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ABSTRACT

Current trends in spacecraft are leading to smaller, more inexpensive options whenever possible.

This shift has been primarily pursued for the opportunity to open a new frontier for technolo-

gies with a small financial obligation. Limited power, processing, pointing, and communication

capabilities are all common issues which must be considered when miniaturizing systems and im-

plementing low-cost components. This thesis addresses some of these concerns by applying two

methods, in attitude estimation and control. Additionally, these methods are not restricted to only

small, inexpensive satellites, but offer a benefit to large-scale spacecraft as well.

First, star cameras are examined for the tendency to generate streaked star images during maneu-

vers. This issue also comes into play when pointing capabilities and camera hardware quality are

low, as is often the case in small, budget-constrained spacecraft. When pointing capabilities are

low, small residual velocities can cause movement of the stars in the focal plane during an expo-

sure, causing them to streak across the image. Additionally, if the camera quality is low, longer

exposures may be required to gather sufficient light from a star, further contributing to streaking.

Rather than improving the pointing or hardware directly, an algorithm is presented to retrieve and

utilize the endpoints of streaked stars to provide feedback where traditional methods do not. This

allows precise attitude and angular rate estimates to be derived from an image which, with tradi-

tional methods, would return large attitude and rate error. Simulation results are presented which

demonstrate endpoint error of approximately half a pixel and rate estimates within 2% of the true

angular velocity. Three methods are also considered to remove overlapping star streaks and resi-

dent space objects from images to improve performance of both attitude and rate estimates. Results

from a large-scale Monte Carlo simulation are presented in order to characterize the performance

of the method.
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Additionally, a rapid optimal attitude guidance method is experimentally validated in a ground-

based, pico-scale satellite test bed. Fast slewing performance is demonstrated for an incremental

step maneuver with low average power consumption. Though the focus of this thesis is primarily

on increasing the capabilities of small, inexpensive spacecraft, the methods discussed have the

potential to increase the capabilities of current and future large-scale missions as well.
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CHAPTER 1: INTRODUCTION

Small Satellite Background & Technical Challenges

Pico- and nano-scale satellites are attractive due to their extremely low cost and increasing versatil-

ity for scientific missions in low-Earth orbit. A typical pico-scale satellite follows the 10 cm cube

form factor and weighs in under 1 kg. Multiple cubes may be combined to form a larger nano-scale

satellite which is generally within a weight limit of 4 kg [1]. Some systems, however, extend up to

6 units, with a mass under 8 kg. The benefit of adhering to this form factor is the availability of a

standard deployment system with flight heritage, known as the Poly-Picosatellite Orbital Deployer

(P-POD) [2]. The P-POD deployment system was developed at California Polytechnic University

with the aim of standardizing the launch of pico- and nano-scale satellites. This deployer allows

small spacecraft to ride as passengers on a larger primary mission without the associated cost of

developing a compatible deployment system for each mission [3].

Small satellite missions are becoming increasingly common for university scientific experiments.

Past missions have included earthquake detection [4], imaging [5], and biological research in micro

gravity [6]. With the increasing availability of commercial off-the-shelf (COTS) equipment, it is

becoming simpler and cheaper to use a small satellite for university research and in developing

nations [7]. Additionally, active control methods employed in small satellites are rapidly becoming

more precise and increasingly capable of performing imaging and Earth observation missions [8].

The limited volume of these small pico- and nano-scale satellites necessarily leads to tight restric-

tions on the power available to the systems onboard. Past missions have varied from 10 mW to

nearly 7 W of available power [9]. In general, small satellites have averaged a power generation

potential of approximately 1 W/kg. Power generation is almost always achieved through the use
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of surface mounted solar panels — which are seen in approximately 85 % of small satellites since

1997 — however only 16 % employ deployable solar panels [9]. Due to the small physical size, a

satellite following the CubeSat specification will only have a maximum area of 0.01 m2 available

for pico-scale and up to 0.03 m2 for nano-scale with no deployable solar panels. Further consid-

ering the fact that solar panel peak efficiencies are in the range of 30 % and additional losses in

transmission and storage, the power constraints on small satellites become readily apparent.

Currently, only about 40% of small satellites have employed active attitude control [9]. This is

due to the power, volume, and mass demands of such a system in addition to the lack of precise

pointing options for pico- and nano-scale satellites. Missions which have used some form of active

control have yet to improve pointing capabilities beyond 1 degree accuracy [9, 10]. Some COTS

equipment is planned to reach beyond 1 degree of accuracy, however there are no solutions with

flight heritage.

General Spacecraft Limitations

General spacecraft limitations addressed here primarily refer to the operation of star trackers

for attitude estimation. Star trackers are common camera-based sensors which are capable of

providing extremely precise attitude feedback in the typically measured in the arcsecond range

[11, 12, 13, 14]. The operating principles behind these sensors relies primarily on digitally pro-

duced images of stars. These stars are de-focused slightly in order to spread the signal across

multiple pixels, and a centroiding process is conducted on the resulting image [15]. Centroiding

essentially provides a center-of-mass computation for each star in order to produce precise, sub-

pixel locations of each within the image. Discovered stars are matched to a catalog of known star

locations on the celestial sphere [16, 17, 18]. Attitude estimation may then be performed on the

set of discovered and reference locations to determine an optimal attitude estimate. The attitude
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estimation problem is known as Wahba’s Problem [19] and there exist several optimal solutions

[20, 21, 22].

One drawback of star trackers is the fact that they are limited by the maximum angular rate at which

they are capable of operating [13]. Due to the nature of the centroiding procedure, the center point

of a star signal becomes less precise as the signal is spread asymmetrically across several pixels.

This spread, referred to here as a streak, is due to the integrative nature of cameras. In order to

generate a useful signal for attitude determination, the camera must collect light over time. The

time required for this process means that any movement during the exposure will necessarily cause

the star to move across the focal plane. The resulting star image, then, will be streaked according to

the direction of rotation. For small angular velocities, this may not be an issues, however for large

angular rates, small fields of view, and long integration times, this can lead to significant distortion

of the star image.

Lower quality cameras also have the tendency to produce streaked images. For example, small

satellites often do not have the available volume to contain large-aperture cameras, resulting in

collection of less light during an exposure. Consequently, smaller aperture cameras must integrate

for longer durations to achieve similar signal strength to that of a large aperture camera [11]. Long

integration times combined with small residual angular velocities spread the signal of a single star

over several pixels, reducing accuracy of the standard methods.

This streaking distortion comes into play during commanded maneuvers. Unless the maneuver is

maintained within a limited velocity profile, which may not fit within the mission requirements of

the spacecraft, it follows that there will be a reduction of accuracy or even the loss of feedback

altogether. In such a case, a secondary sensor suite or a numerical propagation of the last known

state becomes necessary.
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Thesis Outline and Contributions

The chapters of this thesis are organized as follows.

Chapter two details a framework for a realistic star camera model built on a simple pin-hole camera

approximation. A widely available star catalog is included in the implementation as a source for

actual star location and visible brightness data. Realistic star intensities are extrapolated from pub-

lished intensity values. Distortions and noise particular to charge-coupled device (CCD) sensors

are implemented. Secondary, resident space objects (RSOs) are implemented within the images

through consideration of actual orbital dynamics for both the camera spacecraft and the RSO. The

RSO implementation serves to provide a foundation for part of the work in chapter four. Finally,

the quaternion kinematics of the camera-equipped spacecraft are applied to produce streaked star

camera images. This camera model is the foundation for the work discussed in chapters three and

four.

In chapter three an algorithm is presented for providing attitude and rate feedback from streaked

star camera images by utilizing traditional image processing techniques. Images are segmented

to specifically locate regions within the image containing star streaks. These regions of interest

are then examined for “corner-like” features, which refers to locations within the image which

contain a strong gradient in two directions. Endpoints are discovered, localized, and traditional star

identification and attitude estimation methods are applied. A large-scale Monte Carlo simulation

is presented which characterizes the performance over a broad range of camera configurations.

Chapter four explores the work of the previous chapter in further detail. A rate-only formulation of

the previous algorithm is discussed. Additionally, an automated method for identifying overlapping

star streaks and RSOs within the image is presented. Based on the dynamics of the camera-RSO

system, two foundational methods are proposed as indicators for corrupted or non-star data within
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an image. A third method is proposed which combines the two base methods into a single opera-

tion. Simulation results are shown for rate estimation in an RSO-tracking scenario and a 10-orbit

Monte Carlo simulation is presented to verify and characterize the expected performance.

The fifth chapter addresses the power constraints of pico- and nano-scale satellites with an optimal

path planning algorithm for slewing maneuvers. A path generation control architecture is derived

with the aim of reducing overall power consumption of the maneuver. A bio-inspired motion

strategy is implemented with the purpose of reducing overall computation time required for the

optimization. A linear quadratic tracking controller is developed in order to optimally track the

pre-generated path. Simulation results are discussed and the complete system is experimentally

verified on a pico-scale satellite prototype suspended within a Helmholtz coil test bed. Results and

are discussed and performance metrics are provided.

Finally, the thesis is concluded with a summary and discussion of potential future work which

could improve these methods further.
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CHAPTER 2: HIGH-FIDELITY STAR CAMERA MODEL

In order to develop and verify the algorithms in the following chapters, a star camera model is first

developed. This model generates realistic images of actual stars, including streaking dynamics,

noise characteristics, and resident space objects (RSOs).

Pin-Hole Camera Model

In order to generate an image, knowledge of the stars within the celestial sphere is required. Con-

veniently, such data has been precisely collected and made freely available in several forms. The

two primary sources currently in use are the Tycho star catalog [23] and the Hipparcos star catalog

[24]. The most recent version of the Tycho catalog, Tycho-2, contains precise measurements of

nearly 2.5 million stars, while the Hipparcos catalog pinpoints approximately 120, 000 stars. For

simplicity, a subset of the Hipparcos star catalog is used, containing unit vectors corresponding

to the location of 7, 000 stars in the Earth-Centered Inertial (ECI) coordinate frame with visible

magnitudes ranging from −1.4 to 8.5. For reference, the faintest star visible to the human eye is a

magnitude of approximately 5.0, with lower values corresponding to brighter stars [11].

The subset of the star catalogue was chosen to provide a homogenous distribution of stars re-

gardless of orientation. The full catalog may be used, however image generation time increases

considerably with the complete catalogue. In order to generate an image from this catalog, each

unit vector is considered individually. The Collinearity equation maps points in 3-dimensional

space through a common focal point onto a 2-dimensional plane.
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Figure 2.1: Full-sky image of the Tycho-2 star catalogue.

Equation 2.1 is referred to as the “Pinhole Camera” model [25].

x = −f R11 (X −X0) +R21 (Y − Y0) +R31 (Z − Z0)

R13 (X −X0) +R23 (Y − Y0) +R33 (Z − Z0)

y = −f R12 (X −X0) +R22 (Y − Y0) +R32 (Z − Z0)

R13 (X −X0) +R23 (Y − Y0) +R33 (Z − Z0)

(2.1)

Here, f is the focal length of the camera, R refers to the direction cosine matrix (DCM) represent-

ing the attitude of the camera in ECI, and (X, Y, Z) refers to the unit vector describing a particular

star in ECI. (X0, Y0, Z0), in general, is the absolute location of the camera; in order to be compati-

ble with the star catalogue, however, this is taken as (0, 0, 0). This fixes the camera at the center of

the celestial sphere at all times, with only freedom in rotation. Since the stars are very distant from

the camera, any changes of the apparent star locations due to movement within the solar system

are negligible. x and y are the corresponding coordinates in the 2-D focal plane.

