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ABSTRACT 
 
 

This thesis is concerned with a brief summary of the theory of Padé approximants and one of its 

applications to Finance. Proofs of most of the theorems are omitted and many developments 

could not be mentioned due to the vastness of the field of Padé approximations. We provide 

reference to research papers and books that contain exhaustive treatment of the subject. This 

thesis is mainly divided into two parts. In the first part we derive a general expression of the 

Padé approximants and some of the results that will be related to the work on the second part of 

the thesis. The Aitken’s method for quick convergence of series is highlighted as Padé[ ]/1L . We 

explore the criteria for convergence of a series approximated by Padé approximants and obtain 

its relationship to numerical analysis with the help of the Crank-Nicholson method. The second 

part shows how Padé approximants can be a smooth method to model the term structure of 

interest rates using stochastic processes and the no arbitrage argument. Padé approximants have 

been considered by physicists to be appropriate for approximating large classes of functions. 

This fact is used here to compare Padé approximants with very low indices and two parameters 

to interest rates variations provided by the Federal Reserve System in the United States. 
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CHAPTER 1:  INTRODUCTION 
 

 
After the proof of the famous Weirstrass theorem on the approximation of continuous functions 

defined over a compact set by polynomials, considerable research on existence, uniqueness of 

best approximation by polynomials and goodness of their approximation were considered. 

Several operators were also defined to approximate a class of functions by such operators. The 

most notable of these results being Korovkin’s results on approximation by positive linear 

operators (see [13]). Results on saturation order and saturation class of functions were also 

obtained. Most of this type of research was motivated by polynomials, because polynomials have 

the pleasant property of depending linearly on their coefficients. After that mathematicians were 

interested to study approximation out of a useful family of functions, the members of which do 

not depend linearly on their parameters. These are the rational functions, that is, functions which 

are ratio of two polynomials. Existence, characteristics and uniqueness of Padé approximants 

have been studied in detail (see [13], [29]). Our aim is to consider the Taylor series analogue of 

rational functions called Padé approximations (see [13], page 173- 179, [1]). 

This chapter is divided into two main sections. A short historical mention on Padé approximants 

is introduced at the outset. Then the theory of Padé approximants is outlined starting with its 

basic definition. Then we mention its relationship to numerical analysis including Crank-

Nicholson Method. 
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1.1 History 
 
 
Padé approximations originated from the study of continued fractions dating back to Euclide 

around 300 BC. Lagrange in 1776 thought about the idea and Henri Eugène Padé (1863-1953), 

French mathematician presented a systematic study. 

 In fact, it was Charles Hermite who gave his student Henri Eugène Padé the approximant to 

study in the 1890’s. As a result of that, in 1892, Henri Eugène Padé published an article 

concerning the approximate representation of a function by rational fractions in the Scientific 

Transactions of the Ecole Normale Superieure in Paris. He retired in 1834 and in 1908 became 

the youngest rector appointed in France. After a long and deserving career in academics, he died 

at the age of 89. 

Three-quarters of a century later, the advent of arithmetical computers led scientists to consider 

various methods of representing functions, especially rapidly converging functions.  

1.2   Definition of Padé approximants 
                                                                               
Given a power series  

                                                                
0

( ) i
i

i
f z c z

∞

=

=∑                                                              (1.1) 

where ic = 0, 1, 2… the Padé approximation to f(z) is a rational function                                         

                                                         [ ] 0

0

/

L
k

k
k
M

k
k

k

a z
L M

b z

=

=

=
∑

∑
                                                             (1.2) 

which has a Maclaurin series expansion that agrees with (1.1) as many terms as possible. There 
are 1+L  independent coefficients in the numerator and M independent coefficients in the 
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denominator, making 1++ ML  unknown coefficients in all since we took 0b =1.We use the 
notation: 

                                                             i

i
i zc∑

∞

=0
= 
∑

∑

=

=
M

k

k
k

L

k

k
k

zb

za

0

0 + )( 1++MLzO                                     (1.3) 

By cross-multiplying, we find that  

                                            )())(( 1

000

++

=

∞

==

+=∑∑∑ MLk
L

k
k

i

i
i

k
M

k
k zOzazczb                                        (1.4) 

Equating the coefficients of ,,...,1, Mkz kL =+ we find 

                                          

1 1 2 0 1

2 1 3 0 2

1 1 0

... 0;
... 0;

... 0

M L M M L M L

M L M M L M L

M L M L L M

b c b c b c
b c b c b c

b c b c b c

− + − − + +

− + − − + +
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+ + + =⎧
⎪ + + + =⎪
⎨
⎪
⎪ + + + =⎩

                                         (1.5) 

If j < 0, we define 0=jc for consistency. Since 0b = 1, equations (1.5) become a set of M linear 

equations for the M unknown coefficients of the denominator, which in the matrix notation are 

given by: 
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 .                    (1.6) 

From (1.6) the kb ’s, ,,...2,1 Mk =  may be found if the matrix is nonsingular. The numerator 

coefficients ia follow from (1.4) by equating the coefficients of 1, .,...,, 2 Lzzz We get,  
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0 0

1 1 1 0

2 2 1 1 2 0

min( , )

0

,
,

,

L M

L L i L i
i

a c
a c b c
a c b c b c

a c b c −
=

⎧
⎪ =⎪

= +⎪
⎪ = + +⎨
⎪
⎪
⎪

= +⎪
⎩

∑

                                                         (1.7) 

. 
Thus (1.6) and (1.7) normally determine the Padé numerator and denominator if they exist and 

then are called Padé equations. 

 The power series converges for all z in the disc Rz <  and diverges for z such that |z|> R , given 

that its circle of convergence is z R= . On the circle of convergence z R= , the power series 

may or may not converge (See Titchmarsh, Theory of Functions). If the power series converges 

to the same function for Rz <  with ∞<< R0 , then a sequence of Padé approximants may 

converge for ∈z D where D is a domain larger than Rz < . This indeed is relevant thanks to 

analytic continuation. It assures the existence of an analytic function which coincides with the 

power series on the disc Rz < and expands on a bigger set including the disc.  

 We use Cramer’s rule to calculate the unknowns 0 1, ,..., Mb b b from (1.6).and replace them in the 

denominator 
0

M
k

k
k

b z
=
∑ of (1.2). The final expression of 

0

M
k

k
k

b z
=
∑ can written as a determinant we 

call [ / ] ( )L MQ z . The expression of [ / ] ( )L MQ z  is given in the following page. 
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By multiplying the above matrix by i
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 By subtracting 1+Lz times the first row from the last, 2+Lz times the second row from the last, etc., 

up to MLz + times the row right above the last one, we get the last row of the determinant above as 

given in the last row of the determinant below: 
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From the theory above we get the theorems. 

Theorem 1.2.1 With the definitions given in (1.8) and (1.9), 

                                   )(]/[ zQ ML  )()( 1]/[

0

++
∞

=

=−∑ MLMLi

i
i zOzPzc                                             (1.10) 



 
 

6  

 

The proof of this theorem is available in [Encyclopedia of Mathematics, Padé approximant, 

Chapter 1, page 6], see ref. [1]. 

