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ABSTRACT 

The general goal of this dissertation is to provide a comprehensive description of the 

limitations of established theories on bound electronic nonlinearities in direct-gap 

semiconductors by performing various experiments on wide and narrow bandgap semiconductors 

along with developing theoretical models. Nondegenerate two-photon absorption (2PA) is 

studied in several semiconductors showing orders of magnitude enhancement over the 

degenerate counterpart. In addition, three-photon absorption (3PA) is studied in ZnSe and other 

semiconductors and a new theory using a Kane 4-band model is developed which fits new data 

well. Finally, the narrow gap semiconductor InSb is studied with regard to multiphoton 

absorption, free-carrier nonlinearities and decay mechanisms. 

The non-degenerate two-photon absorption was investigated in several direct-gap 

semiconductors with picosecond and femtosecond pulses. Large enhancements in 2PA were 

demonstrated when employing highly non-degenerate photon pairs and the results were shown to 

be consistent to a simple 2-parabolic band theory based on a “dressed” state approach. The 

nonlinear refractive index induced in such configurations was also calculated and possible 

implications of such extreme behavior are discussed. 

A large number of measurements of 3PA were taken at multiple wavelengths and in 

several semiconductors. The subsequent analysis has shown that simple 2-band model 

calculations (based on either perturbative or tunneling approaches) do not adequately describe 

the experimental trends. A more comprehensive model, based on Kane’s 4-band theory was 

developed and we calculate three-photon spectra for zincblende structures within the perturbative 
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framework. We have confirmed the results of our calculations performing a series of Z-scans in 

semiconductors ZnSe and ZnS, yielding complete experimental three-photon spectra. 

A systematic approach based on using a large variety of pulse durations was needed to 

quantify the wealth of nonlinear optical processes in InSb, accessible in the mid-infrared range. 

Femtosecond pulses provided a lower limit to measurements of the instantaneous effects 

(absorptive and refractive), while picosecond pulses allowed further characterization of the free-

carrier effects, including population dynamics in the high density regime (Auger effects). The 

model developed permitted us to verify the temperature dependence of free-carrier absorption 

recently predicted, and to successfully model optical limiting data with longer, nanosecond 

pulses. 
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CHAPTER 1: INTRODUCTION 

1.1. 

The field of nonlinear optics is a rich one. There are always numerous facets being 

explored experimentally and also numerous theoretical models proposed. Besides achieving a 

certain experimental result, it is equally important to be able to explain it. Once the basic 

physical mechanisms are understood one can take the next step which is utilizing the gained 

knowledge to come up with new ideas, applications, devices, etc. If in the past they constituted 

more of a novelty, nowadays optical nonlinear effects are part of everyday life. As part of a 

continuous effort to improve the efficiency and the performance of devices, the search for larger 

nonlinearities goes anywhere from creating new materials with increased nonlinearity to smart 

design meant to enhance the existing nonlinearities. 

Background and Motivation 

The main focus of this work is concerned with multiphoton absorption processes in 

semiconductors and associated effects, like induced changes of the refraction index and free-

carrier effects. Multiphoton absorption processes are related to transitions that occur through the 

simultaneous absorption of two or more photons and are used in numerous applications like 

fluorescence imaging [1, 2], microfabrication [3], optical data storage [4] or optical limiting for 

sensor protection [5]. A strong propagating beam can change locally the index of refraction and 

such effects are used in optical switching devices [6]. For increased efficiency, low intensities 

are required implying that large nonlinear Kerr coefficients are needed and with small absorptive 

effects for useful figures of merit [7]. 

In order to take the step forward, towards practical applications, the physical phenomena 

need to be fully explained with working theoretical models. The extensive database of 2PA in 
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direct-gap semiconductors allowed for the formulation of scaling laws that are able to predict the 

magnitude of the 2PA coefficient and the nonlinear Kerr coefficient, both degenerate and non-

degenerate, using just simple parameters like bandgap energy and index of refraction [8]. For the 

degenerate 2PA the theory shows that nonlinearity is restricted by the bandgap, as it depends on 

the inverse of the bandgap energy cubed. This essentially suggests that large nonlinearities may 

only be measured in narrow gap materials with an obvious trade-off of having to use longer 

wavelengths. Fortunately, it also predicts that large nonlinearities can be obtained in larger 

bandgap materials by using highly different energy photons, since this basically makes use of the 

inherent resonances. This particular aspect, even though predicted by some time, hasn’t been 

fully explored and the limits of these enhancements were not known. In this work, we performed 

a series of experiments meant to verify whether the excellent agreement between the theory and 

the experiment holds even for the most extreme cases. These results should provide a very good 

reference point for measurements of the same nature, by setting an upper value for the highest 

nonlinearity that can be measured practically in a given semiconductor. 

The success of the aforementioned scaling laws prompted several attempts at using 

similar simple models to describe higher order effects like 3PA. The existing experimental 

database on 3PA was however much smaller and a clear comparison wasn’t possible. The newer 

publications didn’t investigate the apparent discrepancies between the existing theories nor 

attempted to do a better than order-of-magnitude comparison to the experimental data [9]. An 

initial effort to check the validity of the scaling laws for the case of 3PA has revealed that the 

models used cannot explain some of the large variations in values measured at several 

wavelengths in the same semiconductor [10]. Therefore work needs to be done towards finding a 
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more complex and in the same time appropriate model, and to provide reliable sets of data over 

the entire spectra for several materials. 

Narrow gap semiconductors are expected to provide the largest degenerate 2PA and they 

have been the focus of intensive research. The wavelengths of operation for the high power CO2

1.2. 

 

lasers are near the peak 2PA of InSb, making this narrow gap semiconductor attractive for 

applications. However, the early data suffered from improper interpretations as for the longer 

pulses available at the time the free-carrier effects dominate mask any quasi-instantaneous 

effects [11, 12]. This led to an extremely large spread in the published values [8], a gross 

overestimation at times and an overall lack of reliability. Subsequent data seemed to converge 

toward a generic value of 2 cm/MW [13, 14] which was adopted as a good reference, but no 

systematic study was done to date. Our experimental efforts were directed towards understanding 

the interplay between bound and free-carrier effects as this was recognized as the main source of 

uncertainty in the early data. There is a clear need for a systematic approach to evaluate the 

capabilities and the limits of measurements in different pulsewidth ranges and various carrier 

density levels. 

Chapter 2 consists of a general review of the optical nonlinearities studied. Bound 

electronic nonlinearities arising from χ

Dissertation Outline 

(3) (2PA, n2) and χ(5) (3PA) terms along with free carrier 

effects (σabs, σref,) will be discussed as they constitute the main experimental focus of this work. 

A description of the experimental techniques employed throughout and of the laser systems used 

is made in Chapter 3. Specifics of the performed single beam and pump-probe type experiments 
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are presented with an emphasis on the particular information that can be extracted from each 

experiment. Chapter 4 is dedicated to the theoretical models for calculating bound electronic 

nonlinearities in semiconductors. Issues of advantages, scalability and limitations are addressed 

as well in this part. The large enhancement of two-photon absorption for the extremely non-

degenerate case is discussed in Chapter 5. The experimental data is compared to the theory and a 

further discussion on the theoretically predicted behavior of the nonlinear refraction index is 

made. Chapter 6 is dedicated to the 3PA absorption process in direct gap semiconductors 

exhibiting a zincblende symmetry. A comprehensive theoretical approach based on a 4-band 

model is presented along with the measured spectra for a few materials. The unique features of 

these spectra, seen experimentally for the first time, are shown to be the consequence of a 

quantum interference process. Chapter 7 contains experimental data taken in InSb, a good 

candidate material for optical limiting in the 10 micron range. The goal of the experiments 

performed is to offer a close to complete characterization of its nonlinear properties using a 

variety of techniques employing different duration optical IR pulses. Finally, Chapter 8 provides 

conclusions and suggests possible future directions based on the work presented in this 

dissertation.  



5 

CHAPTER 2: NONLINEARITIES IN SEMICONDUCTORS 

The domain of nonlinear optics deals with the interaction of intense light fields with 

matter. Nonlinear effects in electricity and magnetism were known ever since the introduction of 

Maxwell’s equations. In the optical domain, however, the interest and the number of experiments 

grew only after the invention of the laser. Maiman’s demonstration of the lasing action in ruby 

50 years ago opened the door to a wealth of new phenomena, leading to a better understanding of 

the fundamentals of light and matter interactions. The use of this coherent, intense source of light 

not only demonstrated the optical equivalents of effects such as radio waves’ rectification or 

second harmonic generation [15], but also allowed the discovery of new ones. 

The second harmonic generation experiment of Franken [16] using a ruby laser is 

generally regarded as marking the birth of the field of nonlinear optics. It was the first 

experiment that demonstrated generation of a coherent output from a coherent input. From a 

general standpoint, the field of nonlinear optics aims to study and characterize the light-matter 

interaction encompassing such issues as light-induced changes in the optical properties of media. 

Any medium can be regarded as nonlinear, because any physical oscillating system will exhibit a 

nonlinear behavior when overdriven. There is however a strength factor associated with a 

nonlinear process and a particular effect can only be observed if a certain number of 

requirements are met. One of these requirements, and probably the most stringent one, is having 

a light source sufficiently intense, of at least of the order of kW/cm2. This is why the 

development of powerful light sources helped advance the field of nonlinear optics, while 

keeping this relationship symbiotic in nature. 
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Any nonlinear process can be regarded in principle as consisting of two parts. The intense 

light will first induce a nonlinear response in the medium (action) and then the medium will 

modify the optical fields in a nonlinear fashion (reaction). It is well known that the action part is 

governed by the constitutive equations while the reaction part is described by the Maxwell’s 

equations. Since we are dealing with electromagnetic phenomena it is therefore appropriate to 

start any analysis with the laws governing the behavior of the electric and magnetic fields 

0=⋅∇
=⋅∇

+
∂
∂

=×∇

∂
∂

−=×∇

B
D

JDH

BE

ρ
t

t

                                                    (2.1) 

We are primarily interested in solving these equations for cases when there are no free charges 

0=ρ  or free currents 0=J . We will also assume that medium is non-magnetic HB 0µ=  and 

the nonlinearity is given by PED += 0ε  such that the polarization vector depends nonlinearly 

upon the strength of the electric field. Using these assumptions we can write the wave equation 

as 

0)1(1

0
2

2

2 =+
∂
∂

+×∇×∇ PEE
εtc

                                          (2.2) 

In the general case the nonlinear polarization can be written as a convolution between the 

incident electric field and the susceptibility function χ  which is a property of the medium and 

describes its response [15] 
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where )(nχ  is the n-th order susceptibility. Given the complex description in variables r  and t , 

it is useful to shift the analysis in the Fourier space by means of a Fourier transform to variables 

k  and ω , respectively. This way the convolution operation turns into a simple product allowing 

us to express the polarization as 
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with nonlinear susceptibilities obtained from 
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This expression shows that for the n-th order nonlinearity there are n interacting fields 

inducing a nonlinear polarization which acts as a source term for the n+1 fields. The calculated 

susceptibilities allow for the characterization of the optical properties of a medium, predicting all 

nonlinear effects. Appropriate models can be considered for each physical situation (or 

nonlinearity) which restrict the number of parameters and make calculations possible. In this 

work the discussion is restricted to electronic contribution to the susceptibilities i.e. we are 

considering only processes that involve electronic transitions between well-defined states. 
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Although simple models as the anharmonic oscillator model (“electron on a spring”) and free-

electron gas model can be employed, the medium response can only be properly calculated using 

a full quantum mechanical description. This approach relies on the description of the interaction 

by means of a perturbation Hamiltonian and the electronic states of the systems and their energy 

levels. More details for some specific cases will be presented in Chapters 4 and 7. 

Strictly speaking, the power expansion of the polarization field in terms of the amplitude 

of the incident field works for an instantaneous response and assumes locality i.e. the nonlinear 

polarization at a given point depends on the electric field at that point only. The response of the 

medium isn’t in reality instantaneous and there are also cases where the locality assumption is 

not valid (electrostriction for instance).  

For the case of transitions involving bound electrons (referred to as pure )(nχ  effects), the 

response time is extremely fast (much faster than the pulse duration) so this is a rather good 

approximation. There are however, numerous other nonlinear effects with response times 

varying over many orders of magnitude. For instance, the index variations experienced by a 

strong beam can be caused by the nonlinear Kerr coefficient (n2
)3(χ) related to the real part of , 

the accumulation of free-carriers, electrostriction or thermal effects. There is a tendency of 

labeling all such effects in a similar manner to the quasi-instantaneous effects thus creating 

confusion and inconsistent comparisons. In this work we deal with both fast nonlinearities 

(bound effects) and slow ones, related to temporal evolution of carrier population densities. A 

clear delimitation of such effects will be made through accurate descriptions of the specific 

mechanisms, avoiding labels such as “effective )(nχ ”. 
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2.1. 

As mentioned in the previous paragraph, the bound electronic nonlinearities are quasi-

instantaneous so the above formulated mathematical description is adequate. We will continue 

this treatment restricting ourselves to particular terms in the power expansion of the nonlinear 

polarization in Eq. 2.4. Of interest for this work are the terms related to 

Bound electronic nonlinearities 

)3(χ  and )5(χ . A more 

detailed discussion will be made only for the third-order term while the important results will 

only be stated for the fifth-order term, of interest for three-photon absorption. 

Let us consider the incident electric fields written in terms of its Fourier components as 

∫
∞

∞−

−= ωω ω det tj),(),( rErE                                              (2.6) 

Using Eq. 2.5 and considering a given Cartesian coordinate system, an arbitrary component of 

the third-order nonlinear polarization, denoted by i, can be written in the following form 

)()()();()( 321321
)3(

0
)3( ωωωωωωωχεω lkjijkli EEEP =                          (2.7) 

where the j,k and l are projections of the total electric field at the respective frequencies onto the 

axes of the chosen coordinate system. There are a couple of comments that need to be made here. 

The j,k and l indices can independently take on the values x, y or z, such that in the expression of 

i component of the nonlinear polarization we have actually a sum over all terms generated 

through circular permutations. Also, since these indices are just dummy variables we shall have 

the same value for a particular )3(
ijklχ  component if the indices are permuted together with the 

respective frequencies. This property is called intrinsic permutation symmetry. Also, given the 

fact that the fields are real quantities it can be shown that in general 

)...;()...;( 21
)(

21
)(

n
n

n
n ωωωωχωωωωχ −−−−−=++ ∗                            (2.8) 
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More details on symmetry properties of the nonlinear susceptibilities can be found in standard 

textbooks [15, 17]. 

Of interest to us is the particular case of two different frequency inputs denoted by aω  and 

bω  such that the total electric field can be described by 

{ })()()()()()()()(
2
1)( 11111 bbbbaaaa ωωδωωωδωωωδωωωδωω ++−+++−= ∗∗ EEEEE  (2.9) 

Using the electric field written in this way one can identify the terms which appear in the 

expression of the third-order nonlinear polarization and associate them to specific processes. In 

general, we can identify three types of terms and their complex conjugates: 

• 3)( aE ω  or 3)( aE ω  correspond to third-harmonic generation (THG) process; overall 

energy conservation requires aωω 3=  or bωω 3=  

• ( ) aba EEE 22 )()( ωω +  or ( ) bba EEE 22 )()( ωω +  correspond to the so-called “intensity 

dependent” effects (two-photon absorption α(2) and the nonlinear Kerr coefficient (n2

bbaaaa ωωωωωωω −+=−+=

)) acting 

either on the same input frequency (“self”effects) or the other frequency (“cross” effects); overall 

energy conservation requires  or 

aabbbb ωωωωωωω −+=−+=  

• ))()(()( 2
bba EEE ωωω ∗+  or ))()(()( 2

aab EEE ωωω ∗+  correspond to Coherent Stokes 

and Anti-Stokes Raman Scattering; overall energy conservation requires ba ωωω ±= 2  or 

ab ωωω ±= 2 . 
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We are going to consider now only the )3(χ  nonlinearities corresponding to the above 

mentioned “intensity dependent” effects. Explicitly, the respective nonlinear third-order 

polarization terms are 

)( )(),,;(
4
6               

)( )(),,;(
4
3)(

a
2)3(

0

a
2)3(

0
)3(

ωωωωωωχε

ωωωωωωχεω

EE

EEP

babba

aaaaaa

−+

+−=
                         (2.10) 

and 

)( )(),,;(
4
6               

)( )(),,;(
4
3)(

b
2)3(

0

b
2)3(

0
)3(

ωωωωωωχε

ωωωωωωχεω

EE

EEP

abaab

bbbbbb

−+

+−=
                       (2.11) 

These particular expressions for nonlinear polarization can then be used in the wave propagation 

equation (Eq. 2.2) yielding 

2

)3(2

02

2

2

1
ttc ∂

∂
−=

∂
∂

+×∇×∇
PEE µ                                        (2.12) 

It is apparent that the nonlinear polarization term acts as a driving force for the considered 

electric field. In its absence we would have solutions in a form of free-propagating waves. For 

our case, we can write two propagation equations for the two inputs considered, which are 

coupled through the nonlinear polarization term. With some loss in generality which can be 

ignored for the purpose of our discussion, we can assume the input fields to have the form 

( )..)(
2
1),( )(

,0 ccezEtzE tzkj
ii

ii += −ω                                        (2.13) 

where the index i corresponds to either input frequencies i.e bai ,= . Using this form in Eq. 2.12 

we obtain 
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In general, the term containing the second derivative with z of the amplitude is neglected if the 

amplitude changes are very small over propagation distances of the order of the wavelength. This 

is called the Slow Varying Envelope Approximation (SVEA) [18]. We shall make use of this 

approximation and by selecting the terms driven at the frequencies of interest from the 

expression of the third-order nonlinear polarization we obtain the following general set of 

coupled equations 

ababbacross
a

a
aaaaaaself

a

aa EE
cn

iEE
cn

i
z

E
,0

2
,0

)3(
,0

2
,0

)3(,0 ),,;(),,;( ωωωωχωωωωωχω
−+−=

∂
∂

   (2.15) 

babaabcross
a

a
bbbbbbself

b

bb EE
cn

iEE
cn

i
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,0

)3(
,0

2
,0

)3(,0 ),,;(),,;( ωωωωχωωωωωχω
−+−=

∂
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   (2.16) 

Here we used “self” and “cross” to designate the effects induced by the beams on themselves and 

the mutual interaction, respectively. We won’t give an explicit expression for these terms as in 

general they depend on material symmetry on the polarization of the input beam. Such 

expressions will be calculated however for zincblende structures in Chapter 7. Writing the 

complex fields in terms of real amplitudes )(, zbaρ  and phases )(, zbaϕ  we obtain 

)()();()();()()()( 2)3(3)3( zz
cn

iz
cn

i
z

zzi
z

z
abbacross

a

a
aaaself

a

aa
a

a ρρωωχωρωωχωϕρρ
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∂
∂

+
∂

∂   (2.17) 
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∂   (2.18) 

Writing explicitly the nonlinear susceptibilities as sums of real and complex numbers we find 

)()();()();()( 2),3(3),3( zz
cn

z
cnz

z
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I
cross

a

a
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I
self

a

aa ρρωωχωρωωχωρ
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∂
∂              (2.19) 
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∂                (2.22) 

For the intensity effects considered, Eq. 2.19-2.22, describe in a basic form the self and 

mutual interaction of the two input fields. The decoupling of the amplitude and the phase allows 

for the determination of both the 2PA and nonlinear Kerr index coefficients for “self” and 

“cross” effects. Specifically, Eq.2.19 and 2.20 give the intensity variations for the beams, in a 

mutual interaction scenario which will be discussed further in Chapters 3, 5 and 7, when 

describing the pump-probe experiments. Eq. 2.21 and 2.22 express the cumulative effects in 

phase which are just proportional to the irradiances of the two interacting fields. They describe 

the self-phase modulation (SPM) and cross-phase modulation (XPM). These effects will be 

further discussed in Chapters 3 and 7. 