One issue with a simple application of the Collinearity equation is that Equation 2.1 contains no

discrimination of stars which lie behind the camera. All stars are projected to the image plane,
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meaning that stars directly behind the camera will also fall within the produced image. In order to

prevent this, a preliminary step is performed to remove stars well beyond the field of view. The

complete star map is rotated into the camera frame with


Xi

Yi

Zi


Cam

= R ·


Xi

Yi

Zi


ECI

(2.2)

for i = 1 . . .N where N is the number of stars contained in the catalogue. Stars with Zi,Cam < 0

are removed as they are physically behind the camera and cannot appear in the resulting image.

This has the added benefit of reducing overall computation time.

The Collinearity equation is then applied to each of the remaining star locations to produce the

set of camera-plane coordinates, (xi, yi). Each set of star coordinates must then be converted

from physical dimensions to pixel space by dividing by the physical pixel size characteristic to the

camera. Each coordinate is additionally shifted so that the origin corresponds top-left corner of the

image.  xi

yi


′

=

 xi/Sx

yi/Sy

+
1

2

 Resolutionx + 1

Resolutiony + 1

 (2.3)

Sx and Sy are the dimensions of the physical CCD pixels within the camera. These values are

derived from the physical camera parameters through the relations in 2.4.

Sx = 2f
tan (0.5 · FoVx)
Resolutionx

Sy = 2f
tan (0.5 · FoVy)
Resolutiony

(2.4)

Here, FoVx and FoVy correspond to the angular field of view in the x and y axes, respectively.

Coordinates beyond the bounds of the camera frame are removed, leaving only coordinates which
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fall within the image plane.

Since pixel locations are limited to discrete integer locations, a further step is required to convert

from the coordinates which do not perfectly fall within a single pixel. A simple nearest-neighbor

approach may be used, where the coordinate is rounded to the nearest pixel, however significant

positional error will be introduced. A bi-linear interpolation is implemented here in order to place

stars within the image to sub-pixel precision. This process essentially spreads the intensity of

the point source across the neighboring pixels, proportional to the coordinate’s position among

them. For example, for the coordinate (1.5, 1), which falls halfway between (1, 1) and (2, 1), the

intensity would be divided evenly between the pixels located at (1, 1) and (2, 1). For the coordinate

(1.25, 1), however, 75% of the intensity would fall into the (1, 1) pixel, and 25% would fall into

the pixel at (2, 1). The complete relations are shown below. First, two intermediate values are

calculated to simplify the subsequent equations.

Ai = xi − floor (xi)

Bi = yi − floor (yi)

(2.5)

Ai and Bi represent only the fractional component of the coordinates xi and yi, respectively. The

intensities corresponding to the 2× 2 pixel area surrounding the coordinate is outlined below. The

net intensity added to the image in this process is equal to the original intensity, Ii.

M0,0 = Ii (1− Ai) (1−Bi)

M0,1 = IiAi (1−Bi)

M1,0 = IiBi (1− Ai)

M1,1 = IiAiBi

(2.6)

Within the full-frame image, M0,0 corresponds to the coordinate (floor(xi), f loor(yi)). The in-
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tensities, Ii, are extrapolated from a published value for a magnitude 0 star [11]. Intensities are

measured in photoelectrons, e−, per second of exposure, per square meter of exposed aperture.

I0 = 19, 000
e−

s ·m2
(2.7)

To extrapolate this value to produce the intensity corresponding to any other visible magnitude,

Mv, the following equation from [11] is used.

I (Mv) = I0
1

2.5Mv
TA (2.8)

T is the exposure time and A is the aperture area. The visible magnitudes represent a logarithmic

scale, with smaller values corresponding to brighter stars. For example, a star of magnitude −1

is 2.5 times brighter than a magnitude 0 star, with I (−1) = 47500 e−/s ·m2. A sample single-star

image at this step is shown in Figure 2.2. The image has been inverted from the original.

Figure 2.2: Inverted single-star image following bilinear interpolation.

In order to produce a more realistic star camera image, it is necessary to also simulate slight

blurring effects present due to imperfections in the lens geometry. In fact, this effect is often seen

as beneficial in traditional star cameras as it spreads the point sources over multiple pixels, allowing

a more precise centroid to be calculated. This, in turn, produces a more precise image coordinate

for the measured star [15]. Here, this effect is achieved through a 2-dimensional convolution of a

point spread function (PSF) with the raw, full-frame image. Specifically, a Gaussian PSF is used.

The parameters of interest for this type of operation are the size of the PSF, measured in pixels
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and the standard deviation, σ, of the kernel. Any amount of blurring can be used, depending on

the application and the characteristics of the chosen camera, so specific parameters will not be

discussed here. A sample 3× 3 Gaussian PSF with σ = 1 is shown below.

PSF =


0.0751 0.1238 0.0751

0.1238 0.2041 0.1238

0.0751 0.1238 0.0751

 (2.9)

The image from Figure 2.2 is seen again in Figure 2.3 following the application of the Gaussian

PSF above. The effect is a distribution of the same intensity contained in the original four pixels

over a larger pixel area. For this reason, the intensity in any single pixel generally decreases.

Figure 2.3: Inverted single-star image following convolution with a 3× 3 Gaussian PSF.

To complete the star camera model, realistic noise characteristics are implemented. Three types

of noise are considered: read noise, shot noise, and dark current [26]. Each type of noise will

be discussed individually. The first type, read noise (RN), is noise due to transferring data from

the detector within the camera. Values for read noise are measured in photoelectrons and can be

found in technical specifications for the specific camera in use. Shot noise (SN) is proportional to

the intensities present within the image – brighter pixels generate slightly more noise than dimmer
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pixels. For the purposes outlined here, the relation in Equation 2.10 is used.

SN =
√
Signal (2.10)

Dark current (DC) noise is due to leakage current in the circuitry of the camera. This type of noise

is proportional to the exposure time. An image with a longer exposure will contain more noise than

a similar image taken with a shorter exposure. Dark current noise is measured in photoelectrons

per second.

A complete measure of the total noise present in the system is available through

Noise =
√
RN2 + SN +DC · T (2.11)

where T is the exposure time of the image. The complete noise effect is added in two steps: (i)

shot noise is calculated and multiplied by a uniformly-distributed random value between 1 and 0

for each pixel; (ii) the magnitude remaining noise is calculated throughNoise =
√
RN2 +DC · T

and applied to the entire image as uniformly-distributed random noise.

Finally, to complete the resulting image, a conversion from photoelectrons, e−, to the non-dimensional

units (NDUs) which measure pixel intensity in an image is performed. The specific conversion is

a characteristic of the camera hardware, referred to as quantum efficiency (QE) [26]. Quantum

efficiency is measured in e− per NDU; conversion is achieved by simply dividing the intensity

value of each individual pixel by QE. A saturation is then applied to all pixels, again based on the

camera characteristics. Additional image corruption due to over-saturation is possible, however it

is not considered here. A complete full-frame image including all of the features discussed in this

section is shown in Figure 2.4.
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Figure 2.4: Complete full-frame simulated star camera image for an arbitrary parameter set.

A summary of the complete process for generating a single-attitude star image is shown below.

Star Catalog Unit 
Vectors

Camera Attitude 
DCM

Calculate Image-
Plane Star 

Coordinates

Scale Coordinates By 
Physical Pixel Size

Compute Star 
Intensities

Interpolate 
Coordinates to 
Discrete Pixel 

Locations

De-Focus Image

Remove Stars 
Behind Camera

Add Noise

Convert to NDUs

Figure 2.5: Complete process for generation of a single star image.
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Streaking Dynamics

Streaking is an effect present in images from a camera undergoing motion relative to its target or

rotation. In order to implement this effect, the kinematics of a rotating rigid body are considered.

It is worth noting that only the quaternion kinematics are considered here. Therefore, this model is

only valid for bodies undergoing very small accelerations, which will not produce significant vari-

ations within the resulting image. More significant accelerations will, in reality, lead to variations

in brightness and complex geometries within single streaks. The quaternion kinematics for a rigid

body are detailed below [27].

~̇q =
1

2

 ω̃ ~ω

−~ωT 0

 ~q (2.12)

Here, ~ω is the angular rate vector, ω̃ is the skew-symmetric matrix, and ~q is the quaternion atti-

tude. As stated before, ~ω is considered to be constant or near constant. The kinematics here are

considered in ICRS to more easily incorporate with the star catalogue data. To produce an image

at a given moment in time, ti, the initial attitude and angular rate are considered. The kinematics

are integrated from these initial conditions with time steps, Ts, to a final time, tf = ti + T , where

T is the exposure time of the camera. Still images are generated for each attitude in the com-

plete attitude history, (~q (ti) . . . ~q (tf )). For each individual image, the intensities for each star are

calculate from Equation 2.8 as detailed in the previous section, however the exposure time, T , is

replaced with the step time, Ts. Therefore, a star intensity present in a still image is spread evenly

across several pixels in a streaked image. The complete set of images is then summed to produce

a complete streaked star image.

For larger simulated image, this image generation method can quickly become computationally

intensive. In past simulations, generation of a 1024 × 1024 image can take several seconds. To

somewhat reduce the required computational power, the “de-focusing” step discussed in the pre-
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vious section is postponed until the set of images has been summed. The convolution is applied

to the entire streaked image, requiring only one convolution rather than one for each time step.

Additionally, parallelizing the computations has provided a significant benefit, as several images

can be generated simultaneously.

Figure 2.6: Complete full-frame streaked star camera image.

Noise is then added in the same manner as described in the previous section, completing the

streaked star camera image.

Resident Space Object Implementation

The final characteristic of star cameras considered here is the tendency to sometimes pick up non-

star objects. These are generally referred to as resident space objects (RSOs) and can be anything

from a secondary spacecraft in a similar orbit to a comet or meteorite in an extreme hyperbolic

orbit. Consideration of such cases is necessary for the analysis which will follow in Chapter 4.
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Simple orbital dynamics are considered here, of the form [28]:

~̇r = ~v

~̇v = −µ ~r
r3

+ ~anonspherical

(2.13)

where ~r and ~v are measured in the Earth-centered inertial (ECI) coordinate frame. One perturba-

tion to the general orbital dynamics is considered – the effect of Earth’s oblateness. ~anonspherical

represents the J2 effect, which is an additional acceleration generated in orbit due to the bulging of

Earth at the equator. An approximation of this acceleration is applied, in the form seen in Equation

2.14.

~anonspherical =
−3J2µR⊕

2

2r5


rI (1− 5rK

2/r2)

rJ (1− 5rK
2/r2)

rK (3− 5rK
2/r2)

 (2.14)

Though drag effects can also represent a considerable perturbation, consideration in the simulation

adds significant complexity without contributing to the results in the following chapters. It is

assumed that the spacecraft containing the camera is in an orbit which is only minimally affected

by drag in the short-term, however it is expected that the results from Chapter 4 will extend to other

orbits, as long as the spacecraft can be precisely tracked.

A set of constraints is set on image generation to provide a more realistic simulated environment.

Specifically, eclipses of the RSO, glare from the Sun, and Earth occlusions are considered. Figure

2.7 details the layout of the orbital environment for a spacecraft and a resident space object, from

which the following constraints are derived.

Eclipses of the RSO are given by the relation in Equation 2.15, derived in full in [29]. In the
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implementation here, the RSO is only rendered if the following is true.

~r� · ~rsc
r�rsc

>
−
(
rsc

2 −R⊕2
)1/2

rsc
(2.15)

r� refers to the Sun vector relative to Earth, R⊕ refers to the radius of Earth, and ~rsc is the lo-

cation of the spacecraft relative to Earth’s center. This is essentially a computation of the angle

between the spacecraft position vector and the sun vector. When the computed angle falls within

the envelope of Earth’s shadow, it is considered eclipsed.