In 1846, Jacobi proved the following theorem 

Theorem 1.2.2  [Jacobi, 1846, see ref. [1]] With the definitions (1.8) and (1.9), the [L/M] Padé 

approximant of 
0

( ) i
i

i
f z c z

∞

=

=∑  is given by [ ]
)(
)(/ ]/[

]/[

zQ
zPML ML

ML

=  given that .0)0(]/[ ≠MLQ  

If we display the approximants on a table we get what is called the Padé table. 

 
             Table 1: Padé table 
 

L/M 0 1 2 … 

0 [0/0] [1/0] [2/0] … 
1 [0/1] [1/1] [2/1] … 
2 [0/2] [1/2] [2/2] … 
      

 

1.3 Convergence Theory 
 
 
For row sequences on the Padé table, de Montessus’s theorem proves convergence for functions 

meromorphic in a disk. The theorem establishes that the region of bad approximation becomes 

arbitrarily small. For [L/0] on the first row, they converge inside a circle of convergence whose 

radius may be 0, finite or infinite. 

The second row of [L/1] approximants has convergence governed by the following Beardon 

theorem. This theorem is stated without proof. For proof see [Encyclopedia of Mathematics, 

Padé approximant, page 277, ref. [1]]. 
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Theorem 1.3.1 Let ( )f z  be analytic in .Rz ≤ Then an infinite subsequence of [L/1] Padé 

approximants converges to ( )f z uniformly in .Rz ≤  

Theorem 1.3.2 [de Montessus, 1902, see ref. [1]]. Let ( )f z  be a function which is meromorphic 

in the disk   .Rz ≤ , with m  poles at distinct points mzzz ,...,, 21 with 

                                     Rzzz m <≤≤≤< ...0 21 . 

Let the pole of ( )f z at kz  have multiplicity ,kμ and let the total multiplicity be 

∑
=

=
m

k
k M

1
μ precisely. Then  

                                          ( ) lim[ / ]
L

f z L M
→∞

=    

uniformly on any compact subset of   },...,2,1,,,{ mkzzRzzD km =≠≤= . 

Bear in mind that the understanding of this theorem requires the Cauchy-Binet formula, (see ref 

[1]), which is useful to calculate the determinant of two matrices. The Cauchy-Binet formula is 

stated in [Encyclopedia of Mathematics, Padé approximant, chapter 6, page 281]. 

The proofs of the above theorems and related theory are given in [Encyclopedia of Mathematics, 

Padé approximant, pages 281-290]. 

1.4 Properties of the Padé approximant 
 
 
We now formulate some algebraic properties of Padé approximants related to power series 

without implying any convergence properties. 

Property 1.4.1 (Duality) Let 1( ) { ( )}g z f z −=  and (0) 0f ≠ , 

 then ( ){ } 1
[ / ] ( ) [ / ]g fL M z M L z

−
= . It is assumed that both the Padé approximants exist. 
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Property 1.4.2 (Homographic invariance under transformations). Let ( )
0

.i
i

i
f z c z

∞

=

=∑  We define a 

linear fractional transformation (which preserves the origin) with argument   ,
1

azw
bz

=
+

 and a 

function ( ) ( ).g w f z=  Then  

                                                 [ / ] ( ) [ / ] ( )g fM M w M M z=  

provided both the Padé approximants exist. 

Property 1.4.3 (Homographic invariance of value transformations) 

Let us have ( )
0

i
i

i
f z c z

∞

=

=∑  and we define ( )( ) .
( )

a bf zg z
c df z
+

=
+

 

if (0) 0,c df+ ≠  then 

                                        
[ / ] ( )

[ / ] ( )
[ / ] ( )

f
g

f

a b M M z
M M z

c d M M z
+

=
+

 

given that [ / ] ( )fM M z exists. 

Property 1.4.4 (Truncation theorem) Let ( )
0

i
i

i
f z c z

∞

=

=∑  and  

                  ( )
1

0 0
( ) .

k
i i k

i i
i i

g z g z f z c z z
∞ −

−

= =

⎧ ⎫
= = −⎨ ⎬

⎩ ⎭
∑ ∑  

Then [ ]
1

0
/ ( ) [ / ]

k
i k

f ig
i

L k M z L M c z z
−

−

=

⎧ ⎫
− = −⎨ ⎬

⎩ ⎭
∑  for  1,k ≥  1,L k M− ≥ −  given that the Padé 

approximants exist. 

Property 1.4.5 (Unitarity) [Gammel and McDonald] Let ( )
0

i
i

i
f z c z

∞

=

=∑  be unitary, meaning that  

( ) ( )* 1.f z f z =  
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If  [ / ] [ / ] ( )fM M M M z=  is a diagonal Padé approximant of ( ) ,f z then  

                                               *[ / ][ / ] 1,M M M M =  

where the asterisk indicates the complex conjugate. 

The proofs of each property mentioned above are quite straightforward and are given in 

Encyclopedia of Mathematics, Chapter 1, pages 32-37 in ref. [1]. 
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CHAPTER 2 : APPLICATION OF PADE APPROXIMATION TO 
NUMERICAL ANALYSIS 

 
 
Some numerical methods have been developed to find the Padé approximants among them are, 

ε - algorithm, −η algorithm, the Q.D. Algorithm and the Aitken’s 2Δ  method, just to list a few. 

We shall mention these briefly below. 

2.1 Aitken’s 2Δ  method as [L/1] Padé approximants 
 
 
We will describe only the Aitken’s 2Δ  method as [L/1] Padé approximants which was 

implemented in 1926. This method allows an acceleration of a sequence for convergence. 

Given a sequence of real or complex numbers, 

                                  S = { nS , n = 0, 1, 2 …}, 

such that SSn →  as n ∞→ , the problem is to find a new sequence which converges faster to S. 

We define    1 ,n n nS S S+Δ = −   2
2 1( ) 2 ,n n n n nS S S S S+ +Δ = Δ Δ = − −  

and the sequence { ,...}2,1,0, =nTn   where nnnn SSST 22 /)( ΔΔ−=                                 (2.1) 

converges to S. lim 0n

n
n

T S
S S→∞

−
=

−
 which translates to 0{ }n nT ≥  converges faster to S than S. The 

process is valid for certain type of convergent sequences like geometric convergent sequences. 

The connection with Padé approximation resides in defining the series of partial sums nS  which 

converges to S.  

For this purpose, let  
.

,...2,1,0,

00

11

Sc
nSSSc nnnn

=
=−=Δ= ++  
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Then we form the power series
0

( ) i
i

i
f z c z

∞

=

=∑  . 

From this, we evaluate (1)f S= , by determining  ,....2,1,0),1(]1/[ =LL f  This is found by using 

the second row of the Padé table (ref. table 1.1, page 5) then we find the limit as .∞→L  

From (1.8) and (1.10), we get 

             
11

/)1(]1/[ 1

0

1

0

1
]1/[]1/[ +

=

−

=

+

÷== ∑∑
LLL

i
i

L

i
i

LL
LL

f

cc
cc

cc
QPL  

                                                   
)()(

)()(

11

111

LLLL

LLLLLL

SSSS
SSSSSS

−−−
−−−

=
+−

−+−  

                                                   

1
2

2
1

1

11

2
11!1

)(
2

)()2(

−

−
−

−+

−−+−

Δ
Δ

−=

+−
−−+−

=

L

L
L

LLL

LLLLLL

S
SS

SSS
SSSSSS

 

Since ]1/[L  has the same expression as (2.1) we conclude that Aitken’s method is equivalent to 

]1/[L  Padé approximants. 