The topic of Chapter 6 is the degenerate three-photon absorption (3PA) in zincblende 

structures. Following a similar approach we can write an equation for the variation of the 

amplitude related to the imaginary part of )5(χ  in the form 

5),5( )(),,,,;()( z
ncz

z I
self ρωωωωωωχωρ

−−−=
∂

∂                              (2.23) 

which will be used in the analysis of the experimental Z-scan data. 

For the specific case of direct-gap semiconductors, the bound electronic nonlinearities 

described in this section are associated with electronic transitions from a valence band to a 

conduction band when the frequencies involved are outside the linear absorption range. The 



14 

absorptive and refractive effects associated with the imaginary and real parts of )3(χ , 

respectively, are studied using these coupled equations while the “self” and “cross” coefficients 

are generally obtained through quantum mechanical calculations taking into account the specifics 

of transitions considered. For the absorptive effects such calculations will be detailed in Chapter 

4. 

2.2. 

The transitions between electronic states lead to a redistribution of population between the 

participating levels. These population changes may induce by themselves absorptive and 

refractive effects which are proportional to the existing carrier densities. Let us consider the case 

of absorption over the bandgap in a semiconductor, when the energy difference between the final 

and the initial state is equal to the sum of the energies of at least two incident photons.  

Free-carrier effects 

The changes in absorption at the incident frequency and the associated refractive effects can 

be analyzed using the formalism presented in the previous section. The transition results in a 

promotion of an electron in the conduction band and of a hole in the valence band. While in 

these states the carriers can still interact with the incident radiation. Electrons in the conduction 

band can further absorb the incident radiation (linearly and involving a phonon for momentum 

conservation) and move to a higher energetic state within the band. Similarly, the promoted holes 

in the heavy-hole band can be excited into a higher energetic state. If we consider for instance 

hole transitions between the light-hole and heavy-hole bands, these are direct transitions i.e. non-

phonon assisted, and therefore more probable. The absorption will then be proportional to the 

densities of carriers in the initial states and the respective transition cross-sections. The carrier 
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densities depend nonlinearly on the incident intensities, with generation rates related to the 

particular multiphoton absorption process involved. In the same way, the change in index 

associated with n2

Essentially, these processes are 

 will depend linearly on the input irradiance while the change in index 

associated with the free-carriers will depend linearly on the number of carriers at a given time. 

)1(χ  processes and can be described by standard classical 

models. Both absorption and refraction however depend on the photo-generated carrier densities 

and are nonlinear in the input irradiance. This is the reason why sometimes these consecutive 

)1()3( : χχ  effects give a behavior similar to )5(χ  effects. However, a clear separation of their 

nature can be made by looking at the characteristic times, as the population buildup follows an 

integral over the temporal shape of the incident pulse. 

The absorptive and refractive effects of free-electrons can be calculated using a simple 

Drude-Lorentz model [19]. We write the equation of motion for a bound electron in an electric 

field using the Lorentz model 

)()()()( 2
02

2

tetm
dt

tdm
dt

tdm Errr
−=+Γ+ ω                                  (2.24) 

where Γ  is the damping parameter. Using the Fourier transform we obtain an equivalent 

equation in the frequency domain 

( ) )()(2
0

2 ωωωωω Er emmim −=+Γ−−                                   (2.25) 

The displacement is then given by 

( )Γ−−
−

=
ωωω

ωω
im

e
22

0

)()( Er                                            (2.26) 

We can write the dipole moment as 

)()(~)()( ωωαωωµ Er =−= e                                            (2.27) 
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where )(~ ωα  is the polarizability tensor. Using the relation 
0

)()(
ε

ωαωχ N
=  we obtain the linear 

susceptibility 

ωωωε
ωχ

Γ−−







=

im
Ne

22
00

2 1)(                                               (2.28) 

For a free electron we can assume 00 =ω  no resonance and writing 
m

Ne
p

0

2
2

ε
ω =  we obtain 

ωωω
ω

ωχ
Γ−−

=
i

p
22

0

2

)(                                                    (2.29) 

where pω  is the plasma frequency. 

Using this model one can further obtain approximate expressions for the index of refraction and 

absorption assuming small damping due to electron collisions. Even though this treatment is very 

basic it gives some insight on the variation with the optical frequencies and this issue will be re-

visited in Chapter 7. 
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CHAPTER 3: PARAMETRIC DEVICES FOR NONLINEAR MATERIAL 
CHARACTERIZATION AND EXPERIMENTAL TECHNIQUES  

Most of the experiments described in this work were carried out using picosecond and 

femtosecond light sources. Frequency doubling, sum frequency generation (SFG), parametric 

conversion and amplification, and difference frequency generation (DFG) were routinely 

employed to generate the diverse wavelengths used in our nonlinear experiments. The laser 

systems used consisted basically of a main source (laser with either ~30 picoseconds or ~140 

femtoseconds pulse duration) pumping one or two tunable devices, which in our case were based 

on optical parametric generation and amplification (OPG/OPA) followed by a DFG process to 

produce the mid-IR pulse required for some of the experiments. 

To characterize the linear properties of our materials we used a combination of 

measurements carried out with a Carry spectrophotometer for the visible and near-IR ranges and 

Fourier Transform Infrared Spectroscopy (FTIR) for wavelengths in the mid-IR. To determine or 

confirm particular sample orientations we used X-ray diffraction experiments. 

In this chapter, the devices used will be described in some detail along with the typical 

experimental techniques, stressing the type of information that can be extracted using each one 

of these techniques. 

3.1. 

3.1.1. Picosecond laser 

Laser systems and parametric devices 

The laser used in our picoseconds experiments was an EKSPLA PL-2143 Nd:YAG laser 

operating at 1064 nm, operating at 10 Hz. It is a regenerative amplified laser system which 
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produces about 110 mJ pulses with a duration of ~30 ps (FWHM). The general layout is shown 

in Fig 3.1. The oscillator part consists of a main cavity and a regenerative cavity. Mode-locking 

is achieved both actively, by driving the voltage on Pockels cell PC1 and passively using a 

solution of dye in ethanol, acting as a saturable absorber. The duration of the pulse train in the 

main cavity is in the range of 6 to 10 µs. An important process controlling the amplitude and the 

 

Figure 3.1 Layout of the picosecond Nd:YAG laser. PC-Pockels cell, P-thin film polarizer, A-aperture, L-lens, PH-

pinhole, QWP-quarter-wave plate, R-Nd:YAG rod. 

stability of the train is the negative feedback loop. Part of the light in the cavity is taken out using 

a prism and guided through a fiber to a detector. The information on the amplitude is then 

conveyed to PC1 which adjusts through the voltage applied the losses in the cavity. This way the 

amplitude of pulses in the train is kept low and fairly constant. The goals here are to obtain a 

train long and stable and with a reasonably low amplitude to not significantly deplete the gain in 

the YAG rod which could lengthen the pulse. After a set time the pulse is switched to the 

regenerative cavity using PC2 to rotate its polarization by 90 degrees. The thin film polarizer 

then acts as a mirror reflecting the pulse which consequently is allowed to travel a set number of 

times (modifiable using a pulse selector) through the gain medium until it reaches maximum 

QWP1PC1 PC3 λ/4PC2 λ/2
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QWP3

QWP2
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amplification. The pulse switched out from the regenerative cavity is however allowed one extra 

trip through the rod. Even though the gain is saturated at that point, this is done in order to insure 

a minimal energy variation from shot to shot. 

After being taken out from the regenerative cavity the pulse goes through a spatial filtering 

system which effectively insures that only a TEM00

3.1.2. Picosecond OPG/OPA and DFG 

 mode is present. The amplification stage is 

done using three passes through the pumped amplifier rod, in a slightly divergent geometry in 

order to take full advantage of the larger size of the amplifier rod. In this stage the energy in the 

pulse is increased from about 500 µJ to as much as 110 mJ. Different levels of amplification are 

obtained by setting different delays between the arrival of the pulse and the firing time for the 

flash lamps. The amplifier chamber has a specific design to allow turbulent flow of the cooling 

water in order to avoid any temperature gradients which would cause thermal lensing and 

deterioration of the desired beam profile. 

In order to pump the parametric devices, the 1064 nm beam from the laser needs to be 

converted to 355 nm. The wavelength conversion is done using two K*DP (KD2PO4) crystals, 

by doubling to 532 nm and then adding residual 1064 nm through SFG. Originally, the crystals 

were placed right after the amplifier. The irregularities in the fundamental profile (consisting 

mainly of high frequency spatial components) were further amplified such that upon focusing the 

355 nm beam onto the parametric crystal a highly modulated distribution was created (hot spots) 

which was negatively affecting the generated beam profiles and limiting the pumping energies to 

avoid crystal damage. Several attempts were made to alleviate the problem and as a final 
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solution, a spatial filtering setup for the 1064 nm beam was built outside the laser. The laser 

beam was focused using long focal length lenses in a glass tube under vacuum. The vacuum is 

monitored on a daily basis with a continuously run vacuum pump and attached gauge. The ends 

of the tube had AR coating for 1064 nm and the pinhole inside the tube, of 500 µm in diameter, 

was made out of a highly resistant ceramic and later replaced by a diamond one. 

The spatially filtered 1064 nm beam enters then the harmonic unit box containing the K*DP 

crystals and a few separating optics producing five output beams, two each at the fundamental 

and the 3rd

 

 harmonic frequencies for pumping the two parametric devices, with a fifth one at 532 

nm, having an energy of about 1 mJ. 

Figure 3.2 Layout of the picosecond OPG/OPA and DFG system. 

The two parametric devices are almost identical with a few minor differences related to the 

seeding wavelengths and the type of DFG crystal used, which will be discussed in the next 

paragraphs. The 355 nm pump is split in two beams at the entrance, with very different energies, 

as seen in the Fig. 3.2. The weaker beam (about 20% of the total energy) is resized with a 
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telescope and clipped by a large aperture (in order to create an almost flat-top beam) before 

being focused onto the LBO (Lithium Tri-Borate) crystal. The mirror behind the crystal assures a 

double pass and the parametrically generated beams are further modified to construct the seed 

beam for the amplification process. The initial parametric signal is passed through a band pass  

filter which selects either the signal or the idler to be used for amplification. Then the seed beam 

is reflected off a diffraction grating and passed through a telescope with a pinhole, effectively 

producing the right spatial distribution with the right spectral width. This seed then travels at the 

same time through the crystal as the stronger 355 nm beam (delayed and reshaped appropriately), 

is amplified, again in two passes, and the output wavelength is in the end selected using a set of 

band pass filters, picking either the amplified signal or idler. The tunability range of the system is 

from 420 nm up to 2.3 µm, with a small gap between 680 nm and 740 nm, around the 

degeneracy point and is shown in Fig. 3.3. 

The mid-IR wavelengths are generated through a DFG process using the idler 

(approximately from 1100 nm to 1150 nm) and part of the fundamental beam. Two different 
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Figure 3.3 Tunable range for the picosecond parametric system. 
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crystals are used in the two devices, AgGaS2

 

 and GaSe, giving a tunable range from 2.3 µm to 

11.5 µm and from 8 µm to 18 µm, respectively. Typical beam profiles prior to spatial filtering 

are shown in Fig. 3.4. 

Figure 3.4 Typical beam profiles for signal, idler and DFG beams. The wavelengths shown are (a) 500 nm, (b) 1100 

nm, (c) 10 µm and (d) 12 µm. The mid-IR wavelengths are produced in the GaSe crystal. 

b)a)

d)c)
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3.1.3. Femtosecond laser 

The femtosecond laser used for experiments is a Clark CPA-2210 system. The oscillator is 

an Erbium doped fiber ring laser, pumped by a diode laser at 980 nm, operating at the 1550 nm 

and at a 27 MHz repetition rate. Using a PPLN (periodically poled Lithium Niobate) crystal the 

radiation is converted into its 2nd harmonic at 775 nm. The output (seed) is sent to a stretcher, 

which consists of a reflecting diffraction grating, spreading the pulse in time before the 

amplification process in order to lower the peak power level and to prevent damage of the gain 

medium and optical components. An electro-optic modulator (Pockels cell) allows a single pulse 

to enter the amplifier cavity, shown in Fig. 3.5. The gain medium is Ti:Sapphire (Titanium doped 

Al2O3

Figure3.5 Layout of the Ti:Sapphire amplifier. L-lens, BS-beamsplitter, PC-pockels cell, FR-Faraday rotator. 

) and it is pumped by a Q-Switched, frequency doubled Nd:YAG laser operating at 532 

nm and 1kHz repetition rate. The amplification takes place through tens of passes through the 

 

Ti:Sapphire crystal, extracting the stored energy. Once the energy in the cavity approaches the 

mJ level, the same Pockels cell is used to switch the pulse out of the cavity. This switching is 

accomplished as in the case of the previously described system by rotation of the pulse 
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polarization in conjunction with a polarizing beamsplitter. The pulse is then compressed using a 

transmission grating in four passes. This process in which a short pulse is first stretched then 

amplified and finally compressed to achieve large amplification levels is called Chirped Pulse 

Amplification (CPA). The total output is about 1.7 mJ per pulse at a 1 kHz repetition rate having 

a duration of about 140 fs (FWHM). 

3.1.4. Femtosecond OPG/OPA and DFG 

The parametric device used in our femtosecond experiments is a TOPAS 800 model 

produced by Light Conversion. It is a little bit different from the picosecond one described above 

in the sense that five total passes through the BBO (Beta-BaB2O4

Figure 3.6 Femtosecond TOPAS layout in horizontal plane. 

) nonlinear crystal are required 

(see Fig. 3.6). The first stage consists of generation of a superfluorescence signal (SFL) while the 

 

consequent stages consist of parametric amplification processes in the BBO crystal. The initially 

generated SFL serves a broadband seed. The incoming pump beam is separated in three 
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components using beamsplitters. The SFL produced in the first pass is amplified in the second 

pass. To reduce the spectral width and to stabilize its shape, a diffraction grating is used between 

the pre-amplification stages. After the third pass, during which the amplification is minimal, the 

beam is reflected by the diffraction grating. In the fourth pass, only a part of the spectrum of the 

diffracted seed beam will be amplified, such that the amplified seed will follow the divergence 

characteristics of the pump beam. Basically, the role of the grating is to narrow the spectrum of 

the amplified signal, while separating spatially the beams present and making tuning more 

precise. 

The wavelength selection is achieved by rotating the nonlinear crystal in the phase matching 

plane. The inherent displacement is adjusted by using a small quartz compensating plate. All the 

movements of the crystals, grating and optical delay lines are driven by stepper motors 

controlled through the TOPAS software. Finally, the bulk of the pump energy goes a fifth pass 

through the BBO crystal together with a pre-amplified seed having a similar size, thus achieving 

the maximum amplification in a collinear geometry. 

TOPAS uses a type II phase matching which produces narrow bandwidth gains suitable for 

the generation of femtosecond pulses close to transform limited. Here, there is no full degeneracy 

so that there is no increase in bandwidth when signal and idler approach similar frequencies 

while still separating them by taking advantage of their orthogonal polarizations. 

3.2. 

The experimental work described in this dissertation used either single beam techniques (Z-

scan) or time resolved excite-probe experiments in frequency degenerate and non-degenerate 

Techniques for nonlinear materials’ characterization 
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configurations. By performing Z-scans one can obtain information on both nonlinear amplitude 

and phase, whether they are related to the real and imaginary part of the respective nonlinear 

susceptibilities or to the free carrier effects which dominate in most of experiments performed 

with picoseconds pulses in InSb. The two-beam experiments described were aimed mostly at 

quantifying the absorptive effects and the lifetimes of the processes studied, dealing with either 

or both the imaginary part of χ(3)

3.2.1. The Z-scan technique 

 or the free-carrier effects. The following sections are aimed at 

describing these nonlinear characterization techniques in detail and discus the type of 

information that can be extracted from these experiments. 

The Z-scan was developed in 1990 by Sheik-Bahae and co-authors [20] and it’s a simple 

way of characterizing both the amplitude and the phase changes that an intense optical beam 

would experience when propagating in nonlinear media. This single beam technique is generally 

used to measure either or both the real and imaginary parts of the χ(3)

It is well known that the strength of the nonlinear interaction varies with the irradiance of 

the electric field. Therefore, one can extract the magnitudes of the nonlinear coefficients of 

interest by studying the dependence of the nonlinear effect as a function of the incident 

irradiance. A simple approach is to use a focusing geometry (see Fig. 3.7 (a)) and translate a 

sample of the material studied along the propagation direction of the beam through the focal 

point. The output beam energy is then measured in the far field using a detector. If all the energy 

is collected one can get full information on the absorptive effects present in the sample (2PA, 

 coefficient, but it is also 

extremely useful for cases when higher order nonlinearities are present as well. 



27 

3PA, FCA, ESA, etc.) and the transmittance curve, measured as a function of position, will show 

a dip at the focus for nonlinear loss or a peak for saturation effects. However, if the beam is 

apertured in the far field, the nonlinear phase acquired isn’t averaged out anymore and 

integration of the signal over the aperture area yields a result which depends on the sample 

position. This happens since upon propagation the phase variations are coupled into amplitude 

variations at the aperture plane through diffraction. If we have no absorptive effects in the 

sample, we can associate the induced change in index with the creation of a nonlinear lens of 

variable focal length. For example, in the case of a positive Kerr index coefficient (n2

 

) a positive 

lens would be created both before and after the focus. If the lens would be placed before the 

focus the net effect would be an increase of the size of the beam in the far field consequently 

reducing the amount of energy collected through the aperture. For a lens placed after the focus 

we would have a decreased size at the aperture and an increase of the signal measured. This 

explains the shape of the signal, dip followed by a peak, as shown in Fig. 3.7 b. 

Figure 3.7 Typical Z-scan setup. (a) Divergence of beam in the far field for multiple sample positions with n2
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the corresponding (b) normalized transmittance at the detector. 
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A quantitative analysis can be done for such experiments. There are, however, two 

assumptions that can greatly simplify the calculations without affecting the generality of the 

problem. They are known as the “thin sample” approximations, linear and nonlinear. The 

“linear" approximation is that L<<z0, where L is the sample thickness, and z0 is the Rayleigh 

range or confocal parameter within the sample. This basically states that the sample is thin 

enough that, for no nonlinear effects, the beam maintains a constant size when propagating 

through the sample. The “nonlinear” approximation is that L<< z0

II
dz
dI )(

'
α−=

/∆Φ(0) where ∆Φ(0) is the 

maximum nonlinear phase shift. The assumption here is that the nonlinear phase shift is small 

enough to not affect the beam size (and irradiance) during propagation through the sample. 

When measuring small phase shifts, the second condition is satisfied automatically. Within the 

range of validity of these assumptions, using the SVEA, one can effectively decouple the 

refractive effects from the absorptive ones and use the following set of coupled equations [20]  

                                                           (3.2) 
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 Gaussian beam, one can write the electric field as 

                                   (3.3) 

where we ignore all phase factors uniform in r. For the case when only third-order nonlinearities 

are present we can calculate both the nonlinear phase and the amplitude change after propagation 

through the sample and we write the electric field exiting the sample as [20] 
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where αα /)1( L
eff eL −−= , α is the linear absorption coefficient (m-1), β is the 2PA coefficient 

(m/W), n2 is the Kerr coefficient or nonlinear refractive index (m2/W) and k is the wavevector in 

the medium (m-1

In the case of pure refractive or absorptive effects simple analytic expressions can be 

obtained, propagating the complex phase to the aperture plane using a Gaussian decomposition 

method [21]. Also, for small signals the refractive effects can be separated by division of the 

closed aperture curve to the open aperture one rendering these simple expressions extremely 

useful.  

). The electric field can then be propagated to the aperture plane and integrated 

in modulus squared over the area of the aperture to give the transmitted energy. 

