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ABSTRACT 

        Liquid crystal display (LCD) has become ubiquitous and indispensable in our daily life. 

Recently, it faces strong competition from organic light emitting diode (OLED). In order to 

maintain a strong leader position, LCD camp has an urgent need to enrich the color performance 

and reduce the power consumption. This dissertation focuses on solving these two emerging and 

important challenges.  

   In the first part of the dissertation we investigate the quantum dot (QD) technology to 

improve the both the color gamut and the light efficiency of LCD. QD emits saturated color and 

grants LCD the capability to reproduce color vivid images. Moreover, the QD emission spectrum 

can be custom designed to match to transmission band of color filters. To fully take advantage of 

QD’s unique features, we propose a systematic modelling of the LCD backlight and optimize the 

QD spectrum to simultaneously maximize the color gamut and light efficiency. Moreover, QD 

enhanced LCD demonstrates several advantages: excellent ambient contrast, negligible color shift 

and controllable white point. Besides three primary LCD, We also present a spatiotemporal four-

primary QD enhanced LCD. The LCD’s color is generated partially from time domain and partially 

from spatial domain.  As a result, this LCD mode offers 1.5× increment in spatial resolution, 2× 

brightness enhancement, slightly larger color gamut and mitigated LC response requirement 

(~4ms).  It can be employed in the commercial TV to meet the challenging Energy star 6 regulation. 

Besides conventional LCD, we also extend the QD applications to liquid displays and smart 

lighting devices. 
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       The second part of this dissertation focuses on improving the LCD light efficiency. 

Conventional LCD system has fairly low light efficiency (4%~7%) since polarizers and color 

filters absorb 50% and 67% of the incoming light respectively. We propose two approaches to 

reduce the light loss within polarizers and color filters.  The first method is a polarization 

preserving backlight system. It can be combined with linearly polarized light source to boost the 

LCD efficiency. Moreover, this polarization preserving backlight offers high polarization 

efficiency (~77.8%), 2.4× on-axis luminance enhancement, and no need for extra optics films.  The 

second approach is a LCD backlight system with simultaneous color/polarization recycling. We 

design a novel polarizing color filter with high transmittance (>90%), low absorption loss (~3.3%), 

high extinction ratio (>10,000:1) and large angular tolerance (up to ±50˚). This polarizing color 

filter can be used in LCD system to introduce the color/polarization recycling and accordingly 

boost LCD efficiency by ~3 times. These two approaches open new gateway for ultra-low power 

LCDs. 

       In the final session of this dissertation, we demonstrate a low power and color vivid 

reflective liquid crystal on silicon (LCOS) display with low viscosity liquid crystal mixture. 

Compared with commercial LC material, the new LC mixture offers ~4X faster response at 20oC 

and ~8X faster response at 20oC. This fast response LC material enables the field-sequential-

color (FSC) driving for power saving. It also leads to several attractive advantages: sub-

millisecond response time at room temperature, vivid color even at 20oC, high brightness, 

excellent ambient contrast ratio, and suppressed color breakup. With this material improvement, 

LCOS display can be promising for the emerging wearable display market. 
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              CHAPTER ONE: INTRODUCTION  

1.1 LCD vs. OLED  

After half a century of extensive material research and device development, followed by 

massive investment in advanced manufacturing technology, thin-film-transistor liquid crystal 

display (TFT-LCD) has become the dominant flat panel display technology [1]. Nowadays, LCDs 

are ubiquitous in our daily lives; their applications span from smartphones, tablets, computers, 

large-screen TVs, and data projectors, just to name a few. Recently, LCDs face strong competition 

from the up-rising organic light emitting diode (OLED) technique. There is intense debate on 

which technique could be the ultimate winner [2-4]. 

 

Figure  1.1: Working principle of emissive OLED (Left) and transmissive LCD (Right) 

 The major differences of LCDs and OLEDs originate from their distinct operation principles 

[5, 6]. As Fig. 1.1 illustrates. OLED is a self-emissive device, and therefore it has several unique 

advantages: 1) Thin and flexible profile since it does not require a backlight; 2) Each pixel can be 

independently controlled and literally ‘turned off’ when not in need, which results in a true black 

state in dark ambient and power saving; 3) Each pixel has Lambertian-like radiation pattern to 
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guarantee wide view; 4) The turn-on process is purely electronic and is in microseconds. All these 

features have made OLED very attractive since its debut.  

However, OLED still has some technical issues to be perfected:  1). OLED consists of fairly 

complex multilayer thin film stacks; It has stringent requirement on material purity and its long-

term stability is greatly affected by oxygen and moisture; 2). The manufacturing of OLED, which 

contains complicated vacuum process, precise thickness control and nearly hermetic packaging, is 

still technically challenging; Manufacture yield is still not satisfactory, especially when fabricating 

high resolution pixel arrays in large scale. This contributes to the high cost of large-sized OLEDs. 

3). OLED is current driven device and requires multiple (3-5) thin film transistors (TFTs) per pixel 

to ensure stable current control. The requirement of multiple TFTs leads to high resistive and 

capacitive loss, and reduced aperture ratio. 4). OLED needs a circular polarizer to mitigate ambient 

light reflection from its metallic cathode/anode, and the circular polarizer not only cuts off one 

half of the OLED brightness but also reduces the device flexibility.  

On the other hand, LCD is non-emissive, so it requires an embedded light source. The liquid 

crystal layer acts as spatial light modulator. This device structure is bulkier, but it is modular, 

which allows each component to be improved separately. For example, in recent years LCD camp 

benefits from rapid advancement of LED industry. The LED backlight is more efficient than 

OLED, has much longer lifetime, and the edge-lit light guide also helps to significantly reduce the 

total display thickness. Different LC modes can be optimized for different applications. For 

examples, multi-domain vertical alignment (MVA) exhibits an unprecedented contrast ratio so that 

it is widely used for TVs, while in-plane-switching (IPS) is robust to external pressure and is ideal 

for touch panel mobile devices. The small step improvement from each component could 
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accumulate into a noticeable difference. This is why LCD continues to dominate the highly 

competitive display market. 

 

Figure 1.2: Performance comparison of in-plane-switching LCD (IPS-LCD) and RGB OLED. 

      Fig. 1.2 compares eight performance metrics between in-plane switching (IPS) LCD and RGB 

OLED for mobile displays. At current stage, LCD is leading in lifetime, power consumption, and 

density resolution; comparable in ambient contrast ratio and viewing angle, but inferior to OLED 

in 1). Module thickness, 2). Response time, and 3). Color performance.  

      To reduce module thickness, backlight technology continues to advance and substrate 

thickness continues to shrink, this advancement reduces the LCD module to less than one inch and 

curved LCD TVs are emerging. 

To reduce LC response time, polymer-stabilized blue phase liquid crystal (PS-BPLC) is 

emerging [7]. Its nano-structure and short coherence length lead to submillisecond response time, 

which is essential for eliminating image blurs and enabling color sequential display. With rapid 
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advances in BPLC materials and device structures, the driving voltage has been reduced to <10 V, 

while maintaining fast response time, high contrast ratio, and negligible hysteresis.  

1.2 Wide Color Gamut and High Efficiency LCD  

This paper intends to improve some drawbacks of current LCD technique and made it more 

competitive as compared to OLED. From previous analysis, there is still one important technical 

criteria that LCD camp need to match with OLED -- Color performance. A LCD with white LED 

backlight (blue LED-pumped yellow phosphor) has at most 80% AdobeRGB color gamut, while 

commercial OLED covers ~100% AdobeRGB color space. Recently quantum dot (QD) technique 

is emerging to dramatically improve the LCD color performance. In Chapter 2, we would design 

QD enhanced LCD for optimal brightness and color performance. QD enhanced LCD 

demonstrates superior color performance than that of OLED. Furthermore, we will also extend the 

QD applications to multi-primary LCD, liquid display and smart lighting. 

Another general challenge for all display devices (including LCDs and OLEDs) is low power 

consumption. For smartphones and tablets, low power consumption leads to a longer battery life. 

For large screen TVs, Energy Star 6 sets a challenging goal for a 60-inch TV to be lower than 

100W. However, the state-of-the-art 60-inch high definition (1920x1080) LCD and OLED TV 

consumes ~130W and 180W respectively, which is significantly higher than the targeted value. 

This problem is amplified as the panel size or resolution increases. Therefore, reducing power 

consumption is an urgent issue. In Chapter 3, we would discuss several innovative system design 
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for low power LCD. These green technologies could intensify the LCD’s competitive advantage 

over OLED.  

 

     Figure 1.3: (a). Picture quality metric (PQM) as a function of gamut size and luminance. (b) 

Isoquality curves for display quality show interaction between gamut size and luminance. 

Figures are copied from Ref.[8]. 
 

      Luminance and color gamut are actually cross-linked and together determine the picture quality. 

Recently 3M proposed the Picture quality metric (PQM) as an objective evaluation tools for display image 

quality [8]. As shown in Fig.1.3 (a), the PQM is affected by both luminance and color gamut. Fig.1.3(b) 

shows the contour plot. It shows that the PQM value can maintain the same by increasing the gamut size 

while decreasing the luminance. Therefore the wide color gamut LCD can deliver the same level of image 

quality with much low power consumption (luminance).  Given the importance of this two metrics, it is 

worth to fully investigate and improve their contribution to the image quality. 

 Besides transmissive LCD, reflective field-sequential-color liquid crystal on silicon (FSC-

LCOS) is a promising candidate for the emerging wearable display market. However, FSC-LCOS 

has poor image quality at low temperature when the LC response time is sluggish. At 0oC the FSC-

LCOS color gamut shrinks dramatically as if it were a quasi-monochromatic. A simple way the 
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LCOS developer takes is to implement an extra heater to elevate the operation temperature, but 

this approach greatly increases the power consumption. In Chapter 4, we propose an ultra-low 

viscosity LC material that can achieve superior color quality without increasing energy 

consumption. This FSC-LCOS is promising for next generation wearable displays.  

Although OLED inherently possess several advantages, LCD has modular nature and steadily 

evolve over time. I hope my works can solve some urgent issues for LCD technology, and help 

LCD industry to maintain prosperity in the next decade.  
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CHAPTER TWO: QUANTUM DOT ENHANCED DISPLAY DEVICE 

2.1 Introduction  

Color performance is a critical criteria to evaluate the display image quality. Good color 

performance needs to fulfill a proper white point (for appropriate image shades), wide color gamut 

(for greater color reproduction range), and less color shift (for better color reproduction accuracy) 

[9-11].  Fig.2.1(a) compares the color gamut of IPhone 5 (LCD) and Galaxy III (OLED). 

Commercial LCD device cover at most 80% AdobeRGB color gamut, while commercial OLED 

covers >100% AdobeRGB color space. As a result OLED delivers more vivid and attractive 

images (Fig.2.1 (b)). The poor LCD color performance comes from the low quality LED light 

source. Currently most LCDs employ white LED as light source.  It uses blue LED to excite 

YAG:Ce yellow phosphor. As Fig.2.1(c) depicts, white LED has sharp emission peak from blue 

LED (InGaN) with a narrow full-width half-maximum (FWHM~20 nm). However, the 

fluorescence emission from YAG:Ce yellow phosphor is fairly broad (FWHM~130 nm). Since 

with LED light source itself does not exhibit separated emission bands for green and red, the color 

performance totally relies on the color filters (CF), and LCD has deficiency to display saturated 

green and red colors. Moreover, as the LED emission peak does not match with CF transmission 

peaks, a substantial light is absorbed and wasted in the CFs.  
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Figure 2.1: (a). Color gamut of IPhone 5 (LCD) and Galaxy III (OLED) as well as AdobeRGB standard. (b). 

Comparison of image quality between OLED and LCD. (c). Transmission spectra of color filters (dashed line) and 

emission spectra of white LED (black solid curve).   

Several approaches have been proposed to widen the LCD color gamut, but they either sacrifice 

light efficiency or add more cost. Narrowband color filters provide purer color primary, but the 

transmittance is significantly reduced [12]. On the light source side, newly developed white LED 

with green/red phosphor materials has narrower emission bandwidth, but its efficiency is not yet 

satisfactory [13]. Discrete RGB LEDs can significantly expand the color gamut, but they require 

separated driving circuits, and moreover green LEDs still has quite low efficiency [14].  

Recently, a promising new backlight technology involving quantum dots (QDs) is emerging 

[15-20]. It uses blue LED to excite the green/red QD mixture. The full emission spectrum consists 

of three separated peaks, corresponding to three highly saturated primary colors. Several 

companies are actively working in this area, including material providers (Nanosys, QD vision, 

Nanoco), device developers (3M, Pacific Lighting) as well as TV manufacturers (Samsung, LG, 

Sony, Amazon). As a matter of fact, Amazon has recently introduced Kindle Fire HDX 7 and Sony 

introduced Triluminos TV with QD-enhanced backlight. 
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Figure 2.2: Illustration of QD bandgap diagram. (b) Vivid fluorescent colors when QDs with different sizes are 

excited by an UV light.  

     QDs are semiconductor nanocrystals with diameter of 3~10 nm. As the electrons and holes are 

confined in such small particles, quantum confinement effects dominate their physical properties 

[19]. Fig.2.2 depicts the QDs’ bandgap diagram. Unlike bulk material, the energy levels of QDs 

are discrete and affected by both material property and particle size. The system can be described 

by a finite quantum well problem, and the effective bandgap that determines the energy (and hence 

color) of the fluorescent light can be approximated by Brus equation [21]: 
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    (2-1) 

Here Eg is the bandgap of bulk semiconductor, R is the particle radius, and me and mh are effective 

mass of electron and hole, respectively. From Eq. (2.1), the QD’s optical properties can vary by 

changing the particle size. For example, when using an ultraviolet light to excite CdSe QDs with 

different particle sizes, the fluorescence color can cover the entire visible range. A larger R leads 

to a longer wavelength emission. For industrial application, finding a high quality fluorescent 

material at certain wavelength could be challenging. For example, green inorganic semiconductor 

materials have relatively low quantum efficiency, while blue emissive organic materials have low 

efficiency as well as limited device lifetime. QDs enable us to obtain any specific color emission 

http://en.wikipedia.org/wiki/Fluorescence
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via varying the particle size while using the same material system. This property opens a new 

design freedom. For example, we can engineer QD’s emission spectrum to match with color filters 

for boosting optical efficiency and widening color gamut simultaneously.  

  Another desirable feature of QDs is their high-purity emission colors. The emission of a QD 

sample is the convolution of fluorescence emission of each individual QD in a population. 

Therefore, the line-width is determined by inhomogeneous broadening of QD particle size 

distribution. Current chemical synthesis techniques manifest excellent controllability over particle 

size distribution, it can provide batches of QDs containing >1019 particles that are all within ±1 

atom of thickness variation [20]. The full width half maximum (FWHM) of Cd-based QDs is 

around 30 nm. Moreover, new colloidal particles in the form of platelets show 10-nm FWHM[22]. 

Such a narrow emission line-width would undoubtedly produces an exceedingly wide color gamut. 

To enhance quantum efficiency and material stability, QDs used for display and lighting usually 

have Type-I core-shell structure and organic ligands. Fig. 2.3(a) shows the core-shell structure: the 

core QD is covered by a shell with larger band gap, and then surrounded by organic ligands [23]. 

The organic ligands provide excellent surface passivation and eliminate deleterious surface states. 

The core-shell structure effectively confines the wavefunction of exciton within the core (Fig.2.3 

(b)), which leads to high recombination rate and enhanced emission quantum efficiency [24, 25]. 

As a matter of fact, Cd-based QD materials have demonstrated >95% quantum efficiency and 

30,000 hours of lifetime. 
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Figure 2.3: (a) Structure of core-shell QD. (b) Bandgap diagram of type-I core-shell QD. 