~r�

~rSC

~rRSO

Earth

Sun

~a

Figure 2.7: Orbital environment geometry.

From Figure 2.7, it can be seen that the angle between the attitude vector, ~a, and the sun vector,

r�, is given by

cos (φs) =
~r� · ~a
r�

(2.16)

Where ~a =

[
1 0 0

]
Rcam. Variations in the Sun vector due to the position of the spacecraft

about Earth can be neglected with negligible affect on the final result. For additional precision, the

Sun vector should be calculated with respect to the current position of the spacecraft. Considering

the field of view of the camera, FoV , it can be found that the sun is within the image frame
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whenever the relation in Equation 2.17 is true.

φs < sin−1
(
R�
r�

)
+
FoV

2
(2.17)

Here it is assumed that the camera includes a baffle which does not allow stray light to enter the

lens. For small and inexpensive satellites, however, this may not be the case. Then, it will be

necessary to include a buffer angle in addition to the field of view to account for angles at which

the sun is not in the frame, however stray light is entering the lens from extreme angles. A simple

binary true or false case is considered here, and images are considered completely corrupted if the

sun is anywhere in the frame.

Similarly, the angle between the attitude vector and the position vector of the spacecraft is given

as

cos (φe) =
−~rsc · ~a
rsc

(2.18)

It follows, then, that Earth is within the image if the following is true.

φe < sin−1
(
R⊕
rsc

)
+
FoV

2
(2.19)

Again, the image is considered corrupted if Earth falls within the camera frame. This is due to

reflected glare from the Earth’s surface as well as obstruction of the camera. Similar concern for

stray light entering the camera may be considered here, however this simulation does not include

it.

RSOs are included in the star camera image in the same way that stars are in the previous sec-

tions. The Collinearity equation maps the spacecraft’s position into the image plane. Images are

generated generated and integrated over the exposure time to create a final, streaked RSO image.

This image is then combined with It is assumed that the spacecraft is at a significant distance and
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remains unresolved at all points in time. The spacecraft, then, acts as a single point of light, similar

to a star. A visible magnitude appropriate for the type of satellite should be chosen based on pub-

lished data. Specifics of determining the appropriate magnitude will be discussed further Chapter

4. Sudden variations in brightness, such as those due to a tumbling spacecraft, are not considered

here. A sample image including a streaking RSO is shown in Figure 2.8.

Figure 2.8: Complete full-frame star camera image with pronounced RSO streak.
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CHAPTER 3: LONG-INTEGRATION STAR TRACKER IMAGE

PROCESSING FOR COMBINED ATTITUDE - ATTITUDE RATE

ESTIMATION

Star trackers are limited to producing quality feedback at only small angular rates due to the ten-

dency of stars to streak across the focal plane during an exposure [13]. Some previous work

has approached a solution to this problem through geometric analyses of the signal, however no

method is capable of approaching the accuracy of rotationally-constrained star tracking. Liebe et

al. approached the problem by fitting a spherical circle to discovered star streak with results in the

55 arcsecond range and rate estimates within 5% of actual [30]. Simms applied a line fit to streaks,

with an iterative least squares correction in the local region of each endpoint [31]. This produced

more precise estimates, between 1
10

and 1
5

of a pixel for bright streaks, however this method is

primarily intended for the handling of non-star objects which exhibit little curvature.

An algorithm is proposed here which employs traditional image processing methods to retrieve

endpoint data from images otherwise corrupted due to streaking. The implemented methods rely

primarily on the detection of corners within an image, for which there exist many well-known

procedures [32, 33, 34]. This particular method is chosen for the geometry particular to streaked

star signals. Endpoints of streaks will be shown to demonstrate very similar responses to corners

when these algorithms are applied.

A step-by-step process for extracting streaks from an image, collecting and grouping endpoints,

and obtaining attitude and rate estimates is presented. Monte Carlo simulation results are shown in

order to characterize the behavior of the algorithm, and implications of the results are discussed.
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Algorithm Description

Streak Identification & Separation

In order to enable the methods discussed in the following sections, which operate on the image

locally, it is first necessary examine the image globally to separate out regions of interest. Regions

of interest, in this case, are defined as large, contiguous areas above a certain threshold value in

the grayscale image. First, then, the image must be thresholded at a certain value. A value of

the mean value of the entire image is chosen in order to remove noise which could potentially

connect streaks. This operation is performed as a binary logical operation so that areas below the

threshold are set to zero and areas above to one. This converts the image into the desired format

for centroiding.

Centroiding identifies contiguous areas in the image and computes the center point for each area.

The specific method applied for centroiding is discussed by Mortari et al. in [15]. Computed center

points are desirable in this case to provide discrete locations for each possible streak. A bounding

box may also be computed for each discovered centroid to separate regions of interest for the

remaining operations. For the subsequent endpoint detection, discussed below, the operators only

act locally on the regions of interest containing each streak. The binary image is discarded and the

locations in the preserved initial image are referenced. In this way, required computational time is

reduced by removing operations on unnecessary data.

Some smoothing may be necessary at this point in order to reduce noise within the image. This,

however, depends on the expected characteristics of the noise and the possibility of other types

of corruption in the image. Operations specific to the expected behavior of the camera hardware

should be applied for noise reduction.
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Endpoint Detection

Gaussian Derivative Kernel

The foundation of the following corner detection methods is the ability to take a spatial derivative

within an image. A simple method for producing a derivative in a given direction is to subtract

neighboring pixels to calculate a difference. For example, the derivative at pixel (x, y) in the x

direction may be given as
∂Mx,y

∂x
= Mx−1,y −Mx+1,y (3.1)

Here, M represents the complete image as a large matrix of intensity (brightness) values. This

operation is effectively a convolution of the entire image with the kernel

h =

[
1 0 −1

]
(3.2)

The resulting image contains the approximate derivative at each pixel. Due to the presence of

noise and low order of the derivative, this method often does not provide an accurate derivative.

The Gaussian derivative kernel combines a smoothing operation with the derivative operation,

providing a simultaneous filtering effect to produce an improved response in the presence of noise.

The Gaussian derivative kernel follows the 2-dimensional Gaussian distribution [35].

G (x, y, σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(3.3)
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A simple 3× 3, x derivative Gaussian kernel with σ = 0.5 is shown in Equation 3.4, below.

h =


0.0466 0 −0.0466

0.3446 0 −0.3446

0.0466 0 −0.0466

 (3.4)

Convolution of this kernel with the image provides the necessary gradients in the following two

methods. For each of the four methods discussed below, the resulting cornerness measures are

computed for a typical star streak, seen in Figure 3.1.

Figure 3.1: Sample star streak.

Minimum Eigenvalue Method

The primary component behind the Minimum Eigenvalue method and the following Harris method

is the structure tensor, A, detailed in Equation 3.5. Ix and Iy refer to the calculated gradient in the

corresponding directions – in this case, the Gaussian derivative kernel discussed in the previous

section is used. This tensor is used as an indicator for certain features within an image [33].

A =

 I2x IxIy

IxIy I2y

 (3.5)

In this method, as the name suggests, the Eigenvalues of A, λ1 and λ2, are considered to describe

the presence of corner-like features. For example, if both λ1 and λ2 are small for a given pixel, the
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pixel is not considered to contain a feature. A strong gradient in a single direction, with λ1 � λ2 or

λ2 � λ1, suggests that the pixel contains an edge. Two large eigenvalues, then, suggests a strong

gradient in the two principle directions, which further suggests that the area contains a corner. This

method aims to measure this property by generating a cornerness measurement from the minimum

eigenvalue for each pixel [33]. Formally,

R = min (λ1, λ2) (3.6)

The resulting response contains the same dimensions as the original image, with brighter pixels

suggesting a higher likelihood that a corner resides there.

Figure 3.2: Minimum eigenvalue cornerness measure computed for a typical star streak.

Harris Method

The Harris method attempts to provide a more streamlined approach to generate a cornerness mea-

surement. Again, the structural tensor from Equation 3.5 is used. Here, however, the Eigenvalues

are not directly calculated. Instead, the cornerness score is given as a function of the calculated

gradients as follows [32]

R = I2xI
2
y − I2xy − k

(
I2x + I2y

)2 (3.7)
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k is a user-defined parameter in the range of 0 ≤ k ≤ 0.25. As before, Gaussian derivative kernels

are used for the calculation of gradients. This further reduces to

R = Det (A)− kTr (A)2 (3.8)

Since this method does not require calculation of Resolution2 sets of Eigenvalues (one for each

pixel within the image) it requires considerably less computational effort. For the purposes of the

work discussed here, a k value of 0.15 is used. This particular value was tuned manually, however

additional work could be performed to iteratively determine a more optimal value. The resulting

cornerness measure is seen in Figure 3.3.

Figure 3.3: Harris cornerness measure computed for a typical star streak.

Trajkovic Method

The Trajkovic corner detector comes in two forms: one method which includes four neighboring

pixels and an extended method which includes all eight neighboring pixels. Both methods follow

the same general format so only the four neighbor method will be discussed here. The reader is

referred to [34] for a complete derivation and discussion of the method outlined here as well as the

extended 8-neighbor method.

To initiate the corner detection process, a scaled-down version of the original image is considered
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to determine likely corner locations. A simple cornerness is calculated of the form

Rsimple = min (rA, rB) (3.9)

where

rA = (Ix+1,y − Ix,y)2 + (Ix−1,y − Ix,y)2

rB = (Ix,y+1 − Ix,y)2 + (Ix,y−1 − Ix,y)2
(3.10)

Ix,y refers to the intensity for the pixel at location (x, y). This simple method is similar to the

previous methods in that it attempts to calculate the minimum gradient about a specific pixel. For

the initial calculation, however, only two directions are considered, providing a coarse estimate of

the gradient at each pixel. A user-defined threshold, T1, is applied to the result in order to prevent

some false positives.

Then, an “inter–pixel” cornerness measure is calculated. This cornerness measure is essentially

an interpolation between the simple gradients calculated above. Such an interpolation allows one

to determine, analytically, the minimum gradient in any direction. This is similar to both of the

preceding methods. The inter–pixel cornerness measure is given by

RInterpixel (x, y) =

 C − B2

A
if B < 0 and (A+B) > 0

CSimple (x, y) else
(3.11)

Here, B is calculated from B1 and B2, two intermediate values [34].

B1 = (Ix,y+1 − Ix+1,y) (Ix+1,y − Ix,y) + (Ix,y−1 − Ix+1,y) (Ix−1,y − Ix,y)

B2 = (Ix,y+1 − Ix−1,y) (Ix−1,y − Ix,y) + (Ix,y−1 − Ix+1,y) (Ix+1,y − Ix,y)
(3.12)

The value of B is then given as B = min (B1, B2). The remaining values, C and A are of the form

26



C = rA

A = rB − rA − 2B

(3.13)

Again, the 8–neighbor method follows a similar procedure, however all eight of the neighboring

pixels are included in the simple and inter–pixel cornerness measures [34]. Cornerness measures

for both methods are shown in Figure 3.4.

Figure 3.4: Trajkovic 4- and 8- neighbor cornerness measure for a typical star streak.

Endpoint Localization

Each of the preceding methods produces a measure of “cornerness” of the same dimensions as

the original image. Pixels with higher intensity correspond to a higher likelihood of a corner

being contained within that pixel. In order to produce an (x, y) coordinate for the endpoint, two

localization methods are applied. The first, sub-maximal suppression, is an iterative method. Each

pixel within the cornerness response is considered, and only pixels which are greater than all of

the neighboring eight pixels are returned as potential endpoints. Such pixels correspond to a peak

in the cornerness data. This process provides a set of pixel-accurate locations for the location of

the endpoint in the form of an integer (x, y) coordinate.

