝑔𝑖(𝑧𝑖) can be obtained by using the  recursive procedure:  

𝑔2(𝑧) =
𝑔1(𝑧1)−𝑔1(𝑧)

(𝑧−𝑧1)𝑔1(𝑧)
 ,  𝑔3(𝑧) =

𝑔2(𝑧2)−𝑔2(𝑧)

(𝑧−𝑧2)𝑔2(𝑧)
 ,   𝑔4(𝑧) =

𝑔3(𝑧3)−𝑔3(𝑧)

(𝑧−𝑧3)𝑔3(𝑧)
,  

𝑔𝑝(𝑧) =
𝑔𝑝−1(𝑧𝑝−1)−𝑔𝑝−1(𝑧)

(𝑧−𝑧𝑝−1)𝑔𝑝−1(𝑧)
……                                                                             (B.5) 

3. Then the analytically continued function can be written as: 

𝐶𝑁(𝑧) =
𝐴𝑁(𝑧)

𝐵𝑁(𝑧)
,                                                                                               (B.6) 

where the expressions for the polynomial functions 𝐴𝑁(𝑧) and 𝐵𝑁(𝑧) for large N can be 

obtained by using 𝐴0 = 0, 𝐴1 = 𝑎1,𝐵0 = 𝐵1 = 1 in the following recursive formula:   

𝐴𝑛+1(𝑧) = 𝐴𝑛(𝑧) + (𝑧 − 𝑧𝑛)𝑎𝑛+1𝐴𝑛−1(𝑧), 

𝐵𝑛+1(𝑧) = 𝐵𝑛(𝑧) + (𝑧 − 𝑧𝑛)𝑎𝑛+1𝐵𝑛−1(𝑧).                                            (B.7) 

Changing n from 1 to N-1 in the last two expression will give the values for 𝐴𝑁(𝑧) and 

𝐵𝑁(𝑧),  the analytically continued function 𝐶𝑁(𝑧) Eq. (B.6) for any desired value of the 

complex variable z. 
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