Various QD materials have been synthesized and studied, including II-VI semiconductors (ZnS, 

CdSe, CdS, ZnSe), III-V semiconductors (InP), ternary semiconductors (CuInS2), and doped 

material (ZnSe:Mn) [15, 26]. Among them, Cd-based QDs are most popular for display and 

lighting applications due to their high quantum efficiency (>95%) and narrow linewidth 

(FWHM~30nm). However, Cd is toxic and is regulated in several countries. Recently there are 

intensive efforts to seek a non-Cd replacement. Among all the alternative materials, InP based QDs 

are the most promising candidates, whose quantum efficiency is comparable to the best performing 

CdSe QDs, but its emission linewidth is somewhat broader [26]. Fig.2.4 shows the normalized 

emission spectrum of four QD materials. The Cd-based QDs exhibit a ~30-nm FWHM, while the 

InP QDs is ~50 nm. Two reasons account for this broadening spectrum: 1) the chemical synthesis 

method of InP QDs is not yet mature enough, and 2) the quantum confinement effect in InP QDs 

is much stronger, therefore InP emission is more susceptible to particle size variation. InP QDs 

will be more attractive for display once their FWHM can be further reduced.  
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Figure 2.4: Normalized emission spectrum of green/red CdS(Se)/ZnS QDs (solid lines) and green/red InP/ZnS QDs 

(dashed lines). 

Both electroluminescence (EL) and photoluminescence (PL) have been developed for display 

applications. In EL mode, the QDs are activated by electronic energy to directly emit colored lights 

[19, 27]. Its working principle is very similar to that of OLED. As a result, the EL QD is termed 

as quantum-dot light emitting diodes (QLED). Although the QLED performance is rapidly 

improved in recent years, it may still take several years to fully compete with OLED [28]. 

  In PL devices, QDs are usually pumped by an UV lamp or an InGaN blue LED. Here, QDs 

play a similar role to conventional phosphors, but with more design freedom and better color purity. 

The PL mode only involves pure optical process and has a relatively simple structure. Such a QD 

device is cost effective and reliable, thus, it is ready for commercial applications. 
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Figure 2.5: Three different QD backlight geometries: (a) QD is included in the LED dome, (b) QD is on the edge of 

light guide plate, called quantum rail, and (c) QD is on the top surface of light guide plate, called QDEF.  

 

QDs can be dispersed in a polymer matrix, processed with existing optical film technique, and 

conveniently integrated with current LCD backlight system. As Fig.2.5 depicts, there are three 

likely choices to implement QD [16, 17, 29, 30]: 1) On LED chip, 2) On the edge of light guide 

plate (LGP), known as ‘Quantum rail’ or ‘Color IQ’ by different companies, and 3) On the top 

surface of LGP as a film, called “quantum dot enhanced film (QDEF)”. Among the three 

configurations, the on-chip approach consumes minimum amount of QD materials. Nevertheless, 

QDs encapsulated on-chip would operate at high temperature (∼150oC) and exposed to intensive 

light excitation. This may significantly decreases QD’s quantum efficiency and lifetime. 

Packaging problem and material reliability must be solved before on-chip approach can be widely 

applied. The amount of material needed for quantum rail and QDEF scales with display sizes. 

QDEF consumes a lot more QD material than Quantum rail. Therefore, QDEF is more favorable 

to small panels while Quantum rail is more attractive to large panels. As a matter of fact, Amazon’s 

7.9” Kindle Fire HDX uses QDEF while Sony’s 65” Triluminos TV uses Quantum rail. 
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Figure 2.6: A typical LCD system with QDEF structure. 

Fig. 2.6 plots a typical LCD system with QDEF structure. It consists of a blue LED array, LGP 

to steer the light source toward the TFT-LCD panel, QDEF, a series of optical films, and polarizers. 

Blue LEDs are placed on the edge of the LGP. The blue light travels in the LGP and coupled out 

by specifically designed micro extractors. The emerging blue light excites the green/red QDs 

dispersed in the QDEF. Once the excited electrons relax back to their ground states, QDEF emits 

green and red lights. Brightness enhancement films (BEFs) and Dual Bright Enhance Films 

(DBEFs) play a significant role in balancing the angular distribution of blue LED light and green 

and red QD lights. Therefore, color uniformity at different viewing angle can be maintained. BEFs 

and DBEFs also introduce light recycling and enhance the effective optical path length within the 

QDEF. This helps to reduce the QD density and avoid QD aggregation and quenching. As a result, 

QDEF has an excellent device reliability (>30000 hours). 

 

2.2 Quantum Dots Backlight Optimzation  

        QD offers a spectrum design freedom for display engineers. To take advantages of this feature, 

we would design the QD spectrum for the optimal performance. QDs partially absorb the incident 
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blue light and down-convert it to green and red. The total emission consisting of three peaks and 

spectral power distribution (SPD) can be described as: 

( ) ( , , ) ( , , ) ( , , )in b b b g g g r r rP f S f S f S                 (2-2) 

where S(λ, Δλi, fi) (i=r,g,b) is the Gaussian function used to fit the emission spectra of blue LED 

and green/red QDs, and λi, Δλi, and fi represent the central wavelength, FWHM, and relative 

intensity, respectively. 

 

  Figure 2.7: Light flow chart in a typical LCD system.  

  Fig. 2.7 depicts the light flow chart in a typical LCD panel. The incident light Sin(λ) is split 

into three channels: red (R), green (G) and blue (B) corresponding to the color filters. The TFT 

aperture ratio, LC layer, applied voltage, and color filters jointly determine the optical efficiency 

and color saturation of a LCD panel. The three light channels finally mix together and transmit out 

of the LCD panel with SPD Pout(λ) given as: 
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 where Pout,R(λ), Pout,G(λ), and Pout,B(λ) refer to the output SPD for the RGB channels, 

respectively.  Two metrics are defined here to evaluate the backlight performance:  

(1). Total light efficacy (TLE). 
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 It expresses how much input light can be transmitted through the LCD panel and finally 

converted to the brightness perceived by human eye. To calculate TLE, we need to consider the 

human eye sensitivity function V(λ) [5]. It is centered at =555 nm, meaning human eyes are more 

sensitive to green/yellow light. TLE measures the backlight’s total efficiency; it considers almost 

every factor in the display system, such as light source spectrum, transmittance of color filters, LC 

layer and polarizers, aperture ratio of each light channel, as well as human eye sensitive function. 

(2). Color gamut.  

As Fig.2.7 shows, red, green and blue lights come out from different channels; their chromaticity 

coordinates can be calculated based on trichromatic color space theory. The X, Y, Z tristmulus 

values of a color stimulus S(λ) are expressed as:  

                  ( ) ( ) , ( ) ( ) , ( ) ( ) ,X k S x d Y k S y d Z k S z d               (2-5)  

where ( )x  , ( )y  and ( )z   represent the three color matching functions and k is a constant. S(λ) 

equals to Pout,R(λ), Pout,G(λ), Pout,B(λ) respectively when calculating the X, Y, Z tristimulus values 

for light from RGB channels. The chromaticity coordinates defined in Commission Internationale 

de l’Elcairage (CIE) 1931 color space is given as: 

                 , , ,
X Y Z

x y z
X Y Z X Y Z X Y Z

  
     

  (2-6) 
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while the chromaticity coordinates (u’,v’) defined in CIE 1976 color space are related to X, Y and 

Z as: 

                   
4 9

' , ' .
15 3 15 3

X Y
u v

X Y Z X Y Z
 

   
  (2-7) 

Three sets of color coordinates obtained for RGB channels constitute a triangle in the CIE color 

diagram. All the colors within the triangle can be displayed by a proper mixing of the three color 

primaries. The area ratio between this triangle and the triangle defined by NTSC is called color 

gamut: 

      .
Area encicled by RGB primaries

Color gamut
Area defined by AdobeRGB standard

   (2-8) 

It indicates the range of colors that can be faithfully reproduced by the LCD. Color gamut can 

be defined either in CIE 1931 or CIE 1976 color space. Although CIE suggests using CIE 1976 

definition since it is much more color uniform, many companies and research groups are still using 

CIE 1931 to evaluate their products. To satisfy both camps, later we will present color gamut in 

both CIE 1931 and CIE 1976. Further information regarding different color spaces can be found 

in Ref.[5, 31].  

 A backlight with optimal Pin(λ) should achieve a large color gamut while maintaining high 

TLE. Besides, LCD should maintain a certain white point when the LCD is setting at maximum 

grey level.  For comparison purpose, we choose D65 (x= 0.312, y=0.329 in CIE1931 color diagram) 

as our reference white point. D65 is very close to the sunlight and prevalent in most displayed 

images; it is a representative color for display performance evaluation. After knowing the color 

coordinates of the targeted white light (xw,yw,zw) and three primary colors (xi,yi,zi |i=r,g,b), the 
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relative proportion of each color component (fr, fg, fb) can be determined by solving the following 

equations: 
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  (2-9) 

Once fi is determined and fixed, the remaining free parameters are central wavelength and FWHM 

for each color component. In total, there are 3x2=6 free parameters and two metric functions that 

are subject to optimization: 
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For practical considerations, we also set the following constraints: 400 nm < λb <500 nm, 500 nm 

< λg < 600 nm, 600 nm < λr < 700 nm, 20 nm ≤ Δλb ≤ 30 nm, 30 nm ≤ Δλg ,Δλr ≤50 nm. Optimization 

is preformed to maximize the above two metric functions within the constrained six dimensional 

searching space. 

For such a multi-objective problem, we chose the particle swarm optimization algorithm [32] 

to search for the optimal solution and found there is no single result that can co-maximize the 

above two objective functions. Instead, we obtained a group of solutions; improvement of one 

objective is compromised by the degradation of another objective. This group of solutions forms 

the so-called Pareto front [33]. 

We first analyze the color performance of a mobile display using fringing field switching with 

a negative  liquid crystal (n-FFS) [34-36]. Since color gamut can be defined either in CIE 1931 
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color space or CIE 1976 color space, we performed two separate optimizations and the results are 

shown in Fig.2.8(a) and 2.8(b), respectively. The QD backlight could vary from low color gamut 

(80% AdobeRGB) but high TLE (30.2 lm/W) to high color gamut (130% AdobeRGB) but low 

TLE (<20 lm/W). The tradeoff between TLE and color gamut is obvious because the gain of one 

metric results from the loss of the other. 

 

 

Figure 2.8: TLE vs. color gamut in (a) CIE 1931, and (b) CIE 1976 color space. LCD mode: n-FFS. White Point: 

D65. Black solid lines represent the Pareto front of QD backlight. 

The performances of conventional backlight sources are also included in the same figure for 

comparison, including: 1) Cold cathode fluorescent lamp (CCFL), 2) Single-chip white LED with 

yellow phosphor (1p-LED), 3) Single chip white LED with green and yellow phosphor (2p-LED), 

and 4) Multi-chip RGB LEDs (RGB-LED). The emission spectra are obtained from Refs. [10, 13]. 

In terms of energy efficiency and color gamut, RGB LEDs seem to be the optimal solution, yet it 

requires complicated driving circuits and is not cost effective. From low cost perspective, white 

LED based on blue LED-pumped phosphorescence is still a favored choice among the 

conventional backlight sources.  
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From Fig.2.8(a), it is evident that QD backlight has superior performance to conventional 

backlights. For example, by keeping the same TLE as that of RGB LEDs, the QD backlight can 

achieve 121% color gamut, which is much larger than that of any conventional backlights. 

Similarly, by keeping the same color gamut as RGB LEDs, the QD backlight can achieve 

TLE~29.2 lm/w, which is ~15% higher than that of RGB LEDs (25.3 lm/w).  

According to Fig.2.8(b), the color gamut defined in CIE 1976 color space is correspondingly 

higher. By keeping the same TLE as that of RGB LEDs, the QD backlight can achieve >140% 

color gamut. This is a tremendous improvement compared to conventional backlights and also 

significantly larger than that of commercial OLED color gamut (~100%).  

 

Figure  2.9: (a) Transmission spectra of color filters and emission spectra of QD1 and QD2, (b) Color gamut in CIE 

1931 color space, and (c) Color gamut in CIE 1976 color space. 

Fig.2.9 compares the emission spectra and color primaries of two optimal QD spectral 

solutions that are lying on the Pareto front line in Fig. 2.8(a).  QD1 has emission band relatively 

close to 550nm where human eye is more sensitive, therefore it has high TLE (30.2 lm/W). But a 

lot of light emission falls into the overlapped region of red/green color filters leading to reduced 

color gamut (~85%). On the other hand, QD2 has three separated emission peaks with a deep red 
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QD, therefore it has significantly larger color gamut (~125%) but with reduced TLE (24.7 lm/W). 

This explains the fundamental tradeoff between TLE and color gamut. The color gamut of QD 

backlight almost covers the whole region defined by AdobeRGB, and it can faithfully reproduce 

most natural colors.  

 Besides backlight source, color filters also play an important role in determining LCD’s color 

performance. Fig.2.10(a) shows the transmission spectra of three commercial color filters. CF1 

has the highest transmission peak but it has significant overlap in the blue-green and red-green 

regions. To reduce color crosstalk, CF2 and CF3 employ green photoresist with a narrower FWHM 

but their transmittance is sacrificed. With proper combination of CF3 and 2-p WLEDs, the LCD 

can cover the whole AdobeRGB region [12]. However, this method sacrifices the CF transmission 

and therefore the display device is less energy efficient. 

 

Figure 2.10 (a) Transmission spectrum of different color filters. (b) Pareto front of TLE and color gamut for 

different color filters. LCD mode: n-FFS. White Point: D65. 

  For comparison, we optimized QD backlight for different CFs and results are shown in 

Fig.2.10(b). QD backlight with CF1 has the highest light efficiency and significant color gamut. 

CF2 and CF3 improve the color gamut slightly, but they drastically reduce the system light 
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efficiency. Narrow band color filters are not effective for QD backlight, especially when 

considering the loss in light efficiency. It is because QD backlight itself has very pure emission 

peaks and is less dependent on the color filters. As a result, QD backlight mitigates the color 

separating requirement for CFs. By using broadband CFs, the cost can be reduced and the optical 

efficiency can be further improved. 

The FWHM of QD emission greatly affects the display performance. During previous 

calculations, we considered Cd-based QD and set a lower limit on FWHM, namely Δλg & 

Δλr≥30nm. However, for non-Cd QD (for example, InP) the FWHM is larger. Fig.2.11 (a) depicts 

the performance of QDs with different FWHM lower limits. As the lower limit of Δλg and Δλr 

increases from 30 nm to 50 nm, both color gamut and TLE are reduced. This is understandable 

since a broader emission band leads to less saturated color primary and narrower color gamut. In 

order to compensate this effect, the three emission bands should be well-separated, so TLE will 

decrease. In general, narrower QD emission is always preferred for a high performance backlight. 

Non-Cd QDs need to enhance color purity in order to match the performance of Cd-based QDs. 

Recently platelet QDs show ~10-nm FWHM [22]. This material can further improve the display 

performance and build unbeatable advantages for QD backlight. 
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Figure 2.11: (a). Pareto front of TLE and color gamut for QD with different FWHM lower limits. (b). Pareto front 

of TLE and color gamut for QD enhanced LCD with different white point. 

In a LCD, the white point is obtained when all the pixels are at their maximum grey levels, and 

the corresponding color temperature is between 6000K and 10000K. However, during manufacture 

process the white point may not occur at the desired color coordinates, resulting in unnatural colors. 

The white point can be corrected by reverse engineering. Several approaches can be applied to 

balance the RGB output and achieve the desired white point: 1) Varying the aperture ratio of RGB 

primaries (AR,AG,AB), 2) Optimizing the LC cell gap for a blue wavelength, and 3) Tuning the 

backlight emission spectrum. The first approach adds complexity to the manufacture process, 

while the second approach usually compromises the transmittance for the G and R channels. In 

QD backlight, we can readily tune the QD concentration to achieve the desired white point.  In 

fact, the selection of white point also affects the LCD performance. Fig. 2.11(b) shows the pareto 

front when the white point is set at different color temperatures. A lower color temperature white 

point will result in higher light efficiency but limited color gamut, while a higher color temperature 

white point will result in a wider color gamut with reduced light efficiency. A proper selection of 

white point should balance both light efficiency and color gamut. 
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Finally, we extend our analysis to different LC modes, including: twisted nematic (TN) .fringe 

field switch (FFS) mode with negative and positive LC material (n-FFS and p-FFS), in plane 

switching (IPS) mode and multidomain vertical alignment (MVA) mode. Different LCD modes 

are favored for different display applications: TN is popular for notebook, MVA is common in 

large-screen TVs, and IPS and FFS are suitable for mobile display. As shown in Fig. 2.12, for all 

the four popular LCD modes, QD backlight can produce ~140% color gamut in CIE 1976 color 

space.  Different LC mode mainly affects the light efficiency. The n-FFS mode has much higher 

light efficiency compared to MVA and IPS [34]. Although its transmission is slightly lower than 

that of TN (without considering the TFT aperture ratio), it has wide viewing angle and is more 

robust for touch screen. If we combine QD backlight with n-FFS, we can obtain high transmittance, 

wide viewing angle, and wide color gamut for touch panels. It will greatly enhance the color 

performance of mobile displays, such as iPhone and iPad. 

