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ABSTRACT 

In recent years considerable research has been done in the area of “nanofluids”. 

Nanofluids are colloidal suspensions of nanometer size metallic or oxide particles in a base fluid 

such as water, ethylene glycol. Nanofluids show enhanced heat transfer characteristics compared 

to the base fluid. The thermal transport properties of nanofluids depend on various parameters 

e.g. interfacial resistance, Brownian motion of particles, liquid layering at the solid-liquid 

interface and clustering of nanoparticles. In this work atomic scale simulation has been used to 

study possible mechanisms affecting the heat transfer characteristics of nanofluids. Molecular 

dynamics simulation for a single silica nanoparticle surrounded by water molecules has been 

performed. Periodic boundary condition has been used in all three directions. The effect of 

nanoparticle size and temperature of system on the thermal conductivity of nanofluids has been 

studied. It was found that as the size of nanoparticle decreases thermal conductivity of nanofluid 

increases. This is partially due to the fact that as the diameter of nanoparticle decreases from 

micrometer to nanometer its surface area to volume ratio increases by a factor of 103. Since heat 

transfer between the fluid and the nanoparticle takes place at the surface this enhanced surface 

area gives higher thermal conductivity for smaller particles. Thermal conductivity enhancement 

is also due to the accumulation of water molecules near the particle surface and the lattice 

vibration of the nanoparticle. The phonon transfer through the second layer allows the nanofluid 

thermal conductivity to increase by 23%-27% compared to the base fluid water for 2% 

concentration of nanosilica.  

 

iii 



 

 

 

 

 

 

 

 

Dedicated to my sisters Ritu, Poonam and my parents Asha and Jagdish 

iv 



ACKNOWLEDGMENTS 

This work and my stay at UCF has been a great learning experience for me. I would like 

to take this opportunity to express gratitude to my advisor Dr. R. Kumar for his constant support, 

advice and guidance throughout my stay at UCF. It was a rewarding experience working with 

him. I am thankful to Dr. X. Wu for his endless help, which came at a time when it was badly 

needed. I also acknowledge and offer thanks to my committee members Dr. J. Kapat and Dr. R. 

Guha for their valuable comments and guidance. I also acknowledge the support of the College 

of Engineering & Computer Science and the I2Lab at the University of Central Florida for the 

research presented here. 

 

I would also like to thank my friends at UCF for making my stay memorable. I thank the 

UCF Indian student association, Sangam for their help when I first came to USA.  

 

None of this would have been possible without the blessings of Nirankari Baba Hardev 

Singh Ji and the constant support and encouragement of my family members and my best friend 

Vasud. 

v 



TABLE OF CONTENTS 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF TABLES......................................................................................................................... ix 

LIST OF ABBREVIATIONS......................................................................................................... x 

CHAPTER 1: INTRODUCTION................................................................................................... 1 

1.1 Potential Applications........................................................................................................... 3 

1.2 Problem Description ............................................................................................................. 4 

CHAPTER 2: LITERATURE REVIEW........................................................................................ 7 

2.1 Experimental Results for Nanofluids.................................................................................... 7 

2.2 Modeling of Nanofluids...................................................................................................... 10 

2.3 Literature Review on Molecular Dynamics Simulation ..................................................... 16 

CHAPTER 3: METHODOLOGY ................................................................................................ 40 

3.1 Molecular Dynamics Simulation ........................................................................................ 42 

3.2 Potential Functions used in Simulation............................................................................... 50 

3.2.1 Interactions in Silica Nanoparticle............................................................................... 50 

3.2.2 Liquid-Liquid Interaction............................................................................................. 51 

3.2.3 Solid-Liquid Interaction............................................................................................... 53 

3.2.4 Coulombic Interaction ................................................................................................. 54 

3.3 Generation of Nanoparticle................................................................................................. 57 

3.4 Molecular Dynamics Simulation of Thermal Conductivity................................................ 59 

CHAPTER 4: PARALLEL MOLECULAR DYNAMICS........................................................... 60 

4.1 Atom decomposition algorithm .......................................................................................... 64 

vi 



4.2 Spatial decomposition method............................................................................................ 66 

4.3 Simulation Procedure.......................................................................................................... 70 

CHAPTER 5: RESULTS AND DISCUSSION............................................................................ 72 

5.1 Lattice Vibration of the Nanoparticle ................................................................................. 72 

5.2 Density Profile near the Interface ....................................................................................... 73 

5.3 Heat Current Autocorrelation Function .............................................................................. 77 

5.4 Thermal Conductivity Enhancement .................................................................................. 78 

CHAPTER 6: CONCLUSION ..................................................................................................... 83 

CHAPTER 7: FUTURE WORK .................................................................................................. 85 

LIST OF REFERENCES.............................................................................................................. 87 

 

vii 



LIST OF FIGURES 

Figure 1: Silica nanoparticle surrounded by water molecules ........................................................ 5 

Figure 2: Silica nanoparticle surrounded by water molecules ........................................................ 6 

Figure 3: Schematic of the simulation domain used in NEMD simulation by Wu & Kumar ...... 19 

Figure 4: Simulation techniques for various length and time scales ............................................ 40 

Figure 5: General flowchart of MD algorithm.............................................................................. 43 

Figure 6: Potential energy of a particle in LJ model..................................................................... 45 

Figure 7: Neighbor-list construction with radius rlist .................................................................... 49 

Figure 8: Structure of water molecule in SPC/E model................................................................ 52 

Figure 9: Generating the nanoparticles from Silica unit-cell........................................................ 58 

Figure 10: 1nm and 2nm diameter silica nanoparticles ................................................................ 58 

Figure 11: Flowchart of parallel molecular dynamics code.......................................................... 65 

Figure 12: Smoothed density profiles of water for 1nm and 2nm nanoparticle at T=300K......... 74 

Figure 13: Density of water molecules higher close to the surface compared to far away .......... 75 

Figure 14: Schematic nanoparticle surrounded by liquid layer [Yu and Choi, 2003] .................. 76 

Figure 15: Heat current autocorrelation function.......................................................................... 78 

Figure 16: Thermal conductivity of water, nanoparticle and nanofluid at 300K.......................... 80 

Figure 17: Thermal conductivity of 1nm and 2nm nanofluid and pure water at T=300K............ 81 

 

viii 



LIST OF TABLES 

Table 1: Thermal conductivities of various materials at 300K....................................................... 2 

Table 2: MD work related to thermal conductivity calculation.................................................... 23 

Table 3: MD work related to modeling of water molecule........................................................... 27 

Table 4: Force field parameters for silica nanoparticle ................................................................ 51 

Table 5: Calculated thermal conductivity of 3 nanofluids at various temperatures ..................... 81 

 

ix 



LIST OF ABBREVIATIONS 

ke    Effective thermal conductivity 

kf    Thermal conductivity of fluid 

kp    Thermal conductivity of particle 

α    kf/kp

φ    Volume fraction of particles 

φ    Volume fraction of particles 

n    non-spherical shape factor 

ψ    Sphericity 

Jµ    Thermal current 

T    Temperature 

xT ∂∂ /    Temperature gradient 

∇    Gradient 

fi    Force on atom i 

φ    Interatomic potential 

qi    Charge on atom i 

Ek    Electric field at site k 

µ    Dipole moment 

erf    error function 

q(t)    Heat current 

λ    Thermal conductivity 

 

x 



CHAPTER 1: INTRODUCTION 

Heating and cooling fluids are of major importance in many industries including 

transportation, micro-electronics, manufacturing, production, energy supply and metrology. 

Other important uses of heat transfer fluids include vehicular and avionics cooling systems, 

hydraulic heating and cooling systems in buildings, and industrial process heating and cooling 

systems in petrochemical, textile, food and other processing plants. Heat transport characteristics 

of these fluids are vital in designing and developing high efficiency heat transfer equipments. 

Thermal conductivity of these fluids plays an important role in the development of these devices. 

Low thermal conductivity of these fluids hinders high effectiveness and compactness of heat 

exchangers and other devices. High heat flux is produced in smaller (<100 nm) microelectronic 

devices, in high speed devices (in GHz range), in brighter optical devices and in high power 

output engines. Conventional heat transfer methods use extended surfaces such as fins to 

increase heat transfer rates, but contemporary designs are already stretched to their limits and no 

improvements have been made in this area for the last few years using conventional methods. 

With the advent of nanotechnology, size of many devices is decreasing while the heat flux 

produced by these devices is increasing. Researchers around the world are looking for efficient 

ways to remove high heat fluxes out of the miniature devices. Therefore, there is an urgent need 

to develop advanced heat transfer fluids with higher thermal conductivity and enhanced heat 

transport characteristics.  

 

Researchers have been working for decades to develop more efficient heat transfer fluids but 

their efforts are constrained because of low thermal conductivity of conventional fluids. It is well 
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known that crystalline solids e.g. metals and oxides at room temperature have several orders-of-

magnitude high thermal conductivity compared to conventional heat transfer fluids also thermal 

conductivity of metallic liquids is higher compared to non-metallic liquids. For example, thermal 

conductivity of copper is 650 times and that of silicon is 240 times higher than that of water as 

shown in Table 1. Therefore, it is expected that thermal conductivity of liquids suspended with 

metallic or oxide particles should be significantly higher compared to the base fluid.  

 

Table 1: Thermal conductivities of various materials at 300K 

Material Thermal Conductivity 

(W/mK) 

Specific Thermal 

Conductivity 

Silver 429 700 

Copper 401 654 

Aluminum 237 387 

Silicon 148 241 

Liquid Sodium at 644K 72.3 118 

Silica (α quartz) 8.2 13.37 

Water 0.613 1 

Ethylene glycol 0.253 0.41 

Engine Oil 0.145 0.24 

 

Numerous theoretical and numerical studies have been done to calculate the effective thermal 

conductivity of suspensions consisting of solid particles in base liquid. However earlier studies 

on thermal conductivity calculation of dispersions of solid particles in liquid were confined to 
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millimeter and micrometer size particles. Ahuja [1975] studied suspension of sub-micron size 

polystyrene particles in ethylene glycol and showed that the heat transfer was increased by a 

factor of 2 under laminar flow conditions and negligible difference in pressure drop was 

observed even for particle volume fraction of 9%. [Liu et al., 1988] also found enhanced heat 

transfer in particulate slurries. These studies used were micron-sized particles. A major drawback 

of micron-sized particles is that they settle down quickly and pose significant corrosion and 

abrasion hazards in engineering fluid systems. The settling of these micron-sized particles can 

also cause clogging and result in higher pressure drop for the flow. Even though the suspensions 

of these particles have higher thermal conductivity compared to their base fluids, they have little 

application in engineering systems due to the problems associated with them. With the advent of 

nanotechnology, researchers have been able to manufacture nano-sized particles. Application of 

nanoparticles provides an effective way of increasing thermal conductivity of fluids. These 

nanoparticles due to their small size are highly stable in suspensions and do not settle down 

quickly. So these nanoparticles overcome the shortcoming posed by micron-sized particles and 

show exciting possibility of enhancing heat transport properties of conventional heat transfer 

fluids.  

1.1 Potential Applications 

The potential application of this research work in many industries makes it a compelling study. 

Even at low loading levels, nanofluids dramatically increase the thermal conductivity and critical 

heat flux and therefore can be used in many practical applications. These nanofluids can be used 

in transportation industry as coolants and heat removing lubricants in the automobiles. They can 
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be used in chip cooling industry and electronic packaging industry where high heat flux 

emanates from the devices. These could be used to design highly efficient portable cooling 

systems, and portable power generation systems. Nanofluids can help design thermal systems 

with precise temperature control. The nanofluids can be used in space applications also, they will 

reduce the quantity of required cooling fluid onboard, and resulting in a weight reduction of both 

ground and space based instruments. The nanofluids will also help improve the thermal 

performance of miniaturized heat transport devices that are designed for applications such as 

cooling small sensors and MEMS devices. They can also be used as liquid cooling systems for 

super computers and server systems. The use of nanofluids is currently evaluated in industries 

that deal with very high heat fluxes, e.g. nuclear reactors and laser systems. 

1.2 Problem Description 

From the numerous experimental and computational studies we understand that nanofluids show 

promise in enhancing heat transfer characteristics of conventional fluids. Many theories and 

mechanism at the molecular level have been proposed which explains the heat transfer 

characteristics of nanofluids. Where such studies are available, results have not been 

encouraging, the thermal conductivity enhancement by using nanofluids is still not predicted 

with a great deal of accuracy. To use it in industry or engineering systems we should have some 

theory or correlations to predict their performance or efficiency. The experiments are not always 

reproducible and there is no validation of experimental results conducted by various researchers 

around the world. These thermal characteristics of nanofluids depend on many parameters i.e. 

volume concentration, size, shape and material of nanoparticle, No systematic study has been 
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done till now to find the effects of various parameters. In this work, a systematic study of 

nanoparticle size and temperature is performed using the molecular dynamics simulation. The 

results calculated from this simulation will be shown to be consistent with experimental results. 

To study the effect of nanoparticle size and system temperature silica nanoparticle surrounded by 

water molecules is simulated using atomic scale simulation.  

  

 

Figure 1: Silica nanoparticle surrounded by water molecules 

 

Figure 1 shows the simulation domain which consists of a silica nanoparticle of 1.5 nm diameter 

surrounded by water molecules in a cube of length 4.02 nm. Water molecules in the simulation 

assumes tetrahedral structure with rO-H=0.1nm and . For clarity the water 

molecules is shown as a monatomic particle in Figure 1. Figure 2 shows the tetrahedral water 

molecules near the surface of nanoparticle. Hydrogen, oxygen and silicon atoms are represented 

by white, red and yellow colors respectively. 

109.47oHOH∠ =

5 



 

Figure 2: Silica nanoparticle surrounded by water molecules 

 

The objective of this work is to study the transport mechanisms occurring in nanofluids using 

atomic scale simulation. Molecular dynamics (MD) simulation will be used to study the 

phenomenon occurring at the atomic scale. The proposed tasks for this work are: 

 

Task 1: Develop MD code to study the interaction between nanoparticles surrounded by water 

molecules. 