By analyzing the Z-scan curves, one can gain some insight that can be used to qualitatively 

interpret the experimental data. For example, in the case of pure refractive effects χ(3) and thin 

samples, it can be shown  that the distance between the positions of the peak and the dip depends 

only on the confocal parameter z0, while the difference between the maximum and the minimum 

normalized transmittances is directly proportional to n2 and the peak irradiance. The same 

analysis can be done for the case of pure absorptive effects, where the width of 2PA and 3PA 

curves can be shown to be proportional to the confocal parameter, with different proportionality 

coefficients. These observations are very useful, particularly when several nonlinearities are 

present. For instance, just by analyzing the widths of the curves one can differentiate between 

2PA and 3PA or between a pure 2PA process and a 2PA process followed by ESA or FCA for 

the case of semiconductors. However, it can be difficult to differentiate between 3PA and 2PA 

produced ESA without additional information from, for example, pump-probe data. Similarly, 

pure n2 effects can be separated from an additional FCR with population generated through 2PA, 
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by plotting the maximum change in transmittance divided by the input irradiance. This can yield 

good estimates for the magnitude of refractive carrier effects for small signals. As a general rule, 

higher order effects tend to narrow the curves and such differentiations can simplify things very 

much. 

In practice however, an easy separation of the refractive effects from the absorptive ones or 

of different order nonlinearities is usually hard to accomplish just by analyzing single beam 

experiments data. As it will be seen in Chapter 5 large absorptive effects can complicate greatly 

the analysis. Therefore, numerical simulations to account exactly for all effects present are 

useful. In this work, a Matlab beam propagation code in the “thin sample” approximation was 

utilized to quantitatively analyze the Z-scan data and extract the parameters of interest such as 

2PA and 3PA coefficients, Kerr index coefficient and refractive and absorptive carrier cross-

sections. The initial phase and amplitude distribution is sampled for the incident beam at each Z-

scan position, in the radial direction. Temporal sampling is then used in conjunction with the 

nonlinear parameters (n2, β, FCA, FCR) to calculate the distribution of the complex amplitude of 

the field exiting the sample and the photo-generated carrier population distribution within the 

sample. Given the assumed cylindrical symmetry, the complex field is then propagated using a 

Hankel transform to the detector plane. Finally, the transmitted energy is calculated using the 

complex field distribution by either doing a full integration over the spatial domain, to determine 

the absorptive effects, or over the aperture size only, to compute both the absorptive and the 

refractive effects. 
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3.2.2. The pump-probe technique 

As discussed in Chapter 2, the nonlinearly induced polarization acts as a driving term for all 

fields present, inducing changes of various magnitudes that can be separately monitored. A 

strong beam (pump) will affect the medium in which it propagates and then the changes in its 

properties can be monitored via a weak beam (probe) which by itself isn’t able to produce a 

comparable effect. If we consider the case of two optical pulses propagating in a medium, by 

controlling their separation in time, one can study both the instantaneous (for some temporal 

overlap) and long lived effects (for a trailing probe pulse). This is extremely important since 

adding a temporal dimension to the problem can reveal new information. The limiting factor here 

is given by the duration of the measuring tool (pulse) as compared to how fast the studied 

physical process is. Short pulses can therefore produce “snapshots” of the temporal evolution on 

a system affected by a perturbation until a steady-state is reached. 

In the experiments presented in this work, the pump-probe technique was solely utilized to 

quantify the absorptive effects, specifically non-degenerate 2PA processes for cases when the 

self-effects were either not present or extremely weak (Chapter 5) or to help separate and 

monitor the bound electronic effects from the longer lived free-carrier effects (Chapter 7). 

For the case of χ(3) nonlinearities of interest for this work are the nonlinear polarization 

terms related to an intensity dependent absorption and refraction. A simple analysis can be made 

considering two different input frequencies, an “excite” (or “pump”) frequency 𝜔𝑒 and a “probe” 

frequency 𝜔𝑝. The intensity dependent terms are|𝐸𝑒|2𝐸𝑒, �𝐸𝑝�
2
𝐸𝑝, |𝐸𝑒|2𝐸𝑝 and �𝐸𝑝�

2
𝐸𝑒. The first 

two terms are responsible for “self” effects (degenerate 2PA and self-phase modulation), while 

the last two correspond to the “cross” effects (non-degenerate 2PA and cross-phase modulation). 
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Considering now only the absorption, from the wave equation under SVEA we obtain the 

following coupled equations 
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where the 2PA coefficients shown have the following expressions for the case of co-polarized 

fields 
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As a side note, as it will be explicitly shown in Chapter 7, these expressions for the 2PA 

coefficients are generally more complicated for non-isotropic media as they depend on material 

symmetry and the mutual polarizations of the interacting fields. The first terms in Eq. 3.5 and 3.6 

correspond to the situation when the two absorbed photons are from the same beam (degenerate 

2PA), while the second terms correspond to the absorption of one photon from each beam (non-

degenerate 2PA). For the case of a weak probe beam we can ignore the first term in Eq. 3.6 

allowing us to describe the loss experienced by the probe beam in the following manner 



33 

)(
)(

zI
dz

zdI
peff
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where the “effective” absorption coefficient depends on the non-degenerate 2PA coefficient at 

the probe frequency and the pump irradiance. By delaying the probe pulse with respect to the 

pump pulse the absorption of the probe beam will follow the temporal profile of the pump beam.  

 

Figure 3.8 Calculated pump-probe curve with pure 2PA. 

The detected signal is however the result of the integration over the temporal profile of the probe 

pulse and when plotted as a function of the temporal delay will basically yield a cross-correlation 

function with a width which depends on the two pulsewidths and an amplitude given by the 

pump irradiance and the non-degenerate 2PA coefficient (see Fig. 3.8), of interest in experiments 

described in Chapter 7. This curve assumes minimal group velocity dispersion (GVD) effects 

(see Chapter 5) or frequencies close to degeneracy. When the frequencies are highly non-

degenerate the curve will be distorted and this situation will also be discussed in detail in Chapter 

5. 
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The effects mentioned in previous paragraphs are accurately describing situations where 

only instantaneous or bound electronic effects are present. This is not the case in general when 

the generation of excited states, the byproduct of 2PA, plays an important role. For 

semiconductors, the absorption of two photons is coupled with the promotion of an electron from 

the valence band to the conduction band or, equivalently, the promotion of a hole to the valence 

band. These photo-generated free carriers also absorb the incident light, with an “effective” 

absorption coefficient and lifetime which depend on their density. It will be shown, based on the 

frequency degenerate 2PA experiments presented in Chapter 7, that the transmittance of the 

probe is influenced by both FCA and 2PA over the temporal overlap of the two pulses. At much 

larger delays (~ 1 ns), the experiment gives complete information on the carrier dynamics, 

strongly influenced by the Auger recombination process at large photo-generated carrier 
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Figure 3.9 Calculated pump-probe curve for 2PA and carrier effects (FCA and Auger 

recombination). 
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densities. A theoretically calculated curve for a pump-probe experiment in InSb is shown in Fig. 

3.9, showing a complex time dependence of the probe transmittance.  
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CHAPTER 4: MODELS FOR CALCULATING MULTIPHOTON 
ABSORPTION IN SEMICONDUCTORS  

It is well known that experimental advances allow for refining any existing theories or 

push towards developing new ones. The reverse is also true. Some theoretical analyses may yield 

results that cannot be immediately verified and in turn stimulate experimental work and lead to 

perfecting of the experimental methods. Connecting the theoretical treatments with experimental 

data allows for significant advances in the way we understand physical problems. 

Experimental investigation of multiphoton processes had to practically wait for the 

invention of the laser. The foundations of the theoretical methods used for calculations were laid 

before, but the lack of experimental results, or the large uncertainties in their validity, produced a 

plethora of predictions, with very different degrees of accuracy. Fortunately, the advances in the 

development of highly tunable laser sources with intense and short pulses helped settle 

disagreements and better the understanding level for the phenomena investigated. 

In this chapter the main theoretical approaches to calculating multiphoton absorption 

rates in semiconductors will be reviewed. A discussion on the accuracy level (expected and 

verified) and the possibility of extending the analysis to more complex models and/or higher 

order nonlinearities will be made. 

4.1. 

The phenomena described in this work relates almost exclusively to the interaction of 

physical systems with intense incident fields. In a general sense, the behavior of a complex 

system, crystalline solid and external electromagnetic field, for instance, is dictated by the 

Electron-field interaction 
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characteristics of the constituent parts and their interaction. We can therefore assume that the 

Hamiltonian for the total system of radiation plus atom can be written as a sum of three terms[]. 

It includes the Hamiltonian for the material, with given eigenstates and eigenvalues, a 

Hamiltonian for the radiation field, and an interaction Hamiltonian, assumed to be weak enough 

[8]Hamiltonian for the electron in an electromagnetic field can be written as [22] 
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where 0H  is the unperturbed electron Hamiltonian and ),( trA  and ),( trφ  are the magnetic write 

the interaction Hamiltonian as 
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int te
mc

Aei
mc
eH rApA φ−+⋅∇−⋅=                                    .(4.2) 

For radiation with no electrostatic source 0),( =trφ  and in the Coulomb gauge 0=⋅∇ A . The 

term containing the square of the field can be ignored in the expression of the interaction 

Hamiltonian since it won’t have contributions when calculating the transition matrix elements [8, 

22]. However, it does modify the energy of the states through the so-called ponderomotive 

energy as will be shown later on. Thus the form of the electron-field Hamiltonian interaction is 

given by 

pA ⋅=
mc
eH int                                                            (4.3) 

For a specific system, this expression allows for the calculation of the transition rates when the 

system is perturbed by intH , given that the full description in terms of eigenstates and 

eigenvalues is known for the unperturbed system. 
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4.2. 

Let us assume the case of an n level system described by the Hamiltonian 

Perturbation approach 

0H such that

nnn EH Ψ=Ψ0 , where nE and nΨ are the known eigenvalues and eigenstates. Any general 

initial state can be written as a linear superposition in the form ∑ Ψ=Ψ
n

nnc . The time-

dependent Schrödinger equation allows us to predict the temporal evolution of the system such 

that after time t the system will be in a state defined by 

/)( tiE

n
nn

nect −∑ Ψ=Ψ                                                         (4.4) 

If a time dependent small perturbation )(' tHλ  is present then the coefficients acquire a time 

dependence and we can express the new state in the following form 
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such that Schrödinger’s equation is again satisfied 
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Using the fact that nΨ  are the eigenfunctions of the 0H  operator we obtain  
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Taking the inner product with /tiE
m

meΨ  we find 

∑ −ΨΨ=
n
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This allows us to calculate the probability of finding the system in state m after a time t by 

calculating 2)(tcm  using a set of matrix elements. Eq. 4.9 allows for finding of an accurate 

solution for the time-dependent wavefunction, which is a complicated problem for a large 

number of eigenstates. In order to simplify it, the coefficients mc  are expanded into a power 

series of λ  as ...''2'0 +++= mmmm cccc λλ , where the primed coefficients shown here are the first 

and second-order corrections. Using this expansion in Eq.4.9 and equating all the terms having 

the same power in λ  we can obtain the first order correction by using the 0th-order correction 

(time-independent or steady-state solutions) and the respective matrix elements. The second-

order correction will be calculated via the the 0th and 1st

At this point we will avoid a more detailed analysis, unnecessary for our general goal, and 

we shall restrict ourselves to just identifying the correlations to the situation of a harmonic 

perturbation, like the case of an electromagnetic field of interest to us. For this case, the first 

order correction gives Fermi’s Golden Rule which expresses the transition rate between two 

states as a function of the matrix element of the interaction Hamiltonian. Following the same 

analogy, in general, the n

 order corrections and will therefore have 

products of two matrix elements and so on. 

th

ω

-order correction will allow the calculation of the n-photon absorption 

rate. For example, in the case of a perturbing field of frequency , the degenerate 2PA and 3PA 

rates can be calculated according to 
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For the case of semiconductors, these calculations are fairly straight-forward. The main 

issue here is how well described are the steady state solutions for the wavefunctions of the 

unperturbed states. As it will be seen in Chapters 5 and 6, using complex models such as Kane’s 

4-band model [23] can produce very good results for non-degenerate 2PA and degenerate 3PA. 

An even more general model, consisting of 7 bands (4 conduction and 3 valence) was 

successfully used for the calculation of anisotropy of the χ(3) tensor related to the pure absorptive 

(2PA) and refractive (n2

 

) effects [24, 25]. For much simpler cases, the use of such involved 

models can be avoided. For 2PA, a 2-parabolic band model can give fairly good agreement with 

experiment [8]. 

Figure 4.1 Diagram showing possible paths for the two-photon transitions when considering a 4-band structure. 

Circles denote "self" transitions and the direct arrows denote direct inter-band transitions. 

In the case of such simple models however, the issue is the correct estimation of the magnitude 

of the matrix elements associated to the intra-band or self-transitions, transitions between states 

in the same band (see Fig. 4.1). These elements were in general taken to have the form 

HH

SO

LH

CB
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iii mkmp /=  where the i corresponds to either the conduction or the valence band and this 

approach was the most common one for the early calculations, regardless of the number of bands 

used in the model [26]. As will be seen in Chapter 6, these types of transitions depend on band 

mixing (forbidden for the unmixed states) and great care needs to be taken since certain 

contributions may not be properly considered [27]. 

As a general statement, the perturbative approach can be as accurate as the original 

description in terms of eigenvalues and eigenstates of the physical system considered, assuming 

of course small perturbations. It can be easily extended to higher order nonlinearities and has the 

advantage that all paths of evolution for the system are considered. For the more complex cases, 

the calculations tend to become increasingly complex and the use of numerical calculations 

becomes a necessity. Obtaining simple analytical formulas may prove impossible without 

neglecting certain terms, an approach which is not suggested without careful considerations. 

4.3. 

Another approach that was widely used in the past is based on first evaluating the effect of 

the field on the system and then calculating the transition rates using 1

Tunneling or semi-classical approach 

st-order perturbation 

theory. The electronic states in the conduction and valence bands are “dressed” in the sense that 

the effect of acceleration of the electrons due to the oscillating field is taken into account. The 

foundation for this type of calculation was set by Keldish [28] who introduced tunneling and 

showed a non-zero probability of ionization under the effect of a strong electromagnetic field 

with a frequency lower than the ionization potential. This method was used by Jones and Reiss 

[29] who compared the results to a perturbative calculation, using circular input polarizations. 
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Following Ref. [8] , these “dressed” states can be approximated by Volkov-type wavefunctions 

of the form 
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where the index i refers to either the conduction or the valence band and ),( rkiu  are the Bloch 

wavefunctions of the unperturbed system. The Volkov states are the exact solutions of the time-

dependent Schrödinger equation for a single particle in an electromagnetic field obtained by 

applying a unitary transformation 
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to the solution obtained in the absence of the external fields. By analogy, these Volkov-type 

states are therefore Bloch states with an envelope phase modulated by the classical trajectory of 

the electron oscillations. The optical field modifies the electronic states participating in the 

transition, through the so-called ac Stark effect by analogy to the well known dc Stark effect of 

splitting the transition lines in the presence of a strong electric field. The effect of the oscillating 

field is to modify the oscillator strength through the transition matrix elements (time dependent 

term) and also to modify the energies of the electronic states (time-independent term). The time-

dependent and time-independent ac Stark shifting terms are given by 

cvcccc EEEE ∆+∆+= )()( 0 ττ                                               (4.14) 

vcvvvv EEEE ∆+∆+= )()( 0 ττ                                              (4.15) 

where the conduction and valence bands are considered to be parabolic with effective masses of 

mc and mv and the respective Stark shifts are given by 
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The last term is the classical ponderomotive energy of the electron/hole in an oscillating 

electromagnetic field known also as the “mass energy shift”. From this point on, 1st
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 order 

perturbation theory is used to calculate the transition rates according to a scattering matrix 

approach 

                                  (4.18) 

Substituting the dressed states in Eq. 4.18 we obtain the following form 
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where vcp  is the momentum matrix element given by  
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the effective energy transition is given by 
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and 
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with a being the unit vector for the magnetic vector potential. In order to avoid the oscillatory 

exponent an expansion in terms of Bessel functions is used 
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A similar expression can be obtained for a two-beam input of the following form, this time using 

the Bessel function expansion method twice 
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This expression is useful because it allows for identifying particular physical processes by 

isolating terms of the type vcωω +− 12  corresponding to degenerate 2PA, vcωωω +−− 21  

corresponding to non-degenerate 2PA or vcvc ωωωωωω +−++− 2121  ,  corresponding to Raman 

processes, for example. 

Performing the integration in k space one has to deal with integrating vcpa ⋅  and ak ⋅  

factors. The angular dependences of these factors yield different results on integration depending 

on the specifics of the bands considered. However, a total contribution from heavy-hole and 

light-hole bands can be calculated for degenerate 2PA [30] and the results were shown to better 

match the experimental data. 

Important to note at this point is that if one uses the same band structure, the perturbative 

and tunneling calculations yield identical results for 2PA as “dressing” the states is equivalent to 

a self-transition in the second-order perturbation theory approach. However, the tunneling 

approach cannot be easily applied in conjunction with more complex models (e.g. Kane band 

structures) as problems arise when dealing with multiple valence band degeneracies and 
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accounting for inter-valence band transitions cannot be done properly. These types of transitions 

happen to play a minor role for the case of 2PA. For higher order processes, like the case of 

degenerate 3PA, the tunneling approach is equivalent to considering one inter-band transition 

and two intra-band ones which yield terms which are less significant than the three-fold inter-

band transition terms which we show to be dominant. For the 3PA case also, considering 

contributions from transitions originating from multiple valence bands turns out to be extremely 

important as interference from multiple evolution paths greatly affects the final result and this 

has been demonstrated in this work, both theoretically and experimentally, for the first time [31]. 

This shows that tunneling theory might be less suitable for such types of analyses. One 

advantage is however, the fact that such “dressed” state calculations can be useful for strong 

interaction scenarios where perturbative methods cannot be employed anymore [32]. 
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CHAPTER 5: NON-DEGENERATE TWO-PHOTON ABSORPTION 

The two-photon absorption (2PA) process in semiconductors has been extensively 

studied in the past both experimentally and theoretically. A large amount of the data gathered 

was on degenerate 2PA and the spectral variety of the laser sources available allowed the buildup 

of a fairly comprehensive set of degenerate nonlinear spectra for many semiconductors [33, 34]. 

The scarcity of laser sources in the early years limited the experiments on non-degenerate 2PA to 

excitations with common laser wavelengths and using the broadband emission from inert gas 

lamps to probe the nonlinear effects [22, 35]. Development of highly tunable laser systems and 

of high intensity and short duration broadband continuum sources increased the accuracy of the 

values reported and extended the spectral ranges studied [35-37]. The large amount of 

experimental data published also helped to refine the theoretical models for nonlinearities in 

semiconductors as very good agreement with the calculations has already been demonstrated [8, 

34]. 

An important result of the comprehensive work done on 2PA is the establishing of the 

scaling rules, giving an accurate prediction of 2PA and n2 in semiconductors [8]. This allows for 

comparisons between nonlinearities in different semiconductors measured at various 

wavelengths. It has been shown both theoretically and experimentally that 2PA is inversely 

proportional to the bandgap energy cubed (Fig. 5.1). This implies that the already large 

degenerate nonlinearities measured in large gap semiconductors (cm/GW) can increase by 2 or 3 

orders of magnitude in narrow gap semiconductors (InSb, InAs) [33, 38, 39]. Unfortunately, 

these extremely large nonlinearities (cm/MW) have to be measured at mid-IR wavelengths. The 
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general consequence is that for visible or near-IR wavelengths, degenerate 2PA will be limited to 

values of the order of cm/GW. 

 

Figure 5.1 Scaled 2PA coefficient vs. bandgap energy from Ref. [8]. The straight line has a -3 slope. 