Theorem 1.2.1 [Henrici, 1964]. Let )(1 nn SfS =+  define a convergence real sequence with limit 

S, let f(x) be twice differentiable at S, and let .1)( ≠′ Sf Then, with the definition nT  given in 

(2.1), we have 

                                       ).)(( 2SSOST nn −=−  

2.1.1  Example (using Aitken’s method) 
 

 

Consider the series, 
0

1 1 5 1 1 9 ...,
2 3 6 4 5 5i

i
c

∞

=

= + − + + − +∑ where the 'ic s  are expressed as   
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                        3 3 3 2 3 1 2

1 1 4 1, ,
2 2 1 4 2m m m

mc c c
m m m m− − −

+
= = = −

+ +
  for  ,...3,2,1=m   

We define  ∑
=

=
n

i
in cS

0
and nT   given by (2.1). Then the following results hold: 

)(i  013 =−mS for ,...,3,2,1=m  

)(ii  0→nS  as ∞→n , 

)(iii  ,1,0 133 →→ −mm TT and 023 →−mT as .∞→m  

 We refer to [Encyclopedia of Mathematics, Padé approximant, Chapter 3, page 67] for more 

details on numerical methods and Padé approximants. 

Now we need to focus on a primordial point when working with sequences. Our attention is on 

convergence of sequences of Padé approximants to complex functions. 

 

2.2 Relation to numerical analysis: Crank-Nicholson and related methods for 
diffusion equations 

 
 
We are interested in finding a continuous function ( , )u x t  which satisfies the diffusion equation    

                                                       
2

2

1 0,u u
k t x
∂ ∂

− =
∂ ∂

    0,t >                                                     (5.1a) 

 
subject to the boundary condition :    
 
                                                       ( ,0) ( ),u x f x=   x−∞ < < ∞ .                                            (5.1b) 
 
Since the solution of this initial-pure problem is known to be 

                                              
21 ( )( , ) exp{ } ( )

44
xu x t f d

ktkt
ξ ξ ξ

π

∞

−∞

− −
= ∫  

it is then reduced to numerical integration for all times 0t > . 
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Sometimes, mathematicians encounter equations that are slightly different from (5.1a) with most 

of the time different boundary values. In those cases, when the Green’s-function method is 

inconclusive, other methods can be used to derive the solution.  

To that extent, let us study the partial differential equation for the neutron density ( , )u x t : 

                                                    21 ( , ) .u u s x t u
k t
∂

−∇ =
∂

                                                             (5.2) 

Considering heat transfer along a finite bar, with the ends maintained at given temperatures and 

with various heat sources; the temperatures ( , )u x t follows the equation 

                                                   
2

2

1 ( , ),u u s x t
k t x
∂ ∂

− =
∂ ∂

         0 1,x< <                                      (5.3a) 

with the boundary conditions at the ends of the bar given by 

                                                   0(0, ) ( ),
( ,1) ( ),L

u t T t
u L T t

=
=

                                                                       (5.3b) 

and initial temperature ).()0,( xfxu =  

To obtain numerical solutions of equations such as (5.2) and (5.3) and other types, we substitute 

derivatives with differences and initially discretize the x -variable in (5.3). 

We work with N  interior points in 0 x L< < , leading to the mesh  /( 1)x L NΔ = +  and the points 

                                     ,ix i x= Δ          1, 2,..., .i N=  

We define the approximation scheme (method of lines) by 

                                                   ( , ) ( )i ju x t U t→                 

                                                 
2

1 1
2 2

( ) 2 ( ) ( )
( )

i

i i i

x x

U t U t U tu
x x

+ −

=

− +∂
→

∂ Δ
 

We solve the ‘space-discretized’ equations 
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                                         1 1
2

( ) 2 ( ) ( )1 ( , )
( )

i i i i
i

U U t U t U t s x t
k t x

+ −∂ − +
− =

∂ Δ
                                        (5.4) 

for the functions 1 2( ), ( ),..., ( )NU t U t U t  given that 0 0( ) ( )U t T t=  and 1( ) ( )N LU t T t+ = .As a matter 

of fact, the system is convergent meaning that 0xΔ → as N →∞ . 

Equation (5.4) can be rewritten in the matrix form: 

                                          
1

( ) ( ),
N

i
ij j i

j

U A U t S t
t =

∂
= +

∂ ∑                          1, 2,...,i N= ,                   (5.5) 

where  2
1 0 1( ) ( , ) { ( ) ( )}/( ) .i i i iN NS t kS x t k U t U t xδ δ += + + Δ  

Equation (5.5) characterizes diffusion equations after space discretization and the method of 

solution is obtained by time discretization. We use a sequence of time points 0 1 2 30, , , ,...t t t t=   

and let 1k k kt t t+Δ = − . The approximation boils down to 

                                                

( )

( 1) ( )

( ) , 1, 2,...,

.
k

k
i k i

k k
i i i

t t k

U t U k

U U U
t t

+

=

→ =

∂ −
→

∂ Δ

 

Then (5.5) is replaced by the equation  

                                         ( 1) ( ) ( )

1
{ ( )},

N
k k k

i i k ij j i k
j

U U t A U S t+

=

= = Δ +∑                                             (5.6) 

By setting all boundary and source terms equal to zero, (5.6), is temporarily replaced by 

                                                ( 1) ( )( ) ,k kU I tA U+ = + Δ                                                                 (5.7) 

where ( ) ( ) ( ) ( )
1 2( , ,..., )k k k k

NU U U U=  is a vector of values at time kt . 

Under the same consideration (no source terms), (5.5) becomes 

                                                      
1

( ),
N

i
ij j

j

U A U t
t =

∂
=

∂ ∑                                                                (5.8) 
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where ijA  is a known constant matrix with negative eigenvalues. Equation (5.8) has the solution 

                                               ( 1) ( )exp( ) ,k kU A t U+ = Δ                                                                 (5.9) 

Our aim is to calculate the matrix exp( )A tΔ . 

We use ( ) / ( )p z q z to denote the Padé approximant of type [ / ]L M for exp z , then 

                              1 1exp( ) ( )[ ( )] ( ).L MA t p A t q A t O t− + +Δ = Δ Δ + Δ                                              (5.10) 

Then (5.9) is approximated by 

                                              ( 1) ( )( ) ( )k kq A t u p A t u+Δ = Δ                                                           (5.11) 

with local truncation error (based on taking ( ) ( )k kU u= ) 

                                                    ( 1) ( 1) 1( ).k k L MU u O t+ + + +− = Δ  

As an example, using the [1/1]  Padé approximant, we have from (5.11) 

                                               ( 1) ( )1 1(1 ) (1 )
2 2

k kA t u A t u+− Δ = + Δ                                               (5.14) 

which is expressed explicitly as 

                       ( 1) ( 1) ( 1) ( ) ( ) ( )
1 1 1 1(1 ) (1 )

2 2 2 2
k k k k k k

l l l l l lu u u u u uμ μ μ μμ μ+ + +
− + − +− + + − = + − +                         (5.16) 

 Expression (5.16) has error of 3( )O tΔ . 