Task 2: Parallelize the code using the atom decomposition method. 

Task 3: Study the effect of nanoparticle size and system temperature on thermal conductivity of 

nanofluid. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Experimental Results for Nanofluids 

Masuda et al [1993] were the first ones to do experiments with suspension of nanoparticles and 

report enhanced heat transfer. They reported 30% increase in thermal conductivity of water 

suspended with alumina nanoparticles at a volume fraction of 4.3%. Choi at Argonne national 

lab engineered a new class of fluids with enhanced heat transfer characteristics and was the first 

one to call these colloidal suspensions nanofluids [Choi, 1995] which is now commonly 

accepted. Lee et al [1999] did experimental study of alumina and cupric oxide nanoparticles 

suspended in water and ethylene glycol and found 15% enhancement in the thermal conductivity 

of alumina-water nanofluid at the same volume fraction as Masuda et al. The difference in the 

results was attributed to the size of nanoparticles, Masuda et al used 13nm alumina nanoparticles 

while Lee et al used 33nm nanoparticles. Wang et al [1999] studied the effect of particle size and 

volume fraction on the thermal conductivity of nanofluids. They showed that thermal 

conductivity of nanofluids increases with decreasing particle size for nanofluids consisting of 

alumina and cupric oxide nanoparticles suspended in water and ethylene glycol.  Thermal 

conductivity increases with increasing particle volume fraction. They observed a maximum of 

12% thermal conductivity rise for alumina nanoparticles with a volume fraction of 3%. Eastman 

et al [2001] reported anomalously increased thermal conductivity for ethylene glycol suspended 

with copper nanoparticles. They reported 40% enhancement in the thermal conductivity of 

ethylene glycol suspended with only 10nm copper nanoparticles at 0.3% volume fraction. 

Earlier, they observed 20% increase in thermal conductivity with 4% volume fraction of 35nm 
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cupric oxide nanoparticles. This clearly shows the effect of the size of particle and also shows 

that metallic particles give enhanced thermal conductivity compared to oxide particles. Das et al 

[2003] used temperature oscillation technique to study the effect of temperature on the thermal 

conductivity of alumina and cupric oxide nanoparticles in water. They measured thermal 

conductivity at temperatures ranging from 20oC to 50oC for different volume fraction and 

reported a linear increase in thermal conductivity with increased temperature. Patel et al [2003] 

reported similar trends for 4nm gold nanoparticles suspended in toluene. They even showed that 

for the same surface area to volume fraction ratio, we can get different conductivities when the 

materials are different. Several researchers [Jang and Choi, 2004, Vassallo et al., 2004, Milanova 

and Kumar, 2005] have reported significant increase in critical heat flux in pool boiling heat 

transfer experiments consisting of nanofluids. All these exciting properties make nanofluids 

promising for next generation thermal-management systems. Milanova et al, [2006] 

experimentally studied the heat transfer characteristics of silica (SiO2), ceria (CeO2) and alumina 

(Al2O3) nanofluids at 0.5% concentration. They studied the effect of surface chemistry of 

nanoparticles, pH of the nanofluid solution, agglomeration of nanoparticles and effect of particle 

size by using 10nm and 20nm nanoparticles in pool boiling experiment. They found that the 

critical heat flux (CHF) increased by about 50% regardless of particle size and type when no 

particles were deposited on the heating wire. The boiling regime is further extended to higher 

heat flux when there is nanoparticle agglomeration on the heating wire. The nanoparticle 

agglomeration on the wire causes high heat transfer from the inter-agglomerate pores, resulting 

in nearly 150% increase in CHF. The deposition of nanoparticles was seen for charged 10nm 

silica nanoparticles, while ceria and alumina nanoparticles did not show any deposition on the 

wire. The oxygen vacancies present in nano-ceria cause the natural convection regime to depart 
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faster to the nucleate boiling regime, compared to silica and alumina. Ceria nanofluid shows 

lower CHF compared to alumina and silica nanofluids. The smallest silica particles (10nm 

diameter) showed highest deposition on the wire and highest CHF enhancement, which suggests 

that the porosity due to silica deposition and oxidation of the Nichrome heating wire are 

responsible for the greatest increase in CHF. Milanova and Kumar [2006] also studied the effect 

of surface charge of silica nanoparticles using the zeta-potential technique on the heat transfer 

enhancement of the silica-water nanofluid. Unlike the previously postulated theory that the CHF 

monotonically increases with increasing particle concentration they found that the CHF can 

increase or decrease with increasing particle concentration depending on the particle shape and 

the hydroxylated surface of the nanoparticle. By using the particle sizing they showed the 

formation of an ordered second fixed layer (hydration layer) on the surface of nanoparticle. This 

ordered layer is formed by the hydrogen bonds between the sylanol group (SisurfaceOH:OH2) with 

water molecules. The size and the curvature of the particles determine the extent of hydration 

layer. Bigger particles possess more silanol groups, which provide higher repulsive force 

between nanoparticles and hence less agglomeration. The zeta potential measurement for 20nm 

and 10nm silica nanoparticle shows that the bigger particle has higher negative potential (ξ20nm = 

- 27mV, ξ10nm = -23.5mV). It was observed that the size of 10nm particle increased to 18nm and 

20nm for 1% and 2% volume concentration respectively. Four regions based on nanoparticle 

concentration were observed. In region 1 (0.1-0.2% conc.), the particle size remains constant 

because no agglomeration occurs and the CHF slightly increases. In region 2 (0.2-0.5% conc.), 

the particle size increases from to almost twice in diameter due to agglomeration and the surface 

density decreases. But the rate of increase of surface area is higher than rate of decrease of 

number density and so CHF increases. In region 3 (0.5-1.0% conc.), the size of nanoparticle 
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increases to double the diameter and then remains constant and the number density decreases. In 

this region the rate of decrease in number density is higher than the rate of increase of surface 

area and so the CHF decreases in this region. In region 4 (1.0-2.0% conc.) the particle size after 

agglomeration remains constant and CHF increases because the particle concentration is 

increasing. So it was shown that the CHF of nanofluid depends not only on the particle 

concentration and size but also on particle shape, agglomeration characteristics and the 

hydroxylated surface of the nanoparticle.  

 

It is well known that carbon nanotubes (CNT) exhibit unusually high thermal conductivities 

[Berber et al., 2000]. Choi et al extended the idea of nanoparticle suspension to suspension of 

CNT’s in oil [Choi et al., 2001]. Since carbon is hydrophobic so it can not be dispersed in water 

without additional surfactants. They reported 250% increase in thermal conductivity at 1% 

volume fraction of multiwall carbon nanotubes (MWNT) having 25nm mean diameter and 50µm 

length. Xie et al reported only 20% increase in thermal conductivity with MWNT suspension in 

poly oil [Xie et al., 2003]. It was shown that unlike nanoparticles, suspension of nanotubes show 

quadratic variation with volume fraction.  

2.2 Modeling of Nanofluids 

It is evident that a lot of research has been conducted in determining the heat transport 

characteristics of the nanofluids in last decade. But still many questions remain unanswered. The 

data produced by one group is not reproducible by another and no concrete theory has been 

established to calculate the thermal conductivity of nanofluids and explain this phenomenon. 
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Researchers have proposed many theories to explain the anomalous behavior observed in 

nanofluids. The early attempts to explain the enhanced transport characteristics of nanofluids 

were made with the classical theory of Maxwell [1881] for composite materials. This theory is 

applicable for dilute suspension of spherical particles in homogeneous isotropic composite 

material.    

   (2.1) 

Here ke is the effective thermal conductivity of the suspension, kf is the thermal conductivity of 

the base fluid, α is the ratio of thermal conductivity of the particle to that of the fluid, Φ is the 

volume fraction. It is appropriate for predicting properties such as thermal conductivity, 

electrical conductivity, dielectric constant and magnetic permeability of composite materials. 

When compared with experimental data Maxwell’s theory matched well for low particle 

concentrations with particles of millimeter or micrometer size. But it did not conform well to 

particles of smaller size and non-spherical shapes.   

 

Hamilton and Crosser [1962] (H-C) extended Maxwell’s theory and generalized it for non-

spherical particles. They came up with an expression for effective thermal conductivity of a 

colloidal suspension as: 

  

     (2.2) )1()1(
)]1(1)[1(

−−−+
−+−+

=
αφα
αφα

n
n

k
k

f

e

 

Here, n is the non-spherical shape factor given as: 
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n = 3/ψ         (2.3) 

Here ψ is the sphericity, defined as the ratio of the surface area of a sphere with volume equal to 

that of the particle to the surface area of the particle. For n=3 this equation becomes the Maxwell 

equation for spherical particles. The HC theory was used by Xuan and Li [2000] to obtain rough 

estimation of thermal conductivity of nanofluids for different volume fraction and shape factor. 

They showed that for ψ=0.7 the model predicts results close to the experimental results. Lee et al 

[1999] showed that H-C theory predicted the right trend for oxide particles, but when used for 

very fine metallic particles [Eastman et al, 2001] it under-predicted the effective thermal 

conductivity by over an order of magnitude. H-C theory takes into account the increase in 

surface area of the particles by taking the shape factor into account, but it does not consider the 

size of the particles. This is an obvious shortcoming of this theory. H-C takes into account only 

the volume fraction of particles and shape but it does not include the effect of size and material 

of particle used and the temperature of nanofluid. It was not surprising that both Maxwell’s 

theory and HC theory were not able to predict the enhancement in thermal conductivity of 

nanofluids because it did not take into account the various important parameters affecting the 

heat transport in nanofluids like the effect of size of nanoparticle and modes of thermal transport 

in nanostructures.  

 

Keblinski et al [2002] attribute the enhancement in thermal conductivity to four possible 

mechanisms, Brownian motion of particles, layering of liquid molecules around the particles, 

ballistic nature of heat transport in nano-structures and nanoparticle clustering. Particles move 

through liquid by Brownian motion and collide with each other, hence enabling direct solid-solid 

transport of heat from one to another. Bhattacharya et al [2004] carried out Brownian dynamics 
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simulation with equilibrium Green-Kubo method to calculate effective thermal conductivity of 

nanofluid and found good agreement with experimental results. But their results depend on the 

correlated parameters which were used to match with experimental data and are difficult to apply 

in other nanofluid simulations as there is no systematic way to find these parameters. Although 

initial calculations [Bhattacharya et al, 2004] showed significant increases in thermal 

conductivity from Brownian motion of particles, interaction parameters based on appropriate 

Debye length increased the conductivity by less than 2% [Gupta et al, 2006]. Keblinski et al did 

an order of magnitude analysis between thermal diffusion and Brownian diffusion and showed 

that even for extremely small particles thermal diffusion is much faster than Brownian diffusion, 

so they concluded that Brownian effects are small in heat transport in nanofluids. It was also 

observed that liquid molecules near the surface of solid particle form an ordered layer around it, 

thereby enhancing the local ordering. Since phonon transfer in solids is very effective, this local 

ordering enhances the heat transport from solid to liquid.  These results have been confirmed by 

Sachdeva et al [2005]. Liquid layering around the particle is an important phenomenon affecting 

the thermal conductivity but it is not the sole reason for the thermal conductivity enhancement in 

the nanofluids. Another mechanism proposed by Keblinski et al was that nature of heat transport 

in nano-structure is not diffusive but ballistic in nature. If the ballistic phonons initiated in one 

particle can persist in liquid and be transmitted to another particle, this can significantly improve 

the heat transfer. The phononic nature of heat transport originating from lattice vibrations in 

solid particle was also reported by Wu et al [2006]. Lattice vibrations in solid particles combined 

with liquid layering around the particle and Brownian motion of the particles can be termed as 

significant mechanisms for the heat transfer enhancement in nanofluids. Lastly it was suggested 

that if nanoparticles form clusters, thereby increase the overall diameter of the cluster and 
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decrease the thermal conductivity. Local clustering of particles has been observed experimentally 

also by Eastman and co-workers [Eastman et al, 2001, Eastman et al, 1999]. Keblinski et al 

[2002] used a single particle surrounded by fluid molecules to carry out equilibrium molecular 

dynamics (MD) simulation. Lennard-Jones potential was used to simulate the interactions 

between all atoms, and the interactions inside the nanoparticle were ten times higher than those 

between fluid atoms. Their simulation revealed the basic phenomena, no quantitative information 

on the extent of heat transfer enhancement was provided, however this could be due to the fact 

that appropriate potential were not used to induce lattice vibration. Therefore, they never realized 

thermal conductivity enhancement of more than 2%. Wu and Kumar [2004] used non-

equilibrium molecular dynamics (NEMD) method to calculate the thermal conductivity of 

nanofluid. They considered all the possible interactions, fluid-fluid, particle-particle and fluid-

particle possible in a nanofluid suspension. They used L-J like potential to simulate the fluid-

fluid and fluid-particle interactions and another inter-atomic potential is used for particle-particle 

interactions. The particle-particle potential takes into account the diameter of the particles also. 