There is, however, an alternative that would allow much larger nonlinearities to be 

measured at longer wavelengths. In the case of nondegenerate 2PA, the frequencies may 

approach intermediate state resonances which would significantly increase 2PA to values much 

larger than in the degenerate case. In this chapter, it will be shown that extremely nondegenerate 

(END) 2PA coefficients can exceed their degenerate counterparts by more than 2 orders of 

magnitude. This allows the extremely large 2PA coefficients, previously seen only in narrow-gap 

semiconductors, to be observed in large gap semiconductors such as GaAs or CdTe. This large 

enhancement of 2PA can be useful for optical switching and could have important consequences 

10-1

101

103

105

107

0.1 1 10

Eg(eV)

β 
(s

ca
le

d)
InSb

semiconductors

dielectrics

α
2

(s
ca

le
d)

Eg (eV)



48 

for lasers and amplifiers based on 2-photon gain [32]. By applying Kramers-Kronig relations to 

nondegenerate nonlinear absorption to obtain the dispersion of the nonlinear refraction [40], an 

enhancement of the nondegenerate Kerr index coefficient (n2

5.1. 

) is predicted; however, positive 

and negative contributions from Raman and AC Stark terms lead to a smaller enhancement but 

an extremely rapid dispersion around the zero crossing, shifting it to near the band edge. 

While data for nondegenerate 2PA spectra exist from the earliest experimental papers 

[22], no data was published for extremely nondegenerate 2PA, e.g. ratio of photon energies 

~10x. As seen from Eq. 5.1 this is an interesting realm to investigate since as either or both 

photons approach a linear absorption resonance, the 2PA is expected to diverge (of course 

adding in decay avoids divergence). In the case of extremely nondegenerate 2PA there are 

actually two resonances; the low energy photon is near resonant for the self transition and the 

large energy photon is nearly one-photon resonant. This can be easily seen qualitatively from the 

expression for the nondegenerate two-photon rate, 𝑊2
𝑁𝐷, which can be written in the perturbative 

framework as [41] 

Theoretical analysis 
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with indices 1 and 2 designating the two photons, H the electron-field interaction Hamiltonian 

and v, c and i the valence, conduction and intermediate states, respectively. If one considers the 

simple model of a 2-band semiconductor, the virtual state can be taken as either the initial or the 
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final state for the electron transition. For this case, one can write explicitly the contributions from 

different paths of evolution for the system and obtain 
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where 𝑀𝑖𝑗
1,2 = �𝑗�𝐻1,2�𝑖� are the corresponding matrix elements, i, j correspond to a state in either 

the valence or the conduction band, while the superscript denotes the field frequency. Lower 

photon energies will decrease the denominator values thus increasing the 2PA. It’s important to 

observe here that each of the two different possible transition sequences yields a term enhanced 

significantly by the presence of a low energy photon. This effect is similar to the intermediate 

state resonance enhancement (ISRE) predicted and seen in molecular systems [42]. In direct-gap 

semiconductors the 1-photon absorption edges are sharper than those of organics and therefore 

larger enhancements may be obtained when probing very close to the linear absorption range. 

Theoretical calculations of third-order nonlinearities in semiconductors are very well 

documented, and there are a couple of approaches commonly used in the past, which have been 

discussed in more detail in Chapter 4. One of the methods involves the use of second-order 

perturbation theory, as in Eq. 5.1, to directly calculate the transition rates using a quantum 

mechanical description (eigenvalues and eigenstates) of the considered systems. Reasonable 

predictions can be made either using a simple 2-parabolic band model [27, 43] or one can 

employ complex 4- or 7-band calculations for better accuracy [44, 45], which can go as far as 

predicting the anisotropy of the nonlinear coefficients for particular systems like the ones 

exhibiting zincblende symmetry [24]. Another theoretical method that was successfully used in 

the past and in the calculations shown in this work is based on Keldysh’s tunneling theory [28]. 

It uses a scattering matrix formalism with Volkov-type “dressed” wavefunctions for the 
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electronic states in order to account for the effect of the electric field on the system [46]. This 

provides similar 2PA spectra to the perturbation methods with excellent predicted absolute 

magnitudes [8]. The nondegenerate 2PA coefficient is written as  
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Ep is the Kane energy parameter, Eg is the bandgap energy, K is a material independent 

parameter and n1 and n2 the refraction indices associated with frequencies ω1 and ω2

 

, 

respectively. Fig. 5.2 shows the effects on 2PA when pumping with photons of different 

frequencies, with calculations made using Eq. 5.3. The logarithmic scale indicates a strong 

expected increase of the magnitude of 2PA coefficient as the frequency of the pump photons 

decreases. 

Figure 5.2 Enhancement of 2PA as a function of probe photon energy for several pump photon energies. 
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5.2. 

There are multiple ways of measuring non-degenerate 2PA including four-wave mixing, 

pump-probe with single wavelengths or a continuum and 2-color Z-scan. The non-degenerate 

2PA data presented in this work were taken in a standard pump-probe non-collinear geometry 

with a small angle (~7 degrees) between the pump and the probe beams. In all our experiments, 

the pump beam (most intense) always has the longer wavelength, with photon energies less than 

30% of the bandgap energy.  

Experimental setup and results 

There were two main reasons for this choice. First, we want to avoid any 2PA or 3PA 

caused by the pump itself which would complicate the experiment and the analysis of the 

experimental data. Also, self-absorption effects lead to the creation of free-carrier pairs which 

would cause extra losses especially for the longer (i.e. picoseconds) pulses. In our case the only 

loss in irradiance experienced by the pump happens during the temporal overlap and it’s solely 

caused by non-degenerate 2PA with one photon being absorbed from each beam. This absorption 

term does produce free carriers as well; however, the density of carriers produced is proportional 

to the photon density from the weak probe beam which is deliberately kept very small (at least 

20 times smaller irradiance than the pump for the femtosecond pulses and 100 times smaller for 

picosecond pulses). This way, effects of free-carrier absorption and refraction can be ignored 

altogether. The second reason the pump is the low photon energy beam is related to the 

magnitude of the 2PA coefficient. In a nondegenerate experiment there are two possible choices 

in terms of excite-probe photon pairs. Different experimental configurations can however lead to 

very different measured values as 2PA scales with the photon frequency at which the absorption 

is monitored. The frequency dependence of the 2PA coefficient (Eq. 5.3 and 5.4) through the F2 
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function leads to the relation 𝛼2(𝜔1;𝜔2)/𝛼2(𝜔2;𝜔1) = 𝜔1/𝜔2. In other words, if the 

frequencies of the pump and the probe would be switched the ratio of the measured 2PA 

coefficients would be equal to the ratio of the respective frequencies. Pumping with lower energy 

photons and probing with higher energy photons leads to the maximum possible depletion of the 

probe beam for a given irradiance level of the pump beam. This way, our experimental 

configuration then allows us to measure the highest non-degenerate 2PA coefficient possible. 

The use of a small frequency pump allows for the variation of the probe frequency only over 

a limited range. For a given pump, the lower limit is set by the lowest energetically possible 

transition, and the higher limit is set by the absorption edge. In our experiments, the probe 

photon energy can be varied between Eg-hνpump and Eg

 

. 

Figure 5.3 Experimental layout for the picosecond nondegenerate 2PA experiments. 

The picosecond pump-probe experiments were performed using the picoseconds system 

described in detail in Chapter 3. The experimental layout is shown in Fig. 5.3. The IR pumping 
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wavelength was chosen to be 8840 nm corresponding to approximately 10% of the bandgap of 

GaAs, which together with CdTe were the two semiconductors studied in this configuration. Our 

choice of pump wavelength was also based on the available tunability range of the IR (8-14 µm) 

and taking into account the energy and beam quality at the output wavelengths. As mentioned 

before, the irradiance of the probe was kept much lower than that of the pump (for picosecond 

pulses ~100 times). Our probe beam had a maximum energy of a few nJs and a smaller spot size 

than that of the pump, as measured by knife-edge scans, with a ratio of 1:2. In our configuration, 

this causes minimal losses through degenerate 2PA (< 0.5% which is at our noise level). 

 

Figure 5.4 Experimental layout for the femtosecond pump-probe experiments. 

A similar setup (Fig. 5.4) was used for our femtosecond experiments. The pump used for 

these experiments is in the wavelength range of 1200 nm to 2500 nm, corresponding to 

approximately 30% to 15.5% of the bandgap energy for the semiconductors studied (ZnSe, ZnS, 

ZnO). The probe in this case was a white-light continuum (WLC) generated using the 1300 nm 
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signal beam from the TOPAS into a 2 mm thick piece of CaF2

 

. Individual wavelengths were 

selected using a set of spike filters with a spectral bandwidth of ~ 10 nm. The temporal width of 

the pulses is between 140 fs and 160 fs as verified through autocorrelation experiments. The 

pump to probe spot size ratio is ~ 7 to 1 and, as in the previous experiments using picoseconds 

pulses, great care is taken to ensure that the irradiance in the probe is small enough that any self 

effects are negligible (at least 20 times smaller probe irradiance). 

Figure 5.5 Experimental pump-probe data in GaAs (a) using picoseconds pulses and ZnO (b) using femtosecond 

pulses along with theoretical fits (solid lines). 

Typical experimental pump-probe data are shown in Fig. 5.5 for GaAs (a) with picosecond 

pulses and for ZnO (b)with femtosecond pulses . In the picoseconds experiments, the pump 

photons’ energy is approximately 10% of the bandgap of GaAs and 9.3% of that of CdTe.  For 

the case of femtosecond experiments, there were more choices for the pump wavelength. In ZnO, 

for instance, we were able to choose five different pump photon energies equal to approximately 

32%, 23%, 19.5%, 17% and 15.5% of the bandgap energy. The lowest pump photon energy 

corresponded to a wavelength of 2.5 µm which was at the end of the tunable range of our system. 
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Similar pump photon energies were chosen for ZnSe and ZnS. As mentioned before, the 

generated photo-carrier densities were low because of the small irradiance of the probe, 

rendering any free-carrier effects negligible. The cross-correlation picosecond data is easy to 

interpret and analyze quantitatively. For the much shorter femtosecond pulses however, group 

velocity dispersion (GVD) plays a very important role. This is apparent in the shape of our 

temporal pump-probe curves and how that shape changes with the probe wavelength. 

Specifically, the group velocity varies strongly with wavelength, and for a large range of initial 

delays the pump (fast) and probe (slow) pulses effectively walk through each other as they 

propagate through the sample. The recorded effect is therefore an average of “effective” 

temporal overlaps, and as this “effective” overlap distance is smaller than the sample thickness 

we obtain the same change in transmittance for a range of initial delays as seen in Fig. 5.5 (b). 

The GVD effects on nondegenerate 2PA were analyzed in detail in Ref. [37]. To fit our data we 

use the following formula for the nonlinear transmittance of the probe 

[ ]∫
∞

∞− 











−−
Γ

−





 −+

−=Γ τρττ
ρ

πρττ
π

ρτ derferf
WW

WT d
d )()(exp1),,,(

2

      (5.5) 

where dτ  is the probe delat normalized to the pump pulse duration, W is the ratio of probe and 

pump pulse durations, LI pump2α=Γ  is the nonlinear absorption coefficient and ρ  is the GVD 

coefficient defined as 
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We used Sellmaier equations [47] for the frequency dependence of the refractive index. For a 

given sample length the width of the curves depends only on GVD and is not a fitting parameter, 
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as the GVD coefficient is calculated. The amplitude however, depends on both GVD and the 

2PA coefficient, which needs to be extracted through fitting. 

It should be mentioned here that in our femtosecond experiments the pump is actually 

delayed and the slope seen at shorter times corresponds to pulses overlapping at the back of the 

sample. The probe pulse gets chirped (particularly for frequencies closed to linear absorption 

edge) and the induced temporal broadening results in an increase of the above mentioned 

“effective” overlap distance as the pulse propagates through the sample. This lowers the largest 

temporal delay for which the pump and the probe completely walk through each other in the 

sample, narrowing the plateau seen in the data. Over a 10 nm range, the nondegenerate 2PA 

coefficient varies from about 25% when probing close to the band edge to as much as 100% at 

longer wavelengths. However, based on our estimates, these effects aren’t as critical when 

calculating the nonlinear coefficients for our thin samples for ~150 fs pulses, and the net result is 

an overestimation of the largest 2PA value of less than 15%., for the probe wavelength closest to 

the resonance. 
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Figure 5.6 Non-degenerate 2PA spectra of CdTe and GaAs measured with picoseconds pulses (a) and of ZnO 

measured with femtosecond pulses (b). The calculated non-degenerate spectra are shown with straight lines, while 

the dashed lines denote the corresponding degenerate spectra. 

In Fig. 5.6 (a) we show the measured non-degenerate 2PA spectra of GaAs and CdTe using 

picoseconds pulses and Fig. 5.6 (b) the measuerd spectra of ZnO using femtosecond pulses,along 

with the respective degenerate spectra, plotted versus the corresponding degenerate photon 

energy. The corresponding degenerate energy is simply taken as the average of the energies of 

the pump and probe photons. In other words, we compare the coefficients for two transition 

processes between the same energy levels. In all our plots the photon energies are shown scaled 

to the respective bandgap energies since this allows comparing different semiconductors on the 

same scale and makes the comparison to the respective degenerate values easier. The theoretical 

values are represented with solid lines together with measured degenerate data where available. 

The measured non-degenerate values get as large as 1 cm/MW in CdTe, ~180 times larger than 

the corresponding degenerate ones and about 40 times larger than the peak degenerate 2PA. 

There is a remarkable agreement between the measured and the predicted values using the simple 

2 parabolic-band model, over a large range of photon energies. This agreement isn’t entirely 
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surprising since in experiments with very non-degenerate photons the states involved in 

transitions are close to the center of the Brillouin zone (k=0), where the parabolic approximation 

works best. 

We were able to measure some small signals in GaAs and CdTe when the sum of the 

energies of the two photons falls within the Urbach tail. There are a two of possible explanations 

for this. We could be accessing states below the band edge and because of the large enhancement 

we are able to measure such small contributions which would otherwise be impossible to do 

using degenerate photons. Another possibility is that we actually deal with a three-photon 

process in which two photons from the pump and one from the probe are absorbed, exciting a 

valence electron over to the conduction band. Normally, a clear differentiation can be done by 

analyzing data taken at different irradiance levels, since a 2PA process would give a linear 

variation of transmittance with pump irradiance while a 3PA process would give a quadratic 

dependence. Unfortunately, the signals were low and obtained using the maximum available 

pumping energy so that such clear delimitation wasn’t possible. 

A summary of results obtained for ZnSe and ZnS is presented in Fig. 5.7 (a) and (b), 

respectively. For these cases the choices of pump and probe photon energies were limited by the 

specifics of our experimental setup. Taking data with small photon energies in the pump beam 

proved difficult for the largest bandgap semiconductors, since for these cases the probe photons 

were close to the UV, and in our continuum the energies available for this part of the spectrum 

were low. This made the measurements difficult for some of the pump and probe photon pairs. 
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Figure 5.7 Non-degenerate 2PA spectra of ZnSe (a) and ZnS (b) measured with femtosecond pulses. 
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enhancement seen in the 2PA. The largest overall magnitude we measure are about 1 cm/MW 

using a mid-IR pump. We point out here that these nonlinearities are measured at visible and 

near IR wavelengths and their magnitudes come close to the degenerate values measured in 

narrow-gap semiconductors (e.g. InSb, InAs, etc.), at wavelengths in the mid-infrared [13, 39]. 

This can be easily understood by considering again the perturbative expression (Eq. 5.2) of the 

2PA rate when using a simple 2-band model for a given pair of initial and final states. For the 

non-degenerate case, the energy term in the denominator gets as small as the pump energy, with 

one of the two terms being highly enhanced for either of the transition paths possible (a first 

“self” transition followed by a direct transition or vice versa). If we now consider the case of 

degenerate 2PA in a narrow-gap semiconductor at the pump wavelength 2ω , we obtain two 

terms with the same denominator energy values 
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Since the momentum matrix elements depend mainly on the symmetry of the bands involved, for 

similar systems (zincblende structures for instance), we should expect values of the same order 

of magnitude. The disadvantage is, however, the necessity of having long wavelength pump 

photons. To obtain the highest nonlinearities it is necessary to probe close to the linear 

absorption edge, effectively narrowing the available spectral range. To overcome this, a very 

good quality sample should be used, possibly at a lower temperature, in order to minimize any 

linear losses in the probe beam. However, there is an upper limit to the nonlinearities that can be 

obtained in a non-degenerate configuration. The main limitation is the linear absorption at the 

probe wavelengths under the bandgap. Assuming the upper energy limit for the probe photons 

set to 0.97 of bandgap energy, by using pump photons at about 5% of the bandgap energy one 
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would obtain only a moderate increase of the 2PA coefficient (only about 2 times) versus 

pumping with photons at 10% of the bandgap. 

For the highly non-degenerate experiments, the behavior of the Kerr index in some 

particular spectral ranges is rather interesting. We mentioned before that the non-degenerate 

nonlinear index can be obtained using the general expression of the change in absorption caused 

by the presence of a pump beam and performing a Kramers-Kronig transformation [8, 40]. The 

nonlinear refractive index contains contributions from the 2PA, Raman and AC-Stark processes 

(Fig. 5.8). Explicitly, the AC-Stark term, which is the analog of saturation but below the gap, 

gives always a negative contribution to the nonlinear index while the Raman term adds 

positively. 

 

Figure 5.8 Contribution to nonlinear refraction from the two-photon, Raman and Stark terms for an energy of the 

pump photons of 10% of bandgap energy. 
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For the nondegenerate case, the calculated overall enhancement relatively is smaller when using 

small photon energy pumps. The nonlinear index takes positive values (focusing nonlinearity) 

for small probe frequencies and turns negative (defocusing nonlinearity) for frequencies close to 

the 1-photon absorption edge. The probe frequency for which the nonlinear index becomes zero 

depends strongly on the pump frequency. This particular point is near the peak 2PA position for 

the degenerate case and approaches frequencies very close to the linear absorption edge when the 

energy of the pump photons is further decreased. The slope of the spectrum near to the zero 

crossing point also changes strongly with the pump energy and becomes extremely steep for 

small energy pump photons. This leads to changes in the sign of the refractive nonlinearity over 

very narrow spectral ranges. These trends are shown in Fig. 5.9 for the particular case of GaAs. 

When pumping for instance at about 10% of the bandgap energy (8.84 µm), by varying the probe 

wavelength by ~13 nm, from 903 nm to 916 nm, we can vary the Kerr index coefficient from -

2*10-12 cm2/W to 2*10-12 cm2/W, numbers that in absolute value correspond to about 50% of the 

peak nonlinear index magnitude. To verify this effect, picosecond pulses are more suitable 

because of their narrower spectral widths. It would be however interesting to study the effect of 

this spectral dependence on a femtosecond pulse with a large bandwidth and centered on the zero 

crossing frequency. 
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Figure 5.9 Calculated non-degenerate induced refraction index of GaAs for pump energies equal to 70% (1), 40% 

(2) and 10% (3) of the bandgap energy. 

5.3. 

The large enhancements seen in these extremely non-degenerate frequency schemes look 

promising for some applications and a few ideas will be proposed in this section. The 

experiments described in this chapter have shown strong nonlinearities in a probe beam only in 

the presence of a strong beam with a very different frequency. Essentially our pump beam is a 

“control” beam, able to turn on and off the nonlinearity. This suggests that such effects may be 

used in optical switching. Traditionally, it is the change in the refractive index that is being 
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utilized and for this a large nonlinear Kerr coefficient is required to minimize the input power 

requirements [48].  

The calculations from the previous section have shown an enhancement of n2 of about an 

order of magnitude for the short wavelength beam as compared to the peak n2

)/( 22 λαn

 for the degenerate 

case when the long wavelength beam photons have energies of about 10% of the bandgap. 

Unfortunately, when these strong refractive effects are accompanied by strong absorptive effects, 

the figure of merit, given by  [49] is smaller than 1 due to the large 2PA coefficient. 