 

    Figure 2.12: Pareto front of TLE and color gamut for different LC modes 

    As the ambient light flux increases, the displayed image could be washed out. The reflected 

ambient light degrades color characteristics because a portion of the reflected light is also seen as 

noise by the observer. For an LCD with white LED backlight, the color gamut is 95% AdobeRGB 
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at dark room (0 lux), but is reduced to 77% and 70% respectively at 1000 lux (very bright indoor 

lighting) and 2000 lux (outdoor daylight in heavy shade). The reduced color gamut deteriorates 

image quality. Fig.2.13 depicts the color gamut of QD-enhanced n-FFS LCD under different 

ambient light levels. Although the color gamut is reduced from 130% to 95% as the ambient light 

intensity increases from 0 lux to 2000 lux, it still covers most AdobeRGB color region and the 

image quality can be preserved. Moreover, according to a psychophysical phenomenon called 

Helmholtz-Kohlrausch effect [37], the highly saturated colors appear to be brighter than those with 

lower saturation, even they have the same luminance. QDs provide saturated light emission and 

therefore the colors remain more discernable under sunlight.  

 

Figure 2.13: Variation of display color gamut at different ambient light levels. The LCD is assumed to have 

luminance intensity of 500cd/m2 and 5% surface reflection. 
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Figure  2.14: Color shift of RGB primaries in the film-compensated FFS at 70° incident angle: (a) n-FFS using 

white LED, (b) n-FFS using QD-LED (Δλ =10 nm), In the simulations, we fix the incident angle of the RGB 

primaries at 70°, while scanning the azimuthal angle ϕ across the entire 360° at 10° step.  

  Color shift is an important parameter describing the angular dependent color uniformity of a 

LCD system. Refs.[38] provides a detailed explanation on color shift and the calculation methods. 

Figure 2.14 compares the color shift of film-compensated n-FFS using a white LED backlight and 

a QD-LED backlight in CIE 1976 diagram from different azimuthal incident angles at the full-

bright gray level G255. From Fig 2.14 we find that FFS with QD-LED exhibits a much weaker 

color shift than that using a white LED for all the RGB primaries. This much weaker color shift 

originates from the narrower spectral bandwidth and less spectral overlapping of the QD Backlight. 

As a summary of this section, we optimize the QD backlight for optimal light efficiency and 

color performance. QD brings several advantages to LCDs: 1) Their narrow emission spectra lead 

to vivid colors and large color gamut (~120% in CIE 1931 and ~140% in CIE 1976). 2) The LCD 

system light efficiency can be improved by ~15% by optimizing QD emission spectrum to match 

with color filters. 3) QD backlight mitigates color separating requirement of color filters. By using 

broadband CFs, the cost can be reduced and the system light efficiency improved. 4) QD spectrum 

can be readily designed for different application needs, such as achieving different white point. 5). 

QD backlight can also help to mitigate LCD color shift. 
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2.3 Spatiotemporal Four-primary Color LCD with Quantum Dots 

In previous section, we designed QD backlight for three-primary LCD. Three primary 

display has triangle-shape color gamut and deficient to reproduce high purity yellow, cyan and 

magenta. On the other side, multi-primary colors leads to a large polygon–shaped color gamut. 

Several strategies have been explored, including four primaries, five primaries and six primaries 

[39-43] . Generally speaking, there are two basic approaches to realize multi-primary colors: 1) 

spatial color synthesis based on multi-primary CF array [39, 41], and 2) temporal color synthesis 

based on field-sequential-color (FSC) technique [40]. Each approach has its own pros and cons. 

Spatial CFs reduce resolution because more sub-pixels are required, while FSC demands a fast LC 

response time. If the response time is not sufficiently fast (<1ms), color breakup becomes annoying 

[40, 44]. 

  In this section, we extend the QD backlight application for a hybrid spatiotemporal four-

primary LCD. The four primary colors are generated partially by spatial filtering and partially by 

time sequential. Moreover, we propose to use quantum dots to reduce the LED numbers and 

optimize the emission spectrum. This simple approach exhibits several advantages: high optical 

efficiency, high resolution density, wide color gamut, and a relaxed LC response time requirement 

(~4 ms). It can be readily integrated into existing LCD products. 

Fig.2.15 depicts the proposed backlight systems. The LED arrays are arranged along the edge 

of a typical edge-lit light guide plate. Two types of LEDs are employed: Type I emits blue and 

yellow colors, while Type II emits green and red. They are switched on and off alternatively to 

illuminate the display panel. The inset of Fig.2.15 shows a single color pixel, which consists of 
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two sub-pixels corresponding to two CFs. The first CF transmits shorter wavelengths, such as blue 

and green, while the other transmits longer wavelengths, such as yellow and red.  

 

 

Figure 2.15: Schematic of the backlight system. Inset shows the configuration of color filter arrangement. 

Fig.2.16 illustrates the image generation mechanism of the proposed hybrid method. A typical 

color image is split into four sub-images corresponding to different primary colors. One frame of 

image is composed of two consequent sub-frames.  During the first sub-frame, type-I LED is 

activated, and the blue and yellow components transmit through different color filters and 

illuminate two sub-pixels separately. During the second sub-frame, type-II LED is activated, and 

the green and red components transmit through different color filters and illuminate different sub-

pixels. The LC arrays corresponding to the two sub-pixels are modulated independently to display 

the sub-images. Therefore, the four-primary-color LCD is achieved partly by spatial filtering and 

partly by time sequential signals. The viewer can observe a vivid color image by subconscious 

integration of four-primary color images. Langendijk et al. reported a similar hybrid approach with 

different color filter designs, but the display is still three-primary and the color performance still 

has room for improvement [45, 46] .  
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Figure 2.16: Color generation of the proposed spatiotemporal 4-primary approach. 

The LED illuminant in Fig.2.15 plays a key role in determining the display performance. It can 

be realized with different methods. Taking type-I LED as an example, it can be a combination of 

blue and yellow LEDs, or a blue LED with yellow phosphor. Here, we propose to use blue LED 

with QD phosphor. QDs can partially absorb the blue light and convert it to yellow with high color 

purity. Fig.2.17 shows the measured spectra of a blue LED covered with different yellow QD layer 

thicknesses. The concentration of QD is 0.5%. As the QD thickness increases, more blue light is 

absorbed and more yellow light is generated. As a result, the intensity ratio of blue and yellow can 

be readily tuned by varying the QD thickness or concentration. 
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Figure 2.17: Measured emission spectra of a blue LED with different QD thicknesses. 

As shown in Fig.2.17, the emission spectrum of yellow QD is fairly sharp. Its full-width-half-

maximum FHWM~30nm, which is very close to that of a commercial yellow LED emission.  

Combined with QD layers, a single LED can emit two high purity colors simultaneously. Thus, 

the required LED number can be reduced. Furthermore, commercial LEDs have limited primary 

colors (known as green gap), but the peak emission wavelength of QD phosphors can be tuned 

conveniently via optimizing QD size or composition. This offers another degree of freedom for 

device optimization. We can optimize the QD emission wavelength to match the transmission 

spectra of color filters for enlarging color gamut. 

  The input backlight spectrum power distribution (SPD) can be expressed as:   

            ,1( ) ( , , ) ( , , )in b b b y y yP f S f S           

              ,2( ) ( , , ) ( , , )in g g g r r rP f S f S           (2-11) 

where Pin,1(λ) and Pin,2(λ) are SPD of type-I and type-II light sources, which are turned on and off 

alternatively. S(λ, λb,g,r,y, Δλb,g,r,y) represents the emission spectrum for red, green, blue and yellow 

color primaries. Each emission spectrum can be described as Gaussian function. Similar to 
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previous section, here λi , Δλi,  fi  represent the central wavelength, FWHM and relative proportion 

of each color component. 

After obtain Pin,1(λ) and Pin,2(λ), we can calculate the LCD output spectrum Pout(λ) as well as 

TLE ,color gamut and white color point. The relative portions of each primary color should be 

properly chosen to render the targeted white color. In three-primary LCD, the intensity ratio of the 

three colors is fixed in order to maintain a certain white point. However, four-primary LCD has 

one degree of reproduction redundancy and numerous intensity ratio combination can be used. 

This color reproduction redundancy [47] offers flexibility for color- reproduction and can be 

utilized to optimize the display performance, such as light efficiency, color breakup and color shift. 

Here, we arbitrarily choose the relative portion of yellow fy as a variable, then the relative portion 

of the other three color is linearly dependent on fy. They can be given as: 
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where the (xw,yw,zw) is the color coordinates of the targeted white point, and (xi,yi,zi |i=r,g,b,y) are 

the color coordinates of the four primary colors. 

  We then performed the optimization for a multidomain vertical alignment (MVA) LC for 

optimal brightness and color performance. Two separate optimization are performed for CIE 1931 

and CIE 1976 color space and results are plotted in Figs. 2.18(a) and 2.18(b). In Fig. 2.18(a), the 

solid curve represents the Pareto front of the hybrid four-primary display, The LCD varies from 

low color gamut (95% NTSC) but high TLE (41.8 lm/W) to high color gamut (137% NTSC) but 
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low TLE (<30 lm/W). The tradeoff between TLE and color gamut is obvious because the gain of 

one metric must companied with the loss of the other. 

 

Figure  2.18: Relationship between TLE and color gamut for three-primary and four- primary LCDs. Color gamut is 

defined in (a) CIE 1931, and (b) CIE 1976 color space.  (LC mode: MVA) 

  The dashed lines in Fig. 2.18(a) represent the Pareto front of three-primary LCD with QD 

backlight. The three-primary LCD with QD backlight has superior performance to conventional 

CCFL and LED backlights. However, Fig. 2.18(a) indicates that the newly proposed 4-primary 

LCD has even better performance. It covers a larger color gamut, and more amazingly it has almost 

2X higher optical efficiency. Figure 2.18(b) shows the Pareto front for TLE and color gamut 

defined in CIE 1976 color space. Compared with CIE 1931 results shown in Fig.2.18(a), the color 

gamut in CIE 1976 is correspondingly wider. The newly proposed 4-primary LCD can 

achieve >155% color gamut in CIE 1976 color space.  

   Fig. 2.19(a) depicts the emission spectrum of hybrid four- primary LCD. It is optimized to 

match the transmission spectra of color filters. CF1 transmits blue and green lights while CF2 

transmits yellow and red lights. In the first sub-frame, blue and yellow emissions are activated, 

and in combination with color filters result in blue and yellow sub-pixel images. In the second sub-

frame, green and red emissions are activated, analogously under the same color filters green and 
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red sub-pixel images are generated. Fig. 2.19(b) plots the emission spectra of three-primary LCD. 

The three emission peaks are also optimized to match the transmission spectra of RGB color filters. 

Fig. 2.19(c) depicts the color gamut on the CIE1931 color space. The three-primary LCD with 

quantum dot backlight has very pure color and covers 120% NTSC, but its color gamut is still 

limited in a triangle region and has limited color rendering ability for yellow and cyan color. The 

hybrid four-primary LCD encircles a large quadrilateral region in the CIE color diagram. The color 

gamut exceeds 130% and covers almost every color defined in NTSC standard.  Moreover, the 

color chromaticity coordinates of G primary move to shorter wavelength so that more cyan region 

is covered, and the new yellow color coordinates allow high purity yellow to be reproduced with 

high fidelity. According to image analysis [39], high purity cyan and yellow are very common in 

a typical display image, therefore our four-primary display can greatly enhance the visual 

experience compared to conventional three-primary display. 

 

Figure 2.19: (a) Optimized spectrum for the hybrid four-primary LCD and the transmission spectra of color filters. 

(b) Optimized spectrum for the three- primary LCD and transmission spectra of color filters. (c) Comparison of 

color gamut of the four-primary and three-primary displays and the NTSC standard in CIE 1931 color space.   
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To further broaden the color gamut, deeper blue and red colors can be used. But their emission 

band is farther away from 550 nm and thus they contribute less to the total brightness. As a result, 

the optical efficiency is decreased, which leads to a fundamental tradeoff between light efficiency 

and color gamut as Fig.2.19 shows. Refinement of color filter is also beneficial for enhancing color 

performance, For example, if the cutoff wavelength of the long pass color filter can move to longer 

wavelength. Then we can use more pure green light source (~520nm) and while mitigate crosstalk 

in each color channels. In this case a 100% percent coverage of NTSC color gamut can be expected. 

Next, we analyze the light efficiency. The three-primary LCD with input SPD shown in Fig. 

2.19(a) has TLE~17.6 lm/w. In comparison, the hybrid four-primary LCD with input SPD shown 

in Fig. 2.19(b)  has TLE~35.2 lm/w, which is almost 2X higher. This significant increase of light 

efficiency originates from two factors: 1) Reducing the sub-pixel number from three to two can 

increase light efficiency by 1.5X, since less light is absorbed in the color filters, and 2) Four-

primary color LCD has color reproduction redundancy and we can use high ratios of yellow and 

green colors for color rendering. The image looks brighter under the same backlight power since 

human eye is sensitive to yellow and green. As shown in Figs. 2.19(a) and 2.19(b), the relative 

portion of green and yellow in hybrid four-primary display is higher than that of three-primary one. 

Therefore four-primary display has much higher light efficiency. Overall speaking, the hybrid 

four-primary LCD can reach a better tradeoff point compared to the three-primary.  

 The hybrid four-primary display still partially depends on the FSC technique. Color breakup 

(CBU) is the most disturbing artifact that degrades the image quality in FSC [39, 44]. It manifests 

itself in the appearance of multiple color images of stationary objects during saccadic eye motion, 

or along the edges of moving objects when tracking the objects with the eye. Several methods have 
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been proposed to suppress the CBU, including increasing the frame rate, inserting another color or 

black fields, four-color fields arrangement, and Stencil-FSC method [48]. However, most of these 

methods put stringent requirement on LC response time and some of them may sacrifice the display 

brightness.  

 

Figure 2.20: Simulated color breakup for (a) RGB 3-primary FSC, (b) RGBY 4-primary FSC, (c) Hybrid four-

primary color, and (d) Hybrid four-primary color with optimized color weighting ratios.      

   To evaluate the CBU of the hybrid method, we simulate the CBU when displaying a typical 

white color with different color sequential methods. The white object has a width of 250 x 75 

pixels, and the object moves in the horizontal direction with a speed of 30 pixels/frame. As shown 

in Fig. 2.20, the rainbow-like CBU patterns can be clearly observed in a RGB color sequential 

display (Fig. 2.20(a)) and even more pronounced in a RGBY color sequential display (Fig. 2.20(b)). 

But the hybrid four-primary display (Fig. 2.20(c)) exhibits much less CBU due to reduced frame 

number. Moreover, we can take advantage of the color-reproduction redundancy and optimize the 

color ratio to further suppress CBU. For example, we can use high-brightness yellow and low-

brightness blue when mixing a white color. As our eyes tend to feel that the bright yellow merges 
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into the white object and weak blue merges into dark background, an even less CBU is observed 

(Fig. 2.20(d)).   