They used perfectly elastic collisions between particles to simulate the non-agglomerated case 

and perfectly inelastic collision method to simulate to agglomeration between nanoparticles. The 

results for non-agglomerated system match fairly well with the experimental results for nanofluid 

consisting of 10nm copper nanoparticles with water. The random Brownian motion of particles 

show a strong dependence on temperature and the frequency of collision between fluid 

molecules and nanoparticle increases with temperature, therefore the effective thermal 

conductivity of the suspension also increases. It was also observed that the agglomeration 

between nanoparticles decreases the heat transfer enhancement, particularly at low concentration, 

since the agglomerated particles tend to settle down in liquid and also reduce the number density 
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of particles, which creates large regions of particle-free liquid. It was also shown that the 

effective thermal conductivity of nanofluid decreases as the number of agglomerated 

nanoparticles increases. Although this work used simple potential functions to simulate the 

interactions and the whole nanoparticle was also considered as single atom/particle, but this work 

gives good insight into the difference between agglomerated and non-agglomerated system and 

the results also match with experiments. In another work Wu and Kumar [2005] used a 

mesoscopic thermal lattice Boltzmann model to study the fluid flow and heat transfer process of 

nanofluids in a microchannel. Effect of various internal and external forces, such as buoyancy, 

gravity, drag and Brownian force was also taken into account. The double-distribution-function 

(DDF) was used to simulate flow process and temperature distribution of nanofluids in a 

channel. It was observed that the suspended nanoparticles are in random motion along with the 

streamwise flow due to the various internal and external forces. The distribution morphology of 

nanoparticles plays an important role in convective heat transfer enhancement of nanofluid. Due 

to the random motion of the nanoparticles the temperature distribution in case of nanofluid is 

quite different from that of pure fluid flowing through a channel. The temperature distribution 

for nanofluid is irregular and it becomes flatter in the vertical direction compared to the pure 

fluid case. This flattened temperature distribution results in a more effective heat transfer 

efficiency of the nanofluid. Distribution of the suspended nanoparticles leads to a fluctuation of 

the Nusselt number of the nanofluids in the direction of the main flow, but the average value of 

Nusselt number for the laminar flow of nanofluid in a channel shows an increase compared to 

that for pure fluid under the same condition.  
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Other attempts have also been made to model heat transport in nanofluids. Yu and Choi [2003] 

modified Maxwell’s equation to include the effect of liquid layering around the particle and 

found good match with experimental data. They came up with an expression for Ke: 

  (2.4) 

Here, Ke is the effective thermal conductivity of nanofluid, Kpe is the equivalent thermal 

conductivity of equivalent nanoparticles and β is the ratio of the nano-layer thickness to the 

original particle radius. To simplify their analysis they assumed that thermal conductivity of 

nano-layer is same as that of the particle. They concluded that the ordered liquid layer around the 

nanoparticles effectively increases the particle volume fraction and hence the effective thermal 

conductivity of the nanofluids.  

 

Although lot of work has gone in studying the mechanisms of heat transport in nanofluids there 

is no set theory for the same. There is a need to systematically study the various mechanisms 

postulated by researchers to understand the phenomenon occurring at nanoscale heat transfer.  

2.3 Literature Review on Molecular Dynamics Simulation 

Molecular dynamics (MD) is a very powerful computer simulation technique where the time 

evolution of a set of interacting atoms is studied by integrating their equations of motion. MD 

essentially involves solving a classical many-body problem in the context of the study of matter 

at the atomic scale. It allows predicting the static and dynamic properties of the system under 

consideration. For complex systems which are modeled poorly by continuum or analytical 

16 



methods, Molecular Dynamics (MD) simulation lends itself as a very good computational tool. 

MD has been used to support research in the areas of physics, chemistry, biology and material 

science. Alder and Wainwright [1959] were amongst the first ones to do MD simulation in 1959 

at the Lawrence Livermore National Laboratory. They used a “hard sphere” model to study the 

molecules in liquid which interact as “billiard balls”. They were able to simulate 32 and 108 

molecules in computations requiring 10 to 30 hours with the fastest computers at that time, an 

IBM 704. Rahman [1964] studied many properties of liquid argon using Lennard-Jones potential 

on a system containing 864 atoms. Verlet [1967] calculated the phase diagram of argon using L-J 

potential and computed correlation functions to test theories of liquid state. Most of systems 

studied at that time contained very small number of atoms but now with improvements in 

computer architecture it is possible to simulate million of particles but the computations are very 

demanding.  

 

Table 2 shows the work done in the area of thermal conductivity calculation using computer 

experiments. Table 3 gives a list of publications showing various models to simulation water 

molecule in a MD simulation. These tables discuss equilibrium molecular dynamics (EMD), 

non-equilibrium molecular dynamics (NEMD) and various models for the simulation of water 

molecules at the atomic scale. Experimentally, thermal conductivity (λ) is typically calculated by 

measuring the temperature gradient that results from the application of a heat current. The 

thermal conductivity relates the heat current to the temperature gradient via Fourier’s law as: 

v
v v

TJ
xµ µλ
∂

= −
∂∑

   (2.5) 
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Where Jµ is a component of the thermal current, λµv is an element of the thermal conductivity 

tensor, and is the gradient of the temperature. In MD simulations the thermal 

conductivity can be computed either using the non-equilibrium MD (NEMD) or equilibrium MD 

(EMD) methods. The two most commonly applied methods in MD are the ‘direct method’ and 

the Green-Kubo method. The direct method is an NEMD method in which a temperature 

gradient across the simulation cell, essentially mimicking the experimental situation. On the 

other hand, in the EMD method we use the Green-Kubo correlations which use the heat current 

fluctuations to compute the thermal conductivity via the fluctuation-dissipation theorem.  

vxT ∂∂ /

 

The NEMD or direct method of computing the thermal conductivity is analogous to the 

experimental measurement. Wu and Kumar [2004] used NEMD method to calculate the thermal 

conductivity of suspension of copper nanoparticles in water. Figure 3 shows a schematic 

representation of the simulation domain used to compute λ by Wu and Kumar [2004]. The 

simulation domain is divided into 10 layers with each layer having identical thickness and 

volume. Layer 0 was divided into 2 equidistant parts to be consistent with the periodic boundary 

condition. Layer 0 is defined as the “cold” layer and layer 5 as the “hot” layer (Figure 3). The 

initial temperature of whole system is maintained somewhere in between TH and TL.  
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Figure 3: Schematic of the simulation domain used in NEMD simulation by Wu & Kumar  

 

By exchanging the particles (fluid molecules and nanoparticles) with highest velocity in cold 

layer with the ones having lowest velocity in hot layer, the heat flux is generated in the system. 

By exchanging the velocities in this way the temperature in the hot layer increases and in the 

cold layer decreases, setting an temperature gradient in the system. This temperature gradient 

leads to an energy transfer from the hot layer to the cold layer by heat conduction. Total 

momentum, kinetic energy and total energy are maintained constant in this exchange process.  

 

When the system reaches steady state, the heat flow due to velocity exchange of particles must 

equal the heat conduction from the hot layer to the cold layer in both directions. The energy 

balance can be written as: 

2 2
, ,

0,1
( ) 2

2
i

i h i c yz
i transfer

m Tv v tA
x

λ
=

∂
− = −

∂∑ ∑
   (2.6) 
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Where, mi is the mass of the particle (i=0, 1 refer to the fluid molecule and nanoparticle 

respectively), vh and vc are the velocity of particles in hot and cold layers respectively, Ax is the 

cross section area of calculated domain and t is the thickness of the layer. All the quantities in 

equation (2.4) are exactly known, except the temperature gradient. The temperature gradient has 

to be calculated using the kinetic theory of gases, which relates temperature with velocity of 

particles as follows: 

2
,

1

1
3

in

k i
i ji B

T m
n k =

= ∑∑ j iv
   (2.7) 

Where Tk is the instantaneous local temperature of layer k, ni is the number of ith particle in layer 

k, vj,i is the velocity of ith particle in layer k, and kB is the Boltzmann’s constant. Using the 

velocities calculated at each MD time step we can calculate the temperature of hot and cold layer 

and then calculate the temperature gradient. The left hand side of equation (2.6) is known and by 

plugging in the temperature gradient we can calculate the thermal conductivity of the simulation 

domain.  

 

As we observe in Figure 3, the application of hot and cold layer (source and sink) and application 

of periodic boundary condition only generates a heat current in the x-direction and with a single 

simulation thermal conductivity only along one particular direction can be calculated. To obtain 

λ along a different crystal lattice direction, an entirely new simulation domain with layers along 

the required lattice direction must be created and new simulation must be carried out. This 

limitation does not exist for the Green-Kubo method, where the entire thermal conductivity 

tensor is computed in just one simulation. For the direct method, it is important that a steady-

state heat current flow has been achieved. This can be achieved by plotting a stationary 
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temperature profile as a function of time, thus insuring that only steady-state currents are flowing 

and, hence thermal conductivity can be computed using equation (2.6).  

In EMD simulation, Green-Kubo correlations are used to compute the thermal conductivity. In 

EMD simulation there is no imposed driving force on the system, and hence the system is always 

in the linear-response regime. Since the simulation is done in equilibrium and the system 

response in the linear regime, according to the fluctuation-dissipation theorem, the transport 

coefficients can be calculated using the Green-Kubo correlations. In this method the heat current 

autocorrelation function is calculated and is correlated to the thermal conductivity via the Green-

Kubo expression: 

2
0

1 (0). ( )
3 B

q q t d
K VT

λ
∞

= ∫ t
   (2.8) 

Where V is the system volume, t is time and q is the heat current, and the angular brackets denote 

an ensemble average, or, in the case of MD simulation it denotes an average over time. The heat 

current q is defines as: 

( ) ( )i i
i

dq r t E
dt

= ∑ t
   (2.9) 

Where ri(t) is the time-dependent coordinate of atom i and Ei(t) is the total energy of atom i. 

Total energy for each atom i is defined as: 

2
2

1 1( ) ( )
2 2i i i

j
ijE t m v u r= + ∑

   (2.10) 

Here the first term is the kinetic energy and second term is the potential energy of atom i, and 

u2(rij) is the pairwise interaction. Plugging equation (2.10) in (2.9) the expression for heat current 

becomes: 
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,

1( ) ( . )
2j i ij ij

i ij i j
q t v E r F v

≠

= +∑ ∑ i

  (2.11) 

Where Fij is the force on atom i due to its neighboring atoms j calculated using the pair 

potentials.  

 

As mentioned earlier one advantage of Green-Kubo method over the NEMD method is that we 

can calculate complete conductivity tensor in one simulation and it is useful to study the 

anisotropic effects in the thermal conductivity. In case of direct method or NEMD we will have 

to run 3 separate simulations to calculate conductivity in 3 directions. Table 2 shows the work 

done in the area of thermal conductivity calculation using computer experiments.  
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Table 2: MD work related to thermal conductivity calculation 

No. Author / 

Journal / Year 

Title Simulation 

Details 

Comments 

1 Vagelsang, 

Hoheisel, 

Ciccotti. 

J. Chem. Phy. 

1987 

Thermal 

conductivity of 

LJ liquid by 

MD calculation 

EMD used.  

Effect of 

number of 

particles and 

truncation of 

potential 

considered. 

EMD results compared well with 

previous NEMD results. 

k independent of MD conditions, 

reason arises from short ranged 

time decay of correlation function. 

For states take, the pair correlation 

function involving the ‘potential-

potential’ term governs the 

transport coefficient. 

Large number of particles in 

simulation gives better results. 

2 Lee et. al.  

Phy. Rev. B 

1991 

MD simulation 

of thermal 

conduction in 

amorphous Si 

EMD relating 

k to time 

correlation of 

heat flux 

operator. 

WWW model 

and SW 

potential used. 

K(T) increases at low temperatures 

(below 400 K). 

For T > 400 K, k(T) is affected by 

the thermally generated 

coordination defects. 

For 50<T<800 K, k(of a-Si) 

increases, consistent with 

experiments. 

Difference in calculated and 

experimental data values because of 

absence of long-wavelength 

propagating phonon modes in 

calculation with mfp larger than 

cell size.  

3 Tsuji et. al. Movement of Morse Virtual electron do not interact with 
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free electron in 

order to 

simulate 

thermodynamics 

by electron 

current 

potential for 

Cu. 

Virtual 

electrons used. 

Introduce 

electrons as 

virtual 

particles in 

simulation 

domain. 

each other and have perfectly 

elastic collision with other atoms. 

rvirtual and melectron can be changed to 

fix other parameters. 

Heat transfer in metal and electric 

current can be effectively simulated 

with this method. 

4 Schelling et. al.  

Phy. Rev. B 

2002 

Comparison of 

atomic level 

simulation for 

computing 

thermal 

conductivity 

EMD & 

NEMD 

compared.  

SW Si used. 

Both methods 

show finite 

size effects. 

 

G-K EMD results are insensitive to 

definition of local energy from 

many body part of potential. 

EMD/NEMD results consistent 

with experiments. 

EMD gives linear response even for 

high T gradient, NEMD gives non-

linear response. 

Large simulation time is an issue 

for EMD. 

GK desirable for systems with 

larger mfp e.g. Si. 

For system with grain boundary 

direct method preferred. 

5 McGaughey, 

Kaviany. J. 

Heat Mass Tr. 

2004 

Thermal 

conductivity 

decomposition 

and analysis 

using MD I: LJ  

EMD with 

Green-Kubo. 

LJ Ar (fcc) 

1st t scale: phonons with mfp < 

0.5*λ. k ~ 0.09 W/mK, independent 

of T. 

2nd t scale: phonons with mfp > 

0.5*λ. k ~ 3.92 W/mK for T ~ 10 K 

and 0.08 W/mK for T ~ 100 K. 
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1st mode decay time ~ time required 

for energy transfer from one atom 

to other. 

2nd mode decay time ~ average 

decay of phonons with mfp > 

0.5*λ. 

6 McGaughey, 

Kaviany. J. 

Heat Mass Tr 

2004 

Thermal 

conductivity 

decomposition 

and analysis 

using MD II: 

Complex Silica 

Structure 

BKS potential 

with LJ used 

for Silica 

1st mechanism of thermal transport, 

short range, mfp > 0.5*λ. T 

independent, k~1 W/mK. Governed 

by Si coordination number. 

2nd mechanism, long range, T 

dependent, mfp > 0.5*λ.  

At 300 K, c-direction of quartz: k~9 

W/mK, zeolite-A: k~0.4 W/mK. 

Controlled by atomic bond length 

and angles. 

7 Tokumasu, 

Kamijo. 

Superlattices 

and 

microstructures 

2004 

MD study of 

thermal 

conductivity of 

diatomic liquid 

NEMD 

O2, CO, CS2, 

Cl2, Br2

2CLJ 

Tcr, Pcr, ρcr 

determined. 

Equation of state of each liquid 

determined using MD.  

Simulation results in 10% of 

experimental. 

kreduced = f(k, Tcr, ρcr, m). kred 

increases as molecular elongation 

increases. 

Contribution of q caused by energy 

transport and by translational 

energy transfer to k is independent 

of molecular elongation. 

Contribution of q by rotational 

energy to k increases with 

increasing molecular elongation. 
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k increases as ρ increases or P 

increases. 

8 Eastman et. al.  

Annu. Rev. 