This suggests that for practical purposes, the probe photon energy has to be lower than the 

difference between the bandgap energy and the pump photon, thus preventing 2PA. In this range 

the maximum nondegenerate n2 is still larger by about a factor of 5.5 than the peak degenerate 

n2

Another approach would be to use the absorptive effects to effectively “turn off” the probe 

beam by inducing an absorption of at least 90%.  For our largest measured 2PA coefficient of 1 

cm.MW, this condition would be met for a pump irradiance 29 GW/cm

. One problem that needs to be pointed out is that if we require large enhancements we would 

be forced to use spectral regions where there is a strong variation of the nonlinear Kerr 

coefficient, effectively restricting the maximum allowed bandwidth for the probe pulse. 

2. This can be a viable 

option as long as such power levels in the pump beam are feasible for the given geometry. 

However, in this spectral range there are large variations of the magnitude of n2and these should 

be taken into consideration. Also in this case, the spectral range over which n2 stays positive 

(focusing) might be useful. Whether the absorptive or refractive effects can be employed there is 

the general issue of having two beam of very different frequencies co-propagating and this may 

pose considerable difficulties in guiding geometries, although not impossible. 
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Another possible idea is that of gated detection. Taking for instance a semiconductor 

detector irradiated with a beam having photons of energy slightly less than the bandgap energy 

can turn on and off the detector response by using a mid-IR pulse, which by itself would not 

produce any detector response. This can be accomplished with femtosecond resolution while 

such a cross-correlation experiment would also effectively extend the detector’s spectral 

response range.  

The analysis done in this chapter emphasized that the enhancement is caused by the intrinsic 

resonance present when calculating the probability for an electronic transition to higher energy 

states, mediated by the absorption of two photons. It is however possible that a transition from a 

higher energy state to a lower one can happen through the emission of two photons and 

experimentally this has been observed in atomic systems [50-52]. Should inversion of population 

be present, the spontaneous emission of two photons has a much smaller probability than the 

emission of one photon. However, stimulating such transitions using either one or two photons 

would increase the transition rate making it large enough to be observed experimentally. The 

possible scenarios for two-photon emission (2PE) are shown in Fig. 5.10. The two-photon 

stimulated processes should be described using a similar formalism to the one used for 2PA and 

this was pointed out by Ironside [53]. This suggests that any enhancement seen in the 2PA 

should be present in the process of 2PE as well. 
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Figure 5.10 Schematic of possible two-photon emission process. The diagrams correspond to spontaneous, singly 

stimulated and doubly stimulated processes. 

Recently, an experiment by Hayat et al [54] demonstrated spontaneous and stimulated 2PE 

in bulk GaAs and in quantum well structures. The inversion of population was produced by 

pumping linearly with a cw beam. The signals were detected using femtowatt detectors and were 

spectrally resolved with a monochromator. The authors recorded both the spontaneous and the 

induced 2PE when stimulating transitions with a frequency outside the linear absorption range 

and close to the degeneracy point (half the energy of the bandgap). A peak in the recorded 

spectrum was identified at the complementary wavelength and its amplitude was demonstrated to 

vary with the power input of the “seed” beam. 

We attempted to perform a similar experiment using this time frequencies further away from 

the degeneracy point. We used a 1 mm thick piece of CdSe pumped by a 15 mW 532 nm cw 

laser. The stimulating beam was chosen to be very close to the linear absorption (energy of ~ 

92% of the bandgap energy). The complementary wavelengths’ spectrum is limited at the higher 

wavelengths by a minimum energy corresponding to a transition from a state at the bottom of the 

conduction band and at the smaller wavelengths by the conduction band population as 

determined by the pumping power. We used the same HgCdTe detectors from our InSb 

experiments to detect the emitted radiation. The Ge window blocked any wavelength larger than 

a

b

a

b

a

b
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1.7 µm and to detect the signals we used a lock-in amplifier. In our experiment we used a 

chopper in the seed beam, rotating to give a modulation at 285 Hz. A plot of the recorded signals 

as a function of the seed (stimulating) beam energy is shown in Fig.5.11. The signal was 

recorded at the chopper’s frequency and disappeared when the pump was blocked or the beam’s 

overlap was lost. There was however a small signal detected in the absence of the pump which 

also depended on the seed beam. The 2PA of the seed beam itself produces carriers high up in 

the conduction band and in the relaxation process to the bottom of the band IR photons may be 

emitted [32]. We also plotted the difference of the signals recorded with the pump and in absence 

of the pump, which has a different behavior.  

The very small signals obtained (µVs) made practically impossible any attempt at spectrally 

resolving the observed signal. Some limited conclusions were drawn, however, as we 

independently used two samples of InAs and InSb to act as long pass filters (3.5 µm and 7 µm 

respectively). Using the InAs we were able to greatly decrease the signal due solely to the seed 

beam (under the noise level), while being able to still detect a reasonable signal when pumping 

was present. We observed a similar behavior when we used the InSb sample, but in this case the 

reduction in the signal detected when the pump was turned on was much larger. This seems to 

suggest that the bulk of our emitted radiation had a wavelength between 3.5 and 7 µm. There is a 

spectral response of our detectors that increases with wavelength and that, at least qualitatively, 

does not contradict our conclusions. 
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Figure 5.11 Mid-IR two-photon emission signal in a singly stimulated experiment. 

This data, although still far from being conclusive, is very promising. The small signals 

recorded suggest that better collecting configurations should be used while using IR wavelengths 

to stimulate the transitions may result in larger measured signals, hopefully large enough to 

spectrally resolve. 
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CHAPTER 6: THREE-PHOTON ABSORPTION IN ZINBLENDE 
STRUCTURES 

The experimental work done in semiconductors to confirm the validity of the calculations 

of [27, 43] consisted mainly of two-photon absorption data. Data on 3PA was (and still is) 

relatively scarce and even the more recent comparisons with the available theories were 

inconclusive [9]. 3PA is a higher order (χ(5)

It is then apparent that 3PA data needs to be taken in a spectral region where 2PA is not 

energetically allowed. For most semiconductors, since the bandgap energies are in general not 

larger than 4-5 eV, this places the 3PA spectra in a wavelength range from the near to the mid 

IR. In the early years after the laser was invented this posed some problems since there were few 

laser sources in this part of the spectrum and the tunability of the available systems was limited. 

Right now this is hardly an issue since through parametric down-conversion and difference 

frequency generation this entire spectral range can be fully covered while also benefiting from a 

large range of pulse durations. 

) process and that means it is weaker and 

consequently more difficult to study since comparatively, much larger irradiances are needed. 

For moderate irradiances when both 2PA and 3PA processes are present, 2PA will dominate and 

separation of the two absorptive effects is probably not possible. By increasing the irradiance, the 

relative contribution to the total absorption changes and the 3PA process will eventually become 

the dominant one; however, damage will probably occur first. This scenario is also not a very 

practical one since for this high an irradiance the total nonlinear absorption will be very high, 

while the photo-generated free carrier densities produced will be substantial, thus complicating 

the problem even more. 
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Most of the above mentioned difficulties still arise when attempting to measure 3PA with 

longer pulses (nanosecond or even picoseconds). It was mentioned before that since χ(5)

Such issues are also present when measuring 2PA and in general either avoided by 

measuring small signals or by carrying out complementary experiments (e.g. time-resolved) 

which allow quantifying of all the effects present (we do this in Chapter 7 for InSb). For 3PA 

however, the photo-generated carrier densities are comparatively larger than for the 2PA case. 

This can be easily understood if one compares the carrier densities created through the two 

processes following the following crude analysis assuming the same minimum detectable signal 

and a given pulse duration. For small signals, considering the 2PA and 3PA processes, the 

changes in transmission are roughly given by 𝛽𝐼2𝑃𝐴and 𝛾𝐼3𝑃𝐴2  while the generated densities are 

proportional to 𝛽𝐼2𝑃𝐴2 and 𝛾𝐼3𝑃𝐴3 , respectively. This means that when producing the same change 

in absorption, the ratio of the carrier densities produced varies with the ratio of the irradiances 

used. Since the irradiances used in 3PA experiments are generally at least an order of magnitude 

larger than those used for 2PA, this would make the free-carrier effects much more significant 

and great care needs to be taken in order to properly account for such effects. This suggests that 

experiments made using ultrashort (femtosecond) pulses while measuring moderately small 

signals may help avoid such problems, thus increasing the reliability of the extracted values. This 

 

processes are weaker, larger irradiances are needed in order to observe such effects. When using 

longer pulses to obtain a large irradiance, fairly large fluence levels are unavoidable. This can 

lead to material damage even before the nonlinear effects can be observed making the use of 

ultrashort pulses a must. Another problem is the generation of large densities of photo-carriers. 

They complicate both the experiment itself as well as its interpretation since they can introduce 

large absorptive and refractive contributions. 
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is particularly important since without reliable data one cannot identify the limitations of the 

available theories nor refine the models proposed. 

6.1. 

The early measurements on 3PA were performed in configurations with Nd:YAG lasers 

pumping tunable dye lasers and using gas Raman cells for frequency down conversion [55-66]. 

The pumping was done using either degenerate or nondegenerate schemes while monitoring the 

emitted luminescence. The excitations were in a narrow spectral region just above bandgap. 

Direct gap (ZnS, ZnO, ZnSe, CdS and GaP) [56-58, 62] and indirect gap (CdI

Previous measurements of 3PA and comparisons with existing theories 

2

Kang et al.[67] measured 3PA in AlGaAs just outside the 2PA range using a NaCl color 

center laser operating from 1.48 to 1.66 µm using ~1 ps pulses. The scope of the study was to 

determine the limits posed by 3PA on all-optical switching experiments. Recently, measurements 

on GaN, GaAs, ZnO and ZnS were reported over larger spectral domains employing 

femtosecond pulses [9, 61, 65]. The newer data was obtained using single beam experimental 

methods. Transmittance was measured as a function of the input irradiance by varying the pulse 

energy (optical limiting) or the beam size (Z-scan) or in a slight variation of the Z-scan 

technique, by measuring the photo-induced current at several positions along the focused beam 

[65]. The data on GaAs was taken in order to characterize losses directly induced by 3PA or by 

the photo-generated carriers in devices generating THz waves [61]. The spectral range covered 

was large, but since values at only four different wavelengths were measured, the results didn’t 

allow for definitive conclusions. Similarly, the data taken by He et al. [9] on ZnO and ZnS spans 

) [63] 

semiconductors were investigated, together with a large number of alkali halides [55, 59]. 



72 

a large wavelength range but unfortunately shows no measurements closer to the three-photon 

edge. Not surprisingly, the comparison with the simple available theories (scaled arbitrarily to 

match the measured magnitudes) was rather inconclusive and seemed to produce more questions 

rather than answer any. 

We discussed in Chapter 4 the two main approaches when calculating nonlinear absorption 

coefficients in semiconductors. One method is to use time-dependent perturbation theory to 

calculate transition rates from the valence band to the conduction band resulting from N-photon 

absorption, taking into account all possible transition routes. The perturbation approach was used 

by Wherrett [43] for calculating 2PA spectra and generalized for higher-order nonlinearities as 

well using a two parabolic band model. The second method was originally proposed by Keldysh 

[28] and uses first-order perturbation theory with “dressed” states approximated by Volkov-type 

electronic wave-functions to account for the acceleration of the electrons by the incident ac field 

[29]. This method, referred to as tunneling theory, essentially assumes that the transitions take 

place between Stark-shifted energy bands. It is important to note here that if the same band 

structure assumptions are used (2-parabolic band approximation), the two approaches yield 

identical results when calculating 2PA up to an angular averaging factor ff /2  in Ref. [43] 

which is determined to be 5/1  in Ref. [8]. As mentioned in Chapter 4, this happens since in the 

case of 2PA, the dressed wave-function approach is essentially equivalent to a self-transition in 

the second-order perturbative approach. 

The perturbative method can be easily used, in principle, for any higher order nonlinear 

process. The difficulty arises mostly from how well the band structure is described and whether 

only some (or all) transitions are taken into account. However, for higher order processes 

calculations become complicated. In order to simplify the problem, previous attempts have 
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restricted the types of transitions considered (keeping the dominant ones, i.e. larger momentum 

matrix elements among the various bands and smaller detuning energies) [27, 43]. An attempt to 

calculate 3PA in direct-gap semiconductors using perturbation theory and a more complex band 

structure was made by Mitra [64]. Again, in order to simplify the problem, only interband 

transitions were considered in a model consisting of three conductions bands and one valence 

band, while spin degeneracy was accounted for through an overall multiplicative factor of 2. 

The tunneling approach is even more difficult to use when dealing with higher-order 

nonlinearities, since it cannot account for intervalence band transitions when using more than 

one valence band [41]. It therefore ignores some potentially large contributing transition routes 

which significantly affects the predicted magnitude of the nonlinear absorption coefficient [31]. 

Using models with two parabolic bands, Wherrett [43] (using the perturbative approach) 

and Brandi and de Araujo [27] (using tunneling theory) obtained similar formulas for the 3PA 

coefficient of the type 



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Here ce /2 is the fine-structure constant in cgs units,  is the reduced Planck constant, 

0n is the material’s refractive index, P is the Kane momentum parameter defined later (Eq. 7.5), 
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GE  ωis the bandgap energy and  is the photon energy. We obtained Eq. 6.2 from Brandi’s 

original formula (Eq. 8 in Ref. [27]) assuming the same curvatures for the two parabolic bands 

and making use of the identity
c

G

m
EP
22

2

≅


, where cm is the conduction band effective mass [8]. 

This relation can be obtained directly from pk ⋅  theory [23], while a slightly similar one was 

used in Ref [27] based on a Hartree-Fock calculation [68]. The lack of experimental data made it 

difficult to verify which was the most appropriate theoretical approach. More recent data raises 

further questions on the validity of the two theories since the trends observed match neither of 

the predicted spectra [9].  

 

Figure 6.1 Experimental 3PA data on ZnO and ZnS from Ref. [10]. 

However, both theories predict an 7−
GE  scaling of the 3PA coefficient for direct gap 

semiconductors. We attempted to verify this predicted dependence on the bandgap energy 

experimentally [10] by performing measurements of the 3PA coefficients in a large number of 
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semiconductors using various wavelengths. These data are shown on a logarithmic plot with 

scaled 3PA coefficients versus bandgap energy in Fig. 6.2. 

 

Figure 6.2Log-log plots of scaled 3PA coefficients (measured by Peter Olszak and some literature values [10]) vs. 

band gap energy using (a) Wherrett’s and (b) Brandi and de Araujo’s theories. 

The scaling was done using both Wherrett’s theory (a) and Brandi and de Araujo’s (b). In each 

plot the dashed line is the theory while the solid line is a fit with a slope of -7 with 

5.5)()( ×= WW
fit KK  and 42)()( ×= BABA

fit KK . Even though the experimental data shows good 

overall agreement with the predicted bandgap scaling over several orders of magnitude, there is a 

significant spread in the experimental data with respect to the predicted values for individual 

semiconductors. This is due to inaccuracies in the modeling of the spectral behavior and 

indicates that a more refined approach is desired. Thus, the goal of the work presented here is to 

obtain the complete 3PA spectra of zincblende materials (ZnSe, ZnS, GaAs) from the 3PA edge 
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to the 2PA edge and compare it to our calculations using a 4-band model that overcomes the 

inadequacies of previous theories. A complete comparison of these theories to out numerical 

calculations is shown in Fig. 6.4. 

6.2. 

In order to perform an accurate calculation of the 3PA coefficient in semiconductors, we 

need to use a realistic band structure which should account for the non-parabolicity and mixing 

of the bands considered. The model used in our theoretical calculations was developed by Kane 

[23]. We start by using the Schroedinger equation describing the motion of the electron in the 

following form 

Theoretical approach for calculating 3PA using the Kane 4-band model 
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Here )(rnΦ  and nE  are the wavefunction and the energy of an electron in an eigenstate labeled 

by n. Using the Bloch theorem, the solutions are expressed, in the reduced zone scheme, as  

)()exp( rrk kk nn ui ⋅=Φ                                                      (6.4) 

Substituting this particular form in Eq. 7.3 we obtain 

kkkpkp
nnn uEumV

m
k

m
=








⋅+++ )/(

22

222


                                      (6.5) 

At k = 0 Eq. 6.5 reduces to 
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In this form we can easily calculate the solutions since functions 0nu .are periodic. Once these 

solutions are found, we can treat the terms mk 2/22  and pk ⋅)/( m  as perturbations and use 

standard non-degenerate perturbation theory (each eigenfunction corresponds to a distinct 

eigenvalue) to calculate the band dispersion [69]. This general method for calculating the band 

dispersion starting with known wavefunctions and energies at a particular point 0k  is known as 

the pk ⋅  theory. 

A direct result of this analysis is that the unperturbed conduction band wave-functions have 

a spherical symmetry and are denoted by ↑S and ↓S for the two spin states, while the ones 

corresponding to the valence bands have a p - like orbital symmetry denoted here by ↑X , ↓X , 

↑Y , ↓Y , ↑Z and ↓Z . These functions belong to the symmetry type 1Γ and 4Γ respectively, 

under the notation of Ref. [70]. Using this similarity to the atomic wavefunctions we can recall 

that the s states correspond to 0=l  while the p states correspond to 1=l  and are triply 

degenerate, with l being the orbital angular momentum. The three degenerate states can be 

chosen to be the eigenstates of lz, the z projection of l. The magnetic quantum numbers, 

eigenvalues of lz

Let us now consider the perturbation introduced by the spin-orbit interaction in the form 

, are -1, 0 and 1 for the p states.  

σ⋅×∇= )(
4 22 pV

cm
H SO

                                                  (6.7) 

where σ  is the spin operator. The eigenfunctions of the spin-orbit Hamiltonian are eigenstates of 

the total angular momentum  j, the sum of orbital momentum and spin, and its z components. For 

the p states (valence) j can take either the values of 1-1/2=1/2 or 1+1/2=3/2 while for the s states 

(conduction) j is 1/2. Thus, the eigenfunctions of j and jz are for the valence states 
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The spin-orbit interaction removes the triple degeneracy, splitting the 2/3=j  states from the 

2/1=j  states. Thus, the split-off band is shifted by an energy of ∆ at k =0. 

In the most general form, including the interaction of the valence band and the conduction 

band via the pk ⋅  coupling and the spin-orbit interaction, the electron Hamiltonian for a cell-

periodic structure is written as 
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where p  and σ  are the momentum and spin operators, respectively,  is the reduced Planck 

constant, m is the electron mass, c  is the speed of light, V is the one-electron potential and k  is 

the wave vector. For the case of k oriented along z, the Hamiltonian can be represented as 
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in the following basis 

2/)(,,2/)(,,2/)(,,2/)(, ↓−↑↓+−↑↑+↓↑−↓ iYXZiYXiSiYXZiYXiS  

where Ep and Es correspond to the two eigenvalues obtained solving for En0

P

 in Eq. 67.6 for the 

valence and conduction band respectively, is the Kane momentum parameter defined by 
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and 
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For an arbitrary orientation of the k  vector, we can obtain the same form for the Hamiltonian 

using similar basis functions differentiated through the prime symbol. The primed functions are 

obtained through rotations from the original functions as given by 
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with SS ='  invariant under this rotation. Here the angles θ  and φ are the usual polar angles of 

the k vector referred to the crystal symmetry axes y ,x and z . The characteristic equation yields 

four double roots corresponding to the solutions to Eqs. 6.14  
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where 22 )2/(' kmEE kk +=  is the energy of a state with a wavevector k . 

The electronic wave functions are then given by 
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where α and β denote the two degenerate spin states (up and down).  The index i  refers to the 

conduction (c), light-hole (lh) and split-off (so) bands. The coefficients b ,a  and c are real and 

are obtained from 
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where N  is a normalizing factor such that 1222 =++ iii cba . 