At this point it becomes possible to remove some corrupted data. When a single streak is passed

through the corner detector and then subsequently the sub-maximal suppression operation, only

two endpoints should appear within the data. Samples which return more than two endpoints may
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be removed from consideration as there is likely some form of corruption present in that portion of

the image. This may be due to noise within the image, overlapping star streaks, or another non-star

object within the image.

Since the location produced by sub-maximal suppression is only pixel accurate, up to half a pixel

of error remains in the localization of the endpoint. This corresponds to an angular error up to

θerr ≤
1

2

FoV

Resolution
(3.14)

and potentially discards some of the information remaining within the image. This of course does

not consider other sources of error, which could cause it to be greater than this value. To reduce

this as a potential source of error, sub-pixel localization is performed. The chosen method here

is a “center of intensity” calculation of the same form as a traditional center of mass calculation.

The pixel-accurate location is chosen as the origin, and the surrounding pixels are combined in

a weighted summation proportional to distance from the origin to calculate an updated endpoint

location. The full relation is seen in Equation 3.15. N defines the size neighborhood about the

origin to consider. Any value may be used for N , however there is diminishing benefit as N

grows.

X =
1

w

N∑
i=−N
i 6=0

N∑
j=−N

Ii,j

Y =
1

w

N∑
i=−N

N∑
j=−N
j 6=0

Ii,j

(3.15)
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w is the sum of all pixels within the neighborhood.

w =
N∑

i=−N

N∑
j=−N

Ii,j (3.16)

The resulting (X, Y ) pair is a sub-pixel accurate endpoint location. This operation is performed

for all possible pairs of endpoints discovered within the image.

Isolating Endpoint Groups

With a complete set of discovered endpoints, it is then necessary to group the endpoints in time.

Though it is not possible to determine if a point occurred at the initial time or final time, it is

possible to determine which endpoints occurred simultaneously. This is achieved through the

calculation of the center of rotation and a vector cross-product operation. First, the set of midpoints

for each streak are calculated.  xi,c

yi,c

 =
1

2

 xi,1 + xi,2

yi,1 + yi,2

 (3.17)

xi,1, xi,2, yi,1, and yi,2 are the coordinates describing the two discovered endpoints for the ith

streak. The designations “1” and “2” are arbitrary and do not correspond to occurrence in time.

Additionally, the slope, mi, is calculated for each set (xi,1, yi,1) and (xi,2, yi,2). With these values,

it is then possible to construct a set of equations describing a line which bisects each streak. The

benefit of this is that the common intersection point of this set of lines corresponds to the center

of rotation as projected into the image plane. A least squares solution for the coordinates of the
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center of rotation is constructed as



1 1
m1

1 1
m2

...
...

1 1
mN


X =



m1x1,c + y1,c

m1x2,c + y2,c
...

m1xN,c + yN,c


(3.18)

N corresponds to the number of discovered streaks. An additional set of vectors, V1 and V2, is

calculated from the midpoint of each streak to its corresponding endpoints. Additionally, Vc is

calculated from the center of rotation to each midpoint.

Center of Rotation V
c

V
2

V
1

Figure 3.5: Location of the center of rotation in a streaked star image (left) and detail of the
complete vector set constructed for each star streak (right).

Since these vectors are in the 2-D image plane, an arbitrary scalar third component is added in

order to allow for a vector cross product. Here, a value of 1 is used. Since V1 and V2 represent

opposite rotations about the center of rotation, the following relation holds true.

[Vc × V1]3 = − [Vc × V2]3 (3.19)

The resulting third component of a cross product with Vc provides an invariant detector of endpoint

groups.
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Attitude and Rate Estimation

To perform attitude and rate estimation on the resulting endpoints, the data must be converted to

a usable form for the appropriate estimation routines. The (x, y) coordinates are converted to 3-

dimensional unit vectors which describe the direction of the point relative to the camera plane.

This is achieved through Equation 3.20, where each coordinate is scaled by the physical pixel

dimensions of the CCD and the focal length, f , is appended.

VBody =

[
~S · VPlane f

]T
(3.20)

~S is the set of physical pixel dimensions, of the form

S =

[
sx sy

]T
(3.21)

where sx and sy correspond to the dimensions in the subscripted axes. Following this correction,

any traditional star identification and attitude estimation techniques may be applied. Here, the

k-vector search algorithm, proposed by Mortari in [18], is used to identify the discovered vectors

within the Hipparcos star catalog. This method considers sets of three stars in triangle formations.

Off-line, a set of possible triangular star structures existing within a pre-selected catalog is con-

structed. This data can later be searched on-line – at a significant reduction in computation time

– for triangular structures discovered within a star image. A structure match results in a positive

ID of the stars existing within the structure as well as the surrounding stars. Any star which is not

part of any structure in the catalog is returned as a possible RSO. This particular algorithm was

chosen for its low incidence of false-positives and the low computation time required for a positive

identification.

The k-vector algorithm is run independently on each of the two sets of corrected endpoint vectors,
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and returns a set of reference unit vectors, ri, corresponding to each correctly-identified star. The

resulting vector sets are of the form

bi = Ari, i = 1 . . . N (3.22)

bi describes the unit vectors discovered within the image. A describes the unknown rotation be-

tween the vector sets. This form is desirable as it has been discussed extensively from an estima-

tion point of view. Specifically, Wahba posed this formulation in [19], and it is known as “Wahba’s

Problem”. The problem is to find an optimal estimation for the rotation, Â, given that one or both

sets of vectors contain some noise. Formally,

Lw

(
Â
)

=
1

2

N∑
i=1

αi

∥∥∥bi − Âri∥∥∥2 (3.23)

Here, αi refers to weighting which may be applied to each set of vectors – for example, if one

source of measurements is known to include additional uncertainty, it may be weighted lower. In

general, and for the purposes of this work, the weighting is defined as αi = 1/N for all i. Many

analytical solutions exists for Wahba’s problem [21, 22]. For the following analysis, the Second

EStimator of the Optimal Quaternion (ESOQ2) is applied. This algorithm contains an analytical

solution for Wahba’s problem and provides the optimal quaternion rotation between the vector sets.

For a full discussion of the operation of ESOQ2, the reader is referred to [21]. The ESOQ2 method

is applied to each set of endpoints and their respectively identified reference vectors from the star

catalog. At this point, two separate attitudes are computed, one for the initial time and one for the

final time. An ambiguity still remains in the ordering in time of the two attitudes, however some

form of tracking between images removes this concern. Additionally, if there is some a priori

knowledge of the rotation direction, it is possible to overcome this with no additional processing.

In order to calculate a rotation rate from the previous data, the principle angle between the two
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measurements is calculated. First, ∆ is computed

∆ = Â1Â
T
2 (3.24)

This corresponds to the complete rotation DCM from the first measurement to the second. Then,

calculation of the principle angle follows simply through the relation

Φ = cos−1
{

1

2
[tr(∆)− 1]

}
(3.25)

For complete data, the principle axis is computed as well.

[a×] =
1

2 sin Φ

(
∆−∆T

)
(3.26)

This corresponds directly to the axis of rotation with respect to the camera’s coordinate frame.

Finally, ~ω follows simply by considering the integration time, T.

[ω×] = RT
cam

Φ

T
[a×] (3.27)

Applying RT
cam accounts for differences between the camera frame and the body frame. For the

results in the next section, this is assumed to be identity. [ω×] denotes the skew-symmetric matrix.

Results and Discussion

A large-scale Monte Carlo analysis was run in order to characterize the performance of the al-

gorithm detailed above in a wide range of scenarios. Specifically, different camera orientations

with respect to the rotation axis were the primary concern. A diagram of the camera-to-spacecraft

orientation is seen in Figure 3.6. As the camera becomes more aligned with the rotation axis, the

33



streaks produced become shorter and more curved. When the camera is completely aligned with

the rotation axis, there exists a wide range of possible streak lengths within a single image. A star

at the center of such an image would not streak at all, however a star near the edge would eventu-

ally describe a complete circle about the center of rotation. On the other hand when the camera is

placed orthogonally to the rotation axis, the streaks are straight and parallel throughout the image.

For large fields of view, some curvature will become apparent at the edges even for the orthogonal

case due to the nonlinearity of the camera projection.

Figure 3.6: Camera position relative to the axis of rotation.

Orientation from θ = 0◦ to θ = 90◦ were considered. Symmetric behavior was observed about

θ = 90◦, therefore it was not necessary to simulate the entire 180◦. Additionally, the streak lengths

were varied from 5% of the field of view to 50%. This was achieved by varying the integration

time according to

%FoV =
‖~ω‖ · T
FoV

(3.28)

~ω was considered to be constant throughout the simulation. To further generalize the results, single-

point attitude error values were computed as a pixel measurement. Since these results are highly

dependent on the parameters of the specific camera employed, error measurements in pixels can

be extrapolated to angular error for different camera properties. This error calculation is achieved
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through

e = Φe ·
Resolution

FoV
(3.29)

where Φe is the angular error between the measured vector and the truth. Results for a specific

resolution and field of view may be calculated from Φe through the same relation. Error in the

rate estimation was computed as a percentage variation from the truth. Figures 3.7 and 3.8 detail

the results for attitude error and Figures 3.9 and 3.10 detail the rate error. Both attitude error and

rate error are plotted as camera orientation and steak length versus the respective error metric. All

results seen here have been smoothed in order to provide estimates of the average performance at

every parameter set.

The first characteristic to note in all of the figures is the degenerate behavior for short streak lengths

in the neighborhood of θ = 0◦. This is caused by the fact that, for these parameters, the stars within

the image are streaking very little or not at all. In this case, the algorithm described here no longer

functions, however traditional methods are still valid. If a spacecraft is expected to experience the

full range of conditions here, it is necessary to choose a transition point to and from traditional star

camera analysis. A similar feature is seen in all of the figures as θ approaches 0 for streak lengths

above 20% of the field of view. This is caused primarily due to the shortness of streaks due to the

high curvature present when the camera is aligned with the rotation axis. One possible solution

is to increase the integration time of the camera in order to achieve longer streak lengths. The

Trajkovic methods, however, have a higher tendency to find false corners with increased curvature.

The remaining characteristics are dependent on the endpoint detection method applied, and will be

discussed individually. Accuracies for single-endpoint attitude for the Harris (top) and Minimum

Eigenvalue method (bottom) are detailed in Figure 3.7. These two methods showed the best per-

formance overall, with the Harris method performing slightly better than the Minimum Eigenvalue

method. Both displayed accuracies within 1
5

of a pixel.
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Figure 3.7: Attitude accuracies for Harris (top) and Minimum Eigenvalue (bottom) methods.

An important point to note here is that each method has a “precise region” wherein the algorithm

demonstrates relatively stable performance. This is primarily due to the slope encountered at small

streak lengths and θ. The precise region of each method was characterized and all accuracies are

reported within this precise region. The Harris detector had the largest precise region of θ > 20◦.

The precise region of all other methods falls roughly within θ > 30◦. The Trajkovic methods

performed worse over the precise region, with attitude accuracies in the half-pixel range.
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Figure 3.8: Attitude accuracies for Trajkovic 4-neighbor (top) and 8-neighbor (bottom) methods.