Equation (5.16) is the familiar Crank-Nicholson method. 

For more in-depth theory on this topic, we refer to [Encyclopedia Mathematics, Padé 

approximants, 2nd Edition, Chapter 10, page 646, see ref. [1]]. 
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CHAPTER 3:  APPLICATION OF PADE APPROXIMANTS TO FINANCE 
 
 
Over the past twenty years several research projects have helped in obtaining new procedures 

and characterization techniques for studying dynamic relation structures associated with 

chronological series (see [2 through 12] and [14 through 27]. In the context of time series 

analysis, several authors have considered rational theory of series in economic modeling and 

have proposed the use of new techniques. (See [7, 8, and 14]). The main objective of this chapter 

is to show how some of these techniques can provide appropriate answers to problems arising in 

he study of time series Economics and interest rates in Finance. 

3.1 Application of Padé approximants to the study of interest rates 
 
 
Many mathematical tools such as the Gaussian model or the Lévy distributions have been used in 

the field of Finance to model price fluctuations or describe a financial time series. But they 

turned out to be limited. Therefore mathematicians have been looking for more accurate 

techniques. The Padé approximants prove powerful instruments in Finance. For that extent, the 

first part of our study will concentrate on approximations of the discrete data the continuous 

distributions whereas the second part will show the relevance of the Padé approximants in 

describing probability densities. 

 

3.1.1 Distribution of interest rates variations 
 
 
The "term structure" of interest rates refers to the relationship between bonds of different terms. 

We are interested in analyzing the term structures of samples of N daily interest rates are given  
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                                                     [ ] ( ), 1,...,mI t t N= ,                                                             (1) 

where [ ]m in unit year specifies the constant maturity and t  refers to chronological opening days. 

For our study, we will be using the interest rate variations, at lag L days  

                                       [ ] ( ) [ ] ( ) [ ] ( ) , 1,...,m m m
L L LI t I t L I t t N Lδ = + − = −                                 (2) 

Remarks  

1. The study uses a business time rather than a physical time since the opening days t  are 

not always consecutive. Sundays and Holidays are present as well. This difficulty is 

overlooked in the analysis. 

2. For lag L days greater than 1, there is overlapping periods occurring. The distributions 

defined will consider those specific periods. As an illustration, for 2L = , a distribution of 

the even days and a distribution of the odd ones can be defined, leading to two 

distributions with non-overlapping two days periods. Consequently, the total number of 

points is divided by two (or by L for lag L ) to get each distribution’s number of points. 

For a variation v̂ , a count can be performed to find the number of times v̂  occurs in the 

experimental sample. This number is defined as [ ] ( )ˆm
LN v .  

We define the empirical discretized density function  

                                                               [ ] ( )
[ ] ( )ˆˆ ˆ ,
m

m L
L

N v
f v

N L
=

−
                                                        (3) 

where  [ ] ( )ˆ ˆm
Lf v  refers to the integer values of v̂ .  

We set [ ] ( )ˆ ˆm
Lf v  to be zero outside the interval [ ]min maxˆ ˆ,v v  and normalized it as                              

                                                              [ ] ( )
ˆ

ˆ ˆ 1m
L

v
f v =∑ .                                                                (4) 
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The densities ( )f v , continuous functions of the continuous variations v , are normalized to have 

their integral equal to one. Normalizing the experimental discretized distributions (3) leads to the 

stepwise integrals 

                                               [ ] ( ) [ ] ( )
ˆ

ˆ ˆˆ ˆ ˆ 1m m
L L

v

f v dv f v
∞

−∞

= =∑∫                                                          (5) 

Since the mean values of the distributions are zero, the second moments become the variance 

                                        [ ] ( ) [ ] ( )( )2 2 ˆ ˆm m
L L

v
Variance v f v dv v f v

∞

−∞

≡ =∑∫                                          (6) 

The distributions of the variation of interest rates in the continuous variable are expected to be 

smooth functions. They have a bell shape being maximal for a variation 0v =  and decreasing as 

v  tends to infinity on both sides with tails wider than the Gaussian distribution. Moreover they 

are expected to be symmetrical around 0v =  which will make then even functions. This model is 

supported by the experimental data. 

3.1.2  Presentation and statistical description of the data 
 

 
The data used here are from the American daily spot interest rates for constant maturities  equal 

to one, two, three, four, five, seven, ten and thirty years within February 15, 1977 to August  4, 

1997. There are a total of 5108 opening days related to the seven interest rates calculated from 

bond prices published by the Board of Governors of the Federal Reserve System and available 

online.  
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Table 2: Univariate Statistic for the daily changes of the American Spot Interest  Rates between 
February 15,1977 and August 4, 1997 
 

[ ]m  
 

1L =  5L =  10L =  15L =  20L =  25L =  30L =  

[1]      Mean 
          Variance 
          Skewness 
          Kurtosis 
          V min 
          V max 

 0.0000 
 0.0143 
-0.1541 
 14.5664 
-1.0800 
 1.1000 

 0.0001 
 0.0860 
-0.8223 
 10.7279 
-2.2700 
 2.0600 

 0.0000 
 0.1966 
-1.0587 
 10.4445 
-3.0600 
 2.4700 

 0.0001 
 0.3326 
-1.0710 
 10.9208 
-4.0700 
 3.1400 

 0.0001 
 0.4836 
-1.1273 
 10.9326 
-5.4500 
 3.2000 

 0.0002 
 0.6446 
-1.1413 
 10.9088 
-6.3100 
 3.7200 

 0.0004 
 0.8136 
-1.1594 
 10.8980 
-6.9100 
 4.0100 
 

[2]      Mean 
          Variance 
          Skewness 
          Kurtosis 
          V min 
          V max 

 0.0000 
 0.0113 
-0.3648 
 12.4522 
-0.8400 
 0.8900 

-0.0002 
 0.0702 
-0.7398 
 9.7384 
-2.0800 
 1.9900 

-0.0005 
 0.1594 
-0.8722 
 9.1389 
-2.7900 
 2.6000 

-0.0007 
 0.2663 
-0.8171 
 9.2421 
-3.3700 
 2.8700 

-0.0009 
 0.3836 
-0.8547 
 8.8631 
-4.4900 
 3.0900 

-0.0009 
 0.5109 
-0.8600 
 8.5522 
-5.2300 
 3.3900 

-0.0010 
 0.6456 
-0.8741 
 8.3537 
-5.9600 
 3.7100 
 

[3]      Mean 
          Variance 
          Skewness 
          Kurtosis 
          V min 
          V max 

-0.0001 
 0.0102 
-0.1628 
 10.4136 
-0.7900 
 0.9200 

-0.0004 
 0.0622 
-0.4432 
 7.7748 
-1.5700 
 1.9900 

-0.0010 
 0.1374 
-0.5977 
 7.6880 
-2.8300 
 2.6000 

-0.0015 
 0.2256 
-0.5000 
 7.4571 
-3.0500 
 3.0400 

-0.0019 
 0.3225 
-0.5254 
 6.7799 
-3.5800 
 3.3200 

-0.0022 
 0.4248 
-0.5487 
 6.4504 
-4.3200 
 3.6000 

-0.0025 
 0.5421 
-0.5928 
 6.3316 
-5.1200 
 3.6500 
 

[5]      Mean 
          Variance 
          Skewness 
          Kurtosis 
          V min 
          V max 