Mat. Research 

2004 

Thermal 

transport in 

nanofluids 

As size 

decreases As/V 

inc. 

Surfactants 

improve k.  

 

Size of nanoparticle important for 

heat transfer at s-f interface. 

Particle agglomeration undesirable. 

Dispersion improves with non-

agglomeration. 

Particle surface treatment is 

important. 

Temperature effects need to be 

determined. 

9 Mensah et. al. 

Physica E 2004 

High electron 

thermal 

conductivity of 

chiral CNT 

BKE, TB, 

CCNT 

At T=104 K, Overlap integrals ∆Z = 

0.02 eV, ∆S = 0.015 eV. 

Kc = 41,000 W/mK for 99.97% 

pure 12C. 

10 Tretiakov, 

Scandolo. 

J. Chem. Phy 

2004 

Thermal 

conductivity of 

solid Ar from 

MD 

EMD, GK, LJ Results in agreement with 

experiment, contrary to previous 

work. 

Simplified models for the thermal 

conductivity based on high T limit 

of 3-phonon scattering rate 

reproduce author’s data well. 

Size effects negligible in GK 

approach for k. 

 

Table 3 gives a list of publications showing various models to simulation water molecule in a 

MD simulation. 
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Table 3: MD work related to modeling of water molecule 

No Author / Journal 

/ Year 

Title Simulation 

Details 

Comments 

1 Stillinger, 

Rahman  

J. Chem. Phy. 

1974 

Improved 

simulation of 

water by MD 

5-site, 4-charge 

ST-2 model 

used. 

 

ST-2 is comparatively improved to 

BNS.  

Modification improves the fidelity 

of MD. 

Results for molecular structure and 

thermodynamic properties show 

improved quality compared to 

previous potentials used for water. 

2 Matsuoka, 

Clemeti, 

yoshimine. J. 

Chem. Phy. 

1976 

Cl study of the 

water dimer 

potential 

surface 

Potential 

energies for 

water dimer in 

various 

configurations 

examined. 

Ab initio method is used. 

Ground state wave-function is 

written. 

3 Jorgensen, 

Chandrashekhar

, Madura. J. 

Chem. Phy. 

1983 

Comparison of 

simple potential 

for simulating 

water 

BF, SPC, ST2, 

TIPS2, TIP3P, 

TIP4P. 

H2O at 25 °C 

and 1 atm. 

Results compare well except for BF 

model. 

TIPS2 and TIP4P give good results 

for O-O partial structure functions, 

H-H and O-H results are poorer. 
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NPT ensemble. SPC, ST2, TIPS2 and TIP4P give 

good results for thermodynamic 

and structural properties. 

4 Jorgensen. J. 

Chem. Phy. 

1986 

 

Optimized 

intermolecular 

Potential 

function for 

liquid Alcohols 

Thermodynami

c and structural 

results 

reported. 

Potential 

functions have 

been 

developed for 

Alcohols and 

other 

molecules with 

hydroxyl 

groups. 

Optimization done with the study of 

five alcohols. 

The five alcohols show winding 

hydrogen-bonded chains. Hydrogen 

bonding also shows effects on 

torsional energy surfaces for 

molecules in the liquids. Narrowing 

of conformational energy wells for 

rotation about C-O bond is also 

reported. 

Excellent accord of computation 

results and experimental results is 

found. 

5 Berendsen, 

Grigera and 

Straatsma

 J. Chem. 

Phy. 1987 

The missing 

terms in 

effective pair 

potentials 

(SPC/E) 

 

Density, RDF 

and diffusion 

constant have 

been computed 

and show 

improvement 

The missing self energy term has 

been included in the effective pair 

potential of polarizable liquid. 

The inclusion of this term in the 

SPC method gives improved results 

for simulation of liquid water. 
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over previous 

results. 

6 Dang and 

Pettitt. J. Chem. 

Phy. 1987 

Simple 

intermolecular 

model potential 

for water 

3-Site model. 

216 water 

molecules. 

Cube of 18.6 A 

side. Density 1 

g/cm3.  

Transition 

frequency and 

spectral shifts 

reported. 

Agreement with ground vibrational 

state frequency.  

A full quasi-harmonic-mode 

analysis on the dynamic liquid state 

trajectories can be performed with 

this model. 

Model useful in large solute 

aqueous simulation. 

7 Anderson, Ullo, 

Yip. J. Chem. 

Phy. 1987 

MD simulation 

of dielectric 

properties of 

water 

Time 

correlation 

function of 

dipole moment 

and single 

molecular 

orientation 

evaluated. 

Other 

structural 

Water monomer as flexible 

molecule with short range 

interaction between O-H. 

SPC and ST2 better than MCY and 

TIP4P. 

Good agreement for self diffusion 

and satisfactory agreement for 

static dielectric constant found.  
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properties 

examined. 

8 Zhenqin, 

Scheraga. 

J. Chem. Phy – 

1989 

Monte Carlo 

recursion study 

of cluster 

formation from 

vapor 

NPT ensemble 

used.  

Gibbs free 

energy of 

cluster 

formation 

observed. 

 

Cluster formation from 

monoatomic vapor observed. 

Gibbs free energy ofa  cluster in a 

constrained equilibrium with vapor 

is calculated. 

9 Koplik, 

Banavar, 

Willemsen. 

Phy. of Fluids 

A 1989 

MD of fluid 

flow at solid 

surface. 

Fluid-wall 

interaction 

examined. 

At normal density in couette and 

poiseuille flow no-slip boundary 

condition observed. 

Slip appears at lower densities. This 

can be incorporated into a flow-

independent slip length boundary 

condition. 

Trajectories of independent 

molecules are examined ad their 

average behavior can be given with 

Taylor-axis hydrodynamics 

dispersion. 
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10 Matsumoto, 

Maruyama. 

JSME-KSME 

1992 

Far infrared 

spectrum of 

water by MD 

simulation. 

ST2 potential 

is used. 

Pure rotational 

spectra of 

water 

observed. 

 

Molecular motion under 3 states 

liquid, vapor and cluster is 

observed. 

Shape of rotational spectrum is 

simply the reflection of angular 

velocity for gas case. 

Effect of free rotation and inter-

molecular motion on spectrum 

examined. 

11 Alejandre, 

Tildesley, 

Chapela. 

J. Chem. Phy. 

1995 

MD simulation 

of orthobaric 

densities and 

surface tension 

of water. 

SPC/E 

potential with 

full ewald 

summation 

used. 

Liq-vap. 

Equilibrium of 

water as a 

function of T. 

 

Calculated surface tension (ST) and 

orthobaric desity in good agreement 

with experimental results. 

SPC/E gives better orthobaric 

density than SPC and TIP4P. 

Polarizable model is not necessary 

for ST calculation. 

Long rage dipole-dipole interaction 

important for ST. 

12 Dang, Chang. 

J. Chem. Phy. 

1997 

MD study of 

water clusters, 

liquid and 

Rigid 4-site 

polarizable 

model of water 

For H2O hexamer, prism-like 

structure is predicted to have lowest 

energy and cage-like to have 2nd 
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liquid-vapor 

interface of 

water with 

many body 

potential 

used. 

Various 

structural 

properties 

calculated. 

This allowed 

calculating the 

dipole moment 

of individual 

water 

molecules. 

lowest. 

Dipole moment close to interface is 

similar to gas phase and away from 

interface to liquid bulk. 

Density profile shows interface is 

not sharp and has a thickness of 3.2 

Å. 

gOO(r) deviates from experimental, 

due to O-O short range function 

chosen. 

13 Maruyama et. 

al.  

Microscale 

thermophysical 

Engg. 1998 

Liquid droplet 

in contact with 

a solid surface. 

Liquid droplet 

and 

surrounding 

vapor – LJ. 

3-layer 

harmonic 

molecule and 

1-layer rigid 

molecule 

represent the 

solid surface. 

l-v and s-s interaction LJ with 

variable energy scale parameter. 

cosβ was well expressed by a linear 

function of the depth of integrated 

interaction potential of surface. 

Layered structure of droplet near 

surface explained by integrated 

interaction potential. 

3-phase contact line in evaporation 

process was observed. 
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Two surfaces 

at different T, 

evaporation on 

one and 

condensation 

on other. 

14 Bayazitoglu, 

Maruyama, Hos 

Phase change 

studies with 

MD: A 

computer 

simulation 

Algorithm and 

Code given. 

Truncated LJ 

used. 

Code and algorithm given for MD 

simulation of an evaporating 

droplet. 

Discusses the nucleation process 

and size of critical nuclei. 

15 Maruyama, 

Kimura 

RIKEN 1998 

A MD 

simulation of a 

bubble 

nucleation on 

solid surface. 

Liquid Ar on a 

3-layer 

harmonic 

molecule solid 

surface.  

l-s interaction 

by LJ with 

variable energy 

scale 

parameter. 

Equilibrium liquid with solid 

obtained first. Constant T surface is 

expanded to required Pr. And 

bubble nucleates on bottom surface. 

As wettability increases, minimum 

pressure approaches the ‘Spinodal 

Line’. 

For very high wettability situation 

comes close to homogeneous 

nucleation. 

16 Blomer, MD simulation Gas atoms: Exchange of energy and 
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Beylich.  

Surface science 

1998 

of energy 

accommodation 

of internal and 

translational 

DOF at gas-

surface 

interface 

right rotators. 

Surface atoms 

are in a T bath, 

Langevin 

equation used. 

 

momentum during collision 

between diatomic gas molecules 

and solid surface. 

Strong coupling between trans. And 

rot. DOF for directly scattered 

molecules. 

Sticking coefficient dependent on 

KE and PE of incoming molecule. 

Molecules leaving surface after 

physisorption show the effect of 

rotational cooling at higher T. 

17 Maruyama, 

Kimura 

ASME/JSME 

conf. 1999 

A MD 

simulation of a 

bubble 

nucleation on 

solid surface. 

 Same as 15. 

18 Maruyama, 

Kimura 

Th. Science & 

Engg. 1999 

A study on 

thermal 

resistance over 

a solid-liquid 

interface by 

MD method 

Quasi-steady 

non-

equilibrium 

heat transfer 

simulation. 

Vapor 

Energy flux through the system was 

calculated by controlling wall 

temperature using phantom method. 

T distribution shows jump over s-l 

interface. 

Thermal resistance was equivalent 
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sandwiched in 

liquid layer, in 

contact with 

solid. 

to 5~20 nm thickness of liquid 

sheet and strongly dependent on 

wettability. 

Thermal resistance increases 

sharply with decrease in wettability. 

19 He, Shoji, 

Maruyama. 

ASME/JSME 

1999 

Numerical 

study of pool 

boiling for 

steady state and 

transient 

heating 

Bisection 

model used 

and  

Boiling curves 

and temporal 

variation in Ts 

calculated. 

 

Macrolayer model suitable for high 

heat flux regine. 

Macrolayer thickness plays more 

important role on the transient 

boiling, results in agreement with 

experiments. 

Lower transient heating rate, results 

similar to steady state. 

CHF increases with increasing 

heating transient. 

Evaporation of macrolayer has a 

great effect on increasing CHF in 

transient heating. 

20 Kinjo et. al. 

Computational 

Mat. Science 

1999 

Computer 

simulation of 

fluid phase 

change: vapor 

Homogeneous 

nucleation 

from 

supersaturated 

For nucleation LJ system and water 

were compared. 

For bubble formation one 

component and two component 
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nucleation and 

bubble 

formation 

dynamics 

vapor. 

Bubble 

formation in 

stretched 

liquid. 

systems were compared. 

 

21 Keblinski et. al. 

J. Chem. Phy. 

2000 

MD study of 

screening in 

ionic liquids 

MD of molten 

and gaseous 

NaCl 

In weakly coupled regime the 

spatial correlation between ions 

decay monotonically. 

Screening length = debye length. It 

decreases as ionic coupling 

increases. 

In strongly coupled regime spatial 

correlation between ions decay 

oscillatory. Here screening length 

increases as coupling increases.  

Transition from monoatomic to 

oscillatory screening occurs at the 

shortest possible screening length. 

22 Kimura, 

Maruyama 

JSME-KSME 

2000 

MD simulation 

of 

heterogeneous 

nucleation of 

Ar vapor and 

one layer of 

harmonic 

atoms as solid. 

Nucleation rate, critical nucleas size 

and free energy of cluster formation 

were not much different than results 

of classical heterogeneous 
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liquid droplet 

on solid surface.

Potential 

parameter 

varied to get 

different 

surface 

wettability 

nucleation theory for smaller 

cooling rate or less wettability. 

Difference became large for higher 

cooling rate and increased surface 

wettability. 

23 Maruyama et. 

al. 

IMECE 2001 

MD Simulation 

of measurement 

of contact angle 

of water droplet 

on Pt surface 

Water – SPC/E 

One layer of 

harmonic 

atoms in T 

bath for solid. 

H2O-Pt : Sphor 

(1989) 

During spreading process, area of 

contact region between H2O-Pt 

expanded as (t)1//3

For 256 molecules droplet, 

molecules spread forming a single 

monolayer. While for 856 

molecules droplet, molecules form 

a thin secondary layer. 

Limiting values of advancing and 

receding contact angles were not 

reached even for a vertical surface. 

24 Maruyama, 

Kimura 

Microscale 

thermophysical 

Engg. 2002 

MD of 

heterogeneous 

nucleation of a 

liquid droplet 

on solid. 

Ar vapor on 

one layer of 

solid 

molecules. 

Same as 22 and 23 
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25 Maruyama, 

Kimura, Lu 

Th. Sc. & Engg 

2002 

Molecular scale 

aspect of liquid 

contact on a 

solid surface. 

S-H and Z-P 

potential for 

H2O-Pt used. 

β dependence 

on Pt surface 

structure is 

shown. 

 

β for LJ system seems to be scaled 

with p.e. parameter between l-s. 

Water layer on Pt. gives finite size 

β on absorbed monolayer water 

film. 

β determined by surface energy 

between this monolayer H2O and 

bulk liquid H2O. 

26 Keblinski et. al. 
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Two regimes of 

thermal 

resistance at a 

liquid solid 

interface 

NEMD used. 