Using this formalism, we can obtain a complete description of the band structure taking into 

account the effects of non-parabolicity and non-zone center wave functions. We write the 

electron-radiation interaction (perturbation) Hamiltonian in SI units as [71]  
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where I is the irradiance of the incident beam, 0n is the material’s index of refraction and â is a 

unit vector parallel to the direction of the incident electric field. Using third-order perturbation 

theory we can express the 3PA rate as 
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The index v corresponds to a valence band (initial state), c corresponds to the conduction band 

(final state) including spin, while i and j are intermediate states and can be any of the four bands 

considered, while the Ψ ’s are the respective Bloch wavefunctions. This means that the 

summation is performed over all valence to conduction band routes considering all possible 

intermediate states (same as the four bands in our model). From this, the 3PA coefficient α(3) can 
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be obtained using the relation 3
3

)3( 3)( −= IWωωα   [43]. We performed our calculations over the 

entire wavelength range where 3PA is possible while 2PA is not possible (i.e.

2//3/ gg EhcE <≤ λ ). For each wavelength, we consider the transitions conserving the total 

energy and calculate the contributions to the 3PA coefficient arising from transitions from all 

three valence bands. This way, contributions from each of the three valence bands can be 

independently analyzed as well as their total effect which is the simple sum.  

 In practice, Eq. 6.18 takes a more complicated form which is shown below and has to be  

( )
( ) ∑ ∑∫





















∂
∂














−−






=

=

vc

kk

cvji resjvresiv

resivresjirescj
res

res
k

kEkEkE
kMkMkM

kdeP
nc ,

2

,

2
6

3

5
)3(

)(
1

)2)()()((
),(),(),(

  sin23
ωω

θθθ
θθ

ω
πωα

θ 

(6.19) 

evaluated numerically. For this, a Mathematica code was written, using as inputs only a few 

parameters such as bandgap and split-off energy, Kane parameter (or Kane energy) and 

refractive index, which is considered constant over the 3PA spectrum. 

The numerical results obtained for room temperature ZnSe, with eVEg  7.2= , eV 42.0=∆ , 

eV 24.2E P = , and 2.49n =  [72] are shown in Fig. 6.3 separating contributions from each 

valence band. Over the wavelength range considered we assumed no dispersion for the refractive 

index. 
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Figure 6.3 Contributions to the degenerate 3PA coefficient of ZnSe due to transitions from the (1) heavy-hole, (2) 

light-hole and (3) split-off band as a function of photon energy. 

The most interesting feature common to all calculated spectra is the peak in 3PA at photon 

energies just above the onset of 3PA. The dip seen at higher energies is evidence of quantum 

interference. For each pair of initial and final electronic states separated by ω3 , there are several 

paths of evolution for the system. All these contributions add, with appropriate signs, while the 

measurable effect, the 3PA coefficient, is proportional to the absolute value of the sum squared. 

For example, the total contribution to the 3PA coefficient yielded by transitions from any of the 

valence bands is, in general, a sum of 256 terms. For the particular case of the heavy-hole band, 

there are only a total of 48 contributing non-zero terms, while for the other valence bands the 

number is larger. This happens because of the particular symmetries of the wavefunctions 

describing electronic states in the valence bands (band-mixing). This is apparent in the spectra 

calculated which show different magnitudes of the quantum interference effects depending on 
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the particular initial state (see Fig. 6.3). The coefficient at each wavelength can be greatly 

affected by this interference. As our calculations show, and as confirmed by our experimental 

data, choosing certain types of transitions to be dominant is not realistic when calculating these 

spectra, since several terms have a significant contribution in the summation. 

 

Figure 6.4 Calculated degenerate 3PA spectrum for ZnSe compared to previous theories of (2) Wherrett and (3) 

Brandi and de Araujo. 

The previous theories [27, 43] using two-parabolic band models have predicted smooth, 

single peaked spectra as shown in Fig. 6.43, since these theories took into consideration only a 

restricted number of transition paths. Essentially, only allowed-allowed-allowed transitions 

between pairs of conduction and valence bands were considered by Wherrett [43], while Brandi 

and de Araujo [27] summed over transitions equivalent to allowed-forbidden-forbidden, 

forbidden-allowed -forbidden or forbidden-forbidden-allowed in our model. Simply adding the 

rates obtained by these previous calculations would ignore the interference effects. 
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These same types of calculations for the two-photon process were made by Hutchings and 

Van Stryland [41]. The spectra obtained (as our calculations confirm) were much smoother. The 

contributions from the split-off band produced a noticeable effect in the spectrum at the 

wavelength corresponding to a two-photon energy of ∆+gE , similar but smaller than the one 

seen in our 3PA spectrum. Nevertheless, the dip seen in the 3PA spectrum is absent in the 

calculated 2PA spectrum. This is understandable, in that for 2PA there is only one intermediate 

state required and consequently fewer evolution paths. Also, for this case, the allowed-forbidden 

and forbidden-allowed transitions are dominant terms and the interference has a much smaller 

effect. 

The very good agreement shown for 2PA with two-parabolic band theories suggests that 

for this process, magnitudes and trends can be easily obtained using simple models. 

Unfortunately, this is no longer possible for 3PA spectra, and the full 4-band calculation is 

required. 

3PA spectra were calculated for other cubic semiconductors and are shown in Fig. 6.5. 

Overall, the spectra have similar shapes but there are some differences arising from the specifics 

of the band structures. In particular, the feature due to transitions originating from the split-off 

band varies depending on the split-off energy. In GaAs, as compared to ZnSe, it is less 

pronounced since it appears further away from the dip, while in the case of narrow gap 

semiconductors (InAs, InSb), it is completely missing since these transitions would only be 

possible at much higher photon energies, within the 2PA spectra. For ZnS the split-off energy is 

very small, 0.07 eV [72], and thus this particular feature appears at about 980 nm, very close to 

the 3PA edge and just before the peak. 
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Figure 6.5 Theoretical spectra for GaAs, ZnS, InAs and InSb. 

Such complex, numerically calculated spectral shapes pose difficulties when attempting to 

produce any type of scaling with the bandgap energy. However, specific trends related to the 

peak amplitude or positions of the peak and the dip can be identified through calculations. Also, 

by scaling the calculated 3PA coefficient with bandgap energy, Kane parameter and index of 

refraction we can obtain “effective” F3 functions for each semiconductor and a comparison is 

shown in Fig.6.6. We can see that the scaled spectra are similar around the peak and the dip. The 

major differences appear where the contributions from the split-off add. In particular, ZnS 

doesn’t scale well since the three valence bands are almost triply degenerate at the Γ point. 

1.6 1.8 2.0 2.2 2.4 2.6
0.00

0.02

0.04

0.06

0.08

0.10

0.12
α 3(c

m
3 /G

W
2 )

Wavelength (µm)

GaAs

0.6 0.7 0.8 0.9 1.0
0.0000

0.0002

0.0004

0.0006

α 3(c
m

3 /G
W

2 )

Wavelength (µm)

ZnS

7 8 9 10 11
0

200

400

600

800

1000

1200

α 3(c
m

3 /G
W

2 )

Wavelength (µm)

InAs

14 16 18 20 22
0

20000

40000

60000

80000

100000

α 3(c
m

3 /G
W

2 )

Wavelength (µm)

InSb



86 

 

Figure 6.6 Comparison of scaled 3PA spectra for several semiconductors. The scaling is done using the refractive 

index, bandgap and Kane parameter, as shown. 
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6.3. 

In order to verify experimentally the calculations from the previous section, we used the 

femtosecond laser system and the parametric devices described in Chapter 3. For each 

wavelength we performed Z-scans at several energies on a 0.5 mm thick sample of CVD grown 

polycrystalline ZnSe purchased from Meller Optics. For the spot sizes used in our experiments, 

this sample is thin as defined by Kaplan [73]. We also carefully spatially filter the beam to obtain 

near Gaussian spatial profiles. At each wavelength we perform a detailed calibration to 

accurately determine the energy, the spot size and the pulsewidth (~140 fs) of the beam used.  

Experimental data 

 

Figure 6.7 Typical experimental Z-scans of ZnSe taken at several wavelengths at the indicated energies. 

The calibration is then checked by measuring 2PA in a known sample of CdTe with the 

same setup. Figure 6.7 shows some typical Z-scan traces along with theoretical fittings 

considering only 3PA at a few wavelengths. Each Z-scan curve is independently fit and the 

average 3PA coefficient for the energies s used is calculated. It is important to mention here that 

the values obtained from fitting individual sets of data are within ±10% of the average, 

suggesting that only the 3PA process is present for femtosecond pulses, with a negligible 

contribution from free-carrier absorption or other effects. Also, even though the absolute errors 

(in energy, spotsize and pulsewidth) of our measurements are estimated to be about ±35%, the 
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relative errors are smaller, increasing our degree of confidence in the relative magnitude of the 

features for the measured spectrum of ZnSe (Fig.6.8 (a)). 

 

Figure 6.8 Experimentally obtained 3PA spectra of of ZnSe (a), ZnS (b) and GaAs (c), compared to our calculations. 

A similar experimental procedure was employed for ZnS and GaAs. The data was taken by 

Peter Olszak and Trenton Ensley [74] and is shown in Fig. 6.8 (b) and Fig. 6.8 (c), respectively, 

together with some literature values. For ZnS, the spectral range studied is similar and we obtain 

very good agreement. For GaAs, the larger spectral width of our pulses (over 100 nm) 

complicates the comparison to the theory. A better analysis of the data can be done using the 

femtosecond pulse spectrum at each measured wavelength, yielding a reasonable agreement with 

the theoretical spectrum [74]. However, great care should be taken when using such linear 
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approaches for nonlinear spectra as these yield only approximate results at best, since the 

multiple frequencies in the spectrum can contribute in a non-degenerate manner to the overall 

measured magnitude. 

6.4. 

In the previous section, plots of our measured values for α

Discussion of results 

(3) are shown along with our 

theoretical calculations. The best match to our experimental data for ZnSe is obtained when 

using in our calculations 2.71 eV and 0.37 eV for the band-gap and split-off energies, 

respectively. Similarly, a bandgap value of 3.7 eV was used for ZnS and of 1.49 eV for GaAs. 

These energies are within the range of previously published values [72]. There is an overall 

discrepancy in absolute magnitude of α(3), which is ~3.2 for ZnSe, ~2.7 for ZnS and ~2.5 for 

GaAs, respectively. In the plots, our calculated values are multiplied by the respective factors to 

allow for easier comparison. As can be seen, there is very good agreement between the 

experimental data and our theoretical calculations and the predicted dip is evident in the 

measured values. Also, the contribution from transitions due to the split-off band is apparent in 

the experimental data taken in ZnSe. An important aspect is the trend in the 3PA values as the 

wavelength gets closer to the 2PA edge. The previous theoretical work [27, 43] suggested 

smaller magnitudes for the 3PA coefficients as the wavelength gets closer to the 2PA edge, with 

decreasing values for increasing wavelengths. Our calculations and experimental data show that 

close to the 2PA edge the 3PA magnitude is in fact larger by almost an order of magnitude than 

what was previously estimated and has the opposite (increasing) trend. 
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This theory agrees with Wherrett’s calculations close to the 3PA band edge since the 

allowed-allowed-allowed transitions dominate there and the band mixing effects are minimal.  

The rather remarkable fit of the spectral shape coupled with the relative closeness of the overall 

magnitude (within a factor of 3.2) shows that the essential physics of the interaction is well 

accounted for. However, the reasons for the discrepancy in absolute magnitude probably still 

arise primarily from the limitations of the theoretical model. The original model assumed a 

temperature of 0K and even though we use the room temperature values for the material 

parameters, we consider an empty conduction band with full valence bands. Also, away from the 

zone center, there should be less accuracy when predicting the band shapes using Kane’s model 

since the calculated band structure deviates from measurements. In particular for ZnSe, this 

happens at ~1 eV above the band edge, corresponding to energies of about 330 meV above the 

3PA edge [41, 72]. A better model needs to be used in order to obtain a more accurate shape for 

the conduction band and the heavy-hole band (parabolic here with an effective mass equal to the 

electron rest mass). For example, the model used by Hutchings and Wherrett [24] to describe 

anisotropy of the 2PA coefficient takes into consideration the effects of higher conduction bands. 

Such models should also allow for calculation of the anisotropy of the 3PA coefficient, as well as 

yield a more accurate value for the effective mass of heavy holes. For single crystal GaAs the 

anisotropy of the 3PA coefficient was reported in Ref. [61]. Nevertheless, such a detailed 

calculation, even though possible, would be considerably more complex for 3PA. Other factors 

possibly affecting measurements of 3PA are impurities, defects, and also excitonic effects for 

wavelengths close to band-gap resonance [75]. However, we believe that these would produce 

small changes to the overall relative shape of the calculated spectrum. 
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In conclusion, the degenerate 3PA spectra for several zincblende semiconductors were 

calculated using third-order perturbation theory based on a Kane band structure consisting of 

three valence bands (heavy-hole, light-hole and split-off) and a conduction band. This model is 

realistic for these structures since it accounts for the non-parabolicity of the bands and non zone-

center wave functions obtained using Kane’s pk ⋅  theory. It should be pointed out here that 

ideally, this model can be extended to other symmetries as well. The results obtained for cubic 

structures match the measured spectral shapes recovering all the details predicted although the 

predicted absolute magnitude is a factor of ~3 smaller than the experimental data, on average. 

The predicted dip in the 3PA spectrum due to the quantum interference effects and the onset of 

the contributions from the split-off band occur in a range close to the zone center where our 

theoretical description is fairly good. Further away, the non-parabolicity of the bands is probably 

insufficiently accounted for. However, the features aforementioned can be predicted only when a 

full calculation is performed. Simpler models cannot produce similar results since band-mixing 

and all possible evolution paths are not properly taken into consideration. Such calculations 

should be important for applications such as terahertz generation [61]. In these cases, intense 

femtosecond pulses experience significant losses through 3PA and ideal spectral ranges can be 

identified to minimize these unwanted effects. 
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CHAPTER 7: OPTICAL NONLINEARITIES IN InSb 

Indium antimonide (InSb) is a direct band gap semiconductor from the III-V group of 

compounds comprising binary mixtures of elements from groups IIIb (B, Al, Ga, In, Tl) and 

Vb(N, P, As, Sb, Bi). The crystal structure of III-V semiconductors is a cubic, zincblende kind of 

structure. An average of 4 valence electrons per atom gives a tetrahedral bonding structure. This 

leads to a crystal lattice of two interpenetrating face-centered cubic cells. 

The band structure was calculated by Kane [23] using pk ⋅  theory. Several other 

publications addressed the non-parabolicity of the bands and these more involved treatments 

were further used to calculate other parameters of interest like nonlinearity, free-carrier 
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k
Eg

Figure 7.1 Band structure used for InSb showing some of the physical phenomena that 

can be investigated by optical means (2PA, 3PA, FCA and Auger recombination). 
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absorption, Auger coefficients, etc.(see for instance Ref. [76]). For the purpose of this work, we 

chose the standard Kane model. The main features are a single conduction band and three 

valence bands (Fig. 7.1). Two are degenerate at 0=k  and correspond to the so-called light and 

heavy hole bands (due to different parabolicity, or “effective mass”) while the third one is the 

split-off band. In general, the conduction band is taken to be isotropic but non-parabolic. 

At 77 K the bandgap is 0.23 eV while at room temperature it becomes 0.175 eV placing 

the linear absorption edge at about 7 µm. This range made InSb a promising material for 

nonlinear optical limiting in the operating range of CO2

The temperature dependence of the bandgap energy can be estimated using 

 lasers, close to the peak 2PA of InSb, 

raising the interest toward characterizing its nonlinear optical properties [77]. 

)/()0()( 2 TbaTETE gg +−=                                                (7.1) 

with a =0.6 meVK-1 and b =500K [72].Taking into account a Fermi distribution for electrons 

(and holes), we can calculate the thermal population of carriers. This yields densities of about 

2*1018 cm-3 which produce large linear losses through intra-conduction band absorption (small 

due to phonon-assisted transitions) and inter-valence band absorption (large due to direct 

transitions between the light and heavy-hole bands), for mid-IR wavelengths higher than 7 µm 

(see Fig. 7.5). The cumulative free-carrier absorption cross-section is about 8*10-16 cm-2, about 2 

orders of magnitude larger than the typical values for large gap semiconductors [33]. The 2PA at 

these wavelengths is also extremely large, and this has been shown through the developed 

scaling laws for semiconductors [8] and confirmed experimentally [12, 14, 78]. This poses 

problems when doing nonlinear measurements since one has to deal with a complex interaction 

between the bound electronic effects (instantaneous nonlinearities) and the free-carrier ones (a 
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byproduct of the instantaneous effects and longer lived states). Unfortunately, except when using 

the shortest of pulses (fs) the free-carrier effects dominate their instantaneous counterparts 

making the extraction of reliable values a difficult process, reflected in the large dispersion (over 

2 orders of magnitude) of the reported values in the early papers [8]. 

Over the years, the reported values appeared to converge towards smaller numbers, but 

when analyzing the experimental data it was common to assume/use for 2PA a value of ~2 

cm/MW regardless of the wavelength, without doing a proper analysis. The scarcity of the laser 

sources in this range coupled with the use of larger pulsewidths were some of the adverse factors 

in the determination of the optical properties. To complicate the problem even more, the 

pyroelectric detectors which were often the detectors of choice, aren’t sensitive to energies under 

0.3 µJ and some experiments with shorter pulses had to employ large input energies, rendering 

some of the conclusions drawn inaccurate [12, 78]. Liquid N2 cooled CdHgTe detectors offer a 

much better sensitivity as they can detect much lower energy levels, of the order of pJs. However 

they are typically only available in small area packages (less than 16 mm2

In this chapter we present a series of experiments using a large range of pulsewidths 

aimed at explaining physical phenomena seen at different wavelengths and with various response 

times. The idea is to quantify both the instantaneous and cumulative effects on a strong 

irradiance beam propagating through this narrow gap semiconductor. To better understand the 

approach used, we will write a set of coupled equations describing the variation of the irradiance 

and phase of an incident beam, together with an equation describing the temporal evolution of 

the density of photo-generated carriers as follows 

) since homogeneity is 

a problem and a careful determination of linearity ranges (or an accurate calibration) is 

necessary. 
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In these equations, the free-carrier absorption and refractive cross-sections absσ  and refσ  are 

taken as the sum of their respective electron and hole contributions, α  is the linear absorption 

coefficient which accounts for the absorption of thermally generated carriers and of any of the 

impurities present, τ  is the natural lifetime and AugerC  is the Auger coefficient. It’s easy to see 

that when all these effects are non-negligible the nonlinear interaction is relatively complex and 

exact determination of all parameters involved is difficult. Therefore one needs to find specific 

configurations which would greatly minimize certain contributions, hence simplifying the 

problem. For instance, the use of very short pulses (femtosecond) would produce negligible free-

carrier densities (proportional to the pulse duration) which hopefully would allow us to neglect 

any cumulative effects. This way, one can measure 2PA and any refractive effects associated to 

the )3(χ  term. With these parameters independently determined, we can then use longer pulses 

resulting in larger photo-generated carrier densities. Consequently, we can determine the 

respective absorptive and refractive cross-section using the methods described in Chapter 3. 

Lastly, using a time-resolved experiment, one can study the time dynamics of the photo-

generated carriers making use of their absorptive properties, yielding characteristic lifetimes. The 

experiments presented in the following sections follow this general approach and partial 

conclusions and comments on the results obtained will be mentioned in each section. 
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7.1. 

In order to extract reliable values from the measured data, a careful calibration of the 

experiment needs to be done. An independent determination of beam parameters, pulsewidth, 

size, input energy and spectrum, should be done in order to minimize as much as possible the 

inherent experimental errors. Last, but not least, the response of the detectors used should be 

fully characterized as a function of the input energy. Data should be taken in the detector 

linearity range if possible or a response curve needs to be constructed based on a known 

reference. These issues are discussed in the following paragraphs. 