-0.0001 
 0.0091 
-0.3064 
 8.7216 
-0.7700 
 0.7200 

-0.0007 
 0.0544 
-0.3938 
 6.2382 
-1.5400 
 1.6400 

-0.0016 
 0.1182 
-0.4482 
 5.9828 
-2.3900 
 2.3600 

-0.0024 
 0.1901 
-0.3617 
 5.9650 
-2.5800 
 2.8200  

-0.0032 
 0.2661 
-0.3448 
 5.5396 
-3.0700 
 3.0800 

-0.0038 
 0.3491 
-0.3109 
 4.8740 
-3.6000 
 3.3800 

-0.0044 
 0.4409 
-0.3025 
 4.4440 
-4.3200 
 3.5100 
 

[7]      Mean 
          Variance 
          Skewness 
          Kurtosis 
          V min 
          V max 

-0.0002 
 0.0085 
-0.3066 
 8.1780 
-0.7800 
 0.7000 

-0.0010 
 0.0491 
-0.3907 
 5.3213 
-1.3600 
 1.5300 

-0.0021 
 0.1044 
-0.4981 
 5.4510 
-2.4000 
 2.0300 
 

-0.0031 
 0.1651 
-0.3602 
 5.2149 
-2.5500 
 2.6000 

-0.0040 
 0.2287 
-0.3019 
 4.6201 
-2.9400 
 2.8000 

-0.0048 
 0.2981 
-0.2683 
 3.9410 
-3.1100 
 3.1100 

-0.0056 
 0.3749 
-0.2637 
 3.5034 
-3.6200 
 3.2600 

[10]    Mean 
          Variance 
          Skewness 
          Kurtosis 
          V min 
          V max 

-0.0002 
 0.0076 
-0.2817 
 6.9688 
-0.7500 
 0.6500 

-0.0012 
 0.0440 
-0.5431 
 5.4452 
-1.3600 
 1.3600 

-0.0025 
 0.0928 
-0.6719 
 5.7715 
-2.3500 
 1.8500 

-0.0037 
 0.1449 
-0.4999 
 5.1414 
-2.6000 
 2.3600 

-0.0049 
 0.1984 
-0.3918 
 4.1992 
-2.6200 
 2.5500 

-0.0060 
 0.2574 
-0.3246 
 3.4414 
-2.8400 
 2.8300 

-0.0070 
 0.3224 
-0.3224 
 3.0903 
-3.3700 
 2.9700 
 

[30]    Mean 
          Variance 
          Skewness 
          Kurtosis 
          V min 
          V max 

-0.0002 
 0.0062 
-0.2245 
 6.8619 
-0.7600 
 0.5000 

-0.0013 
 0.0349 
-0.4463 
 4.5314 
-1.3100 
 0.9500 

-0.0027 
 0.0723 
-0.4792 
 4.0574 
-1.8800 
 1.3800 

-0.0039 
 0.1114 
-0.3334 
 3.7200 
-2.1600 
 1.6500 

-0.0052 
 0.1518 
-0.2077 
 3.1661 
-2.3800 
 2.0800 

-0.0062 
 0.1972 
-0.1437 
 2.6781 
-2.2000 
 2.3700 

-0.0073 
 0.2475 
-0.1078 
 2.3830 
-2.4800 
 2.4900 
 

 

The statistics are given for the following maturities [m] = [1], [2], [3], [5], [7], [10] and [30] and 

the subsets of lags L= 1, 5, 10, 15, 20, 25 and 30. The quantities are expressed in %/year. 
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We notice an increase of variances and leptokurticity for higher lags. The mean values are 

approximately zero and therefore the negligible differences of those means from zero can be 

overlooked. The data can display small asymmetry that will not be reproduced by even 

distributions. 

A short mention on units used is necessary for the understanding of this material. Interest rates 

have the dimension of the inverse of the time, 1[[ ]]t −  and are usually given in [% / ]year  with 

exactly two significant digits. Hence they are expressed in [ . / ]b p year  as an integer number. 

• 4[ . / ] 10 /b p year year−=  is naturally used for interest rates  and their variations. It gives 

a natural binning for the discretized distributions. 

• Units [% / ]year  and [ / %]year  are used in the tables and figure for the different 

parameters as well as the means and variances  

• Passing from one unit to the other is fairly simple using the equalities 

                                        [% / ][ . / ]
100

yearb p year =  

                                        [ / . ] 100 [ / %] 100year b p year century= × = ×  

• The value of iq  expressed in units [ / . ]iyear b p  becomes 100i
iq×  in the unit[ / %]iyear , 

while in  becomes 1100i
in+ × . The Padé density ( ); ,i iP v n q  in units [ / . ]year b p  for v  

expressed in [ . / ]b p year  is related to the density ( )1( ) ;100 ,100new i i
i iP v P v n q+= , where 

newP  is expressed in [ ]century  in terms of v  expressed in [% / ]year  by  

                                          ( )1( ) ;100 ,100new i i
i iP v P v n q+=  

The units and dimensions used are summarized on the table below 
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Table 3: Units and dimensions 
 

Variable [[Dimension]] [Unit]  used in 
body of paper 

[Unit] used in the 
table 

Restriction 

v  1[[ ]]t −  [ . / ]b p year  [% / ]year   

s  1[[ ]]t −  [ . / ]b p year  [% / ]year   

f  [[ ]]t  [ / . ]year b p  [ ]century   

P  [[ ]]t  [ / . ]year b p  [ ]century   

in  1[[ ]] it +  1[ / . ]iyear b p +  1[ ]icentury +   

0u  1/ 2[[ ]]t  1/ 2[ / . ]year b p  1/ 2[ ]century   

iu  [[ ]]it  [ / . ]iyear b p  [ ]icentury  1, 2for i =  

iq  [[ ]]it  [ / . ]iyear b p  [ ]icentury   

id  [[ ]]it  [ / . ]iyear b p  [ ]icentury   

Mean 1[[ ]]t −  [ . / ]b p year  [% / ]year   

Variance 2[[ ]]t −  2[ . / ]b p year  2[% / ]year   

Skewness 0[[ ]]t  
Kurtosis 0[[ ]]t  

2χ  0[[ ]]t  

   

 

We have recourse to the Hill estimator needed to examine the tail thickness and therefore draw a 

distribution that characterizes perfectly the tail. The Hill estimator is defined as 

                                               [ ] [ ]

1

1 log log
k

m m
k j k

j

H I I
k =

= Δ − Δ∑                                                        (7) 

[ ]m
jIΔ denotes the jth  largest value of [ ] ( )1 , 1,..., 1m t t Nδ = − . In other words, it is the largest 

value of the absolute values of the variations of interest rates at the elementary time scale, for a 

given maturity. 

Hill estimator allows us to detect heavy tails and estimate Pareto index 1/ H  which has been 

consistently approximated as 1/ 3H ≈ .This fact coincides with the decay induced by the choice 



 
 

22  

pf the Padé approximant[ ]0, 4 . Table 2 gives us outputs of 250, ,1 1/ .k H H= + 250k = means 

that the tail contains 5% of the extreme data points. 