Kapitza 

resistance 
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Strength of 

bonding 

between l-s 

affects thermal 

resistance. 

 

Weak bonding (non-wetting liquid) 

resistance shows exponential 

behavior. Strong bonding (wetting 

liquid) resistance shows power law 

behavior. 

Nanocomposites or nanofluids 

characterized by weak atomic 

bonding at particle-matrix interface 

will exhibit high thermal resistance. 

Thermal resistance small for 

wetting liquids. 

27 Kimura, 

Maruyama 

ASME-JSME 

A MD 

simulation of 

water in contact 

SPC/E for 

water. 3 layer 

harmonic 

l-v interface initially semi-spherical 

and then gradually spreading. 

During spreading: Ac ~ t1/3 (early 
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2003 with Pt surface atoms for Pt. 

H2O-Pt: SH & 

ZP 

Phantom mol. 

Below layer. 

time), Ac ~ t1/5 (later) 

For LJ, Ac ~ log(t) or t2

Stronger H2O-Pt potential gives 

larger β, because of repulsive effect 

of dense monolayer. 

β was largest on fcc (100). 
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CHAPTER 3: METHODOLOGY 

 The basic assumption of continuum that the properties of material e.g. temperature does 

not change very fast with change in time and space breaks down at nano-scale. At nano-scale, we 

observe that the properties of materials change at the atomic scale and so the continuum 

approach can not be used to simulate these systems. No conventional equations or correlations 

are available to analyze the systems at micro and nano-scale. Experiments can be performed to 

study these systems but we can not do experiments over and over again because of the cost 

associated with these is very high. So the only feasible method to systematically study these 

phenomena occurring at molecular level is by way of numerical experiments.  

 

Figure 4: Simulation techniques for various length and time scales 

 

Figure 4 [Smith G., 1999] shows different numerical methods that can be used at various length 

and time scales. At millimeter length scale the assumptions used to derive continuum level 
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equations are valid so we can use Navier-Stokes equations for fluid flow at this scale. 

Conventional Finite Element Modeling (FEM) or Computational Fluid Dynamics (CFD) 

numerical methods can be used to simulate the fluid flow and heat transfer at this scale. When 

the dimensions are of the order of few hundred micro-meters than also these conventional 

methods can be used with reasonable accuracy. As we move to sub-micrometer dimensions the 

assumptions used in the continuum models do not hold and we can not use the continuum models 

to appropriately model the systems with sub-micrometer length scales. At this scale Monte Carlo 

(MC) method or Lattice Boltzmann Method (LBM) numerical techniques can be used to 

accurately simulate the fluid flow and heat transfer. As we move to nano-scale length scales MC 

and LBM can not be used to simulate the atomic scale system. At this scale we should use a 

numerical technique which deals with individual atoms and Molecular Dynamics Simulation is a 

very good method to simulate the systems involving atomic size length scales. As the length 

scale decreases further and we deal with individual electrons Quantum Chemistry based methods 

e.g. Quantum Molecular Dynamics or Density Functional Theory methods can be used to model 

the systems.  

 

Conventional FEM or CFD approach can not be used for this problem as these models break 

down at micro-scale when the mean free path and the system size become of same order. 

Molecular Dynamics (MD) simulation is becoming a very widely used simulation technique for 

numerical simulation at molecular level. MD is a computer simulation technique where the time 

evolution of a set of interacting atoms or molecules is followed by integrating their equations of 

motion. With this technique we can simulate the motion of molecules to gain a deeper 

understanding of complex physical and chemical reactions, fluid flow, heat transfer, phase 
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transformation and other physical phenomena that are driven by molecular interactions. Not only 

can we simulate motion of individual atoms or molecules in a fluid, but also the motion of a 

single large molecule consisting of many hundreds of atoms, e.g. protein or some other bio-

molecules. MD is a very powerful simulation technique and does not require the use of empirical 

sub-models for each physical process.  Accuracy of MD simulation depends on the interatomic 

potential used to simulate the interactions between various atoms and finite difference scheme 

used to march in time. For a detailed overview of MD simulation Ercolessi [1997], Rapaport 

[2004] and Haile [1997] serve as excellent introductions to the molecular simulation technique. 

3.1 Molecular Dynamics Simulation 

In molecular dynamics we follow the laws of classical mechanics and numerically solve 

Newton’s equation of motion for each particle at every time step. The classical equation of 

motion for a simple atomic system can be written as: 

iii frm =
..

    (3.1) 

∑
≠
=
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ij
j

jii ff
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Where mi, and ri are mass and position vector of ith atom, N is the total number of atoms in the 

simulation domain, fi,j is the force applied on atom i by atom j, and fi is the force acting on ith 

atom due to interaction with other N-1 atoms in the simulation domain. Since force is a vector 

quantity, so the sum in Eq. (3.1) is a vector sum of all the terms. So given an initial set of 

positions and velocities of all the particles in the simulation domain, the subsequent time 

evolution of the system can be completely determined. In more pictorial terms the atoms “move” 

in the simulation domain bumping into each other and using Newton’s law we calculate the 
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acceleration of each particle using the force acting on it by other atoms in the system. The 

acceleration of each particle is then integrated numerically to calculate its velocity and new 

position at each time step. All other properties of the system e.g. potential energy, kinetic energy, 

temperature etc are calculated from the velocity and position of each particle. Figure 5 shows a 

flowchart of molecular dynamics algorithm. 

 

Figure 5: General flowchart of MD algorithm 
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Accuracy of a MD simulation is greatly affected by the choice of potential function used to 

simulate the interaction between atoms. The potential is a function u(r1,….,rN) of the positions of 

the nuclei, representing the potential energy of the system when the atoms are arranged in that 

specific configuration. This function is usually constructed from the relative positions of the 

atoms with respect to each other, rather than from the absolute positions. Forces on each atom 

are then derived as the gradient of the potential with respect to the atomic displacements: 

 

( )Nri rruf
i

,....,1−∇=    (3.2) 

 

Thus we can describe a model in terms of force or the potential energy. Since potential energy is 

a scalar quantity it is convenient to describe the model in terms of its potential energy. In this 

work liquid-liquid, liquid-solid and solid-solid molecules interaction e have considered. These 

interactions occur between silicon-silicon, silicon-oxygen (of silica), oxygen-oxygen, silicon-

hydrogen and silicon-oxygen (of water molecule) atoms. These 5 kinds of interactions have been 

simulated with 3 different interatomic potentials, which will be mentioned later in this chapter. 

The electrostatic interaction between the charged atoms of water and silica has also been 

computed using wolf method. 

 

The interaction potential used in a MD simulation can be non-bonded and bonded in nature. 

Most of non-bonded potentials are represented in terms of a pair potential, which means the 

interactions between the atoms is considered as one pair at a time. The simplest and most widely 

used pair-potential in MD simulation is Lennard-Jones [1924] or L-J potential. The L-J potential 

is a 12-6 potential which is attractive when the molecules are far apart and becomes strongly 
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repulsive when they come close together. L-J potential has a 1/r6 attractive term which represents 

the attractive van der Waals interaction between atom at large distances and a 1/r12 repulsive 

term which becomes dominant when atoms come close to each other this essentially represents 

the resistance to compression among atoms. For two atoms i and j the L-J pair potential is 

represented as:  
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   (3.3) 

Where r is the interatomic distance between a pair of atoms, ε  is the energy constant (or well 

depth) and σ is the diameter of one of the atoms. The resulting potential is shown in Figure 6.  

 

Figure 6: Potential energy of a particle in LJ model 
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The interaction pair potential is then used to calculate the force between the pair of atoms and 

force on an atom i is then calculated by summing the interactions over all other atoms in the 

system. The force is calculated as shown in Eq. 3.2. For L-J potential the interatomic force 

between two atoms is given by:  
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   (3.4) 

 

The force calculation is the most time consuming step in MD simulation since force on each 

atom i by all other N-1 atoms in the simulation domain is calculated. Moreover at each time step 

the force on each an every atom from all remaining atoms in the simulation domain has to be 

calculated. The force calculation grows as O(N2) in MD simulation. In order to save some 

computation time, a cut-off radius rcut-off is used in MD simulation and for atom i the interaction 

by atoms which fall outside a sphere of radius rcut-off
 is neglected. The L-J potential with 

implementation of cut-off radius is represented as: 

  

   )()()( cLJLJ rrr φφφ −=  if crr ≤    (3.5) 

   0)( =rφ    if  crr >

 

Commonly used cut-off radius for LJ potential is 2.5σ -3.2σ  [Allen, 1987].   
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At every time step the force on every atom is calculated and then using Newton’s law the 

acceleration of the particle is calculated. Then a time marching algorithm is used to calculate the 

velocity and new position of each atom from the acceleration. Verlet [1967] and predictor-

corrector [Allen, 1987] algorithms are commonly used for marching in time in a MD simulation. 

Velocity verlet method is used to do the time marching in our MD code. The basic idea is to 

write one forward and one backward third-order expansion Taylor series expansion of the 

position r(t): 

 

(3.6) 

 

Where v(t) is the velocity, a(t) is the acceleration and b(t) is the third derivative of r with respect 

to t. Adding the two expressions we get: 

 

(3.7) 

 

This is the basic form of the Verlet algorithm, in which first we calculate r(t+∆t) from r(t), r(t-

∆t) and a(t) and then use r(t+∆t) and r(t-∆t) to calculate v(t). Now we can calculate the velocities 

using the position as: 

 

    (3.8) 

 

However, the error associated with velocity is order  unlike the error in position which is 

order . 

2t∆

4t∆
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Periodic boundary condition (PBC) is used in almost all MD simulation codes where a wall is 

not encountered. The PBC acts in a way to simulate the bulk property of the system. In PBC each 

face of the cubic simulation domain acts as a mirror and there is a mirror system on the other 

side of the boundary. So every atom in the simulation domain actually represents infinite set of 

particles in the replicated systems. All these “image” particles move together but are represented 

by only a single atom in the actual simulation domain. Provided the interatomic forces are not 

long-range we can consider that an atom only interacts with its nearest atom or image in the 

periodic array. So every atom i in the simulation domain now interacts not only to the atoms j in 

the simulation domain but also to the images in the surrounding boxes. If an atom comes close to 

the boundary and then crosses it, it is re-inserted in the system from the opposite boundary with 

same velocity. So the PBC actually makes sure that the number density of atoms in simulation 

domain and the momentum of whole system is conserved. In MD code, the PBC is applied in the 

following way: 

    rx = rx      if rx < lx

                rx = rx – lx      if rx > lx   (3.9) 

   rx = rx + lx      if rx < 0 

Where rx is the x-coordinate of the atom i, lx is the length of the simulation domain in x-

direction. It is assumed that one of the vertices of the simulation domain is the origin.  

 

In a MD simulation the force calculation is the computationally most intensive step because we 

have to calculate forces on each atom i by all other atoms in the simulation domain. Even after 

using the cut-off radius we do not save a lot on computation time since for each atom i we have 
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to calculate rij for all other N-1 atoms in the simulation domain and check if atom j lies inside or 

outside the cut-off radius. Other efficient algorithm called the neighbor list has been developed 

by Verlet [1967] which significantly reduces the computation time spent in force calculation. 

The basic principle of this algorithm is that we create a neighbor list for each atom i and 

calculate the force on i by only the atoms which lie in this neighbor list. This algorithm saves lot 

of computation time because this neighbor list is not updated at every step but is updated after 

few time steps, namely 10. So now rij is calculated new neighbors are checked in every 10 time 

steps.  

 

Now in this interval of 10 or more time steps some of the atoms might move outside the cut-off 

radius or some new atoms might come in so in order to account for this movement, the neighbor 

list is generated using a slightly longer radius rlist. Where rlist = rcut-off + ∆r. Figure 7 shows the 

effect of rlist while generating the neighbor list.  

 

Figure 7: Neighbor-list construction with radius rlist
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3.2 Potential Functions used in Simulation 

 

In a conventional sense, MD uses interatomic potentials derived based on ab initio calculations. 

From these potentials the interaction force between atoms, the kinetic and potential energies of 

atoms are calculated. As a result the accuracy and validity of the MD simulation are dependent 

on the potential functions used. In order to accurately simulate the nanofluid system under 

consideration all possible atomic interactions have been considered. In this simulation 

interactions between Si-Si, Si-O, O-O, O-H and Si-H along with the coulombic interaction 

between charged particles are taken into account. This chapter discusses all the potential 

functions used in this work. 

3.2.1 Interactions in Silica Nanoparticle 

The silica nanoparticle in this simulation consists of silicon and oxygen atoms arranged in α-

quarts structure. Although the nanoparticle as a whole does not carry any charge, but individual 

silicon and oxygen atoms carry positive and negative charges respectively. The condition for 

charge neutrality then becomes qO = -1/2*qSi, where q is atomic charge. The van Beest–Kramer–

van Santen (BKS) interatomic potential [van Beest et al, 1990, Kramer et al, 1991] is used in our 

simulation to model the Si-Si, Si-O and O-O interactions and calculate interatomic forces 

between atoms in the silica structure. It was shown by [van Beest et al, 1990] that for atomic 

charge of qO = -1.2e and qSi = +2.4e, the results from BKS potential agree well with ab initio 

calculations. The BKS potential represents the potential energy Uij between atoms i and j as 

follows: 
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Where rij is the interatomic distance, q is an atomic charge and A, b and c are constants specified 

by the types of atoms i and j (silicon or oxygen) and are provided in Table 4. The BKS potential 

reproduces the static silica structure reasonably well. The simulated infrared spectrum agrees 

well with experimental spectrum at high frequencies but decreases at lower frequencies. The 

BKS potential is used by many researchers and is proven to be a sophisticated expression to 

derive the interaction between atoms in silica structure [Vladimir 1999, McGaughey and 

Kaviany 2004, Philippe and Rémi 1999]. 