Experimental calibration 

 

Figure 7.2 Detector response vs. input energy. Each point represents a single shot. 

Signal detection in our picosecond and femtosecond experiments was done using a pair of 
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 cooled CdHgTe 4X4 mm photo-conductive detectors kept in vacuum and having Ge 

AR coated windows. The response time of these detectors is about 10 µs and they offer a 

sensitivity of the order of pJ/V which is ideal for experiments using short pulses and low input 
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energies. The larger energies were measured with a calibrated Molectron and a PE-9 Ophir 

pyroelectric sensors. Within the calibrated range they are quoted to have a maximum deviation 

from linearity of about +/-5%. Unfortunately, when compared directly with each other, the 

values differ by about 25% to 30%. Therefore only one was chosen (Molectron sensor) to serve 

as a reference for all our experiments, as its calibration was verified directly at the company. 

However, because of better readout capabilities, the Ophir PE-9 sensor was used to verify the 

linearity range of out CMTs, by doing a relative measurement. This data is shown in Fig. 7.2. 

Figure 7.3 FTIR spectrum of a neutral density filter from Janos Technology with an average transmission of 

50%. 

Input energy variation was done using BaF2

5 6 7 8 9 10 11 12 13
0.3

0.4

0.5

0.6

0.7

Tr
an

sm
itt

an
ce

Wavelength (µm)

IR-ND 50%

 wire-grid polarizers from Specac and a set of 

calibrated IR neutral density filters from Janos Technology. These filters were extremely useful 

in reducing the energy incident on the detectors in the picosecond experiments since the input 

energies for these experiments were generally in the nJ range. For the femtosecond experiments 

we avoided using these filters however because their spectral response is not flat over the 

bandwidth of the pulses as can be seen in Fig. 7.3. For these experiments, we exclusively used 
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the wire-grid polarizers which assured a constant pulse broadening over the range of energies 

used, since the pulses were traveling through the same material thickness. For the polarization 

resolved experiments, we used the same polarizers in conjunction with a Babinet-Soleil 

compensator from Special Optics. 

The spatial characterization of the optical beams was done through knife-edge beam scans 

(Fig.7.4 (a) and (b) or pinhole scans (Fig 7.4 (c)) for the time resolved measurements. The 

pinhole scans were usually de-convoluted as the pinhole sizes were not much smaller than the 

measured beam sizes. 

The temporal profile of the pulses was obtained through fitting of the time-resolved data 

taken with perpendicular polarizations in a frequency degenerate scheme. These experiments 

allow for the separation of the free-carrier effects and measurement of the pulse duration making 

use of the instantaneous absorptive effects (see for example Fig. 7.19). The error in the 

pulsewidth measurements was estimated to be as much as ±10%, with energy collection being 

the main source of error due to defocusing effects due to the photo-generated carriers, since 

pulsewidth measurements were relative measurements. 
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Figure 7.4 Beam characterization. Knife-edge scan (a) with a Gaussian fit (b) and pinhole scan (c). 
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The spectral bandwidth of the femtosecond pulses was measured with a 1/8 m Oriel 

monochromator using a gold coated grating with 150 lines per mm. The spectra had widths of 

several hundreds of nm in the 8 to 11 µm range. For the picosecond pulses, the resolution was 

too small to reliably measure any spectra, but knowledge of the bandwidth wasn’t really 

necessary at these durations. 

The sample used for experiments (from AFRL) was intrinsic, (100) cut, AR coated on both 

sides and with a 450 µm thickness. The transmission and absorption spectra were determined 

experimentally (see Fig. 7.5) while the crystal orientation was verified by X-ray diffraction 

experiments. 
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Figure 7.5 Reflection and transmission spectra for AR coated 450 mm thick InSb sample. 
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7.2. 

The femtosecond TOPAS system described in Chapter 3 was used to pump a 1 mm thick 

AgGaS

Femtosecond experiments 

2

A monochromator was used to measure the spectral widths of the pulses in the mid-IR range 

and the spectra obtained are shown in Fig. 7.7. We can see that Gaussian functions describe 

 crystal. Through a DFG process using the idler and the signal beams in an (eoo) 

geometry, infrared beams are generated in the range from 3 to 11.5 µm. The optimal temporal 

overlap of the idler and the signal is obtained by rotating a piece of quartz before the crystal. The 

upper wavelength is however set by the linear absorption in the crystal. The output energies are 

in the range of a few µJs and a typical beam profile is shown in Fig. 7.6. Separation of the IR 

beam was done in two stages. First a 1 mm ZnSe coated piece was used at 45 degrees incidence 

angle. The coating strongly reflected the near-IR inputs and strongly transmitted the mid-IR. 

Secondly, a 1 mm piece of Ge was used at the Brewster angle for the p-polarized IR beam 

allowing maximum transmission. The germanium absorbs any residual pump beam as its 

wavelength is always lower than 1.7 µm. 

Figure 7.6 Femtosecond beam profile at 4 µm. 
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fairly well the spectra of the pulses. At 8 µm there is a dip in the spectrum that has the same 

position as we tune the wavelength. The reason for its presence is still unclear while similar 

behavior has been observed in other systems from Light Conversion [79], suggesting possible 

issues with either the crystal or with the coating. 

 

Figure 7.7 Measured spectra of the femtosecond IR pulses. 

A temporal characterization was attempted using an old 300 µm area InSb detector as a 2PA 

based photo-voltaic detector in a Michelson configuration. Unfortunately, the response wasn’t 

quadratic in input irradiance, possibly due to absorption by impurities. Consequent attempts 

made by P. Olszak to measure the temporal widths at slightly shorter wavelengths using a PbS 
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detector were also unsuccessful. In order to analyze the Z-scan data, we assumed a transform 

limited pulse at the output of the crystal, which is reasonable since both the idler and the signal 

beams are close to transform limited [80]. For each configuration we calculated the amount of 

broadening induced by the optics in the path of the beam before the sample and estimated the 

pulsewidth at the sample. The attenuation of the beam was done using two wire-grid polarizers to 

insure the same amount of broadening for each irradiance level used. The energies used in our 

experiments were very low, from hundreds of pJ (detection limit) to a few nJ. The energy 

calibration was done using an Rk-5100 pyroelectric radiometer. Even at such low energy levels, 

our pulses were short enough to give very large input irradiances and consequently producing 

very large changes in transmittance, over 50% in most of the cases. 

In principle, analyzing the open-aperture data doesn’t pose too many problems. Things are 

rather different when trying to measure nonlinear phase shifts over such large absorptive signals. 

As mentioned in Chapter 3, a Matlab code was written in the thin sample approximation which 
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Figure 7.8 Numerical modeling of ratio of closed to open-aperture Z-scans for no self-phase modulation effects. 

Results are compared to (a) full BPM code calculations and (b) extended for several n2 values. 
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assumes a cylindrical symmetry for our beams and propagates the field to the aperture plane 

using a Fresnel-Huygens formalism. The effects of such large absorption levels are exemplified 

in Fig.7.8. The first theoretical plot (a) shows the division of the open and closed aperture scans 

for large absorption which yields a fairly strong signal, added to any refractive signal. The 

theoretical curve was compared to the full beam propagation code developed in our group, 

confirming the validity of the calculated results in the thin sample approximation. The second 

theoretical plot (b) shows the division of closed and open-aperture curves for the strong 

absorption case and different values of n2

  

. A large Kerr coefficient is needed to produce the 

expected shape. The explanation for the peak in Fig. 7.8 (a) is rather straightforward. Simply put, 

a beam which will be strongly absorbed will tend to flatten as the largest irradiance 

Figure 7.9 Division of closed and open-aperture scans at 10 µm in InSb using ~200 fs pulses and a focused spot size 

of 50 µm at room temp. 
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levels are on-axis. A flattened beam will have a narrower distribution in the far-field (Fourier 

transform) which would produce a larger transmitted signal through the aperture. A signal 

similar to the theoretically generated curve was recorded at 10 µm as n2

 

 was expected to be 0 or 

extremely small and is shown in Fig.7.9. One conclusion that can be drawn here is that large 

absorptive effects may put a limit on the measurable Kerr coefficient. 

Figure 7.10 Open aperture Z-scans performed with femtosecond pulses at several wavelengths as shown on the 

figures. The respective parameters shown are used to generate fits for all individual energies. 

We performed open and closed-aperture Z-scans at several wavelengths between 8 and 11.5 

µm. The open aperture scans are shown in Fig. 5.10. The data were fit with the same parameters 
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shown in the respective captions, yielding 2PA values of about 2 cm/MW. From analyzing the 

data we can say that even for the maximum recorded signals the absorptive effects due to the 

photo-generated carriers were minimal as the densities produced by our short pulses were fairly 

small, consistent with our theoretical calculations. Our assumption of transform limited pulses 

yields a minimum possible pulse duration at the sample effectively setting a lower limit for the 

extracted 2PA magnitudes. A chirped pulse out of the AgGaS2

±

 crystal would have been 

broadened more, decreasing the irradiance and increasing the value measured. In conclusion, we 

can say that given our uncertainties in measuring the pulsewidths, the 2PA is not less than the 

measured values, but possibly larger by not more than about 30%. Of course, considering also 

the uncertainties when measuring the energy and beam width results in about 15% error in the 

absolute values, yielding a total uncertainty range from -15% to +45% for the absolute values. 
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Figure 7.11 Experimental and theoretical curves showing nonlinear refraction in InSb at several wavelengths using 

femtosecond pulses. The indicated n2

The ratios of the closed to the open-aperture scans are shown in Fig. 7.11. At 8 and 9 µm the 

shape denotes a negative n

 values are used to generate all the theoretical curves on the respective plots. 
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 (defocusing nonlinearity) as expected for these wavelengths. The 

data was however noisy and as the absorptive effects were extremely large, we should not 

consider the extracted values as very reliable. Overall, as in the case of open aperture scans, as 

much as the data allows such a conclusion, we can also say that the refractive effects due to the 

free-carriers are minimal. For the very low energies used the difficulties associated with the 

alignment of the setup can influence negatively the quality of the data. Data taken at 10.5 and 
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11.5 µm seems to indicate a positive n2 (focusing nonlinearity). The noise in that data is even 

larger; however, we do believe that at least qualitatively we have shown the predicted change in 

the sign of the Kerr coefficient. For these longer wavelengths we generated theoretical curves 

using a positive n2 at the largest energy to allow for some comparison to the experimental data. 

These curves shouldn’t be considered as fits but rather a way of estimating an upper value of n2

The use of such broadband pulses should in general raise questions about the meaning of the 

extracted values for 2PA and the Kerr coefficients. The 2PA theoretical spectrum is fairly flat in 

the studied range and for pulses not extremely chirped our extracted values are meaningful. In 

the case of n

. 

2

7.3. 

 however, there’s a large predicted dispersion around the 0 crossing point (around 

10 µm) and much better quality data should be used to allow for definitive conclusions. The 

largely different frequencies in the pulses’ spectra would experience very different focusing or 

defocusing effects. Effectively, “de-convoluting” such effects may prove difficult and a better 

approach would be to use the spectrum information in the analysis procedure. As mentioned, 

even though the phase measurements can be considered only qualitatively good, the 2PA 

measurements yield usable values, which set the lower possible level of 2PA coefficients and, as 

we will see, these values are consistent with data taken at longer pulsewidths. 

The femtosecond measurements have shown, as expected, minimal effects from the photo-

generated carriers (absorptive or refractive) which allows for a direct measurement of bound 

electronic nonlinearities (α

Picosecond experiments 

2 and n2). For the ~10 picosecond pulses available from our EKSPLA 

system comparable irradiances would produce much larger densities of electrons (and holes), by 
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about 2 orders of magnitude. For the absorptive measurements, decoupling can be achieved 

through time-resolved experiments, while the single beam techniques (Z-scan) are also used to 

characterize the relative contributions to the nonlinear change in index. 

An important aspect that needs to be mentioned here is the anisotropy of the )3(χ  tensor. In 

general, whether we do single beam or two-beam experiments, the magnitudes of the measured 

nonlinear coefficients depend on the polarizations of the beams and the particular crystal cut. For 

the single beam case, “effective” 2PA coefficients will be expressed as a function of the non-zero 

)3(χ  tensor components and the anisotropy coefficient, for the standard (100), (110) and (111) 

cuts. Similarly, for the time resolved experiments, expressions of the respective 2PA coefficients 

will be given for parallel and perpendicular polarizations of the pump and probe beams. 

7.3.1. Z-scan experiments 

Given the importance of FCA in the picosecond experiments a proper characterization of the 

absorptive properties of the thermally generated carriers needs to be made. FTIR measurements 

were done using a N2 cooled Joule-Thompson cryostat from MMR. Transmission spectra were 

recorded at several temperatures and the results are shown in Fig. 7.12. The population densities 

for each temperature were calculated using a Fermi-Dirac distribution and the behavior of the 

free-carrier absorption cross-section was estimated as a function of temperature and wavelength. 

The FCA was generally assumed to not depend on temperature. This turns out to be incorrect as 

discussed by Peter Olszak in Ref. [74]. This was based on the experiments of Kurnick and 

Powell [81], who studied it using several p and n-doped samples. Some previous nonlinear 

studies in InSb also used these results in the analysis performed [13, 78]. Newer theoretical 
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calculations [76, 82] emphasized however the importance of occupational factors at different 

temperatures in the calculation of both FCA and 2PA in InSb. The experimental results confirm 

the predicted dependence of FCA of wavelength and temperature [82]. 

 

Figure 7.12 Experimental dependence of FCA with wavelength (a) and temperature (b). The theoretical values are 

obtained from Ref. [82]. 

A simple analysis regarding the relative contributions to absorption due to free carriers and 

bound electronic effects for the case of an arbitrary pulse duration can be made [77, 83]. 

Assuming that the pump is not significantly depleted we can write the free-carrier generation rate 

as proportional to the irradiance squared 
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and equating the two loss terms in the propagation equation we obtain 
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where τ  is the pulse duration. This way we can define the “critical” irradiance [83] as 

στ
ω2

=crI …                                                       (7.7) 

It’s important to note here that the value of the “critical” irradiance is independent of the 2PA 

coefficient and inversely proportional to the pulse duration. Experimentally, the use of 

irradiances smaller by at least an order of magnitude than the “critical” irradiance should result 

in minimal contributions to absorption from the free-carriers. Given a 2PA coefficient this 

“critical” irradiance level would produce a “critical” two-photon signal. If the measured signal is 

much smaller than the signal obtained at the ”critical:” irradiance it can be safely assumed to be 

due to 2PA alone. For the 10 ps pulses used we obtain a value of about 2 MW/cm2

 Another important aspect related to 2PA is understanding how the experimental 

configuration affects the values measured. The polarization state of an incident beam on 

particular crystal orientation determines the strength of the nonlinear interaction. For the 

zincblende structures (

, which would 

yield a signal of about 6% in a Z-scan experiment for InSb. Assuming a minimum measurable 

signal of about 2 to 3% we can therefore conclude that in the picosecond experiments FCA will 

play an important role. As seen in the previous section, for the femtosecond pulses, shorter by 

about a couple of orders of magnitude, FCA can be neglected. 

m34  class) there are a total of 21 non-zero )3(χ  tensor elements out of 

which 4 are independent components denoted by )3()3()3()3( ,,, xyyxxyxyxxyyxxxx χχχχ , where the frequency 

arguments are omitted for simplicity. An anisotropy coefficient can be defined as 

)3(

)3()3()3()3( )(

xxxx

xyyxxyxyxxyyxxxx

χ
χχχχ

σ
++−

=                                          (7.8) 
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such that it becomes 0 for the isotropic case, when the sum of the off-diagonal elements equals 

)3(
xxxxχ . Moreover, for degenerate experiments, we can switch indices according to 

),,;(),,;( )3()3( ωωωωχωωωωχ −−=−− ijijijji  since the corresponding frequency arguments are 

identical, leaving only three independent tensor components. The “effective” 2PA coefficient 

will be expressed as the imaginary part of the complex “effective” third-order susceptibility. 

For a general orientation of the electric field vector, the projections on the crystal’s 

principal axes will determine the expression of the induced nonlinear polarization through the 

respective )3(χ  tensor elements. A simple method of measuring the crystal anisotropy is to place 

the crystal in the focus of a linearly polarized beam (minimum transmittance point in the Z-scan 

curve) and change the electric field projection on the crystal axes by rotating the input 

polarization using a wire-grid polarizer. By analyzing the behavior of the 2PA coefficient as a 

function of the rotation angle one can determine both )3(
xxxxχ  and σ , and this method was used in 

the past to measure anisotropy of the 3rd order susceptibility tensor in a variety of materials [84]. 

In Table 7.1 are summarized the expressions of the effective contributions for linear and circular 

polarized light for three different crystal cuts. It should be noted here that in general, for 

complete determination of all tensor elements, at least two different measurements are needed 

since decoupling of the off-diagonal terms is needed. This can be achieved either by using linear 

polarization and two different cuts, or the use of a circularly polarized beam. By looking at the 

expressions in Table 7.1, it is obvious that for a (111) crystal orientation this method is not 

particularly useful as the 2PA coefficient does not depend on the rotation angle, but the extracted 

value is still useful when used in conjunction with other measurements. 
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Table 7.1 Effective contributions from off-diagonal )3(χ  components of a zincblende semiconductor ( m34  class) 

for several polarization and crystal cut combinations. 

Polarization   (100) cut  (111) cut  (110) cut 

Linear 



 − )2(sin

2
1 2 θσχ xxxx  



 −

2
1 σχ xxxx  ( ) 



 +− )(sin)(cos31

2
1 22 θθσχ xxxx  

Circular xxxxxyyx χσχ
2

2 +  xxxxxyyx χσχ
2

32 +  xxxxxyyx χσχ
3

2 +  

 

For the case of InSb, we were mostly interested in determining whether the anisotropy plays 

an important role when measuring 2PA. Given the complex interplay of nonlinear effects, it is 

desirable to eliminate the uncertainty in magnitude arising from using different configurations. 

The only elements affecting the polarization of the IR beams were the wire-grid polarizers and 

the Babinet-Soleil compensator. Therefore rotation of polarization with respect to the crystal 

axes can be achieved in two different ways. First the prisms in the compensator were aligned to 

give a λ/4 phase shift (quarter-wave) and then the polarization was rotated using one of the wire-

grid polarizers. The circular polarization was verified by measuring a constant energy 

transmitted through the polarizer. Also, for a linear polarization, the sample can also be rotated 

around the propagation direction of the beam at normal incidence. This is in general avoided 

since the inhomogeneities in the sample may cause problems when the rotation axis is slightly 

shifted from the beam axis. Fig. 7.13 (a) shows the transmitted signal when the sample is kept in 

focus and the polarization is rotated by 180 degrees. The total nonlinear transmittance in the 

focus was about 0.7. For a (100) cut the variation of the 2PA coefficient is given by 
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)]2(sin
2

1)[0()( 2
22 θσαθα +=  and this is shown in Fig. 7.13 (b). A variation by +/-1.5% in the 

transmittance would suggest a maximum anisotropy value of 0.2 for InSb. This is however just 

an upper limit given the noise level for this data. 

 

Figure 7.13 Experimental (a) and theoretical (b) variation of the nonlinear transmittance in focus with polarization 

angle for a (100) cut InSb sample at a wavelength of 10 µm using 9 ps pulses. 