Angular rate estimation performance for the Harris and Minimum Eigenvalue methods are shown

in Figure 3.9. Similar behavior to the previous figures is seen beyond the precise regions. Rate

error for the Harris and Minimum Eigenvalue methods were within approximately 0.7% and 1.2%,

respectively. Another important point to note here is that the simulation did not consider streak

lengths below 10% of the field of view. Performance in this area degrades rapidly, much like

the degenerate region, due to the shortening of the streaks. As streaks become shorter, the streak

approaches a boundary, known as the Rayleigh limit, where is becomes impossible to distinguish

two signals and it is effectively a single star [36]. This algorithm does not operate on single stars,

so performance becomes increasingly poor for streak lengths below 10% of the field of view. If a

spacecraft is expected to encounter all regions, it is necessary to choose a transition point from this

algorithm to traditional methods. Performance should be characterized on the specific hardware in

order to choose an optimal transition point which minimizes error in all expected scenarios.
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Figure 3.9: Angular rate error for Harris (top) and Minimum Eigenvalue (bottom) methods.

Rate error for the Trajkovic methods is detailed in Figure 3.10. Both methods performed more

poorly than the previous two, within approximately 3.5% error. In the rate data, another feature of

the algorithm becomes apparent: rate accuracy increases with streak length. This is visualized in

the figures by the increase of error as streak lengths approach smaller percentages of the field of

view. Small errors at the endpoints of streaks become less significant as the length of the streaks

increases. It is important to note, however, that eventually the streaks will have a tendency to only

fall partially within the image or completely across the field of view. In these cases the method

may not discover any endpoints, causing a failure to return any data.
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Figure 3.10: Angular rate error for Trajkovic 4-neighbor (top) and 8-neighbor (bottom) methods.

A complete summary of the results contained within these figures is detailed below. All perfor-

mance characteristics are measured within the precise region listed for each method.

Table 3.1: Monte Carlo result summary for all endpoint detection methods.

Method Attitude Accuracy Rate Accuracy Precise Region
10% S.L. 50% S.L. 10% S.L. 50% S.L.

Harris < 0.10 px < 0.10 px < 0.69% < 0.07% θ > 20◦

Min. Eig < 0.19 px < 0.20 px < 1.20% < 0.19% θ > 30◦

Trajkovic-4 < 0.39 px < 0.37 px < 2.44% < 0.38% θ > 30◦

Trajkovic-8 < 0.55 px < 0.29 px < 3.49% < 0.47% θ > 30◦

A final characteristic to note is that much of the error present in the endpoint locations, and subse-

quently the attitude and rate, is due to a bias caused by the image processing. During the smoothing

processes which are applied in the Gaussian derivative kernel as well as the corner detector oper-

ations, the locations of the endpoints are note necessarily preserved. In fact, it has been observed
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that each gaussian convolution biases the endpoints further inward, ultimately converging to a

point source centered between the original endpoints. Currently there is no known procedure for

preventing this effect and producing un-biased results. It has been observed, however, that the

bias remains constant for constant camera parameters, so it is possible to characterize the effect

experimentally and provide some compensation.
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CHAPTER 4: CATALOG-FREE ANGULAR RATE ESTIMATION WITH

ON-LINE RESIDENT SPACE OBJECT DETECTION

An extension to techniques introduced in chapter three is possible, in the form of a rate-only

estimation method. Rather than utilizing a star catalog reference to produce two attitude fixes per

image, which may not be necessary in all cases, the algorithm can be modified to produce only

a rate estimate and no attitude data. This has an added benefit of reducing required computation

time for a costly star identification process.

Additionally, A caveat in the algorithm discussed in the previous section is that, in some cases, data

which seems valid will appear in the endpoint data set despite being corrupted or corresponding to

a non-star object. To reduce this effect, and offer the ability to detect RSOs for tracking maneuvers,

three indicators of non-star behavior are proposed. The first two provide a complete characteriza-

tion of the apparent motion present in RSOs captured in a star image. The third indicator combines

the two basic methods into a single process.

The combined ability to estimate angular rate and detect an RSO opens the possibility of precisely

tracking an RSO with no hardware other than a camera and a processing unit, and no catalog

reference. Results for two simple cases are presented – an RSO-tracking case and a constant slew

maneuver containing a streaked RSO. A final 10-orbit simulation is conducted and results are

discussed.

Catalog-Free Rate Estimation

A rate-only estimation scheme based on the analysis contained in the previous chapter is proposed.

The same procedure from the previous section for obtaining endpoints and grouping them accord-
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ing to the center of rotation is utilized here. From the set of data collected from a star camera

image, it is possible to calculate an angular rate without the need for a precise attitude calculation

and star catalog. This is performed in a fashion similar to Wahba’s problem for attitude, shown

previously in Equation 3.23. Rather than comparing each set of endpoints to a set of reference vec-

tors, a solution for Wahba’s problem is found for the rotation between the two sets of endpoints.

The Optimal Linear Attitude Estimator (OLAE) is applied here, rather than ESOQ2 which was

used in the previous section. This is due to the simplicity of calculating a residual with the OLAE

method, which will be discussed in further detail in the next section. First, each step of the OLAE

method is summarized here. For the full derivation of the method, the reader is referred to [22].

First, two initial values are defined from the set of observed and reference vectors, bi and ri,

respectively. The subscript i is the index of the observation-reference pair, from 1 to N , where N

is the number of observations.

s̃i ≡ bi + ri

d̃i ≡ bi − ri
(4.1)

Then, two additional intermediate values are computed. ṽ is in the form

ṽ =
1

2

n∑
i=1

ξi [s̃i×] d̃i (4.2)

where ξi is the weighting provided with each measurement and [s̃i×] is the skew-symmetric form

of s̃i. The simplest option for the weightings is a uniform distribution, where ξi = 1
N

. This is the

form used here for all uncorrupted data. The final required value, M̃m, is calculated in a similar

form,

M̃m =
1

2

n∑
i=1

ξi [s̃i×] [s̃i×] (4.3)

The optimal solution is provided in the Rodrigues parameter space. The estimated set of three
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Rodrigues parameters, ĝ, is related to M̃m and ṽ through the following relation.

M̃mĝ = ṽ (4.4)

This can easily be solved for the attitude solution in Rodrigues parameters. An additional step is

necessary here to convert from the Rodrigues solution to the optimal quaternion estimate. First, a

scalar 1 is appended to ĝ.

q̂ =

[
ĝT 1

]
(4.5)

Then, the optimal estimation of the quaternion follows simply by normalizing the resulting vector.

qopt =
q̂

‖q̂‖
(4.6)

This is the optimal quaternion solution to Wahba’s problem provided by OLAE. A residual for

each measurement may be computed through the relation

ei =
∥∥∥[s̃i×] ĝ − d̃i

∥∥∥ (4.7)

Since this method provides simple calculation of the residual, it allows some simple noise filtering

to be applied. For example, it is possible to threshold measurements with large residuals and

recompute the solution to reduce the affect of outlying measurements.

Now that the rotation between the two sets of endpoints is known, it is possible to derive a rate

estimate. First, the quaternion solution is converted to a direction cosine matrix (DCM) as in
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Equation 4.8 [27].

A (q) =


q1

2 − q22 − q32 + q4
2 2 (q1q2 + q3q4) 2 (q1q3 + q2q4)

2 (q1q2 + q3q4) −q12 + q2
2 − q32 + q4

2 2 (q2q3 + q1q4)

2 (q1q3 + q2q4) 2 (q1q2 + q3q4) −q12 − q22 + q3
2 + q4

2

 (4.8)

As in the previous section, the principle angle, Φ, and the axis of rotation, [a×] are computed.

Φ = cos−1
{

1

2

[
tr(Â)− 1

]}
[a×] =

1

2 sin Φ

(
Â− ÂT

) (4.9)

~ω follows through consideration of the principle angle and axis as well as the integration time of

the camera, T .

[ω×] = RT
cam

Φ

T
[a×] (4.10)

RSO Indicators

Three indicators of a streak corresponding to a resident space object are considered here. Figure

4.5 provides a visual reference for the methods discussed here. In this simulated scenario, the

camera-equipped spacecraft performed a constant-rate slewing maneuver. A star camera image

was captured during the maneuver which also contained an RSO with some apparent motion. A

large visible magnitude of Mv = 1 was used to for the RSO for visualization purposes. All other

streaks within the image correspond to stars from the Hipparcos star catalog.

In discussion of the following methods, this example case will be used for reference.
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Figure 4.1: Sample star camera image containing and RSO with apparent motion.

Center of Rotation

Two basic methods exist for choosing outliers in a data set from apparent motion alone. The first

is based on the computed axis of rotation. All of the stars within the image rotate about a common

location, which corresponds to the axis of rotation as projected to the image plane. Any RSO with

apparent motion will create a larger residual in the resulting calculation. The least squares center

of rotation solution, discussed in the previous chapter, is shown again here.



1 1
m1

1 1
m2

...
...

1 1
mN


X =



m1x1,c + y1,c

m1x2,c + y2,c
...

m1xN,c + yN,c


(4.11)

Again, mi is the slope of the ith set of endpoints and (xi,c, yi,c) is the midpoint of the same set of

endpoints. Referring to Equation 4.11 in the form

AX = b (4.12)
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The residual is given as

ei = AX − b (4.13)

This residual is the first indicator for an RSO within the image. A simple method of thresholding

the residuals is applied here, however and relevant statistical analysis may be applied to the data

for a more precise analysis.

The example case from Figure 4.5 is an important case to note here, as it will produce a degenerate

solution for the center of rotation location and the residuals will no longer provide useful data.

Consideration should be given to the expected behavior of the spacecraft – if the rotation axis

is not expected to be entirely about the x and y axes of the focal plane, this method is valid. If

a wide range of operating conditions are expected, this indicator transitions from the center of

rotation residual to the slopes, mi, as an indicator for each streak. A more highly sloped streak

likely corresponds to an RSO. A pseudo-inverse and the norm of the resulting computed center

of rotation has been determined to be a useful trigger for this transition; the center of rotation

will rapidly become distant from the center of the image as the camera becomes orthogonal to the

rotation axis.

Since the camera in this scenario is oriented orthogonally to the rotation axis in this scenario, the

slope indicator is used. The computed slopes for all streaks in Figure 4.5 are plotted in Figure 4.2.

One clear outlier can be seen in the data, 3.6σ from the mean.
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Figure 4.2: RSO indicator data for the center of rotation.

Streak index 9 is confirmed to correspond to the RSO, marking a successful identification.

Angular Displacement

The second basic indicator corresponds to the angular displacement subtended by each streak.

True stars in the image frame will undergo motion consistent with the angular displacement of the

camera during the exposure. Any apparent motion of the RSO along the rotational direction will

thereby produce a useful variation which may not be apparent in the center of rotation residual

alone. To reveal the angular displacement of an individual streak, it is necessary to return to the

vector set derived for endpoint grouping in Equation 3.19 in the previous chapter. To reiterate, the

relative position vector from the center of rotation to each endpoint is calculated and designated as

~Vi,1 and ~Vi,2. As before, the designations “1” and “2” are arbitrary and do not have any significance

to the occurrence in time. i designates the index of the streak being considered, from 1 to N where

N is the total number of discovered streaks. With this set of vectors, a simple dot product operation
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reveals the angular displacement.

φi = cos−1

 ~Vi,1 · ~Vi,2∥∥∥~Vi,1∥∥∥∥∥∥~Vi,2∥∥∥
 (4.14)

Here, again, consideration must be given to the degenerate case for the center of rotation. If the

computation of the center of rotation returns an invalid result, then the vectors, ~V1 and ~V2 cannot be

computed. In this case, the angular displacement indicator transitions to a simple length calculation

between the two endpoints.