Table 2.1 compares the performance of our hybrid four-primary LCD with three-primary using 

RGB color filters. The hybrid four-primary LCD outperforms its three-primary counterpart in 

following aspects: 1) It requires fewer subpixels so that it can boost the spatial resolution by 1.5X 

under the same fabrication precision, 2) it provides another degree of color reproduction 

redundancy, 3) QD allows us to optimize the input light SPD to match the transmission spectra of 

color filters. By combining these advantages, the four-primary LCD is expected to have 2X higher 

light efficiency. 4) The four-primary LCD can achieve color gamut over 130% NTSC in CIE 1931 

color space and 155% NTSC in CIE 1976 color space. It can reproduce yellow and cyan with much 

higher fidelity. The only drawback is it requires 2X higher frame rate. But compared to 

conventional FSC technique, the hybrid four-primary display does not put too stringent burden on 

the LC response time and it is readied by existing commerical products. Overall speaking, the 

hybrid four-primary LCD have advantages in spatial resolution, color gamut, light efficiency, and 

less demanding LC response time. 

Table 2.1: Comparison of three-primary and hybrid four-primary LCDs 

 Three-primary Hybrid four-primary 

Color synthesis RGB CFs two CFs and two sub-frames 

Spatial resolution 1 1.5 

Light efficiency 1 ~2 

Color gamut (CIE 1931) At most 120% 120%~130% 

Frame rate 1 2 (affordable) 
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2.4 Quantum Dots Enhanced Liquid Display 

   Besides transmissive LCD, QD is also attractive for liquid display. Liquid display is 

favorable in applications where power consumption is a major concern. Various liquid displays 

have been developed, such as electrophoretic, electro-wetting and electro-fluidic, but all of them 

have limited color performance [49-52]. Some devices use dye-doped liquid or color filter array 

to generate color. Both dyes and color filters have a fairly broad absorption/transmission band and 

the display device has very limited color gamut. Moreover, these approaches are not energy 

efficient because only a portion of the backlight can pass through the dyes/color filters. To broaden 

the application of liquid displays, there is urgent need to enhance the color performance while 

keeping high optical efficiency. 

  In this section, we propose two types of dielectrophoretic liquid display and enhance its color 

performance with patterned quantum dots (QDs) [53, 54]. QDs not only provide wide color gamut 

(136% AdobeRGB), but also greatly reduce optical loss in color filters by pre-converting the light 

to desired colors. Our devices demonstrate several advantages: low power consumption, wide 

viewing angle, acceptable response time and contrast ratio, and vivid colors. They are promising 

candidates for E-books or mobile displays.  

2.4.1 Liquid Display Based on Voltage Stretchable Droplet  

Fig. 2.21 (a) shows the side-view structure of our proposed device. It consists of blue LED, 

light guide plate (LGP), color down- conversion layer, light shutter array, and color filter array. In 

the color conversion layer, the closed circles represent the patterned green/red QDs while the open 
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circles represent scattering particles. The blue LED light propagating in the LGP is steered upward. 

When it passes through the color conversion layer, some light is absorbed by the embedded QDs, 

which is in turn converted to green and red lights, respectively. The scattering particles in the blue 

pixels diffuse the blue light in order to balance the light distribution of each color. The light shutter 

array modulates the transmittance of each color pixel. Finally, the color filter array blocks the 

unabsorbed blue light in the green/red pixels. Since most of the light is already converted into the 

proper color, the absorption loss in the color filters is negligible 

 

           

Figure 2.21: Color display based on reconfigurable LC droplet and quantum dot backlight. The solid red/green dots 

represent the red/green QDs, while the open blue dots represent the scattering particles. (b) Side-view of the cell 

structure at voltage-off state, (c) black state at voltage-on state, and (d) layout of the bottom substrate. The dimension 

of the hole and ITO stripes are not drawn to scale.  

Figs. 2.21(b) and Fig. 2.21(c) show the light modulation mechanism of a single color pixel. 

The droplet (L1) and the surrounding liquid (L2) are sealed between two glass substrates. The 

bottom substrate is first coated with interdigitated-stripe indium tin oxide (ITO) electrodes with 

10-μm width and 10-μm gap, and then coated with a hole-patterned Teflon layer. These holes are 

used to pin down the droplet positions (Fig. 2.20(d)). In the voltage-off state, the droplets shrink 
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with the smallest surface-to-volume ratio and rest in the holes. Thus, the incident light can pass 

through with a large aperture. This is the white state. As the voltage increases, the droplet is 

stretched across the aperture, resulting in a gradually decreased transmittance. As the black droplet 

fills the entire aperture, dark state is achieved.   

In experiment, we chose Merck LC mixture ZLI-4389 as L1. Its properties are listed as follows: 

dielectric constant //=56 and  =45.6, surface tension ~38 mN/m, average refractive index 

<n>~1.58, and density ρ~0.98 g/m3. L1 is doped with 1.7% black dye S428 (Mitsui, Japan) in 

order to function as a light shutter. L2 is silicone oil (~2.9, ~21 mN/m, n~1.4, and ρ~0.97 g/cm3). 

These two liquids are immiscible with each other and match well in density. When applying a 

voltage on the bottom electrodes, a nonuniform lateral electric field is generated across the ITO 

stripes. This fringing field reorients the LC molecules on the droplet border. As a result, the 

dielectric constant of the LC on the border is close to //=56, which is much larger than that of the 

silicone oil (~2.9). Under such circumstance, a DEP force is generated on the dielectric liquid-

liquid interface: 

                                                     
0 1 2

1
( ) ( )

2
dF E E     

 (2-13) 

where ε0, ε1, and ε2 represent the permittivity of free space, L1, and L2, respectively, and E denotes 

the electric field on the curved droplet. This dielectric force is exerted on the liquid interface to 

deform the interface profile. The LC droplet is stretched along the stripe electrodes and partially 

blocks the incident light, resulting in a grayscale. If the droplet is further stretched to totally block 

the incident light, a black state is achieved, as shown in Fig. 2.21(c). After removing the voltage, 

the droplet will quickly return to its initial state due to interfacial tension. 
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The selection of liquid droplet material is critical to the display device’s performance. The 

material should have high dielectric constant for low driving voltage, and low surface tension for 

fast response time. ZLI-4389 satisfies both requirements and is a good candidate for droplet 

material. 

 

Figure 2.22: Measured VT curve. The insets show the microscopic photos of a single pixel under different voltages.  

Fig. 2.22 shows the voltage-dependent transmittance (VT) curve of a single pixel device; the 

insets show the droplet deformation under different voltages. At V=0, the droplet shrinks to a small 

area with diameter~180m. The pixel has a reasonably high transmittance (~86%). As voltage 

increases, the droplet is stretched along the stripe electrodes. At 40 Vrms, the LC droplet covers 

~50% of the pixel. At 50 Vrms, the droplet is stretched by ~4X and it covers the whole pixel area. 

The contrast between bright state and dark state is about 100:1. The liquid droplet can be stretched 

further by a higher voltage, but in this case two undesired phenomena could happen:  (1) the dyes 

in LC droplet could be spread too thin to effectively absorb the incident light, resulting in a lower 

contrast ratio, and (2) an over-stretched droplet may not return to its original state due to increased 

friction between the droplet and the surrounding liquid, which in turn causes hysteresis. To lower 
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the operation voltage, we could either reduce the electrode width and gap, droplet size, or increase 

the dielectric anisotropy of the employed LC. 

 

Figure  2.23: Single color pixel with red, green and yellow QDs at (a-c) voltage-off state and (d-f) voltage-on state 

(50Vrms). (g). Color primaries in the CIE 1976 color space. 

  To obtain vivid color, we patterned the QD suspension beneath the liquid shutter array. The 

QD suspensions have core-shell structure, with CdSxSe1-x as core and ZnS as shell. The particle 

size is between 5.5 nm and 6.5 nm. The QD samples can emit color from green to red by varying 

the composition ratio x of the core material. Fig.2.23(a-f) shows the color pixels with red, green 

and yellow QDs. These pixels display brilliant colors at voltage off state and excellent dark state 

after applying voltage. The light emitted from QD has high color purity with full width at half 

maximum (FWHM) ~20~30 nm. In comparison, the transmission/absorption FHWM of dyes/color 

filters is around 80~150nm. Fig. 2.23(g) plots of the color primaries in the CIE 1976 color space. 

A typical liquid display with color dyes (green dashed lines) can only cover 35.3% AdobeRGB, 

which means it has a very limited color reproduction capability [51]. In comparison. The blue 

dash-dot line shows the color primaries our QD-enhanced liquid display. Its color gamut is ~136% 

AdobeRGB, which is even wider than that of a typical LCD (70%~80%) and OLED (100%~110%). 



42 

 

   The response time of our liquid display depends on the droplet’s size and traveling distance. 

For an 180um diameter size droplet, with 60 Vrms the measured expanding and recovering time is 

84.5 ms and 116 ms, respectively. The estimated travelling speed is 6.4 mm/s and 4.6 mm/s. The 

typical sub-pixel size of LCD is 80-μm*240-μm. If we can reduce the droplet size to 80 μm and 

stretch 3X, then the estimated expanding and recovering time would be ~25ms and ~35ms, 

respectively. Although this response time is still insufficient for video rate operation, it is 

acceptable for E-book applications. As the liquid droplet size keeps decreasing, the droplet volume 

and pixel size also reduces and proportional to the cube and square of the droplet size respectively. 

Therefore there may be less liquid to cover the pixel area and result in a contrast ratio reduction. 

However, this problem can be compensated by increasing the dye concentration.  

2.4.2 Liquid Display Based on Variable Circular Iris 

 

Figure. 2.24: (a).Illustration of single pixel at voltage off (bright) and voltage on (black) state. (b). Measured VT 

curve. 

     To reduce response time, we also propose another liquid display based on variable circular 

iris and its structure is shown in Fig.2.24 (a).  For device fabrication, we first mixed NOA65 

(Norland Optical Adhesive 65, ~40 mN/m) with 2% Sudan black dye and made a polymer film 
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by spin coating. The polymer film was exposed by UV light through a photomask, and then rinsed 

off with ethanol to generate a hole-pattern. We then peeled off the film and tightly stacked it onto 

another glass substrate, which was already coated with ITO electrode and a thin Teflon layer. The 

hole-pattern film acts as the polymer wall in each pixels to pin down the liquid droplet at voltage-

off state [55]. The liquid droplet used in this experiment is the also LC mixture ZLI-4389 with 1.7% 

black dye S428. 

      Fig. 2.24(b) shows the measured VT curve of a single pixel device. At V=0, the filled LC 

droplet concentrated as a ring along the polymer wall due to the de-wetting properties of Teflon 

on the substrate. These LC droplets occupy ~23% of the aperture so the pixel’s transmittance is 

77%. After applying a voltage, fringing field is generated across the ITO stripes, and the generated 

DEP force deforms the LC droplet. Because of the large contact area between the LC droplet and 

the polymer, the required voltage should be larger than a threshold value in order to overcome the 

friction and stretch the LC droplets. At ~70Vrms, almost half of the pixel aperture is covered by the 

black LC droplet. The induced aperture is not circular because the electrode is one dimensional 

and dielectric force exerted on the LC ring is asymmetrical. At V~85Vrms, LC droplet covers most 

of the aperture and the transmittance is ~3%. The contrast ratio between the bright and dark states 

is 25.7:1. This contrast ratio can be enhanced by increasing the concentration of black dye.  

     Fig. 2.25(a,b) shows the color pixels with red, green and yellow QDs. These pixels exhibit 

vivid colors in the voltage-off state, and appear reasonably dark in the voltage-on state. In this 

ring-shape device configuration, the liquid droplet is stretched along all the directions so that its 

required travel distance is shorter to fully cover the pixel. Thus, the display device has a much 

faster response time. Fig. 2.25(c) shows dynamic response of a single pixel. With 60 Vrms, the 
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stretching and recovering time is ~11.7 ms and ~14.8 ms, respectively. Such a fast response time 

is attractive for mobile display applications. 

 

Figure. 2.25: Single color pixel with red, green and yellow QDs at (a) voltage-off state and (b) voltage-on state 

(100Vrms). (c). Dynamic response of a single pixel. 

Sunlight readability, which depends on the relative value of surface reflection and display 

brightness, is highly desirable for mobile displays and E-books. Our proposed liquid displays do 

not require any polarizer and has low absorption in the color filters, therefore the device appear 

brighter and more vivid under the same backlight power. Moreover, recently green/red QDs with 

separated excitation and emission spectra have been reported [17]. With proper color filter design, 

we can minimize the ambient light effect and achieve a decent ambient contrast ratio. 

    As a summary of this section, we have experimentally demonstrated two types of QD-enhanced 

electrophoretic liquid displays. The first type liquid display has a relatively low driving voltage 

and good contrast ratio (100:1), while the second liquid display has faster response time (<20ms). 

They are intended for different applications. Overall, QD-enhanced dielectrophoretic liquid 

displays exhibit several attractive features: vivid colors, high transmittance, wide view, and modest 

response time and contrast ratio. They are promising candidates for e-books and mobile displays.  
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2.5 Color Tunable LED Based on QD Suspension 

Besides display applications, QDs are also useful for general lighting. By replacing the 

conventional phosphor with QDs, LEDs can have superior light efficiency and color rendering 

property [15, 56, 57]. One typical and attractive lighting application is to use color temperature 

(CT) tunable white LED to dynamically vary the ambience of a room or office. Environmental 

lighting has significant influence on human body, including circadian rhythm, sleep behavior, 

cognition, alertness, and overall wellbeing. For example, people tend to have higher working 

performance in high CT lighting environment while relaxing well in low CT lighting environment. 

An artificial light source which replicating the Sun’s high CT during the daytime and low CT at 

night could effectively regulate the human circadian rhythm (cycle of wake and sleep) and is 

beneficial to human productivity, well-being, and basic health [58-60]. 

      Currently, CT tunable white LED is mainly realized by mixing LED clusters with different 

colors. Several LED cluster combinations have been discussed, including warm-white/cool-white 

cluster, red/green/blue cluster, and warm-white/green/blue cluster, etc.[61, 62]. The CT of the 

output light can be fine-tuned through proper intensity control of each individual LED. 

Nevertheless, such device has several demerits: It requires complicate and separate driving circuits 

for each LED, and it needs extra optical elements for proper color mixing of laterally placed light 

sources. Moreover, the CT cannot be tuned when all the LEDs are illuminating at maximum 
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intensity. Instead of multi-chip LED clusters, a single-chip LED with color tunability is attractive 

since it is simple and stable. 

    In this section, we propose a CT tunable LED with QD suspension. The device consists of a 

blue LED as pumping source and several QD suspensions as wavelength down-conversion 

modules. By changing the liquid volume of QD suspension, we can readily control the optical path 

length within the QD material and accordingly change the relative intensity of each color 

component. The device manifests following advantages: (1) it uses blue LED as light source, 

which has the highest quantum efficiency among visible LEDs; (2) simple optics and electronics 

designs; (3) excellent color rendering properties, (4) it can be driven by multiple mechanisms, and 

(5) it can be potentially multi-stable, which means an extra driving force is not needed when the 

emission CT is fixed. Therefore, the proposed CT tunable white LED could be attractive for smart 

environmental lighting applications. 

Figure 2.26 shows the device structure of our proposed color tuning white LED. The system 

consists of a blue LED topped with a few color conversion modules. Figure 2.26(a) shows a white 

LED with two color conversion modules with red and green QDs. QDs absorb a portion of blue 

light and then re-emit red and green lights. A proper combination of blue, green, and red colors 

leads to white light with three emission peaks (tri-chromatic). Similarly, if the device consists of 

three wavelength down-conversion modules (Fig. 2.26(b)), then the output white light is quad-

chromatic with four emission peaks.  
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Figure. 2.26. Device structure of CT tunable LED (a) Tri-chromatic.  (b) quad-chromatic. 

Each color conversion module contains two types of immiscible liquids: deionized water and 

QD suspension. The QD suspension was purchased from Cytodiagnostics. The QD materials have 

core-shell structure, with CdSxSe1-x as core and ZnS as shell. The emitting color of the QDs can be 

controlled by changing the composition ratio x of the core material.  

As Fig. 2.26 depicts, the chamber of the color conversion module is made of acrylic glass and 

its top and bottom surfaces are sealed with transparent glass. The left sidewall has a flexible 

reservoir made of polymer membrane, while the right side wall has a piston. This piston can be 

driven by multiple methods, e.g., step motor, magnetic method, or pneumatic effect. 