Also, the variation in the signal seen has a different periodicity and we believe is mainly given 

by a small ellipticity in the beam. A theoretical calculation of the 2PA anisotropy was made in 

Ref. [24] based on a 7-band model for zincblende structures and an empirical approximate 

formula was proposed. It was shown that anisotropy was mainly influenced by the position of 

higher conduction bands such that the anisotropy coefficient can be calculated according to 

condgap
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σ                                                        (5.9) 

In InSb the next conduction band is situated at 3.1 eV [24, 72] giving an anisotropy value of 

about 0.1, in somewhat agreement with the experiment since such small anisotropy would 
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produce a variation in signal of +/- 0.75%, impossible to isolate with our noise level. The 

conclusion that can be drawn here is that for our experiments anisotropy wasn’t an influencing 

factor. For the time-resolved experiments in particular, the perpendicular polarizations used 

simply make the “self” and “cross” 2PA coefficients different and therefore the values were 

fitted independently. A similar but more detailed discussion will be given in the next section. 

 

Figure 7.14 Closed aperture Z-scans at 8 µm (a) and 10.6 µm (b). 

Fig. 7.14 shows typical open-aperture Z-scan curves taken with picosecond pulses. In (a) 

data is taken at 8 µm and in (b) at 10.6 µm. The fitting took into account FCA as well as 2PA. 

The contribution to absorption from FCA is non-negligible and quantifiable. The values obtained 

from the picosecond Z-scans are generally larger than the femtosecond ones but considering our 

estimated absolute errors (~±30%) there is a reasonable overlap. A more comprehensive study of 

2PA with wavelength and temperature was done by Peter Olszak [74] and the results were shown 

to be in a reasonable agreement with the theoretical results of Ref. [82]. 
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Figure 7.15 Closed-aperture Z-scans at λ = 8 µm. 

Closed-aperture Z-scans were taken at 8 µm to estimate the magnitude of free-carrier 

refractive effects. Fig 7.15 shows the recorded data and the fitting parameters. The analysis 

shows that FCR is much larger than the contribution from the negative n2 expected at this 

wavelength [8], but for consistency we used the theoretical value of n2
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the effects were minimal. An expected value for the free-carrier refraction cross-section can be 

obtained using the standard Drude-Loretz classical model. The change in the refractive index per 

generated free carrier per unit volume is  
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where carm  is the effective mass of the electron or hole. A direct consequence that can be 

pointed to here is that for the case of refraction the contribution from holes is much smaller due 
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interband transitions contributing to nonlinear refraction, the previous formula can be corrected 

[85] yielding the following form 

222
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2 ωωε
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G

car
ref E

E
nm

e                                           (5.11) 

The value obtained using this model is 1.8*10-24 m3, which is about a factor of 2 smaller than the 

fitted value of 0.77*10-24 m3

7.3.2. Time-resolved experiments 

. Similar discrepancies were observed in Ref. [76] and were resolved 

by employing a more detailed calculation of the shape for the conduction band. 

Separation of instantaneous from the long lived nonlinear effects can be easily done through 

excite-probe experiments. The degenerate experiments also allow for the determination of the 

pulse duration which would be otherwise needed to be done in a separate experiment. Using a 

large range of delays using one set of data one can calculate 2PA, FCA and the Auger coefficient 

through a carrier density dependent lifetime. 

Considering the third-order nonlinearities of interest here, we write the induced nonlinear 

polarization at frequency iω  and direction ik as a function of component field amplitudes  

),(),(),(),,;(
4

),( )3(0)3(
lllkkk

jkl
jjjlkjiijkliii EEEP kkkk ωωωωωωωχ

ε
ω ∑ −=       (7.12) 

For our cubic symmetry we can choose to write the nonlinear polarization in the Cartesian 

coordinate system associated with the principal crystallographic axes denoted by [100], [010] 

and [001], such that i, j, k and l correspond to these directions. Similarly to the single beam 

experiments, polarizations of the two beams and the crystal orientation will determine the 

effective magnitudes of the nonlinear coefficients involved. In general, for a two-beam 
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experiment, we need to detect an arbitrary component of the field generated by input fields of 

arbitrary polarization incident on a crystal of arbitrary orientation. It is therefore useful to use the 

frame of reference associated with the incident and detected radiation. Following Ref. [86] we 

can write the Fourier component of the nonlinear polarization at frequency aω  and polarized in a 

direction given by unit vector â  as 

),(),(),(),,;(
4

),( *)3(0)3(
dddccc

bcd
bbblkji

ijkl
dcbaijklaaa EEEdcbaP kkkk ωωωωωωωχ

ε
ω ∑∑ −=  (7.13) 

where kji cba ,,  and ld  are the direction cosines for the projections of the initial fields in Eq. 

7.12 onto the directions kji ˆ,ˆ,ˆ  and l̂ , respectively. Here the unit vectors for polarizations are 

taken as complex to include also circular polarizations. For our zincblende structures, using 

symmetry properties we can simply write the particular component of the nonlinear polarization 

as 

∑=
bcd

dcbeffz EEEdcbaP ),,;(
4
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ε                                        (7.14) 

where 

∑+⋅⋅+⋅⋅+⋅⋅=
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iiiixxxxxyxyxyyxxxyyeff dcbadcba **** )ˆˆ)(ˆˆ()ˆˆ)(ˆˆ()ˆˆ)(ˆˆ(),,;( σχχχχχ dbcacbdadcba  

(7.15) 

This is a general formula that can be used for all cubic or isotropic media whether the processes 

are degenerate or non-degenerate [86]. The summation in Eq. 7.15 contains the dependence on 

the crystal orientation. 

Let us consider now our degenerate pump-probe experiments using linear polarizations. We 

shall denote the excitation and probe beam polarization directions by ê  and p̂ with q̂  being the 
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unit vector of the direction perpendicular to ê  and the direction of propagation as seen in Fig. 

7.16. We have described in Chapter 3 the coupled system of differential equations (Eq. 3.5 and 

3.6) governing the propagation of both the excite and the probe beams in the medium. Using the 

above formalism, we can write the self and cross 2PA coefficients for the excite beam as 
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Figure 7.16 Input polarizations in a pump-probe experiment for beams propagating normal to the surface of the 

sample. 

The coefficients for the probe beam can be obtained simply by substituting the appropriate unit 

vectors for polarization. In our experiments the self-induced 2PA by the probe will be neglected 

as the irradiance of the probe is negligible and so we shall concentrate on the expressions of the 

self-induced 2PA by the excite beam (important for calculation of the generation rate for 

carriers) and of the cross-terms (important in the propagation equation for the probe pulse), for 

parallel and perpendicular polarizations. 

θ êq̂
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For the parallel polarizations of the excite and probe beams, we take ep ˆˆ =  and the 2PA 

coefficients becomes equal to 
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It’s important to remember then that in the case of parallel polarizations, the cross terms are 

exactly 2 times larger than the self-induced ones, regardless of the crystal orientation. This is the 

absorptive equivalent of the “weak-wave retardation” effect [87] associated with the real part of 

the third-order susceptibility term. 

When the polarization of the probe beam is perpendicular to one of the excite beams, qp ˆˆ = , 

we obtain 
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Next, we calculate the actual expressions for our (100) cut for the two polarization 

configurations. For this crystal orientation, assuming an arbitrary orientation of the excite beam 

polarization with respect to the crystallographic axes, we write 
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For this case the 2PA coefficients can be written as 
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By looking at these expressions, we can conclude that in InSb (having a small anisotropy 

coefficient σ ) for the perpendicular polarization case the self and cross terms depend almost 

exclusively on xxxxχ  and xyyxχ , respectively. Therefore, when fitting the experimental data we 

need to assume two independent parameters for the two 2PA coefficients. The expressions for 

different crystal cuts are obtained in the same manner, by expressing the polarization unit vector 

in the Cartesian system associated with the principal crystallographic axes. The effective )3(χ  for 

the cross terms in 2PA assuming a perpendicularly polarized probe incident on (100), (110) and 

(111) cuts are given in Table 7.2. 

Table 7.2 Effective third-order susceptibilities defining the cross 2PA term for different cuts and perpendicularly 

polarized probe in a zincblende structure. 

Cuts (100) (110) (111) 
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Figure 7.17 Layout of the pump-probe setup (a) and typical unfiltered (b) and filtered (c) spatial beam profiles. 

The standard setup used for our time-resolved experiments and typical beam profiles are 

shown in Fig. 7.17. Usually, the beam quality of our mid-IR wavelengths coming straight out of 

DFG part of the parametric device wasn’t very good. Therefore, before any experiment, we 

passed the beam through a spatial filtering setup consisting of an input aperture and a telescope 

with a pinhole (500 µm size) in the focal spot. The energy losses were of about 50% but this way 

we were able to reach a compromise, sacrificing the total usable energy in order to obtain a better 

spatial quality. 
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Figure 7.18 Pump-probe curves at 10 µm with parallel polarizations at room temp with 9 ps pulses. 

The first pump-probe experiments were attempted using parallel polarizations. Typical data 

is shown in Fig. 7.18 for several pump energies. In this case, the interference term produces a 

transient grating scattering light from the pump beam into the direction of the probe beam during 

the pulse overlap time where the excite and probe are coherent with each other (so-called 

“coherent artifact”) [88]. Since our probe energies were comparatively much lower, even a non-

efficient transfer will cause a large change in the signal measured, as seen in the experimental 

data. These “coherent artifacts” were studied in GaAs [89, 90] and the effects of scattering of the 
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incident radiation off multiple gratings (absorptive or refractive and associated with either 

instantaneous or free-carrier effects, and photorefractive effects) were analyzed. For our case we 

can only eliminate the photorefractive effect as a possible cause since rotation of the sample 

didn’t affect the signal. 

 

Figure 7.19 Pump-probe data at 10 µm using perpendicular polarizations. 

To avoid such effects that would highly complicate our analysis aimed at quantifying 2PA and 

FCA effects, we used perpendicular polarizations in all our experiments. Fig. 7.19 shows typical 

pump probe experiments at 10 µm. All the data sets are fit with the same parameters, which will 

be used also for long delay measurements aimed at characterizing the population dynamics. In 

our fits we used a FCA absorption cross-section of 6.8*10-16 cm2
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FTIR measurements. The values obtained for the self and cross 2PA are 1.4 cm/MW and 1.9 

cm/MW, respectively. As mentioned in the previous paragraphs, InSb has a small anisotropy 
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coefficient making the two coefficients effectively proportional to { }xxxxχIm  and { }xyyxχIm2 , 

respectively. This suggests a ratio of the two coefficients of about 0.68 which is reasonable 

considering that its maximum possible value is about 1.2, when the other off-diagonal 

components are zero. 

 

Figure 7.20 Auger recombination process in a direct-gap semiconductor. The different colors correspond to different 

carrier pairs involved. 

An important relaxation process in direct-gap semiconductors is Auger recombination. The 

recombination of a hole with an electron is an exoenergetic process. The extra energy can be 

given to another particle (electron or hole) which subsequently is promoted to a higher energetic 

level (see Fig. 7.20). During the process both energy and momentum are conserved. Depending 

on the position of the initial states, there are three different channels, denoted by CCHC, CCLH, 

HH

SO

LH

E

k

Egap

CHCC

CHLH

CHSH



125 

and CCSH. This process is a 3-particle process so it depends strongly on the carrier densities. A 

rigorous analysis would use Fermi-Dirac distributions, but assuming Boltzmann distributions one 

can obtain simple relations as in Eq. 7.4 pointing out a dependence of the rate on the cube of the 

carrier density. The Auger recombination is very important particularly in narrow gap 

semiconductors since it becomes the main relaxation mechanism at higher carrier densities. It 

negatively affects devices, e.g. optical limiters, by essentially shortening the lifetime of carriers 

in the excited state. This has been acknowledged as an important factor determining the 

performance of semiconductor lasers [91], light emitting diodes [92], solar cells [93] and infrared 

detectors [94]. 

Early theoretical treatments were made by Beattie [95] and Haug [96]. The relaxation rate 

was considered to have either a cubic dependence (Beattie) or a quadratic one (Haug) with the 

carrier density. The experimental data published on bulk InSb is limited. Fauchet et al. [97] 

created a laser-induced electron-hole plasma and studied the recombination through a reflection 

technique. The quadratic dependence gave the best fit while the cubic value for the Auger 

coefficient was found to be 2 orders of magnitude smaller than the value predicted theoretically 

by Beattie. A similar experiment made by Almazov [98], also gave better agreement with the 

quadratic dependence while the cubic fit gave a value of only one order of magnitude smaller 

than the theoretical one. An experiment carried out by Chazapis [99] with midinfrared 

picosecond pulses suggests a quadratic dependence as well. Recent work [76] has shown that a 

cubic dependence (Eq.7.4) yields similar results to a full analysis using Fermi-Dirac distributions 

when fitting experimental data. The authors explained the disagreement between the theory and 

experiment based on the approximations made in the interpretations of the previous numerical 

results. 
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Figure 7.21 Long delay pump probe experiments on InSb at 10 µm with perpendicular polarizations. The parameters 

used were the same as for the shorter scans of Fig. 7.19. 

Most of the experimental data relied on generating very large populations, especially 

through linear absorption. For this kind of experiment issues like recombination through surface 

states need to be carefully considered [99]. In our experiments, we used a different approach. 

The free-carriers were generated through a 2PA process which ensures a larger penetration depth 

while the maximum densities reached were not as large. The populations obtained were large 

enough however to observe recombination on a ps time scale. At room temperature the lifetime 

of carriers is about 160 ns, while the natural lifetime is about 2 µs [100, 101]. These numbers are 

large enough that for our regular (small signal) time-resolved experiments we can ignore all 

other relaxation processes. We were able to achieve changes in transmission levels of about 80%, 

using the maximum energies available. By scanning a longer delay, approximately 1ns, we can 
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see a decrease in effective lifetime as the generated carrier densities increased. Fig. 7.21 shows 

the experimental curves for perpendicular polarizations of pump and probe. The fitting 

parameters were the same as in the case of shorter scans (Fig 7.19). The Auger coefficient 

obtained was in agreement with the value calculated in Ref. [76]. Moreover, limiting data taken 

by Peter Olszak with nanosecond pulses [74] was fit with a similar value, 7*10-26 cm6s-1

  

, 

increasing the degree of confidence in these measurements. 
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CHAPTER 8: CONCLUSION 

8.1. 

The purpose of this work was to re-visit the existing theories on nonlinearities in 

semiconductors, to identify limitation on their applicability and to propose improved approaches, 

and to characterize the nonlinear properties of a narrow-band semiconductor (InSb) given the 

complex interplay of different physical mechanisms. 

Summary 

The existing models for calculation of 2PA and the nonlinear refraction index (n2

The analysis of existing 3PA experimental data allowed us to identify the limits of 

applicability for the existing theories using perturbative or “dressed-state” approaches. We 

) were 

discussed and used in order to extend predictions on the nonlinear behavior in the highly non-

degenerate frequency limit. Theoretically, 2PA was expected to increase dramatically since in 

this case both frequencies approach resonances for the “self” and “direct” transitions. We 

performed a detailed experimental investigation using the pump-probe technique employing both 

picosecond and femtosecond pulses in several semiconductors (GaAs, CdTe, ZnO, ZnS, ZnSe). 

The subsequent analysis has shown an extremely large enhancement of the nondegenerate 2PA 

with respect to the corresponding degenerate values. We obtained enhancement factors as large 

as 180 in CdTe using pump pulses at 8.9 µm (corresponding to approximately 9.4% of the 

bandgap) and probing at wavelengths close to the linear absorption edge (corresponding energies 

as large as 96% of the bandgap). We obtained good agreement with a simple 2-parabolic band 

theory for all the materials investigated. This large enhancement looks promising for applications 

like all-optical switching, gated detection and two-photon emission (2PE) and two-photon laser 

gain in semiconductors [32, 53, 54]. 
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developed a more comprehensive model for zincblende structures based on the pk ⋅  theory 

proposed by Kane [23]. The calculation using third-order perturbation theory showed a strong 

quantum interference of transitions between the same energy levels but using different paths in 

the more complex 4-band structure employed. We showed the existing simple 2-band 

calculations cannot be used to predict this behavior for 3PA and compared it to 2PA which has 

fewer pathways and therefore shows a much less pronounced quantum interference. The 

theoretically predicted spectra were compared to the experimental ones in a few semiconductors 

(ZnSe, ZnS, GaAs) with very good agreement in both shape and even in magnitude (within a 

factor of 3). These calculations may prove useful by identifying low loss spectral regions for 

THz generation experiments using intense femtosecond pulses [61]. 

Bound electronic and free-carrier nonlinearities were studied in InSb using mid-IR 

femtosecond and picosecond pulses. The use of the shorter, femtosecond pulses allowed us to 

isolate the quasi-instantaneous effects from longer lived carrier associated ones and obtain 

directly 2PA at several wavelengths around the peak. Although noisy and incapable of producing 

a quantitative result, our closed-aperture scans showed the expected change in the sign of n2 

around the peak of 2PA and the strong influence of absorptive effects as predicted by the 

numerical simulations. We were able to extract from the picosecond experimental data using 

both open and closed-aperture scans 2PA coefficients and free-carrier absorption and refraction 

cross-sections. The analysis revealed that for these longer pulses free-carrier effects become 

much more important and even dominant in the case of refraction. The 2PA values obtained are 

in agreement with newer theoretical calculations [82] and the experimental values obtained from 

the femtosecond experiments. The FCA cross-sections also agreed with our linear FTIR 

measurements for the respective wavelengths which also have shown a clear dependence on 
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sample temperature, demonstrated for the first time. The FCR values were also shown to be in 

agreement with previous measurements and theoretical analyses [76, 82]. The time-resolved 

measurements demonstrated a good decoupling of FCA from 2PA and allowed us to isolate two 

different off-diagonal elements of the )3(χ  tensor by employing perpendicular polarizations for 

the interacting beams. Using longer delays and much larger input irradiances to induce larger 

population densities, we were also able to observe relaxation of photo-generated carriers on a ps 

time scale and measure the respective Auger coefficients. Our numbers are consistent with the 

calculated values from the literature [76] and were successfully used to interpret optical limiting 

data taken with nanosecond pulses [74]. 

8.2. 

The work described in this dissertation was meant to answer some questions and 

fortunately, also indicated some interesting other venues to be explored. The particular issues 

that are deemed worthy of further investigation will be outlined below. 

Future Work 

The large enhancements seen in 2PA for the extremely nondegenerate case indicate 

potential applications for optical switching. Feasibility of such experiments in guided geometries 

should be further explored. Furthermore, the extreme behavior of the nonlinear Kerr coefficient 

(n2) needs to be verified experimentally, preferably with longer pulses (picosecond) having 

much narrower spectral widths for improved resolution. The large absorption effects pose 

considerable problems and will have to be circumvented. Also, the effects of strong varying n2 

over the larger spectral width of femtosecond pulses would be interesting to investigate from the 

point of view of phenomena like optical shocks and wave breaking [102]. 
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Arguably the most interesting consequence of the demonstrated strong enhancement of 

2PA in extremely frequency nondegenerate schemes is the possibility of observing two-photon 

emission and two-photon gain in systems with population inversion. A comprehensive 

theoretical study is necessary to establish the ideal experimental conditions to maximize the 

current extremely low output [32, 54]. There are still many unanswered questions related to this 

types of experiments which resolved can significantly shorten the path towards achieving two-

photon lasing. 

The analysis of the degenerate 3PA in zincblende structures can be extended to a more 

complex 7-band model [24] to predict anisotropy. A significant anisotropy of 3PA in GaAs has 

already been demonstrated [61]. Also, the extension of this approach to other crystal symmetries 

can be made allowing for a better understanding of other materials’ spectra. 

An interesting problem related to the InSb experiments was the presents of the “coherent 

artifacts”. A good theoretical model to explain the behavior seen should be developed. The 

anisotropy of the 2PA merits further attention as experiments employing different polarizations 

and different crystal cuts would help isolate and determine with good precision the off-diagonal 

elements of the )3(χ  tensor. Another interesting topic that can be investigated is the measured 

2PA or 3PA with ultrafast (large bandwidth) pulses, either transform limited or with a well 

characterized chirp. In a semiconductor, the large spectral bandwidth of pulses would allow 

multiple types of nonlinear interactions of the present frequencies and these effects would be 

interesting to evaluate. 
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