Li =

√
(xi,2 − xi,1)2 + (yi,2 − yi,1)2 (4.15)

For the example scenario, the lengths for all streaks were computed and can be seen in Figure 4.3.

The same index which generated an outlier in the slope data is seen again as an outlier, 3.5σ from

the mean.
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Figure 4.3: RSO indicator data for the magnitude of rotation.

Combined with the center of rotation indication, this provides the complete picture of the RSOs

apparent motion relative to the background stars. From this data, it can be correctly concluded that

streak index 9 corresponds to a non-star object.
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Combined Indicator

The previous two indicators consider the complete information available about the rotation which

the spacecraft underwent during image generation – the rotation axis and the angular displacement

about that axis. In order to simplify the process of identifying outlying data, a third indicator is

proposed. The OLAE computation used for rate estimation considers the complete rotational data

to provide an estimate of both the rotational axis and the displacement. For this reason, it can be

considered a combined indicator which joins the previous two processes into a single operation.

Residuals were generated for the complete data in the example scenario and plotted in Figure 4.4.
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Figure 4.4: RSO indicator data for OLAE residuals.

Streak index 9, the RSO, corresponds to an outlier 3.6σ from the mean, marking a successful

identification. The added benefit of choosing this indicator over the previous two is that much of

the processing is already necessary for rate estimation. Producing an indicator requires only the

batch computation of the residuals from Equation 4.7.
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Simulation Results and Discussion

Two simple, proof-of-concept examples are presented, followed by a large-scale simulation. The

first example addresses the case of producing feedback during a maneuver. The image produced is

seen in Figure 4.5. In this case, the spacecraft is undergoing a maneuver at a constant angular rate

while tracking an RSO. Consequently, the RSO is a single point of light in the image, while the

surrounding stars are streaking.

Figure 4.5: Sample rate-track image.

The angular rate of the spacecraft is approximately 0.05 rad/s and, combined with an integration

time of 0.5 seconds, would cause significant error in traditional trackers. The image was processed

to produce a rate estimate; the results are summarized in Table 4.1. The computed rate error was

approximately 0.9% and the axis misalignment was 0.65◦. As in the previous section, it is possible

to reduce this error through an increase in streak length, however there is a trade-off with a smaller

number of streaks falling within the image plane and an increased likelihood of overlapping streaks.
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Table 4.1: Summary of the rate-track simulation scenario results.

Estimated True

Rate 1.986 ◦/s 2.000 ◦/s

Displacement 0.993◦ 1.000◦

Rotation Axis


0.02

0.99

0.00




0

1

0



The second case considered is the demonstrative case which was analyzed previously in the RSO

indicator section. This scenario could contain an RSO streak purely by chance or as part of a

tracking maneuver which has not yet converged. Regardless, the RSO produces a valid set of

endpoints which potentially pollute the data set and cause an increase in error. In situations where

only a small number of streaks are discovered, this could contribute to significant error in the

resulting rate solution. If the aim is tracking of the RSO, then the current location of the RSO

is a valuable addition to the maneuver feedback. The rate-only algorithm was again applied to

this image. Figure 4.6 shows the resulting detections side-by-side with the original image. Each

discovered endpoint is marked with an “x”, while the potential RSO endpoints are designated with

a circle.

Figure 4.6: Sample RSO detection during spacecraft slew with constant angular rate.
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As can be seen, the RSO is easily separated from the rest of the data set to produce a quality

rate estimate and provide feedback data on the RSO location as well. Endpoint error for the RSO

is on the order of half a pixel, which corresponds to approximately 40 arcseconds for this camera

configuration. Complete results of the scenario are summarized below. Rate error is approximately

0.67% with a rotation axis misalignment of 0.2◦.

Table 4.2: Summary of the constant slew simulation scenario results.

Estimated True

Rate 0.0497 rad/s 0.0500 rad/s

Displacement 0.0248 rad 0.025 rad

Rotation Axis

 −0.003

0.999

0.000


 0

1

0



As a final demonstration of the algorithms presented here, a 10-orbit, approximately 14-hour sim-

ulation was conducted. Images were only generated when the RSO was in view of the camera

and not eclipsed by the Earth. Initial orbital parameters were chosen for both the camera-equipped

spacecraft and the RSO.

Table 4.3: 10-orbit simulation orbit parameters.

a e i Ω ω f

Camera 6748 km 0.0 28.5◦ 0◦ 0◦ 0◦

Spacecraft 7078 km 0.0 89◦ 0◦ 30◦ 120◦

The camera-equipped spacecraft was also given a constant angular rate of 0.05 rad/s about the

focal-plane y-axis with an initial quaternion attitude of ~q =

[
0 0 0 1

]
. A sample four-image

sequence generated by the simulation is seen in Figure 4.7. The RSO can be seen moving from

the center-left portion of the image gradually upwards throughout the sequence while all other

streaks move directly from left to right. A more realistic visible magnitude of Mv = 4 was chosen,
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creating a much dimmer RSO. For this reason, the contrast in Figure 4.7 has been enhanced to

increase visibility of the image contents.

Figure 4.7: Four sequential RSO observation opportunities (contrast enhanced).

Over the entire 10-orbit duration, 14 observation opportunities were produced. Rate estimation

produced an average error of less than 1% with an average axis misalignment of 0.4◦. RSO detec-

tion rates are seen in the table below. With a strict outlier threshold of 2.5σ, the center of rotation

and OLAE methods demonstrated an 85% detection rate. The magnitude of rotation method per-

formed slightly worse with 2 less detections. Only 3 false detections were made, by the center of

rotation method, and these were most likely due to the lack of a lower threshold for outlier detec-

tion. In order to prevent false-positives, it is necessary to characterize the the performance with no

RSOs or overlapping streaks in view to produce a lower-bound for the expected variance between

normal measurements.

Table 4.4: RSO indicator identification results summary.

Correct Overlapping Streak False

Center of Rotation 12 0 3

Magnitude of Rotation 10 2 0

Combined Indicator 12 2 0
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CHAPTER 5: BIO-INSPIRED, OPTIMAL ATTITUDE CONTROL AND

HARDWARE DEMONSTRATION

Nearly 40 % of past small satellite missions have employed some form of active control, primarily

for the purpose of power generation and communication [9]. In some cases, however, it is neces-

sary to also actively control the satellite for the purpose of pointing a scientific instrument. The

benefit of an optimal, active control system, then, is twofold: (i) power generation potential is

increased with fast slewing and precise pointing capabilities; (ii) power losses due to employing

active control are reduced.

In order to address these power constraints, an optimal path planning method combined with an

LQ tracking controller for pico- and nano-scale satellites is detailed here. In the following sections,

a bio-inspired, optimal path planning method utilizing the principles of virtual motion camouflage

is presented, as well as an LQ tracking controller used to track the desired path and provide some

disturbance rejection. Simulation results are presented to verify the principles and provide pre-

dictions for expected performance. Finally, the method is implemented in C on the KnightCube

pico-scale satellite testbed and verified for expected functionality. Performance characteristics are

calculated and discussed.
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Method Formulation

Optimal Path Planning

A performance function is chosen to minimize total power consumption for any maneuver, and

takes the form of Equation 5.1.

J =
1

2

∫ tf

0

I2Rdt (5.1)

Here, I is the current applied to the torque coil and R is the resistance of the torque coil used to

actuate the system. The rigid body satellite dynamics are

ω̇ = J−1 (ω × Jω − T )

q̇ =
1

2

 ω̃ ω

−ω 0

 q
(5.2)

Where ω is the set of angular rates and q is the quaternion representation of the attitude. ω̃ is the

skew-symmetric matrix. The magnetic coil input torque to the system is equal to the cross product

of the area vector, A, and the magnetic field vector, B, multiplied by the current and the number

of turns, n, as shown in Equation 5.3.

T = InA×B (5.3)

Some simplifying assumptions are made in order to reduce these equations to simpler forms.

The inertia matrix, J , contains negligible off-diagonal components, therefore only the diagonal

components are used. Additionally, since the test bed is constrained to one-dimensional motion,

ω =

[
0 ω2 0

]T
. The first equation of 5.2, then simplifies to T = J22ω̇2. Combining this with
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Equation 5.3 leads to

T = InA |B| cos θ = J22ω̇2 (5.4)

A relation for the current can then be found explicitly.

I =
J22ω̇2

nA |B| cos θ
(5.5)

From the definition of the quaternion attitude, q2 = ey sin
(
θ
2

)
, where ey is the principle rotation

axis and θ is the rotation about that axis. In this case, since motion is restricted to a single axis,

this can be simplified to q2 = sin
(
θ
2

)
. Using the trigonometric identity, cos (2θ) = 1 − 2 sin2 (θ),

it can be found that

I =
J22ω̇2

nA |B| (1− 2q22)
(5.6)

Substituting this into 5.1 leads to

J =
1

2

∫ tf

0

(
ω̇2J22

nA |B| (1− 2q22)

)2

Rdt (5.7)

The Pseudo-Spectral discretization method is applied in order to reduce the number of nodes re-

quired for a precise solution [37].

J =
tfR

2

(
J22
nA

)2 N∑
i=0

(
ω̇2,i

|B| (1− 2q2,i2)

)2

Wi (5.8)

Wi is the set of Pseudo-Spectral weights applied to each discretized step. Additionally a set of

times, T1...N , corresponding to each node are generated. Since q =

[
0 q2 0

√
1− q22

]
, it

can be found that

q̇2 =
ω2

2

√
1− q22 (5.9)
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To further reduce the complexity of the problem, a bio-inspired control law is applied to quaternion

attitude.

q2,i = qr + ν (qp,i − qr)

q̇2,i = ν̇i (qp,i − qr) + νiq̇p,i

(5.10)

Here, qr is a reference point chosen to be beyond the range of the expected path, qp,i is the user-

defined prey motion, and νi is the path control parameter (PCP). The PCP relates the planned path,

referred to as the aggressor path, to the prey path. The benefit of this parameterization is that

it allows a reduction of nodes to be optimized. The prey path is chosen so that q2,1 = qp,1 and

q2,N = qp,N where N is the number of nodes. Therefore, ν1 = νN = 1. Additionally, since the

initial angular rate is known, and the final angular rate is a known desired value, it is possible to

solve for ν2 and νn−1 [38].

 ν2

νN−1

 =

 a11 a12

a21 a22


−1


q̇2,1 − ν0q̇p,1 − A1

(
D0,0ν0 −

N−2∑
k=2

D0,kνk −D0,NνN

)
q̇2,N − ν0q̇p,N −B1

(
DN,0ν0 +

N−2∑
k=2

DN,kνk +DN,NνN

)


(5.11)

The coefficients from above can be found analytically to be

a11 = D0,1A1

a12 = D0,N−1A1

a21 = DN,1B1

a22 = DN,N−1B1

(5.12)
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whereA1 = qp,1−qr andB1 = qp,N−qr. From this solution, the dimensionality of the optimization

problem is reduced by 4. By substituting 5.10 into 5.9, a relation for ωi can be found.

ω2,i

2
=

ν̇i (qp,i − qr) + νiq̇p,i

[1− qr − νi (qp,i − qr)]
1/2

(5.13)

To produce ω̇ for 5.8, the D’Legendre differentiation matrix can be applied: ω̇ = D ·ω [37]. The set

of N − 4 PCPs can then be optimized with any nonlinear optimization package. For the purposes

of the KnightCube testbed, an open-source library, NLopt, was used to simplify development [39].

The optimization is constrained to

|Ii| ≤ Imax (5.14)

due to the electrical limitations of the actuation circuit, and

|q2,i| ≤ 1 (5.15)

to maintain the quaternion normalization requirement, q22 + q4
2 = 1. The maximum producible

current by the actuation circuit for this hardware test is defined as Imax = 0.148 A.