 

Table 4: Force field parameters for silica nanoparticle 

short range parameter 
i,j 

Aij(eV) bij(Å-1) cij(eVÅ6) 

atomic 

charges 

O-O 1388.773 2.7600 175.00 qO=-1.2 

Si-O 18003.7572 4.87318 133.5381 qSi=2.4 

3.2.2 Liquid-Liquid Interaction 

Many effective pair potentials have been used to model interaction between water molecules in 

MD simulation, such as ST2 model [Stillingar, 1984], SPC model [Berendsen et al, 1981], TIPS 

model [Jorgensen, 1981] and TIPS2 [Jorgensen, 1982]. The SPC model proposed by Berendsen 

et al, was derived from a series of MD simulation and the parameters were derived to match the 

experimental density and vaporization energy of liquid water. The dipole moment calculated 
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from SPC (simple point charge) model is 2.27D, compared to 1.85D for the isolated water 

molecule. It gives a density of 0.98 gm/cm3 at 300K and performs satisfactorily for most 

purposes. But the radial distribution function and diffusion coefficient needed some 

improvement and so Berendsen et al, [1987] reparametrized the SPC model to obtain correct 

energy and better matching density and called it SPC/E (extended simple point charge) model. 

The SPC/E model conformed better to experimentally measured properties of liquid water and so 

it is used in this simulation. SPC/E is a three site model for liquid water corresponding to one 

oxygen atom and two hydrogen atoms. Figure 8 shows the structure of SPC/E water molecules. 

Water molecule as a whole is neutrally charged but individual atoms carry certain charge. 

 

Figure 8: Structure of water molecule in SPC/E model 

 

SPC/E model employs the water structure as bond length, nmr HO 1.0=−  and the angle 

°= 47.109HOHθ  with charges directly on oxygen and hydrogen atoms. It takes charge on oxygen and 

hydrogen atoms equal to δ- = –0.8476e and δ+ = +0.4238e, respectively. As one of the rigid 
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water molecule model, SPC/E adopted the higher permanent dipole moment of isolated water 

than the experimental value. The direct inclusion of the polarizability to the water models results 

in the many-body potential in effect, which improves the accuracy of SPC/E model. Since the 

SPC/E model has found many successful applications in modeling the thermal properties of 

liquid water in this study, we also use SPC/E model for the effective pair potential form for 

water. Here the potential energy Uij is expressed as: 
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here, R12 represents the distance of oxygen atoms, rij the distance between charges i on molecule 

1 and charge j on molecule 2 (i and j are even for positive charges, odd for negative charges), 

and σOO and εOO are Lennard-Jones parameters taken from [Berendsen et al, 1987]. 

3.2.3 Solid-Liquid Interaction 

The third important potential to establish is the interfacial potential between the silicon atom on 

the surface and the liquid molecules. Although some methods are available [Kimura and 

Maruyama, 2002] to decide the solid-liquid potential, they do not account for the interaction of 

the solid atoms with one another. Instead they employ L-J like potentials for the big molecules 

interacting with the whole wall. We have employed Si-H pair potential, a two-body KTS 

potential expression [Kohen et al, 1998] as follows: 

( ) ( )1 expp
ij ij ij ij ij ij ijU r a rα β − b⎡ ⎤= − −⎣ ⎦   (3.12) 

where, r is the distance between a pair of atoms, b is the cutoff distance of the two-body 

potentials, α, β, p and a are fixed parameters chosen by Stillinger and Webber [1985].  
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3.2.4 Coulombic Interaction 

Till now we have discussed various pair potential functions used in this simulation. These 

interactions are essentially short-ranged in nature, which means that the potential decreases 

quickly as the distance between a pair of atoms increases and we can use a cut-off radius to 

ignore the interactions with interatomic distance larger than the cut-off radius. Short-range 

interactions exclude a very important group of interactions involving electric charges and 

dipoles. In this system even though individual water molecules are electrically neutral but 

individual oxygen and hydrogen carry negative and positive charges respectively, similarly the 

silica nanoparticle as a whole does not carry any charge but oxygen and silicon atoms carry 

negative and positive charges respectively. The interactions between electric charges are long-

ranged in nature, which means that the force between charges does not decay even at large 

distances, so it can not be truncated and the interactions over the whole simulation domain 

should be considered. The electronic interaction between charge-charge decays as rij
-1 and the 

interaction between dipole-dipole decays as rij
-3. So these interactions do not decay fast even at 

large distances. A spherical truncation using a cut-off radius can not be done here because the 

resulting sphere around a given charge could be charged (i.e. sum of all charges in the spherical 

domain might not be zero). Also the charges moving in and out of this spherical domain would 

create artificial surface effects at r=rc. The electronic interactions or coulombic interactions 

essentially require O(N2) computational time. Even with modern high speed computers this high 

computational cost is a serious problem in MD simulations with thousands of atoms.  

 

In this simulation an approximate method called Wolf method [Wolf et al, 1999] is used to 
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simulate the coulombic interactions between charged atoms. The Wolf method was 

conceptualized on the fact that ionic systems have a tendency to be locally charge neutral, .e. the 

ions arrange themselves in such a way that each charge is surrounded by neighboring charges of 

opposite sign, thereby creating a locally charge neutral zone. This kind of behavior is called 

“screening” of ions and is observed in molten salts, ionic gases, ionic solutions and metallic 

conductors. It has been shown both theoretically [Evjen, 1932] and numerically [Clarke et al, 

1984, Woodcock, 1975, Wolf 1992] that the effective coulombic interaction in condensed 

systems are actually short-ranged. It has also been suggested that at long range there is almost 

complete cancellation of coulombic effects. Based on these findings, Wolf et al [1999] proposed 

an exact method for simulation of coulombic system by spherically truncated, pairwise 1/r 

summation. Wolf method is suited for this simulation since there are no ions in the simulation 

domain, individual atoms carry certain charge but the molecules as a whole are locally charge 

neutral.  

 

This method sums the total potential energy over all the atomic sites in the system and solves 

iteratively the self-consistent equations for the induced dipoles at each step of the molecular 

dynamics. Since we are using a truncated potential the following term is added to the total 

potential energy of the system to consider the effect of interaction between charges which are at 

an interatomic distance greater than the cut-off radius. 

1
2pol k k

k
U Eµ= − ∑

  (3.13) 
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Where, Ek is the electric field at the location of site k due to all the fixed charges in the system 

and µK is the induced dipole moment vector at location k. The induced dipoles are determined by 

iteratively solving the equation 

k k k kl l
k l

E Tµ α µ
≠

⎡ ⎤= − ⋅⎢ ⎥
⎣ ⎦

∑
  (3.14) 

Here αk is the atomic polarizability assigned to site k, and Tkl is the dipole–dipole tensor.  In the 

above approach, one needs to readjust the positions of the charges for each atom, and to assign 

atomic polarizability to each atom without changing the form of each potential expression. The 

electrostatic interactions between charges qi and qj are then modeled using the following 

approximation, 
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  (3.15) 

The advantage of the Wolf method over the traditional Ewald sum method [Allen, 1987] is that it 

can significantly reduce the required computational time. The Wolf method is essentially 

equivalent to ignoring the long range electrostatic interactions in the Ewald sum method. Even 

though Wolf method ignores the long-range interaction but it is successful because it forces the 

net charge to be zero in the spherical volume confined by the cut-off radius. The parameter α in 

Eq. (3.15) provides the damping necessary to make the electrostatic interaction short range. 

Demontis et al [2001] propose a value of 4/L for α, where L is the length of simulation domain. 

They also show that this value gives good agreement with the Ewald sum method. For the 

current simulation, two constant values of 0.25 and 0.07 are chosen for silica and water 

respectively. 
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3.3 Generation of Nanoparticle 

In order to establish a reliable molecular dynamic model, a crystallographic-based coordinate 

system is necessary to get the position of each atom in the nanoparticle. It is well known that 

before building a lattice structure, the primitive vector should be obtained and a unit cell of 

certain crystal need to be setup firstly. Due to the high degree of symmetry present in the crystal 

solid, the positions of atoms in the unit cell will be used to pile up the bulk of the perfect crystal, 

and after applying certain geometrical and electrically neutral restriction, we can obtain the 

structure of a real nanoparticle.  

 

As for the silica (quartz), the primitive vectors are written as [The α quartz structure] 

 

1
3

2 2
a aA x y= −

, 2
3

2 2
a aA x y= +

, 3A cz=  (3.17) 

 

here, a=4.9134, c=5.52 are the length scale of silica unit cell. With these primitive vectors, the 

fractional coordinate of each atom can be translated to its Cartesian coordinate. By using the 

space group structure and atomic Wyckoff sites with face centering generators (x,y,z), (-y,x-

y,z+2/3), (-x+y,-x,z+1/3), (y,x,-z), (x-y,-y,-z+1/3), (-x,-x+y,-z+2/3) together, we can generate the 

fractional coordinates of all atoms in the unit cell. After piling up in the three different directions, 

and applying certain geometrical and electrically neutral restriction, we established the 

coordinate system of silica nanoparticles with the diameter 1nm, 1.5nm and 2nm. Figure 9 shows 

the replication of a single unit cell of silica and then the final nanoparticle after removing the 
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atoms outside the specified diameter. Figure 10 shows the 1nm and 2nm diameter nanoparticles 

(not to scale). 

 

 

Figure 9: Generating the nanoparticles from Silica unit-cell 

 

 

Figure 10: 1nm and 2nm diameter silica nanoparticles 
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3.4 Molecular Dynamics Simulation of Thermal Conductivity 

As mentioned in chapter two, thermal conductivity is obtained from molecular dynamics using 

either equilibrium (EMD) simulations (Green-Kubo equations) or from steady-state none-

quilibrium (NEMD) simulations [Florain, 1997, Young et al, 1991]. In EMD, thermal 

conductivity is derived by simulating equilibrium conditions. In the range of linear response, 

thermal conductivity is related to the time autocorrelation function of the heat-flux operator 

according to the fluctuation-dissipation theorem. This relationship between correlation functions 

and transport coefficients are known as Green-Kubo relationships and for thermal conductivity it 

is given as follows: 
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Here V is the volume of the simulation cell, t is time and q is the heat current, defined as 

i i
i

dq r
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E= ⋅∑
   (3.19) 

In Eq. (3.19), the summation is over the i particles in the system, r is the location of a particle 

and E is its total energy (kinetic and potential). For computational ease, Eq. (3.19) can also be 

written as  
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q E v F v N ω= + ⋅ +∑ ∑ r

   (3.20) 

Here v is the velocity of a particle and rij and Fij are the distance and force between particles i 

and j. The first term in eq. (3.20) corresponds to the contributions of convection, and the second 

term corresponds to conduction. The integrand of eq. (3.18) is the heat current autocorrelation 

function. 
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CHAPTER 4: PARALLEL MOLECULAR DYNAMICS 

Molecular dynamics simulations are valuable tools, but they are inherently 

computationally demanding. Every atom in a liquid simulation interacts with an average of fifty 

atoms at every time step and in a solid simulation it interacts with hundreds of atoms. Also to 

accurately model the interaction and collision dynamics and achieve the required simulation 

accuracy, the time step used in the simulations has to be very small, typically of the order of 

femto-seconds (10-15 s). Also as noted the study of heat transport at the surface of the 

nanoparticle requires models which are complex in nature, as a result this study requires efficient 

parallel coding on powerful computer architectures. One of the requirements of efficient parallel 

programming is load balancing. The computational load is proportional to the square of density. 

The density of silica is more than twice the density of water. Hence, the computational load in 

the solid region is four times that in liquid region. In order to overcome this problem a load 

balanced code was developed.  

 

Here is a list of work done in the area of parallel molecular dynamics simulation. Srivastava and 

Barnard [1997] used lexical decomposition method to implement parallel MD code on shared-

memory architecture. They used Brenner potential to simulate carbon nanotube (CNT) systems 

consisting of thousands of atoms on a parallel shared-memory supercomputer. One important 

feature of this code was that the O(N) cell-neighbor list method was implemented instead of 

O(N2) serial neighbor list approach. Moldy [Refson K., 2000] is a general-purpose molecular 

dynamics simulation program. It is sufficiently flexible that it can be used to perform molecular 

dynamics simulation of solids and liquids with periodic boundary conditions. Moldy can be used 
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on a single processor as well as on a parallel platform. It is parallelized using parallel 

communications library such as MPI or BSP. The code is optimized for high performance in both 

serial and parallel cases. Moldy is highly portable and can be used on variety of computer 

hardware and operating systems, such as UNIX, Linux, Windows, Cray PVP (vector), Cray T3D, 

IBM SP2 and SGI Origin 2000 etc. It scales linearly with N, for non-coulombic systems and as 

N7/6 for coulombic systems. It has been also parallelized using the domain decomposition or 

space decomposition method. The system is specified at run time with a description file which 

can be a new system configuration file or a configuration file to restart the code from a previous 

run. Atomic interactions are simulated by pair-potentials and it can also simulate charged 

particles with coulombic interactions. Most common forms of potential functions are supported 

(Lennard-Jones, Buckingham, Born-Meyer, MCY) and the program is designed to make it very 

easy to add others. Short-ranged forces are handled using the link-cell method and the long-

ranged coulombic forces by the Ewald sum. One shortcoming of Moldy is that only pair 

potentials are supported and many body interactions can not be simulated. New forms of pair-

potential function are easily added, but bond-bending or 3-body forces will take rather more 

work.  

 

NAMD (NAnoscale Molecular Dynamics) [Phillips et al, 2005] is a parallel molecular dynamics 

simulation package developed at the University of Illinois at Urbana-Champaign.  It was first 

introduced by Nelson et al [1995] as a parallel molecular dynamics code enabling interactive 

simulation by linking to the visualization code VMD. NAMD is designed for high performance 

simulation of large biomolecular systems. It is highly scalable and can be scaled to tens of 

processors on small clusters to hundreds of processors on high end parallel platforms. It is noted 
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for its parallel efficiency and often used to simulate huge systems (millions of atoms). 