As the piston moves, it either pushes or pulls the QD suspension, the liquid either fills into the 

flexible reservoir or flows back to the chamber. In this way, one can tune the volume ratio of QD 

suspension within the chamber and then control the light path length in the QD suspension 

accordingly. 

For the quad-chromatic CT tunable white LED, the relative light intensity fi (i=r,y,g,b) of red, 

yellow, green, and blue can be written  as: 
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In Eq. (2.14), Pb0 is the amount of blue light initially emitted from the blue LED, QYi (i=r,y,g) 

is quantum yield of each QD solution (here we assume QYi=0.85), and Ai (i=r,y,g) is the absorption 

ratio of the blue light within each QD solution, which is given by: 

                                         1 exp( ) ( , , )i i iA d i y r g      (2-15) 

Here di is the light path length in each QD solution and i  is the absorption coefficient of blue light 

in each QD solution.  According to Eq. (2.14) and Eq. (2.15), each color component’s relative 

intensity fi can be controlled by changing the light path length di in each QD suspension. 

       We perform spectrum optimization for achieving high light efficacy and good color rendering 

index (CRI). The spectral power distribution (SPD) of tri-chromatic and quad-chromatic white 

LEDs is expressed as: 
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Here S(λ, λb, Δλb) represents the blue LED emission spectrum transmitting through the color 

conversion modules, S(λ, λg, Δλg), S(λ, λy, Δλy)  and S(λ, λr, Δλr) are the emission spectra of 

green, yellow and red QDs. Each emission spectra can be modeled as a Gaussian function, with λi 

(i=r,y,g,b) standing for the central wavelength, Δλi for the  full width half maximum (FWHM) and 

fi for the relative intensity.  

     Here we use the luminous efficacy of radiation (LER) as a measure of light spectral 

efficiency, which is defined as: 
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LER reflects how efficient the output light can be converted to the brightness perception of 

human eye. V(λ) is the photopic eye sensitivity function; it is centered at =550 nm. The maximum 

value of LER is 683 lm/Wopt for a monochromatic light source at =550 nm. However, for a 

broadband light source (e.g., white light) its LER is usually much lower.  

We also use CRI to quantitatively evaluate the color rendering property of white light                                                                                               
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  (2-18) 

Here ΔEj is the difference in color appearance for each of the eight reflective samples (j=1-8) 

illuminated by the test and the reference light sources in the CIE 1964 color space.  

 In order to optimize the spectrum of the CT tunable LED, we introduce following objective 

function for the trichromatic LED:  
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  (2-19)            

Here i (i= 1-8) refers to color temperature at 2700K, 3000K, 3500K, 4000K, 4500K,  5000K,  

5700K and 6500K, respectively. The objective function aims to optimize the averaged photometric 

and colorimetric properties at eight typical color temperatures.  

    For each emitted color, its central wavelength λi, FWHM Δλi and relative intensity fi can be 

used as variable to model the emission spectrum. In order to accelerate the optimization process, 

here we only use the central wavelengths as variables. From our simulation results, we found the 

optimization result is less affected by the FHWM values. So in our optimization process, we fix 

the FHWM as Δλb=20nm, Δλg=40nm and Δλr=30nm for the tri-chromatic case. For tri-chromatic 
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LED, once the color temperature is determined we can solve the color mixing function to obtain 

the relative intensity of each color component. 

   Similarly, we can re-write Eq. (2-19) with (λb, λg , λy, λr ) as variables for   quad-chromatic 

LED. In this case, we also fix the FHWM of each emission peak as Δλb=20nm, Δλg= Δλy 

=Δλr=30nm. 

 

Figure. 2.27. Relationship between LER and CRI for white LED with (a) tri-chromatic and (b) quad-chromatic 

configurations. The black dashed curve represents the Pareto front for CT tunable white LED, while the blue solid 

line represents the Pareto front white LED optimized for CT=4000K. 

We performed multi objective optimization for tri-chromatic LED and quad-chromatic LED 

respectively, and plot the optimization results in Fig. 2.27. The blue solid curve in Fig. 2.27(a) is 

the Pareto front of tri-chromatic white LED with color temperature fixed at 4000K, while the black 

dashed curve shows the Pareto front of tri-chromatic color tuning LED with LED and CRI 

averaged over eight color temperatures. The CT tunable LED could vary from relatively high CRI 

(~88) but limited LER (365 lm/w) to low CRI (<70) but high LER (>400 lm/w).  The tradeoff 

between LER and CRI is obvious because the gain of one metric accompanied by the loss of the 

other. In general, the performance of color tunable LED is slightly inferior to that of the LED fixed 
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at 4000K. This is reasonable because the CT tunable LED needs to balance the CRI and LER for 

all the color temperatures. 

Figure 2.27(b) shows Pareto front of quad-chromatic optimized for LED with 4000K (blue 

solid curve) as well as color tunable LED (black dashed curve).  Compared to the tri-chromatic 

case, the quad-chromatic LED manifests superior color rendering property. In particular, the CT 

tunable quad-chromatic LED can have CRI over 95 while still maintaining a reasonably high LER 

(>340 lm/w). It outperforms previously published color tuning LEDs in obtaining high CRI and 

LER simultaneously [61]. 

 

Figure.  2.28. (a) SPD of a tri-chromatic CT tunable white LED under different CT, and (b) CRI and LER of tri-

chromatic CT tunable LED.   

Figure 2.28 shows an example of optimized tri-chromatic CT tunable white LED located on 

the Pareto front line. The emission peaks are located at λb=464.1 nm, λg=544.0 nm and λr=614.2 

nm, respectively. Figure 2.28(a) shows the LED spectrum under four typical color temperatures 

(2700 K, 4000 K, 5000K, and 6500K). Only the intensity ratio varies while the central wavelength 

and the FHWM of each color component are fixed. White light is more reddish at low CT while 

bluish at high CT. Accordingly, the power ratio of the three-color components changes with CT. 

From low to high CT, the blue component gets stronger while the red component becomes weaker.  
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Figure 2.28(b) shows the LER and CRI at different CTs. Overall the averaged LER=363.2 

lm/W and averaged CRI=88.3. As CT increases, the light source becomes more bluish, and 

accordingly the LER decreases since human eye is less sensitive to blue color. The tri-chromatic 

LED has limited color reproduction capability. To obtain higher CRI, we should use quad-

chromatic LED. 

 

Figure. 2.29. (a) SPD of a quad-chromatic CT tunable white LED under different CTs, and (b) the intensity ratio of 

different color component at different CTs. 

Figure 2.29(a) shows the optimized spectrum for quad-chromatic LED. The emission peaks 

are located at λb=458.9nm, λg =523.2nm, λy=570.0nm, and λr=619.3nm, respectively. The emitting 

light covers a broader spectral range and therefore it has better color reproduction ability. Figure 

2.29(b) depicts the LER and CRI at different CTs. On average, the LER is 347.2 lm/W and CRI is 

95.8. To better evaluate the color reproduction ability, we also calculated the color quality scale 

(CQS) as suggested by National Institute of Standards and Technology (NIST) [63]. CQS is 

considered as a more objective measure of color reproduction ability for color saturated light 

sources. Our color tuning LED shows a quite high average CQS, which is 91.6 in average. 

  To quantitatively evaluate the circadian effect, we also calculated the circadian action factor 

(CAF) of the proposed color tunable LED. CAF is a measure of biological action per unit of visual 
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response. Different CAF values are advisable depending on the time of day: high CAF during 

daytime and low CAF at night [62]. Figure 2.30 shows the CAF value of tri-chromatic and quad-

chromatic color tunable LEDs at different color temperatures. CAF increases as the color 

temperature rises. Therefore, we can tune the white LED at low CT during daytime to enhance 

working efficiency, while setting a high CT during nighttime to improve sleep quality. In this way, 

the proposed color tunable LED can be beneficial to human health and productivity. 

 
Figure. 2.30. Simulated CAF as a function of LED color temperature. 

 

Figure. 2.31 (a) Emission spectrum of color tunable LED for different QD suspension thicknesses, and (b) color 

coordinates of the color-tunable LED (the insets show the recorded color image of LED). 
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To prove this concept, we fabricated a prototype color tuning LED. The LED consists of one 

blue LED and one color conversion module with yellow QDs. The weight percentage of QD in 

this suspension is 0.5%. We used an electric step motor to control the piston position, which in 

turn tunes the yellow QD suspension thickness. The emission spectrum of LED is recorded by an 

Ocean Optics USB2000 spectrometer. Figure 2.31(a) shows the recorded emission spectra when 

the QD suspension has different thickness d. As the QD thickness increases, more blue light is 

absorbed and converted to yellow light.  Figure 2.31(b) shows the color coordinates and the insets 

show the color image of the LED. With increased QD thickness, the emitted color varies from blue 

to white, and finally to yellow. Our simple device only contains one type of QD suspension. The 

color quality and light efficiency can be significantly improved by adding more QD suspensions 

with different colors.  

As a summary of this session, we proposed a color-tunable LED consisting of a blue LED as 

light source and quantum dot suspension as color conversion medium. The LED color temperature 

can be tuned by varying the liquid volume of each quantum dot suspension with different 

photoluminescence color. We simulated and optimized the light efficiency and color quality of the 

color-tunable LED, and also prepared a prototype to prove this concept. The proposed color-

tunable LED exhibits several advantages: excellent color rendering property and high light 

efficiency, simple mechanical structure and driving mechanism, as well as high energy efficiency. 

It could be attractive to circadian rhythm regulation and healthy lighting. 
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CHAPTER THREE: HIGH EFFICIENCY LIQUID CRYSTAL DISPLAYS 

3.1 Introduction 

  Conventional LCD backlight has very low light efficiency. Fig.3.1 shows the light 

transmission in a typical LCD backlight system, each optical elements in the LCD absorbs some 

part of the light: (1). The polarizers only transmits polarized light while the light source is 

unpolarized, so at least  50% of the incident light is absorbed and wasted in the polarizer. (2). Color 

filter only transmits about one-third of the incoming white light, while the remaining two-thirds 

are absorbed. (3).Thin film transistors and electrical connections, required for high switching speed 

and resolution, transmit approximately 60–80% of the light in each sub-pixel, depending on the 

LC design and TFT material. (4). The LC cells do not have 100% transmission all the red, green 

and blue color. (4). The optical films, such as brightness enhancement film, also deflect/absorb 

some light during angular light recycling.  Overall, the LCD has a fairly low transmission from 4% 

to 7%.  

 

Figure 3.1: Light efficiency in a LCD backlight system. (Courtesy: Dr. Y. P. Huang, NCTU) 
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Accordingly, there are several approaches to enhance LCD light efficiency:  (1). Use 

polarization recycling to enhance polarize polarization efficiency [64].  (2). Display image with 

field sequential color (FSC) method to get rid of color filters [40, 44]. (3) Utilize high mobility 

TFT material to increase the aperture ratio [65]. (4). Select LC module with high transmittance 

while keep large viewing angle, such as fringe field switching (FFS) mode [34]. (5). Employ 

backlight design that use less number of optical films. 

    In this chapter, we propose several novel methods to enhance the LCD light efficiency. In 

section 3.2, we design a polarization preserving backlight system that can used with linear 

polarized light source the enhance the LCD polarization efficiency; In section 3.3, we propose a 

simultaneous color/polarization recycling mechanism to reduce the light loss in color 

filters/polarizers without using complex FSC method. 

3.2 Polarization Preserving Backlight System 

Most LCDs require two crossed linear polarizers in order to obtain high contrast ratio. A 

conventional backlight source is randomly polarized, thus in the most ideal case only 50% of the 

backlight can pass through the polarizer. A LED with linearly polarized emission has potential to 

double the optical efficiency of  LCD. Several approaches, such as crystal growth along nonpolar 

or semipolar orientation [66, 67], and embedding LED with an interior or exterior wire-grid 

polarizer [68], have been proposed to realize a linearly or partially polarized LED. Although it is 

still in developmental stage, linearly polarized light source could become available in the near 

future.  
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However, even with a perfect linearly polarized LED the incident light could still be 

depolarized during propagating in the light guide plate (LGP) or other optical films. This 

depolarization effect could severely compromise the benefit of the polarized light source. Such 

phenomenon is significant in conventional edge-lit LGPs [69-71]. Some LGPs with polarization 

preserving feature have been proposed, e.g., using a sub-wavelength polarization separating 

grating [72] or selective reflection on the interface between isotropic and anisotropic layers [73]. 

However, the former requires a high precision nano-fabrication technique, while the later limits 

the selection of LGP material. Moreover, both approaches are not cost effective and difficult for 

mass production. 

3.2.1 Depolarization in Conventional LCD Backlight  

 

Figure 3.2: Schematic of the light source and edge-lit type LGP. 

We first examine the depolarization phenomena in conventional LCD backlight, Figure 3.2 

depicts a typical edge-lit backlight system. Five LEDs are aligned on the left side of LGP, each 

LED is a typical planar Lambertian source with directivity (2θ ½) of 120˚ and has a luminous flux 

of 2 lm. Because the Lighttools software does not allow us to identify the polarization state of the 
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light source, we intentionally insert a linear polarizer in front of the LGP to define the input 

polarization. In practice this polarizer is not needed when using a polarized light source. During 

simulation, we assume the LGP size is 60mm*40mm*3mm, and is made of PMMA with refractive 

index n=1.49. The bottom reflector sheet has 95% reflectivity and 5% absorption. There is also a 

frame encircles the LGP with 85% reflectivity. After the light is incident from the left side, it is 

confined by TIR while propagating in the LGP. Once the TIR condition is broken by certain 

microstructure, the light will leak out from the top surface. Through this process the edge-lit LGP 

can convert the linear array light source into planar emittance. An output polarizer is laid on top 

of the LGP for analyzing the output polarization. An observation plane is set above the output 

polarizer to record the spatial illuminance distribution of the output light. 

   In our study, there are two important characteristics that define the quality of LGP:  

   (1) Polarization efficiency. It is defined as Φpol/Φtotal: Here Φtotal is the total output light flux 

and Φpol is the light flux passing through the output polarizer and reaching the LCD panel. During 

each simulation Φpol is recorded with the insertion of output polarizer, and Φtotal is obtained without 

the output polarizer. For an unpolarized incident light, the output light from LGP remains 

unpolarized so the polarization efficiency is only 50%. For a linearly polarized input light, if the 

LGP can ideally preserve the polarization, then the polarization efficiency should be 100%. In 

reality, a LGP would inevitably depolarize the light to certain degree so that the polarization 

efficiency can hardly reach unity. Our objective is to design a LGP with high polarization 

efficiency.  
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  (2) Spatial illuminance uniformity. It is defined as Imin/Imax: Here Imin and Imax stand for 

minimum and maximum spatial illuminance, respectively. A desired LGP should also keep good 

spatial illuminance uniformity.  

As Fig. 3.2 shows, the transmission axis of the input polarizer and output polarizer makes an 

angle α and β with respect to x axis. The input polarizer sets the polarization direction of the LED 

irradiance, while the output polarizer controls the polarization of output light which will eventually 

enter the LCD. The transmission axis direction greatly affects the final output irradiance. As a 

special case when α=0 and β=0, both input and output beams are actually TE polarized in the cross 

section plane of the LGP (y-z plane). In our simulation we find this setting leads to maximum light 

output, so we will keep this configuration throughout this section.  

 

Figure  3.3: Schematic and ray tracing of (a) Type-I LGP, and (b) Type-II LGP. The inset shows the geometrical 

parameter of each light extracting microstructure. 

We first analyze the polarization efficiency of two conventional LGPs: Type-I has dotted 

microstructure printed on its bottom surface, and Type-II has microgroove microstructure on the 

bottom surface, as Fig. 3.3 depicts. The microdot structures of Type-I LGP (Fig. 3.3(a)) have 

uniform size: radius r=50 µm and height h=10 µm. Each microdot acts as a Lambertian scatter. 
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An optimal distribution pattern is obtained by the backlight pattern optimization module in 

LightTools software.  