Sequential optimizations are performed in a finite horizon framework. The initial optimization

calculates a path solution for time t = 0 to t = tf , considering the initial conditions. Each

following optimization calculates a path solution by considering the current state as the initial

condition and the current time as t = 0. The “horizon” is then a varying final time which advances

with each successive iteration. The time between each iteration and the final time, tf , is a user-

defined parameter which is tuned for desired performance characteristics.
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Path Tracking Controller

A linear-quadratic (LQ) tracking controller is applied in order to ensure tracking of the desired

path and provide some robustness to noise and other disturbances present in the system. First,

an input-output linearization was derived for the testbed system in order to simplify the dynamics

for the LQ controller. First, the error quaternion between the true quaternion, ~q, and the desired

quaternion, ~p, is considered [27].

qE =



p4 p3 −p2 p1

−p3 p4 p1 p2

p2 −p1 p4 p3

−p1 −p2 −p3 p4





−q1

−q2

−q3

q4


(5.16)

For the single-axis case, this can be simplified to

qE =



0

−p4q2 + q4p2

0

p4q4 + q2p2


(5.17)

This is the 1-dimensional error quaternion. Recall the relation between quaternions and Euler

angles from [27],

qE,2 =ay sin
(e

2

)
qE,4 = cos

(e
2

) (5.18)
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Where ay is the y component of the rotational axis and φ is the angular displacement. In the 1-D

case, ay simple reduces to 1. Since, through trigonometric identities, the following is true,

sin e = 2 sin
(e

2

)
cos
(e

2

)
(5.19)

the error may be approximated as

e ≈ 2qE,2qE,4 (5.20)

Since the LQ controller will be tracking a pre-generated path, the small angle approximation is

valid here. The path will be re-generated frequently, with the initial desired condition at the current

location. Therefore, the LQ controller should not have the opportunity to deviate to large angular

errors. In the case that a large perturbation causes large angular error, the path will be re-generated

quickly at the new location. The error approximation may now be expanded to

e = 2
[
p2p4

(
1− 2q2

2
)
− q2q4

(
1− 2p2

2
)]

(5.21)

Several intermediate terms are defined in order to simplify the following derivation and final re-

sults.

Dq ≡ q2q4

Dp ≡ p2p4

Cq ≡ 1− 2q2
2

Cp ≡ 1− 2p2
2

(5.22)

Equation 5.21 then simplifies to

e = 2 (DpCq −DqCp) (5.23)
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The first derivative, ė, is calculated

ė = −ω2 (4DpDq + CpCq) + 2ApCq + 8p2ṗ2Dq (5.24)

where Ap ≡ ṗ2p4 + p2ṗ4. The second time derivative is also found

ë = −ω̇2 (4DpDq + CqCp)− ω2 (4ApDq + 2ω2Cq − 4p2ṗ2Cq − 2ω2DqCp) (5.25)

From 5.6, an explicit relation between the control input, I , and ω̇2 exists, and a solution for I is

found in the form of Equation 5.26.

Ieq =
1

α
(v − β1 − β2 − β3 − β4) (5.26)

where v is the control input to the equivalent linear system. The coefficients α and β1...4 are detailed

below.

α =
1

J2
(4DpDq + CpCq) |B|Cq

β1 = −2ω2
2 (DpCq −DqCp)

β2 = −4ω2 [2ApDq + p2ṗ2 (4Dq − Cq)]

β3 = 2 (p̈2p4 + 2ṗ2ṗ4 + p2p̈4)Cq

β4 = 8
(
ṗ22 + p2p̈2

)
Cq

(5.27)

The equivalent linear system then reduces to

ẋ =

 0 0

1 0

x+

 1

0

 v
y =

[
0 1

]
x

(5.28)
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with

x =

 ė

e

 (5.29)

An LQ regulator is applied to this linearized system in the form

v = −Kx (5.30)

where K is the control gain

K = R−1BTP (5.31)

and P is the solution to the algebraic Riccatti equation [40],

ATP + PA− PBR−1BTP +Q = 0 (5.32)

Q and R are user-defined control gains. Since the linearized system is time-invariant, a solution

for P is found offline to reduce the required computational demand. For the purposes of the test

bed demonstration, gain values of R = 1 and Q = 20 · [I2×2] were used.

To interface between the planned path and the LQ controller, a simple interpolation method was

adapted to take advantage of the derivatives available through the Pseudo-Spectral discretization

and reduce necessary processing time. Any interpolation method may be used, however, more

precise methods may be needed to maintain precision for lower update rates. The desired path for

time t is computed from the VMC-generated path through this process.
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Hardware Testbed

Pico-Scale Satellite Prototype

The KnightCube CubeSat prototype is intended to be a testbed for magnetic control methods and

software architecture, as well as a foundation for future design iterations. The prototype is a 10

cm, completely self-contained pico-scale satellite which conforms to the 1U CubeSat specification

[1]. Through these specifications, the prototype is compatible with the Cal-Poly P-Pod pico-sat

deployer, which is the standard for deploying CubeSats as secondary payloads [2]. The prototype

is constructed entirely from Aluminum 6061 and, with hardware, is less than 1 kg. Complete

structural properties are listed in Table 5.

Table 5.1: KnightCube structural properties.

Material Aluminum 6061
Dimensions (cm) 10 × 10 × 10
Mass (g) 611

Inertia (kg · m2) J =

 1.10 0.00 0.00
0.00 1.05 0.00
0.00 0.00 0.99

× 10−2

The internal hardware falls under three major subsystems: the inertial measurement unit, the cen-

tral processing unit, and the power management circuitry. Inexpensive, commercial off-the-shelf

(COTS) solutions were used for all subsystems. None of the hardware in the testbed is intended

for on-orbit operation, rather it is intended to serve as a functional analogue for future space-rated

hardware. A breakdown of the connections and data flow within the prototype is illustrated in

Figure 5.1 and an image of the complete prototype is seen in Figure 5.2.

The inertial measurement unit (IMU) is a VectorNav VN-100 attitude and heading reference system

(AHRS). This device contains a three axis gyro for detecting angular rates, a three axis accelerom-
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eter for detecting linear accelerations, and a three axis magnetometer for measuring magnetic field

strength and orientation. These three sensors are fused onboard and can be output through an

RS-232 serial data connection at 115200 bits per second with an update rate of up to 200 Hz [41].

CPU
H-Bridge 

Motor Drivers
IMU PWMRS-232 Torque Coils

5 V Power Bus

Li-Ion Battery
Charging 

Circuit
5 V Step-Up 
Converter

Figure 5.1: KnightCube prototype complete system diagram.

The central processing unit (CPU) is an ICOP VDX-6315 pc-on-a-board [42]. This CPU contains

an 800 MHz processor and 512 MB of on-board flash memory. The flash memory was loaded

with a light-weight, open source operating system called X-Linux. The operating system has an

11 MB footprint and boots quickly in approximately 5 seconds [43]. Though using a complete

operating system uses additional resources, the open-source, unix-based nature of the operating

system significantly shortens development time. Since the primary goal of a CubeSat is, in general,

to produce a low-cost experimental testbed, open-source software is ideal as it has the benefit of

being completely free and widely available.

Figure 5.2: Complete KnightCube pico-scale satellite prototype.

Actuation is performed through the use of up to three orthogonal magnetic torque coils. The coils
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are simple, printed circuit boards containing dual-sided coils for a total of 80 turns. Each coil has

a total resistance between 15 and 25 ohms. The CPU handles actuation of the torque coils through

the use of pulse-width modulation. Pulse-width modulation (PWM) is essentially a method for

varying the effective voltage applied to a circuit by rapidly switching the supply voltage on and

off. For each user-determined period — 20 ms in this case — the supply voltage is switched on for

a certain percentage of the period, known as the duty cycle. For the remaining duration, the applied

voltage is zero. The equivalent voltage applied to the circuit is equal to the duty cycle multiplied

by the supply voltage.

Vequivalent =
Ton

Ton + Toff
Vsupply (5.33)

Since the CPU itself is incapable of supplying large currents through a single pin, an intermediate

chip is required. Two SN754410 H-Bridge motor driver chips — each capable of controlling two

independent torque coils — serve this purpose. An H-Bridge essentially accepts a supply voltage

and two control voltages as input. The state of the two inputs determines the state of two output

pins, each of which may either be equal to the supply voltage or connected to ground. H-Bridge

control pins are connected to two PWM pins on the CPU to allow relaying of the signal in either

current-flow direction. Table 5 contains all of the possible states for the H-Bridge inputs as well as

the corresponding output states to the coils [44].

Table 5.2: Truth table for the SN754410 H-Bridge chip connected to a magnetic torque coil.

Input A Input B Coil Voltage Current Direction
H H 0 V —
H L Vsupply CW
L H Vsupply CCW
L L 0 V —

Here, a high input voltage is denoted as “H”, while “L” designates a low input voltage. The cur-

rent directions are denoted as clockwise (CW) and counter-clockwise (CCW) in reference to the

coil when viewed externally in the testbed. After all losses within the circuit, Vsupply is equal
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to 3.4 volts. Considering the minimum coil resistance of approximately 17 ohms, the maximum

producible current is approximately 0.2 amps. Since each coil varies slightly in resistance, mea-

surements have been taken for each coil and are used within the code to ensure accurate current

output. For the purposes of the hardware demonstration in the following sections, the active coil

has been found to have a maximum current of 0.148 A.

The power system consists of three components: a charging circuit, a step-up converter, and a

lithium-ion battery. The charging circuit is a Texas Instruments BQ24070 complete lithium-ion

battery management system [45]. The battery is connected through this circuit, and charged via

a 5 V external cable. A step-up converter converts the standard 3.7 V battery supply voltage to

a 5 V power bus for powering each of the subsystems. A 1.8 A·h lithium-ion battery is used for

maintaining the systems during testing.

Helmholtz Coil

A Helmholtz coil is employed within the testbed in order to increase the maximum producible

torque by the CubeSat and help the prototype overcome some of the disturbances present in the

system. For example, the mechanism for suspending the prototype for testing is a thin thread

attached to two opposite faces. While this allows movement in a single axis, there is a small

torque which is produced by the thread, which increases as angular displacements increase. With

only the ambient magnetic field, the torque coils do not produce enough torque to overcome this

perturbation. From 5.3 it can be seen that increasing either the current or the magnetic field will

cause an increase in the resulting torque. Since the system produces only a fixed amount of current,

the Helmholtz coil is needed to increase the magnetic field, and subsequently the produced torque.

An equation for the magnetic field through the center of a Helmholtz coil is seen in Equation 5.34
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[46].

B =

(
4

5

)3/2
µ0nI

R
(5.34)

Here, µ0 = 4π × 10−7 T ·m/A is the vacuum permeability, n is the number of turns in the coil, I is

the current through the coil, and R is the radius of the coil. The actual coil radius is approximately

15 cm and has been measured to produce 9.98 gauss through the center at a current of 2.19 A. The

IMU used in the prototype has a range of ±6 gauss, so the input current is set to A, which creates

an expected magnetic field strength of 4.5 gauss, which is approximately 9 times Earth’s ambient

magnetic field strength of 0.5 gauss. The complete Helmholtz Coil is seen in Figure 5.3.

Figure 5.3: KnightCube testbed Helmholtz coil.

The prototype from the previous section is suspended in the center of the Helmholtz coil, and a

fixed magnetic field is produced for testing.