Developing modern high-performance software requires knowledge of parallel decomposition 

algorithms, communications libraries and the relative cost of accessing different levels of cache 

memory. The parallel decomposition strategy used by NAMD is the space decomposition 

method. It treats the simulation cell as a three-dimensional patchwork quilt consisting of smaller 

sub-cells, with each patch or sub-cell of sufficient size that only the 26 nearest-neighboring 

patches are involved in bonded, van der Waals, and short-range electrostatic interactions. This is 

ensured by taking the size of each sub-cell equal to or greater than the cut-off radius of the 

interatomic potential used in the simulation. In case of multiple interatomic potentials one should 

use the largest cut-off radius. This way the atoms in one sub-cell only interact with atoms in 

neighboring 8 sub-cells in 2-D and 26 sub-cells in 3-D simulation domain. When NAMD is run, 

patches are distributed as evenly as possible, keeping nearby patches on the same processor 

ensuring proper load-balancing. Each patch is responsible for calculating forces and integrating 

the equations of motion for the atoms it contains.  

 

AMBER is a parallel molecular dynamics simulation program focused on molecular dynamics of 

proteins, nucleic acids, and carbohydrates. It evolved from a program that was developed to do 

Assisted Model Building and Energy Refinement (AMBER) calculations. Amber is also a family 

of force fields for molecular dynamics of biomolecules, and AMBER molecular dynamics 

simulation package implements these force fields to simulate various biomolecules. AMBER is 

also highly portable code and can be used on various platforms. It is parallelized using the MPI 

to communicate among processors. It is parallelized using the atom decomposition method.  At 

each time step, each processor computes a portion of the potential energy and corresponding 
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gradients. The force vectors are then summed, so that each processor gets the full force vector 

components for its “owned” atoms. Each processor then does the time integration and updates 

the velocity and position of its "owned" atoms. Each processor has a "global" and a "local" 

position array, so all processors know the positions of all atoms.  

 

Several techniques have been proposed by various researchers for parallelizing molecular 

dynamics code efficiently [Flincham, 1987, Gupta, 1992]. There are two basic methods proposed 

to parallelize short-ranged MD computations, atom decomposition and special decomposition 

method. These methods differ in the way they divide the atoms among various processors. All 

other proposed algorithms have been variations on these two methods. Plimpton [1995] proposed 

another method called force decomposition method which is a variation of the space 

decomposition method. All three methods scale well for small clusters but for large number of 

processors the communication cost associated with atom decomposition method increases faster 

compared to other two methods. Main aim while parallelizing a MD code is to divide the 

neighbor list generation, force calculation and time integration of equations of motion (almost) 

equally among all processors. One way to divide these computations is to divide all the atoms in 

simulation domain into sub-groups which consist of equal number of atoms and then assign these 

sub-groups to each processor. Each processor computes force on atoms in its sub-group no 

matter where they move in the simulation domain. This decomposition is analogous to 

Lagrangian gridding in fluid simulations where the grid cells move with the fluid (atoms in MD). 

In contrast, the other method divides the simulation domain into sub-domain and assigns these 

sub-domain to each processor. So each processor is assigned a portion of the simulation domain 

and hence the atoms contained in this sub-domain. Each processor computes the forces only on 
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the atoms residing in its assigned sub-domain at that time-step. As the simulation progresses the 

atoms move from one sub-domain to another and the processors exchange these particles. This 

method is analogous to the Eulerian gridding for fluid simulation where the grid remains fixed 

and fluid (atoms in MD) move through it. Using these two methods various other methods have 

been proposed to parallelize MD codes based on different parallel architectures, e.g. shared 

memory or divided memory or vector computers.  

4.1 Atom decomposition algorithm 

In this method for P processors the N atoms are divided into sub-groups of N/P atoms at the 

beginning of the simulation and assigned to each processor. The atoms in one sub-group can be 

anywhere in the simulation domain and need not have any special relation with each other. Here 

N may or may not be a multiple of P, if N is a multiple of P then we will get equal number of 

atoms assigned to each processor otherwise P-1 processors will be assigned equal number of 

atoms and the Pth processor will have different number of atoms assigned to it. For simplicity, we 

will assume here that N is a multiple of P and each processor is assigned N/P atoms. Each 

processor will generate the neighbor list, compute forces and does time integration on only its 

assigned N/P atoms, no matter where they move in the simulation domain. At the end of the 

time-step each processor calculates the total potential energy and kinetic energy of its assigned 

atoms and sends it to the parent node using the mpi_send( ) MPI communication operation, 

which receives the individual potential and kinetic energy from each processor using the 

mpi_recv( ) MPI operation and then sums them to calculates the total potential energy and total 

kinetic energy of the whole simulation domain. Each processor updates the global position 

64 



matrix at the end of the time-step with a one-to-all bcast( ) MPI communication operation. This 

updated global position matrix is used to calculate the force on particles in the next time-step. 

The algorithm for atom decomposition method as used in current work is shown in Figure 11. 

 

Figure 11: Flowchart of parallel molecular dynamics code 

 

The cost of communication is typically quantified by the number of messages and total volume 

of data send and received among processors. The cost of communication associated with the 

broadcast operation increases as the number of processors increase. The method used to 

parallelize this code is the atom decomposition method. Atom decomposition method is also 

called replicated-data method [Smith, 1991] because identical copies of atom information e.g. 

coordinate, velocity are stored on all processors. 
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4.2 Spatial decomposition method 

As mentioned earlier in this method the simulation domain is subdivided into small 3D sub-

domains, one for each processor. This method is called special decomposition or space 

decomposition method. At each time-step the atoms residing in the sub-domain are assigned to a 

processor which generates the neighbor list, computes forces on these atoms and updates their 

positions and velocities. While calculating forces on the atoms in one sub-domain the 

neighboring atoms can reside in the same sub-domain as well as the neighboring 26 sub-domains 

in 3-D simulation and in neighboring 8 sub-domains in 2-D simulation. So each processor has to 

have the coordinates of some atoms in neighboring sub-domains also to do the force calculation. 

Each processor keeps the coordinates of atoms in its assigned sub-domain and of atoms which 

are within the cut-off radius from each boundary in the neighboring sub-domains. At the end of 

each time-step each processor calculates the updated positions of atoms in its sub-domain and in 

this process some atoms which were near the boundary of the sub-domain might move to a 

neighboring sub-domain. So before starting a new MD time-step we have to look for those atoms 

which migrate to neighboring sub-domains and transfer their data e.g. position, velocity and 

charge etc to the new processor where it migrates. This process adds to the communication in 

space-decomposition method. We have to communicate the data associated with migrated atom 

from one processor to another. But since it is a one-to-one communication it does not add high 

communication cost. Also at the end of each time step each processor calculates the total 

potential energy and total kinetic energy of its assigned sub-domain and sends them to the parent 

node which receives it and sums it to calculate the total potential energy, total kinetic energy and 

total energy of whole simulation domain and prints the output to a file. The total energy data is 
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also used to check the energy conservation of the system. This process of communicating kinetic 

and potential energy from each node to the parent node also adds to the communication cost. But 

this communication process is also one-to-one communication (child node – parent node). Since 

all communications in the space decomposition method are one-to-one in nature it does not add 

huge communication overhead to the parallel code. This method scales almost linearly with 

increasing the number of processors and is preferred for huge parallel architectures. But keeping 

track of the migrating atoms from one sub-domain to another is a complicated process and can 

add to the complexity of the parallel code. 

 

In this simulation thousands of atoms are being simulated using multiple complicated inter-

atomic potentials. Since we are dealing with solid and liquid species the density is higher which 

means there will be hundreds of neighbors of each atom thereby increasing the total number of 

interactions to be simulated at each time-step. It is because of these reasons a parallel code was 

developed. As mentioned earlier in space decomposition method we have to keep track of the 

atoms migrating form one sub-domain to another at each time step, which is very complicated 

and adds communication cost if we have thousands of atoms so the algorithm used to parallelize 

this code is atom decomposition or particle decomposition method. Several groups have 

developed this method over the past few years. Sato et al [1992] describe the load balancing 

advantages and communication costs associated with this method and also predict the lack of 

scalability of this method for large number of processors because of large increase in cost of 

communication with increasing number of processors. Brown et al [1993, 1994] show the 

development of both atom decomposition and space decomposition methods. They used MD 

simulations for polymer modeling and the inherent density variation in their system made atom 
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decomposition method attractive. Kalia et al [1993] also developed both space decomposition 

and atom decomposition methods and used space decomposition for large number of processors, 

but for smaller number of processors both methods worked equally well. Plimpton [1995] 

reviews both atom decomposition and space decomposition methods in his paper and also 

proposes a new method called force decomposition. This method combines the load balancing 

capability of atom decomposition and scalability of space decomposition. In order to efficiently 

do load balancing of our varying density system we have used atom decomposition method to 

parallelize our code. We used 4 processors for each run in order to keep the communication cost 

low.  

 

To develop a load balanced code the balancing of average number density for each processor for 

the life of the simulation was pursued. Since we are dealing with molecules and not individual 

atoms in this simulation this further complicates the problem because atom decomposition 

method divides individual atoms among different processors and not molecules. The atoms 

should be divided in such a way that all the atoms corresponding to a particular molecule should 

be handled by the same processor e.g. all three atoms of a particular water molecule should be 

processed by one processor. If different atoms of one molecule would end up with different 

processors this could result in breaking of bonds. As a result a run-time decomposition of atoms 

was not possible because of variety of atoms and molecules present in the simulations. The 

atoms were “manually” divided before the start of simulation to maintain equal loading on each 

processor and were kept same for the simulation time.  
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This atom decomposition technique solved the problem of load balancing but still a challenge 

lies to successfully implement the model. Since the atoms assigned to a processor can be 

anywhere in the simulation domain, its neighboring atoms can reside anywhere in the simulation 

domain and hence they can be assigned to different processors. At each time step the interaction 

forces are calculated between the atoms and for this coordinates of all the neighboring atoms are 

required by each processor at every time step. This complication was handled by using a global 

and a local list of coordinates. Each processor has a list of coordinates of all the atoms assigned 

to it (local) and a global list which consists of coordinates of all the atoms in simulation domain. 

Each processor makes use of the global list to create a verlet neighbor list for each atom, this 

neighbor list is renewed every few time steps. The interatomic forces on the atoms are calculated 

by each processor using this neighbor list on the atoms allocated to it. Since the coulombic 

interactions are long range the global coordinate list is used to calculate the electronic forces 

using the wolf method. Quaternian approach is used to take into account of rotation of water 

molecules. Each processor calculates the forces on atoms allocated to it and integrates to get new 

coordinates, then the global list is updated using efficient one-to-all broadcasting function 

“mpi_bcast( )”. It is because of this one-to-all communication at each timestep that the cost of 

communication is higher in the atom decomposition method compared to other decomposition 

techniques.  

 

The cost in this approach is not the complicated coding, but the communication at every time-

step, which involves each atom in the simulation domain. This suggests that the cost of 

communication is directly related to the number of atoms N in the simulation. Also, as we 

increase number of processors the computation cost per processor decreases but communication 
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cost increases. So this technique can not be used with large number of processors. In order to 

achieve both load balancing and scalability the force decomposition method can be used.  

 

As noted, lot of work has been done in the area of heat transport study of nanofluids, modeling of 

nanofluids and parallel molecular dynamics simulation. However, the modeling of nanofluids 

with a large number of atoms and with sophisticated potentials has not been attempted before. 

The present work represents an initial step towards the large scale modeling of heat transport in 

nanofluids. 

4.3 Simulation Procedure 

In the first case the simulation domain consists of 5851 water molecules and a 2nm silica 

nanoparticle consisting of 318 atoms in a cube of side length of 5.94 nm. In the second case the 

simulation domain consists of 845 water molecules and a 1nm silica nanoparticle consisting of 

45 atoms in a cube of side length of 2.97nm. Number of water molecules is chosen such that the 

volume concentration of this system is around 2%. The silica nanoparticle is located at the center 

of domain, thus the interface between the solid and the liquid is around at r=1nm in first case and 

r=0.5nm in second. Periodic boundary condition is applied in all three directions. The simulation 

domain is initialized by surrounding the silica nanoparticle with water molecules in an fcc lattice. 

Water molecules are distributed in fcc lattice instead of random distribution in order to get a 

better distribution and faster equilibration.   
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The trajectories of all the atoms are determined by integrating the equation of motion according 

to the velocity verlet algorithm. Velocity rescaling is used at every 10 time steps to achieve 

temperature control. A time step of 1fs is used to ensure energy conservation, and the verlet 

neighbor list is employed in the simulation. The neighbor list is renewed every 100 steps. Green-

Kubo relation is used to calculate the thermal conductivity of the simulated system. 
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CHAPTER 5: RESULTS AND DISCUSSION 

As mentioned in previous chapter, atomic scale simulation was used to simulate the 

motion and interaction of atoms. Molecular dynamics computations provide coordinates, 

velocities and forces of every atom at each MD time-step. Using the coordinates, velocities and 

forces, various transport coefficients of the system and also the motion of atoms can be 

calculated that give insight into the system behavior. A molecular visualization program Visual 

Molecular Dynamics (VMD), developed by the Theoretical and Computational Biophysics 

group at University of Illinois at Urbana-Champaign was used to visualize the motion of atoms. 

Visualization of atomic motion helps understand the output data and results better.  

5.1 Lattice Vibration of the Nanoparticle 

Molecular dynamics simulation allows us to observe the motion of each particle in the simulation 

domain at every time step. The liquid molecules are free to move anywhere in the simulation 

domain but since the atoms in solid nanoparticle are bonded they can only vibrate about their 

mean position. The images and movies of atomic motion created using the VMD program helps 

in better understanding of the system dynamics. Since the atoms in silica nanoparticle are bonded 

and can not move randomly. It was observed that the atoms in silica nanoparticle were moving 

back and forth about their mean position. The atoms in nanoparticle move faster as the system 

temperature is increased. The motion of atoms in nanoparticle suggests that with all the 

interactions (Si-Si, Si-O, O-O, Si-H) described above, the lattice vibration of atoms in silica 

nanoparticle is induced. The lattice vibrations of the nanoparticles grow with increasing 
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temperature of the system. Motion of water molecules was also observed. It was observed that 

the liquid molecules were randomly moving in the simulation domain and they lost all the 

information of their initial coordinates as the simulation progressed. It was observed that when 

the system enters stable state, the water molecules far away from the nanoparticle move faster 

than the ones close to it. This is because the water molecules away from the nanoparticle interact 

less as compared to the water molecules close to the nanoparticle surface. The lattice vibrations 

of silica nanoparticle play a major role in enhancing the thermal conductivity of nanofluid. The 

lattice vibration of silica nanoparticle shows that the nature of heat transport in nanoparticle is 

phononic or ballistic transport and not diffusive. This was also suggested by Keblinski et al 

[2002] that the nature of heat transport in nano-structures is ballistic or fast diffusive phonon 

transport. It was also suggested that if the phonons initiated from one nanoparticle can persist in 

the liquid and get transmitted to another nanoparticle, this will greatly enhance the heat transfer 

in nanofluids.  