Table 4: Hill estimators H and the corresponding estimates of the power decrease 1+1/H 
 

 [m] H 1+1/H 
[1] 
 
 
[2] 
 
 
[3] 
 
 
[5] 
 
 
[7] 
 
 
[10] 
 
 
[30] 

0.428 
(0.026) 
 
0.407 
(0.023) 
 
0.407 
(0.024) 
 
0.372 
(0.022) 
 
0.337 
(0.023) 
 
0.324 
(0.020) 
 
0.329 
(0.028) 

3.345 
(0.144) 
 
3.467 
(0.141) 
 
3.464 
(0.144) 
 
3.697 
(0.157) 
 
3.979 
(0.207) 
 
4.099 
(0.203) 
 
4.062 
(0.2740 

               
             Standard errors are given enclosed in parenthesis. 
 

3.2   Use of Padé approximants 
 
 

We will expose the notation for Padé parameters, their normalization, variance and positivity. 
 

3.2.1 Presentation 
 
 
The Padé approximant [ ] ( ),M NP v is expressed as a rational fraction of a continuous variable v  
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                                                   [ ] ( ) ( )
( )

,
M

M N
N

T v
P v

B v
=                                                                     (8) 

where T  and B  are polynomials depending on real parameters since the Padé approximants are 

used to approximate the continuous distributions (5). In this chapter, we adopted a different 

notation for the Padé approximants compared to the previous chapters. This is due to the use of L 

as our lag. L has been referring to the degree of the denominator of the Padé approximants in the 

previous chapters. Therefore to avoid any confusion with decided to denote our Padé 

approximants with different letters. 

To obtain positive probability densities, we consider only values of the Padé approximants 

leading to that result. The curves given by the Padé approximants should be left-right symmetric 

to perfectly fit the distributions. Consequently the polynomials MT and NB  should be even 

functions meaning that the exponents N  and M are even numbers. 

To comply with one of the properties of a density function, we should normalize the Padé 

approximants. 

                                                    [ ] ( ), 1M NP v dv
+∞

−∞

=∫                                                          (9) 

We require the variance to be equal to 1. 

                                                [ ] ( ), 2 1M NVariance P v v dv
+∞

−∞

≡ =∫                                       (10) 

Since the Padé approximants considered here are even functions, the mean value will be zero. 

This agrees with our experimental sample. 

The conditions (8), (9) coupled with (7) restrict the possible values of M and N  which must 

satisfy the following inequality 
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                                                                4N M− ≥                                                                    (11) 

for convergence of (9) and (10). 

We will avoid too many parameters in the fit, though our experimental sample is quite large. The 

reason lies in the fact that even Padé approximants with low values for M and N  do give 

satisfactory fits. 

We need smoothness of the distribution which can be deterred if numerical minimizations with 

various parameters are used. In fact it will lead to fake oscillations that belong to no particular 

known intrinsic structure. 

The consideration above helps us to limit ourselves to 8N = and since by (11), 4N M− ≥ , we 

take 4M = .Since M and N have to be even, the relevant Padé approximants are [0,4], [0,6], 

[0,8], [2,6], [2,8], [4,8]. 

Our objective now is to give an explicit expression of Padé approximants. The parameterization 

of the numerator is obtained by introducing the complex polynomial of second degree ( )2U v  

                                                        ( ) ( )2 2
0 1 21U v u iu v u v= + +                                                   (12) 

Then the numerator of [4,8]P  is written as the norm square of  ( )2U v  

                                                  

( ) ( )( ) ( )

( )( )
4 2 2

2 2 2 2 4
0 1 2 2

2 4
0 2 4

1 2

,

T v U v U v

u u u v u v

n n v n v

= ×

= + + +

≡ + +

                                          (13) 

where ( )2 2 2
0 0 2 0 1 2, 2n u n u u u= = +  and 2

4 2n u= . 

The parameters in the expression above are the , 0,1,2.iu i = The denominator ( )8B v of [4,8]P  is 

calculated using the complex polynomials with four parameters , 1,..., 4iq i =  



 
 

25  

                                                   ( )4 2 3 4
1 2 3 41Q v iq v q v iq v q v= + + + +                                          (14) 

We then get ( )8B v as the norm square of  ( )4Q v  

                             

( ) ( ) ( )
( ) ( ) ( )

8 4 4

2 2 2 4 2 6 2 8
1 2 2 4 1 3 3 2 4 4

2 4 6 8
2 4 6 8

1 2 2 2 2

1

B v Q v Q v

q q v q q q q v q q q v q v

d v d v d v d v

= ×

= + + + + − + + +

= + + + +

       (15) 

We chose the term with degree 0 to be 1 without loss of generality as was previously done for 

the theory on Padé approximants. 

The positivity of the Padé is assured for it is an even function of v  being quotient of the norms 

squares of two complex polynomials. 

3.2.2 Normalization, variance and positivity 
 
 

We can compute analytically the normalization and variance. In fact an analytical continuation 

switching from real to complex parameter in Q is performed. As a result, the normalization (9) 

with the numerator and denominator know from (13) and (15) gives us  

                        ( )2 3 1 4 0 3 2 1 4
2 2

1 2 3 1 4 3

[4,8]
q q q q n q n q n

normalization Pade
q q q q q q

π
− − +

=
− −

                                 (16) 

The result gives us an expression with rather three parameters instead of four. We conclude that 

normalization diminishes the number of parameters from four down to three. 

Since [0,4]P is of interest, let us get its explicit expression. 

                                           0

1

[0,4] nnormalization Pade
q

π= ,                                                     (17) 

Equating it to 1 for the normalized Padé [0, 4] allows us to derive the value of 0n     
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                                                             1
0 .qn

π
=                                                                           (18) 

The variance expressed in (10) is given by 

                         ( )
( )

3 4 0 1 4 2 3 1 2 4
2 2

4 1 2 3 1 4 3

[4,8]
q q n q q n q q q n

VariancePade
q q q q q q q

π
− + + −

=
− −

                                   (19) 

This variance reduces for this particular case to 

                                              

0

1 2

2

[0, 4]

1

nVariance Pade
q q

q

π= −

= −
                                                     (20) 

The Padé approximants [0,4] is then given by 

                                     ( )
( )( )

[0,4] 1
2 2 2 4
1 2 21 2

qP v
q q v q vπ

=
+ + +

                                                   (21) 

This expression of Padé approximants [0,4] will be shown to approximate perfectly the 

normalized experimental distributions ( )f v  in (3). 

3.3 Empirical Padé densities 
 

3.3.1 Determination of parameters 1q  and 2q  
 
 

The empirical variance is directly computed from the data and thus utilized to determine 2q  

thanks to formula (20). 

We minimize a merit function to evaluate 1q . A merit function measures the agreement 

between data and the fitting model for a particular choice of the parameters. The chosen 

merit function 2χ is expressed as 
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( ) ( )( )
( )

2

2
2

ˆ

ˆ ˆ

ˆ
Pade

v

N v N v

v
χ

σ

−
=∑                                                      (22) 

The formula (22) features the following characteristics: 

- The number of observations from the Padé approximant  ( ) ( ) ( )[0,4]ˆPadeN v N L P v= − ×   

            where ( )[0,4]P v is the normalized Padé density given by (21). 