Simulation Results

A MATLAB simulation was prepared in order to produce an initial tuning offline and verify the ex-

pected performance of the method detailed in the previous section. First, the performance function

from 5.8 and the constraints from 5.14 and 5.15 were implemented. The MATLAB constrained

nonlinear minimization solver, fmincon, was used in order to produce a single planned path. Initial
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conditions were chosen as q2,initial = 0.4 and ω2,initial = 0.015 rad/s, with desired final conditions

of q2,final = −0.3 and ω2,final = 0 rad/s. The reference point, qr, was chosen to be 2, which

is beyond the maximum possible value of q2, thereby avoiding a degenerate case for 5.10 where

qp,i − qr = 0 and ν has no effect. Final time was set as tf = 10 s with 10 discrete nodes. The PCP

initial guess was set as ν1...N = 1, providing an initial path equal to the prey motion.

The prey motion, qp, was chosen as a continuous third order polynomial to provide a smooth initial

guess to the optimization.

qp = C0 + C1t+ C2t
2 + C3t

3 (5.35)

The derivative of the prey motion is of the form

q̇p = C1 + 2C2t+ 3C3t
2 (5.36)

Here, C0...3, can be found analytically based on the initial conditions for q2 and ω2 as well as the

two desired final conditions. For t = 0, C0 and C1 are easily available.

C0 = q2,initial

C1 = q̇2,initial

(5.37)

The value for q̇2,initial can be computed from the angular rate and attitude through the relation in

5.9. The final two coefficients were found by choosing t = tf , qp = q2,desired and q̇ = q̇2,desired,

and solving analytically.

C2 =
1

tf
2

[3 (q2,desired − C0)− (2C1 + q̇2,desired) tf ]

C3 =
1

3tf
2

(q̇2,desired − C1 − 2C2tf )

(5.38)
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Equations 5.35 and 5.36 were evaluated at T1...N to generate the discretized prey motion, qp,i.

Figures 5.4 – 5.6 illustrate the results produced in this simple initial simulation. It can be seen the

solver successfully produced a smooth solution very near the prey motion. Deviations are likely

caused by the variation in the effective magnetic field during a maneuver.

The control authority of a torque coil necessarily varies with attitude; therefore the favors actuation

during periods where control authority is highest. Figure 5.6 illustrates this effect in the usage of

additional current in the early portion of the simulation. It can also be seen that the entire desired

current profile is within the 0.148 amp constraint.
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Figure 5.4: Sample optimized path for q2,initial = 0.4, q2,desired = −0.3 ω2,initial = 0.0015 rad/s,
and ω2,desired = 0 rad/s with tf = 10 s.

It is important to note that, though the results here are based on the actual dynamics, they do not

include sensor noise or the perturbations present within the testbed. Therefore, in a more realistic

situation, the resulting path will be significantly different.
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Figure 5.5: Sample angular rate profile calculated from the optimized path.

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

C
ur

re
nt

 (
A

)

Figure 5.6: Required current profile calculated from the optimized path.

In order to verify the performance in a more realistic environment accounting for both noise and

torque uncertainty, a continuous Simulink model was created, and a full-system simulation was

conducted. Two primary components the optimal path planner and the LQ tracking controller

were implemented. The optimal path was planned initially, and then re-planned in 5 second in-

tervals. The LQ tracking controller operated at 40 Hz, acting to track the most recently generated

planned path. The parameters for the path optimization, including the initial conditions, were the

same as described for the previous simulation. Additionally, in 100 second intervals the desired
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attitude was incremented by 0.1 for a total of 7 step maneuvers. The control gains for the tracking

controller were chosen as R = 1 and Q = 20 · [I2×2]. The Riccatti equation was solved off-line to

reduce required computational time. The results of the simulation can be seen in Figures 5.7 – 5.8.

Realistic noise characteristics, according to what would be expected from the hardware test bed,

were included in this simulation. Noise in the angular velocity and quaternion measurements were

modeled as ω2 = ω̂2+∆ω and q2 = q̂2+∆q, where ∆ω and ∆q are the uncertainties in the angular

velocity and the quaternion, respectively. From the datasheet for the IMU in the KnightCube

testbed, these values can be found to be bound by |∆ω| ≤ 1.75×10−4 rad/s and |∆q| ≤ 1.75×10−3

[41]. Uncertainty in the torque coil current was modeled similarly as I = Î + ∆I with |∆I| =

3.5×10−3 to account for the precision limitations of the pulse-width modulation actuation method.

0 100 200 300 400 500 600 700

−0.4

−0.2

0

0.2

0.4

Time (s)

Q
ua

te
rn

io
n,

 q
2

 

 

Single−Axis Attitude
Desired Single−Axis Attitude

Figure 5.7: Attitude results for 700 s step simulation considering sensor noise and torque uncer-
tainty.

It can be seen from Figure 5.8 that the required current remains within the 0.148 amp limit. A

saturation value was applied within the simulation to enforce the maximum current constraint.
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Figure 5.8: Desired current profile for a complete 700 s simulation.

Hardware Results and Discussion

The algorithm detailed in the previous sections was implemented completely on the KnightCube

testbed hardware in C. Multiple iterations were then performed in order to tune the LQ tracking

controller and improve performance. The testbed was initially set to approximately q2,initial = 0.2

manually and released with a low initial velocity, ω2,initial = −0.1 rad/s. Initially, q2,desired was

chosen to be −0.3. In 100 second intervals, q2,desired was incremented by 0.1. The complete

demonstration was run for 700 seconds. The LQ tracking controller tuning parameters were chosen

to be identical to those used in the previous simulations, R = 1 and Q = 20 · [I2×2]. tf for the

optimization was chosen to be 10 seconds. Complete results from the hardware demonstration can

be seen in Figures 5.9 – 5.11.

The controller was successfully able to complete 7 attitude maneuvers from q2 = −0.3 to q2 = 0.4.

Peak steady-state error of approximately 3.6 degrees is seen in the first 100 second interval. The

differences in steady-state error seen between step maneuvers are due to perturbations present

within the testbed. The suspension mechanism caused a small torque on the prototype throughout

the demonstration. This torque increases with greater rotational displacement, leading to a greater
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perturbation at the more extreme displacements. Such a perturbation would not be present in the

low Earth orbit environment for which the control method is intended. Steady state error is as low

as 1.25 degrees in the fifth 100-second interval.
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Figure 5.9: Attitude results from 700 s hardware step demonstration.

The control current used for actuation can be seen to be well within the saturation limit of Imax ≤

0.148 A. Figure 5.10 shows the complete set of data for the entire duration.
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Figure 5.10: Torque coil current output over 700 s hardware step demonstration.

Due to the performance metric outlined in 5.1, it is important to consider the power consumption
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profile of the demonstration in evaluating the performance of this control method. Figure 5.11

contains the entire power consumption profile for the duration of the test. The peak power con-

sumption can be seen to be approximately 0.5 watts. The average power consumed for the entire

test was on the order of 0.10 W. This power consumption is significantly lower than both PID and

adaptive control methods which have been implemented on the same testbed, with the PID con-

troller showing an average power consumption of 0.15 W and the adaptive controller using 0.66

W.
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Figure 5.11: Power consumption over 700 s hardware step demonstration.

In addition to low power consumption, a secondary performance goal for this method was fast

slewing performance for large attitude maneuvers. Table 5 shows the calculated performance val-

ues for the hardware test. All values are given as upper bounds, due to the variation present

between each individual step response. It is expected that, without perturbations introduced by the

suspension mechanism, the results would be further improved. Regardless, the method is capable

of performing fast slewing maneuvers and may be combined with more robust pointing algorithms

for precision pointing and disturbance rejection.
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Table 5.3: Calculated performance parameters for optimal control demonstration.

Steady-State Error < 4.5◦

Overshoot < 20%
Rise Time < 8 s
Settling Time < 30 s
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CHAPTER 6: CONCLUSIONS

The work of this thesis is intended to provide two methods which have the potential of expanding

the capabilities of both small satellites and larger-scale spacecraft.

Summary of Work

The star camera model detailed and demonstrated in chapter two serves as a simple, concise frame-

work for the simulation of star camera systems. The inclusion of actual star data from the Hippar-

cos star catalog, in addition to realistic visible brightness and noise, produces a quality approxima-

tion of true star camera images. Future work will be based on the same model, with the possibility

of expansion to include additional levels of fidelity.

The algorithm presented in chapter three is an attempt to extend the capabilities of low-cost star

camera systems as well as existing, currently on-orbit systems. The process allows attitude and

rate feedback data to be retrieved in situations where current star cameras are incapable. The

theoretical single endpoint accuracy of approximately 1
10

of a pixel approaches the accuracy of

current star cameras, however additional work is required to reduce the remaining bias completely.

For systems with less stringent pointing needs, this algorithm in its current state provides a viable

solution for the handling of streaked star images. A conference paper has been presented and

published in the proceedings of the 2013 SPIE Security, Defense, and Sensing conference [47].

Chapter four’s rate-only formulation of the image processing algorithm extends the capabilities of

chapter three and reduces the overall computation required for the case where only rate estimates

are required. Additionally, it enables rate feedback during maneuvers as well as the ability to track

an RSO with no additional feedback necessary. The produced rate estimates within 1% of the
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truth provide an adequate solution for use in feedback, and it is expected that it will be possible

to improve this further with consideration of the bias caused in endpoint detection. The detection

of outlying behavior in the data set offers some protection against overlapping streaks and enables

the discovery of an RSO within the data.

The optimal path generation algorithm discussed in chapter five serves to improve the capabilities

of pico- and nano-scale satellites. Due to the significant power restrictions inherent in the form

factor of these spacecraft, low-power, precise attitude control is absolutely essential to the success

of many past and future scientific missions. Additionally, the rapid slewing maneuvers performed

in under 30 seconds potentially maximize power generation opportunities, if the system is applied

to solar panel pointing. The 0.1 W average power consumption makes up only a small fraction

of the average 1 W/kg produced by small satellites, ensuring maximum power available for other

mission-critical components.

Future Work

The work presented here is a step in the process of improving small satellite capabilities. In order

to advance these algorithms to maturity, additional consideration must be given to certain aspects

of the work.

The primary remaining issue with the algorithm presented in chapter three is the endpoint bias

caused by the corner detection algorithms. Future work will consider more advanced image pro-

cessing techniques in attempt to preserve the structure of the streaks to return a highly localized

sub-pixel endpoint location. Some other concepts have been considered, however, such as a filter-

ing process which operates over several images to characterize the bias and reduce the error over

time. Though the bias is not observable from the endpoint measurements alone, the center point of
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the streak, occurring at time T
2

, can be found without bias. Combining this feature with the previ-

ously discovered endpoint data may provide an estimate of the bias and subsequently a correction.

Though a streamlined method entirely based in image processing techniques is desired, this may

provide an adequate solution.

An additional issue in the work of chapter three is the large variance present in the resulting data.

There are many contributing factors to deviations between subsequent measurements, including

overlapping or corrupted streaks and false star identifications. Future work should attempt to char-

acterize and further minimize this inherent variance in the process. The work of chapter four is a

first step in that direction as it allows filtering of overlapping streak geometry and RSOs, which

potentially pollute the data set.

The optimal path generation method discussed in chapter five provides a foundation for low-power

pico- and nano-scale satellite attitude control, however additional work will be needed for an on-

orbit implementation. The method will require expansion to three-axis, with additional considera-

tion for the under-actuated nature of magnetic torque-coil control. An additional actuation method,

such as a reaction wheel or control moment gyro, may be required to provide complete three-axis

actuation. Additionally, a secondary control algorithm may be implemented for disturbance re-

jection following large slewing maneuvers produced in the optimal path generation. A secondary

method may potentially reduce the steady-state error further, without additional power consump-

tion for the overall maneuver.
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