5.2 Density Profile near the Interface 

Formation of an electric double layer around the nanoparticles has been predicted as a plausible 

reason for enhanced heat transport between liquid and nanoparticle. It is well known that the ions 

on nanoparticle surface can attract water molecules near it and the electrical double layer may be 

established due to the electrostatic interaction. Similar effect is observed from the density 

profiles obtained from the present simulation. Figure 12 shows the density profile for two 

nanoparticles. Initially, the solid and liquid are distributed in their respective areas, and the 

density in these areas is approximately constant. 50ps later, the density of silica decreases, while 
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that of the water increases at the solid-liquid interface. As the simulation evolves silica 

nanoparticle attracts more liquid particles, and the liquid density near the interface continues to 

increase. Two types of interactions are being calculated at the solid-liquid interface. One is the 

KTS interatomic potential between Si-H and other is the coulombic interaction between atoms 

with charges. Although the system as a whole is neutrally charged but individual atoms carry 

certain charges. In water, oxygen and hydrogen atoms carry negative and positive charges 

respectively. In silica nanoparticle, oxygen and silicon atoms carry negative and positive charges 

respectively. At smaller distances the KTS potential gives attractive force to water molecules and 

increases density of water near the nanoparticle, and due to the density gradient more water 

molecules are attracted towards the nanoparticle. 

 

Figure 12: Smoothed density profiles of water for 1nm and 2nm nanoparticle at T=300K 

 

The VMD program was used to generate images of positions of water molecules at various time 

steps. It was observed that as the simulation time increases the density of water molecules close 

to the nanoparticle surface increases and the density of water molecules decreases far away from 
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the solid-liquid interface. To clearly observe this phenomenon water molecules in a radius of 

∆r=0.5nm close to the interface and in a layer r-(r+∆r)=2.5-3.0nm were plotted. It was observed 

that the water molecules in the layer close to solid-liquid interface were densely packed 

compared to the atoms further away from the nanoparticle. The liquid molecules at the solid-

liquid interface were arranged in a loosely packed structure, forming a liquid layer or hydration 

layer at the interface. Figure 13 shows the increased density of water molecules close to the 

surface of nanoparticle compared to far away. For clarity the water molecules are shown as a 

single atom at the center of mass. 

 

Figure 13: Density of water molecules higher close to the surface compared to far away 

 

The liquid layer at the solid-liquid interface combined with the phononic nature of heat transport 

in nanoparticle is the two main mechanisms for thermal conductivity enhancement in nanofluids. 

The phonons initiated from one nanoparticle can now travel further in the liquid due to the 

ordered layer at the interface and can be transmitted to another nanoparticle. Although Brownian 
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motion of particles alone can not be accounted for the thermal conductivity enhancement of 

nanofluids, but the random motion of the nanoparticles will also help the phonons to be 

transmitted from one nanoparticle to another.  

 

Figure 14: Schematic nanoparticle surrounded by liquid layer [Yu and Choi, 2003] 

u and Choi [2003] have also observed in their experiments the formation of double layer in 

 

Y

their experiments. Figure 14 shows the schematic of nanofluid structure consisting of 

nanoparticles, bulk liquid, and nano-layer at solid/liquid interface. They have shown that typical 

interfacial width is only of the order of a few atomic distances, i.e. 1nm. While in our simulation 

we observe the interfacial width is up to 2nm. The width of the interfacial liquid layer is highly 

dependent on the solid-liquid interactions. For weak solid-liquid interaction e.g. a non-wetting 

liquid either there will be no interfacial layer of if it is there then it will be very small, while for a 

strong solid-liquid interaction e.g wetting liquid there will be a thick interfacial layer. So, this 
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discrepancy may be attributed to the potentials used in this simulation and the actual charges of 

the particles in the experiment.  

5.3 Heat Current Autocorrelation Function  

The thermal conductivity of the simulated system has been calculated using the Green-Kubo 

relationships. The heat current autocorrelation function was calculated for all the components of 

heat flux vector. Autocorrelation is a mathematical tool often used in signal processing to 

analyze functions in time domain or frequency domain. Autocorrelation is the cross-correlation 

of a function with itself e.g. heat current, q(t). The green-Kubo relations give a mathematical 

expression for thermal conductivity in terms of the time integral of heat current autocorrelation 

function. The heat current autocorrelation function (HCAF) was plotted for water, nanoparticle 

and the nanofluid and following observations were made. The heat current autocorrelation 

function is a cross-correlation of heat current at time t, q(t) to heat current at time 0, q(0). The 

HCAF starts at value, 1 and then slowly decays as the simulation progresses. HCAF starts at 

maximum value 1, since at t-0, we take the cross-correlation of q(0) with q(0). The two values 

being perfectly correlated, give a maximum value to the HCAF.  As simulation progresses the 

atoms move randomly in the simulation domain and loose information about their initial 

condition and the heat current at time t becomes less and less correlated to the initial value and 

decays.The autocorrelation for water molecules show an oscillatory behavior to convergence 

unlike the monotonously decreasing behavior shown by Keblinski et al [2002]. Their simulation 

showed monotonously decreasing behavior probably because they used L-J potential for both 
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solid and liquid. In our simulation the silica nanoparticle and also the nanofluids heat current 

autocorrelation show oscillatory behavior due to the lattice vibration of the particle.  

 

 

Figure 15: Heat current autocorrelation function 

 

Since the number of water molecules used in the simulation is very large, the convergence takes 

more time for water molecules compared to the lattice system of silica nanoparticle. Figure 15 

shows the heat current autocorrelation function for water, nanoparticle and the nanofluid. 

5.4 Thermal Conductivity Enhancement 

MD simulation of pure water was done to calculate the thermal conductivity of pure water and to 

validate the MD code. 256 water molecules were modeled using the SPC/E model in a cubic 

simulation domain of 1nm length. Thermal conductivity of liquid water was also calculated using 
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Green-Kubo correlations at three different temperatures. Thermal conductivity of pure water was 

0.665 W/mK, 0.679 W/mK and 0.685 W/mK at 300K, 315K and 325K temperatures, 

respectively. At 300K the calculated thermal conductivity of liquid water is around 0.665 W/mK, 

which is larger than the experimental value (0.61 W/mK), but is still comparable with the 

simulation value (0.67 W/mK) provided by Bertolini and Tani [1997], this comparison also 

validates our MD code. Figure 16 shows the calculated thermal conductivity of silica 

nanoparticle, liquid water and the nanofluid. The simulated thermal conductivity for the silica 

nanoparticle is around 7.21 W/mK, and this value is less than the results, 8.2 W/mK for α-

directions provided by McGaughey and Kaviany [2004]. This nonconformity is due to the fact 

that the simulation done by McGaughey was performed for bulk silica, while the thermal 

conductivity in our simulation is calculated for a silica nanoparticle of 2 nm in the presence of 

liquid water.  

 

Thermal conductivities of water and 3 nanofluids at various temperatures are given in Table 5. 

At 300 K 2nm nanofluid gives 23.31% higher thermal conductivity than the simulated value for 

water and 34% higher compared with the experimental thermal conductivity of water. The 1.5nm 

nanofluid at 300K shows 24.21% thermal conductivity enhancement compared to simulated 

value for water and the 1nm nanofluid at 300 K shows 26.92% increase in thermal conductivity 

compared to simulated value for water. Although there are few experimental results of thermal 

conductivity for the silica-water nanofluid, the simulated value is still much larger than obtained 

from the Hamilton and Crosser theory (8.1%). However, the simulated value of the thermal 

conductivity for the silica-water system is still much less than those predicted from the 

correlations obtained by other authors. This is because almost all correlations were based on at 
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least two mechanisms, for example, Brownian motion of nanoparticles and clustering among 

nanoparticles and in this simulation the Brownian motion and nanoparticle clustering is not 

considered. Even though these mechanisms are not considered in the current work, the 

preliminary results for the silica-water nanofluid obtained from the molecular dynamic 

simulation are still exciting. 

 

Figure 16: Thermal conductivity of water, nanoparticle and nanofluid at 300K 

 

Thermal conductivity was calculated at various time steps and plotted over the simulated time to 

see the convergence as time progresses. Thermal conductivity of 1nm and 2nm nanofluids were 

plotted to see the effect of nanoparticle size on effective thermal conductivity of nanofluid. 

Figure 17 shows the thermal conductivity of water and effective thermal conductivity (keff/kw) of 

1nm and 2nm nanofluid at 300K. Thermal conductivity of 1nm nanofluid is more than 3% higher 
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compared to that of 2nm nanofluid at all temperatures. The 1nm nanofluid gives more 

enhancements compared to 2nm because of higher surface area to volume ratio there are more 

interactions going on at the solid-liquid interface of 1nm particle than at 2nm particle. It can also 

be seen in Figure 17 that the extent of hydration layer was more for smaller size nanoparticle. 

 

Table 5: Calculated thermal conductivity of 3 nanofluids at various temperatures 

Temp Water 1nm % inc 1.5nm %inc 2nm %inc 

 (W/mK) (W/mK)  (W/mK)  (W/mK)  

300K 0.665 0.844 26.92 0.826 24.21 0.82 23.31 

315K 0.679 0.862 26.95 0.8434 24.21 0.8374 23.32 

325K 0.685 0.87 27.01 0.851 24.23 0.845 23.36 

 

 

Figure 17: Thermal conductivity of 1nm and 2nm nanofluid and pure water at T=300K 
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In order to design better heat transfer devices involving the use of nanotechnology we need to 

understand the basic heat transport phenomenon at nano-scale. It is now well known that liquid 

molecules form an ordered layer on the solid-liquid interface and it has been postulated [Yu et al, 

2000] that this ordered layer of liquid molecules help increase the thermal conductivity of 

nanofluid, because now phonons originating from the nanoparticle can travel further in the liquid 

and help the transport of heat. In this work we’re considering interaction between solid 

nanosilica and liquid water molecules and the interactions between the two are modeled using 

the KTS model which provides a strong interaction hence a weak interfacial resistance. Yu and 

Choi [2003] have also postulated that the nanolayer formed on the solid-liquid interface helps 

augmentation of the thermal conductivity and solid-liquid contact resistance is not dominant at 

the solid-liquid interface of particle-in-liquid suspensions. So we conclude that the two most 

important mechanisms affecting the heat transport in silica nanofluid are liquid layering on the 

solid-liquid interface combined with phononic heat transport of nanosilica. 
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CHAPTER 6: CONCLUSION 

In this work, a parallel molecular dynamic simulation on the nanofluids consisting of one 

1nm, 1.5nm and 2nm silica (α-quartz) nanoparticle surrounded by water molecules has been 

performed. Both the short-range and long-range interactions have been parallelized using the 

atom decomposition method. Equilibrium molecular dynamics method with Green-Kubo 

correlations is used to calculate the thermal conductivity of nanofluid. Unlike in previous studies, 

all interactions liquid molecule-liquid molecule, liquid molecule-solid molecule and solid atoms-

solid atoms have been considered. Motion of atoms in silica nanoparticle and water molecule in 

the simulation domain was studied. Based on the results obtained, following conclusions may be 

made: 

• Maxwell model and Hamilton-Crosser model under-predict the effective thermal 

conductivity of nanofluids. The reason that these models fail for nanofluids is that it does 

not take the dynamics of the nanoparticles into account. 

• The results show that the density of water near the interface increases with time. This 

implies the generation of a double diffuse layer or the so-called hydration layer at the 

solid-liquid interface.  

• The effective thermal conductivity of various nanofluids for our simulation shows around 

25% enhancement than that of pure liquid. The enhancement compares well with 

previous studies. 

• Lattice vibration of atoms in silica molecules is observed. Lattice vibration of atoms 

increases with temperature. 
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• It is shown that the lattice vibrations of silica nanoparticle and interfacial interaction 

between the nanoparticle and the liquid play important role in improving the heat transfer 

of the suspension.  

 

84 



CHAPTER 7: FUTURE WORK 

There are many other parameters which can affect the performance of nanofluids. It is 

important to understand the nanofluid behavior completely prior to their application in the 

industry. To better understand the heat transfer characteristics of nanofluids, more work should 

be done to understand the chemical interactions between the liquid molecules, and atoms on the 

surface of nanoparticles. The nanoparticles manufactured by various methods are not spherical in 

shape, so the effect of nanoparticle shape on heat transfer should be studied. Since these 

nanofluids would be used in channel flows, the near wall effect on the thermal conductivity of 

nanofluid should also be studied to better design the future heat transfer devices. 

 

It the discussion of thermal transport characteristics of particle or fiber nanofluids, it is 

important to discuss the concept of interfacial thermal resistance also called Kapitza resistance. 

When heat is transferred from one phase to another, an interfacial thermal resistance can arise. 

Current understanding of the thermal resistance of solid-liquid interface is primarily based on the 

acoustic mismatch model (AMM) in which transmission and reflection of classical heat waves at 

the interface is considered. Since speed of sound is different in solid and liquid medium an 

analogy is made for the heat wave and the difference in speed at the interface causes an obstacle 

at the interface. The Kapitza resistance for a solid-liquid interface depends on the contact angle 

of the liquid or the wettability of the liquid. Barrat and Chiaruttini [2003] used EMD and NEMD 

and to study the interfacial resistance and the effect of wetting properties of liquid. Their results 

showed that the interfacial resistance is higher for a non-wetting liquid compared to a wetting 
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liquid. The interfacial resistance between the liquid and solid at the interface and its effect on 

overall heat transfer of nanofluid will be studied.  
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