-  v̂  belongs to the interval[ ]min maxˆ ˆ,v v . Each extreme value of the interval for v̂  

corresponds to non-zero value of ( )ˆN v . 

- The errors ( )v̂σ  in the data can be reasonably assessed considering that interest rates 

statistically generated induce errors approximately of the order of ( )ˆN v .  

- The choice ( )ˆ 1vσ = , for  v̂  such that ( )ˆ 0N v = will make perfect sense since we want to 

avoid replacing ( )v̂σ  by 0 in the denominator of formula (22) 

3.3.2 Fit with Padé [0, 4] 
 
 
The hypothesis (at the 5% confidence level) that the data follow the Padé densities is asserted by 

the goodness of fit as measured by 2χ . The hypothesis fails for [ ] 2, 1m L= = because the 

experimental curve displays an oscillatory behavior around the maximum with three separate 

peaks. A statistical fluctuation might explain this happening.  
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Table 5: Padé parameters 1q and 2q of our fits for all maturities and subset of the lags 
 
[ ]m   1L =  5L =  10L =  15L =  20L =  25L =  30L =  

[ ]1  2

1

2

q

q

χ

 

141.4 
 
25.21 
(0.61) 
-69.90 

356.4 
 
9.019 
(0.276) 
-11.63 

576.5 
 
6.171 
(0.166) 
-5.08 

592.6 
 
4.825 
(0.120) 
-3.01 

775.6 
 
4.014 
(0.097) 
-2.07 

738.1 
 
4.014 
(0.091) 
-1.55 

721.4 
 
3.051 
(0.066) 
-1.23 

[ ]2  2

1

2

q

q

χ

 

368.1 
 
24.05 
(0.62) 
-88.51 

308.6 
 
8.218 
(0.206) 
-14.24 

465.0 
 
5.442 
(0.149) 
-6.27 

558.2 
 
4.222 
(0.125) 
-3.75 

668.5 
 
3.427 
(0.105) 
-2.61 

623.9 
 
2.933 
(0.088) 
-1.96 

595.5 
 
2.620 
(0.075) 
-1.55 

[ ]3  2

1

2

q

q

χ

 

126.5 
 
24.26 
(0.61) 
-97.57 

293.2 
 
7.971 
(0.200) 
-16.07 

355.6 
 
5.167 
(0.144) 
-7.28 

399.8 
 
3.915 
(0.087) 
-4.43 

562.0 
 
3.280 
(0.096) 
-3.10 

545.6 
 
2.823 
(0.092) 
-2.33 

526.0 
 
2.550 
(0.082) 
-1.84 

[ ]5  2

1

2

q

q

χ

 

138.0 
 
24.28 
(0.50) 
-110.04 

206.2 
 
7.977 
(0.213) 
-18.39 

292.3 
 
5.336 
(0.128) 
-8.46 

336.9 
 
4.135 
(0.115) 
-5.26 

443.7 
 
3.440 
(0.100) 
-3.76 

503.9 
 
2.998 
(0.090) 
-2.86 

502.4 
 
2.761 
(0.083) 
-2.27 

[ ]7  2

1

2

q

q

χ

 

136.6 
 
23.81 
(0.51) 
-118.07 

173.5 
 
8.036 
(0.179) 
-20.38 

262.5 
 
5.614 
(0.124) 
-9.58 

335.8 
 
4.361 
(0.119) 
-6.06 

339.2 
 
3.547 
(0.085) 
-4.37 

368.1 
 
3.102 
(0.072) 
-3.35 

520.9 
 
2.960 
(0.077) 
-2.67 

[ ]10  2

1

2

q

q

χ

 

154.8 
 
24.61 
(0.52) 
-131.22 

179.3 
 
8.535 
(0.210) 
-22.75 

236.9 
 
5.832 
(0.133) 
-10.78 

319.8 
 
4.593 
(0.133) 
-6.90 

377.9 
 
3.826 
(0.123) 
-5.04 

325.4 
 
3.286 
(0.081) 
-3.88 

499.9 
 
3.129 
(0.089) 
-3.10 

[ ]30  2

1

2

q

q

χ

 

129.3 
 
27.85 
(0.61) 
-160.15 

177.9 
 
9.880 
(0.228) 
-28.68 

251.0 
 
6.889 
(0.154) 
-13.83 

289.9 
 
5.484 
(0.122) 
-8.97 

346.9 
 
4.537 
(0.126) 
-6.59 

317.5 
 
3.909 
(0.097) 
-5.07 

479.7 
 
3.645 
(0.115) 
-4.04 
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The parameter 2q (20) was estimated using directly the variance of the data. The values of 

1q have been obtained by minimizing the 2χ  (22) and their standard errors (given in parenthesis) 

are obtained by a bootstep method. The goodness of the fit is excellent enough for all cases 

except for [ ] 2, 1m L= = which rejected at 5% level. 

3.3.3 Comparison with the Gaussian distribution 
 

 
We use the comparison of the data with the Gaussian distribution to judge the quality of fit with 

the Padé approximants. The Gaussian density of the form  

                                                      ( ) ( )2 2/ 21
2

vG v e μ σ

πσ
− −=                                                       (23) 

μ is a free parameter and σ is an observed parameter derived from experimental process. Unlike 

the Padé approximants, the Gaussian densities lead to high 2χ .Additionally the Kolmogorov-

Smirnov test rejected strongly the normal law for all [ ],m L cases. 

We sketched the distribution curves of the Padé, Gaussian and interest rates variations densities 

for a one year maturity and one day lag. As predicted the Padé distribution curve shares the same 

properties as our empirical data density curve namely symmetry, positivity, narrow peak and 

elongated tail. Consequently as the figure 1 below shows, the Padé density curve faithfully 

mimic the curve of the interest rates variations for a one year maturity and one day lag. 

Meanwhile, the Gaussian distribution curve ill-fits our data curve since it has a flat top and a 

short tail. Figure 1 displays the inaccuracy of approximation of our data with a Gaussian 

distribution whereas showcases the suitability of Padé densities as an appropriate fit. 
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Figure 1: The experimental density of interest rate variations (dots), the Padé density (solid 

line) and the Gaussian distribution (dashed line) are all plotted in the figure above for the 

case[ ] 1, 1m L= = . As we notice, the Padé density follows closely the data. 

3.3.4 Scaling law and expression of the parameter as functions of the lag 
 
 

[ ] ( )1
mq L  and [ ] ( )2

mq L  can be approximated  in the log-log plot by linear functions as follows 

                                                   

[ ] ( )( ) [ ] [ ]

[ ] ( )( ) [ ] [ ]

1 1 1
0

2 2 2
0

ln ln ,

ln ln .

m m m

m m m

Lq L v
L

Lq L v
L

λ

λ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

                                             (24) 

with 0L  arbitrarily chosen and fixed  to 15. 
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The estimates of [ ]m
iλ , [ ]m

iv  and their t-stat are given for all maturities in Table 4 below. The 

scaling laws relate to 2λ for the time dependence of the standard deviations 

                                                  [ ] ( ) [ ] [ ]mm m EL k Lσ =                                                                      (25) 

For the most part in financial time series, standard deviations have this expression with the 

exponent ordinarily a little larger than 0.5, which should be observed for the Gaussian process. 