Fig. 3.4(a) shows the simulated spatial illuminance distribution of Type-I LGP. Its uniformity 

is 79.8%. Fig. 3.4(b) shows the simulated angular luminance distribution for the entire light 

emitting area. Because the light emits from LGP with broad angular range so the on-axis luminance 

is low. In order to boost the on-axis luminance, two crossed BEFs should be laminated on top of 

the LGP. Fig. 3.4(c) shows the resultant angular luminance. Most of light is now preferentially 

emitted around the surface normal direction so that the on-axis luminance is increased.  

 
Figure 3.4:  (a) Simulated spatial illuminance of type-I LGP with dotted microstructure, (b) angular light distribution 

of LGP alone, and (c) angular light distribution of the LGP with two crossed BEFs.  

Fig. 3.3(b) shows the Type-II LGP structure with microgrooves on the bottom surface. Each 

microgroove has dimension of 50 m. These microgrooves are arranged with Bezier’s distribution 

for achieving high spatial illuminance uniformity. Fig. 3.5(a) shows the simulated angular 

luminance distribution for the entire light emitting area, and the calculated uniformity is 70.2%. 
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The angular luminance distribution is displayed in Fig. 3.5(b), indicating most lights exit from the 

LGP at a large angle. This oblique luminance is not favorable for LCD’s contrast ratio. Therefore, 

crossed brightness enhanced film (BEFs) is required in order to steer the light path toward the 

surface normal direction. The resultant angular luminance is shown in Fig. 3.5(c). 

 

Figure 3.5:  (a) The spatial illuminance of Type-II LGP with V-groove microstructure, (b) Angular luminance 

distribution of the LGP, and (c) Angular luminance distribution of the LGP with two crossed BEFs. 

Table 3.1 lists the polarization efficiency of Type-I LGP. For The light output from a bare LGP 

has total illuminance of 1109.1 lux, in which 614.2 lux is TE polarized. Therefore, the polarization 

efficiency for TE wave is 55.4%. After inserting the BEF, light is recycled between BEF and LGP, 

and some light is lost during this process due to absorption. The total light output drops to 702.1 

lux, while TE polarized light is 354.5 lux, so the polarization efficiency declines to 50.5%. To 

verify whether this depolarization effect is general, we also studied dotted microstructure with 

different geometrical shape and pattern distribution. For all the patterns studied, the polarization 
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efficiency is always less than 55%. Therefore, Type-I LGP greatly depolarizes the light. A linearly 

polarized input light would become almost unpolarized after propagating through the Type-I LGP. 

  Table 3.1 also lists the polarization efficiency of Type-II LGP. For a bare Type-II LGP, the 

emitted light has total illuminance of 1425.3 lux, while the illuminance for TE component is 1013.4 

lux. The polarization efficiency is 71.1%, which is much higher than that of Type-I. However, 

after inserting the BEFs, the polarization efficiency of TE drops to 51.7%. Although a bare Type-

II LGP could partially preserve the light polarization state, after traversing the BEFs the light 

would be depolarized. 

Table 3.1. Spatial illuminance and polarization efficiency of different type LGPs.  

                   Illuminance (lux) Polarization efficiency 
Total TE component 

Type-I LGP 1109.1 614.2 55.4% 

Type-I LGP with BEFs 702.1 354.5 50.5% 

Type-II LGP 1425.3 1013.4 71.1% 

Type-II LGP with BEFs 830.8 445.6 51.7% 

Type-III LGP 1358.3  1049.1 77.2%. 

 

    A simple ray tracing can explain the origin of the depolarization. As indicated in Fig. 3.3(a), 

several mechanisms could lead to depolarization in Type-I LGP. 1) The dotted microstructure 

would scatter the incident light into different directions; each scattered wave experiences a 

different phase change and propagate towards different directions. The total scattered wave is the 

summation of each individual wave and it could become partially polarized. 2) For a TE-wave 

travelling in the LGP cross section plane (y-z plane), the microstructure could scatter the light into 

different directions and most of the rays would scatter out of y-z plane. Since the polarization 

direction is perpendicular to the light propagation direction, the polarization state would rotate 
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with light propagation direction and is no longer a TE wave in the y-z plane. 3) Light could 

experience multiple scattering during propagation, and each scattering would average out the light 

polarization into different directions. Thus, the outgoing light could become unpolarized after 

exiting from type-I LGP. 

On the other hand, Type-II LGP uses refraction instead of scattering for light guiding. As shown 

in Fig. 3.3(b), after the incident light hits the microgroove, the ray is split into two parts: 

transmissive and reflective. Compared with scattering, there is fewer ray-splitting so that the 

depolarization effect is less significant. Therefore, Type-II LGP has a higher polarization 

efficiency than Type-I. However, for ray propagating out of y-z plane, there is still polarization 

rotation effect which induces a certain degree of depolarization. On the v-cut interface the 

transmission is higher than reflection, so the majority of light would transmit and finally exit at a 

large angle, as indicated in Fig. 3.3(b). An extra BEF is required to boost the on-axis illuminance. 

In addition to LGP, BEF is another source of depolarization. It deflects the ray propagation 

direction, and the polarization direction will rotate accordingly. As the light propagates between 

BEF and LGP, it is depolarized.  

3.2.2 Polarization Preserving Backlight  

Through analyzing the origin of depolarization, we learn some lessons for designing a 

polarization-preserving LGP. 1) It is much better to use refraction instead of scattering to guide 

light. 2) Splitting light path would inevitably induce depolarization, and therefore it is better to 

utilize TIR to avoid the light path splitting. And 3) LGP is preferred to have strong on-axis 
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luminance; under this circumstance BEFs are not needed and the associated depolarization could 

be avoided. Based on these principles, here we propose a new polarization preserving LGP (Type-

III) . 

 
Figure 3.6:  (a) Schematic drawing of Type-III LGP, (b) Relationship between Dz and the distance to LED, and (c) 

Spatial illuminance distribution. 

 Figure 3.6(a) shows the structure of Type-III LGP. The main body of LGP has a wedge shape 

with inclination angle β=1˚. Simulation proves the wedged LGP has higher illuminance than the 

rectangular LGP. In our Type-III LGP, there is no any microstructure on the bottom or top surface 

of the main body. Light is extracted by an output film coupler. The film coupler has one 

dimensional array of parallelogram prism on the bottom surface and is in contact with LGP. To 

illustrate the working principles, we draw four rays in Fig. 3.6(a). Before the light hits the contact 

region, it will continue to propagate within the LGP under TIR confinement. After the ray hits the 

contact region, it experiences another TIR on the slope surface of the slanted prism, which in turn 

is deflected toward the surface normal. The amount of light that can be coupled out is governed by 
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the bottom width of the prism surface, and the angular distribution can be controlled by the slope 

of the prism.  

Each microstructure has a parallelogram shape and its basic unit is shown in the inset of Fig. 

3.6(a). Each microstructure has the following geometry parameters: h=12μm, d1=16μm, d2=8μm. 

The geometry is specially designed to optimize the on-axis luminance. Dz represents the separation 

between each microstructure; it follows a Bezier distribution. The control parameter of the Bezier 

distribution is modified many times until a uniform distribution is obtained.  Fig. 3.6(b) shows the 

variation of Dz as a function of distance to the LED side. Near the LED side the input illuminance 

is stronger, so we intentionally enlarge the interval between microstructures to lower the light 

extraction. On the far side, the LED illuminance is weaker so we increase the microstructure 

density in order to extract more light. Figure 3.6(c) shows the simulated spatial distribution at the 

output coupler. A reasonably good spatial uniformity (76.8%) is achieved.  

   For Type-III LGP, the illuminance of total light output is 1358.3 lux and the TE component 

is 1049.1 lux. So the corresponding polarization efficiency is 77.2%. In comparison with an 

unpolarized light source that has 50% polarization efficiency, our Type-III LGP has a gain factor 

of 1.54 in polarization efficiency. This high polarization efficiency originates from two unique 

guiding mechanisms: 1) it uses TIR to control the light propagation in the LGP, and 2) it also uses 

TIR to extract light out. For each TIR, both TE and TM components have the same reflection 

coefficient and there is no beam splitting, therefore the associated depolarization is suppressed.  

Next, we analyze the angular light distribution for Type-III LGP. Fig. 3.7(a) depicts the light 

paths of two rays with different propagation directions. The parallelogram prism is a one 

dimensional structure, which can only control the angular luminance along one direction. Ray A 
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propagating in the y-z plane could be extracted toward the surface normal, while a slanted ray B 

propagating off the y-z plane would still exit the LGP at an oblique angle. We calculate the angular 

distribution of the light output from the entire light emitting area. The angular distribution of the 

total light output is only confined along the horizontal direction, as sketched in Fig. 3.7(b). We 

also test the angular distribution at several different points on the observation plane, and find that 

the angular distribution is quite uniform at different positions. The total light output can be split 

into TE and TM components. Their angular distribution is shown in Figs. 3.7(c) and 3.7(d), 

respectively. It is obvious that the TE component mainly concentrates near the axial region, while 

the TM component predominantly spreads out at off-axis. For display applications, only TE 

component can pass through the output polarizer and reach the LCD panel. Its luminance is already 

on axis so that no extra BEF is needed. 

 

Figure 3.7:  (a) Light paths of two rays with different propagation directions, (b) Angular distribution of the total 

output light, (c) Angular distribution of the output light with TE component, and (d) Angular distribution of the 

output light with TM component. 
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In Fig. 3.7(a), ray A would maintain its polarization direction while the polarization state of 

ray B would inevitably rotate following the variation of propagation direction. For skew rays this 

effect could be significant. As a result, when viewed from the off-axis direction where skew rays 

dominate, TE component [Fig.3.7(c)] decreases while TM component [Fig. 3.7(d)] increases. This 

is the primary source of depolarization in type-III LGP. On the other hand, the on-axis emission is 

less affected by the polarization rotation effect. As Fig. 3.7(c) shows, the majority of on-axis light 

intensity is TE polarized. Therefore, the polarization efficiency for the on-axis light could be very 

high.  

To validate this hypothesis, we simulate the on-axis angular luminance along the vertical 

direction. Calculation is performed for both unpolarized light and TE polarization. Figure 3.8(a) 

shows the angular luminance from LGP with an unpolarized light source. Different types of LGPs 

are represented with different colors. Type-III LGP has on-axis luminance of 292 nits: it is ~1.4X 

higher than that of Type-I and Type-II. This is because Type-I and Type-II LGPs require extra 

BEFs. When the light recycling takes place between BEFs and LGP, some energy is lost due to 

absorption and scattering.  

Figure 3.8(b) shows the angular luminance for TE polarization. The luminance of Type-I and 

Type-II LGPs maintains at almost the same level as compared to the unpolarized case. This is 

because Type-I and Type-II LGPs tend to depolarize the light so that the benefit of using a linearly 

polarized light source is compromised. On the other hand, the luminance from Type-III LGP 

increases to 590 nits, which is 2.4X higher than that of Type-I and Type-II. Compared to an 

unpolarized light, Type-III LGP has 1.7X higher luminance. Type-III LGP is much more efficient 
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for a linearly polarized backlight. This is because Type-III LGP not only effectively preserves the 

TE polarization, but also preferentially emits the TE light towards the surface normal direction. 

 
Figure  3.8:  Angular luminance as a function of off-axis angle for the three LGPs when illuminated by (a) 

unpolarized light and (b) TE polarized light with half intensity. Off-axis angle is measured along the vertical 

direction.  

The results presented above are for a perfectly TE polarized light, i.e., the TE/TM ratio 

approaches infinity. Under such a circumstance, Type-III LGP can reach 77.2% polarization 

efficiency. Next, we investigate the effect of a partially polarized light source, in which the 

polarization efficiency is expected to decrease. Figure 3.9 depicts the polarization efficiency as a 

function of TE/TM ratio of the light source (blue solid line). If the light source has a TE/TM ratio 

of 5, then the polarization efficiency is 68.0%. As the TE/TM ratio increases to 22, the polarization 

efficiency reaches 75% and then gradually saturates. Recently, semipolar InGaN LEDs with 

TE/TM ratio of 9 have been reported [67]. GaInN LED embedded with sub-wavelength wire-grid 

polarizers can have polarized emission with TE/TM over 49 [68].  For these two types of polarized 

light sources, the polarization efficiency of Type-III LGP reaches 73.2% and 77.0%, respectively. 
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Figure 3.9:   Simulated polarization efficiency as a function of TE/TM ratio of the input light source. 

The proposed LGP is efficient even for partially TE polarized light. We define the optical gain 

as the ratio of LGP polarization efficiency to that of unpolarized light (50%), and calculate the 

optical gain as a function of TE/TM ratio. As Fig.3.9 depicts, the optical gain increases rapidly as 

TE/TM ratio improves and gradually saturates as the TE/TM ratio exceeds 20:1. Currently, 

semipolar InGaN LEDs can achieve TE/TM ratio of 9 and GaInN LED embedded with sub-

wavelength wire-grid polarizers can have TE/TM ratio over 49. For these two types of polarized 

light sources, Type-III LGP still has considerable high polarization efficiency of 72.5% and 76.5%, 

respectively. Thus, it can be integrated with a linearly or partially polarized LED array to 

significantly boost the optical efficiency. 

Table 3.2. Comparison of different LGPs with and without polarization recycling  

 Polarization efficiency 

without recycling  

Polarization efficiency 

with recycling 

Type-I LGP+BEFs 50.5% 69% 

Type-II LGP+BEFs 51.7% 71.2% 

Type-III LGP 77.2% 82.2% 
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Finally, we consider the polarization recycling effect. In the above simulations, we assume the 

output polarizer is absorption type. This polarizer can be replaced with a reflective one, such as 

3M’s dual brightness enhancement film (DBEF) [64]. Such a reflective polarizer transmits TE 

while reflecting TM. The reflected TM becomes partially polarized during recycling process and 

is then sent back to the polarizer. As a result, part of the unused light can be recovered after several 

cycles. To simulate the polarization recycling effect, we replace the output polarizer as shown in 

Fig.3.2 with a virtual reflective polarizer, which transmits the TE polarized light while reflects the 

TM polarized light. The polarization recycling effect for different types of LGPs is simulated and 

the results are listed in Table 3.2. For Type-I and Type-II LGPs, their polarization efficiency is 

increased to 69% and 71.2%, respectively, when introducing polarization recycling. This 

polarization efficiency is still inferior to our Type-III LGP without polarization recycling. After 

polarization recycling, the polarization efficiency of Type-III LGP can reach 82.2%. The recovery 

ratio of unused light is not very high because there is less TM wave which can be recycled and the 

type-III LGP tends to maintain polarization. By integrating LGP with an efficient broadband 

polarization convertor [74], the polarization efficiency can be further improved. 

As a summary of this section, we proposed a new polarization-preserving LGP to boost the 

optical efficiency of LCDs. This LGP exhibits several attractive features: 1) High polarization 

efficiency (77.2%), which is 1.54X optical gain compared to unpolarized light. 2) The on-axis 

luminance is 2.4X higher than that of a conventional LGP when a linearly polarized light is used. 

3) The light output is mainly on axis, so no extra BEF is required. 4) It does not require complex 

nano-grating or anisotropic material, and is therefore more favorable for mass production. All these 

characteristics make the proposed LGP attractive for low power LCD applications. 
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3.3 Simultaneous Color& Polarization Recycling in LCD Backlight System 

Besides polarizers, Color filters(CFs) are another optical element that limit the LCD light 

efficiency. To reduce the light loss within CFs, one can employ field-sequential-color (FSC) 

technique. However, FSC demands a fast LC response time (<1ms) in order to suppress color 

breakup, which is still challenging for nematic LCDs [75]. Angular color separation backlight has 

been proposed to reduce the light loss in CFs [76, 77]. However, this technique requires several 

optical elements (grating and microlens structures, etc.) and therefore the display device is bulky 

and complicated 

In this section, we propose a LCD backlight system with specifically designed polarizing color 

filters. These polarizing color filters only transmit the light with specific polarization and colors, 

while reflecting the rest. Thus, the backlight system can simultaneously recycle the light according 

to its color and polarization. Compared to conventional backlight, our new backlight system 

exhibits a tripled optical efficiency.  

Figure 3.10(a) depicts the device structure of the proposed backlight system. Here, the 

directional light guide plate (LGP) is a key element. It steers the edge-lit LED light toward LCD 

panel by its bottom microstructure, and then collimates the light by the microlens on its top surface. 

We simulated the LCD system with LightTools software. As Fig. 3.10(b) shows, the light incident 

on the LC cell is highly collimated, with angular full width half maximum FHWM±10˚. This 

highly collimated input light enables a high contrast ratio LCD without the need of complicated 

compensation films or multi-domain structure [38, 78]. 
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Figure 3.10:   (a) Device structure of the proposed backlight system. (b) Simulated angular distribution of the 

backlight before it enters the LCD panel. (c) Angular distribution after the light is diffused by the top diffuser. 

    After the light exits from the LCD panel, it is spread out by the top diffuser and the angular 

distribution is shown in Fig. 3.10(c). The narrow incident light is diffused to a wide cone with 

FHWM±43˚. Therefore, the display device can still maintain wide view and high contrast ratio. 

The black matrix on top of the diffusers covers ~80% area. It significantly reduces the surface 

reflection of the ambient light, and greatly enhances the ambient contrast ratio.  

Another key optical element shown in Fig. 3.10(a) is the polarizing color filter; it plays dual 

roles as a polarizer and a non-absorptive color filter. Each polarizing color filter only transmits 

TM polarization with specific color, while reflecting the other TM polarized light outside the 

transmission band as well as all the TE polarized light. The reflected light is recycled within the 
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backlight system. In Fig. 3.10(a), we intentionally laminate one anisotropic A-plate on top of the 

bottom reflector to enhance the polarization conversion. The system optical efficiency is enhanced 

as the recycled TE wave is partially converted to TM. Moreover during light recycling, the TM 

light with a different color has probability to be transmitted from the appropriate polarizing color 

filters. As a result, the polarizing color filters redistribute the light output with an appropriate 

polarization and color, and significantly reduce the light loss due to polarization or color mismatch. 

 

Figure 3.11:   (a) Schematic of the proposed grating structure. (b) Simulated TM transmission spectrum for RGB 

grating CFs and the input light spectra (dashed lines). (c) TM reflection. (d) TE transmission spectrum. (e) TE 

reflection spectrum. 

Figure 3.11(a) shows the structure of proposed polarizing color filter; it is actually a 

subwavelength grating array. The flexible PMMA structure is first coated with a thin layer of 

magnesium fluoride (MgF2) with thickness h1= 40nm, and then covered by a compound grating of 
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Aluminum (Al) and MgF2. In Fig. 3.11(a), h2, Λ, and f represent grating thickness, grating period, 

and the duty cycle of Al, respectively. We designed the grating structure by rigorous coupled-wave 

analysis [79], and found the following parameters for different CFs: (h2= 100nm, Λ=150nm, f=0.75) 

for blue, (h2=120nm, Λ=190nm,  f=0.75) for green, and (h2=160nm, Λ=220nm,  f=0.75) for red. 

Figure 3.11(b) depicts the TM transmission spectra for blue, red, and green CFs. They indeed 

exhibit evident color filtering properties, with a peak transmittance >90% but relatively broad 

transmission band (FWHM110nm). Also included in Fig. 3.11(b) are the backlight emission 

spectra (black dashed lines). We choose the RGB LED or quantum dot enhanced white LED [10, 

32, 80] as light source. These light sources have a relatively narrow emission bandwidth, which is 

less affected by the CFs. We still keep the absorptive CFs after the polarizing CF to ensure good 

color purity.  The transmission spectra of absorptive CFs can be found in Ref. [32]; they match 

with those of polarizing CFs. The polarizing color filters redistribute the output light with different 

colors to match the transmission band of the absorptive CFs so that the optical loss in each CF is 

minimal. Light efficiency can be enhanced without sacrificing color performance. 

   Figure 3.11(c) shows the TM reflection spectra. By adding the reflectance and transmittance 

together, we find the grating structure has very little absorption loss (~3.3%) for the TM light. 

Most of TM polarized light is either transmitted or reflected for recycling. The TE reflection and 

transmission spectra are also shown in Figs. 3.11(d) and 3.11(e). The extinction ratio (the ratio 

between TE and TM transmittance) for RGB polarizing CFs is 2.2E5, 4.6E4, and 1.6E4, 

respectively, which is much larger than that of commercial sheet polarizers (~6E3). This high 

extinction ratio significantly improves the display contrast ratio. 
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Figure. 3.12:  (a) TM transmission for light incident at 0  ̊and 20˚. (b,c,d) The transmission spectra versus incident 

angle for blue, green and red polarizing CFs, respectively. 

We also simulated the angular sensitivity of our proposed polarizing color filters. Figure 3.12(a) 

compares the transmission spectra for light incident at 0˚ and 20˚. The difference is relatively small. 

As our directional backlight provides a fairly collimated input light with FWHM±10˚, the light 

within such a narrow cone would experience nearly the same transmittance. Figures 3.12(b), 3.12(c) 

and 3.12(d) further show the transmission spectra vs. incident angle for the blue, green and red 

polarizing color filters. Our polarizing color filters manifest a large angular tolerance. The peak 

transmission wavelength and FHWM keep almost the same as the incident angle increases from 

0˚ and 50˚. This angular independence is an important advantage of our proposed design.  

In Table 3.3, we compare the performance of our polarizing CFs with several previous 

publications. Typical one dimensional grating has very low angular tolerance (<10˚) [81, 82]. It is 

fairly difficult to collimate backlight within such small angle cones. Two dimensional plasmonic 
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grating with cross-holes[83] and one dimensional metal-dielectric-metal (MDM) stack[84] exhibit 

wide-angle color filtering properties, but they have low transmission, and also difficult to nano-

patterning in large space. Some reflective CFs with angular independency are also proposed [85], 

but they are based on omni-directional light absorbing and cannot be utilized in transmission 

application.    

Table 3.3. Comparison of our design CF performance and with previous publications 

  Structure FHWM  (nm) Peak T (%)  Angular tolerance(̊ ) 

 Ref. [82]  1D grating  ~110  70~80  <10 

Ref.  [81]  1D grating  ~100  70~80  <10 

Ref. [83]   2D grating  ~60  40~60  30~40 

Ref.  [84]  MDM stack  ~150  25  60~70 

Present design   1D grating ~110 90 ~50 

  

Compared to previous designs, our polarizing CFs possess several desirable properties: high 

transmittance (>90%), low absorption loss (~3.3%), high extinction ratio (>1E4), and large angular 

tolerance (up to ±50˚). It works well not only for directional backlight, but also for conventional 

Lambertian-type backlight systems. Moreover, our polarizing color filter is a typical 1D grating, 

it can be fabricated by the nanotechnology which has been widely used for fabricating WGPs, e.g. 

interference lithography, nano-imprinting, and roll-to-roll process [10, 18]. It is also possible to 

nano-patterning the polarizing color filters in a large scale with low cost. 

To understand the origin of the observed exceptional transmission performance, we calculated 

the field distribution inside the blue (=450nm) polarizing color filter for the TE and TM waves. 

Figure 3.13 shows the simulated results. According to Fig. 3.13(a), the incident TE wave from the 

air side cannot penetrate into the grating structure, and is reflected. In Fig. 3.13(b), the TM wave 
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has strong Fabry-Perot cavity resonance inside the MgF2 slits. Most of the field is confined within 

the dielectric slits; only a tiny portion is absorbed by the metal. The incident light can transmit 

through grating via leaking through the slits. The periodic grating structure introduces Bragg 

reflection and has transmitting filtering properties. However, the Bragg reflection is weak since 

the grating depth (100~200 nm) is much smaller than the wavelength. As a result, its transmission 

spectrum is less dependent on the incident angle.  

 

Figure. 3.13:  Simulated field distribution of =450nm at normal incidence in the blue polarizing CF: (a) TE wave 

(b) TM wave. 

Another important concern for LCD backlight is whether the light recycling would deteriorate 

the color collimation behavior. Although our employed diffractive optical element is sub-

wavelength structure, it only propagates the zeroth-order diffracted wave. Thus, the light 

propagation behavior can still be modelled by ray optics. We tested the angular distribution of the 

directional LGP after several light propagating cycles, and found that the light is still well 

collimated. The loss during each recycle is less than 10%. This is because the directional LGP does 

not contain any absorptive or diffusive microstructure. 
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Next, we need to analyze the optical gain in order to optimize device structure. We consider 

an unpolarized light consisting of 50% TE and 50% TM waves. Without losing generality, let us 

use blue light as an example. We also assume blue, green and red polarizing CFs has transmittance 

(T1,T2,T3) and reflectance (R1,R2,R3), respectively, for TM wave, and has zero transmittance and 

unity reflectance for TE wave. 

   When the blue light is first incident on the polarizing filter array, it has 1/3 probability hitting 

the blue CF (the matched one) and gets transmitted. It also has 2/3 probability to hit either green 

or red filter (the unmatched ones). Although some blue light may transmit through the unmatched 

polarizing CF, they will be absorbed in the subsequent absorptive CFs and do not contribute to the 

display brightness. As a result, only the TM wave hitting blue CF can transmit and the 

transmittance is (1/6)T1. On the other hand, the reflection upon the first hit consists of all the TE 

reflection and the TM reflection from the unmatched filters, and can be written as 1/2+(R2+R3)/6. 

The reflected light is recycled within the backlight system. We assume during each light 

recycling the light intensity would reduce by a factor of T. When the light is incident on the 

polarizing CF the second time, its intensity is reduced to [1/2+(R2+R3)/6]*T. We also assume the 

light becomes unpolarized after recycling. This is not a perfect assumption but it allows us to get 

a simple analytical solution for quick estimation. Similar to previous analysis, the ratio of light 

that can transmit at the second time is [1/2+(R2+R3)/6]T*T1/6, and the ratio of light reflection is 

[T/2+(R2+R3)/6]2T. This process iterates, and we can sum up each transmission term to obtain the 

total output intensity: 

1
2 2
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2 3
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On the other hand, without applying polarizing CF the backlight has 1/6 probability to pass 

through the absorptive CFs and polarizers. Therefore after introducing the polarization and color 

recycling, we can obtain the optical gain factor G as: 

                                                                                 1

2 3

1 1
1 ( ( ))

2 6

T
G

R R T



  

  (3.2) 

According to Eqn.3.2, in order to obtain a high gain factor each polarizing CF should have 

high transmittance for the matched color, high reflectance for the unmatched colors, and the 

backlight system should have low loss during each recycle. Let us assume T=0.9 and use the 

reflection/transmission spectra shown in Fig. 3.11 in Eqn 3.2 to calculate the gain spectra for 

polarizing CFs. Results are shown in Fig. 3.14(a). Each polarizing CF can provide a large optical 

gain (250-300%) at its peak transmission wavelength. We also calculated the light output spectrum 

with and without recycling, and using the absorptive CF spectrum shown in Ref. [32]. Results are 

shown in Fig. 3.14(b). It is evident that the light intensity of all three colors is almost tripled. The 

output spectrum still maintains excellent color purity after recycling; its color gamut is ~132% 

AdobeRGB in CIE 1976 color space. 

 

Figure. 3.14:  (a) Simulated optical gain for RGB grating CFs. (b) Backlight output intensity with and without 

recycling. 
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   In summary, we propose a LCD backlight system that can simultaneously recycle light 

according to its color and polarization. To the best of our knowledge, this is the first time that such 

concept is proposed. A novel polarizing CF is also designed and it exhibits several advantages: 

high transmittance (>90%), low absorption loss (~3.3%), high extinction ratio (>10,000:1) and 

large angular tolerance (up to ±50˚). Combined with directional backlight design, the proposed 

LCD system can achieve ~3× system efficiency enhancement, as well as high ambient contrast 

ratio and wide view. Our approach opens a new door for ultra-low power LCDs without using 

complicated field sequential color technique 
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CHAPTER FOUR: LOW POWER AND COLOR VIVID REFLECTIVE 

DISPLAY WITH LOW VISCOUSITY LIQUID CRYSTAL 

In Chap.2 and Chap.3 we focus on transmissive LCD with low power consumption and vivid 

color. Besides transmissive LCD, Reflective LCD display, such as field sequential color liquid-

crystal-on-silicon (FSC-LCOS) has been widely used in wearable applications, including near-eye 

display (Google Glass) and smart watch [86-90]. By eliminating the spatial color filters, both 

optical efficiency and resolution density can be tripled. Next we would discuss a low power and 

vivid color FSC-LCOS with low viscosity LC materials. 

A competitive wearable display should offer high ambient contrast ratio (ACR), low power 

consumption, compact size and light weight, and wide operation temperature range.  For outdoor 

applications, the ambient temperature could vary from 40oC to -20oC, depending on the geographic 

location and weather condition. Low temperature operation of FSC LCOS imposes a big challenge 

because the LC response time increases exponentially as the temperature decreases. With a 

sluggish LC decay time, the color in the following frame could leak into the present frame and 

deteriorate the color purity [91, 92]. As reported in Ref.[92], a FSC LCOS shows vivid colors at 

20oC, but at 0oC its color gamut shrinks dramatically as if it were a quasi-monochromatic display. 

Moreover, slow LC response time introduces severe color breakup artifact, which also degrades 

the image quality [40, 46]. A simple solution the LCOS developer takes is to implement a heater 

to raise the operation temperature, but this approach greatly increases the power consumption [92]. 

There is urgent need to develop an effective approach to overcome the color mixing issue for next 

generation wearable displays. 
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     In this chapter, we report a simple approach to mitigate the color mixing and color breakup 

issues by developing an ultra-low viscosity LC mixture. Compared to a commercial LC mixture 

JC-1041, our mixtures show 4X faster response time at 20oC, and 8X faster at -20oC. It overcomes 

the color mixing issue without using a heating device. Meanwhile, it enables higher frame rate to 

suppress color breakup. These low-viscosity LCs help to retain high image quality for wearable 

displays even at low temperatures.  

 

Figure. 4.1. (a) Schematic of field-sequential-color LCOS module for near-eye display. (b) Origin of color mixing. 

(c) Shrinkage of color gamut using a commercial LC material (JC1041) at 180Hz frame rate and 90% LED duty 

ratio. 

     Figure 4.1(a) depicts the device configuration of a typical LCOS for near-eye display, such as 

Google Glass. The R/G/B LEDs are turned-on and -off sequentially to illuminate the LCOS. The 

light guide plate directs the LED light toward LCOS with uniform spatial distribution. The PBS 

transmits p-wave while reflecting s-wave. When the light is incident on the LCOS, its polarization 

state is modulated by the LC layer. Upon reflection from the bottom aluminum reflector, the light 

is split by the PBS again; s-wave is delivered to projection optics to display image. Grayscales can 

be easily controlled by the applied voltage. 
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Figure 4.1(b) illustrates the occurrence of color mixing. During the transition between color 

sub-frames (e.g. from red to green), the red field would extend to the green field if the LC response 

time is too slow. This green light leakage deteriorates the color purity of red, and accordingly 

reduces the color gamut. Figure 4.1(c) shows the color gamut shrinkage using a commercial LC 

material (JNC JC1041). As the temperature decreases from 20oC, color gamut shrinks by 21% at 

0oC and 62% at -10oC. At -20oC, the [decay time, rise time] of JC1041 is [3.1ms, 26.4ms], which 

is significantly longer than a single color frame (5.6ms for 180Hz). Thus, the LCOS cannot be 

efficiently operated at 180Hz and -20oC. Overall, conventional FSC LCOS suffers from severe 

color mixing at low temperatures because of the sluggish LC response time. 

The LC mode also influences the color-mixing effect. As Fig. 4.1(b) depicts, LC decay time is 

more critical than rise time in determining the color mixing. A normally-white LCOS mode, such 

as mixed-mode twisted nematic (MTN)  [93] or film-compensated homogenous cell, has faster 

decay time because of the applied voltage. On the contrary, the normally-black mode, such as 

vertical alignment (VA), has a much slower decay process because it is governed by the restoring 

elastic torque. Thus, normally-white mode has less color mixing problem and is preferred for FSC 

LCOS. In this paper, we focus on three normally-white modes: MTN-90o, film-compensated 

MTN-63.6o, and film-compensated homogeneous cells.  