Here, for our case, [ ] [ ]
2 / 2m mE λ= − . We get absolute values of 2λ  greater than 1 which favors our 

expectation. 

Table 6: Scaling parameters [ ]
1

mv and [ ]
2
mv for the two Padé parameters iq  

 
 [ ] [ ]1m =  [ ] [ ]2m =  [ ] [ ]3m = [ ] [ ]5m = [ ] [ ]7m = [ ] [ ]10m =  [ ] [ ]30m =

[ ]
1

1
m

q

v
 

 
 
1.553 
(0.005) 

 
 
1.416 
(0.004) 

 
 
1.371 
(0.003) 

 
 
1.419 
(0.005) 

 
 
1.462 
(0.005) 

 
 
1.515 
(0.004) 

 
 
1.677 
(0.004) 

[ ]
1

mλ  -0.607 
(0.006) 

-0.644 
(0.004) 

-0.652 
(0.004) 

-0.622 
(0.006) 

-0.606 
(0.006) 

-0.597 
(0.005) 

-0.588 
(0.005) 

2R
SSR

 
0,998 
0.0186 

0.099 
0.0105 

0.999 
0.0086 

0.998 
0.0181 

0.997 
0.0197 

0.998 
0.0152 

0.998 
0.0138 

[ ]
2

2
m

q

v
 

 
 
1.086 
(0.008) 

 
 
1.308 
(0.006) 

 
 
1.469 
(0.006) 

 
 
1.647 
(0.004) 

 
 
1.788 
(0.004) 

 
 
1.921 
(0.003) 

 
 
2.180 
(0.003) 

[ ]
2

mλ  -1.209 
(0.009) 

-1.200 
(0.007) 

-1.172 
(0.007) 

-1.139 
(0.005) 

-1.109 
(0.004) 

-1.093 
(0.003) 

-1.074 
(0.004) 

2R
SSR

 
0.998 
0.0510 

0.999 
0.0329 

0.999 
0.0290 

0.999 
0.0137 

0.999 
0.0118 

0.999 
0.0059 

0.999 
0.0074 

 
The standard errors of these scaling parameters are enclosed in parenthesis. The quality of the fit 

is attested by the values of 2R , the square of the correlation coefficient between explanatory and 

explained variables, and of the SSR , the sum of the square residuals. 
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3.3.5  Fits with Padé Approximants with greater indices than [ ]0, 4  
 
 
We further our search of a best fit by investigating the possibility of a better fit to our data than 

[ ]0,4P . Therefore our next question should be the following: is there a Padé of indices greater 

than [ ]0, 4  which will fit the data more efficiently? 

The matter of the fact is [ ]0,4P  pretty much reaches the optimum in terms of data fitting for the 

following reasons: 

1. -  First it s primordial to notice that the validity of Padé [ ],M N as a fit for our data is 

tantamount to the existence of a finite variance (10). 

2. The Padé [ ]0, 2  coincides with the Cauchy distribution. 

3. The cases of Padé [ ],M N with M N= are not of utility since they cannot be normalized. 

4. However Padé with indices higher than [ ]0, 4 might produce better fits since they 

encompass higher number of parameters. This can be possible provided that the condition 

of finite variance is satisfied.  

The fitting of the data with Padé’s ([ ]4,8 and[ ]2,6 ) features no significant improvement of the 

criteria. In some cases, the minimization algorithm produces smaller values for the criteria while 

at the same time forcing the Padé curve to fit small oscillations in the experimental curves. These 

tiny oscillations are related to the finiteness of the data and thus have no link to the intrinsic 

structures. A trade-off is made since the minimal parameters are not stable like those fathered 

by [ ]0,4P  and the minimum curve is sensitive to the starting values. 
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3.4   Conclusion of the study of Padé approximants as best fit to our data 
 

 
We exposed and analyzed so far the fits of daily variations of the term structure of interest rates 

published by the Board of Governors of the Federal Reserve System. The study demonstrated 

that the Padé Approximants were appropriate fits for our experimental data. More precisely, the 

values of the parameters given by the Padé Approximants [ ]0, 4  fit smoothly the data as a 

function of the lag and the maturity. Plus it is in agreement with the asymptotic decrease of the 

empirical densities and needs not more then two significant parameters to faithfully follow our 

data. Particularly we stress out the fact that the parameters are well represented in a log-log plot 

by straight line as function of the lag. This remark relates to the scaling laws reported for other 

financial time series. 

Finally we draw a comparison of Lévy and Padé distributions. The Lévy distributions unlike the 

Padé distributions have convolution properties. But they both share narrower peaks around the 

maximum and longer tails in contrast to the Gaussian distribution. Luckily Padé distributions are 

advantageous compared to Lévy distributions for they are easier to write, tabulate and used for 

other applications once their best parameters are known. 

The theory on application of Padé Approximant as a fit for daily variations of the term structure 

of interest rates is derived form the paper entitled Phenomenology of the term structure of 

interest rates with Padé Approximants authored by Jean Nuyts and Isabelle Platten. 
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CHAPTER 4:  CONCLUSION 
 

 
Padé approximation is utilized in a non-exhaustive list of fields. Its wide use lies on the fact that 

among its advantages, resides the possibility of deducing from any converging or diverging 

series of powers, a table of rational approximations of the functions represented by these series. 

This makes it a powerful mathematical tool. That is the reason why many physicists and applied 

mathematicians have relied on it and studied it to obtain ever faster computing algorithms. 

Analytic function theory, difference equations, the theory of moments, continued fractions 

among others, are fields in Mathematics closely connected with Padé approximations. 

 ε- algorithm and Q-D algorithms are used in Hydrodynamics, continuum mechanics, quantum 

mechanics. 

Unfortunately, due the vast number of results developed around the Padé approximation, we 

were able to just cover a tiny portion of that concept. Nevertheless, Mr. Henri Padé probably 

never expected his work to expand that wide. Many researches are still being carried out in that 

domain since ever faster convergent algorithms are needed to improve accuracy and hence to 

contribute to an ever-growing technology. 
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APPENDIX: ANALYTICITY OF THE DENOMINATOR 
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An analytical computation of the normalization (16) and the variance (19) was used to determine 

the denominator of the Padé approximant (14). ( )nQ v has its poles located in the upper-half 

plane of the complex variable v  while its conjugate will have its own in the opposite side for the 

formula (14) to hold. ( )nQ v is expressed as  

                                               ( )
1

1
n

n

j j

v sQ v i
v=

⎛ ⎞−
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∏      

provided that the complex poles are of the form , 1,..., 4,j j jv s a ib j= + + =  with 0.jb >   

Taking 3n =  and expanding the expression above while taking into consideration the positivity 

of jb , we obtain the following results 

                                                1 2

3 3 1 2

0, 0,
0, 0.

q q
q q q q
> <
≤ − ≥

 

For 4n = , 4Q  the conditions transform into 

                                               4 2 3 1 4
2 2

1 2 3 1 4 4

0, 0,

0.

q q q q q

q q q q q q

≥ − ≥

− − ≥
 

When written in terms of the poles, the analytical form of the normalization and of the variance, 

lead to positive values. 
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