The response time of an LCOS is given as ~1d
2/Kπ2, where d is the cell gap, 1 the rotational 

viscosity, and K the corresponding elastic constant depending on the LC alignment. As the 

temperature decreases, 1 increases exponentially as 1~exp(E/kBT), where E is the activation 

energy and kB the Boltzmann constant [94] . To achieve fast response time at low temperatures, 

three approaches can be considered: thin cell gap d, small 1/K, and low activation energy E. While 
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thin cell gap is helpful for reducing response time, a minimal dn value should be satisfied in order 

to achieve high reflectance. That means, a smaller d should be compensated by a larger n. Some 

high n LC materials have been reported to improve the response time of a VA LCOS [95]. A big 

challenge of thin cell gap approach is its manufacturing yield. Blue phase liquid crystal (BPLC) 

has also been explored because of its submillisecond response time and insensitivity to cell gap 

[96, 97]. However, the Kerr constant and response time of BPLC are sensitive to the temperature, 

especially in the low temperature region [94].  

Instead of seeking high birefringence materials, we investigated LC mixtures with ultra-low 

viscosity and low activation energy[98]. Especially, low activation energy significantly suppresses 

the rising rate of viscosity as the temperature decreases. Therefore, low viscosity and small 

activation energy are effective for reducing the response time at low temperatures. 

Table 4. 1. Chemical structures and compositions of UCF-L2; R and R’ represent alkyl chains. 

N

No. 
Compound Structure wt% 

1

1 

 

15% 

2

2 

 

10% 

3

3  
53% 

4

4 
 

22% 
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To formulate an ultra-low viscosity LC mixture, we prepared some high n and large  

compounds whose  value is as large as 25. Table 4.1 lists the chemical structures and 

compositions of our mixture, designated as UCF-L2. Compounds 1 and 2 have high n and large 

 , but their viscosity is relatively high [99, 100]. To lower the viscosity, we added 53% diluters 

whose structure are also included in Table 4.1 (#3). For practical applications, an LC mixture 

should exhibit a wide nematic range and high clearing point, thus we added 22% terphenyl 

compounds (#4) to widen the nematic range.  

 In addition to UCF-L2, we also evaluate the LCOS performance using another ultra-low 

viscosity LC mixture (DIC-LC2) reported in Ref. [18]. Table 4.2 lists the physical properties of 

JC-1041, UCF-L2, and DIC-LC2 at three temperatures: 20oC, 0oC, and -20oC. Among these three 

mixtures, JC-1041 has the highest Δԑ , n, and clearing point, but its 1/K11 is also the largest. In 

addition, JC-1041 has a relatively high activation energy (E~370 meV), which implies that its 

1/K11 increases substantially as the temperature decreases. In contrast, UCF-L2 and DIC-LC2 

have smaller dielectric anisotropy and birefringence, but their 1/K11 and activation energy are also 

much lower. From Table 4.2, the 1/K11 value of DIC-LC2 is ~6X smaller than that of JC-1041 at 

20oC and ~12X at -20oC. UCF-L2 and DIC-LC2 have a lower clearing temperature than JC-1041, 

but they are still sufficient for most outdoor applications. Among the two low viscosity materials 

studied, UCF-L2 has a slightly higher 1/K11 than DIC-LC2, but its Δԑ is also larger so that its 

operation voltage is lower. 
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Table 4.2. Physical properties of three LC mixtures studied at =550 nm and f = 1 kHz. 

 20°C 0°C -20°C E 

(meV) 

Tc 

(°C) 

 Δ Δn 1/K11 Δ Δn 1/K11 Δ Δn 1/K11 

JC-1041 6.1 0.145 15.6 6.6 0.151 28.6 7.0 0.157 110 370 91 

UCF-L2 3.1 0.122 3.9 3.7 0.127 7.3 4.2 0.133 14.5 227 80 

DIC-LC2 2.0 0.121 2.6 2.5 0.128 4.9 3.1 0.135 9.0 180 75 

 

To compare the performance of different LC materials, we first simulated the LCOS with 

normally-white 90o mixed-mode twisted nematic (MTN-90o) mode [93]. In such a MTN cell, the 

LC directors are twisted by 90o from top to bottom substrates. To maximize reflectance, the angle 

between front LC directors and the PBS polarization axis is set at 20o. Thus, MTN-90o modulates 

the light reflectance by a mixed effect between polarization rotation and phase retardation. MTN-

90o is popular in LCOS display due to its high contrast ratio, low operation voltage, small fringe 

field effect, and no need for a compensation film. For fair comparison, we fixed dΔn=220nm for 

all the three LC materials listed in Table 4.2. For UCF-L2 and DIC-LC2, the corresponding cell 

gap is d~1.85µm. This cell gap is quite typical for LCOS industry and is easy for mass production.  

 

Figure. 4.2. (a) Simulated VR curves (=550nm) of MTN-90o cells using three LC mixtures. (b) and (c) Dynamic 

response curves of JC-1041 and DIC-LC2 at 20oC and -20oC, respectively.  
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Figure 4.2(a) depicts the voltage-dependent reflectance (VR) curves at =550 nm for the three 

LC mixtures studied. They have the same reflectance at V=0 because their dn value is the same, 

but the dark state voltage is different because their  values are different. There is a clear trade-

off between 1 (response time) and  (operating voltage). For example, DIC-LC2 has the lowest 

viscosity, but its dielectric anisotropy is the smallest, meaning it needs a higher voltage (~5V) to 

achieve good dark state. Currently, most LCOS electronic drivers can supply more than 5V, so the 

operating voltage for DIC-LC2 is still acceptable. 

Figures 4.2(b) and 4.2(c) compare the dynamic response of JC-1041 (black solid curve) and 

DIC-LC2 (blue dashed curve) at 20oC and -20oC, respectively. The dynamic response of UCF-L2 

is very close to that of DIC-LC2 and therefore not shown in the figure. It is evident that DIC-LC2 

has much faster response time than JC-1041, and this advantage is more pronounced in the low 

temperature region due to its low activation energy.  

Figures 4.3(a) and 4.3(b) compare the decay time and rise time of the three LC mixtures at 

20oC, 0oC, and -20oC. Among these three LC materials, DIC-LC2 has the fastest decay/rise time. 

At 20oC, its total response time (rise + decay) is 1.52ms, which is 4X faster than that of JC-1041. 

Moreover, the response time of DIC-LC2 only increases slightly at low temperatures due to its 

small activation energy. Our UCF-L2 also exhibits similar advantages. By contrast, the response 

time of JC-1041 increases drastically. At -20oC, the total response time of DIC-LC2 is ~3.55ms, 

which is 8X faster than that of JC-1041. 
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Figure. 4.3. Temperature dependent (a) decay time and (b) rise time of the three LC mixtures studied. 

Simulated color gamut for 180Hz frame rate with (c) 100% LED duty ratio and (d) 90% LED duty ratio, 

respectively. 

This dramatic response time improvement is helpful to suppress color mixing and color 

breakup artifacts. We also simulated the color gamut shrinkage by integrating the LC response 

curve in the time domain[91]. As Fig. 4.1(b) illustrates, the light emission at the red color frame 

would mix with certain green light due to the slow LC response. Accordingly, the effective 

emission spectrum for the red color frame R’ (λ) can be given as:   
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where R(λ) and G(λ) represent the emission intensity spectra of the red and green LEDs, LC(t)  

stands for the dynamic LC response curve, T is the period of each color frame and m is the LED 

turn-on duty, t1 and t2 represent the start time of red and green color frame (t2=t1+T).      

After obtaining R’(λ) we can calculate the color coordinates of the red frame. Eq. (4.1) can be 

easily adopted to calculate the green and blue color primaries. Thus, we obtain the color gamut 

coverage under the color mixing effect. During calculation the color gamut is defined in CIE 1976 

color space and normalized to the original LED color gamut (without color mixing effect). The 

emission spectrum of LED is taken from Ref. [32]. 

We first calculate the case for 180Hz frame rate (T =5.55ms) and 100% LED turn-on duty 

(m=1). Figure 4.3(c) shows the color gamut at different temperatures. For JC-1041, the color gamut 

is ~80% at 20oC, but quickly shrinks to 17% at 0oC and 0% at -20oC. On the other hand, DIC-LC2 

shows 85% color gamut at 20oC and still maintains 73% color gamut at -20oC. Therefore, its LCOS 

image quality can still be well preserved even at low temperatures. 

Reducing the LED turn-on duty m is another way to suppress color mixing as it increases the 

temporal separation of each color field. Figure 4.3(d) plots the color gamut ratio for 180Hz frame 

rate and 90% LED duty. The temporal separation between the color frames is 0.56ms. At 20oC, 

the decay time of all three LC material is less than 0.56ms, so they can all obtain ~100% color 

gamut. However, as the temperature decreases the JC1041 color gamut starts to decline 

significantly. In comparison, DIC-LC2 can still maintain 97% color gamut coverage at -20oC. 

Usually LED color gamut can cover >110% AdobeRGB color gamut, therefore the FSC LCOS 

can deliver 110%*97%=106.7% AdobeRGB color gamut even at such a low temperature.  
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Maintaining wide color gamut is critical for wearable display. When using a wearable display 

under sunlight, the reflected ambient light is also seen as noise by the observer [101]. This also 

introduces color gamut shrinkage and washes out the image. Our low viscosity LC material can 

preserve vivid color and crisp image even at -20oC ambient temperature. This feature can 

compensate for the color gamut shrinkage and the displayed image is more discernable under 

sunlight. As a result, our FSC LCOS has superior ambient contrast ratio. 

Color breakup is an annoying artifact that degrades the image quality in FSC displays. It 

manifests itself in the appearance of multiple color images of stationary objects during saccadic 

eye motion, or along the edges of moving objects when tracking the objects with the eye. Figure 

4.4(a) shows the simulated color breakup when displaying a typical white color. At low frame rate 

(180Hz), there is discernable rainbow-like artifact at the white object’s boundary. After increasing 

the frame rate to 360Hz, the color breakup artifact can be significantly mitigated. 

  

Figure. 4.4. (a) Simulated color breakup at different frame rates. The white object size is 30 pixels by 150 pixels, and 

the object moves in a 10 pixels/frame at 180Hz driving. The simulation method is reported in Refs. [37]. (b) Color 

gamut coverage of MTN-90o at different temperatures and frame rates. LC material is DIC-LC2 and LED duty ratio 

is 90%.  
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Although high frame rate is effective to suppress color breakup, it reduces the temporal 

separation between each color frame and accordingly introduces more color mixing effect. For 

360Hz frame rate, the period of each frame is reduced to T=2.78ms. JC-1041 is too sluggish to 

support such a high frame rate, but our ultra-low viscosity LC can overcome this challenge.  Figure 

4.4(b) shows the color gamut ratio of our DIC-LC2 with increased frame rate. Even at 360Hz, 

DIC-LC2 can still provide 94% color gamut at 20oC and ~70% color gamut at -20oC. Although 

high frame rate operation slightly shrinks the color gamut (Fig. 4.4(b)), it helps suppress color 

breakup (Fig. 4.4(a)) and preserve good image quality. 

Finally, we investigated the influence of different LC modes. We studied three popular 

normally-white LC modes: MTN-90o, film-compensated MTN-63.6o, and film-compensated 

homogenous cell. In MTN-63.6o, the LC is twisted by 63.6o from top surface to bottom substrate. 

The angle between front top LC director and the PBS transmission axis is 4o. In order to obtain 

good dark state, a uniaxial compensation film is laminated on the top of LC cell with dΔn=15nm 

and orientated 136o with respect to the PBS transmission axis. In homogenous cell, the LC 

orientation on the top and bottom sufrace are in anti-parallel and 45o with respect to the PBS 

transmission axis. It also requires a uniaxial compensation film with dΔn=15nm and oriented at 

135o to the PBS transmission axis. Detailed operation principles of these three LCOS modes have 

been described in Ref. [86]. Due to different twist angles, the dΔn value of these three modes is 

220 nm, 200 nm, and 185 nm, respectively.  

Figure 4.5(a) depicts the VR curves of these three LC modes. They have similar on-state 

voltage (~5V). Film-compensated MTN-63.6o and homogenous cells also show slightly higher 

reflectance at V=0. Figure 4.5(b) compares their color gamut at different frame rates. Film-
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compensated homogenous cell has the fastest response time due to its thinnest cell gap. As a result, 

it can maintain 90% color gamut even at 360Hz and -20oC. More strickingly, the decay time and 

rise time of film-compensated homogenous cell is [0.33ms, 0.61ms] at 20oC and [0.53ms, 1.43ms] 

at -20oC. This response time is even faster than that of blue phase projection displays [96], while 

demanding a much lower voltage. A drawback of MTN-63.6o and homogenous cells is that they 

require a phase compensation film in order to obtain good dark state. As the temperature varies, 

the dark state voltage would drift slightly because the birefringence of LC changes more quickly 

than that of compensation film. Despite of this problem, they are still attractive especially when 

dynamic response is the major concern.    

  
Figure. 4.5. (a) Voltage dependent reflectance (=550nm) of three specified LC modes, and (b) color gamut 

coverage at -20oC. The LED turn-on duty ratio is 90%.  

As a summary of this section, we have explored two LC mixtures with ultra-low rotational 

viscosity. These new LCs exhibit several attractive features for wearable displays based on field 

sequential color LCOS: (1) Submillisecond response time at room temperature while keeping vivid 

colors at -20oC. (2) Low power consumption by avoiding the need of a heating device. (3) High 

brightness and excellent ambient contrast ratio. (4) Suppressed color breakup with higher frame 
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rate and fast LC response time. (5) Standard LCOS cell gap, which is easy for mass production. 

This fast-response LCOS is promising for next generation wearable displays. 

 

 

 

  



94 

 

CHAPTER FIVE: SUMMARY 

In this dissertation, we focus on enhancing the LCD color performance and reducing power 

consumption. These two features are important criteria of a good display and playing important 

role in the OLED vs. LCD competition.  

In Chapter 2, we first design the QD enhanced LCD for optimal color performance and display 

brightness. Using multi-objective optimization methods, we identify the advantage of QD 

backlight over conventional light sources, and also found the fundamental trade-off between light 

efficiency and color gamut. This finding provides an important design guideline for QD enhanced 

LCD. We then propose a hybrid four-primary LCD that synthesis color in both spatial and temporal 

domain. This hybrid approaches leads to several advantages: 1.5X increment in spatial resolution, 

2X brightness enhancement, slightly larger color gamut and mitigated LC response time 

requirement (~4ms).  Finally, we extend the QD applications to liquid displays and color 

temperature tunable lighting devices. 

In Chapter 3, we proposed two methods to enhance LCD light efficiency.  We first introduced 

a polarization preserving backlight system. It can be used with linear polarized light source and 

manifest the following advantage: high polarization efficiency (~77.8%), 2.4X on-axis luminance 

enhancement, no need for extra optics films.  Then we invented a LCD backlight system that can 

simultaneously recycle light according to its color and polarization. A novel polarizing CF is also 

designed and it exhibits several advantages: high transmittance (>90%), low absorption loss 

(~3.3%), high extinction ratio (>10,000:1) and large angular tolerance (up to ±50˚). Combined 

with directional backlight design, the proposed LCD system can achieve ~3× system efficiency 
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enhancement, as well as high ambient contrast ratio and wide view. This approach opens a new 

door for ultra-low power LCDs without using complicated field sequential color technique.  

In Chapter 4, we demonstrate two ultra-low viscosity liquid crystal mixtures to enable field-

sequential-color wearable displays for low temperature operation, while keeping a wide color 

gamut and low power consumption. Our mixtures offer ~4X faster response time than a 

commercial material at 20oC and ~8X faster at 20oC. This leads to several attractive advantages:  

submillisecond response time at room temperature and vivid color even at 20oC , high brightness 

and excellent ambient contrast ratio, and suppressed color breakup. 

   In conclusion, we have propose several approaches to enhance the LCD color performance 

and reduce power consumption. These works give LCD a competitive edge over OLEDs. We hope 

our work could make an important impact on the development of next-generation LCDs.   
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